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Preface

The convolution of distributions was widely researched by many authors. Starting
with Schwartz, who gave a definition for convolution of distributions, many other
authors addressed the problem and gave alternative definitions of convolution and
proved that they are equivalent with the Schwartz’s one. The convolution of ult-
radistributions was already addressed in the Beurling case two decades ago. In
fact, the analogous definitions that appear in the distributional setting, with ap-
propriate changes, also apply in Beurling ultradistribution. Of course, the proof
for their equivalence is more difficult because of the topological properties of the
spaces under consideration. In this work, we study the convolution of Roumieu
ultradistributions. Besides the analogous form of the Schwartz’s definition, we give
several other and proof their equivalence. Because of the topological properties of
the corresponding spaces, they are not complete analogues to the definitions in the
distributional setting. Furthermore, the proof of their equivalence is different than
in the Beurling case. In fact, we will make a detour and study ¢ tensor products
of specific locally convex spaces in order to prove the desired equivalence. Beside
its theoretical importance, we will need this result in the last chapter.

The second main line of discourse is devoted to the study of localization ope-
rators on ultradistribution spaces, or rather a specific subclass whose elements are
called Anti-Wick operators. We will be mainly interested in their connection to
the Weyl quantization for symbols belonging to specific global symbol classes of
Shubin type. The functional frame in which we will study this connection will
be the spaces of tempered ultradistribution of Beurling and Roumieu type. By
considering the convolution with the gaussian kernel, we will extend the definition
of Anti-Wick quantization (Anti-Wick operators) for symbols that are not neces-
sarily tempered ultradistributions.

Novi Sad, 2013 Bojan Prangoski

Vil
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Chapter O

Introduction

The aim of this work is to study the relationship between specific type of localiza-
tion operators called Anti-Wick operators and a certain class of pseudodifferential
operators in ultradistributional setting. The Anti-Wick operators first appear in
a paper of Berezin [1], and later, in a paper of Daubechies [14], by the name of
localization operators. In the latter paper they were proposed as a mathematical
tool to localize a signal on the time-frequency plane. Anti-Wick operators were
extensively studied during the years by many authors, primarily in the setting of
Schwartz distributions. In Nicola and Rodino [36] and Shubin [53] there is sys-
tematic approach to the theory of Anti-Wick operators in distributional setting
(see also the references therein). We also encourage the reader to see two recent
papers on localization operators by Cordero and Gréchenig [11], [12]. Anti-Wick
operators appear in approximation of pseudodifferential operators; see Cordoba
and Fefferman [13], Folland [18], Tataru [55]. They can also be used in proving
the Sharp Garding inequality (see [36]).

The aim of this work is twofold. The first goal is giving a relation between
the Anti-Wick operators and the Weyl quantization of symbols in specific symbol
classes. The second goal is enlarging the class of Anti-Wick operators.

The work is divided into five chapters.

In the first chapter we settle the basic notations that we will use. We give
a brief survey on the theory of ultradistributions developed by Komatsu in [26],
[27] and [28]. We also give definitions and basic facts for some subspaces of ultra-
distributions. Of special interest will be the spaces of tempered ultradistributions
(which are a generalisation of the Gelfand-Shilov spaces) defined and studied by
Pilipovié¢ in [40], [41], [42] (see also [33]) and other authors. Probably the best
reference for the properties of this space is the book of Carmichael, Kaminski and
Pilipovi¢ [10] with a systematic approach to the theory. These spaces were recently
used by Pilipovi¢ and Teofanov in [44] and [45] in the theory of modulation spaces.
Besides few technical results, we state and prove a very important kernel theorem
for tempered ultradistributions in this chapter which will be of big importance for
the rest of the work. We assume that the reader has deep knowledge in functional
analysis and omit any background material on that subject in the introduction
(Schaefer [49], Treves [56], Kéthe [30], [31], are just a few good references).

We make a slight detour in the second chapter and study the Laplace transform

1



2 Chapter 0. Introduction

on ultradistribution spaces. The two main theorems proven there characterise ult-
radistributions defined on the whole R? through the estimates of their Laplace
transforms. These results will be of particular importance for the last chapter.

The third chapter is devoted to the convolution of ultradistributions. We
will be mainly interested in the Roumieu case. The convolution of Beurling ult-
radistributions was studied by Pilipovi¢ [41] and Kaminski, Kovacevi¢ and Pili-
povié¢ [25]. Besides its theoretical importance, to motivate the study of convo-
lution one doesn’t need to look further then the most simple examples. For if
P(D) =37 4<n caD® is an ordinary partial differential operator then P(D)u can
be rewritten as P(0) x u, where P(0) is the (ultra)distribution >, ., caD*d. In
ultradistributional setting one can consider infinite such sums with appropriate
conditions on the coefficients c,.

In the fourth chapter we define certain global symbol classes of Shubin type and
study the resulting pseudodifferential operators which are of infinite order. They
act continuously on the spaces of tempered ultradistributions and are constructed
in such way that they give a well suited environment for studying Anti-Wick quan-
tization, i.e. Anti-Wick operators with symbols in these classes. Many authors stu-
died pseudodifferential operators of finite and infinite order that act continuously
on Gevrey classes, constructed appropriate local symbol classes and developed cor-
responding calculi (see for example Matsuzawa [34], Hashimoto, Matsuzawa and
Morimoto [22] for pseudodifferential operators of finite order and Zanghirati [59]
for infinite order). For the global symbol classes and corresponding pseudodiffe-
rential operators of finite and infinite order we refer to Cappiello [3]-[6], Cappiello
and Rodino [7], Cappiello, Gramchev and Rodino [8]. The symbol classes and the
corresponding operators constructed in these papers are of (SG)-polyhomogeneous
type in the setting of Gelfand-Shilov spaces and are employed, with great success,
in the study of (SG)-hyperbolic Cauchy problems. It is important to note that in
the analytic case, local symbol classes and corresponding pseudodifferential ope-
rators of infinite order were considered by Boutet de Monvel [2].

The fifth chapter is devoted to the Anti-Wick quantization. We first investi-
gate its relation to the Weyl quantization when the symbols belong to the symbol
classes constructed before. Then, by using the theory developed in the previous
chapters, we enlarge the class of Anti-Wick operators. Probably the most in-
teresting features of Anti-Wick operators are the positiveness, respectively the
self-adjointness, of the operator when the symbol is positive, respectively real-
valued. Also, when the corresponding symbol is in L*°, the Anti-Wick operator
can be extended as bounded operator on L? and its norm is not bigger then the
L> norm of the symbol.

Throughout this work, all the results that are borrowed have explicit reference
next to them which refer to the paper or book were they can be found and are
without a proof. All the results that are obtained by the author together with his
advisor are without a reference and are presented with proofs. All of them can be

found in [46], [43], [48] and [47].



Chapter 1

Preliminaries

1.1 Basic Facts and Notation

The sets of natural (including zero), integer, positive integer, real and complex
numbers are denoted by N, Z, Z,, R, C. For multi-indexes a, 8 € N?, we set

lal=a1+...aq; al=o!-...-ayy; B<asfi<a;,Vi=1,....d

d
f<a<s f<aand f#a; forp<a, (Z)ZH(%)'

jor i
We use the symbols, for € R? and a € N,
z)y = (14 |z|))Y? 2% =20 .. . 2%
() = ( 1 d
_ 0% olal
o [e% o a; -1 . o
D —Dll...Ddd Where DJJ =1 axjaj, —W

If 2 € C%, by 22 we will denote 2? + ... + z2. Note that, if x € RY, 22 = |z|*>. For
z,y € R and «, 8 € N%, the following equalities and inequalities hold

(z+y)" =3 <3) 27y alfl < (a+ )l

Yo

(o + B)! < 2leHBla1gl ol < délal,
Also, for n € N, the number of all multi-indexes @ € N¢ such that |a| = n is
d—1 d
(n; ) ) and the number of all @ € N such that |a| < n is (n * )
— n
For a measurable (Lebesgue measurable) subset K of R? we will denote by | K|
the Lebesgue measure of K.
Let f be a function defined on the convex domain U C R? that has continuous
partial derivatives up to order n + 1 (n € N), in U. Then, we have the Taylor’s
formula

) = 3 @)y - o)

laf<n
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+ Z o (y —x) /0(1—t) 0°f((1 —t)x + ty)dt, for x,y € U.

|a|=n-+1

Let P = {¢ € C|wy — 1| < ri,eey Jwa — 4| < g} is a polydisc in C%. If f is
analytic on a neighbourhood of P then the Cauchy integral formula holds

wpiy O f(©)
71 = (2mi)d ]{wl—ﬁI:rl %wd—CM:rd (G —z)>tt e (G — 2a) et -l

for z € int P and o € N%. Let K be a d + 1-real dimensional piecewise smooth
surface with a boundary in C? and let the boundary 0K be a d-real dimensional
piecewise smooth surface. If f is analytic on a neighbourhood of K, then we have
the Cauchy-Poincaré theorem

(2)dz1 A ... Ndzg = 0.
oK

1.2 Function Space. Ultradistributions

The space of all locally integrable functions on U, where U is an open subset of
R? will be denoted by LY°¢(U). Tt consists of all measurable functions f : U — C

such that / |f(z)|dz < oo, for every K CC U (we will always use this notation
K

for a compact subset of an open set). As standard, L? (]Rd), 1 < p < o0, stands
for the Banach space (from now on, abbreviated as (B) -space) of all measurable
functions f : R — C such that

1/p
1 fllzr = (/d If(fv)l”dx) < 00 forp < 00; ||f||1ee = esssup |f| < oo forp = oo.
R

The inner product in L? (R?) will be denoted by (-, ).

For an open subset U of R¢, by C>(U) will be denoted the space of all infinitely
differentiable functions on U. We will often drop the notation U when U = R
For the definition and the properties of the test spaces of infinitely differentiable
functions and the corresponding spaces of distributions we refer the reader to [51]
(see also [56], [21]).

If U is an open subset of C?, then by O(U) we denote the space of all analytic
functions on U.

Following [26], we denote by M, p € N, a sequence of positive numbers such
that My = 1. We will impose the following condition on My:

(M.1) (logarithmic convexity) M7 < M, 1My, p € Zy;

(M.2) (stability under ultradifferential operators) M, < coH” Oglqigp{Mp,qu},
p,q € N, for some co, H > 1; o

o0

(M.3) (strong non-quasi-analyticity) Z
p=q+1
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although in some assertions we could assume the weaker ones:
(M.2)" (stability under differential operators) M,.; < coH?*'M,, p € N, for
some cq, H > 1;

[e.9]

M,
(M.3)" (non-quasi-analyticity) Z MLl < 0.

p=1 P
For s > 1, the Gevrey sequence M, = p!° satisfies (M.1), (M.2) and (M.3).
For a € N?, M, will mean My, |a| = a; + ... + ag. Recall (see [26]), m, =
M,/M,_1, p € Z; and if M, satisfies (M.1) and (M.3)’, the associated function
for the sequence M, is defined by

M(p) = suplog, —, p>0.

peEN ﬁp
It is non-negative, continuous, monotonically increasing function, which vanishes
for sufficiently small p > 0 and increases more rapidly then In p? when p tends to
infinity, for any p € Z,. If M, satisfies (M.1) and (M.3)" then for each k € N,
kPp! /M, — 0 when p — oo (see [26]). We will often use the following proposition.

Proposition 1.2.1. (/26]) Let M, satisfies (M.1) and (M.3)". M, satisfies (M.2)
if and only if 2M (p) < M(Hp) + In co.

Let U C R? be an open set and K CC U. Then EMrH(K) is the space of all

Da
@ € C*(U) which satisfy sup sup [D%plw)] < oo and DéM”}’h is the space of all
aeNd ze K haMa
w0 (R i ' - - _ | Dp()|
pel (R ) with supports in K, which satisfy px () = sup sup ———— < o0

aeNd ze K haMa
One verifies that it is a (B) - space with the norm pg ;. Define as locally convex
spaces (from now on, abbreviated as l.c.s.)

g(Mp)(U): lim 1@5{1\/1@}7’1([()7 g{Mp}<U): lim  lim (C;{J\/f;o}vh(K)7
KCCU h—0 KCCU h—00

DY = lim D" DMI(U) = lim DR,

iy
h—0 KccU
My ; Mp},h p — T My
DY = lim DY DU U) = lim D
h—o0 KccU

The elements of the space £M)(U), resp. EIM}(U), are called ultradifferentiable
functions of Beurling, resp. of Roumieu type, and the elements of the space
DM (1), resp. DM} (U) are called ultradifferentiable functions with compact
support of Beurling, resp. of Roumieu type. If (M,) satisfies (M.1) and (M.3)’,
non of these spaces are trivial; in the sequel, we will always assume the M, satisfies
this two conditions. They are complete, bornological, Montel spaces. Moreover,
EM)(U) and D%MP) are (F'S) - spaces; D}Mp} and DW}(U) are (DFS) - spaces;
DWMe)(U) is a (LFS) - space; EMe}(U) is a (DLFS) - space. If in addition M,
satisfies (M.2)" then all of the above spaces are nuclear. The spaces of ultradist-
ributions and ultradistributions with compact support of Beurling, resp. Roumieu
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type are defined as the strong duals of D) () and £M»)(U), resp. DIMe}(U) and
EWMI(U). These are complete, bornological, Montel spaces. Moreover, D'Me) (1))
is a (DLES) - space; D'"Mp}H(U) is a (FS) - space; &'M)(U) is a (DFS) - space;
EMY(U) is a (LFS) - space. If (M,) satisfies (M.2)" then they are all nuclear.
For the properties of these spaces, we refer to [26], [27] and [28]. In the future we
will not emphasise the set U when U = R¢. Following [26], the common notation
for the symbols (M,) and {M,} will be *. D*(U) is continuously and densely
injected in £*(U). Hence we have the continuous inclusion £*(U) — D"™*(U).

Theorem 1.2.1. (/26]) Let U be an open subset of R, Then £*(U) is topological
algebra under the pointwise multiplication. D*(U) is topological £*(U)-module in
which the multiplication s hypocontinuous.

If U’ and U are two open subsets of R?, U’ C U, then the inclusion D*(U’) —
D*(U) is continuous. Hence, its dual mapping pY, : D*(U) — D™*(U’), is conti-
nuous. For T' € D™*(U), pY, T is the restriction of T to U’ and it will be denoted
by T (if there is no confusion). Obviously, if U, U’ and U” are open subsets of R?
such that U” C U’ C U then the restrictions obey the chain rule p¥, = p¥, o pY,.

Theorem 1.2.2. (/26]) The spaces D'*(U), U C R?, with the restriction mappings
pYr form a sheaf on RY which is soft on any open set in RY. Namely they satisfy
the following three properties:

(i) Let U = |JU; be an open covering of an open set U in Re. If T € D*(U)
and png =0 for all j then T = 0.

(ii) Let U = JUj; be an open covering of an open set U in R, If T; € D*(Uj)
are compatible in the sense that pgijij = pgfmUka for allU; N U, # 0,
then there is T € D™ (U) whose restriction to U; is equal to Tj.

(iii) Let F be a relatively closed set in an open set U in Re. If T € D™*(U') on
an open neighbourhood U’ of F in U, then there is S € D™*(U) such that
P T = pY.S on an open neighbourhood U" of F in U.

For ¢ € E(U) and T € D*(U), ¢T defined by (pT,¢) = (T, p1h) is well
defined element of D"*(U). Moreover, we have the following theorems.

Theorem 1.2.3. (/26]) The multiplication (o, T) — ¢TI, E(U) x D*(U) —
D™*(U), is hypocontinuous bilinear mapping.

Theorem 1.2.4. (/26]) Each ¢ € E*(U) induces a sheaf homomorphism ¢ :
D™ — D™ over U under the multiplication. Namely for each pair of open subsets
U" C U CU we have p&, 0o = po pl, - D*(U') — D*(U").

Theorem 1.2.5. ([26]) The multiplication is a hypocontinuous bilinear mapping
on EX(U) x E*(U) into E™(U) and on D*(U) x D*(U) into £*(U)

Let U, U; and U, are open subsets of R? such that U = U; — U, = {z € ]Rd] T =
X1 — Ta, 11 € Uy, e € Us}. Suppose that T € £™(U;) and ¢ € £*(U), or that
T € D*(U) and ¢ € D*(Us), or that T' € £*(—U,) and ¢ € D*(U;). Define the
convolution T'x ¢ by T'xp(x) = (T'(y), p(x —y)). If M, satisfies (M.1), (M.2) and
(M.3)" we have the following theorems.
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Theorem 1.2.6. (/26]) The convolution is a hypocontinuous bilinear mapping:
EX(Uy) x EX(U) — E*(Uy); D*(U) x D*(Uy) — E*(Uy);
gl*(—Ug) X D*(Ul) — D*(U)

Theorem 1.2.7. (/26]) The bilinear mapping (S,T) — S+ T, (SxT,¢p) =
(T,S %), (where S(x) = S(—x)) is well defined and hypocontinuous as a bi-
linear mapping:

E(~Us) x E*(Uy) — E™(U); D*(—U) x E*(Uy) — D*(Us);
E(Uy) x D'*(U) — D*(Uy).

In Chapter 3 we will define convolution for more general pairings (S,7T) of
ultradistributions. A sequence of nonnegative ultradifferentiable functions u, €
D* (Rd) will be called a §-sequence if p, — 6, when n — oo in £ (Rd), where
is the Dirac’s 0 ultradistribution. Such a sequence can always be constructed. For
example, we can take u € D*(U) where U is the open unit ball in R? with centre

at 0, to be such that ¢ > 0 and / p(x)dr =1 (such function exists by Lemma
R4

5.1 of [26]). Then, define p,(x) = nu(nz), n € Z,. One easily checks that s,
converge to 0 in £ (Rd). By using appropriate d-sequence and cut-off functions
and theorems 1.2.7, 1.2.3 and 1.2.5 one easily proves that D*(U) is dense in D"™*(U)
and in £*(U), where U is an open subset of R%. Obviously D*(U) is continuously
injected in D™*(U) and £*(U).

It is said that P(§) = Z cal®, € € RY, is an ultrapolynomial of class (M,),

aeNd

resp. {M,}, whenever the coefficients c, satisfy the estimate |c,| < CLIl/M,,
a € N9, for some L > 0 and C > 0, resp. for every L > 0 there exists Cp, > 0.
The corresponding operator P(D) = > coD® is an wltradifferential operator
of class (M,), resp. {M,} and if M, satisfies (M.2), they act continuously on
EM) () and DMe)(U), resp. EMe}(U) and DIMe}(U) and the corresponding
spaces of ultradistributions. Moreover, each ultradifferential operator P(D) of
class * induces sheaf homomorphism P(D) : D* — D™ (cf. [26]). If T is an
ultradistribution and ¢ an ultradifferentiable function on appropriate open subsets
of R? such that the convolution 7' * ¢ can be defined, as in theorem 1.2.6, then
P(D)(T x¢) = P(D)T*¢p =TxP(D)p, where P(D) is ultradifferential operator
of class *. Similarly, if S and T are ultradistributions as in theorem 1.2.7, i.e.
S« T can be defined, then P(D)(T xS) = P(D)T «S =T x P(D)S.

We say that f € Lbloe (Rd) is of ultrapolynomial growth of class * if there exists
a ultrapolynomial of class * and a constant C' > 0 such that |f(x)| < CP(z) a.e.
If M, satisfies (M.2) and (M.3), this is equivalent to the following:

there exist m,C > 0, resp. for every m > 0 there exists C' > 0, such that
|f(z)] < CeMimlel ae.

Remark 1.2.1. Some authors use the term sub-exponential growth for ultrapoly-
nomial growth, when working with Gelfand-Shilov spaces. However, this term
means completely different thing in Komatsu’s notions. We will restrict ourselves
to only use the term ultrapolynomial growth.
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We say that a subset K of R? has the cone property if for each o € K there
are a neighbourhood U N K of x, a unit vector e in R? and a positive number &
such that (U N K) + ee is in the interior of K for any 0 < € < gg. Let U; and Us
are open subsets of R4 and RZQ respectively. Let K; and K5 be compact subsets
of Uy and U, respectively, that satisfy the cone property. We have the following
very important theorem.

Theorem 1.2.8. ([27]) Let M, satisfies (M.1), (M.2) and (M.3)". Then the
bilinear mapping which assigns to each pair of functions ¢(x) on Uy and ¥(y) on
U, the product () (y) on Uy x Uy induces the following isomorphisms of locally
convex spaces:

EM)(UN)QEM () =2 EM) (U x Uy);  EMeH(U)QEWMeY (U,) =2 €M} (U x U,);

~

(Mp) & ~(Mp) ~ y(Mp) Mp} Mp} ~ {Mp} |
DKlp ®DKQP = DK1I>7<K27 IDi(lp ®D§(2p = D}(1§i{27

D{Mp}(U1)®D{Mp}(U2) o D{MP}(Ul x Us). (1.1)

The completion of the tensor products in the above theorem are in the topology
7 = € (all of the space in the above theorem are nuclear and hence the topologies 7
and e coincide). Note that we don’t have the corresponding isomorphism to (1.1)
in the (M,) case. In [28] it is proved that D) (U;)@, DMr) (Uy) =2 DM (U x Us)
where ¢ stands for the inductive tensor product topology. In general it is stronger
than the 7 topology even when the spaces are nuclear. But we will never use this
fact (the only good references that the author knows about the inductive tensor
product topology are Grothendieck [20] and Komatsu [28]). However, from this
immediately follows that D) (U,) @ D) (U,) is dense in Do) (U x Us).

If £ and F' are two l.c.s. we will denote by L(E, F') the space of all continuous
linear mappings from F into F' and by L,(F, F) this space equipped with the
topology of bounded convergence. Denote by B*(E, F') the space of all separately
continuous bilinear functionals on £ x F. If E and F' are barrelled then we can
define on B*(E, F') the topology of bibounded convergence, i.e. the topology of
uniform convergence on the sets A x B where A and B are bounded subsets of
E and F respectively, and denote it by Bj(E, F'). The following is the kernel
theorem for ultradistributions (we will sometimes refer to it as Komatsu kernel
theorem).

Theorem 1.2.9. ([27]) Let M, satisfies (M.1), (M.2) and (M.3)'. Let * be either
(M) or {M,}. Then we have the canonical isomorphisms of locally convex spaces:
B; (D*(U1),D*(Us)) = Ly (D*(U1), D"(Us)) = Ly (D*(Us), D" (U1))

D*(U))@D™*(Uy) = D*(Uy x Us).

I

The topology of the tensor product in the above theorem is m = e (because
D™ (U,) and D™ (U,) are nuclear these topologies coincide).

The theory of vector valued ultradifferentiable functions and vector valued
ultradistributions is developed in [28]. We will only need results about vector
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valued ultradifferentiable functions in few occasions in chapter 3. Instead of listing
them here we will give precise references when they are needed.

By R is denoted the set of all positive sequences which monotonically increase
to infinity. For (r,) € R, consider the sequence Ny = 1, N, = M, H§=1 ri, D € Ly.
One easily sees that this sequence satisfies (M.1) and (M.3)" if M, does and its
associated function will be denoted by N, (p), i.e. N, (p) =suplog, ——=——,

peN M, Hj:l Tj
p > 0. Note, for given (r,) and every k > 0 there is py > 0 such that N, (p) <
M (kp), for p > po. In the next chapters we will need the following technical
results.

Lemma 1.2.1. Let (k,) € R. There exists (k) € R such that k, < k, and

p+q

Hk’ <2p+qu’ Hk’], for all p,q € Z,.

Jj=1 Jj=1

Proof. Define k| = k; and inductively k; = min {k], : J 1]{:3 1}, forj > 2,5 €eN.

Obviously &% < k; and one easily checks that (£}) is monotonically increasing.
To prove that k; tends to infinity, suppose the contrary. Then, because (ké)
is a monotonically increasing sequence of positive numbers, it follows that it is
bounded by some C' > 0. Because (k;) € R, there exists Jos such that, for all

J > jo, j €N, k; >2C. So, for all j > jo+ 1, kj = —1k; .- We get that
J
K = J “kj, — oo, when j — oo, which is a contradiction. Hence (k}) € R. Note
Jo
p+q

that, for all p,j € Z,, we have &, ; < pjjk:’ Hence Hk:’ Hk:’ H i <
j= 1

ﬁk]ﬁpT“k et a) Hk’ Hk'<2p+qu' Hk’ 0
j=1  j=1

Cplg!

Hence, for every (k,) € R, we can find (k) € R, as in lemma 1.2. 1 such that
Ni,(p) < Ny (p), p > 0 and the sequence Nog = 1, N, = M, [[}_, ¥}, p € Zy,
satisfies (M.2) if M, does.

Lemma 1.2.2. let g : [0,00) — [0,00) be an increasing function that satisfies the
following estimate:

for every L > 0 there exists C > 0 such that g(p) < M(Lp) +1InC.
Then there exists subordinate function €(p) such that g(p) < M(e(p)) +InC’, for
some constant C' > 1.

For the definition of subordinate function see [26].

Proof. If g(p) is bounded then the claim of the lemma is trivial (we can take C’
large enough such that the inequality will hold for arbitrary subordinate function).
Assume that g is not bounded. We can easily find continuous strictly increasing
function f : [0,00) — [0,00) which majorizes g such that for every L > 0 there
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exists C' > 0 such that f(p) < M(Lp) +InC. Hence, there exists p; > 0 such
that f(p) > 0 for p > p;. There exists py > 0 such that M(p) = 0 for p < pg and
M(p) > 0 for p > po. Because M (p) is continuous and strictly increasing on the
interval [pg, 00) and ph_)IilO M (p) = oo, M is bijection from [pg,c0) to [0,00) with

continuous and strictly increasing inverse M ! : [0,00) — [pg, 00). Define €(p) on
[p1,00) in the following way €(p) = M ~(f(p)) and define it linearly on [0, p;) such
that it will be continuous on [0,00) and €(0) = 0. Then €(p) is strictly increasing
and continuous on [0, 00). Moreover, for p € [p1,00), it satisfies f(p) = M(e(p)).
Hence, there exists C' > 1 such that f(p) < M(e(p)) + InC’, for p > 0. Tt
remains to prove that €(p)/p — 0 when p — oo. Assume the contrary. Then,
there exist L > 0 and a strictly increasing sequence p; which tends to infinity
when j — oo, such that e(p;) > 2Lp;, i.e. f(p;) > M(2Lp;). For this L, by the
condition for f, choose C' > 1 such that f(p) < M(Lp)+ InC. Then we have
M(2Lp;) < M(Lp;) + InC, which contradicts the fact that e () increases faster
then p? for any p. One can obtain this contradiction by using equality (3.11) of

26]. O
k
For (t;) € MR, denote by T} the product H t; and Tp = 1. For U open subset of
j=1
J L . _ | D%p(x)]
R¢, in [28] it is proven that the seminorms pg ,)(¢) = sup sup ————, when K
’ aendzek Loy

ranges over the compact subsets of U and (¢;) in R, give the topology of £{Mr} (1)),
Also, for K CcC R, the topology of DE(M” Vis given by the seminorms pg.(;;), when
(t;) ranges in . From this it follows that D}M” = lim D% , where D
t;)ER
the (B) - space of all C* functions supported by K (fZ))r which the norm pg () is
finite.
From now on, we always assume that M, satisfies (M.1), (M.2) and (M.3). We

denote by S'*"™ (R?), m > 0, the space of all smooth functions ¢ which satisfy

K(t)

1/2
mlel 181 (Y181 De o () |

M, M,

dx < 00,

ORI

a,BeN

supplied with the topology induced by the norm o,, 2. The elements of the space
SM) (RY) = lim ™ (RY), resp. S} (R?) = lim S (RY), will be cal-

m%oo

led tempered ultmdzﬁerentzable function of Beurlmg, resp of Roumieu type. The

strong dual of SMr) resp. S™Mr} s the space of tempered ultradistributions of

Beurling, resp. of Roumieu type, in notation S'™r) resp. S"{M»}  All the good

properties of §* and its strong dual follow from the equivalence of the sequence of

NOTIMS 0y, M > 0, with each of the following sequences of norms (see [10], [40]):
(@) opmp, m > 0; p e [l,00) is fixed;

e+ 8] 18] D
(b) Om.oo, m > 0, where 0., () := sup sup m ()" 90(117)|;
a,BeNd zeRd Ma]\/[ﬁ
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lal || Dy (-)eMml)

m e

(C) || : ||ma m > O, where ||(p||m = sup H SO( ) HL
aeNd Ma

If we denote by Sar™ (R?) the space of all infinitely differentiable functions

on R? for which the norm o, is finite (obviously it is a (B) - space), then

SMr) (Rd) = lim SMpm (Rd) and SMr} (]Rd) = lim SMrm (Rd). Also, for
m—>oo m:)O

ms > my, the inclusion Sa™ (RY) — Sty (R?) is a compact mapping.
Also, if we denote by Sl (]Rd) the space of all infinitely differentiable func-

tions on R? for which the norm || - ||,, is finite (obviously it is a (B) - space),
then SM) (RY) = lim SY»™ (R?) and SUPH(RY) = lim SI»™ (RY). Mo-
m—>oo m—>0

reover, for ms > mq, the inclusion Sy Mp.m> (]Rd) — SMP o (]Rd) is a compact
mapping. So, S* (Rd) is a (F'S) - space in the (M,) case, resp. a (DFS) -
space in the {M,} case and its (F'S), resp. (DF'S) structure, can be given by
either of the above two ways. Hence they are complete, bornological, Montel
spaces. Moreover, they are nuclear spaces. In [42] and [10] it is proved that

StMp} — lim S ), (50) , where S {gp c C™® (]Rd) Voo (s0) (@) < oo} and
(i), (sy)emt " ”
YA D (
! L2 MY M
Vro)i(sq) () = sup  Also, ™M} = lim S
o o BN (HL“' ) (H'ﬁ' Sq> M, oo 7ML

where S s) = {90 eC” ( ) | ||90H(rp)7(sq) < OO} and

HDa . Nsp(\'l)H .
) N M H'a‘ .

We have the continuous and dense inclusions D* — §* and §* — £*. Hence
the inclusions 8™ — D™* and £* — S™ are continuous. One easily proves that £
is dense in 8. Hence D* is continuously and densely injected in S"™. Moreover,
ultradifferential operators of class * act continuously on §* and S§™.

We will need the following kernel theorem for &™*. The (M,) case was al-
ready considered in [33] (the authors used the characterisation of Fourier-Hermite
coefficients of the elements of the space in the proof of the kernel theorem).

Proposition 1.2.2. The following isomorphisms of locally convex spaces hold

S*(RM) @S* (R®?) = 8 (RUH%:) = £, (8™ (R") , 8" (R®)),
S (Rch) ®Sl* (Rdg) ~ G (Rd1+d2) ~ ‘Cb (S* (Rd1> ,S/* (Rdz)) ]

Proof. Note that &* (Rdl) ®RS5* (Rd2) is dense in §* (Rlerd?). This is true because
of the continuous and dense inclusion D* (Rd1+d2) — §* (Rd1+d2) and because
D* (R") @ D* (R%) is dense in D* (R"*%) (see theorem 2.1 of [27]). We need
to prove that S* (Rd1+d2) induces on &* (Rdl) ®S* (]Rdz) the topology ™ = € (the
7 and the € topologies are the same because S* is nuclear). Because the bilinear
mapping (¢, 9) — ¢ @ ¥, S* (R") x §* (R4F%) — §* (R“T%) is separately
continuous it follows that it is continuous. This is true in the (M),) case because
SWMe) is (F'S)-space (hence a F - space) and it is true in the {M,} case because
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StMr} is (DFS) - space (hence a barrelled (DF) - space). The continuity of this

bilinear mapping proves that the inclusion &* (Rdl) Rn S* (]Rd2) — S (Rlerd?) is

continuous, hence the topology 7 is stronger than the induced one. Let A’ and

B’ be equicontinuous subsets of &* (Rdl) and &* (Rd2), respectively. There exist

h > 0 and C' > 0 such that sup [(T,¢)| < C|l¢||n and sup [(F, )| < C||¢||, in
TeA FeB’

the (M,) case, resp. there exist (k,), (k,) € R and C' > 0 such that sup [(T', p)| <
TeA
C’ngH(kp),(%) and sup |(F,¢)| < CHzﬂH(kp),(%) in the {M,} case. We consider first
FeB’

the {M,} case. By lemma 1.2.1, without losing generality we can assume that
H?:{ kj < 2PHTT0_ ki [T, kj, p € Zy and the same for (K}). Put r; = k;/(2H)
and 75 = k;/(2H), j € Z;. For all T € A" and F € B’, we have

(02 bl = (B (oo, ] < Coup LT DN
o M IT;20 ks

D2 DB (. )| €1 Nig ()
< s |D2DEx(x,y)] e

cy.af M AIBIIM| IIW\ k
N;(\(%?J)D

, | DD (x,y)| e
sup
-y M, H|Oé|+|/3|

where, in the third inequality we used proposition 1.2.1 for Ny, (A). Similarly, in

the (M,) case one obtains  sup  [(T, ®F,, x(z,9))| < c2C?||x||nu. Hence, the e
TeA,FeB’

topology on §* (R") ® S* (R%) is weaker than the induced one from S* (R4 +%).
This gives the isomorphism &* (Rdl) RS* (Rdz) >~ S (Rd1+d2). Proposition 50.5
of [56] yields

< cC

AC? Xty

S* (RM) ®8* (R®) = £, (8™ (R™) ,8* (R™)) and

Sl* (Rdl) ®Sl* (Rd2) ~ 'Cb (S* (Rdl) ,Sl* (Rdg))
(S* is a Montel space ). Now, because S*») is (F) - space, theorem 9.9 of [49]
gives the isomorphism S'™) (R™) @S/ Mr) (R%2) = §'(Mp) (REF42). In the {M,}
case, SIM} is (DFS) - space, i.e. the strong dual of the (F'S) - space S"{Mv}
hence this theorem implies the same isomorphism in the {M,} case. ]

Denote by O the space of convolutors for §*, i.e. the space of all T € & for
which the mapping ¢ — T * ¢ is well defined and continuous mapping from S* to
itself. Denote by O3, the space of multipliers for S, i.e. the space of all {) € £*
for which the mapping ¢ +— ¥ is well defined and continuous mapping from S*
to itself. For the properties of these spaces we refer to [17].

As in [42], we define Dj.. (R?) by

DY (RY) = lim D2, (RY), resp. DI (RY) = lim D}, (RY),
h—o0 h—0

where D%’;’h (R?) is the (B) - space of all ¢ € C>* (R?) for which the norm

hlel || Do .
aup P

v is finite. D(L]Zf’) is a (F) - space. Also, define ﬁfﬁp} (Rd)
aeNd «



1.2. Function Space. Ultradistributions 13

as the space of all C* (Rd) functions such that, for every (¢;) € 2R, the norm

D« .
léllt;) = sup sup # is finite. The space Dﬁf"} is complete l.c.s. because
a€N? zeRe

15%?} = lim 7524” \, where DLOO (t;) 1s the (B) - space of all C* functions ¢ for
(t;)en

which the norm [|¢||(,) is finite. In [42] it is proved that D{M”} 25%”} as sets
and the former has a stronger topology than the latter. Denote by BMo) - resp.
B} the completion of DM») | resp. DM} in D(Loo , Tesp. 25}@?’}. Then, BMp)
is a (F') - space. Also SWMp) resp. StMr} s contmuously injected into BM») | resp.
B} The strong dual of BM) | resp. B{MP} will be denoted by D( ”), resp.

f)lL{lM 2 They are continuously injected into S"™»), resp. S'{M»} and hence into
D'Mp) | yresp. D'1Mr}. Ultradifferential operators of class (M,), resp. {M,}, act

continuously on BM») resp. BMr} and on D'L(fv‘[p , Tesp. D{ M} For the further
properties of these spaces we refer to [42]. The following lemma characterlses the

elements of B{Mr}

Lemma 1.2.3. p € l’;'{MP} if and only if p € f){ﬁf”} and for every € > 0 and

DCM
(t;) € R there exists a compact set K such that sup sup M <e.
aceNd xERd\K T M

Proof. Let E be the subspace of D{ Mp} Jefined by the conditions of the lemma.
It is enough to prove that E' is complete and that DIMr} is dense in F.

To prove that E is complete, it is enough to prove that it is closed. Let ¢, be
a net from E that converges to ¢ € 15%?}. Let € > 0 and (¢;) € 2R be fixed. Then
there exists 1y such that, for all v > 1, [[p — @yl < /2. Because ¢, € E

(with £/2 instead of €) we have, for z € R\ K and a € N¢,

|D¥p(x)] _ |D%p(x) — Dy (x)|  |D%pu(z)] € €
< €, € _
T = T M. R VAR T S

that is ¢ € E.

The proof will be done if we prove that DM} is sequently dense in E. Let
¢ € E. Take x € D} such that y = 1 on the ball Kza(0,1) and x = 0 out of
Kga(0,2). Then |D¥x(x)| < C1hl*IM,, for some h > 0 and C; > 0. For n € Z,
put x,(z) = x(z/n) and ¢, = xnp. Then ¢, € DM}, Let (¢;) € R. We have
| D%p(x) — D%pn ()]

ToM,

|1—x(x/n)||D“s0(:r)l+Z a\ |[DPx(x/n)| | D Pp(x)]

< T, M., ~ s nlBIT, M,
BF0

|1—X(x/n>HDa90(ar>|+01||s0||<tj/z>z a\ hAIT, g

B To M, n B ) 2lal=I8IT,,
B#0
Cc,C .

< L8 2||90||(t7/2)7n>n07

n
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independently of x and «, for large enough ny. This implies the assertion. O]

By the above lemma one easily check that if ¢ € 25%1’} and ¢ € é{MP} then
o € BMp} We have the following easy fact.

Lemma 1.2.4. The bilinear mapping bﬂ.{?} x BMp} 5 BIMuY (o)) 5 ), is
continuous.

1.3 Fourier Transform

For f € L* (Rd), its Fourier transform is defined by (Ff)(§) = / e f(z)dx,
R4

¢ € RY. The Fourier transform is an isomorphism of S* (]Rd) and it extends to
isomorphism of & (Rd). Also, it is an isometry of L? (Rd). Its inverse mapping

F~1is given by (F'f) (&) = (27r)d/ et f(z)dz, when f € L' (R?). For a €
Rd

N?, the following identities are valid for elements of S* or of S™:

(FD* ) ()= (FNHE: (F@*f) (€)= (=1DYFf)©).

If T'e & and p € §* or p € OF then

Flo*T) = (Fp)- (FT), F(eT) = (2m)"(Fyp) * (FT).



Chapter 2

Laplace Transform in Spaces of
Ultradistributions

The Laplace transform of distributions was defined and studied by Schwartz, [51].
Later, Carmichael and Pilipovi¢ in [9] (see also [10]), considered the Laplace trans-
form in 3/ of Beurling-Gevrey tempered ultradistributions and obtained some
results concerning the so-called tempered convolution. In particular, they gave a
characterisation of the space of Laplace transforms of elements from ¥/ suppor-
ted by an acute closed cone in R?. Komatsu has given a great contribution to
the investigations of the Laplace transform in ultradistribution and hyperfunction
spaces considering them over appropriate domains, see [29] and references therein
(see also [60]). Michalik in [35] and Lee and Kim in [32] have adapted the space
of ultradistribution and Fourier hyperfunctions to the definition of the Laplace
transform, following ideas of Komatsu. Our approach is different. We develop
the theory within the space of already constructed ultradistributions of Beurling
and Roumieu type. The ideas in the proofs of the two main theorems of this
chapter (theorem 2.1.1 and theorem 2.1.2) are similar to those in [57] in the case
of Schwartz distributions. In these theorems are characterised ultradistributions
defined on the whole R? through the estimates of their Laplace transforms. These
results will be needed in the last chapter.

2.1 Laplace Transform
For a set B C R? denote by ch B the convex hull of B.

Theorem 2.1.1. Let B be a connected open set in R and T € D™*(RZ) be
such that, for all ¢ € B, e *T(x) € S*(R%). Then the Fourier transform
Foosy (€7%T(x)) is an analytic function of ( = &+ in for £ € chB, n € R
Furthermore, it satisfies the following estimates:

for every K CC ch B there exist k > 0 and C' > 0, resp. for every k > 0 there
exists C' > 0, such that

| Fam(e T (@))(& + in)| < CMU, e € K, v € R (2.1)

15
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Proof. Let K be a fixed compact subset of ch B. There exists 0 < ¢ < 1/4 and
€W .. €W € B such that the convex hull IT of the set {£1), ..., ¢®} contains the
closed 4e neighbourhood of K (obviously II CC ch B). We shell prove that the
set

{s € D[ S(x) = T(x)esV1+E ¢ ¢ K} (2.2)

is bounded in 8&". Note that by the condition in the theorem T'(x)e~*¢ € &’ and
eV 117 ig the restriction on the real axis of the function V™" that is analytic

and single valued on the strip R? +i{y € R%| |y| < 1/4}, and hence ¢V is in
&*. Note that

I
T(z)e =s+evV il — Z VIR g (2, OT (2)e 7", (2.3)
k=1

: -1
where a(z, &) = e (Z e_”'f(k)> . The function a(x,§) satisfies the following

k=1
conditions:

i) 0 <a(z,€&) <1, (z,6) € R x II;
i1) eslma(x,é) <€ (2,6) € R x K, and Ve’ < 4e;
iii) a(z,§) € C> (R*).
ii1) it’s obvious. To prove i), take £ € II. Then there exist ¢y, ...,¢; > 0 such that
&= zl:tkg(k) and itk = 1. Then, by the weighted arithmetic mean-geometric
k=1 k=1

mean inequality, we have

l

l l
_ _ (k) _gpe(k) _pe(k)
el“lelel“tkf SEtkeﬂ?ﬁ SEGQE& 7
k=1 k=1

k=1

from where it follows 7). For the prove of ii), note that, for (x,£) € R x K,

VIR g (1 &) < e H gz, £) = & |n‘1a}§ e a(x, &) = e ‘rr|1a><,; a(z, & +1) < e,
t|<e t|<e

where the last inequality follows from 7).
Now we will estimate the derivatives of a(z,&). Let s = max |€|. Then a(z,§)
€

is an analytic function of z = x + iy on the strip R? + i{y € RY| |y|s < «/4}, for
every fixed £ € 11, because

l

—z¢(R)
> e
k=1

2 !

—xt(B)  _ye(k)
3 e e

k=1

2 . 2
> (Z e~ %™ cos yg(k)>
k=1
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> <i e_xg(k) \/75)

k=1
and hence

l

Z efzg(k)

k=1

gZ@“é’” >0, (2.4)

Take 0 < 7 < 1/+/d so small such that rsv/d < /4. Then, from Cauchy integral
formula, we have

e~ wE
St |

If we use the inequality (2.4), we get (we put w = u + iv)

V2e 16 B V2e e (um2)8
Zﬁ@:l eue® Zi@:l emot®em(uma)®
V2e~ % elu—zlle] ﬁe—xfersx/g
<
S R e

= V2e"Via(a,€).

So, we obtain the estimate

Faz Ol < sw

|wi—21|<r,.. Jwg—zg| <7

(u+tiv)&

+ (k)
‘zk_ (vt

|07 a(z, )] < \/_62‘” ' sa(@,§). (2.5)

Note that, by the previous estimate and the property i) of a(x, &), it follows that
a(x,&) € S* for every £ € K and the set {a(z,£)|{ € K} is a bounded set in

S*. We will estimate the derivatives of eV *1**. The function e=V1** is analytic
on the strip R? + i{y € RY|y| < 1/4}, where we take the principal branch of
the square root which is single valued and analytic on C\(—o0,0]. If we take
r < 1/(8d), from the Cauchy integral formula, we get the estimate

9%eEV 1+|z|?
z

al
< ol sup

€ 14+w?

lwi—z1 |<r,.. |l wg—zg|<r

Put w = u 4+ iv and estimate as follows

2 2 4
65\/1+w2 6Re (5\/1+w ) < 6‘8\/1+w | < €f \/(1+\u|2—|v\2)2+4(uv)2
/ 2_[y[2 / 2 / —2I2 2
< ef 1+|ul2—|v|2+2|uv| < ef 1+2|u| < ef 1+4|u—z|2+4|z|
/ 2 / 2
< ef 1+1+4|x| < 625 1+|z| )

Hence

a;xea\/l-i-lle < a_!625\/1+|oc|2_ (26)

- r|a|
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If we take r small enough we can make the previous estimates for the derivatives

of a(x,€) and eeV'+#” o hold for the same r. Now we obtain

D (ol 0)| < X () GV Ve g

BLla B

!
a_‘|2\a|625\/1+|m|2a(x7 13}

rlo

S \/5628

Using the property i) of the function a(z, &), we get

‘Dg‘ (ea\/ma(x,f)ﬂ < \/%28&ml

12
- 625‘/1+|$|2a(x,§)§\/5625+28a—, (2.7)
,,aa

7"‘04

for all £ € K. By this estimate and proposition 7 of [17] one has eV 1+‘x|2a(3:, £)
is a multiplier for §”*. Because of (2.3), (2.2) is a subset of §”*. Now to prove that
(2.2) is bounded in 8. We will give the prove only in the {M,} case, the (M,)

case is similar. Let 1) € St™Mr} There exists h > 0 such that ¢ € SM»" Note that
(V' Pa(e, T @) u(@)) = (T@)e™", VEPa(e, ()

for all k € {1,...,1}, for all £ € K. Choose m < h/4. By (2.7), we have

mlet# () | e (e Pa(e, ()|

M, Mg
< mleltiel g Z o) V2242 (o — )12 D1 ()|
~ |Ot 7|MQM5
<L
o\ Rl — y)12le
< C1Uh,oo (*y) glol+Blpla=vI ), hlleﬁl
'y<a
Rlel=1(a — ~)!
= Qo) 2 ( )2|ara M, < OV, e K
y<a

Hence e°V 1+‘x|2a(x, S)T(x)e_x’s(k), ¢ € K, is bounded in S"t™™}. By (2.3), the set
(2.2) is bounded in St}

We will prove that e *V!*Tl* € §* In order to do that, we will estimate
the derivatives of e *V'*#* with the Cauchy integral formula (similarly as for

eV Iy We obtain
a?efsy/lﬂxp

al
< — sup

(0%
rl l\wl—xﬂﬁr ----- |wg—zq|<r

676\/1+w2

Y

where, 0 < r < 1/(8d). Let w = u + iv. Then, if we put

p= (Ul P + 4G,
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1+ Jul? —|v]? Gind — 2u

(1 + [uf? = [v]?)* + 4(uv)? \/(1 + Jul? = [u]?)° + 4(uv)?

cosf =

(where 0 € (—m, 7)), we have that § € (—m/2,7/2) (because cosf > 0 and 6 €
(—m, 7)) and

Re /1 + [u2 — |v]2 + 2iuv = Re+/p(cosf +isinf) = Re/p (cosg—l—ising)

= \/ﬁcosg>£

2= 27

where the second equality holds because we take the principal branch of /z.
Because r < 1/(8d), we get

4
oRe (—evitw?) < o= 5 VHuP— ) +4(w0)?  =5/1HulP—[o]?

2
< oSV a2 o 5/ 1l

—eV14+w?

e

Hence, we obtain

821675\/1+|x|2 < i'efi\/lﬂmP. (28)

- 7’|0‘|

From this, it easily follows that e *V'*l** ¢ S*. So e %T(z) € &* (RY), for
¢ € K, because e T (z) = T(z)e eV I+ emeV 1+ and we proved that
T(z)e 2tV i+l ¢ g (RY), for £ € K.

Put f(£+1in) = Fuoy(e T (x)). We will prove that f is an analytic function
on ch B + iRY. Let U be an arbitrary bounded open subset of ch B such that
K =U CCchB. Fory € § and £ € U, we have

(F€+ ), 0m) = (Faoy (=T (x)),0(n)) = (e " T(x), F(¥)(x))
= (e, [ ”%(n)dn>

< VRT3 () eV/TTRE / e >

= (VT (@)) @ 1,, e VI ey ) )

= [ (VR T @ e VI i

Hence

f(&+in) = <eE VIR =28 () et g2V 1+|w‘2> . (2.9)

First we will prove that f € C*® (U X Rﬁ). We will prove the differentiability
only in & and in the {M,} case. The existence of the rest of the derivatives
is proved in analogous way and the (M,) case is treated similarly. Let €0 =
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<£§O)776((10)) = <£§0)7£/) € U7 f = <€§0)+£17£§0)7>€((10)) = <£§O)+£175/)7
r = (21,...,24) = (z1,2"). Let 0 < [§] < § < € < 1 such that the ball with
radius 0 and centre in () is contained in U. Then, by using (2.3) and (2.9), we
obtain

f(€+in) _gf(g(()) + i) _ <66\/m(—x1)e_mf(O)T(x)e_im’?’ eV 1Jr\96|2>
1

5 <5T<>m << 90 4 e @,g«»)) ,

— &

e~V 1+|x|? > )

It is enough to prove that, for every 1 € S{Mr},

ef\/m (a(:c,ﬁ) —a

(0)
: (z.€7) + 110 (x,f(o))> Y(x) — 0,
1

when & — 0, in S™»}. First note that
_ (0)
s [ a(x, a(x,
/TR ( (z,¢) f (¢ )+x1a($’5(0))>
1

—z1&1 _
gy ()
1

Now, we get

6 1 1 & (1) NN
gy o = 3

So, for j € N, 7 >2and 0 < |[§] < § < e < 1, we have

(e -1 N
o (T )] = (R

Bl PR N 1
B nzj (n—j)n! SK”; (n—j)!

s : :
2T ST 5
< fel >0 T s
< — S
e~ (=7
Using similar technic, we obtain the estimates

—z181 _ ] -1 _
‘le (66— + x1>' < 5|xl|e\x1\6 and ‘ (65— + 5U1) ‘ < 5|x1|26|x1|6,
1 1
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i 6—:2151 —1 2 |21] .
D’ & + 1 || < §(zq)7e™°. By using (2.7),

we get (for simpler notation we write j for the d-tuple (4,0, ...,0))

'D"‘ (e VP g (7, 0)) (e_m;l +a:1) @b(x))’

So, in all cases, we have

&1

22 (3)()7 (et

B<a j<pB
) —z1é1 _
DI (66— + %) Da—6¢(x)
1

3 () () e )

Bla j<pB

IN

0 (1)1 DOy (2)|

< oYY (4)(0) (%)M (8= DD (@),

Bla j<pB

where we used the inequality eV '+#°q(z, £0))eln1ld < 3oV 1+l g (4 ¢0)) < 3¢,
which follows from the property ii) of a(z,&). Because 1) € StMr} there exists
m > 0 such that ¢ € Sx*™. Choose h such that h < m/4, h < 1/4 and hH < m.
We get

plel+181 2\ | pe (ee\/ el g (z,£9) (6_112%1 + 1’1) @/J@))'
M, M;
[v=4l ' 2(z) Bl plal+181| Da=v) ()|
Cs V) (2) B Mxﬁ (x)
< axy () ()6t
N 2\ J| ()P ple L B2 ey (g)|
= Ol(s;;( >(j) (r 2 Moo M- M;Mp.i»

) (
e O o
)( ) (i)w (%)Ia—v (%>ﬂl%

<
(
P}/
D

kPp!
where we use (M.2) and the fact Vp — 0, when p — oo. Now, from this it
p

IN

S 0350m,oo Z

i<y
v<a j<y

S Coéam,oo (1/})7

follows that

_ (0)
/TP (a(x,ﬁ) éa (2,69) Y aa (x,g(()))) V() — 0, & =0
1
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in SIM»} and by the above remarks, the differentiability of f(£ + in) on U x Rg
follows. From the previous, we conclude that

08 €+ in) = (eI (e T )i, VT

and similarly 07 f(§ + in) = <e‘€\/ Lol (_jz) e 8T (z)e ™, e =5V 1+|$‘2>. From
this and the arbitrariness of U, the analyticity of f(£ + in) follows because it
satisfies the Cauchy-Riemann equations. So, for ¢ = £ + in, we get

f(Q) = <efv1+‘x'Qe—I<T(az),e—fv1+|x|2> (2.10)

and 9¢ f(¢) = <65V1+|‘”‘2(—x)°‘e_fc4T(m) e/ el > for ( € U + ZR for each
fixed U (¢ depends on U).

Now we will prove the estimates (2.1) for f(¢ + in). Let K CC chB be
arbitrary but fixed. First we will consider the (M,) case. We know that S®»)
is a (FS) - space and SMr) = lim SMoh If we denote the closure of S

h—>oo
in Sir” by SMp™ then SMr) = lim Sol‘gp’h and the projective limit is reduced.
5 h—o0
Then &'™») = lim Sgglp’h which is injective inductive limit with compact maps
h—oc0

(because the projective limit is with compact maps). Because we proved that the
t {S € D*| S(x) = T(x)e "s+eVIFHlel ¢ ¢ K} is bounded in S'™»)_ it follows
that there exists h > 0 such that

{S c D/*| S(JL‘) _ T(x)effors\/lJrle’f c K} c :éjc\)/[ph

and it’s bounded there. By (2.8), we have the estimate

h|a\+\ﬁ| ‘Da ( zwne—£\/1+|x|2>

M, Mg
< Z (a) (2h) 1= (2n) MBI )8 || (o — 7)!e—g\/m—xrz
- v<a ’7 2|a‘r|a_fYIMo¢—'nyyMﬁ
2% ler|—|v| (a _ 7)!eM(h<sc>)eM(2h|n\)e—§<gc> .
(2h|nl)
< ClQIaZ( )( ) Mo <C'e ,

y<a

where we used that eM@)e=7(*) is bounded and kPpl/M, — 0 when p — oo.
Then, for £ € K and n € R?,

[fE€+am)l = <e€\/ L+l =o€ T (), g=imme=ey/ 1P >
< C e—imng—ey/1+al? SMph_é (2hln))
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Now we will consider the {M,} case. S™™»} is a (DFS) - space and SM} =

lim Sé‘f”’h , where the inductive limit is injective with compact maps. Let h > 0 be
h—0
fixed. For shorter notation, let

F:{SED’*

S(z) = T(x)e =sHVIHRP ¢ ¢ K}

and denote by J the inclusion Silph _y S{My} . Because we already proved that F

is a bounded subset of SM»} its image under *.J (the transposed mapping of J) is

a bounded subset of Soa*". By the above calculations we see that e @7e=¢V 1+l®

is in S&™, for every m > 0. Hence, for £ € K and n € R%, we have

e +im] = (VIR (), e tmee VI
<tJ (eame_xéT(m)> ,e_”"e_a\/mﬂ
e—ixne—a\/m

IN

Ch

M (2hn|)
.,]\prh S Che b

Soo
plel+181 (8 ‘ Do <67iwn6—€\/1+\$l2>
M, M; '

Remark 2.1.1. If, for S € D’*, the conditions of the theorem are fulfilled, we call
Fuoosy (€7765(x)) the Laplace transform of S and denote it by £(S). Moreover, by
(2.10),

where we used the above estimate for O

L(S)(C) = <e€\/ 1P o ~a¢ (), e=5V 1+le> , (2.11)

for ( e U + iRg, where U CC ch B and ¢ depends on U.
Note that, if for S € D’* the conditions of the theorem are fulfilled for B = R,
then the choice of € can be made uniform for all K cC R%

We will construct certain class of ultrapolynomials similar to those in [26], (see
(10.9)" in [26]), which will have the added beneficence of not having zeroes in a
strip containing the real axis.

Let ¢ > 0 be fixed. Let k£ > 0,1 > 0 and (k,) € R, ({,) € R be arbitrary

cVd

but fixed. Choose ¢ € Z, such that
lm,,

1
< Y for all p € N, p > ¢ in the (M,)
eVd

_ lpmmy
functions

case and

1
< 3 for all p € N, p > ¢ in the {M,} case. Consider the entire

o0 2
Pl(w):H(lerwW), w e C? (2.12)
i J

Jj=

LS

in the (M,) case, resp.

O 2
P, (w) :H(HZ;UW)’ w € C* (2.13)
j J

j=q J
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in the {M,} case. It is easily verified that the entire function P(wy,0,...,0),
respectively P}, (w1,0, ...,0), of one variable satisfies the condition c) of proposition
4.6 of [26]. Hence, Pj(w), resp. Py, (w), satisfies the equivalent conditions a) and b)
of proposition 4.5 of [26]. Hence, there exist L > 0 and C’ > 0, resp. for every L >
0 there exists C’ > 0, such that | (w)] < C'eMED resp. | P (w)] < C'eMED,
for all w € C* and P(D), resp. P, (D), are ultradifferential operators of (M,),
resp. {Mp}, type. It is easy to check that P(w) and P, (w) don’t have zeroes in
W =R+ i{veRY|vj| <¢,j=1,...,d}y. Forw=u+ive W, |ul >2Vd, we
jwl? 2
4

have ’wz} > and |1+ > 1, for j > gq. We estimate as follows

w
12m?

o = i) ol 2ol
j=q 3" 3 g i
S T = ()
> sup — | sup ———=5———
r o 4l]2-m§ |w|?4—2 P HJ 12[
-1 2 w
= W e2Naip ([w]) > C’M
0 = = Qo3 (ul”
A2
where we put Cf), = H 2] and [, = [ and k, = k in the (M,) case. For w € W,
_ ]
because Pj(w), resp Pl (w), doesn’t have zeroes in W, we get that there exist

Cy > 0 such that

eM(Jwl/(21)) eNaip ([w])

o ey » Yo 1P ()l 2 Co gy

|F(w)| = C we W. (2.14)

Now, by using Cauchy integral formula, we can estimate the derivatives of 1/F,(z),
resp. 1/P,(£). We will introduce some notations to make the calculations less
cumbersome. For r > 0, denote by B,(a) the polydisc with centre at a and radii r,
ie. {z€Czj—a;| <r j=1,2,..,d} and by T,(a) the corresponding polytorus
{z € CU|z; —a;l =71 j=1,2,....,d}. We will do it for the {M,} case, for the
(M,) case it is similar. We already know that on W, 1/P, (w) is analytic function
(P, doesn’t have zeroes in ). Hence

2Nk (1)

eNaip (12])

N
B, (2)

ol

aoc 1 < .
- C’O'r|a|

Y B, ()

Y

Lo (T ()

7"‘04

|

Lo (T (2))

for arbitrary but fixed r < ¢ (so B,(z) € W). For x € R\B,, /(0), there exists
j € {1,...,d} such that |z;| > 2rv/d. Then, on T.(z), |2| > |z| — |z — 2| =
2| — rvVd > |z]/2, ie. eNow(F) > eNow(21/2) — oNay (1) - Noreover, for such z, we
have

2Ny (1) < 2Niy (l+7Vd) < 42Ny (2rVid) (2N, (2fal) (1, 2N,y 2lal)
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where in the last inequality we used that eMA+v) < 2eMENM V) for X > 0,
o a! 2Nk (2lz))

1
Y B, (x)
is bounded, so we can conclude that the above inequa-

v > 0. So, we obtain For z in B, /;(0),

= 1ol gNa ()

HGQNkp(|Z|) —Nay, (I2]) HLOO(T( )

lity holds, possible with another constant C'. Analogously, we can prove that, for
N 1 ol €2M(2\:p|/k)
the (Mp) case, 0 (1’) ~ . Wm

is fixed, resp. (k,) € R is ﬁxed then we can find [ > 0, resp. (I,) € R, such that
2M(2|$\/k) —M(Imlipﬁll) < e Irl/k)7 resp. 2Nip(ehe ~Nay, (|al) < (' N (Jz) , for

This is important, because, if £ > 0

some C” > 0. This inequality trivially follows from proposition 1.2.1 in the (Mp)
case. To prove the inequality in the {M,} case, first note that 2Nk Clz) o Niep (I21): <

e*Mp2(l) - By lemma 1.2.1, there exists (k,) € M such that k, < k,/2 and
ptq p q

Hk‘; < 2p+qu; . Hk;, for all p,q € Z,. So e*Mwr2lel) < M0 1f e

j=1 j=1 Jj=1

P

put No = 1 and N, = Mka;, for p € Z,, then, by the properties of (), it
j=1

follows that N, satisfies (M.1), (M.2) and (M.3)" where the constant H in (M.2)

for this sequence is equal to 2H. Moreover, note that N(\) = N (A), for all

A > 0. We can now use proposition 1.2.1 for N(|z|) (i.e. for Ny (|z[)) and obtain

2
i (D) < N GHEID o N a2 (%) g1 some ¢ > 0. Now take l, such that
4l, =k, /(4H?), p € Z, and the desired 1nequahty follows. So, we obtaln

1
8&

oI %

1
“ R, ()| T

ol
<C- —|e “Niplel e RY, o € N,

<C- —e M(el/k) resp. |
TO[

7"04

where C' depends on k and [, resp. (k,) and (l,), and M,; r < ¢ arbitrary but
fixed. Moreover, from the above observation and (2.14), we obtain

|Pi(w)] > CeMUelM [ resp. | P (w)| > Ce™e D e W, (2.15)

for some C > 0.
We summarise the results obtained above in the following proposition.

Proposition 2.1.1. Let ¢ > 0 and k > 0, resp. ¢ > 0 and (k,) € R are arbitrary
but fixed. Then there exist | > 0 and q € Z4, resp. there exist (I,) € R and

q € Z such that P(z) = E] (1 + W), resp. P (z) = g (1 + W), is an

entire function that doesn’t have zeroes on the strip W = R? +i{y € RY||y;| <

c,j =1,...,d}. P(x), resp. P, (x), is an ultrapolynomial of class *. Moreover

[Pz )| > C’ /) resp. [P (2)] > CeMwZD ) 2 € W, for some C' > 0 and
<

al 1
Oy —— C - — e MR = pesp 100 ——
Pz( ) B, (z)

7“|04|
a € N where C depends on k and 1, resp. (k) and (1,), and M,; r < c arbitrary
but fixed.

|
o
e e, e RY
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Theorem 2.1.2. Let B be a connected open set in Rg and f an analytic function
on B+ iRg. Let f satisfies the condition:

for every compact subset K of B there exist C' > 0 and k > 0, resp. for every
k > 0 there exists C > 0, such that

|f(&+in)| < CeMEMD e ¢ K vy e RY (2.16)
Then, there exists S € D™*(R%) such that e=*¢S(z) € S™*(R%), for all € € B and

L(S)(E+in) = Fousy (e75(2)) (€ +1in) = f(E+1in), £€ B,neRL (2.17)

Proof. Because of (2.16), for every fixed £ € B, fe = f(£ +1in) € S*(R]). Put
Te(z) = F, b, (fe(n) (z) € S*(RY) and Se(z) = e™Te(x) € D™*(RE). We will show
that S¢ does not depend on ¢ € B. Let U be an arbitrary, but fixed, bounded
connected open subset of B, such that K = U CC B.

Let ¢ > 2 be such that |¢;| < c/2 for £ = (&,...,&) € K. In the (M,) case,
choose s > 0 such that eMEMDe=MGID gp < oo and e2M KD < MG | for

d

some constant ¢ > 0. Fo1]rR the {M,} case, by the conditions in the theorem, for
every k > 0 there exists C' > 0, such that In, |f(§ + in)| < M(k|n|) + InC for
all £ € K and n € R%. The same estimate holds for the nonnegative increasing
function

g(p) = sup suplny |f(§ + in)).
In|<péeK

If we use lemma 1.2.2 for this function we get that there exists subordinate function
€(p) and a constant C' > 1 such that g(p) < M(e(p)) +InC. From this we have
that Iny. [f(§ +in)| < g(In]) < M(ﬁ(lnl)) +InC, ie.

(&4 in)| < CeMEmD) e e K v € RY, (2.18)

for some C' > 1. By lemma 3.12 of [26], there exists another sequence Np, which
satisfies (M.1), such that N(p) > M(e(p)) and k), = n,,/m, — oo when p — oo.
Take (k,) € R such that k, <k, p € Z,. Then

> sup — N > M(<r)
M, H M, HJ K
Hence, from (2.18), it follows that | f(&+in)| < Ce™M»(") for all ¢ € K and n € R%

Choose (s,) € R such that / N (M) e=Nasp (D gy < o0 and e2Vew M) < geNasy (D)
Ra

for some ¢ > 0.

Now, for the chosen ¢ and s, resp. (s,), by the discussion before the theorem,
we can find [ > 0, resp. (l,) € R, and entire functions Fj(w) as in (2.12), resp.
P, (w) as in (2.13), such that they don’t have zeroes in W = R? +i{v € R ;| <
¢, j =1,...,d} and the following estimates hold

|
< 0. L Nyl

o
o <O —e MGl regp. ] )z eRY a e N,
T

aa
’ Pz(x)

1
“ R, ()| T




2.1. Laplace Transform 27

where C' depends on s and [, resp. (s,) and (l,), and M,; r < ¢ is arbitrary but
fixed. For shorter notation, we will denote Fj(w) and P, (w) by P(w) in both

oo s 2
cases. Define the entire functions P:(w) = P(w —i§) = H (1 + %) in
j=q J

the (M,) case, resp. Pg(w) = P(w —i&) = H 1+ (10_—26)2 in the {M,} case
p ’ p- 1 o l?m? p .

As we noted in the construction of the entire functions P(w) (the discussion before
the theorem), P(w) satisfies the equivalent conditions a) and b) of proposition 4.5
of [26]. Hence, there exist L > 0 and C” > 0, resp. for every L > 0 there exists
C' > 0, such that |P(w)| < C'eME) 4 € C4 and P(D) are ultradifferential
operators of (M,), resp. {M,}, type. So, we obtain

|P£(’LU)| _ |P(U} . Z§)| < Cv/eM(L|w—if\) < C/leM(QL\w\), w E (Cd,

because £ = (1,...,&q) is such that |§;| < ¢/2, for j = 1,...,d. Hence, by pro-
position 4.5 of [26], P¢(D) is an ultradifferential operator of class (M,), resp. of
class {M,}, for every £ = (&,...,&) such that |&;| < ¢/2, j = 1,...,d. Moreo-
ver, by the properties of P(w), it follows that P¢(w) is an entire function that
doesn’t have zeroes in R? + i{v € RY||v;| < ¢/2,j = 1,...,d} for all £ € K.
So, by using the Cauchy integral formula to estimate the derivatives, one ob-
tains that P¢(n) and 1/P¢(n) are multipliers for S*(R%). Also, by (2.15), we have
|Pe(n)| = |P(n —i€)| > CeMGln=i€h) > CreMGID for all € € K and n € R? in the
(M,,) case and similarly, |P(n)| = |P(n — i&)| > CeNeo (=il > CreNosp D for all
¢ € K and n € R? in the {M,} case. For £ € B, put fe(n ) = f(& —i—m). Then
fe(n)/Pe(n) € L' (RI) N & (RY), for all £ € K. Observe that

e F o (fe) (z) = e FL, (%) o

= % P(D,) (fnjx (%) (a:)) :

Selo) = e<r,) (7,2 (05 ) @) 219
Let P(w Z cow®. For simpler notation, put R(n) = fe(n)/Pe(n) and calculate
as follows
P (FARE) = YooY (§) 0oz )
B<a
= focaZ ( ) £)P Do~ 5}"77__)17(}%)(@.
a  B<a

Note that
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Sa ¥ (§) o s L me

« B<a

From this and (2.19), we get Se(x) = P(D,) (exé}"nix (%) (x)) Now, for
5

w =n — £, we have

s [ Jen) 1 F(E + in)et&rine
e 5-7:on <—) (x) = (27) Jga Py — i€) d

Pe(n)
_ 1 fliw)e™® w
- <27r>d/wi5 Plw)

is analytic for iw € U + iR?, i.e. w € R? — iU (because

f(z'w)eiw:v
P(w)
P(w) is analytic in the last set and doesn’t have zeroes there). Using the growth
estimates for f and P, from the theorem of Cauchy-Poincaré, it follows that the
last integral doesn’t depend on £ € U. From this and the arbitrariness of U it
follows that S¢(x) doesn’t depend on & € B. We will denote this by S(z). Now,
by the observations in the beginning, it follows that F,_,, (6’155 (x)) = fe as
ultradistributions in n for every fixed £ € B. By theorem 2.1.1, it follows that
Fosy (€7%S(2)) is analytic function for ¢ = &+ in € B+ iR%, hence the equality
(2.17) holds pointwise. O

The function

Remark 2.1.2. If f is an analytic function on O = B + i]Rg and satisfies the
conditions of the previous theorem then, by this theorem and theorem 2.1.1, it
follows that f is analytic on ch B + in] and satisfies the estimates (2.1) for every
K CcCchB.



Chapter 3

Convolution of Ultradistributions

Existence of convolution of distributions was considered by Schwartz [50], [51]
and later by many authors in various directions. In [50], it is proved that if
S,T € D' (R?) are two distributions such that (S ® T)p® € D}, (R*), for every
¢ € D, then the convolution S« T can always be defined as an element of D’ (Rd).
Later on, Shiraishi in [52] proved that this condition is equivalent to the condition
that for every ¢ € D (RY), (¢ xS) T € D}, (R?). Many authors gave alternative
definitions of convolution of two distributions which were shown to be equivalent
to the definition given by Schwartz (see, for example [15], [16], [23], [24], [37]-[39],
[52], [54]). We refer also to an interesting recent paper related to the existence of
the convolution [37]. In the case of ultradistributions, the existence of convolution
of two Beurling ultradistributions was studied in [41] where the convolution is de-
fined in analogous form to that of Schwartz. In the first section of this chapter we
will briefly present the theory for the existence of convolution of Beurling ultra-
distributions before we move to the main part of this chapter (for the systematic
approach in the Beurling case we refer to [41] and [50]). In the second section we

will prove several very important facts about the € tensor product of B} (]Rd)
with a complete l.c.s. that are key components in the proof of the main result in
the third section. The third section is devoted to the existence of the convolution
of Roumieu ultradistributions. The main theorem there gives the equivalence of
several definitions of convolution, among which are the ones that corresponds to
the Schwartz’s definition and Shiraishi’s one.

3.1 Convolution of Beurling Ultradistributions

All the results that we give here are from [25] and [41]. We will mention only the
important facts that will be needed for future references.
The key component in the Beurling case is the fact that B) is a (F) - space.

!/
In fact, it is proved that the bidual of B™») is isomorphic to D(Lﬂip), ie. (Dg%’)>

b
and D(Lj\ff) are isomorphic l.c.s. Equip Déﬂip ) with the topology of compact conver-

gence (from the duality <D}E{V[” ), D(L]Z[f)>) and denote it by Dgﬁp 1 One actually

proves that B™») is distinguished (F) - space and hence Dg{wp) is barrelled and

29
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bornological (note that is also complete as the strong dual of a (F) - space). The
topology of compact convergence on D(Lj‘i”) is the same as the topology of compact
convex circled convergence (from the duality <D'L(f\/[”), D(Ljﬁ")>). That is the reason

for the index c. The inclusions D(Lj\i” Z — EM) and D(Lj\fop) — D(Lj\fo” i are continuous.

One proves that the bounded sets of D(L]}ip) and of D(Lj\ffi are the same. Moreover,

the induced topology by D(L]Z,”Z on a bounded subset of D(Lj‘ipi is the same as the

induced one by EM). Also, D) is dense in D(L]}i”l and the dual of D{"r)
algebraically isomorphic to D/L(fw”). Because of this, if 5,7 € D'™») (R?) are such

that, for every p € DM (R?), (S®@T)p™ € D(L]Z") (R??), then the convolution of
S and T can be defined by

(S*T,p) = /(M) <(S ® Ty, 1>D(LA<3§,)C 5

where 1 is the constant function which is always equal to 1. Moreover, one ac-
tually proves that the mapping ¢ — (S ® T)p>, DMe) (]Rd) — D/L(fw”) (de), is
continuous and henee S x T is well defined ultradistribution. By the properties

of the topology of DLOO "o 1f ¥y, 1s a bounded sequence in D(Loo) which converges

to the constant function 1 in E™») then it converges to 1 also in D(Loo and, for

G € D (Mp) , (G,¢n) — (G, 1), when n — oo. This, in particular, is satisfied if
the sequence 1, is defined by ¥, (z) = (x/n), n € Z,, for ¢» € DM») such that
0<% <1,9(x)=1when |z| <1 and ¢(x) =0 when |z| > 2.

In the case of Beurling ultradistributions, in [25], the equivalence of this de-
finition and the analogous form of the Shiraishi’s definition, as well as few other
definitions, was proved. For future references, we will give the theorem here (for
its proof, we refer to [25]).

Theorem 3.1.1. (/25]) Let S,T € D'M») (Rd). The following statements are
equivalent:

i) the convolution of S and T exists;

i) for all p € DMr) (Rd), (gp * S) T € D;:(f\/[”) (Rd) and the convolution of S
and T is given by (S *T,p) = <(g0 * S) T, 1>;

iii) for all p € DM (Rd), (pxT)S € Dgpr) (R?) and the convolution of S
and T is given by (S« T, ) = ((p*T) S, 1);

iv) for all g, € DM} (RY), (p*S) (Y« T) € L' (RY).

3.2 On the ¢ Tensor Products with lg’{Mp}

Let E be a l.c.s. and A a subset of E. A point e € F is said to be a sequential
limit point of A if there is a sequence in A which converges to e in E. The set
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of all sequential limit points of A is called the sequential limit set of A. A is said
to be sequentially closed if it coincides with its sequential limit set. It is easy to
verify that intersection of sequentially closed sets is always sequentially closed.
Hence there is the smallest sequentially closed set that contains A which we call
the sequential closure of A. The sequential limit set of A is obviously a subset of
the sequential closure of A, but the latter can be strictly larger then the former.

Let £ and F be lLes. and L.(E,F) denote the space of continuous linear
mappings from E into F' with the topology of uniform convergence on convex
circled compact subsets of E. E! denotes the dual of E equipped with the topology
of uniform convergence on convex circled compact subsets of E. As in Komatsu
28] and Schwartz [50], we define the € tensor product of E and F, denoted by
EcF, as the space of all bilinear functionals on E! x F which are hypocontinuous
with respect to the equicontinuous subsets of £’ and F’. It is equipped with the
topology of uniform convergence on products of equicontinuous subsets of £’ and
F’. Moreover, the following isomorphisms hold:

EeF = L (E.,F) = L (F. E), (3.1)

where L. (E!, F) is the space of all continuous linear mappings from E/ to F'
equipped with the e topology of uniform convergence on equicontinuous subsets of
FE', similarly for £, (F., E). It is proved in [50] that if both E and F' are complete
then Eel' is complete. The tensor product F ® F' is injected in FeF under
(e® f)e, f) = (e,e)(f, f). The induced topology on F ® F' is the € topology
and we have the topological imbedding £ ®, F' — FEcF'.

We recall the following definitions (c.f. Komatsu [28] and Schwartz [50]).

Definition 3.2.1. The l.c.s. FE is said to have the sequential approximation pro-
perty (resp. the weak sequential approximation property) if the identity mapping
Id : F — E is in the sequential limit set (resp. the sequential closure) of £’ @ E
in L.(E,E).

The l.c.s. E is said to have the weak approximation property if the identity
mapping Id : £ — F is in the closure of £’ ® F in L.(E, E).

Remark 3.2.1. The reader should not confuse the weak approximation property
with the approximation property defined by Grothendieck [20]. The latter means
that the identity mapping Id : £ — E is in the closure of £ ® E in L,(E, E),
where the index p stands for the topology of precompact convergence. In fact
Grothendieck gives the definition of the approximation property by requiring £’ ®
E to be dense in L,(E, E). But this can be shown that it is equivalent to the
previous definition (see [49]). In general, if E has the approximation property
then it has the weak approximation property. Obviously, if E is quasi-complete
then the weak approximation property and the approximation property are the
same thing. We refer to [31] and [49] for further properties on the approximation
property.
We also need the next proposition ([28], proposition 1.4., p. 659).

Proposition 3.2.1. ([28]) If E and F are complete l.c.s. and if either E or F'
has the weak approzimation property then E<F is isomorphic to E®F.
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For K CcC R¢, we denote by Co(K) the (B) - space of all continuous functions
supported by K endowed with || - ||z~ norm. Throughout this chapter, we will
often denote by Kga(z,t) the close ball in R¢ with radius ¢ > 0 and centre at z.

Lemma 3.2.1. Let K, and K, be two compact subsets of R such that K, CC
intKy. Then there erxists a sequence S, in (Co(K1)) @ Co(Ky) such that S, — 1d,
asn —r 0o, in ‘CC (CO(K1)7CO(K2))

Proof. For every n € Z., choose a finite open covering {U,, ..., Uk, n} of Ky
of open sets each with diameter less than 1/n such that Uj,n C intk,, j =
1,..,k,. Let xjn, 7 = 1,...,k,, be a continuous partition of unity subordinated
to {Uin, .., U, n}. Forevery j € {1,...,k,}, choose a point z;,, € supp x;, N K.
Define

kn
Sp = 0(-—2jn) ® Xjm € (Co(K1))' ® Co(K2).
j=1
Let V = {p¢c CO(K2)| ¢l < e} and B a compact convex circled subset of
Co(K1). Let
M(B,V) = {T € L(Co(K1),Co(K>)) | T(B) CV}.

By the Arzela - Ascoli theorem, for the chosen ¢ there exists n > 0 such that for
all x,y € K; such that |x —y| < n, |p(z) — p(y)| < e for all p € B. Let ng € N is
so large such that 1/ny < n. Then, for n > ng and = € K;, we have

S:)(@) — @] = |30 (@) x3() = Y pl@s(2)
< Do asm) = ol xanle) < 2

So, S, —Id € M(B,V) for n > ny. O

Lemma 3.2.2. B is a precompact subset of[;’{MP} (Rd) if and only if B is bounded
in BMr} (R?) and for every e > 0 and (t;) € R, there exists K CC R? such that

|D%p(z)|
sup sup ——— < ¢
@GIE)? aeI\PI)d Tona a
z€RNK

Proof. =. Let ¢ > 0 and (t;) € Rand V = {<p € E{MP}‘ el < 8/2}. There
exist ¢1,..., o, € B such that for each ¢ € B there exists j € {1,...,n} such
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that o € ¢; + V. Let K cC R? such that |D%;(z)| /(ToM,) < /2 for all
r € R\NK, a € N4 j € {l,...,n}. Let ¢ € B. There exists j € {1,...,n} such
that ||o — ¢jll,) < /2. The proof follows from

|1Dp(@)] [P (oz) = pi(@))] | [D%p;()|

g
.M, — T, M, T., M, 2"

g — ¢, 2 e R\K,a € N
<. LetV = {gp e BiMy} (RY) ‘ el < 5}. Since B is bounded in the Montel
space EMr} (R?), it is precompact in £M») (RY). Thus, there exists a finite subset
By = {1, ..., pn} of B such that, for every ¢ € B, there exists j € {1,...,n} such
that pg ;) (@ — ¢;) < €, where K is the compact set for which the assumption in

the lemma holds for the chosen € and (¢;). If p € B is fixed, take such ¢; € By.
| D*p(x) — D¥;()|

Then, T <e¢g, forall z € K,a € N Also, by the assumption,
|Dp(x) — D%;(x)| < D) | [D¢;(2)] <fLif_.
T.,M, T.,M, T.,M, 2 2
for all x € RN\ K, o € N So, the proof follows. O

Proposition 3.2.2. B} (Rd) has the weak sequential approximation property.

Proof. Let K, = Kga(0,2""%), n > 1. Let § € Dy} is such that # = 1 on
Kra(0,1/2). Deﬁne 0, () = O(xz/2"),n € Z;. Then 0, € Dg\fﬁ and 6,, = 1 on K,,.
Let T,, € L (B{MP} (RY) , BUMpY (]Rd)>, defined by T),(¢) = O,p. Let p € Dg\f”},
i > 0, is such that / p(x)dr = 1 and define a d-sequence p,,, = mu(m-),

Rd
m € Z,. For each fixed n € Z,, by lemma 3.2.1, we find

jk,n
Sk,n - Z 5 ( - xl,k,n) X Xl,k:,n S (CO(Kn-‘rl))/ X CO(Kn+2)

=1

such that Si, — Id, when k — oo, in L. (Co(Kns1),Co(Kni2)), where x; i, are
continuous function with values in [0, 1] that have compact support in int K, 5 and

Ty g are points in supp xikn N Kyy1. Moreover the support of x; k., has diameter
jk,n jk,n

less then 1/k and Z Xikn(z) < 1on K, s and Z Xiken() =1 on K, 1. Define,

I=1 =1
for k,m,n € Z,,

jk,n

Thnn = Z Ond ( - xl,k,n) ® (,Um * Xl,k,n) and Ty Tm,n(@) = Mm * (97190)'
=1

First we will prove that for each fixed m,n € Zy, Tymn, — T in the space
£.(BU) (RY), B (RA)), when k — oo. Let

V= {o e B @) Il <<}



34 Chapter 3. Convolution of Ultradistributions

B a convex circled compact subset of é{MP} (Rd) and
M(B,V) = {T € £ (B! (RY) B (RY)) | T(B) €V}

(a neighbourhood of zero in L. <I§{MP} (R%) ,l’;’{MP} (Rd)>). Let ¢ € B. Then, for
a € N? and z € R,

| DT (9)(x) = DT () ()]

T, M.,
1 Jkm
= oar | (D Hm) * ;Qn(Il,k,n)go(xhk’n)xl’km_Qngp ()
Ik,n
< mdllull(tj/m/K > 100 (@100) ¢ (@110) = (1) W) Xtk (y)dy.
nt2 =1

Because the mapping ¢ — 0,p, BiMe} (R?) — Co(Kpn41) is continuous, it maps
the compact set B in a compact set in Cy(K,11), which we denote by B;. By
the Arzela - Ascoli theorem, for the chosen ¢ there exists 7 > 0 such that for all
x,y € K, such that

5
| all e ) | B2

[z =yl <n=10.(x)p(x) = Ou(y)p(y)| < p € B.

If we take kg large enough such that 1/ky <, then, for all k > k,
| DT min (@) () — DT (0) (2))]

T,M,
That is Ty mpn — Tmn € M(B,V) for all k > kg. Now we prove that, for each
fixed n € Zy, Topn — Ty, when m — oo, in £, (B{MP} (RY) , B0} (Rd)). We
use the notation as above. Because of lemma 1.2.1, without losing generality, we

can assume that (¢;) is such that T,,, < 2P79T,T,, for all p,q € N. Then, for
o€ B,ae N,z ecRY,

|DaTm,n(90)(;‘;C)¥]QaDaTn(cp)(I)| < /Rd ,um(y) |Da(0n90)(x _Tgiw_a Da(enw)(x”dy.

Let ) = t1/(4H) and t, = t, 1/(2H), for p € N, p > 2. Then (#}) € R. For the
moment, denote 0, by ¢,. By the mean value theorem, we have

<e,zeRYaeN e B.

[D*gn(x —y) — D¥en(x)| < 2Vd|l@nllt) T 1 Mol 9]
< Cothl\/E||<Pn||(t;)TaMa|y|-

Note that [|¢nll) < (101l /2)ll@ll/2)- So, by the definition of 4, we obtain

| D Tynn(9)(2) = D°T(@)(@)| _ ot Mavdllbll o)l
T, M, - m ’
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There exists C' > 0 such that sup [|¢||@/2) < C. If we take large enough my,
peB

such that 1/my < ¢/ <coCt1M1\/EH9H(t9_/2)), then, for all m > mg, 1), — 1), €
M(B,V). ' ‘

Now, we prove that T, — Id in £, (B{Mp} (RY) , BM) (Rd)>. Let B, V and
M(B,V) be the same as above. There exists C' > 0 such that [|p||,2) < C,
for all ¢ € B. Moreover, by lemma 3.2.2, for the chosen ¢ and (¢;), there exists

Dp(z)| €
K cc R? such that | < for all « € N?, 2 € RN\ K and
ToMo = 2(1+||0]]L) '

¢ € B. There exists ng such that K CC intK,, and C||0||«,/2)/2" < /2. So, for
n > ng, we have

| DT () () — D*o(x)]

T, M,
D2 ()] o) [D70(z/2")| [ D™ Po(a)]
< [1-— 2| ———%
< =0/ =5 +ﬁ; 8 BT, M,
B#0
e, Ol llelle /2

< = . 12 <

=37 on =
that is 7, — Id € M(B,V), for all n > ny. Thus, Id belongs to the sequential

) ! e

closure of (B{Mp}> (RY) ® BIMr} (RY). O

If F is a complete l.c.s., by proposition 3.2.2, proposition 3.2.1 and (3.1), we
have the following isomorphisms of l.c.s.

!/

c

BM} (RY) eF = L, <(1§{Mp}) (RY) E) ~ £, (B, B (RY)) = B E.
‘ (3.2)
Let E be a complete l.c.s. Define the space B{Mr} (Rd; E) as the space of all
smooth E—valued functions ¢ on R? so that

i) for each continuous seminorm g of E and (¢;) € R there exists C' > 0 such

D*p(x)
that . = T )<
st () = s sup g (G5 ) < €

it) for every € > 0, (t;) € R and ¢ a continuous seminorm on E, there exists

DO{
K cc R? such that ¢ (TL]\/S:C» <e, for all @ € NY and z € RN\ K.

o «

We equip B{Mr} (Rd; E) with the locally convex topology generated by the se-
minorms ¢y, where ¢ are continuous seminorms on E and (t;) € R. This is

Hausdorff topology and hence, é{MP} (]Rd; E) is a l.c.s.

Proposition 3.2.3. BV} (R E) and BV} (RY) eE are isomorphic l.c.s.
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Proof. By (3.2), it is enough to prove that BM) (R4 E) = L. <Eé, BM) (Rd)).
Let ¢ € BV} (RLE), ¢ € E' and ¢u(z) = (¢, p(x)),z € R% Clearly, g is
smooth and D*@. = (¢/, D*p). Let (t;) € R and € > 0. Then

|D*Ger()] , D% () D*p(z) N R
T, M, < T, M, < i T.M, | — C1Q(tj)(90), acN,TeRy

and there exists K CC R? such that ¢ (D%p(x)/(ToM,)) < ¢/C}, for all a € N4
and z € RN\K. Similarly as above, one obtains that |D*@e(2)| /(ToMa) < €
for all @ € NY and © € R\K, ie. ¢ € BUI (RY). Let ¢ € B} (RE E).
Consider the mapping T}, : £/ — BMp} (Rd), e — T,(e) = ¢o. We prove that
T, € £ (B, B (RY)).

D%p(x)
Let A — { =2
et T
in E. Let U = {e € E|lqi(e) < r,...,qu(e) < r} be a neighbourhood of zero
in E. For the chosen 7, (t;) and qi,...,q,, there exists K CC R? such that
q (D%p(z)/(T,M,)) < 17/2, for all « € N4, z € R\K and [ = 1,...,n. Moreover,
there exists C' > 0 such that g, /2)(¢) < C, foralll =1,...,n. Take s € Z, such
that 1/2° < r/(2C'). Then, if || > s, we have ¢ (D%p(x)/(TwM,)) < r/2 for all
z € R The set A" = {D%(z)/(TaM,)|z € K, |a| < s} is obviously compact
in E. So, there exists a finite subset B of A’ such that A’ C B{ 4+ U. Take
11 € K, 19 € R\K and let 3 € N? be a fixed d-tuple such that |3| > s. Consider
the set By = By J{D%(21)/(TsMp),(z2)} € A If |o| < s and z € K,
Dp(z)/(ToM,y) € By + U. If |a] > s and x € K, we have

D DB D« D?
@ p(z) . (1) <q ﬂ +q M <r,l=1,..n.
T, M, TgMﬁ ToM, TﬁMﬁ

reRY ae Nd}. We will prove that A is precompact

Also, if z € RY\K and o € N, we have

" (if\z) - cp(xg)> <4 (lz“j\z)) balo(e) <ri=1,..n.

We obtain that A C By + U. Thus, A is precompact. '
Let V = {w € BUMY (RY) | |4ty < 5} be a neighbourhood of zero in BiM»},

Because A is precompact and E is complete l.c.s., A - the closed convex circled
hull of A is compact. Let W = (1/»3[1) (° means the polar). Let ¢’ € W. Then

[e% / @
DT _ ‘<DT§§)>‘ Nl zeR!

and the continuity of T, follows.
The topology of B{Mr} (]Rd; E) is the one induced by L, (Eé, BiMp} (Rd)) when
we consider it as a subspace of the latter by the injection ¢ — T,,. To prove this, let
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M(B, V) be a neighbourhood of zero in L, (E;, BV} (Rd)>, where V' is as above
and B is an equicontinuous subset of E'. Let U = {e € E|q(e) < r,...,qu(e) <1}

be a neighbourhood of zero in E such that |(¢/,e)| < e, when e € U and ¢ € B.
Let

W= {<P € BM (REE) | 1) () S 7oy o) (90) < 7“} :

D%p(x)
Then, fi W

en, for p € A
B, |D°T, () ()] /(ToM,) < e, € NV z € R ie. T, € M(B,V), for all

¢ € W. Conversely, let W be a neighbourhood of zero in BIM»} (R% E) given
as above. Consider U as above and B = U°. If ¢ € W and ¢ € B, then

ITo ()l < 1. Let V = {y € BOW (R B) | |||,y < 1} and G = M(B,V) N
{T@‘go € l';’{MP} (]Rd;E)}. Let T, € G. Then, for all ¢ € B, T,(e') € V, ie.
]\T¢(e’)\|(tj) < 1. So, we have

D DT, (€
‘<e’, —Taﬁj)» — —l T:E\Z(x)l <1l,aeN zeR%¢ e B.

€ U for all « € N? and = € R% Hence, for ¢’ €

DOt
Tj\z) € B°=U* =U. But this

means that ¢ € W. Hence, we proved that ¢ +— T, is a topological imbedding
of BMr} (Rd; E) into L. (Eé, By} (Rd)>. It remains to prove that this mapping
is a surjection. By theorem 1.12 of 28], By} (RY) eE = L, (E(’:, B} (Rd)> is
identified with the space of all f € C (R% E) such that:

We obtain that, for all @ € N¢ and = € R?,

i) for any € € E', the function (¢, f(+)) is in BM) (RY);

i1) for every equicontinuous set A" in E’, the set {{¢/, f(-))| ¢’ € A’} is relatively
compact in By} (Rd).

Every such f generates an operator L' € L (Eé,é{MP} (Rd)> by L'(e')() =
fo = (¢, f()), which gives the algebraic isomorphism between the space of all
fec (]Rd;E) which satisfy the above conditions and £ (EL,B{MP} (]Rd)). We
will prove that every such f belongs to [;’{MP} (Rd; E) and obtain the desired sur-
jectivity. So, let f € C (]Rd; E) be a function that satisfies the conditions i) and
i1). By the above conditions, f. € BMr} (RY) C &M} (R?), so, by theorem 3.10
of [28], we get that f € £{Mp} (Rd; E) Hence f is smooth E-valued and from the
quoted theorem it follows that D f. (z) = (¢/, D*f(x)). Let (t;) € |. Then

(e 2

(t;)
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D f(x)

H the set ¢ ————+
ence, the se T L
in £. Let ¢ be a continuous seminorm in E and U = {e € E|q(e) < €}. There

exists C' > 0 such that ¢ (D*f(z)/(T.M,)) < C, for all « € N? and z € R%

Since A’ = W° is equicontinuous set in E’, { fe/| e e A } is relatively compact in

a € N z e R?} is weakly bounded, hence it is bounded

B} (R?). By lemma 3.2.2, for the chosen (t;), there exists K CC R? such
that ‘Do‘fe/(x)‘/(TaMa) < 1, for all @« € N 2z € RA\K and ¢ € A'. We

DOé
obtain that, for « € N? and # € RN\ K, Tﬁx) € A° = U = U. But then,

¢ (D*f(2)/(TaM,)) < €, for all a € N? and x € R?\K. We obtain that f €
BUY (R E). O

By this proposition, if we take E = é{MP} (R™), we get

BiM} (Rd; BiM} (Rm)> ~ BiMy) (RY) eBUGY (Rm) = BiM:) (RY) & BM (R™) .
(3.3)

Proposition 3.2.4. E{MI’} (Rd1+d2) = BL{MP} (]Rdl) ®€l§{MP} (Rd2).

Proof. By (3.3), it is enough to prove BM) (RbHd2) o BM) <Rd1; BM) (Rd2)>.
Let f € B <Rd1;l§{MP} (Rd2)>. For each fixed z € R% put ¢, = f(z) €

B} (R?%). For every (z,y) € R“"*% define the scalar valued function ¢(z,y) =

©.(y), y € R2. Put 0;, = 0,,f(z) € BV} (R%2). Let (z©,y) be a fixed
point in R“*92 ¢ > 0 and (¢;) € R. Then, because f is infinitely differentiable

BMy} (RdQ)-valued function, there exists 7 > 0 such that, for all x € R% with
|z — 2| <7, we have

dy
|z — x(0)|71 (f(x) — £ (29) - Z 0; 0 <xj — acg-o)))

j=1

<e

— ?

(t5)

Hence, |:r; — x(0)|_1 < g for all y €

di
Pa(y) = 020 (y) = D 000 (y) (%’ - 1’5‘0)>
j=1

R and ‘m — m(o)‘ < n. Since @, o) is smooth, we have

d1 d2
02 (Y) — @0 (y(o)) - 293-7%(0) (y(o)) (mj - x50)> - ZaijDx(O) (?J(O)) (yj - J(‘O)>
j=1 J=1
d1
< o) — oo @) = 3 b0 ) (2, — o)
j=1

d2
2a0 () = 9a0 (1) = 3 ypuo (1) (w5 = ")
j=1




3.2. On the ¢ Tensor Products with é{Mp} 39

(0)

Ly

dy
+ ) 0,00 1) = 0500 (4]
j=1

< €|x—x(0)| +€|y—y(0)‘ -1—6‘13—1’(0)‘ <2 (|x—x(0)| + ‘y—y(o)‘),

for all (z,y) € R%*% such that |z — 2| < n and |y —y®| < n, for some
small enough 7 > 0 (in the last inequality we used the continuity of the functions
0,0 ). By the arbitrariness of (z(*), y(»), we obtain that ¢(z,y) is differentiable
and O, 0(7,y) = 0;.(y), i.e. Op;0(w,-) = Oy, f(x), j = 1,...,d1, and Oy, (v, y) =
0y, 0(y), j = 1,...,ds. Similarly, one easily proves that ¢ is a C* function and
DgDSp(x,y) = DS (D2 f(x)) (y) for all o € N, 3 € N® and (z,y) € RH %,

Let (t;) € R and a € N 3 € N® and (z,y) € R®T92. Then

|DEDE (2, y)| _ D f(x) D f(x)
= .M, T, M,

< sup sup
(t;) €N geRh

Y

(t5)

Ta+ﬁMa+,3

which is a seminorm in B{M»} Rdl;l’;’{Mf’} (R%) ). Moreover, if € > 0, then there

. J D f(x)
exists Ky CC R* such that sup sup < e. In the proof of pro-
a€eN9 zeR94\ K, To M, (t;)
o o Daf(w) d1 di |
position 3.2.3 we proved that A = T ¢ eN* zeR is a precompact

subset of BV} (R?%). So, by lemma 3.2.2, for the chosen (¢;) and ¢, there exists
K5 cC R%such that
|DJ (D f(2)) (y)]
T T Mo M,

<egaeN" BeN®2 g ecR: ye R2\K,.

Then
| DD (z,y)]

<e, (2,y) € RMT\K K = K| x Ky,a € N g € N%,
Ta+,8Ma+,B

Hence, we obtained that ¢ € B} (Rd1+d2) and that the injection
f s o, BOMG (Rdl; BiMy) (Rdz)) — BIMb} (Ri-+2)
is continuous. .
Now, let ¢ € B{Mp} (Rd1+d2). Let f be the mapping z — o(x,-), R%" —

By} (R?%). Obviously, it is well defined. Note that 9,,¢(z,-) € By} (R%),
j=1,.,d. Let 2 € R and (¢;) € R. Because of lemma 1.2.1, without losing
generality, we can assume that (¢;) is such that T, < 2"**T, T}, for all n, k € N,
Then, by Taylor expanding D?¢(z,%) in (%) up to order 1, we obtain

lz — 2O

dy
Dfp(x,y) — Do (29, y) = > 0, Do (¢, y) (flfj - ffg'o))
j=1

1
= |z — :E(O)‘fl Z 2 (z — :17(0))7/ (1— t)@;Dggp (1- )2 @ + tx,y) dt
0
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<
< 2010 | — 2O [lolle,2m) Ts Ms,

where, in the last inequality, we used that Ty 5 Mays < coToMo(2H)* 81T My
and put C' = ¢yTy M, which depends only on (M),) and (¢;). Because this holds for
all y € R% and 8 € N2, we get that f is differentiable as an B{MP} (RdQ) -valued

function at z(®. Because z(®) was arbitrary, it follows that f is differentiable
at all points and similarly, we can prove that f is infinitely differentiable as a

B{Mr} (Re2)-valued function. Moreover, D®f(z) = D%p(z,-). Let (t)), (t;) € R
By lemma 1.2.1, we can choose (}) € R such that ¢} < ¢;, ¢/ < 1; and T <
2HRTITY, for all j, k € N. Because

[DeDje(y)| _ co2H) M | D2DJ(x, y)|
T TsM, My T, sMag

< allellw/@m,

for all « € N, 3 € N and (z,y) € R"7% we get

D f(x)
T.M,

sup sup
a€eNd geR%

- < ollell semy-
)
J

Let (;),(f;) € R, € > 0 be fixed and choose (t;) € R as above. Denote ] =
t}/(2H). Then there exists K CC R*% such that

|DeDlo(x,y)| e
< = Ndl Nd2 Rd1+d2 K.
7 Mo < € ,B€N2 (z,y) € \

Let K, be the projection of K on R%. Then K; is a compact subset of R% and if

Da
r € RU\ K| is fixed, by the above estimates, we have that ‘ f(z) < g, for all
(t5)

a € N4, Because x € R%\ K is arbitrary, we have f € BM) <]Rd1 BM) (RdQ))

« (&7

From the above estimates, it follows that the mapping ¢ +— f, By} (Rdﬁd?) —
[;’{MP} (Rdl'[;’{Mp} (Rd2)>, which is obviously injection, is continuous. Observe
that the composition in both directions of the two mappings defined above is the
identity mapping. So BM) (REFd2) o BM) (Rdl BiMp} (Rd2)> ]

3.3 Existence of Convolution of Two Roumieu
Ultradistributions

We follow in this section the ideas for the convolution of Schwartz distributions
but since in our case the topological properties are more delicate, the proofs are
adequately more complicate.

We define an alternative l.c. topology on ﬁﬁﬁp} such that its dual is algebrai-

cally isomorphic to DY M} (c.f. [39] for the case of Schwartz distributions). Let



3.3. Existence of Convolution of Two Roumieu Ultradistributions 41

g € Cy (Rd) (the space of all continuous functions that vanish at infinity) and
(t;) € M. The seminorms

lg(z)Dp(x)| ~ (M}
_ — AR/ = AL Dir
Py,(t5) () S;gl f;{i oL % €Dy

generate l.c. topology on D{ M} and this space with this topology is denoted by

Diof}. Note that the inclusions 25%”} — f)}ﬁfp} and DM} f)ﬁf”} — EMp}
are continuous.

Lemma 3.3.1. Let P(D) = > coD be an ultradifferential operator of class
{M,}. Then P(D) is a continuous mapping from D{ Mo} to D{M”}

Proof. We know that ¢, are constants such that for every L > 0 there exists C' > 0
such that sup |c,| M, /LI®! < C. So, by lemma 3.4 of [28], there exists (r;) € 2 and

C1 > 0 such that sup[ca|RaMy < C1. Let g € Co and (t;) € R. Take (sj) € R

such that s < r; and s < t; (Sp < Tj, Sk < Ry). By lemma 1.2.1, there exists
(s;) € R such that s; < s} and Sj < 277%5;S), for all j,k € N. Then, for

pEe D{ My} , we have

|g(x) D™ (P(D)¢(x))|
T, M,
|C/3| ‘g DOH_BQO( )| a+BMa+ﬁ
< <(C s
< 25: T M. S 1pg,(J/(4H 2,3: AH)lel+BIT, wRs My My
SaSs

< COC1pg,(sj/(4H))(90) Z m < Cng,(sj/(4H))(90), a €Nz eR
B «

Note that we can perform the same calculations as above without g. This implies

that P(D) is a continuous mapping from IZDEKP Y into f)%” 5 O
= ! =
Denote by (Dﬁip }> the strong dual of Dgg” 3

Lemma 3.3.2. DM} s sequentially dense in D{ Mo} I particular, the inclusion
<Dﬁf"}> — DM} s continuous.

Proof. Let ¢ € D{ M} Let y € D™} be such that y = 1 on {z € RY||z| < 1}
and x = 0 on {z € Rd| |z| > 2}. For n € Z,, denote by x,(x) = x(z/n) and
©n(1) = xn(z)@(z). Then, obviously ¢, € DIMr} There exist o > 0 and C; > 0
such that |D%y(z)| < C1hl*IM,. For g € Cy and (t;) € R, we have

|9(x) Dp() — g(2) D*pn(2)]
T, M,

" By (x/n)D*Bo(x
< L= x(@/n)llg(x) +Z()'g( )HDﬁﬁ(z{aﬂf o

B<a
570
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g/l llll e, /2) o\ R
< [1=x(@/)llg@)lllelle, + Cr p_— ; o) 3T

B0
gllze= 12l ¢, /2)
n b

< T=x(/mllg@)l[elle,) + el

where ¢y is a constant such that 2'5‘h‘ﬁ|/Tﬁ < ¢, for all § € N Because g € Cy,
the last tends to zero when n — oo, uniformly for z € R? and o € N¢. O

Lemma 3.3.3. The bilinear mapping (o, ¥) — o, ngp} X ﬁflff'} — ﬁ}ﬁf"} is
continuous.

Proof. Let g € Cy and (t;) € R. Obviously, g(z) = /|g(z)| € Co. Let ¢,¢ €
YS{MP} Then
Lo -

|9(x) D (p(x)(x))] 1 a\ lg@)[ |[DPp(@)| [D*Fy(a)|
20T, M, = 2_@Z (5) T, M,

BLa

< Cpae,(P)Pa,2(¥), © € R a € N
0
Proposition 3.3.1. The sets ZS,L{lMp} and <Z:)j{:]o\i[”}>, are equal and the inclusion
<75£]Z” }>/ — ﬁlL{lM *} s continuous.
Proof. Since, é{MP} is continuously and densely injected in f)flﬁp}, it follows that
the injection (15}1{“)' — f)/L{IM 2 is continuous. Let T € f)lL{lM 28 Then, by

theorem 1 of [42], there exist an ultradifferential operator P(D), of class {M,}
and Fy, Fy € L' such that T = P(D)F, + Fy. Let p € DM} Then

(P(D)Fy. )| = (1, P(~D)g)| = / Fi(@)P(-D)g(x)ds|.

Because Fy € L' C M! (integrable measures), by proposition 1.2.1. of [39], there

/ Fi(x)f(x)dx| < ||fg1|lr=, for all f € BC (BC is
R4

the space of continuous bounded functions on RY). Let (¢;) € . We obtain, by
lemma 3.3.1, that for some §; € Cy, (t}) € R and C; > 0,

[{P(D)Fy, )| < [ P(=D)plliee < pgy 1) (P(=D)p) < Crpg, 1) (#)-

Similarly, there exist g» € Cp, (t;() € % and Oy > 0 such that |(Fy, )| <
= !
Capg, ) (), for all p € D). By lemma 3.3.2, T € (D%"} ) . 0

exists g; € Cy such that

Lemma 3.3.4. Let S,T € D'™} (R?) are such that, for every ¢ € D} (RY),
~ ~ /

(S @ T)p® € DN (R2). Then F : DM (RY) — (Dfﬁp}> (R2) defined by

F(p) = (S®T)p” is linear and continuous.
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~ /
Proof. By proposition 3.3.1, (S®T)¢? € (DL]Z”}> (R??) for every ¢ € DMe) (RY).

Because DMr} is bornological, it is enough to prove that F' maps bounded sets
into bounded sets. Let B be a bounded set in DM»} (Rd). Then, there exist

K cc R and h > 0 such that B C DéM”}’h and B is bounded there. It is
obvious that, without losing generality, we can assume that K = Kga(0,q), for
some ¢ > 0. Take y € DM} such that y =1 on K and 0 outside some bounded

neighbourhood of K. Then, for ¢ € B and 1 € 1:?2];{"} (R*?), we have
(S@T)p™v) = (ST ¥) = ((S@ D)X, ¢™Y),

~ /
where, in the last equality, we used that (S ® T)x® € (D}fﬁp}) (]de) and

™ € 5;%"} (R%) when ¢ € DM} (RY). Let ¢ € By for some bounded set
B in f)flﬁp} (R). Let g € Co (R*) and (¢;) € R. Then, for ¢ € B and ¢ € By,

we have

|9(x, y) DIDE (™ (2, y)¢(x,y))|
Ta+,BMa+B

> (a) (5 ) (e, )l [P0 (@ + y)| | D37 Dy~ (=, y)|

Y 0 Ta-&-/BMa-i-ﬂ

<o
0<p

2R\ I+l
Pr(©)Dg,(t;/2) (V) Z (i) (?) WM < Cprn(@)Pgt;/2 ().

IN

1<«
0<p

Since px. () and py, (¢, /2)(¥) are bounded when ¢ € B and ¥ € By, we obtain that
the set {0 € DI (R¥) [0 = 20, p € B, v € By } is bounded in DY (R*).

This implies that ((S @ T)p®,¢) = ((S @ T)x*, ¢*1) is bounded, for ¢ € B and
Y € By. Thus, F(p) = (S®T)¢?, ¢ € B is bounded. O

Definition 3.3.1. Let S, T € D't} (R?) be such that for every ¢ € D} (RY),
(S®T)p" € ZSIL{lMP} (R2). Define the convolution of S and T', SxT € D'1Mr} (RY),

by
= Mp
(S*T, ) = (B (S@T)e*, 1>5%p} L (1e D).
Because of lemma 3.3.4, the mapping

Y= <Z:){Mp}>/ <<S ® T)SOAv 1>1:72Mp} ) D{Mp} —C
700 oo

~ !/
is continuous. More precisely ¢ — (S ® T)p?, D) (RY) — (Dﬂ{”}) (R*)

~ /
is continuous by lemma 3.3.4. Also, the identity mapping (Dﬁ.ﬁp}) (de) —
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= ! <
<Dg/o[”}> (R*?) is continuous (the latter is the dual of Dfﬁ.fp} with the weak*

= /
topology) and because 1 € D}pr ' it is continuous functional on <Dg¥p }> (R*).
Hence S+ T is well defined ultradistribution. . ’
For every a > 0, define the space Bt = {gp € BiMn} (de) }suppgp C Aa},
where A, = {(z,y) € R*||z +y| < a}. With the seminorms ||¢||¢,) (now over

R2), B2 hecomes a lcs. Define the space B{AM”} = lim B(EMP}, where the

a— 00

inductive limit is strict; B{A "} is a l.c.s. because we have a continuous inclusion
By g},

Lemma 3.3.5. Leta > 0. Then D{A]a\/[”} (R*) = {¢ € DM} (R*) |suppp C A, }

18 sequentially dense in BéM”}.

Proof. Let ¢ € B Take x € DMy} (]RZd) such that y(x,y) = 1 on Ky2a(0,1)
and x(z,y) = 0 out of Kgea(0,2). For n € Z, put x,(x,y) = x(z/n,y/n). Then
©n = Xnp € D{Aﬂj”} (R*) for all n € Z,. Let (t;) € R. We have
‘Dng(ﬂ(.ﬁl],y) - Dng(pn(xay)}

TorsMass

| D2 DJ(x,y)|
< 1—X(3§’ n,y/m ——
1= /)] S

P (4)(§) Pl 1D Do)

AR, 5 Mo

1<«
0<p
v+57#0

DgDﬁgp(x,y) 0102”90” t:/2
< |1—x<x/n,y/n>|’ v |+ ti/2)

Ta-i-ﬁ M, a+p3 n

By lemma 1.2.3 and by the way we chose Y, it follows that the above two terms
tend to zero uniformly in (z,y) € R* and «, 8 € N¢ when n — oo. ]

Because DMrl (R2d) = U D{A]\j” ; (RQd), by lemma 3.3.5, it follows that
acR
DM} (R*) is dense in B +Moreover, one easily checks that the inclusions
NI (R%) and D) (R*) — B are continuous, hence, the in-
clusion (B{AMP}), — D'{Mp} (R%) is continuous ((B{AM”}), is the strong dual of
B,
Theorem 3.3.1. Let S, T € D'{Mv} (Rd). The following statements are equivalent:

i) the convolution of S and T exists;

i) SoT e (B{AMP}>/;
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i) for all ¢ € DMp} (Rd), (gp * S) T € Z~)IL{1M"} (]Rd) and for every compact

subset K of R, (¢,x) — <(gp*5) T, X>7 D}Mp} X l’;’{MP} (]Rd) - C, s a
continuous bilinear mapping;

w) for all ¢ € DMp} (Rd), (gp * T) S e ﬁ/L{lMp} (Rd) and for every compact
subset K of R, (¢,x) — <(g0>|<T) S, X>7 D}M”} x BiMp} (]Rd) — C, isa
continuous bilinear mapping;

v) for all o,y € DM} (RY), (o S5) (¥« T) € L* (RY).

Proof. i) = ii). Let a > 0. Choose ¢ € D™} (R?) such that ¢ =1 on Kga(0,a)
and ¢ = 0 on the complement of some bounded neighbourhood of this set. Then,
there exist (¢;) € 9 and C' > 0 such that |<(S @ T, )| < O, for all ¢ €

DM (R24) € BUM) (R2). Since (S @ T)p™, ¥0) = (S ® T, p2¢) = (S @ T, ),
it follows that [(S ® T, ¢)| < C|[¢]|,) for all ¢ € D{M”} (R*!). By lemma 3.3.5,
it follows that S ® T is a contlnuous linear mapping from BéMF} to C. Hence
SoT e <B{AMP}>/

ii) = 1i). Let p € DM} (R?) with support in Kga(0,a) for some a > 0. Then,
for that a, there exist (¢;) € B and C' > 0 such that [(S® T, )| < C’||¢||(tj) for
all € B, Let ¢ € DO (R?). Then ™y € DY € B and by lemma
1.24

[((S@T)e® )| = [(S@T, o) < Clle®el,, < Cllvla,,

for some (¢}) € R and C > 0 that depend on ¢ and (t;). Thus, (S@T)p* € D/{M”}.
i) and 1) = iii). Let F' and K; be compact subsets of ]Rd Take K to be a

compact set in R? such that F' CC intK and let ¢ € D{M"} (NS D}(M”} and
x € D} (RY). Then

(((p*S)T) xp,x) =(S@ T, p(x +y) (V*x) (1))

There exists a > 0 such that supp ¢ (z,y) (1@ xx) (y) € A,, for all p € D{M”},
¢ € DM and y € DY (R?). Then, for that a, there exist (¢;) € R and C; > 0
such that [(S ® T,8)| < C4]|0],) for all § € B{M”} So we obtain

(0 8) T) x v, )] = Cr [[% (@ 9) (¥ x) W), -

We have
|DaDS (0% (z,y) (¥ * x) (1))] 3 (6) | D5 -00(z +y)| | D° (4 * X) (y)]
TaJrﬁMoHrﬁ N 5<B 0 Ta+ﬂMa+ﬁ
1D (¢ % x) ()]
< HSDH tj /2); ( ) lal+B1-101Ts M
< |K|H%0H(tj/2)|W”(tj/2)HX”Loo-
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Hence |{((¢+8) T) * ¢, x)| < CLlEll¢ll; i1l e, 2 Xl e, for all o € D,
(RS D{ *}and y € DM} (RY). Thus, ((¢*S5)T)*1p € M. Since ((¢* S) T) =

Y € E1Mp} (Rd), it follows that ((gp * S) T) x1) € LY. Let ¢ € D%\fp} be fixed.
Then the mapping ¢ +— ((gp * 5’) T) *x 1, D%Mp} — D'tMp} g continuous and has a
closed graph. Since ((¢ *S)T) * ¢ € L', this above mapping from D%Mp} to L,

has a closed graph as well and so, it is continuous. (L' is a (B) - space and D}MF}

is a (DF'S) - space.) Hence, there exist (r;) € R and C; > 0 such that

H((SD * S) T) * ¢HL1 < Cl”%UHK,(rj)- (3.4)

By lemma 1.2.1, we can assume, without losing generality, that (r;) is such that

Rjyr < PMFR;Ry, for all j,k € N. Let r; = r;/(2H) and 0 € DFMEJT,.). Then,

there exist 1, € DE(MP}, n € Z, such that ¢, — 6 in D%’er). The mapping
0 — ((p*S)T)x0, DM” o — DM} is continuous. So, if 1, € D}M”} tends to 0 €

D?f( in the topology of D  then ((¢ = 5’) T)xth, — ((¢ = S) T) %0 in DMl

By (3 4), we have H((gp* S) ) * || 1 < Cillbnllk ). So, (% S)T) * 1, is
a Cauchy sequence in L', hence it must be convergent and it must converge to
((gp * S) T) x 0, because it converge to that ultradistribution in D'tMr}. Conse-

quently, (((p * S‘) ) x0 € L' for all € ng[f 3 and if we let n — oo in the last

inequality, we get || (¢ * S)T) = GHLI < C1]|0||x,ry), for all 6 € ngfr,_). By corol-
NI

lary 1 of [42], it follows that (gp * S) T e D/{M”} Now, we prove that the mapping

(p,x) — <(gp * S) T,X>, D}MP} (Rd) X B{MP} (Rd) — C, is continuous, for every

compact set K. There exists a > 0 such that K CCgra (0,a). Take § € DIMp}
such that 6§ = 1 on Kga(0,a) and § = 0 on the complement of some bounded

neighbourhood of this ball. Then 262 = 2 for all p € DM Let ¢ € DM
and y, ¢, € DMe} pn € Z,  such that 1), — §, when n tends to infinity, in M},
Then

<(gp*5’)T,X> = lim <((¢*S)T)*¢n,x>

n—oo

= lim (S®T,¢%(x,y) (Y *x) ) = (ST, 0™ (z,y)x(v))

n—oo

= (ST, ¢%(x,9)0%(z,y)x(y) = (S 1™, L @ x(y)),

~ /
where the last tow terms are in the sense of the duality <Dﬁ.{p}, (Dﬁfp}) > Now,

let x € B} (R?) and take ¢ € D2} (R?) such that ¢ = 1 on Kga(0,1) and ¢ =
0 out of Kga(0,2). Put ¢, (z) = ¢(z/n), n € Z, and xn(x) = ¢ (x)x(x). Then,
one easily checks that 1, ® x,(y) = 1, ® x(y) in ﬁiﬁf’”} (RQd) ,n — 00. Because
(p+8)T e (DY) (RY) = DI (RY) and (5 © T)p® € (DR (R) =
f)/L{lMp} (RM) (c.f. proposition 3.3.1), we have

((p8)T,x) = lim {(p%8) Toxa) = lim (S @ T)p™, 1o @ xa(y))
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= (SeT)® 1L, @x(y),pe D xe B} (RY).

Also (S® T)0* € ( {M”}> (R**) and by the construction of 6, (S ® T)§2p> =
(S ®T)e™. Hence
(o 8) Tox) = (S @ T)8*, o™ (x,y)x(v)) , 0 € D™ x € BUI([RY). (3.5)

Since the bilinear mapping

(p(2), X)) = ™ (2, y)x(y), DR x BOBT (RY) — DI (R2)

~ /
is continuous and (S®T)H* € (Df}.ﬁp }> (RQd), it follows that the bilinear mapping

(p(@), X(1)) = (S @T)0™, o (@, y)x ()}, DL x B (RY) — €

is continuous. Hence, by (3.5), we obtain the desired continuity.
i) and i1) = iv) The proof is analogous to ii) = iii).
ii) = v). Let K C R? and let ¢, € DM y € DM} Then
((px8) W=T),x) = ((S(x),0(x+ONT(y), ¥t —y)),x(t)
(S@T)(x,y) @ L, oz + 1)y(t —y)x(t))

_ <<s ® T)(z,y), /R R y)X(t)dt> |

Let 0(z,y) = / o(x+t)(t —y)x(t)dt. Let a > 0 be such that K CC Kga(0,a).

We will prove that suppf C Ay,. Let (z,y) be such that |z + y| > 2a. Then we
have

2a < |z +y| < |z +t|+ |t —y|, Vt € RL

Let ¢y € R? be fixed. Then |x + to| > a or |ty — y| > a. If |z + to| > a, then p(x +
to) = 0 and if |ty — y| > a, then (ty—y) = 0. In any case p(z+ty)Y(to—y) = 0 and
this holds for arbitrary t, € R%. So, we obtain that supp8 C As,. Now, because
R UNS D}M”}, there exist hq, he, C7,Cy > 0 such that |D%p(x)| < Clhga‘Ma and
|Dy(x)] < Czh‘Qa'Ma. Let (t;) € R. We have

|DeDb(,y)| / [Dp(w + )] [ DP(t = )] [X(1)
TorpMayp B

|
dt
a+ﬂﬂ4d+ﬁ

|DY(z +y +t)| | DPy(t)
< e [ SOUDW O < eyl
a+5 a+

N

It follows that the mapping x — [ @(z + t)w(t — y)x(t)dt, Co (R?) — BiMr} i
R4
continuous, i.e. this mapping is continuous as a mapping from Cy (]Rd) to B{AM"}.

. /
But, S®T € (B{AM"}) , SO the mapping

oo (ST, [ olat ule - i), Go () - C
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is continuous. Since (¢ xS5) (¥ * T) € M and it belongs to EMMe}, it follows
(o S)(*T) e L.

iii) = 1). Let ¢ € DM} (R?) and let K CC R such that supp ¢ CC intK.
By the assumption, the bilinear mapping G : D}M”} x B{Mp} (RY) = C, Gy, x) =
<((wgp) * S ) T, X>7 is continuous. Hence G extends to a linear continuous mapping,

G, on the completion of the tensor product D}(M”}@)B{Mp} (Rd) (D%Mp} is nuclear

and the 7 topology coincides with the € topology). Let 6 € D}{MP

such that # = 1 on supp . Then, the mapping F : B{Mr} (Rd) — D}(M’”}, F(x) =
fx is continuous. So, the mapping

4 be a function

F® 1d: B (RY) @, B} (RY) — DI g, BT (RY)
is continuous and by proposition 3.2.4, we have the continuous extension
F&1d : B (R¥) — DM & BULY (RY)
Thus, we have the continuous mapping
G : B} (R21) F2, pM) g gln} (Re) S, ¢,
) 5 =M,
ie. G e DM (R). For ¢,y € DM (RY),

Gpex) = GF@W)®x) =G0y, x)=(((0ve) = S) T, x)
= ((Se D)™ vz +y)x(y)).

Let © be the linear transformation ©(z,y) = (v + y,y) and denote by O the li-
near operator @f(x’,'y’) = foO(z,y) = f(x +y,y). It yields an isomorphism of
DMy} (R2d) and of BMr} (R2d), hence, the transposed mapping ‘O is an isomor-
phism of DM} (R24) and of DM (R?). Thus

Gwex) = ((SoTe*6wex) = ("6 (SeT)) v x).

Because D{Mr} (]Rd) ® DM} (R?) is dense in DM} (R), G =16 ((S @ T)p?)
in DM (R, G € D/{M"} (R*), 50 'O ((S®@T)p?) € D/{M”} (R*?), hence
(S@T)p* e DM (R2d).

iv) = i) The proof is analogous to the previous one.

v) = i). Let K and K; be compact subsets of R? such that K; CC intK
and both satisfy the cone property. Observe the mapping G : D}MP} X D}Mp} —
MY Gp, ) = (¢ = S) (¢ * T). Note that the mapping ¢ — (i * S) (v *T) is
continuous from D%Mp} to D'Mp} and hence, it has a closed graph. Because M*
is a (B) - space and DE(M” Vis a (DF'S) - space, from the closed graph theorem, it
follows that G is separately continuous in ¢ and similarly in ). D}M”} isa (DFYS)
- space, hence G is continuous. It can be extended to a continuous mapping, é,
on the completion of the tensor product DE(MP}@)D}(MP}. Since DE(M”}®D§(M"} o
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Dg\i‘}}; (theorem 1.2.8), the mapping Dg\i’}}; x Co (RY) — C, (f,0) — (G(f),0), is
continuous because it is the composition of the mappings

DML 5 ¢y (RY) 414 M (RY) x € (RY) 125 ¢,

where the last mapping is the duahty of Cy and M*. Hence, the mapping D%X’}i X
B{MP} (Rd) C, (f,x) = (G (f),x), is continuous. So, this mapping can be

extended to G on the completion of the tensor product D}?@i@é‘{MP}. Take 0 €
D{ M} guch that 6 = 1 on K, and put 01(z) = 0(x) and O5(y) = O(y). Because
U= 01021), B{My} (R*) — D%X‘}];, is continuous, the mapping v ® ¢ — 01021 @ p,

B} (R*) @, B} (RY) — — DI . BOM) (R?) is continuous and it extends
to a continuous mapping V' on the completion of these spaces. By proposition
3.2.4, the composition G o V is continuous from B{Mr} (R3!) to C. That means

that there exist (¢;) €  and Cy > 0 such that )Go V(f)‘ < G| fll ¢y, for all
f e BOBY (R3). Tet o,y € DI} (RY), then

GoV(ip@1p®x) = Ghp®0®x)={((1p)*S) ((021) * T), x)
= ((S(z) @T(y)) ® 1y, 01(z + t)p(z + t)0a(t — y)U(t — y)x(t)).

By nuclearity and theorem 1.2.8, we have continuous dense inclusions

(D{Mp} (Rd) ® DMr} (Rd)) ® DMr} (Rd) — DMy} (R3d) )
So, for ¢ € DiMp} (R3d), there exists a net ¢, € (D{Mp} (Rd) ® DMy} (Rd)) ®
DM} (R?) such that ¢, — ¢ in DM} (R3!). But then the convergence holds in
Bz} (R3) and, for ¢ € DI} (R3)

GoV(p)={((S@)®@T(y)) ® L, 01(x + 1)05(t — y)@(x + t, t — y,1)).

Let ¢ € DM} (]Rd), Ky = Kga(0,a), where a > 0 is such that supp ¢ CC int K.
Let K = Kga(0,a+2) and K’ = Kga(0,a+1). Choose § € DM} (R?) to be equal
to 1 on K’ and has a support in int . Take p € DM} (]Rd) with support in the

open unit ball and / p(z)dz = 1. Let y € DM} (R?®) be arbitrary and consider
Rd
the function f(z,y,t) = p(z—y)x(z—t,t—y)u(z). Obviously f € DIMr} (R3?) and

éoV(f)

= ((S(x)®@T(y)) @ L, 01(z +)0a(t —y) f(z +t,t —y,t))
= ((S(z) @ T(y)) ® Ls, 01(z +)0a(t — y)o(x + y)x (@, y)u(x + 1))

)
)
By construction 0, (z + t)u(zr +t) = p(x +t), for all z,t € R% Let z,y,t € R?
are such that ¢(x + y)u(x +¢) # 0. Then |x +y| < a and |z +¢| < 1. So,
[t —y| < |x+y|+|r+1t] <a+1, hence 65(t —y) = 1. We have

GoV(f) = ((S(x)@T(y)) ® L, ol +y)x(x, y)ulz +1))
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- <S(a:)®T(y),90($+y)X($ay)/

Rd

= ((S(@) @ T(9)™ (@, y), x(2.)) -

We estimate the derivatives of f as follows

p(r + t)dt>

DeD]D] f(z,y,t)|
TotpryMotpiy

= Ta—i—ﬁ-&-v a+f+y ﬂzﬁ';yo;yaga ( ) ( ) ( ’) (Z//')

DO (g — ’ )DO‘NH Dﬂlﬂ_”’,x(m —t,t— ‘ ‘Da’_a”u(x)‘

< lellesmllelle,mlixlle,s D> D D (5,)( )( )(O//,)zx—la—ﬁl-lvl

B'<Bv'<yo<aa<a!

A

IA

el e, /a1l e, s Ix N e, 4 -

Hence,

[((S(z) @ T(y))e™(z,y), x(z,y))| = ‘éov<f>‘§01“f|’(tj)
< Cullolle, el e 2 1x e, 4)-

for x € DM} (R*). Since DM} (R?) is dense in B} (R??), the proof follows.
O

Remark 3.3.1. Let y € DM} (]Rd) is equal to 1 on the Kpa(0,1) and have a
support in Kga(0,2). Put x,(z) = x(z/n), n € Z,. If for S and T' the equivalent
conditions of the above theorem hold and ¢ € DM} (Rd), then, similarly as in the
proof of i) = iii), we can prove that (i * S) T, xn) = ((S@T)p™, 1, @ xn(y))-
But then, by construction, y, — 1 in 25%”} (Rd) and 1, ® xn(y) = 1z, in
bﬁ.ﬁp} (R%). Hence (S*T,¢) = ((S@T)p”, 1) = {(¢*S)T,1). Similarly,
(S=T,0)=((p*T)S,1).



Chapter 4

Pseudodifferential Operators of
Infinite Order in Spaces of
Tempered Ultradistributions

Pseudodifferential operators that act continuously on Gevrey classes were vastly
studied during the years. A lot of local symbol classes that give rise to such ope-
rators (both of finite and infinite order) were constructed by many authors. Also,
global symbol classes and corresponding operators (of finite and infinite order), as
well as their symbolic calculus were developed in [3], [4], [5], [6], [7], [8] (see also
[36]). The functional frame in which those were studied are the Gelfand - Shilov
spaces of Roumieu type. The symbol classes developed there are well suited for
studying polyhomogeneous operators. In this chapter we develop a global calcu-
lus for some classes of pseudodifferential operators of infinite order. The symbol
classes and the corresponding pseudodifferential operators that we will develop
here are of Shubin type. The functional frame in which the considered symbol
classes and the corresponding pseudodifferential operators will be studied is going
to be Komatsu ultradistributions, more precisely the spaces of tempered ultradist-
ributions of Beurling and Roumieu type. Our symbol classes are similar to those
in [5] and [6], but the weights that control the growth of the derivatives of the
symbols are constructed in such way that they give well suited environment for
studying Anti-Wick and Weyl operators on the space of tempered ultradistributi-
ons. In this chapter, we develop calculus for our symbol classes.

In the first section of this chapter, we give the definition of the symbol classes
as well as their basic topological properties. We study pseudodifferential opera-
tors Op_(a), arising from 7-quantization of symbols that belong to these sym-
bol classes. We prove a theorem that gives the hypocontinuity of the mapping
(a,u) — Op,(a)u, for u in the test space.

We start the second section with the definition of the spaces of asymptotic
expansion. We state and prove results concerning change of quantization, com-
position of operators and asymptotic expansion of the symbol of the transposed
operator.

51
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4.1 Definition and Basic Properties of the Sym-
bol Classes

Let a € 8™ (RQd). For 7 € R, consider the ultradistribution

K. (x,y) = fgjm_y(a)((l — 1)z +1y,§) € S (RQd) . (4.1)
Let Op,(a) be the operator from S* to & corresponding to the kernel K. (z,vy),
l.e.

(Op,(a)u,v) = (K;,v @ u), u,v € S* (R). (4.2)

a will be called the 7-symbol of the pseudodifferential operator Op,(a) and Op,(a)
will be referred as the 7-quantization of a. When 7 = 0, we will denote Op,(a)
by a(x, D) and this is called standard, or left, quantization. For 7 = 1 one obtains
the so-called right quantization. The case 7 = 1/2 is particularly interesting and
yields the Weyl quantization and it will be denoted by a“. We will return to
further study the relationship between the Weyl and another, very important,
quantization in the next chapter.
When a € §* (R*),

1

O (@u(w) = 7 [ e al(1 =)o+ ry ul)duds, (43

where the integral is absolutely convergent.

Proposition 4.1.1. The correspondence a — K, is an isomorphism of S* (]RQd),
of 8™ (R*) and of L* (R*®). The inverse map is given by

a(z,§) = Fyse Ko (v + 1y, 2 — (1 — 7)y).

Proof. The partial Fourier transform and the composition with the change of
variable Z(z,y) = ((1—7)z + 7y, z — y) are isomorphisms of §* (R*?), of &’ (R*)
and of L* (R*®). The last part is just an easy computation. O

Operators with symbols in S* correspond to kernels in §* and by proposition
1.2.2, those extend to continuous operators from S™ to S§*. We will call these
*_reqularizing operators.

Now we will define the announced global symbol classes. Let A, and B, be
positive sequences that satisfy (M.1), (M.3)" and Ay = 1 and By = 1. Moreover,
let A, C M, and B, C M, i.e. there exist cp > 0 and L > 0 such that A, < c¢oLPM,
and B, < ¢oLPM,, for all p € N (it is obvious that without losing generality we
can assume that this ¢q is the same with ¢y from the conditions (M.2) and (M.3)
for M,). For 0 < p < 1, define F%}"”;’p (R*!; h,m) as the space of all a € C* (R*)
for which the following norm is finite

al] | D2DBa(x, )| ((x, €))riel 1Bl e=Mmieh o =M (miz)
A||p,m,r = SUp Sup > |
a,B (x,£)eR2d h! ‘Hﬁ'AaB,B
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It is easily verified that it is a (B) - space. Define

Ly, (Rm) = Um Ty, (R hm)
T (R*) = lim T4y (R m),
T ) = T, (),
P (R2) = lim DY (R 5)

h—o00

Remark 4.1.1. Fg‘fﬁi; (R*;m) and F;ﬁf’gjﬁ (R%; h) are (F) - spaces. Obviously,

: : (Mp),00 (my2d. M, 2d {Mp},00 (mpad. M, 2d
the inclusions I'y 5" (R ,m) — S/(My) (]R ) and 'y 75’ (]R ,h) — S"M} (]R )
are continuous, hence I‘EL‘M’});’OO (R*?) and Fng’oo (R*") are Hausdorff l.c.s. Mo-

. . . . v 2l p’P P pvp .
reover, as inductive limits of barrelled and bornological l.c.s., they are barrelled

and bornological.

Remark 4.1.2. By proposition 7 of [17] it follows that every element of ;™5 (R*?)
is a multiplier for ™ (R*?).

Remark 4.1.3. Examples of nontrivial elements of FZ’:?BP p (RQd) are given by every
ultrapolynomial of class *.

Proposition 4.1.2. For every a € F*A’pof’BM (RQd) there exists a sequence x;, j €
Z, in D* (R*) such that x; — a in L3>, (R2).

Proof. Let o(z) € DP) (R?) and ¢(£) € D) (RY), in the (M,) case, resp.
p(z) € D) (RY) and ¢(§) € DU (RY) in the {M,} case, are such that
0 < ¢, <1, p(x) = 1 when |z| < 1/4, ¥(§) = 1 when | < 1/4 and
o(x) = 0 when |z| > 1/2, ¥(§) = 0 when [¢| > 1/2 (such functions exist be-
cause A, and B, satisfy (M.3)"). Put x(z,§) = o(x)¥(§), xn(x,&) = x(x/n,&/n)
for n € Z . It easily checked that x, x,, € D™») (RQd), resp. X, Xn € DMr} (R2d).
Let a € FZ’:JBW (R*?). Then, one easily proves that a,(z,£) = xn(z,§)a(z,§) is
an element of D* (R*!). We will prove that a, — a in L%, (R*).

The (M,) case. It is enough to prove that there exists m > 0 such that for every
h >0, a, — ain Fi\{;?:;ip (R?% h,m). Take m such that a € ng\i";ﬁ (R*;m).
Then, obviously, a,,a € F%g””;jm (RQd;h,m”) for all m” > m and all h > 0.
Let h > 0 be fixed. By proposition 1.2.1 we have e?M(mlz) < ¢jeMmHlzl) and
e2MmlEl) < cpeMmHIED - For simplicity in notation we will put m’ = mH. Choose
hi1 > 0 such that 4h; < h. From the way we chose x, there exists Cy > 0 such
that ‘D?Dfx($,f)| < Coh‘f"HﬂlAaB/B, for all o, 3 € N¢. We estimate as follows

|DgDFa(x,&) — DD (xn(x,&)al(x, €))| ((x, §))rleltelileMmieh g =Mm’lal)
hla\HﬁlAaBﬁ

(1= xu(2,€)) | DgDSa(x,&)| ((x, &))rltrlfle=Mmiel o =M (mlz)
- h\aIHﬂ\AQBﬁ
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> ()( )'Da "D Pae, )] [DED (/. /)] (G, )t

S nhI+0Iplel+IBI A, BgeM(mI1€) eM (m|=])
vvié#O

< (1= (&) e MDD
where S is the sum in the previous inequality. First, observe that
C(1 = (2, €)™ DM < e 5,
when n — oo. It’s left to estimate S:

L s (a) (ﬁ) D7 D8 a(a, )| [ DYDix(w/n,&/n)| {(r, &)k 017

2lel Al <ao<p N 0 nirH181 (B /2) el +IBL A, BgeM (m'I€]) eM (m/|x])
Y+0#0

o lellzm 3 (O‘) (5> |DYD2x(2/n, &/n)| {(x, £))PhT+eld
5

2lal+[B]

s\ n1+01 (b /2) 1+l A BseM(mig)) M (mlal)
Y+6#£0
1 o\ (B n O\ 1100 YIH8] =0 (mn/4)
< Cllalle2m s 2 ( )(5) (Hﬁ) n|17|+|5\(h/2)|7|+\5|
v<ao<p N
Y+6#0
o—M(mn/4) o\ (B 4hy [v[+[3] u
c =M —M(mn/4)
< Clallzm—amm— 2 (/y) (5> < h) < Cllalln2me
v<a,0<pB
Y+0#£0

and the last term obviously converges to zero when n — oo. Hence, we prove
that, for every h > 0, a,, — a in F%ﬁ’,’; (R2d; h,m’' ), from what the claim follows.
The {M,} case. It is enough to prove that there exists h > 0 such that for

every m > 0, a,, = a in FA B,.p (RQd; h, m). From the way we chose y, there exist
Co > 0 and h; > 1 such that |DaDﬁx(x §)| < G hllalﬂﬁlAaBg, for all o, 8 € N4
Let h > 0 be such that a € F{Mp} > (R*: h/(2hy)). It is clear that, without lo-

sing generality, we can assume that h > 4h,. Obviously, a € Fg{’g’jm (R h).
Let m > 0 be arbitrary but fixed. Similarly as in the (M,) case, we have that
e2Mmlal/H) < coeMmlzl) and e2MmIEl/H) < cqeMmIED  For simpler notation, put
m’ =m/H. Similarly as above, we estimate

| D¢ Djala,€) — D¢ DY (xn(, E)al(x, §))| {(x, €))reltelle=Mmieh g=Mmlz)

hIaIHﬂIAaBB
< (1 = xu(,6))lal| e DD 4 Cla]| g, e Y
< e+ Clall e,
which obviously tends to zero when n — oc. O
Theorem 4.1.1. Let a € T} (RQd). Then the integral (4.3) is well defined

as an iterated integral. The ultmdzstmbutwn Op,(a)u, u € §*, coincides with the
function defined by that iterated integral.
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Proof. The (M,) case. Because a € F%ﬁ"éﬁ (R??), there exists m > 0 such that,
for every h > 0 there exists C; > 0 such that
pla+181 A, B yeMmlél) M (mlal)

((z, &))Plal+old] ,Va, 8 € N4 V(z,€) € R*.

|D?D§fa(:c, 5)‘ < (]

Hence, b(z,&) = / V(1 — Tz + Ty, E)u(y)dy is well defined and b €

Ra

C*> (RZ"Z). Choose mg > 0 large enough such that, for all m’ > my,
/ M mIry) =M ) gy < o
R4

m/lel || Dau(y)eM ||

Because u € SM»)_ for such m’ we get sup < 00. One
aENd Ma
obtains
§70(x, €)]
= | [ D (al(L = )+ . €ut) dy
Rd
e _
< Z( )/ 7" [ Dla((1 — 7)x + 7y, ) | D* Tuly) | dy
J<a Y/ JRre
—M(m'
<oy (¢ (7R B M mIe) Mma=ryatry) Ma—r® e
= v mal=hl Y
<o Y/ JRrd
<

m/lal=hl

—M(m'
ST [ (rihp) P, Mt gdemla=rzh Memiryl) . Ma—e ( 'y‘)dy
Y/ JRrd !

<o

o
< OMmIEN MEmI(-T)) yp (\71 W + i,) ,
m

where we used B, C M,. For [ > 0 consider P(¢). By proposition 2.1.1, we
can choose [ such that |P(¢)] > ’eMUlD where r > 0 is chosen such that

/ eMmiENe=Mleh ge < o0 and Pj(€) is never zero. Also, if we represent Py(€) =

Rd

3. Cal?, there exists L' > 0 and ¢’ > 0 such that |c,| < C'L®l/M,. Choose
1 1

h > 0 so small and m' > my so large such that (]T\hL + —/) L' < T Then, we
m

have

PO, &) < D leal [€70(x, &)

o
< CreMmIED M=) §7 |6 10, (|T|hL + i,)
m

< OyeMmieh M@ml(-r)z).
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Hence / |b(z,€)|d is finite for every z, i.e. (4.3) is well defined as iterated
Rd

integral. From this estimate also follows that b(z,&)v(z) € L' (R*%), for any
v e SM),

Let us consider the {M,} case. Because a € Fngg °; (R??), there exists h > 0
such that, for every m > 0 there exists C; > 0 such that

PleI+181 A, B M Omie) Mimia)
<(g;’§)>ﬂ|a\+ﬂlﬁ|
Hence, b(z,&) = / V(1 — Tz + Ty, E)uly)dy is well defined and b €

Rd
C> (R*). Put

|DgDZa(z,€)] < ,Va, B € N4 Y(z,€) € R*,

A - |DeDlar,©)| {(a )l
9(%) = sup supln, ey —

g is an increasing function and by proposition 1.2.1, it satisfies the condition of
lemma 1.2.2. Hence, there exists subordinate function €(\) and a constant C’ > 1
such that g(\) < M(e(\)) +InC’. We get that

,RleH181 A, BgeM (@)
((, &))Plolteldl
By lemma 3.12 of [26], there exist another sequence N,, which satisfies (M.1), such

that N(A) > M(e())) and k, = fi,/m, — oo when p — oo. There exist (k) € R
such that k) <k, for p € Z,. Then

, Vo, 3 € N V(&) € R*,

| D¢ DYa(x,€)| <

Ny (N) AP — N S M)
ek _sup Zsup =e >e .
MHJlk;’ MHJlk;]

From this, we obtain the estimate

Rla+181 4, BNk €D ey (21
(i, €))Plal+rIA]

where we choose (k,) € P such that M@0l < N ED eNey (12D for some
d > 0. Because u € St} there exists h; > 0 such that for every (s,) € R,

P |eNer (D Do)
sup
« MOL

|DgDla(z,€)] < , Va, B € N, ¥(z,£) € R*,

- < 00. Choose (s,) € R, such that

/ Ny /2178 =Ny (D gy <
Rd
Then, we have

[§7b(, €]

[, D5 (al(1 = 7)o+ ry. ) dy
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< S (2) [0 w01 [t

Yo
—Nay(lyl)

< Y (a) / 7[R B eNen 1D Ny (1= € Moy

= Y/ Jra h|1&\*|’7\
<oy (e / (|T|hL)wMvezvkp<|s|>€Nkp/2<|<1—r>x\>eNkp/mrynMa_wdy
- = v ) Jrd hlaHv\ Ne, (yl)

(7 ] L) PN 06D Ny 22D p

= CZ( > EEE

y<a 1

o
Ol Ny 2 (1-7)al) 5 (|T|hL+i)
(0% hl Y

where we used B, C M,. For (I,) € R consider P, (§). By proposition 2.1.1 we
can choose (I,) € R such that [P (€)] > e (€D where (r,) € R is such that
N (€D e=Nr (€0 g¢ < o0 and Py, (€) is never zero. Also, if we represent P, () =

Rd
anfa, then for any L/ > 0 there exists C' > 0 such that |c,| < C'L%l/M,,.

1 1
Choose L’ > 0 such that, (|T|hL + ; ) L' < 7 By the above estimate, we have
1

P, (Ob(x,8)] < Y leal I€70(z, &)

P 1 o]
< C'eNep (1€D) ¢ Niy 12 (I(1=7)2]) g |Ca|Ma <|T|hL + h_1>

< Oy €D Ny 2 (I(1=7)al)

Hence / |b(z,€)|d¢ is finite for every z, i.e. (4.3) is well defined as iterated
R4

integral. From this estimate also follows that b(z,&)v(z) € L' (R*®), for any
v e SM},
Hence, in both cases we get that / |b(x, &)|dE is finite for every x, i.e. (4.3)
R4

is well defined as iterated integral, and b(z, {)v(z) € L' (R*?), for any v € S*. We
1

(27)4

obvious that F' € 8. By Fubini’s theorem, we have

U:; V(1= + 7 w(y)v(z x
(Fot) = s [ [ e Rat = mhe s+ ry utyote) e

By the growth condition of a, it is obvious that the integral

will temporary denote F'(z) = b(x,&)d¢. From the above estimates it is
d

/ ei(x’y)fa((l — 1)z + 1y, §)u(y)v(z)dydx
R2d
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converges. If we put the change of variable Z(z,y) = ((1 — T)ZE + Ty,x —y) in
the last term of the above equality we obtain (F,v) = {(a,F; ' ((v®@u) 0 E71))
(Op,(a)u,v), which completes the proof of the theorem.

LIl

We will define more general classes of operators and symbols.

Definition 4.1.1. Denote by Hf{:g,p (R3d;h,m) the (B) - space of all a €
Cc> (RSd) with the norm

| D¢ D} Dya(z,y, €)| {(w, y, §)) I +oPeb]

lallnmu = sap — sup

e~ Mmlgl) =M (mla]) .~ M(mly])

Define
M5 (Rm) = i TG0 (R ).
0,55, (RY) = lim T (R m),
T (1) = o Y75, (R¥h).
S (R = lim T (R50).

H;p%:; (R3%;m) and Hg{’gj; (R3%; h) are (F) - spaces. Similarly as for the spaces

*,00

[, , (R*), one proves that 115>,  (R*) are barrelled and bornological l.c.s.
One easily sees that, for a € II3™, (R3?), the function b(z, &) = a(z,z, &)

belongs to %™  (R*). Moreover, if p € T3, (R*) and 7 € R, then

a(z,y,&) = ((1 — 7) + 7y, &) belongs to 1>, (R*).

Remark 4.1.4. The I and II classes defined here are appropriate generalisation

(for symbols of infinite order) in ultradistributional setting of the corresponding

classes in the setting of Schwartz distributions (see [53] for the corresponding I'
and IT symbol classes and calculus in the setting of Schwartz distributions).

Lemma 4.1.1. Let h > 0 be fized. For every bounded set B in Hg{g}f; (R3% k),
there exist C' > 0 and (k,) € R such that, for all a € B,

su su ’D?DfD;a(g;, Y, f)! ((z,y, &))Pleltelltoh]
et (e e)ch WP (@ —y)ATsolPeel A, By,

e~ Niep (1€]) o =Ny (|2]) o= Ny (191) < C.

Proof. Because B is bounded, for every m > 0 there exists a constant C,,, > 0
(which depends on m) such that, for every a € B, ||a|/pmn < Cn, ie.

| DeD;Dya(x,y, €)| {(z,y, €))Heoren
hled+1BlH (. — y)plel+elBl+e A, B,

< M mIE) Mmlal) MCmly])
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for all (z,y,£) € R3 and all «, 8,y € N%. Without losing generality, we can take
C,, > 1. Put

ga(m7 Y, 5) = Sup ln-i-
By

’D?DQD;{“(% n 5)‘ ((,y, &))PlaltrlBlrrly]
hlel+1Bl+ ( — y)eleltrlBl+einl A, Bg., '

Then, by proposition 1.2.1, we have

gal,y,€) < M(ml€]) + M(mla]) + M(mly]) + n C,,
< 3M(m|(2,y,6)]) + nCy < M(mH|(2,y,€)]) + In(ECh).

Now, define §,(A) = sup  ga(7,y,€). Then g,(\) < M(mH?)) + In(c;C,,), for
[(z,y,8)|<A
A >0and a € B. Then, if we put §(A\) = sup §,()\), we have g(\) < M(mH?)) +
acB
In(c;C,y), for A > 0. §,()\) is an increasing function of A for every a € B, hence
g(\) is an increasing function of A. So § satisfies the conditions in lemma 1.2.2.
Hence, there exist subordinate function €(A) and a constant ¢’ > 1 such that

g(A) < M(e(\)) +InC’. We get that
In, (‘D?Dmam,y,g)\ <<x,y,s>>pla+pwl+m)

< (=, 9l)

M (e (|(z,y,9)I)) + n C",

hled B+ (7 — y>pla|+plﬁ\+plv\AaBﬁﬂ

IA

for all (x,y,£) € R*, a,3,v€ N and a € B, i.e.

|DgDEDYa(x,y,&)| ((z,y,&))rlelrelfreh < M @p D)
hlal+1BI+ ( — y)elal+elBl+oll A, By, ., ’

for all (x,9,¢) € R*, a,8,7v € N? and @« € B. By lemma 3.12 of [26], there
exists another sequence N,,, which satisfies (M.1), such that N(\) > M(e(\)) and
k,, = fip,/m, — oo when p — oco. There exists (k,) € 2R such that k) <k, for
p € Z,. Then

AP AP PN, 5
M) sup SUp ———=5— = Sup —)\ 0 — N > M),

MHJ lk;/_ MH] lk] p Np

From this, we obtain the estimate
|DgD;Dya(, y,&)| ((x,y, &) HelPlen
h|a|+\6|+|vl(gg — y)plal+p\6|+plleaBB+7

for all (z,y,£) € R*, «, 3,7 € N and a € B, where we choose (k,) € R such that
eng(\(m,y,g)D < c’eN’“p(|£|)eN’“P(‘xl)eN’“p(lyl), for some constant ¢ > 0. O

Lemma 4.1.2. Let a € HZ:?Bp’p (R3d). For o >0 and u,x € S* (]Rd), such that
x(0) =1, define
1

Fe) = Gz [, €l 3 (Eu(r)dy.

Then I, s(x) has a limit when & — 0% and the limit doesn’t depend on x. Moreover,
the limit function is continuous and has ultrapolynomial growth of class *.

< CleMiplIED Ny 12D o Vi (1)
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Proof. The (M,) case. Let a € HE4 E); ~ (R%*;m). For | > 0 consider P(). By
proposition 2.1.1, P,(§) is never zero and we can choose P,(§) such that, |P(&)] >

c1eMUED  where r > 0 is such that eMmIED e=MIED ge < 0. Also, we have the
R4
1 !
estimate D‘g%‘ < cﬁ%, for some ¢, > 0 and d; > 0. On the other hand
!

if we represent P;(§) = >, ca&® then there exist Ly > 0 and Cy > 0 such that
Ica| < oLl /M,,. Observe that

| 1
Py — fC)PZ(_Dg) (%

=y _

pl(_Dy)ei(z—y)S) .
Then we have

I s()

etl@—y)¢
~ a5t L S P00 (g AU (alie . NG ) dde. (4.0

Because u, y € SM) (R?), for every s > 0

slal [|eMslsD Doy (y)

lal || oM (sl€]) e
sup Sl Ol - o I~

aeNd M, aeNd M,

< 0Q.

Now, we estimate as follows

P, (= D) (el X(690u0) )

zes 2 (00

o <a "<y
v <y

: ’D?’D;//a(:ﬁ, y,é)’ 'D;‘V”

1
Ply—=
/ ( I A
v ="
exniey 5 (0)0) ()5
o' <ay"<y
v <y
h|o¢’|+|'\/”|<x _ y>p|o/|+,0|’Y”|AQ,BV,,eM(m|§|)eM(m‘x|)eM(m\y|)
. (2,5, &))rlel+rh"|
| Ma,a/M,y,v/e_M(s‘s‘f')
glod=la/ |+ |vI=1v"1 e M (slyl)
oy iy v (a) (7) <7) (v = 7")(4L) 1"
T Moy S= = o)\ ) \V") a1 (4Lg)1=h
v <y
(2LR) I b | MmIED) M (mlz) M (mly)

slad=l’

D x(66)| | Dy uly)

glel—la

IN

, M, M
glal=le oMy
(2LR)P'=RTM, slal=Ta 1= [ M (sTy])
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- oM (ml€]) oM (mlz]) M (mly])
= 1 M (sly))

() (5) S )G (5 e

a,y o'<a
¥'<y

el 1
P v ) (8 Lo Lh)'1=1"

’Y” <,y/

oM (ml€) oM (mla|) .M (mly|) §Lo |a Lo 1\ !
= O T Z( +2LL0h) <?+2L0Lh+1) .

a7fy

Choose h such that LLyh < 1/8 and then choose s such that the above sum
converge for 6 = 1 and denote its value by Cy (then, obviously, for 0 < § < 1
the sum is not greater than Cy). Moreover, choose s large enough, such that

/ Myl =MD gy < 0. Hence
R4

M(m|¢]) ;M (m|xz|) , M (m]|yl)
Ls(z)| < —CICQ/ L el me e T gy
’ (2m)? Jgea |Pi(§)] eMslyl)

M(mg]) M(mly))
M(mla|) [ € g f €77
< Ce /Rd VET /Rd A W

which is finite for every x. Note that a(z,y,&)x(0§)u(y) — a(z,y,)u(y) in
EMy) (Rfﬁg) for each fixed x when § — 0T, so

1

1
R0 (s R0l 690

fends o %H(Dy) (mH(Dg)a(L " §)u(y)) in £04%) (R2) for cach fixed

x, when § — 07. If we take the limit in (4.4) as § — 0T, from dominated conver-
gence, it follows that

1
li ]
Am Leol@) = o

eiz—y)¢ 1
/Rgd Bi(€) Pi(Dy) (mﬂwg) (a(fv,yyé)u(y))) dyde.

Moreover, by similar estimates as above, one proves that the function in the last
eMmlgl)  oM(mlyl)

i ' M (m|xl) )
integral can be dominated by Ce MCED MGl . Thus, hm I, s(x)is a

continuous function with (M,) - ultrapolynomial growth. Note that the choice of

P, does not depend on x and u, only on m such that a € HE4 E); » (R3d ) Hence,

one can choose the same P, for all a € TI\" A, B » ™ (R%;m). From this, the claim in
the lemma follows.

The {M,} case. Let a € Hfg’g};m (R3¥;h). By lemma 4.1.1 there exists
(k) € M such that



62 Chapter 4. Pseudodifferential Operators of Infinite Order

DD Dya(x,y,£)|
h|a|+\5|+|“/|<x _ y>P|a\+P\5|+P|’Y|AaB/B_i_,yeNkp(\5|)€Nkp(|$\)€Nkp(|y\)
<(1”y7€)>fo|a‘+ﬁ|ﬁ|+ﬂ"7| !

forall o, 8,7 € N*and (z,y, &) € R¥. For (,) € R consider P, (§). By proposition
2.1.1, we can choose P, (£) such that, | B, (€)] > ¢"e"» (D) where (r,) € R is such

that / N (€D~ (€D ge < oo, On the other hand, if we represent P, (£) =
Ra

(4.5)

< Cy

anga, then for every L' > 0 there exists C’ > 0 such that |c,| < C'L'*l/M,,.

«
Also, we have the same estimates, as in the (M),) case, for the derivatives of

1/, (€), i.c |

a!
o < CllW’ for some ¢f > 0 and d; > 0. Because u, x €
)

NG
S{Mp} (Rd), there exists s > 0, such that
slol [| MGl pay(e)|| slal [|eM6lsD Do)
T

(We can choose s to be the same for v and x). Similarly as for the (M),) case, one
obtains (4.4), but with P, in place of P, and obtains the estimate

7,0 (F5 =570 (el (36l |

Niey, (€D o Niep (12]) o Nicy, (ly]) S/ lad /1 1\
(& (& e , ,
< S > <? +2LL h) <; +2L'Lh + Z) .

0{77

Choose L', small enough, such that the above sum converges for 6 = 1 and denote
its value by C5. Similarly as above, we obtain the estimate

L s(z)] < CeMillah / e~ Nen (€D Ny (€D g . [ Ny () =M sl gy,
. B Rd Rd
The first integral converges by the choice of (r,) and the convergence of the second
can be easily proven. By similar arguments as in the (M) case and dominated
convergence, the claim of the lemma follows. Note that the choice of P, does not
depend on u and Y, only on a. O
By the lemma, lim I, s(z) is in & (R?). For a € 5%, (R3?) define the

5—0t+

operator A : §* (Rd) — 8™ (Rd), Au(z) = 61ir(1]1+ I, s(x). By the proof of the above
—

lemma we obtain that

1 eilz—y)¢ 1
) = iy [ G P (s PRl Ol )

for the (M,,) case, respectively

1 eilz—y)¢ 1
i) = [ T P00 (7 e Delate . ut) ) e,
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for the {M,} case and moreover, the choice of P, in the (M,) case, respectively
P, in the {M,} case does not depend on u € S*. If Py, resp. Py, is ano-

ther operator such that |Py(&)] > c1eMTlED | resp. !Pl;)(f)‘ > eNro () where
/ M(mlgh o =MrlEh g¢ < oo, resp. / N (€D =Ny (D ¢ < o0, then Au(z) can be
Rd

given in the above form with Py in place of P}, resp. P in place of P,. To prove
the continuity of A, put

1
Fi(€)

in the (M,) case, resp., the same but with P, in place of P, in the {M,} case.
For v € §*,

K(z,y,§) = e'"vk

PUD,) (= PUDsJale. 1 ut))

1
<Au(x), ’U($>> - (27T)d

K(x,y,&)v(x)dydEdz.
R34
Let v € 8" be fixed. If u € B, where B is a bounded set in §*, similarly as in
the proof of the above lemma, one can prove that (Au(z),v(x)) is bounded when
u € B. Hence the set A(B) is simply bounded in 8™, consequently it is strongly
bounded. Because &* is bornological and A maps bounded sets into bounded sets
it must be continuous.

Theorem 4.1.2. The mapping (a,u) — Au, Hszp,p (R3) x §* (R?) — S* (RY),
18 hypocontinuous.

Proof. Because HZ’;’?BP, p (R3?) and S* (R?) are barrelled it is enough to prove that
the mapping is separately continuous. We will consider first the (M,,) case. It is en-
ough to prove that, for every m > 0, the mapping HA "By * (R34 m) x SMe) (RT) —
S(Mp) (Rd) is separately continuous. We will prove that it is continuous i.e. that
for every s > 0, there exists a constant C' > 0 and h > 0, ¢ > 0 such that
glal HDaqj(.)eM(sl-\)HLoo
MO{

minorms in S®M») (Rd). Let s > 0. Obviously, without losing generality, we can
assume that s > 1. Choose P;(£) as in the proof of the above lemma and represent
Aw in the form

are the se-

[Aulls < Cllallnmullulle; where [[¢]ls = sup
[e%

1 etlz—y)¢ 1
o) = sz [ ey PO (=g PO Oul) ) e

In the proof of the above lemma we proved that P, can be chosen the same for
all a € HA ]; » (R3%;m) (it depends only on m). By proposition 2.1.1 P;(€) is ne-

1 |
ver zero and we can choose [ small enough such that ’D?P(@ <c ;a e—M(r\EI)7
! 1
M (mlg]) o M (2s€])
for some ¢, > 0 and d; > 0, where » > 0 is such that / NG
]Rd

M(slal) o M(mla])

converges and eM(:l*) > Ce On the other hand, if we represent
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P(§) = anfa, there exist Ly > 1 and Cy > 0 such that |c,| < COL(lja|/Ma.

Then, for a € H%\i”;ﬁ (R3d; m) and u € SMr) | we have

1
Fi(€)

A, (=g P09t () ) )|

'Df (ei(wy)é

IN

2T 2 ()G e

B'<B ayy v <yAy<y BB

! 1 / 1/ 1 1! 1! /
- B'—pB anp -
Dy =" D (Pl(y_x))' ‘Dgpx Dy a(m,y,f)‘ ‘D; " u(y)

5 6, v ,.Y/ L|004|+|’Y|
Cilbonslole 552 55 3 (5)(5:) (1) () 3k
<8 an A<y BB TSNV Hally

|§‘|5‘_I/B/| (/6, — /BH -+ /7, — ry”)!e—M(rlx_y‘) Mfy_ﬂ/,e_M(tlyD
TeMGle) PR bR

VAN

h|a\+\5”|+\7"|<x — y>ﬂ\0t|+ﬂ|/3"|+/7|7”\AaBﬁ,,+7,,eM(m\§|)eM(m\x|)€M(m|y|)
. ((z,y, €))plal+rlB"|+oly"]
B\ (P "\ ;o
Gl X5 X 3 (5)(5)(2) () s
B'<B any y'<yy"<y BB VAN

|£‘|ﬁ\—|5'| (/B’ _ B// + fy’ — f)/”)!e_M(rkL‘_yD e_M(ﬂy‘)
eM(rlgl) d|15’|—\5”|+|7’\—|’7"| t|7‘*|7/|M7/77//

IN

(2L 1B R, MOmieD) M (mlel) M ()
MM mléh) Mmial) oM (mly)
Collallnmnllulle= Sereyearamn oaer=wm

35 3h I Sl (AT CATEATEATIEIE i
0
B'<B ayy <<y BB CVACANPANE Mg
(B =B ++ =" (QhL)|a\+|5”\+|’Y"|H|5"\+|’Y”|
PTIETIERT (2 BT TN g Moy o
MM mIED M(2slel) M mla) o M (mly)
Callelinm il ——CsrEp e orte—ay

22 2 () )0 (G

BI<P oy v/ Sy "<y BB
(B = 8"+~ —4")(4sH L) #'1= 18"+ 1=1"]
.dhﬁf\flﬁ"Hlv’lflw”lMﬂ_ﬁ/,ﬂ_v,, (4sH Lg)I8'1=18"1+17'|= "]
(2hL>\5”|+|7“\H\5'|+\7’\
thl=1"1(2s)181-15"|
M geMmeD M 2slel) M (mlal) g M(mlyl)
eM(rl€]) M (tlyl) e M (r]z—y])

IN

IN

< C4HCL||h,m,HHU”t
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DD HISIDS (5,) <§,,> (3,) (ZL) (2hLLo) LY

B'<B any v'<yy'<y BI<H

(2RL)B"1+1" F 18141
(4sH Lo )18+ =g =11 (25 B2
MipeMmlel) M 2s[ED) M (mla) o M (my)

eM(rlE]) e M (tlyl) M (r|lz—yl)

18]
1 1 L 1

= 4+ onLH QRLL) [ 22 + ohLL H + —

(25 i * 45L0> Z( 0) ( t - ot 45)

OC”Y

= Cyllallnmmllwl:

vl

Note that eMGle) < CyeMrlz=yD My For the chosen r we choose ¢ such that

the integral /

eM(mlyl) oM (rlyl)
dy converges and moreover, we take h small enough
Rd

eM(tly))
and t large enough such that the above sum converges. Moreover, choose h small

1 1
enough such that 2% + 2hLH + 1 < —. Then for the derivatives of Au we
s sLg s

obtain

M
1D2Au(w)] < Cllall e 02

which is the desired estimate.
Now we will consider the {M,} case. Note that it is enough to prove that, for

every h > 0, Hiﬁfﬁ;fj (R3%; h) x SMe) (RY) — S1Mr) (RY) is separately continuous.
Because Hﬁfjﬁfj (R*; h) and S™} (RY) are bornological it is enough to prove
that this mapping maps products of bounded sets into bounded sets in S{»} (]Rd).
Let By, and B, be bounded sets in Hg:[fgj; (R3; h), respectively in S} (R?).
Then, by lemma 4.1.1, there exist C; > 0 and (k,) € 9 such that

| DgDIDGa(w,y,£)| (., §))r ool Ny (D Moy (D ey (o)
hled+1B1H (g — y)plel+elBl+e A, By,

<, (4.6)

for all @ € By, (2,9,¢) € R* and a, 8,7 € N%. We know that S (R?) =
lim SM7 (RY), where S (R?) is the (B) - space with the norm
550
sl HDQ¢(')€M(S|'|)HLOO
M,

Il = sup

and S} (R?) is a (DFS) - space generated by this inductive limit (the lin-
king mappings are compact inclusions, see Chapter 1). So, there exists ¢ > 0
such that By C Sffp’t (Rd) and it is bounded there. Hence, there exists Cy >
0 such that |lull, < C,, for all u € B,. On the other hand, we know that
: M, M . :
S (RY) = lim Stem(sy) (R?), where Sts(s1) (R?) is the (B) - space with

(sp):(sp)ER

D%(_)GNS;,WH

|
Ma Hj:l Sj

L

the norm ||¢||(s,),(s;) = sup = . Hence, it is enough to prove that,
(03
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for arbitrary (sp), (s,) € R, ||Aulls,),s,) is bounded for all a € By and u € Bs.
So, let (sp), (s,) € R be fixed. Represent Au as

1 et@—y)¢ 1
Au(az) = (27T)d AQd Plp(g) Plp(Dy> (mBP(Dg)a(x,y,f)u(y)) dydf

In the proof of lemma 4.1.2 we proved that the choice of P, depends only on (k)
such that (4.6) holds. But (k,) is the same for all @ € By hence we can choose
P, the same for all a € B;. By proposition 2.1.1, P, (§) is never zero and we

1 !
can choose (I,) € R such that, D?Pl—(ﬁ)‘ < c’lﬁeNm(lﬁ)7 for some ¢, > 0 and
» 1
Vi (1€D) o Neyp (€1)
di > 0, where (r,) € R is chosen such that / ) (3] d¢ converges and
R

eNerp(I2D) > Cie™op 17 Ny () (see also the remarks after the proof of lemma 4.1.2).
On the other hand, if we represent P (§) = Z co&”, then for every L' > 0 there

«
exists C" > 0 such that |c,| < C"L'1®l/M,,. For a € By and u € B,, similarly as in
the (M,) case, one obtains the estimate

1 1

B (D — P (D¢)a(z,y, &u
500 (5= PePaleutw) ) )|
MgV 16D Ny 1) i (1)
o (€D M (tly]) g Nep (2

Z Z Z Z Z (g/) (g/’/) (77/) (3///) L/lel+h g |181=18'

1B1—187]
B'<B ayy ' <yAy"<~' BI<pB Mg_lg/ Hj:l Sj

'Df (ei(w—y)f

< GGGy

] /B/_B//_)'_ A 17 _ ! , / , ”
e AP 1= My gr M,
. 0o, Mg Nin 16D Ny (16D Ny (1) N (1)

eNTp(|£|)6M(t|y|)€NTp(|x7yD

/ /
S S (5)(5) ) () e
B'<B ey <y v <y BSp 4 4
(B =8"+7 -7 (2R L) " 18y 1P
TR ) ' =1 ' g
1 ﬁ/_ﬁ//_j’_,y/_,y// ]:1
< C4OIG2MI86N§:(€I)€NS,,(I£)eNkp(le)eNkp(lyl)
e Tp(|£|)6M(t|y|)€NTp(|x7yD

ZErr x (00 (e

B'<B oy v <y v <y BSp

(2R L) P 18 by P
. . 8 .

_ J
=1
j:l

< 050162M66N?(5|)€Nsp(|£)eNkp(IﬂCI)eNkp(lyl)
e Tp(|£|)6M(t|y|)€NTp(|x7yD
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18] ]
L/
DAL | |s § (2hLL) (7 +2hLL’H+L’H) :

a,y

where, in the last inequality, we used that — 0, when p — oo, for any
j=157
fixed A > 0 (i.e. it is bounded for all p € Z;). (This follows from the fact

that (s,) € R.) Note that e™»(e) < CgeNrlz=vDeNn(v)  Also, the integral

eNkp(|y\) Nr, (Iyl)

/ YD) dy converges (this easily follows from the fact that N (W) <
d e

' eMED for every ¢ > 0, where the constant ¢’ depends on t'; similarly for

Nrp“y')). Take L' such that the sum converges. Then, for the derivatives of Au,
o E o
we obtain ‘DfAu(x)‘ < CCChe S;’(M)Mg H(Qsj), ie. ||Aullizs,) s < CCLCy,
j=1

for all @ € B; and u € Bs. O

Let 7 € R be fixed. The inclusion I';™, (R*) — %, (R3¥), b €

FA Byp (R*), b+ a, where a(z,y,£) = b((1 — T)$ + 7y, £), is continuous. Moreo-
ver, if u, ¢ € §* (]Rd) such that ¢(0) = 1, by theorem 4.1.1, we have

Op, (bu(z) = V(1 — 7)z + Ty, €)uly)dydE

Rd R4

- Qim it [ €U = T+ T 0wy

Hence, the operator Op, (b) coincides with the operator B corresponding to b when
we observe b((1 — 7)z + 7y,&) as an element of 1T (R3!). We get that the
mapping (b, u) — Op.(b)u, FZ’Z’OBM (de) X S* (Rd) — S* (]Rd), is hypocontinuous.
For b € PZS,OBP, o (RQd), denote its kernel by K(z,y). If we consider the transposed
of the operator Op,(b) then its kernel is K (y,z). On the other hand, by (4.1),
K(y.2) = Fyy(0)(re + (L= 7)y.~£). Hence 'Op, (b(z,€)) = Opy._, (b(z, ~))
i.e. 'Op.(b) is pseudo-differential operator and by the above it is a continuous
mapping from §* (R?) to §* (R?). Using this we can extend Op, (b) to a continuous
operator from 8" (R?) to & (R?) by (Op,(b)u,v) = (u,'Op,(b)v), u € §™ (R?),
vedS* (Rd)

For b € T} Ay Byp (RQd), one can also consider the formal adjoint of Op,(b),
in notation OpT(b) defined by (Op,(b)*u,v) = (u,Op,(b)v), u,v € S* (R?).
Similarly as for the transposed operator, one proves that the kernel of Op_(b)* is
K(y,x), where K(x,y) is the kernel of Op,(b), and by (4.1)

K(y,z)=F,_, (b) (rz + (1 —7)y,&).

Hence Op,(b)* = Op;_, (b) and it is continuous mapping from S* (R?) into
5* (RY).

Observe that, even for general b € §™ (]RZd) we can perform the same calcula-
tion for the kernels of ‘Op_.(b) and Op, (b)* and obtain

'Op, (b(x,£)) = Opy._, (b(z, ~€)) and Op, (b)" = Opy._, (7).
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as continuous operators from S* (Rd) into & (Rd). An interesting consequence
of this is that if b € 8" (R*) is real-valued, i.e. b=, then (b*)" = b".

We need the following technical lemmas.

Lemma 4.1.3. Let M, be a sequence which satisfies (M.1), (M.2) and (M.3) and
m a positive real. Then, for alln € Zy, M(mm,) < 2(com + 2)nln H + In ¢,
where ¢y is the constant form the conditions (M.2) and (M.3). If (t,) € R then,
Ny, (mmy,) < nlnH +Inc for all n € Z,, where the constant ¢ depends only on

M,, (t,) and m, but not on n.

Proof. By (M.3), for all p > n+1, p € N, we have

1 1

If we multiply the above inequality with m, and use the fact that the sequence
. . . . . nm, . mmg, mn

m,, is monotonically increasing, we obtain p —n < ¢y , 1.e. < ¢ .
my, my, p—n

Hence, for p > [com|n + 2n > n + 1, we obtain that mm, < m,. Denote by k the

term [com] + 2. M (p) is monotonically increasing, so M(mm,) < M (mg,). For

p > kn, we have

p+1 P p
My, My, . Mkn < myy,

My M, my — M,

p p

m m
Hence M (my,) = supln, —* = sup In, —. For p < kn, p € N, we have
p p p<kn p
mb m -m S m M,
kn < kn+1 kn+2 ° .- kn+p kn+p < H]m_|_p < Hgkn
= = > G > Cp )
M, M, M, M,

where, in the second inequality, we used (M.2). We obtained

p
mkn

M (mmy) < M (my,) = sup I,
p<kn p

<2knlnH 4+ Incy < 2(com + 2)nln H + In ¢y,

which completes the proof for the first part. For the second part, denote by 7,
the product H§:1 t;. Observe that, for p € Z,, we have

mPmb Py Mg o Mgy MP My, < o H" (mH)P
0

_ < ¢H"
T,M, = T,M, T,M,M, — T, —“

where, in the last inequality, we used the fact that (£,) monotonically increases to
infinity. Obviously ¢ does not depend on p or n, only on m, (¢,) and M,. From
this we obtain Ny, (mm,,) < nln H + Inc, which completes the second part of the
lemma. O
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Lemma 4.1.4. Let M, be a sequence which satisfies (M.1) and (M.3)" and R >

1
1+ A be arbitrary. There exist a sequence v, € D* (]Rd), n € N, such that
1

> "4, =1, suppthy € {€ € R (€) < 3RM, },
n=0

supp ¢, C {€ € RY|2Rm,, < (£) < 3Rmp41},

forn € Z, and for every h > 0 there exists C' > 0, resp. there exist h > 0 and
C > 0 such that

h
Rm,,

lof o
|1D*Po(§)] < C (RLM) M., and |D%,(&)| < C ( ) M,, VneZ,,

for all € € R? and o € N,

Proof. Let ¢ € D* such that 0 < ¢ < 1, ¢(¢) = 1, for (&) < V6, ¢(&) = 0, for
(¢€) > 3. Put

Po(§) = ¢ (ij ) Yn(€) = ¢ (Rniﬂ) —¢ (ann) '

It is easy to check that v, n € N, satisfy the claim in the lemma. O

Let po = inf{p € Ry[A, C M}}. Obviously 0 < py < 1. In general, the
infimum can not be reached.

Counterexample. Let m = 1 and r, = pl_l/@‘/m) for p € N, p > 2. The
p

sequences 7, and p/ VP are monotonically increasing. Put R, = Hrp. Take
j=1

My =1, M, = p!?R, and A, = p!>. Then, obviously, A4, satisfies (M.1), (M.2)

and (M.3). One easily checks that M, satisfies (M.1), (M.2) and (M.3). It is

clear that A, C M,. Note that A, ¢ M, 23 1n the contrary, there will exist C' > 0

|
and L > 0 such that p!2 < CLPpIY3RY? i, LSPZ;ZR < O, for all p € Z,, where
3/2 .
we put C = C%*. This is impossible, because this means that Zln 73 /27" is

7j=1
bounded from above for all p € Z,, but

lim I —2 — Tim 1 jH eV fm (Y3
jg?onLi”/?rj_jg?on L3/? _j—>oo< 2 2" )_OO'

On the other hand, note that for A > 2/3, A, C M. This is true because

P2 p120-%) B Po 20N B P A EVI)
AP X A nj) BA—
PR R) = AN (2vIng) o 32

and the last term converges to zero when p — oo (note that 3\ — 2 > 0 when
A > 2/3). From now on we will assume that p is such that py < p < 1 if the
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infimum can be reached, otherwise py < p < 1.

For 0 < r < 1, define the set Q, = {(z,y) € R*||z — y| > r(z)}.

Lemma 4.1.5. Let 0 < r < 1. There exists § € £* (R2d) such that 0 < 0 < 1,
6 =0 on R*\Q,/4, 0 =1 on Q3,4 and for every h > 0 there exists C > 0, resp.
there exist h > 0 and C' > 0, such that }DEDJG(m,yH < ChPHMIMg, ) for all
(z,y) € R? o, € N

Proof. Let f(z,y) =1 on Q. and f(z,y) = 0 on R*\Q, 5. Let p € D* (R*)
is such that p > 0 with support in the closed ball with centre at the origin and
radius /16 and / p(x,y)dedy = 1. Put @ = f* pu. Then, one easily checks that
R2d

0 satisfies the conditions in the lemma. m
Proposition 4.1.3. Let a € HZ’Z?BM (R3d) and A be the operator corresponding
to a as defined above. The kernel K of this operator is an element of C* (2,) for
every 0 < r < 1 and for every such €2, and every h > 0, resp. there exists h > 0,
such that

M (h|(z,
B+ ’DngK(x,y)‘ eM(hl|(z.y)])

sup  sup < 0. (4.7)

B,yENd ()€ M/B"F'Y

Moreover, if there exists v, 0 < r < 1, such that a(z,y,§) = 0 for (z,y,§) €
(R*\Q,) x R? then K € 8* (R*), i.e. A is *regularizing.

Proof. Let 1, € D* (]Rd) be as in lemma 4.1.4, where R will be chosen later.

Then, note that the sum Z 1, ® ¥ (€) converges to 1,¢ in £ (RZ%) (with 1, we

n=0
denote the function of variable y that is identically equal to 1, similarly 1, ¢ is the

function of variables (y, ) that is identically equal to 1). Because a(z,y,§) is an
element of £* (R2%), for every fixed z, we get

0@ ,6) = (2, 9.0 S 6al®) = 3 (n(€)alz,9.£).
n=0 n=0
in £* (R2%). Let u € S* (R?). Because 1/P,(y—x) and 1/P(£), resp. 1/P, (y—x)
and 1/P;, (&) are elements of £* (RZ%), for « = (M,), resp. * = {M,}, for fixed z,
we get

1 1

P00 (o B0 el )

=3 w00 (F = 09 o D))

n=0

in the (M,) case and with P, in place of P, in the {M,} case, in £* (R24). If we
choose I small enough such that |P(€)] > ¢;eM1E) > ¢ 2MTIED  where ' > 0 is
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such that eMmIED =Ml ge < o0, by the properties of 1, similarly as in the
Rd
proof of lemma 4.1.2, we obtain

L
Bi(8)

A(D,) (Pl(y;_x)awg) (a(z,y, §)¢n(§)U(y))) ]

M(mlzl) M(mle))  M(mly)

< C e oM ) MG

in the (M,) case, where m is such that a € H;MPJ;OZ (R*;m) and s is from the

SMp) _ seminorms of u. Respectively, if we choose (I,) € M small enough such
that

[Py (€)] > eNmlIEh > 1Ny (D

Y B - )

where (r,) € R is such that / VeV (D g o0 e gt
R4

L
P, (€)

P,(D,) (mapm (e ()

eNkp (12) o Niey (1€]) - o N ()

< .
—CeNT;,<|£\)€NT;O(Rmn> eM(slyl)

in the {M,} case, where (k,) is such that (4.5) holds for a and s depends on w.
Hence, by dominated convergence,

Au(z)

eil@— y)f
- a2 L T P00 (7 U0t enEnt) )

= g Lt el

in the (M,) case, resp. the same but with P, in place of P in the {M,} case
and the convergence is uniform for  in compact subsets of R? and in S’ (]Rd).
For simpler notation, put a,(z,v, 5) = a(x, X2 &)Yn(€) and A, for the associated

operator to a,. Then, we get Au(x ZA u(z), where the convergence is

uniform for z in compact subsets of R? and in S (Rd). So ZAk — A, when
k=0
n — oo, in L, (S* (]Rd) , S (]Rd)). S* is barrelled, so, by the Banach - Steinhaus

theorem (see [49], theorem 4.6), it follows that Z A — A, when n — oo, in the

k=0
topology of precompact convergence. But §* is Montel space, so the convergence

holds in £, (8* (]Rd) , S (Rd)) (the topology of bounded convergence). Hence, if
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we denote by K(z,y) the kernel of A and by K, the kernel of A,,, by proposition

1.2.2, we get K = Z K,,, where the convergence holds in 8™ (RQd). Now, observe
n=0
that

1

_— i(z—y)¢
o [ e a6

Ky (z,y) = (27)¢

and K, is a C* function. Take R such that Rm; > 1. Later on we will impose
more conditions on R. Let r € (0,1) be fixed. First, we will observe the (M,)

case. There exists m > 0 such that a € Hﬁﬁﬁjw (R3% h,m), for all h > 0. Let m’
be arbitrary but fixed positive real number. We want to prove (4.7) for this m/.
Obviously, without losing generality, we can assume that m’ > 1. Let (x,y) € Q,
be arbitrary but fixed. Let ¢ € {1, ...,d} be such that |z, — y,| > |z; — y;|, for all

j €{1,....d}. Then |z, —y,| > 2(@ We calculate

D}DJK,(z,y)

o, 2 0,2, (DG

,y _'_,y 7,‘/ k//<ﬁ//+,‘///
(8" +9") (—1)n"Fn
(B +" = eqk/,)! (mq - yq)nikﬂ

- 1 /! 17 /
| et —_Pp(D ( A" =eak” DF DB DY Dy, ) :

On 2, we have the following inequality
2
(@)l < fal +lyl < (o) + |z =yl + 2] < 22) + |z —y[ < { ~+1 ) |z —y[.(48)
Hence, by using proposition 1.2.1, we can find m” > 0 such that eM(m"lz=vD) >
c”eM(m|m|)eM(m|y|)eM(m/‘(I’ym on ,. Take I’ > m”. Then we have
MWD > e MmIED) (4.9)

By proposition 2.1.1, we can find small enough [ > 0 such that |P,(€)| > ¢”eM"lED.
On the other, hand if we represent P;(D) as ) c,D®, then there exist C] > 0

and Lo > 0 such that |c,| < C{Ll]a‘/Ma. We will estimate the part in the integral
for n € Z, as follows

_
Py — =)

o a/ (/6// + ,y// _ eqk,/l)!
< |Pl —x | Z ‘CO‘| Z Z (o/) (O/’) (6// + A — eqk” _ O/”)!

l<a //+alll_oé
///<6//+,Y// k//

B(_Dg) <§6N+’Y”_GQk//DZD:f/D;/a(l‘, Y, S)ng_kwn(f)> ‘
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_|£||ﬁ”+'y”*eqk"|f|a’"|

o +egk’ B Y a—a'+eq(n—k
D§ i DaéDZa(xaz%f)HDg Feal )wn(g)

< CpeMUl- yI)Z|C |Z Z <3) (j//,)

o<a a'+ao"=d

///</8//+,y/l e k//
" 1" " la]—|a/|[+n—k
(/B + Yy — eqk )' |§||5//+,Y// eqk’ |—a| hl Ma_a/+n_k
" " " o' —|a! —k
(B" +9" — egk” — a)! (Rimy) 71
" ! / ! 11 ! ! !
R HE IR (g gy ok + 80| Ay By
((, 1y, &))rla|+ok +plB' I+l

+ - eMmlgD M (mlz) (M (mly])

on the support of 1,,. Note that (z —vy) < 2(1+]|z|*+|y|*)Y? < 2((z,y,£)). Hence

(x — y>p|a”\+plﬁ’l+ph’| < el ol [+pl| ((z,y, §)>pla”\+plﬁ’\+plv’l'

AlSO (ﬁ”—i—’)/” k,,)‘ < 2|,6’”+’y”—eqk” (5//4_7// e k”—Oé”/) ///[ Moreover Bﬁ/+’y’ S
Co LI’B I+ ‘MB' » and A o +k < Co L|a”|+k’M QK Let

T, = {¢£ € R 2Rm, < (£) < 3Rmys1}.

By construction, supp ¢, C T,,. Note that, on T,,,

|€"ﬂ//+’7//—€qk//‘—|a”l‘ <£>|,3”+’y//—eqk//|—‘am‘ (3Rm ) B”|+|7N|
! S ! —_ s 1"
((2,y,8))P* (§)r* (38Rmps )" (2RmM,, )"
Because m,, is monotonically i 1ncreasmg, mrk > my, my,_q - oMy = My /My >

M, and similarly, ’fL > M, and mn > Mk//. Moreover, there exists ¢ > 0 such
that Mp < ¢M,. We use this to estimate the above integral. By Fatou’s lemma
we have [p. [>°...]d€ <3 [pal..|d§. Considering the parts that are depended on

a, o, o’ and o, after using the above inequalities, one obtains

IIII

eM(3mRmn+1) Z Z Z (z/) (3///) L|()a||;\‘;;|é[4|0a

o a/SCM CY//+O///:CY/
alllgﬁll_,’_,y//_eqk//

| O/H!(2h)‘O‘N|L'a”HklMg,urk,h'la‘_la/‘Ma—a/"‘”_k
(3Rmn+1)|a///|+k// <2Rmn)pk/ (Rmn>‘a|_‘od|+n—k

_ ///|

oo —e
< CyeMGmBmL) Z Z Z (s/) <z,’/> LoM

o Oc’SOc al/+a//l:al
a/l/gﬁ// +,y//_eqkl/

. (2h)Ia“‘L‘O{thllal_‘allHlaHnMamMaNM]f,Ma_a/ e

(Rmy) " (R, )™ (R, )11
CQ‘Tn|€M(3mRmn+1)

w22 2 ()0)

o alga O( _"_Oélllitl
III<IB//+,YII e k//

(HL)!*+™(2Lyh)! "|(L0h1)‘°‘| lo|
(RM,)lel=1e"Tp,

’ |Tn|

IA
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n, M(@BmRmp4+1) |a|
< CZ|Tn| (HL) e +1 Z Z
- R My RM1 |al

'l

(1 + 2LohRM,)™" (L0h1)|0‘| o

Co|T,,|(H L)"eM @mBman1) HL hiHLL\ '
= ShHLLy+ 20 .
R My RM, + o+ RM;
Take R such that 2+ 24—+ < L 14 take b and £, small h such that
arKe suc a — — an arKe an Simall enou suc a
v, T8 TR S ! &

2hHLLy < 1/8 and hyHLLy < 1. Then, the sum will be uniformly convergent
for all h and hy for which the previous inequalities hold. The choice of R depends
only on A,, B, and M, (and not on Ly, hence not on the operator P). Also,
the choice of h and h; depend on A,, B,, M, and the operator F;, but not on R.
Before we continue, note that, from the way we choose ¢, we have the following
inequality

d2
1+ |z — ?/|2 < <x>2 +dlxg — yql2 < ﬁwq - yq|2 +d|zg — yq|2

J 2
< (; + d) lzq — yql*.

d
For shorter notation, put 1 = — + d. So, we obtain (z —y) < ri|z, — y,|. Now,
r

for the estimate of ’DngKn(x, Y) | (4.9), we obtain

|DED) K, (2.,y)]

< 3 Zn: s () () (F B+ (z— ™
— 5/ / k k! (ﬁ//_,_ " __ k”)'| _ |n
B+8"=8 k=0 K +k'=k Y Y 6‘] : ./Eq yq
,y/+,y//:,y k//SB(lI/-‘F’Y{I/
QB ek (3R )BT IS Y LR QI | I g,y
MW ly—2)  MCmfal) MOmpyh | Tl (L)€M Ot
Rp"Mk//
n\ (k4R
<t ¥ 5 5 (000 E)
B+8"=p k=0 K +k"=k
vV +y"=y
18"+
(3’ ¥rmi ) 8/ K (g 18 | b
k”( /R) B//|+|W//|Mﬁ//+,},// h (QL) hl M,B+’Y
M) | Tl (L) MOy
R '
(3m/R2m 1)\5”|+|7”\ Vo
Note that s < eMBM B mas1) - Also, by using (M.2), we obtain

MB”""Y”

Tl = wa((OR2, D)™ = (4Bm2 ~ 1)) < wu(3Rm,.0)



4.1. Definition and Basic Properties of the Symbol Classes 75

< wa(3cogRM,)H MDA
(wq is the volume of the d-dimensional unit ball). By proposition 1.2.1

M(BmRmpy1) ,M(3m'R?>ma, 11 MBHmM R2mpi1
eM( nt1) o M ( n+)§00€( n+)7

where we take R > m (which depends only on a). We obtain

M5+7(HL)and M(SHm’Ran+1)7,§L
eM(m/|(z,y)| an

4 18+1 h
(aprmr) (men i)

I p2 1 p2 1 p2 1 p2 n
MBHM Bmni1) < o pp2@eHm RP+2)(n1) _ . pr2(3eoHm' R>+2) (H2(300Hm R +2)>

ijD;Kn(a;,y)\ < Cy(3coRM, H)*

By lemma 4.1.3 we have

Take R* > H'Lr; and R > 8. For the fixed m’ in the beginning of the proof,
4 1
choose h small enough such that 2hL < 1/(2m’). Then p—y + 2hL < vt
m

For the chosen R, choose h and h; smaller then the chosen before such that
2 hy
H2GeoHm B242) (1 p 4 ?> < 1. (Note that the choice of R and hence the

choice of 1, n € N, depends only on A,, B,, M, and a, but not on the operator
P, or m'.) Then Z |D§D;Kn(x,y)| will converge and we have the following

n=1
estimate
0 M
B bty
Zl | D2 Dy K(,9)| < C i g

For |D£D;K0(x,y)‘, by similar procedure, we obtain the same estimate. Hence
(4.7) holds and the proof for the (M,) case is complete.
The {M,} case. We will prove that for every (t,), (t,) € R,

‘DfDVK(x y)‘ eNtp ((z,9)])

sup  sup < o0, (4.10)
B,yeENd (m,y)efTr Té+'yMﬁ+’Y
181+l
for every fixed 0 < r < 1, where Ty, = H t and Ty = 1. From this, the claim
j=1

in the lemma follows. To prove this, fix 0 < r < 1 and take § € E{M»} (RM) as in
lemma 4.1.5. Define K = K. Then K is C* function and for every (t,), (t,) €N,

Dgpvf((x y) | eNew (@)D

sup  sup - < 0o. Hence K € SM»} (R??). So, there
ByENd (z.y)cR2d Tgy My

exists A > 0 such that
BB+

% M (h|(zx,

sup  sup < 0.

BEN? (z,y)eR24 Mgy
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But, K(z,y) = K(z,y) on €3,/4 and the desired estimate follows. Now, to

prove (4.10). Let a € Hiﬁ’g};w (R3@). Then there exists h > 0 such that a €

Hﬁfﬁ’;z’p (R3%; h,m), for all m > 0. By lemma 4.1.1, there exist (k,) € R and

¢y > 0 such that

| BlaRHBLl (g yyolaltalBlenhl 4, B, N () Ney 1) Ney o)
(@, 5, €))ylartelBion] ’

for all v, 5,y € N* and (z,y,€) € R*. Let (t,), (1) € R be fixed. For (I,) € R
consider P, (§). By proposition 2.1.1, we can choose P (§) such that, |Pl ’ >
"D where (I,) € R is such that MU 5 ) N (12 Ny (18D e Ny (@) oy
.. This is possible because of (4.8). On the other hand, if we represent P}, (§) =
anfa then for every L' > 0 there exists C’ > 0 such that |c,| < C"L/el/M,,.

|Dg¢DED)a(x,y,&)| <

By the same calculations, one obtains the same form for D;ngKn(x, y) as in the
(M,) case, but with P, in place of F;. The prove continues in the same way as
above. We will point out only the notable differences. The first difference is in
the estimate of the part that is depended on «, o/, o and o (for n € Z,) and
the integral over RY, where in the {M,} case one obtains the estimate

Co| T, |( H L) eNew BRmns1) HL hyHLL\ '
2| Tl (HL)"e YoRHLL + MR
Rr™ M, RM, RM,

The convergence of this sum follows from the fact that we can take R arbitrary
large and L' arbitrary small. Moving on to the estimate of ’DngKn(x,y)‘, in
similar fashion, one obtains the following

| DD K, (2,y)]

a\ [ kN 12187 1 RIS R
<o 3 5 G0E)

ﬁ/+ﬁ// B k 0 k/+k// k.
¥+ =y
18"+
Dntd I8+ (L) B kg o= Ny ()

M,8//+'Y//
[T, (L) O
. an .

By using the increasingness of m, and (1.2), we get

81+
Mpt2 - Mpy3 oo - My 1 " M 18" 4~ " "
Mpyy1 < Mt n+ nt LB [+ Mt 14874y < coHM I8 I+l

MB//_;’_,YN MB"""’Y” Mﬁ”—i—’y” n+1

We obtain the estimate:

|DED)K, (2., y)]

MaunlT(2L) MO
Ne, (1@)]) gon

< Cy

1 n
L(12RH + 2hL)1PH+N (h1 +h+ 5) .

e
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By lemma 4.1.3 N BFmn1) < g+ where ¢ depends only on (k,), R and M,
(does not depend on n). Now, if we use the same estimate for |7,,| as in the (M)

case, if we take large enough R, the sum Z |D5D;Kn(x,y){ will converge and
n=1
we obtain

= M
> | DEDYK (2,y)| < C—— L (12RH + 2hL)PHD,
— N (9]

One obtains similar estimates for |DZDYKo(z,y)|. Hence we obtain (4.10) and
the proof for the {M,} case is complete. It remains to prove the fact that if there
exists r, 0 < r < 1, such that a(z,y,£) = 0 for (x,y,&) € (RQd\QT) x R? then
K e & (de). But this trivially follows from the proved growth condition of

DD} K (x,y) and the fact that for (z,y) € R*\Q,, K,(z,y) = 0 for all n € N,
hence, K = 0 on R?¥\(),.. O

4.2 Symbolic Calculus

Let py = inf{p € Ry|A, C M/} and p, = inf{p € Ry|B, C M/} and put
po = max{py, p2}. Then 0 < py < 1 and for every p such that py < p < 1, if the
larger infimum can be reached, or, otherwise pg < p <1, A, C M} and B, C M}.
So, for every such p, there exists ¢ > 0 and L > 0 (which depend on p) such
that, A, < coLPM/, B, < coLP M. Moreover, because M), tends to infinity, there
exists ¢ > 0 such that M} < ¢M,, for all such p. From now on we suppose that
po < p < 1, if the larger infimum can be reached, or otherwise py < p < 1.

For t > 0, put Q; = {(z,&) € R*|(z) <t,(£) <t} and Qf = R*\Q,. Denote

by F Sﬁi‘jg:’ p (RM; B, h, m) the vector space of all formal series Zaj (x,€) such
5=0

that a; € C* (int QCBm]), D?Dfaj (x,&) can be extended to continuous function

on QcBmJ_ for all o, B € N% and

‘Dgpgaj(% 5)‘ ((x, &))PlaltrlBlF25pe=M(mIg]) =M (mlz])
supsup  sup

- < Q.
jEN o, (x@chij h\oé|+|5\+2JAaBﬁAij

In the above, we use the convention my = 0 and hence Qg,, = R2?. Tt is easy to
check that FSX’jg;p (RQd; B,h, m) is a (B) - space. Define

S, (R Bom) = lim FSYE (R B, hm)

h—0
(Mp),00 (mp2d\ __ . (Mp),00 (my2d.
FSAp’pBlmp (R ) - Blgl FSApvapvp (R 7B7 m) )
,M—»00
{Mp},0 (mp2d. 1 Mp,00 2d,
FSAPv%PvP (R B, h) - Lgn FSA:Bp,p (R ; B, h, m) J

m—0
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{Mp},00 (mp2d\ __ : {Mp},00 (mp2d.
FSy, Bow (R*) = B% FSy, B, p (R*%; B, h).

Then, FSXZ’};;?Z (RQd;B,m) and FSAZ’;:?; (RQd;B,h) are (F') - spaces. Note

that the inclusion mappings F SXZS’E);ZZ (RQd;B,m) — HE(MP) <int QCBmJ) and
j=0

FSX:/{?:; (RQd; B, h) — HS{MP} <int QCBm]), Zaj — (ag,ay,as,...), are conti-
§=0 5=0

nuous, so F SAM’g’w (de) and F SZM%}’OO (R2d) are Hausdorff 1.c.s. Moreover, as
K X . e P prDPp,P .

inductive limits of barrelled and bornological spaces they are barrelled and borno-
logical. Note, also, that the inclusions I'y>; (R*) — FS}>,  (R*), defined
as a — Zaj, where ag = a and a; = 0, j > 1, is continuous.

jeEN

Definition 4.2.1. Two sums, Zaj, ij € FSZ;T’BM (RQd), are said to be

jeN  jeN
equivalent, in notation Z a; ~ Z b;, if there exist m > 0 and B > 0, resp. there
jEN jEN

exist h > 0 and B > 0, such that for every h > 0, resp. for every m > 0,

DD S,y (a5(,€) = by, )| ((w, )il s280
hlal+\6|+2NAaBBANBN .

e~ M(mlg]) o—M(mlz|)

sup sup  sup

N€Z+ 047/8 ($,§)EQ%mN

< 00.

From now on, we assume that A, and B, satisfy (M.2). Without losing gene-
rality we can assume that the constants ¢y and H from the condition (M.2) for
A, and B, are the same as the corresponding constants for M,,.

Theorem 4.2.1. Let a € T3>  (R*) be such that a ~ 0. Then, for every
T € R, Op,(a) is *reqularizing.

Proof. First we will prove the following lemma.

Lemma 4.2.1. Let 0 <[ <1 and B > 1. There exists C > 0 depending on B, [
and M, and m > 0 depending only on B and M, and not on l such that

inf {l]’\l/[_pz‘ nesly,p> an} < Ce_M(lmp), for all p > BM;.
Proof. For shorter notation put
f(p) = inf {l]’\“‘/[_pz‘ nely, p> an}
and T,0 = {n € Zy|p > Bmy,}, T,y = {n € Zy|p < Bm,}. Obviously T,, U

T,1 = Z and they are not empty. For n € Z,, denote by Z, ,, the set {1,...,n}.
By the properties of m,,, there exists k € Z, (which depends on p) such that 7}, =
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Mkts+1 >

{1,2,...,k}. In the proof of lemma 4.1.3, we proved that, for s € Z,,
s
C()(]{? —|— 1)
Mpyktr1 > Myg1. For g € Zy, we get Bmygygirqg = Bmpyrrr > Bmyg = p.

Then, for g € Z., we have

Mg41
. Take s = 2k([co] + 1), and for shorter notation, put ¢t = 2[cg] +2. Then

hkt hpht4q—1 hbkt-q—1
BRI IMy i pirqg BT My g1 BMpypagq . BT My g
[ktkig phthita —  [ktkttq—L ghtkitq—1 Ip [kktta—1 phthtrg—1

So, we obtain

e~ MUp/B) — inf BT My, = in B My

neN lnpn ”€Z+,k+kt lnpn

, (4.11)

for p > BM;/l (the infimum can not be obtained for n = 0). Now, let 0 < g < ¢,
g€ Nandn €T, Onehas

Btk N o B"M,, [ BFM,\‘?
2 B (TE) 2 10 =

ln+qkpn+qk - lnpn

where the last inequality holds because f(p) < 1 when p > BM;/l. Hence, by
(4.11), e~ MUr/B) > f(p)+1 for p > BM,/l. Repeated use of proposition 1.2.1
yields

lp 141 lp lp
(t+1)M(BHt+1)§2 M BH <M 3 +1Ind,

ie. f(p) < e Me/B) < Ce~MUm0) 'y, > BM, /1, where we put i = 1/(BH™1),
which depends only on B and the sequence M, (recall that ¢ = 2[co] + 2). For
BM; < p < BM;/l, f(p) is bounded so the same inequality holds, possibly with
another C'. O]

We continue the proof of the theorem. It is enough to prove that a € S*,
because then the claim will follow from proposition 4.1.1. Because a ~ 0, in the
(M,,) case, there exist m > 0 and B > 0, such that for every h > 0 there exists
C > 0, resp. in the {M,} case, there exist h > 0 and B > 0, such that for every
m > 0 there exists C' > 0, such that

POFHBI2N A B Ay By eMmieh M (mia)
(@, ))rlorteN{(z, £))elHteN

. BIaH181 A, ByeMOmleh M mls (L2 2

' ((z,8))rleltelfl ((2,8))2Ne

forall N € Z,, o, 3 € N, (2,€) € Q%Bmy - It s obvious that without losing genera-
lity we can assume that B > 1. In the (M),) case let m’ > 0 be arbitrary but fixed.
Let (z,§) € Q%,,,- Then, there exists N € Z, such that (z,£) € Qpmy,, \@Bmy-
We estimate as follows

| DgDJa(x, )] <
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/e8] | D2 Doz, €)] €M)

M5
(m/h)|a|+\5|AQBBGM(m\§|)eM(m|w\)€M(m’|(z,§)|) (hL)QNM?V’O
< .
S (. TP M (.
(m/hL)|Oé‘+|/8|Mp+ﬂ62M(mBmN+1)eM(Qm/BmN+1) (hL)QNMfVP
C « ‘
2 (2, ))rleelP M, g (Bmy)2Ne

< Og(m/hL)|a\+|,B| (hL)QNGQM(mBmNJFI)GM(Qm/BmN+1)7

where, in the last inequality, we used m% > My. By lemma 4.1.3, we have

€2M(mBmN+1)€M(2m’BmN+1)

< 03H4(COmB+2)(N+1)H2(2com’B+2)(N+1)

4(comB 'B 4(comB 'B N
= &H (comB+2) p2(2com’ B+2) (H (comB+2) p2(2com +2)>

Take h small enough such that m'hL < 1 and h2L2H*comB+2) fp2QReom’B+2) < 1
We get
m/|a|+‘6| }D?Dga<x7 5)‘ eM(m/‘(mvE)l)
<C
Ma+5

for all o, 8 € N? and (z,£) € Q%,,,- For (z,£) € Qpm, the same estimate will

hold, possibly for another C' > 0, because a € F(A]‘ip;ﬁ (R2d) C &) (R*) and

@ Bm, 1s bounded.
In the {M,} case, by the above observations, we have

Plol 181 A, B geM(mIED M Gl
<(3;, §)>p|a|+P|5|

1pr1/p\N 2
: (inf{(h <(€c,€))>NMN’N €Z,, (x,6) € QCBWND .

and it is obvious that without losing generality we can assume that A > 1 and
L > 1 (L is the constant from A, C M} and B, C M}). Now, note that

(h/e Ll/,o)N My
inf ‘N € Z+7 (ZE,f) S QcBmN

|D?Dfa(x,§)‘ < ¢

((z, )Y

e P\VN A ~ »
smf{( b N € B, (0,6)) 2 2By p < N 0001,
3;.7

for all ((z,&)) > 2BM;, where in the last inequality we used the above lemma
with [ = (RL)~Y/# < 1. Proposition 1.2.1 yields eM(mlEDeMmizl) < cjeMmH|(.L)])
Because A, C M/ and B, C M}, we have

|D2Da(z, )] < Co(L2R)HBI M, peM @D =M ((mlm/ (ie),
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for all o, 3 € N% and ((x,€)) > 2BM,. For ((z,£)) < 2BM, the same esti-
mate will hold, possibly for another C' > 0 and & > 0 instead of L2h, because
a € PgM%}o; (R*) C gMe) (R?) and the set {(z,¢) € R*|((z,&)) < 2BM, }
is bounded. m can be arbitrary small, so if we take m small enough we have
eM(mH‘(m"fme_M(K’”’@'m/(hL)A/p) < Cge MO for some, small enough, m’ > 0,

which completes the proof in the {M,} case. O

Theorem 4.2.2. Let Zaj € FSX?Bp,p (RM) be given. Than, there exists a €
jEN

jEN

Proof. Define ¢(z) € D) (R?) and ¢(&) € DU (R?), in the (M,) case, resp.
¢(z) € DI (R?) and (€) € D) (R?) in the {M,} case, such that 0 < ¢, ¢ <
1, o(x) = 1 when () < 2, ¥(§) = 1 when (§) < 2 and ¢(z) = 0 when (x) > 3,

z &
§(E) = 0 when (6 2 3. Put x(5,€) = p)0©): 1008 = x (s )
for n € Z, and R > 0 and put xo(z,£) = 0. It is easily checked that y,x, €
D) (R?), resp. x, xn € DU (R?).

The (M,) case. Let m,B > 0 are such that 3", a; € FSM”OE (R*; B, h,m)
for all h > 0. For R > 2B, a(z,§) = >, (1~ X](x €))aj(z,§) is a well deﬁned
C* (R*?) function. We will prove that for sufficiently large R, a € I';™ A By (R*)
and a ~ 3 a;(z,§) which will complete the proof in the (,) case. For 0<h< 1,
using the fact that 1 — x;(z,&) = 0 for (2,£) € Qrm,, we have the estimates

}D?Dga(x, 5){ ((x, §)>p|a|+/’|5|e*M(m‘f|)e*M(m|z|)

(8h)lel+181A, Bg
< ZZ( >( )|D“ DB, €)| e~ MOmIED =M (mia)
JEN v<a
0<p
_’Dng (1= xj(z, )| ((z, &))rlel+rlAl
(8h)lel+181 A, By
a\ (B hlel-hHBI-02 A, By sAB;
= ZZ <7> (5) (8h)lel+181 A, Bg
JeN ’gég

((w, ))yPIHeRI=200 | DI DY (1 = xj(w,€))]

< G R LIMP L~ (e, €)] ()
jeN
1 a\ (B
X 2 (0)()
JeN v<0,6<p

(6:7)#(0,0)
P LAM | DED; (1= x5, )| ((, €)hrolet2em
' hII+191 A By
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= 51+ 5y,

where S; and Sy are the first and the second sum, correspondingly. To estimate
S1 note that, on the support of 1 — x; the inequality ((z,§)) > Rm; holds. One
obtains

(hL)29M2”
Sl S COZ Rijmgp] = OZ RQpJ 0,

jeN JjeN

for large enough R (in the second inequality we use the fact that m? > M;). For the
estimate of Sy, note that DngE (1 —x;(x,€)) = 0 when (z,{) € Q3p,,,, because
(6,7) # (0,0) and x;(x,&) = 0 on Q3p,,,. So, for (z,€) € Qsrm;, we have that
((z,8)) < (z) + (§) < 6Rm;. Moreover, from the construction of y, we have that
for the chosen h, there exists C'; > 0 such that |D?Dfx(x,§)‘ < Clh|a|+‘ﬁ|AaBﬁ.

By using mj > M, one obtains

1 a\ (B (hL)X 61PN (R )P+l
Sy < 0228|a|+\ﬁ| Z <7> (5) Rijm‘?pj(ij)|fy|+|§|

JEN 7<a,6<p8
(6,7)#(0,0)
(hL)¥
= 032 R20
JEN

which is convergent for large enough R. Hence a € ! A, B » (R2d; 8h,m) for

all 0 < h < 1, from what we obtain a € Fi‘]\ip];pvp (de). Now, to prove that

a ~ Zaj(x,f). Note that, for (z,§) € Q%p,.,, @ — Zaj Z —X;j) @;-
jeN j<N >N

This easily follows from the definition of x; and the fact that m,, is monotonically

increasing.

[D2DS 5 (1= x5, €)) a5, )| {(, )l #1828 e mieh =Ml
(8(1L + H)h)le+18+2N A, By Ay By

(1 = X3, £)) [ Dg Das (,€)| (€)1l 9171 20N e Ml M)
(S(1 + H)h)l+A+2N A, By Ay By

S

jzN

+Z Z (3) (?) |DET DY ay(x, )| e MUmiED em Mimlz)

J2N v<a,6<p
(6,7)#(0,0)

|D{DS (1 — xj(x, €))] {(x, §))lolHelol2eN
" (8(1 + H)h)eHIB+2N A, By Ay By

IN

Z .’L’ 6)) h2] 2NA B
Co (1 _|_ H 2N ( ,))20i—22N Ay By

X 2 ()0

Jj=N 7<a,0<pB
(0,7)#(0,0)
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W72V DD (1 = x;(x, )| (2, )11 A; B
(L H)2NRhHIOI((,€))2/-20N A Bs Ay By

= 51+ 5,

where S; and S, are the first and the second sum, correspondingly. To estimate
S1, observe that on the support of 1 — x; the inequality ((z,£)) > Rm,; holds.
Using the monotone increasingness of m,, and (M.2) for A, and B,, one obtains
h2j 2NH2]A] NB] N h2j72NH2jL2j72NMjQpN
C —~
4 (1 + H)QNRzijmeJQEJ];%N

hHL * (hHL\Y
- 1—|—H2NZ< > C4Z(Rp) < 00,

Jj=0

< <
Sl = OZ 1—|—H 2N R2pj— QmeZPJ 2pN —

uniformly, for N € Z ., for large enough R. For S, note that DgDi, (1—x(x,8) =
0 when (z,€) € Q5 R, because (0,7) # (0,0) and x;(x,&) =0 on QSR Moreo-
ver, from the construction of x, we have that for the chosen h, there exists C; > 0
such that |DgDIx(x,&)| < C1hlHPIA, Bg. Now

5 < ¢ Z 1 Z a\ (B hE NI H% A, yBy N
2 > 5j>N 8lal+|8] aes v ) (1+H)2NR2pj72me§pj72pN
- (67)#(0,0)
h2] QNHZJAJ NB N
62

2 2pN "’
1+H 2NR2p] 2me pi—2p.

which we already proved that is bounded uniformly for N € Z,. Hence, we
obtained

sup sup  sup Dngf Z (1= x;(=,€)) a;(z,§)
NE€Zt af (2.£)€QS Ry, j>N

<(x’ 5)>P|04|+P|/3\+2pN€—M(m\§|)e_M(mm)
" (8(1 + H)h)eFBFEN A, By Ay By

< 00,

for arbitrary A > 0, i.e. a ~ Zaj(x,f). For the {M,} case, let h, B > 0 are
jEN
such that a € FS%)%EZP (R*% B, h,m) for all m > 0. Then, for R > 2B we define
a(z,€) = Z (1 —x;(z,8))aj(x, &) and similarly as above, one proves that, for
jEN
sufficiently large R, a satisfies the claim in the theorem. O

Now we will prove theorems for change of quantization and composition of
operators. Note that, unlike in [5] and [6], we do not impose additional conditions
on A, and B, in the composition theorem.
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Theorem 4.2.3. Let 7,71 € R and a € FZ’Z’BM (R*). Then, there exists b €
™ , (R*) and *-regularizing operator T such that Op, (a) = Op.(b) + T.
Moreover,

1 . *,00
b(z,§) ~ Z E(ﬁ — T)lma?Dfa(x,ﬁ), in FSy ™5, (]RQd) :
B
1
Proof. Put p;(z,§) = Z E(ﬁ—f)‘manga(x,f). One easily verifies that Z]‘ p; €

18l=3 "
F SX;?BP, ) (R2d). Take the sequence x;(z,€), j € N, constructed in the proof of

theorem 4.2.2, such that b = ».(1 — x;)p; is an element of FZ’:?BM (R??) and

b ~ >_;pj- By the observations after theorem 4.1.2, the operators Op,, (a) and
Op,(b) coincide with the operators A and B corresponding to a and b when we
observe a((1 — 1)z + 11y, §) and b((1 — 7)z + 7y,§) as elements of II,>, (R3).

It is clear that it is enough to prove that the kernel of A — B is in &* (RQd). To
prove that, write

a((1 =)z + 7y, &) = b((1 = 7)z +79,£)

= (x0a) (1 = 1)z +715,6) + > ((Xnt1 = xa) (1 = 7z + 79, 6))

n=0
: (a((l —n)x+ny,§) — ij((l —T)x + 1Y, f)) :
=0
By construction xo = 0, so xoa = 0. Note that the above sum is locally finite and
it converges in £* (R?’d). Denote by A, the operator corresponding to

an(2,4,€) = (Xnt1 = xXn) (1 = 7)z +79,§)

: (a((l — 1)z + 1Y, §) — ij((l —T)x + Ty,§)>

Jj=0

considered as an element of 113> (R*). For u € §* (R?), we obtain

Au(z) — Bu(x)

eilz=y)¢ 00
= @ Jo g P (ﬁﬂwf) (Z an(x,y,@u(y))) dyde,

n=0

in the (M,) case and the same but with P, in place of P, in the {M,} case. Note
that, because of the convergence of the sum in &£* (R3d), we can interchange the
sum with the ultradifferential operators and with 1/F,(y — x) and 1/F,(€), resp.
with 1/P,(y — =) and 1/P, (§). For v € S* (]Rd), by the way we define p; and
using the fact about the support of x,, with similar technic as in the proof of
lemma 4.1.2, one proves that

) /
n—0 R3d

1

1
%B(Dy) (Pl(y——x)Pl(Dg) (an(x,y,f)u(y))) v(x)| dydédr < oo,
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for sufficiently small | and sufficiently large R (from the definition of x,) in the
(M,) case, resp. the same but with Fj, in place of P, for sufficiently small (,) € R
and sufficiently large R (from the definition of x,,) in the {M,} case. Hence, from
monotone and dominated convergence it follows that

(Au— Bu U>
= Z/ e
R (57 09 (e ul) ) ofe)dydeda
_ (271T)d ni; /R e, i,y €)uly)o () dydedr = g)(Anu,w

in the (M,) case, resp. the same but with Fj, in place of F; in the {M,} case.

Hence, Z Agu — Au— Bu, when n — oo in 8™ (R) for every fixed u € §* (RY).

k=0
But then, because S* is barrelled, by the Banach - Steinhaus theorem (see [49],

theorem 4.6), ZAk — Au — Bu, when n — oo in the topology of precompact
k=0

convergence in £ (S§* (R?) , 8 (R?)). S* is Montel, hence the convergence holds

in Ly (S* (Rd) , S8 (Rd)). If we denote by K and K,, n € N, the kernels of

the operators A — B and A,, n € N correspondingly, then, by proposition 1.2.2,

it follows that K = ZK"’ where the convergence is in &™ (]RQd). Let r =
n=0
1/(8(L + 7] + |71[)). Take 6 € & (R*") as in lemma 4.1.5 and put = 1 —6. 6

and @ are obviously multipliers for S*. By proposition 4.1.3 and the properties
of §, 0K € S*(R*). It is enough to prove that /K € S* (R*). Note that

0K =3 0K,. Our goal is to prove that 3 0K, € S*. Observe that

Kalo) = Gy [ €7 Ot = 1) (0= e+ 70.6)

. (a((l — 1)z + 1y, §) — ij((l —T)r + T?/a§)> dg,

e —
for all n € N. Put { ;, =1 =7z +ry,

from what we obtain

=Tr—vY,
r=a 41y,
y=a' = (L= 7y

Hence a((1 — 1)z + 1y, &) = a(z’ + (1 — m)y', §). If we Taylor expand the right
hand side in ¢y’ = 0, we get

(=)o 7,6) = 3 i~ )0l € )+ Waa(,0.6).

I8]<n
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where W, is the reminder of the expansion:

Wn+1($7 Y, 6)

S 2 S =0 =) [ 0= rofale’ + tr =)y )t
Bl=n-+1

If we insert the above expression for a in the expression for K, we obtain

K, (z,y)

1 (1 — 1)\B| oy / /
~ (2n) lﬁ% 3l /Rde( (=De)’ ((Xn41 — Xn) (@, £)00a(a, €)) dE

+ / ei(xiy)é (XTL+1 - Xn) (xla g)Wn+1 (33, Y f)df
R4

(2m)4

1 - o ,
N (27T)d jgo /Rd 6Z(x Ve (Xn—i—l B Xn) (ZIZ’ 7£)pj((1 - 7')1’ + TY, g)dg

= Sl,n(xay) + SQ,n(xa y) - SS,n(xvy)'

Our goal is to prove that each of the sums ) é(Sl,n —S3,) and ) éSQ,n, is S*
function. Because of the way we defined p;, one obtains

S = DD D (4 E TURE 4

0#[B|<n 0£6<p

. \/Rd ei(z—@/)g (DéS (Xn—i—l _ Xn)) (ZL‘/, f)D?_éafa(x’, f)dg

Put

~ 1 1
Sgn(z,y) = @) Z <§>E(7—1_7—)5|

0#£5<p
: /d ei(x—y)f (Dg (Xn+1 - Xn)) ((L’l, f)D?_(S@fa(x’, f)df
R

Obviously S5, € £* (R?) N S™ (R*). Let w € S* (R*?). Note that

S w) = BNL e [ L i
(Somw) = Gy 2 (5)5!( 1=7) /Rgdpl(g)

0#£0<pB
-P(Dy) ((D§ (Xn+1 — Xn)) (@, D000 a2’ w(x, y)) dédxdy,

in the (M),) case, where [ > 0 will be chosen later, resp. the same but with P, in
place of P in the {M,} case, where (I,) € 98 will be chosen later. We will consider
first the (M,) case. Then there exists m > 0 such that a € Fg\i”;ﬁ (R*;m).
Chose [ such that |P(€)| > /e*™(mlD (cf. proposition 2.1.1). On the other hand
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P(&) = >, cak® and there exist Cp > 0 and Ly > 0 such that |c,| < COLloal/Ma.
Note that, when (xn+1 — Xn) (2/,€) # 0, ((2/,€)) > Rm,. Using this, one easily
obtains that

> >y ()

n=1 0%|8|<n 0£3<p

PUD,) (D (o1 = X)) (@', ) D00l (e y))

ei(x_y)$

Bi(€)

dédxdy < oo,

for sufficiently large R (from the definition of y,). In the {M,} case, by lemma
4.1.1 there exists (k,) € PR such that the estimate in that lemma holds (we can

regard a((1 — 7)x + 7y, £) as an element of HgM’g’OZ (R3% h)). Take (I,) € R such

that |Plp (€) ‘ > eV (&) One obtains the same estimate as above but with P,
in place of P, for sufﬁ(nently large R (from the definition of x,). From this we
o [ee]

obtain that Z(SL" — S5,) = Z Z Ss.n converges in S™ (R*!). Denote its
n=1 n=10£(8|<n

limit by S (x,y). Moreover, from the above, we can change the order of summation

and integration. The local finiteness of ) (xnt1 — X») implies

> Dixnar (@, €) = xau(,€)) = D1 = x15(2, &) = —Dixia (2, ),

n>|p|

where the last equality follows from the fact that § # 0. In the (M),) case, we obtain

> D (Samw

n=10#|8|<n

|B]=10#0<p
1 o
. /R e RD, (Dixs (', DI 0a(a’, €)w(, y) ) dedudy

= —ﬁ i Z (?)l(ﬁ — 7)lAl /R2d Is s(z, y)w(z, y)dzdy,

|B]=10£6<8

=

where we put Izs(x,y) = / ei(x_y)5D2X|ﬁ|(x’,S)D?_(S@fa(:v’,f)df. Similarly, in
Rd

the {M,} case we obtain the same equality. Hence

dZ > ()5 - D ste)

|B|=10#6<p

converges to S(z,y) in S’ (de). Now we will prove that 65 is S* function. Denote

T, = {(z,€) € R*||z| < 3Rm,, and [¢| < 3Rm,,} (4.12)
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and put T, to be the projection of 7}, on Rg. By construction supp x5 € Tjg.
So, for the derivatives of I s(x,y) when (x,y) € R*\Q, D supp 6, we have

D2 D 155, )|

AVEAYEAYES o+ 18 lal +h -
< o|+v ol +ly/| vl
-5 5 (OEE)
a<p o/ +a’"=a
VS’Y/ V! =y
el | DD g o | |DEDE T 6| g
Te 181
,Y/ 5/ 0% 14 |ﬁ/‘+| RPN
< 1 ¥ |—la| "]
<aX ¥ ()@ ()arm

a<p o/ +a’"=a
v<y V+ =v

|81+ +12]
/ |£||a~|+|uf'|h1 AsBarr
PRI Ay 5By DM
(", €)o7+ |

Because 6 # 0, Dng"*”'Mm(x’,f) = 0 when xg(2',€) = 1, hence when |2/| <
Rmyg and |{| < Rmyg). So, when D2D§'+”/X|5|(x’,§) # 0 we have ((2/,€)) > Rmyg,.
We obtain

(Rinyg) "H W (! ) p=048 4 =0l > (R ) PR 0=

By assumption, there exists ¢, L > 1 such that A, < cLPM} and B, < cLPMJ.
Hence

AdBa’+V’AB—6BB+B’+'y’—a—V
pI2B+B'+y —a/ "]
(Rmyg)

27 |28+8'+y =/ =v"| g P
Ap Bty —ar—vr L Msg 5y —ar—ur

<
p|2ﬂ+ﬂ/+,y/_a//_1j//| —_— 2p|5‘ p|/8/+;y/_a//_y//|
(Rmyg) (Rmyg)) ™" (Rmyg)
212 It o — 2 It o —
C«//(LH )\ B8+8'+v —a |M,BPM5'+’Y’ _ C//(LH2)\26+B +v' —« |M5/+7/
R2P|f3|m|2ﬁp|"8| (RMl)p‘IB/JF,y/,a//,y/q Ma/’+u” ~ R20l8l (RMI)/)\,B’-F’W_OC//_V//‘ Ma/,+yu

Y

where, in the last inequality, we used that m] > M,. Also, note that when
(z,y) € R?N\Q, and x5/((1 — 7)z + 7y,€) # 0, we have the inequalities

2| = [(1=7)z+7y| < 3Rmyg,
* + |y? < 202+ |z =yl + 2[aljz — y]
< 20zl 4 r¥(a)? + 2rfal(z) < (24 7)*(2)?,
L+ |1 =mz+71yl” > 1+ |2+ 7w — y* = 2|7]|z]|z -y

(@2 - 5

Vv
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(remember, r = 1/(8(1+4|7|+|71]))). Put s = 2+ for shorter notation. Combining
these inequalities we get |(z,y)| < 2s(2’) < 8sRmyg. Using this and proposition
1.2.1, for arbitrary m’ > 0, we obtain

Mmla’l) < (M (3mBmys) M (8sm’ Bmys) o =M(m'(@w)) < o oM (Ssmtbm!) HRm ) =M (m'|(@.9)]) |

when (z,y) € R*\Q, and x5/((1 — 7)z + 7y,£) # 0. Using these inequalities in
the estimate for Dng;/[/gy(g([B, y), for (z,y) € R?\Q,, we get

D7} 1yute.)

tAVEAYEAYE: 18|+ a1
<ay ¥ ()0 arm My
v</ V’—l—u”;y
2\|2B8+8' 4+ =/ —v"| [6]+e |4-]v] 28—6+B"+~ —a—v
. / ‘€||a”‘+lyu‘ (LH )l ’y hll ! 17 llh ’y
Te s R201B (RMy )PP =" N
Ml M(Ss(m+m'>HRm|m)67M<m'\(x,y)|>d5
Mﬁ’-i-"/ ) (v
S ,y)| Z Z a/ V/

a<p’ o/—&—o//—a
v<vy/ v+ =v

(LH2)2|,8\h\15|+\06'|+|V'|h|2,875+ﬁ’+'y’foz—u|eM(8S(m+m')HRm\m)
' (m/ Rl 417" R2715]

. / (M ((mtm ) RIED g
Te, 1

where, in the last inequality, we used that

l/|

B =l = 218 e v
(L+]70) (LH?)
(RMl)p|B/+,Y/7a//7V//|

<1

e )

for large enough R. Moreover, on T s/, by proposition 1.2.1, we have 2M ((m +
m')R[¢[) < M(3(m +m')HR*mg) + Incy. Lemma 4.1.3 implies

oM (3(mtm!)HR?mg) ) ,M (8s(mtm')HRms )

< C(Q)HQ(Bco(m+m’)HR2+2)|B|H2(8003(m+m’)HR+2)|ﬁ| < C(Q)H4<8005(m+m’)HR2+2>|,B|.

Similarly as in the proof for proposition 4.1.3, we have }T&I/BI} < CsRIHYP for
some C5 > 0. For the (M,) case, m is fixed. It is clear that, without losing
generality, we can assume that m > 1. Choose R such that R > 4 and R* >
2(1 + |7| + |7 |)L2H**. For arbitrary but fixed m’ > 0, choose h such that
pEA(Beostmim)HRS2) ) ang 9 < 1/(4m'). Moreover, choose h; such that
hi1 < h. Then we obtain

! ! M ’ ,h'ﬁl LQHCH-4 |ﬂ| 1 |5/‘+|7/|
DID} Ins(w,y)| < CoR' =t ( ) ( )

M| @y)) \  R2e m'R
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a Mgy hP 1 _ 1
M@ " (2(1+ 7| + [m))P (2m)FERT

< CsR

when (z,y) € R*\Q,. Note that the choice of R (and hence of x,, n € N) depends
only on A,, B,, M,, 7, 7y and a, but not on m/. By the definition of 6 it follows
that there exists C’ > 0 such that

M6/+’Y/h‘13| . ]_ . ]_
M) (2(1 + 7] + [n )P mlPnT

’Df/D;/ (é(x,y)fgyg(x,y))‘ < Rd

for all (x,y) € R* and ', € N¢. Hence

0 M / /
Iﬂl B 7 B+

|B]=10£6<5

for all (z,y) € R2¢ and B',7 € N From the arbitrariness of m’ it follows that
0S € SMr). Now we consider the {M,,} case. Then h and h, are fixed. Choose R
such that R? > 2(1+ |7| + |7 |)(h+ hy)hL2H**16 and then choose m and m’ such

that 8cos(m +m/)HR? < 1. Then H*(Beos(mtmHE2)I8] < (11218l Then we have

DYDY I s(x,y)|

B 1 _ / /
< o piMesy (hL2E+16) 7 plol 1501 1\ B
= 0 eM(m'|(z.y)]) R2p|B] m'R
Mgy 1\ A
< (C-R% B+ hth
= 6 eM(m’l(m’y)D(Z(l + |7-’ + |7_1D)|5‘ +h+— R )

when (z,y) € R*\Q,. By the definition of 0 it follows that there exist ¢’ > 0 and
h > 0 such that

MB,H/ELWIH“/I
eM @)D (2(1 + |7] + |7 ])) I8

’Df,D;/ <§(x,y)[575(x,y)>‘ < C'R?

for all (z,y) € R* and 3, € N Hence

, ~ Mg RIB
Z > < ) (Im] + 7)) Ib’I’Dﬁ Dy (e(:c,y)fﬁ,a(x,y))‘ <C eA;(jn,Km’ym ,

|B|=10£5<p

for all (z,y) € R2 and 8,7 € N ie. 05 € SIMp},

It remains to prove that Z 0(x,y)Son(z,y) € S*. Note that
n=0

S2,n(‘rv y)

- s () S - [ D - 1) 01

IB\ n+1 6<8
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1
- / (1 - )" D0 Pa(a’ + t(r — )y, €)dtde.
0

For brevity in notation, put
Toon(s) = [ D (i =) (.6
: / 1(1 — "D a(x +t(r — 1)y, £)dtde.
0
We will estimate ’Dleglfm,n(aﬁ, y)) when (z,y) € R*\Q, D supp¥.
1D D} Tyl )

<Y ¥ (g) (Z/> (Z‘,) (5/) (201 + |7] + |ma|)) B b =]

a<pB o +a'=a
v<y V+V=v

/ ]l
.
[y

05, 5 (Y)Y e

a<p o+a’'=a
v<y VHV=v

[8]+o[+]v] 1
gt [y
e (R T,

P28 el 1M Ay B o eMOmIED MOl )y )
' (@ +t(r — 1)y, €))PCIBBIHBTTal+ 1 =17

DIDTH (st = xa) (¢/,€)]

D?—(SDf-i-ﬁ’—a-i-’Y’_Va(a:/ _|_ t(,/_ _ T]_)y/, f)’ dtdf

IN

dtde.

Above, we already proved that on R*\Q,, (r) < 2(z'). Using this, by simi-
lar technic as there, one easily proves that ((z' + (7 — m)y’,§)) > Rm, when
(z,y) € R¥\Q, and Y, 1(2', &) — x(2/,€) # 0. Also, for such z, y and £ we have
2"+ 67 =)y <[]+ (7] + [ DlY| < @) + 2r(I7] + []){2") < 8Rmyyy and
€] < 3Rmy,+1. We obtain

D2 D Ty ()|

< nill Sy <i’) ('Z’) (2‘/) (Z,) (201 + |7] + | |)) 81l 1 1=

a<p o/ +a’"=a
v<y VI =v

.h|15\+|a/\+|l/|h2|ﬁ|f|5|+|ﬁ/|,|a\+lw|f|u\ABB%B,_Q,,M,_VN@
(R, )PCIBHIE =l 1=

M(SmRmn+1)€M(8mRmn+1)

'/ gl g
T&,n+1
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Because A, C Mf, B, C Mf and m;; > M,, we have

2 2 1’ ]///
AgBg 1oy C o (HL) n+2+[8'| =" |+y'| -] Mz MB’ o
(Rmy, )PRIBIHIB =1+ =) = (Rm,,)P2n+2)(Rm,, )P(8'1= la”\+|7| )
< O,,(H3L)2"+2+\5| lo|+1y' 1= v |M2”Mg/ ot/
- (Rmy,)P@n+2)( RM, )PUB I=lo [+ 1y =)
o (H3 L) 2+ ="+ |= IV”\Mﬁ,

— Rp(2n+2 (RMl) p(18'|=1a |4+ |V”DM ”+V”.

By proposition 1.2.1, eM@mEmni1) MEmEmai1) < coeMEmHRmn) — If we insert
these inequalities in the above estimate, we have

pofTten| < s s ()7 (5)(2)

ﬁ/ /+ //_a
ySfy vi4+v'=v

h|16|+|a’|+|u’\h2n+2_|5\+|ﬁ'\_\a|+w\_|u|6M(8mHRmnH)

Rp(n+l)Ma//+V//
| / gl g,
Tent1

for large enough R such that (RM,)? > 2H3L(1 + |7| + |r1|) and R? > (H3L)?.
For m’ > 0,

//|

eM(gm'R2mn+1) Hd(n+1)eM(3m’R2mn+1)

€]l )
/TE " M g df — (m/R)‘a/"+‘u//| |T€7n+1’ < O3R (m’R)'a”H'”"‘

Also, similarly as in the first part of the proof, eM™@W) < MBsm'Bmni1) when
(z,y) € R*\Q, and (Xni1 — Xn) (2, &) # 0, where we put s = 2 + r. Proposition
1.2.1 and lemma 4.1.3 yield

eM(SmHRanrl) M(3m/ R?mp41)

e

CoeM(S(m+m’)H2R2mn+1)eM(Ssm’Rmn+1)efM(m’\(m,y)|)

CgHQ(Sco(m+m’)H2R2+2)(n+1)H2(8¢:osm’R+2)(n+1)e—M(m’\(x,y)|)

IAIA A

cf; JpABcos(mAm’) H2R?+2)(n+1) ,—M (m/|(z,y)])

In the (M,) case, m is fixed. Choose R such that R? > 4(1+|7|+|m|)H®. Let m’ be
arbitrary but fixed. For the chosen R, choose h such that hH4®eos(mtm)H*R*+2) <
1 and 8m'h < 1. Moreover choose hy < h. Note that the choice of R (and hence
of xn, n € N) depends only on A,, B,, M,, 7, 7y and a, but not on m’. We have

Df'D;'fgv(;’n(:c, v)

w2 2 (2)(0)6)0)

a<p o +ao''=a
v<y VHV=v
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L8 e 1 1
(A [7] + [ ]) (Rl T

< C hn+1M5/+7/ 1 1B 1+17'|
@@+ T+ mD)) (e + 1)eM Iy m'R
hn—‘rlMﬁ/J’_,},/

< C
= (4(1 + |7] + |7 )T (n + 1)eM O I@wD (2m/) 18/ +1'T?

for 3,4 € N and (z,y) € R*\Q,. Hence ‘Dng;/ (é(:p,y)fﬁ,g,n(m,y)ﬂ sa-

tisfy the same estimate for all (x,y) € R?*? and 3,7 € N¢ possibly with ano-
ther constant C'. From this and the arbitrariness of m/, one easily obtains that
S 08,5, € SM). In the {M,} case h and h; are fixed. Choose R such that
RP > 4(1+|7|+ |m1])(h+ h1)hH* 2. For the chosen R choose m and m’ such that
8cos(m +m/)H?R? < 1. Then HABcos(mm ) H?R?+2)(n+1) < [f12n+1)  We obtain

Df/Dg/jﬂ,a,n(%y)

e 2 2 () ()@ 0)

a<,8’ ’+o¢”*a
y<~/ v+ =v

P WL 181l 1|1y
A+ T+ ) BT

Mo 181+
C B+
(n+ 141+ |7] + |m]))rtteM Ol ( m’R> ’
for 3,7 € N¢ and (z,y) € R*\Q,. Hence, there exist & > 0 and C' > 0 such that
C MIBI+’Y/
0+ DG T 7] + [ )T
for all (z,y) € R* and #,v' € N%. Now one easily obtains that 3 0S,,, € S{Mr},

We already pointed out that from this it follows that K € &*, which completes
the proof. O

Theorem 4.2.4. Let 7 € R and a € T (R*).

i) The transposed operator, *Op_(a), is still a pseudo-differential operator and
it 1s equal to Op,__(a(x,=E)). Moreover, there exist b € I‘A Byp (R*) and *-
reqularizing operator T such that *Op.(a) = Op,(b) + T and

)Dng;, <0~(x7y)fﬁ,5,n(x7y)>‘ < ﬁlﬁ/H_l,Y/'

1
b(l‘, 5) ~ Z a(l - 27—)|a‘(_a§>aDga($a _f) imn FSX;,OBP,,O (RZd) :

«

it) The formal adjoint Op,(a)*, is still a pseudo-differential operator and it is
equal to Op,_, (@). Moreover, there exist by € FA Byop (RQd) and *-reqularizing
operator Ty such that Op_(a)* = Op,(b1) + T} and

1 , £,00
bi(z,6) ~ ) (- 2r)llog Dga(x, €) in FSY>5 , (R™).

o
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Proof. By the observation after theorem 4.1.2, *Op, (a(z,§)) = Op,_,(a(z, =§))
and Op,(a)* = Op,_, (a). The rest follows from theorem 4.2.3. O

Theorem 4.2.5. Let a,b € T';™, (R*®). There exist f € T  (R*) and
*-reqularizing operator T such that a(x, D)b(x, D) = f(z,D) + T and f has the
asymptotic expansion

f(z Z 8a a(x,§)Dgb(x,§) in S5 p(RQd). (4.13)

Proof. By the above theorem *b(x, D) = by(x, D) + T where T" is *-regularizing
operator and b; € Iy Ay Byp (R2d) with asymptotic expansion

bi(,€) ~ 3~ (~00)* D3z, ~€). (4.14)
Again, by the above theorem, 'by(xz, D) = Op, (b1 (x, —§)) and
b(w, D) ="0p, (b(z, =€) =" (‘b(x, D)) .
Put by(x,&) = by(z, —&). Then we have
b(z,D) =" (tb(x, D)) ="'by(z, D) +"T" = Op, (bs) +'T".
We have a(x, D)b(z, D) = a(z, D)Op,(be) + T3, where we put Ty = a(z, D)'T",
which is *-regularizing. Because F (Op;(bo)u) (§) = / e~ by (y, &)u(y)dy and

]Rd
Op;(by)u € S*,

a(x, D)Op; (b2)u

i L, e ol (o uto)duie

and this is well defined as iterated integral by theorem 4.1.1. Observe that
a(r,y,§) = a(x,§)ba(y,§) is an element of II;™, (R3@). To prove that one
only has to use the inequalities 2((x, &))(x —y) > <(£B y,€)) and 2((y,&))(x —y) >
((z,y,€)) in the estimates for the derivatives of @. The operator A corresponding
to this a is the same as a(x, D)Op,(b2). Let

=> ﬂ'aﬂ (,€) Dby(,€)) .

181=J
Obviously >, p; € FS;’pr,p (R*). Let x;(z,€), j € N, be the sequence construc-
ted in the proof of theorem 4.2.2, such that f = (1 — x;)p; is an element of

| A Byop (R*) and f ~ >_;Pj- By the observations after theorem 4.1.2, the ope-
rator f(z, D) coincide Wlth the operator F' corresponding to f when we observe
f(z, &) as elements of Hszp, p (R?’d). We will prove that the kernel of A — F'is in

S* (RZd), i.e. A— F is *regularizing. Similarly as in the proof of theorem 4.2.3,
a(x,y,&) — f(z,8) = Zdn(x,y,f’) where we put

n=0

an(2,9,&) = (Xnt1(2,£) — Xn(2,§)) (d(m,y,ﬁ) - pj(:mé)) ,

j=0
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which is obviously an element of T} Ay Byp (R3?). Denote by A, its correspon-
ding operator. Similarly as in the proof of theorem 4.2.3, we have K(z,y) =

> . Kn(z,y), where K is the kernel of A — F, K, is the kernel of A, and the
convergence holds in 8. Observe that

Kn(xuy) = ﬁ/ﬁgd ei(m—y)f (Xn—i—l _Xn) (I7§> < ('T 5 b2 y § Zp] T 5 )

for allm € N. Let r = 1/8. Take 6 € £* (R%) as in lemma 4.1.5 and put § = 1 9.

6 and 6 are obviously multipliers for S*. By proposition 4.1.3 and the properties
of §, K € S* (R*). It is enough to prove that 0K € S* (R*!). Note that

0K = >on 0K,. Our goal is to prove that d>on 0K, € S*. Taylor expand by(y, ) in
the first variable to obtain

a(0.6) = 3 50— 0)°00a(e,) + Woa (5. 1.6).
|BI<n

where W, is the remainder of the expansion:
1
0

If we insert this in the expression for K,,, keeping in mind the definition of p;, we
have K, (z,y) = S1n(z,y) + S2.n(x,y) where we put

sl = o 2 5 (§)

04| 8|<n 0£5<8

. /R SIEDE (i = ) (2, D (al, §)0ba(,€)) d

S2alo0) = cpmgz [ (s = ) (5. e, W, ).

Our goal is to prove that ) 05, nand )y 05, n are 8* functions. Similarly as in
the proof of theorem 4.2.3, )" Si, converges in ™ to S and

B dz 2 ()ﬁ'[“’

|B|=10£6<8

where the convergence is in 8", where we put

[,3,5(5373/) = /Rd €i(x_y)§DgX|5\(x>f)D?_6 (@(3375)5552(%5)) dg.

To prove that — ) Z Z ( ) —0I 36 1s in §* we have to estimate the de-
|81=1 0£5<3 )
rivatives of 55 when (z,y) € R?*\Q, D supp 6. Note that, we can choose m such
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that a,by € F%ng; (R*;m) in the (M,) case, resp. we can choose h such that
a,by € F;{g’gj; (R*%; h) in the {M,} case. Let T, be as in (4.12) and put T,
to be the projection of T, on Rg. By the way we constructed x,,, it follows that
supp xjs & Tig-

D2 D7 Iy (2,)

56\ ( - o
< 2x 2 ¥ (0L e
k<B—3 a<p o’+a'"'=a o' <p —a & 181
| DEDE N )] | D2 DE = ala ) DE DL b, €)|
DIDIND (B ;5) (i ) (S/)Qlﬁ’—lal /TW ]l

k<B—0 a<p a'+a''=a
h|15|+|a/\AéBa/h|26—6+6’—a\AﬁiéBﬁJﬁB/iaeQM(mMD62M(m|z|)
' (B )OI ((z, §))pI20—0%6" e

Because § # 0, D‘ng/Xw(x,&) = 0 when xg/(x,&) = 1, hence when |z| < Rmyg
and |¢| < Rmyg. So, when Dngc"Xw(x,f) # 0 we have ((z,£)) > Rmg. We
obtain

d¢.

R‘5|+‘a,|m}‘;||+‘0‘,|<(x7 €>>p|2,3—6+[)”—a\ > (Rm|ﬁ|)l)|25+5/fa”\ ‘

By assumption A, C Mf, B, C M/ i.e. there exist ¢ > 1 and L > 1 such that
A, < cLPMPp and B, < cLP M. Observe that

A5Bau45,535+5/,a
P2B+5 —”
(Rmyg)

27 128+8'—a"| pgP
2 [I128+B"—a |M2ﬁ+ﬁua~

(meﬁl)pmwﬂﬁl - (me)%lm (meﬁl)pw,_a”‘

C'(LH)PPH5 =" I MG Mg o _ C"(LH?)25+5 =" I NP Mgy
Rgp\mm‘?g‘lﬂ\ (mel)p\ﬁ’—a”\ - R2p|ﬁ|m‘2ﬁp||ﬁ‘ (RMl)plﬁ’*a”l Mt s
C"(LH?)2+0 "I My

R2018I (RMl)plﬁ’—a”\ My ’

where, in the last inequality, we used that m] > M,. Also, note that when
(z,y) € R*\Q, and x5(x, &) # 0, we have the following inequalities

ApBpip—ar

|l‘| < 3RM|5|,
22+ yl* < 202+ o -y + 20l —y| < 202’ + o (2)? + 2rfl(z)
< (24 7))

Put s = 2 + r for shorter notation. Combining these inequalities we get |(z,y)| <
4sRmg. Using this and proposition 1.2.1, for arbitrary m’ > 0, we obtain

2Mmll) < M(EmHRm ) M |(@.9)) =M (| (z.9))
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CoeM(meHRm‘m)eM(4sm’Rm|5|)e—M(m'|(x,y)\)

CgeM(4s(m+m’)H2Rm\m)e—M(m'KI»y)D’

IA A

when (z,y) € R*\Q, and xg/(z, ) # 0. Using these inequalities in the estimate
for DY D) I54(x,y), for (z,y) € R*\Q,, we get

D2 D I 5(2,9)]

-9 5/ o -
<Gy > > (5 )( )(/>2ﬁ||
K<Bsa<h o tar=a N a )\«
/_OZH 6 a/ - /_a
/ |f||a”|+|7/‘(LH2)‘25+B PP pl2s—o+5 My 4y
Te.ls) R (RM, )P =" My
M mHIED M (45t H2 Rom ) =M (| (@.9)]) ¢
e B\ (o
< CaaaD Z Z Z ( )( Ny

K<B—0 a<B o/'+a' =

/ (LH2)2\5|h|15\+|0/\h\2575+6’7a|62M((m+m’)HR|§\)€M(4S(m+m/)H2Rm\m)
Te, 181

(m' R)l" T+ R2elB] at,

where, in the last inequality, we used that

//‘

2|ﬁ/|f\a|(LH2)|5'\*|a
(RM1)9|5'—C¥”|

for large enough R. Moreover, on T¢ |, using proposition 1.2.1, we have 2M ((m +
m/)HR||) < M(3(m + m/)H*R*myg|) + In ¢y. Now, by lemma 4.1.3, we obtain

oM (3(mAm")H2 R?my g ) ,M (4s(m-+m/)H? Rmy3))

< 0(2)H2(3co(m+m’)H2R2+2)|5|H2(4cos(m+m’)H2R+2)|6| < C(2)H4(4cos(m+m’)H2R2+2)|,8|'

Similarly as in the proof for proposition 4.1.3, we have }T&IBI} < CsREHYPI for
some C5 > 0. For the (M,) case, m is fixed. It is clear that, without losing genera-
lity, we can assume that m > 1. Choose R such that R > 4 and R?’ > SL2H+,

For arbitrary but fixed m’ > 0, choose h such that hH 4(4cos(m-+m’) H2 R?+2) <1 and
2h < 1/(4m'). Moreover, choose h; such that hy < h. Then we obtain

DDy ten)| < G S5 5 (U0(0)(6)

k<=0 a<pB o/+a' =
(L2H4)Iﬁlhla’lhlﬁlhlﬁ’\—lal T
(M R)lH R [ e o1

Mo 281181 7 12 grd+aN 1P 1\
oo (") (% 5m)
m'R

IN

Mm@ y)]) R2

Mg,/ hlP! 1
M/ (9)) 4181~ (2 )BT

IN

C;R?
e
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when (z,y) € R*\Q,. Note that the choice of R (and hence of x,, n € N) depends

only on A,, B,, M,, a and by but not on m’. By the definition of § it follows that
there exists C’ > 0 such that

Mﬂ,whlﬁl 1
@D AIB BT

‘Df/D;l <§(x, y)ss(z, y))‘ < C"Rd

for all (z,y) € R* and 3,7 € N¢. Hence

> ¥ (5) 5502 01 (F ) tnste )

|81=1 0£6<3

Mgy hlP] 1 Magiyry
d B+ . B+
< O'R WZ 0;5( ) B M@ g = i M D
1

for all (z,y) € R?¢ and ', € N From the arbitrariness of m’ it follows
that S € SMr). Now we consider the {M,} case. Then h and h; are fixed.
Choose R such that R?* > 8(h + hy)hL>H*"® and then choose m and m’ such

that 4cos(m+m')H?R? < 1. Then A (deostmm) IR 42)I8] < 128l Then we have

| DY Dy I 5(x, y)]

MB’-i-'y 5 «
< X 2 (U0
n<ﬁ 6 a<p o'+a'"=a
. (hL2H4)Iﬁ|h|1‘5‘h‘l‘ﬂhlﬁfélhlﬁ’lf\alHH\ﬂ\ - ‘

(m' )11+ R2l] SlA]
dMﬂ’—&-w’Q'B' (hLszHe)Iﬂ\ hlé\h\gfﬂ 1\ B+
m'|(z,y)]) R2p18 R

Meorow 1 181+l
Cﬂ#% :
eM(m/|(z,y)]) 418 m'R

< C:R

IN

when (z,y) € R*\Q,. By the definition of f it follows that there exist ¢’ > 0 and
h > 0 such that

YA AL
M ) 4181

‘DngZ/ (é(w,y)lg,g(x,y))‘ < C'R?

for all (z,y) € R* and 3,7 € N¢. Hence

, _ Moo BB+

|8]=10#6<p

for all (z,y) € R* and (',+" € N, from what we obtain 05 € SIM},
Next, we will prove that ) 60(x,y)Ss,(z,y) € S*. Note that
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SQ,n($a y)

n+1

_ IS ( )( K )%/}Rdei(z_y)ng(Xn-i-l_Xn) (2,€)

|ﬁ\ n+16<B k<B—5

Dfa(z,€) / (1= 0" DI 0%y (1 + t(y — ), €)dtde.

For brevity in notation, put

~ -0 .
Bante) = 5 (707) [ DL (s = ) (. Dfal)

K<B—9
1
- / (1= 1) DI 0Pby(x + (y — ), €)dtde.
0

We will estimate ’D?Dg’fg@n(x, y)) when (z,y) € R2\Q, D suppb.
)Dle;/j,B,é,n(xvy)‘

<oy v > (000

v<y/

61+ ]
. / |€|la~\+|u|—h1 LoD / (1—t)"
Tenir (Rmy,)l' I+l J,

h2|5|*|5|+|,3’|*|a\+|’y’|*|l/\Aﬁ_éBﬁ+ﬂ/_a+’yl_ye2M(m|§\)€2M(m(\x|+|y|)) st
((z, &)y UB =l 18D (2 + ¢ (y — ), £)yPCIBI= Tl =InlHa [+ =) 5

99

When (Xnt1 — xn) (7, €) # 0 and (z,y) € R*\Q,, the inequalities ((x,&)) > Rm,,
and ((z+t(y—=x),&)) > Rm,, hold. Also |z|+|y| < 2|z|+|z—y| < s{x) < dsRmy,.q,

where we put s = 2+ r. Hence

’Dle;/jﬁ,é,n(x7y)‘

« _ n_ 7" v
( )( )(a/)gw 61+ a|/ €[+ g
a<5/ o'+ =a Tent1

v</

8|+ _ _ _
_h‘l' 28110118 | =lel+ 1 =11 A By g1 qr i,
(R, )P@IBIHIE =lo” [+ 17| =[v])

Because A, C My, B, C Mf and mj; > M, we have

(HL)2n+2+\ﬂ’|—|a“|+|v/|—\VIMP ZM?
!

AsBpip—ariry—v B—allirf v

. eM(BmHRmn_H)eM(4smHRmn+1)

e e NS R g e Ve T g eV I P R

(HgL)2n+2+|B| o |+ |- IVIM%MB, ol

O//
(Rm.,, )P@n+2) (RMy )PUB1=le [+ 1=[v])
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(HBL)2r+2H8 11" e =W g,

"
< C Re(n+2) (RM, )p(B'I=lo”+17']- |V\)M oty

M(SmHRmn+1)eM(4smHRmn+1) < CO€M(4smH2Rmn+1) .

By proposition 1.2.1, e If we in-

sert these inequalities in the above estimate, we have

/ /= C '
DfD;IB,a,n(x,y)‘ = iﬁﬁf 2 ( )( >(j>

a<p o’'+a’'=a
vy

h|15|+|0/|h2n+2—|§|+|ﬂ’|—|a\+\7’|—|V|eM(4smH2Rmn+1)

Rp(nJrl)Mo//-H/

/ €[l ge,
T{,n+1

for large enough R such that (RM;)? > 2H3L and R* > 2(H3L)?. For m’ > 0,

/ |£’ |a’ |4 |v] e M(3m'R®mp41) Hd(n+1)eM(3m’R2mn+1)
Tent1

e d
M o' +v df - ( )‘CWH"’A |T§,n+1’ < C4R (m/R)|CY”|+|V|

AlSO, eM(m’l(:L‘,y)‘) S eM(m’(|$|+|y‘)) S eM(45m/Rm’ﬂ+1) when (XTL+1 — Xn)(x’é) ;é 0 and
(z,y) € R*\Q,. Proposition 1.2.1 and lemma 4.1.3 yield

eM(4smH2Rmn+1) eM(Bm/Rzmn_H)

CoeM(4s(m+m/)H3R2mn+1)eM(4sm’Rmn+1)e—M(m’|(m,y)|)

CgH2(4cos(m+m’)H3R2+2)(n+1)H2(4cosm’R+2)(n+1)efM(m’|(x,y)|)

IA N CIA

CgH4(4cos(m+m’)H3R2+2)(n+1)e—M(m’\(r,y)l).

In the (M,) case, m is fixed. Choose R such that R* > 4H9. Let m’ be arbitrary
but fixed. For the chosen R, choose h such that hHA(cos(mtm)H*R*+2) < 1 g4
8m’h < 1. Moreover choose h; < h. Note that the choice of R (and hence of x,,
n € N) depends only on A,, B, M,, a and by but not on m’. We have

/ ad M ' a
Dg D; I,B,(S,n(m7y) < C(n +1 :MJFZT "1(z,y)] Z Z ( ) ( ) (O/>

a<,8’ o' +a'=a
1/<'y

BB 8~ |1
’ gn+1 (m/R>|a”\+|V|

n ﬁ/+ !

_ B My 1\ B

= T 4ntl(p 4 1)eMIEy) m'R
hn_HMB”r’W

C4n+1(n + 1)6M(m/\(m,y)|) (Qm/)\ﬁ’lﬂw/l ’

for #',7" € N® and (z,y) € R*\,. Hence ‘D;f’Dg/ <§(x, 550, y))‘ satisfy the
same estimate for all (z,y) € R*? and 3,7 € N9, possibly with another constant
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C. From this and the arbitrariness of m’, one easily obtains that ) éng € S,
In the {M,} case h and h; are fixed. Choose R such that R > 4(h + hy)hH*™2,

For the chosen R choose m and m’ such that 4cos(m + m/)H*R? < 1. Then
H4(4cos(m+m’)H3R2+2)(n+1) < H2(+1)  We obtain

/ Iz M ’ “
Df D; I,Bﬁ,n(xay) S C(n+ /B+’y/‘xy)| Z Z ( )( )(al>

a<ﬂ’ o' +a' =«
l/<'y

P11 I8 ol 11
’ AT (! R) T+ 1]

. My, NG
(n + 1)4ntieMm|(@y)) m'R ’
for ', € N? and (z,y) € R?*!\(Q,. Hence, there exist h >0 and C > 0 such that

Mﬁ"i")’/

HI8 Y|
O D M

‘Df/D;/ (é(fb’vy)fﬁ,&n(fb’,y))‘ <

for all (z,y) € R* and 3,7 € N%. Now one easily obtains that 3 0S,,, € SIMr},
Hence, we proved that a(z, D)b(z, D) = a(x, D)Op,(be)+11 = f(z, D)+T5,, where
T, is *-regularizing operator. It remains to prove (4.13). Obviously, it is enough to

prove that Z %6? (a(z, &) Diby(z,£)) ~ Z %8?@(95,5)be($,§). For N € Z,
g g

we have

N-1 1
&) B
> Y Lot - Din)
J=0 |8|=4
— 1 Y a oty & (_1)|6‘ a+d myat+y+o
- amdear (8D = 3 ) Dy
=0 factal=5 s=0 |5|=s
S S 5 e
alylel & T8 T '
J=0  s=0 |atr|=j|d]=s
Note that
N—1N—j—1

Z Z Z Z a|7|5| 8’7 aa+6Da+’Y+6b

J=0 s=0 |aty|=j [d]=s

N—1N—j—1 3
- Z Z Z al 151 87 (TP DT
j=0 =0 k=0 |a|=k |5|=s
Iv|=j—k
N—1N-s—-1 j 1
= Z Z( ) a”{ aa—&-ﬁDa-‘rV—i—&b
alyle! ¢ € z
s=0 j=0 k=0 |a|=k |6|=s

|y|=5—Fk
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N—1N—-s—1N—-s—1
_ D Z 8” g Pt
alf},!al
s=0 k=0 j=k lal=k |6]=
Iyl=j—k
N-1 N—-s—1 ( 1)
— ’\/ a+d ma+y+6
D D o e OgT DI
t=0 s+k=t ]:k |’y|:]—k ‘a|:k

|6|=s

- > S Y oo

t=0 s+k=t j=k |y|=j—k|B|=ta+d=p

Hence, we have to estimate the derivatives of

N—j—1
2 a+ 6
>y Wf’)‘a Sl (D Sl S o
J=0 |a+vy|=j s=0 |§|=s
By construction b(z, &) ~ Z Z D‘S r,&). So, for (1,€) € Q%,,,, We
7=0 |8]=j
have
o' np' Y
of Y Y Lote
J=0 |at~y|=j
+ ‘& ( )lél 4 Mo
D | ba(a,€) - 02D, €)
s=0  |6]=s
<oy > ¥ (90
=0 Jat+v]=j o/ <o’
B’ <p’
‘h‘w|+|ﬁl|+2NA|o/H—jBW’H—jAN jBN p2M(m€]) g2M (m|z|)
QK (z, €)) A1 FIFTHN)
(4Hh)Ia’|+|5’\+2NAa,BB,ANBNe (mH[E]) o M (mH |z|)
{(z, &))pal+1A"1+2N) '
which gives the desired asymptotic expansion. O]

For the next corollary we need the following technical lemma.
Lemma 4.2.2. Let a,b € T (R*) are such that a ~ 3 a; and b ~ 37 b;.

Then ab ~ f: Z asb, and

7=0 s+k=j

0fa(z, )00b(x,&) ~ 0+ .+ 0+ > > OFay(x,)05be(x,§)  (4.15)

o] J=la| stk+|a|=j
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mn FSZ:,OB,,,,; (R%), for each o € N¢. Moreover, there exist B > 0 and m > 0 such
that, for every h > 0, there exists C > 0; resp. there exist B > 0 and h > 0 such
that, for every m > 0, there exists C' > 0; such that

sup sup sup sup
a N>la| 7,0 (ny)eQ%mN

—Z > 0fa(x,)0bi(x, s))

j=la| s+k+|al=j

D} D; (@?a(% §)9;b(,§)

((x, §)>plv\+pla\+2Npe M(mlg]) p—M (mla) —e
hH8+2N A Bs Ay By <C.

Proof. By the conditions in the lemma, there exist B > 0 and m > 0 such that,
for every h > 0, there exists C' > 0; resp. there exist B > 0 and & > 0 such that,
for every m > 0, there exists C' > 0; such that

D)D%a;(x, ,&))PhlHeldl+25p o =M (mlg]) o —M (m|z]) .
Dy D2y, )] () MmNl

supsup  sup :
JEN 70 (2.£)€Q%,, hhI+11+27 A. Bs A; B;

D203 (0l €) = s a5, )| G, €)oo=
sup sup sup .
NEZy 7,8 (2.6)€Q%,, hPIH8+2N A By Ay By

e~ MmIE) =M(mlal) < ¢

and the same estimate for DI D3b; and D¢ D) (b =D jen bj). One easily checks

le] le’ *,00 2d
that 0+ ...+ 0+ Z Z O¢as0yb, € FSY 7y (R*"), for each fixed v € N
o j=lal s+h-+al=j
For N > |a| and (7,§) € Q%,,,, observe that

N—|a|—1

0ga-0b = Ofa-[00b— >

N—|a|—1 N—|a|—k—1

N-1
+ 3> |oga— DT e | o+ > D 0faiby
k=0 5=0

j=la| s+k=j—|a|
We have the estimates

N—|a|-k-1

DD | | 0ga(z, &) — > Ofas(x,§) | 95w, )
5=0

< Z( >() DEDY la(@ ) — > ay(x,€)

v <y s=0
§'<é

. ‘Dg_71D2_5,+abk($, 5)‘
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2 Y 0
<2 (0)()
v <y
F)
.h\’y’\+|6/\+2N*\a|*2kAa+ﬂ/B5/AN_|a‘_kBN_|a‘_k€M(m|£\)eM(m|x|)
{(z, &))PI+pI0"|+2Np—plal=2pk
hhl_"wl—i_w‘_|6/|+|a‘+2kA'y—'y/Bg_5/+aAkBk€M(m|£‘)eM(ml-'E')
' ((x, &))Phl=plI+old]—pl8|+plal+2kp
< 200 Y\ [0\ RN A B s AN o B o€ (MHARD M (mH]e)
=0 Z v )\ {(x, &))Phl+rldl+2Np
<
5o
4 2o (2RH)NIHOIR2N A B A B eM(mHIE) oM (mHlal)
= @ ((z, €)) P+l +2Np )

for all (z,§) € Q% 7,0 € N? and the estimates are uniform for o, N and k.
Hence

N—|a|-1 N—|a|-k-1
Dipd > | ofal@, ) — > 0fay(z,€) | - 0%bi(x,€)
k=0 s=0

e (4hH)W\+|5‘+2NAVB(;ANBN6M(WH|E|)eM(mHW)
= ((z, €))PhI+el+2Np ’

for all (7,§) € Q%,,,» 7,0 € N? and the estimates are uniform for o and N,
N > |al. Analogously, one easily obtains similar estimates for the derivatives of
N—|a]-1
Ofa- | 0yb— Z 02by, | . Now we can estimate the derivatives of
k=0

N-1

Ofa-05b—> > a0l

j=la] st+k=j—lof

and obtain the inequality in the lemma. Moreover, for fixed a € N? to prove

(4.15) it only remains to consider the case when N < |a| (we already consider
N-1

the case when N > |a| above). But then Z Z O as0; by is empty and we

j=lal s+k=j—|a|
only have to estimate the derivatives of J¢a - d7b which is easy and we omit it

(a,b €T3, , (R*) and o is fixed). O

Corollary 4.2.1. Let a,b € F*A’pO?Bp’p (R2?) with asymptotic expansions a ~ > a4

and b ~ Zj bj. Then there exist f € F*A’pO?Bp’p (de) and *-reqularizing operator
T such that a(x, D)b(x,D) = f(x,D) + T and f has the following asymptotic
ETPansLon

flx,&) ~ Z Z Z iagas(x,f)l)gbk(x,f) in FSZZ}BP’,J (]RQd) .

J=0 s+k+Il=j |a|=l
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Proof. It is easy to check that the above formal sum is an element of the space
FSX;?Bp,p (RQd)- By theorem 4.2.5, we only have to prove that

ZZ 80‘:B§Dbx§ Zzz‘agasfobk(asf).

j= 0|a\_] : J=0 s+k+l=j |a|=l

For N € Z, and (,¢) € Q%,,,, we have

N-1 1 N-1 1
D> 0aDib=) Y Y~y Diby
7=0 |a|=j 7=0 s+k-+i=j |a|=l
N—-1 j
SN Y Y Y S Lo o
jO\a|] ]Ol08+k]l|a\l
N-1N-1
= ZZ 8§a Do‘b—zz Z Z 85(15 DSby
]O\a|] lels+k]l|a|l
N-1 | N-1
SDIICTETE i oI |
7=0 |a|=j I=j stk=1—j
N-1
By lemma 4.2.2, the derivatives of J¢a - D3b — Z Z Ogas - D3by can be
I=j s+k=l—j

uniformly estimated, as in the lemma, for all &, N and (x,§) € Q%,,, , such that
la| < N, from what the desired equivalence follows. ]






Chapter 5

Anti-Wick and Weyl Quantization
on Ultradistribution Spaces

The Anti-Wick and the Weyl quantization of global symbols, as well as their
connection, in the case of Schwartz distributions was vastly studied during the
years (see for example [36] and [53] for a systematic approach to the theory). The
importance in studying the Anti-Wick quantization lies in the facts that real va-
lued symbols give rise to formally self-adjoint operators and positive symbols give
rise to positive operators. On the other hand the Weyl quantization is important
because it is closely connected with the Wigner transform and also, the Weyl
quantization of real valued symbol is formally self-adjoint operator.

The results that we give here are related to the global symbol classes defined
and studied in the previous chapter, which corresponding operators act conti-
nuously on the space of tempered ultradistributions of Beurling, resp. Roumieu
type.

For a symbol a which is an element of the space of tempered (ultra)distributions,
its Anti-Wick quantization is equal to the Weyl quantization of a symbol b that is
given as the convolution of a and the gaussian kernel e I*. The purpose of this
chapter is twofold. In the first section, after giving the definition and the basic
facts about the short-time Fourier transform, we define Anti-Wick quantization.
We extend results from [36] (see also [53]) to ultradistributions. More precisely,
we give the connection between the Anti-Wick and Weyl quantization for sym-
bols belonging to the symbol classes introduced before. The last two sections are
devoted to finding the largest subspace of ultradistributions for which the convo-
lution with eI, s € R\{0}, exists. The answer to this question in the case of
Schwartz distributions was already given in [58]. This gives a way to extend the
definition of Anti-Wick operators with symbols that are not necessarily tempered
ultradistributions. In particular, we prove theorem 5.3.1, which gives such class
of symbols.

107



108  Chapter 5. Anti-Wick and Weyl Quantization on Ultradistribution Spaces

5.1 Anti-Wick Quantization

For ¢ € &% (Rd), o # 0, and u € §* (]Rd) we define the short-time Fourier
transform of u with window ¢ by V,u(y,n) = Fi_, <u(t)<p(t — y)) Then V,, acts
continuously 8* (R?) — &* (R*?), ™ (R%) — 8™ (R*) and L? (R?) — L* (R*)
(for the properties of the short-time Fourier transform in connection with spaces

of tempered ultradistributions, we refer to [19]). If @1, ¢, € S* (R?) are non-zero
and a € S" (]RQd) we define the localization operator A¥v%2 by (A¥L#2q T) =
<a, Vmum>, u,v € §* (Rd). It is continuous operator from &* (Rd) to S™ (Rd).
We will be particularly interested in the case when p(z) = po(z) = Go(z) =
7442l Obviously [|Goll,. = 1. We will also use the notation G, (z) =
md/4¢imne=3le=vl" In this case we will denote the short-time Fourier transform
just by V. Hence, for u € 8, Vu is the tempered ultradistribution in R?? given
by Vu(y,n) = Fioy (u(t)Go(t —y)). We summarise the above results about the
continuity of V' in the following proposition.

Proposition 5.1.1. The short-time Fourier transform acts continuously
S* (RY) = 8™ (R*), §* (R?) — 8" (R*) and L* (R?) — L* (R*).
Moreover, ||VuHL2(R2d) = (27T)d/2||u||L2(Rd), foru e L* (RY).
The adjoint map of V', V*: S* (RQd) — S (]Rd),
V*E (27) / o (F(y,m) Go(t — y)dy, F € S* (R*)

extends to a well defined and continuous map 8™ (R**) — &’ (R?) and L* (R**) —
L? (RY) and V*V = (27)%d. Now we can define Anti-Wick operators.

Definition 5.1.1. Let a € S§™ (R2d). We define the Anti-Wick operator with
symbol a as the map A, : &* (]Rd) — S (Rd) given by A,u = (2r)~WV*(aVu),
u € S* (Rd). A, will also be called the Anti-Wick quantization of a.

Observe that, if a is a multiplier for &* (de) (for example an element of
5> A Byp (RQd)), then A, maps &* (Rd) continuously into itself. Also, note that the
above formula is equivalent to

(Agu,0) = (2m) Ya, VuVv), u,veS* (R, (5.1)

hence A, is precisely the localization operator A?1?2 when ¢;(x) = po(x) = Go(x).
One easily proves the following proposition.

Proposition 5.1.2. a) Let a, € 8™ (R2d) be a sequence that converges to a in
S (R*), then A,,u — Aqu, for every u € 8* (R?).
b) Let a € 8™ (RQd) be real valued. Then A, is formally self-adjoint.
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If a is locally integrable function of *-ultrapolynomial growth (for example, if it is
an element of FZ’:’BP, P (R2d)), then, by (5.1), we can represent the action of A, as

1

Au(x) = @)

R2
The proof of the following proposition is the same as in the case of distribution
and it will be omitted (see for example [36]).
Proposition 5.1.3. Let a € 8" (R*). Then A, = b where b € §™ (R*) is
given by

bz, €) = 7 (a(-, ) # e—|~l2—l~l2) (,6). (5.2)

From now on we assume that A, = B,,. Our goal is to represent the Anti-Wick
operator A,, for a € I';™ Ao Ap (R2d) as a pseudo-differential operator b* for some

beli™, , (R*). First, note that |n** < kle” for all k € N and

(m* < 2*VRle /2, (5.3)

Theorem 5.1.1. Leta € T, (R2?). Then there exists be L n (R*) and

*_reqularizing operator T such that A, = b® + T. Moreover, b has an asymptotic
expansion Zj p; in FSZ:?AM (R2 ), where py = a(x,€) and

pix, &)= > Loedla(e,g), je Ly,

al Bl
2j—1<]a+p| <25 B

1
where cop = —

_ nozyﬁefly\Q*InIQdydn_
™ 2d

Proof. First we will prove that >, p; € FSA Ay p (R*). Note that cq 5 = 0 if
|a+ S| is odd. Hence p;(z,§) = Z Cof 8?85 (z,&). If we use the fact |n|* <

alp!
|la+B1=2j o
1
VELeP/2 we have |cq 5] < ¢v/]al!]B]!, where we put ¢ = — eI P2=IR 12 gy .

T R2d
For the derivatives of p; we have

}Dmepj( 75)} S

oy sl R4, Ay semIED M (mial)

|a+B8]=27 alp! ((x, §)>plv|+p|6|+2pj

Z d2 (hH)|7|+|5|+2jA7A6A2jeM(m|§D€M(m|m\)
< .
i |a+ﬁ\ 2j afl]B]! {(z, &))PhrI+rlol+2p]

< g (hH)|v|+|5\+2j(dH)2jA7A5AjAj?M(mI£I)eM(mIatl)
- {(z, g))plvl+p|5|+2pj ’

|D7D pi(, )| ((x, &))PhlHeldl+2e] =M mie]) o —M(mial)

: ; < (), for all
(2dhH?)NH101421 A A5 A A;

('r é-) E RQd? 775 e N j e N Hence Z p] e FSA A p(RQd). Take X] as 11’1

i.e., we obtain
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the proof of theorem 4.2.2 and define b = >-;(1 = x;)p;j. Then be L, (R?)

and b ~ >_; ;- It is enough to prove that b —be S*, for b defined as in (5.2). We
have

b(x, &) — b(x, &) = xo(x, §)b(x, €) + Z Xn+1 — ,€) <b(m,§) — ij(:c,g)) :

By definition, yo = 0. We Taylor expand a and we obtain

Cl(y, 77) = Z ,6,(9?86 (LU 5) (7] 5) ( ‘r)ﬂ + T2n+2<xa Y, 57 77)7
|| +]8]<2n41
where 7y, 9 is the reminder

Py, 6n) = Cn+2) S (- )y —2)°

|a+B|=2n+2 'ﬁ'
1
/0 (1= )2"1020% (x + 1y — 2).€ + t(n — €)) dt

If we put this in the expression for b — b, keeping in mind the way we defined Djs
we obtain

st =) @) 3 2L ),

alf!
|a+B8|=2n+2 B

WE

br,€) ~ b, 6) = =

Il
=)

n

where we put

Lo p(x,§) = / / n°y( 2"“8‘“85 (x 4+ ty, & + tn) e’|y|2’|’7‘2dyd77dt.
R2d
We will estimate the derivatives of I, g.

}8ga;5[a,5(xa E)‘

1
= / / il |02 050 a (x + ty, & + tn)| e W dydndr
ol 1 RO 2 A A peMOmiERtDMOmi D
: ’77| Y [v+p18]+(2n+2)p oy 2 +[n]2
(m+tyf+t77)>’” g Pelv+n

/ h|7|+|5‘+2n+2A7+5+2n_‘_2<<y7 77)>2n+2eM(m|f+tn‘)6M(m|x+ty\)
“ / /de ((z + ty, & + tn))@ntDpelyl+nl? dydndt

dydndt

IN

[v]+18]+2n+2 7 rP
// 2hL M’y+6+2n+2

S GG gE
4n+4 M (m|&+tn]) , M (m|z+tyl)
(y,m)) e e
/ /RM ST dydndt
< O (4n + 4)1(SRLH )220 s MY

((z,&))@n+2e
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M (m|&+tn]) M('m|x+ty|)
/ /]de elyl?/2+nl?/2 dydﬁdt,

where, in the last inequality, we used (5.3). For shorter notations, we will denote
the last integral by I(z, ). Note that ((z,&)) > Rm,, on the support of x,+1 — Xn-
For the derivatives of (xn41 — Xn) (€, &) 10 (2, ), we have

}agag ((Xn-i—l - Xn) (ZE,€ [Oéﬁ(x>€))‘
)

p3 (3) 5

07 0 I, 5(x,€)

0708 (s = x) (2,)

)
( 5) PO g g
6/

)
gl
< G Z (7/) (Rm, )=l 1+ =1o7]
v <y
)
VU 4 QUSRI My Mg 7o
(Rmn)(2n+2)p )
L)Ivlflv’l+\5lf\5’|
< a3 (1)(s) s
6’<6

(4n + 4)/(ShLH )N 1H1'+2n+2 prans2 pp MS—H
(Rm,,)@n+2)p
L IR /n 1 4)[(ShLH?)> 2 M, s M2 -
= (RMI " 8hLH> RCn+2)pyp (2n+2)p 1(2,¢)

hiL WL/ + 4)(ShLH) M, 5 -
Céll (RMl + 8hLH) R(@n+2)p ) ](l’, 5)7

(x,€)

<

where, in the last inequality, we used that

mZH > My, * e Mo =My - = Man

Let m’ > 0 be arbitrary but fixed. Then one easily proves that e @) <
M/ (2l +ED) < 9eMEmle) MEmIIED (one easily proves that eMA ) < 2eM 2N M(2v)
A,v > 0). Then we have

GMmlestn)  _ ~M@m|€) M (@m|€]) M (mle-+n)

9~ M (@m/|€]) M (dm|tn]) M (4’ |E-+tn]) o M (m&-+tn])

IA A

eye M@ €D M (A nf) M ((m-4m H-+1n])

where, in the last inequality, we used proposition 1.2.1. Similarly

eM(m|z-|—ty|) —M(2m’|:c|)eM(4m’|y\)eM((m+4m’)H|z+ty|)

< ce

Obviously eM@m ) < cpell?/4 and eM@Em v < ¢yelvl’/4 for some ¢ > 0 which
depends only on M, and m’. We obtain

~ cs 1 oM ((m-+4m/)Hlz-+ty) eM((m~+4m")H|{+tn|)
1@:8) < Giwiean /0 (/Rd eluP/4 dy- /Rd elnl*/4 dn) o
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Note that, when |y| < |z| we have
eM((m+4m’)H\x+ty|) < eM(Z(m+4m’)H|z|) < eM(6(m+4m’)HRmn+1),

on the support of x,41 — Xn (Where |z| < 3Rm,11). When |y| > |z|,

M (Gmetam!) Hlatty) < M (metam)Hly)) < v/,

for some ¢4 > 0. We obtain

6M((m-&-4m’)H\ac-i-ty|)
/ s
R4

e‘y|2/4

M ((m+4m/)H|z+ty|) M ((m+4m’) H|z+ty))
= / dy—l—/ dy
[y|<|z| ly|>|=|

elvl?/4 elvl?/4

< eM(G(m+4m’)HRmn+1) /
ly|<|z|

e WP/Aqy + C4/ e WP/ qy
ly[>|z]

’
< C5€M(6(m+4m )HRanrl)‘

We can obtain similar estimate for the other integral. By lemma 4.1.3, we have

eM(G(m+4m’)HRmn+1) < CoHQ(n—H)(660(m+4m,)HR+2).

Hence

cge M |(2.£)]) 2M (6(m+dm!)H m 1)

cre™ MO |@O)]) A1) (eo(m-+4m’) HR:+2)

I(z,€)

IA A

on the support of x,11 — x,. If we insert this in the estimates for the derivatives
of the terms (Xnt1 — Xn) (2,€) 10 p(x, &), we obtain

}828;5 ((Xn—i—l - Xn) (x7 5)1&7[3(567 5))’

hiL PIHRE /(an + 4)1(8hLH?)2 20,5
< Cs <— + 8hLH) RGnTr

RM,;
.e—M(m’\(m,§)|)H4(n+1)(6co(m+4m’)HR+2).

First, we consider the (M,) case. Take R such that RM; > L and 32d/R’ < 1/2.
Choose h; such that h; < 1/(2m’) and h such that 8hLH3+2Gcolm+am)HE+2) < 1
and 8hLH < 1/(2m'). Note that, the choice of R (and hence ;) doesn’t depend
on m/, only on A,, M, and a. For |a + | = 2n + 2, we have

la]!| B! - (2n +2)!

alpl > d2nt2 = (2d)2nt2

Also, v/ (4n + 4)! < 22"72(2n + 2)!. Now we obtain

S 21000 (e — ) () a2, )]

alp!
|a+B|=2n+2 ﬁ

22n+2(2d)2n+2 hlL [v]+]9] 22n+2(2n + 2)!M7+5
<G ) 2n 1 2)! < Rar, T > R+ 2pe Mm@ o))

|a+B|=2n+2
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2n+2
< CoeMonIwen Mt _(8_d> grni2i2d 1

m/171-+19] Rr
o Myss i@, L
6 /Il +1a] A2n+2’

where, in the last inequality, we put Cg = 22471C5. Hence, for the derivatives of

> (=) (06 D T las(eg),
n=0

|o+B|=2n+2

M /
10 =M (m|@O]) apnq by the arbitrariness of m/, it

we obtain the estimate C

m/II+ldl
follows that it is a S») function. Let us consider the {M,} case. Take R such
256dhLH® 1 , ,
that — & < 3 Then, choose m and m’ such that 6¢o(m + 4m’)HR < 1.

Then we have

10208 (Ctns1 = x) (2, )T (2, 0))|

hiL WL /A + (SR LH?3)2"+2 )
< G < it 8hLH> ( )}gmm)p) o0

—M(m/|(z,£)]) H4(n+1)(6co (m+4m’)H R+2)

hiL ML /(an + O)(8hLH3)* 2 M., 4
= G <RM1 +8nLH ) REn+2)pe M| (2.0)])

e

. H12(n+1)‘

So

S 2210000 (s — ) (. s,

alp!
|a+B|=2n+2 6

hlL [v|+]4] (8d)2n+2<8hLH9)2n+2M7+6
< G ( Rar, T OhEH > RO D0 Mm@ 8))

|a+B|=2n+2

< C5€—M(m’|(33,§)‘)M,y+6 (g}\jj
1

) |v|+]9] ‘ (64dhLH9)2n+2 ‘ 22n+2+2d_1

< T
hy L [v[-+|d] M) 1
< CoMoys (RMl +8hLH) e Mmlmel) s
Hence, for the derivatives of
= 2n 42
Z Xn+1 — (,€) Z W Iop(z,8),
n=0 |a+B8|=2n+2 R

1 M(m! hiL
— m’|(x,& .
m”|7|+|5|6 (m/|(=,6)]) where we put W = RMl

8hLH, ie. it is a S} function. In both cases we obtain that b — b € S*, which
completes the proof. O

we obtain the estimate C'M, s
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Now we want to represent the Weyl quantization of b € I';™ Ay Ay p (RZd) by

an Anti-Wick operator A,, for some a € I} Ay Ay p (R*). First we will prove the
following technical lemma.

Lemma 5.1.1. Let 3, ¢\ € FSy>™, , (R*) for all j € N, such that ¢ =

= qj(])1 = 0. Assume that there exist m > 0 and B > 0, resp. h > 0 and
B > 0, such that ), q,(cj) € FSSZ’X;?Z (R B,m) for all j € N, resp. >, q,ij) €
FSEZQT; (Rgd;B, h) for all 5 € N. Moreover, assume that the constants Cjp,
resp. Cjm,, in

‘ D2DEgY(x, 5)’ ((z, &€))Plal+plB1+2kp o= M(ml€]) o= M ()
i oy e 4 JIaFIBR 2R 4 A, AL A, = Cjn
m
resp. the same with C; ., in place of C;, in the {M,} case, are bounded for all

J, t.e. supCj, = C < 00, resp. Supij = (), < oo. Then, there exist
J

pj € C> (R*) such that p] qu for all j € N and -, p; € FS (]RQd).
Moreover, ij Z Z q; in FSA Ayp (de).
j=0 j=0 1=0

Remark 5.1.1. p; ~ >, q,(cj ) should be understand as equivalence of the sums
(4)
0+ +0+p; +0+ ... and Y, ¢,
J
Proof. Let R > 2B and take p; as in the proof of theorem 4.2.2, ie. p; =

Z(l — Xk)ql(j), for i, constructed there. First, we consider the (M),) case. We
k=j

will prove that »-,p; € F S%ﬁgﬁ (R?% B, m), for sufficiently large R. Let h > 0
be arbitrary but fixed. Obviously, without losing generality, we can assume that
h < 1. For simplicity, denote C}, by C. Using the fact that 1 — xx(z,£) = 0 for
(x,€) € Qprm,, we have the estimate

}Dngpj(yc7 5)’ {(, &))PlaltrlBl+20) g=M(mlE]) o =M (mlz])

(ShH)eI+1BI+2 A, Az A A,
< ZZ( )( ) ’Da VD,B 5 ($ 5)‘ —M( m|§|) —M(mla])
k=j v<a
<
D208 (1~ il )] (. )yttt e2es
(ShH)le A2 A, A5 A A,
<

plal=hiHlsI=ll+2k A Ay 5 AL A,
Cz—;;( )( ) (BRH) P12 Ay Ag A A
0<p

((, €))PHPRHA2R DYDY (1 — xu(2, €)))|
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- 1 » » g
< ()Y g H LM, 1Ll O ()70
k=j

/ - 1 ﬁ
+(0000)20;W 2 (3) (5)

7<a,0<p

(6,7)#(0,0)
h2(k—j)H2kL2(k—j)M§fj |D2D§ (1 _ Xk(l’, 5))} ((:c, £)>plvl+p|6|+2pj—2pk
' h+RIA Ay

= S;+ 5,

where S; and S are the first and the second sum, correspondingly. To estimate
S1 note that, on the support of 1 — x4, the inequality ((z,&)) > Rm; holds. One
obtains

(hLH)**=D M2 5 = (RLH)?
Sl COCO CZ R20(k=i)m, 2p(k ]) - OCO OZ R2pk o0,
k=0

for R > 2LH > 2hLH (in the second inequality we use the fact that mg > M;).
For the estimate of Sy, note that DI D3 (1 — xx(z,£)) = 0 when (,€) € Q3ppm,

because (0,7) # (0,0) and xx(z,§) = 0 on Q5z,, . So, for (z,£) € Q3rm,, we
have that ((z,£)) < (z) + () < 6Rmy. Moreover, from the construction of y,
we have that for the chosen h, there exists C; > 0 such that ‘D?Dgx(x,f)} <

Clh‘o‘H'mAaAg. By using mf > Mj,, one obtains

e}

/ 1 “ B
Sy < (cwo)QCClZW 2 (7) (5>
k=j v<a,0<8

(5 7)#(0,0)
| (hLH)Z(k J)6p\vl+p\6|M:fj(Rmk)pl'yHma

R0 2% Ry )11+

. = (hLH)%*
< (cocp)*CCy Z (RTIB’
k=0

which is convergent for R* > 2LH > 2hLH. Moreover, note that the choice
of R for these sums to be convergent does not depend on j, hence x; can be
chosen to be the same for all p;. So, these estimates does not depend on j and

from this it follows that Z p; € FS, (Mp (R2d) (actually, to be precise, Zj pj €

FSA]Z’AW (RQd, B, m), i.e. the same space as for ), q,ij)).
In the {M,} case, there exist hi,C; > 0 such that

|DgDEx(x,€)| < Cihf1 4,45,

Arguing in similar fashion, one proves that Z p; € F S{MP}OO (]de B,8hH )

where 7 = max{h, hi},ie. 3 p; € FS}‘E‘M‘A} > (R?).

It remains to prove the second part of the lemma. One easily proves that
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o N-1 j N-1 N-1
33 e s, ). Nowt 330 -3 (- X))
§=0 1=0 §=0 j=0 1=0 §=0 k=j

Moreover, for (z,§) € Q5z,,, and N > j, p; — Zq Z (1— xx) g U This
k=N

easily follows from the definition of y; and the fact that m,, is monotonically in-
creasing. We will consider first the (M),) case. For arbitrary but fixed 0 < h <1
and (z,§) € Q5g,,,, We estimate as follows

DeDE STy (1= xa(w, ) 0 (2, )| (w, )Pl oI3120N ¢ mich ¢~ el
(8(1 + H)h)lel+IBI+2N A Ay Ay Ay

(1= () | De D2 (2,)

<(x’ é’)>P\01|+P|5\+2pN67M(m\5|)efM(mm)

<
= kz (8(1 + H)h)lel+B2N A A, Ay Ay
(0%
+Z 3 ( )( )’Da Y DB (3 )| =Ml g Mmla)
k=N ~<a,6<p3 v
(6.7)7#(0,0)
|D{D; (1 — xi(, €))| ((x, €))rlolrelPlt2eN
" (B(L+ H)h)eHBH2N A Ay Ay Ay
< i 1 — Xk‘ X f)) h2k_2NAkAk
- 64N (1+ H)2N((x,&))?rk=22NAN Ay

+64N ];V 8|a\+|ﬁ| 2 (?;) (?)

V<, 0<p
(8,7)#(0,0)

PN DDA (1= xula, ©)] (G, )1 4, Ay
T H)P T (o, €)Y A, A A Ay

= Sl + S27
where S; and S are the first and the second sum, correspondingly. To estimate
S1, observe that on the support of 1 — y, the inequality ((x,&)) > Rmy holds.
Using the monotone increasingness of m,, and (M.2) for A,, one obtains
- C(Q)C 0 h2k72NH2kAk_NAk_N
- 64N = (1 + H)QNRka—2meiPk—2PN

(0006)20 o0 thszH%LQkszMEpN
- 64N = (1 + H)QNRzpk—Qmezpf];?pN

(coch)2)CH?N N (hHL 2k<(cocg)20 L (HL\*  (coc))?CC
64N (1 + H)2N &=\ Re — 64N 2 Re ) 64N 7

Si

HL
where we put C = Z < > for some fixed R > 2HL. For the sum .55,

observe that D} D (1 - Xk(:v,f)) = 0 when (7,§) € Q5p,,,, because (d,7) # (0,0)
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and xx(7,§) = 0 on Q3g,, . Moreover, from the construction of x, we have that
for the chosen h, there exists C'; > 1 such that |D?Dfx(x,§)‘ < Clh|a|+‘ﬁ|AaBﬁ.
Now

52 _ 08001 o 1 Z (Oé) (6) h2k—2N6|’Y|+|5|HQkAk_NAk_N

- _ 20k—2pN
64N = 8lal+8] s y ) (1 + H)QNRka Qmekp 0
(6,7)#(0,0)
< C(Q)C’C1 o0 R2F-2N 2k AL ALy _ (0006)20010
- 64N 1+ H)QNRka—Qmeipk—2pN = GAN ;

i (
where we used the above estimate for the last sum. So, we have

DD}y (pj(w,ﬁ) St (a, ))‘ ((a, €)yPlal+olBl+2oN
(8(1 + H)h)lal+IBI+2N A, Ay Ay Ay eM(mID M (mie])

N-1 ‘D?Dg (pj(x; 5) chv ]1 q](c] ( ))‘ <(x7£)>P‘a|+p\ﬂ|+2pN
(8(1+ H)R)TITN A A, Ay Ay MGt Ml

(]

o

.

=

2(coch)2CC1C 2N (coch)?CCiC
64N B 64N ’

IN

=0

.

which is bounded uniformly for all N € Z,, for (2,£) € Q5gm,» @ 8 € N%. The
proof for the {M,} case is similar. O

Theorem 5.1.2. Let b € T, (R*). There exist a € T, (R*) and *
reqularizing operator T such that b* = A.+T.

Proof. Put pyy = b and p;, =0 for all k € Z,. For j € Z,, define pj; = ... =
pi_1,; =0 and

Ca() g1) * wvv " Coli) BU)
/ _ at/, aJ/,
Prj(@,§) = Z Z MBI aWIB6)]
Ltlo+.. =k oW 480D |=214,...,|a) +50) |=21;
11>1,..,05>1

‘8?(1)_5__“_5_040)85(1)4_,_4_/3(@ b(l’, 5%

for k > j, k € Z,. We will prove that ), pj . is an element of FSA Ayp (R24).
To do this note that, for k& > 7,

PSR IOk A A Ay MOmIED M mlz)

2
< lbllnmr ((z, €))PhFoldlT2ok

, (hH2)M+‘5|+2kA7A5AkAk€M(m‘£|)GM(m‘xD
< llblnmr ((xz, €))PlHplol+20k ‘
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If we use the same estimates as in the beginning of the proof of theorem 5.1.1, we
have

|Cas) go)| dd?s ) ol

C )
aNBOL = a@IBE

1
for all s € {1,...,5}, where ¢ = —d/ e WP/2=1P2 gy qp . Hence
™ JR2d

(5.4)

Ca) g| o v |Cath) |
2O eI =

The number of ways we can choose the positive integers [y, ...,[; such that [; +

k
j—

/dek (C d2)

1). For every fixed [y, ...,1;, we have

§ 1= 215 + 2d - 1 < 22l5+2d71 — 22d714l5
2d — 1 - ’
|04(5)-|-,8(5>|:2lS

for s € {1,...,j}. So, if we use that k > j, we have

Z Z 1 S 2j(2d71)4k (k - 1) S 2k(2d+2).
j _—

et =k oW+ 5D|=21y,,...,|al) +80) |=21;

>0 21
We obtain
Z |Ca(1)ﬁ(1)| S () 5(j)| ( /22d+2d2)
> aMIBMOL. W36 —
htla =k oD 40| =21 ..., |ald) +50) |=21;
n>1,.0>1

i.e.
‘DszPm( 7@‘ {(, 5)>p\v\+pl6\+2pk@fM(m|£|)efM(meD
(6/22d+2d2hH2)h\+|5\+2k A'yAzSAkAk

< collbllnm.r,

for all (z,¢) € R*? 4,6 € N k € N (for k < j, Pr; = 0). So >, ph; €
FSy™, , (R*). Note that ¢3|b]lnm does not depend on j, i.c. the estimates are
PP ’
uniform in j. By the above lemma, there exist C* functions b; such that b; ~
> kP for j € Nand 3 ,b; € FSA App (]RQd). Note that, by the construction
in the lemma and the way we define p,w, bo = poo = b. By theorem 4.2.2,
there exists a € T3>,  (R*') such that a ~ > ;(~1)’b;. We will prove that
this @ satisfies the conditions in the theorem. By theorem 5.1.1, there exist ¢ €
> Ap App (RM) and *-regularizing operator T such that A, = ¢¥ + T} and ¢ ~

Z Z '5185 dPa(z, ). One obtains

J=0 |a+B|=2j

535 Dl NS Er A

§=0 I+k=j |a+B|=21
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To prove this, first, by using >°.(—1)7b; € FSy™s (R*!) and (5.4), one easily
verifies that the sum is an element of F.S}™ Ay Ay p (RQd) Note that

N-1 c N-1 j c
B aa [3 1 “aB qaqp
>y Waa Z > (-1y- waab]l(xg)
3=0 |a+8|=2j §=0 1=0 |a+p|=21
N-1 N—-1N-1 c
-y ¥ & '6' cola(r,6) - > Y (_1)J—zﬁaga§bﬂ(x,£)
=0 |a+B|=2; =0 j=l |a+p|=21
N—1 c N—-1N-1 c
_ Z 0;6/3'3?8/3 a(z, &) — (—1)l—3a0!‘—’§!8§‘8£bl_j($,§)
7=0 |a+8|=2j J=0 I=j |a+B|=2j
N-1 N—j—1
- Clxglaaaﬁ (a(‘x7€> - (—1)858(1’:5)) :
7=0 |a+p|=2j s=0

By using that a ~ 3°;(—1)’b; and the inequality (5.4), one easily proves the
desired equivalence. Now, observe that, if we prove the equivalence

EDIDIED BN L ATt

§=0 I+k=j |a+B]|=21

the claim of the theorem will follow. Observe that

Z_: Z Z (=1) c?g|aaaﬁbk<x7£) —b(z,€)

§=0 I+k=j |a+B|=21

- Z_ Z Z (—1) CTg,agaBbk(Iaé) (5.5)

§=1 l+k=j |a+B|=21

2

-1

- Z > €0l g0l (,€) — by(w,€) | . (5.6)

131
1 Jj=k |a+B|=2(j—k+1) ﬁ

B
Il

Because of the way we defined p ,, for s > k > 2, we have

s—k+1
/ J— Cayﬂ (6% IB
Pale ) = X0 > ogokal 3. 3
I=1 Ja+p|=2 l}+>..1.+lklf1=ifl laW) 48 |=21,....|alk—1) 48(k=1)| =21, _,
1 k—12
Ca(l)ﬂ(l)- oot Chk—1) ,B(k—1) oW fok-—1) 5(1 +.. +5k 1)
aMWIgMI. . k-1 3k= 1)|a 9, b(z,§)
s—k+1 c
o,
- Z Z a!ﬁ|a§aﬁps l,k— 1(%5)-
I=1 |a+8|=2l

For k = 1 one easily checks that the same formula holds for p{ ; (by definition,
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Py_10 =0 when s > [ and p;, = b). Hence

N—-1 N—k
Caﬁ
I SO L1 ST
s=k I=1 |a+B8|=2l s=l+k—1
N—k c N—-[-1
o8
= Z a'5|a§ 85 ( Z pls,k—1<x7§)> :
I=1 |a+B8|=2l s=k—1

Now, we obtain

Z > 0l (r.6) ~ by(.)

131
J=k |a+B|=2(j—k+1) olpl
N—k c N—-1 N-1
= > X RO = Yo Pl O+ D ralw€) ~ belw,©)
=1 |a+gl=20 s=k s=k
N—k c N—-[-1
=2 > a?gla?af (bk—l(l‘,ﬁ)— p;,kl(x,f))
I=1 |a+Bl=21 " s=k—1

N-1
s=k

By construction, by ~ 0+ ...4+0+> ", p,, . Moreover, by the above esti-
k-1

mates for the derivatives of pl,, the above lemma and its proof, it follows that

there exist B > 0, m > 0 and Cy > 0 in the (M,,) case, resp. there exist B > 0,

h >0 and C,, > 0 in the {M,} case, such that for every h > 0

| Dg D (bi(,€) = X sy Pon(®,§)) | {(w, €)1 HIPIH2Npem MUmiED =M Gole

hlel 2N A Ag Ay Ay < Ch,

for all (z,¢) € Q%,,,, @, B € N? and k, N € N, N > k, in the (M,) case, resp. the
same as above but for some A and every m with C,, in place of Cy, in the {M,}
case. Now, if we use the estimate (5.4), we get that

N—-I-1
Ca oa
5 S (- e o)

‘O¢+B|=21 s=k—1

& Z |Cap] hWF‘5|+2NAQ+,YA5+5AN_,AN_16M(W|5|)eM(T”'x')

< Wy a'ﬁ‘ <<x7€>>P|V|+P\5|+2NP
a+3|=2
< BCd ! (RH?2)PHBI2N A A5 Ay Ay eM0mleD M Gmlz)
S Gbc | Zﬁ': l ((z, €))Phl+rldl+2Np
a+ 2

(2hd H?)PIHOIT2N A A5 Ay A e mIED M (mzl)

3 1 vo2d—1
S Gqel? {(, £))PhIFell+2Np )




5.2. Convolution with the Gaussian Kernel 121

for all (z,) € Q%,y> 71,0 € NY, N > 1+ 1 (in the last inequality we used

Z 1 < 22%24-1) "where we put C' = Cj, in the (M,) case, resp. C' = C,, in

|a+pB]=21
the {M,} case. Note that the estimates are uniform in [ and k. One obtains

N—k N—-I-1
Caf
LZ105 Sl T (SEEED SR
=1 |a+8|=21 s=k—1

(4hdH?)PHOH2N A A5 Ay A g eMmIED M (mlz)
((x, €))Phl+pldl+2Np ’

S 686/622d71

for all (,€) € Q% 7.0 € N, N > k, with uniform estimates in k. Similar

N-1

estimates hold for Zp'sk(m,f) — b(z, &) (by the definition of b;). By using the
s=k

equality (5.6), we obtain the desired result. O

The importance in the study of the Anti-Wick quantization lies in the following
results. The proofs are similar to the case of Schwartz distributions and we omit
them (see for example [36]).

Proposition 5.1.4. Let a be a locally integrable function with *-ultrapolynomial
growth (for example, an element of FA By (R2d)). If a(x,&) > 0 for almost every
(z,€) € R¥, then (Aqu,u)r2 > 0, Yu € 8*. Moreover, if a(x,&) > 0 for almost
every (x,€) € R?, then (Aqu,u)r2 > 0, Yu € 8*, u # 0.

Nontrivial symbols a that satisfy the conditions of this proposition, for example,
are the ultrapolynomials of the form > ¢2,&%*, where ¢, > 0 satisfy the necessary
conditions for this to be an ultrapolynomial, i.e. there exist C' > 0 and L>0,
resp. for every L > 0 there exists C' > 0, such that |csq| < CL*%/M,,, for all
o € N4,

Proposition 5.1.5. Let a € L™ (RQd). Then A, extends to a bounded operator
on L2, with the following estimate of its norm HAaHz:b(m(Rd)) < HaHLm(Rw).

5.2 Convolution with the Gaussian Kernel

Our goal in this section is to find the largest subspace of D™ such that the convolu-
tion of each element of that subspace with e*I* exists, where s € R, s # 0 is fixed.
The general idea is similar to that in [58], where the case of Schwartz distributions
is considered.

Put B* = {S € D”| cosh(k|z])S € &, Vk > 0} and for s € R\{0}, put
B = ¢~*1*F B*. Obviously B* C 8" and B* C D™*. Define

A*={feO(C|VK cCR{, 3h,C > 0, resp. Vh >0, 3C > 0, such that
|f(&+in)| < CeMPM) v¢ € K vp e R},
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real = Ural f € A'} and A7 = 6‘9':’3‘214;6&1. Assume that £ > 0. First we will
prove that cosh(k|z|) € C*(R?). For p > 0, we have

ot = 3 (3547 + 32 U ) - ST
0 an‘x|2n 0 2n| ’271

and the function Z is obviously in

2n)!
C*> (]Rd). We will give another two equivalent deﬁnltlons of B*. We need the
following lemmas.

hence cosh(k|z|) = Z—
-0

h(k
Lemma 5.2.1. Let k > 0. The function M is an element of S*.
cosh(2k|z|)
. . k(22" . . .
Proof. Consider the function gi(z) = (2—>‘ Obviously gx(z) is an entire
n)!
n=0

function. Put W = {z = x + iy € C¢||z| > 2|y|} and consider the set W, =

W\B(0,7), where B(0,r) is the ball in C? with centre at 0 and radius r > 0.
kv o—kV2?

Then 5 is analytic and single valued function on W,., where we take

the principal branch of the square root which is analytic on C\(—o0,0]. Also,
2 |2
for = € Wy, put p = /(|al? — [y2)? + 4(xy)?, cost = 2" — Iyl

V(22 = [y[2)? + 4(ay)?

, where 0§ € (—m,m), from what it follows

2y

(]2 = y[2)* + 4(xy)?
0 € (—m/2,7/2) (because cosd > 0 and § € (—m,7)). We will need sharper
estimate for cos 6.

—1/2
2 1,02 2 2
sl — 2~ ly| =<1+< 2 ))
Ve = [y12)? + 4(ay)? o = Iyl
—1/2 —-1/2
1+(|x|2+|y|2>2 " 1+(2|x|2>2 ® 3
22— |y - EIRE NeTh

and sinf =

>
Then
3 3 \/7 B \/7
ek\/z +e > . ‘6 _ _kRe+/p(cosO+isinf) e kRe 4/ p(cos 0+isin 0)
kRe \/ﬁ(cosQJr'i sing) —kRe f(cos +isin 5 ) k\/ﬁcos 5
e 2 ) —e >e -1

where the second equality follows from the fact that we take the principal branch
of the square root. Now, using the above estimate for cos, we have

cos@—f—l 3+34
Veos = 7 N o
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3434

So, if we put ¢; = {/ ———=——, we obtain

2/34
> etk V(P-4 1 > cab/BPWE 1500 (5.7)

ek\/;?_'_e

ekV2? | o—kV2?
e2kVz? | p—2kV2?
is an analytic function on W,. Moreover, because (ek\/;2 + e*k\/;z> /2 = gi(2),
for z € W, NR% and from the uniqueness of analytic continuation, it follows
<ek*/;2+ e‘k‘/;?) /2 = gr(z) on W,. Hence f(2) = gr(2)/gax(z) on W, and this

holds for all » > 0, hence on W. Note that gox(0) = 1, so, there exists o > 0
such that |gox(z)| > 0 on B(0,2r) and hence gx(z)/gax(z) is analytic function
on W U B(0,2rg). Let C,, > 0 be a constant such that |gr(2)/g2k(2)] < Ci,

on B(0,79). Take r; > 0 such that B(z,2dr,) C <(Cd\B(O,r0/16)> N W, for all

x € W%o NRZ. Then, for such x, from Cauchy integral formula, we have

Hence e*V# 4 ¢7¥V=* doesn’t have zeroes in W,. Now, f(z) =

IS T )
|lwi—z1|<r1,...,Jlwg—xgq|<r1
Now, for w = u + iv € C? such that |w; — z;| < ry, for all j = 1,...,d, using the
estimate (5.7) but with 2k instead of k and the fact Rev/22 > 0, for z € W, which

we proved above, we get

ek\/ﬁ + efk\/ﬁ

ek V/ (uP—vR)’+awo)? 4 1
6201k\/|u|27\v\2 -1
kr/ |u|2—|v|2+2|uv| V2k|u
2e < 2eV2k|ul - C’le(ﬂ*‘/gcl)kM
e2etky/lulP=o2 _ 1 eV3eiklul — 1 —
and it is easy to check that V2 =3¢, < 0. If we put c = V3e — \/§ we get
’f( )‘ < C e —ck|ul < C e k(|z|—|u—=x|) < C eckm\/g —ck|z| _ C efck|x|

[f(w)] =

Hence |05 f(x)] < C’g%e_c’ﬂx'. For = € (B(0,70/2) NR4)\{0}, if we take 75 > 0
1
small enough such that B(x,2dry) C B(0,79) we have (from Cauchy integral
formula)

|07 f(2)| =

ag( (2 ))’<cm < Oy & ekl
92(2) g

Because f(z) is in C*°(R?) the same inequality will hold for the derivatives at
x = 0. If we take r = min{r;, 7o} we get that, for z € R,

|
92 f(@)] < C et (5.8)

cosh(k|x|)

—_— *. [
cosh(2k|z|) €5

for some C' > 0. From this it easily follows that f(z) =
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Lemma 5.2.2. If ¢ € 8" and T € 8™ then YT € Of.

Proof. The Fourier transform is a bijection between Of and O3, (see proposition
8 of [17]) and F(¢T') = FyxFT. Hence, it is enough to prove that ¢ T € O3, for
all v € §* and T' € §"™. From the representation theorem of ultradistributions in
S (theorem 2 of [42]), there exists locally integrable function F'(z) (in fact it can
be taken to be continuous) such that there exist m,C' > 0, resp. for every m > 0
there exists C' > 0, such that HF(x)e_M(m‘xDHLOO < (' and an ultradifferential
operator P(D) of class * such that T'= P(D)F. Because

v+*T =1 P(D)F=P(D)*F)=P(D)xF

and P(D)y € S8* it is enough to prove that for every ¢» € §* and every such F),
Y« F € Oy We will give the proof only in the {M,} case, the (M,) case is
similar. Let ¢ and F' are such function. There exists A > 0 such that

hlol M (hlz) | Doy ()|

sup sup < 0
a€Nd zcRd M,

Take m such that / e~ M) MEmIt) gt ig finite. Later on we will impose ano-
R4
ther condition on m. Then ||F(a:)e_M(m|x|)HLoo < C,,. Note that eMmlz=t) <

2eMmlz) ME2mlt) (one easily proves that for A\, v > 0, eM* ) < 2eMEN M)

so we have

e~ MMIth pr
|D*(¢p x F)(z)] < / | DY (t)] |F(z —t)|dt < C’(Jm/ TeM(mll’—tl)dt
R4 e
M(2m|x M (2mla
< O'C Cuw oMt MemIt]) gy < C’M
B " hlel o < o

We will use the equivalent condition given in proposition 7 of [17] for a C* function
to be a multiplier for S™»} Let k > 0 be arbitrary but fixed. Take m small
enough such that 2m < k. Choose h; < h. Then, by the previous estimates, we
obtain

h|la|e—M(k\x|) |D*(4p % F)(z)] h|la|e—M(k\x|)6M(2m\x|)Ma

< <
M, =¢ A =6
hence v * F is a multiplier for S{*»} and the proof is complete. O
h(k
For S € B*, by lemma 5.2.1, for k > 0, M € §* and by lemma 5.2.2
cosh(2k|z|)
we have
cosh(k|z|) ,
h(k = —————cosh(2k o
cosh(k|z])S cosh(2k[x]) cosh(2k|z])S € O

Similarly as in the proof of lemma 5.2.1 one can prove that (cosh(k|z]))™" € S*,
for k > 0. So, for S € B*, we also have S = (cosh(k|z|))™" cosh(k|z|)S € OF.
Using this, we get

B* = {S € D"”| cosh(k|z|)S € OF, Yk > 0}. (5.9)
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Lemma 5.2.3. O € DM ana M c DI,

Proof. We will give the proof only in the {M,} case, the (M,) case is similar.

Let S € (’)gM"}. From proposition 2 of [17], there exist & > 0 and {M,} -
ultradifferential operator P(D) such that S = P(D)F; + Fy where

[ (|7 ()] + [ Fo(e 0.

DI <

We will assume that F, = 0 and put F' = F;. The general case is proved analo-
gously. Let ¢ € DM} We have

(S, @) = [(F, P(=D))| < || MV, e D) I[P(=D)plle= < Cllglly,s

for some C' > 0 and (¢;) € R, where, the last inequality follows from the fact that

P(D): B{MP} — B{MP} is continuous. Because DM} is dense in B{Mp} the claim
in the lemma follows. []

If we use the previous lemma in (5.9), we get

B — {s € D'O%)| cosh(k|z])S € DM vk > o} (5.10)

B — {3 € DO cosh(kla])s € D™, vk > 0} (5.11)

Now we will give the theorem that characterises the elements of D™ for which
the convolution with e**I” exists as an element of D’*.

Theorem 5.2.1. Let s € R, s #0. Then
a) The convolution of S € D™* and e*1"1* exists if and only if S € B:.

b) L: B* — A* is well defined and bijective mapping. For S € B* and {,n €
RY, e~ Etmzg(g) € D'L(yp) (RY), resp. e"E+tm=5(z) € @/{MP} (]Rd) and the
Laplace transform of S is given by L(S)(§ + in) = <e “77 S(x >

c) The mapping B — A%, S +— Sxel*® 4s bijective and for S € B, (S * eSHQ) (x) =
esl’ L (eSHQS’) (2sz).

Proof. First we will prove a). Let S € Bf. Let ¢ € D* is fixed and K CC R,
such that supp ¢ C K. Note that

(so x 65"‘2) (z) = e’ / p(y)ev 2y
Rd

and define f(z) = (cosh(k\x!))_l/ o(y)e*’ 25794y where k will be chosen later.
d
Put | = sup{|y| |y € K} to simplify notations. We will prove that f € Dj., for
large enough k. For w € C?, put g(w) = / cp(y)esw‘ 25wy, Then g(w) is an
Rd
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entire function. To estimate its derivatives we use the Cauchy integral formula
and obtain
ol

0% ()] <

sup lg(w)].

«a
T' ‘ |w1—z1|<r,...,|lwg—zq|<T

Take r < 1/(2dl|s]). We put w = £ 4 in and estimate

IN

/ |S0(y)‘es|y\2_25§ydy < 62|8||fl||90”L00/ 68|y\2dy _ C//||SO||LOC€2Z|$||E\
R4 K

< C//H()OH 2l\ [(|z]+|E—=]) ng” 2l|s||£—x|€2l|s||x\ < 3CHHg0”Loo€2ZISHx‘,

lg(w)]

where we denote ¢’ = / e*"’ dy. Hence, we get
K

o 3" |||l Lo .
02 g(a)| < SCPlimal ooy (5.12)

rlal

We can use the same methods as in the proof of lemma 5.2.1 to prove that

1 O[' /
Do —— < (O—¢€ k|z|
‘ (cosh<k|xr>)‘ =

for some C' > 0, ¢ > 0 and ¢’ doesn’t depend on k. If we take r > 0 small enough
we can make it the same for (5.12) and the above estimate. Now take k large
enough such that 2l|s| < k. Then, for h > 0 fixed, we have

hlel| Do f ()| hlel| De=Pg(a)| | D? ((cosh(k|z])) ")
o - Z(ﬁ) | HMa |

B

" o\ (2h) (o — B)lellsllzl gle—c'klal
< 3Cliglls Y (5> olalyla—Bl B AL
B<a «
3C"CH<PHL°° ol (21|s|—c'k) | 1 1
< e ; T < gl

kPp!
where we use the fact —2- — 0 when p — oco. From the arbitrariness of h we

P
have f € Dj.. Because Dﬂfp} = @fﬁp} as a set, f € ﬁﬁip}. Now, we obtain

(go * es|'|2) (2)S = f(z) cosh(k|z|)es*S.
e*l"*S € B* (because S € BY), hence, by (5.10), resp. (5.11), cosh(k|z|)es**S €

D}E{WP), resp. cosh(k|z|)esl?*S e 75;;{1MP}- Hence (@*esw) S e D,L({wp)’ 1esp.

<g0 * es‘x|2> S e @'L{lM’”}. Theorem 3.1.1 implies that the convolution of S and e*l*”
exists, in the (M,) case. Let us consider the {M,} case. If we prove that for arbi-
trary compact subset K of RY, the bilinear mapping (¢, x) — <<<p * es|"2> S, X>»
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D}(MP} x BMp} 5 C, is continuous, theorem 3.3.1 will imply the existence of convo-
lution of S and e*”*. Let K cc R? be fixed. By the above consideration, we
have

(% e™) 8.x)| = |(coshlklze™ S(a), f(2)x(2))| < Crpey (1),

for some C; > 0 and (t;) € R, where, in the last inequality, we used that
cosh(k|z|)esl"* S e ﬁlL{lMp}. For brevity, denote T, = HLa:ll t; and T, = 1. Ob-
serve that

| D= (f (x)x(x))] a\ | D7 f ()| [D*x(2)|
T M, : Z(@) TsMpTo—pMa-—p

B<a
< C’c”p(tj/2),K (@)pet; 2 (X)),

< C~'C”||90||Loop(tj/2)(X)

where we used the above estimates for the derivatives of f. Note that ¢’ does not
depend on ¢, only on K. From this, the continuity of the bilinear mapping in
consideration follows.

For the other direction, let the convolution of S and esl*’

exists. Then, by
theorem 3.1.1, resp. theorem 3.3.1, for every ¢ € D*, ((p * es|"2> S e D/L(pr), resp.

<gp * es"|2> S e ﬁl{lM”}. Let ¢ € D*, such that p(y) > 0. Put U = {y € R o(y) #
0} and t = sup{|y||y € supp ¢}. Then we have

/ SO(y)es|y\2—25:z:ydy Z CeinfyeU(—Qszy)’
Rd

where ¢ = / go(y)esly‘Qdy. Let 2o € R? and € > 0 be fixed. There exists ¢ € D*,
d

R
such that U C B(xg, ) (B(xo,¢) is the ball in R? with centre at zy and radius ¢).
Then

inf (—2sx > inf (=2sxy) = —2szxo+ Inf (—2sx(y—=x
yEU( y) > yEB(zo,e)( ) 0 yeB(JEo,E)( (y — x0))
> —2sxxg — 2¢|s||x].
We get

/ SO(y)es|y\2—2s:tydy > C€_QSIIO_2E‘SHI|.
R

d

Define f(z) = e~ 2wm0—2elsly/L+lsP ( /
R

f € Djw. glw) = /d g0(y)e‘9|yl2_2‘“”ydy is an entire function. Put w = £ + .

-1
go(y)esy|22”ydy> . We will prove that

d

R
Then, for w in the strip Rf + i{n € R [n| < 1/(8|s|t)} and y € supp ¢, we have
12sny| < 2|s|n|ly| < 1/4 < /4, hence

/ so(y)es'“‘%wydy' >
Rd

S 2_ S,
/ ey)e v ~2sty COS(any)dy‘
R
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Qp(y)eSIy\z—?Sfydy <> 0.

1

>

T V2 Jga
Moreover, e~ 2wmo-2eslVI+u® ig analytic on the strip R¢ + i{n € RY||n| < 1/4},
where we take the principal branch of the square root which is single valued and
analytic on C\(—o0,0]. So, for 1o = min{1/4,1/(8]s|t)}, f(w) is analytic on the
strip R? + i{n € RY||n| < ro}. To estimate the derivatives of f, we use Cauchy
integral formula and obtain

al

0 f ()] < sup |f(w)], (5.13)

- [0
710 ) ey <y [wg—zal<r

where r < r9/(2d). Put

p= /(1 + g2 = [nf2)? + 4(&m)2,

1+ [¢° — InP? and sing — 2¢n
VHIER — [n)? + 4(en)? VA IER = )2 + 4(en)?

where 0 € (—7, ), from what it follows that 6 € (—7n/2,7/2) (because cos€ > 0
and § € (—m,m)). Then

Re <v1+w2> = Re (\/ﬁ (cosg+ising)) = \/ﬁcosg

— [cosf +1  +/pcost+p

1
_ E\/ L 162 = Il + /(L + 16 — [nl2)? + a(ém)?

cosf =

)

1
> E\/I HIER = [0+ 1+ (€2 — 0] = V1 + €2 — [nf?,

where the first equality follows from the fact that we take the principal branch of
the square root. We obtain

—2swzo—2¢|s|vV 1+w?

€ \/56*2859606*25\3\% (\/1+w2)

/ ply)e P2y / py)e 2y

R R4

B 25Em0 e 2elsl\/ITEP— IR /52str0p—2elsll]
<

/ (p(y)es|y|27286ydy ce—2séxo—2els|l¢|
R4

[f(w)]

<.

So, from (5.13), we have |02 f(z)| < Coa!/rl®l for some Cy > 0. From this it
easily follows that f € Dj.. Now we have

e VIR ol g () (pxe) (2)5 € DI, vesp. (5.14)
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e 2o 2elsly/1tlal? eslzl® g — ¢ (y) (@ % 68H2> (2)S € DM (5.15)

where we used the fact that (cp * es"|2> S € Dgpr), resp. <g0 * 65H2> S € YS,L{1MP}
(which, as noted before, follows from the existence of the convolution of S and
es|‘”‘2) and these hold for every zy € R? and every € > 0. Now, put z, = 2sz,
= —2sxg and ¢’ = 2|s|e. Then, from (5.14), resp. (5.15), we have
e—zmé—s’\/l+\x|2es|m|25 c D’[E{V[p)
e—mmg—slw 1—Hm|263|2|25 e 75’[‘/{1]\/[17}

n_ 1/ 2 2 (M,

o=V 1F el gslel S e D[(l p), resp.
"_ot/ 2 2 N M,

eV Il sl g o D[{l o

Y

and from arbitrariness of zy and € > 0 it follows

cosh(zzy) cosh(zzy)

= D'L(fv‘[”), resp eslel’ s ¢ f)'L{lMp} (5.16)

ey/ 1+|z|? ey/ 14|22

(& (&

for all zp € R? and all € > 0. Let [ > 0. Take 1) € R%, j = 1,...,d, to be such
that z{) = 0, for j # q and xg-]) = ld. Then

d d d d
COSh(l|£L’|) < Hel\xj‘ < (Z lxg|) Z ld|| < QZCOSh (1’(])1‘) . (517)
J=1 j=1

j=1 j=1
p -1
We will prove that cosh(l|z|) (Z cosh (2z Uy > € Dj~. Observe that the
j=1
d
function Zcosh(Qldwj) is an entire function of w = & + in. Moreover, for
j=1

we U =R{+i{neRY|n| <1/(4ld%)}, we have

d
Z cosh(2ldw;)

j=1
1 d d
S Z (62ld§j + 6—2zd§j) cos(2ldnj) +i Z ( 20d¢; €—2ldfj) Sin(2ldnj)
Jj=1 =
d d
1 2
> 7|2 (e*% + e cos(2ldn;) | > % Z 2l 4 g2 )
Jj=1 =
V2 - 2ld
- (3]
> 1 Ze il
j=1
hence

2
>

|5

d
Z cosh(2ldw;)

j=1

d
Zemd'@l > 0, for all w=¢+in e U. (5.18)
j=1
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For cosh(l|x]), we already proved that is the restrlctlon to RN\ {0} of the function
cosh(Ivw?) which is analyticon W ={w =¢{+1in € (Cd| €] > 2|n|} (see the proof

of lemma 5.2.1). Hence cosh(IVw? <Z cosh( 2ldw])> is analytic on WNU. We

j=1
will use the same notations that were used in the proof of lemma 5.2.1. Similarly

> k27 (102)"
as there, put gp(w) = Z (w) Then gx(w) = <ekm+6_km) /2, for

—  (2n)!

we W, N Rg and from the uniqueness of analytic continuation and arbitrariness

of r > 0 it follows gx(w) = (ekm + e’km> /2 on W. Fix 0 < ry < 1/(81d?).

—1
Then, for w € B(0,79), by (5.18), we have |g;(w <Z cosh( 21dw])> < Cpy-

J=1
Take r; > 0 such that B(z,2dr,) C (Cd\B(O, 7"0/16)> NWNU, for all z € Wi NRY.
For such z, we use Cauchy integral formula to estimate

oo cosh(1vz2)
Z;.lzl cosh(2ldx;)

Now, using (5.18), we have

cosh(lvw?)
Z ., cosh(2ldw;)

cosh(Ivw?)
2?11 cosh(2ldw;) |

o!
<% sup
1 |wi—z1|<r,..|lwg—zq|<ry

9 elReVu? | o—IRevu? At V(€= n]2)? +4(€n)?

V2 d 2udlg,]| = d - o2d|g;]
> ey €S 2 g €
4V 1P =ImP+2(¢n] 4e2lE] 8 cosh(21|¢])
d  2ldlg; S 2d|€; S 21d|¢; =
ijle 151 23:16 1€;1 Zj=1€ 137

where the last inequality follows from (5.17). Hence, for x € W%o NRY we get

oo [ costtis) )| _ ot

Zj:l cosh(2ldx;) &1
For z € (B(0,79/2)NR%)\{0}, if we take ro > 0 small enough such that B(x, 2dry) C
B(0,79) we have (from Cauchy integral formula)

2 |
o dCOSh(l\/$_> = |g* . gl<x> S Cro&_c;-
i1 cosh(2ldz;) i1 cosh(2ldz;) )

-1
Because cosh(l|z]) (Z cosh (22 ) is in C*°(R?) the same inequality will

<

Y

hold for the derivatives at @ = 0. If we take r = min{ry,r2} we get that, for

z € RY
cosh(l|x]) ol
% , <C—.
(Z?:l cosh (220 ) ro
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-1
Now, it easily follows that cosh(l|z|) (Z cosh 230 > € D} . From (5.16),

we have

cosh(l|x|)eslm|zs e /M) resp cosh(l|z|)
L )

68\/1+|CC‘2 ) 68\/1+|CC‘2

for every [ > 0 and every € > 0. Let [ > 0 be fixed. By considering the function
e=V1+2* which is analytic on the strip R? + i{y € RY||y| < 1/4}, we obtain the
estimates ‘30‘65\/ HaP| < G g2/ 14IaP , for # < 1/(8d) and some C' > 0. By

Fla \
this and (5.8), for small enough > 0, we have

el’s e DM (5.19)

Jed lz|
cosh(l|x]) N f<a & cosh(l
, B! 5|z (Oé—@)' 264/ 1+|z[?
< ;(ﬁ)crlﬁ We
|ev]
—Llja| 264/ 14|2[? ") 2
oty (5)e eV <o (2

B<a

where the last inequality will hold if we take € < ¢l/4 and c¢ is the one defined in
cosh (& JeumeT)

MeE Hel* ¢ D . From this and
cosh(l|x])
(5.19) we get cosh (%|z|) eSS e D'L(f%), resp. cosh (4|z) eSS e f)'L{lMp}. From
the arbitrariness of [ > 0, we obtain

the proof of lemma 5.2.1. We get that

cosh(|z])e’’ s e D( Mp) resp. cosh(l|z])et*’ S € f)lL{lMp}

for all [ > 0. By (5.10), resp. (5.11), we have that e**’'S € B*. Hence S € B*.
Let us prove b). Let S € B*. Similarly as in the proof of lemma 5.2.1, we can
prove that for each fixed ¢ € R? there exists ke > 0 (k depends on ) such that

—z¢
m S (Ri)' Then, for fixed £ € R, we have
e*xfs — L Cosh(k ]m\)S c S (Rd)
~ cosh(ke|z|) € E

Hence, by theorem 2.1.1, the Laplace transform of S exists and belongs to A*.
Analogously, for e > 0 and & + in fixed, we can find £ > 0 (k depends on ¢ and

o~ (Exinm)z per /TP
cosh(k|z|)

e*(§+i77)$€€ V 1+|$|2
cosh(kl|z|)

€ 4 in) such that € &* (R?). Then

o~ (Erinz e /TP g

cosh(k|z])S € D (Rd)
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in the (M,) case and resp. e~ EtmzesVitlaPg ¢ D'{M”} in the {M,} case. By
(2.11) (see remark 2.1.1), we have

5(5)(5 4 2'77) — <65\/1+|z|2€*(§+i77)$5<x)’6*5\/1+|w\2> — <ef(£+in)zg(x)7 1w>_

The injectivity is obvious. Let us prove the surjectivity. By theorem 2.1.2, for
f € A* there exists T € D such that e=™T(z) € S (R}), for all £ € R and
L(T)(&+in) = f(€+in). Because e *T(z) € 8™ (R?), for all £ € R? we obtain
that cosh(z€)T(z) € S (RZ) for all £ € R Let k > 0. By the considerations in

the proof of a), if take ) € R%, j = 1,....d, such that =) = 0, for j # ¢ and
-1

a:§ = kd, we obtain that cosh(k|z|) (Z cosh (2z Uy > € Dj«. Obviously

Dj~ C Oj,. Hence

cosh(k|z|)T(x)

= cosh(k|z|) (Z cosh (22 ) Zcosh (22Y)2) T(z) € S™(R?).
=1

We obtain T' € B* and the surjectivity is proved.

Now we will prove ¢). By a), S * sl is well defined for S € B:. Let ¢ € D*
is such that 0 <1 <1, ¢¥(z) = 1 when |z| < 1 and ¢(x) = 0 when |z| > 2. Put
V;(x) = (z/j) for j € Z,. Because the convolution of S and es*l* exists,

<S e’ <p> = <<g0 * esHQ) S, 1> = ]lglolo < (gp * es|'|2> S, wj> , (5.20)

for all o € D*. Fix j € Z, and observe that <<gp x 5P ) S, > - <(¢j ) s\-l2,¢>.
Let I € N be so large such that supp; € {z € R y(z) = 1}. We have
((pret®)s.) = (0 e™) ©@9)(©),u6))
= (e [ e an(,)0), () )
= (eI e 4, 9) (€), (e (a))
= (e (&I e (1,9)(€), va(©)) ola))
= (e (IS, 04(6)) (@)

where the third and the fourth equality follow from theorem 1.2.9. We obtain

<(ij) s e gp> = <es|’”‘2 <es‘5|26_2“55(§), wj(f)> ,go(x)>, for all ¢ € D* and all
Jj € Z4. Hence

ol (P 255 (6), () ) = ((038) ) (@) (5.21)
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in D™ (RY), for all j € Z,. Because

<€s|£‘267285E£S(€)’wj(£)> — <¢j(§)8(§),eslé‘2672”£> ,

for each fixed r € R? theorem 3.10 of [28] implies that the left hand side of
(5.21) is an element of £* (RZ). By (5.20), the right hand side of (5.21) tends to

S x el in D*. Because S € Bz, 1’8 € B* and by b), for each fixed z,y € R4,
e~ @tiw) esl’ g ¢ DIL(fW”), resp. e~ (@) esl® g ¢ @IL{IM”}, the Laplace transform of
eI S exists and £ (esWS) (2s7) = <es‘5|26*23x55(§), 15>, for every fixed z € R
So, the right hand side of (5.21) tends to e*"* £ (es|'|25> (2sz) pointwise. We will

prove that the convergence holds in D™*. Let K be a fixed compact subset of R%.
With similar technic as in the proof of lemma 5.2.1, we can find large enough k£ > 0
(k depends on K) such that e~ (cosh(k|¢])) ™' € S* (RE), for each x € K and

the set {e%*" (cosh(k| - N~ f S* (Rg) ‘x € K} is bounded subset of S* (Rg).
Because S € B, cosh(k| - |)e*I"S € §*. Hence

(elefe2ues(6), (€)= (€627 (cosh(kIg])) " cosh(kIE])S(€), v5(6) )
— (e cosh(k[€])S(€), 2 (cosh(KIED) ™ 5(€) ).
By the way we defined v;, one easily verifies that
{e7 (cosh(k| - )" vy()| 2 € K, j € 2.}
is a bounded subset of &* (Rg). From this it follows that there exists Cx > 0

(Cx depends on K) such that [esl*!” <es‘5|26_2”55(§),%(£)> < Ck, for all z €
K, j € Z.. Because el <€s|£|2€_25$55(f),w]’(€)> tends to e’ <e$“|25> (2sz)

pointwise, by the above, the convergence also holds in D™* (Rg). Hence, we obtain
el L (es|"25> (2sz) = <S*es"|2> (z). Now, b) implies S * el € A*. The
bijectivity of S — S x esI” follows from the bijectivity of £ : B* — A*. O

5.3 A New Class of Anti-Wick Operators

Theorem 5.2.1, along with (5.2), allows us to define Anti-Wick operators A, :
D* (R?) — D" (R?), when a is not necessary in 8" (R*!). If a € B*, (and only
then) b(z,&) = 74 (a(-, -) * e""z_'"z) (x,€) exists and is an element of A*,. If

this b is such that, for every y € D* (de) the integral

(2—71r)d /Rd /Rd /Rd RICENI (x_;_y7§> X(z,y)dzdyd (5.22)

is well defined as oscillatory integral and (K}, x) defined as the above integral is
well defined ultradistributions, then the operator associated to that kernel (see
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theorem 1.2.9) ¢ — (Ky(z,y), ¢(y)), D* (RY) — D™ (R?), can be called the Anti-
Wick operator with symbol a (because of proposition 5.1.3, this is appropriate
generalisation of Anti-Wick operators). The next theorem gives an example of
such b.

Theorem 5.3.1. Let a € B* is such that b, given by (5.2), satisfies the following
condition: for every K CC R there exists ¥ > 0 such that there exist m,C; > 0,
resp. there exist Cy; > 0 and (k,) € R, (in both cases Cy and m, resp. Cy and (k)
depend on K ) such that

b(x + i, €)| < CLeMMED resp. |b(x 4 in, &) < CreMw D) (5.23)

forallx € K, |n| <7, £ € R Then (5.22) is oscillatory integral and Ky, defined
by (5.22), is well defined ultradistribution.

Proof. Under the conditions in the theorem, Cauchy integral formula yields
|D2b(x,€)| < Cal/rieM ™D resp. |D2b(x, )| < CalfrileMn €D,

for all z € K, £ € R? (r; and C depend on K). Let U be an arbitrary bounded

open subset of R**. Then V = {t € RY|t = (z +y)/2, (z,y) € U} is a bounded

set in R?, hence K = V is compact set. For this K, let m, resp. (k) be as in

(5.23). Take P, resp. P, as in proposition 2.1.1, such that |P(€)] > CoeMriEh,

resp. }Plp (5)! > CheM(© for some Cy > 0, such that eMmlel) =M (rieh g < oo,
R4

resp. / Mo (€D =N (€D J¢ < 0. We can define Ky as

Rd

B 1 et@—y)¢ T +y
<Kb,U7 X> - (27T)d /Riid -Pl(f) Pl(Dy) (b ( 9 75) X<I7y)) dl'dyd57

for y € DWM)(U) in the (M,) case, resp. the same but with P, in place of P,
in the {M,} case and then one easily checks that K € D™*(U). Moreover, if
1 € D* (Rd) is such that ¥(§) = 1 in a neighbourhood of 0, for 6 > 0, we can
define Ky, 75 € D*(U) as

1 )
(Koo X) = o | et (x . y,£> X, y)dadyde.

Then Kypyps — Kppy, when 6 — 0%, in D*(U). Combining these results, we
obtain that the definition of Ky does not depend on P resp. Fj,, when these
are appropriately chosen (see the above discussion) and on the choice of ¢ with
the above properties. Moreover, when U; and U, are two bounded open sets
in R?? with nonempty intersection, it follows that Ky, = Kpvyuv, = Ky, in
D*(U;NUs,). Because D™ is a sheaf, K, can be defined as an element of D’ (R*?)
as the oscillatory integral (5.22). O
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Example 5.3.1. Interesting such symbols a are given by el|xl2P(§), where [ <
1 and P(§) is an ultrapolynomial of class *. In this case, obviously a € B*;.
Moreover

b §) = g L () (<20, -26)

™

N O G e I p(¢ — p)d
- oai\1-1) ° " G

In the (M,) case, there exist m,C; > 0 such that |P(¢ —n)| < CreMmlEDeMmin),
resp. in the {M,} case, there exist C; > 0 and (k,) € MR, such that |P({ —n)| <
C1eMNen (D eNip (D (in the (M) case this estimate follows from proposition 4.5 of
26], in the {M,} case the estimate easily follows by combining proposition 4.5 of
[26] and lemma 3.4 of [28]). Hence, b satisfies the conditions in the above theorem
and b* can be the defined as the operator corresponding to the kernel K defined
as the oscillatory integral (5.22).
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