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Abstract

This thesis is dedicated to the problems arising in the mathematical modelling of polyatomic gases,
and mixtures of monatomic and polyatomic gases, in the context of the kinetic theory of gases and
fluid mechanics. The kinetic theory of gases (Boltzmann equation and its variants) is a very active
field of applied mathematics. At the same time, continuum theories of physics have quite similar aims
and very often treat the same problems as kinetic theory, although from a different point of view.
The issues related to their mutual relationships are rather involved and call for the application of
mathematical techniques, as well as elaborate physical explanations of modeling problems.

Kinetic theory is a way of modelling a system that consists in a huge number of particles, thanks
to the concept of distribution function. The distribution function is defined on the so-called phase
space, constituted of typical macroscopic variables, time and position in space, but also of microscopic
variables which describe the state of the particles, such as velocity. It aims at describing species (each
species when mixtures are concerned) of the gas. The main equation of kinetic theory is the Boltzmann
equation. It determines the evolution of the distribution function and introduces the collision operator
as a measure of change of the distribution function (due to collisions with other particles). With the
help of the distribution function and the corresponding Boltzmann equation, the balance laws for the
usual macroscopic observable quantities, such as density, momentum and energy, can be obtained in
suitable limits.

For one single monatomic gas, a large literature is available on very different topics of kinetic
theory and fluid mechanics. Some aspects are recalled in the introduction part of the thesis. However,
in the framework of gaseous mixtures, the models are much more intricate. It is indeed necessary to
treat systems of Boltzmann-like equations, rather than one single equation, with multi-species collision
kernels (describing the cross interactions between the different distribution functions). The complexity
of the models grows dramatically if exchanges of internal energy and chemical reactions are taken into
account. The derivation of macroscopic equations from kinetic models remains a very active topic
for mixtures, both at the mathematical level and for deducing relevant macroscopic equations based
on the modelling of microscopic binary interactions. The aim of this thesis is to establish reliable
mathematical models for non-equilibrium processes in polyatomic gases and mixture of monoatomic
or polyatomic gases starting from the kinetic theory of gases, that will be compared with models of
extended thermodynamics.

Considering polyatomic gases, our aim is to derive a macroscopic model for 14 moments starting
from kinetic theory. At the microscopic level, one single parameter is introduced and it becomes an
additional argument of the distribution function that enables to recover the proper equation of state
at the macroscopic level. We first propose two independent hierarchies of the moment equations for
polyatomic gases, which allow to obtain conservation laws for mass density, momentum and total
energy of a gas. Such hierarchies are usually truncated at some order. A method which provides an
appropriate solution to the closure problem when one performs such a truncation is the maximization
of entropy method. We formulate a variational problem for polyatomic gases, and give the solution
for any number of moments. We explore in detail the physical case of 14 moments, in which the
appropriate approximative distribution function yields the closed system, that is further compared
with the model arising from extended thermodynamics. In particular, we compute production terms,
and obtain the explicit expressions for relaxation times in terms of two parameters that can be fitted
in order to obtain a correct value of the Prandtl number and/or temperature dependence of viscosity.
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When dealing with mixtures of polyatomic gases, the hydrodynamic approximation in which col-
lisions between molecules of the same component of a mixture are much more frequent than collisions
between the molecules of different components is studied. It leads to the so-called maxwellization
of a distribution function: the distribution function of each species converges towards a Maxwellian
distribution function, each with its own bulk velocity and temperature. With the help of this specified
distribution function, balance laws for mass density, momentum and energy can be obtained for each
component of the mixture, that can be compared with the multitemperature models for mixtures of
Eulerian fluids coming out of extended thermodynamics. In particular, if we restrict the attention to
processes which occur in the neighborhood of the average velocity and temperature of the mixture, the
phenomenological coefficients of extended thermodynamics can be determined from the source terms
provided by the kinetic theory.

Regarding mixtures of monatomic gases, we discuss the diffusion asymptotics of the Boltzmann
equations. It amounts to scale the macroscopic arguments of the distribution function - time and space
position - with the help of a small parameter interpreted as the mean free path. This asymptotics
corresponds to a slow dynamics in space and an even slower one in time. The Hilbert expansion of
each distribution function yields two equations. The first equation allows to state that the mixture is
close to equilibrium. The second equation is a linear functional equation in the velocity variable. We
prove the existence of a solution to this equation. On the one hand, when molecular masses are equal,
the techniques introduced by Grad in order to prove the compactness of one part of the kernel can be
extended to the multispecies case. On the other hand, we propose a new approach based on a change
of variables in velocities for the same issue, which only holds when molecular masses are different.
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Cette thèse est dédiée aux problèmes de la modélisation mathématique des gaz polyatomiques
et des mélanges de gaz monoatomique et polyatomique, dans le contexte de la théorie cinétique des
gaz et de la mécanique des fluides. La théorie cinétique des gaz (l’équation de Boltzmann et ses
variantes) est un domaine très actif des mathématiques appliquées. En même temps, les théories de
la physique des milieux continus ont des objectifs assez similaires et traitent très souvent les mêmes
problèmes que la théorie cinétique, bien que d’un point de vue différent. Les questions relatives à leurs
relations mutuelles sont complexes et nécessitent l’application de techniques mathématiques, ainsi que
des explications heuristiques.

La théorie cinétique permet de modéliser un système constitué d’un grand nombre de particules,
grâce à la notion de fonction de distribution. La fonction de distribution est définie sur l’espace des
phases, constitué de variables macroscopiques d’une part, comme le temps et la position dans l’espace,
mais aussi d’autre part des variables microscopiques qui décrivent l’état des particules, telles que la
vitesse. Elle vise à décrire les espèces (chacune des espèces lorsque des mélanges sont concernés) du gaz.
Une équation essentielle de la théorie cinétique est l’équation de Boltzmann. Elle détermine l’évolution
de la fonction de distribution et fait appel à un opérateur de collision qui mesure la variation de la
fonction de distribution (due aux collisions avec d’autres particules). Grâce à l’équation de Boltzmann,
les lois pour les quantités macroscopiquement observables habituelles, telles que la densité, le quantité
de mouvement et l’énergie, peuvent être obtenus dans des limites appropriées.

Pour un gaz monoatomique, une vaste littérature est disponible sur des sujets reliant la théorie
cinétique et la mécanique des fluides. Certains aspects sont rappelés dans la partie introductive de la
thèse. Cependant, dans le cadre des mélanges gazeux, les modèles sont beaucoup plus complexes . Il
est en effet nécessaire de traiter des systèmes d’équations de Boltzmann, plutôt qu’une seule équation,
avec des noyaux de collision multi-espèces (qui décrivent les interactions entre les différentes fonctions
de distribution). La complexité des modèles augmente considérablement si l’échange d’énergie et des
réactions chimiques sont de plus pris en compte. La dérivation des équations macroscopiques à par-
tir de modèles cinétiques reste un sujet très actif pour les mélanges, tant au niveau mathématique
que pour déduire des équations macroscopiques par une modélisation des interactions binaires micro-
scopiques. L’objectif de cette thèse est d’établir des modèles mathématiques pour les processus hors
équilibre dans les gaz polyatomiques et les mélanges de gaz monoatomiques ou polyatomiques, à partir
de la théorie cinétique des gaz, qui sont comparés ensuite avec les modèles de la thermodynamique
étendue.

En ce qui concerne les gaz polyatomiques, notre objectif est d’obtenir un modèle macroscopique
de 14 moments à partir de la théorie cinétique. Au niveau microscopique, un seul paramètre est
introduit dans la fonction de distribution, qui permet de récupérer l’équation d’état au niveau macro-
scopique. D’abord, nous proposons deux hiérarchies distinctes formées d’équations de moments pour
les gaz polyatomiques, qui permettent d’obtenir des lois de conservation de la densité de masse, de
la quantité de mouvement et de l’énergie totale du gaz. Ces hiérarchies sont généralement coupées à
un certain ordre. Une méthode qui fournit une solution appropriée au problème de fermeture lorsque
l’on effectue une telle troncature est la méthode de la maximisation d’entropie. Nous formulons un
problème variationnel pour les gaz polyatomiques, et donnons la solution pour n’importe quel nombre
de moments. Nous explorons en détail le cas physique de 14 moments, dans lequel la fonction de
distribution approximative fournit le système fermé, qui est ensuite comparé avec les modèles venant
de la thermodynamique étendue. En particulier, nous calculons les termes sources, et nous obtenons
les expressions explicites pour les temps de relaxation en fonction de deux paramètres qui peuvent être
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fixés afin d’obtenir une valeur correcte du nombre de Prandtl et/ou de la dépendance de la viscosité
en température.

On étudie un mélange de gaz polyatomiques dans lequel les collisions entre les molécules d’un
même composant du mélange sont beaucoup plus fréquentes que les collisions entre les molécules de
composants différents. L’asymptotique correspondante conduit à la ”maxwellization” des fonctions de
distribution: la fonction de distribution de chaque espèce converge vers une Maxwellienne, chacune
avec sa propre vitesse moyenne et température. Grâce à la spécification de cette fonction de distribu-
tion, les lois pour la densité de masse, de quantité de mouvement et d’énergie peuvent être obtenues
pour chaque composant du mélange, qui peut alors être comparé avec les modèles multitempératures
pour les mélanges de fluides d’Euler provenant de la thermodynamique étendue. En particulier, si nous
restreignons notre attention aux processus pour lesquels les vitesses et températures restent proches
de la vitesse moyenne et de la température moyenne du mélange, les coefficients phénoménologiques
de la thermodynamique étendue peuvent être déterminés à partir des termes sources fournies par la
théorie cinétique.

On présente pour les mélanges de gaz monoatomiques l’asymptotique diffusive des équations de
Boltzmann. Elle s’obtient en effectuant un rescaling des arguments de la fonction de distribution – le
temps et la position en espace – avec l’aide d’un petit paramètre interprété comme le libre parcours
moyen. Cette asymptotique correspond à une dynamique lente dans l’espace et encore plus lente dans
le temps. Le développement de Hilbert de chaque fonction de distribution donne deux équations. La
première équation permet d’affirmer que le mélange est proche de l’équilibre. La deuxième équation est
une équation fonctionnelle linéaire en la variable de vitesse. Nous prouvons l’existence d’une solution
de cette équation. D’une part, lorsque les masses moléculaires sont égales, les techniques introduites
par Grad afin de prouver la compacité d’une partie du noyau peuvent être étendues au cas de plusieurs
espèces. D’autre part, nous proposons une nouvelle approche basée sur un changement de variables
des vitesses dans le même but, mais qui est valable lorsque les masses moléculaires sont différentes.



Извод

Ова дисертациjа jе посвећена проблемима математичког моделирања вишеатомских гасова,
као и мешавина jедноатомских и вишеатомских гасова у оквиру кинетичке теориjе гасова и меха-
нике флуида. Кинетичка теориjа гасова (Болцманова jедначина и њене модификациjе) предста-
вља веома активно поље истраживања на пољу примењене математике. У исто време, физичке
теориjе коjе материjу третираjу као непрекидну средину имаjу сличне циљеве истраживања као
кинетичка теориjа гасова и врло често анализираjу истоветне проблеме, али им приступаjу на
други начин. Питања њиховог међусобног односа су веома дубока и захтеваjу примену посебних
математичких метода, као и детаљно обjашњење физичких аспеката моделирања.

Кинетичка теориjа jе начин моделирања система коjи се састоjи од великог броjа честица
помоћу концепта функциjе расподеле. Функциjа расподеле jе дефинисана на такозваном фазном
простору коjи се састоjи од уобичаjених макроскопских променљивих, времена и простора, али
и од микроскопских променљивих коjе описуjу микроскопско стање честице, као што jе брзина
честице. Она има за циљ да опише честице (сваку од компонената када се посматраjу мешавине)
гаса. Основна jедначина кинетичке теориjе jе Болцманова jедначина. Она одређуjе временску ево-
луциjу функциjе расподеле и уводи колизиони оператор као меру промене функциjе расподеле
(коjа се мења због судара честица). Захваљуjући функциjи расподеле и одговараjућоj Болцма-
новоj jедначини, могуће jе извести jедначине баланса уобичаjених макроскопских величина, као
што су густина, количина кретања и енергиjа, и то у погодним граничним процесима.

За jеднокомпонентни и jедноатомски гас jе доступна широка литература на врло различите
теме кинетичке теориjе и механике флуида. Неки аспекти се и наводе у уводном делу дисерта-
циjе. Међутим, у оквиру гасних мешавина модели су далеко сложениjи. Неопходно jе узети у
обзир систем Болцманових jедначина, а не само jедну jедначину, са вишекомпонентним колизио-
ним операторима (коjи описуjу интеракциjу између различитих функциjа расподела). Сложеност
модела се драматично повећава уколико се уведу промене унутрашње енергиjе или хемиjске ре-
акциjе. Извођење макроскопских jедначина из кинетичких модела представља веома атрактивну
тему у случаjу мешавина, како на математичком нивоу, тако и за одређивање релевантних ма-
кроскопских jедначина на основу моделирања микроскопских бинарних интеракциjа. Циљ ове
дисертациjе jесте да формира поуздане математичке моделе за неравнотежне процесе у случаjу
вишеатомских гасова и мешавина jедноатомских и вишеатомских гасова полазећи од кинетичке
теориjе, коjи ће бити поређени са моделима проширене термодинамике.

Посматраjући вишеатомске гасове, циљ нам jе да формирамо макроскопски модел за 14 мо-
мента полазећи од кинетичке теориjе гасова. На микроскопском нивоу се уводи jедан параметар
коjи постаjе додатни аргумент функциjе расподеле и коjи омогућава добиjање jедначине стања
на макроскопском нивоу. Наjпре предлажемо конструисање две независне хиjерархиjе jедначина
момената за вишеатомске гасове, што омогућава репродуковање закона одржања масе, количине
кретања и укупне енергиjе гаса. Ове хиjерархиjе се обично одсецаjу на неком реду момената. Jедна
од метода коjа пружа адекватно решење за затварање ситема формираног одсецањем хиjерархи-
jе момената jесте принцип максимума ентропиjе. Наиме, формулишемо вариjациони проблем за
вишеатомске гасове и изводимо решење за било коjи ред момената. Потом проучавамо случаj
14 момената у ком се на основу одговараjуће приближне функциjе расподеле добиjа затворени
систем коjи се даље пореди са моделом добиjеним у оквиру проширене термодинамике. Такође,
израчунавамо генеративне чланове, на основу коjих добиjамо експлицитне изразе за времена
релаксациjе у зависности од два параметра, чиjа вредност може да се бира тако да се добиjе
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коректна вредност Прантловог броjа и/или зависност вискозности од температуре.

Хидродинамичка апроксимациjа у коjоj jе учестаност судара молекула исте компоненте мно-
го већа од учестаности судара молекула различитих компоненти jе анализирана за мешавине
вишеатомских гасова. Она доводи до тзв. максвелизациjе функциjе расподеле: функциjа распо-
деле сваке компоненте мешавине формално конвергира ка Максвеловоj расподели са различитим
брзинама и температурама. Одређивањем функциjе расподеле jедначине баланса густине, коли-
чине кретања и енергиjе се могу извести за сваку компоненту мешавине, а потом упоредити са
вишетемпературним моделом за мешавине Оjлеровских флуида проширене термодинамике. Уко-
лико усмеримо нашу пажњу на процесе коjи се одвиjаjу у околини средње брзине и температуре
мешавине можемо одредити феноменолошке коефициjенте проширене термодинамике на основу
генеративних чланова кинетичке теориjе.

Што се тиче мешавина jедноатомских гасова, дискутуjемо дифузиону асимптотику Болцмано-
вих jедначина. Наиме, макроскопски аргументи функциjе расподеле - време и положаj у простору
- се скалираjу помоћу малог параметра коjи се интерпретира као дужина слободног пута. Ова
асимптотика одговара спороj динамици у простору и jош спориjоj у времену. Хилбертов развоj
сваке функциjе расподеле нам даjе две jедначине. Прва jедначина нам омогућава да кажемо да jе
мешавина у стању блиско равнотежном. Друга jедначина jе линеарна функционална jедначина по
брзини. Доказуjемо егзистенциjу решења ове jедначине. Са jедне стране, када су масе молекула
jеднаке, технике, коjе jе увео Град да би доказао компактност оператора у jеднокомпонентном
случаjу, могу да се прошире и на вишекомпонентни случаj. Са друге стране, предлажемо нови
приступ заснован на смени променљивих, коjи jе валидан само када су масе молекула различите.
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Introduction

The (collisional) kinetic theory is a part of nonequilibrium statistical physics. It was introduced
by Boltzmann at the end of the nineteenth century. It provides an alternative to a deterministic, very
detailed, approach, in which each molecule i of a gas is considered, together with its position xi and
velocity vi, and t 7→ (xi(t),vi(t))i=1,...,N solves a system of differential equations, essentially Newton’s
law (we assume that particles obey the laws of classical mechanics - not relativistic, neither quantum).
Apart from the impossibility of prescribing initial data (xi(0),vi(0))i=1,...,N for each molecule, such
a description would yield an enormous number (N ∼ 1026 in one cubic meter at normal pressure) of
equations. The solution would be so detailed that it would be impossible to grasp all the information.
Kinetic theory provides a less complete statistical description of the behavior of the gas.

The objective of kinetic theory is the modelling of a gas through the concept of distribution func-
tion. Such a statistical approach makes sense if the number of particles is sufficiently large, so that the
gas can be considered as a continuous medium. In short, the state of the gas (in the case of mixture of
gases, each of its components) is described by a distribution function f that is a nonnegative function
defined on the phase space. This space consists of macroscopic variables (such as time t and position in
the physical space x) but also of variables of microscopic nature ξ that describe the particle itself (for
example, the velocity of the particle) i.e. f : (t,x, ξ) 7→ f (t,x, ξ) ≥ 0, where (t,x, ξ) ∈ R+ × RN × Ω,
and Ω ⊆ Rdim(ξ). Then f(t,x, ξ)dxdξ quantifies the number of particles in the element dx dξ of phase
space in the vicinity of the point (x, ξ) at time t.

Once the distribution function is defined as the main object of study of kinetic theory, one wants
to understand its evolution. To that purpose, interactions between particles need to be taken into
account. In order to do so, several assumptions are considered:

(1) We assume that the ratio of the mean free path of the molecules (distance traversed by a
molecule between two collisions) to a typical macroscopic length is of order 1: λ ∼ L, where
λ is the mean free path, and L is a typical macroscopic length.

(2) We assume that particles interact via binary collisions. This means that the effect of interac-
tions involving more than two particles can be neglected.

(3) Collisions are assumed localized both in space and time, meaning that they are brief events
which occur at a given position and a given time.

(4) We also assume that collisions are microreversible. This means that the microscopic dynamics
underlying the collision is time-reversible.

(5) Finally, we introduce a molecular chaos assumption, meaning that collisions involve only
uncorrelated particles. In particular, a couple of particles which have already collided are
expected not to re-collide in the future.

The previous assumptions can be rigorously proven (on a small interval of time), in the case of one
single monatomic gas, under a suitable scaling in which the mean free path of a molecule is of the
order of a characteristic length [46, 24, 32].

17
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Under the previous assumptions, the appropriate model for the evolution of the distribution func-
tion is the Boltzmann equation, precisely described in the sequel of this thesis.

The distribution function is not a directly observable object. It even gives an often unnecessarily
detailed description of the gas. Standard experiments enable to obtain only macroscopic quantities,
such as density, velocity, energy, or pressure tensor, heat flux of the gas. The distribution function is
related to these macroscopic quantities by an averaging over the microscopic state of the molecules ξ
against specific functions of ξ. As a consequence, macroscopic equations (for example Euler or Navier-
Stokes like equations) for a monatomic gas can be derived from the Boltzmann equation at the formal
level [25, 10, 11, 12], and in some cases rigourously [51, 43, 35].

For a monatomic gas, the Euler equations of compressible gases are obtained when a local equi-
librium is reached for the distribution function [25]. When dissipative effects are taken into account
(constitutive equations for the stress tensor and the heat flux as gradients of the velocity and temper-
ature of the gas are introduced), the Navier-Stokes equations of compressible gases are obtained [25].
These equations represent a good model when the gas is close to a local equilibrium, but they fail in
the description of rapidly changing processes occurring in rarefied gases.

When nonequilibrium phenomena are studied, as in rarefied gas dynamics, the need for a kinetic
description arises.

The level of rarefaction of a medium can be expressed in terms of the Knudsen number. The
Knudsen number Kn is defined as a ratio of length λ of the mean free path and the macroscopic
length L characteristic of the process under consideration, i.e. Kn = λ/L. Typically, Navier-Stokes
equations are valid as long as Kn � 1. This condition fails to hold when the relevant length scale
L becomes comparable to the mean free path λ. This can happen either when λ becomes large, or
when L becomes small. A typical example of a gas with large mean free path is a high altitude flight
in the upper atmosphere. On the other hand, miniaturization produces smaller and smaller devices –
for example micro-electro-mechanical systems, where the length L approaches the mean free path λ.
More precisely, with help of the Knudsen number, flow regimes can be classified [57, 44]:

• Kn . 0.01 – the hydrodynamic regime, which is very well described by means of macroscopic
theory (for example Navier-Stokes equations). When Kn → 0, which corresponds to the
hydrodynamic regime without diffusion, even the Euler equations represent a good model,
provided that suitable boundary conditions are introduced.

• 0.01 . Kn . 0.1 – the slip flow regime, where Navier-Stokes equations or Burnett equations,
both supplied with slip boundary conditions, can be taken as models.

• 0.1 . Kn . 10 – the transition regime where the gas must be described in greater detail
by extended macroscopic models. The models that can be used in this regime include the
moment methods [57].

• Kn & 10 – free molecular flow, where the flow is dominated by wall/particle interactions and
Boltzmann equation has to be used [23].

Even in the hydrodynamic regime, where macroscopic equations are already good models, the kinetic
theory plays an important role. Namely, one of its goals is to compute the coefficients that appear in
the equations, and that are of phenomenological nature at the macroscopic level. However, the most
interesting application of kinetic theory is in the description of processes which occur when the gas is
outside of the hydrodynamic regime (with Kn & 0.01).

This doctoral dissertation deals with the establishment of reliable mathematical models for non-
equilibrium processes in rarefied polyatomic and mixtures of polyatomic gases by the methods of the
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kinetic theory of gases. Those models will be compared to the models based on extended thermody-
namics.

Part 1 discusses the kinetic models coming out of the existing literature that we use throughout
the dissertation.

We first recall the basis of the kinetic modelling in the case of one monatomic gas [23]. In this
case, the variable that describes the microscopic state of the particles is the velocity of the particles v
(ξ = v). Moreover, conservation laws of momentum and kinetic energy hold during a collision process
of monatomic molecules. As a consequence, the collision transformation can be easily formulated. This
makes possible a simple definition of the collision operator and of the corresponding Boltzmann equa-
tion. The weak form of the collision operator is presented, enabling the derivation of the conservation
laws at the macroscopic level. The equilibrium distribution function is determined by means of the
H−theorem, which is a manifestation of the second law of thermodynamics.

Then the kinetic model corresponding to a mixture of monatomic gases is briefly presented. In
this case, each species Ai, 1 ≤ i ≤ s, of a mixture is described by its distribution function fi(t,x,v),
i = 1, . . . , s. We describe the differences with respect to mono-species gases, that mainly appear be-
cause the masses of the different molecules can differ.

Next, we deal with the modelling by kinetic theory of polyatomic gases. The main feature of a
polyatomic gas is the presence of additional degrees of freedom (other than the translational ones).
This phenomenon can be captured in a variety of ways [33]. We consider the case in which the ad-
ditional degrees of freedom are modelled by means of one single continuous (that is, non discrete)
parameter I ∈ R+, the so-called microscopic internal energy of a molecule. This parameter becomes
a variable of the distribution function, i.e. ξ = (v, I). Moreover, it appears in the total energy of
the system consisting of two colliding particles. The collision transformation is obtained by following
the Borgnakke-Larsen procedure [20], and we formulate it in both ω− and σ− notation [59]. One
of the main goals of the modelling of polyatomic gases is to recover the proper equation of state at
the macroscopic level. In order to do so, we introduce a weight function ϕ(I) which will follow all
integrations with respect to the microscopic state of the particles [22]. We define then the collision
operator and its weak forms, together with the Boltzmann equation. The proper choice of the weight
function ϕ(I) leads to the derivation at the formal level of the conservation laws for a polyatomic gas
[29]. Then, the H−theorem is also presented in this case.

Finally, a kinetic model for mixtures of polyatomic gases is formulated: we consider first the colli-
sion process at the microscopic level, then we define the collision operator in a weighted framework and
its weak forms, which help to write the Boltzmann equation and formulate the macroscopic conserva-
tion laws [30]. The equilibrium properties are discussed and the H-theorem is proven. We indicate
here that another possibility in the modelling of such gases is to consider the weight as a part of the
distribution functions. This approach has been developed in [22] in the context of polyatomic gases.
Following this lead, we established a kinetic model for a mixture of polyatomic gases in the conference
paper [2]:

Laurent Boudin, Bérénice Grec, Milana Pavić-Čolić, and Francesco Salvarani. A kinetic model for
polytropic gases with internal energy. PAMM, 13 (1):353–354, 2013.

This model provides a L2 framework in both variables v and I, well suited for performing a mathe-
matical study of the diffusion asymptotics, as it was done in [1] for a model without energy exchange.
The results of [2] are not presented in this thesis.

Part 2 deals with the presentation of the results which were obtained during the preparation of
the PhD thesis.
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Chapter 2 deals with the establishment of moment equations for rarefied polyatomic gases and
application of the maximum entropy principle for such gases. It is the extended version of the papers
[3] and [4]:

Milana Pavić, Tommaso Ruggeri and Srboljub Simić. Maximum entropy principle for rarefied poly-
atomic gases. Phys. A, 392 (6): 1302–1317, 2013.

Milana Pavić-Čolić and Srboljub Simić. Moment equations for polyatomic gases. Acta Appl. Math.,
ONline ISSn 1572-9036, DOI 10.1007/s10440-014-9928-6, 2014.

In a monatomic gas, starting from the Boltzmann equation for f := f(t,x,v), that is

∂tf + v · ∇x = Q(f, f),

where Q is a collision kernel, it is possible to construct macroscopic equations of balance type (moment
equations) by means of the integration with respect to the velocity variable against monomials of the
velocity:

(1) ∂t
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, ik ∈ {1, . . . 3}, ∀ k ∈ N,

where

F
(n)
i1i2...in

=

∫
R3

vi1vi2 . . . vin f dv, P
(n)
i1i2...in

=

∫
R3

vi1vi2 . . . vin Q(f, f) dv.

These equations fit into a hierarchical order: the flux in the moment equation of tensorial order n
becomes the density in the moment equation of order (n + 1). The first moments are interpreted
as usual macroscopic quantities: for example, F (0), F (1)

i1
and F

(2)
i1i2

are respectively identified as the
macroscopic density, the momentum density and the momentum flux. Moreover, in a monatomic gas,
the trace of F (2)

i1i2
(
∑N

k=1 F
(2)
kk ) is interpreted as the total energy density, because in a monatomic gas

there is a link between the internal energy density and the trace of the pressure tensor. The collision
invariants (namely, functions 1,v, 1

2 |v|
2) make the production terms vanish, which enables to recover

conservation laws of the mass density, the momentum density and the energy density from (1)1, (1)2
and one half of the trace of (1)3, respectively.

In the case of polyatomic gases, when one wants to build moment equations and to keep their main
properties: (i) hierarchical order of the moment equations and (ii) possibility to recover conservation
laws; one faces new problems, because of the additional degrees of freedom. Indeed, the collision
invariants for a polyatomic gas (functions 1, v, m

2 |v|
2 + I) are not well-suited to the construction

of a hierarchy analogously to the case of one monatomic gas (that is, with the help of the velocities
only). However, moment equations can be generalized to polyatomic gases starting from the Boltzmann
equation for f := f(t,x,v, I)

∂tf + v · ∇x = Q(f, f),

where Q is a collision kernel, by constructing two independent hierarchies which we call “momentum”
and “energy” hierarchies [3]. The “momentum” hierarchy is just a polyatomic version of the usual
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hierarchy for monatomic gases:

(2) ∂tF +
3∑
j=1

∂xjFj = P, with F =
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...

F
(n)
i1i2...in
...


, F

(n)
i1i2...in

=

∫∫
R3×R+

vi1vi2 . . . vin f ϕ(I)dI dv,

while the “energy” hierarchy starts with the energy collisional invariant and proceeds with the usual
multiplication by monomials of the velocity:
(3)

∂tG+
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)
vk1 . . . vkmf ϕ(I)dI dv.

Here, ϕ(I) is the weight function which enables to recover the energy law of polyatomic gases. For such
hierarchies, the two requirements hold: (i) the hierarchical structure is conserved, albeit separately for
the two hierarchies, and (ii) macroscopic equations (2)1, (2)2 respectively correspond to the conserva-
tion laws of the mass density and the momentum density, while (3)1 is identified as the conservation
law of the energy density.

The two hierarchies are then truncated at some order:
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for N ≥ 0 and M ≥ 2, where
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 f ϕ(I)dI dv.

Then, the fluxes F (N+1)
i1i2...iN j

and G(M+1)
k1...kM−2j

, as well as all non-vanishing production terms (P(N), N ≥ 2,
and Q(M), M ≥ 3) remain undetermined, and an unclosed system of equations is obtained.

We detail a computation which provides an appropriate solution to the closure problem, namely
the maximization of entropy. The maximum entropy principle used here is inspired by Boltzmann’s
recognition that entropy counts the number of microscopic states that correspond to a given macro-
scopic state. This macroscopic state can be described by moments of the distribution function. Then,
the maximum entropy principle states that the most likely distribution function (density of microscopic
states) is the one which maximizes the physical entropy subject to the constraints that suitable mo-
ments are prescribed. In other words, the approximate distribution function comes out as a solution



22 INTRODUCTION

of the following variational problem:

maxf h

s.t. F(N) =

∫∫
R3×R+


1
vi1
vi1vi2

...
vi1vi2 . . . viN

 f ϕ(I)dI dv,(4)
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R3×R+
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m
2 |v|

2 + I
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1
vk1
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vk1 . . . vkM−2

 f ϕ(I)dI dv.

Finally, the maximizer f̂ enables the computation of the undetermined fluxes and the non-vanishing
production terms. Consequently, the system of equations corresponding to the prescribed moments
F(N) and G(M) is closed.

For N = 1 and M = 2, the solution to the variational problem (4) is the local equilibrium
distribution function, and the corresponding macroscopic equations are the standard Euler equations
of compressible polyatomic gases.

Then, we investigate the case when N = 2 and M = 3. We obtain in this way a non-equilibrium
distribution function, called 14 moments approximation. With the help of this distribution function,
we compute the fluxes F (3)

i1i2j
, G(4)

k1j
and the production terms P (2)

i1i2
, Q(3)

k1
for the simplest cross section

enabling to recover one macroscopic parameter for a simple monoatomic gas, namely the so-called
generalized VHS cross section

B(v,v∗, I, I∗, r, R,ω) = K 2Rs |v − v∗|2s
∣∣∣∣ω · v − v∗
|v − v∗|

∣∣∣∣ ,
with K being an appropriate dimensional constant and s satisfying the overall assumption s > −3

2 .
The following 14 moments system is obtained after a suitable linearization procedure:
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The production terms allow to obtain explicit expressions for the transport coefficients (the shear
viscosity, the bulk viscosity and the heat conductivity) as functions of the temperature with the coef-
ficients depending on the parameters α and s [4]. Then it is possible to fit the parameter s in order to
obtain a correct value of the Prandtl number or an agreement with the transport coefficients depen-
dence upon temperature, according to the experimental data for some specific polyatomic gases. For
example, for CO the choice s = 0.262 yields a good approximation for both the value of the Prandtl
number and temperature dependence of the shear viscosity.

Chapter 3 deals with the establishment of Euler-like equations involving macroscopic velocities
and temperatures which are different for each species, when mixtures of polyatomic gases are consid-
ered.

Such models are obtained from extended thermodynamics [54] by following Truesdell’s principles
[58]: (i) all properties of the mixture must be mathematical consequences of properties of the con-
stituents, (ii) to describe the motion of a constituent, we may in imagination isolate it from the rest
of the mixture, provided that we properly take into account for the actions of the other constituents
upon it, (iii) the motion of the mixture is governed by the same equations as is a single body; and by
exploiting the Galilean invariance and the entropy principle.

Our aim is to provide a derivation of those models by kinetic theory. We suppose that each species
Ai of the polyatomic gas mixture, 1 ≤ i ≤ s, is described by a distribution function fi := fi(t,x,v, I)
that satisfies the Boltzmann equation:

(5) ∂tfi + v · ∇xfi = Qii(fi, fi) +

s∑
j=1
j 6=i

Qij(fi, fj), 1 ≤ i ≤ s,

where Qii is a collision operator for molecules of the same species, and Qij is a collision operator for
molecules of different species. In order to obtain at the formal level a multivelocity and multitemper-
ature model, the following asymptotics of the Boltzmann equations (5) is considered: we assume that
the Maxwellisation steps for each species are of the same order, but that this scale is much shorter
than the equilibration scale between different species. In other words, introducing a small parameter
ε, we consider the following system of the Boltzmann equations:

∂tf
ε
i + v · ∇xf

ε
i =

1

ε
Qii(f

ε
i , f

ε
i ) +

s∑
j=1
j 6=i

Qij(f
ε
i , f

ε
j ), 1 ≤ i ≤ s.

Note that this scaling has also been proposed and studied in [16] in the case of mixtures of gases with
discrete internal energy and in [15] in the case of mixture of reactive monatomic gases. When ε tends
to zero, each f εi converges at the formal level towards the “mid-equilibrium” distribution function:

fEi =
ni

ζ0i(Ti)

(
m

2π k Ti

)N/2
e
− 1
kTi

(mi2 |v−ui|2+I)
,
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with macroscopic number density ni = ρi/mi, macroscopic velocity ui and temperature Ti depending
on the species and satisfying the system:

∂tρi +∇x · (ρi ui) = 0,

∂t (ρi ui) +∇x (ρi ui ⊗ ui + pi Id) = Ni,
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2 + ρiei

)
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)
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}
= Ei, i = 1, ..., s.

The formulation of the model consists in the computation of the production terms Ti and Zi, which
are (according to the second principle of Truesdell) a description of the mutual interactions of the
constituents. We perform a computation using the modified VHS model for the cross section, as
previously:

Bij (v,v∗, I, I∗, r, R,ω) = 2N−1KRsij |v − v∗|2sij
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|v − v∗|

∣∣∣∣N−2

,

where the parameter sij satisfies sij = sji and under the restriction sij > −N
2 (N > 1 being the

dimension of the space). Using the special functions, explicit formulas for the production terms are
obtained:
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N

2
+ 1;

N

2
+ 1;

(
2 k Ti
mi

+
2 k Tj
mj

)−1

|ui − uj |2
)
,

Ei =

(
mi

2 k Ti
+

mj

2 k Tj

)−1( mi

2 k Ti
ui +

mj

2 k Tj
uj

)
·Ti

+

s∑
j=1
j 6=i

Kninj
k2 Ti Tj

ζ0i(Ti)ζ0j (Tj)

2
∣∣SN−1

∣∣ ∣∣SN−2
∣∣

(N + 2sij + 2)

×
(

2 k Ti
mi

+
2 k Tj
mj

)sij
π

1−N
2 e
−
(

2 k Ti
mi

+
2 k Tj
mj

)−1

|ui−uj |2
Γ

[
N − 1

2

]
Γ

[
N + 2sij

2

]

×
{(

mj k Ti +mi k Tj
mi +mj

)(
µij

k Tj − k Ti
mikTj +mjkTi

+
mi −mj

(mi +mj)

1

(N + 2sij + 4)

)
× 1F̃1

(
N + 2sij + 2

2
;
N

2
;

(
2 k Ti
mi

+
2 k Tj
mj

)−1

|ui − uj |2
)

+

(
mj −mi

2 (mi +mj)

1

(N + 2sij + 4)
(k Ti + k Tj) +

1

2 (N + 2sij)
(k Tj − k Ti)

)
× 1F̃1

(
N + 2sij

2
;
N

2
;

(
2 k Ti
mi

+
2 k Tj
mj

)−1

|ui − uj |2
)}

.

Chapter 4 is devoted to the study of the diffusion asymptotics of the kinetic model for a mixture
of monatomic gases (labeled with Ai, 1 ≤ i ≤ s). It is the extended version of the paper [1]:

Laurent Boudin, Bérénice Grec, Milana Pavić, and Francesco Salvarani. Diffusion asymptotics of a
kinetic model for gaseous mixtures. Kinet. Relat. Models 6 (1): 137–157, 2013.
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Each species Ai of the mixture is described by the distribution function fi := fi(t,x,v). We
consider a set of Boltzmann equations:

∂tfi + v · ∇xfi =

s∑
j=1

Qij(fi, fj), ∀ i = 1, . . . , s,

where Qij is the collision kernel between species i and j. We perform a scaling of the time t and space
position x, with the help of the scaling parameter ε (related to the mean free path), in the following
way (this is the traditional scaling of diffusion, [26]):

t 7→ ε2t, x 7→ εx.

Then we introduce new distribution functions with scaled arguments:

fi

(
tε

ε2
,
xε

ε
,v

)
=: f εi (tε,xε,v) , ∀ i = 1, . . . , s,

and we assume

∂tεf
ε
i = O(1) and ∇xεf

ε
i = O(1), with f εi := f εi (tε,xε,v) , ∀ i = 1, . . . , s.

Hence, for any i, each distribution function f εi must solve the following scaled Boltzmann equation,
that is

(6) ε ∂tf
ε
i + v · ∇xf

ε
i =

1

ε

s∑
j=1

Qij(f
ε
i , f

ε
j ), t > 0, x ∈ R3, v ∈ R3.

We look for f εi as a formal power series in ε, replace f εi in (6) and identify the coefficients of the
same order in ε, as in [21] in the case of one monatomic gas. We only focus on the first two orders.

Thanks to the H−theorem, the order −1 of (6) allows to find the zero-th order term of the series,
that is the Maxwell functions ni(t,x)Mi(v), with macroscopic velocity assumed to be equal to 0
(diffusion limit), and temperature scaled to 1, where ni is the macroscopic density of the species Ai
and Mi(v) is the normalized, centred Maxwell function

Mi(v) =
(mi

2π

)3/2
e−

mi
2
|v|2 , ∀v ∈ R3.

Therefore, each distribution function f εi , 1 ≤ i ≤ s, can be seen as a perturbation of the equilibrium:

(7) f εi (t,x,v) = Mi(v)ni(t,x) + εMi(v)1/2 gi(t,x,v) + ..., ∀ t ≥ 0, ∀x,v ∈ R3.

We choose to put Mi(v)1/2 within the first-order term of f εi in (7), since it allows us to work in a plain
L2 framework in the variable v for gi.

Focusing on the zero-th order term in ε coming from (6), we obtain a linear functional equation in
the velocity variable, holding for any 1 ≤ i ≤ s,

(8) Mi
−1/2

s∑
j=1

(
niQij(Mi,M

1/2
j gj) + nj Qij(M

1/2
i gi,Mj)

)
= M

1/2
i (v · ∇xni) ,

and we wish to show that it can be solved in the natural functional framework. In contrast to the case
of one single monatomic gas, studied by Grad [39], where only one functional equation appears, for
a mixture of monatomic gases, we have a vector of unknown functions g = (g1, . . . , gs) satisfying the
system (8). For each component gi of g, we work in L2 (in the velocity variable), i.e. we investigate
the existence of a vector g satisfying (8) such that g ∈ L2(R3

v)s. In order to do so, we first rewrite (8)
in a more suitable form:

(9) (K − ν Id) g =
(
M

1/2
i (v · ∇xni)

)
1≤i≤s

,
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where we introduce the operator K with the i-th component of Kg

(10) [Kg]i (v) =
s∑
j=1

(mj

2π

)3/4
∫∫

R3×S2

Bij(ω,v − v∗) e
− 1

4
mi|v|2 e−

1
2
mj |v∗|2

×
[
ni

(mi

2π

)3/4 (
e

1
4
mj |v′∗|

2

gj(v
′
∗)− e

1
4
mj |v∗|2gj(v∗)

)
+nj

(mj

2π

)3/4
e

1
4
mi|v′|2 gi(v

′)

]
dω dv∗,

where Bij are the cross section appearing in Qij , and νi = νi(v) is defined by

(11) 0 < νi (v) =

s∑
j=1

nj

(mj

2π

)3/2
∫∫

R3×S2

e−
1
2
mj |v∗|2 Bij(ω,v − v∗) dω dv∗.

The main result of our work is given in the following Theorem.

Theorem. Suppose that the cross sections (Bij)1≤i,j≤s are positive functions satisfying

Bij(ω,V) ≤ a | sin θ| | cos θ|
(
|V|+ 1

|V|1−δ

)
, ∀ω ∈ S2, ∀V ∈ R3,

where a > 0, 0 < δ < 1 and θ is the angle between ω and V := v − v∗. If we assume that

(12)
s∑
i=1

ni(t,x) does not depend on x,

then, for any t, x, there exists g(t,x, ·) ∈ L2(R3
v)s satisfying (9), where K and ν are given by (10)–(11).

The proof of this Theorem relies on the application of the Fredholm alternative to the operator
K − ν Id, for which the compactness property in L2(R3

v)s of the operator K is required. Indeed, we
prove the following Proposition.

Proposition. The operator K, defined by (10), is compact from L2(R3
v)s to L2(R3

v)s.

The compactness of the operator K is proven by showing a uniform decay at infinity and an
equiintegrability property. It is crucial to dissociate the cases when mi 6= mj on the one hand, and
mi = mj on the other hand, because the proofs are quite different. Indeed, for any i, we introduce the
set

Mi := {1 ≤ j ≤ s | mj = mi} ,
which is non empty since i ∈ Mi, and write K as the sum of four operators K1,..., K4. For any i, the
i-th component of each K`g, 1 ≤ ` ≤ 4, is given by

[K1g]i (v) = −ni
s∑
j=1

(mimj

4π2

)3/4
∫∫

R3×S2

e−
1
4
mi|v|2 e−

1
4
mj |v∗|2 gj(v∗)

× Bij(ω,v − v∗) dω dv∗,

[K2g]i (v) = ni
∑
j 6∈Mi

(mimj

4π2

)3/4
∫∫

R3×S2

e−
1
4
mi|v|2 e−

1
2
mj |v∗|2 e

1
4
mj |v′∗|

2

gj(v
′
∗)

× Bij(ω,v − v∗) dω dv∗,

[K3g]i (v) =
∑
j∈Mi

(mi

2π

)3/2
∫∫

R3×S2

e−
1
4
mi|v|2 e−

1
2
mi|v∗|2

×
[
ni e

1
4
mi|v′∗|

2

gj(v
′
∗) + nj e

1
4
mi|v′|2 gi(v

′)
]
Bij(ω,v − v∗) dω dv∗,

[K4g]i (v) =
∑
j 6∈Mi

nj

(mj

2π

)3/2
∫∫

R3×S2

e−
1
4
mi|v|2 e−

1
2
mj |v∗|2 e

1
4
mi|v′|2 gi(v

′)

× Bij(ω,v − v∗) dω dv∗.
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For the operators K1, K3 and K4, the proof given by Grad in the mono-species case [39] can be extended
to mixtures. However, the operator K2 requires a new approach. Grad’s geometrical argument on the ω
variable does not hold any longer. Instead of performing a change of variable ω into another unit vector
ω⊥ ∈ S2, orthogonal to ω in the plane Span(v − v∗,ω), we change variables in K2 by transforming
(v′,v∗) into (v,v′∗). This argument only holds when mi 6= mj , and its nature is very different from
Grad’s one.





Notations

• for vectors and tensors, we use boldface letters. For example, vectors of RN are denoted by

a = [a1 . . . aN ]T .

Note that the k-th component of the vector a is denoted by ak, for some 1 ≤ k ≤ N . When
a vector is related to the species Ai, we denote it by ai. Its k-th component is then [ai]k.
• A tensor T is represented by its components Ti1i2...in
• round brackets around N indices represent the symmetrization with respect to these indices,
that is, the sum over all N! permutations of the indices divided by N!. For example,

a(ibj) =
1

2
(aibj + ajbi)

a(ibjck) =
1

3!
(ai (bjck + bkcj) + aj (bick + bkci) + ak (bjck + bkcj))

a(ibjk) =
1

3!
(ai (bjk + bkj) + aj (bik + bki) + ak (bjk + bkj))

(13)

Hypergeometric Functions. We are led to introduce the Kummer confluent hypergeometric function,
denoted by M(a, b, z) or alternatively by 1F1(a; b; z), with its integral representation

Γ [b− a] Γ [a]

Γ [b]
1F1(a; b; z) =

∫ 1

0
eztta−1 (1− t)b−a−1 dt, for b > a > 0,

see [5] p. 505, relation 13.2.1. We refer to 1F̃1(a; b; z) as its “regularization” given by

1F̃1(a; b; z) =
1

Γ[b]
1F1(a; b; z), where − b /∈ N.

The following property holds:

1F̃1(a; b; 0) =
1

Γ[b]
.

Next, we introduce the following function

0F̃1(; b; z) =
1

Γ[b]
e−2
√
z

1F1(b− 1

2
; 2b− 1; 4

√
z).

We recall integral representations of the hypergeometric functions described above that will be useful
for us in the sequel [42]:

1F̃1(a; b; z) =
1

Γ [a]

∫ ∞
0

e−t ta−1
0F̃1(; b; zt)dt, for a > 0,(14)

0F̃1(; b; z) =
1√

π Γ
[
b− 1

2

] ∫ 1

−1

(
1− t2

)b− 3
2 e−2t

√
zdt, for b >

1

2
,(15)

0F̃1(; b; z) =
1√

π Γ
[
b− 1

2

] ∫ π

0
e−2
√
z cos t (sin t)2b−2 dt, for b >

1

2
.(16)
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Presentation of models





CHAPTER 1

Description of the kinetic models used in this thesis

In this thesis, we will consider three different contexts: mixture of polyatomic gases (Section 2),
one single polyatomic gas (Section 3), and mixture of monatomic gases (Section 4). The aim of this
Part is to introduce the kinetic models for all three situations. We provide moreover in Section 1 a
description of standard mono-species monatomic gas as an introduction.

1. Description of monatomic gases

In this Section, we describe the kinetic modelling of one monatomic gas, such as it is presented in
[23] for example.

The variable that describes the microscopic state of a monatomic gas is the velocity, denoted by v
(ξ = v). The state of a monatomic gas is described by a distribution function f := f(t,x,v), that is a
nonnegative function defined on the phase space that consists of time t ∈ R+, space position x ∈ RN
and velocity v ∈ RN .

If we consider collisions as the main mechanism of interaction between particles, then the appro-
priate model for evolution of the distribution function f is the Boltzmann equation. In absence of
external forces, the Boltzmann equation reads:

(1.1) ∂tf + v · ∇xf = Q(f, f).

The right-hand side of the Boltzmann equation (that is Q(f, f)) is called the collision integral (opera-
tor). It is a quadratic bilinear operator acting only on the velocity v.

The collision integral Q(f, f) corresponds to the effect of the change of velocities of particles due
to collisions. Indeed, if we neglect the mutual interactions between particles, i.e. take Q(f, f) = 0,
then f satisfies the equation of free transport:

∂tf + v · ∇xf = 0.

This means that each particle will travel at constant velocity along characteristics that are straight
lines. That is, f will be constant along solutions of

dx

dt
= v,

dv

dt
= 0.

In that case, f at time t can be computed in terms of f at time 0 as follows:

f(t,x,v) = f(0,x− tv,v).

The collision integral can be split into a gain term and a loss term

Q(f, f) = Q+(f, f)−Q−(f, f).

The loss term counts all collisions in which a given particle of velocity v will encounter another particle,
of velocity v∗, and will change its velocity (thus leading to a loss of particles of velocity v). The gain
term measures the number of particles of velocity v which are created due to a collision.

In order to define the collision integral, let us perform an analysis of the collision process between
two molecules of a monatomic gas.

33



34 1. DESCRIPTION OF THE KINETIC MODELS USED IN THIS THESIS

ω

v−v∗
|v−v∗|

2
(
ω · v−v∗

|v−v∗|

)
ω

Tω

[
v−v∗
|v−v∗|

]

Figure 1.1. Transformation (1.4)

Collision transformation. During the collision, the conservation laws of momentum and kinetic
energy hold (because since the gas is monatomic, no internal energy is present at the microscopic level).
We denote by v′ and v′∗ the pre-collisional velocities of two colliding molecules, that become v and v∗
after the collision. Then, the microscopic conservation laws take the following form:

v′ + v′∗ = v + v∗,∣∣v′∣∣2 +
∣∣v′∗∣∣2 = |v|2 + |v∗|2 .

(1.2)

Combining these two laws, it follows that the intensity of the relative velocity does not change during
a collision:

(1.3)
∣∣v′ − v′∗

∣∣ = |v − v∗| .

The system of equations (1.2), or equivalently (1.2)1 and (1.3), consists of (N + 1) scalar equations
for 2N scalar variables. We express its solution in terms of N − 1 parameters: typically, a unit vector
of the sphere SN−1. Among all possible ways to do it, of great interest for this work will be two
parametrizations: we will call them ω− and σ−representation. In the sequel, we explain in detail the
ω−representation, while we only define the σ−representation starting from the ω−one and explain
how to pass from one to another.

Model in the ω−notation. Choose a vector ω ∈ SN−1. Then for a given post-collisional relative
velocity v− v∗, the pre-collisional one v′ − v′∗ will lie in a plane spanned by the vectors ω and v−v∗

|v−v∗| .
Let us define a transformation Tω as the symmetry with respect to the plane {ω}⊥, i.e.

(1.4) Tω [y] = y − 2 (ω · y)ω, for y ∈ RN .

To illustrate this transformation, we restrict to the case N = 3 and represent a vector Tω
[

v−v∗
|v−v∗|

]
in

a plane spanned by vectors ω and v−v∗
|v−v∗| in Figure 1.1. We parametrize (1.3) with the help of the

transformation Tω as follows:

(1.5) v′ − v′∗ = |v − v∗|Tω
[

v − v∗
|v − v∗|

]
= Tω [v − v∗] ,

Finally, combining (1.5) and (1.2)1, we obtain expressions for the pre-collisional velocities in terms of
the post-collisional velocities:

v′ = v − ((v − v∗) · ω)ω,

v′∗ = v∗ + ((v − v∗) · ω)ω,
(1.6)
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Collision operator. The collision operator aims at describing the influence of the other particles
on the particles of velocity v. Indeed, one observes an elementary velocity volume of size dv, and
counts both gains and losses of particles in that volume. The particles that change their velocity into
the velocity v are precisely those that had velocity v′ and that encountered a particle of velocity v′∗.
Also, the particle of velocity v can loose its velocity due to a collision with a particle of velocity v∗.
The integration with respect to v∗ and ω captures all possible particles that may have an influence on
gain/loss of particles of velocity v.

Therefore, the collision operator is given by

Q(f, f)(t,x,v) =

∫∫
RN×SN−1

[
f ′f ′∗ − ff∗

]
B̌(v,v∗,ω) dω dv∗,

for any t ∈ R+ and x ∈ RN , where we have used the standard abbreviations:

f ′ := f(t,x,v′), f ′∗ := f(t,x,v′∗), f∗ := f(t,x,v∗), f := f(t,x,v).

The cross-section B̌(v,v∗,ω) takes into account the nature of the microscopic interactions. In the case
of monatomic gases, B̌(v,v∗,ω) is a function of |v − v∗| and the angle between ω and v − v∗ only,
thanks to the Galilean invariance, i.e. B̌(v,v∗,ω) = B

(
|v − v∗| ,

∣∣∣ω · v−v∗
|v−v∗|

∣∣∣) =: B.
The structure of the collision integral reflects the general assumptions mentioned in the Introduc-

tion. Indeed, the fact that the variables t and x appear as parameters reflects the assumption that
collisions are localized in space and time. The appearance of the products f ′f ′∗ and ff∗ is a conse-
quence of the chaos assumption.

The weak form of the collision operator. The formulation of the weak form of the collision
operator Q(f, f) allows to recover moment equations at the macroscopic level, especially conservation
laws. Indeed, the weak formulation expresses the change in the integral

∫
RN fψ(v)dv which is due to

the action of collisions.

Proposition 1.1. Let ψ : RN → R be an arbitrary function of the velocity v such that the
integral ∫

RN
Q(f, f)(v)ψ(v) dv

makes sense. Then, the following holds

(1.7)
∫
RN

Q(f, f)(v)ψ(v) dv

= −1

4

∫
RN

∫
RN

∫
SN−1

[
f ′f ′∗ − ff∗

]
×
[
ψ(v′) + ψ(v′∗)− ψ(v)− ψ(v∗)

]
B dω dv∗dv.

Proof. The weak form (1.7) reflects the microscopic reversibility of the collision operator. Namely,
the form of the collision operator enables the invariance of the weak form with respect to interchange
of pre- and post-collisional velocities (v,v∗) 7→ (v′,v′∗) and of particles themselves (v,v∗) 7→ (v∗,v).
Indeed, starting from

(1.8)
∫
RN

Q(f, f)(v)ψ(v) dv =

∫
RN

∫
RN

∫
SN−1

[
f ′f ′∗ − ff∗

]
ψ(v)B dω dv∗dv,

let us perform the change of the variables (v,v∗) 7→ (v∗,v) with unit Jacobian:∫
RN

Q(f, f)(v)ψ(v) dv =

∫
RN

∫
RN

∫
SN−1

[
f ′∗f
′ − f∗f

]
ψ(v∗)B dω dv∗dv

=

∫
RN

Q(f, f)(v)ψ(v∗) dv.

(1.9)
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Furthermore, let us consider the change of variables (v,v∗) 7→ (v′,v′∗). The Jacobian of this transfor-
mation is 1 because it is based on the symmetry v − v∗ 7→ (v − v∗)− 2 ((v − v∗) · ω)ω:

J(v,v∗)7→(v′,v′∗)
= Abs

(∣∣∣∣IN −ωωT ωωT

−ωωT IN +ωωT

∣∣∣∣) = Abs
(∣∣∣∣ IN 0
−ωωT IN

∣∣∣∣) = 1.

Then, (1.8) becomes∫
RN

Q(f, f)(v)ψ(v) dv =

∫
RN

∫
RN

∫
SN−1

[
ff∗ − f ′f ′∗

]
ψ(v′)B dω dv∗dv

= −
∫
RN

Q(f, f)(v)ψ(v′) dv.

(1.10)

Moreover, performing the change of variables (v,v∗) 7→ (v∗,v) in (1.10) with unit Jacobian, we obtain∫
RN

Q(f, f)(v)ψ(v) dv =

∫
RN

∫
RN

∫
SN−1

[
f∗f − f ′∗f ′

]
ψ(v′∗)B dω dv∗dv

= −
∫
RN

Q(f, f)(v)ψ(v′∗) dv.

(1.11)

Finally, summation of equations (1.8), (1.9), (1.10) and (1.11) lead to the required form of the weak
formulation (1.7). �

Comparing the weak form (1.7) with (1.2), it can be easily seen that the momentum ψ(v) = v and
kinetic energy ψ(v) = |v|2

2 of a molecule make the weak form of the collision operator equal to zero.
Such functions are collision invariants, according to the following definition.

We call a function ψ a collision invariant if it satisfies the functional equation:

(1.12) ψ(v′) + ψ(v′∗) = ψ(v) + ψ(v∗), ∀ (v,v∗,ω) ∈ R2N × SN−1.

Proposition 1.2. The collision invariants (belonging to L1
loc(RN )) are linear combinations of

the following (N + 2) functions:

(1.13) ψ(v) =

 1
v

|v|2

 .

Proof. We search for a function ψ(v) such that the equation (1.12) is satisfied. The conservation
laws at the microscopic level (1.2) imply that

(1.14) ψ(v) + ψ(v∗) = φ(v + v∗,
1
2 |v|

2 + 1
2 |v∗|

2).

Let us for some function φ introduce the operator

(1.15) Dk` = (vk − v∗k) (∂v` − ∂v∗`)− (v` − v∗`) (∂vk − ∂v∗k) , for k 6= `.

Applying this operator to φ, we obtain

Dk` φ(v + v∗,
1
2 |v|

2 + 1
2 |v∗|

2) = (vk − v∗k) (∂`φ+ v` ∂2φ− ∂`φ− v∗` ∂2φ)

− (v` − v∗`) (∂kφ+ vk ∂2φ− ∂kφ− v∗k ∂2φ)

= 0.

Thus, in conjunction with (1.14), we obtain

Dk` (ψ(v) + ψ(v∗)) = 0.

Differentiation with respect to vk yields

∂vk (Dk` (ψ(v) + ψ(v∗)))

=
(

(vk − v∗k)
(
∂2
vkv`
− ∂2

vkv∗`

)
+ (∂v` − ∂v∗`)− (v` − v∗`)

(
∂2
v2
k
− ∂2

vkv∗k

))
(ψ(v) + ψ(v∗))

= (vk − v∗k) ∂2
k`ψ(v) + ∂`ψ(v)− ∂`ψ(v∗)− (v` − v∗`) ∂2

k2ψ(v) = 0.(1.16)
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Furthermore, we differentiate (1.16) with respect to v∗` and obtain

(1.17) −∂2
` 2ψ(v∗) + ∂2

k2ψ(v) = 0,

and we also differentiate (1.16) with respect to v∗k, obtaining

(1.18) −∂2
k`ψ(v)− ∂2

k`ψ(v∗) = 0.

The equality (1.17) would not be possible unless

∂2
k2ψ(v) = const, for every k = 1, . . . , N.

Also, equality (1.18) implies that the mixed partial derivatives are constant, and because of the “minus”
sign, they are equal to zero:

∂2
k`ψ(v) = 0, 1 ≤ k, ` ≤ N.

Note that the proof presented here holds for ψ ∈ C2(RN ) if the derivatives are taken in the classical
sense. Using them in the sense of distributions enables to treat ψ ∈ L1

loc(RN ). �

We see that the weak form of the collision integral (1.7) vanishes when the test function ψ(v) is
chosen to be a collision invariant (1.13). In other words,∫

RN
Q(f, f)(v)

 1
v

|v|2

 dv = 0.

This property of the weak form of the collision operator enables to recover the conservation laws of
mass, momentum density and total energy density at the macroscopic level. In particular, the fact
that (1.13) are the only invariants that satisfy the functional equation (1.74) shows that there are no
hidden conservation laws in the Boltzmann equation.

Next, we define macroscopic quantities as moments of the distribution function, and link the
evolution of these quantities to the solution of the Boltzmann equation.

Macroscopic conservation laws. Even though it only provides a statistical description, the
Boltzmann equation is still unnecessary detailed for the majority of problems. In fact, one is most often
interested in the moments that can be obtained from the Boltzmann equation by means of integration
with respect to the quantities which describe the microscopic state of particles (the velocity v of the
particles in the monatomic case).

To obtain a general macroscopic law, we multiply the Boltzmann equation by some function of
the microscopic state of particles, say ψ(v), and integrate over all possible values of microscopic states
v ∈ RN (assuming that f is smooth with respect to t,x, and has good properties of integrability with
respect to v):

(1.19)
∫
RN

(∂tf + v · ∇xf)ψ(v) dv =

∫
RN

Q(f, f)(v)ψ(v)dv.

Let us transform the left-hand side of (1.19). By interchanging the order of the integration and
differentiation, we obtain ∫

RN
(∂tf)ψ(v) dv = ∂t

∫
RN

fψ(v) dv.

Similarly, ∫
RN

(v · ∇xf)ψ(v) dv = ∇x ·
∫
RN

f vψ(v) dv.

Then (1.19) can be written in the form

∂t

∫
RN

fψ(v) dv +∇x ·
∫
RN

f vψ(v) dv =

∫
RN

Q(f, f)(v)ψ(v)dv.

This is the general moment equation. Its physical interpretation is obtained by specifying the test
function ψ(v). In the sequel we precise the conservation laws when test functions are chosen to be
collisional invariants for which the right-hand side of the moment equation becomes zero. But first, let
us define macroscopic quantities.
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When ψ(v) is chosen to consist of monomials in the velocity variable, i.e. ψ(v) = vi1vi2 . . . vin ,
where ik ∈ {1, 2, 3}, for k = 1, . . . n and n ∈ N, we obtain monomial moments of the distribution
function denoted by F (n)

i1i2...in
:

(1.20) F
(n)
i1i2...in

(t,x) =

∫
RN

mvi1vi2 . . . vin f(t,x,v) dv.

The moments of order n ≤ 2 are interpreted as the mass density, the momentum density and the
momentum flux:

(1.21)

 ρ
ρui

ρuiuj + pij

 =

F
(0)

F
(1)
i

F
(2)
ij

 =

∫
RN

m

 1
vi
vivj

 f dv,

where ρ is the mass density, ui is i-th component of the macroscopic velocity, while pij is ij-th element
of the pressure tensor. The splitting of the second order moment is obtained by introducing the
peculiar1 velocity of a particle c = v−u. Indeed, from the first order moment (using the zero-th order
moment) we get: ∫

RN
mvi f dv =

∫
RN

m (ui + ci) f dv = ρui +

∫
RN

mci f dv,

and therefore

(1.22)
∫
RN

mci f dv = 0.

Thus, the second order moment becomes∫
RN

mvivj f dv = ρuiuj +

∫
RN

mcicj f dv,

and

(1.23) pij =

∫
RN

mcicj f dv.

Moreover, one half of the trace (equalization of indices and summation over them) is interpreted
as the energy density:

(1.24)
∫
RN

m
2 |v|

2 f dv = 1
2ρ |u|

2 +

∫
RN

m
2 | c|

2 f dv,

using (1.21)1 and (1.22). This definition illustrates the decomposition of the total energy of a gas into
the kinetic and internal energy at the macroscopic level. Indeed, using the peculiar velocity c = v−u
and property (1.22), starting from kinetic theory we obtain the formula for the internal energy density:

(1.25) ρe =

∫
RN

m
2 | c|

2 f dv.

Comparing the definition of the macroscopic internal energy density (1.25) to the definition of the
pressure tensor (1.23), it can be noticed that the macroscopic internal energy density is related to the
trace of the pressure tensor. In the case of monatomic gases, the trace of the pressure tensor is linked
to the hydrodynamic pressure as follows:

(1.26) p = 1
N (p11 + p22 + · · ·+ pNN ) .

Therefore, the caloric equation of state for a monatomic gas is recovered:

(1.27) ρe = N
2 p = N

2 nk T,

1The term “peculiar” is used instead of the term “relative” when one velocity is the macroscopic one, and the other
one is a microscopic one: in this case, the velocity v is the velocity of the particle, so we refer to it as microscopic, while
the velocity u is the macroscopic velocity of a gas.
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where n is the macroscopic density n = ρ/m, k is the Boltzmann constant and T is the temperature
of the gas defined by

T =
1

N

m

k

∫
RN m | c|

2 f dv∫
RN mf dv

.

Finally, the energy flux can be defined and furthermore properly decomposed using the peculiar
velocity c = v − u as follows:∫

RN
m
2 |v|

2 vi f dv =
(

1
2ρ |u|

2 + ρe
)
ui +

N∑
j=1

pijuj + qi,

where the i-th component of the heat flux q is defined as

qi =

∫
RN

m
2 | c|

2 ci f dv.

Once we have the physical interpretation of the low order moments of the distribution function,
the corresponding moment equations can be derived from the Boltzmann equation.

Proposition 1.3. Let f be a solution of the Boltzmann equation (1.1) that is smooth with respect
to t,x and rapidly decaying in v. Then the following local conservation laws hold:

∂tρ+∇x · (ρu) = 0,

∂tρui +

N∑
j=1

∂xj (ρuiuj + pij) = 0, i = 1, . . . , N,

∂t

(
1
2 ρ |u|

2 + ρ e
)

+
N∑
j=1

∂xj

((
1
2 ρ |u|

2 + ρ e
)
uj +

N∑
i=1

pijui + qj

)
= 0.

(1.28)

They respectively represent the local conservation of mass, momentum and total energy density of a
monatomic gas.

H−theorem. The microscopic mechanics we used until now is time reversible. This means pre-
cisely the following. Suppose that at time t0 two particles of velocities v′ and v′∗ are colliding. After
the collision, at time t0 + ∆t their velocities are v and v∗, respectively, thanks to the collisional rules
(1.6). Let us now perform a mental experiment. Let change the sign of the velocities at time t0 + ∆t,
that is we consider two particles of velocities −v and −v∗ at time t0 + ∆t. Then these particles will
collide and at time t0 + 2∆t their velocities can be obtained from the collisional rules (1.6):

(−v)− (((−v)− (−v∗)) · ω)ω = − (v − ((v − v∗) · ω)ω) = −v′,

(−v∗) + (((−v)− (−v∗)) · ω)ω = − (v∗ + ((v − v∗) · ω)ω) = −v′∗.

It can be seen that the velocities are equal to the starting velocities up to a change of sign. Or in other
words, the change of sign of velocities at some time makes the system pass through the same sequence
of states which it went through in the forward direction. We described a reversible process.

Disorder, or macroscopic irreversibility, is measured by means of the entropy that is defined starting
from the kinetic theory by

(1.29) η =

∫
RN

f log f dv.

Proposition 1.4 (H−theorem). Assume that the cross section B is positive almost everywhere,
and that f := f(v) ≥ 0 is such that all quantities below are well defined. Then

(a) The entropy production is non-positive, i.e.

(1.30) D(f) =

∫
RN

Q(f, f)(v) log f dv ≤ 0.

(b) Moreover, the three following properties are equivalent.
i. For any v ∈ RN

Q(f, f)(v) = 0.
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ii. The entropy production vanishes, that is

D(f) =

∫
RN

Q(f, f)(v) log f dv = 0.

iii. There exist n > 0, T > 0 and u ∈ RN such that

(1.31) f(v) = n
( m

2π k T

)N/2
e−

m
2kT
|v−u|2 .

Proof. In order to prove the statement (a), we consider the weak form of the collision operator
(1.7), choosing the test function ψ(v) = log f(v):

D(f) = −1

4

∫
RN

∫
RN

∫
SN−1

[
f ′f ′∗ − ff∗

]
×
[
log f ′ + log f ′∗ − log f − log f∗

]
B dω dv∗dv

= −1

4

∫
RN

∫
RN

∫
SN−1

[
f ′f ′∗ − ff∗

]
×
[
log f ′f ′∗ − log ff∗

]
B dω dv∗dv.

Noticing that the function (x, y) 7→ (x− y)(log x− log y) is nonnegative for x, y > 0, the assumptions
made on B and f yield the non-positivity of the entropy production D(f).

Let us show the equivalence of the three statements in the part (b). The following implications are
straightforward: (i ⇒ ii) and (iii ⇒ i). Let us show (ii ⇒ iii). Indeed, suppose that ii) holds, i.e.

D(f) = −1

4

∫
RN

∫
RN

∫
SN−1

[
f ′f ′∗ − ff∗

]
×
[
log f ′ + log f ′∗ − log f − log f∗

]
B dω dv∗dv = 0.

Thus, log f is a collisional invariant, and by Proposition 1.2, log f is a linear combination of 1,v, |v|2.
Therefore, there exist constants A0, A1, . . . , AN , AN+1 such that

f = eA0+A1v1+...ANvN+AN+1|v|2 .

Finally, the choice

A0 = lnn

(( m

2π k T

)N/2)
− m

2kT
|u|2 ,

Ai =
m

kT
ui, i = 1, . . . , N,

AN+1 = − m

2kT
,

for n ≥ 0, T > 0 and u ∈ RN yields the form of the equilibrium distribution function. �

One of the important implications of the H−theorem concerns the additional macroscopic law
obtained from the Boltzmann equation. Indeed, for f and log f rapidly decaying with respect to v
and smooth with respect to (t,x), the integration of the Boltzmann equation over the velocity space
against the test function log f , in conjunction with (1.30), yields

(1.32) ∂tη +
N∑
j=1

∂xjηj ≤ 0,

where ηj is the entropy flux:

ηj =

∫
RN

vj f log f dv.

It should be noted that in the physical sense, the entropy (1.29) coincides with the usual entropy from
the continuum theories up to a change of sign and multiplication by the Boltzmann constant k. Also,
it represents a dynamical entropy in the sense that it is defined for non-equilibrium processes. In
particular, the macroscopic law (1.32), obtained from the Boltzmann equation using the H−theorem,
matches the second law of thermodynamics which says that the physical entropy of an isolated system
should not decrease with respect to time. In other words, if a gas does not interact with an external
device, its entropy will increase until it has reached the maximum value it can have in accordance with
the values of the conserved quantities – mass, momentum and energy density.
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The σ−notation. We now present another possible parametrization of equation (1.3). Indeed,
we parametrize this equation with a unit vector σ ∈ SN−1:

(1.33) v′ − v′∗ = |v − v∗| σ.
The last equation in conjunction with (1.2)1 yields formulas for the pre-collisional velocities in terms
of the post-collisional velocities and the parameter σ:

v′ =
v + v∗

2
+
|v − v∗|

2
σ,

v′∗ =
v + v∗

2
− |v − v∗|

2
σ.

Since this notation will be very useful in further computations, its relation to the ω−notation is
discussed in the next paragraph.

Passage from ω− to σ−notation. The relation between parameters ω and σ can be obtained
from equations (1.5) and (1.33). Indeed, one can see that

(1.34) σ = z− 2 (ω · z)ω, where z =
v − v∗
|v − v∗|

.

We restrict ourselves to space dimension three (N = 3). We remind that ω and σ are unit vectors
of the sphere S2. Indeed, the notation ω and σ hides, in fact, two angles. If we introduce angles
α1, β1 ∈ [0, π], α2, β2 ∈ [0, 2π], then actually the following notation has been used

ω :=

 cosα1

sinα1 cosα2

sinα1 sinα2

 , σ :=

 cosβ1

sinβ1 cosβ2

sinβ1 sinβ2

 .

Also, we recall the notation for elements on the sphere S2:

dω := sinα1 dα1 dα2, dσ := sinβ1 dβ1 dβ2.

Therefore, when we say that we pass from ω− to σ−representation, we actually mean that we change
variables (α1, α2) 7→ (β1, β2). Thus, it will be useful to compute the Jacobian J(α1,α2) 7→(β1β2). The
relation which holds between the two groups of angles is obtained from (1.34). Indeed, for some
z = (z1, z2, z3)T

cosβ1 = σ1 = z1 − 2 (z1 cosα1 + z2 sinα1 cosα2 + z3 sinα1 sinα2) cosα1,

sinβ1 cosβ2 = σ2 = z2 − 2 (z1 cosα1 + z2 sinα1 cosα2 + z3 sinα1 sinα2) sinα1 cosα2,

sinβ1 sinβ2 = σ3 = z3 − 2 (z1 cosα1 + z2 sinα1 cosα2 + z3 sinα1 sinα2) sinα1 sinα2.

(1.35)

Note that J(α1,α2)7→(β1β2) can be decomposed as follows

J(α1,α2)7→(β1β2) = J(α1,α2)7→(σ1,σ2) J(σ1,σ2)7→(β1β2).

It is an easy task to compute the Jacobian J(β1β2)7→(σ1,σ2) from the first equalities in (1.35):

J(β1β2)7→(σ1,σ2) = (sinβ1)2 |sinβ2| = |σ3| sinβ1.

Therefore
J(α1,α2)7→(β1β2) =

1

|σ3| sinβ1
J(α1,α2)7→(σ1,σ2).

Computation of the Jacobian J(α1,α2) 7→(σ1,σ2) requires more efforts, and lead to the result

J(α1,α2) 7→(σ1,σ2) = 4 |σ3| |ω · z| sinα1, ∀ z ∈ R3.

Summarizing, we obtain

sinβ1dβ1dβ2 = 4 |ω · z| sinα1dα1dα2, ∀ z ∈ R3.

At the end, one should note that when ω moves over the sphere S2, σ moves twice over the sphere
S2. More precisely, both ω and −ω give one σ. Since the domain for σ remains S2, we should add a
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factor 1/2 in the changes of variable between ω and σ in the integrals. This leads to the final result,
now expressed in standard notation for kinetic theory:

(1.36)
∫
S2

F (σ) dσ =

∫
S2

F (z− 2 (ω · z)ω) 2 |ω · z|dω, ∀ z ∈ S2,

for any function F such that the integrals are well defined. For the result in any space dimension, we
refer to [59] and give the final result

(1.37)
∫
SN−1

F (σ) dσ =

∫
SN−1

F (z− 2 (ω · z)ω) 2N−2 |ω · z|N−2 dω, ∀ z ∈ SN−1.

2. Description of mixtures of monatomic gases

In Chapter 4 of this thesis, we consider a mixture of monatomic gases. The main problem with
respect to the use of a monatomic, mono-species gas is the possibility for molecules to have different
masses. Although seeming at first sight easy to overcome, this extension leads to new mathematical
problems when, for example, the diffusion asymptoptics of the Boltzmann equation is considered. We
write here a brief extension of the preliminaries of the previous Section (under the assumption that
the space dimension is N = 3) to the case of a mixture of monatomic gases.

Let the gas mixture be constituted of s ≥ 2 species. Each species Ai of the mixture, 1 ≤ i ≤ s, is
described by a microscopic density function fi. It depends on time t ∈ R+, space position x ∈ R3 and
molecular velocity v ∈ R3, and is nonnegative. More precisely, fi(t,x,v) dx dv allows to quantify the
number of molecules of species Ai at time t in an elementary volume of size dx, and whose velocities
equal v up to dv. We can also define at a given point x and a given time t the macroscopic density ni
of each species Ai by

ni(t,x) =

∫
R3

fi(t,x,v) dv.

The rate of change of distribution functions is measured by means of collision operators Qij defined
below in (1.41). More precisely, each distribution function fi is supposed to satisfy the Boltzmann
equation

(1.38) ∂tfi + v · ∇xfi =
s∑
j=1

Qij(fi, fj), ∀ i = 1, . . . , s.

In order to define the collision operators, let us analyze a collision between two molecules.

Collision transformation. We assume that the mixture only involves molecular collisions in
which, since the gases are monatomic, kinetic energy is conserved. We consider two colliding molecules
of species Ai and Aj , 1 ≤ i, j ≤ s. Their masses are mi and mj , and their pre-collisional velocities
v′ and v′∗. After a collision, the particles belong to the same species (no chemical reactions), so their
masses remain unchanged, and their velocities become v and v∗. Both momentum and kinetic energy
are conserved, i.e.

(1.39) miv
′ +mjv

′
∗ = miv +mjv∗,

mi
2

∣∣v′∣∣2 +
mj
2

∣∣v′∗∣∣2 = mi
2 |v|

2 +
mj
2 |v∗|

2 .

Consequently, v′ and v′∗ can be written in terms of v and v∗:

v′ =
miv +mjv∗
mi +mj

+
mj

mi +mj
Tω [v − v∗] ,

v′∗ =
miv +mjv∗
mi +mj

− mi

mi +mj
Tω [v − v∗] ,

(1.40)

where ω ∈ S2 is arbitrary, and Tω is the symmetry with respect to the plane {ω}⊥, i.e.

Tωz = z− 2(ω · z)ω, ∀ z ∈ R3.
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Collision operators. Let 1 ≤ i, j ≤ s. The collision operator associated to the species Ai and
Aj is defined by

(1.41) Qij(f, g)(v) =

∫∫
R3×S2

[
f(v′)g(v′∗)− f(v)g(v∗)

]
B̌ij(v,v∗,ω) dω dv∗,

where v′ and v′∗ are defined by (1.40), and f and g are two functions of the velocity variable. The
cross-section B̌ij(v,v∗,ω) only depends on v, v∗ and ω. In fact, B̌ij is only a function of |v − v∗| and
the angle θ between ω and v − v∗, thanks to Galilean invariance. Let us set

(1.42) B̌ij(v,v∗,ω) = Bij
(
|v − v∗| ,

∣∣∣ω · v−v∗
|v−v∗|

∣∣∣) =: Bij , ∀ω ∈ S2, ∀v,v∗ ∈ R3.

The collisions are also supposed microreversible, which ensures that

Bij
(
|v − v∗| ,

∣∣∣ω · v−v∗
|v−v∗|

∣∣∣) = Bji
(
|v − v∗| ,

∣∣∣ω · v−v∗
|v−v∗|

∣∣∣) .(1.43)

The collision operators can also be written under weak forms, obtained from (1.41) using the
changes of variables (v,v∗) 7→ (v∗,v) and (v,v∗) 7→ (v′,v′∗) for a fixed ω ∈ S2:∫

R3

Qij(f, g)ψi(v)dv = −1

2

∫
R3

∫
R3

∫
S2

[
f(v′)g(v′∗)− f(v)g(v∗)

]
×
[
ψi(v

′)− ψi(v)
]
Bij dω dv∗ dv,

(1.44)
∫
R3

Qij(f, g)ψi(v)dv +

∫
R3

Qji(g, f)ψj(v)dv

= −1

2

∫
R3

∫
R3

∫
S2

[
f(v′)g(v′∗)− f(v)g(v∗)

]
×
[
ψi(v

′) + ψj(v
′
∗)− ψi(v)− ψj(v∗)

]
Bij dω dv∗ dv.

We mention that, if we choose suitable test-functions, the weak forms allow to formally write, for
any i and j, and any functions f and g for which the following equations make sense:∫

R3

Qij(f, g)(v) dv = 0,(1.45) ∫
R3

Qij(f, g)(v)

(
mi v
mi
2 |v|

2

)
dv +

∫
R3

Qji(g, f)(v)

(
mj v
mj
2 |v|

2

)
dv = 0.(1.46)

H−theorem. Let us now write down the H−theorem corresponding to the above defined colli-
sional operators and discuss the mechanical equilibrium. The following properties hold.

Proposition 1.5. Let us assume that the cross sections (Bij)1≤i,j≤s are positive almost every-
where and that all fi := fi(v) ≥ 0, 1 ≤ i ≤ s, are such that both the collisional integrals Qij and the
entropy production D are well defined. Then

(a) The entropy production is non-positive, i.e.

D(f1, . . . , fs) :=
s∑
i=1

s∑
j=1

∫
R3

Qij(fi, fj)(v) log (fi(v)) dv ≤ 0.

(b) Moreover, the three following properties are equivalent.
i. For any 1 ≤ i, j ≤ s and v ∈ R3

(1.47) Qij(fi, fj)(v) = 0.

ii. The entropy production vanishes, that is

D(f1, . . . , fs) = 0.

iii. There exist T > 0 and u ∈ R3 such that, for any i, there exists ni ≥ 0 such that

(1.48) fi(v) = ni

( mi

2π k T

)3/2
e−

mi
2kT
|v−u|2 .
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Proof. The first part can be proven analogously to the first part of Proposition 1.4, using the
weak form (1.44) and some properties of the log function. Let us focus on (ii⇒iii). Considering first
the term corresponding to the same species, Qii = 0 implies that fi has the required form (1.48)

fi(v) = ni

(
mi

2π k Ti

)3/2

e
− mi

2kTi
|v−ui|2 ,

but with Ti and ui instead of T and u. It remains to prove that Ti and ui do not depend on i.
Let us consider the terms corresponding to the species Ai and Aj . Then Qij = 0, i 6= j, implies
fi(v

′)fj(v
′
∗) = fi(v)fj(v∗), which reduces to

mi

2kTi

∣∣v′ − ui
∣∣2 +

mj

2kTj

∣∣v′∗ − uj
∣∣2 =

mi

2kTi
|v − ui|2 +

mj

2kTj
|v∗ − ui|2 .

For simplicity, using the σ−notation, it can be written

mi

2kTi

∣∣∣∣miv +mjv∗
mi +mj

+
mj

mi +mj
|v − v∗|σ − ui

∣∣∣∣2 +
mj

2kTj

∣∣∣∣miv +mjv∗
mi +mj

− mi

mi +mj
|v − v∗|σ − uj

∣∣∣∣2
=

mi

2kTi
|v − ui|2 +

mj

2kTj
|v∗ − ui|2 .

Equalization of the coefficients in σ yields

mimj

mi +mj
|v − v∗|

(
1

kTi

miv +mjv∗
mi +mj

− 1

kTi
ui −

1

kTj

miv +mjv∗
mi +mj

+
1

kTj
uj

)
= 0,

for any v,v∗ ∈ R3. Consequently,

miv +mjv∗
mi +mj

(
1

kTi
− 1

kTi

)
−
(

ui
Ti
− uj
Tj

)
= 0,

which finally yields Ti = Tj and ui = uj . �

3. Description of polyatomic gases

It is well known that the macroscopic internal energy of a gas consists of two parts: the part
related to the translational degrees of freedom, and the part related to additional (vibrational and
rotational) degrees of freedom. At equilibrium, a linear relation links the macroscopic internal energy
to the temperature (hydrodynamic pressure) of a (rarefied) gas with a factor of proportionality that
is related to the number of degrees of freedom D. In the monatomic case, D = 3, which means that
molecules can move only in 3 directions in space. The main feature of polyatomic gases is the existence
of additional (vibrational and rotational) degrees of freedom (for diatomic D = 5, for three-atomic
D = 6) which reflects the fact that polyatomic gases have more options or liberty for motion during a
collision process than monatomic gases have.

From the standpoint of continuum theories, a specificity of polyatomic gases is that the internal
energy density is not directly related to the trace of the pressure tensor, as it was in the monatomic
case. Indeed, the internal energy is divided into a translational part and a part related to the additional
degrees of freedom. Only the translational part is related to the trace of the pressure tensor.

From the kinetic point of view, it is not an easy task to grasp all the peculiarities of polyatomic
gases. One approach introduces a discrete set of internal energy levels possibly occupied by molecules.
That is, one may think of a polyatomic gas as a mixture of monatomic gases, and attach to each
molecule, besides a continuous variable representing its center-of-mass velocity, a discrete variable rep-
resenting the internal state [40]. The approach that we consider in this thesis is the following: we
build a model of collision as simple as possible between two molecules, which enables to recover at
the macroscopic level a given correct equation of state for the energy. We refer to [22, 29] for this
approach. We introduce one single continuous parameter I ∈ R+ for the microscopic internal energy,
which becomes an additional argument of the distribution function.
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The Boltzmann equation. A polyatomic rarefied gas is described by a distribution function
f ≥ 0, which depends on the usual variables: time t ∈ R+, position in the physical space x ∈ RN (in
some parts we will take N = 3), velocity of the particle v ∈ RN , but also on a microscopic internal
energy I ∈ R+. Therefore, the set of variables describing the microscopic state of a particle is extended:
ξ = (v, I). The evolution of the distribution function f := f (t,x,v, I) is determined by the Boltzmann
equation. It reads

(1.49) ∂tf + v · ∇xf = Q(f, f).

The right-hand side of the Boltzmann equation, Q(f, f), is a quadratic bilinear operator acting only
on the velocity v and the internal energy I.

We will assume systematically in what follows that f tends to zero sufficiently rapidly with respect
to v and I, and that it is smooth with respect to t > 0, x ∈ RN .

As in the case of monatomic gases, the collision operator can be split into a gain term and a loss
term

Q(f, f) = Q+(f, f)−Q−(f, f).

The loss term counts all collisions in which a given particle of velocity v and microscopic internal
energy I will encounter another particle, of velocity v∗ and internal energy I∗, and will change its
velocity and internal energy, leading thus to a loss of particles of velocity v and internal energy I. The
gain term measures the number of particles of velocity v and microscopic internal energy I which are
created due to a collision. In order to define precisely the collision integral, some preliminary work is
needed.

Introduction of a weight. A kinetic model with weight was presented in [29, 30] in the context
of mixture of polyatomic gases with possible chemical reactions. The introduction of a weight aims at
recovering a given energy law. We expose this idea in the framework of one polyatomic gas. Later on,
we will extend it for mixtures of polyatomic gases, i.e. we will recall ideas from [30] in the context of
absence of chemical reactions.

The appropriate energy law at the macroscopic level will be obtained if one defines properly the
macroscopic internal energy density. As all the other macroscopic quantities, the macroscopic internal
energy density is defined as a moment of the distribution function f , i.e. by means of integration of
the distribution function f against some test function with respect to the variables aimed at describing
the microscopic state of a gas – in this case, the velocity v ∈ RN and the microscopic internal energy
I ∈ R+. Moreover, we consider weighted integrals. We define a weight as a function ϕ(I) of I satisfying
the condition of nonnegativity ϕ(I) ≥ 0.

Let us announce that the weight ϕ(I) will appear in the definitions of all the macroscopic quan-
tities. Therefore when taking averages of the distribution function f , the appropriate space will be
L1
(
ϕ(I) dI dv

)
. In particular, the physical meaning of the distribution function is made clear by

defining

n =

∫∫
RN×R+

f ϕ(I) dI dv,

as the macroscopic density n of a gas.

Our goal here is to determine a form of the weight ϕ(I) which will lead to the proper classical
caloric equation of state for polyatomic gases in equilibrium, which reads

(1.50) e|E =
1

γ − 1

k

m
T,

where e and T are the respective internal energy and the temperature of a gas, while γ represents the
heat capacity ratio, which can be related to the number D of degrees of freedom:

γ =
D + 2

D
.

The appropriate values for different polyatomic gases and the corresponding form of their equation of
state is presented in the Table 1.1.
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molecule value of D value of γ equation of state

monatomic 3 5
3 e|E = 3

2
k
mT

diatomic 5 7
5 e|E = 5

2
k
mT

three-atomic 6 4
3 e|E = 3 k

mT

Table 1.1. Values of number of degrees of freedom (D) and heat capacity ratio (γ)
for monatomic, diatomic and three-atomic molecules with corresponding equations of
state in the case N = 3

In order to get a form of the weight ϕ(I), we must connect the equation of state (1.50) with the
definition of internal energy density as a moment of the distribution function.

The internal energy density will be properly defined in Proposition 2.2. Here we only anticipate
that from the standpoint of kinetic theory, internal energy density in equilibrium in space dimension
N = 3 reads

(1.51) ρ e|E =
3

2
nk T + n

ζ1

ζ0
, with ζβ := ζβ(T ) =

∫
R+

Iβ ϕ(I) e−
1
kT
I dI.

Comparing to the well-known formula (1.50), we must determine ϕ(I) so that

(1.52)
ζ1

ζ0
∝ λ k T,

where λ should be some constant. If we introduce the notation τ = 1
kT , it can be written

ζ1

ζ0
= −

d
dτ ζ0

ζ0
= − d

dτ
log (ζ0) .

Combining the last equation with (1.52), one obtains an ODE

d

dτ
log (ζ0) ∝ −λ1

τ
,

whose solution yields ζ0 ∝ τ−λ. On the other side, note that ζ0 is nothing else but the Laplace
transform of ϕ(I), i.e. ζ0 = L (ϕ(I)). Therefore,

ϕ(I) ∝ L−1
(
τ−λ

)
=

1

Γ [λ]
Iλ−1,

where Γ is the Gamma function. In fact, in order to remain coherent with [30], we will rather use the
following simplified formula for the weight ϕ(I):

(1.53) ϕ(I) = Iα, with α > −1.

For this choice of the weight function, one has

ζβ = (kT )β+1+αΓ [β + 1 + α] , and therefore
ζ1

ζ0
= (α+ 1) k T.

To conclude, we observe that for the choice ϕ(I) = Iα, the last result in conjunction with (1.51) leads
to the following form of the internal energy in equilibrium

(1.54) e|E =

(
α+

5

2

)
k

m
T, with α > −1.



3. DESCRIPTION OF POLYATOMIC GASES 47

molecule value of γ value of α

diatomic 7
5 0

three-atomic 4
3

1
2

Table 1.2. Values of heat capacity ratio (γ) and parameter of the model (α) for some
types of molecules

Comparing to the original form of the equation of state (1.50), one obtains the relation between the
two coefficients γ and α:

α =
−5 γ + 7

2 (γ − 1)
, γ =

2α+ 7

2α+ 5
.

For later purposes, the values for some structure of molecules are presented in the Table 1.2.

Observe that the case of a monatomic gas (γ = 5/3) cannot be recovered from the one with continuous
internal energy, since the value of the parameter α in the monatomic case would violate the overall
restriction α > −1.

Collision transformation. The goal of this Section is to determine all pre-collisional microscopic
quantities as functions of the post-collisional ones.

Let us analyze a collision process between two molecules. Suppose that colliding molecules have
velocities v′ and v′∗ and internal energies I ′ and I ′∗, respectively. Those are pre-collisional microscopic
quantities. After the collision they are transformed into post-collisional quantities; velocities become
v and v∗, while internal energies transform to I and I∗. The conservation laws of momentum and
total energy (kinetic plus internal that captures phenomena related to polyatomic gases) of a system
consisting of two molecules are valid during a collision process:

mv′ +mv′∗ = mv +mv∗,

m
2

∣∣v′∣∣2 + m
2

∣∣v′∗∣∣2 + I ′ + I ′∗ = m
2 |v|

2 + m
2 |v∗|

2 + I + I∗.
(1.55)

It is convenient to pass to the reference frame of the center of mass. We apply the two body
problem, which describes the motion of the particles under mutual interaction only. We introduce the
velocity of the center of mass G and the relative velocity g via

(1.56) G =
v + v∗

2
and g = v − v∗.

From the conservation law of momentum, we immediately get that the post- and pre-collisional veloc-
ities of the center of mass coincide, i.e.

(1.57) G =
v′ + v′∗

2
=: G′.

The original velocities v and v∗ can be expressed in terms of the velocities in the center of mass
reference frame from (1.56):

(1.58) v = G + 1
2 g and v∗ = G− 1

2 g.

Finally, substitution of (1.58) into (1.55)2 yields

m
∣∣G′∣∣2 + m

4

∣∣g′∣∣2 + I ′ + I ′∗ = m |G|2 + m
4 |g|

2 + I + I∗,

where g′ is the relative pre-collisional velocity g′ := v′ − v′∗. Now, relation (1.57) implies that the
conservation law of energy (1.55)2 is satisfied if and only if

E := m
4

∣∣v′ − v′∗
∣∣2 + I ′ + I ′∗ = m

4 |v − v∗|2 + I + I∗.
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To conclude, rewriting system (1.55) in the center of mass reference frame, we obtained an equivalent
system

mv′ +mv′∗ = mv +mv∗,

E = m
4

∣∣v′ − v′∗
∣∣2 + I ′ + I ′∗ = m

4 |v − v∗|2 + I + I∗,
(1.59)

which is easier to handle.
Laws (1.59) represent the connection between post- and pre-collisional microscopic quantities.

Thus, they can be seen as a system of (N + 1) scalar equations in (2N + 2) scalar unknowns. It
is natural to expect that the solution of this system will be expressed in terms of (N + 1) parame-
ters. To finally express post-collisional quantities in terms of pre-collisional ones, we use the so-called
Borgnakke-Larsen procedure [20].

The Borgnakke-Larsen procedure. This method is based on the repartition of the total energy E.
At first, the total energy E is divided into kinetic energy and microscopic internal energy. We introduce
a parameter R ∈ [0, 1] in order to impose a part RE of the total energy as pre-collisional kinetic energy,
and the rest (1−R)E to the microscopic internal energy (of the two colliding molecules):

RE = m
4

∣∣v′ − v′∗
∣∣2 ,(1.60)

(1−R)E = I ′ + I ′∗.

Further, with the help of another parameter r ∈ [0, 1], the internal energy itself is distributed between
two molecules:

I ′ = r(1−R)E,

I ′∗ = (1− r)(1−R)E.
(1.61)

For later purposes, let us introduce here the extra parameters R′ ∈ [0, 1] and r′ ∈ [0, 1] by the following
identities

m
4 |v − v∗|2 = R′E, I + I∗ = (1−R′)E, I = r′(1−R′)E, I∗ = (1− r′)(1−R′)E,

or more precisely,

R′ =
m

4E
|v − v∗|2 ,

r′ =
I

I + I∗
.

(1.62)

To summarize, we obtained the pre-collisional internal energies as functions of the post-collisional
quantities by introducing two parameters R and r, as expressed in equations (1.61). It remains to
determine the pre-collisional velocities. This will be done by means of a parametrization of the equation
(1.60) with the help of (N−1) parameters. Indeed, in the ω−notation, for some unit vector ω ∈ SN−1

we parametrize (1.60) as follows:

(1.63) v′ − v′∗ = 2

√
RE

m
Tω

[
v − v∗
|v − v∗|

]
,

where Tω [y] = y − 2 (ω · y)ω, for y ∈ RN . Combining (1.63) and (1.55)1, we obtain expressions for
the pre-collisional velocities in terms of the post-collisional quantities:

v′ =
v + v∗

2
+

√
RE

m
Tω

[
v − v∗
|v − v∗|

]
,

v′∗ =
v + v∗

2
−
√
RE

m
Tω

[
v − v∗
|v − v∗|

]
.

(1.64)

Another possible choice consists in using the σ- parametrization, leading to

(1.65) v′ − v′∗ = 2

√
RE

m
σ.
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The last equation in conjunction with (1.59)1 yields formulas for the pre-collisional velocities in terms
of the parameter σ:

v′ =
v + v∗

2
+

√
RE

m
σ,

v′∗ =
v + v∗

2
−
√
RE

m
σ.

The passage from one notation to another can be done by means of the change of the variables de-
scribed by (1.37).

To summarize: we have introduced (N + 1) scalar parameters – those are R, r,ω – with the help of
which we managed to express the microscopic pre-collisional quantities in terms of the post-collisional
ones. With that tool in hand, we can define the collision operator. But first, it is necessary to analyze
more deeply the transformation that is defined by the collisional rules.

Collision transformation. For a fixed ω ∈ SN−1, we define the collision transformation

Sω : R2N × R2
+ × [0, 1]2 → R2N × R2

+ × [0, 1]2

(v,v∗, I, I∗, r, R) 7→ (v′,v′∗, I
′, I ′∗, r

′, R′)

by the relations (1.64), (1.61) and (1.62). We collect its main properties in Lemma 1.6.

Lemma 1.6. For any ω ∈ SN−1, the transformation Sω is an involution of the set R2N × R2
+ ×

[0, 1]2 and its Jacobian determinant is given by

(1.66) JSω =
(1−R)

(1−R′)

(
R

R′

)N
2
−1

=
(1−R)

(1−R′)

( |v′ − v′∗|
|v − v∗|

)N−2

.

Proof. In order to prove the involution property of Sω, we inverse it. This leads to the following
relations:

E = m
4

∣∣v′ − v′∗
∣∣2 + I ′ + I ′∗,

v =
v′ + v′∗

2
+

√
R′E

m
Tω

[
v′ − v′∗
|v′ − v′∗|

]
, v∗ =

v′ + v′∗
2

−
√
R′E

m
Tω

[
v′ − v′∗
|v′ − v′∗|

]
,

I = r′(1−R′)E, I∗ = (1− r′)(1−R′)E,

r =
I ′

I ′ + I ′∗
, R =

m

4E

∣∣v′ − v′∗
∣∣2 .

As a consequence, the transformation Sω is an involution.
To compute the Jacobian, we first pass to the reference frame of the center of mass by changing

velocities v and v∗ to the relative velocity g and the velocity of center of mass G, both defined in
(1.56), i.e. we perform the change of variables with unit Jacobian

(v,v∗, I, I∗, r, R) 7→ (g,G, I, I∗, r, R) .

Moreover, we pass to the spherical coordinates for the relative velocity g:

(g,G, I, I∗, r, R) 7→
(
|g| , g

|g| ,G, I, I∗, r, R

)
.

These two transformations result in an easier computation of the Jacobian JSω , which now takes the
form

JSω =
1

|g|N−1
J(
|g|, g
|g| ,G,I,I∗,r,R

)
7→
(
|g′|, g′
|g′| ,G

′,I′,I′∗,r
′,R′

) ∣∣g′∣∣N−1
,
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the last transformations being defined by

∣∣g′∣∣ = 2

√
RE

m
,

g′

|g′| = Tω

[
g

|g|

]
, G′ = G,

I ′ = r(1−R)E, I ′∗ = (1− r)(1−R)E, r′ =
I

E − m
4 |g|

2 , R′ =
m

4E
|g|2 ,

where E = m
4 |g|

2 + I + I∗. Note that the second transformation is just a rotation of the unit vector,
and thus has a unit Jacobian. In addition, we can eliminate G from our consideration. Therefore,

JSω =

( |g′|
|g|

)N−1

J(|g|,I,I∗,r,R)7→(|g′|,I′,I′∗,r′,R′).

It seems convenient to change variable I∗ to E with unit Jacobian, so that

JSω =

( |g′|
|g|

)N−1

J(|g|,I,E,r,R)7→(|g′|,I′,I′∗,r′,R′).

Now we expand the determinant JSω along a column containing the derivatives with respect to I, and
since only the expression for r′ depends on I, we easily obtain:

JSω =

( |g′|
|g|

)N−1 1

E − m
4 |g|

2 J(|g|,E,r,R)7→(|g′|,I′,I′∗,R′).

The same strategy is used for the column containing derivatives with respect to |g|, and noting that
only R′ is a function of |g| yields

JSω =

( |g′|
|g|

)N−1 1

E − m
4 |g|

2

m

2E
|g| J(E,r,R)7→(|g′|,I′,I′∗).

At the end, we simply compute the derivatives

JSω =

( |g′|
|g|

)N−1 1

E − m
4 |g|

2

m

2E
|g| Abs


∣∣∣∣∣∣∣

√
4R
mE 0

√
4E
mR

r(1−R) (1−R)E −rE
(1− r)(1−R) −(1−R)E −(1− r)E

∣∣∣∣∣∣∣


=

( |g′|
|g|

)N−1 1

E − m
4 |g|

2

√
mE

4R
(1−R) |g|

=

( |g′|
|g|

)N−1 (1−R) |g|
(1−R′) |g′| .

Then, combining expressions for |g′| and R′, we notice that

|g′|2

|g|2
=
R

R′
,

which leads to the final expression for the Jacobian JSω

JSω =
(1−R)

(1−R′)

( |g′|
|g|

)N−2

=
(1−R)

(1−R′)

(
R

R′

)N
2
−1

.

�

After proving this Lemma, all the preliminary work for the construction of the collision integral
is done. In the sequel we define the collision operator and present its properties. Before going into
details, let us mention the standard abbreviations that we use

f ′ := f
(
t,x,v′, I ′

)
, f ′∗ := f

(
t,x,v′∗, I

′
∗
)
, f∗ := f (t,x,v∗, I∗) , f := f (t,x,v, I) .
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Collision operator. The collision operator corresponding to the distribution function f is defined
for any t ∈ R+,x ∈ RN by

(1.67) Q(f, f) (v, I) =

∫
Ω

∫
SN−1

[
f ′f ′∗ − ff∗

]
B (1−R)R

N
2
−1 1

ϕ (I)
dω dr dR dI∗ dv∗,

where Ω = RN × R+ × [0, 1]2 and v′, v′∗, I ′, I ′∗ are defined in (1.64) and (1.61). The cross section
B := B (v,v∗, I, I∗, r, R,ω) is a nonnegative function that satisfies the microreversibility assumptions:

B (v,v∗, I, I∗, r, R,ω) = B (v∗,v, I∗, I, 1− r,R,ω) ,

B (v,v∗, I, I∗, r, R,ω) = B
(
v′,v′∗, I

′, I ′∗, r
′, R′,ω

)
.

(1.68)

The cross section B describes the nature of the microscopic interactions.

As we already mentioned, the collision operator represents the rate of change of the number of
particles having velocity v and internal energy I. Indeed, on one side, with the sign “+” i.e. with the
term f ′f ′∗, we count particles that had some other velocity and internal energy before the collision,
and after the collision have velocity v and internal energy I. By the collisional rules, these velocity
and internal energy will be created after a collision of particles having precisely velocities v′, v′∗ and
internal energies I ′ and I ′∗ before the collision. As a byproduct, the other particle will have velocity v∗
and internal energy I∗ after the collision. That is why the “prime” quantities are called pre-collisionals.
On the other side, the term with the “-” sign, i.e. the term ff∗, counts particles that loose velocity v
and internal energy I, which happens when a collision occurs with some other particle of velocity v∗
and internal energy I∗.

Weak form of the collision operator.

Proposition 1.7. Let ψ : RN × R+ → R be function of the velocity v and microscopic internal
energy I, such that the integral∫∫

RN×R+

Q(f, f) (v, I) ψ(v, I)ϕ(I) dv dI

makes sense. Then, the following holds

(1.69)
∫∫

RN×R+

Q(f, f) (v, I) ψ(v, I)ϕ(I) dv dI

= −1

4

∫∫
RN×R+

∫
Ω

∫
SN−1

[
f ′f ′∗ − ff∗

]
×
[
ψ(v′, I ′) + ψ(v′∗, I

′
∗)− ψ(v, I)− ψ(v∗, I∗)

]
× B (1−R)R

N
2
−1 dω dr dR dI∗ dv∗ dI dv.

Proof. The proof of this Proposition relies on the application of Lemma 1.6. Indeed, we first
write the full expression

(1.70)
∫∫

RN×R+

Q(f, f) (v, I) ψ(v, I)ϕ(I) dv dI

=

∫∫
RN×R+

∫
Ω

∫
SN−1

[
f ′f ′∗ − ff∗

]
ψ(v, I)B (1−R)R

N
2
−1 dω dr dR dI∗ dv∗ dI dv.

Then we perform the change of variables (for ω ∈ SN−1 fixed)

(v,v∗, I, I∗, r, R) 7→
(
v′,v′∗, I

′, I ′∗, r
′, R′

)
.

Using the invariant properties of the cross section (1.68) and Lemma 1.6, we obtain

(1.71)
∫∫

RN×R+

Q(f, f) (v, I) ψ(v, I)ϕ(I) dv dI

=

∫∫
RN×R+

∫
Ω

∫
SN−1

[
ff∗ − f ′f ′∗

]
ψ(v′, I ′)B (1−R)R

N
2
−1 dω dr dR dI∗ dv∗ dI dv.
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Further, we mimic the interchange of particles by means of the change of variables

(v,v∗, I, I∗, r, R) 7→ (v∗,v, I∗, I, 1− r,R) , for ω ∈ SN−1 fixed,

first in the integral (1.70), and then in (1.71). Again, using the invariant properties of the cross section
(1.68), we get

(1.72)
∫∫

RN×R+

Q(f, f) (v, I) ψ(v, I)ϕ(I) dv dI

=

∫∫
RN×R+

∫
Ω

∫
SN−1

[
f ′f ′∗ − ff∗

]
ψ(v∗, I∗)B (1−R)R

N
2
−1 dω dr dR dI∗ dv∗ dI dv,

and

(1.73)
∫∫

RN×R+

Q(f, f) (v, I) ψ(v, I)ϕ(I) dv dI

=

∫∫
RN×R+

∫
Ω

∫
SN−1

[
ff∗ − f ′f ′∗

]
ψ(v′∗, I

′
∗)B (1−R)R

N
2
−1 dω dr dR dI∗ dv∗ dI dv.

Finally, summation of all four expressions (1.70), (1.71), (1.72) and (1.73) yields the result. �

In the sequel, we investigate when the weak form of the collision operator (1.69) is equal to zero,
which amounts to looking for the collision invariants.

Collision invariants. We call a function ψ a collision invariant if it satisfies the functional equation

(1.74) ∀ (v,v∗, I, I∗, r, R,ω) ∈ R2N×R2
+× [0, 1]2×SN−1, ψ(v, I)+ψ(v∗, I∗) = ψ(v′, I ′)+ψ(v′∗, I

′
∗).

The following Proposition shows that the collision invariants are precisely quantities invariant during a
collision – that is the functions whose invariant property can be seen on the microscopic conservation
laws (1.55).

Proposition 1.8. The collision invariants belonging to L1
loc are linear combinations of the fol-

lowing (N + 2) functions:

(1.75) ψ (v, I) =

 1
mv

m
2 |v|

2 + I

 .

Proof. The proof relies on the proof for collisional invariants in the case of a monatomic gas
described in Proposition 1.2. Indeed, we look for a function ψ(v, I) such that (1.74) holds. The
collisional rules (1.55) yield

(1.76) ψ(v, I) + ψ(v∗, I∗) = φ(v + v∗,
m
2 |v|

2 + m
2 |v∗|

2 + I + I∗),

for some function φ. We use again the operator Dk` introduced in (1.15), that is

Dk` = (vk − v∗k) (∂v` − ∂v∗`)− (v` − v∗`) (∂vk − ∂v∗k) .

Proceeding as in the proof of Proposition 1.2, we obtain

∂2
k2ψ(v, I) = const, ∂2

k`ψ(v, I) = 0,

which ensures that ψ is a polynomial of degree 2 with respect to the velocity variable, more precisely

(1.77) ψ(v, I) = a(I) + b(I) · v + c(I)m2 |v|
2 .

In order to make clear the dependence of ψ(v, I) with respect to I, we apply the operator ∂I − ∂I∗ on
identity (1.76), and get

∂Iψ(v, I)− ∂I∗ψ(v∗, I∗) = 0.

Now, using the form (1.77), we obtain

a′(I) + b′(I) · v + c′(I)m2 |v|
2 = a′(I∗) + b′(I∗) · v∗ + c′(I∗)

m
2 |v∗|

2 .

This identity can hold only if

a′(I) = const, b′(I) = 0 and c′(I) = 0,
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which implies that a is an affine function of I and b, c are pure constants. Inserting this function into
(1.77), the required form of the collision invariants is obtained:

ψ(v, I) = c ·ψ(v, I),

for some constant vector c ∈ RN+2.
As in the monoatomic case, the differential operators are taken in the sense of distributions in the

computation above. �

According to Proposition 1.7, for any f such that the integrals converge, the following holds

(1.78)
∫∫

RN×R+

Q(f, f) (v, I)

 1
mv

m
2 |v|

2 + I

ϕ(I) dI dv = 0.

H−theorem. The microscopic model described by the collision transformation Sω is time re-
versible. Indeed, suppose that there are two particles of velocities v′, v′∗ and internal energies I ′, I ′∗
at some time t0, that are going to collide. After the collision, at some time t0 + ∆t, their state is
precisely Sω (v′,v′∗, I

′, I ′∗, r
′, R′) = (v,v∗, I, I∗, r, R). If we change the sign of the velocities, i.e. if we

consider particles of velocities −v, −v∗ and internal energies I, I∗ at the time t0 + ∆t, then they will
collide, and at the time t0 + 2∆t, their state will be Sω (−v,−v∗, I, I∗, r, R) = (−v′,−v′∗, I

′, I ′∗, r
′, R′∗).

Therefore, if the sign of the velocities of the particles is changed, the system passes in the reverse
direction through the same sequence of states which it went through in the forward direction (there
will be a change only in the sign of the velocities).

We now introduce the entropy production functional, whose explicit form is given by

D(f) :=

∫∫
RN×R+

Q(f, f) (v, I) (log f (v, I))ϕ(I) dI dv.

It is well defined when f is nonnegative and satisfies some suitable assumptions of regularity, lower
bound, and decay at infinity. The following properties hold.

Proposition 1.9. Assume that the cross section B is positive almost everywhere and that f ≥ 0
is such that both the collisional integral Q and the entropy production D are well defined. Then

(a) The entropy production is non-positive, i.e.

D(f) ≤ 0.

(b) Moreover, the three following properties are equivalent.
i. For any v ∈ RN , I ∈ R+

Q(f, f) (v, I) = 0.

ii. The entropy production vanishes, that is

D(f) = 0.

iii. There exist n > 0, T > 0 and u ∈ RN such that

f (v, I) =
n

ζ0(T )

( m

2π k T

)N/2
e−

1
kT (m2 |v−u|2+I),

where ζ0(T ) is given by (1.51):

ζ0(T ) =

∫
R+

ϕ(I) e−
1
kT
I dI.

Proof. To prove statement (a), let us consider a weak form of the collisional operator for the
choice log f for test function. Then (1.69) implies

(1.79) D(f) = −1

4

∫∫
RN×R+

∫
Ω

∫
SN−1

[
f ′f ′∗ − ff∗

]
×
[
log
(
f ′f ′∗

)
− log (ff∗)

]
× B (1−R)R

N
2
−1 dω dr dR dI∗ dv∗ dI dv.
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Note that for x, y ∈ R+ the function (x, y) 7→ (x− y) (log x− log y) is nonnegative. Since all other
functions under the integral are nonnegative on theirs domains, the non-positivity of the entropy
production D(f) follows.

As regards the second part of the theorem, note that the following implications are straightforward:
(i⇒ ii) and (iii⇒ i). Let us now show (ii⇒ iii). Suppose that ii) holds, i.e. D(f) = 0. From the
full expression for D(f), already written in (1.79), log f is a collisional invariant. Then, Proposition
1.8 implies that log f is a linear combination of 1,mvk,

m
2 |v|

2 + I, for k = 1, . . . , N , i.e. there exists
A0, A1, . . . , AN , AN+1, all constants, such that

f = eA0+mA1v1+···+mANvN+AN+1(
m
2 |v|

2+I).

For the choice

A0 = ln

(
n

ζ0(T )

( m

2π k T

)N/2)
− m

2kT
|u|2 ,

Ai =
1

kT
ui, 1 ≤ i ≤ N,

AN+1 = − 1

kT
,

where n and T are chosen to be positive, and u ∈ RN , the required form of the equilibrium distribution
function is obtained. �

Let us point out an important detail. The necessary condition for Q(f, f) = 0 to hold is that f is
the local Maxwellian distribution function, i.e. that f takes the following shape

(1.80) fE(t,x,v, I) =
n(t,x)

ζ0 (T (t,x))

(
m

2π k T (t,x)

)N/2
e
− 1
k T (t,x)(

m
2
|v−u(t,x)|2+I),

where the quantities n, T,u are allowed to depend on time t and space position x. For this distribution
function, the gas is in equilibrium with respect to the velocity and microscopic internal energy, but
not with respect to the time and position variables.

Although the local Maxwellian (1.80) makes the entropy vanish regardless the form of n(t,x),
T (t,x), u(t,x), it does not in general provide a solution to the Boltzmann equation. Indeed, the left-
hand side of the Boltzmann equation imposes conditions on the change of the hydrodynamic quantities
with respect to t and x.

Macroscopic conservation laws. We multiply the Boltzmann equation by some function of the
microscopic state of particles, say ψ(v, I), and integrate (with the weight ϕ(I)!) over all possible values
of the microscopic states (v ∈ RN , I ∈ R+). Similarly to the monatomic case, interchange of the order
of the integration and differentiation leads to the general moment equation:

(1.81) ∂t

∫∫
RN×R+

fψ(v, I)ϕ(I) dI dv +∇x ·
∫∫

RN×R+

f vψ(v, I)ϕ(I) dI dv

=

∫∫
RN×R+

Q(f, f) (v, I) ψ(v, I)ϕ(I) dI dv.

In order to identify this general equation with some well-known physical laws, let us define the macro-
scopic quantities appearing in the theory of polyatomic gases.

Definition of macroscopic quantities. We recall the definition of the macroscopic density

n =

∫∫
RN×R+

f ϕ(I) dI dv,

or mass density

(1.82) ρ =

∫∫
RN×R+

mf ϕ(I) dI dv = mn.
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The momentum density of a gas is obtained by means of integration against velocity v

ρu =

∫∫
RN×R+

mv f ϕ(I) dI dv,

where u represents the macroscopic velocity of the gas.
The total energy density is defined as the integral against the energy collision invariant m

2 |v|
2 + I:

(1.83) total energy density =

∫∫
RN×R+

(
m
2 |v|

2 + I
)
f ϕ(I) dI dv.

Classically, the total energy density is split into the kinetic and internal energy density. In the case of
polyatomic gases, the internal energy density ρ e is further divided into the translational part ρ eT and
the part related to the internal degrees of freedom ρ eI . This splitting is followed by the decomposition
of the energy collision invariant. Indeed, if we introduce the peculiar velocity c with respect to the
macroscopic velocity u by the relation c = v−u, then we can rewrite the energy collision invariant as
follows

m
2 |v|

2 + I = m
2 |u|

2 +mu · c + m
2 | c|

2 + I.

Substitution of this decomposition into (1.83) in conjunction with (1.82) yields the decomposition of
the total macroscopic energy density itself:

total energy density = 1
2 ρ |u|

2 + ρe,

where 1
2ρ |u|

2 is the kinetic energy of the gas and ρe is the macroscopic internal energy density that is
additionally decomposed:

(1.84) ρe =

∫∫
RN×R+

(
m
2 | c|

2 + I
)
f ϕ(I) dI dv = ρ eT + ρ eI .

The translational part of the macroscopic internal energy density is defined as the polyatomic version
(in the sense that we just have additional integration with respect to I) of the internal energy density
in the monatomic case:

(1.85) ρ eT =

∫∫
RN×R+

m
2 | c|

2 f ϕ(I) dI dv,

while the part related to the internal degrees of freedom defined as

(1.86) ρ eI =

∫∫
RN×R+

If ϕ(I) dI dv

captures the specific properties of polyatomic gases.
One can then decompose the momentum flux:

momentum flux =

∫∫
RN×R+

vi vj f ϕ(I) dI dv = ρ ui uj + pij ,

where pij is ij−th element of pressure tensor defined by

(1.87) pij =

∫∫
RN×R+

mci cj f ϕ(I) dI dv.

Comparing (1.85) and (1.87), the following difference with respect to the monatomic gases can be
immediately noticed: the internal energy density of a gas ρe is not anymore equal to one half of the
trace of the pressure tensor pij . Namely, in the case of polyatomic gases, only the translational part
of the internal energy density ρeT given by (1.85) is related to the trace of the pressure tensor:

ρeT =
1

2
(p11 + p22 + · · ·+ pNN ) .

Furthermore, the pressure tensor can be divided into the equilibrium and non-equilibrium part with
the help of the local equilibrium distribution function (1.80):

(1.88) pij =

∫∫
RN×R+

mci cj fE ϕ(I) dI dv +

∫∫
RN×R+

mci cj (f − fE)ϕ(I) dI dv.
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Defining the hydrodynamic pressure p and the non-equilibrium part σij of the pressure tensor by

(1.89) p = 1
N

∫∫
RN×R+

m | c|2 fE ϕ(I) dI dv, σij =

∫∫
RN×R+

mci cj (f − fE)ϕ(I) dI dv,

the splitting of the pressure tensor (1.88) can be rewritten:

(1.90) pij = p δij + σij ,

where δij is Kronecker symbol. Moreover, we can write σij in the following form

σij = Π δij + p〈ij〉,

where p〈ij〉 is a traceless part of the pressure tensor and Π is the so-called dynamic pressure defined by

(1.91) Π = 1
N

∫∫
RN×R+

m | c|2 (f − fE)ϕ(I) dI dv.

Finally, the pressure tensor is structured as follows

(1.92) pij = (p+ Π) δij + p〈ij〉.

Comparing definitions (1.85) and (1.89)1, one more difference between polyatomic and monatomic
gases can be noticed: in the case of a polyatomic gas, only a part of the internal energy density
(namely, the translational part) is related to the the hydrodynamic pressure

(1.93) ρ eT |E = N
2 p,

and this only happens in equilibrium. Moreover, defining temperature with

T =
1

N

1

k

∫∫
RN×R+

m | c|2 fE ϕ(I) dI dv∫∫
RN×R+

f ϕ(I) dI dv
,

the equation of state can be recovered:

(1.94) p = nk T.

Finally, the energy flux is decomposed as

(1.95) energy flux =

∫∫
RN×R+

(
m
2 |v|

2 + I
)
vj f ϕ(I) dI dv =

(
1
2ρ |u|

2 + ρ e
)
uj +

N∑
i=1

pijui + qj ,

where the heat flux q is defined by

qj =

∫∫
RN×R+

(
m
2 | c|

2 + I
)
cj f ϕ(I) dI dv, j = 1, . . . , N.

Having in mind all these definitions, the next question which arises is the determination of the
identities that the quantities defined above satisfy.

Local macroscopic conservation laws. Using the definitions of the macroscopic quantities given
above, (1.81) and (1.78), we can derive macroscopic identities for these quantities that will be valid for
any solution of the Boltzmann equation.

Proposition 1.10. Let f be a solution of the Boltzmann equation (1.49) that is rapidly decaying
with respect to (v, I), and smooth with respect to (t,x). Then the following local conservation laws
hold:

∂tρ+∇x · (ρu) = 0,

∂tρui +

N∑
j=1

∂xj (ρuiuj + pij) = 0, i = 1, . . . , N,

∂t

(
1
2 ρ |u|

2 + ρ e
)

+
N∑
j=1

∂xj

((
1
2 ρ |u|

2 + ρ e
)
uj +

N∑
i=1

pijui + qj

)
= 0.

(1.96)

Those are respectively the local conservation of mass, momentum and total energy density of a poly-
atomic gas.
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The entropy law. One of the consequences of the H−theorem is the entropy law. Let us define the
entropy and the entropy flux by

(1.97) η =

∫∫
RN×R+

f log f ϕ(I) dI dv, ηj =

∫∫
RN×R+

vj f log f ϕ(I) dI dv, 1 ≤ j ≤ N.

Then, the integration of the Boltzmann equation against the test function log f in conjunction with
Proposition 1.9 (a) yields the entropy law (valid when f and log f are rapidly decaying with respect
to (v, I) and smooth with respect to (t,x))

∂tη +
N∑
j=1

∂xjηj ≤ 0.

4. Description of mixtures of polyatomic gases

Mixture of polyatomic gases are considered in this thesis in Chapter 3. We wish to describe a
mixture of s species – namely species Ai, 1 ≤ i ≤ s – thanks to the introduction of s different
distribution functions, in such a way that each distribution function fi describes the species Ai, 1 ≤
i ≤ s.

The constitution of a kinetic model for such a mixture requires ideas from the previous Section.
Indeed, we capture additional degrees of freedom with one continuous parameter, that is the microscopic
internal energy I ∈ R+. The derivation of the correct equation of state for each species can be achieved
through the introduction of a suitable weight ϕi(I) (which can be different for each species) appearing
in the integration with respect to the microscopic state of the particles.

The distribution function fi describes the species Ai, 1 ≤ i ≤ s. It is supposed to be a non-
negative function that depends on the usual variables, time t > 0 and space position x ∈ RN , the
velocity v ∈ RN of a particle, together with its microscopic internal energy I ∈ R+. Any change in
the i−th distribution function along the trajectory of a particle in phase space is due to collisions
both with molecules of the same kind, and with molecules of the other species. Therefore, the collision
integral in (1.49) should be replaced by a sum of similar integrals, each of which takes into account
the collisions of the molecules of the species Ai with molecules of the species Aj (including i = j):

(1.98) ∂tfi + v · ∇xfi =
s∑
j=1

Qij(fi, fj) (v, I) , 1 ≤ i ≤ s.

Thus, the change of state of an s−component mixture is described by a system of s equations for the
s distribution functions fi, 1 ≤ i ≤ s.

In order to provide formulas for the collisional operator Qij , we perform an analysis at the level of
two colliding particles.

The microscopic model. Let us consider two colliding molecules of the species Ai and Aj ,
1 ≤ i, j ≤ s, with masses mi and mj . Suppose that their pre-collisional velocities are v′ and v′∗ and
internal energies I ′ and I ′∗, respectively. Since we exclude chemical reactions, after collision, molecules
belong to the same species, and their masses are unchanged. Velocities become v and v∗, while internal
energies transform to I and I∗. During that collision process, conservation laws of momentum and
total energy – that consists of kinetic plus microscopic internal energy of particles – remain valid:

miv +mjv∗ = miv
′ +mjv

′
∗,

mi
2 |v|

2 +
mj
2 |v∗|

2 + I + I∗ = mi
2

∣∣v′∣∣2 +
mj
2

∣∣v′∗∣∣2 + I ′ + I ′∗.
(1.99)

We pass to the reference frame of the center of mass by means of introducing the velocity of the center
of mass G and the relative velocity g:

G =
miv +mjv∗
mi +mj

and g = v − v∗.
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Then system (1.99) is equivalent to the system

miv +mjv∗ = miv
′ +mjv

′
∗,

E :=
µij
2 |v − v∗|2 + I + I∗ =

µij
2

∣∣v′ − v′∗
∣∣2 + I ′ + I ′∗.

(1.100)

This system consists of (N + 1) scalar equations in (2N + 2) scalar unknowns (v′,v′∗, I ′, I ′∗), and its
solution will be expressed in terms of N + 1 scalar parameters – those will be R, r ∈ [0, 1] and a unit
vector of the sphere SN−1. More precisely, we use again the Borgnakke-Larsen procedure in order to
express the pre-collisional quantities in terms of the post-collisional ones. In ω−notation, it yields

v′ =
miv +mjv∗
mi +mj

+
mj

mi +mj

√
2RE

µij
Tω

[
v − v∗
|v − v∗|

]
,

v′∗ =
miv +mjv∗
mi +mj

− mi

mi +mj

√
2RE

µij
Tω

[
v − v∗
|v − v∗|

]
,

I ′ = r(1−R)E,

I ′∗ = (1− r)(1−R)E,

R′ =
µij
2E
|v − v∗|2 ,

r′ =
I

I + I∗
,

(1.101)

where Tωz = z−2 (ω · z)ω, ∀ z ∈ RN . Alternatively, v′ and v′∗ could be expressed in terms of a vector
σ ∈ SN−1 in the following manner

v′ =
miv +mjv∗
mi +mj

+
mj

mi +mj

√
2RE

µij
σ, v′∗ =

miv +mjv∗
mi +mj

− mi

mi +mj

√
2RE

µij
σ.

It is easy to pass from one notation to the other one by means of the change of variables σ = Tωz, ∀ z ∈
RN , as described by (1.34).

Lemma 1.11 collects properties of the collision transformation in ω−notation.
Lemma 1.11. For any ω ∈ SN−1, the transformation (v,v∗, I, I∗, r, R) 7→ (v′,v′∗, I

′, I ′∗, r
′, R′)

given by the relation (1.101) is an involution of the set R2N ×R2
+× [0, 1]2 and its Jacobian determinant

is

(1.102) J(v,v∗,I,I∗,r,R) 7→(v′,v′∗,I
′,I′∗,r

′,R′) =
(1−R)

(1−R′)

(
R

R′

)N
2
−1

=
(1−R)

(1−R′)

( |v′ − v′∗|
|v − v∗|

)N−2

.

The proof of this Lemma will be omitted, since it is completely analogous to the proof of Lemma
1.6. It can be found in [30].

Collision operators and their weak forms. Let 1 ≤ i, j ≤ s. The collision operator associated
to species Ai and Aj is defined for any t ∈ R+,x ∈ RN by

(1.103) Qij(f, g)(v, I) =

∫
Ω

∫
SN−1

[
f ′g′∗ − fg∗

]
Bij (1−R)R

N
2
−1 1

ϕi(I)
dω dr dR dI∗ dv∗,

where v′, v′∗, I ′ and I ′∗ are defined by (1.101), Ω = R× R+ × [0, 1]2, and f, g : RN × R+ → R are two
functions. The cross section Bij := Bij (v,v∗, I, I∗, r, R,ω) is supposed to satisfy the microreversibility
assumptions:

Bij (v,v∗, I, I∗, r, R,ω) = Bji (v∗,v, I∗, I, 1− r,R,ω) ,

Bij (v,v∗, I, I∗, r, R,ω) = Bij
(
v′,v′∗, I

′, I ′∗, r
′, R′,ω

)
.

(1.104)

In the sequel we describe the weak forms of collision integrals. Because of the presence of different
species, two different weak formulations are presented.
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Proposition 1.12. Let ψi : RN × R+ → R be functions such that the integrals∫∫
RN×R+

Qij (f, g) (v, I) ψi (v, I)ϕi (I) dv dI and
∫∫

RN×R+

Qji (g, f) (v, I) ψj (v, I)ϕj (I) dv dI

make sense. Then, the following holds

(1.105)
∫∫

RN×R+

Qij (f, g) (v, I) ψi (v, I)ϕi (I) dv dI

= −1

2

∫∫
RN×R+

∫
Ω

∫
S2

[
f ′g′∗ − fg∗

]
×
[
ψi
(
v′, I ′

)
− ψi (v, I)

]
Bij (1−R)R

N
2
−1 dω dr dR dI∗ dv∗ dI dv,

and

(1.106)∫∫
RN×R+

Qij (f, g) (v, I) ψi (v, I)ϕi (I) dv dI +

∫∫
RN×R+

Qji (g, f) (v, I) ψj (v, I)ϕj (I) dv dI

= −1

2

∫∫
RN×R+

∫
Ω

∫
S2

[
f ′g′∗ − fg∗

]
×
[
ψi
(
v′, I ′

)
+ ψj

(
v′∗, I

′
∗
)
− ψi (v, I)− ψj (v∗, I∗)

]
× Bij (1−R)R

N
2
−1 dω dr dR dI∗ dv∗ dI dv.

Proof. Let us write the full expression

(1.107)
∫∫

RN×R+

Qij (f, g) (v, I) ψi (v, I)ϕi (I) dv dI

=

∫∫
RN×R+

∫
Ω

∫
S2

[
f ′g′∗ − fg∗

]
ψi (v, I) Bij (1−R)R

N
2
−1 dω dr dR dI∗ dv∗ dI dv.

In order to get formula (1.105) it is enough to perform the change of variables

(1.108) (v,v∗, I, I∗, r, R) 7→
(
v′,v′∗, I

′, I ′∗, r
′, R′

)
for ω ∈ SN−1 fixed,

with Jacobian (1.102). Using property (1.104)2 we obtain

(1.109)
∫∫

RN×R+

Qij (f, g) (v, I) ψi (v, I)ϕi (I) dv dI

=

∫∫
RN×R+

∫
Ω

∫
S2

[
fg∗ − f ′g′∗

]
ψi
(
v′, I ′

)
Bij (1−R)R

N
2
−1 dω dr dR dI∗ dv∗ dI dv.

Summing equations (1.107) and (1.109), we obtain the formula (1.105).
The second part of the proof uses the same strategy. We write the second integral appearing in

the left-hand side of (1.106):∫∫
RN×R+

Qji (g, f) (v, I) ψj (v, I)ϕj (I) dv dI

=

∫∫
RN×R+

∫
Ω

∫
S2

[
g

(
mjv +miv∗
mi +mj

+
mi

mi +mj

√
2RE

µij
Tω

[
v − v∗
|v − v∗|

]
, r (1−R)E

)

× f
(
mjv +miv∗
mi +mj

− mj

mi +mj

√
2RE

µij
Tω

[
v − v∗
|v − v∗|

]
, (1− r) (1−R)E

)
− g (v, I) f (v∗, I∗)

]
× ψj (v, I) Bij (1−R)R

N
2
−1 dω dr dR dI∗ dv∗ dI dv.

We mimic the interchange of particles in the last integral by changing variables

(v,v∗, I, I∗, r, R) 7→ (v∗,v, I∗, I, 1− r,R) , for ω ∈ SN−1 fixed,
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so that we obtain∫∫
RN×R+

Qji (g, f) (v, I) ψj (v, I)ϕj (I) dv dI

=

∫∫
RN×R+

∫
Ω

∫
S2

[
g′∗ f

′ − g∗f
]
ψj (v∗, I∗) Bij (1−R)R

N
2
−1 dω dr dR dI∗ dv∗ dI dv.

Next, we perform the change (1.108) and get∫∫
RN×R+

Qji (g, f) (v, I) ψj (v, I)ϕj (I) dv dI

=

∫∫
RN×R+

∫
Ω

∫
S2

[
g∗ f − g′∗f ′

]
ψj
(
v′∗, I

′
∗
)
Bij (1−R)R

N
2
−1 dω dr dR dI∗ dv∗ dI dv.

Finally, summing the last two formulas together with the form (1.105) of the first integral appearing
in the left-hand side of (1.106), we obtain the expression (1.106). �

In the case of mixtures, collision invariants are linked to each species of the mixture. Namely, a
set of functions ψi, i = 1, . . . , s is called collision invariant if the functional equation

(1.110) ∀i, j = 1, . . . , s, ψi(v, I) + ψj(v∗, I∗) = ψi(v
′, I ′) + ψj(v

′
∗, I
′
∗).

is satisfied for every (v,v∗, I, I∗, r, R,ω) ∈ R2N × R2
+ × [0, 1]2 × SN−1.

Proposition 1.13. The collision invariants corresponding to the species Ai, that belongs to L1
loc,

are the following (N + 2) functions:

ψi(v, I) =

 1
miv

mi
2 |v|

2 + I

 .

Proof. The proof uses ideas of the proof for the corresponding Lemma 1.8 for one polyatomic gas.
We search for a function ψi such that it satisfies equation (1.110), for 1 ≤ i, j ≤ s. Collisional rules
(1.101)1−4 imply that functions of the pre-collisional quantities, i.e. the right-hand side of (1.110), can
be expressed with the help of a function φ as follows:

(1.111) ψi(v, I) + ψj(v∗, I∗) = φ(miv +mjv∗,
mi
2 |v|

2 +
mj
2 |v∗|

2 + I + I∗).

Let us introduce the operator Dij
k` corresponding to the species Ai and Aj , 1 ≤ i, j ≤ s, for k, ` =

1, . . . , N and k 6= `:

Dij
k` = (vk − v∗k)

(
1
mi
∂v` − 1

mj
∂v∗`

)
− (v` − v∗`)

(
1
mi
∂vk − 1

mj
∂v∗k

)
.

Applying the operator Dij
k` to the function φ, similarly as in the proof of Proposition 1.8, we obtain

Dij
k` φ(miv +mjv∗,

mi
2 |v|

2 +
mj
2 |v∗|

2 + I + I∗) = 0,

which yields
Dij
k` (ψi(v, I) + ψj(v∗, I∗)) = 0.

Differentiating with respect to vk, we obtain

(1.112) 1
mi
∂` ψi(v, I)− 1

mj
∂` ψj(v∗, I∗) + 1

mi
(vk − v∗k)∂2

` kψi(v, I)− 1
mi

(v` − v∗`)∂2
k2ψi(v, I) = 0.

Furthermore, we differentiate (1.112) with respect to v∗`, obtaining

− 1
mj
∂2
`2ψj(v∗, I∗) + 1

mi
∂2
k2ψi(v, I) = 0,

while differentiation of (1.112) with respect to v∗` yields

− 1
mj
∂2
` kψj(v∗, I∗)− 1

mi
∂2
` kψi(v, I) = 0.

The last two equalities imply

∂2
k2ψi(v, I) = mi const, ∂2

k`ψi(v, I) = 0,
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which ensures that ψ is a polynomial of order 2 with respect to the velocity variable with coefficients
depending on the species and I, more precisely

(1.113) ψi(v, I) = ai(I) + bi(I) · v + c(I)mi2 |v|
2 .

In order to make clear the dependence of ψ(v, I) with respect to I, we apply the operator ∂I − ∂I∗ on
identity (1.111), and get

∂Iψ(v, I)− ∂I∗ψ(v∗, I∗) = 0.

Now, using the form (1.113) we obtain

a′i(I) + b′i(I) · v + c′(I)mi2 |v|
2 = a′j(I∗) + b′j(I∗) · v∗ + c′(I∗)

mj
2 |v∗|

2 ,

which imposes conditions on coefficients:

a′i(I) = const, b′i(I) = 0 and c′(I) = 0.

Thus, ai takes the form ai(I) = aI + ai, while bi is a constant that depends on the species, and c is a
pure constant. Finally, (1.113) becomes

ψi(v, I) = ai + bi · v + c(mi2 |v|
2 + I).

�

Let us point out an important difference between mixtures and single-component gases. In order
to define the collision invariant for the species Ai, it is necessary to consider simultaneously two species
Ai and Aj , since the collision process itself is formed by two (possible) different species. Moreover, the
weak form (1.106) is defined for species Ai and Aj simultaneously. Therefore, considering the species
Ai and taking the weak form of the corresponding collision operator

∑s
j=1Qij , in order to get the

right-hand side of (1.106), one needs to add Qji’s for all j = 1, . . . , s. Consequently, the cancelation
of the weak form can be obtained only for mixture as a whole, when ψi from (1.106) is chosen to be
a collision invariant. An exception is the weak form (1.105), since it vanishes for the first collision
invariant when only one species, e.g. Ai is considered.

Macroscopic conservation laws for mixtures. In order to formulate macroscopic conservation
laws for mixtures, we define macroscopic quantities. Mass density, momentum density and total energy
density of the species Ai are defined as the following moments of the distribution function:

(1.114)

 ρi
ρiui

1
2 ρi |ui|

2 + ρiei

 =

∫∫
RN×R+

 mi

miv
mi
2 |v|

2 + I

 fi ϕi(I) dI dv.

If we introduce the peculiar velocity that corresponds to the specie Ai with ci = v−ui, then pressure
tensor and heat flux corresponding to the species Ai are defined as follows

(1.115)
(

[pi]k`
qi

)
=

∫∫
RN×R+

(
mi [ci]k [ci]`(
mi
2 |ci|

2 + I
)

c

)
fi ϕi(I) dI dv.

The conservation laws are specified in the following Proposition.

Proposition 1.14. Let fi be a solution of the Boltzmann equation (1.98) which is rapidly de-
caying with respect to v and smooth with respect to t,x. Then the conservation law of mass density for
a species Ai and conservation laws of momentum and total energy density for the mixture hold:

∂tρi +∇x · ρiui = 0, i = 1, . . . , s(1.116)
s∑
i=1

(∂tρiui +∇x · (ρiui ⊗ ui + pi)) = 0,(1.117)

s∑
i=1

(
∂t

(
1
2 ρi |ui|

2 + ρiei

)
+∇x ·

((
1
2 ρi |ui|

2 + ρiei

)
ui + piui + qi

))
= 0.(1.118)
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Proof. The conservation law of mass density for the species Ai (1.116) is obtained by means of the
integration of the Boltzmann equation (1.98) with respect to v and I, using the definitions (1.114)1,2
and the property (1.105) of the weak form which ensures that the right-hand side of (1.116) vanishes.
Starting from the Boltzmann equation (1.98), the integration against mi v yields

∂tρiui +∇x · (ρiui ⊗ ui + pi) =
s∑
j=1

∫∫
RN×R+

Qij (fi, fj) (v, I) mi vϕi (I) dv dI,

using definitions (1.114)2 and (1.115)1. If we sum the last equality over i, then the property (1.106)
makes the right-hand side equal to zero, and therefore the conservation law of momentum (1.117) is
obtained. Finally, integrating the Boltzmann equation (1.98) against mi

2 |v|
2 + I, the same procedure

yields the conservation law of energy (1.118). �

H−theorem. We conclude this Section by writing down the H−theorem corresponding to the
collisional operators we defined and by determining the mechanical equilibrium.

Proposition 1.15. Assume that the cross sections Bij, 1 ≤ i, j ≤ s, are positive almost ev-
erywhere and that all fi ≥ 0, 1 ≤ i ≤ s, are such that the collisional integrals Qij and the entropy
productions D(f1, . . . , fs) are well defined. Then

(a) The entropy production is non-positive, i.e.

D(f1, . . . , fs) :=
s∑
i=1

s∑
j=1

∫∫
RN×R+

Qij(fi, fj)(v, I) log (fi(v, I))ϕi(I) dI dv ≤ 0.

(b) Moreover, the three following properties are equivalent.
i. For any 1 ≤ i, j ≤ s and v ∈ RN , I ∈ R+

Qij(fi, fj) (v, I) = 0.

ii. The entropy production vanishes, that is

D(f1, . . . , fs) = 0.

iii. There exist T > 0, u ∈ RN and for any i = 1, . . . , s there exists ni ≥ 0 such that

fi (v, I) =
ni

ζ0i(T )

( mi

2π k T

)N/2
e−

1
kT (mi2 |v−u|2+I).

Proof. The proof follows the same strategy as in [30]. The part (a) can be proven, using the
properties of the weak form (1.106) for ψi(v, I) = log fi(v, I) and nonnegativity of the function (x, y) 7→
(x−y)(log x− log y). Concerning the part (b), the implications (i⇒ ii) and (ii⇒ i) are straightforward.
Let us suppose that ii) holds and let us prove iii). Then, the collision integral corresponding to the
same species Qii is equal to zero, which implies that there exists ni ≥ 0, ui ∈ RN and Ti ≥ 0 such that

(1.119) fi(v, I) =
ni

ζ0i(Ti)

(
mi

2π k Ti

)N/2
e
− 1
kTi

(mi2 |v−ui|2+I)
.

Then, it remains to show that ui = uj and Ti = Tj for every i 6= j. Using the terms correspond-
ing to the collisions between particles of the species Ai and Aj , we can write fi(v′, I ′)fj(v′∗, I ′∗) =
fi(v, I)fj(v∗, I∗), which simplifies into

1

kTi

mi

2

∣∣∣∣∣miv +mjv∗
mi +mj

+
mj

mi +mj

√
2RE

µij
Tω

[
v − v∗
|v − v∗|

]
− ui

∣∣∣∣∣
2

+ r(1−R)E


+

1

kTj

mj

2

∣∣∣∣∣miv +mjv∗
mi +mj

− mi

mi +mj

√
2RE

µij
Tω

[
v − v∗
|v − v∗|

]
− uj

∣∣∣∣∣
2

+ (1− r)(1−R)E


=

1

kTi

(mi

2
|v − ui|2 + I

)
+

1

kTj

(mj

2
|v∗ − uj |2 + I∗

)
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Considering the coefficients of the degree 1 in r, we get
1

Ti
− 1

Tj
= 0,

which implies Ti = Tj . Moreover, the coefficients of degree 1/2 in R yield ui = uj . �

The entropy law. Let us define for each species Ai, i = 1, . . . , s, the entropy and the entropy flux
by

ηi =

∫∫
RN×R+

fi log fi ϕi(I) dI dv, ηij =

∫∫
RN×R+

vj fi log fi ϕi(I) dI dv, 1 ≤ j ≤ N,

under the assumption that each fi and log fi are rapidly decaying with respect to (v, I) and smooth
with respect to (t,x), for every i = 1, . . . , s. Then Proposition 1.15 (b) implies the entropy law:

s∑
i=1

∂tηi +

N∑
j=1

∂xjηij

 ≤ 0.
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CHAPTER 2

Maximum entropy principle for polyatomic gases

Extended thermodynamics is closely related to the mathematical theory of hyperbolic systems [50].
Indeed, the basic equations of extended thermodynamics that aim at describing a monatomic gas are
the balance laws:

(2.1) ∂tF +
3∑
j=1

∂xjFj = P,

where F, Fj are densities and fluxes of macroscopic quantities (fields) and P are production densities.

Ordinary thermodynamics already uses such field equations, but it restricts the vector F to have
five components – the densities of mass, momentum and energy, which define the state of a fluid
[27, 48]. In that case (and in absence of chemical reactions), the production terms P vanish, so that
the field equations are in fact conservation laws. The closure of the system is achieved by relating the
fluxes Fj to the densities F through constitutive relations.

The simplest constitutive relation is the thermal equation of state, which relates the pressure at
one point and time to the densities of mass and energy at that point and time. By neglecting viscosity
and heat conduction, one obtains the Euler hyperbolic system for compressible fluids.

The other well-known constitutive equations are those of Navier-Stokes and Fourier for viscous
stress and heat flux. These laws rely on the assumption that the fluxes Fj at some position depend on
F as well as on the gradients of F. This enables to write down Navier-Stokes-Fourier equations, which
include derivatives of second order with respect to x in the momentum and energy equations.

Extended thermodynamics extends the state F in order to include further densities, typically the
densities of the fluxes of momentum and energy. In such a way, extended thermodynamics can describe
processes with steep gradients and rapid changes. Whatever the additional variables are, all the basic
equations have the structure of balance equations, although not all of them are conservation laws [50].
The closure is achieved by constitutive equations for the fluxes Fj and the production terms P, that
are local and instantaneous so that Fj and P at one point and time depend only on the state at
that point and time (and not of the gradients). Moreover, the constitutive equations are restricted to
satisfy two universal principles: the objectivity or relativity principle (stating that the field equations
(2.1) have the same form in all Galilean frames) and the entropy principle (requiring that the entropy
inequality holds for all solutions of the field equations (2.1) and that the entropy density is a convex
function). The two principles together ensure that system (2.1) is symmetric hyperbolic [17, 55, 50].

Extended thermodynamics is connected to the kinetic theory of gases. Indeed, moments of the
distribution function – solution to the Boltzmann equation – can be identified with field variables.
Then, moment equations can be obtained from the Boltzmann equation by integrating with respect
to the variables that describe microscopic states of the gas against some test functions. It is worth
mentioning that kinetic theory of monatomic gases forces the moment equations to have a hierarchical
structure: the flux in one equation becomes the density in the next equation, so that the fluxes in
the moment equations are in fact also densities. This is not the case in general for fluxes in field
equations arising from extended thermodynamics. Namely, when moments of distribution function are
interpreted as macroscopic fields, we refer to extended thermodynamics at a kinetic level, contrary to
extended thermodynamics at a macroscopic level in general [19]. An important aspect that enables
hierarchical arrangement in the case of monatomic gases is the the simple relation that holds between
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the internal energy density and the hydrodynamic pressure, that is the trace of the pressure tensor.

The moment method builds an infinite number of moments starting from the Boltzmann equation.
Apart from the intractability of an infinite number of equations, the description that it suggests is too
much detailed. On the other side, it is common in extended thermodynamics that an approximation
of a thermodynamical process under consideration is obtained by means of a finite number of field
equations. As a consequence, moment equations are usually truncated at some order. Then, an
important aspect of the contact between extended thermodynamics and kinetic theory becomes the
closure problem.

For a monatomic gas, the most popular system that describes its behavior (beyond the usual Euler
and Navier-Stokes equations) is the system of equations for 13 moments – precisely:

mass density 1

momentum density 3

pressure tensor 5 = 9(full matrix)

− 3(symmetry of pressure tensor)
− 1(relation of the trace of pressure tensor and energy)

energy density 1

heat flux 3,

whose closure is at the heart of the following three procedures: (i) Grad’s moment method, (ii) extended
thermodynamics of viscous, heat-conducting gases and (iii) maximization of entropy. It was shown
[50] that in the case of 13 fields these three procedures yield the same macroscopic equations.

The Grad’s moment method is focused on finding an approximate non-equilibrium velocity distri-
bution function f(t,x,v) which closes the system of balance laws for the 13 moments. The celebrated
solution, given by Grad [37], is based upon the expansion of the distribution function in terms of
tensorial Hermite polynomials. It enables to compute fluxes and production terms and in such a way
closes the system.

The extended thermodynamics [50] yields the same set of equations by imposing universal principles
of relativity and entropy inequality (with a convex entropy).

Motivated by the similarity of extended thermodynamics and moment equations derived from the
Boltzmann equation on one hand, and the observation that Grad’s distribution function maximizes
the entropy [44] on the other hand, a maximum entropy principle was established [31, 47]. In [50]
this procedure was extended for any number of moments of a monatomic gas.

The moment method and procedures for solving the closure problem when moment equations are
truncated at some order described above were established only within the theory of monatomic gases.
Aiming to go beyond this framework – one wishes to consider rarefied polyatomic gases or real (dense)
gases, one immediately faces a new problem. The simple relationship between the trace of the pressure
tensor and the internal energy density does not exist any more, which disturbs the nice hierarchical
structure of the moment equations.

In the macroscopic framework, an extended thermodynamics theory for real (dense) gases [9] was
only very recently developed. It involves 14 fields:

mass density 1

momentum density 3

pressure tensor 6 = 9(full matrix)

− 3(symmetry of pressure tensor)
energy density 1

heat flux 3.

The presence of one more parameter in the pressure tensor (dynamical pressure) is also a feature
of rarefied polyatomic gases, and its consideration leads to the same problems as in dense gases. This
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Chapter deals first with the construction of moment equations for rarefied polyatomic gases. Another
aim of this Chapter is to establish the maximum entropy principle for rarefied polyatomic gases. To
that end, a variational problem is formulated and solved thanks to the following result [7]: When
F,G ∈ C2 with respect to all variables, if a function x = x(t), t ∈ [a, b] is a critical point of the integral
J(x) =

∫ b
a F (t, x, x′) dt that satisfies the conditions

K(x) =

∫ b

a
G(t, x, x′)dt = L, x(a) = A, x(b) = B,

then there exists a constant α ∈ R such that the function x = x(t) is an extremum of the extended
functional L =

∫ b
a (F − αG) dt, i.e. the Euler-Lagrange equation holds for the extended functional L:

(2.2)
∂L
∂x
− d

dt

∂L
∂x′

= 0.

The moment method and the maximum entropy principle for monatomic gases is recalled, in order to
point out the main problems that appear when polyatomic gases are considered. Then, some ideas
– that were originally developed within the extended thermodynamics theory of dense gases [9] –
about how to overcome these problems will be presented. Finally, the kinetic theory for polyatomic
gases contributed to the justification of these ideas and the establishment of moment equations for
polyatomic gases. Afterwards, the maximum entropy principle is applied in order to close the system
for 14 moments.

1. The state of the art for monatomic gases

In a monatomic gas, the macroscopic quantities are averages of the distribution function f (t,x,v)
over the velocity space against monomials in v. Therefore, one naturally obtains evolution equation for
the macroscopic quantities by taking moments of the evolution equation for the distribution function
(that is the Boltzmann equation) – integrating with respect to v after multiplication by some monomials
of v. Moments are therefore governed by the moment equations of balance type:

(2.3) ∂t

∫
R3

m



1
vi1
vi1vi2

...
vi1 · · · vin

...


f (t,x,v) dv +

3∑
j=1

∂xj

∫
R3

mvj



1
vi1
vi1vi2

...
vi1 · · · vin

...


f (t,x,v) dv

=

∫
R3

m



1
vi1
vi1vi2

...
vi1 · · · vin

...


Q(f, f) (v) dv, ik ∈ {1, 2, 3}, ∀ k ∈ N.

The main characteristic of this infinite sequence of equations is that the flux (the term after the
derivative with respect to x) in the moment equation of tensorial order n becomes the density (the
term after the derivative with respect to t) in the moment equation of order n+1. Fluxes and densities
essentially coincide – the flux in one equation becomes the density in the next equation.

We remind (1.13) that the collision invariants for monatomic gases are 1,v, |v|2. Consequently, the
first two equations are the conservation laws of the mass density and the i1-th component of momentum
density. In addition, one half of the trace (equalization of indices and summation over them) of the
third equation is interpreted as the conservation law of the total (kinetic + internal) energy density.

Let us devote more attention to the last property. The total energy density (1.24) is defined as the
moment of the distribution function against the energy collisional invariant and it can be decomposed
into macroscopic kinetic and internal energy. The macroscopic internal energy density is related to the
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hydrodynamic pressure (which is, according to (1.26), one third of the trace of the pressure tensor) via
the caloric equation of state for ideal gases (1.27):

(2.4) ρ e = 1
2 (p11 + p22 + p33) = 3

2 p.

where k is the Boltzmann constant k = 1.38 · 10−23J/K.

The description by an infinite number of moment equations is equivalent to the description by
the distribution function. Its presentation is perhaps more physically intuitive, since one is usually
interested in the evolution of macroscopic observable quantities, but an infinite number of moment
equations is untractable, and also too much detailed. Therefore, the hierarchy of macroscopic equa-
tions (2.3) is usually truncated at some order of moments, say N .

A method which provides an appropriate solution to the closure problem when one performs such
a truncation is the maximization of entropy method [44]. It is well known that each solution f of the
Boltzmann equation of monatomic gases satisfies the extra entropy balance law:

(2.5) ∂th+
3∑
j=1

∂xjhj = Σ ≥ 0,

where

(2.6) h = −k
∫
R3

f log f dv, hj = −k
∫
R3

vjf log f dv, Σ = −k
∫
R3

Q(f) log f dv,

k being the Boltzmann constant (this result with factor −k dropped is known as H−theorem, see
Proposition 1.4 in Introduction, equality being satisfied when f is the Maxwellian distribution (1.31)).
In other words, the entropy inequality (2.5) automatically holds for the infinite hierarchy. But, when
the hierarchy is truncated at some order, the entropy inequality (2.5) needs not be satisfied anymore.
In fact, it becomes a strong restriction for the choice of the distribution function that satisfies the
truncated moment equations. At the same time, it is known that the local Maxwellian distribution
(with hydrodynamic variables which depend on t and x), as well as Grad’s distribution, maximizes the
physical entropy h.

These results motivated the formulation of the maximum entropy principle. It states that one can
use in the closure problem the distribution function f which maximizes the physical entropy under the
constraints that its moments are prescribed:

maxf h

s.t. F(N)(t,x)=

∫
R3

mΨ(N)(v) f(t,x,v) dv,(2.7)

where F(N) := F(N)(t,x) is the truncated vector of moments up to tensorial order N1, and Ψ(N) is
the vector Ψ given in (2.11) truncated at order N :

Ψ(N)(v) =


1
vi1
vi1vi2

...
vi1 · · · viN

 .

Thus, the distribution function used in the closure problem comes out as solution of a variational
problem with constraints.

The problem can be put on physical ground in the following way: the maximization of entropy is
the search for the most probable distribution function. On the other hand, the only information we get
about the system is its macroscopic state, described by the moments (2.7) of the distribution function.
Therefore, we look for a distribution function f within the set of functions compatible with a given
macroscopic state which maximizes the entropy. To be more precise we should write f (N) instead of f ,

1Let us remark an abuse of notation: in some Sections N denotes a dimension of space. However, in this Section,
the dimension of space is 3, and N denotes an order of truncation of moment (equations).
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but to avoid a cumbersome notation we omit the index N . Nevertheless, it is important to note that
f (N) is not solution of the Boltzmann equation (1.49) and it is an open problem to prove that f (N)

converge to the solution f of the Boltzmann equation when N →∞.

The variational problem with the constraints (2.7) is solved by introducing the vector of multipliers

λ(N) =
(
λ(0) λ

(1)
i1

λ
(2)
i1i2

. . . λ
(N)
i1i2...iN

)T
and yields the following solution f̂ := f̂(t,x,v)2:

(2.8) f̂ = F (χ) = e(−1−m
k
χ),

where

χ = λ(N) ·Ψ(N) = λ(0) +

3∑
i1=1

λ
(1)
i1
vi1 +

3∑
i1,i2=1

λ
(2)
i1i2

vi1vi2 + · · ·+
3∑

i1,...,in=1

λ
(n)
i1...in

vi1 . . . vin .

Finally, plugging the solution (2.8) into constraints of the problem (2.7), we obtain algebraic equations
for the multipliers λ(N):

F̂(N) =

∫
R3

mΨ(N) e(−1−m
k
λ(N)·Ψ(N)) dv,

where we have denoted by F̂(N) the densities evaluated at the maximizer f̂ . Note that the multipli-
ers, and consequently the distribution function, depend on t and x through the moments, λ(N) :=
λ(N)(F(N)(t,x)).

Once the maximizer f̂ is determined, one can compute all macroscopic quantities and in such a way
obtain a closed system of macroscopic equations that determines their time rate of change. Indeed,
truncating the hierarchy (2.3) at the order N and choosing f̂ for the distribution function, we obtain
the following set of macroscopic equations

(2.9) ∂tF̂
(N) +

3∑
j=1

∂xj F̂
(N+1)
j = P̂(N),

where F̂
(N+1)
j and P̂(N) are respectively the fluxes and the production terms evaluated at the maximizer

f̂ :

F̂
(N+1)
j =

∫
R3

mvjΨ
(N)(v) f̂ dv, P̂(N) =

∫
R3

mΨ(N)(v)Q(f̂ , f̂) dv.

Let us explain the notation we use. The moment of of order n, for n ≥ 0, is represented by F (n)
i1i1...in

,
as pointed out in (1.20). The moments up to the order n are denoted by F(n). The notation F

(n+1)
j

means that we consider moments up to the order (n+ 1) (starting from the first order moment, since
n ≥ 0) with indices containing index j. More precisely,

F(n) =


F (0)

F
(1)
i1
. . .

F
(n)
i1i2...in

 , F
(n+1)
j =


F

(1)
j

F
(2)
i1j

. . .

F
(n+1)
i1i2...inj

 .

Note that, by definition, the moments are symmetric with respect to change of indices, for example
F

(2)
i1i2

= F
(2)
i2 i1

.

However, the solution of the variational problem (2.7) does not provide, in general, an integrable
function (in particular, when N is odd).

One way to overcome this problem is to approximate the solution f̂ by assuming that processes
are not far from local equilibrium. In order to do so, let us first characterize the equilibrium state from
the standpoint of maximum entropy principle.

2With f̂ := f̂(t,x,v) we denote a solution of the variational problem under consideration.
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If the densities of mass, momentum and energy (densities of Euler system of equations) are taken
as constraints:

F(2) =

 ρ
ρui

1
2ρ |u|

2 + ρe

 =

∫
R3

m

 1
vi

1
2 |v|

2

 f dv, i = 1, 2, 3,

the maximum entropy principle yields an equilibrium distribution function (that is, a local Maxwellian
function) as a maximizer, i.e. determines λ(N)

E :

λ
(N)
E :=

(
− k
m log

(
n
( m

2πkT

)3/2
)
− 1

T ui
1

2T δij 0 . . . 0

)T
,

for i, j = 1, 2, 3 and δij representing the Kronecker delta. In such a way, we obtain χ at local equilibrium
state (χE = λ

(N)
E ·Ψ(N)), and consequently the solution of the variational problem is

f̂ = F (χE) = fE ,

where fE is the local equilibrium distribution function of the form (1.31) with coefficients that depend
on (t,x).

Aiming to expand the maximizer (2.8) in the neighborhood of the local equilibrium [44], we assume
that χ ≈ χE or λ(N) ≈ λ(N)

E , for a given N , which yields that the exact solution f̂ of the variational
problem (2.7) is approximated as:

f̂ ≈ F (χE)
(
1− m

k (χ− χE)
)
.

Since F (χE) = fE , the approximate distribution function reads

(2.10) f̂ ≈ fE
(

1− m
k λ̃

(N) ·Ψ(N)
)
, λ̃

(N)
= λ(N) − λ(N)

E .

Plugging this approximate distribution function into constraints (2.7) we obtain a linear system of
equations for the coefficients λ̃

(N)
, and consequently the distribution function expressed in terms of

the known densities F(N). Finally, the substitution of such distribution function into the moment
equations (2.9) closes this system.

Let us consider an example of (2.10). Taking the following moments as constraints

F(3) =


ρ
ρui

ρuiuj + pij(
1
2ρ |u|

2 + ρe
)
ui +

∑3
j=1 pijuj + qi

 =

∫
R3

m


1
vi
vivj

1
2 |v|

2 vi

 f dv, i = 1, 2, 3,

and considering the solution (2.10) for N = 3, we obtain the Lagrange multipliers

λ̃
(3)

=


λ̃(0)

λ̃
(1)
i

λ̃
(2)
ij

λ̃
(3)
ijk

 =


1 + ρ

2p2

∑3
i,j=1 p〈ij〉uiuj − ρ2

5p3 q · u |u|2 + ρ
p2 q · u

− ρ
p2

∑3
j=1 p〈ij〉uj + ρ2

5p3 |u|2 qi + 2
5
ρ2

p3 q · u qi − ρ
p2 qi

ρ
2p2 p〈ij〉 − 2

5
ρ2

p3 qiuj − ρ2

5p3 q · u δij
ρ2

5p3 δjk

 .

Then the approximate distribution function (2.10) for N = 3 for this choice of λ̃
(3)

coincides with
Grad’s 13 moments distribution function:

fG = n
( m

2πkT

)3/2
e−

m
2kT
| c|2

1− ρ

p2
q · c +

ρ

2p2

3∑
i,j=1

p〈ij〉cicj +
1

5

ρ2

p3
q · | c|2 c

 , with c = v − u,

based upon expansion of distribution function in terms of Hermite polynomials [37]. Consequently,
the two approaches yield the same set of balance equations for 13 moments. At the same time, at the
macroscopic level the same set of balance laws is obtained by the maximum entropy principle on one
side, and extended thermodynamics on the other side [19].
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Let us present another possibility about how to overcome the convergence problem. Grad’s distri-
bution can be regarded as finite-dimensional approximation of a non-equilibrium distribution function.
At the same time, it provides a solution to the closure problem for the truncated set of moment equa-
tions. A brief comment may be given about the closure procedure provided by Levermore [47] and
the one given here. Namely, the aim of [47] was to give a nonperturbative closure for the moment
hierarchy, thus imposing integrability condition to the exact solution of the variational problem (2.7)
(typically, it amounts to take into account only some even powers of the velocity variable in F(N)). This
condition is rather stringent and eventually rules out the exact solution at Grad’s level as inadmissible,
since it is not integrable. However, its approximation in the neighborhood of Maxwellian is integrable.
To put the derivation of Grad’s distribution, or any higher order one, to a firm mathematical ground,
one has to make a compromise and drop the condition of integrability of the exact solution. The way
out is to search for a solution of the variational problem (2.7) among the set of admissible functions of
the form:

f = fE

(
1 +α(N) ·Ψ(N)

)
,

for a properly defined equilibrium distribution fE , where α(N) is the vector of functions which has to
be determined from the variational problem. Two additional requirements are needed:

(1) the equilibrium distribution fE has to be taken exact solution of the variational problem with
constaints F(2);

(2) a smallness assumption has to be imposed on α(N) ·Ψ(N).
The first condition ensures that fE is Maxwellian, while the second one implies that admissible func-
tions are small perturbations of the equilibrium distribution. Under these assumptions, it can be shown
that α(N) = −(m/k)λ(N) is the solution of the constrained variational problem.

In this Chapter, we will build a moment hierarchy for polyatomic gases. A problem that arises in
such a construction is that there is no simple relation between the internal energy density and the trace
of the pressure tensor, such as (2.4). Indeed, the evolution equation of energy cannot be recovered
from any moment equation hierarchically structured as (2.3). This happens for polyatomic rarefied
gases in which we are interested, but also for dense gases. Considering dense gases [9], the system of
field equations was adapted to a different hierarchy than (2.3). We will validate this idea from the
standpoint of kinetic theory in the context of rarefied polyatomic gases [3].

Afterwards, the maximum entropy principle in the case of polyatomic rarefied gases will be pre-
sented. In particular, for the 14 moments case, the obtained model can be compared with the model
arising from the extended thermodynamics [9], as it was done in the 13 moments case for monatomic
gases.

2. Heuristic viewpoint of the model for dense gases

Let us briefly survey the development of ideas for building two independent hierarchies in the case
of dense gases [9].

The Navier-Stokes-Fourier theory can be seen as a limiting case of extended thermodynamics
obtained by carrying out the Maxwellian iteration (see [9] and references therein), i.e. as an approxi-
mation of extended thermodynamics when the relaxation times of dissipative fluxes (viscous stress and
heat flux) are neglected.

The Navier-Stokes-Fourier system consists of the usual conservation laws

∂tρ+

3∑
j=1

∂xj (ρ uj) = 0,

∂tρui +
3∑
j=1

∂xj (ρuiuj + pij) = 0, i = 1, 2, 3,

∂t

(
1
2ρ |u|

2 + ρ e
)

+
3∑
j=1

∂xj

((
1
2ρ |u|

2 + ρ e
)
uj +

3∑
i=1

pijui + qj

)
= 0,
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and recalling the structure of the pressure tensor (1.92): pij = (p + Π)δij + p〈ij〉, the constitutive
equations for the traceless part of the pressure tensor, dynamic pressure and heat flux write

p〈ij〉 = 2µ
∂u〈i

∂xj〉
, Π = −ν∇x · u, q = −κ∇xT,

where µ is the shear viscosity, ν the bulk viscosity and κ the heat conductivity. This system can be
rewritten as follows:

∂t ρ +
3∑
j=1

∂xj (ρ uj) = 0,

∂t (ρ ui) +
3∑
j=1

∂xj (ρ ui uj + pij) = 0,

∂t

(
1
2 ρ |u|

2 + ρ e
)

+
3∑
j=1

∂xj

((
1
2 ρ |u|

2 + ρ e
)
uj +

3∑
i=1

pij ui + qj

)
= 0,

3∑
k=1

∂xk
(
ui δjk + uj δik − 2

3 uk δij
)

=
S〈ij〉

µ
,

3∑
j=1

∂xjuj = − Π

ν
,

∂xiT = − qi
κ
.

Then, it can be seen as a degenerate (some derivatives with respect to time are missing) balance-type
system of 14 equations for the 14 unknown variables: ρ, ui, e, qi, p〈ij〉, Π, for i, j = 1, 2, 3. It seems
natural to build a hyperbolic system, i.e. to include missing terms with time derivatives, and then
to see the above system as a partly steady case of the new hyperbolic system. Indeed, the following
structure of balance laws is assumed in extended thermodynamics of dense gases [9]:

∂tF +
3∑
j=1

∂xjFj = 0,

∂tFi1 +
3∑
j=1

∂xjFi1j = 0,

∂tFi1i2 +
3∑
j=1

∂xjFi1i2j = Pi1i2 , ∂tG+
3∑
j=1

∂xjGj = 0,

∂tGk1 +
3∑
j=1

∂xjGk1j = Qk1 ,

where F is the mass density, Fi1 is the momentum density, Fi1i2 is the momentum flux, G is the total
energy density and Gk1 is the total energy flux. Then Fi1i2j and Gk1j are fluxes of Fi1i2 , Gk1 , respec-
tively, and Pi1i2 , Qk1 are productions with respect to Fi1i2 , Gk1 respectively. This structure makes
sense when

∑3
i=1 Fii is not simply related to G.

We describe in Section 3 how it is possible to obtain the same (and in fact an even more general)
set of moment equations in the context of kinetic theory of polyatomic gases.

3. Moment equations for polyatomic gases

From the kinetic point of view, it can be easily noticed from the structure of the energy collision
invariant (m2 |v|

2 + I) that the energy equation will never fit into any of the moment equations built
as (2.3), i.e. with the help of velocities only. Indeed, the moment corresponding to the energy collision
invariant is not equal to one half of the trace of the second order moment anymore, because of the



3. MOMENT EQUATIONS FOR POLYATOMIC GASES 75

presence of an additional parameter I. Thus, the kinetic theory confirms that the hierarchy of moments
equations cannot be constructed in the same fashion as in the monatomic case.

Motivated by the idea stated in [9] within the framework of dense gases, we build moment equations
for rarefied polyatomic gases [3] by constructing two independent hierarchies starting from the kinetic
theory of polyatomic gases. One of them called “momentum” hierarchy, or F−hierarchy, will be similar
to the classical hierarchy of monatomic gases; the other one, called “energy” hierarchy, or G−hierarchy,
begins with the moment related to the energy collision invariant and proceeds with standard increase
of the order through multiplication by velocities.

Starting from the kinetic model of polyatomic gases, we define moments of the F−hierarchy in the
usual way:

F(t,x) =

∫∫
RN×R+

mΨ(v) f(t,x,v, I)ϕ(I) dI dv,

where Ψ(v) is the vector of monomials:

(2.11) Ψ(v) =



1
vi1
vi1vi2

...
vi1 · · · vin

...


.

Then, the integration of the Bolzmann equation (1.49) leads to the balance laws for the F−hierarchy:

(2.12) ∂tF +

3∑
j=1

∂xjFj = P,

where fluxes and productions of the F−hierarchy are defined as:

Fj(t,x) =

∫∫
R3×R+

mvj Ψ(v) f(t,x,v, I)ϕ(I) dI dv,

P(t,x) =

∫∫
R3×R+

mΨ(v)Q(f, f)(t,x,v, I)ϕ(I) dI dv.

(2.13)

Since the second hierarchy aims at recovering equations for the energy density (1.83) and energy
flux (1.95), the first two densities of this hierarchy have to be defined by means of integration of the
distribution function against (m2 |v|

2 + I) and (m2 |v|
2 + I) vj , for some 1 ≤ j ≤ 3. Therefore, it seems

natural to define moments of the G−hierarchy by keeping energy collision invariant and proceeding as
before – multiplying by monomial of velocity:

G(t,x) =

∫∫
R3×R+

Θ(v, I) f(t,x,v, I)ϕ(I) dI dv,

where

Θ(v, I) =



m
2 |v|

2 + I(
m
2 |v|

2 + I
)
vk1(

m
2 |v|

2 + I
)
vk1vk2

...(
m
2 |v|

2 + I
)
vk1 · · · vkm

...


=
(
m
2 |v|

2 + I
)

Ψ(v).
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The corresponding fluxes and production terms are defined in the usual way:

Gj(t,x) =

∫∫
R3×R+

vj Θ(v, I) f(t,x,v, I)ϕ(I) dI dv,

Q(t,x) =

∫∫
R3×R+

Θ(v, I)Q(f, f)(t,x,v, I)ϕ(I) dI dv.

(2.14)

Then, the balance laws for the G−hierarchy obtained from the Boltzmann equation (1.49) read:

(2.15) ∂tG +

3∑
j=1

∂xjGj = Q.

Note that the minimal order of the moment in the F−hierarchy is 0, while the minimal order in the
G−hierarchy is 2. Then, the property that the flux in the moment equation of order n becomes the den-
sity in the moment equation of order n+1 holds, albeit separately for the F− and for the G−hierarchy.

Let us introduce some notations. We represent the moment of the F− (G−) hierarchy of the order,
say n, componentwise with F (n)

i1i2...in
(G(n)

i1i2...in−2
) for any integer n ≥ 0 (n ≥ 2) and ik = {1, 2, 3} for

every k = 1, . . . , n. When we deal with moments of the F− (G−) hierarchy up to some order, say n,
then we write them in vector form F(n) (G(n)).

Then F (0) is the mass density, F (1)
i1

is the i1-th component of the momentum density, while F (2)
i1i2

is the i1i2-th element of the momentum flux:

(2.16) F (0) = ρ, F
(1)
i1

= ρ ui1 , F
(2)
i1i2

= ρ ui1 ui2 + pi1i2 .

As desired, G(2) is the energy density and G(3)
k1

is the k1-component of the energy flux:

(2.17) G(2) = 1
2ρ |u|

2 + ρe, G
(3)
k1

=
(

1
2ρ |u|

2 + ρe
)
uk1 +

3∑
i=1

pik1ui + qk1 .

Furthermore, the first two moment equations from the F−hierarchy have physical meaning of the con-
servation laws for the mass and momentum, while the first moment equation from the G−hierarchy
physically is interpreted as the conservation law of the total energy.

Central moments for polyatomic gases. In practice, “full” moments are too heavy to work with.
Even more, any physical problem we deal with should not depend upon the (value) of the macroscopic
velocity u. Therefore, it will be very useful to define the central moments – moments centered around
the macroscopic velocity u.

Central moments are defined with help of the velocity c = v − u. For the F− and G− hierarchy,
they read

F =

∫∫
RN×R+

mΨ (c) f ϕ (I) dI dv, G =

∫∫
RN×R+

Θ(c, I) f ϕ(I) dI dv.

We recall the physical interpretation of the first few central moments:

(2.18) F (0) = ρ, F (1)
i1

= 0i1 , F (2)
i1 i2

= pi1 i2 , G(0) = ρ e, G(1)
i1

= qi1 .

It is useful to express “full” moments in terms of the central ones. Indeed, the N−th order moment
for the F−hierarchy F (N)

i1...iN
can be written with the help of the central moments of order N and lower

than N as follows

F
(N)
i1...iN

= F (N)
i1...iN

+
N∑
k=1

(
N

k

)
F (N−k)

(i1...iN−k
uiN−k+1

. . . u iN ),

where we have used the notation (13). In particular,

F (0) = F (0), F
(1)
i1

= F (0)ui1 , F
(2)
i1i2

= F (2)
i1i2

+ F (0)ui1ui2 .
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Furthermore, we rewrite the (M + 2)-th order moment for the G−hierarchy G(M+2)
i1...iM

in terms of the
central moments for the G−hierarchy of the order (M + 2) and lower than (M + 2), as well as the
moments for the F−hierarchy of orders (M − 1) and (M + 1):

(2.19) G
(M+2)
i1...iM

= G(M+2)
i1...iM

+

M∑
k=1

(
M

k

)
G(M+2−k)

(i1...iM−k
uiM−k+1...u iM )

+

3∑
k=1

uk F
(M+1)
k i1...iM

− 1

2
|u|2 F (M)

i1...iM
.

The first two moments are therefore:

G(2) = G(0) +
3∑

k=1

ukF
(1)
k − 1

2 |u|
2 F (0),

G
(3)
i1

= G(3)
i1

+ G(2)ui1 +

3∑
k=1

ukF
(2)
k i1
− 1

2 |u|
2 F

(1)
i1
.

The dependence of the moment for the G−hierarchy upon moments of the F−hierarchy observed in
(2.19) is crucial for the determination of the relation between the orders of truncation N and M .
Namely, it is clear that the F−hierarchy should contain at least moments necessary for expressing the
(M + 2)-th moment (2.19) for the G−hierarchy. Since the highest order of the F−hierarchy appearing
in (2.19) is (M + 1), we obtain the following restriction: N ≥M + 1 [8].

4. Maximum entropy principle for polyatomic gases

Like in monatomic gases, infinite sequences of moment equations for polyatomic gases may be
truncated to form a finite set of balance laws:

(2.20) ∂tF
(N) +

3∑
j=1

∂xjF
(N+1)
j = P(N), ∂tG

(M) +

3∑
j=1

∂xjG
(M+1)
j = Q(M).

for N ≥ 0 and M ≥ 2. On the other hand, truncation calls for the solution of the closure problem. We
present one method that aims at solving the closure problem, namely the maximum entropy principle,
in the context of polyatomic gases.

In the case of polyatomic gases, entropy is defined by the following relation:

(2.21) h = −k
∫∫

R3×R+

f log fϕ(I) dI dv = −kη,

where η is given in (1.97)1. The maximum entropy principle amounts to stating the following variational
problem:

maxf h

s.t. F(N) =

∫∫
R3×R+

mΨ(N)(v) f ϕ(I)dI dv,(2.22)

G(M)=

∫∫
R3×R+

Θ(M)(v, I) f ϕ(I)dI dv,

with

Ψ(N)(v) =


1
vi1
vi1vi2

...
vi1vi2 . . . viN

 and Θ(M)(v, I) =
(
m
2 |v|

2 + I
)

Ψ(M)(v).

This variational problem is solved by introducing the vector of multipliers

λ(N) =


λ(0)

λ
(1)
i1
...

λ
(N)
i1...iN

 , µ(M) =


µ(2)

µ
(3)
k1
...

µ
(M)
k1...kM

 .
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Then, the appropriate extended functional L reads

L = h− λ(N) ·
(∫∫

R3×R+

mΨ(N)(v) f ϕ(I) dI dc

)
− µ(M) ·

(∫∫
R3×R+

Θ(M)(v, I)ϕ(I) dI dc

)
.

The Euler-Lagrange equation (2.2) reduces to δL/δf = 0, which is satisfied if and only if

−k (log f + 1)−mλ(N) ·Ψ(N) − µ(M) ·Θ(M) = 0.

Therefore, the solution f̂ := f̂(t,x,v, I) to the variational problem (2.22) is

(2.23) f̂ = e−1−m
k
λ(N)·Ψ(N)− 1

k
µ(M)·Θ(M)

.

Plugging the solution f̂ into densities, fluxes and production terms from (2.20), a closed system of
equations is obtained:

(2.24) ∂tF̂
(N) +

3∑
j=1

∂xj F̂
(N+1)
j = P̂(N), ∂tĜ

(M) +
3∑
j=1

∂xjĜ
(M+1)
j = Q̂(M),

where F̂(N), F̂
(N+1)
j , P̂(N), Ĝ(M), Ĝ

(M+1)
j , Q̂(M) respectively denotes quantities F(N), F

(N+1)
j , P(N),

G(M), G
(M+1)
j , Q(M) evaluated at the maximizer f̂ .

As in the case of monatomic gases, our attention is focused on the convergence problem. Namely,
not every variational problem yields an integrable function f̂ . To ensure the convergence of the quan-
tities appearing in (2.24), we are led to approximate the exact solution f̂ to the variational problem
(2.22) around an equilibrium state. We anticipate that this assumption amounts to suppose:

λ(N) ≈ λ(N)
E :=


− k
m

(
log
(

ρ
mζ0(T )

(
m

2πkT

)3/2)
+ 1
)

+ 1
2T |u|

2

− 1
T u
0
...
0

 , µ(M) ≈ µ(M)
E :=


1
T
0
...
0

 .

The multipliers λ(N)
E and µ(M)

E will be derived in Proposition 2.1. In particular, the equilibrium
distribution function fE will be obtained. It will be shown that

(2.25) fE = e−1−m
k
λ

(N)
E ·Ψ(N)− 1

k
µ

(M)
E ·Θ(M)

.

In order to expand f̂ in the neighborhood of local equilibrium state, let us denote

χ = mλ(N) ·Ψ(N) + µ(M) ·Θ(M),

and
χE = mλ

(N)
E ·Ψ(N) + µ

(M)
E ·Θ(M).

Then, introducing the function F , (2.23) can be rewritten as follows

f̂ = F (χ) = e−1− 1
k
χ.

Assuming that χ ≈ χE , a Taylor expansion yields

F (χ) ≈ F (χE)
(
1− 1

k (χ− χE)
)
.

Taking into account (2.25), the exact solution (2.23) to the variational problem (2.22) can be approx-
imated around a local equilibrium state as follows

f̂ ≈ fE
(

1− 1

k

(
mλ̃

(N) ·Ψ(N) + µ̃
(M)
E ·Θ(M)

))
,

for λ̃
(N)

:= λ(N) − λ(N)
E and µ̃(M) := µ(M) − µ(M)

E .

In the sequel, we describe the Euler approximation obtained for the choice N = 1 and M = 2, and
the 14 moments approximation obtained by choosing N = 2 and M = 3.
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5. Euler approximation for polyatomic gases obtained by means of the maximum
entropy principle

Our first aim is to recover the equilibrium distribution function and appropriate field equations for
hydrodynamic variables (i.e. transfer equations for moments) via the maximum entropy principle.

5.1. Equilibrium distribution function for polyatomic gases. The maximum entropy prin-
ciple is expressed in terms of the following variational problem: determine the distribution function
f := f(t,x,v, I) such that

maxf h

s.t. F(1) =

(
ρ
ρ ui

)
=

∫∫
R3×R+

m

(
1
vi

)
f ϕ(I) dI dv,(2.26)

G(2)= 1
2 ρ |u|

2 + ρ e =

∫∫
R3×R+

(
m
2 |v|

2 + I
)
f ϕ(I) dI dv.

Due to Galilean invariance, the problem can be reformulated using the velocity c = v − u in such a
way that it does not depend upon the macroscopic velocity u:

maxf h

s.t. F (1)=

(
ρ
0i

)
=

∫∫
R3×R+

m

(
1
ci

)
f ϕ(I) dI dc,(2.27)

G(2) =ρ e =

∫∫
R3×R+

(
m
2 | c|

2 + I
)
f ϕ(I) dI dc,

bearing in mind that the velocity argument of the distribution function is translated i.e. f = f(t,x, c+
u, I). The solution is given as follows.

Proposition 2.1. The distribution function which comes out as a solution to the variational
problem (2.27) has the form:

(2.28) f̂ = fE =
ρ

mζ0(T )

( m

2πkT

)3/2
e−

1
kT (m2 |v−u|2+I),

where

(2.29) ζ0(T ) =

∫
R+

e−
1
kT

Iϕ(I) dI.

Proof. In order to prove the statement, we introduce the vector of multipliers λ(1) :=
(
λ(0) λ

(1)
i

)T
, for i = 1, 2, 3, and the multiplier µ(2) := µ(2). Superscripts indicates the tensorial order of the moment
to which the multiplier is related. The appropriate extended functional is defined as follows:

(2.30) L = h− λ(0)

∫∫
R3×R+

mfϕ(I) dI dv −
3∑
i=1

λ
(1)
i

∫∫
R3×R+

mvi fϕ(I) dI dv

− µ(2)

∫∫
R3×R+

(
m
2 |v|

2 + I
)
fϕ(I) dI dv.

Since L is a scalar, it must retain the same value also for zero hydrodynamic velocity u = 0, due
to the Galilean invariance. So, in order to work with the reformulated problem (2.27), we introduce

λ̌
(1)

:=
(
λ̌(0) λ̌

(1)
i

)T
, i = 1, 2, 3, and µ̌(2) := µ̌(2), via

(2.31) λ(0) = λ̌(0) −
3∑

k=1

λ̌
(1)
k uk + 1

2 µ̌
(2) |u|2 ; λ

(1)
i = λ̌

(1)
i − µ̌(2)ui, for any i = 1, 2, 3; µ(2) = µ̌(2).
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Then using relations that hold between full and central moments (2.16), (2.17), (2.18), the following
extended functional is obtained:

(2.32) L = −k
∫
R3

∫ ∞
0

f log fϕ(I) dI dc− λ̌(0)

∫∫
R3×R+

mfϕ(I) dI dc

−
3∑
i=1

λ̌
(1)
i

∫∫
R3×R+

mci fϕ(I) dI dc− µ̌(2)

∫∫
R3×R+

(
m
2 | c|

2 + I
)
fϕ(I) dI dc.

The Euler-Lagrange equation δL/δf = 0 is satisfied if and only if

f = e
−1− 1

k

[
mλ̌(0)+m

∑3
i=1

(
λ̌

(1)
i ci

)
+µ̌(2)(m2 | c|

2+I)
]
.

Plugging the solution into the constraints of the problem (2.27), we precisely obtain the following
system:

ρ = me−1−m
k
λ̌(0)

(
2πk

mµ̌(2)

) 3
2

ζ0

(
1
µ̌(2)

)
e

m

2kµ̌(2)

∑3
k=1

(
λ̌

(1)
k

)2

,

0i = −me−1−m
k
λ̌(0)

(
2πk

mµ̌(2)

) 3
2

ζ0

(
1
µ̌(2)

)
1
µ̌(2) λ̌

(1)
i ,

e =
1

2
(
µ̌(2)

)2
(

3∑
k=1

(
λ̌

(1)
k

)2
+ 3

k

m
µ̌(2)

)
+

1

m

ζ1

(
1
µ̌(2)

)
ζ0

(
1
µ̌(2)

) ,
where

ζβ(x) =

∫
R+

Iβ e−
1
kx
Iϕ(I) dI.

Then, we immediately obtain:

λ̌
(1)
i = 0, i = 1, 2, 3,

e =
3

2

k

m

1

µ̌(2)
+

1

m

ζ1

(
1
µ̌(2)

)
ζ0

(
1
µ̌(2)

) ,
ρ = me−1−m

k
λ̌(0)

(
2πk

mµ̌(2)

) 3
2

ζ0

(
1
µ̌(2)

)
.

The first term of the internal energy is its translational part and comparison to (1.93) yields final
formulas for the zero velocity multipliers in terms of the hydrodynamic variables:

(2.33) e−1−m
k
λ̌(0)

=
ρ

mζ0(T )

( m

2πkT

)3/2
, λ̌

(1)
i = 0, i = 1, 2, 3, µ̌(2) =

1

T
,

with ζ0(T ) defined by (2.29), which completes the proof. �

The distribution (2.28) is the generalization of the classical Maxwellian equilibrium distribution
in the case of polyatomic gases. It was derived in [30, 22] by means of the H−theorem. The model
chosen to describe the polyatomic structure, i.e. the measure ϕ(I)dI, determines (2.28) through ζ0(T ).

5.2. Euler equations for polyatomic gases. Once the equilibrium distribution function (2.28)
is determined, it enables to derive a closed system of macroscopic variables which corresponds to
truncated moments that were constraints in the problem (2.26). As a matter of fact, for the proper
choice of the weight function ϕ(I), we obtain Euler equations for polyatomic gases.

Proposition 2.2. In equilibrium, the internal part of internal energy eI has the following form:

(2.34) eI |E =
ρ

m

ζ1(T )

ζ0(T )
, ζ1(T ) =

∫
R+

Iϕ(I)e−
1
kT
I dI.
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Moreover, if the weight function is chosen to be ϕ(I) = Iα, the internal energy of a polyatomic gas in
equilibrium reads:

(2.35) e|E =

(
5

2
+ α

)
k

m
T, α > −1.

Proof. We recall the definition (1.86) of the internal part of the internal energy density:

ρ eI =

∫∫
R3×R+

If ϕ(I) dI dv

To prove (2.34), one only has to put the equilibrium distribution (2.28) into (1.86). Furthermore,
choosing ϕ(I) = Iα, and taking into account the identity:

ζβ(T ) =

∫
R+

Iβϕ(I)e−
1
kT
I dI = (kT )β+1+αΓ(β + 1 + α),

for β ≥ 0, auxiliary functions can be expressed in terms of the Gamma function:

(2.36) ζ0(T ) = (kT )1+αΓ(1 + α), ζ1(T ) = (kT )2+αΓ(2 + α),

with overall restriction α > −1. With the help of the relation Γ(z + 1) = zΓ(z), one obtains
ζ1(T )/ζ0(T ) = (1 + α)kT , which in turn leads to (2.35) by combining with translational energy
(1.85). �

If the hydrodynamic variables ρ, u and T in (2.28) are constants, the distribution function identi-
cally satisfies the Boltzmann equation. If they are functions of (t,x), we have so-called local Maxwellian
distribution, that is not in general solution to the Boltzmann equation, but at least the hydrodynamic
variables – moments of distribution function – cannot be arbitrary: they have to satisfy the transfer
equations for moments. As a matter of fact, these equations are the Euler gas dynamics equations for
polyatomic perfect gases.

Proposition 2.3. If (2.28) is a local equilibrium distribution, then the hydrodynamic variables
ρ := ρ(t,x), u := u(t,x) and T := T (t,x) satisfy the following systems of equations (Euler system):

∂tρ+

3∑
j=1

∂xj (ρuj) = 0,

∂t(ρui) +
3∑
j=1

∂xj (ρ ui uj + p δij) = 0, i = 1, 2, 3,(2.37)

∂t

(
1
2 ρ |u|

2 + ρ e
)

+
3∑
j=1

∂xj

{(
1
2 ρ |u|

2 + ρ e+ p
)
uj

}
= 0,

(where δij is Kronecker delta) and

p =
k

m
ρT and e =

(
5

2
+ α

)
k

m
T, α > −1.

Proof. Equations (2.37) are obtained as moment equations (2.20) for N = 1 and M = 2, i.e.
moment equations that correspond to moments appearing as constraints in (2.26), evaluated for the
distribution function (2.28). In fact, in Euler approximation, fluxes and production terms can be
explicitly computed using

F
(2)
j =

∫∫
R3×R+

(
1
vi

)
vj fE I

α dI dv, G
(3)
j =

∫∫
R3×R+

(
m
2 |v|

2 + I
)
vj fE I

α dI dv,

P(1) = 0, Q(2) = 0.
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In particular, when the pressure tensor pij and heat flux qi are evaluated as fluxes of local Maxwellian
(2.28), one obtains:

pij =

∫∫
R3×R+

mci cj fE I
α dI dc =

k

m
ρT δij = p δij ,

qj =

∫∫
R3×R+

(
m
2 | c|

2 + I
)
cj fE I

α dI dc = 0,

which completes the proof. �

Note that equations (2.37) have the same form in the case of monatomic gases, except for the fact
that the internal energy in the monatomic case is strictly e = 3

2
k
mT .

6. The 14 moments approximation for polyatomic gases obtained by means of the
maximum entropy principle

It is shown that the local equilibrium case (equations (2.37) from previous Section) is recovered for
N = 1 and M = 2, with closure achieved through the equilibrium distribution (2.28). For higher order
approximations, the closure problem remains open. In this Section, we shall study the most interesting
physical case of non-equilibrium, involving 14 moments.

6.1. The 14 moments distribution function. In this Section, we apply the maximum entropy
principle in order to close the following system of moment equations for 14 moments:

(2.38) ∂tF
(2) + ∂xjF

(3)
j = P(2), ∂tG

(3) + ∂xjG
(4)
j = Q(3).

For the entropy defined by (2.21), the following variational problem can be formulated, expressing the
maximum entropy principle: determine the distribution function f := f(t,x,v, I) such that

maxf h

s.t. F(2) =

 ρ
ρ ui

ρ ui uj + pij

 =

∫∫
R3×R+

m

 1
vi
vi vj

 f ϕ(I) dI dv,

(2.39)

G(3)=

 1
2ρ |u|

2 + ρe(
1
2ρ |u|

2 + ρe
)
ui +

3∑
j=1

pijuj + qi

=

∫∫
R3×R+

(
m
2 |v|

2 + I
)(

1
vi

)
f ϕ(I) dI dv.

Note that (2.39) determines 14 constraints for 14 scalar moments of the distribution function, in
contrast to 13 moments in the case of monatomic gases. The number of constrained moments is
increased since

∑3
i=1 F

(2)
ii 6= G(2) in polyatomic gases.

As in the previous Section, the full moments can be replaced by central moments, due to Galilean
invariance. Indeed, the problem (2.39) can be reformulated as:

maxf h

s.t. F (2)=

 ρ
0
pij

=

∫∫
R3×R+

m

 1
ci
ci cj

 f ϕ(I) dI dc,(2.40)

G(3) =

(
ρe
qi

)
=

∫∫
R3×R+

(
m
2 | c|

2 + I
)(

1
ci

)
f ϕ(I) dI dc.

The solution of the problem for the choice ϕ(I) = Iα is as follows.
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Proposition 2.4. The linearized distribution function which maximizes the entropy (2.21) sub-
ject to constraints (2.40) for the choice of the weighting function ϕ(I) = Iα, has the form:

(2.41) f̂(t,x, c + u, I) ≈ f14(t,x, c + u, I) = fE(t,x, c + u, I)

{
1− ρ

p2
q · c

+
ρ

2p2

3∑
i,j=1

[
p〈ij〉 +

(
5

2
+ α

)
(1 + α)−1Πδij

]
cicj

− 3

2(1 + α)

ρ

mp2
Π
(
m
2 | c|

2 + I
)

+

(
7

2
+ α

)−1 ρ2

mp3
q ·
(
m
2 | c|

2 + I
)

c

}
,

where fE is the equilibrium distribution (2.28) and ζ0(T ) is the auxiliary function (2.29).

Proof. To solve the problem we shall introduce the following vectors of multipliers:

λ̌
(2)

:=
(
λ̌(0) λ̌

(1)
i λ̌

(2)
ij

)T
, µ̌(3) :=

(
µ̌(2) µ̌

(3)
i

)T
, i, j = 1, 2, 3,

where λ̌(2) corresponds to constraints F (2) and µ̌(3) corresponds to constraints G(3).
The extended functional for the constrained variational problem reads:

(2.42) L = h− λ̌(2) ·
(∫∫

R3×R+

mΨ(2)(c) f Iα dI dc

)
− µ̌(3) ·

(∫∫
R3×R+

Θ(3)(c, I) Iα dI dc

)
.

The solution of the Euler-Lagrange equation δL/δf = 0 is given by:

f̂ = e−1− 1
k
χ, χ = m λ̌

(2) ·Ψ(2)(c) + µ̌(3) ·Θ(3)(c, I).

To ensure the convergence of moments of the distribution function, we shall replace the exact form of
the maximizer by its expansion in the neighborhood of the local equilibrium:

(2.43) f̂ ≈ fE
(

1− 1

k

(
m λ̃

(2) ·Ψ(2)(c) + µ̃(3) ·Θ(3)(c, I)
))

,

where fE is the equilibrium distribution (2.28) and λ̃
(2)

= λ̌
(2) − λ̌(2)

E , µ̃(3) = µ̌(3) − µ̌(3)
E , where

subscript E indicates the values of the multipliers at the local equilibrium state:

λ̌
(2)
E =


− k
m

(
log
(

ρ
mζ0(T )

(
m

2πkT

)3/2)
+ 1
)

0
...
0

 , µ̌(3) =


1
T
0
0
0

 .

Insertion of (2.43) into the constraints (2.40) yields the appropriate equations for multipliers.
Indeed, the following system of algebraic equations emerges for i, j = 1, 2, 3:

0 = mλ̃(0) + kT

(
3∑

k=1

λ̃
(2)
kk

)
+ kT

(
α+

5

2

)
µ̃(2),

0 = λ̃
(1)
i +

(
α+

7

2

)
kT

m
µ̃

(3)
i ,

pij = −2
kT 2

m
ρ λ̃

(2)
ij + δij

kT

m
ρ
(

1− T µ̃(2)
)
,

ρe =
kT

m
ρ

(
α+

5

2

)
− ρ kT

2

m

((
3∑

k=1

λ̃
(2)
kk

)
+

(
α+

5

2

)
µ̃(2)

)
,

qi = −kT
2

m
ρ

(
α+

7

2

)(
λ̃

(1)
i +

kT

m

(
α+

9

2

)
µ̃

(3)
i

)
.

(2.44)
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The equations (2.44)1−3 come out from the constraints (2.40) concerning the F hierarchy, while
(2.44)4−5 come out from the G hierarchy. Equations (2.44)2,5 in conjunction with (1.94) yield the
following solution

µ̃
(3)
i = − k

m

(
7

2
+ α

)−1 ρ2

p3
qi,

λ̃
(1)
i =

k

m

ρ

p2
qi.

Using (2.35) and taking the trace of (2.44)3 with the help of (1.92) and (1.94), equations (2.44)3,4 yield
the following system

3∑
k=1

pkk = −2
kT 2

m
ρ

(
3∑

k=1

λ̃
(2)
kk

)
+ 3

kT

m
ρ
(

1− T µ̃(2)
)
,

0 =

(
3∑

k=1

λ̃
(2)
kk

)
+

(
α+

5

2

)
µ̃(2),

whose solution is

µ̃(2) =
k

m

3

2(α+ 1)

ρ

p2
Π,

λ̃
(2)
ii = − k

m

1

2(α+ 1)

(
α+

5

2

)
ρ

p2
Π,

(2.45)

which implies λ̃(0) = 0 by (2.44)1. Combining (2.44)3, (1.90) and (2.45)1 we obtain

λ̃
(2)
ij = − k

m

ρ

2p2

{
p〈ij〉 +

(
5

2
+ α

)
(1 + α)−1Πδij

}
,

and thus the non-equilibrium velocity distribution (2.41) is obtained. �

A remarkable property of real gases, anticipated at the beginning of the Section, is the existence of
the dynamic pressure, which does not appear in monatomic gases. Namely, in the monatomic case, i.e.
classical Grad’s distribution, constraint (2.40)3, or equivalently the trace of (2.44)3 yields λ̃(2)

ii = 0, and
consequently Π = 0. The additional term µ̃(2) is due to the presence of the internal energy parameter
I in the equilibrium distribution (2.28).

An interesting feature of the non-equilibrium distribution (2.41) is its compatibility with other
distributions obtained in the context of polyatomic gases. Firstly, it reduces to the velocity distribution
obtained by Mallinger [49] for diatomic molecules (α = 0). Furthermore, a comparison could be made
with the semi-classical model [60], which assumes that molecules can occupy discrete states of internal
energy. It may be observed (see [45], Section 5.2) that the auxiliary function ζ0(T ) plays the role
of the partition function Z =

∑
α exp(−eα/kT ). The complete compatibility with the corresponding

non-equilibrium function can be observed when I is substituted by eα and macroscopic quantities are
defined by summation over α instead of integration over I.

6.2. The 14 moments system. The non-equilibrium distribution function (2.41) can be re-
garded as an approximation of the exact solution of the Boltzmann equation expressed in terms of
moments. It is a way by which closure of the transfer equations for moments is achieved. As already
noticed, fluxes in transfer equations of order n become densities in equations of order n+1. This leaves
the fluxes in equations of order n+ 1 undetermined, as well as all the production terms.

Closure of the fluxes. Once the distribution function is obtained via maximization of entropy sub-
ject to constraints (2.39), it enables to compute the fluxes:

F
(3)
j =

 F
(1)
i

F
(2)
ij

F
(3)
ijk

 , G
(4)
j =

(
G

(3)
i

G
(4)
ij

)
.
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Taking into account the Galilean invariance, the fluxes above can be expressed in terms of non-
convective fluxes as follows

F
(3)
ijk = ρuiujuk + uipjk + ujpki + ukpij + pijk,

G
(4)
ij =

(
1
2 ρ |u|

2 + ρe
)
uiuj +

3∑
k=1

uiukpjk +

3∑
k=1

ujukpik + 1
2 |u|

2 pij +

3∑
k=1

ukpijk + qiuj + qjui + qij .

Starting from kinetic theory, the non-convective fluxes are defined as:

pijk =

∫∫
RN×R+

mcicjckf(t,x, c + u, I)ϕ(I) dI dc,

qij =

∫∫
RN×R+

(
m
2 | c|

2 + I
)
cicjf(t,x, c + u, I)ϕ(I) dI dc.

Proposition 2.5. The non-convective fluxes pijk and qij in the 14 moments approximation and
for the choice ϕ(I) = Iα, α > −1, have the following form:

pijk =

(
α+

7

2

)−1

(qiδjk + qjδki + qkδij) ,(2.46)

qij =

(
α+

9

2

)
p

ρ
pij −

p2

ρ
δij .(2.47)

Proof. Expressions (2.46) and (2.47) for non-convective fluxes are derived in a straightforward
way by plugging (2.41) in the above given definitions. �

It must be emphasized that the structure of non-convective fluxes (2.46) and (2.47) implies a gen-
uine coupling of two hierarchies – the heat flux qi appears in the F−hierarchy, whereas the pressure
tensor pij appears in the G−hierarchy. It also resembles the structure of the non-convective fluxes in
Grad’s approximation for monatomic gases and can be regarded as its generalization. However, it is
not only the parameter α which brings the flavor of polyatomic gases, but also the pressure tensor
whose trace contains a dynamic pressure (apart from the ideal gas one).

The 14 moments equations. At this step, the explicit form of the 14 moments equations is given,
up to production terms. The equations of the F−hierarchy have the form (for any i, j = 1, 2, 3):

∂tρ+

3∑
i=1

∂xi(ρui) = 0,

∂t(ρui) +

3∑
j=1

∂xj (ρuiuj + pij) = 0,(2.48)

∂t (ρuiuj + pij)

+

3∑
k=1

∂xk

{
ρuiujuk + uipjk + ujpki + ukpij +

(
α+

7

2

)−1

(qiδjk + qjδki + qkδij)

}
= P 14

ij ,
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while the equations of the G−hierarchy read:

∂t

(
1
2ρ |u|

2 + ρe
)

+
3∑
i=1

∂xi

(1
2ρ |u|

2 + ρe
)
ui +

3∑
j=1

pijuj + qi

 = 0,

∂t

(1
2ρ |u|

2 + ρe
)
ui +

3∑
j=1

pijuj + qi


(2.49)

+
3∑
j=1

∂xj

{(
1
2ρ |u|

2 + ρe
)
uiuj +

3∑
k=1

(uiukpjk + ujukpik) + 1
2ρ |u|

2 pij

+

(
α+

9

2

)(
α+

7

2

)−1

(qiuj + qjui) +

(
α+

7

2

)−1

u · q δij +

(
α+

9

2

)
p

ρ
pij −

p2

ρ
δij

}
= Q14

i ,

where the production terms are given by:

P 14
ij =

∫∫
RN×R+

mvivj Q(f14, f14)(v, I)ϕ(I) dI dv,(2.50)

Q14
i =

∫∫
RN×R+

(
m
2 |v|

2 + I
)
viQ(f14, f14)(v, I)ϕ(I) dI dv.(2.51)

The internal energy e is determined by (2.35) and ζ0(T ) by (2.36). We also exploited expressions for
non-convective fluxes (2.46)-(2.47).

The system (2.48)-(2.49) coincides with the equations of extended thermodynamics. To obtain this
result, one must take into account (1.92), use the material derivative ( )· = ∂t( ) +

∑3
j=1 uj∂j( ), and

exploit the relation between α and the number D of degrees of freedom α = (D− 5)/2. In such a way,
the system (2.48)-(2.49) is transformed into Eq. (67) given in [9], which represents the 14 moments
system of extended thermodynamics for dense gases in the rarefied gas limit. In this way the same set
of equations arises from maximum entropy principle and extended thermodynamics, as it was the case
for monatomic gases [31, 19].

Production terms. All the analysis performed thus far is independent of the collision cross section.
Therefore, it is valid for any model of interaction of the molecules. However, the closure of the mo-
ments system (2.38) needs an explicit computation of the production terms Pij , Qi given by (2.50) and
(2.51). Zero entries which appear in the right hand sides of moments equations are due to collision
invariants. A typical obstacle in the computation of the production terms is the complicated structure
of the collision integral Q(f, f). And so, even for an approximate form of the distribution function
like f14, the explicit computation of production terms is tedious. It is therefore common practice to
make further approximations and determine production terms as a linear form of the non-convective
macroscopic fluxes. In this Section, the appropriate approximations for source terms that correspond
to the distribution function (2.41) will be determined using one simple model of collision cross section.

We recall the structure of the collision integral (1.67) in the case N = 3:

Q(f, f) (v, I) =

∫
Ω3

∫
S2

[
f ′f ′∗ − ff∗

]
B (1−R)R

1
2

1

ϕ(I)
dω dr dR dI∗ dv∗,

where Ω3 = R3×R+× [0, 1]× [0, 1]. As in the classical case, the model of interaction between molecules
is reflected on the collision cross section B, and its choice is of the utmost importance in the study of
macroscopic transport processes. The more realistic the model of interaction is, the more complicated
are the computations of collision integral and production terms. We shall use the following form of the
cross section:

(2.52) B(v,v∗, I, I∗, r, R,ω) = K 2Rs |v − v∗|2s
∣∣∣∣ω · v − v∗
|v − v∗|

∣∣∣∣ ,
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where K is an appropriate dimensional constant and the parameter s satisfies the overall assumption
s > −3

2 . This cross section resembles the variable hard spheres model and enables the derivation of
the production terms in closed form.

As usual, computations are facilitated when one deals with the velocity

(2.53) c = v − u.

Indeed, let us rewrite the collision transformations from Section 3. As one expects, they take the
same form as for the velocity v, since in general the problem should not depend upon the macroscopic
velocity u. The conservation laws at a microscopic level (1.55) in terms of c read:

m c′ +m c′∗ = m c +m c∗,

m
2

∣∣c′∣∣2 + m
2

∣∣c′∗∣∣2 + I ′ + I ′∗ = m
2 | c|

2 + m
2 |c∗|

2 + I + I∗.
(2.54)

They allow to write the pre-collisional velocities in ω−notation as follows

c′ =
c + c∗

2
+

√
RE

m
Tω

[
c− c∗
|c− c∗|

]
,

c′∗ =
c + c∗

2
−
√
RE

m
Tω

[
c− c∗
|c− c∗|

]
,

(2.55)

where

(2.56) E = m
4

∣∣c′ − c′∗
∣∣2 + I ′ + I ′∗ = m

4 |c− c∗|2 + I + I∗,

and Tω [y] = y − 2 (ω · y)ω (for any y ∈ R3). We recall the invariant properties of the collision
operator (1.78):

(2.57)
∫∫

R3×R+

 1
vi

m
2 |v|

2 + I

Q(f, f) (v, I) ϕ(I) dI dv = 0, for any i = 1, 2, 3.

Combination of the first two properties yields

(2.58)
∫∫

R3×R+

ciQ(f, f) (v, I) ϕ(I) dI dv = 0, for any i = 1, 2, 3.

The decomposition of velocity v = u + c in conjunction with properties (2.57) and (2.58) leads to
the following form of the production terms:

P
(2)
ij =

∫∫
R3×R+

m (ui uj + ci uj + cj ui + ci cj)Q(f, f) (v, I) ϕ(I) dI dv

=

∫∫
R3×R+

mci cj Q(f, f) (v, I) ϕ(I) dI dv(2.59)

and

Q
(3)
i =

∫∫
R3×R+

((m
2
|v|2 + I

)
ui +

(m
2
|u|2 +mu · c +

m

2
| c|2 + I

)
ci

)
Q(f, f) (v, I) ϕ(I) dI dv

=
3∑

k=1

ukP
(2)
ki +

∫∫
R3×R+

(m
2
| c|2 + I

)
ciQ(f, f) (v, I) ϕ(I) dI dv.

(2.60)

Furthermore, the cross section (2.52) takes the following form

B(v,v∗, I, I∗, r, R,ω) = K 2Rs |v − v∗|2s
∣∣∣∣ω · v − v∗
|v − v∗|

∣∣∣∣
= K 2Rs |c− c∗|2s

∣∣∣∣ω · c− c∗
|c− c∗|

∣∣∣∣ = B(c, c∗, I, I∗, r, R,ω).

(2.61)
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For this choice of cross section, we aim to compute the production terms in the 14 moments approxi-
mation obtained by plugging (2.41) into (2.59) and (2.60):

P 14
ij =

∫∫
R3×R+

mci cj Q (f14, f14) (v, I) ϕ(I) dI dv,

=

∫∫
R3×R+

∫
Ω3

∫
S2

mci cj
(
f ′14f

′
14 ∗ − f14f14 ∗

)
× B (1−R)R

1
2 dω dr dR dI∗ dv∗ dI dv,(2.62)

Q14
i =

3∑
k=1

ukP
14
ki +

∫∫
R3×R+

(m
2
| c|2 + I

)
ciQ (f14, f14) (v, I) ϕ(I) dI dv

=
3∑

k=1

ukP
14
ki +

∫∫
R3×R+

∫
Ω3

∫
S2

(m
2
| c|2 + I

)
ci
(
f ′14f

′
14 ∗ − f14f14 ∗

)
× B (1−R)R

1
2 dω dr dR dI∗ dv∗ dI dv.(2.63)

Moreover, we shall assume that the state of the gas during the processes is not far from local equilibrium.
Therefore, the products of non-equilibrium distribution functions which appear in the collision integral
will be linearized with respect to the moments of the distribution functions, i.e. the stress tensor pij
and heat flux qi.

Proposition 2.6. The linearized production terms in the 14 moments approximation for the
choice (2.52) read:

P
14
ij = −22s+4ρ (k T )2

15mζ0(T )2

√
π

(
k T

m

)s
Γ

[
s+

3

2

]
×(2.64)

×K
(
p〈ij〉 +

20

(2s+ 5)(2s+ 7)

(
α+

5

2

)
(α+ 1)−1Πδij

)
,

Q
14
i =

3∑
k=1

(
ukP

14
ik

)
−
(

7

2
+ α

)−1

×(2.65)

×K 22s+5 (s (2s+ 15) + 30)

9 (2s+ 5) (2s+ 7)

ρ (k T )2

mζ0(T )2

√
π

(
k T

m

)s
Γ

[
s+

3

2

]
qi.

Proof. As non-equilibrium effects are supposed small, we linearize products of the distribution
functions appearing in the collision integral with respect to the non-equilibrium quantities manifested
in our setting – the traceless part of the pressure tensor p〈k`〉, the dynamic pressure Π and the heat
flux qn. Using the microscopic conservation laws (2.54), we are led to

(2.66)

f ′14f
′
14 ∗−f14f14 ∗ ≈ fEfE ∗

 3∑
k,`=1

ρ

2p2

[
p〈k`〉 +

(
5

2
+ α

)
(1 + α)−1Πδk`

] (
c′kc
′
` + c′∗kc

′
∗` − ckc` − c∗kc∗`

)
+

3∑
n=1

(
7

2
+ α

)−1 ρ2

mp3
qn

((m
2

∣∣c′∣∣2 + I ′
)
c′n +

(m
2

∣∣c′∗∣∣2 + I ′∗

)
c′∗n

−
(m

2
| c|2 + I

)
cn −

(m
2
|c∗|2 + I∗

)
c∗n

))
.

The insertion of (2.66) into (2.62) and (2.63) leads to a suitable approximation for the source term
P 14
ij , denoted by P 14

ij , and for the source term Q14
i , denoted by Q14

i .

Let us start the computation of the production terms with an analysis of parity of their ingredients.
From (2.55), we can see that both c′ and c′∗ are odd functions of (c, c∗) for ω fixed i.e. c′(−c,−c∗,ω) =
−c′(c, c∗,ω) and c′∗(−c,−c∗,ω) = −c′∗(c, c∗,ω). Consequently, (2.66) consists of two parts: one part
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that is even and the other one that is odd with respect to (c, c∗). Likewise, the cross section is an
even function of (c, c∗). This consideration leads to the conclusion that only the even part of (2.66)
is of importance for the computation of the production term P

14
ij , whereas only the odd part of (2.66)

contributes to the production term Q
14
i . Therefore, if we introduce the following notation:

Pijk` =

∫∫
R3×R+

∫
Ω3

∫
S2

mci cj fE (t,x, c + u, I) fE (t,x, c∗ + u, I∗)

×
(
c′kc
′
` + c′∗kc

′
∗` − ckc` − c∗kc∗`

)
×K 2 (1−R)Rs+

1
2 |c− c∗|2s

∣∣∣∣ω · c− c∗
|c− c∗|

∣∣∣∣ dω dr dR dI∗ dc∗ dI dc,

Qin =

∫∫
R3×R+

∫
Ω3

∫
S2

(m
2
|c|2 + I

)
cifE (t,x, c + u, I) fE (t,x, c∗ + u, I∗)

×
((m

2

∣∣c′∣∣2 + I ′
)
c′n +

(m
2

∣∣c′∗∣∣2 + I ′∗

)
c′∗n

−
(m

2
|c|2 + I

)
cn −

(m
2
|c∗|2 + I∗

)
c∗n

)
×K 2 (1−R)Rs+

1
2 |c− c∗|2s

∣∣∣∣ω · c− c∗
|c− c∗|

∣∣∣∣ dω dr dR dI∗ dc∗ dI dc,

it can be written:

P
14
ij =

ρ

2p2

[
p〈k`〉 +

(
5

2
+ α

)
(1 + α)−1Πδk`

]
Pijk`,(2.67)

Q
14
i =

3∑
k=1

ukP
14
ki +

3∑
n=1

(
7

2
+ α

)−1 ρ2

mp3
qnQin.

Note that Pijkl vanishes unless indices are equal by pairs – the integral is non-zero when i = j and
k = ` or i = k and j = ` or i = ` and j = k. By symmetry, the last two terms lead to the same result
and thus Pijkl may be represented in the form:

(2.68) Pijk` = P1δijδk` + P2 (δikδj` + δi`δjk) .

Combining (2.67) and (2.68) in conjunction with (1.90) and the symmetry of the pressure tensor, we
can extract some more information

P
14
ij =

ρ

2p2

(
2p〈ij〉 P2 +

3∑
t=1

(
5

2
+ α

)
(1 + α)−1 ΠPijtt

)

=
ρ

2p2

2p〈ij〉 P2 +
1

3
δij

(
5

2
+ α

)
(1 + α)−1 Π

3∑
r,t=1

Prrtt

 .(2.69)

The term P2 can be determined from the system of equations obtained from the representation (2.68):
3∑

r,t=1

Prrtt = 9P1 + 6P2,
3∑

r,t=1

Prtrt = 3P1 + 12P2,

whose solution is

P1 =

∑3
r,t=1 2Prrtt − Prtrt

15
, P2 =

∑3
r,t=1 3Prtrt − Prrtt

30
.

Therefore, (2.69) reduces to

(2.70) P
14
ij =

ρ

2p2

p〈ij〉 ∑3
r,t=1 (3Prtrt − Prrtt)

15
+

1

3
δij

(
5

2
+ α

)
(1 + α)−1 Π

3∑
r,t=1

Prrtt

 .
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On the other hand, one can see that Qin vanishes unless i = n. Therefore, it can be written

(2.71) Q
14
i =

3∑
k=1

ukP
14
ki +

(
7

2
+ α

)−1 ρ2

mp3
qi

1

3

3∑
r=1

Qrr.

The rest of the computation is straightforward.

In order to compute P 14
ij , we have to compute only the contractions

∑3
r,t=1 Prrtt and

∑3
r,t=1 Prtrt.

Let us begin with the computation of
∑3

r,t=1 Prrtt. Its full expression reads

3∑
r,t=1

Prrtt = K 2
ρ2

mζ0(T )2

( m

2πkT

)3
∫∫

R3×R+

∫
Ω3

∫
S2

e−
m

2kT (| c|2+|c∗|2)− 1
kT

(I+I∗)

× | c|2
(∣∣c′∣∣2 +

∣∣c′∗∣∣2 − | c|2 − |c∗|2)
× (1−R)Rs+

1
2 |c− c∗|2s

∣∣∣∣ω · c− c∗
|c− c∗|

∣∣∣∣ dω dr dR dI∗ dc∗ dI dc.

We perform the following change of variables with unit Jacobian

(2.72) (c, c∗) 7→
(

g = c− c∗,G =
c + c∗

2

)
,

which allows to express

c = G +
1

2
g, c∗ = G− 1

2
g.

By microscopic conservation law of momentum (2.54), it holds c′+c′∗
2 =: G′ = G. Also, using (2.55),

we can see that

(2.73) g′ := c′ − c′∗ = 2

√
RE

m
Tω

[
c− c∗
|c− c∗|

]
,

and therefore

c′ = G +
1

2
g′, c′∗ = G− 1

2
g′.

We are led to rewrite the terms under the integration sign using new variables

∣∣c′∣∣2 +
∣∣c′∗∣∣2 − | c|2 − |c∗|2 =

∣∣∣∣G +
1

2
g′
∣∣∣∣2 − ∣∣∣∣G +

1

2
g

∣∣∣∣2 +

∣∣∣∣G− 1

2
g′
∣∣∣∣2 − ∣∣∣∣G− 1

2
g

∣∣∣∣2
=

(
G +

1

4

(
g′ + g

))
·
(
g′ − g

)
+

(
G− 1

4

(
g′ + g

))
·
(
−
(
g′ − g

))
=

1

2

(∣∣g′∣∣2 − |g|2)
=

1

2
(R− 1) |g|2 +

2R

m
(I + I∗) .

The terms appearing in the power of the exponential read:

| c|2 + |c∗|2 =

∣∣∣∣G +
1

2
g

∣∣∣∣2 +

∣∣∣∣G− 1

2
g

∣∣∣∣2
= 2 |G|2 +

1

2
|g|2 .(2.74)
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Passage to velocities g and G and insertion of the formulas above yield

3∑
r,t=1

Prrtt = K 2
ρ2

mζ0(T )2

( m

2πkT

)3
∫∫

R3×R+

∫
Ω3

∫
S2

e−
m
kT
|G|2e−

m
4kT
|g|2e−

1
kT
Ie−

1
kT
I∗

×
(
|G|2 + G · g +

1

4
|g|2
)(

1

2
(R− 1) |g|2 +

2R

m
(I + I∗)

)
× (1−R)Rs+

1
2 |g|2s

∣∣∣∣ω · g

|g|

∣∣∣∣ dω dr dR dI∗ dg dI dG.

Next, we pass to the σ− notation and recalling (1.36) we obtain the following expression

3∑
r,t=1

Prrtt = K
ρ2

mζ0(T )2

( m

2πkT

)3
∫∫

R3×R+

∫
Ω3

∫
S2

e−
m
kT
|G|2e−

m
4kT
|g|2e−

1
kT
Ie−

1
kT
I∗

×
(
|G|2 + G · g +

1

4
|g|2
)(

1

2
(R− 1) |g|2 +

2R

m
(I + I∗)

)
× (1−R)Rs+

1
2 |g|2s dσ dr dR dI∗ dg dI dG,

which is easy to compute. We proceed step by step. First, let us integrate with respect to σ and G

3∑
r,t=1

Prrtt = K
ρ2

mζ0(T )2

( m

2πkT

) 3
2

4π

∫
R+

∫
Ω3

e−
m

4kT
|g|2e−

1
kT
Ie−

1
kT
I∗

×
(

3

4
√

2

kT

m
+

1

8
√

2
|g|2
)(

1

2
(R− 1) |g|2 +

2R

m
(I + I∗)

)
× (1−R)Rs+

1
2 |g|2s dr dR dI∗ dg dI.

Next, we integrate with respect to I and I∗

3∑
r,t=1

Prrtt = K
ρ2

mζ0(T )2

( m

2πkT

) 3
2 π√

2
(kT )2

∫
R3

∫
[0,1]

∫
[0,1]
|g|2s e− m

4kT
|g|2

×
(

3
kT

m
+

1

2
|g|2
)(

1

2
(R− 1) |g|2 +

4kT

m
R

)
(1−R)Rs+

1
2 dr dR dg.

Now, we proceed with the integration with respect to r and R

3∑
r,t=1

Prrtt = K
ρ2

mζ0(T )2

( m

2πkT

) 3
2 π√

2
(kT )2 4

(2s+ 5) (2s+ 7)

×
∫
R3

|g|2s e− m
4kT
|g|2
(

3
kT

m
+

1

2
|g|2
)(
− 2

(2s+ 3)
|g|2 + 4

kT

m

)
dg.

Passage to spherical coordinates yields

3∑
r,t=1

Prrtt = K
ρ2

mζ0(T )2

( m

2πkT

) 3
2 π2

√
2

(kT )2 16

(2s+ 5) (2s+ 7)

×
∫
R+

e−
m

4kT
|g|2
(
− 1

2s+ 3
|g|2s+6 +

4s

2s+ 3

(
kT

m

)
|g|2s+4 + 12

(
kT

m

)2

|g|2s+2

)
d |g| .

We perform the following change of variables

(2.75)
m

4 k T
|g|2 7→ x, with d |g| = 1

2

( m

4 k T

)− 1
2
x−

1
2 dx,
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so that the integral above becomes

3∑
r,t=1

Prrtt = K
ρ2

mζ0(T )2

( m

2πkT

) 3
2 π2

√
2

(kT )2 16

(2s+ 5) (2s+ 7)

× 1

2

∫
R+

e−x
(
− 1

2s+ 3

( m

4 k T

)−s− 7
2
xs+

5
2 +

4s

2s+ 3

(
kT

m

)( m

4 k T

)−s− 5
2
xs+

3
2

+12

(
kT

m

)2 ( m

4 k T

)−s− 3
2
xs+

1
2

)
dx.

Factorizing, we obtain the following integral

3∑
r,t=1

Prrtt = K
ρ2

mζ0(T )2

( m

2πkT

) 3
2 π2

√
2

(kT )2 16

(2s+ 5) (2s+ 7)

× 22s+6

(
kT

m

)s+ 7
2
∫
R+

e−x
(
− 1

2s+ 3
xs+

7
2
−1 +

s

2s+ 3
xs+

5
2
−1 +

3

4
xs+

3
2
−1

)
dx.

Comparing this identity to the definition of the gamma function, we conclude that

3∑
r,t=1

Prrtt = K
ρ2

m3 ζ0(T )2
(kT )4√π

(
kT

m

)s 22s+8

(2s+ 5) (2s+ 7)(
− 1

2s+ 3
Γ

[
s+

7

2

]
+

s

2s+ 3
Γ

[
s+

5

2

]
+

3

4
Γ

[
s+

3

2

])
.

Now, using the property of the gamma function Γ (z + 1) = zΓ (z), we obtain the following result

3∑
r,t=1

Prrtt = K
ρ2

m3 ζ0(T )2
(kT )4√π

(
kT

m

)s 22s+8

(2s+ 5) (2s+ 7)
Γ

[
s+

3

2

](
−
(
s+ 5

2

)
2

+
s

2
+

3

4

)
,

which leads to the final result using (1.94)

(2.76)
3∑

r,t=1

Prrtt = −K 22s+7

(2s+ 5)(2s+ 7)

mp4

ρ2ζ0(T )2

√
π

(
kT

m

)s
Γ

[
s+

3

2

]
.

Let us compute the integral
∑3

r,t=1 Prtrt given by

3∑
r,t=1

Prtrt = K 2
ρ2

mζ0(T )2

( m

2πkT

)3
∫∫

R3×R+

∫
Ω3

∫
S2

e−
m

2kT (| c|2+|c∗|2)− 1
kT

(I+I∗)

×
((

c · c′
)2

+
(
c · c′∗

)2 − (c · c)2 − (c · c∗)2
)

× (1−R)Rs+
1
2 |c− c∗|2s

∣∣∣∣ω · c− c∗
|c− c∗|

∣∣∣∣ dω dr dR dI∗ dc∗ dI dc.
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As in the previous case, we first pass to the new variables (2.72). We are therefore led to express(
c · c′

)2
+
(
c · c′∗

)2 − (c · c)2 − (c · c∗)2

=
(
c ·
(
c′ + c

)) (
c ·
(
c′ − c

))
+
(
c ·
(
c′∗ + c∗

)) (
c ·
(
c′∗ − c∗

))
=

1

2

{(
c ·
(

2 G +
1

2

(
g′ + g

)))(
c ·
(
g′ − g

))
−
(

c ·
(

2G− 1

2

(
g′ + g

)))(
c ·
(
g′ − g

))}
=

1

2

(
c ·
(
g′ − g

)) (
c ·
(
g′ + g

))
=

1

2

((
c · g′

)2 − (c · g)2
)

=
1

2

(
G · g′

)2
+

1

2

(
G · g′

) (
g · g′

)
+

1

8

(
g · g′

)2 − 1

2
(G · g)2 − 1

2
(G · g) |g|2 − 1

8
|g|4 ,

so that it can be written
3∑

r,t=1

Prtrt = K 2
ρ2

mζ0(T )2

( m

2πkT

)3
∫∫

R3×R+

∫
Ω3

∫
S2

e−
m
kT
|G|2e−

m
4kT
|g|2e−

1
kT
Ie−

1
kT
I∗

×
(

1

2

(
G · g′

)2 − 1

2
(G · g)2 +

1

2

(
g · g′

) (
G · g′

)
− 1

2
|g|2 (G · g) +

1

8

(
g · g′

)2 − 1

8
|g|4
)

× (1−R)Rs+
1
2 |g|2s

∣∣∣∣ω · g

|g|

∣∣∣∣ dω dr dR dI∗ dg dI dG.

Integration with respect to G simplifies the integral which now takes the following form

3∑
r,t=1

Prtrt = K 2
ρ2

mζ0(T )2

( m

2πkT

) 3
2

2−
7
2

∫
R+

∫
Ω3

∫
S2

e−
m

4kT
|g|2e−

1
kT
Ie−

1
kT
I∗

×
(
kT

m

(∣∣g′∣∣2 − |g|2)+
1

2

((
g · g′

)2 − |g|4))
× (1−R)Rs+

1
2 |g|2s

∣∣∣∣ω · g

|g|

∣∣∣∣ dω dr dR dI∗ dg dI.

Next, we pass to the σ−notation and using (2.56), we are led to express∣∣g′∣∣2 =
4RE

m
= R |g|2 +

4R

m
(I + I∗) ,(

g · g′
)2

=
4RE

m
(g · σ)2 =

(
R |g|2 +

4R

m
(I + I∗)

)
(g · σ)2 ,

so that we can write
3∑

r,t=1

Prtrt = K
ρ2

mζ0(T )2

( m

2πkT

) 3
2

2−
7
2

∫
R+

∫
Ω3

∫
S2

e−
m

4kT
|g|2e−

1
kT
Ie−

1
kT
I∗

×
{
kT

m

(
(R− 1) |g|2 +

4R

m
(I + I∗)

)
+

1

2

((
R |g|2 +

4R

m
(I + I∗)

)
(g · σ)2 − |g|4

)}
× (1−R)Rs+

1
2 |g|2s dσ dr dR dI∗ dg dI.

The integration with respect to σ gives

3∑
r,t=1

Prtrt = K
ρ2

mζ0(T )2

( m

2πkT

) 3
2

2−
3
2 π

∫
R+

∫
Ω3

e−
m

4kT
|g|2e−

1
kT
Ie−

1
kT
I∗

×
{
kT

m

(
(R− 1) |g|2 +

4R

m
(I + I∗)

)
+

1

2

((
R

3
− 1

)
|g|4 +

4R

3m
(I + I∗) |g|2

)}
× (1−R)Rs+

1
2 |g|2s dr dR dI∗ dg dI.
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Now, we integrate with respect to I and I∗

3∑
r,t=1

Prtrt = K
ρ2

mζ0(T )2

( m

2πkT

) 3
2

2−
3
2 π (k T )2

∫
R3

∫
[0,1]

∫
[0,1]

e−
m

4kT
|g|2

×
{
kT

m

(
(R− 1) |g|2 +

8 k T

m
R

)
+

1

2

((
R

3
− 1

)
|g|4 +

8 k T

3m
R |g|2

)}
× (1−R)Rs+

1
2 |g|2s dr dR dg.

Integration with respect to r and R gives

3∑
r,t=1

Prtrt = K
ρ2

mζ0(T )2

( m

2πkT

) 3
2
√

2π (k T )2 1

(2s+ 5) (2s+ 7)

∫
R3

|g|2s e− m
4kT
|g|2

×
{
kT

m

((
− 4

(2s+ 3)

)
|g|2 +

8 k T

m

)
− (2s+ 9)

3 (2s+ 3)
|g|4 +

4 k T

3m
|g|2
}

dg.

Passage to spherical coordinate yields

3∑
r,t=1

Prtrt = K
ρ2

mζ0(T )2

( m

2πkT

) 3
2
√

2π2 (k T )2 4

(2s+ 5) (2s+ 7)

×
∫
R+

e−
m

4kT
|g|2
(
− (2s+ 9)

3 (2s+ 3)
|g|2s+6 +

8s

3 (2s+ 3)

(
kT

m

)
|g|2s+4 + 8

(
kT

m

)2

|g|2s+2

)
d |g| .

Applying the change of variable (2.75) we obtain the following result

3∑
r,t=1

Prtrt = K
ρ2

mζ0(T )2

( m

2πkT

) 3
2
√

2π2 (k T )2 4

(2s+ 5) (2s+ 7)

× 1

2

∫
R+

e−x
(
− (2s+ 9)

3 (2s+ 3)

( m

4 k T

)−s− 7
2
xs+

5
2 +

8s

3 (2s+ 3)

(
kT

m

)( m

4 k T

)−s− 5
2
xs+

3
2

+8

(
kT

m

)2 ( m

4 k T

)−s− 3
2
xs+

1
2

)
dx.

Now, the factorization leads to

3∑
r,t=1

Prtrt = K
ρ2

mζ0(T )2

( m

2πkT

) 3
2
√

2π2 (k T )2 4

(2s+ 5) (2s+ 7)

× 22s+6

(
k T

m

)s+ 7
2
∫
R+

e−x
(
− (2s+ 9)

3 (2s+ 3)
xs+

7
2
−1 +

2s

3 (2s+ 3)
xs+

5
2
−1 +

1

2
xs+

3
2
−1

)
dx.

Comparing the last integrals with the definition of the gamma function, we obtain

3∑
r,t=1

Prtrt = K
ρ2

m3 ζ0(T )2
(k T )4√π

(
k T

m

)s 22s+7

(2s+ 5) (2s+ 7)

×
(
− (2s+ 9)

3 (2s+ 3)
Γ

[
s+

7

2

]
+

2s

3 (2s+ 3)
Γ

[
s+

5

2

]
+

1

2
Γ

[
s+

3

2

])
.

Using the property of the gamma function Γ (z + 1) = zΓ (z) we get the following result

3∑
r,t=1

Prtrt = K
ρ2

m3 ζ0(T )2
(k T )4√π

(
k T

m

)s 22s+7

(2s+ 5) (2s+ 7)
Γ

[
s+

3

2

](
−(2s+ 9) (2s+ 5)

12
+
s

3
+

1

2

)
,
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which leads to the final expression

(2.77)
3∑

r,t=1

Prtrt = −K 22s+5(39 + 4s(s+ 6))

3(2s+ 5)(2s+ 7)

mp4

ρ2ζ0(T )2

√
π

(
k T

m

)s
Γ

[
s+

3

2

]
.

Injection of the computed integrals (2.76) and (2.77) into (2.70) allows us to write the final expression
for the linearized production term which corresponds to the equation for the flux of momentum:
(2.78)

P
14
ij = −K 22s+4ρ (k T )2

15mζ0(T )2

√
π

(
k T

m

)s
Γ

[
s+

3

2

](
p〈ij〉 +

20

(2s+ 5)(2s+ 7)

(
α+

5

2

)
(α+ 1)−1Πδij

)
,

which completes the first part of the proof.

In order to compute production term Q
14
i , the following integral has to be computed:

3∑
r=1

Qrr = K 2
ρ2

m2 ζ0(T )2

( m

2π k T

)3
∫∫

R3×R+

∫
Ω3

∫
S2

(m
2
| c|2 + I

)
e−

m
2kT (| c|2+|c∗|2)− 1

kT
(I+I∗)

×
((m

2

∣∣c′∣∣2 + I ′
)

c′ · c +
(m

2

∣∣c′∗∣∣2 + I ′∗

)
c′∗ · c−

(m
2
| c|2 + I

)
c · c−

(m
2
|c∗|2 + I∗

)
c∗ · c

)
× (1−R)Rs+

1
2 |c− c∗|2s

∣∣∣∣ω · c− c∗
|c− c∗|

∣∣∣∣ dωdr dR dI∗ dc∗ dI dc.

We are led to pass to the variables (2.72). Indeed, let us express terms appearing in the integral above:

c ·
(m

2

(∣∣c′∣∣2 c′ +
∣∣c′∗∣∣2 c′∗ − | c|2 c− |c∗|2 c∗

)
+
(
I ′c′ + I ′∗c

′
∗ − Ic− I∗c∗

))
= c ·

(
m

2

(∣∣c′∣∣2(G +
1

2
g′
)

+
∣∣c′∗∣∣2(G− 1

2
g′
)
− | c|2

(
G +

1

2
g

)
− |c∗|2

(
G− 1

2
g

))
+

(
I ′
(

G +
1

2
g′
)

+ I ′∗

(
G− 1

2
g′
)
− I

(
G +

1

2
g

)
− I∗

(
G− 1

2
g

)))
= c ·

(
G
(m

2

(∣∣c′∣∣2 +
∣∣c′∗∣∣2 − | c|2 − |c∗|2)+ I ′ + I ′∗ − I − I∗

)
+
m

4

(
g′
(∣∣c′∣∣2 − ∣∣c′∗∣∣2)− g

(
| c|2 − |c∗|2

))
+

1

2
g′
(
I ′ − I ′∗

)
− 1

2
g (I − I∗)

)
= c ·

(
m

4

(
g′
((

c′ − c′∗
)
·
(
c′ + c′∗

))
− g ((c− c∗) · (c + c∗))

)
+

1

2
g′
(
I ′ − I ′∗

)
− 1

2
g (I − I∗)

)
=

(
G +

1

2
g

)
·
(
m

4

(
g′
(
g′ · 2G

)
− g (g · 2G)

)
+

1

2
g′
(
I ′ − I ′∗

)
− 1

2
g (I − I∗)

)
=
m

2

(
g′ ·G

)2 − m

2
(g ·G)2 +

m

4

(
g · g′

) (
g′ ·G

)
− m

4
|g|2 (g ·G)

+
1

2

(
I ′ − I ′∗

)(
g′ ·G +

1

2
g · g′

)
− 1

2
(I − I∗)

(
g ·G +

1

2
|g|2
)
,
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which in conjunction with (2.74), yields

3∑
r=1

Qrr = K 2
ρ2

m2 ζ0(T )2

( m

2π k T

)3
∫∫

R3×R+

∫
Ω3

∫
S2

e−
m
kT
|G|2e−

m
4kT
|g|2e−

1
kT
Ie−

1
kT
I∗

(m
2

g ·G +
m

2
|G|2 +

m

8
|g|2 + I

)
×
{m

2

(
g′ ·G

)2 − m

2
(g ·G)2 +

m

4

(
g · g′

) (
g′ ·G

)
− m

4
|g|2 (g ·G)

+
1

2

(
I ′ − I ′∗

)(
g′ ·G +

1

2
g · g′

)
− 1

2
(I − I∗)

(
g ·G +

1

2
|g|2
)}

× (1−R)Rs+
1
2 |g|2s

∣∣∣∣ω · g

|g|

∣∣∣∣ dωdr dR dI∗ dg dI dG.

Considering integral with respect to G, we first discard all vanishing terms due to parity

3∑
r=1

Qrr = K 2
ρ2

m2 ζ0(T )2

( m

2π k T

)3
∫∫

R3×R+

∫
Ω3

∫
S2

e−
m
kT
|G|2e−

m
4kT
|g|2e−

1
kT
Ie−

1
kT
I∗

(
m

2
g ·G

{
m

4

(
g · g′

) (
g′ ·G

)
− m

4
|g|2 (g ·G) +

1

2

(
I ′ − I ′∗

)
g′ ·G− 1

2
(I − I∗) g ·G

}
+
m

2
|G|2

{
m

2

(
g′ ·G

)2 − m

2
(g ·G)2 +

1

4

(
I ′ − I ′∗

)
g · g′ − 1

4
(I − I∗) |g|2

}
+
(m

8
|g|2 + I

){m
2

(
g′ ·G

)2 − m

2
(g ·G)2 +

1

4

(
I ′ − I ′∗

)
g · g′ − 1

4
(I − I∗) |g|2

})
× (1−R)Rs+

1
2 |g|2s

∣∣∣∣ω · g

|g|

∣∣∣∣ dωdr dR dI∗ dg dI dG,

and then

3∑
r=1

Qrr = K 2
ρ2

m2 ζ0(T )2

( m

2π k T

)3
∫
R+

∫
Ω3

∫
S2

e−
m

4kT
|g|2e−

1
kT
Ie−

1
kT
I∗

(
m

4
π

3
2

(
k T

m

) 5
2
{
m

4

((
g · g′

)2 − |g|4)+
1

2

(
I ′ − I ′∗

)
g · g′ − 1

2
(I − I∗) |g|2

}

+
m

8
π

3
2

(
k T

m

) 5
2
{

5

2
k T

(∣∣g′∣∣2 − |g|2)+
3

2

((
I ′ − I ′∗

)
g · g′ − (I − I∗) |g|2

)}
+
(m

8
|g|2 + I

)
π

3
2

(
k T

m

) 3
2
{
k T

4

(∣∣g′∣∣2 − |g|2)+
1

4

(
I ′ − I ′∗

)
g · g′ − 1

4
(I − I∗) |g|2

})

× (1−R)Rs+
1
2 |g|2s

∣∣∣∣ω · g

|g|

∣∣∣∣ dω dr dR dI∗ dg dI.
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A rearrangement yields the following integral

3∑
r=1

Qrr = K 2
ρ2

m2 ζ0(T )2

1

8

( m

π k T

) 3
2

∫
R+

∫
Ω3

∫
S2

e−
m

4kT
|g|2e−

1
kT
Ie−

1
kT
I∗

(
1

4

(
5

4
k T +

m

8
|g|2 + I

) ((
I ′ − I ′∗

)
g · g′ − (I − I∗) |g|2

)
+
mk T

32

(
|g|2

(∣∣g′∣∣2 − 3 |g|2
)

+ 2
(
g · g′

)2)
+

(
1

4
I +

5

16
k T

)
k T

(∣∣g′∣∣2 − |g|2))
× (1−R)Rs+

1
2 |g|2s

∣∣∣∣ω · g

|g|

∣∣∣∣ dω dr dR dI∗ dg dI.

Next, we pass to the σ−representation with Jacobian (1.36). Recalling (2.73) and (2.56), we express

∣∣g′∣∣2 = R |g|2 +
4R

m
(I + I∗) ,

g · g′ = 2

√
RE

m
g · σ,(

g · g′
)2

=

(
R |g|2 +

4R

m
(I + I∗)

)
(g · σ)2 .

and consequently consider the following integral

3∑
r=1

Qrr = K
ρ2

m2 ζ0(T )2

1

8

( m

π k T

) 3
2

∫
R+

∫
Ω3

∫
S2

e−
m

4kT
|g|2e−

1
kT
Ie−

1
kT
I∗

(
−1

4

(
5

4
k T +

m

8
|g|2 + I

)
(I − I∗) |g|2

+
mk T

32

(
|g|2

(
(R− 3) |g|2 +

4R

m
(I + I∗)

)
+ 2

(
R |g|2 +

4R

m
(I + I∗)

)
(g · σ)2

)
+

(
1

4
I +

5

16
k T

)
k T

(
(R− 1) |g|2 +

4R

m
(I + I∗)

))
× (1−R)Rs+

1
2 |g|2s dσ dr dR dI∗ dg dI.

Integration with respect to σ is easy and we are led to proceed in that direction:

3∑
r=1

Qrr = K
ρ2

m2 ζ0(T )2

π

2

( m

π k T

) 3
2

∫
R+

∫
Ω3

e−
m

4kT
|g|2e−

1
kT
Ie−

1
kT
I∗

{
−1

4

(
5

4
k T +

m

8
|g|2 + I

)
(I − I∗) |g|2 +

mk T

32
|g|2

((
5

3
R− 3

)
|g|2 +

20R

3m
(I + I∗)

)
+

(
1

4
I +

5

16
k T

)
k T

(
(R− 1) |g|2 +

4R

m
(I + I∗)

)}
× (1−R)Rs+

1
2 |g|2s dr dR dI∗ dg dI.
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Next, integration with respect to I and I∗ yields

3∑
r=1

Qrr = K
ρ2

m2 ζ0(T )2

π

2

( m

π k T

) 3
2

∫
R3

∫
[0,1]

∫
[0,1]

e−
m

4kT
|g|2

{
−1

4
(k T )4 |g|2 +

mk T

32
|g|2

((
5

3
R− 3

)
(k T )2 |g|2 +

40R

3m
(k T )3

)
+

(
1

4
k T

(
(R− 1) (k T )3 |g|2 +

12R

m
(k T )4

)
+

5

16
(k T )2

(
(R− 1) (k T )2 |g|2 +

8R

m
(k T )3

))}
× (1−R)Rs+

1
2 |g|2s dr dR dg.

A rearrangement leads to

3∑
r=1

Qrr = K
ρ2

m2 ζ0(T )2

π

2

( m

π k T

) 3
2

(k T )3
∫
R3

∫
[0,1]

∫
[0,1]

e−
m

4kT
|g|2

(
m

32

(
5

3
R− 3

)
|g|4 + k T

(
47

48
R− 13

16

)
|g|2 +

11

2
(k T )2 R

m

)
(1−R)Rs+

1
2 |g|2s dr dR dg.

Integration with respect to r and R gives the following result

3∑
r=1

Qrr = K
ρ2

m2 ζ0(T )2
π
( m

π k T

) 3
2

(k T )3 2

(2s+ 5)

∫
R3

|g|2s e− m
4kT
|g|2

(
m

32

(
5

3 (2s+ 7)
− 3

(2s+ 3)

)
|g|4 + k T

(
47

48 (2s+ 7)
− 13

16 (2s+ 3)

)
|g|2 +

(k T )2

m

11

2 (2s+ 7)

)
dg.

A rearrangement and a passage to the spherical coordinates lead to

3∑
r=1

Qrr = K
ρ2

m2 ζ0(T )2
π2
( m

π k T

) 3
2

(k T )3 8

(2s+ 5)

∫
R+

e−
m

4kT
|g|2

(
−m (s+ 6)

12 (2s+ 3) (2s+ 7)
|g|2s+6 + k T

(4s− 33)

12 (2s+ 3) (2s+ 7)
|g|2s+4 +

(k T )2

m

11

2 (2s+ 7)
|g|2s+2

)
d |g| .

Now, we perform the change of variable (2.75)

3∑
r=1

Qrr = K
ρ2

m2 ζ0(T )2
π2
( m

π k T

) 3
2

(k T )3 8

(2s+ 5) (2s+ 7)

× 1

2

∫
R+

e−x
(
−m (s+ 6)

12 (2s+ 3)

( m

4 k T

)−s− 7
2
xs+

5
2 +

(
k T

(4s− 33)

12 (2s+ 3)

)( m

4 k T

)−s− 5
2
xs+

3
2

+
(k T )2

m

11

2

( m

4 k T

)−s− 3
2
xs+

1
2

)
dx.

A factorization yields the following integral

3∑
r=1

Qrr = K
ρ2

m2 ζ0(T )2
π2
( m

π k T

) 3
2

(k T )3 8

(2s+ 5) (2s+ 7)

×m 22s+6

(
k T

m

)s+ 7
2
∫
R+

e−x
(
− (s+ 6)

12 (2s+ 3)
xs+

7
2
−1 +

(4s− 33)

48 (2s+ 3)
xs+

5
2
−1 +

11

32
xs+

3
2
−1

)
dx.
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Comparing to the definition of gamma function, we obtain

3∑
r=1

Qrr = K
ρ2

m3 ζ0(T )2
(k T )5√π

(
k T

m

)s 22s+9

(2s+ 5) (2s+ 7)

×
(
− (s+ 6)

12 (2s+ 3)
Γ

[
s+

7

2

]
+

(4s− 33)

48 (2s+ 3)
Γ

[
s+

5

2

]
+

11

32
Γ

[
s+

3

2

])
,

and then using the property of the gamma function Γ [x+ 1] = xΓ [x] yields

3∑
r=1

Qrr = K
ρ2

m3 ζ0(T )2
(k T )5√π

(
k T

m

)s 22s+9

(2s+ 5) (2s+ 7)

× Γ

[
s+

3

2

](
−(s+ 6) (2s+ 5)

48
+

(4s− 33)

96
+

11

32

)
.

Using (1.94) we can rearrange once more

3∑
r=1

Qrr = −K (k T )2

ζ0(T )2

p3

ρ

√
π

(
k T

m

)s 22s+5 (s (2s+ 15) + 30)

3 (2s+ 5) (2s+ 7)
Γ

[
s+

3

2

]
.

Finally, insertion of this result into (2.71) together with (2.78) lead to the expression for the linearized
source term corresponding to the equation for the heat flux in the 14-moments approximation:

Q
14
i =

3∑
k=1

ukP
14
ik −K

(
7

2
+ α

)−1 22s+5 (s (2s+ 15) + 30)

9 (2s+ 5) (2s+ 7)

ρ (k T )2

mζ0(T )2

√
π

(
k T

m

)s
Γ

[
s+

3

2

]
qi.

This completes the proof. �

Transport coefficients. The results obtained here are a consequence of the model of interaction
between the molecules. The production terms thus represent the macroscopic dissipative effects. How-
ever, their structure reflects the mesoscopic mechanism of interaction without any prior recourse to
phenomenological relations.

Since the maximization of entropy and extended thermodynamics obtain the same set of moment
equations, it enables explicit computation of the relaxation times of the extended thermodynamics
model, τS for viscous stress, τΠ for dynamic pressure and τq for heat flux, from our production terms.
Indeed, It is in the spirit of extended thermodynamics, as well as the theory of hyperbolic systems of
balance laws, to recast the production terms in the following form:

P 14
ij =

1

τs
p〈ij〉 +

1

τΠ
Πδij , Q14

i = ukP
14
ik −

1

τq
qi,

where τs, τΠ and τq are appropriate relaxation times. They estimate the rate of decay of non-equilibrium
quantities. It is easy to recognize from (2.64)-(2.65) that:

1

τs
= K

22s+4

15

ρ (k T )2

mζ0(T )2

√
π

(
k T

m

)s
Γ

[
s+

3

2

]
,

1

τΠ
= K

(
α+

5

2

)
(α+ 1)−1 22s+6

3(2s+ 5)(2s+ 7)

ρ (k T )2

mζ0(T )2

√
π

(
k T

m

)s
Γ

[
s+

3

2

]
,

1

τq
= K

(
7

2
+ α

)−1 22s+5 (s (2s+ 15) + 30)

9 (2s+ 5) (2s+ 7)

ρ (k T )2

mζ0(T )2

√
π

(
k T

m

)s
Γ

[
s+

3

2

]
.

On the other hand, it was shown [9] that the relaxation times can be related to the transport coefficients
– shear viscosity µ, bulk viscosity ν, and heat conductivity κ:

µ = p τS , ν =
4(1 + α)

3(5 + 2α)
p τΠ, κ =

(
α+

7

2

)
p2

ρT
τq,
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so that one obtains:

µ =
15

22s+4

ms

√
πKΓ

[
s+ 3

2

] (k T )−s−1 q (T )2 ,

ν =
(α+ 1)2

(2α+ 5)2

(2s+ 5) (2s+ 7)

22s+3

ms

√
πKΓ

[
s+ 3

2

] (k T )−s−1 q (T )2 ,(2.79)

κ =

(
α+

7

2

)2 9 (2s+ 5) (2s+ 7)

22s+5 (s (2s+ 15) + 30)

k

m

ms

√
πKΓ

[
s+ 3

2

] (k T )−s−1 q (T ) .

Although we arrived at (2.79) by an ad-hoc procedure, in contrast to the standard asymptotic methods
like Chapman-Enskog one, it gives some hint impression about the dependence of transport coefficients
with respect to the collision model.

In [3] results similar to (2.79) were obtained in the special case s = 0. Generalized form of the
transport coefficients, obtained in [4], leaves the possibility to adapt the collision cross section and
match certain macroscopic quantities. For example, we can choose s to obtain the appropriate value of
Prandtl number, Pr = cpµ/κ. A theoretically obtained value for Prandtl number for polyatomic gases
is given by Eucken’s relation, Pr = 4γ/(9γ − 5), while from (2.79) one obtains:

Pr =

(
α+

7

2

)−1 10 (s (2s+ 15) + 30)

3 (2s+ 5) (2s+ 7)
.

Matching these two relations, with the aid of the restriction s > −3/2, the following values of parameter
s are obtained:

Table 2.1. Prandtl number and values of the parameter s

Gas γ α Pr s

diatomic 7/5 0 28/38 0.678
three-atomic 4/3 1/2 16/21 −0.311

Since we only have one free parameter in the model, we can adapt it to match only one macroscopic
quantity, while for the others we may expect just better or worse matching. One of these important
properties is the dependence of the viscosity with respect to the temperature, for which it is easy to
determine from (2.79)1 that µ ∝ T 2α+s−1. For the values from Table 2.1 one can determine that
one obtains µ ∝ T 0.322 for diatomic gases, and µ ∝ T 2.311 for three-atomic gases, both results being
unsatisfactory when compared with experiment.

However, a different strategy can be applied: first to adapt s to match the temperature dependence,
and then to compute the corresponding Prandtl number. According to [25], for CO one has µ ∝ T 0.734,
which gives s = 0.262 and yields Pr = 0.781, which is in satisfactory agreement with the theoretical
value for diatomic gases (Pr = 0.737 from Table 2.1). For three-atomic gases the results are a bit worse.

Entropy density and entropy flux. Another important feature which we need to discuss is the
structure of entropy density and entropy flux for non-equilibrium distribution (2.41). Macroscopic
entropy is defined by (2.21):

(2.80) h = ρs = −k
∫
R3

∫ ∞
0

f log f ϕ(I) dI dv,

while entropy flux has the form:

(2.81) hj = ρsuj + h̃j , h̃j = −k
∫
R3

∫ ∞
0

cjf log f ϕ(I) dI dv,

where h̃j is a non-convective entropy flux. As a first step, we shall derive them for the equilibrium
distribution (2.28).
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Proposition 2.7. The entropy density and the non-convective entropy flux for polyatomic gases
in local equilibrium state have the following form:

(2.82) ρs|E = −k ρ
m

{
log

(
ρ

mζ0(T )

( m

2πkT

)3/2
)
−
(

5

2
+ α

)}
, h̃j |E = 0.

Moreover, Gibbs relation holds in equilibrium:

(2.83) ds|E =
1

T

{
de|E −

p

ρ2
dρ

}
,

where e|E is the internal energy density of polyatomic gas (2.35).

For both relations (2.82) and (2.83) the proof is straightforward. They are derived by direct
insertion of the equilibrium distribution (2.28) into (2.80) and (2.81). Gibbs relation comes out after
differentiation of (2.82)1.

We can conclude from the last Proposition that the equilibrium entropy density is a generalization
of the one for monatomic gases, and that the form of Gibbs relation is also preserved. The form of
the non-equilibrium entropy density and entropy flux is dictated by the form of the non-equilibrium
distribution function, and thus can be expressed in terms of 14 scalar fields.

Proposition 2.8. The non-equilibrium entropy density and entropy flux for polyatomic gases in
the 14 moments approximation have the following form:

ρs = ρs|E −
1

4

k

m

ρ

p2

3∑
i,j=1

(
p〈ij〉p〈ij〉

)
− 1

2

(
7

2
+ α

)−1 k

m

ρ2

p3
q · q

− 3

4

(
5

2
+ α

)
(1 + α)−1 k

m

ρ

p2
Π2,(2.84)

h̃i =
qi
T
− k

m

ρ

p2

(
7

2
+ α

)−1 3∑
j=1

p〈ij〉qj −
k

m

ρ

p2

(
7

2
+ α

)−1

Π qi, i = 1, 2, 3.(2.85)

Proof. To prove these results, it is sufficient to follow the procedure used in the derivation of the
entropy density and the entropy flux in the case of Grad’s distribution function [37]. First, one has to
put the non-equilibrium distribution function (2.41) into (2.80) and (2.81). Since we shall restrict our
study to second order terms with respect to non-equilibrium densities – pressure tensor pij , heat flux qi
and dynamic pressure Π – we shall exploit the approximation log(1 + x) ≈ x− x2/2, valid for |x| � 1.
Under these assumptions, the relations (2.84)-(2.85) are obtained after tedious, but straightforward
integration of (2.80) and (2.81). �

The non-equilibrium entropy density (2.84) comprises the equilibrium one ρsE and non-linear,
quadratic terms related to pressure tensor, heat flux and dynamic pressure. It is a generalization of
Grad’s entropy density since it contains the polyatomic parameter α and term Π2 which do not exist
in the monatomic case. Moreover, it fulfills the convexity conditions provided α > −1 (or equivalently
D > 3), ensuring that the 14 moments system (2.48)-(2.49) can be put into symmetric hyperbolic form
[18].

The entropy flux (2.85) shares the same properties as the entropy density. It contains the lin-
ear term, qi/T , typical for linear theory, but comprises non-linear terms p〈ij〉qj , present also in the
monatomic case, and Πqi which is the non-linear contribution specific of polyatomic gases. The co-
efficients contain the parameter of the model α, as well. The results presented above are in perfect
agreement with the ones of extended thermodynamics [9].





CHAPTER 3

Multivelocity and multitemperature models of Eulerian polyatomic
gases

Mixtures of Eulerian (inviscid) gases are usually described by monovelocity and monotemperature
models, where the state of the mixture of s species is determined by the mass densities of each con-
stituent ρi, i = 1, . . . , s, the mixture velocity u and the common temperature T or the internal energy
density e. They stay in the framework of ordinary thermodynamics, and the corresponding equations
write, as long as chemical reactions are not taken into account [50],

∂tρi +∇x · (ρi u) = 0, for any i = 1, ..., s,

∂t (ρu) +∇x (ρu⊗ u + p Id) = 0,

∂t

(
1
2ρ |u|

2 + ρe
)

+∇x ·
{(

1
2ρ |u|

2 + ρe
)

u + pu
}

= 0,

where ρ =
∑s

i=1 ρi. They become complete once state laws are written for the pressure p and the
energy e in terms of the mass densities ρi and the common temperature T .

Models involving one velocity and one temperature/internal energy per species (resp. called ui
and Ti/ei) have lately been developed in the context of extended thermodynamics. Let us recall that
the first rational model of homogeneous mixtures was proposed by Truesdell in the context of rational
thermodynamics [58]. It is based on three principles that we briefly comment:

(1) All properties of the mixture must be mathematical consequences of properties of the con-
stituents.

(2) In order to describe the motion of a constituent, we may in imagination isolate it from the
rest of the mixture, if the actions of the other constituents upon it are properly described.

(3) The motion of the mixture is governed by the same equations as in a single body.

Roughly speaking, the first principle asserts that the whole is just a sum of its parts and the third
that a body, in its motion as a whole, behaves in the same way whether it is a mixture or not. The
second principle implies that each component of the mixture obeys balance laws of mass, momentum
and energy. We mention that these laws are not conservative, because of the mutual interaction of the
constituents. Indeed, if the mixture is constituted of s species: A1, . . .As, and if chemical reactions
are excluded from our consideration, then the species Ai satisfy the following system of equations

∂tρi +∇x · (ρi ui) = 0,

∂t (ρi ui) +∇x (ρi ui ⊗ ui + pi) = Ni,

∂t

(
1
2ρi |ui|

2 + ρiei

)
+∇x ·

{(
1
2ρi |ui|

2 + ρiei

)
ui + piui + qi

}
= Ei, for any i = 1, ..., s,

(3.1)

ρi being the density, ui the velocity, ei the internal energy, pi the pressure tensor and qi the heat
flux of the species Ai. In order to recover conservation laws of mass, momentum and energy for the
mixture as a whole, the production terms must satisfy the following relations:

(3.2)
s∑
i=1

Ni = 0,

s∑
i=1

Ei = 0.

103
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In fact, the third principle implies that the mixture obeys conservation laws identical to those of a
single fluid:

∂tρ+∇x · (ρu) = 0,

∂t (ρu) +∇x (ρu⊗ u + p) = 0,

∂t

(
1
2ρ |u|

2 + ρe
)

+∇x ·
{(

1
2ρ |u|

2 + ρe
)

u + pu + q
}

= 0,

(3.3)

where ρ is the density, u the velocity, e the internal energy, p the pressure tensor and q the heat
flux of the mixture. At the same time, these field variables have to be deduced from the ones of the
components of the mixture, by the first principle. They are defined with the following relations:

ρ =

s∑
i=1

ρi mass density of mixture,

u =
1

ρ

s∑
i=1

ρiui mixture velocity,

Ui = ui − u, with
s∑
i=1

ρiUi = 0 diffusion velocity,

p =
s∑
i=1

(pi + ρiUi ⊗Ui) pressure tensor,

e =
1

ρ

s∑
i=1

ρi

(
ei + 1

2 |Ui|2
)

internal energy,

q =
s∑
i=1

(
qi + ρi

(
ei + 1

2 |Ui|2
)

+ piUi

)
flux of internal energy.

Then it is easy to recover the conservation laws for mixture (3.3) by summation of balance laws for
constituents (3.1), having in mind (3.2).

In the general form of a model for a mixture given in (3.1), the closure problem immediately
appears. Namely, system (3.1) needs constitutive equations for the pressure tensor pi and the heat
flux qi, as well as an expression of production terms Ni, Ei in terms of field variables ρi,ui, ei. This
problem has been studied in the framework of extended thermodynamics. In this theory, it is required
that a model satisfies two fundamental principles – the objectivity principle, that assumes invariance of
the field equations with respect to Galilean transformations, and the entropy principle (or accordance
with entropy inequality) for all thermodynamic processes.

We recall first that as far as (inviscid) fluids are considered, off-diagonal parts of the pressure tensor
and the heat flux vector vanish. In other words,

(3.4) pi = pi Id, qi = 0, i = 1, . . . , s,

where pi is the pressure of the constituent Ai, and

p =

s∑
i=1

pi

is the total pressure. Therefore, multivelocity and multitemperature Eulerian fluids obey the following
set of equations

∂tρi +∇x · (ρi ui) = 0,

∂t (ρi ui) +∇x (ρi ui ⊗ ui + pi Id) = Ni,

∂t

(
1
2ρi |ui|

2 + ρiei

)
+∇x ·

{(
1
2ρi |ui|

2 + ρiei

)
ui + piui

}
= Ei, i = 1, ..., s,

(3.5)

by means of (3.1) and assumption (3.4). It now remains to determine the production terms Ni and
Ei.
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Following [54], balance laws for the species As are replaced with the mixture conservation laws.
In such a way, instead of (3.6), the following system of equations is considered:

∂tρ+∇x · (ρu) = 0,

∂t (ρu) +∇x (ρu⊗ u + p Id) = 0,

∂t

(
1
2ρ |u|

2 + ρe
)

+∇x ·
{(

1
2ρ |u|

2 + ρe
)

u + pu
}

= 0,

∂tρi +∇x · (ρi ui) = 0,

∂t (ρi ui) +∇x (ρi ui ⊗ ui + pi Id) = Ni,

∂t

(
1
2ρi |ui|

2 + ρiei

)
+∇x ·

{(
1
2ρi |ui|

2 + ρiei

)
ui + piui

}
= Ei, i = 1, ..., s− 1,

(3.6)

As in [53], the objectivity principle is applied to general hyperbolic systems of balance type. It is
required that the field equations are invariant with respect to the Galilean transformations:

t 7→ t∗, x 7→ x∗ = x + t c, u 7→ u∗ = u + c,

where c is some constant vector. This principle applied to the system (3.1) in the absence of chemical
reactions implies the following structure of the production terms [54]:

Ni = N̂i,

Ei = u · N̂i + Êi, i = 1, . . . , s− 1,
(3.7)

where ˆ denotes a quantity that does not depend on the velocity u.
Another important restriction comes from the entropy principle that requires accordance with the

entropy inequality, seen as an extra balance law. It is achieved through the following procedure. First,
it is proved that the entropy density of the mixture is a convex function with respect to the variables
related to a species Ai i.e. (ρi, ρiui,

1
2ρi |ui|

2 + ρiei). Then, the production terms are determined
through the application of the residual inequality: the internal parts of production terms are chosen
in such a way that the entropy production is quadratic form [54]:

N̂i = −
s−1∑
j=1

αij(w)

(
uj
Tj
− us
Ts
− u

(
1

Tj
− 1

Ts

))
,

Êi = −
s−1∑
j=1

βij(w)

(
− 1

Tj
+

1

Ts

)
, ∀ i = 1, . . . , s− 1,

(3.8)

where α and β are positive definite (s − 1) × (s − 1) matrix functions of the objective quantities
w. We recall that a quantity is objective if it is invariant with respect to Euclidean transformations
that are more restrictive than Galilean ones: a Euclidean transformation is a time dependent rigid
transformation of frame from (t,x) to (t∗,x∗) defined by

(3.9) t 7→ t∗, x 7→ x∗ = Q(t) x + c(t),

where Q(t) is an orthogonal tensor and c is a vector [50].
It will be useful in the sequel to reformulate production terms (3.8) in a such a way that the sum

involves terms corresponding to species Ai and Aj , rather than Aj and As. We are thus led to add
and subtract (ui/Ti + u/Ti) in the term N̂i and add and subtract 1/Ti in Êi. Then, source terms (3.7)
read

Ni = −
s−1∑
j=1
j 6=i

αij(w)

(
uj
Tj
− ui
Ti
− u

(
1

Tj
− 1

Ti

))
+

s−1∑
j=1

αij(w)

(us
Ts
− ui
Ti
− u

(
1

Ts
− 1

Ti

))
,

Ei = u ·Ni −
s−1∑
j=1
j 6=i

βij(w)

(
− 1

Tj
+

1

Ti

)
+

s−1∑
j=1

βij(w)

(− 1

Ts
+

1

Ti

)
,

(3.10)
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for any i = 1, . . . , s− 1.
The coefficients α and β are of phenomenological nature, and extended thermodynamics cannot

determine them in the general case. They can be only compared with experimental data for some
particular cases. Our aim is to obtain a system of equations describing mixture of Eulerian polyatomic
gases starting from the kinetic theory, and to compare the obtained production terms with (3.10). In
particular, the purpose is to compute the coefficients α and β.

Our contribution to the closure problem is based on a completely different approach, directly related
to the kinetic theory of mixtures of polyatomic gases. Let us first recall that the approach to equilibrium
for a mixture of gases is much more intricate than for a single component gas, because many different
scales appear. Namely, the approach to equilibrium can be divided roughly into two processes [34].
One of the processes is the approach of each distribution function to a Maxwellian distribution which
we call the Maxwellisation step of a species. Typically, it takes place on the scale on which the pressure
tensor of that species becomes isotropic or, equivalently, the scale on which the heat conduction relaxes.
The Maxwellisation step is followed by another process, namely the equilibration of the species, i.e.
vanishing of differences in velocity and temperature among the species. Equilibration proceeds at the
macroscopic scale without an ordered pattern: equalization of velocities and temperatures can occur
on a different scale or on the same scale.

This Section aims at obtaining at the formal level a multivelocity and multitemperature model,
as an asymptotic limit of the Boltzmann equations (1.98). For that purpose, we assume that the
Maxwellisation steps for each species are of the same order. Moreover, we assume that this scale is
much shorter than the equilibration scale between different species. This is achieved by assuming that
the typical mean free path for collisions between molecules of the same species are much shorter than
the mean free path for collisions between molecules of different species (which is assumed to be of the
same order as the macroscopic scale). This scaling has also been proposed and studied in [16] in the
case of mixtures of gases with discrete internal energy. Also, the multitemperature model is derived
from the kinetic model in [15] within the framework of mixture of monatomic gases with possible
chemical reactions, by assuming the dominance of non-reactive collisions between molecules of the
same species. Therefore, if we introduce a small parameter ε that represents the Knudsen number for
the fast processes, the Boltzmann equations take the following form:

∂tf
ε
i + v · ∇xf

ε
i =

1

ε
Qii(f

ε
i , f

ε
i ) +

s∑
j=1
j 6=i

Qij(f
ε
i , f

ε
j ), 1 ≤ i ≤ s.

As a consequence, when ε tends to zero, f εi converges at the formal level towards the “mid-equilibrium”
distribution function (1.119) with coefficients depending on t and x:

(3.11) fEi =
ni

ζ0i(Ti)

(
m

2π k Ti

)N/2
e
− 1
kTi

(mi2 |v−ui|2+I)
,

where

ζ0i(Ti) =

∫
R+

ϕi(I)e
− 1
kTi

I
dI,

and the number density ni(t,x) =: ni, the velocity ui(t,x) =: ui and the temperature Ti(t,x) =: Ti of
the component Ai satisfy the system (3.6)

∂tρi +∇x · (ρi ui) = 0,

∂t (ρi ui) +∇x (ρi ui ⊗ ui + pi Id) = Ni,

∂t

(
1
2ρi |ui|

2 + ρiei

)
+∇x ·

{(
1
2ρi |ui|

2 + ρiei

)
ui + piui

}
= Ei, i = 1, ..., s,
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with source terms Ni and Ei given by

Ni =

s∑
j=1
j 6=i

∫∫
RN×R+

mi vQ
b
ij(fEi , fEj )(v, I)ϕi(I) dv dI,

Ei =
s∑
j=1
j 6=i

∫∫
RN×R+

(
mi
2 |v|

2 + I
)
Qbij(fEi , fEj )(v, I)ϕi(I) dv dI.

We recall the special form of the internal energy (1.54) for the choice (3.11) and ϕi(I) = Iαi , with
αi > −1 for every i = 1, . . . , s:

ρiei|fi=fEi =

(
αi +

5

2

)
k ni Ti.

It remains to compute the production terms. To that end, we will use the modified VHS model for the
cross section

(3.12) Bij (v,v∗, I, I∗, r, R,ω) = 2N−1KRsij |v − v∗|2sij
∣∣∣∣ω · v − v∗
|v − v∗|

∣∣∣∣N−2

,

where the parameter sij satisfies sij = sji, and K is an appropriate dimensional constant. We will
also assume that N > 1 and sij > −N

2 . The interest of this model is that it depends on one unique
parameter sij for each couple of species, which can be fitted by experiments involving only macroscopic
quantities.

Let us mention that our computation of the production terms Ni et Ei is much alike the compu-
tation of the production terms obtained by the same hydrodynamic limit of the kinetic model with
discrete energy levels [16].

1. Computation of the production term for the momentum exchange

The production term Ni that corresponds to the balance law of momentum of the species Ai for
the Euler fluids and the choice (3.12) reads

Ni =
s∑
j=1
j 6=i

∫∫
RN×R+

∫
Ω

∫
SN−1

miv
(
fEi
(
v′, I ′

)
fEj

(
v′∗, I

′
∗
)
− fEi (v, I) fEj (v∗, I∗)

)

× 2N−1K(1−R)Rsij+
N
2
−1 |v − v∗|2sij

∣∣∣∣ω · v − v∗
|v − v∗|

∣∣∣∣N−2

dω dr dR dI∗ dv∗ dI dv.

Performing the change of variables (v,v∗, I, I∗, r, R) 7→ (v′,v′∗, I
′, I ′∗, r

′, R′) for ω fixed in the first
integral, with Jacobian (1.102), we get

Ni =

s∑
j=1
j 6=i

∫∫
RN×R+

∫
Ω

∫
SN−1

mi

(
v′ − v

)
fEi (v, I) fEj (v∗, I∗)

× 2N−1K(1−R)Rsij+
N
2
−1 |v − v∗|2sij

∣∣∣∣ω · v − v∗
|v − v∗|

∣∣∣∣N−2

dω dr dR dI∗ dv∗ dI dv.

Let us pass to the σ−notation with Jacobian (1.37). Expressing

v′ − v =
mj

mi +mj

(
−v + v∗ +

√
2RE

µij
σ

)
,
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we obtain

Ni =
s∑
j=1
j 6=i

K
ninj

ζ0i(Ti)ζ0j (Tj)

(
mimj

4π2 k2 TiTj

)N
2
∫∫

RN×R+

∫
Ω

∫
SN−1

µij

(
−v + v∗ +

√
2RE

µij
σ

)

× e−
1
kTi

(
mi
2
|v−ui|2+I)

e
− 1
kTj

(
mj
2
|v∗−uj |2+I∗)

(1−R)Rsij+
N
2
−1 |v − v∗|2sij dσ dr dR dI∗ dv∗ dI dv.

Integration with respect to σ, and then with respect to all variables except velocities v and v∗ leads
to:

(3.13) Ni =
s∑
j=1
j 6=i

K
ninj

ζ0i(Ti)ζ0j (Tj)

(
mimj

4π2 k2 TiTj

)N
2

µij
∣∣SN−1

∣∣ k2TiTj
4

(N + 2sij) (N + 2sij + 2)

×
∫∫

RN×RN
(−v + v∗) e

− mi
2kTi
|v−ui|2−

mj
2kTj

|v∗−uj |2 |v − v∗|2sij dvdv∗,

where ∣∣SN−1
∣∣ =

∫
SN−1

dσ.

In order to obtain a final formula, which is as explicit as possible, we pass to the center of mass reference
frame

(3.14) (v,v∗) 7→
(

g := v − v∗,G :=
miv +mjv∗
mi +mj

)
,

with unit Jacobian. Moreover, we seek the expression in the power of the exponential in (3.13) under
the form

(3.15) −
(
aij |g + bij |2 + cij |G + dij g + eij |2

)
,

where aij ,bij , cij , dij , eij are coefficients to be determined with aij and cij positive. Inserting (3.14)
into (3.15), and comparing the obtained formula with the expression in the power of the exponential
(3.13), leads to the system of equations for coefficients:

aij + cijd
2
ij +

m2
i

(mi +mj)
2 cij +

2mi

mi +mj
cij dij =

mi

2kTi
,

2 aijbij + 2 cij dij eij +
2mi

mi +mj
cij eij = −mi

kTi
ui,

aij + cijd
2
ij +

m2
j

(mi +mj)
2 cij −

2mj

mi +mj
cij dij =

mj

2kTj
,

−2 aijbij − 2 cij dij eij +
2mj

mi +mj
cij eij = −mj

kTj
uj ,

−aij − cij d2
ij +

mimj

(mi +mj)
2 cij +

mj −mi

mi +mj
cij dij = 0,

aij b2
ij + cije

2
ij =

mi

2kTi
|ui|2 +

mj

2kTj
|uj |2 .
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This system is overdetermined ((2N + 4) equations for (2N + 3) unknowns), but consistent, and has
the following solution:

aij =

(
2 k Ti
mi

+
2 k Tj
mj

)−1

,

bij = uj − ui,

cij =
mi

2 k Ti
+

mj

2 k Tj
,

dij = µij

(
mi

2 k Ti
+

mj

2 k Tj

)−1( 1

2 k Ti
− 1

2 k Tj

)
,

eij = −
(

mi

2 k Ti
+

mj

2 k Tj

)−1( mi

2 k Ti
ui +

mj

2 k Tj
uj

)
.

(3.16)

Summarizing, (3.13) becomes

Ni = −
s∑
j=1
j 6=i

K
ninj

ζ0i(Ti)ζ0j (Tj)

(
mimj

4π2 k2 TiTj

)N
2

µij
∣∣SN−1

∣∣ k2TiTj
4

(N + 2sij) (N + 2sij + 2)

×
∫∫

RN×RN
g e−aij |g+bij |2−cij |G+dij g+eij |2 |g|2sij dg dG,

where coefficients are determined by (3.16). Note that

(3.17) c−1
ij =

4 k2 Ti Tj
mimj

aij .

Integration with respect to G yields integrals which only involve the relative velocity g:

(3.18) Ni = −
s∑
j=1
j 6=i

Kµij ni nj
k2 Ti Tj

ζ0i(Ti)ζ0j (Tj)

4
∣∣SN−1

∣∣
(N + 2sij) (N + 2sij + 2)

(aij
π

)N
2

×
∫
RN

g |g|2sij e−aij |g−(ui−uj)|2dg.

In order to treat the scalar product of g and ui − uj , we consider the orthonormal basis{
ui−uj
|ui−uj | ,y1, . . . ,yN−1

}
and decompose the vector g with respect to this basis:

g =

(
g · ui − uj
|ui − uj |

)
ui − uj
|ui − uj |

+

N−1∑
m=1

(g · ym) ym.

Let ϕ1 denotes the angle between g and ui−uj
|ui−uj | . Therefore, its cosine is

cos ϕ1 =
g

|g| ·
ui − uj
|ui − uj |

.

Next, we pass from RN to the spherical coordinate system, with angular coordinates denoted with
ϕ1, ϕ2, . . . , ϕN−1, where ϕN−1 ranges over [0, 2π) and all the others angles range over [0, π]. We
express g in terms of its spherical coordinates with axis ui−uj

|ui−uj | i.e. we choose the polar angle to be
ϕ1. Thus, we perform the following change of variables

(3.19) g 7→ |g|



cosϕ1

sinϕ1 cosϕ2

sinϕ1 sinϕ2 cosϕ3
...
sinϕ1 sinϕ2 · · · sinϕN−2 cosϕN−1

sinϕ1 sinϕ2 · · · sinϕN−2 sinϕN−1


=: |g|

[
cosϕ1

sinϕ1 ω̃

]
,
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where ω̃ represents the element of sphere SN−2. The computation of the Jacobian of this transformation
gives (note that we do not need an absolute value since all sine functions are positive on the considered
domain):

dg = |g|N−1 (sinϕ1)N−2 (sinϕ2)N−3 · · · sinϕN−2 d |g| dϕ1 dϕ2 . . . dϕN−1

= |g|N−1 (sinϕ1)N−2 d |g| dϕ1 dω̃,(3.20)

where, according to the standard notation in kinetic theory, we denoted

dω̃ = (sinϕ2)N−3 · · · sinϕN−2 dϕ2 . . . dϕN−1.

Finally, the integral (3.18) becomes

Ni = −
s∑
j=1
j 6=i

Kµij ni nj
k2 Ti Tj

ζ0i(Ti)ζ0j (Tj)

4
∣∣SN−1

∣∣
(N + 2sij) (N + 2sij + 2)

(aij
π

)N
2

×
∫
SN−2

∫ π

0

∫
R+

(
cosϕ1

ui − uj
|ui − uj |

+ sinϕ1

N−1∑
m=1

ω̃mym

)
e−aij(|g|

2−2|g||ui−uj | cosϕ1+|ui−uj |2)

× |g|2sij+N (sinϕ1)N−2 d |g| dϕ1 dω̃.

Integration with respect to the element ω̃ of the sphere SN−2 yields

Ni = −
s∑
j=1
j 6=i

Kµij ni nj
k2 Ti Tj

ζ0i(Ti)ζ0j (Tj)

4
∣∣SN−1

∣∣ ∣∣SN−2
∣∣

(N + 2sij) (N + 2sij + 2)

(aij
π

)N
2 ui − uj
|ui − uj |

e−aij |ui−uj |2

×
∫
R+

|g|2sij+N e−aij |g|2
∫ π

0
cosϕ1 e

2 aij |g||ui−uj | cosϕ1 (sinϕ1)N−2 dϕ1 d |g| .

Let us concentrate on the integral with respect to the angular variable ϕ1. We change variable cosϕ1 7→
p,

(3.21)
∫ π

0
cosϕ1 e

2 aij |g||ui−uj | cosϕ1 (sinϕ1)N−2 dϕ1 =

∫ 1

−1
p
(
1− p2

)N−3
2 e2 aij |g||ui−uj |p dp,

where we expressed (sinϕ1)N−3 =
(
sinϕ2

1

)N−3
2 =

(
1− p2

)N−3
2 , which is allowed since the sine function

is positive on the considered interval. Next, we perform a partial integration with

u = e2aij |g||ui−uj |p ⇒ du = 2aij |g| |ui − uj | e2aij |g||ui−uj |p,

dv = p
(
1− p2

)N−3
2 dp ⇒ v = − 1

N − 1

(
1− p2

)N−1
2 ,

so that∫ 1

−1
p
(
1− p2

)N−3
2 e2 aij |g||ui−uj |p dp =

2aij |g| |ui − uj |
N − 1

∫ 1

−1

(
1− p2

)N−1
2 e2aij |g||ui−uj |pdp

=
2aij |g| |ui − uj |

N − 1

√
π Γ

[
N + 1

2

]
0F̃1

(
;
N

2
+ 1; a2

ij |g|2 |ui − uj |2
)

= aij |g| |ui − uj |
√
π Γ

[
N − 1

2

]
0F̃1

(
;
N

2
+ 1; a2

ij |g|2 |ui − uj |2
)
,

by means of comparison with the integral representation (15). Note that in the case when N = 3, the
computation of the integral (3.21) is particulary simple and it can be done directly, without need for
representation through special functions. Denoting Aij = 2 aij |ui − uj | |g|, for N = 3 we obtain the
following result: ∫ 1

−1
p eAijp dp =

2

A2
ij

(Aij coshAij − sinhAij) .
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Next, we focus on the integral∫
R+

|g|2sij+N+1 e−aij |g|
2

0F̃1

(
;
N

2
+ 1; a2

ij |g|2 |ui − uj |2
)

d |g| .

We perform the following changes of variables: |g| 7→ |g|2 =: x and x 7→ aijx =: x, that yield∫
R+

|g|2sij+N+1 e−aij |g|
2

0F̃1

(
;
N

2
+ 1; a2

ij |ui − uj |2 |g|2
)

d |g|

=
1

2

∫
R+

xsij+
N
2 e−aijx 0F̃1

(
;
N

2
+ 1; a2

ij |ui − uj |2 x
)

dx

=
1

2 a
sij+

N
2

+1

ij

∫
R+

xsij+
N
2 e−x 0F̃1

(
;
N

2
+ 1; aij |ui − uj |2 x

)
dx

=
1

2 a
sij+

N
2

+1

ij

Γ

[
sij +

N

2
+ 1

]
1F̃1

(
sij +

N

2
+ 1;

N

2
+ 1; aij |ui − uj |2

)
,

for sij > −N/2, where we used the representation (14). Therefore, we can write Ni in closed form as
follows:

Ni = −
s∑
j=1
j 6=i

(ui − uj)Kµij ni nj
k2 Ti Tj

ζ0i(Ti)ζ0j (Tj)

2
∣∣SN−1

∣∣ ∣∣SN−2
∣∣

(N + 2sij) (N + 2sij + 2)
a
−sij
ij π

1−N
2 e−aij |ui−uj |2

× Γ

[
N − 1

2

]
Γ

[
sij +

N

2
+ 1

]
1F̃1

(
sij +

N

2
+ 1;

N

2
+ 1; aij |ui − uj |2

)
.

Finally, the source term Ni corresponding to the balance law of momentum of the species Ai for Euler
fluids in the case of the VHS model for cross section reads

(3.22) Ni = −
s∑
j=1
j 6=i

(ui − uj)Kµij ni nj
k2 Ti Tj

ζ0i(Ti)ζ0j (Tj)

2
∣∣SN−1

∣∣ ∣∣SN−2
∣∣

(N + 2sij) (N + 2sij + 2)

×
(

2 k Ti
mi

+
2 k Tj
mj

)sij
π

1−N
2 e
−
(

2 k Ti
mi

+
2 k Tj
mj

)−1

|ui−uj |2
Γ

[
N − 1

2

]
Γ

[
sij +

N

2
+ 1

]
× 1F̃1

(
sij +

N

2
+ 1;

N

2
+ 1;

(
2 k Ti
mi

+
2 k Tj
mj

)−1

|ui − uj |2
)
.

2. Computation of the production term for the energy exchange

The full expression of the production term Ei corresponding to the energy balance law of the
species Ai in the case of Euler fluids and model (3.12) for the cross section reads

Ei =

s∑
j=1
j 6=i

∫∫
RN×R+

∫
Ω

∫
SN−1

(
1

2
mi |v|2 + I

) (
fEi
(
v′, I ′

)
fEj

(
v′∗, I

′
∗
)
− fEi (v, I) fEj (v∗, I∗)

)

× 2N−1K(1−R)Rsij+
N
2
−1 |v − v∗|2sij

∣∣∣∣ω · v − v∗
|v − v∗|

∣∣∣∣N−2

dω dr dR dI∗ dv∗ dI dv.

Its computation resembles the computation of the production term Ni.
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The first step consists in the change of variables (v,v∗, I, I∗, r, R) 7→ (v′,v′∗, I
′, I ′∗, r

′, R′) for ω
fixed with Jacobian (1.102). We obtain

Ei =

s∑
j=1
j 6=i

∫∫
RN×R+

∫
Ω

∫
SN−1

(
1

2
mi

∣∣v′∣∣2 + I ′ − 1

2
mi |v|2 − I

)
fEi (v, I) fEj (v∗, I∗)

× 2N−1K(1−R)Rsij+
N
2
−1 |v − v∗|2sij

∣∣∣∣ω · v − v∗
|v − v∗|

∣∣∣∣N−2

dω dr dR dI∗ dv∗ dI dv.

The term in the first parenthesis can be expressed in terms of non-prime variables as follows:

1

2
mi

∣∣v′∣∣2 + I ′ − 1

2
mi |v|2 − I

= −µij (v − v∗) ·
(

mi

mi +mj
v +

mj

mi +mj
v∗

)
+
√

2µijRE

(
mi

mi +mj
v +

mj

mi +mj
v∗

)
· Tω

[
v − v∗
|v − v∗|

]
+ |v − v∗|2

µij
2

(1−R)

(
− mj

(mi +mj)
+ r

)
+ I

(
mj

mi +mj
R+ r(1−R)− 1

)
+ I∗

(
mj

mi +mj
R+ r (1−R)

)
.

We pass to the σ notation, and integration with respect to this variable yields

Ei =
s∑
j=1
j 6=i

K
ninj

ζ0i(Ti)ζ0j (Tj)

(
mimj

4π2 k2 TiTj

)N
2 ∣∣SN−1

∣∣
×
∫∫

RN×R+

∫
Ω
e
− 1
kTi

(
mi
2
|v−ui|2+I)

e
− 1
kTj

(
mj
2
|v∗−uj |2+I∗) |v − v∗|2sij (1−R)Rsij+

N
2
−1

×
{
−µij (v − v∗) ·

(
mi

mi +mj
v +

mj

mi +mj
v∗

)
+ |v − v∗|2

µij
2

(1−R)

(
− mj

(mi +mj)
+ r

)
+I

(
mj

mi +mj
R+ r(1−R)− 1

)
+ I∗

(
mj

mi +mj
R+ r (1−R)

)}
dr dR dI∗ dv∗ dI dv.

Next, we pass to the reference frame of the center of mass by means of the change of variables (3.14).
We rewrite the part concerning velocities in the exponential as (3.15). The following integral is obtained

Ei =
s∑
j=1
j 6=i

K
ninj

ζ0i(Ti)ζ0j (Tj)

(
mimj

4π2 k2 TiTj

)N
2 ∣∣SN−1

∣∣
×
∫∫

RN×R+

∫
Ω
e
−aij |g+bij |2− 1

kTi
I
e
−cij |G+dijg+eij |2− 1

kTj
I∗ |g|2sij (1−R)Rsij+

N
2
−1

×
{
−µij g ·G + |g|2 µij

2
(1−R)

(
− mj

(mi +mj)
+ r

)
+I

(
mj

mi +mj
R+ r(1−R)− 1

)
+ I∗

(
mj

mi +mj
R+ r (1−R)

)}
dr dR dI∗ dg dI dG.
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Then, integration with respect to G in conjunction with (3.17) gives

Ei =
s∑
j=1
j 6=i

K
ninj

ζ0i(Ti)ζ0j (Tj)

∣∣SN−1
∣∣ (aij

π

)N
2

∫
R+

∫
Ω
e−aij |g+bij |2e

− 1
kTi

I
e
− 1
kTj

I∗ |g|2sij (1−R)Rsij+
N
2
−1

×
{
µij g · (dijg + eij) + |g|2 µij

2
(1−R)

(
− mj

(mi +mj)
+ r

)
+I

(
mj

mi +mj
R+ r(1−R)− 1

)
+ I∗

(
mj

mi +mj
R+ r (1−R)

)}
dr dR dI∗ dg dI.

Integration with respect to I and I∗, and grouping coefficients of the same degree in g, yields

Ei =
s∑
j=1
j 6=i

Kninj
k2 Ti Tj

ζ0i(Ti)ζ0j (Tj)

∣∣SN−1
∣∣ (aij

π

)N
2

∫
RN

∫
[0,1]

∫
[0,1]
|g|2sij e−aij |g−(ui−uj)|2(1−R)Rsij+

N
2
−1

×
{
µij

(
dij +

1

2
(1−R)

(
− mj

mi +mj
+ r

))
|g|2

+µijeij · g

+k Ti

(
mj

mi +mj
R+ r(1−R)− 1

)
+ k Tj

(
mj

mi +mj
R+ r(1−R)

)}
dr dR dg.

Next, integrating with respect to r, we get

Ei =
s∑
j=1
j 6=i

Kninj
k2 Ti Tj

ζ0i(Ti)ζ0j (Tj)

∣∣SN−1
∣∣ (aij

π

)N
2

∫
RN

∫
[0,1]
|g|2sij e−aij |g−(ui−uj)|2(1−R)Rsij+

N
2
−1

×
{
µij

(
dij +

mi −mj

4 (mi +mj)
(1−R)

)
|g|2

+µijeij · g

+k Ti

(
mj −mi

2 (mi +mj)
R− 1

2

)
+ k Tj

(
mj −mi

2 (mi +mj)
R+

1

2

)}
dR dg.

Integration with respect to R gives

Ei =
s∑
j=1
j 6=i

Kninj
k2 Ti Tj

ζ0i(Ti)ζ0j (Tj)

4
∣∣SN−1

∣∣
(N + 2sij + 2)

(aij
π

)N
2

∫
RN
|g|2sij e−aij |g−(ui−uj)|2

×
{

µij
(N + 2sij)

(
dij +

mi −mj

(mi +mj)

1

(N + 2sij + 4)

)
|g|2

+
µij

(N + 2sij)
eij · g

+
mj −mi

2 (mi +mj)

1

(N + 2sij + 4)
(k Ti + k Tj) +

1

2 (N + 2sij)
(k Tj − k Ti)

}
dg.
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Comparing with (3.18), we recognize that the coefficient of eij is −Ñij , where −Ñij is such that
Ni =

∑s
j=1
j 6=i

Ñij . We are then led to write

Ei = −
s∑
j=1
j 6=i

eij · Ñij +

s∑
j=1
j 6=i

Kninj
k2 Ti Tj

ζ0i(Ti)ζ0j (Tj)

4
∣∣SN−1

∣∣
(N + 2sij + 2)

(aij
π

)N
2

∫
RN
|g|2sij e−aij |g−(ui−uj)|2

×
{

µij
(N + 2sij)

(
µij

k Tj − k Ti
mikTj +mjkTi

+
mi −mj

(mi +mj)

1

(N + 2sij + 4)

)
|g|2

+
mj −mi

2 (mi +mj)

1

(N + 2sij + 4)
(k Ti + k Tj) +

1

2 (N + 2sij)
(k Tj − k Ti)

}
dg.

Next step consists in passing to spherical coordinates for g, using the change of variable (3.19) with
Jacobian (3.20), and expressing

|g − (ui − uj)|2 = |g|2 − 2 |ui − uj | |g| cosϕ1 + |ui − uj |2 .

We obtain the following integral

Ei = −
s∑
j=1
j 6=i

eij · Ñij +
s∑
j=1
j 6=i

Kninj
k2 Ti Tj

ζ0i(Ti)ζ0j (Tj)

4
∣∣SN−1

∣∣ ∣∣SN−2
∣∣

(N + 2sij + 2)

(aij
π

)N
2
e−aij |ui−uj |2

×
∫
R+

|g|2sij+N−1 e−aij |g|
2
∫ π

0
e2aij |ui−uj ||g| cosϕ1 (sinϕ1)N−2 dϕ1

×
{

µij
(N + 2sij)

(
µij

k Tj − k Ti
mikTj +mjkTi

+
mi −mj

(mi +mj)

1

(N + 2sij + 4)

)
|g|2

+
mj −mi

2 (mi +mj)

1

(N + 2sij + 4)
(k Ti + k Tj) +

1

2 (N + 2sij)
(k Tj − k Ti)

}
d |g| .

The integral with respect to the angular variable ϕ1 can easily be represented using (16), i.e.∫ π

0
e2aij |ui−uj ||g| cosϕ1 (sinϕ1)N−2 dϕ1 =

√
π Γ

[
N − 1

2

]
0F̃1

(
;
N

2
; a2
ij |ui − uj |2 |g|2

)
.

In particular, when N = 3, the computation is quite simple: denoting Aij = 2aij |ui − uj | |g|, we use
the change of variable cosϕ1 7→ p, and obtain∫ π

0
eAij cosϕ1 sinϕ1dϕ1 =

∫ 1

−1
eAijpdp =

2

Aij
sinhAij .

In the general case, we write

Ei = −
s∑
j=1
j 6=i

eij · Ñij +

s∑
j=1
j 6=i

Kninj
k2 Ti Tj

ζ0i(Ti)ζ0j (Tj)

4
∣∣SN−1

∣∣ ∣∣SN−2
∣∣

(N + 2sij + 2)

(aij
π

)N
2
e−aij |ui−uj |2√π Γ

[
N − 1

2

]

×
∫
R+

|g|2sij+N−1 e−aij |g|
2

0F̃1

(
;
N

2
; a2
ij |ui − uj |2 |g|2

)
×
{

µij
(N + 2sij)

(
µij

k Tj − k Ti
mikTj +mjkTi

+
mi −mj

(mi +mj)

1

(N + 2sij + 4)

)
|g|2

+
mj −mi

2 (mi +mj)

1

(N + 2sij + 4)
(k Ti + k Tj) +

1

2 (N + 2sij)
(k Tj − k Ti)

}
d |g| .
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We perform the following change of variable aij |g|2 7→ x, and get

Ei = −
s∑
j=1
j 6=i

eij · Ñij +

s∑
j=1
j 6=i

Kninj
k2 Ti Tj

ζ0i(Ti)ζ0j (Tj)

4
∣∣SN−1

∣∣ ∣∣SN−2
∣∣

(N + 2sij + 2)

(aij
π

)N
2
e−aij |ui−uj |2√π Γ

[
N − 1

2

]

×
∫
R+

e−x 0F̃1

(
;
N

2
; aij |ui − uj |2 x

)
×
{

µij
(N + 2sij)

(
µij

k Tj − k Ti
mikTj +mjkTi

+
mi −mj

(mi +mj)

1

(N + 2sij + 4)

)
1

2
a
−
N+2sij+2

2
ij x

N+2sij+2

2
−1

+

(
mj −mi

2 (mi +mj)

1

(N + 2sij + 4)
(k Ti + k Tj) +

1

2 (N + 2sij)
(k Tj − k Ti)

)
1

2
a
−
N+2sij

2
ij x

N+2sij
2
−1

}
dx.

Comparing these integrals with representation (14) yields

Ei = −
s∑
j=1
j 6=i

eij · Ñij +
s∑
j=1
j 6=i

Kninj
k2 Ti Tj

ζ0i(Ti)ζ0j (Tj)

4
∣∣SN−1

∣∣ ∣∣SN−2
∣∣

(N + 2sij + 2)

(aij
π

)N
2
e−aij |ui−uj |2√π Γ

[
N − 1

2

]

×
{

µij
(N + 2sij)

(
µij

k Tj − k Ti
mikTj +mjkTi

+
mi −mj

(mi +mj)

1

(N + 2sij + 4)

)
×1

2
a
−
N+2sij+2

2
ij Γ

[
N + 2sij + 2

2

]
1F̃1

(
N + 2sij + 2

2
;
N

2
; aij |ui − uj |2

)
+

(
mj −mi

2 (mi +mj)

1

(N + 2sij + 4)
(k Ti + k Tj) +

1

2 (N + 2sij)
(k Tj − k Ti)

)
×1

2
a
−
N+2sij

2
ij Γ

[
N + 2sij

2

]
1F̃1

(
N + 2sij

2
;
N

2
; aij |ui − uj |2

)}
.

Substituting the coefficients, we get the final expression for the production term that corresponds to
the energy balance law of the species Ai of Euler fluids, in the case of a cross section of VHS type:

(3.23) Ei =

s∑
j=1
j 6=i

(
mi

2 k Ti
+

mj

2 k Tj

)−1( mi

2 k Ti
ui +

mj

2 k Tj
uj

)
· Ñij

+
s∑
j=1
j 6=i

Kninj
k2 Ti Tj

ζ0i(Ti)ζ0j (Tj)

2
∣∣SN−1

∣∣ ∣∣SN−2
∣∣

(N + 2sij + 2)

×
(

2 k Ti
mi

+
2 k Tj
mj

)sij
π

1−N
2 e
−
(

2 k Ti
mi

+
2 k Tj
mj

)−1

|ui−uj |2
Γ

[
N − 1

2

]
Γ

[
N + 2sij

2

]

×
{(

mj k Ti +mi k Tj
mi +mj

)(
µij

k Tj − k Ti
mikTj +mjkTi

+
mi −mj

(mi +mj)

1

(N + 2sij + 4)

)
× 1F̃1

(
N + 2sij + 2

2
;
N

2
;

(
2 k Ti
mi

+
2 k Tj
mj

)−1

|ui − uj |2
)

+

(
mj −mi

2 (mi +mj)

1

(N + 2sij + 4)
(k Ti + k Tj) +

1

2 (N + 2sij)
(k Tj − k Ti)

)
× 1F̃1

(
N + 2sij

2
;
N

2
;

(
2 k Ti
mi

+
2 k Tj
mj

)−1

|ui − uj |2
)}

.



116 3. MULTIVELOCITY AND MULTITEMPERATURE MODELS OF EULERIAN POLYATOMIC GASES

3. Comparison of the models built thanks to extended thermodynamics and those built
thanks to kinetic theory

This Section aims at comparing the source terms (3.10) obtained by means of extended thermody-
namics and the source terms (3.22) and (3.23) obtained with the help of kinetic theory. The comparison
is motivated by the intrinsic limitations of extended thermodynamics – phenomenological coefficients
cannot be completely determined within its framework. In that sense, kinetic theory seems to be more
complete. Once the model of interaction is fixed, the structure of source terms can be completely
determined in principle.

Comparison of source terms (3.10), obtained in extended thermodynamics, with the source terms
(3.22) and (3.23) from kinetic theory, is not possible in general, since they have a completely different
structure. Namely, (3.10) is proportional to ui/Ti − uj/Tj and 1/Ti − 1/Tj , while kinetic source
terms are highly nonlinear with respect to macroscopic state variables. We can establish the relation
between them only in the limit ui → u and Ti → T , for every i = 1, . . . , s. More precisely, we are led
to approximate the source terms Ni(ui,uj , Ti, Tj) and Ei(ui,uj , Ti, Tj) around the point (u,u, T, T )
retaining the first order terms, i.e.

Ni := Ni(ui,uj , Ti, Tj) ≈ Ni(u,u, T, T ) +∇Ni(u,u, T, T ) · [ui − u uj − u Ti − T Tj − T ]T ,

Ei := Ei(ui,uj , Ti, Tj) ≈ Ei(u,u, T, T ) +∇Ei(u,u, T, T ) · [ui − u uj − u Ti − T Tj − T ]T ,

(3.24)

which holds when (ui,uj , Ti, Tj) is close to (u,u, T, T ), for any i, j = 1, . . . , s.
Regarding source terms (3.10) issuing from extended thermodynamics, such an approximation

yields

Ni ≈ −
s−1∑
j=1
j 6=i

αij(w
0)

1

T
(uj − ui) +

s−1∑
j=1

αij(w
0)

 1

T
(us − ui) ,

Ei ≈ −
s−1∑
j=1
j 6=i

αij(w
0)

1

T
u · (uj − ui) +

s−1∑
j=1

αij(w
0)

 1

T
u · (us − ui)(3.25)

−
s−1∑
j=1
j 6=i

βij(w
0)

1

T 2
(Tj − Ti) +

s−1∑
j=1

βij(w
0)

1

T 2

 (Ts − Ti) ,

where w0 := w(u,u, T, T ) denotes an objective quantity w evaluated at the point (u,u, T, T ).
Approximating source terms (3.22) and (3.23) coming from kinetic theory, we obtain

Ni ≈
s∑
j=1
j 6=i

Kµ
1−sij
ij ninj

2sij64π1/2

3(2sij + 3)(2sij + 5)

Γ[sij + 5
2 ]

Γ[αi + 1]Γ[αj + 1]
(kT )−(αi+αj)+sij (uj − ui)

Ei ≈
s∑
j=1
j 6=i

Kµ
1−sij
ij ninj

2sij64π1/2

3(2sij + 3)(2sij + 5)

Γ[sij + 5
2 ]

Γ[αi + 1]Γ[αj + 1]
(kT )−(αi+αj)+sij u · (uj − ui)

+
s∑
j=1
j 6=i

Kkµ
−sij
ij ninj

2sij16π1/2

(2sij + 5)

Γ[sij + 3
2 ]

Γ[αi + 1]Γ[αj + 1]
(kT )−(αi+αj)+sij

× (mi −mj)
2(2sij + 3) + (mi +mj)

2(2sij + 7) + 2(2sij + 3)(2sij + 7)mimj

(mi +mj)2(2sij + 3)(2sij + 7)
(Tj − Ti).

(3.26)
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Then (3.25) and (3.26) can be directly compared to obtain explicit expressions for matrices α and
β in equilibrium. First, we obtain the off-diagonal terms:

αij(w
0) = −Kµ1−sij

ij ninj
2sij64π1/2

3(2sij + 3)(2sij + 5)

Γ[sij + 5
2 ]

Γ[αi + 1]Γ[αj + 1]
(kT )−(αi+αj)+sij T,

βij(w
0) = −Kµ−sijij ninj

2sij16π1/2

(2sij + 5)

Γ[sij + 3
2 ]

Γ[αi + 1]Γ[αj + 1]
(kT )−(αi+αj)+sij kT 2

× (mi −mj)
2(2sij + 3) + (mi +mj)

2(2sij + 7) + 2(2sij + 3)(2sij + 7)mimj

(mi +mj)2(2sij + 3)(2sij + 7)
,

for any i = 1, . . . , s− 1 and for 1 ≤ j ≤ s− 1 such that j 6= i. Next, we get the diagonal terms:

αii(w
0) = Kµ1−sis

is nins
2sis64π1/2

3(2sis + 3)(2sis + 5)

Γ[sis + 5
2 ]

Γ[αi + 1]Γ[αs + 1]
(kT )−(αi+αs)+sis T

+

s−1∑
j=1
j 6=i

Kµ
1−sij
ij ninj

2sij64π

3(2sij + 3)(2sij + 5)

Γ[sij + 2]

Γ[αi + 1]Γ[αj + 1]
(kT )−(αi+αj)+sij T,

βii(w
0) = Kµ−sisis nins

2sis16π1/2

(2sis + 5)

Γ[sis + 3
2 ]

Γ[αi + 1]Γ[αs + 1]
(kT )−(αi+αs)+sis kT 2

× (mi −ms)
2(2sis + 3) + (mi +ms)

2(2sis + 7) + 2(2sis + 3)(2sis + 7)mims

(mi +ms)2(2sis + 3)(2sis + 7)

+
s−1∑
j=1
j 6=i

Kµ
−sij
ij ninj

2sij16π1/2

(2sij + 5)

Γ[sij + 3
2 ]

Γ[αi + 1]Γ[αj + 1]
(kT )−(αi+αj)+sij kT 2

× (mi −mj)
2(2sij + 3) + (mi +mj)

2(2sij + 7) + 2(2sij + 3)(2sij + 7)mimj

(mi +mj)2(2sij + 3)(2sij + 7)
,

where i = 1, . . . , s− 1.

In conclusion to this analysis, which has mostly formal character, we have to say that kinetic theory
model of VHS yielded the source terms of macroscopic balance laws of momentum and energy at Euler
level. Both thermodynamic (3.10) and kinetic (3.22), (3.23) source terms describe the rate of change
of momentum and energy of the constituents due to mutual interaction with other constituents. Even
though we restricted the attention to the hydrodynamic limit at the Euler level, both source terms are
nonlinear, but different in structure, and their explicit comparison is not possible in general. However,
they can be reduced to considerably simpler form, (3.25) and (3.26), if we restrict the attention to
processes which occur in the neighborhood of the average velocity u and the average temperature T
of the mixture. Under this assumption, we can linearize the source terms (3.10), (3.22), (3.23) and
determine the phenomenological coefficients α and β of extended thermodynamics for ui = u and
Ti = T , i = 1, . . . , s, from the source terms provided by the kinetic theory. Although rather restrictive
at first sight, these assumptions lead to important results for thermodynamic model, since extended
thermodynamics, regarded as macroscopic theory, does not provide any mean for explicit determination
of phenomenological coefficients.





CHAPTER 4

Diffusion asymptotics of a kinetic model for the mixtures of
monatomic gases

The interest about the derivation of macroscopic equations starting from kinetic theory goes back
to Hilbert [41] in his lecture at ICM in 1900. He pointed out the importance of developping “mathe-
matically the limiting processes which lead from the atomistic view to the laws of motion of continua”.
This problem has been a very active field of research, and many results have been obtained, both at a
formal level and in the context of rigorous limits. We tackle, in this Chapter, the asymptotic behavior
of Boltzmann equations for mixtures.

The main tools are based on asymptotic (Hilbert, Chapman-Enskog) expansions with respect to
the mean free path, see for instance [25]. The translation in a rigorous mathematical language has been
performed in a series of pioneering papers by Bardos, Golse and Levermore [10, 11, 12]. The authors
derive formal limits from the kinetic equation towards the compressible Euler and the incompressible
Navier-Stokes equations. These results led to significant articles, such as [36], where Golse and Saint-
Raymond established a Navier-Stokes limit for the Boltzmann equation considered over the infinite
spatial domain R3: appropriately scaled families of DiPerna-Lions renormalized solutions are shown
to have fluctuations whose limit points are governed by Leray solutions of the limiting Navier-Stokes
equations.

Apart from the research concerning the classical Boltzmann equation (see [28] as a review article),
which can be seen as a model describing a mono-species, monatomic and ideal gas, one can focus on
the study, at a kinetic level, of gaseous mixtures. In such a framework, the models are much more
intricate. It is indeed necessary to treat systems of Boltzmann-like equations, rather than one single
equation, with multi-species kernels and cross interactions between the different distribution functions
describing each component of the mixture [56]. The complexity of the models grows dramatically if
exchanges of internal energy and chemical reactions are allowed [56, 22, 52, 40, 13, 14].

The derivation of macroscopic equations from kinetic models remains crucial for mixtures, both at
a mathematical level and for deducing relevant macroscopic equations based on the modelling of mi-
croscopic binary interactions. In this spirit, in [30], the authors propose a model describing a reacting
mixture of polyatomic gases and recover in the limit, via the appropriate scaling (t,x) → (t/ε,x/ε)
for ε > 0, the reactive Euler equations. We refer also to Chapter 3 of this thesis, where a multivelocity
and multitemperature model for mixture of Eulerian polyatomic gases is derived.

Our aim is to investigate diffusive scaling, i.e. (t,x) → (t/ε2,x/ε), ε > 0, for the mixture of
several different non reactive and monatomic gases, which evolves in time via the classical Boltzmann
system for non-reacting multicomponent mixtures. We study the formal Hilbert expansion for each
distribution function, following Grad’s strategy [38, 39], who studied the formal small free path limit
for the Boltzmann equation in the monatomic and mono-species case. The formal asymptotics of this
model, investigated in [21], leads to the so-called Maxwell-Stefan equations, which are a standard
diffusion model for multicomponent mixtures.

Putting the Hilbert expansions into the Boltzmann equations leads to various equalities at each
order of the small mean free path ε. The first one allows to identify the zero order term of the expansions
to Maxwellian functions, thanks to the H−theorem. The second one is a functional equation that
involves a linear operator L = K−ν Id, where ν > 0, only acting on the velocity variable. To solve this
functional equation, we use the Fredholm alternative on the operator L. In general, the alternative
deals with the equation (T−λ Id)u = f , where T is a compact operator on a Hilbert space E, and
λ ∈ C.
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Theorem 4.1 (Fredholm Alternative). Let T be a compact operator on E, and assume λ 6= 0.
Then one of the two following alternatives holds:

(i) The homogeneous equation has only the zero solution, in which case (T−λ Id)−1 is bounded,
and the inhomogeneous equation has exactly one solution u = (T−λ Id)−1f , for each f ∈ E.

(ii) The homogeneous equation has a non-zero solution, in which case the inhomogeneous equation
has a solution (necessarily not unique) if and only if f ∈ (Ker(T∗−λ Id))⊥.

We first study the kernel of the operator L and state that kerL 6= {0}. Afterwards, we compute the
adjoint operator L∗ (L∗ is different from L in the multispecies case, whereas it equals L in the mono-
species case) and find kerL∗. Finally, the Fredholm alternative, statement (ii), ensures the existence of
a solution to the functional equation involving L with an assumption on the total macroscopic density
of the mixture.

The main difficulty lies in the proof of compactness of the operator K. To that purpose, the
following characterization of compact operators is used.

Theorem 4.2. A bounded subset K of Lp(RN ), 1 ≤ p < ∞, is relatively compact if and only if
the two following properties hold

(i)
∫
RN
|u(v + w)− u(v)|p dv→ 0, as w→ 0 uniformly for u in K,

(ii)
∫
|v|>R

|u(v)|p dv→ 0 as R→∞ uniformly for u in K.

On the one hand, when molecular masses are equal, the techniques introduced by Grad [38, 39]
can be extended to the multispecies case. On the other hand, when masses are different, the proof
requires a new approach. Indeed, Grad’s arguments do not hold anymore. To overcome this issue, we
prove that, thanks to a change of variables in velocities, the operator can be written under a kernel
form, that allows to recover the compactness property. Note that this last approach only holds when
molecular masses are different, so that it is necessary to keep Grad’s approach for collisions of molecules
with the same mass.

1. Statement of the problem

1.1. Diffusion asymptotics. In this work, we focus on the diffusion limit of the following Boltz-
mann equations for mixtures (1.38)

∂tfi + v · ∇xfi =

s∑
j=1

Qij(fi, fj), ∀ i = 1, . . . , s,

where fi := fi(t,x,v). That limit is obtained from the framework of the classical diffusive scaling,
where the scaling parameter is the mean free path ε > 0. The diffusive scaling reads

t 7→ tε = ε2t, x 7→ xε = εx.

This corresponds to a slow dynamics in space and an even slower one in time. We introduce new
distribution functions with scaled arguments:

fi

(
tε

ε2
,
xε

ε
,v

)
=: f εi (tε,xε,v) , ∀ i = 1, . . . , s.

The substitution of the scaled variables t and x into the Boltzmann equations (1.38) yields(
ε2 ∂tε + εv · ∇xε

)
f εi (tε,xε,v) =

s∑
j=1

Qij
(
f εi , f

ε
j

)
(tε,xε,v) , ∀ i = 1, . . . , s.

From now on, we drop the index ε in the notations tε and xε.
Hence, for any i, each distribution function f εi solves the following scaled Boltzmann equation:

(4.1) ε ∂tf
ε
i + v · ∇xf

ε
i =

1

ε

I∑
j=1

Qij(f
ε
i , f

ε
j ), t > 0, x ∈ R3, v ∈ R3.
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1.2. Solution as Hilbert formal series. We look for f εi as a formal power series in ε:

(4.2) f εi (t,x,v) =
∑
k≥0

εkfi(k)
(t,x,v), ∀ i = 1, . . . , s.

It should be noticed that this series does not converge in general for any value of ε > 0. We however
only study the first few terms of this series.

Supposing that f εi in (4.2) is a solution of the scaled Boltzmann equation (4.1), we identify the
coefficients of the same power in ε.

We only focus on the first two terms in series (4.2). We focus on the following two equations:
Order ε−1 :

(4.3)
s∑
j=1

Qij(fi(0)
, fj(0)

) = 0 ;

Order ε0 :

(4.4)
s∑
j=1

(
Qij(fi(0)

, fj(1)
) +Qij(fi(1)

, fj(0)
)
)

= v · ∇xfi(0)
.

Thanks to Proposition 1.5, (4.3) allows to find the zero-th order term of the series: those are the
Maxwell functions (1.48):

fi(0)
(v) = ni

( mi

2π k T

)3/2
e−

mi
2kT
|v−u|2 .

Therefore, each distribution function f εi , 1 ≤ i ≤ s, can be seen as a perturbation of the equilibrium
(1.48). Consistently with the diffusion asymptotics, we set u = 0 (diffusion limit) and kT = 1.
Furthermore, we allow the macroscopic density functions to depend on the time and the space variable,
ni := ni(t,x), and therefore fi(0)

takes the following form

fi(0)
:= fi(0)

(t,x,v) = Mi(v)ni(t,x),

where Mi(v) is the normalized, centered Maxwell function

(4.5) Mi(v) =
(mi

2π

)3/2
e−

mi
2
|v|2 , ∀v ∈ R3.

Moreover, we denote
fi(1)

:= fi(1)
(t,x,v) = Mi(v)1/2gi(t,x,v).

We choose to put Mi(v)1/2 within the first-order term of f εi since it allows us to work in a plain L2

framework in the variable v for gi.
Finally, we can rewrite f εi from (4.2) as

(4.6) f εi (t,x,v) = Mi(v)ni(t,x) + εMi(v)1/2 gi(t,x,v) + ..., ∀t ≥ 0, ∀x,v ∈ R3.

We then focus on (4.4), the zero-th order in ε. We obtain the following equation, holding for any
1 ≤ i ≤ s,

(4.7) Mi
−1/2

s∑
j=1

(
niQij(Mi,M

1/2
j gj) + nj Qij(M

1/2
i gi,Mj)

)
= M

1/2
i (v · ∇xni) .

In this work, we investigate the existence of g = (g1, . . . , gs). satisfying (4.7). Note that the
dependence of (4.7) with respect to t and x is not crucial, in the sense that t, x, (ni) and (∇xni) can
be seen as parameters.

For any function g ∈ L2(R3)s of v, we shall write the L2 norm of g:

‖g‖2L2 =

s∑
j=1

‖gj‖2L2 =

s∑
j=1

∫
R3

gj(v)2 dv.
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Observing that Mi(v
′)Mj(v

′
∗) = Mi(v)Mj(v∗), we can write the left-hand side of (4.7) in a more

suitable form if we introduce the operator K, where the i-th component of Kg is given by

(4.8) [Kg]i (v) =
s∑
j=1

(mj

2π

)3/4
∫∫

R3×S2

Bij(ω,v − v∗) e
− 1

4
mi|v|2 e−

1
2
mj |v∗|2

×
[
ni

(mi

2π

)3/4 (
e

1
4
mj |v′∗|

2

gj(v
′
∗)− e

1
4
mj |v∗|2gj(v∗)

)
+nj

(mj

2π

)3/4
e

1
4
mi|v′|2 gi(v

′)

]
dω dv∗,

for any i, and the positive function ν = ν(v), whose i-th component is

(4.9) νi (v) =
s∑
j=1

nj

(mj

2π

)3/2
∫∫

R3×S2

e−
1
2
mj |v∗|2 Bij(ω,v − v∗) dω dv∗.

Let us point out an abuse of notation that we made. In this Section, we denote the cross section by
Bij(ω,v − v∗), instead of Bij

(
|v − v∗| ,

∣∣∣ω · v−v∗
|v−v∗|

∣∣∣), as in (1.42).
After introducing (4.8) and (4.9), (4.7) can be written as a functional equation in the variable v:

(4.10) (K − ν Id) g =
(
M

1/2
i (v · ∇xni)

)
1≤i≤s

.

1.3. Assumption on the cross section. In this work, we assume that the cross sections Bij
satisfy a quite general condition

(4.11) Bij(ω,V) ≤ a | sin θ| | cos θ|
(
|V|+ 1

|V|1−δ

)
, ∀ω ∈ S2, ∀V ∈ R3,

where a > 0, 0 < δ < 1 and θ is the angle between ω and V := v − v∗. As emphasized in [39], this
corresponds to intermolecular potentials with finite range and it means that Bij linearly approaches 0
near θ = 0 and θ = π/2, and is of restricted growth for both small and large |V|.

Condition (4.11) is, for instance, satisfied by hard spheres of diameter σij > 0:

Bij(ω,V) = σij
2 |V| sin θ cos θ,

and by all cutoff power-law (hard or moderately soft) potentials:

Bij(ω,V) = |V|γij βij(θ), γij =
sij − 5

sij − 1
,

where βij(θ) is a bounded function which linearly approaches 0 when θ tends to π/2, and sij > 3.

Let us now state the main result of this Chapter.

Theorem 4.3. Suppose that the cross sections (Bij)1≤i,j≤s are positive functions satisfying (4.11).
If we assume that

(4.12)
s∑
i=1

ni(t,x) does not depend on x,

then, for any t, x, there exists g(t,x, ·) ∈ L2(R3
v)s satisfying (4.10), where K and ν are given by

(4.8)–(4.9).

Condition (4.12) means that we consider a situation where the total number density of molecules is
uniform in space. This Theorem is based on the following Proposition.

Proposition 4.4. The operator K, defined by (4.8), is compact from L2(R3
v)s to L2(R3

v)s.
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The proof of Proposition 4.4 is given in Section 3. Let us emphasize again that, in Proposition 4.4,
t, x and (ni) are considered as parameters and the compactness is only related to the variable v. Since
K is compact, we can apply the Fredholm alternative to the operator K−ν Id. This is explained in the
next Section. We also observe that the Proposition does not hold when non cutoff power law potentials
are considered.

2. Proof of Theorem 4.3

This Section is devoted to the proof of Theorem 4.3, assuming that the compactness in L2 of the
operator K is known. Let us denote L = K − ν Id, and study the null space of L, as required by the
Fredholm alternative.

Step 1 – Study of ker L. Using (4.8), (4.9) with notation (4.5) we can write down the i-th
component of Lg

[Lg]i (v) =

s∑
j=1

∫∫
R3×S2

Mi(v)1/2Mj(v∗)

×
[
njMi(v

′)−1/2gi(v
′) + niMj(v

′
∗)
−1/2gj(v

′
∗)

− njMi(v)−1/2gi(v)− niMj(v∗)
−1/2gj(v∗)

]
× Bij(ω,v − v∗) dω dv∗.

Thanks to the H-theorem 1.5, g ∈ kerL if and only if there exist α ∈ Rs, β ∈ R3, γ ∈ R such that, for
any i,

gi(t,x,v) = ni(t,x)Mi(v)1/2
(
αi +mi β · v + γ

mi

2
|v|2

)
, ∀ t > 0, x, v ∈ R3.

Consequently, kerL 6= {0}, and the Fredholm alternative implies that (4.10) has a solution if and only
if

(4.13)
(
M

1/2
i (v · ∇xni)

)
i=1,...,s

∈ (kerL∗)⊥ , ∀ t > 0, x ∈ R3.

Step 2 – Computation of L∗. Let us compute the adjoint operator L∗ by studying the inner
product between Lg and a vector h ∈ L2(R3

v)s. We successively write, using the change of variables
(v,v∗) 7→ (v′,v′∗) and (v,v∗) 7→ (v∗,v)

s∑
i=1

∫
R3

[Lg]i (v)hi(v)dv

=
s∑

i,j=1

∫∫∫
R3×R3×S2

hi(v)Mi(v)−1/2
[
niMi(v

′)Mj(v
′
∗)

1/2gj(v
′
∗)

− niMi(v)Mj(v∗)
1/2gj(v∗) + njMj(v

′
∗)Mi(v

′)1/2gi(v
′)

− njMj(v∗)Mi(v)1/2gi(v)
]
Bij(ω,v − v∗) dω dv∗dv

=

s∑
i,j=1

∫∫∫
R3×R3×S2

gi(v)njMi(v)−1/2
[
Mi(v

′)Mj(v
′
∗)

1/2hj(v
′
∗)

−Mi(v)Mj(v∗)
1/2hj(v∗) +Mj(v

′
∗)Mi(v

′)1/2hi(v
′)

−Mj(v∗)Mi(v)1/2hi(v)
]
Bij(ω,v − v∗) dω dv∗dv.

Consequently, we have

[L∗h]i = M
−1/2
i

s∑
j=1

nj

(
Qij(Mi,M

1/2
j hj) + Qij(M

1/2
i hi,Mj)

)
.
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Thanks to the H-theorem, h ∈ kerL∗ if and only if there exist a ∈ Rs, b ∈ R3, c ∈ R such that, for
any i,

(4.14) hi(v) = Mi(v)1/2
(
ai +mi b · v + c

mi

2
|v|2

)
, ∀v ∈ R3.

Step 3 – Conclusion. Now, taking (4.14) into account, condition (4.13) can be rewritten as

s∑
i=1

3∑
k=1

∂ni
∂xk

∫
R3

 vk
mivk vj

mivk |v|2 /2

Mi(v) dv = 0, 1 ≤ j ≤ 3.

Using parity arguments, the first and third conditions are immediately satisfied, as well as the second
ones if k 6= j. In the case when k = j, the condition ∇x

∑
ni = 0, which is assumed in (4.12), allows

to complete the proof.

3. Proof of Proposition 4.4

We still have to prove that K is compact. In this section, (ni)1≤i≤s are assumed to be nonnegative
constants. Let g ∈ L2(R3)s. First, we write K as the sum of four operators K1,..., K4. For any i, the
i-th component of each K` g, 1 ≤ ` ≤ 4, is given by

[K1g]i (v) = −ni
s∑
j=1

(mimj

4π2

)3/4
∫∫

R3×S2

e−
1
4
mi|v|2 e−

1
4
mj |v∗|2 gj(v∗)

× Bij(ω,v − v∗) dω dv∗,

[K2g]i (v) = ni
∑
j 6∈Mi

(mimj

4π2

)3/4
∫∫

R3×S2

e−
1
4
mi|v|2 e−

1
2
mj |v∗|2 e

1
4
mj |v′∗|

2

gj(v
′
∗)

× Bij(ω,v − v∗) dω dv∗,

[K3g]i (v) =
∑
j∈Mi

(mi

2π

)3/2
∫∫

R3×S2

e−
1
4
mi|v|2 e−

1
2
mi|v∗|2

×
[
ni e

1
4
mi|v′∗|

2

gj(v
′
∗) + nj e

1
4
mi|v′|2 gi(v

′)
]
Bij(ω,v − v∗) dω dv∗,

[K4g]i (v) =
∑
j 6∈Mi

nj

(mj

2π

)3/2
∫∫

R3×S2

e−
1
4
mi|v|2 e−

1
2
mj |v∗|2 e

1
4
mi|v′|2 gi(v

′)

× Bij(ω,v − v∗) dω dv∗.

We denoted, for any i,
Mi := {1 ≤ j ≤ s | mj = mi} ,

which is non empty since i ∈Mi. It is crucial to dissociate the cases when mi 6= mj on the one hand,
and mi = mj on the other hand, because the proofs are quite different.

We successively prove that K`, 1 ≤ ` ≤ 4, is compact. To this end, we use Theorem 4.2. More
precisely, we obtain the following properties for ` = 1, . . . , 4:

• a uniform decay at infinity

(4.15) ‖K` g‖L2(B(0,R)c) ≤ σ(R) ‖g‖L2(R3), ∀R > 0,

where B(0, R) denotes the open ball of R3
v centred at 0 and of radius R, and σ(R) goes to 0

when R goes to +∞;
• an equiintegrability in L2 property, i.e., for any ε > 0, there exists % > 0 such that, for all

w ∈ B(0, %),

(4.16) ‖(τw − Id)K` g‖L2(R3) ≤ ε‖g‖L2(R3),

where τw denotes the translation operator, i.e.

τwK` g (v) = K` g (v + w), ∀v,w ∈ R3.
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3.1. Compactness of K1. Let us denote, for any i, j,

k ij1 (v,v∗) =

∫
S2

e−
1
4
mi|v|2 e−

1
4
mj |v∗|2 Bij(ω,v − v∗) dω, ∀v,v∗ ∈ R3.

We immediately have, for any i,

[K1g]i(v) = −ni
s∑
j=1

(mimj

4π2

)3/4
∫
R3

gj(v∗)k
ij
1 (v,v∗) dv∗, ∀v ∈ R3.

Properties of k ij1 . First of all, note that k ij1 (v,v∗) is invariant under the exchange of species:

(4.17) k ij1 (v,v∗) = k ji1 (v∗,v),

for any i, j and v, v∗, thanks to (1.43).
In order to prove the uniform decay at infinity and the equiintegrability for K1 (i.e. inequalities

(4.15) and (4.16)), we need to establish some preliminary properties of k ij1 .

Lemma 4.5. There exists C > 0 such that, for any i, j,

(4.18)
∫
R3

k ij1 (v,v∗)dv∗ ≤ C e−
1
4
mi|v|2 (1 + |v|) , ∀v ∈ R3.

Proof. Thanks to (4.11), and using the change of variables v∗ 7→ V∗ = v∗ − v, we can write∫
R3

k ij1 (v,v∗)dv∗ ≤ C
∫
R3

e−
1
4
mi|v|2 e−

1
4
mj |V∗+v|2

(
|V∗|+ |V∗|δ−1

)
dV∗.

Splitting the range of integration into {|V∗| ≤ 1} and {|V∗| ≥ 1}, we get∫
R3

k ij1 (v,v∗)dv∗ ≤ C
∫
R3

e−
1
4
mi|v|2 e−

1
4
mj |V∗+v|2

(
|V∗|+ |V∗|δ−1

)
dV∗

= C e−
1
4
mi|v|2

∫
|V∗|≤1

e−
1
4
mj |V∗+v|2

(
|V∗|+ |V∗|δ−1

)
dV∗

+ C e−
1
4
mi|v|2

∫
|V∗|≥1

e−
1
4
mj |V∗+v|2

(
|V∗|+ |V∗|δ−1

)
dV∗

≤ C e− 1
4
miv

2

[∫
|V∗|≤1

(
|V∗|+ |V∗|δ−1

)
dV∗

+

∫
|V∗|≥1

(|V∗|+ 1) e−
1
4
mj(V∗+v)2

dV∗

]
.

Since δ − 1 ∈ (−1, 0), the first integral is integrable and we get∫
|V∗|≤1

(
|V∗|+ |V∗|δ−1

)
dV∗ ≤ C.

For the second integral we obtain∫
|V∗|≥1

(|V∗|+ 1) e−
1
4
mj(V∗+v)2

dV∗ ≤ C (1 + |v|) .

Summarizing, we obtain the required result (4.18).∫
R3

k ij1 (v,v∗)dv∗ ≤ C e−
1
4
miv

2
(1 + |v|) , ∀v ∈ R3.

�

Lemma 4.6. For any i, j, k ij1 belongs to L2(R3 × R3).
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Proof. The proof follows the same strategy as the previous one, using (4.11) and the same change
of variables. We can write∫∫

R3×R3

k ij1 (v,v∗)
2dv∗ dv ≤ C

∫∫
R3×R3

e−
1
2
mi|v|2 e−

1
2
mj |v∗|2

×
(
|v − v∗|2 + |v − v∗|2δ−2

)
dv∗ dv

≤ C
∫
R3

e−
1
2
mi|v|2

(
1 + |v|2

)
dv,

which is clearly finite. �

Uniform decay. The L2 norm of K1g decreases at infinity. More precisely, the following proposition
holds.

Proposition 4.7. Let g ∈ L2(R3)s. For any R > 0 and any i, we have

(4.19) ‖ [K1g]i ‖L2(B(0,R)c) ≤
C ni
R
‖g‖L2(R3),

where C > 0 is a constant.

Proof. Let 1 ≤ i ≤ s and write∫
R3

|v|2 [K1g]i (v)2dv ≤ Cn2
i

s∑
j=1

∫
R3

|v|2
[∫

R3

k ij1 (v,v∗) gj(v∗) dv∗

]2

dv.

Thanks to the Cauchy-Schwarz inequality, the previous inequality becomes∫
R3

|v|2 [K1g]i (v)2dv ≤ Cn2
i

s∑
j=1

∫
R3

|v|2
[∫

v∗∈R3

gj(v∗)
2 k ij1 (v,v∗)dv∗

]

×
[∫

R3

k ij1 (v,v∗)dv∗

]
dv.

Using Lemma 4.5 and Fubini’s theorem, we get∫
R3

|v|2 [K1g]i (v)2dv ≤ Cn2
i

s∑
j=1

∫
R3

gj(v∗)
2

[∫
R3

k ij1 (v,v∗)φi(v)dv

]
dv∗,

where φi(v) = |v|2 (1 + |v|) e− 1
4
mi|v|2 is clearly bounded. Consequently, since

k ij1 (v,v∗) = k ji1 (v∗,v), we have∫
R3

|v|2 [K1g]i (v)2dv ≤ Cn2
i

s∑
j=1

∫
R3

gj(v∗)
2

(∫
R3

k ji1 (v∗,v)dv

)
dv∗.

Using Lemma 4.5 again, we obtain∫
R3

|v|2 [K1g]i (v)2dv ≤ Cn2
i ‖g‖2L2 .

Besides, we can deduce, for any R > 0,∫
R3

|v|2 [K1g]i (v)2dv ≥
∫
|v|≥R

|v|2 [K1g]i (v)2dv ≥ R2

∫
|v|≥R

[K1g]i (v)2dv.

It is then easy to recover (4.19). �
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L2 Equiintegrability. The following property of L2 equiintegrability of K1 holds.

Proposition 4.8. For any w ∈ R3, set

%1(w) = C max
i,j

[
ni

∫∫
R3×R3

(
k ij1 (v + w,v∗)− k ij1 (v,v∗)

)2
dv∗dv

]1/2

,

where C is a suitable nonnegative constant. Then, for any i, we have

(4.20) ‖ [(τw − Id)K1g]i ‖L2(R3
v) ≤ %1(w)‖g‖L2(R3

v), ∀w ∈ R3,

and %1(w) tends to 0 when w tends to 0.

Proof. First, thanks to Lemma 4.6, it is clear that %1 is a continuous function of w, and goes to
0 when w goes to zero. Let us now focus on (4.20). For any i, using the Cauchy–Schwarz inequality,
we have

‖ [(τw − Id)K1g]i ‖2L2(R3) ≤ Cn2
i

s∑
j=1

‖gj‖2L2

∫∫
R3×R3

(
k ij1 (v + w,v∗)− k ij1 (v,v∗)

)2
dv∗dv.

Estimate (4.20) is an immediate consequence of the previous inequality. �

3.2. Compactness of K2. As in Section 3.1, we first write K2 in a more convenient form. Indeed,
thanks to (1.39), we have

−1

4
mi |v|2 −

1

2
mj |v∗|2 +

1

4
mj

∣∣v′∗∣∣2 = −1

4
mj |v∗|2 −

1

4
mi

∣∣v′∣∣2 .
Hence, [K2]i becomes

(4.21) [K2g]i (v) =
∑
j 6∈Mi

ni

(mimj

4π2

)3/4
∫∫

R3×S2

e−
1
4
mj |v∗|2 e−

1
4
mi|v′|2 gj(v

′
∗)Bij(ω,v − v∗) dω dv∗.

The next step consists in writing (4.21) in a form that allows to apply the same strategy as the one
used for K1.

In order to get this particular form, we need the following lemma.

Lemma 4.9. There exists b > 0 such that, for any i, j satisfying mi 6= mj,

(4.22) mi

∣∣v′∣∣2 +mj |v∗|2 ≥ b
(
mi |v|2 +mj

∣∣v′∗∣∣2)
for any v, v∗ ∈ R3 and v′, v′∗ given by (1.40).

Remark. The assumption that the masses are different is crucial here, as we shall see in the proof.
Indeed, (4.22) somehow gives a property of norm equivalence in R3 × R3, linking (v,v′∗) and (v′,v∗).
Such a property does not hold when we deal with molecules having the same mass.

Proof. Choose j 6∈ Mi. Equation (1.40) can be rewritten as

v′ =

(
I3−2

mj

mi +mj
ωωT

)
v + 2

mj

mi +mj
ωωTv∗,(4.23)

v′∗ =

(
I3−2

mi

mi +mj
ωωT

)
v∗ + 2

mi

mi +mj
ωωTv,(4.24)

where I3 is the identity matrix of R3. Then, from (4.24), we get(
I3−2

mi

mi +mj
ωωT

)
v∗ = v′∗ − 2

mi

mi +mj
ωωTv.

Let us now set
A = I3−2

mi

mi +mj
ωωT .

This matrix A is invertible, since det A = (mj −mi) / (mi +mj) and j 6∈ Mi. Consequently, we can
write

(4.25) v∗ =
(
I3−A−1

)
v + A−1 v′∗,
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where we used the equality
−2

mi

mi +mj
A−1ωωT = I3−A−1 .

Then we put (4.25) in (4.23) to obtain

v′ =

(
mi +mj

mi
I3−

mj

mi
A−1

)
v − mj

mi

(
I3−A−1

)
v′∗.

Consider now the following block matrix

A =

mi+mjmi
I3−mj

mi
A−1 −

√
mj
mi

(
I3−A−1

)√
mj
mi

(
I3−A−1

)
A−1

 ,
which is invertible: detA = −1 and A−1 = A. The following vector equality holds:[√

mi v
′

√
mj v∗

]
= A

[ √
mi v√
mj v′∗

]
.

In fact, (4.22) is obtained by finding a lower bound of∣∣∣A [√mi v
√
mj v′∗

]T ∣∣∣2∣∣∣[√mi v
√
mj v′∗

]T ∣∣∣2 ,

which is ‖A−1‖2−2
= ‖A‖2−2. In order to determine the matrix 2-norm of A, we compute eigenvalues

of ATA. Indeed, the eigenvalues in increasing order are

m2
i + 6mimj +m2

j − 4(mi +mj)
√
mimj

(mi −mj)2
, 1,

m2
i + 6mimj +m2

j + 4(mi +mj)
√
mimj

(mi −mj)2
,

where eigenvalue 1 has multiplicity 4. Choosing

b = min
i,j

(mi −mj)
2

m2
i + 6mimj +m2

j + 4(mi +mj)
√
mimj

leads to the required estimate (4.22). �

Using (4.11) and Lemma 4.9, we obtain the upper bound

[K2g]i (v) ≤ C ni
∑
j 6∈Mi

e−
b
4
mi|v|2

∫
R3

e−
b
4
mj |v′∗|

2

gj(v
′
∗)
(
|v − v∗|+ |v − v∗|δ−1

)
dv∗.

Let us then perform the change of variable v∗ 7→ v′∗, whose Jacobian is 1/detA. Since

v − v∗ = A−1
(
v − v′∗

)
and ‖A ‖2−1 ≤

∣∣A−1 (v − v′∗)
∣∣

|(v − v′∗)|
≤ ‖A−1 ‖2,

we can write
|v − v∗|+ |v − v∗|δ−1 ≤ ‖A−1 ‖2

∣∣v − v′∗
∣∣+ ‖A ‖21−δ ∣∣v − v′∗

∣∣δ−1
.

Finally, we obtain

[K2g]i (v) ≤ C ni
∑
j 6∈Mi

∫∫
R3×S2

e−
b
4
mi|v|2 e−

b
4
mj |v′∗|

2

gj(v
′
∗)
(
|v − v′∗|+ |v − v′∗|δ−1

)
dω dv′∗.

The upper bound in the previous equality has exactly a kernel form, which allows us to conclude on
the compactness of K2 in the same way as in Section 3.1.

3.3. Compactness of K3. This operator describes interactions between molecules with the same
mass. Note that assuming the same mass of molecules of species Ai and Aj does not imply that species
Ai and Aj are the same, since Bii, Bij and Bjj can be different. In order to treat the case of K3, it is
sufficient to adapt ideas from [39] and [23] used in the monospecies case.



3. PROOF OF PROPOSITION 4.4 129

Obtaining a kernel form. Note that if mi = mj , (1.40) becomes

(4.26) v′ = v − (ω · (v − v∗))ω, v′∗ = v∗ + (ω · (v − v∗))ω.

Symmetry properties allow us to write [K3g]i in terms of v, v∗ and v′, and not v′∗ anymore. More
precisely, we have the following lemma.

Lemma 4.10. For any i, there exist nonnegative functions
(
B̃ij
)

1≤j≤s
satisfying (4.11), such

that

(4.27) [K3g]i (v) =
∑
j∈Mi

∫∫
R3×S2

e−
1
4
mi|v|2− 1

2
mj |v∗|2+ 1

4
mi|v′|2 gj(v

′) B̃ij(ω,v − v∗) dω dv∗,

∀v ∈ R3.

Proof. The key idea of the proof lies in (4.26). Indeed, if we consider the relative velocity
V = v − v∗, we can choose one unit vector ω⊥ ∈ Span(V,ω) orthogonal to ω (the choice of either
ω⊥ or −ω⊥ is irrelevant, but must be performed in a continuous way with respect to ω, and not
randomly). Consequently, we can write

V = ω(ω ·V) + ω⊥(ω⊥ ·V),

from which we immediately get

(4.28) v − (ω ·V)ω = v∗ + (ω⊥ ·V)ω⊥, v∗ + (ω ·V)ω = v − (ω⊥ ·V)ω⊥.

We can see that, if we look for the post-collisional velocities corresponding to the pre-collisional v and
v∗, but with respect to ω⊥ instead of ω, we exchange the velocities v′ and v′∗: for instance, comparing
(4.26) and (4.28) we can see that the new v′∗, depending on ω⊥ – let it be denoted with v′∗ω⊥ – will
be the old v′, depending on ω – denoted with v′ω, i.e. (4.28) becomes

v′ω = v′∗ω⊥ , v′∗ω = v′ω⊥ .

Hence, it is clear that ω 7→ ω⊥ corresponds to v′ 7→ v′∗ and v′∗ 7→ v′.
Consequently, if we replace ω by ω⊥ in the integral∫∫

R3×S2

e−
1
2
mi|v∗|2 e

1
4
mi|v∗+(ω·V)ω|2 gj(v∗ + (ω ·V)ω)Bij(ω,V) dω dv∗,

it becomes∫∫
R3×S2

e−
1
2
mi|v∗|2 e

1
4
mi|v∗+(ω⊥·V)ω⊥|2 gj(v∗ + (ω⊥ ·V)ω⊥)Bij(ω⊥,V) dω⊥ dv∗.

The change of variable ω 7→ ω⊥ can be done thanks to a rotation, so dω⊥ = dω. Hence, using (4.28),
the previous integral becomes∫∫

R3×S2

e−
1
2
mi|v∗|2 e

1
4
mi|v′|2 gj(v

′)Bij(ω⊥,V) dω⊥ dv∗

=

∫∫
R3×S2

e−
1
2
mi|v∗|2 e

1
4
mi|v′|2 gj(v

′)Bij(ω⊥,V) dω dv∗.

Summarizing, we can rewrite [K3g]i:

[K3g]i (v) =
∑
j∈Mi

(mi

2π

)3/2
∫∫

R3×S2

e−
1
4
mi|v|2 e−

1
2
mi|v∗|2

×
[
ni e

1
4
mi|v′∗|

2

gj(v
′
∗) + nj e

1
4
mi|v′|2 gi(v

′)
]
Bij(ω,v − v∗) dω dv∗

=
(mi

2π

)3/2
∫∫

R3×S2

e−
1
4
mi|v|2 e−

1
2
mi|v∗|2e

1
4
mi|v′∗|

2

×

ni
∑
j∈Mi

Bij(ω⊥,v − v∗) gj(v
′
∗)

+

∑
j∈Mi

nj Bij(ω,v − v∗)

 gi(v
′)

dω dv∗.
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Let us set

B̃ij(ω,V) =
(mi

2π

)3/2


ni Bij(ω⊥,V) if i 6= j,

ni Bii(ω⊥,V) +
∑
k∈Mi

nk Bik(ω,V) if i = j.

Assumption (4.11) on both Bij(ω,V) and Bij(ω⊥,V) ensures that, for any i, j

(4.29) B̃ij(ω,V) ≤ 2 a
(mi

2π

)3/2 (
max
k∈Mi

nk

)
| sin θ| | cos θ|

(
|V|+ |V|δ−1

)
,

as well as (4.27). �

Lemma 4.10 allows to obtain the kernel form of K3. More precisely, we have

Proposition 4.11. Denote, for any i, j,

(4.30) k ij3 (η,v) = e
− 1

8
mi(η−v)2− 1

8
mi

(|η|2−|v|2)2

|η−v|2 |η − v|−1ϕij3 (η − v), ∀η,v ∈ R3,

where

(4.31) ϕij3 (p) =
2

|p|

∫
{p}⊥

e−
1
2
mi|q+z2|2 B̃ij(p,q) | sin(p,p + q)|−1 dq, ∀p ∈ R3.

Then we have

(4.32) [K3g]i (v) =
∑
j∈Mi

∫
R3

gj(η) k ij3 (η,v)dη, ∀v ∈ R3.

Proof. We perform the change of variable v∗ 7→ V∗ = v∗−v in (4.27), whose Jacobian equals 1,
and get

(4.33) [K3g]i (v) =
∑
j∈Mi

∫∫
R3×S2

e−
1
4
mi|v|2e−

1
2
mi|V∗+v|2e

1
4
mi|v′|2gj(v

′) B̃ij(ω,V∗) dω dV∗.

Next, we consider the following orthogonal basis in R3: we choose ω and a plane Π orthogonal to
ω. Then we decompose V∗ in this basis: we consider the components of V∗ respectively parallel and
orthogonal to ω, i.e. we write V∗ = p + q, where p = ω(ω ·V∗), q = V∗−ω(ω ·V∗). The component
q which is orthogonal to ω belongs to the plane Π = {ω}⊥ = {p}⊥.

Π ∈ Π

x2

x3

x1

ω
V = v − v∗

θ

ω⊥V∗ = v∗ − v

p

q

θ

Figure 4.1. Geometrical situation for the change of variables (4.34)
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We now perform the change of variables (see Figure 4.1)

(4.34) (V∗,ω) 7→ (p,q), R3 × S2 → R3 ×Π,

such that two components of V∗ give the plane vector q, and the third component combined with two
angles gives a vector p ∈ R3. Let us compute its Jacobian. For ω fixed, the replacement of V∗ by p
and q has unit Jacobian. Note that V∗ and ω are independent of each other, which is not the case with
p and q: to obtain p and q we should look simultaneously at V∗ and ω! The key lies in the following
observation: when one changes ω for fixed V∗, both p and q are changed. Therefore, the integration
order is crucial. Hence we first integrate with respect to q since Π = {p}⊥. Then we combine the
one-dimensional integration in the direction ω with the integral of ω over the unit sphere to give a
three-dimensional integration over the three rectangular components of |p|ω. We have to introduce
the factor 2, since p = ± |p|ω. The Jacobian from p to (|p| ,ω) (Cartesian to spherical coordinates)
is |p|2 sin(p,p + q). Consequently, we can write

dV∗ dω =
2

|p|2 sin(p,p + q)
dp dq.

Eventually, it is clear that

v′ = v − ω(ω · (v − v∗)) = v + ω(ω ·V∗) = v + p.

Hence, (4.33) becomes

(4.35) [K3g]i (v) = 2
∑
j∈Mi

∫
R3

∫
Π
e−

1
4
mi|v|2− 1

2
mi|p+q+v|2+ 1

4
mi|v+p|2 gj(v + p)

× B̃ij(p,q) |p|−2 | sin(p,p + q)|−1 dq dp.

Since p · q = 0, we can deduce

−1

4
|v|2 +

1

4
|v + p|2 − 1

2
|p + q + v|2 = −1

8
|p|2 − 1

2

[
q +

1

2
(2v + p)

]2

.

Consequently, we obtain

[K3g]i (v) = 2
∑
j∈Mi

∫
R3

∫
Π
e−

1
8
mi|p|2− 1

2
mi|q+ 1

2
(2v+p)|2 gj(v + p)

× B̃ij(p,q) |p|−2 | sin(p,p + q)|−1 dq dp.

Furthermore, let us set

z =
1

2
(2v + p),

and denote by z1 the component of z which is parallel to ω and z2 = z− z1 ∈ Π. Then we can write∣∣∣∣q +
1

2
(2v + p)

∣∣∣∣2 = |q + z1 + z2|2 = |z1|2 + |q + z2|2 ,

and [K3g]i becomes

[K3g]i = 2
∑
j∈Mi

∫
R3

e−
1
8
mi|p|2− 1

2
mi|z1|2 gj(v + p) |p|−2

×
∫

Π
e−

1
2
mi|q+z2|2 B̃ij(p,q) | sin(p,p + q)|−1 dq dp.

Finally, we perform the change of variable p 7→ η = p + v, and write

z1
2 =

(
z · η − v

|η − v|

)2

=

(
1

2
(η + v) · (η − v)

|η − v|

)2

=
1

4

(|η|2 − |v|2)2

|η − v|2 .

This completes the proof. �
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ω

V

V∗
p

q

θ

θ

Figure 4.2. Geometrical explanation

Properties of k ij3 . Let us first prove the following lemma, and then investigate some properties of
k ij3 .

Lemma 4.12. The function ϕij3 : R3 → R+, defined by (4.31) for any i, j, belongs to L∞(R3).

Proof. Let 1 ≤ i, j ≤ s, and choose p ∈ R3 and q ∈ {p}⊥. From (4.29), we obtain

0 ≤ B̃ij(p,q)

|sin(p,p + q)| ≤ 2 a
(mi

2π

)3/2 (
max
k∈Mi

nk

)
| cos(p,p + q)|

(
|p + q|+ |p + q|δ−1

)
= 2 a

(mi

2π

)3/2 (
max
k∈Mi

nk

)
| cos(p,p + q)|

[
(|p|2 + |q|2)

1
2 + (|p|2 + |q|2)

δ−1
2

]
.

The cosine function can be rewritten as follows

|cos(p,p + q)| =
(

1

cos(p,p + q)2

)1/2

=

(
cos(p,p + q)2 + sin(p,p + q)2

cos(p,p + q)2

)1/2

=
(
1 + tan(p,p + q)2

)1/2
.

As it can be seen on Figure 4.2, | tan(p,p + q)| = |q|/ |p|, so that we can write

0 ≤ B̃ij(p,q)

| sin(p,p + q)| ≤ Ci
(

max
k∈Mi

nk

)(
1 +
|q|2

|p|2

)− 1
2 [

(|p|2 + |q|2)
1
2 + (|p|2 + |q|2)

δ−1
2

]
= Ci

(
max
k∈Mi

nk

)
|p|
[
1 + (|p|2 + |q|2)

δ
2
−1
]
,

where Ci = 2 a (mi/2π)3/2 > 0. In what follows, Ci will denote any nonnegative constant only
depending on mi. This implies

0 ≤ B̃ij(p,q)

|p| | sin(p,p + q)| ≤ Ci
(

max
k∈Mi

nk

) [
1 + |q|δ−2

]
,

using the fact that δ < 1.
Coming back to the original form of (4.31) and using the above inequality, we obtain

ϕij3 (p) =
2

|p|

∫
{p}⊥

e−
1
2
mi|q+z2|2 B̃ij(p,q) | sin(p,p + q)|−1 dq

≤ Ci
(

max
k∈Mi

nk

)∫
{p}⊥

e−
1
2
mi|q+z2|2

[
1 + |q|δ−2

]
dq,
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for every p ∈ R3. Now, we split the range of integration into |q| ≤ 1 and |q| ≥ 1, and finally get

0 ≤ ϕij3 (p) ≤ Ci max
k∈Mi

nk

(∫
|q|≤1

(1 + |q|δ−2)dq +

∫
|q|≥1

e−
1
2
|q+z2|2dq

)
≤ Ci max

k∈Mi

nk.

This ends the proof of Lemma 4.12. �

Let us now investigate two properties of k ij3 , which are related to Lemmas 4.5–4.6 for k ij1 .

Lemma 4.13. There exists C > 0 such that, for any i, j,∫
R3

k ij3 (η,v) dη ≤ C

|v| , ∀v ∈ R3 \ {0},
∫
R3

k ij3 (η,v) dη ≤ C, ∀v ∈ R3.

Proof. Let 1 ≤ i, j ≤ s. The Lemma will be proved if we show that(
1 + |v|2

)1/2
∫
R3

k ij3 (η,v) dη ≤ C, ∀v ∈ R3,

since k ij3 is a positive function, and the following estimates hold:

1 ≤
(

1 + |v|2
)1/2

, |v| ≤
(

1 + |v|2
)1/2

, ∀v ∈ R3.

We first integrate (4.30) with respect to η and perform the change of variable η 7→ p = η − v:(
1 + |v|2

)1/2
∫
R3

k ij3 (η,v) dη =
(

1 + |v|2
)1/2

∫
R3

e
− 1

8
mi|p|2− 1

8
mi

(|p|2+2p·v)2

|p|2
1

|p| ϕ
ij
3 (p) dp, ∀v ∈ R3.

Using Lemma 4.12, we get(
1 + |v|2

)1/2
∫
R3

k ij3 (η,v) dη ≤ C
(

1 + |v|2
)1/2

∫
R3

e
− 1

8
mi|p|2− 1

8
mi

(|p|2+2p·v)2

|p|2
1

|p| dp, ∀v ∈ R3.

We split the right-hand integral into I1 + I2, where I1 refers to {|p| ≥ |v|} and I2 to {|p| ≤ |v|}. On
the one hand, we have

I1 =
(

1 + |v|2
)1/2

∫
|p|≥|v|

e
− 1

8
mi|p|2− 1

8
mi

(|p|2+2p·v)2

|p|2
1

|p| dp

≤
(

1 + |v|2
)1/2

∫
|p|≥|v|

e−
1
8
mi|p|2 1

|p| dp ≤ C
(

1 + |v|2
)1/2

e−
1
8
mi|v|2 ≤ C, ∀v ∈ R3.

On the other hand, for the second integral

I2 =
(

1 + |v|2
)1/2

∫
|p|≤|v|

e
− 1

8
mi|p|2− 1

8
mi

(|p|2+2p·v)2

|p|2
1

|p| dp.

We have to consider two situations: {|v| ≤ 1} and {|v| ≥ 1}. In the first case, we can simply write

I2 ≤
√

2

∫
|p|≤1

1

|p| dp = C.

In the second case, with spherical coordinates, we have

I2 =
(

1 + |v|2
)1/2

∫
|p|≤|v|

e
− 1

8
mi|p|2− 1

8
mi

(|p|2+2p·v)2

|p|2
1

|p| dp

=
(

1 + |v|2
)1/2

∫ |v|
0

∫ 2π

0

∫ π

0
e−

1
8
mir

2− 1
8
mi(r+2 |v| cosψ1)2

r sinψ1 dψ1 dψ2 dr

= 2π
(

1 + |v|2
)1/2

∫ |v|
0

re−
1
8
mir

2

∫ π

0
e−

1
8
mi(r+2 |v| cosψ1)2

sinψ1 dψ1 dr,
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where ψ1 corresponds to the angle between p and v. We perform the change of variable ψ1 7→ s =
r + 2 |v| cosψ1, that yields

I2 = π
1

|v|
(

1 + |v|2
)1/2

∫ |v|
0

re−
1
8
mir

2

∫ r+2|v|

r−2|v|
e−

1
8
mis

2
ds dr.

Since |v| ≥ 1, we get

I2 ≤
C

|v|
(

1 + |v|2
)1/2

∫ +∞

0
r e−

1
8
mir

2
dr

∫ +∞

−∞
e−

1
8
mis

2
ds =

Ci
|v|

(
1 + |v|2

)1/2
≤ Ci.

This completes the proof. �

Using the same strategy as above, the following lemma can also be proved.

Lemma 4.14. For any i, j, k ij3 belongs to L2
loc

(
R3

v;L2
(
R3
η

))
.

Proof. The Lemma will be proved if we show that k ij3 belongs to L∞
(
R3

v;L2
(
R3
η

))
for any i, j.

Equivalently, we must show the following property for any i, j∫
R3

k ij3 (η,v)2dη ∈ L∞
(
R3

v

)
.

Following the same idea as in the previous proof, we perform the change of variable η 7→ p = η − v.
Using Lemma 4.12, we get∫

R3

k ij3 (η,v)2 dη ≤ Ci
∫
R3

e
− 1

4
mi|p|2− 1

4
mi

(|p|2+2p·v)2

|p|2
1

|p|2
dp, ∀v ∈ R3.

As before, the integral is split into I1 and I2, corresponding to {|p| ≥ |v|} and {|p| ≤ |v|}, respectively.
For I1, using spherical coordinates, we have

I1 =

∫
|p|≥|v|

e
− 1

4
mi|p|2− 1

4
mi

(|p|2+2p·v)2

|p|2
1

|p|2
dp

≤
∫
|p|≥|v|

e−
1
4
mi|p|2 1

|p|2
dp = 4π

∫ +∞

|v|
e−

1
8
mir

2
dr ≤ Ci.

We further look at two cases for I2 – when |v| ≤ 1 and when |v| ≥ 1. In the first case, the result is
straightforward:

I2 =

∫
|p|≤|v|

e
− 1

8
mi|p|2− 1

8
mi

(|p|2+2p·v)2

|p|2
1

|p|2
dp ≤

∫
|p|≤1

1

|p|2
dp ≤ C.

In the second case, using spherical coordinates, we get

I2 =

∫
|p|≤|v|

e
− 1

8
mi|p|2− 1

8
mi

(|p|2+2p·v)2

|p|2
1

|p|2
dp

=

∫ |v|
0

∫ 2π

0

∫ π

0
e−

1
8
mir

2− 1
8
mi(r+2 |v| cosψ1)2

sinψ1 dψ1 dψ2 dr

= 2π

∫ |v|
0

e−
1
8
mir

2

∫ π

0
e−

1
8
mi(r+2 |v| cosψ1)2

sinψ1 dψ1 dr,

where ψ1 corresponds to the angle between p and v. We perform the change of variable ψ1 7→ s =
r + 2 |v| cosψ1, that yields

I2 = π
1

|v|

∫ |v|
0

e−
1
8
mir

2

∫ r+2|v|

r−2|v|
e−

1
8
mis

2
ds dr

≤ C

|v|

∫ +∞

0
e−

1
8
mir

2
dr

∫ +∞

−∞
e−

1
8
mis

2
ds =

Ci
|v| ≤ Ci.
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Summarizing, we proved that there exists a constant C ≥ 0 such that∫
R3

k ij3 (η,v)2dη ≤ C, ∀v ∈ R3,

which completes the proof. �

Uniform decay. Let us now prove the uniform decay property at infinity.

Proposition 4.15. Let g ∈ L2(R3)s. For any R > 0 and any i, we have

‖ [K3g]i ‖L2(B(0,R)c) ≤
C√
R
‖g‖L2(R3),

where C > 0 is a constant.

Proof. Using the Cauchy-Schwarz inequality and Lemma 4.13, we can write

‖ [K3g]i ‖2L2(B(0,R)c) ≤ C
∫
|v|≥R

∑
j∈Mi

[∫
R3

gj(η)2k ij3 (η,v) dη

] [∫
R3

k ij3 (η,v) dη

]
dv

≤ C

R

∑
j∈Mi

∫
R3

[∫
R3

k ij3 (v,η) dv

]
gj(η)2dη =

C

R
‖g‖2L2(R3),

where we also used the fact that k ij3 (η,v) = k ij3 (v,η). This ends the proof. �

Equiintegrability. This property is described in the following proposition.

Proposition 4.16. For all ε > 0, there exists α > 0 (not depending on g or i) such that

(4.36) ‖ [(τw − Id)K3g]i ‖L2(R3) ≤ ε‖g‖L2(R3), ∀w ∈ B(0, α).

Proof. Let ε > 0 be given. For any R > 0 we can split the range of integration:
(4.37)

‖ [(τw − Id)K3g]i ‖2L2(R3) =

∫
B(0,2R)

[(τw − Id)K3g]i (v)2 dv +

∫
B(0,2R)c

[(τw − Id)K3g]i (v)2 dv.

Let us choose w ∈ B(0, R).
For the second integral in (4.37), we have∫
B(0,2R)c

[(τw − Id)K3g]i (v)2 dv =

∫
B(0,2R)c

([K3g]i (v + w)− [K3g]i (v))2 dv

≤ 2

(∫
B(0,2R)c

[K3g]i (v + w)2 dv +

∫
B(0,2R)c

[K3g]i (v)2 dv

)
.

Now, in the first integral, we perform the change of variable v 7→ ṽ = v + w with the range of
integration obtained by means of the following consideration. On one hand, we have |w| < R by
assumption, and on the other hand, we have |v| ≥ 2R, since we integrate over B(0, R)c. Therefore,
by the triangle inequality |v + w| ≥ |v| − |w| ≥ R, and we can conclude that ṽ ∈ B(0, R)c. For the
second integral, we simply notice that B(0, R) ⊂ B(0, 2R) and thus B(0, 2R)c ⊂ B(0, R)c. Finally,∫

B(0,2R)c
[(τw − Id)K3g]i (v)2 dv ≤ 2

(∫
B(0,R)c

[K3g]i (ṽ)2 dṽ +

∫
B(0,R)c

[K3g]i (v)2 dv

)

≤ 4C 2

R
‖g‖2L2(R3),

by means of Proposition 4.15. We now can choose R such that 4C 2/R < ε2/2, which yields

(4.38)
∫
B(0,2R)c

[(τw − Id)K3g]i (v)2 dv <
ε2

2
‖g‖2L2(R3).
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Regarding the first integral in the right-hand side of (4.37), thanks to the kernel form (4.32) and
using the Cauchy-Schwarz inequality, it can be written∫

B(0,2R)
[(τw − Id)K3g]i (v)2 dv ≤

∑
j∈Mi

∫
B(0,2R)

(∫
R3

gj(η)
(
kij3 (η,v + w)− kij3 (η,v)

)
dη

)2

dv

≤
∑
j∈Mi

‖gj‖2L2(R3)

∫
B(0,2R)

∫
R3

(
kij3 (η,v + w)− kij3 (η,v)

)2
dη dv.

Furthermore, Lemma 4.14, in conjunction with the continuity properties of translational operator τw
[6], yields that for every ε̃ > 0 and so also for ε̃ = ε/

√
2, there exists α̃ > 0 such that

|w| < α̃ ⇒

‖ (τw − Id) k ij3 ‖2L2(B(0,2R)v;L2(R3
η)) =

∫
B(0,2R)

∫
R3

(
kij3 (η,v + w)− kij3 (η,v)

)2
dη dv < ε̃ 2 =

ε2

2
.

This inequality ensures that for |w| < α̃,

(4.39)
∫
B(0,2R)

[(τw − Id)K3g]i (v)2 dv <
ε2

2
‖g‖2L2(R3).

Finally, (4.38) and (4.39) together with (4.37) imply that for a given ε > 0, we choose α =
min{R, α̃} > 0 such that whenever |w| < α, the required estimate (4.36) holds. �

3.4. Compactness of K4. The proof of the compactness of K4 is very similar to the final part of
the proof for K3. The main difficulty is to obtain a kernel form of K4. Once it is done, (4.15)–(4.16)
can easily be proven as in Section 3.3. Using the same change of variables as the one leading to (4.35),
we can write

[K4g]i (v) = 2
∑
j 6∈Mi

nj

(mj

2π

)3/2
∫
R3

∫
Π
e
− 1

4
mi|v|2− 1

2
mj |p+q+v|2+ 1

4
mi

∣∣∣∣v+2
mj

mi+mj
p

∣∣∣∣2

× gi
(

v + 2
mj

mi +mj
p

)
Bij(p,q) |p|−2 | sin(p,p + q)|−1 dq dp.

The exponential term can be modified thanks to the following relation

− 1

4
mi |v|2 −

1

2
mj |p + q + v|2 +

1

4
mi

∣∣∣∣v + 2
mj

mi +mj
p

∣∣∣∣2
= − mjmi

2

2 (mi +mj)
2 |p|

2 − mj

2

∣∣∣∣q + v +
mj

mi +mj
p

∣∣∣∣2 .
If we denote

z = v +
mj

mi +mj
p,

and decompose it into the component z1 parallel to ω and the component z2 orthogonal to ω (z2 ∈ Π),
we obtain the new form of [K4g]i:

[K4g]i (v) = 2
∑
j 6∈Mi

nj

(mj

2π

)3/2
∫
R3

e
−

mj mi
2

2(mi+mj)2
|p|2− 1

2
mjz1

2

gi

(
v + 2

mj

mi +mj
p

)
× |p|−2

∫
Π
e−

1
2
mj |q+z2|2 Bij(p,q) | sin(p,p + q)|−1 dq dp.

Next, we perform the change of variables

p 7→ η = v + 2
mj

mi +mj
p, whose Jacobian equals

(
2

mj

mi +mj

)3

,
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and write z1
2 in the following form

z1
2 =

(
z · η − v

|η − v|

)2

=
1

4

(
|η|2 − |v|2

)2

|η − v|2
.

Thus, [K4g]i becomes

[K4g]i (v) =
1

4

∑
j 6∈Mi

nj

(mj

2π

)3/2
(
mi +mj

mj

)

×
∫
R3

e
− 1

8

mi
2

mj
|η−v|2− 1

8
mj

(|η|2−|v|2)2

|η−v|2 gi(η) |η − v|−2

×
∫

Π
e−

1
2
mj |q+z2|2 Bij

(
mi +mj

2mj
(η − v) ,q

)
×
∣∣∣∣sin(mi +mj

2mj
(η − v) ,

mi +mj

2mj
(η − v) + q

)∣∣∣∣−1

dq dη.

To write [K4g]i into the convenient kernel form, we introduce the function

ϕij4 (p) =
(mj

2π

)3/2 mi +mj

2mj |p|

∫
Π
e−mj

1
2
|q+z2|2 Bij (p,q) |sin (p,p + q)|−1 dq.

It is easy to prove, in the same way as in Lemma 4.12, that there exists C > 0 such that ‖ϕij4 ‖L∞(R3) ≤ C
for any i, j. The i-th component of K4g can be written in the kernel form

[K4g]i (v) =
∑
j 6∈Mi

nj

∫
R3

k ij4 (η,v)gi(η) dη,

where k ij4 (η,v) is given by

k ij4 (η,v) = 1
4 e
− 1

8

mi
2

mj
|η−v|2− 1

8
mj

(|η|2−|v|2)2

|η−v|2 |η − v|−1 ϕij4

(
mi +mj

2mj
(η − v)

)
.

The form of each k ij4 is exactly the same as in (4.30). Consequently, k ij4 inherits the same properties
as k ij3 (see Lemmas 4.12 and 4.13), which allows to obtain (4.15)–(4.16) as in Propositions 4.15 and
4.16, and the compactness of K4.
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