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Antwerp, February 2020



4

Abstract

Meteorological conditions have a significant influence on the time of occur-
rence, abundance and activity of the mosquito vector. In the current context
of climate change, it is of great importance to assess the impact of shifts in
climatic conditions on the suitability for the establishment and annual activity
of the vector species. Moreover, changes in the variability of meteorological
elements and their extremes can generate unexpected changes in the mosquito
vector population which in turn have an important effect on human health. One
of the ways to put these causes and effects into perspective is to simulate the
activity of the vector within a process-based framework which allows for the
analysis of the contribution of individual factors on the different life stages of
the vector. Such analysis is presented by the use of sophisticated dynamical
models simulating the characteristics of the biological population, forced by ob-
served meteorological data, capturing the local micro-environment of the vector
habitat, and validated by the observed entomology.

Numerical models are being developed to model vector population dynamics
and the expected circulation of the virus within a closed system. Two modelling
approaches are standardly applied to modelling vector population dynamics:
Mechanistic and Stochastic. The advantage of mechanistic over statistical mod-
els is that they can provide a deterministic framework allowing for the isolated
evaluation of each input parameter and their effect on the modelled system.
Mechanistic dynamical models are used to describe the biophysical processes or
part of the process as a response to changes in the meteorological conditions.

The work carried out in this thesis can be summarized as follows: (i) Anal-
ysis of the association between the most important abiotic drivers influencing
the population dynamics, annual activity and time of occurrence of Culex pipi-
ens and Aedes aegypti ; (ii) Identifying the most important climatic factors and
model settings as a function of climatic characteristics of the study region; (iii)
Modelling the vector population dynamics and stability analysis of the dynam-
ical system (iv) Analysis of different verification techniques and implications
in terms of model application; (v) Feasibility analysis of improving the model
with a Land-Surface Parameterization scheme and short-range forecasting of
pest population dynamics.
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Sažetak

Meteorološki uslovi bitno utiču na vreme pojave, brojnost vektora i nji-
hovu aktivnost. U uslovima evidentnih promene klime, od ogromne je važnosti
sagledati uticaj očekivanih promena klime na pogodnost uslova na pojavu iz-
abranih vektora. Takodje, značajne promene kolebanja meteoroloških eleme-
nata u odnosu na vǐsegodǐsnji prosek i sve češće pojave nepovoljnih vremen-
skih prilika dovode do neočekivanog ponašanja populacije komarca što značajno
utiče na kvalitet života i zdravlje ljudi. Jedini način da se sagledaju uzroci i
posledice navedenih pojava zasniva se na simulaciji aktivnosti i brojnosti vektora
uz mogućnost testiranja uticaja svakog pojedinačnog faktora. Ovu mogućnost
pružaju samo visoko sofistikovani dinamički modeli koju su prošli proces kali-
bracije i validacije zasnovan na izmerenim vrednostima meteoroloških elemenata
i karakteristika biološke populacije.

Sofistikovani modeli za simulaciju dinamike populacije vektora i očekivane
cirkulacije vektorskih transmisivnih bolesti se koriste sa ciljem modeliranja po-
tencijalnog rizika od zaraze i epidemije. Modeli za simulaciju dinamike vektora
mogu da se podele na dve glavne grupe: Mehanističke i Statističke. Prednost
mehanističkih modela nad statističkim je što mogu da se koriste za evaluaciju
uticaja izolovanog faktora na dinamički sistem i odgovarajuće promene brojnosti
unutar svake faze u razvoju vektora. Mehanistički dinamički sistemi se koriste
kako bi se opisao mehanizam biofizičkog procesa ili dela procesa u zavisnosti od
forsirajuće veličine.

Predmet istraživanja u ovom radu jeste identifikovanje najznačajnijih bi-
oloških i fizičkih procesa kao i odgovarajućih faktora koji utiču na brojnost i
aktivnost vektora roda Aedes i Culex. Ciljevi istraživanja mogu da se sumiraju
na sledeći način: (i) analiza najznačajnijih meteoroloških parametara koji utiču
na vreme pojave, brojnost i aktivnost vektora Aedes i Culex roda; (ii) defin-
isanje najznačajnijih klimatskih faktora i stepena osetljivosti procesa na njih;
(iii) modeliranje dinamike populacije vektora i analiza stabilnosti dinamičkog
sistema; (iv) verifikacija i analiza metoda verifikacije i validacije dinamičkog
modela; (v) kratkoročna prognoza dinamike populacije komarca i formulacija
hidrološkog modula upotrebom SURFEX površinske šeme sa ECOCLIMAP
fiziogeografskim podacima.
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Samenvatting

Meteorologische omstandigheden hebben een significante invloed op het ti-
jdstip van voorkomen, het aantal en de activiteit van de muskiet vector. In de
huidige context van klimaatverandering is het van groot belang om de verwachte
impact van verschuivingen in klimatologische omstandigheden in te schatten
op de geschiktheid voor de vestiging en de jaarlijkse activiteit van de vector-
soort. Bovendien kunnen veranderingen in de variabiliteit van meteorologische
elementen en hun extremen, onverwachte veranderingen in de populatie van
muggenvectoren veroorzaken die op hun beurt een belangrijk effect hebben op
de menselijke gezondheid. Eén van de manieren om deze oorzaken en gevolgen
in perspectief te plaatsen, is door de activiteit van de vector te simuleren bin-
nen een procesgebaseerd kader dat de bijdragen van individuele factoren op de
verschillende levensfasen van de vector analyseert. Een dergelijke analyse wordt
uitgevoerd door gebruik te maken van geavanceerde dynamische modellen voor
het simuleren van de eigenschappen van de biologische populatie, gedreven door
waargenomen meteorologische gegevens, het incorporeren van de lokale micro-
omgeving van de vectorhabitat en gevalideerd door de waargenomen entomolo-
gie.

Numerische modellen worden ontwikkeld om vectorpopulatiedynamica en de
verwachte circulatie van het virus binnen een gesloten systeem te modelleren.
Twee modelleringsbenaderingen worden standaard toegepast op dynamische
vectorpopulatie modellen: mechanistisch en stochastisch. Het voordeel van
mechanistisch ten opzichte van statistische modellen is dat ze een deterministisch
raamwerk kunnen bieden voor de gëısoleerde evaluatie van elke invoerparameter
en hun effect op het gemodelleerde systeem. Mechanistische dynamische mod-
ellen worden gebruikt om de biofysische processen of een deel van het proces te
beschrijven als een reactie op een verandering in een meteorologische toestand.

Het werk in dit proefschrift kan als volgt worden samengevat: (i) De analyse
van het verband tussen de belangrijkste abiotische factoren die de populatie-
dynamiek, de jaarlijkse activiteit en het tijdstip van aanwezigheid van Culex
pipiens en Aedes aegypt i bëınvloeden; (ii) De identificatie van de belangrijkste
klimatologische factoren en modelinstellingen als functie van de klimatologische
kenmerken van de onderzoeksregio; (iii) De dynamische modellering van de vec-
torpopulatie en stabiliteitsanalyse van het dynamische systeem. (iv) De analyse
van verschillende verificatietechnieken en de implicaties voor de toepassing van
het model; (v) De haalbaarheidsanalyse van het verbeteren van het model met
een parametrisatie voor het landgebruik en voorspelling op korte afstand van
de dynamiek van de plaagpopulatie.
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Chapter 1

Introduction and research
objectives

1.1 Motivation and research rationale

Vector borne disease (VBD) are diseases whose pathogen is transmitted by
arthropods which can carry the disease between infected and susceptible hu-
mans.

Over 500 million people are infected by Vector Borne Disease (VBD) every
year. WHO estimates that, annually, over 3 billion people are at risk of con-
tracting a VBD, of which a large proportion is diseases transmitted by mosquito
vectors. More than 2.5 billion people are at risk of contracting Dengue alone,
and Malaria causes 600,000 deaths every year globally. The transmission rate
during an epidemic is proportional to the population density of the disease vec-
tor.

The importance of modelling the population dynamics of the mosquito vector
is largely connected to the wide number of VBDs that mosquitoes can transmit.
Mosquitoes belonging to the Aedes and Culex genera are vectors for West Nile
virus, Saint Louis encephalitis, Japanese encephalitis, Zika, Dengue and Chikun-
gunya. Proper surveillance and subsequent modelling of the impact that pests
and disease have on human health is a pressing issue in numerous segments.

The research topic of this thesis is the identification of the abiotic drivers
influencing the time of occurrence, population dynamics and annual activity of
two important vectors species in the Aedes and Culex genera for study locations
in (i) Guadeloupe, (ii) Egypt and (iii) Serbia.

1.2 Main objectives

The main research objectives can be summarized as follows: (i) Analysis of the
association between the most important abiotic drivers influencing the popu-
lation dynamics, annual activity and time of occurrence of Culex pipiens and
Aedes aegypti ; (ii) Identifying the most important climatic factors and model
sensitivity depending on the climatic characteristics of the study region; (iii)
Modelling the vector population dynamics and stability analysis of the dynam-
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ical system (iv) Analysis of different verification techniques and implications in
terms of model application; (v) Feasibility analysis of improving the model with
a Land Surface Parameterization scheme and short-range forecasting of pest
population dynamics.

1.3 Working structure and thesis roadmap

This thesis consists of five main parts. Following a theoretical introduction
in Chapter 2 and overview of methods in Chapter 3, the first part (Chapter 4)
deals with time-series analysis in which the main meteorological drivers and their
association with the observed entomological series are analysed. The second part
(Chapter 5) is an assessment study of the broader climatic suitability for the
Culex and Aedes vectors. The third part (Chapter 6) is the simulation of daily
dynamics of the vector population and numerical considerations and stability
analysis of the ODE dynamical system.

Figure 1.1: Schematic overview of the thesis structure.

The fourth part (Chapter 7) deals with the analysis of different verification
methods applied to the validation of the dynamical model. The fifth part (Chap-
ter 8) consists of two use-case scenarios in which the feasibility of improving the
model with a hydrology scheme and a possible framework for forecasting the
pest population dynamics are explored. Finally, an outline of additional work



CHAPTER 1. INTRODUCTION AND RESEARCH OBJECTIVES 25

carried out for (i) the impact of climate change on the suitability for the es-
tablishment of an invasive vector species in Serbia and Montenegro; (ii) The
feasibility of integrating an environmental Wireless Sensor Network system to-
gether with EO and GNSS to force the population dynamics model in near-real
time; (iii) Gap-filling of hourly air temperature data with debiased ERA5; (iv)
WNV ciruclation and the expected impact of climate change on the malaria
vector in Serbia; is given in the Appendix.



Chapter 2

Theoretical introduction

2.1 The influence of abiotic environmental fac-
tors on the different life stages of the mosquito
vector

Mosquitoes remain one of the most dangerous pest groups because of the many
diseases they can transmit. They are poikilothermic arthropods with over 35000
species, order Diptera, family Culicidae. Because of their inability to control
their body temperature they are tightly linked to their surrounding environment
and maintain a similar or slightly higher temperature than that of the local
environmental. Mosquitoes from the Culex and Aedes genus are differently
adapted to the abiotic constrains of their surroundings and thus exhibit different
global distributions.

Aedes aegypti originated in Africa and was subsequently transported to
America during the period of transatlantic slave trade in the 16th century [6]. To
date, it spread globally inhabiting most tropical and sub-tropical regions. Un-
like Ae. albopictus it did not develop a diapause mechanism and is not suited
to overwinter in the colder regions of the higher latitudes.

Mosquitoes of the Culex pipiens complex are one of the most common and
widespread mosquitoes. Adults from the population diapause during winter,
finding shelter in areas that can remain relatively warm during the colder months
such as basements and sheds, and start a new generation in spring, typically
when outdoor temperatures reach 10 ◦C, and have several generations per year
[7, 8].

The global distribution map for Ae. aegypti and Cx. pipiens is shown
in Figure 2.1 indicating the current distribution of both species. Due to its
ecology, Ae. aegypti is mostly confined to the tropical and subtropical belt [9].
On the other hand, species from the Cx. pipiens complex (Cx. pipiens, Cx.
quinquefasciatus) have a worldwide distribution and have justly, due to their
eurytopic nature, earned the name northern and southern “house mosquito”,
respectively. The vector has been recorded everywhere except the Arctic circle.

The key climatic variables that have been linked to the ability of the mosquito
vector to survive and be active in a certain area are rainfall and tempera-
ture [10–19]. Regarding the climatic suitability of Aedes mosquitoes most ex-
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Figure 2.1: Geographic distribution of Aedes aegypti (black points) and Culex.
pipiens (gray) and Culex quinquefasciatus (red), adapted from surveys con-
ducted in 2018 for Ae. egypti [1] and 2019 for Cx. pipiens [2–4].

isting literature was carried out for Aedes albopictus [20]. The major difference
between these two species is that Ae. albopictus has developed an overwin-
tering mechanism which allows him to survive in colder latitudes. Moreover,
Ae. albopictus has been found to be more tolerant to colder temperatures in
general [21]. The most significant parameters linked with vector suitability are
the annual and seasonal average temperatures, mean monthly temperature of
the coldest month, annual precipitation and frequency of rainy days [10,17–19].
The annual start of activity has been linked to spring temperatures; however,
the overall annual activity is mostly linked to the June-July-August (Tjja) air
temperature and annual precipitation [17]. The northern range of both the Ae.
aegypti and Ae.albopictus vectors is limited by winter temperatures and annual
precipitation [10]. Aedes albopictus has been found to overwinter in areas with
the mean January temperature (Tjan) as low as -4 ◦C [22], while Ae. aegypti
cannot survive winters bellow Tjan = 10 ◦C [23–26]. In a recent study by
Ducheyne et al. [27], data from the Ae. aegypti and Ae. albopictus compendia
by Kramer et al. [28] was used in a Random Forest (RF) modelling framework
with a set of 25 variables to build a distribution model for this region and com-
pare the relative importance of the predictors using the Gini impurity criterion.
The result indicted that the most important variable for Ae. aegypti for the East
Mediterranean region was precipitation, while the most important variables for
Ae. albopictus was night-time light and human population density [27].

Mosquito populations are influenced by weather on different scales: (i) Cli-
matic suitability outlines the niche in which the vector can survive and the
expected annual window of activity; (ii) Daily and weekly weather drives the
inter-annual population dynamics and has an effect on the development and
mortality rates of the different stages in the mosquito life-cycle.

The vector transitions through four main stages during development: (i) Egg,
(ii) Larva, (iii) Pupa and (iv) Adult (Figure 2.2). Eggs are deposited on the
surface of the water one at a time (Aedes) or tied together in raft-like formations
(Culex ). Aedes species mostly breed in artificial containers in urban areas,
especially Ae. aegypti which is extremely anthropophilic. On the other hand,
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Culex pipiens can breed in urban as well as rural areas in a wide range of natural
and artificial sites [7, 8]. Aedes eggs have anti-desiccation mechanism in place
and can start the development process only when they come in contact with
water, Culex eggs do not have this property and need to be deposited directly
on water surface. After the eggs come into contact with water the development
into larvae usually happens within 48 hours depending on the species and the
temperature. The larva is the most active aquatic stage and the only stage that
can navigate the water freely and feed. The larva feeds on the microorganisms
and other organic matter in the water and has a specific siphon tube apparatus
for breathing oxygen and hanging from the surface. The larva goes through four
instar transformations, becoming bigger each time, before it transforms into a
pupa. The larval development can be up to eight times longer than the egg
development and three to four times longer than the pupa development. The
pupa is an immobile resting phase, where the organism has accumulated enough
food and is preparing for the final transformation into an adult. The emerging
adult rests for a short while allowing for its wings to dry and body to adjust to
its new surroundings. Within the adult phase the female mosquito goes through
several cycles of mating, searching for blood, gestating and depositing the eggs,
so the development of the next generation can commence. The adult female
can survive up to 5 months or longer; however, due to high adult mortality, the
average female life span is about 6 weeks, with males living only around a week
on average [29].

Figure 2.2: Schematic description of the mosquito life cycle.

The lower temperature limit for Ae. aegypti, below which movement ceases
and mosquitoes enter a torpid state, was determined to be 10 ◦C [30–33]. The
temperature range suitable for activity is 16 ◦C – 32 ◦C, with 21 ◦C being the
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optimal recorded temperature, in terms of flight duration and average-distance-
flown for adults [30, 34]. Interestingly, the maximum flight speed was observed
at 32 ◦C and 50% relative humidity (34 m/min, [30]). The frequency of wing
beats increases with temperature, with 365 beats per second observed at 18 ◦C
and 427 beats per second at 25 ◦C [30]. The mosquito is no longer capable
of taking a blood meal at temperatures above 36 ◦C [33], while temperatures
above 40 ◦C are lethal [30,33]. Similar temperature ranges are observed for the
immature larval stages of Ae. aegypti with the upper lethal bound observed at
34 ◦C and most larvae becoming motionless and dying within a couple of days at
temperature below 16 ◦C, with more rapid mortality occurring at temperatures
below 14 ◦C or above 38 ◦C [30,33,35]. Ranges of the daily diurnal curve above
20 ◦C were observed to have a negative effect on adult survival [30].

Both adults and immatures of Cx. pipiens are more adapted to colder tem-
peratures than Aedes species. The lowest temperature under which adult ac-
tivity stops was reported to be 9.8 ◦C for females and 8.4 ◦C for males [36–39].
Complete mortality for adults was observed at 35 ◦C [37]. Results indicated that
longevity was already significantly reduced at temperatures above 27.5 ◦C [37],
no eggs were laid at 32.5 ◦C and only 20% survival was observed at 30 ◦C.

The upper limit for the development of immature stages is drastically re-
duced already at 32.5 ◦C and completely ceases at 35 ◦C [36, 37], while the
lower limit was found between 11.09 –12.47 ◦C. The most comfortable range for
Cx. pipiens development was determined at 15 - 32.5 ◦C [37]. Ciota et al. [5]
examined the effect of a range of temperatures, between 16–32 ◦C on the life
history characteristics of Culex vectors. The survival of the immature stages
was highest at 16 ◦C [5].

2.2 Time series analysis

The major aims in current ecological research are directed towards defining
the nature of order in biological systems, the separation of endogenous and ex-
ogenous interactions and their impact on population growth [40, 41]. Since a
precise parameterization of these interactions is very difficult, empirical derived
relationships are often used, as well as retrospective time-series analysis, that
strongly depend on the quality and frequency of the collected data [42]. Time-
series analysis can identify changes in variance of the observed system, as well as
emerging periods, which can later be compared with the simulated dynamics.
Cazelles et al. [43] point out that transient dynamics appears to be the rule
rather than the exception in biological systems, either because of a strong re-
sponse of the poikilothermic population to changes in the forcing environment,
or because of complex endogenous dynamics. The extent of this influence will
be different depending on the study location. In temperate, mid-latitude zones
only a small percent of the vector population goes through overwintering, ef-
fectively reducing the population to zero, while the seasonal peaks is usually
achieved in the warmest month. However, even in tropics where the seasonal
character of the driving meteorology is less pronounced, and the mosquito is
active throughout the year, smaller variations in temperature still influence the
mortality and development rates on smaller scales. Because of the cumulative
effect of annual, seasonal, and generational variations in the time-series, they
are most often non-stationary and traditional time-series analysis methods such
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as the Fourier and harmonic decomposition cannot be applied directly. Several
methods can be utilised to study non-stationary time-series. For example, the
Wavelet approach allows us to observe changes in the principal periods and vari-
ance as a function of time and does not adhere to the restriction of stationarity.
Moreover, in order to find global covariates between the environmental and eco-
logical time-series, the cross-correlation function applied to the lagged values of
the more stationary anomaly field of the time series can be explored. Finally,
analysing the time interval lagged correlation provides a natural way to model
cumulative changes in the forcing by abiotic variables such as precipitation.
Several studies used time-series analysis applied to forecasting the dynamics of
vector populations [42, 44] and dynamics of VBD virus incidences [42, 45, 46].
The aim in this thesis is mostly exploratory, to show the same species can have
a different empirical response to the forcing meteorology at two different loca-
tions. This type of analysis can then be used to guide the parameterization of
the endogenous and exogenous processes in vector populations [41,42,44].

2.3 Modelling the climatic suitability

A climatic assessment study of the suitability of the long-term averaged mete-
orological characteristics of a particular area for the establishment and annual
activity of a vector species is an important consideration for the assessment
of potential risk and identification of possible hotspots for vector development
and subsequently disease circulation. Particularly, this type of analysis can
contribute to the vulnerability assessment of a particular region to the intro-
duction of a new invasive vector species. Two types of models can be distin-
guished within this topic of research: (i) correlative species distribution models
(SDMs); (ii) process-based climatic suitability models. Correlative SDM mod-
els employ a top-down stochastic approach based on vector presence/absence
data and their association to various abiotic drivers [19, 47–51]. The drivers
are usually bioclimatic long-term averages derived from temperature and rain-
fall climate normals [52]. Process-based models, on the other hand, employ
a bottom- up approach, do not require presence/absence vector data and are
based on empirical knowledge regarding the known vector ecology [17–19].

Vector SDMs are usually constructed using the following statistical mod-
elling infrastructure: (i) Generalized linear models (GLMs) [50, 53–55]; (ii)
Generalized additive models (GAMs) [55,56]; (iii) Climate envelope techniques
(CEMs) [57]; (iv) Random Forest (RF) [27, 50, 54]; (v) Neural networks (NNs)
[55].

Jeschke and Strayer [57] considered different studies comparing the perfor-
mance of different SDM models and found that newer techniques such as model-
averaging RF and the Bayesian Weight of Evidence model performed better than
older, more widely used methods [58–60]. However, they also stress that the
modelling approach needs to be tailored to the application and species.

Process-based models rely on vector physiological thresholds to build the
suitability algorithm based on extending research governing the climatic and
environmental factors affecting vector populations. These thresholds are usually
measured in laboratory conditions and climate chambers and then translated
to field populations. Severally widely used modelling techniques in this subcat-
egory are: (1) Mechanistic GIS-based models [10] (2) Multi Criteria Decision
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Analysis (MCDA) [16,18,22,61] ; (3) Seasonal activity cut-off models [17].
Because they are process-driven and deterministic, unlike statistical models,

they allow for an explicit and direct analysis of the mechanism driving a simu-
lated increase or decrease of vector suitability and generate a broader forum for
shared understanding and discussion.

2.4 Vector population dynamics models

A population is defined as “a group of individuals of the same species that
occupy a particular area” [62, 63] and population dynamics as the aspect of
population ecology dealing with forces that affect changes in population densities
or affecting the form of population growth [64].

The change in population density for the mosquito vector occurs as a result
of a complex set of interactions between the individuals of the same species,
interaction between individuals of different species, interaction with the envi-
ronment, breeding site availability, food supply etc. [62]. There are different
modelling techniques that can be used to simulate this type of population dy-
namics.

Similar to climatic models, two modelling approaches that are standardly
applied to modelling vector population dynamics are: Mechanistic (determinis-
tic models) [65–74] and stochastic models [75–85] . Mechanistic and stochastic
models serve different purposes. Stochastic models are good for identifying
patterns and making short term predictions, while mechanistic models aim at
explaining patterns and incorporate a mathematical representation of under-
lying physical processes. Stochastic models can have several advantages over
mechanistic models: They are considerably less numerically demanding than
dynamical mechanistic models [65, 67] and have the additional advantage that
stochastic processes are described in stochastic terms without resorting to addi-
tional parameterization when the relationship is not clear. The main issue with
stochastic models is their dependence on the amount, quality and relevance
of the data used. They rely on presence/absence data to train and calibrate
the model. On the other hand, mechanistic models have no constricting input
requirements regarding the observed distribution and densities.

2.4.1 Stochastic models

In the work by Eastwood et al. [81] a zero-inflated generalized linear model
(GLM) with negative binomial error structure to model the spatio-temporal
abundance of Aedes taeniorhynchus in Galapagos was developed. Theey em-
ployed time-lagged variables based on the generational development time for
aquatic stages of 7 – 14 days. The inter-annual temperature variations and
large scale oscillations such as ENSO were taken into account [81]. A Vuong
test, using Kullback-Liebler criterion, was utilised to compare the model perfor-
mance against standard negative binomial regression. A one-at-a-time backward
deletion process, was then applied to determine the factors with the highest
association to vector abundance. In the paper by Chuang et al. [84] Cross Cor-
relation Maps (CCM) were used to analyse which meteorological parameters
influenced mosquito abundance patters. They used daily temperature and rel-
ative humidity with weekly mosquito data for the period 1989 – 2005, for 22
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trap sites. It is suggested that the relationships identified by CCM should be
taken into consideration together with the selected window of analysis and serial
correlation between the lags.

Otero et al. [86] developed a population dynamics models for Aedes aegypti
using a state dependent Markov chain approach that takes into account the
entire life cycle of the mosquito. The transition parameters are modelled as
stochastic events with constraints derived from the available empirical data for
Aedes aegypti as well as the dependence of vector biology on the time variable
weather parameters. This model provides an alternative approach for incor-
porating a stage-structured concept with empirical transition rates for Aedes
aegypti into as stochastic modelling framework.

A GIS spatial linear regression model was developed by Clackner et al. [79]
to estimate the habitat suitability index (HSI) as a indicator of mosquito suit-
ability and expected seasonal abundance related to environmental predictors.
Derived habitat descriptors were used to investigate the spatial variation in the
entomological data.

In the study by Chuang et al. [80] a polynomial distributed lag (PDL) model
with the meteorological data as the independent variables was applied. They
compared models incorporating data from the NASA Advanced Microwave
Scanning Radiometer on EOS (AMSR-E) and local weather station data to
predict vector abundance at different lags. They found that the spatial model
supplementing with EO data performed better than the model which used only
data from the national meteorological stations.

Oluwagbemi et al. [82] developed a stochastic, spatially explicit model for
vector metapopulation dynamics. In the model by Basuki et al. [78] the popu-
lation dynamics as well as interaction between individuals is modelled by using
stochastic Calculus of Looping Sequence (CLC) model. Temperature was high-
lighted as the most significant driving variable.

Finally, an interesting and novel technique for pest population dynamics
modelling is presented in the paper by Patil et al. [83] where a standard feed for-
ward Multi-layer perception (MLP) neural network model with a back-propagation
training algorithm was employed in the proposed stochastic system for predict-
ing pest population dynamics for the thrips pest in cotton crop. This model was
trained on pest data spanning five year and 247 records and its performance is
highly data dependent. The authors present a methodology for pre-processing
and cleaning of field surveillance so that it can be useful for machine learning
applications.

2.4.2 Mechanistic models

In most mechanistic models, authors use the Egg-Larva-Pupa-Adult transition
model to simulate the life cycle of the mosquito. A stage-structured model was
developed by Erickson et al. [68] in which each life-stage is modelled with an or-
dinary differential equation (ODE) and species-specific temperature dependent
mortality and development rates. They highlight the importance of forcing the
model with variable temperature data.

Existing models of mosquito population dynamics are usually tailored to
a specific mosquito species. However, Cailly et al. [69] developed a generic,
mechanistic, weather driven model of mosquito population dynamics that can
be applied to different vector genera. A generic framework could be useful
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for comparing the population dynamics of different species at the same loca-
tion. Aquatic and adult stages are incorporated in a stage-structured frame-
work [69].This model could have important implications for the development
of population dynamics models in general and should be considered. A recent
study by [73] adapted and tested the model by Cailly et al. [69] for different
mosquito species in the south of France.

Another widely used mechanistic model is the CIMSiM model developed by
Focks et al. [65] in 1993 that is still applied today. The container-inhabiting
mosquito simulation model (CIMSiM) is a dynamic life-table simulation model
of Aedes aegypti. The framework incorporates a module that account for the
presence of artificial and natural vector breeding sites. Even though CIMSiM
has demonstrated skill in predicting field mosquito population dynamics, the
CIMSiM models are site specific and require local surveys and and ground
truthing to parameterize them.

Also interesting is the study by Ahumada et al. [66] in which the authors
developed a discrete-time population model which incorporates the effects of
temperature and precipitation calibrated for an elevation profile in Hawaii. They
used a transition matrix with dynamic parameters to incorporate the effects of
the driving meteorology.

The study by Lunde et al. [71] describes a biophysical model to predict
species distribution and seasonal variations. Unlike stochastic models, which
need presence/absence data, this type of modelling framework can be run with
no information with respect to observed filed distribution and densities, thus
allowing for the investigation of the isolated effect of temperature and relative
humidity on the different aspects of the mosquito life cycle.

In the study by Lana et al. [85] they examine four dynamic models with
temperature and population density dependant transition rates. The model
incorporating a thermodynamic function for the transition rates, calibrated for
Aedes aegypti and density dependent larval development rates performed the
best, while the model with a temperature dependent step function, which defines
the development rates in terms of cut-off temperature categories, and density
dependent oviposition rates performed the poorest.

2.4.2.1 Temporally forced models

Temporally forced models are essential for a more realistic description of the
patterns occurring in population dynamics. They provide a natural progression
from simple models to more complex and realistic ones. Changes in development
rates is increasingly recognised as an important dynamic variation in population
dynamics. Furthermore, seasonality plays a particular role in vector and VBD
dynamics. This time dependency is brought on by temperature variation which
affects the adult population but also by breeding site conditions related to the
development of aquatic stages that vary throughout a year. For example, during
the rainy season in the tropics, mosquito numbers are significantly increased.
Even modest fluctuations in the transition rates can result into large changes
in the observed population. The seasonality in the model is introduced via
the addition of environmental time series of data. Specifically, temperature,
precipitation and relative humidity.

In his 1976 paper [87], Box wrote “All models are wrong, but some are
useful”. Ordinary Differential Equation (ODE) models help quantify the inter-
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action and mechanisms of different processes that are observed in the vector life-
cycle. Process parameterization is in most cases based on empirical results from
laboratory studies. These results can be evaluated by comparing the simulated
population dynamics to reality. The framework of the ODE stage-structured
model described in this study reflects the stages of the mosquito life-cycle (Egg
- Larva - Pupa - Adult). It uses temperature dependent functions for the mortal-
ity and development rates, which allows for a biologically realistic representation
of the transitions between the different stages. Density dependent regulation is
incorporated in the modelling of the carrying capacity, which simulates regula-
tion in case of overpopulation in the immature stages (Egg, Larva and Puppa),
while adult mortality is temperature and age-dependent, separating the nulli-
parous from the parous females.

The modelled population is considered to be a closed system, meaning that
immigration, emigration and interaction with other species is not modelled, and
the population is confined to the study region.

The endogenic population growth/decline in mechanistic models is expressed
in terms of birth and mortality rates as well as the development rates of each
stage in the development cycle.

2.5 Numerical integration and stability

These types of population models almost always contain non-linear terms and
need to be solved numerically, introducing a global and local error which is gov-
erned by the accuracy of the numerical integration scheme. Moreover, the initial
value problem introduces the issue of initialization which is not straight forward.
It is impossible to measure the actual size of the population of the mosquito
and an error is already introduced when setting the initial field. Moreover, the
simulated transient dynamics and spin-up time, the time it takes for the model
to reach a state that is not dependent on the initial conditions, will vary based
on initial conditions.

In atmospheric dynamics, typical time scales tied to particular wave mo-
tions of the system linearised around the barotropic equilibrium exist. On the
other hand, for the dynamics of mosquito populations, considering mosquitoes
as agents governed by endogenic and exogenic processes, and biological popu-
lations in general, the stable state is not well-defined by research and mainly
consists of empirical parameterization of significant sub-processes. The level of
complexity and emerging chaotic behaviour of these systems makes it very hard
to formulate universal dependencies. Nonetheless, it is a step towards improved
model realism if we can see that the characteristic periods that are present in
the dynamical system relate to the ones observed in vector populations.

In Chapter 6 we will consider a numerical model for the population dynam-
ics of the mosquito vectors Ae. aegypti and Cx. pipiens, and examine the
behaviour of the simulated dynamical system. We will look at the stability
analysis of equilibrium points of the vector population dynamics model and ex-
amine the fast and slow modes in the coupled non-linear systems with different
amplitudes and time-scales of evolution. In the second part of the chapter, we
examine the oscillatory modes present in our system and their corresponding
characteristic frequencies and periods. The feasibility of normal mode initial-
ization as a method for removing the high-frequency oscillations in the system
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is considered. The normal mode identification of a coupled, nonlinear system
can be performed by examining the oscillatory solutions of the system linearised
around a specific point [88].

From a practical point of view, analysing the stability and eigen-properties
of a population dynamics model is extremely important for multiple reasons.
First, it is meaningful to look at the way the dynamical system behaves near
equilibrium points as a function of different temperatures and how it reacts
to perturbations around those states. Secondly, they can help us evaluate the
realism of the model, i.e. to see whether the eigen-frequencies correspond to
observed biological frequencies, i.e. the truth. Finally, this type of analysis
can support model initialization and help in reducing the spin-up time due to
short-lived transient behaviour.

2.6 Model verification

In his paper from 1966 Levins [89] defines three main properties of biological
population models as: (1) Realism, (2) Precision and (3) Generality and states
that each practical model is a trade-off between these three attributes. For
example, VBD models wishing to inform public action in case of outbreak re-
quire reality and precision in their models. The common practice nowadays is
sacrificing generality and realism for precision which means tailoring the model
to a specific species for which it can precisely simulate the observed population
in terms of quantifiable verification metrics (precision) without simulating the
mechanism and processes that corresponds to the known reality of this species
(realistic) [62,90,91]. On the other hand, Levins [89] states a preference for the
type of model which values realism and generality above precision to the inher-
ent uncertainties and heterogeneities present in the observed populations which
might mislead and misinform models driven by precision. This type of model is
also known as a conceptual model and can be used for a general understanding
of biological principles.

Stage-structure ODE (Ordinary Differential Equation) vector population
models fall into the category of realistic and precise while, on the other hand,
they attempt to salvage the idea of generality in terms of the modelling frame-
work. Even though the development parameters are different for example for the
Aedes and Culex species examined, the framework and structure stay the same.
This type of model can be directly extended to other vector genera. This of-
course needs to be supported by basic research to calculate the development and
mortality parameters as well as field surveillance and monitoring for validation;
and both are extensive and extremely time-consuming activities. Expanding on
Levins theorem, Weiss [62] adds that the realism of a model needs to be consid-
ered together with the computational time and the numerical exhaustiveness of
the runs. A model that is too complex, even though biologically accurate, has
no practical use [62].

There is not much literature on the quantitative verification of vector pop-
ulation models since long term and consistent time-series of observed data are
rare. The time and cost of the trapping efforts are usually the main limiting
factors. Most available data-sets tend to be irregularly spaced and demonstrate
large variations over different regions and sampling periods.

Methods of validation are different for different models, with the main ques-
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tion for a predictive model being whether it is acceptable for a certain appli-
cation such as: (i) predicting the population peaks, (ii) predicting the overall
population dynamics throughout the season, (iii) simulating the seasonal or sub-
seasonal trends or (iv) analysis of the day-to-day variability to see whether the
sensitivity with respect to temperature change is realistic. In contrast, the main
question for a conceptual or theoretical model is finding the true dynamics of a
specific population and defining the underlying processes. In this way predictive
models are verified against an independent set of observed data and the veri-
fication is concerned with how well the model reproduces the data. However,
for theoretical models the concern is twofold: (i) how well the model repro-
duces the observed data and (ii) whether the simulated system truly operates
in a realistic way. Even though the first approach is way more common in
scientific publications, sometimes very little can be learned from this type of
validation [62,92,93].

So, the analysis of ODE vector population dynamical models can be consid-
ered in many ways depending on what needs to be predicted or discovered, with
each method carrying a different type of information. Hence, in this thesis we
will investigate several methods for the verification of the ODE stage-structure
model described in Chapter 7 for three locations: Bahariya, Petrovaradin and
Guadeloupe; forced with two meter air temperature. The trap data represents
an subset of the actual population which is lured to the trap by attractants.
This type of observed abundance is compared to the aggregated bloodseeking
class in the ODE model i.e. the total number of nulliparous and parous blood-
seeking females. The analysis was performed according to the following steps:
(i) Firstly, a time-series analysis of the observations utilizing the Wavelet trans-
form was performed and compared to the characteristic eigen-periods in the
dynamical system. This feeds into the second type of verification described
above, realism, since we want to see whether the periods that emerge in our
dynamical system exist in real mosquito populations; (ii) Secondly, we consider
the standard verification methods for real continuous scalar quantities such as
BIAS and RMSE to examine how well the output replicates the observed data;
(iii) Thirdly, we examine the extremes and inflection points to test whether the
dynamics is correctly represented; (iv) And finally, we introduce thresholds in
the data and evaluate the scores for dichotomous simulations to examine the
simulation of specific vector population densities which can subsequently have
an effect on disease transmission.



Chapter 3

Material and methods

3.1 Datasets

3.1.1 Description of study locations

The meteorological and entomological data were collected in three different
technico-environmental settings: (i) Guadeloupe (Lesser Antilles), (ii) Bahariya
(Egypt) and (iii) Petrovaradin (Serbia) (Figure 3.1).

Figure 3.1: Study locations: G - Guadeloupe (Egypt); B - Bahariya; P -
Petrovaradin (Serbia).

This data was used to analyse the association between the main meteorologi-
cal drivers and the mosquito population and in a later step to verify the outputs

37
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of the ODE population dynamics model. Aedes aegypti data was collected in
Guadeloupe, and Culex pipiens data in Serbia and Egypt.

3.1.1.1 Guadeloupe

Guadeloupe (≈ 1436 km2) is characterized by a tropical climate under the in-
fluence of the prevailing trade winds and their maritime surroundings. It forms
an archipelago of 12 islands, as well as many uninhabited islands and outcrop-
pings formed as part of the volcanic arc on the outer edge of the Caribbean
plate. It is part of the Leeward islands in the Caribbean island group, which
are the outermost Caribbean islands situated in the area where the Caribbean
Sea boarders the Atlantic Ocean. It belongs to the French overseas department.
The largest city and only commercial airport is Pointe-à-Pitre, located just east
of the central arc between the west and the east wing.

The west wing of the island is mountainous (La Grande Soufrière; 1467 m)
while the east wing is almost completely flat; the west to east elevation profile
is shown in Figure 3.2c.

Figure 3.2: Location of the study area, Guadeloupe (Lesser Antilles). (a)
Country-level administrative units with Entomological and Meteorological study
locations indicated; (b) Region; (c) Elevation profile of a West to East inter-
section of the island in [m]. A detailed overview of the study sites is given in
Appendix A.3.

The corresponding Köppen climate classification subtype is ”Af”, the tropi-
cal rainforest climate. The Antilles together with Central America deviate from
the traditional tropical pattern due to their specific position [94]. Cold air is
transported from North America with the Appalachian Mountains on the east
and the Rocky Mountains on the west forming a funnel directly to the south;
on the other hand periodic disturbances known as tropical waves, issued from
the African continent, influence the island from the east [95]. The air mass cir-
culation in the Antilles is mostly influenced by the North Atlantic Anticyclone.
There are two distinct climatic periods characterized by a seasonal pattern cor-
responding to the passing of the Intertropical Convergence Zone (ITCZ), while
the annual range of temperature and direct radiation are small.

The distribution of precipitation is highly heterogeneous due to the ex-
treme orography of the islands, the Hadley cell circulation, variation in Sea
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Surface Temperature (SST) induced by direct solar radiation heating, evapo-
ration and upwelling, as well as the proximity to the subtropical ridge of high
pressure [96–98]. The highest peak of Guadeloupe is located on Basse-Terre,
while Grande-Terre is mostly flat and allows the easterly winds to cross the is-
land without attenuation. The wind from the north-east pushes the warm moist
air along the high orographic gradient. The air is lifted and adiabatically cooled;
creating excess precipitation on the windward side of the mountain. These areas
experience the highest amount of total precipitation year-round; up to 9000 mm
on the windward side of Grande Soufriere in Guadeloupe. A shift in precipi-
tation often occurs with the gradual increase in Pacific SST and ENSO driven
westerly winds are observed across the tropical North Atlantic belt [99, 100].
Inter-annual variability was found to be related to Madden-Julian oscillation,
which occur with the frequency of 30 – 90 days [101].

The study area in the Lesser Antilles covers the central island of Guadeloupe,
with the sampling sites for Ae. egypti located in the coastal areas on the center
arc and in the mountainous region on Basse-Terre (Figure 3.2).

The main breeding sites of Aedes aegypti across the island are artificial con-
tainers that fill up during precipitation events. On the other hand, intense
precipitation can cause flushing, which destroys the deposited eggs.

The vegetation is extremely lush due to the fertile volcanic soil and abun-
dant rainfall, with most of the forest areas concentrated on the west wing of the
island (Basse-Terre), while the east wing (Grand-Terre) was mostly cleared to
make way for agricultural land, chiefly for the traditional sugar cane crop.

3.1.1.2 Egypt

The study area in Egypt is located in the Bahariya or El-Wahat el-Bahariya
oasis (≈ 2000 km2), around 370 km south-east of Cairo in the Western Desert
(Figure 3.3). It is characterized by the ”BWh”, hot dessert climate, Köppen cli-
mate type, while the coastline experiences the ”BSh”, hot steppes climate type,
commonly described as arid and semi-arid, characterized by hot, dry summers,
moderate winters and erratic rainfall.

Most of the region around Bahariya in Egypt is directly influenced by the
Hadley cell and having the trade winds meeting the north-west winds from the
Mediterranean and the aperiodic dry Khamsin wind (March - May) shaping the
significant dune formations in the Sahara and forming the Sand Sea in the west.
The seasonal character of the climate, especially the winter temperature and
coastal precipitation variance is influenced by the circulation indices of North-
Atlantic Oscillation index (NAO), Mediterranean Oscillation index (MOI) and
East Atlantic - West Russian index (EAWR). The northeast trade winds are
dominant in the period from October to May which sustains the significant
aridity of most of the basin [102, 103]. The proximity to the sea coupled with
the prevailing wind direction causes the moderate temperature of the coast
belt. Alexandria and Rafah, in the north-east, receive the highest amount of
precipitation during the year.

The MOI index has a positive correlation with monthly temperature in Egypt
while NAO is found to have a negative influence [104,105]. A significant negative
relationship was observed especially for winter, December-January-February
(DJF) temperature and NAO [104,105]. NAO was found to have a significantly
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Figure 3.3: Location of the study area, Bahariya (Egypt). (a) Country-level
administrative units with Entomological and Meteorological study locations in-
dicated; (b) Region; (c) Elevation profile [m] of a North to South intersection
of the Oasis (the study location is indicated with the vertical line). A detailed
overview of the study site is given in Appendix A.3.

stronger influence on Egyptian temperature than ENSO circulation [104, 105].
EARW also has a strong influence on DJF temperature.

The study site is located in the northern part of the oasis in a semi rural
area. The Culex pipiens vector breeding sites are present in the oasis in the form
of: (i) Irrigation ditches and canals; (ii) Accumulated well water; (iii) Brackish
lakes; (iv) Sewage canals and cesspits. The town of Bawiti is located in the
south of the oasis and represents the largest urban area; the rest of the oasis is
scattered residential and agricultural tissue, consisting mostly of date orchards.

3.1.1.3 Serbia

The study site in Serbia is located in the city of Petrovaradin, in the southern
part of the Vojvodina province, on the banks of the Danube (Figure 3.4). The
Vojvodina Province is positioned in the northern part of Serbia and the southern
part of the Pannonian lowland (18◦51’–21◦33’E, 44◦37’–46◦11’N and 75–641
m.a.s.l. The Fruska Gora border Vojvodina on the south. This region is an
essential agricultural area in Serbia with a total surface area of 21,500 km2.
This region is characterised by a continental climate, with elements of a sub-
humid and warm climate, it fall under the ”Cfxwbx” Köppen climate type.

The NAO and East Atlantic Oscillation (EAO) both have an influence
on extreme temperature variability in Serbia during the winter and summer
months [106–109]. Another dominant atmospheric influence for this area of the
Pannonian plane is the EAWR (East-Antarctic West Russia). The NAO is the
dominant mode of Atmospheric behaviour in the northern part of the Atlantic,
EAO is structurally similar with a south-westerly displacement in regards to the
NAO nodal lines [107]. The positive NAO phase leads to above-average tem-
peratures and drier conditions over the Mediterranean basin and the southern
parts of Europe, while the positive EAO phase is associated with higher tem-



CHAPTER 3. MATERIAL AND METHODS 41

Figure 3.4: Location of the study area, Petrovaradin (Serbia). (a) Country-level
administrative units with Entomological and Meteorological study locations in-
dicated; (b) Region; (c) Elevation profile [m] of a North to South intersection
passing through Petrovaradin (the study location is indicated with the vertical
line). A detailed overview of the study site is given in Appendix A.3.

peratures throughout the year, for the entire continent [109–111]. The EAWR
oscillation shifts between different positions associated with different seasons.
The positive phase is associated with cold airflow from the north and northwest
across the Baltic sea and the Russian plain, white the negative phase is linked
with a south and south-easterly flow [107,109].

The entomological and meteorological data are collected from a garden in the
suburban residential area of Petrovaradin. The Cx. pipiens breeding sites are
mainly natural flood-areas around the Danube, as well as temporary rainwater
puddles. In the semi urban area the identified breed sites are often also artificial
water containers.

The main characteristics of each study location are presented in Table A.1
and Table A.2. A detailed description of each study site and collected data
is given in Appendix A (Meteorological data) and Appendix B (Entomological
data) of Chapter 4.

3.1.2 Meteorological data

An overview of the meteorological datasets is given in Table 5. The field data
for the Bahariya Oasis (Egypt) was collected within the MosqDyn project for
the period 2017–2018. The data was recorded at 15-minute intervals with the
Davis Vantage Pro weather station.

The field data for Petrovaradin was collected within the VECTORNET
project for the period 2016–2017. The data was recorded at 5-minute inter-
vals with the EasyWeather weather station.

Guadeloupe did not have an in-situ weather station deployed for the dura-
tion of the project. Thus, ERA5 reanalysis was used instead to obtain hourly
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Table 3.1: Overview of observed meteorological data. The measured variables
are: (i) Temperature [◦C], (ii) Relative humidity [%], (iv) Precipitation [mm],
(v) Wind speed [m/s], (vi) Wind direction; FF - Frequency used for forcing the
model.

Locations Time series Lat [◦] Lon [◦] Altitude [m] Time Series type Frequency Type FF

Bahariya
01/04/2017
31/12/2018

28.41 28.93 98 Regular 15 min Observations Daily

Guadeloupe 2015–2018 16.26 -61.52 23 Regular 1 hour ERA5 analysis Daily
Petrovaradin 2016–2017 45.25 19.87 82 Regular 5 min Observations Daily

time-series of wind, precipitation, temperature and relative humidity data. Data
obtained from the synoptic weather station close to Pointe-à-Pitre was cleaned
and used to check the correlation with the ERA5 time-series for a period from
2015-01-05 to 2017-02-24 (r = 0.76, p < .0001) . Data from the in-situ station
itself was not used for the whole period because of a large amount of missing val-
ues and erroneous recordings of minimum and maximum temperature observed
for several instances in 2015–2018.

3.1.3 Entomological data

The field data for the Bahariya oasis (Egypt) was collected within the MosqDyn
project for the period 2017–2018 (daily). Samples were collected on a daily basis
by standardised protocols using the BG Sentinel 2 mosquito trap with the BG
lure attractant (Lactic acid, Ammonium hydrogen carbonate, Hexanoic acid).
The trap was operating without a light source; light aided traps proved not to
have a significant attracting/repelling influence on Culex mosquitoes [112].

Table 3.2: Overview of observed entomological data.
Locations Time series Lat [◦] Lon [◦] Altitude [m] Time Series type Frequency Species of interest

Bahariya
01/04/2017
31/12/2018

28.41 28.93 97 Regular Daily Cx. pipiens

Guadeloupe

CRB 11/2015–10/2018 16.207 -61.507 4 Regular Week-Month Ae. aegypti
HFR 11/2015–10/2017 16.347 -61.776 6 Irregular Week-Month Ae. aegypti
HMC 11/2015–05/2019 16.212 -61.500 5 Irregular Week-Month Ae. aegypti
HCB (CAB) 11/2015–10/2018 16.207 -61.507 10 Irregular Week-Month Ae. aegypti
Zoo 11/2017-04/2019 16.180 -61.752 164 Irregular Week-Month Ae. aegypt i
Aporier 11/2017-02/2019 16.259 -61.693 62 Irregular Week-Month Ae. aegypti
RV1

11/2017-04/2019
16.201 -61.649 91 Irregular Week-Month Ae. aegypti

RV2 16.257 -61.668 41 Irregular Week-Month Ae. aegypti
Gosier 11/2017-04/2019 16.212 -61.500 5 Irregular Week-Month Ae. aegypti

Petrovaradin 2016–2017 45.25 19.87 82 Regular Daily Cx. pipiens

The field data for Gudeloupe was collected across 8 location within the
MosqDyn and SmartSenZ projects for the period 2015–2018. The sampling
frequency was weekly to monthly depending on the site. A longitudinal study
with daily sampling was conducted for a period of March – May 2017.

The field data for Petrovaradin was collected within the VECTORNET
project. Daily collections were carried out for a stationary site in 2016–2017
for 670 trap nights with dry ice-baited traps. The study was carried out in a
semi-urban zone with lots of greenery, side drainage channels and many con-
tainers suitable for breeding Culex pipiens. The locations for the surveillance
activities were identified based on the availability of 8 years weekly sampling
data for Cx. pipiens as an important vector species in Europe (WNV).
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3.2 Time series analysis

Time-series analysis is commonly used to identify the scales of the pattern in
population fluctuation [41, 42]. The classical Fourier decomposition cannot be
applied due to the high non-stationarity of the entomological time-series. Thus,
the partitioning of the variance of the time-series and construction of the power
spectrum is performed by wavelet analysis.

Moreover, time series analysis based on lagged cross correlation was used
to examine the empirical covariates [40,42,113] between the entomological and
ecological time-series. This is done by examining the cross-correlation function
for daily averages of temperature, relative humidity and wind-speed and the
interval lagged cross-correlation for precipitation. Accumulated precipitation is
expected to increase the total available surface of breeding sites for the mosquito
vector and directly impact the specific carrying capacity for the study site. Thus,
accumulated precipitation over a certain period might be a more relevant driver
of vector populations, rather than a daily precipitation series.

The difference in methods for precipitation is due to the fact that the un-
derlying mechanism in which precipitation has an influence on breeding site
dynamics is significantly different.

3.2.1 Stationarity

A time-series is considered stationary if its joint probability distribution does
not change with time. For this to be achieved the series has to satisfy the
following conditions: (i) a constant mean value over time, i.e. no trend; (ii)
constant variance over time; (iv) no seasonal components. In other words, the
statistical properties of the time-series stay more or less constant in time.

It is important to consider the stationarity because many methods in time-
series analysis rely on it. For example, in spectral analysis, the fourier decompo-
sition performed to examine the frequencies present in the signal assumes that
the signal can be expressed by a family of perpetual sine waves with fixed fre-
quency for the whole duration of the series (i.e. for all sampling intervals); this
is satisfied in principal for a stationary time-series; however can give erroneous
values for a non-stationary one.

Stationarity can be inferred visually by examining the plots of the autocor-
relation (ACF) and partial autocorrelation (PCF) function of the series, a time-
series with high serial correlation is not stationary. Moreover, several statistical
test have been developed to analyse the degree of stationarity. The Ljung-Box
test examines the ACF between successive lags under the null hypothesis of in-
dependence. Other often used statistics are the Kwiatkowski-Phillips-Schmidt-
Shin (KPSS) and the Augmented Dickey-Fuller (ADF) t-statistic test that look
for the unit root of a series indicating trend.

3.2.2 Wavelet analysis

Wavelet analysis is a powerful method for analysing the spectral character-
istics of non-stationary time series, which is a property most biological time
series share [40, 43, 114]. The time scale localisation, makes the Wavelet ap-
proach especially attractive for the analysis of non-stationary VBD and other
non-stationary systems [114, 115]. Since methods such as the simple Fourier
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transform, due to the assumption and requirement of stationary, are largely un-
suitable for these types of applications [41]; i.e. it provides frequency resolution
with no temporal resolution. The continuous Wavelet analysis was developed in
the 1980s [116] following the invention of the Windowed Fourier Decomposition
(WFD), which replaces the Fourier transform’s sinusoidal wave by the product
of a sinusoid and a window which is localized in time, [117, 118]. The WFD
is not as efficient as the Wavelet transform due to the utilization of constant
frequency-scale resolution across the entire signal which results in poor time res-
olution for certain parts of the interval [119]. This can cause the high frequency
transients, present in non-linear systems, to be poorly represented in the power
spectrum.

Wavelet analysis performs a decomposition of the original time series into
smaller intervals which can be considered as localized in time and space and
thus allows the analysis of the evolution of the local variation of power in the
entire signal [119–121]. It is constructed in a way that maximizes time and
frequency resolution in the transform [119,122].

Wavelet analysis has had a wide range of applications across many disciplines
including ENSO analysis [40, 119, 123–125], the analysis of atmospheric cold
fronts and tropical convection [126,127], wave dispersion [120,128] and coherent
structures in turbulent flows [129]. In entomological studies it was applied in
the analysis of significant periods and coherency in VBD models [40,41].

Moreover Torrance et al. [119], indicate that the following factors should be
considered when choosing the mother function: (i) Orthogonality; (ii) Width;
(iii) Whether the function is complex or real; (iv) Shape. Common nonorthog-
onal wavelet function are Morlet, Paul and DOG (als knows as the “Mexican
hat wavelet” for m =2) and on the other side the orthogonal wavelets are for
example the Haar and Daubechies wavelet.

The Morlet wavelet function has the shape of a standard plane wave modu-
lated by a Gaussian [116,130].

Ψ(t) = π−
1
4 · eiωte− t

2

2 (3.1)

Where ω is the angular frequency [ rads ] . This is also known as the “mother”
wavelet. Since mother has to be localized in time and space with a vanishing
mean [119, 129], the corresponding wavelet transform for a time series xn (for
n = 0. . . N − 1) with a constant time step ∆t is defined as a convolution of
the series of “wavelet daughters”. Convolution is a mathematical technique
common to Digital Signal Processing in which a series of signals are combined
into a group response.

Ψt(n, s) =

N−1∑
n′=0

xn ·Ψ∗m ·
[

(n− n′) ·∆t
s

]
(3.2)

Where Ψ∗m is the complex conjugate of the mother wavelet and s is the
wavelet scale. In order to make the wavelets directly comparable Ψm has to be
normalized.

The wavelet power spectrum is defined as the square of the modulus of the
transform (Ψt) [119,120,131].

P (n, s) =
1

s
· |Ψt(n, s)|2 (3.3)
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Phase shift and structural breaks in the signal can be examined by analysing
the phase of the Wavelet transform which is given by the following equation
[130]:

ψ(n, s) = arctan

(
Im(Ψt(n, s))

Re(Ψt(n, s))

)
(3.4)

Since the Fourier transform used within Morlet assumes that the data is
periodic, and on the other hand the observed time-series is finite, errors will
exist at the tails of the wavelet periodogram [116, 119, 120]. The data is often
padded with zeros to decrease the edge effect; however, this also has an influence
on the amplitude near the padding since zero values are added to the daughter
wavelet. This depends on the chosen scale and is expressed in the metric known
as e-folding time. This value describes the time needed for the wavelet power
at the edge to drop by a e−2 [119]. The region defined by this metric is called
the Cone of Influence (COI), and simply indicates that in the region outside the
COI the edge effects can be disregarded as having no influence on the wavelet
power.

The significance levels for the wavelet power spectrum (null hypothesis of
“no periodicity”) are calculated against a reference/background spectrum. The
common practice is to use either a red or white noise Fourier or the standard
Gaussian white noise spectrum [119] and the significant areas are calculated at
the 10% level [130].

Two time series covering the same period can be compared using the cross-
wavelet spectrum. The cross-wavelet transform of x1

n and x2
n decomposes the

Fourier co-spectra and quadrature-spectra in the time-frequency domain [130]:

Ψx1,x2
t (n, s) =

1

s
·Ψx1

t (n, s) ·Ψx2∗
t (n, s) (3.5)

The cross-wavelet power is defined as:

P x1,x2(n, s) =
∣∣∣Ψx1,x2

t (n, s)
∣∣∣ (3.6)

3.2.3 Lagged cross correlation

The Cross-correlation function was used to identify lagged correlation between
the meteorological and entomological time-series. Since the CCF function as-
sumes stationarity the data first need to be transformed. The common methods
for balancing an unstationary time series are: (i) first order differencing for
linear trend; (ii) log transformation for non-linear trend; (iii) log or seasonal
differencing for seasonality; (iv) lastly, a comprehensive method that is often
employed in meteorology, calculating the anomaly field.

The first order differenced time-series is a new series with N-1 (where N is
the total number of values in the original series) values defined as:

x′t = xt − xt−1 (3.7)

In some cases, to obtain stationarity, the order of differencing needs to be
increased. Moreover, if the series has a strong seasonal component, seasonal
differencing should be applied which is defined as x

′

t = xt−xt,s (s is the number
of seasons) [132]. For instance, the elements of the second order differenced time
series with seasonal differencing would be calculated as:
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x
′′

t = x
′

t − x
′

t−1 = xt − xt−1 − xt,s + xt,s−1 (3.8)

Potential statistical tests to determine the order of differencing needed for
stationarity include the unit root tests such as the Phillips-Prons test, the
Kwiatkowski-Phillips-Schimdt-Shin (KPSS) test, the ADF-GLS test or the Zivot-
Andrews test [132].

For the CCF and Cross Correlation Maps (CCM) analysis it is important
that the differenced time series is still interpretable in the context of the original
series, and thus higher-order differencing is discouraged [132].

The anomaly field is calculated by subtracting the mean value over a time
interval from the data [133]. In our analysis we subtract the monthly climatol-
ogy from the daily time-series which effectively removes the annual cycle and
produces a stationary series.

In the second step the lagged CCF function is calculated for the stationary
time-series. The lagged autocovariance function of a series {Xt} for lag ∆t is
defined as:

γX(∆t) = Cov(Xt+∆t, Xt) = E[(Xt+∆t − µt+∆t)(Xt − µt)] (3.9)

Where µt is the mean. And then the lagged autocorrelation function (ACF)
is defined as:

ρX(∆t) =
γX(∆t)√
γX(0)2

= Corr(Xt+∆t, Xt) (3.10)

Analogously, the lagged cross variance between series {Xt, Yt} with means
µX(t) and µY (t) is defined as:

γX,Y (t+ ∆t) = E[(Yt+∆t − µyt+∆t)(Xt − µxt )] (3.11)

And finally, the lagged cross correlation function (CCF) is:

ρX,Y (∆t) =
γXY (∆t)√
γY (0)γX(0)

= Corr(Yt+∆t, Xt) (3.12)

3.2.4 Interval-lagged cross correlation

Interval lagged cross correlation maps (CCM) are used to identify the effect of
meteorological variables accumulated or averaged over a time interval on the
daily abundance of the vector. They are defined by the following function [113]:

cj,k = Corr(Ai,
∑

Xi−j,i−k) (3.13)

Ai is the vector abundance at day i, and the second term represent the accu-
mulated value of the meteorological variable (in our case precipitation, similarly
temperature would be averaged and not summed over the interval) for the time
interval starting at i-j and ending at i-k, where k is greater or equal to j. The
diagonal displays correlation coefficients corresponding to the CCF.
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3.3 Climatic suitability assessment study

A Multi-Critera Decision Analysis model (MCDA) was developed for the anal-
ysis of the climatic suitability for the establishment and annual activity of Ae.
aegypti (Guadeloupe) and Cx. pipiens (in Serbia and Egypt) employing sigma
fuzzy membership functions. The membership function is defined as a sigma
function that governs the mapping of each value of the environmental variable
to a membership value corresponding to a specific suitability value. It is a
continuous, smooth function defined over the interval delineated by empirically
determined minimum and maximum threshold values (Tc, Sc).

The model combines this set of sigma function with standard climate nor-
mals for the derived climatic parameters for temperature and precipitation.
The membership functions were constructed based on empirical criteria and
expert advice for the selected climatological variables: (i) mean annual temper-
ature (Ta); (ii) total annual precipitation (Ha); (iii) mean January temperature
(Tjan); (iv) mean June-July-August (JJA) temperature (Tjja); and (v) annual
precipitation frequency (Hν) i.e. the total number of days with precipitation >
1 mm. The normals were computed as for the 1981—2010 reference climatology.

This process-based mechanistic approach was analogous to that followed by
ECDC [19] and explored in [16,18,22]. The climate normals listed in Table 3.3
are used as input for the process-based MCDA model. Tc and Sc in Table 3.3
are the critical threshold and saturation values which define the shape of the
sigma function. The corresponding sigma functions are shown in Figure 3.5.

Table 3.3: MCDA saturation and threshold values for the climatic parameters:
Ta (mean annual temperature), Ha (total annual precipitation), Tjan (Mean
January temperature), Tjja (Mean summer temperature), Hv (Frequency of
rainy days); AeA - Ae. aegypti, CxP - Culex pipiens.

Parameter Ta Ha Tjan Tjja Hv NTL
Species AeAi CxP AeA CxP AeA CxP AeA CxP AeA CxP AeA CxP
Tc 14 11 200 0 10 - 16,40 11,35 60 36 20 10
Sc 21 14 800 600 16 - 19,33 16,27 120 96 40 30

The sigma functions have the following general form:

σs =
a1

1 + exp (a2 · (x− a3))
+ a4 (3.14)

where:
a2 = 4/(Tc − Sc) (3.15)

and

a3 = (Tc + Sc)/2 (3.16)

x is the value of the climatic variable from Table 3.3 with the corresponding
Tc and Sc. The final suitability was calculated as

σ =

(
n∏
s=1

σωss

)1/
n∑
s=1

ωs
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This value is standardized to a 0–100 scale (a1 = 100, a4 = 0). The final MCDA
index is interpreted through the following categories: (i) Not suitable (0.0 –
0.25); (ii) Low suitability (0.25 –0.5); (iii) Medium suitability (0.5 – 0.75); (iv)
High suitability (0.75 –1.0).

The situation for Cx. pipiens and breeding site availability is complicated
and quite different between Egypt and Serbia (governed by the Ha and Hν pa-
rameters in Table 3.3). Based on the local characteristics of the study area, we
selected two additional values to represent different mechanisms that can have
an influence on the density of available vector breeding sites: night-time light
(NTL) and the distance to nearest water bodies. In Egypt, in the oases where
the total annual precipitation is often 0 the mosquitoes still have quite enough
breeding sites generated by the water pumps, wells and irrigation canals. Hence,
the geometric mean was corrected for the cases where Ha is close to zero but
Night-Time-Light (NTL) > 10. The Ha sigma is omitted from the geometric
mean and we consider that there is enough water to sustain the mosquito pop-
ulation. For Serbia, there is always enough precipitation (in terms of frequency
and quantity), however the bigger source of breeding sites are the flood areas
around the bigger rivers (Danube, Drina and Morava) and temporary water
bodies generated by precipitation and flood events.

Figure 3.5: Suitability functions following Table 3.3 for Ae. aegypti (black) and
Cx. pipiens (blue).

For calculating the proximity to inland water for Serbia, in a first step the
country-level vector data from DCW [134] was rasterized. In second step a
proximity algorithm was employed to create a 30 arc second proximity map
based on the pixel-to-pixel distance to the nearest inland water cell.

The NTL data are cloud-free composites from the NASA’s Earth Observing
System (EOS) satellites [135] with 30 arc second resolution, spanning the globe
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from -65 ◦ to 75 ◦ latitudes and longitudes from -180 ◦ to 180 ◦. The data
is created using all currently available archived DMPS-OLS smooth resolution
night-time lights time series. A country mask was applied to determine the
country-level rasters.

For the creation of a gridded dataset for all input climatological parameters
the data from the native grid was interpolated using a Co-Kriging spatial inter-
polation algorithm with the SRTM30 digital elevation raster with 30 arc second
resolution as the corollary variable.

A sensitivity analysis is conducted to examine the dependence of the MCDA
model output on the input climatic parameters. The techniques focus on param-
eter space exploration following the methodology proposed by [136]. In a first
step the input climatic parameter and their probability density functions are
specified. In a second step the Latin Hypercube Sampling algorithm [136, 137]
is used to create a hypercube of MCDA outputs defined for the specified pa-
rameter space. The hypercube size is estimated using the Symmetric Blest
Measure of Agreement (SMBA) [136, 138] which takes the values from -1 to 1,
indicating total disagreement between runs and total complete agreement be-
tween the runs. The sample size is chosen so that the LHS outputs retain strong
agreement (>0.7) between runs forced with a lower or higher sample size to the
chosen one [136]. In a final step the empirical cumulative distribution function
(ECDF), and partial rank correlation coefficient (PRCC) are examined. The
ECDF describes the distribution of the MCDA outputs and can highlight areas
of high and low probability for the given parameter space. The PRCC illus-
trates the one factor at a time correlation between each input parameter on
the MCDA output, sampled from the defined parameter space, with the linear
effect of other parameters removed.

3.4 Modelling the population dynamics

A predictive model of vector population dynamics for Cx. pipiens and Ae.
aegypti was developed following the framework proposed by [68,69,139].

The model is a system of 10 coupled, nonlinear, ordinary differential equa-
tions (ODE) with each dependent variable representing a stage in the mosquito
life cycle: Egg (E), Larva (L), Pupa (P), Emerging Adults (Aem), Nulliparous
Bloodseeking Adults (Ab1), Nulliparous Gestating Adults (Ag1), Nulliparous
Ovipositing Adults (Ao1), Parous Bloodseeking Adults (Ab2), Parous Gestat-
ing Adults (Ag2)and Parous Ovipositing Adults(Ao2). The prognostic variables
represent population densities for each stage.

dE

dt
= γAo(β1Ao1 + β2Ao2)− (µE + fE)E (3.17a)

dL

dt
= fEE − (mL(1 +

L

κL
) + fL)L (3.17b)

dP

dt
= fLL− (mP + fP )P (3.17c)

dAem
dt

= fPPσe
−µem(1+ P

κP
) − (mA + γAem)Aem (3.17d)
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dAb1
dt

= γemAem − (mA + µr + γAb)Ab1 (3.17e)

dAg1
dt

= γAbAb1 − (mA + fAg)Ag1 (3.17f)

dAo1
dt

= fAgAg1 − (mA + µr + γAo)Ao1 (3.17g)

dAb2
dt

= γAo(Ao1 +Ao2)− (mA + µr + γAb)Ab2 (3.17h)

dAg2
dt

= γAbAb2 − (mA + fAg)Ag2 (3.17i)

dAo2
dt

= fAgAg2 − (mA + µr + γAo)Ao2 (3.17j)

The model tracks the number of individuals in each class. Initially the
compartments are populated with an initial number of individuals in each stage.
The transition between stages, as well as survival and mortality rate are forced
by the environmental temperature and depend on the total simulated density
of individuals in the respective stage. Following standard notation γ is the
development rate and µ is the mortality rate. The parameter functions for
Culex. pipiens and Aedes aegypti are given in Table 3.4.

Figure 3.6: Model scheme

All stages are non-negative. Equation (3.17b) and Equation (3.17d) contain
nonlinear terms. The parameters are provided in the table below [65, 86, 140–
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150]. The information for Ae. aegypti was collected by a systematic literature
review focused on peer-reviewed research and review papers describing dynamic
mathematical models for Ae. aegypti and Ae. albopictus dynamics [24].

Table 3.4: Overview of model parameters.
Parameter Description Aedes Culex Unit
γAem Development rate of emerging adults 0.4 1.143 days−1

γAb Development rate of bloodseeking adults 0.222 0.885 days−1

γAo Ovipositing adult development rate 0.222 2 days−1

fE(> 0) Egg development rate f(T) 1 0.16 · (e0.105·(T−10) − e0.105·(α−10)− α−T
5.007 ) ? days−1

fP Pupa development rate f(T) 0.14 · (e0.162(T−10) − e0.162(35−10)− 35−T
5.007 ) 0.021 · (e0.162(T−10) − e0.162·(α−10)− α−T

5.007 ) ? days−1

fL Larva development rate f(T) fP
1.65

fp
4 days−1

fAg(> 0) Development rate of gestating adults f(T) fAg =
T−TAg
TDDAg

= T−10
78 fAg =

T−TAg
TDDAg

= T−9.8
64.4 days−1

mE Egg mortality rate f(T) mE = µE mE = µE days−1

mL Larval mortality rate f(T) e−T/2 + µL e−T/2 + µL days−1

mP Pupa mortality rate f(T) e−T/2 + µP e−T/2 + µP days−1

mA(> µA) Mortality rate of Abf(T) 0.135‡ −0.005941 + 0.002965 · T days−1

µE Minimum egg mortality rate 0 0.0262 days−1

µL Minimum larval mortality rate 0.0367 0.0304 days−1

µP Minimum pupa mortality rate 0.12 0.0146 days−1

µem Mortality rate during emergence 0.1 0.1 days−1

µr Mortality rate during bloodseeking 0.08 0.08 days−1

µA Minimum adult mortality rate 0.07 1
43 days−1

κL Carrying capacity for larvae 8 · 1010 8 · 108 nominal
κP Carrying capacity for pupae 108 107 nominal
σ Sex ratio at emergence 0.5 0.5 -
β Number of eggs per Ao β1 = 160(np)β2 = 80(p) ∗ β1 = 141(np)β2 = 80(p) ∗ -

? α = 35◦C (Petrovaradin), α = 38◦C (Bahariya)
‡ Unpublished [24]
∗ np = nulliparous, p = parous

3.4.1 Stability analysis

In a first step, we will look if the system possesses an equilibrium state Xeq =
(E∗, L∗, P ∗, A∗em, A

∗
b1, A

∗
g1, A

∗
o1, A

∗
b2, A

∗
g2, A

∗
o2) for which Fi(Xeq) = 0. Next, it is

important to determine whether this solution is stable or unstable. Conceptually
this means looking at the way the system reacts to small perturbation around
the equilibrium state. If slight changes in the system state decays back to the
equilibrium, the system is stable. On the other hand, if small perturbations
grow with time the system is unstable.

The perturbation vector can be defined as X′ = X(t)−Xeq(t), and ∂X ′/∂t =
F (Xeq) +F (X +X′). Expanding F (X +X′) around Xeq and eliminating the
small perturbation terms we get the general equation for the linearisation of a
system of differential equations around an equilibrium point:

dX

dt
= ĴX (3.18)

where J is the Jacobian matrix evaluated at the equilibrium point, with elements

Ĵi,j =
∂fi
∂xj

i, j = 1, 2, ...10 (3.19)

The eigenvalues of the characteristic equation det
[
Ĵ − λÎ

]
describe the na-

ture of stability of the equilibrium point.
Several classes of stability can be distinguished. In the case when all eigen-

values have negative real parts, the solution decays exponentially and the state
is considered to be asymptotically stable. If at least one eigenvalue has a posi-
tive real part, the solution is unstable. In case one or more eigenvalues have a
vanishing real part, the stability is undetermined.
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3.4.2 Transient and modal analysis

There are two methods that are commonly used for analysing the behaviour of
dynamical systems: : (i) Transient dynamics analysis; and (ii) Modal analysis.
The transient dynamics method looks at the initial behaviour of the system
under specific time-dependent constrains for different stability regimes. Modal
analysis on the other hand involves determining the inherent modal parameters
of the dynamical system such as the characteristic period/frequency, damping
coefficient and associated oscillatory modes. The latter is employed here by
examining the eigenvectors and eigenvalues for the system for a specific forcing
temperature (i.e. constant parameters).

3.4.3 Model Verification

3.4.3.1 Standard first and second-order moment verification

We have used the standard first-order moment verification metrics such as bias
and mean absolute error and the second order moment verification of root mean
square error to evaluate the continuous model error. The bias or mean system-
atic error is calculated as follows [151]:

B =
1

N

N∑
i=1

(pi–oi) (3.20)

Where pi is the model prediction and oi is the observed value at time i. The
Mean Absolute error (MAE) also known as the mean systematic error is given
by the following equation [151]:

MAE =
1

N

N∑
i=1

|pi–oi| (3.21)

And finally the root mean square error (RMSE) is defined as follows:

RMSE =

√√√√ 1

N

N∑
i=1

(pi–oi)2 (3.22)

The uncertainty analysis of the systematic error (B) was performed following
the GUM standard [152]. The combined standard uncertainty uc(B) is obtained
from the first-order uncertainty propagation equation:

u2
c(ax± by) = a2u2(x) + b2u2(y)± 2ab · u(x, y)

= a2u2(x) + b2u2(y)± 2ab · r(x, y) · u(x) · u(y)
(3.23)

with the sensitivity coefficients, a = b = 1.

u2
c(B) = u2(s) + u2(o) + 2 · u(s) · u(o) · r(s, o) (3.24)

where u(s, o) = r(s, o) · u(s) · u(o) is the covariances for all s-o pairs; u(s)
and u(o) are the standard simulated and observed uncertainties, which is usually
calculated as the standard deviation of the observed and simulated series; r(s, o)
is the Pearson correlation coefficient.
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The expanded uncertainty, which delineates the uncertainty interval for the
systematic error, is defined as U(B) = k · uc(B), where k is the coverage factor.

Initially, D’Agostino and Pearson’s statistical normality tests [153, 154] is
used to evaluate if the error distribution satisfies the conditions for a normal
distribution. The convergence factor (95% CI) for a normal distribution has
the value k = 1.96. If the error distribution is not normal, the convergence
factor can be estimated from the Chebyshev inequality [155]. According to the
inequality at least 1 − 1/k2 of the data falls within kσ of the mean (k > 1),
following P (|X − µ| ≥ kσ ≤ 1/k2. For the 95% CI, 1 − 1/k2 = 0.95, and
k=4.472.

3.4.3.2 Contingency performance measures

In this section, we examined the verification measures based on the contingency
table and the related performance measures for dichotomous variables. A veri-
fication measure is defined as a function of the simulation, the observations, or
their association but does not quantify the similarity or difference between these
two values such as the joint and marginal probabilities [151,156]. On the other
hand, performance measures examine the correspondence between the simulated
values and observation and include verification measures such as the conditional
probabilities, accuracy, frequency bias and others which will be discussed later
in this chapter [151,156].

To move from continuous scalar such as vector population to a binary vari-
able we can introduced cut-off thresholds to the observed data. This is use-
ful for assessing if significant peaks in the population are forecasted correctly.
The thresholds are employed to construct a contingency table of observed and
simulated presence/absence events and generate a set of verification metrics.
The Receiver Operating Characteristic (ROC) function can be used to reverse-
estimate the cut-off threshold for a dataset by looking at the threshold for which
the best trade-off between sensitivity and specificity is achieved.

Table 3.5: Schematic representation of the contingency table, number of ob-
servations in each category (a, b, c, d) and corresponding joint and marginal
probabilities p - simulated, o - observed.

Observed

Predicted

Yes No Total

Yes
a b a+ b
p(p = 1, o = 1) p(p = 1, o = 0) p(p = 1)

No
c d c+ d
p(p = 0, o = 1) p(p = 0, o = 0) p(p = 0)

Total
a+ c bc+ d a+ b+ c+ d = n
p(o = 1) p(o = 0) 1.0

The area under the Receiver Operating Characteristic curve (AUC) is used
as another way of analysing the accuracy of the forecast system and is presented
in Table 1. AUC is a measure of how well a parameter can distinguish between
two different event outcomes. A perfect system would have AUC=1 and a no-
skill system would have AUC=0.5. The ROC plots the Hit Rate or Sensitivity
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Table 3.6: Overview of performance measures.
Verification metrics Definition Range

Accuracy (PC) a+d
n [0, 1]

Odds Ratio (OR) a·d
c·b [0,∞]

OR Skill Score (ORSS) a·d–c·b
a·d+c·b [−1, 1]

Frequency Bias (FB) a+b
a+c [0,∞]

( a
a+c ) against the False Alarm Rate or 1-Specificity ( b

b+d ) for an ensemble of
threshold values [1-0].

And finally, we look at the decomposition of the Brier score and the relia-
bility diagram which plots the observed frequency against a range of prediction
probabilities (K) [156]:

BS = REL−RES + UNC (3.25)

The ROC is conditioned on the variance of the observations, so this can
be misleading when dealing with mosquito trap data which has very high vari-
ance. Field sampling uncertainties can be high, and site heterogeneity presents
a significant factor in measurement uncertainty. It is very difficult to correctly
estimate the size of uncertainty that is a result of field sampling of this type.



Chapter 4

Analysis of observed
time-series

4.1 Time series analysis

The observations of the vector population for each location are shown in Fig-
ure 4.1. The Petrovaradin series consists of 700 data points collected in 2016–
2017. The time-series has a pronounced seasonality with the annual population
maximum for 2016 and 2017 occurring in July (Figure 4.1 a). The Bahariya
series consists of 640 data points for 2017–2018 and does not have such a pro-
nounced seasonal character. The period maximum is achieved in July for 2017
and February for 2018. The summary statistics of the observed catches and
site-specific considerations of each time series are discussed in detail in Ap-
pendix A.3.

Figure 4.1: Raw time-series for Culex pipiens [count] for (a) Petrovaradin 2016
& 2017; and (b) Bahariya for 2017 & 2018.

Due to the irregularity of the time series and difference in frequency and
trapping effort for each site, the Guadeloupe longitudinal data were insufficient
for a comprehensive time-series analysis and are not included in this chapter,
but are subsequently used for model validation. Unlike the daily time-series for
Bahariya and Petrovaradin, the Guadeloupe data was collected across multiple
locations with monthly and weekly frequencies (detailed in Appendix A.3).

55
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4.1.1 Stationarity

The temporal autocorrelation and partial autocorrelation plots for the Petrovaradin
and Bahariya series are shown in Figure 4.2. The seasonality of the Petrovaradin
time-series rules out stationarity and this is also reflected in the Autocorrela-
tion Function (ACF, Figure 4.2a,d), with higher correlation coefficients which
do not diminish quickly and exhibit serial correlation. For comparison, the ACF
function for Gaussian noise (N(0,1), for 600 point) is shown in Figure 4.3. For
a stochastic stationary series the ACF drops rapidly after the first lag and the
correlation randomly alternates between positive and negative values with no
seasonal pattern.

For Bahariya, apart from the change in the mean-level of vector count from
2017 to 2018 (Figure 4.1), the non-stationarity is not so apparent. Cyclical
peaks are observed in the series; however, in biological time-series these peaks
can be caused not only by the generational cycles but by the carrying capacity
of the total available breeding sites and inter-species competition which result
in aperiodic peaks. The Ljung-Box statistic was calculated to confirm nonsta-
tionarity: X2 = 463.53, p < .0001 for Bahariya; and X2= 369.09, p < .0001 for
Petrovaradin.

Figure 4.2: Autocorrelation function (ACF) and Partial ACF (PACF) of original
abundance data for the first 60 lags [days] for Bahariya (top) and Petrovaradin
(bottom).
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Figure 4.3: Typical autocorrelation function (a); and partial autocorrelation
function (b) for white noise.

4.1.2 Wavelet analysis

Both entomological series display periods of transient periodicity as shown on
the wavelet power spectrum in Figure 4.4. The time-frequency discrepancy, i.e.
the variance of the dominant frequencies with regards to the sampling period (x-
axis), is more pronounced for Petrovaradin, reflecting the expected seasonality.

For Bahariya, a higher number of periodic components appears in 2017 than
2018 (Figure 4.4b, e). The lack of significant regions with high power for the
second half of 2018 point to a more stochastic distribution of the observed vector
population and a lack of periodicity in the series.

The annual periodic component is present for both locations. However, while
for Petrovaradin it is also the dominant period, for Bahariya the dominant peak
features at higher frequencies.

The periods with the highest power during the summer months in Petrovaradin
are the 10, 23, 187 and 314-day periods; and the 187 and 314-day periods cor-
responding to the autumn end-of-activity for the vector.

For Bahariya, there is no obvious seasonal pattern; however, the most signif-
icant periods identified for the: (i) High-temperature summer regime; (ii) The
end of summer period with milder temperatures, (iii) And the low-temperature
regime corresponding to the coldest winter months are respectively: (i) 20, 28,
45, 85-day period; (ii) 69 and 90-day period and (iii) the 314 period.

The global significance of the wavelet power-spectrum is examined through
the average wavelet spectrum (Figure 4.4c,f). This would be identical to the
Fourier spectrum periodogram of the non-stationary series, which would ignore
the time evolution shown with the wavelet power spectrum. The average spec-
trum shows significant power at 3, 1–20, 42, 87, 147 and 337 days for Bahariya;
and 2, 8, 13 and 20, 119, 181 and 337 days for Petrovaradin.

This analysis shows that the dominant frequencies change with the time-
evolution of the system for both locations. In Chapter 7 these periods are used
to validate the ODE population dynamics model by comparing the characteristic
periods of the observed time series and simulated time series at different points
within the observational interval.
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Figure 4.4: Wavelet power spectra (a ,c); and Average wavelet spectra (b,d)
for Guadeloupe (top, 2017-2018) and Petrovaradin (bottom, 2016–2017); The
colors scale indicates the power of the wavelet power spectrum from white (low
power) to dark grey (high power), the shaded area indicates the cone of influence
that surround the central region which is not influenced by the edge effect, the
white line outlines areas with significant periodicity.

4.1.3 Cross correlation

In this chapter the correlation, lagged cross-correlation and lagged interval cross-
correlation between the meteorological and entomological time-series is exam-
ined. When looking at the simple correlation for non-lagged data it is impor-
tant to take into consideration that the association between the meteorology
and entomology for parameters measured within the same day, apart from the
population density, also reflects the localised activity of the vector for that day;
i.e. the probability that the vector would search for a meal under these meteo-
rological conditions and the trapping probability. This is most obvious for the
wind speed parameter; since increased wind speed would prevent the mosquito
from entering the trap and would hinder mosquito flight and activity. Thus, de-
pending on the strength of the immediate effect of the underlying mechanism,
the correlation analysis can reflect abundance as well as mosquito activity for
the given day and environmental conditions; the results should be interpreted
with this in mind.

The Pearson correlation coefficient (r) is a measure of the linear relationship
between two variables. Linear as well as non-linear monotonous associations
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can, on the other hand, be analysed with the Spearman rank correlation (ρ).
The Pearson coefficient r = 1 represent the perfect linear agreement, while the
Spearman coefficient ρ = 1 represent the perfect monotonous agreement between
the variables (linear and nonlinear). The rank coefficient is less sensitive to
outliers. The time-series were made stationary by removing the nonrandom,
seasonal and trend, components.

The Spearman correlation was higher for almost all examined combinations
indicating that the association between the meteorological and entomological
series is predominantly non-linear.

The highest association was observed for the correlation between minimum
daily temperature for Petrovaradin (ρ = 0.63, p < 2.2e − 16) and for mean
wind speed (ρ = −0.36, p = 1.2e − 10)) for Bahariya. On the other hand, the
correlation with wind speed is very weak for Petrovaradin (ρ < 0.20).

In Tables 4.1 and 4.2 we see that RH has a very weak (ρ ∧ r ≤ 0.2)
association with the observed population in both Petrovaradin and Bahariya.
Temperature is positively correlated with a weak correlation for Bahariya (0.20
< ρ ≤ 0.40); and a moderate and strong (0.40 < ρ ∧ r ≤ .80) correlation for
Petrovaradin.

It is interesting to observe that, for Bahariya, the vector series has a negative
correlation (ρ = −0.26, p = 3.3e-06) with the diurnal range for temperature,
while there is almost no association observed for Petrovaradin (ρ = 0.11, p =
0.04)).

Table 4.1: Correlation between entomological and meteorological time series for
Petrovaradin.

Variable Description Pearson Spearman
Tm Mean temperature r = 0.46 (p < 2.2e-16) ρ = 0.61 (p < 2.2e-16)
Tmin Minimum temperature r = 0.47 (p < 2.2e-16) ρ = 0.63 (p < 2.2e-16)
Tmax Maximum temperature r = 0.44 (p < 2.2e-16) ρ = 0.56 (p<2.2e-16)
RHm Mean relative humidity r = -0.10 (p = 0.06) ρ = -0.12 (p = 0.02)
RHmin Minimum relative humidity r = -0.12 (p = 0.02) ρ = -0.13 (p = 0.02)
RHmax Maximum relative humidity r = -0.11 (p = 0.04) ρ = -0.16 (p=2.76e-03)
Vm Mean wind speed r = 0.06 (p = 0.26) ρ = 0.09 (p = 0.1)
∆diT Diurnal temperature range r = 0.02 (p = 0.71) ρ = 0.11 (p = 0.04)
∆diRH Diurnal relative humidity range r = 0.07 (p = 0.19) ρ = 0.10 (p = 0.06)

Moreover, to examine the response to high-temperatures we looked at the
correlation between total hours above 35 ◦C and the vector population. Tem-
peratures ≥ 35 ◦C are reported unstable for the survival of the vector. However,
a positive correlation is observed for Bahariya (ρ = 0.24, p = 4.84e-04).

The effect of meteorology on vector abundance is rarely instantaneous and
the correlation should be considered with the appropriate lags. To account for
this CCF and CCM applied to time interval lagged data are analysed.

The cross correlation of the observed meteorological and entomological time-
series is examined below. The x-axis shows the lag in number of days and the
significance level (CI 99%) is depicted by the blue dotted line.

Only the positive lags, i.e. the correlation of lagged meteorology on vector
abundance, were considered. Negative correlations would represent the hypo-
thetical influence of lagged mosquito data on the meteorology which is under-
standably not realistic.
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Table 4.2: Correlation between entomological and meteorological time series for
Bahariya.

Variable Description Pearson Spearman
Tm Mean temperature r = 0.19 (p = 6.76e-04) ρ = 0.22 (p = 8.30e-05)
Tmin Minimum temperature r = 0.20 (p = 3.47 E-04) ρ = 0.24 (p = 1.76e-05)
Tmax Maximum temperature r = 0.16 (p = 4.21e-03) ρ = 0.21 (p = 1.72e-04)
RHm Mean relative humidity r = 0.10 (p = 0.07) ρ = 0.11 (p = 0.05)
RHmin Minimum relative humidity r = -0.02 (p = 0.15) ρ = 0.09 (p = 0.11)
RHmax Maximum relative humidity r = -0.05 (p = 0.37) ρ = 0.07 (p = 0.21)
Vm Mean wind speed r = - 0.28 (p = 5.47e-07) ρ = -0.36 (p = 1.19e-10)
∆diT Diurnal temperature range r = -0.19 (p = 7.66e-4) ρ = -0.26 (p = 3.30e-06)
∆diRH Diurnal relative humidity range r = -0.13 (p = 0.02) ρ = -0.15 (p = 7.30e-03)

4.1.3.1 Bahariya

The CCF graphs for Bahariya are shown in Figure 4.5, with the lag expressed
in days. The 0-day lagged mean and maximum temperature were positively
associated with vector abundance. However the 8, 9 and 10-day lagged aver-
age and maximum daily temperature were negatively correlated with the daily
abundance of Cx. pipiens, with the maximum occurring for the 9-day lag (Tavg:
ρ = -0.21, p = 1.72e-4; Tmax: ρ = -0.29 p = 2.13e-07). Apart from the 0-day
lag, the minimum daily temperature was not significantly correlated with the
vector abundance. None of the relative humidity parameters had a significant
association with vector abundance (p > 0.10).

The wind is negatively correlated with abundance, with the highest associ-
ation observed for the 0-day lag (ρ = -0.36, p = 1.19e-10).

Furthermore, the relationship with the observed diurnal range for tempera-
ture and relative humidity was examined. We see that diurnal range for both
variables for Bahariya has a predominantly negative correlation with the vec-
tor abundance, with the highest correlation seen for the 0-day lagged value for
temperature (ρ = -0.26, p = 3.3e-05) and the 0-day lag for relative humidity (ρ
= -0.15, p = 7.3e-03).
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Figure 4.5: CCF plots for the first 25 lags [days] for Bahariya

4.1.3.2 Petrovaradin

For Petrovaradin the association with temperature is predominantly positive
with the highest correlation observed for the 0-day lags and the 6–8 lagged
values (Tavg: ρ = 0.20, p = 1.8e-03; Tmax: ρ =0.25, p = 3.27e-06; Tmin: ρ =
0.18, p = 7.73e-04) and 13–15-day lags (Tavg: ρ = 0.22, p = 3.86e-05; Tmax: ρ
= 0.24, p =6.26e-06; Tmin: ρ= 0.13, p = 0.01) . The minimum temperature had
the highest association for the 0-day lag, however the correlation with average
and maximum temperature was stronger for the longer lags.

Relative humidity had a weak negative correlation at the 0-day, but was not
significantly correlated with vector abundance at higher lags. The correlation
with the avg. daily wind speed was very weak and appeared to be randomly
distributed amongst positive and negative correlations (p > 0.06).

We see that the cross-correlation function corresponding to the temperature
and relative humidity diurnal range has a completely different structure from
the Bahariya CCFs. There is a weak positive correlation for the 0-day lag, but
apart from that there is no significant correlation with vector abundance (p >
0.19).
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Figure 4.6: CCF plots for the first 25 lags [days] for Petrovaradin

4.1.4 Interval lagged cross correlation

Cross-correlation with precipitation was only examined for the Petrovaradin
site, since there was no observed precipitation for Bahariya (single observed
event, < 1 mm).

The effect of precipitation, more so than the other variables, is cumulative
in nature. This is because it leads to a gradual increase in the total available
surface of vector breeding sites, with excess precipitation causing flushing. For
this purpose, we examine both the lagged and interval lagged correlation with
vector abundance. The interval lagged correlation examines the association of
total precipitation from between two dates, defined by lag1 and lag2 below, with
the vector abundance.

The CCF function shown in Figure 4.7a shows that there is a positive associ-
ation with vector abundance for lags over 13 days; the 0-day lagged precipitation
has a very weak negative correlation. The CCM shown in Figure 4.7 b, c, indi-
cates the interval lagged correlations. The highest correlation is achieved with
the accumulated precipitation between day 26 and 14 prior to the trapping
event. The correlation drops for the short-term lags bellow 10 days, as well as
for long-term lags corresponding to different-length accumulated periods ending
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40 days prior to capture.

Figure 4.7: (a) CCF for precipitation and Culex pipiens abundance for 2016–
2017 for lags 0–25 days; (b) dendrogram and (c) ordered CCM for Petrovaradin
for time interval lagged precipitation and Culex pipiens abundance for 2016–
2017, lags from 0–60 days shown in descending order on y-axis and ascending
order on x-axis.

4.2 Discussion

The identified lags need to be critically assessed and discussed in terms of a pos-
sible biological process, because not all statistically significant lags are represen-
tative of the underlying reality. Here it is important to consider the development
times for the aquatic stages (egg, larva and pupa). The effect of environmental
conditions on these stages would reflect in the change in the adult population
(the capture) after their development into adults.

The Cx. pipiens development period at 16 ◦C, 20 ◦C, 24 ◦ C, 28 ◦C and
32 ◦C are reported by Ciota et al. [5] and shown in Figure 4.8. In another
study by Kiarie-Makara et al. [157] the respective lengths of the egg (dE), larva
(dL) and pupa (dP ) development for Cx. pipiens is investigated. The longest
development time was reported for dL, which was consistently three to four
times longer than the dP and eight times longer than the egg development dE
across a temperature range from 20—28 ◦C [157].

The 8–10 day lagged average temperature is negatively correlated with the
Cx. pipiens abundance in Bahariya. Very high temperatures can cause ther-
mal wounding of the immature stages, increased senescence and death. The
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Figure 4.8: Development time in mean days to emergence ± SEM of field (f) and
colony (c) Cx. pipiens (CxP), Cx. quinquefasciatus (CxQ), and Cx. restuans
(CxR) at various temperatures (adopted from [5]).

increased mortality of the aquatic stages would have a lagged effect in the new
generation of emerging adults, in turn this would be reflected on the captured
sub-population. The average daily temperature for Bahariya is above 20 ◦C
through almost the whole year and above 25 ◦C for the summer months (de-
tailed in Figure A.7 in Appendix A.2). Thus, the 10-day lag can be linked
to the effect of increased mortality of the aquatic stages due to an increase in
temperature. There is a second mechanism that could also be at play here:
namely, an increase in temperature leads to higher evaporation rates which are
further increased by higher wind-speeds which could lead to the drying out of
temporary stagnant water bodies, a reduction in total available breeding sites
and a diminished adult population pending development.

For Petrovaradin, on the other hand, this type of generational effect was not
identified for the average daily temperature. Since this is a mid-latitude location
characterised with more moderate daily temperatures we do not expect to see
increased mortality as a result of high temperatures, but we can assume lower
adult activity as well as longer development periods for the immature stages
as a result of lower temperatures. The 0-day lagged average temperature has
a positive effect on abundance, which can be tied to an expected increase of
activity of adults with higher temperatures (the optimal air temperature for Cx.
pipiens, expressed in terms of flight speed, flight distance and oviposition rate is
25 ◦C). The positive association with the one and two-week lagged temperature
suggests a generational character; however, there is no obvious interpretation of
this mechanism.

We see that relative humidity is not significantly correlated with the vector
abundance in Bahariya. We would expect a positive correlation for the 0-day
lagged minimum relative humidity since the observed minimum values for rel-
ative humidity are below the values suitable for sustained normal activity for
Cx. pipiens. But this is not observed, and can indicate that the mosquito can
find suitable shelter to survive the low humidity stress. The mosquito would
normally seek shelter in areas with shade and vegetation or inside buildings.
The distribution of observed relative humidity for Bahariya is right skewed with
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the median at 45% RH, on the other hand for Petrovaradin the distribution
of relative humidity is left skewed with the median at 73.27% (detailed in Ap-
pendix A.2). According to literature, Cx. pipiens humidity affects the survival
of the vector in the following range: a stress curve from 28 to 58% [158], above
which the activity is not affected by relative humidity, and below which dessi-
cation would occur. We see that in Bahariya even though the mosquito is often
exposed to the stressor range of RH it still does not appear to be negatively
affected and can successfully shelter. In Petrovaradin, on the other hand we ob-
served a weak negative correlation for the 0-day lag of relative humidity. This
might indicate that high relative humidity would impede adult blood-seeking
activity and reduce the capture, however this is not supported by literature.

The negative correlation for the 0-lag wind speed for Bahariya is identified.
Wind-speed has a direct impact on mosquito activity and blood-seeking. If

the wind speed exceeds the maximum flight speed of the vector the mosquito
can no longer navigate and land in order to take blood or direct its movements
towards the trap and might seek shelter. In this way wind has a direct influence
on trapping-probability and reduces the number of observed mosquitoes, while
the total population does not suffer.

For Petrovaradin, the recorded wind speed was relatively low for the trap
location (detailed in Appendix A.2) and no correlation with abundance was
observed, meaning that the mosquito could navigate the constant flux layer
freely to his dorsal vessels content.

Finally, we see that the big diurnal range characteristic for the desert has
a negative influence on the observed abundance. This is probably due to the
direct stress experienced by the significant environmental change on the poik-
ilotherm body in a short time interval; but, also the fact that a bigger diurnal
range invariantly exposes the mosquito to unfavourable temperature and rela-
tive humidity states plays a role here. The diurnal range for Petrovaradin was,
on the other hand, not correlated with abundance.



Chapter 5

Assessment of climatic
suitability

5.1 Assessment study - Guadeloupe

5.1.1 Overview of mean monthly values for two stability
regimes

In Appendix A.2, an overview of the mean monthly properties at 0600 and
1500 AST, representing the diurnal temperature minimum and maximum re-
spectively. The analysis is conducted for the 2015–2018 span for which the
entomological observations were carried out. Air temperature, relative humid-
ity and the U and V components at 10 m wind speed are shown. The 2 m
wind speed was calculated from the 10 m reanalysis using the Monin Obukhov
similarity theory (detailed in Appendix A.2). At 0600 hours February is the
coldest month (23.82 ◦C) and September the warmest (26.17 ◦C). The relative
humidity has a maximum in October and a second maximum in May. A pre-
vailing easterly wind component for all months is observed, with a peak in June
and July.

Table 5.1: Annual regime of mean properties at 0600 and 1500 AST for Guade-
loupe, Pointe-à-Pitre (2015–2018).

Jan Feb Mar Apr May Jun July Aug Sep Oct Nov Dec
0600 AST
Air temperature 2 m [C] 23.82 23.40 23.71 24.23 24.58 25.54 25.73 25.89 26.17 25.73 25.23 24.31
Relative humidity [%] 84.68 84.93 83.74 85.88 87.52 86.20 87.06 87.76 87.30 88.16 86.48 86.11
U wind speed 10 m [m/s] -4.10 -4.31 -4.34 -4.02 -4.45 -4.76 -4.73 -4.07 -3.40 -3.22 -3.61 -4.63
V wind speed 10 m [m/s] -0.65 -0.65 -0.66 0.09 0.10 -0.02 -0.42 -0.32 0.15 0.52 0.08 -0.82
Wind speed 2 m [m/s] 0.70 0.75 0.75 0.67 0.73 0.78 0.78 0.69 0.64 0.56 0.63 0.77
1500 AST
Air temperature 2 m [C] 25.27 24.85 25.27 25.76 26.19 26.91 27.25 27.48 27.74 27.29 26.69 25.76
Relative humidity [%] 76.36 76.28 74.60 76.98 77.52 76.03 77.27 78.63 78.62 81.23 80.00 78.35
U wind speed 10 m [m/s] -4.44 -4.59 -4.68 -4.24 -4.95 -5.33 -5.19 -4.33 -3.43 -3.31 -3.76 -4.92
V wind speed 10 m [m/s] -0.22 -0.15 -0.26 0.80 0.63 0.41 -0.07 0.11 0.64 1.08 0.65 -0.44
Wind speed 2 m [m/s] 0.77 0.81 0.82 0.74 0.83 0.88 0.86 0.74 0.66 0.62 0.68 0.82

For the afternoon 1500 regime we see that temperature and relative hu-
midity follow a similar pattern with the maximum occurring in May being less
pronounced. Similarly, the wind speed is characterised with a much stronger U

66
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component with an easterly direction.
When comparing the two regimes, it can be observed that there is hardly any

yearly cycle in the temperature. The biggest difference within the daily curve
is observed in May (∆T = 1.6◦C). The biggest difference in relative humidity
(∆RH = 10.17%) and the U wind component (∆U10 = 0.56m/s) is observed in
June, and the biggest difference between the mean morning and mid-day values
for the V component (∆V10 = 0.7 m/s) is observed in April.

5.1.2 Annual precipitation regime

The precipitation in Guadeloupe can vary substantially depending on the area,
but there are two distinct seasons: (i) the relatively dry season from December
to April/May and the (ii) rainy season from June to November. Rain events
usually occur in the form of showers or short-lived thunderstorms. Moreover,
from Table 5.2 we see that the highest number of high-intensity events occurred
in September and November. The threshold for these high intensity events was
determined as one standard deviation above the mean value of the observed daily
precipitation rate for 2015–2018. Intense precipitation can cause the flushing of
vector breeding sites.

Table 5.2: Annual precipitation regime at 0600 and 1500 AST for Guadeloupe,
Pointe-à-Pitre (2015–2018).

Jan Feb Mar Apr May Jun July Sep Oct Nov Dec
Total precipitation [mm] 59.02 65.32 76.29 84.78 68.32 94.19 132.09 165.95 122.69 147.35 72.20
Total days with precipitation rate above 8.89 mm/day 0 1 4 4 3 4 9 16 8 21 3

5.1.3 Current climate 1981–2010

The climate normals for the 1981–2010 period are shown in the figure below:
Annual temperature (Ta); Mean January temperature (Tjan); Mean June-July-
August (JJA) temperature (Tjja); Total annual precipitation (Ha).
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Figure 5.1: Overview of the most significant climate normals (1981-2010) po-
tentially affecting Ae. aegypti vector establishment in Guadeloupe: (a) Annual
temperature (Ta); (b) Mean January temperature (Tjan); (c) Total annual pre-
cipitation (Ha); (d) Mean June-July-August (JJA) temperature (Tjja).

5.1.4 MCDA assessment study Guadeloupe

The suitability for the establishment and overwintering of Ae. aegypti is shown
in Figure 5.2. The suitability is expressed through the MCDA suitability index
on a percent scale from 0 to 100. Areas under 50% are considered unfavourable
for the establishment of the vector, and would lead to a significantly reduced
population with areas below 25% considered completely unsuitable for vector
activity and establishment. The climatic conditions in the lesser Antilles and
the greater Caribbean are very suitable for the Ae. aegypti mosquito with the
temperature keeping above 16 ◦C (the lower threshold for larval development)
across the whole year. A slightly lower suitability is observed for the high-
elevation areas in northern Colombia: Pico Cristobal Colon (5km a.s.l) and the
La Guajira municipality, on the border with Venezuela, which is characterised
by a sparsely populated desert landscape. Similarly, we see a lower suitability
for the high-elevation/low-population Pico Duarte and Pico de la Bandera in
the Dominican Republic.

The MCDA suitability index for Guadeloupe is shown in Figure 5.3. We see
an asymmetric distribution characterising different suitability states for the east
and west wing of the island. A decrease in suitability is observed for the high-
altitude area of the national park which can be attributed to the decrease in
human population density within the park, unlike the coast where the suitability
matches the suitability of the west wing.
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Figure 5.2: MCDA suitability for Ae. aegypti in the Caribbean region for the
1981–2010 climatology.

Figure 5.3: (a) MCDA suitability for Ae. aegypti based on the 1981–2010
climatology (b) MCDA suitability for individual years for Guadeloupe (Pointe-
à-Pitre); (c) Relative deviation from the reference climatology; (d) MCDA for
the year 2000 for Guadeloupe and Martinique.

The result implies that the establishment of the mosquito is not limited by
the climatic conditions; however, slight oscillations in the suitability index could
indicate higher activity and greater population abundance of the vector during
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the year which has an influence on disease transmission rates.
In Figure 5.3 we see the MCDA index calculated for individual years for

the period 2000–2017; and the relative deviation (MCDAi - MCDAc)/(MCDAc)
*100) of annual values from the long-term averages. Even though the deviations
are of order of 4–10% a slight increase in suitability can be expected to reflect on
the total abundance and number of generations even though it does not affect
the overall spatial distribution pattern.

5.1.5 Sensitivity analysis

In this chapter we examine the effects of each input parameter on the final
MCDA suitability index. The parameters were sampled from a normal dis-
tribution around the 1981–2010 spatial mean of the country-level raster and
observed standard deviation (Table 5.3).

Table 5.3: Parameter distribution for the sensitivity analysis sampling (Hv –
frequency of precipitation expressed as number of days within a year with rain >
1 mm; Ta – mean annual temperature [◦C], Tjan – mean January temperature
[◦C]; Ha – total annual precipitation [mm]; Tjja – mean JJA temperature [◦C];
NTL – Night time light).

Parameter Distribution Mean SD
Hv N(µ,σ) µ = 175 σ = 12.4
Ta N(µ,σ) µ = 24.066 σ = 1.1
Tjan N(µ,σ) µ = 21.095 σ = 0.6
Ha N(µ,σ) µ = 1660 σ = 60.1
Tjja N(µ,σ) µ = 27.2 σ = 0.73
NTL U(a,b) a = 0 b = 63

Firstly, the parameters were sampled with the Latin Hypercube Sampling
(LHS) statistical method for creating a random sample of output values from
the multidimensional distribution corresponding to the defined parameter space.
Secondly, the partial rank correlation coefficients for each parameter were gen-
erated by bootstrapping the LHS values. The correlation coefficients were used
to examine the linear relationship between the input parameter and output
MCDA value after the linear effects of the other input variables are discounted.
The adequate sample size was inferred by comparing several runs with different
sample sizes using the Symmetric Blest Measure of Agreement.

The empirical cumulative distribution function of the model results applied
to the LHS sample is shown in Figure 5.4. We see that the high probability
outputs are within the high suitability MCDA values of 98-99.

The scatterplots shown in Figure 5.5 show the correlation of the output as
a function of each input parameter. The strongest relationship is observed with
the annual temperature. The ranges for the mean January temperature, total
annual precipitation and population density do not have a significant influence
on the change of the MCDA output for the Antilles, which corresponds to the
small variations observed in the MCDA map in the previous section.

The partial rank correlation coefficients (Figure 5.6) represent a statistical
measure of the above-plotted correlation. Annual temperature and frequency
of rainy days have the strongest linear association with the MCDA suitability.
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Figure 5.4: ECDF Guadeloupe

Figure 5.5: The scatterplots of the MCDA output as a function of each input
parameter.

The JJA temperature has a negative linear correlation with MCDA suitability,
suggesting that high summer temperatures could limit the activity of the vector.

The sensitivity expressed in the terms of partial inclination coefficients,
which represent the relationship between the respective parameters and the ex-
ploratory variable in a multiple regression model controlling for the remaining
explanatory variables, are shown in Table 5.4.

Table 5.4: Partial inclination coefficients
Hv Ta Tjan Ha Tjja NTL

PIC 0.0576 0.30966 0.07627 0.00009 -0.05953 0.000
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Figure 5.6: Partial rank correlation coefficients for Guadeloupe.

5.2 Assessment study - Bahariya (Egypt)

5.2.1 Overview of mean monthly values for two stability
regimes

An overview of the mean monthly properties at 0600 and 1500 EET are pre-
sented in the Table below. The analysis is conducted for the 2017–2018 interval
for which the entomological observations were carried out (Chapter 3). We see
that Bahariya has a very pronounced diurnal temperature cycle with the biggest
difference occurring in March (∆T =17.83 ◦C). The highest morning tempera-
tures are observed in August (23.74 ◦C); and in July for the 1500 regime (38.35
◦C). Similarly, relative humidity has a pronounced daily cycle with the maxi-
mum occurring in December (∆RH = 39.06%).

Table 5.5: Annual regime of mean properties at 0600 and 1500 EET for Bahariya
(2017–2018).

Jan Feb Mar Apr May Jun July Aug Sep Oct Nov Dec
0600 AST
Air temperature 2 m [C] 6.67 9.93 11.89 14.69 19.61 21.98 23.18 23.74 21.25 17.31 11.23 9.32
Relative humidity [%] 80.87 75.04 64.03 64.92 61.36 62.70 67.50 70.36 77.00 74.52 80.79 80.43
Wind speed 2 m [m/s] 0.54 0.35 0.54 0.34 0.51 0.31 0.35 0.23 0.25 0.44 0.33 0.42
1500 AST
Air temperature 2 m [C] 19.87 24.24 29.72 31.25 35.18 37.36 38.35 37.28 34.83 30.69 25.63 21.34
Relative humidity [%] 38.81 31.40 18.51 18.76 18.60 19.35 20.71 25.98 27.52 30.66 34.26 41.37
Wind speed 2 m [m/s] 2.10 1.25 2.82 1.80 2.14 1.81 2.25 2.18 1.70 2.54 1.67 1.81

5.2.2 Current climate 1981–2010

The climate normals for the 1981–2010 period are shown in Figure 5.7: Annual
temperature (Ta); Mean January temperature (Tjan); Mean JJA temperature
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(Tjja); Total annual precipitation (Ha).

Figure 5.7: Overview of the most significant climate normals (1981-2010) poten-
tially affecting Cx. pipiens vector establishment in Egypt: (a) Annual tempera-
ture (Ta); (b) Mean January temperature (Tjan); (c) Total annual precipitation
(Ha); (d) Mean June-July-August (JJA) temperature (Tjja).

5.2.3 MCDA assessment study Egypt

The suitability for the establishment and activity of Cx. pipiens is shown in
Figure 5.8. Suitable areas are largely located around the Nile delta and in the
irrigated areas along the bank, further inland.

Other areas of suitability correspond to the populated areas on the Mediter-
ranean and Red Sea coast. Finally, high suitability is observed in the locations
corresponding to the desert Oasis towns, most notably Karga, Siwa and Ba-
hariya.

Figure 5.9 represents the MCDA index calculated for individual years for
the period 2000-2017; and the relative deviation (MCDAi - MCDAc)/(MCDAc)
* 100) of annual values from the long-term averages (Figure 5.9). A decrease
in suitability can be observed for 2016–2018. This is due an increase in ob-
served summer JJA temperatures which resulted in a lower value for the sigma
membership function corresponding to this climatic parameter.
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Figure 5.8: MCDA suitability for Cx. pipiens based on the 1981–2010 climatol-
ogy

Figure 5.9: (a) MCDA suitability for individual years for Bahariya (DFC); (b)
Relative deviation from the reference climatology.

5.2.4 Sensitivity analysis

The parameters were sampled from a normal distribution around the 1981–2010
mean and observed standard deviation (Table 5.6).

The empirical cumulative distribution function (ECDF) of the model results
applied to the LHS sample is shown in Figure 5.10. We see that the high
probability outputs are between 40-99, with the full range of the MCDA index
(0-100) covered. This can be contrasted with the Guadeloupe ECDF where
only the 95-100 range is covered, and the high probability outputs are within
the 98-99 values.

The scatterplots shown in Figure 5.11 show the correlation of the output as
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Table 5.6: Parameter distribution for the sensitivity analysis sampling (Hv –
frequency of precipitation expressed as number of days within a year with rain>
1 mm; Ta – mean annual temperature [◦C], Tjan – mean January temperature
[◦C]; Ha – total annual precipitation [mm]; Tjja – mean JJA temperature [◦C];
NTL – Night time light).

Parameter Distribution Mean SD
Hv U(a,b) a = 0 b = 52
Ta N(µ,σ) µ = 22.23 σ = 2.24
Ha U(a,b) a = 0 b = 210
Tjja N(µ,σ) µ = 29.34 σ = 2.37
NTL U(a,b) a = 0 b = 63

Figure 5.10: ECDF Egypt

a function of each input parameter. The strongest relationship is observed with
annual precipitation and NTL. There is almost no correlation with the annual
temperature, and there is a weak negative correlation with the JJA temperature.
The frequency of precipitation has a moderate positive correlation.

The partial rank correlation coefficients (PRCC Figure 5.12) represent a sta-
tistical measure of the above-plotted correlation. Total annual precipitation and
NTL have the strongest linear association with the MCDA suitability. The JJA
temperature has a negative linear correlation with MCDA suitability, suggesting
that high summer temperatures are limiting the activity of the vector.

The sensitivity expressed with the partial inclination coefficient is shown in
Table 5.7.

Table 5.7: Partial inclination coefficient
Hv Ta Ha Tjja NTL

PIC 0.23756 -0.05218 0.32491 -0.156882 0.84588
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Figure 5.11: The scatterplots of the MCDA output as a function of each input
parameter.
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Figure 5.12: Partial rank correlation coefficients for Egypt.
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5.3 Assessment study - Petrovaradin (Serbia)

5.3.1 Overview of mean monthly values for two stability
regimes

In the tables presented below, an overview of the mean monthly properties at
0600 and 1500 CET is shown. The analysis is conducted for the 2016–2017 span
for which the entomological observations were carried out.

Table 5.8: Annual regime of mean properties at 0600 and 1500 CET for
Petrovaradin (2016–2017)

Jan Feb Mar Apr May Jun July Aug Sep Oct Nov Dec
0600 AST
Air temperature 2 m [C] -3.34 4.15 6.30 8.92 13.62 18.54 19.16 17.87 13.79 8.71 5.76 0.92
Relative humidity [%] 86.35 78.40 81.34 78.05 84.48 81.93 79.51 82.72 87.21 88.14 84.62 81.23
Wind speed 2 m [m/s] 0.42 0.50 0.41 0.45 0.41 0.34 0.35 0.42 0.38 0.46 0.48 0.44
1500 AST
Air temperature 2 m [C] 1.34 9.89 13.80 18.56 22.37 27.50 29.03 28.91 23.16 16.32 10.31 4.67
Relative humidity [%] 74.05 62.46 53.11 45.95 49.38 48.89 44.07 43.89 51.48 60.26 68.64 70.83
Wind speed 2 m [m/s] 0.47 0.54 0.47 0.57 0.49 0.49 0.48 0.47 0.49 0.57 0.51 0.49

5.3.2 Annual precipitation regime

Table 5.9: Annual regime of mean properties at 0600 and 1500 CET for
Petrovaradin (2016–2017).

Jan Feb Mar Apr May Jun July Sep Oct Nov Dec
Total precipitation [mm] 40.5 40.4 50.86 64.64 69.65 113 40.2 42.4 66.21 49.6 25.91
Total days with precipitation rate over 7 mm/day 3 3 5 6 8 8 3 5 7 4 7

5.3.3 Current climate 1981–2010

The climate normals for the 1981-2010 period are shown in the figure below:
Annual temperature (Ta); Mean January temperature (Tjan); Mean JJA tem-
perature (Tjja); Total annual precipitation (Ha).
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Figure 5.13: Overview of the most significant climate normals (1981-2010) po-
tentially affecting Cx. pipiens vector establishment in Serbia: (a) Annual tem-
perature (Ta) [◦C]; (b) Mean January temperature (Tjan) [◦C]; (c) Total annual
precipitation (Ha) [mm]; (d) Mean June-July-August (JJA) temperature (Tjja)
[◦C].

5.3.4 MCDA assessment study Petrovaradin

The suitability for the overall annual activity of Cx. pipiens is shown on Fig-
ure 5.14. Here the MCDA is constructed for annual activity rather than estab-
lishment and overwinter because (i) Culex usually overwinter in basements or
other indoor spaces and (ii) is already established in the whole study area. The
climatic conditions in Serbia and other mid-latitude areas, especially around
larger rivers with flooding areas are very favourable for the Cx. pipiens.

We see that the suitability is slightly lower for the high-elevation areas cor-
responding to: Kopaonik in the South (2.017 m.a.s.l), the highland are on the
border with Montenegro, the Carpatian mountains in the north-east, on the
border with Romania; and Stara Planina in the south-east which is part of the
Balkan mountain range stretching through Bulgaria and Serbia.

The highest suitability stretches along the river basins of the Danube, Drina
and Morava rivers. The climatic suitability is high for the whole northern region
of the Vojvodina province. In Figure 5.14 we see the MCDA index calculated for
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Figure 5.14: (a) MCDA suitability for Cx. pipiens based on the 1981-2010
climatology for Serbia; (b) MCDA suitability for individual years; (c) Relative
deviation from the reference climatology.

individual years for the period 2000–2017; and the relative deviation of annual
values from the long-term averages (Figure 5.14). The decreased suitability for
2005 is a result of lower annual temperature compared to the rest of the period
(2001-2018); the second minimum in 2011 occurs as a result of a moderate de-
crease in mean annual temperature and a decrease in total annual precipitation
and number of rainy days (precipitation frequency).

5.3.5 Sensitivity analysis

The parameter distribution for Periovarian is shown in Table 5.10. The param-
eters were sampled from a normal distribution around the spatial mean and
observed standard deviation of the 1981–2010 climate normals.

The empirical cumulative distribution function of the model results applied
to the LHS sample is shown on the figure below. We see that the high probability
outputs are within the high suitability MCDA values of 60–80, but ranges from
20–90 are also represented.

The scatterplots shown in Figure 5.16 show the correlation of the output as
a function of each input parameter. The strongest relationship is observed with
the annual temperature and distance to water. NTL has a moderate correlation
with MCDA. And we can see that the ranges for the mean JJA temperature,
total annual precipitation and precipitation frequency do not have a significant
influence on the change of the MCDA output for Petrovaradin.

The partial rank correlation coefficients (Figure 5.17) represent a statisti-
cal measure of the above-plotted correlation. Mean annual temperature and
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Table 5.10: Parameter distribution for the sensitivity analysis sampling (Hv –
frequency of precipitation expressed as number of days within a year with rain>
1 mm; Ta – mean annual temperature [◦C], Tjan – mean January temperature
[◦C]; Ha – total annual precipitation [mm]; Tjja – mean JJA temperature [◦C];
NTL – Night time light).

Parameter Distribution Mean SD
Hv N(µ,σ) µ = 107 σ = 16.4
Ta N(µ,σ) µ = 12.64 σ = 1.96
Ha N(µ,σ) µ = 744.68 σ = 180.124
Tjja N(µ,σ) µ = 18.79 σ = 2.43
NTL U(a,b) a = 0 b = 63
DistW U(a,b) a = 0 b = 37000

Figure 5.15: ECDF Serbia

Distance from water have the strongest linear association with the MCDA suit-
ability.

The sensitivity expressed with the partial inclination coefficient is shown in
Table 5.11.

Table 5.11: Partial inclination coefficient
Hv Ta Ha Tjja NTL WatD

PIC 0.14064 6.01441 0.20975 0.36629 0.31484 -1.93605
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Figure 5.16: The scatterplots of the output as a function of each input parameter

Figure 5.17: Partial rank correlation coefficients for Serbia.
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5.4 Discussion

There have been many recent studies focusing on the climatic suitability of Ae.
aegypti due to the emerging threat of the Zika virus and the annual increase
in Dengue cases. According to the World Health Organisation, Dengue fever
is the most hazardous VBD in the world, and also the most rapidly spreading.
A thirtyfold increase in global incidence over the past five decades has been
reported [159]. However, most of the studies were conducted on a global or con-
tinental scale [16,18,19,28,160], this is the first study to consider the suitability
on the country level for Guadeloupe. Moreover, we believe this is the first study
to analyse the climatic suitability for the establishment and annual activity of
Cx. pipiens in Serbia as well as Egypt. Cx. pipiens is becoming increasingly
important with a sharp rise in the number of WNV cases compared to the last
decade. The most affected countries in Europe, listed by number of cases are:
(1) Serbia; (2) Italy and (3) Greece [161,162].

The MCDA model is useful in the analysis of emerging hot spots or high-
risk areas for vector activity influenced by the local climate. Moreover, looking
at annual departures in suitability from the long-term averages can indicate a
more or less favourable year for the inter-annual activity of the vector. Even
slight changes in the suitability index could indicate higher activity and greater
population abundance of the vector during the year; which has an influence on
disease transmission rates.

The overall suitability for Guadeloupe was very high for the entire region,
the highest sensitivity between the MCDA output and the input climatic vari-
ables was identified for annual temperature (Ta). Peaks in the suitability were
identified for 2005, 2010-2011 and 2016-2017. This coincides with the reported
Dengue outbreaks in Guadelouope and Martinique: 2005 (July, DENV4), 2010
(May, DENV1) [163] with the highest number of cases observed in 2010; the
final peak can be associated with the Zika outbreak in 2016 [164].

The suitability for Egypt was confined to the populated areas along the
coast and the Nile delta as well as the desert oases. The simulated suitability
pattern matches the reported cases for Cx. pipiens in Egypt [165]. The highest
sensitivity was observed with NTL. For Serbia, the highest suitability stretches
along the river basins of the Danube, Drina and Morava rivers. The climatic
suitability is high for the whole northern region of the Vojvodina province. The
highest sensitivity was observed with mean annual temperature (Ta).

The relationship with NTL has different implications for the three study
sites: (i) Availability of breeding sites; (ii) Blood meal availability, (iii) Avail-
ability of overwintering sites. The assumption is that with an increase in popu-
lation, the number of artificial containers that can serve as vector breeding sites
increases, this is of course dependent on many socio-economic factor such as
poverty, water-use habits and irrigation practices, the analysis of which could
be important but is beyond the scope of this thesis. The availability of breed-
ing sites linked to population is especially important for Egypt, where there is
practically no precipitation during the year, and the vector completely relies on
human generated water (in the desert) and Nile flooding (along the delta).

Blood meal availability linked to the human population density is most rel-
evant for Guadeloupe, because Ae. aegypti is highly anthropophilic with a high
preference for urban environments [166–168].On the other hand, Cx. pipiens is
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known to feed on other endothermic vertebrates consulting the class Mammalla
and Aves. The increased suitability due to the availability of overwintering sites
is relevant only for the Serbia study locations, since Ae. aegypti does not have
an overwintering mechanism. Due to the warm dessert climate the Cx. pipiens
species in Egypt do not seek shelter during winter.



Chapter 6

Population dynamics model

6.1 Dynamical models and stability

The mathematical infrastructure of the theory of stability was first developed
by the Russian physicist and mathematician Aleksandr Mikhailovich Lyapunov
in his thesis in 1884 [169]. The later development of the qualitative theory of
stability of dynamical systems is attributed to Aleksandr Aleksandrovich An-
dronov, Vladimir Igorevich Arnold and their students [170–175]. Since then it
has been applied to study dynamics of biological dynamical systems. From a
practical point of view, analysing the stability and eigen-properties of a pop-
ulation dynamics model is important for multiple reasons. It is meaningful to
look at the way our dynamical system behaves near equilibrium points as a
function of different temperatures and how it reacts to perturbations around
those states. The characteristic frequencies can help us evaluate the realism
of the model, i.e. to see whether the eigen-frequencies correspond to observed
biological frequencies (the ground truth). The frequencies are calculated in this
chapter and the internal verification is carried out in Chapter 7. This type of
analysis can support model initialization and help in reducing the spin-up time
due to short-lived transient behaviour.

6.2 Stability analysis

In this chapter the 10-stage ODE population dynamics model outlined in Chap-
ter 3 is examined in terms of numerical integration, stability and initial dy-
namics. To assess the stability properties, first the equilibrium states of the
dynamical system are determined. In a second step, the stability of each state
and the manner in which a trajectory in phase space would eventually approach
the equilibrium (if stable) or diverge from it (if unstable) is examined.

The dynamical system can be written as dXi
dt = Fi (X1, X2, ..., Xn, λ) (i = 1 :

10) with λ signifying the control parameters governing stage-specific develop-
ment and mortality rates, and Xi represents the different stages in the mosquito
development cycle. The potential equilibrium points can be determined by solv-
ing the equation dXi

dt = 0. In phase space Fi(Xeq, λ) is a stationary state, i.e.
the system does not change over time.

85
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6.2.1 System Jacobian

The Jacobian of the system is given as Ĵi,j = ∂fi
∂xj

and is presented in the matrix

below:

Ĵ =



−(fE + µE) 0 0 0 0 0 β1γAo 0 0 β2γAo
fE −(fL +mL + 2mLKLL) 0 0 0 0 0 0 0 0

0 fL −(fP +mP ) 0 0 0 0 0 0 0

0 0 e−(1+ P
kP )µemfPσ − e

−(1+ P
kP fPPµemσ
kP

−(mA + γAem) 0 0 0 0 0 0

0 0 0 γAem −(mA + γAb + µr) 0 0 0 0 0
0 0 0 0 γAb −(fAg +mA) 0 0 0 0
0 0 0 0 0 fAg −(mA + γAo + µr) 0 0 0
0 0 0 0 0 0 γAo −(mA + γAb + µr) 0 γAo
0 0 0 0 0 0 0 γAb −(fAg +mA) 0
0 0 0 0 0 0 0 0 fAg −(mA + γAo + µr)



The divergence of the flow is ∇ · F =
∑i=10
i=1

∂Fi
∂Xi

which is the trace of the
Jacobian and is equal to the scalar:

∇ · F = −((fE + µE) + (mP + fP ) + (mA + γAem) + 2 · (mA + µr + γAo)+

+2 · (mA + µr + γAb) + 2 · (mA + fAg) + (mL + 2
mL

κL
+ fL))

(6.1)

which is always negative for the temperature interval [−60◦C, 80◦C]. Since
∇ · F < 0 for t > t0 it shows that the system is dissipative. A volume ∆Γ in
phase space Γ (which is the 10 dimensional space of model states X) will for
t→∞ tend to a subset of Γ whose dimension is strictly less than 10.

6.2.2 Determining the equilibrium points

Solving for dXi
dt = 0 we determined two equilibrium states: X1

eq = (0, 0, 0, 0, 0, 0,
0, 0, 0, 0) and X2

eq = (E∗, L∗, P ∗, A∗em, A
∗
b1, A

∗
g1, A

∗
o1, A

∗
b2, A

∗
g2, A

∗
o2). The triv-

ial solution X1
eq = 0 is the obvious equilibrium solution corresponding to no-

population. The non-trivial equilibrium is shown in Figure 6.1c and corresponds

to the following solution: L = −Wn(− c·exp(−ac/b)b )
c − a

b ; with the other variables
expressed through L (detailed in Appendix A.7). The parameters a, b, c are
different functions of the development and mortality rates.

The results show that the system operates in two stability regimes. The
system is stable for the 1st equilibrium and unstable for the 2nd equilibrium
for all runs below a characteristic temperature (Tth = 9.8◦C); and alternately,
stable for the 2nd and unstable for the 1st equilibrium for all values above this
threshold. Qualitatively, we can see that for the first regime (Figure 6.1a) all
solutions quickly converge to the zero equilibrium while for the second regime
the null solution is unstable and all solutions diverge (Figure 6.1b). The same
behaviour is observed for different initial conditions (indicated by dashed lines
in Figure 6.1).

If the system for the second regime is allowed to run for a larger number of
iterations than in Figure 6.1b we see that the solutions converge on a second
stable cycle (fig. 6.1c). The 2nd equilibrium point is stable for all examined tem-
peratures in the 10◦C−40◦C range i.e. has negative real parts of all eigenvalues
of the Jacobian evaluated at constant temperature.

The phase portraits for Larva-Pupa (LP) stages for the study locations in
Pointe-à-Pitre (Guadeloupe), Bahariya (Egypt) and Petrovaradin (Serbia) are
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Table 6.1: Summary of the stability of fixed points with assortment (detailed
in Appendix A.7)

Independent Equilibrium Points Nature of equilibrium points
Case I (T < 9.8◦C) Case II (T ≥ 9.8◦C)

X1
eq = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0) Stable node Unstable node

X2
eq = (E∗, L∗, P ∗, A∗em, A

∗
b1, A

∗
g1, A

∗
o1, A

∗
b2, A

∗
g2, A

∗
o2) Unstable node Stable node

Figure 6.1: Numerical solution for (a) T = 9◦ C for 200 iterations (x-axis),
(b) T = 11◦C for 200 iterations, (c) T = 11◦C and 3000 iterations and initial
conditions X = (300, 300, 300, 300, 300, 300, 300, 300, 300, 300); the y-axis
represents the number of vectors in each stage.

shown in Figure 6.2. We see that for Guadeloupe (Figure 6.2c) the system is
always in the II regime. This is a result of the high temperatures character-
istic of this location with very low annual variation, which in turn produces
relatively small osculations around the second equilibrium (L∗, P ∗). Bahariya
(Figure 6.2b) has a similar temperature profile however with a broader annual
range, creating larger oscillations around the second equilibrium. On the other
hand, for the system in Petrovaradin (Figure 6.2a) we can clearly see the two
annual cycles and a return to regime I (stable, null equilibrium).

Figure 6.2: Larva-Pupa (LP) phase portrait for (a) Petrovaradin (Cx. pipiens),
(b) Bahariya (Cx. pipiens), and (c) Guadeloupe (Ae. aegyti) initialized with X
= (300, 300, 300, 300, 300, 300, 300, 300, 300, 300).

To further illustrate this point, we can observe (Figure 6.3) the difference
between the LP phase portraits for Bahariya for a system forced with: (a)
Constant temperature (T = 20circC, regime II); (b) A sine wave that switches
between regime I and regime II φ = Asin(2πνt) +D (A = 10, ν = 1/365, D =
10); (c) The observed temperature for Bahariya (detailed in Appendix A.2)
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Figure 6.3: LP phase portrait for Cx. pipiens (Bahariya), forced with: (a)
Constant temperature (T = 20circC, regime II); (b) A sine wave that switches
between regime I and regime II φ = Asin(2πνt) +D (A = 10, ν = 1/365, D =
10); (c) The observed temperature for Bahariya (detailed Chapter 4) initialized
with X = (300, 300, 300, 300, 300, 300, 300, 300, 300, 300).

Figure 6.4: Phase portraits for the: (a) E-Ag1, (b) E-Ab2, (c) E-Ag2 Ae. aegypti
model (Guadeloupe) initialized with X = (300, 300, 300, 300, 300, 300, 300,
300, 300, 300).

6.2.3 Initial dynamics – Transient analysis and initializa-
tion

To examine the transient response of the model to initialisation, the short term
model behaviour following initialization is analysed. In Figure 6.5 we see that,
for a model forced with constant temperature (T = 20 ◦C) all stages reach the
equilibrium at around 200 days after initialization. This characteristic length
scale decreases with an increase in temperature (Figure 6.6). Magnitudes of the
different stages differ significantly with the largest values corresponding to the
aquatic stages: larva, egg and pupa, respectively. The equilibrium for the adult
stages was the highest for the parous gestating adults (Ag2).

When the stage is initialized with a value greater than the steady state for
that temperature, damped oscillation around the equilibrium point is observed.

The short-term dynamics will depend on the initial condition. Since the
runs require 200 days (> 6 months) at T = 20◦ C, spin-up time is an important
consideration for simulating short-term, near-real time dynamics of the vector.
The above analysis is performed for the model with constant temperatures. If
temperature changes, the equilibrium point will change and the system will try
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Figure 6.5: Output for model forced with constant temperature:(a) aquatic
stages and (b) adult stages.

Figure 6.6: Output of model (emerging adults) forced with different constant
temperatures: (a) 10 ◦C, (b) 20 ◦C, (c) 30 ◦C.

to converge to that point. However, the convergence rate will be in competition
with the characteristic time of changing temperature .

To reduce this spin up time the model can be initialized from the non-trivial
equilibrium evaluated corresponding to the initial temperature (T (t = 0)). This
is shown in Figure 6.7.

Figure 6.7: Comparison of non-initialized model (blue) to model initialized with
the non-trivial equilibrium (gray).
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6.3 Analysis of the eigenproperties of the ODE
vector population dynamics model

In this section we examine the properties of the system around the unstable null
equilibrium and explain the basic ideas and methods for conducting the stability
analysis. An important consideration for any equilibrium is the manner in which
a small perturbation would approach or escape the equilibrium state. The
null equilibrium, specifically, has two biological interpretations corresponding
to two identified stability regimes. (i) In a spring, start-of-season, scenario
the biological population of the Cx. pipiens vector goes from a winter minimum
(close to zero) to the first spring peak. In the model this change is characterized
by the transition ofX1

eq from stable -> unstable. (ii) The autumn, end-of-season,
scenario in which the population drops to zero and the model X1

eq shifts from
unstable -> stable. Analysing the oscillatory dynamics as well as the decay and
growth terms of the normal modes describe the speed and manner in which this
transitions occur in the model.

In a first step we perform a linearisation of the system around the equilibrium
point. Second, we investigate the system linearised around several characteristic
points during the model run to investigate the emerging doubling in the oscil-
latory modes and a shift to higher frequencies with an increase in temperature.
A linearised system is always a local approximation about the operating point:
as the operating point changes, the linearised model changes, for the same non-
linear system. Linearisation can be used to give important information about
how the system behaves in the neighbourhood of relevant points where we want
to use a linear system to approximate the behaviour of the non-linear system.

6.3.1 Linearisation

The values of the independent variable close to the equilibrium point can be
expressed as x = x∗+x′. Differentiation for x′ the expression becomes dx′/dt =
dx/dt − dx∗/dt. Since the time-derivative evaluated at the equilibrium is zero
it can be evaluated as dx′/dt = dx/dt. The system can then be written as:

dE′

dt
= γAo(β1Ao1 + β2Ao2)− (µE + fE)E (6.2)

dL′

dt
= fEE − (mL(1 +

L

κL
) + fL)L (6.3)

dP ′

dt
= fLL− (mP + fP )P (6.4)

dA′em
dt

= fPPσe
−µem(1+ P

κP
) − (mA + γAem)Aem (6.5)

dA′b1
dt

= γemAem − (mA + µr + γAb)Ab1 (6.6)

dA′g1
dt

= γAbAb1 − (mA + fAg)Ag1 (6.7)
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dA′o1
dt

= fAgAg1 − (mA + µr + γAo)Ao1 (6.8)

dA′b2
dt

= γAo(Ao1 +Ao2)− (mA + µr + γAb)Ab2 (6.9)

dA′g2
dt

= γAbAb2 − (mA + fAg)Ag2 (6.10)

dA′o2
dt

= fAgAg2 − (mA + µr + γAo)Ao2 (6.11)

Due to the existence of non-linear terms the variables can be written in terms
of deviations as x = x∗ + x′:

dE′

dt
= γAo(β1(A∗o1 +A

′

o1) + β2(A∗o2 +A
′

o2))− (µE + fE)(E∗ + E
′
) (6.12)

dL′

dt
= fE(E∗ + E

′
)−

(
(mL + fL)(L∗ + L

′
) + 2

mL

kL
L∗L

′
+
mL

kL
L∗2 +

mL

kL
L
′2

)
(6.13)

dP ′

dt
= fL(L∗ + L

′
)− (mP + fP )(P ∗ + P

′
) (6.14)

dA′em
dt

= fP (P ∗ + P
′
)σe−µeme

−µem P∗
κP e

−µem P
′

κP − (mA + γAem)(A∗em +A
′

em)

(6.15)

dA′b1
dt

= γem(A∗em +A
′

em)− (mA + µr + γAb)(A
∗
b1 +A

′

b1) (6.16)

dA′g1
dt

= γAb(A
∗
b1 +A

′

b1)− (mA + fAg)(A
∗
g1 +A

′

g1) (6.17)

dA′o1
dt

= fAg(A
∗
g1 +A

′

g1)− (mA + µr + γAo)(A
∗
o1 +A

′

o1) (6.18)

dA′b2
dt

= γAo((A
∗
o1 +A

′

o1) + (A∗o2 +A
′

o2))− (mA + µr + γAb)(A
∗
b2 +A

′

b2) (6.19)

dA′g2
dt

= γAb(A
∗
b2 +A

′

b2)− (mA + fAg)(A
∗
g2 +A

′

g2) (6.20)

dA′o2
dt

= fAg(A
∗
g2 +A

′

g2)− (mA + µr + γAo)(A
∗
o2 +A

′

o2) (6.21)
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The product of x
′

ix
′

j is small compared to the other terms and can be ignored.

This leaves only the exponential term in equation (6.15). Since −µem P
′

kP
is a

very small number, we can substitute the linear approximation for ex ≈ 1 + x
so that (6.15) becomes:

dA′em
dt

= fP (P ∗ + P
′
)σe−µeme

−µem P∗
κP e

−µem P
′

κP − (mA + γAem)(A∗em +A
′

em)

= fP (P ∗ + P
′
)σe
−µem(1+ P∗

κP
)
(1− µem

P
′

κP
)− (mA + γAem)(A∗em +A

′

em)

= fPσe
−µem(1+ P∗

κP
)
(P ∗ + P

′
− µem

kP
P ∗P

′
− µem

kP
P
′2)− (mA + γAem)(A∗em +A

′

em)

(6.22)

The first exponential term is a constant because the state values at equi-
librium are constants. When we subtitute the values at the trivial equilibrium
(E∗ = 0, L∗ = 0, P ∗ = 0, A∗em = 0, A∗b1 = 0, A∗g1 = 0, A∗o1 = 0, A∗b2 = 0, A∗g2 =
0, A∗o2 = 0) we get the final set of equations for the linearised system:

dE′

dt
= γAo(β1A

′

o1 + β2A
′

o2)− (µE + fE)E
′

(6.23)

dL′

dt
= fEE

′
− (mL + fL)L

′
(6.24)

dP ′

dt
= fLL

′
− (mP + fP )P

′
(6.25)

dA′em
dt

= fPσe
−µemP

′
− (mA + γAem)A

′

em
(6.26)

dA′b1
dt

= γemA
′

em − (mA + µr + γAb)A
′

b1 (6.27)

dA′g1
dt

= γAbA
′

b1 − (mA + fAg)A
′

g1 (6.28)

dA′o1
dt

= fAgA
′

g1 − (mA + µr + γAo)A
′

o1 (6.29)

dA′b2
dt

= γAo(A
′

o1 +A
′

o2)− (mA + µr + γAb)A
′

b2 (6.30)

dA′g2
dt

= γAbA
′

b2 − (mA + fAg)A
′

g2 (6.31)

dA′o2
dt

= fAgA
′

g2 − (mA + µr + γAo)A
′

o2 (6.32)
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6.3.2 Defining the eigensystem

The steps for obtaining the normal modes of the dynamical system can be out-
lined as follows [88]: (i) Linearise the system around the state corresponding
to a specific temperature; (ii) Express the dependent variables as y = y · eiωt;
(iii) Formulate the eigenvalue problem [M − λI] Ψ = 0, where λ = −iω; solve
detM = 0 for ω; (iv) Diagonalize the matrix as GDGT = M . Where G is a
matrix of eigenvectors; (v) Transform to eigenspace; (vi) Formulate the nor-
mal mode system of equations; (vii) Solve for E and P, keeping the adult stages
and the aquatic larva stage constrained (Xs); (viii) Transform back to real space.

First we re-write the linear system of equations setting: X
′

= X̂ · eiωt. For
bookkeeping purposes it is convenient to write these solutions in vector form:



E(t)
L(t)
P (t)
Aem(t)
Ab1(t)
Ag1(t)
Ao1(t)
Ab2(t)
Ag2(t)
Ao2(t)


=



Ê

L̂

P̂
ˆAem
Âb1
Âg1
Âo1
Âb2
Âg2
Âo2


· eiωt

Plugging these estimates into the linearised system (Equations (6.23) to (6.32))
we get:

iωÊeiωt = γAo(β1Âo1 + β2Âo2)eiωt − (µE + fE)Êeiωt (6.33)

iωL̂eiωt = fEÊe
iωt − (mL + fL)L̂eiωt (6.34)

iωP̂ eiωt = fLL̂e
iωt − (mP + fP )P̂ eiωt (6.35)

iω ˆAeme
iωt = fP P̂ σe

iωte−µem − (mA + γAem) ˆAeme
iωt (6.36)

iωÂb1e
iωt = γAem

ˆAeme
iωt − (mA + µr + γAb)Âb1e

iωt (6.37)

iωÂg1e
iωt = γAbÂb1e

iωt − (mA + fAg)Âg1e
iωt (6.38)

iωÂo1 = fAgÂg1e
iωt − (mA + µr + γAo)Âb1e

iωt (6.39)

iωÂb2e
iωt = γAo(Âo1 + Âo2)eiωt − (mA + µr + γAo)Âb2e

iωt (6.40)

iωÂg2e
iωt = γAbÂb2e

iωt − (mA + fAg)Âg2e
iωt (6.41)



CHAPTER 6. POPULATION DYNAMICS MODEL 94

iωÂo2e
iωt = fAgÂg2e

iωt − (mA + µr + γAo)Âo2e
iωt (6.42)

Sorting and dividing both sides with eiωt we obtain:



a1,1 0 0 0 0 0 a17 0 0 a1,10

a2,1 a2,2 0 0 0 0 0 0 0 0
0 a3,2 a3,3 0 0 0 0 0 0 0
0 0 a4,3 a4,4 0 0 0 0 0 0
0 0 0 a5,4 a5,5 0 0 0 0 0
0 0 0 0 a6,5 a6,6 0 0 0 0
0 0 0 0 0 a7,6 a7,7 0 0 0
0 0 0 0 0 0 a8,7 a8,8 0 a810

0 0 0 0 0 0 0 a9,8 a9,9 0
0 0 0 0 0 0 0 0 a10,9 a10,10





Ê

L̂

P̂
ˆAem
Âb1
Âg1
Âo1
Âb2
Âg2
Âo2


=



0
0
0
0
0
0
0
0
0
0


(6.43)

With the parameters aij(i = 1, ..., 10, j = 1, ..., 10) listed below. The only way
to escape the trivial solution is if the inverse of the matrix does not exist and this
is achieved if the determinant of the matrix is equal to zero. Another constraint
for the system is that the perturbations must lead to positive densities in order
to be realistic.

a1,1 = iω + µE + fE

a1,7 = −γAo · β1

a1,10 = −γAo · β2

a2,1 = −fE
a2,2 = iω +mL + fL

a3,2 = −fL
a3,3 = iω +mP + fP

a4,3 = −fPσe−µem

a4,4 = iω +mA + γAem

a5,4 = −γAem
a5,5 = iω +mA + µr + γAb

a6,5 = −γAb
a6,6 = iω +mA + fAg

a7,6 = −fAg
a7,7 = iω +mA + µr + γAo

a8,7 = −γAo
a8,8 = iω +mA + µr + γAb



CHAPTER 6. POPULATION DYNAMICS MODEL 95

a8,10 = −γAo
a9,8 = −γAb
a9,9 = iω +mA + fAg

a10,9 = −fAg
a10,10 = iω +mA + µr + γAo

The parameters functions are listed in Chapter 3, Table 3.4. Solving for a
specific temperature we obtain the system frequencies ωi (i =1, .., 10). Note
that Eq. 6.43 can be written in the form:



a1,1 − iω 0 0 0 0 0 a17 0 0 a1,10

a2,1 a2,2 − iω 0 0 0 0 0 0 0 0
0 a3,2 a3,3 − iω 0 0 0 0 0 0 0
0 0 a4,3 a4,4 − iω 0 0 0 0 0 0
0 0 0 a5,4 a5,5 − iω 0 0 0 0 0
0 0 0 0 a6,5 a6,6 − iω 0 0 0 0
0 0 0 0 0 a7,6 a7,7 − iω 0 0 0
0 0 0 0 0 0 a8,7 a8,8 − iω 0 a810

0 0 0 0 0 0 0 a9,8 a9,9 − iω 0
0 0 0 0 0 0 0 0 a10,9 a10,10 − iω





Ê

L̂

P̂
ˆAem
Âb1
Âg1
Âo1
Âb2
Âg2
Âo2


= −iω



Ê

L̂

P̂
ˆAem
Âb1
Âg1
Âo1
Âb2
Âg2
Âo2


or

(L− λI)Ψ = 0 (6.44)

So what we did above was solve for the eigenvectors and eigenvalues of this
matrix around the null solution. Each eigenvector is defined up to a multiplica-
tive constant (listed in Appendix A). Expressing the solutions in the terms of
the eigenvalue λ = −iω

The solution for a specific temperature gives a set of 10 eigenvalues and cor-
responding eigenvectors (Detailed in Appendix A.4). Depending on the char-
acteristic temperature the number of oscillatory terms and complex conjugate
pairs changes.

6.3.3 Normal modes

So far we have linearised the model around the null solution and determined a
set of normal modes which can be evaluated for a specific temperature (detailed
in Appendix A.4). Next we will look at eigenvalue decomposition to obtain
a set of coupled fast mode and slow mode predictive equations. A matrix is
diagonalizable if and only if for each eigenvalue the dimension of the eigenspace
is equal to the multiplicity of the eigenvalue. Since our matrix (Eq. 6.43)
is neither real nor symmetrical, the obtained eigenvectors do not have to be
orthogonal and do not yield an orthonormal. We transform the underlying
system of equations into a special set of coordinate axes in which the matrix
takes this canonical form by eigenvalue decomposition (L = EDE−1 where D
is the diagonal matrix of eigenvalues). E is a matrix composed of eigenvectors.
Defining Ωi(i = 1, 10) as the complex expansion coefficients for the modes we
can write:
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

E(t)
L(t)
P (t)
Aem(t)
Ab1(t)
Ag1(t)
Ao1(t)
Ab2(t)
Ag2(t)
Ao2(t)


= E ·



Ω1(t)
Ω2(t)
Ω3(t)
Ω4(t)
Ω5(t)
Ω6(t)
Ω7(t)
Ω8(t)
Ω9(t)
Ω10(t)


(6.45)

Where E is the matrix of eigenvectors of L (Eq. 6.44):

E =



ψE1 ψE2 ψE3 ψE4 ψE5 ψE6 ψE7 ψE8 ψE9 ψE10

ψL1 ψL2 ψL3 ψL4 ψL5 ψL6 ψL7 ψL8 ψL9 ψL10

ψP1 ψP2 ψP3 ψP4 ψP5 ψP6 ψP7 ψP8 ψP9 ψP10

ψAem1 ψAem2 ψAem3 ψAem4 ψAem5 ψAem6 ψAem7 ψAem8 ψAem9 ψAem10

ψAb11 ψAb12 ψAb13 ψAb14 ψAb15 ψAb16 ψAb17 ψAb18 ψAb19 ψAb110

ψAg1
1 ψAg1

2 ψAg13 ψAg14 ψAg1
5 ψAg1

6 ψAg17 ψAg18 ψAg19 ψAg1
10

ψAo11 ψAo12 ψAo13 ψAo14 ψAo15 ψAo16 ψAo17 ψAo18 ψAo19 ψAo110

ψAb21 ψAb22 ψAb23 ψAb24 ψAb25 ψAb26 ψAb27 ψAb28 ψAb29 ψAb210

ψAg21 ψAg2
2 ψAg2

3 ψAg24 ψAg25 ψAg26 ψAg2
7 ψAg2

8 ψAg29 ψAg210

ψAo21 ψAo22 ψAo23 ψAo24 ψAo25 ψAo26 ψAo27 ψAo28 ψAo29 ψAo210


(6.46)

The linearised system of the model can be written as:∣∣∣∣dEdt dL

dt
...
dAo2

dt

∣∣∣∣T = −1 · L ·
∣∣∣Ê L̂ ... Âo2

∣∣∣T (6.47)

The application of 6.45 to 6.47 gives:

(
dΩ1

dt

dΩ2

dt

dΩ3

dt

dΩ4

dt

dΩ5

dt

dΩ6

dt

dΩ7

dt

dΩ8

dt

dΩ9

dt

dΩ10

dt
)T = −E−1LE ·



Ω1

Ω2

Ω3

Ω4

Ω5

Ω6

Ω7

Ω8

Ω9

Ω10


(6.48)

The columns of E are eigenvectors of L, yielding Λ = E−1LE. Finally we
can solve the system, obtaining the normal modes:

Ωi(t) = Ωi(0) · e−λit (i = 1, .., 10) (6.49)

Relating to the eigenvalues the nodes form corresponding complex conjugate
pairs. The modes with amplitude set to 1 are visualized in Appendix A.4.
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If we plug the above system of equations for the normal modes back into 6.45,
expressing Ωi(0) in terms of (E(0), ..., Ao2(0)) we can obtain a decoupled repre-
sentation of the original system. This type of model can be used to directly filter
out undesirable modes present in the dynamical system by solving for Ωi(0) = 0.
The higher frequencies generated by the ODE system do not necessarily need
to have a biological counterpart and can be the result of the equations and
numerical integration. Moreover, fast modes tend to generate spurious, and
noisy dynamics which could be considered undesirable. This method is knows
as normal model initialization and is investigated in Appendix A.5.

6.3.4 Temperature and normal mode bifurcation

The decay and oscillatory terms of the normal modes were evaluated at different
temperatures and are presented in Figure 6.8. We have observed a doubling in
the number of oscillatory modes and a decrease in the characteristic period
with an increase in temperature. For the system linearised around the trivial
equilibrium we have one oscillatory pair (two modes) at temperatures below
16.5 ◦C, two pairs (four modes) below 25◦C and three pairs (six modes) for
T>25 ◦C. The frequency and decays rates of all oscillatory modes emerging
at a specific temperature for a system linearised around a point in the model
integration are shown in Figure 6.8.

Figure 6.8: Decay rates [1/day] (a) and frequencies [1/day] (b) for all oscillatory
modes emerging at a specific temperature for the linearised system.

This is further investigated in the next chapter and used to conduct an
internal validation of the ODE model, i.e. to assess weather the characteristic
frequencies identified at a certain temperature for the simulated are replicated
for the frequencies obtained by the wavelet decomposition of the observed time
series. We see that, depending on the temperature, the frequency of the modes
can assume a wide range of values. The high-frequency modes generate noisy
oscillations in the output that might not correspond to reality and could be
considered undesirable. The normal mode initialization technique provides a
way of eliminating the unwanted harmonics, by transforming the original set of
equations into a system that allows initialization which controls the amplitudes
of the modes in such a way that the high-frequency modes are not excited.

In Appendix A.5 the feasibility of applying normal modes initialization for a
specific run of the ODE Culex pipiens model was investigated. With the main
aim of producing a more balanced integration which would result in a smoother
and less noisy curve.



Chapter 7

Model Verification

Below we discuss the output and verification of the ODE vector population
dynamics model for the three ecosystems in Egypt (Cx. pipiens), Serbia (Cx.
pipiens) and Guadeloupe (Ae. aegypti). The model is described in detail in the
previous chapter (Chapter 6).

There is not much literature on the quantitative verification of vector pop-
ulation models since long term and consistent time-series of observed data are
extremely rare. The time and cost of the trapping efforts are usually the main
limiting factors. Most available data-sets tend to be irregularly spaced and
demonstrate large variations over different regions and sampling periods.

Methods of validation are different for different models, with the main ques-
tion for a predictive model being whether it is acceptable for a certain appli-
cation such as: (i) predicting the population peaks, (ii) predicting the overall
population dynamics throughout the season, (iii) simulating the seasonal or sub-
seasonal trends or (iv) analysis of the day-to-day variability to see whether the
sensitivity with respect to temperature change is realistic. The main question
for a conceptual or theoretical model in contrast is finding the true dynamics
of a specific population and defining the underlying processes. In this way pre-
dictive models are verified against an independent set of observed data and the
verification is concerned with how well the model reproduces the data. While
for theoretical models the concern is twofold: (i) How well the model repro-
duces the observed data and (ii) Whether the simulated system truly operates
in a realistic way. Even though the first approach is way more common in
scientific publications, sometimes very little can be learned from this type of
validation [62,92,93].

So, as we see, the analysis of ODE vector population dynamics models can
be considered in many ways depending on what we want to predict or discover,
with each method carrying a different type of information. Hence, we investigate
several methods for the verification of the ODE stage-structure model described
in Chapter 6 for three locations: Bahariya, Petrovaradin and Guadeloupe; forced
with 2 m air temperature. The analysis was performed according to the following
steps: Firstly, a time-series analysis of the observations utilizing the Wavelet
transform was performed and compared to the characteristic eigen-periods in
the dynamical system. This feeds into the second type of verification described
above, realism, we want to see whether the periods that emerge in our dynamical
system exist in real mosquito populations. Secondly, we consider the standard

98
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verification methods for real continuous scalar quantities such as BIAS and
RMSE to examine how well the output replicates the observed data. Thirdly,
we examine the extremes and inflection points to test whether the dynamics
is correctly represented. And finally, we introduce thresholds in the data and
evaluate the scores for dichotomous simulations to examine the simulation of
specific vector population densities which can subsequently have an effect on
disease transmission.

7.1 Internal Validation

In Chapter 4 we applied the wavelet decomposition analysis to the observed
univariate time-series in Petrovaradin and Bahariya using the Morlet wavelet.
First, we tested the stationarity of the time series and examined the ACF and
PACF functions to prove nonstationarity. The wavelet power-spectrum was
analysed to identify the significant periods in the non-stationary time-series
(Figure 7.2).

In Chapter 6 the characteristic periods of the simulated system were identi-
fied for a range of temperatures. A sample of the results is shown in Figure 7.1.
Each point represent a specific frequency of the dynamical system linearised
around a state corresponding to the x-axis temperature. Each oscillatory mode
that was calculated in Chapter 6 has the following form Ω(t) = Ω(0) · e(λ1+iλ2)t

where λ1 (Real) specifies the decay or growth rate and λ2 the frequency of the
oscillations, {λ1, λ2} ∈ R. Both were examined for a range of temperatures. A
shift to higher frequencies with the increase in temperature and the emergence
of a higher number of characteristic oscillatory pairs in the system was observed.

Figure 7.1: Decay rates [1/day] (a) and frequency [1/day] (b) of all oscillatory
modes identified for the dynamic system linearised around the state correspond-
ing to the temperature indicated on the x-axis (Cx. pipiens model).

For the purpose of this comparison we selected three characteristic points
(i.e. temperature-date combinations) for Bahariya (Table 1) and Petrovaradin
(Table 3). For Bahariya the first point corresponds to the high-temperature
summer regime with four oscillatory modes, the second is a point with milder
temperature corresponding to the end of the summer period in Egypt and the
third is characteristic of a low-temperature regime during the coldest winter
month. Similarly, for Petrovaradin, we have one point representative of the
high-temperature mid-latitude summer regime and one point in autumn which
can be linked to the annual end-of-activity for the Culex vector.
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The observed frequencies are shown in Table 7.3 for Bahariya and Table 7.4
for Petrovaradin. The values of the identified model frequencies for the temper-
ature points for which we carry out the verification are shown in Table 7.1 for
the Cx. pipiens model run for Bahariya, and Table 7.2 for Cx. pipiens model
run for Petrovaradin.

This type of internal validation can show whether the fundamental periods
in the observed time-series are reproduced within the dynamical ODE system.
In a further step, we examined the wavelet coherency between the simulated
population and the observed count.

Table 7.1: Eigenperiods for the Cx. pipiens model for Bahariya linearised
around the state evaluated at: S1 - 30.14 ◦C; S2 - 23.35 ◦C; and S3 - 11.24
◦C.

Scenario
index

T [◦C] ω [rad/day] No of nodes Period [days] Date DOY

S1 30.14

0.318565

4

19.72340

30/07/2017 211
0.221092 28.41887
0.139444 45.05884
0.0739336 84.98417

S2 23.35
0.0905338

2
69.40154

19/10/2017 292
0.069465 90.45109

S3 11.24 0.0200057 1 314.0698 25/01/2018 25 (390)

Table 7.2: Eigenperiods for the Cx. pipiens model for Petrovaradin linearised
around the state evaluated at: S1 - 30.77 ◦C; and S2 - 11.80 ◦C.

Scenario
index

T [◦C] ω [rad/day] No of nodes Period [days] Date DOY

S1 30.77

0.33763

4

18.6

10/08/2017 222 (588)
0.24049 26.113
0.13338 47.0822
0.03343 187.831

S2 11.80 0.03394 1 185.032 22/10/2017 295 (661)

The wavelet periodograms of the observed Cx. pipiens time series for Petrovaradin
and Bahariya are shown in Figure 7.2. The values for the verification dates-
temperature points and extracted the dominant periods are shown in Tables 7.3
and 7.4. Many methods exist which can be employed to define the size of occur-
ring peaks in the data: from the trivial “drop” method which is essentially an
qualitative assessment of where the peak starts and where it ends, to tangent
skimming, and peak deconvolution. In our analysis we used a linear cut-off for
the base of each peak and extracted the period value on both sides of the peak
(max – base)/2. This gives us the full width at half maximum (FWHM), and
consequently HWHM (FWHM / 2).

Looking at the identified frequencies for the model run for Bahariya shown
in Table 7.1 and Table 7.3, we see that, similar to the simulation, the number
of significant periods is higher for the scenarios corresponding to the higher-
temperatures, as well as a shift to higher frequencies (lower periods). This can
be observed for both years although they are not completely symmetrical and
higher frequencies appear more significant in 2017 than 2018.

For Scenario 3, the periods match fairly well with the annual period of
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Table 7.3: Wavelet periods identified for the observed Cx. pipiens time series
for Bahariya corresponding to the air temperature: S1 - 30.14 ◦C; S2 - 23.35
◦C; and S3 - 11.24 ◦C.

Scenario
index

T [◦C] No of sig periods Period ± HWHM [days] Magnitude DOY

S1 30.14 4

23.3751 (±2) 278.2712

211
46.7508 (±7.5) 1041.929
93.5004 (±10) 678.7976
314.497 (±65) 843.9883

S2 23.35 3
93.5004 (±18) 1126.61

292157 (±15) 407.6774
314.497 (±60) 792.6944

S3 11.24 2
93.5004 (±19) 965.6138

390
314.497(±55.5) 698.1827

Table 7.4: Wavelet periods identified for the observed Cx. pipiens time series
for Petrovaradin corresponding to the air temperature: S1 - 30.77 ◦C; and S2 -
11.80 ◦C.

Scenario
index

T [◦C] No of sig periods Period ± HWHM [days] Magnitude DOY

S1 30.77 4

9.828 (±1.75) 3535.4360

222 (588)
23.375 (±8.0) 7237.9760
187.001 (±15.5) 56989.9061
314.497 (±55.5) 111235.6630

S2 11.80 2
187.001 (±17.5) 45976.5725

295 (661)
314.497 (±55.25) 93951.7787

Figure 7.2: Wavelet periodogram (top) and temperature time-series (bottom)
for (a, c) Bahariya and (b, d) Petrovaradin.

314 recognized exactly. For Scenario 2, the identified eigen-period of 90.45
days directly matches the observed period of 93.5 days. The second frequency
corresponding to 69.4 days is present in the periodogram but is not significant.
Finally, the most significant period for Scenario 1 (46.38 days) is matched by
the 45.06 eigen-period, the longest period is not observed in the model for the
high-temperature regime. The 84.98 day eigen-period can be linked to the 93.5
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peak since the HWHM is 10 days, making the 84.98 period still significant. And
lastly, the 19.72 day eigen-period falls to the tails of the first significant peak in
the periodogram (23.375 days).

For Petrovaradin (Tables 7.2 and 7.4), we also see a doubling of the number
of significant periods with temperature and a shift to higher frequencies for
the higher-temperature regimes. The annual component does not emerge in
the model however the 187 day period is mirrored in the 185.032 eigen-period.
Similarly, to the low-temperature scenario the 187.001 day period is exactly
represented in the dynamical model and the 18.6 and 26.113 day eigen-periods
fall within the 23.375 peak. The 47.082 day eigen-period is present in the
wavelet periodogram however not significant and reversely, the 9.828 day peak
is not observed in the model.

7.1.0.0.1 Cross-wavelet analysis:

Finally, we look at the cross-wavelet power spectrum for the observed and sim-
ulated time series (Figure 7.3). Arrows in the positive direction of the x axis
indicate that the compared time-series are in phase for that specific period with
vanishing phase differences. Arrows directed in the negative direction of the x
axis indicate anti-phase, the orientations in-between represent a smaller phase
shift. Only the areas for which a significant correlation was identified show the
phase, indicated by the white contour lines in Figure 7.3. The underlying colors
indicate the cross-wavelet power.

Figure 7.3: Cross-wavelet periodogram for the observed time-series of Cx. pip-
iens for (a) Baharya and (b) Petrovaradin.

For Bahariya we see an asymmetric pattern for the 152 day period in which
the series are in phase for 2018 but not for 2017. This is depicted in Figure 7.4

Moreover, we can see a significant correlation in-phase for the 80 day period;
a significant correlation and anti-phase for the 50 day period while the highest
wavelet power and in-phase correlation is observed for the 32 day period. The
highest wavelet power for the high-frequency periods is observed for DOY 150
(2017) and DOY 132 for 2018.

For Petrovaradin, we see a strong agreement in phase across all significant
days and periods. There is a strong correlation across the whole interval for
the 181 day. The highest cross-wavelet power is observed for DOY 130 for
(2016) with a peak at the 8 day period (Figure 7.5), and DOY 131 for 2017
(with a peak at the 11 day period, Figure 7.5) where we see high power across
almost all periods. Figure 7.5 shows the cross-wavelet spectrum power as a
function of the period in days, for a specific day of the year. Moreover, in
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Figure 7.4: Phase and phase difference (dashed line) evaluated at the 152 period
where the red line corresponds to the observed and the blue line to the simulated
time-series.

Figure 7.3 we see that the high-frequency matching for 2018 for Petrovaradin is
less significant than for 2017. The most obvious differences in the cross-wavelet
matching between the observations and the model for the two locations appears
as a results of a more pronounced annual cycle for Petrovaradin with a clearly
defined seasonal dynamics that matches the annual temperature cycle (which
is reflected in the model). For Bahariya, the annual temperature cycle does
not induce population die-off during the winter months (the average monthly
temperature of the coldest month stays above 10 ◦C); the seasonal relationship
to temperature is less obvious and the simulated dynamics has a less pronounced
seasonal character.

Figure 7.5: Cross-wavelet power as a function of period for (a) DOY 130 2016
and (b) DOY 131 for 2017.
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The global significance is examined through the average wavelet spectrum
(Figure 7.6). The Cx. pipiens series shows significant power at 3, 1-20, 42, 87,
147 and 337 days for Bahariya, and 2, 8, 13 and 20, 119, 181 and 337 days for
Petrovaradin.

Figure 7.6: The (2016-2017) Average cross-wavelet power spectrum for (a)
Petrovaradin and (b) Bahariya.
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7.2 Standard first and second-order moment ver-
ification

In this chapter we will examine the Root Mean Square Error and Bias for
the simulated population dynamics. The observations and model output were
rescaled to [0,1]. For Guadeloupe, the model output was aggregated to monthly
values to match the trapping frequency for Ae. aegypti (detailed in Appendix A.3).
The observed data is compared with the aggregated blood-seeking adults (Ab
= Ab1 + Ab2, Cf. model description in Chapter 6).

7.2.1 Overview of simulated dynamics

The aggregated monthly simulated abundance for the three locations are shown
in Figures 7.7 and 7.8. The following measures of central tendency and vari-
ability are indicated in the box plot for each month: Range, interquartile range
(IQR), mean and median values.

The model runs were performed for the period 2015–2018 for Guadeloupe,
2017–2018 for Bahariya and 2016–2017 for Petrovaradin; with a 6 month spin-up
time for each location. The model is forced with observed 2 m temperature for
Petrovaradin and Bahariya. For Guadeloupe, the model is forced with ERA5 2
m temperature.

Figure 7.7: Overview of aggregated monthly values for the simulated abundance
of (a) Aedes, Guadeloupe, (b) Culex, Bahariya, and (c) Culex, Petrovaradin.

Table 7.5: Summary statistics of the daily simulated time series for Guadeloupe
(Ae. aegypti); Bahariya (Cx. pipiens) and Petrovaradin (Cx. pipiens).

Max Mean Median Relative Dispersion Range
Guadeloupe (2015 - 2018) 4340319 18837013 18558583 0.1529487 14704744
Bahariya (2017 - 2018) 4340319 1454285 1328346 0.6450054 4227108
Petrovaradin (2016 - 2017) 1198892 84024.4 2950 1.983748 1198892

We see that the simulated annual maximum and cumulative peak for Guade-
loupe for all years occurs in September (Figure 7.7). The maximum population
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Figure 7.8: Overview of mean monthly (a, b, c) and weekly (d, e, f) values
for the simulated abundance of (a, d) Aedes aegypti, Guadeloupe, (b, e) Culex
pipiens, Bahariya, and (c, f) Culex Petrovaradin. The y-axis indicates the total
simulated abundance of bloodseeking adults.

value for 2015–2018 is simulated in 2017. In Bahariya the aggregated monthly
peak is simulated in July however the population maximum occurs in June for
2017 (4.31e6) and in May for 2018 (4.34e6). The minimum is simulated in Jan-
uary (1.13e5 in 2017; and 2.73e5 in 2018) for both years. Lastly, for Petrovaradin
the cumulative peak as well as the population maximum is simulated for July
(1.17e6 in 2016; and 1.2e6 i 2017) and overwintering minimum for the period
from December to April (2 – 50 adults).

When comparing the monthly values the seasonality in Petrovaradin is clearly
reflected in the observed spread (relative dispersion, sd/mean = 1.984). The
seasonal character for Bahariya, with relative dispersion = 0.645, is not so pro-
nounced as Petrovaradin, but more pronounced than Guadeloupe (relative dis-
persion = 0.153).

The simulated range of the population (max - min) is 14.7e6, 1.2e6 and 4.2e6
for Guadeloupe, Petrovaradin and Bahariya, respectively. For Guadeloupe, the
months with the largest range are November (2015), January (2016), September
(2017) and September (2018). For Bahariya, the largest range is in June (2017)
and May (2018). For Petrovaradin the largest monthly range of simulated values
is in July for both years (2016 and 2017). These simulation periods were chosen
to match the observed vector data (detailed in Appendix A.3).

7.2.2 Verification

In the following chapters the RMSE verification of the model output with ob-
served data is presented, scaled to [0,1]. For Guadeloupe, we evaluate the same
model run (forced with ERA5 2 m temperature) against observations from eight
different locations across the island. This choice is argued in Appendix A.8.
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7.2.2.0.1 Guadeloupe:

As we have seen in Figure 7.7, the highest abundance is simulated for September;
however, the simulated peak spans June, July and August. The comparison of
the simulated and observed relative abundance is shown in Figures 7.9 and 7.10.
We see that this maximum as well as the December-May minimum is replicated
for the 1st observational site. For the other three observational sites, we see
a similar pattern for the lent minimum; however, the summer maximum is
skewed towards June and July and a secondary peak occurs towards the end of
the year. This can be linked to the month that experiences the highest amount
of precipitation (detailed. Chapter 4).

Figure 7.9: Relative monthly abundance of Aedes mosquitoes of Ab model out-
put (line) vs observed catches (grey bars) for the four locations: (a) Zoo, (b)
Apoirier, (c) Gosier, (d) Rv.

7.2.2.0.2 Bahariya:

The correspondence of the observed and simulated relative abundance of Cx.
pipiens for Bahariya is shown in Figures 7.11 and 7.12. We see a fairly good
agreement for both years with the simulated dynamics matching the observed
for most periods except in the summer months where it is overestimating the
abundance for both years.

7.2.2.0.3 Petrovaradin:

The comparison of the observed and simulated Cx. pipiens time series for
Petrovaradin is shown in Figures 7.13 and 7.14
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Figure 7.10: Relative monthly abundance of Aedes mosquitoes of Ab model
output (line) vs average observed catches (grey bars) for the four locations: (a)
CAB, (b) CRB, (c) HFR, (d) HMC.

Figure 7.11: Relative simulated daily abundance of Culex pipiens (Ab) versus
the observed catches for Apr 2017 – Dec 2017 (x-axis) for Bahariya.
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Figure 7.12: Relative simulated daily abundance of Culex pipiens (Ab) versus
the observed catches for Jan 2018 – Dec 2018 (x-axis) for Bahariya.

Figure 7.13: Relative simulated daily abundance of Culex pipiens (Ab) versus
the observed catches for Jan 2016 – Dec 2016 (x-axis) for Petrovaradin.
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Figure 7.14: Relative simulated daily abundance of Culex pipiens (Ab) versus
the observed catches for Jan 2017 – Dec 2017 (x-axis) for Petrovaradin.
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7.2.3 Error profile and uncertainty

The daily bias profiles are shown in Figures 7.15 and 7.16. We see that they both
follow a similar profile with maximum error occurring for the summer period
JJA.

The combined standard uncertainty of the systematic bias shown in Table 7.6
is calculated by the difference uncertainty propagation formula (GUM) [152]
and covariance between the observed and simulated estimates is presented in
the form of the estimated Pearson correlation coefficient r(s, o).

Figure 7.15: Daily error (oi − pi) time-series for Petrovaradin, with DOY indi-
cated on x-axis.

Figure 7.16: Daily error (oi − pi) time-series for Bahariya, with DOY indicated
on x-axis.

where B is the systematic bias, p is predicted population, o is the observed
population and r is the Pearson correlation coefficient for the simulated and
observed series.

Table 7.6: Bias uncertainty
Year u(p) u(o) r uc(B) U(B) Shapiro-Wilk test (p-value)
Bahariya
2017 0.2104353 0.2061357 0.2584243 0.3304465 1.47757 0.9517 (p <.0001)
2018 0.1460298 0.1455461 0.09189397 0.2154405 0.963449 0.93355 (p <.0001)
Petrovaradin
2016 0.1397918 0.1186238 0.649 0.2348607 1.050297 0.81239 (p <.0001)
2017 0.145865 0.1092358 0.571 0.2267493 1.014023 0.76425 (p <.0001)

Table 7.7: Correlation overview
Year Pearson Spearman Kendall

Petrovaradin 2016 r = 0.649 (p <.001) ρ = 0.624(p < .0001) τ = 0.460(p < .0001)
2017 r = 0.571 (p <.001) ρ = 0.601(p < .0001) τ = 0.457(p < .0001)
Both years r = 0.56 (p <.0001) ρ = 0.604(p < .0001) τ = 0.452(p < .0001)

Bahariya 2017 r = 0.232 (p <.0001) ρ = 0.21(p < .0001) τ = 0.150(p < .0001)
2018 r = 0.092 (p<.0001) ρ = 0.281(p < .0001) τ = 0.195(p < .0001)
Both years r = 0.191(<.0001) ρ = 0.245(p < .0001) τ = 0.168(p < .0001)

The same measurement uncertainty u(O) appears in the Brier Uncertainty
component. As a measure of variance in the observation it can be interpreted
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as the difficulty of the forecast situation. The good correlation for Petrovaradin
is most probably due to the yearly cycle. An anomaly correlation could be a
better metric for locations with a pronounced seasonality.

7.3 Analysis of inflection points

7.3.1 Extrema

Below we looked at the most significant peaks (highest observed population)
for Bahariya, Petrovaradin and Guadeloupe and compared them to the corre-
sponding simulated peaks. The results are given in Table 7.8 and Table 7.9. The
date of the peak is given as DOY for Bahariya and Petrovaradin; and MOY for
Guadeloupe. The peak data is reported together with HWHM as a measure of
the span and size of the peak.

Table 7.8: Date of occurrence (DOY ± HWHM [days]) of three highest peaks
(peak 1 > peak2 > peak3) in the observed population and the corresponding
simulated peak for Bahariya (2017–2018) and Petrovaradin (2016–2017).

Bahariya 2017 Bahariya 2018 Petrovaradin 2016 Petrovaradin 2017
DOY ± HWHM DOY ± HWHM DOY ± HWHM DOY ± HWHM

Peak 1
Observed 188 ± 4.5 62 ± 3 196 ± 1 191 ± 1
Model 184 ± 2 65 ± 4 195 ± 3 191 ± 3

Peak 2
Observed 251 ± 3 132 ± 1.5 179 ± 1 179 ± 3
Model 255 ±2 130 ± 1 179 ± 0.5 -

Peak 3
Observed 151 ± 4.1 176 ± 1 232 ± 1 222 ±1
Model 151 ± 1 173 ± 1 234 ± .5 224 ± .5

Table 7.9: Date of occurrence (MOY ± HWHM [months]) of the highest peak
in the observed population and the corresponding simulated peak for 8 loctions
across Guadeloupe (CAB, HMC, Gosier, CRB, RV, HFR, Apoirier and Zoo;
detailed in Appendix A.3).

Guadeloupe 2016 Guadeloupe 2017 Guadeloupe 2018
MOY ± HWHM MOY ± HWHM MOY ± HWHM

CAB
Observed 8 ± 2.5 8 ± 1.33
Model 8 ± 3.75 9 ± 2.66

HMC
Observed 8 ± 3
Model 8 ± 3.75

Gosier
Observed 7 ± 1.66
Model 9 ± 2.93

CRB
Observed 7 ± 0.66
Model 9 ± 2.66

RV
Observed 6 ± 0.5
Model 9 ± 2.93

HFR
Observed 10 ± 1
Model 8 ± 3.75

Apoirier
Observed 7 ± 1.25
Model 9 ± 2.93

Zoo
Observed 10 ± 0.7
Model 9 ± 2.93
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We can see that the simulated dynamics falls within the top half of the
observed peak for 4 out of 6 examined peaks for Bahariya and 3 out of 6 for
Petrovaradin when considering the daily dynamics. For Guadeloupe the simu-
lated monthly dynamics falls within the top half of the observed annual peak
for 4 out of 8 examined locations.

The annual maximum was simulated very successfully for Petrovaradin, and
the simulated August peaks for both years miss the observed peak by 2 days.

7.3.2 Inflection points

In a next step we examine the inflection points of the annual and start of sea-
son peaks in Petrovaradin (Figures 7.18 and 7.19). First, a Fourier filtering
technique is applied to eliminate the smaller-scale derivatives and smooth the
observed and simulated data, the result is shown in Figure 7.17, with the model
shown in blue and the observed series in black.

Figure 7.17: FF smooth of observed (blue) and simulated (black) data for 2016
– 2017 for Petrovaradin.

The peaks for which the inflection points will be compared are outlined. The
start of season peak is not significant in magnitude and hence was not included
in the previous analysis of the extrema, however it is an important feature of the
entomological time-series and is observed every year in the mosquito population
in Serbia (unpublished DP).

The inflection for the spring maximum is simulated 4 days after the observed
inflection for 2016 (Figure 7.18a,c) and 8 days after the observed inflection for
2017 (Figure 7.19a,c). The inflection for the annual maximum is simulated
exactly for 2016 (Figure 7.18b,d) and 1 day after the observed inflection for
2017 (Figure 7.19b,d).
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Figure 7.18: Inflection points for the spring (a - obs, c - model) and annual
maximum (c - obs, d - model) inflection points for 2016.
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Figure 7.19: Inflection points for the spring (a - obs, c - model) and annual
maximum (c - obs, d - model) inflection points for 2017.
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7.4 Contingency metrics

We introduced several thresholds to the relative observed count for Culex pipi-
ens as well as the relative simulated values to move from continuous count data
to a binary variable in order to examine whether the significant peaks in the
population are simulated correctly. These thresholds are used to construct a
contingency table of observed and simulated presence/absence “events”, where
only significant abundance is classified as an event, and generate a set of verifi-
cation metrics.

Care should be taken when selecting an appropriate threshold, and in defin-
ing what an “event” constitutes. There is another way of reverse-estimating
the best cut-off threshold for a dataset by finding the threshold for which the
highest sensitivity (TPR) and specificity (1 -FPR) is achieved. As we will later
see, this can be done by plotting the Receiver Operating Characteristic Curve
for an ensemble of threshold values applied to the same dataset. This method
also needs to be utilized cautiously and is not suitable for all types of anal-
ysis, while maximizing these metrics it might suggest a useless threshold. In
our analysis, we use the mean value as the cut-off for Bahariya, Petrovaradin
and Guadeloupe and calculate the verification metrics for each year separately.
Using the mean instead of the median is sensible for this frequency-distribution
since we want to focus on the significant peaks occurring in the population and
data is right skewed for all location-years (Figure 7.20). This pulls the mean
towards the higher values. The median cut-off would in contrast classify a lot
of the low-population peaks as “events” which is something we want to avoid.

Table 7.10: Overview of verification scores for Bahariya, Petrovaradin and
Guadeloupe.

Performance measure Bahariya Petrovaradin Guadeloupe
2017 2018 2016 2017 2015-2019

Accuracy (PC) 0.65 0.63 0.79 0.78 0.69
p-value (Acc >NIR) 0.12 0.017 0.00998 0.00994 0.00325
Odds Ratio (OR) 3.92 4.61 6.51 6.28 7.69
OR Skill Score (ORSS) 0.59 0.643 0.73 0.73 0.77
Frequency Bias (FB) 1.35 1.54 1.52 1.66 1.43

The Accuracy or Percentage Correct (PC) shows what overall fraction of
the forecast was correct [0,1]. This metric can be misleading since it is shaped by
the most populated category (in our case absences, small population density). In
order to assess the significance of this metric it needs to be considered together
with the No Information Rate (NIR). The NIR indicates the relative weight
of the largest category and is basically the probability of guessing correct just
based on the distribution of the observed classes. For example, we see that the
accuracy for Bahariya for 2017 is higher than the accuracy for 2018, but more
importantly the Accuracy/NIR ratio is better for 2018 with p-value indicating
significance (p = 0.017488). The highest Accuracy is observed for Petrovaradin.

The Odds Ratio gives us an estimate of what the ratio of odds of a “yes”
simulation being correct to the odds of a “yes” simulation being wrong. In
our case the odds of an event that is simulated correctly are roughly 4 times
greater than the odds of it being incorrectly simulated for Bahariya, and 6 and
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Figure 7.20: Histogram and summary statistics for the observed vector abun-
dance scaled to [0,1] (a) Bahariya, (b) Petrovaradin, (c) Guadeloupe.

7 for Petrovaradin and Guadeloupe respectively. Similarly, the Odds Ratio Skill
Score (ORSS) indicates if the model performs better than random chance, 0
indicates no skill and 1 is the perfect score. The ORSS is greater than 0.5 for
Bahariya and greater than 0.7 for both Petrovaradin and Guadeloupe.

The Frequency Bias (FB) compares how the total number of simulated events
compare to the total number of observed events. The perfect score is 1. The
observed frequency bias (> 1) indicates overforecasting of mosquito occurrence
for all location-years with a more moderate bias for 2017 for Bahariya. This
does not indicate the accuracy of the model, i.e. how the simulation corresponds
to the observations, it only assesses the relative frequencies.

7.4.1 ROC

The ROC curves and reliability diagrams for the specific year-locations are
shown in Figure 7.22. The Area Under the ROC curve values are show in
Table 7.11.

The AUC of defines the probability that a randomly chosen positive example
will be ranked higher than a randomly chosen negative example. Scores> 0.5 in-
dicate that our model is performing better than random, relatively poor for Ba-
hariya (0.6 < AUC < 0.7) and fairly good (0.7 < AUC < 0.8) for Petrovaradin
and Guadeloupe. The Brier Score can be decomposed into Reliability, Uncer-
tainty and Resolution Scores (Table 7.12) and the different BS contributions
can be represented on the reliability plot diagram.
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Figure 7.21: ROC and Reliability plot for (a–d) Bahariya, (e–h) Petrovaradin.

The reliability plot diagrams are shown in Figure 7.22, the observed fre-
quency is plotted against forecast probability for all probabilities. Since we are
dealing with a finite sample, the reliability curve will always exhibit variations
around the diagonal. Deviation from the diagonal points out a significant con-
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Figure 7.22: ROC plot for Guadeloupe for (a) 2015–2018; (b) 2016.

Table 7.11: Area Under the ROC curve
AUC Bahariya Petrovaradin Guadeloupe

2017 2018 2016 2017 2015-2019
Value 0.6627868 0.66224 0.7018891 0.700813 0.7363825
p-value 8.62e-08 1.73e-10 1.55e-10 1.46e-10 1.323e-06
Power 0.9968992 0.999778 0.9975426 0.9978564 0.9868904

ditional bias for both runs, indicating that the model is both overforecasting
and underforecasting occurrences, as we have seen in the previous chapter. By
looking at the ability of the model to forecast extreme probability (0 or 1) we
can see that the sharpness is high for threshold 1 for all locations (bin to the
left) but low overall.

The positive slope for Bahariya 2018 indicates that as the simulated prob-
ability of “yes” events increases so does the actual probability of observing the
event in reality. This indicates that the model indeed has some reliability for this
location-period. The closer the slope is to the diagonal the higher the overall
reliability is.

Table 7.12: Brier decomposition
Bahariya Petrovaradin Guadeloupe
2017 2018 2016 2017 2015-2019

Brier Score (BS) 0.2414091 0.2623904 0.109903 0.09887363 0.1783824
Reliability 0.04584754 0.05093006 0.01143587 0.00772766 0.03177436
Resolution 0.02960551 0.02960551 0.03266232 0.03325779 0.1009891
Uncertainty 0.2351603 0.2410659 0.1311294 0.1244038 0.2475971

The ROC can also be used to reverse-estimate the “best” cut-off threshold for
a dataset by looking at the threshold for which we obtain the highest sensitivity
(TPR) and specificity (1 -FPR) pair. However, even though this would produce
the best score it does not support the information regarding the significant
population peaks that we wanted to convey.

The BS (Table 7.12) tells us what is the size of the probabilistic error. Per-
fect score is 1. The BSS answers the question of what is the relative skill of the
model in terms of simulating whether an event occurred or not. The Brier relia-
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bility term is an overall measure of reliability equal to the mean square distance
of the curve from the diagonal (Figure 7.22). This term is zero for a perfectly
reliable system. The Brier score decomposition is shown in Table 7.12. While
reliability is a description of the correspondence between each class of simula-
tion and the according distribution of observations, uncertainty and resolution
are independent attributes. Uncertainty is a measure of the observations and
indicates the degree to which the observed system of events is predictable, and
resolution is similarly independent of reliability and shows how well different
forecast classes can differentiate cases with different observed events.

The different Brier scores cannot be directly compared since the uncertainty
attribute is a function solely of the observed dataset and greater uncertainty will
increase the score. However, we can consider the attributes for each location-
year separately. We see that the ratio of reliability to resolution is greater
than one for all locations except Petrovaradin. This could be due to the strong
seasonality present for this population and may need to be transformed before
further analysis.

7.5 Discussion

In this chapter we examined different verification measures for the ODE model
vector population model with observations collected for the three study locations
in Egypt, Serbia and Guadeloupe.

A verification measure is a function of the simulation, the observations, or
their relationship but is not concerned with the correspondence between forecast
and observation. On the other hand, performance measures constitute a subset
of verification measures that focus on the correspondence between forecasts
and observation on an individual or collective basis, for example, conditional
probabilities, hit rate and false alarm rate. A specific case of performance
measures that is not only a sample statistic but is defined for each individual pair
of simulation and observation are quantitative measure of continuous variables
such as the RMSE and the BIAS.

The most widely used ROC-based measure of skill is the area under the
curve. The ROC is conditioned on the observations (given that a critical num-
ber of mosquitoes was observed what was the corresponding simulation), this
can be misleading when dealing with mosquito trap data which has very high
variance. Field sampling uncertainties can be significant, and site heterogeneity
presents a significant factor in measurement uncertainty. It is very difficult to
correctly estimate the size of uncertainty that is a result of field sampling of this
type.

Verification of the characteristic internal frequencies identified for the ob-
servations in Chapter 4 and the model Chapter 6 showed that the model cap-
tures the observed frequencies fairly well with a better correspondence in phase
for Petrovaradin than Bahariya. The normalized RMSE for Petrovaradin was
lower for 2017 (0.11) than for 2016 (0.13). A higher RMSE is observed for Ba-
hariya (0.26 for 2017; 0.21 for 2018). For Guadeloupe, the standard first and
second-order moment verification were performed for aggregated monthly values
for eight locations across the island (0.23 – 0.42). The population maximum
and minimum were replicated correctly by the model; however, a minimum in
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September is observed for all capture sites and is not simulated by the model.
This could be linked to larval flushing due to extensive precipitation. This
claim is further justified by the observed precipitation pattern for Guadeloupe
(detailed in Chapter 5 and Appendix A.2) which shows that the annual max-
imum in precipitation for 2015–2018 is achieved in September and November.
The AUC was highest for Guadeloupe (0.73), fairly good for Petrovaradin (0.70)
and relatively poor for Bahariya (0.66).



Chapter 8

Improving the model with
SURFEX

8.1 Research rationale

In the previous section we showed that the model forced solely by temperature
can perform fairly well. The model could be improved by including a precipita-
tion routine; we investigate this here.

In this chapter we will consider two possible ways in which Land Surface
Models (LSMs) modelling can be an added value to vector population dynamics
models: (1) Improving the hydrology routine; (2) Using LSMs to improve the
accuraccy of NWP models which can be used in real-time forecasting of vector
population dynamics. Temperature is the most significant driver of population,
in case of missing NRT ground data, SURFEX can be used to improve the 2 m
accuracy of NWPs.

8.2 Introduction

It is well established that the abiotic factor such as landscape characteristics
and meteorological conditions [42, 44, 176, 177] affect the population dynamics
of the vector. However, the availability of temporary bodies of water and the
total density of breeding sites also has an impact [42,176].

Temperature and precipitation are the most significant driving variables of
mosquito vector population identified in literature [10–19]. Precipitation has a
significant effect on vector populations of both Aedes and Culex species. How-
ever, it will affect Aedes and Culex mosquitoes in different ways due to the
difference in the breeding habits of the two genera.

Aedes aegypti and Aedes albopictus breed primarily in artificial containers.
The main identified breeding sites for Ae. aegypti in Guadeloupe were artificial
containers, flower pots, used tires, tree hollows, manhole covers and concrete
block hollows (detailed in Appendix A.3). Rainfall increases the total surface
of available breeding sites, however, it can also have a negative effect due to
flushing in cases of extensive precipitation [178, 179].On the other hand, Culex
can lay his eggs on virtually any stagnant water surface, with the preferred

122
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breeding sites being precipitation generated pools and natural areas of stand-
ing water, as well as floodwater, depending on the biotype. Culex pipiens lays
his eggs in rafts of 150–350 eggs. Example breeding sites include ditches, rain
barrels, clogged rain gutters, ground pools and puddles with murky water. The
standard estimated time from egg to immature stage to adults can take from
one to two weeks, depending on environmental conditions.

Some recent work on incorporating a hydrology routine in vector population
dynamics modelling already exists for Anopheles mosquitoes, which can vec-
tor malaria [180–182] . Abiodun et al. [179] modelled the association between
temperature, precipitation and the observed abundance of Anopheles arabien-
sis in South Africa. The model incorporates the hydrology routine developed
by Tompkins et. al [178]. The dynamics is parameterized as an exchange
between the precipitation and evapotranspiration rate. A simpler framework
with a similar subroutine for pond dynamics was first proposed by Porphyre et
al. [183]. Ahumada et al. [66] developed a model for the population dynam-
ics of Culex quinquefasciatus along an elevation gradient in Hawaii, however
the model mainly focuses on the effect of draught on the egg desiccation since
the local Cx. quinquefasciatus unlike Cx. pipiens is predominantly a cavity
breeder [66,184,185].

The models which incorporate puddle dynamics rely on the correct repre-
sentation of infiltration rate; moreover, parameters such as volumetric water
content in the surface layer, surface drainage and runoff can play a significant
role in modelling of the dynamics [178].

In meteorology, the exchange between precipitation and evapotranspiration
is the main process that drives the interaction between the lower layers of the
atmosphere and the ground. The nature of this interaction is explained through
the energy and water balance equations [186]. The key forcing is the net incom-
ing radiation at the surface which is the sum of non-reflected solar radiation and
the atmospheric long-wave radiation directed towards the surface. The amount
of reflected radiation is governed by the albedo of the surface and the long-wave
radiation is governed by the temperature of the emitting body, as described by
the Stefan–Boltzmann law. This sum is balanced by the partitioning of energy
into sensible heat (H), latent heat flux (LE) and the ground heat flux (G) [186].
This ratio is determined by the water balance equation. Rainfall that is inter-
cepted by the canopy further modifies the surface water balance, reducing the
amount of precipitation that reaches the soil. The interception rate is a function
of the precipitation rate, the leaf area index (LAI), water storage capacity and
roughness length of the canopy [186]. The infiltration rate on the other hand,
represents the amount of water that enters the soil from the ground surface and
is a function of the throughfall rate (sum of canopy drip and precipitation) and
the surface runoff.

In the surface modelling platform developed by Météo-France SURFEX
[187], runoff and interception are influenced by the aggregated tile physiog-
raphy as well as volumetric soil water content with the main parameter being
the fraction of clay and sand in the soil. SURFEX uses ECOCLIMAP [188] as
the physiographic layer that differentiates between different types of land cover,
which regulates the surface energy budget and water cycle. In addition to land
cover ECOCLIMAP provides albedo and LAI.

In this chapter we first examine whether including a precipitation routine
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improves the temperature forced model described in Chapter 6 and Chapter 7.
Second, we examine the feasibility of improving the precipitation subroutine
by using SURFEX. And finally, we examine whether SURFEX can be used to
improve the temperature forcing from a NWP model allowing us to run the
model in NRT and generate short range predictions.

8.3 Methods

SURFEX is a land surface scheme developed by Météo-France [187, 189]. The
scheme uses a tiling approach to compute the relative contribution from lakes,
vegetation and urban surface parts. A high-resolution physiographic dataset
called ECOCLIMAP [188] is used as input for land cover types. SURFEX
consists of several physical models for natural land surfaces, urbanized areas,
lakes and oceans. SURFEX can be initialised offline and run independently of
the forcing atmospheric model. The natural continental surfaces are modelled
with the ISBA land surface scheme (Interaction Soil Biosphere Atmosphere).
The Town Energy Balance (TEB) model [189] simulates turbulent fluxes for
urban areas.

8.3.1 ISBA prognostic equations and surface fluxes

The ISBA scheme was run with a 3-level soil scheme [187]. ECOCLIMAP phys-
iographic characteristics are used to estimate the surface resistance coefficients.
The main prognostic equations in ISBA are:

∂Ts

∂t
= CT (Rn −H − LE)− 2π

τ
(Ts − T2) (8.1)

∂T2

∂t
=

1

τ
(Ts − T2) (8.2)

∂wg
∂t

=
C1

ρwd1
(Pg − Eg)−

C2

τ
(wg − wgeq) (8.3)

∂w2

∂t
=

1

ρwd2
(Pg − Eg − Etr)−

C3

d2τ
max[0, (w2 − wfc)] (8.4)

∂Wr

∂t
= vegP − (Ev − Etr)−Rr; 0 ≤Wr ≤Wrmax (8.5)

The five main prognostic variables are: Surface temperature (Ts); Deep
soil temperature (T2); Deep soil water content (w2); Top soil water content
(wg); Interception water storage (Wr). H and LE are the sensible and latent
heat fluxes, Rn is the net solar radiation at the surface, the coefficient CT is a
function of the vegetation-to-soil fraction and the ground, snow and vegetation
heat capacities [187]. Pg is the flux of liquid water arriving at the soil surface
and Eg is the evaporation at the soil surface, Etr is the transpiration rate,
ρw the water density and d1 the arbitrary normalization depth which is set
to 1 cm, τ represent the 1 day time-frame used in the Force-Restore method
(originally proposed by Blackadar [190] and Bhumralkar [191]). The equilibrium
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surface volumetric moisture, wgeq, C1 and C2 are taken from calibration tables
constructed for different soil textures and moisture content [187,192].

Possible soil models in ISBA include: (i) 2-L model corresponding to the
system of equations depicted above i.e. Ts and T2 describing the temperature
profile and wg and w2 describing the hydrology profile (ii) 3-L parameterization
i.e. Ts and T2 describing the temperature profile and wg, w1 (root zone) and w2

(sub-root zone) describing the hydrology profile (iii) N-L Diffusive model i.e. N
possible layers for the temperature and hydrology profile [187,193–196]. Specific
options in the soil model are the run-off and sub-grid drainage routine [197].

In case of the 3-L soil model the system of equations is expanded to include
a prognostic equation for w3, and the bulk soil layer (w2 in the above-defined
system of equations) is split into a root zone d2 and a base-flow layer d3 − d2.

∂w2

∂t
=

1

ρwd2
(Pg − Eg − Etr)−

C3

d2τ
max[0, (w2 − wfc)]−

C4

τ
(w2 − w3) (8.6)

∂w3

∂t
=

d2

d3− d2

(
C3

d2τ
max[0, (w2 − wfc)] +

C4

τ
(w2 − w3)

)
− C3

(d3− d2)τ
max[0, (w3−wfc)]

(8.7)
C4 is the vertical diffusion coefficient defines as C4 = C4ref ¯w2,3

C4b where
¯w2,3 represents the representative interpolated volumetric water content at d2.

The C coefficients are defined according to the soil content.

8.3.2 Data

A verification of the surface temperature from SURFEX [187] is performed
against MODIS Land Surface Temperature (LST) [198] for the study site in
Petrovaradin. The LST data (MOD11) are retrieved at a horizontal resolution
of (i) ≈ 30 arc second with the generalized split-window algorithm; (ii) ≈ 3 arc
minutes with the day/night algorithm [198]. For Guadeloupe on the other hand,
near-surface variables are more important: verification of 2 m temperature is
performed against the ERA5 [199] reanalysis for the nearest point in the native
ERA5 grid.

8.3.3 SURFEX forcing

For Guadeloupe, SURFEX is forced with the 50 m temperature and wind from
the Integrating Forecasting System (IFS) deterministic model [200] to obtain
the 2 m temperature. The 50 m forcing was generated from the deterministic 8-
km IFS forecast at model level 3 (≈ 50 m). This SURFEX run is verified against
ERA5 hourly 2 m temperature for Guadeloupe. For Petrovaradin, SURFEX is
forced with 2 m and 10 m ERA5 [199]. This run is verified against MODIS land
surface temperature. These verification sets were selected in order to ensure that
the forcing and verification series are not the same and escape false accuracy
due to this pitfall.

Depending on the application, SURFEX can be forced with: surface vari-
ables or forcing at the three lowest atmospheric model levels. The following two
scenarios can be distinguished: (1) If we are interested in surface variables, as
opposed to near surface variables at 2 m or 10 m; then SURFEX can be forced
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and is sufficiently reliable with parameters at 2 m (temperature forcing) or at 10
m (wind forcing); (2) In case the near surface variables are important SURFEX
must be forced with data at 50 m (3rd model level, IFS).

The variables used to prepare the forcing were: surface solar radiation down-
wards (J m−2), surface thermal radiation downwards (J m−2), rain rate (kg
m−2s−1), temperature (K), u and v wind speed (m s−1), specific humidity (kg
kg−1). The radiation parameters were transformed to (Wm−2) for the forcing.

8.3.4 Precipitation routine

8.3.4.1 Model 1

In the first study a simple lagged model is considered. The larva and pupa
carrying capacities are scaled using the accumulated precipitation between day
26 and day 14 prior to the trapping event (detailed in Chapter 4, shown here in
Figure 8.1):

Figure 8.1: (a) CCF for precipitation and Culex pipiens abundance for 2016–
2017 for lags 0–25 days; (b) dendrogram and (c) ordered CCM for Petrovaradin
for time interval lagged precipitation and Culex pipiens abundance for 2016–
2017, lags from 0–60 days shown in descending order on y-axis and ascending
order on x-axis.

κiL,P (Hi
norm) = κiL,P · (1 +Hj

norm) (8.8)

Hnorm is the value of the accumulated precipitation for day j normalized
between 0 and 1:
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Hi
acc =

i−j∑
i−k

Hn (8.9)

Where i is the trapping day, k = 26 and j = 14.

8.3.4.2 Model 2

In this study, it is assumed in line with [71, 178, 179, 201], that the carrying
capacity κ is a function of the total surface of the available breeding sites. This
model includes a subroutine for the fraction of the total available breeding sites
per unit area as:

∂wpond
∂t

= Kν (H · (wmax − wpond)− wpond(E + I)) (8.10)

The run-off is scaled by a linear factor 1 − wpond
wmax

. Once the pond fraction
reaches wmax, the contribution from precipitation overflows and is lost [178,179].

The fraction of available breeding sites is mapped to a sigma stress function
for the carrying capacity K = Kmax ·σwp, where Kmax is the maximum carrying
capacity per surface area.

Infiltration losses are often highly variable and non-linear. In literature, a
constant infiltration rate of 5 mm/day is assumed [178, 179]. We investigate
whether the precipitation routine is improved by forcing from SURFEX.

The evaporation rate from the puddle is calculated following Hamon’s equa-
tion:

E = 2.1 · h2
t · (

es
Ta+ 273.3

) (8.11)

Where ht is the average number of daylight hours per day during the month
in which day t falls, es is the saturation vapour pressure calculated as:

es(Ta) = 0.6108e(
17.27Ta
Ta+237.3 ) (8.12)

Infiltration rate [mmday ] is estimated as: I = min(Rt −Qr,−Fmax0) [187], Rt
is the through-fall rate calculated as the sum of canopy drip and precipitation,
and Fmax0 is the maximum water flux into the surface soil layer, Qr is the
surface run-off [187].

The SURFEX outputs that are used in the precipitation routine are: (i) The
change of water on canopy, i.e. through-fall rate (DWR) (ii) Total run-off for
the surfaces present in the tile.

Important parameters for the correct simulation of infiltration and run-off
are the clay and sand fractions of the top soil layer and the temperature of the
water near the surface. In literature it is assumed that the temperature of small
volumes quickly reaches thermodynamic equilibrium with the surrounding air
and can be assumed to be the same as air temperature. The clay and sand frac-
tions of the soil were specified according to the physico-chemical characteristics
of the soil type for this region of Serbia [202].
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8.3.4.3 Numerical weather prediction model

The deterministic 8-km Integrated Forecast System [200] numerical weather
prediction (NWP) runs for the first 25 hours, started at 00h and 12h, were
used to obtain short-range forecasts for the population dynamics of Ae. aegypti
population in Guadeloupe.

We first compare the IFS and SURFEX 2 m temperature against ERA for
Guadeloupe to see if the accuracy of the forcing temperature is improved by
SURFEX. Second we generate the forecast steps in SURFEX and run a short-
range forecast scenario for the vector population dynamics (25 hours).

The IFS variables used to force SURFEX were: surface solar radiation down-
wards (J m−2), surface thermal radiation downwards (J m−2), rain rate (kg
m−2s−1), temperature (K), u and v wind speed (m s−1), specific humidity (kg
kg−1). The radiation parameters were transformed to (Wm−2) for the forcing.

8.4 Results

8.4.1 Verification of ECOCLIMAP

Due to high levels of landscape fragmentation, especially at mid-latitudes [188],
we first compare the ECOCLIMAP outputs to CLC and ground-truth informa-
tion for the study sites.

The bar plot (Figure 8.2) summarizes the fraction of each cover type for
the two datasets. The fraction of each cover in the CLC layer is calculated by
looking at the ratio of pixels corresponding to certain layers to the total number
of pixels in the CLC subset, matching the extent of the SURFEX tile.

Land Cover names can vary depending on the database. Following the pa-
per by Tchueté et al. [203], the corresponding legends from CLC and ECO-
CLIMAP are reconciled by re-classifying them according to the LCCS (Land
Cover Classificaiton System) standard [204]: (i) The “Forest/Mixed Forest” ag-
gregated class containing the central American evergreen broad leaf forest for
Guadeloupe, and Broadleaf forest type for Serbia; (ii) The “Cropland” includ-
ing different agricultural tissue (iii) The “Grassland” aggregated class including
central-American and tropical wooded grassland for Guadeloupe; and central
Eastern European pastures for Serbia (iv) The “Urban and built-up” aggre-
gated class which includes airports and other low-rise human structures. Other
classes that correspond to the LCCS (level 1) standard and are not present in
this tile are the woodland/shrubland type, the bare land and the inland water
class.

We see that the agreement between the mixed SURFEX tile and the CLC
aggregated classes is fairly good for both study location. For Guadeloupe, the
observed pixel to total number of pixels ratio in the CLC classes for the single-
point-run tile is 48% Urban consisting of discontinuous urban fabric; and 52%
Nature consisting of cropland (22%) and broadleaf forests (30%) (Table 8.1,
Figure 8.2a). The Forest and Urban tissue is replicated in ECOCLIMAP, how-
ever, instead of the crop cover ECOCLIMAP shows wooded grassland. The
grassland cover matches the ground-truthing reports from the local team bet-
ter than crop which is located further to the north of the study location. The
specific land cover classes identified in ECOCLIMAP: Central American ever-
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green broadleaved forest (EBF), and central American tropical wooded grass-
land (WG) are all confirmed on the island.

The Mixed SURFEX tile for Petrovaradin has a better correspondence to
CLC (Figure 8.2b). The observed CLC ratio is 76% Urban consisting of discon-
tinuous urban fabric (47%) and industrial and commercial units (29%); and 24%
Nature consisting of broadleaved forest areas (19%) and complex cultivation pat-
terns (5%). All land cover classes identified in ECOCLIMAP (Table 8.2) were
compared against ground truth information and city records for this district
and are all present except for the complex cultivation which are not commonly
found in this suburban region.

Figure 8.2: Tile fraction comparison

Table 8.1: Nomenclature of the ECOCLIMAP and CLC (control) land cover
types being used for the SURFEX tile for Guadeloupe.

Source Cover Fraction [%] Aggregated classes

SURFEX ECOCLIMAP

Cent. America Tr. wind EBF 22 Forest/Mixed Forest
Cent. Amer. Tr. wind & trop. WG 29 Grassland
Urban and built-up 49 Urban and built-up

CLC CLC

Discontinuous urban fabric 48 Urban and built-up
Agricultural tissue 22 Cropland
Broadleaf forest 30 Forest/Mixed Forest

Table 8.2: Nomenclature of the ECOCLIMAP and CLC (control) land cover
types being used for the SURFEX tile for Petrovaradin.

Source Cover Fraction [%] Aggregated classes

SURFEX ECOCLIMAP

Urban and built-up 62 Urban and built-up
Balkanish complex cultivation pat. 12 Cropland
Agro-forestry areas 26 Forest/Mixed Forest

CLC CLC

Discontinuous urban fabric 47 Urban and built-up
Industrial and commercial units 29 Urban and built-up
Complex cultivation pat. 5 Cropland
Broadleaf forest 19 Forest/Mixed Forest
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8.4.2 Verification of OFFLINE SURFEX

The testing of SURFEX, within the ALADIN and ALARO models, has been
performed extensively during the last couple of years [205–207]. The results
showed that the runs with SURFEX did not significantly change the output for
surface, pressure, precipitation, cloud cover and 10 m wind direction, however,
they improved the scores for 2 m humidity and temperature and 10 m wind
speed.

In this section a verification of 2 m and surface temperature will be presented
for the two use-cases in Bahariya and Petrovaradin.

8.4.2.1 Guadeloupe

We consider three scenarios for Guadeloupe: (i) SURFEX over a 100% Nature
tile; (ii) SURFEX over a 100% Urban tile; (iii) and SURFEX over a mixed tile
corresponding to the ECOCLIMAP fraction.

Table 8.3 represents the scores obtained for 2 m temperature for the reanal-
ysis point located next to the Pointe-à-Pitre station in a semi-rural area. The
accuracy scores of the SURFEX runs for three tiles with different physiographic
characteristic and the IFS two-meter temperature are compared. There is an
improvement in BIAS and RMSE with SURFEX compared to IFS, with the
mixed tile performing the best.

Table 8.3: BIAS (M-O) and RMSE for 2 m air temperature against hourly ERA.
NAT URB MIX IFS

BIAS -0.531 1.282 0.375 -1.253
RMSE 1.798 1.596 1.116 1.985
Corr r = 0.76 (p <2.2E-16) r = 0.72 (p <2.2E-16) r = 0.81 (p <2.2E-16) r = 0.68 (p <2.2E-16)

This is in accordance with the ECOCLIMAP results, since the mixed tile
corresponds best to the observed land cover.

8.4.2.2 Petrovaradin

The scores obtained for the comparison of SURFEX surface temperature and
MODIS land surface temperature are presented in Table 8.4 and Figure 8.3.

Table 8.4: BIAS (M-O) and RMSE MODIS LST daily.
NAT URB MIX

BIAS -0.816 0.384 -0.352
RMSE 2.08 1.917 1.904
Correlation r = 0.8468 (p <2.2E-16) r = 0.8504 (p <2.2E-16) r = 0.8986 (p <2.2E-16)

Again we see that the mixed tile performs the best, i.e. has the highest
accuracy (RMSE, BIAS) and best association with the remote sensing LST
data for Petrovaradin.
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Figure 8.3: Correlation graphs MODIS LST vs SURFEX surface temperature
for (a) 2016 and (b) 2017 for Petrovaradin.

8.4.3 Precipitation routine

The two precipitation schemes are compared against the original model. The
improvement in the model is depicted in Table 8.5 showing the difference be-
tween the verification scores for the baseline and the new model (RMSE(New)
– RMSE(Baseline)).

The model output is between 0 and 1, the RMSE and BIAS should be con-
sidered accordingly. The dynamic model forced with SURFEX performed the
best across all three scores. The dynamics model forced with SURFEX per-
formed better than the dynamic model forced with constant infiltration rate (I
= 5 mm/day [178,179]). The reduction in BIAS (i.e. improvement in accuracy)
for the model with constant infiltration was -8·10−3, and the reduction in BIAS
for SURFEX forced model was -1.65·10−2.

Table 8.5: Difference in verification score (RMSE(New) – RMSE(Baseline)).
Negative value indicates improvement

Lagged Dynamic Dynamic Forced with SURFEX
∆ RMSE -0.005766 -0.03501049 -0.067446
∆ BIAS -0.001429 -0.008673 -0.0165111
∆ AIC -3.2 -4.8 -6.2

Figure 8.4: Comparison of the baseline temperature-forced model (orange) and
model including a precipitation routine with SURFEX (blue).
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The improved cannot be considered to be significant since the verifica-
tion scores for all three model are lower than the observational uncertainty
(u(o) = 0.12 and u(o) = 0.11 for Petrovaradin for 2016 and 2017, respectively
- calculated in Chapter 7). However, the simulated dynamics does appear to
better capture the observed dynamics for the peaks following the July maximum
(Figure 8.4).

Even though the improvement in accuracy is not significant it does improve
the reality of the model and can inform vector treatment that targets the imma-
ture stages in the mosquito life cycle. Applying larvicide to the breeding sites
for a period in which the total fraction of available breeding sites exceed a safe
threshold could reduce the control effort and maximize efficiency. This type of
information does not exist in the model forced solely by temperature.

8.4.4 Short range forecast of vector population dynamics

Pest population dynamics are driven by environmental factors at the global and
local scale, as well as different temporal frequencies. The forecasting period
can be considered at different temporal scales: Short term (few days) which
focusses on high-resolution processes; medium range (up to 10 days) synoptic
scale; and monthly and seasonal forecasts (linked to global circulation patterns).
The 25 hour forecast can give valuable information on the change in trend in
the population dynamics. The forecasted values are shown in red in Figure 8.5.

The local change in trend corresponds to the global change in trend. The
total deviation from the 0-time step forced SURFEX is 0.009. For a sample
period shown in Figure 8.5 we see that the two critical points on the 25th
and 26th of March corresponding to the base and peak of the maximum were
correctly forecasted.
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Figure 8.5: Ae. aegypti short-range forecast for (a) the full observational in-
terval (Mar - May 2017) and (b) a 20 day sub-interval (Mar 23 - Apr 12 2017)
(observed: blue; model: black; forecast: red).

8.5 Discussion

In this chapter we considered two possible ways in which the SURFEX land-
surface platform can be an added value to vector population dynamics models:
(1) Improving the hydrology routine; (2) using SURFEX to improve the accu-
racy of the IFS forcing and generate short-range forecasts for the population
dynamics model.
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Adding precipitation to the baseline population dynamics model improved
the accuracy of the model, however the improved scores are within the ob-
servational uncertainty and cannot conclusively be considered significant. The
underlying reason could be that the actual observed population does not have
such a strong correlation with precipitation and breeding sites are generated
through other mechanisms. This is can be linked to the results obtained in
the cross-correlation analysis for Petrovaradin in Chapter 4. The correlation
showed only a moderate association with precipitation and the observed pop-
ulation density. Meaning that the main mechanism for generating the flood
areas suitable for Cx. pipiens reproduction around Petrovaradin might not be
precipitation but a combination of precipitation and flooding due to the rise in
water levels.

The accuracy of the IFS forcing is improved with SURFEX. As far as we
know, there are no existing papers which report a model that is used to for
forecasting pest population dynamics. This could be an interesting avenue for
future research and IPM applications which can support NRT processing of
vector population dynamics models.



Chapter 9

General discussion and
conclusions

The population dynamics of vector species and the consequential circulation of
Vector-Borne Disease (VBD) is simulated by numerical models of different scales
and complexity. These models require species-specific parameters forced by me-
teorology representative of the vector micro-habitat in order to produce useful
simulations of population densities for each stage. The main contributions of
this thesis are: (i) a methodology for the analysis of the climatic suitability and
a dynamic weather-driven simulation of the population dynamics for Aedes ae-
gypti and Culex pipiens for specific locations in Guadeloupe, Egypt and Serbia;
(ii) an improved understanding of the sensitivity of the Multi Criteria Decision
Analysis (MCDA) model parameters in different eco-climatic conditions; (iii)
a functional understanding of the impact of model stability on initialization
and spin-up time; (iv) a practical framework for forecasting pest population
dynamics in scenarios where in-situ near-real time data is not available. These
main contributions are attained by: (i) systematically investigating the relation
between the observed vector population and the meteorological conditions at
3 locations (Chapter 4); (ii) a MCDA suitability assessment at these sites and
identification of the most important climatic factors and model settings as a
function of climatic characteristics of the study region (Chapter 5); (iii) mod-
elling the vector population dynamics and stability analysis of the dynamical
system (Chapter 6); (iv) the analysis of different verification techniques and
implications in terms of model application (Chapter 7); and (v) a feasibility
analysis of improving the model with the SURFEX Land-Surface Parameteri-
zation platform and short-range forecasting of pest population dynamics with
IFS data (Chapter 8).

Relation between observed vector population and meteorological conditions:
Fluctuations in local environmental conditions not only influence the immedi-
ate activity and survival, but also the development and transition rates between
the different stages within the life-cycle of the mosquito vector. A qualitative
understanding of the local strength and nature of association and time-scales
of this interaction can be used as input for vector population dynamics models
in order to forecast population spikes through meteorological observations. The

135
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association between the observed vector population and the most important me-
teorological variables driving vector mortality and development was investigated
in Chapter 4. This was carried out by means of time-series analysis and lagged
cross-correlation of abundance with the following variables temperature, relative
humidity, precipitation and wind speed. The association between the meteoro-
logical and entomological time series was found to be predominantly non-linear.
The results demonstrated a significant correlation between the vector popula-
tion and daily temperature at both sites. While different studies have identified
relative humidity to have a crucial impact on vector dynamics [71,179,208,209],
no significant association was found with vector abundance for the study sites in
Bahariya and Petrovaradin. Low values of relative humidity have been known
to negatively influence the survival rate of adult mosquitoes, however, the pop-
ulation is capable of surviving in a high-stress environments, pertaining to both
low relative humidity and high temperature. This can be due to multiple factors
such as human influence, and the existence of natural cover or more suitable
micro-habitats. The generalizability of the results is limited by the number and
specific setting of the study sites. Further investigations, on multiple sites, are
needed to examine the sensitivity curve of vector mortality and development
rates with respect to the observed relative humidity range in field conditions.
Generational coupling with temperature was identified with a negative corre-
lation with air temperature and vector abundance at the 8–10 day lag for Ba-
hariya. For Petrovaradin, a positive correlation with one and two-week lagged
air temperature suggests a similar generational character for a mid-latitude loca-
tion, however additional analysis is needed to identify the interval-lagged nature
of this mechanism in the context of variable aquatic development times in semi-
controlled conditions. The seasonal character of the vector time-series was less
pronounced for Bahariya and the wavelet analysis indicated that the time-series
had a more stochastic character for the second half of the period compared
to the first. Further work could be carried out to compare the wavelet spec-
trum of the forcing meteorology with the entomological observation and assess
whether this shift is reflected in the meteorological time-series. The results of
the time-series analysis confirm existing evidence that the diurnal temperature
range (DTR) can negatively affect the development and survival rates of the
vector and decrease the population density [30, 210, 211]. DTR as well as the
diurnal relative humidity range (DRHR) had a predominantly negative asso-
ciation with the observed catches for Bahariya. This is a desert location in
Egypt with extreme variation in the daily temperature cycle often observed.
Such harsh conditions could exhibit a direct stress to poikilothermic organisms
and invariantly expose the vector to unfavourable temperature and relative hu-
midity conditions that negatively impact survival. The correlation of vector
abundance with wind was negative for the 0-day lag and should be considered
during surveillance and data processing, i.e. high wind speed could produce
lower catches. Further work should be carried out to calibrate this scaling fac-
tor. The standard temperature range for the activity of Cx. pipiens is 11 ◦C –
35 ◦C [7,8], with immobility and death occurring at temperatures above 35 ◦C.
However, we have found that the vector can adapt to the environment and was
even observed to have higher activity with the increase of total hours above 35
◦C for the study site in Bahariya, Egypt. This suggests that the response of the
vector to local environmental conditions can be significantly different between
sites. Further research should be done to quantify this link for Culex pipiens in
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the hot arid desert climate (Köppen classification, CWh).

Climatic suitability assessment: A country-level climatic assessment study
was carried out for Guadeloupe, Egypt and Serbia to examine the broader suit-
ability for the establishment and inter-annual activity of the vectors (Chapter 5).
A mechanistic MCDA model was used to translate the climatic parameters into
a measure of suitability for each vector. The MCDA model is useful in the
analysis of emerging hot spots or high-risk areas arising from the characteris-
tics of the local climate. An increase in the suitability index could indicate
higher activity and greater population abundance of the vector during the year,
which has an influence on the disease transmission rate [30, 179, 212]. This is
especially important for the species considered in this study since they can vec-
tor some of the most hazardous and rapidly spreading diseases in the world;
namely Zika, Chikungunya, Dengue (Ae. aegypti), St. Louis Encephalitis and
WNV (Cx. pipiens). The MCDA model had the highest sensitivity to the Ta
(annual temperature) climatic parameter in Guadeloupe, for Ae. aegypti ; the
night-time-light parameter in Bahariya, for Cx. pipiens; and again the Ta (an-
nual temperature) parameter in Serbia, for Cx. pipiens. The association could
suggest an expected increase in suitability as a result of climate change for all
three locations following any climatic scenario in which an increase in popula-
tion is assumed and an increase in the mean annual temperature is projected.
In an additional study, presented in Appendix A.1, we examined the expected
impact of climate change using a multi-model approach for the establishment
of the Asian tiger mosquito (Aedes albopictus) in Serbia. The results indicate
that most of the country will become suitable for this invasive vector by the
end of the century. Future work should be carried out to examine the change
in suitability in the context of climate change for Egypt and Guadeloupe. The
sensitivity analysis carried out in this thesis examined a one-factor-at-a-time
(OFAT) sensitivity analysis i.e. an analysis of the MCDA output for each vari-
able in the parameter space while keeping the others constrained. In future
research, the all-but-one-at-a-time global sensitivity analysis (ABOS) will be
employed to explore the interaction effects of the input parameters.

Dynamical model and stability analysis: A mechanistic, nonlinear ODE vec-
tor population dynamics model for Ae. aegypti and Cx. pipiens was formulated
and analyzed in Chapter 6. The model consists of 10 compartments and simu-
lates the entire life-cycle of the mosquito vector. It incorporates age and density
dependent processes within the closed system of the simulated population. The
development and mortality rates are temperature dependent functions. The
model is run with a daily time step. The stability of the dynamical ODE sys-
tem was examined, and two equilibrium states were identified. The practical
implication of determining the stationary states of the dynamical system were
demonstrated within the purpose of reducing the model spin-up time and inter-
nal model validation. The equilibrium is defined for an autonomous system, i.e.
a specific temperature state. When the system is initialized with a value greater
than the steady state for the temperature value corresponding to a particular
integration step, damped oscillation around the equilibrium point is observed.
The exact value for the different stages of the mosquito population cannot be
captured by measurements, thus most models integrate from a best-guess ini-
tial state based on literature and allow for a longer spin-up time. The spin-up
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time when initializing from an arbitrary state was estimated to be around 200
days. We demonstrated that the spin up time can be considerably reduced by
initializing with the equilibrium state corresponding to the temperature at the
t=0 timestep.

Model Verification: In Chapter 7 the verification and validation of the model
was performed. There is little literature on the quantitative verification of vector
population models since long term and consistent time-series of observed data
are rare. The time and cost of the trapping efforts are usually the main limiting
factors. Most available data-sets tend to be irregularly spaced and demonstrate
high variability over different regions and sampling periods. Moreover, the infor-
mation and data are often time and resolution specifics to the considered period
of observation. Sometimes multi-year data needs to be collected to quantify
the seasonal relationship of the vector population and its environment. Thus,
collecting field data is a slow and expensive process.

The verification methods for this type of ODE models need to be selected
based on their practical application. For meteorological forecasts, the verifica-
tion metrics can be grouped in three respective groups: scientific, economic and
administrative [151]. A similar classification can be applied to vector models.
From a scientific point of view the focus is on the improved understanding of
the modelled biological system. It can be argued that this is the broadest of
the three categories, because it needs the widest range of verification metrics
and an underlying explanation of why the model performed well for a certain
metric and less well for another, and an analysis of this verification score in
terms of the underlying modelling framework. This type of analysis could lead
to a better understanding of the biases present in either the observational or
modelling procedures and to an improved understanding of the underlying pro-
cesses. Within this category the methods outlined in Chapter 7 were: (i) internal
verification employing Wavelet analysis, which was used to assess whether the
frequencies occurring in the observed population are replicated in the model;
(ii) exploratory methods (EM) which deal with the graphical comparison of
the observed and modelled data as well as the comparison of the basic sum-
mary statistics of each set; (iii) RMSE and BIAS verification metrics which
can indicate in which interval of the total observational period the accuracy
or association of the simulation and observations decreases; (iv) analysis of ex-
trema and inflection points which demonstrate weather the significant peaks
and the dynamics leading to a peak is correctly represented by the model; and
(v) contingency verification measures (CVM) which indicate whether “higher-
abundance” events, defined by a threshold are correctly simulated by the model.

The wavelet analysis showed that the dominant frequencies for both the ob-
served and simulated dynamics change with the time evolution of the system and
that the summer period corresponded to a higher number of significant frequen-
cies as well as shift to higher frequencies for both Bahariya and Petrovaradin.
The cross-wavelet analysis demonstrated that this was replicated in the simu-
lated system. The model performed fairly well for all locations with the best
scores obtained for Petrovaradin, then Guadeloupe and lastly Bahariya.

From an economic point of view the main focus is on the specific role the



CHAPTER 9. GENERAL DISCUSSION AND CONCLUSIONS 139

model is performing within the real-word application and can be expressed in
terms of model value. For example, a population dynamics model can be used
to inform control measures for a specific location with the aim of reducing the
annual cost of spraying and pesticides. The user often needs information re-
garding a specific threshold in the vector population. For this application the
correct simulation of significant peaks and inflection points is most relevant as
well as CVM for a threshold determined by the user.

Finally, the administrative point has a focus on improving the overall per-
formance of the model based on a smaller sub-set of verification metrics and is
mainly concerned with model accuracy. These types of verification could guide
next steps and help make decisions about the future research avenues in a more
general manner. However, to be able to utilise this type of reasoning within the
field of vector modelling, a consensus needs to be reached on the most represen-
tative verification metrics, which is currently not the case. Hopefully this thesis
is a step towards understanding the utility and context of different verification
scores for evaluation vector population dynamics models and their interpreta-
tion.

Hydrology routine and pest population dynamics forecasting: In Chapter 8
two possible ways in which the SURFEX land-surface platform can be an added
value to vector population dynamics models was considered: (i) Improving the
hydrology routine; (ii) using SURFEX to improve the accuracy of the IFS forcing
and generate short-range forecasts for the population dynamics model. Tem-
perature has the most significant effect on the mortality and development rates
of the vector population, while precipitation has an impact on the provision
and total surface of available breeding sites. We examined a simple, process-
based surface hydrology subroutine which provides the fractional water coverage,
based on an exchange between precipitation, the canopy fall-through rate and
evaporation, for each numerical integration step. This routine covers the effect of
precipitation on temporary water bodies that can serve as vector breeding sites;
however, it does not include other processes that could influence the availability
of breeding sites. Land cover has been found to affect the larval development
rate through the effect on water temperature [179, 213]. Other missing param-
eters that should be considered in future studies are irrigation and flood areas,
which can be implemented in SURFEX through the flooding scheme coupled to
ISBA. Existing flood areas can confound the traditional relationship between
precipitation frequency and the total available surface of breeding sites by being
dependent on up-stream meteorological processes such as spring snow-melting,
or even during low water-levels and drought periods in which the river bed dries
up and stagnant water-pockets develop [178]. Similar time-series analysis tech-
niques as described in Chapter 4 should be utilized to examine the association
between these new variables and the observed vector population. Moreover,
data regarding the abundance of the aquatic stages could significantly improve
the verification efforts for this routine and will be used to calibrate and validate
the model in future work.

Finally, a short-range forecast run for the vector population dynamics forced
with SURFEX 2 m temperature was examined. These finding could be valuable
in an early warning IPM system to indicate the change of trend in the popula-
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tion dynamics and inform timely control. In future, we would like to examine
the feasibility of medium and long-range forecasts of vector populations. Here
error propagation and uncertainty is an important consideration since the pre-
dictability for the forcing meteorology rapidly decreases with the forecast time.
Moreover, quantifying the seasonal link between vector populations and global
scale patterns such as the North Atlantic Oscillation index, the Madden Ju-
lian Oscillation index and the El Niño Southern Oscillation index, and relating
them to the local scale could pave the road for seasonal population dynamics
forecasting.
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son, and A. Guisan, “Evidence of climatic niche shift during biological
invasion,” Ecology letters, vol. 10, no. 8, pp. 701–709, 2007.

[60] P. Zeman and G. Lynen, “Evaluation of four modelling techniques to pre-
dict the potential distribution of ticks using indigenous cattle infestations
as calibration data,” Experimental & applied acarology, vol. 39, no. 2, pp.
163–176, 2006.
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Appendices

A.1 APPENDIX A - Additional published work

A.1.1 Wireless Sensor Networks in IPM

Status: Book Chapter, submitted

Petrić M, Marsboom C, Vandendriessche J. Chapter: Wireless Sensor Net-
work in IPM, Book: Social, Legal, and Ethical Implications of IoT, Cloud, and
Edge Computing Technologies. IGI-Global. 2020. Cornetta J. Pennsylvania,
USA.

Abstract: Wireless Sensor Network technology is already widely used in
a plethora of scientific and commercial applications, and this number will only
increase with the expected rise of the IoT market. An emerging field for envi-
ronmental WSN systems is entomological vector surveillance. Sensor technology
can be used to shoulder ecologically friendly practices within the Integrated Pest
Management (IPM) approach. Proper surveillance and subsequent modelling of
the impact that pest and disease have on human health and crop agriculture is
a pressing issue in numerous segments. Over 500 million people are infected by
Vector Borne Disease (VBD) every year. WHO estimate that , annually, over 3
billion people are at risk of contracting a VBD, of which a large proportion is
diseases transmitted by mosquito vectors. More than 2.5 billion people are at
risk of contracting Dengue alone, and Malaria causes 600,000 deaths every year
globally.

Numerical models are being developed to generate information regarding the
population dynamics of vector species and the expected circulation of Vector
Borne Disease (VBD). These models require detailed micrometeorological forc-
ing representative of the vector habitat to generate accurate simulations. IPM
translates expert knowledge of pest biology and ecology into a tailored control
strategy to reduce local vector populations to the lowest level possible. Earth
Observation (EO) data can be coupled to the WSN system and used to compli-
ment the collected sensor data. It can be used to determine micro-climatic zones
in a region, by providing additional data which the WSN cannot collect such
as information on a regional or continental scale and long-term historic data.
Autonomous networks of connected sensors together with EO data can provide
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near-real time input for numerical models used to forecast pest populations, thus
supporting efficient Integrated Pest Management in scenarios where continuous
human surveillance is not possible. Lack of field measurements, collected over
long periods and at biologically significant spatial granularity, hinders scientific
understanding of how small-scale environmental factors drive pest population
dynamics. Data offload in remote areas with flexible channels of communication
for complex and heterogeneous topographies is an important component in this
type of application. WSNs utilized in combination with satellite communica-
tion can provide reliable, in-situ, high precision monitoring of high frequency
processes.
As a contemporary technology, WSNs integrate the capabilities of sensors, digi-
tal network transmission, automation control and information storage and pro-
cessing. To be of scientific value for IPM, the sensor and network design should
be driven by the following requirements: (i) Measurement fidelity; (ii) Sampling
frequency; (iii) Accuracy, precision and range; (iv) An energy harvesting so-
lution for autonomous field operations; and (v) Robustness in terms of harsh
environmental conditions. Before the sensor output can be incorporated into
mathematical models as well as used for comparison with other sources data
cleaning and aggregation algorithms have to be developed. Bias and error in
sensor measurements should be analysed and a sensor readings adjustment rou-
tine applied if necessary. The most important part of quality assurance is critical
quality control. Quality control (QC) should be automated and carried out in
nearreal time to ensure measurement fidelity and reduce the time needed for
problem mitigation. In this chapter we will provide an overview of the scope
and best-practice approaches in applying WSN technology to drive IPM models.

A.1.2 Assessment of climate change impact on the malaria
vector Anopheles hyrcanus, West Nile disease, and
incidence of melanoma in the Vojvodina Province
(Serbia) using data from a regional climate model

Status: Published.

Mihailović DT, Petrić D, Petrović T, Hrnjaković-Cvjetković I, Djurdjevic V,
Nikolić-Djorić E, Arsenić I, Petrić M, Mimić G, Ignjatović-Ćupina A. Assess-
ment of climate change impact on the malaria vector Anopheles hyrcanus, West
Nile disease, and incidence of melanoma in the Vojvodina Province (Serbia) us-
ing data from a regional climate model. PLoS One. 2020 Jan 15;15(1):e0227679.

Abstract: Motivated by the One Health paradigm, we found the expected
changes in temperature and UV radiation (UVR) to be a common trigger for
enhancing the risk that viruses, vectors, and diseases pose to human and ani-
mal health. We compared data from the mosquito field collections and medical
studies with regional climate model projections to examine the impact of cli-
mate change on the spreading of one malaria vector, the circulation of West Nile
virus (WNV), and the incidence of melanoma. We analysed data obtained from
ten selected years of standardised mosquito vector sampling with 219 unique
location-year combinations, and 10 years of melanoma incidence. Trends in
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the observed data were compared to the climatic variables obtained by the
coupled regional Eta Belgrade University and Princeton Ocean Model for the
period 1961–2015 using the A1B scenario, and the expected changes up to 2030
were presented. Spreading and relative abundance of Anopheles hyrcanus was
positively correlated with the trend of the mean annual temperature. We an-
ticipated a nearly twofold increase in the number of invaded sites up to 2030.
The frequency of WNV detections in Culex pipiens was significantly correlated
to overwintering temperature averages and seasonal relative humidity at the
sampling sites. Regression model projects a twofold increase in the incidence of
WNV positive Cx. pipiens for a rise of 0.5◦C in overwintering TOctober–April
temperatures. The projected increase of 56% in the number of days with Tmax
≥ C (Hot Days—HD) and UVR doses (up to 1.2%) corresponds to an increasing
trend in melanoma incidence. Simulations of the Pannonian countries climate
anticipate warmer and drier conditions with possible dominance of temperature
and number of HD.

A.1.3 Autonomous Wireless Sensor Networks in an IPM
Spatial Decision Support System

Status: Published.

Petrić M, Vandendriessche J, Marsboom C, Matheussen T, Ducheyne E,
Touhafi A. Autonomous wireless sensor networks in an ipm spatial decision
support system. Computers. 2019 Jun;8(2):43.

Abstract: Until recently data acquisition in integrated pest management
(IPM) relied on manual collection of both pest and environmental data. Au-
tonomous wireless sensor networks (WSN) are providing a way forward by re-
ducing the need for manual offload and maintenance; however, there is still
a significant gap in pest management using WSN with most applications fail-
ing to provide a low-cost, autonomous monitoring system that can operate in
remote areas. In this study, we investigate the feasibility of implementing a
reliable, fully independent, low-power WSN that will provide high-resolution,
near-real-time input to a spatial decision support system (SDSS), capturing the
small-scale heterogeneity needed for intelligent IPM. The WSN hosts a dual-
uplink taking advantage of both satellite and terrestrial communication. A set
of tests were conducted to assess metrics such as signal strength, data trans-
mission and bandwidth of the SatCom module as well as mesh configuration,
energetic autonomy, point to point communication and data loss of the WSN
nodes. Finally, we demonstrate the SDSS output from two vector models forced
by WSN data from a field site in Belgium. We believe that this system can be
a cost-effective solution for intelligent IPM in remote areas where there is no
reliable terrestrial connection.
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A.1.4 Expected Changes of Montenegrin Climate, Impact
on the Establishment and Spread of the Asian Tiger
Mosquito (Aedes albopictus), and Validation of the
Model and Model-Based Field Sampling

Status: Published.

Petrić M, Lalić B, Pajović I, Micev S, Djurdjević V, Petrić D. Expected
changes of Montenegrin climate, impact on the establishment and spread of the
Asian tiger mosquito (Aedes albopictus), and validation of the model and model-
based field sampling. Atmosphere. 2018 Nov;9(11):453.

Abstract: Aedes albopictus has become established in many parts of Europe
since its introduction at the end of the 20th century. It can vector a range of
arboviruses, of which Chikungunya and Dengue are most significant for Europe.
An analysis of the expected climate change and the related shift in Köppen
zones for Montenegro and impact on the establishment of Ae. albopictus was
conducted. Outputs of a mechanistic Aedes albopictus model were validated by
2245 presence/absence records collected from 237 different sites between 2001
and 2014. Finally, model-based sampling was designed and performed at 48 sites
in 2015, in a previously unexplored northern part of Montenegro, and results
were validated. The Eta Belgrade University (EBU)-Princeton Ocean Model
(POM) regional climate model was used with the A2 emissions scenario for the
2001–2030 and 2071–2100 integration periods. The results point to a significant
increase in suitability for the mosquito and a vertical shift to higher altitudes
by the end of the century. The model showed excellent results with the area
under the receiver operating characteristic curve (AUC) of 0.94. This study
provides a tool for prioritizing surveillance efforts (model-based surveillance),
especially when resources are limited. This is the first published analysis of
Climate Change that incorporates observations from the national synoptic grid
and the subsequent impact on Ae. albopictus in Montenegro.

A.1.5 Filling Gaps in Hourly Air Temperature Data Using
Debiased ERA5 Data

Status: Published.

Lompar M, Lalić B, Dekić L, Petrić M. Filling gaps in hourly air temperature
data using debiased ERA5 data. Atmosphere. 2019 Jan;10(1):13.

Abstract: Missing data in hourly and daily temperature data series is a
common problem in long-term data series and many observational networks.
Agricultural and environmental models and climate-related tools can be used
only if weather data series are complete. To support user communities, a tech-
nique for gap filling is developed based on the debiasing of ERA5 reanalysis data,
the fifth generation of the European Centre for Medium-RangeWeather Fore-
casts (ECMWF) atmospheric reanalyses of the global climate. The debiasing
procedure includes in situ measured temperature. The methodology is tested
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for different landscapes, latitudes, and altitudes, including tropical and midlat-
itudes. An evaluation of results in terms of root mean square error (RMSE)
obtained using hourly and daily data is provided. The study shows very low
average RMSE for all gap lengths ranging from 1.1 C (Montecristo, Italy) to 1.9
C (Gumpenstein, Austria).

A.1.6 Modelling the regional impact of climate change on
the suitability of the establishment of the Asian
tiger mosquito (Aedes albopictus) in Serbia

Status: Published.

Petrić M, Lalić B, Ducheyne E, Djurdjević V, Petrić D. Modelling the re-
gional impact of climate change on the suitability of the establishment of the
Asian tiger mosquito (Aedes albopictus) in Serbia. Climatic Change. 2017 Jun
1;142(3-4):361-74.

Abstract: The Asian tiger mosquito, Aedes albopictus, is one of the world’s
most dangerous invasive species. It has vector competence for a wide range of
arboviruses such as chikungunya, dengue, Zika and Rift Valley fever viruses.
The vector originated in Asia but has recently spread to the temperate regions
of Europe and North America. Further spread to the north and the east and a
shift to higher altitudes could be expected as a result of climate change. This
makes modelling the regional climatic suitability for the establishment of A.
albopictus in näıve regions a pressing issue. The future suitability and subse-
quent seasonal activity of the vector were investigated using three mechanistic
models, with climatic data from the Eta Belgrade University-Princeton Ocean
Model regional climate model. The results showed that after a slight decrease
in suitability for the first part of the century, most of Serbia would become
significantly more suitable for the establishment of A. albopictus. This is due
to the simulated rise in seasonal and annual temperatures by the end of the
twenty-first century. This study allows for the incorporation of regional hetero-
geneity in vector modelling. The spatial resolution of the maps obtained from a
regional analysis is much higher than that acquired by a global model, allowing
for detailed risk assessment and planning of surveillance focused on the habitats
where the main introduction routes and climatic suitability are coupled. This
work should be applied to all countries in the region with the risk of introduction
or further spread of A. albopictus.

A.1.7 West Nile virus ‘circulation’ in Vojvodina, Serbia:
mosquito, bird, horse and human surveillance

Status: Published.

Petrić D, Petrović T, Cvjetković IH, Zgomba M, Milošević V, Lazić G,
Ćupina AI, Lupulović D, Lazić S, Dondur D, Vaselek S. West Nile virus ‘cir-
culation’in Vojvodina, Serbia: Mosquito, bird, horse and human surveillance.
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Molecular and cellular probes. 2017 Feb 1;31:28-36.

Abstract: Efforts to detect West Nile virus (WNV) in the Vojvodina province,
northern Serbia, commenced with human and mosquito surveillance in 2005,
followed by horse (2009) and wild bird (2012) surveillance. The knowledge ob-
tained regarding WNV circulation, combined with the need for timely detection
of virus activity and risk assessment resulted in the implementation of a na-
tional surveillance programme integrating mosquito, horse and bird surveillance
in 2014. From 2013, the system showed highly satisfactory results in terms of
area specificity (the capacity to indicate the spatial distribution of the risk for
human cases of West Nile neuroinvasive disease - WNND) and sensitivity to
detect virus circulation even at the enzootic level. A small number (n = 50) of
Culex pipiens (pipiens and molestus biotypes, and their hybrids) females anal-
ysed per trap/night, combined with a high number of specimens in the sample,
provided variable results in the early detection capacity at different adminis-
trative levels (NUTS2 versus NUTS3). The clustering of infected mosquitoes,
horses, birds and human cases of WNND in 2014-2015 was highly significant,
following the south-west to north-east direction in Vojvodina (NUTS2 adminis-
trative level). Human WNND cases grouped closest with infected mosquitoes in
2014, and with wild birds/mosquitoes in 2015. In 2014, sentinel horses showed
better spatial correspondence with human WNND cases than sentinel chick-
ens. Strong correlations were observed between the vector index values and the
incidence of human WNND cases recorded at the NUTS2 and NUTS3 levels.
From 2010, West Nile virus was detected in mosquitoes sampled at 43 different
trap stations across Vojvodina. At 14 stations (32.56%), WNV was detected in
two different (consecutive or alternate) years, at 2 stations in 3 different years,
and in 1 station during 5 different years. Based on these results, integrated
surveillance will be progressively improved to allow evidence-based adoption of
preventive public health and mosquito control measures.

A.1.8 Model-based design and analysis of life table exper-
iments for insect vectors

Status: Submitted to bioRxiv.

Erguler K, Demirok MC, Gunay F, Petric M, Kavran M, Dušan P, Alten
BS Model-based design and analysis of life table experiments for insect vectors.
bioRxiv 2020

Life tables can help identify physiological differences in distinct develop-
ment stages and detect potential vulnerabilities for conservation and control.
However, cataloguing mortality, development, and fecundity by following each
individual could be challenging in insects due to interweaving generations and
development stages. Here, we propose to use age- and stage- structured pop-
ulation dynamics modelling to help derive life table characteristics from the
observed dynamics of reared populations. We examine a hypothetical case, a
simulated population with known life parameters, and two experimental cases,
observations of the population dynamics of the mosquito vector Culex quin-
quefasciatus and Culex pipiens, to demonstrate that model-based inference can
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correctly identify life parameters from longitudinal observations. The analysis
reveals not only the differential physiological behaviour of distinct development
stages, but also identifies the degree to which each parameter can be inferred
from the data. The methods introduced constitute a model-based approach to
identifying life table characteristics from incomplete longitudinal data, and help
to improve the design of life table experiments. The approach is readily applica-
ble to the development of climate and environment-driven population dynamics
models for important vectors of disease.
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A.2 APPENDIX B - Meteorological observations

In this section we will give a detail site-specific description of the collected mete-
orological and entomological data. In Section 1.A the overview of meteorological
observations is given for the three study location (Figure A.1). In Section 1.B
the overview of entomological data is given.

Figure A.1: Study locations: G - Guadeloupe (Egypt); B - Bahariya; P -
Petrovaradin (Serbia).

An overview of the meteorological datasets is given in Table 5. The field
data for the Bahariya Oasis (Egypt) were collected within the MosqDyn project
for the period 2017-2018. The data was recorded at 15-minute intervals with
the Davis Vantage Pro weather station.

The field data for Petrovaradin was collected within the VECTORNET
project for the period 2016–2017. The data was recorded at 5-minute inter-
vals with the EasyWeather weather station.

Guadeloupe did not have an in-situ weather station deployed for the duration
of the project. ERA5 reanalysis was used instead to obtain hourly time-series
of wind, precipitation, temperature and relative humidity data. Data obtained
from the synoptic weather station close to Pointe-à-Pitre was cleaned and used
to check the correlation with the ERA5 time-series for a period from 2015-01-
05 to 2017-02-24 (r = 0.76, p < .0001). Data from the in-situ station itself
was not used for the whole period because of a large amount of missing values
and erroneous recordings of minimum and maximum temperature observed for
several instances in 2015–2018.
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Table A.1: Overview of observed meteorological data. The measured variables
are: (i) Temperature [◦C], (ii) Relative humidity [%], (iv) Precipitation [mm],
(v) Wind speed [m/s], (vi) Wind direction; FF - Frequency used for forcing the
model.

Locations Time series Lat [◦] Lon [◦] Altitude [m] Time Series type Frequency Type FF

Bahariya
01/04/2017
31/12/2018

28.41 28.93 98 Regular 15 min Observations Daily

Guadeloupe 2015–2018 16.26 -61.52 23 Regular 1 hour ERA5 analysis Daily
Petrovaradin 2016–2017 45.25 19.87 82 Regular 5 min Observations Daily

A.2.1 Preprocessing

A.2.1.1 Gap filling

An automated quality control script was developed for checking incoming data
for Bahariya and Petrovaradin which consisted of a: (i) plausible value check;
(ii) internal consistency check (comparison of dew point temperature, relative
Humidity and air temperature); (iii) time step check; (iv) check for rate of
change between the steps. Missing data in the time series was eliminated using
an algorithm for generating debiased ERA5 data based on the characteristics of
the local time series developed by Lompar et al. [214]. The biggest gap occurred
for Bahariya from 24/07/2017 to 03/08/2017 due to a power issue causing the
loss of the archived data.

A.2.1.2 Wind correction for Guadeloupe

Since ERA5 reanalysis offers wind speed a the 10 m height, the wind speed at
the 2 m height was calculating using the Monin Obukvhov similarity theory.
This Monin Obukhov equation describes the relationship between the vertical
flux of a variable and its vertical gradient. The Monin Obukhov equation is
only applicable in the Constant Flux Layer (CFL) which is a layer of the lower
atmosphere of a standard height of around 50 m above the earth’s surface in
which the turbulent displacement stress τ can be considered to be constant.
From this invariability of displacement stress with height the following relation-
ship for any displaceable quantity whose distribution is homogeneous in space
and stationary in time was derived:

∂s̄

∂z
=
s∗
kz

Φs(
z

L
) (A.1)

The value s̄ represents the average value (ensemble or time average) of a
variable per unit mass of air, s∗ is the characteristic size parameter which has
the unit of variable s and is defined by the vertical flux of this variable, the
density of air and the friction velocity u∗:

s∗ =
Fs
ρu∗

(A.2)

The parameter L is the length scale of Monin Obukhov which is defined as:

L = −ρCpTu
3
∗

kgH
(A.3)
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H is the latent heat (H = ρCpw̄θ), g is the gravitational constant, T is
temperature, Cp is the specific heat capacity and k is von Kármán’s constant
which usually takes the value 0.41, Φs is a universal function which takes dif-
ferent values depending on the stability of the boundary layer. The turbulent
diffusion of s is defined as the ratio of flux and the vertical gradient of s:

ks = − Fs

ρ ∂s̄∂z
(A.4)

in combination with Equation (A.1) we get:

ks =
ku∗z

Ψs
(A.5)

If s = ū the velocity in the x direction, the flux becomes Fs = ρu2
∗ = τ and

we get:

∂ū

∂z
=
u∗
kz

Φm(
z

L
) (A.6)

km =
ku∗z

Φm
(A.7)

By integrating Equation (A.6) with the condition ū = 0 for z = z0 (roughness
length) we get:

ū(z) =
u∗
k

[
fm(

z

L
)− fm(

z0

L
)
]

(A.8)

where

f(
z

L
) =

∫ z

0

Φm( zL )

z
dz (A.9)

In a neutral atmosphere Φm = 1 and Equation (A.6) and Equation (A.7)
can be simplified to:

∂ū

∂z
=
u∗
kz
km = ku∗z, ū(z) =

u∗
k
ln
z

z0
(A.10)

So, it follows that by dividing the expression for ū(10) with ū(2):

ū(10)

ū(2)
= ln

(
10

2
− 2

z0

)
(A.11)

And finally, we get the expression the velocity at the 2 m height:

ū(2) =
ū(10

ln( 10
z0
− 2

z0
)

(A.12)

A.2.2 Pointe-à-Pitre (Guadeloupe)

In Figure A.5 it can be observed that the winds for Guadeloupe have a predom-
inant westerly component, with north-westerly wind occurring in December-
March. Lower velocities are observed in April and then August-November.
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Figure A.2: ERA5 temperature and relative humidity for Pointe-à-Pitre (Guade-
loupe) hourly (a,b) and daily (c,d).

Figure A.3: GAM smooth (a) daily temperature; (b) relative humidity; (c) 10
m wind; (d) precipitation time-series for Pointe-à-Pitre (Guadeloupe).
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Figure A.4: ERA5 wind speed and precipitation for Pointe-à-Pitre (Guadeloupe)
hourly (a,b) and daily (c,d).

Figure A.5: Monthly frequency of counts by wind direction [%] for Guadeloupe.
The wind speed is indicated by the color gradient: 0–2 m/s (blue); 2–4 m/s
(green); 4–6 m/s (orange); and 6-19 m/s (red).
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A.2.3 Bahariya (Egypt)

In the figure below the complete time-series, and frequency and kernel density
plots for the observed meteorological variables are shown for each study site.

Figure A.6: Observed temperature and relative humidity for a location in Ba-
hariya (Egypt) 15 min (a,b), daily mean (c,d).

Figure A.7: GAM smooth of daily temperature and relative humidity time-series
for a location in Bahariya (Egypt) for the period 2017–2018 (x axis).

In Figure A.8 we can see a clear regime shift for the wind speed in 2017
and 2018. When analysing the monthly frequency of counts for wind direc-
tion a strong westerly component in Figure A.9 for Jan-March is observed. The
latitude-characteristic north-easterlies are observed in March-September. More-
over, we see that the magnitude is small for November and December for both
years.
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Figure A.8: Observed wind speed for a location in Bahariya (Egypt) 15 min
(a), daily mean (b), GAM smoothed avg. daily time-series (c) for 2017–2018.

Figure A.9: Monthly frequency of counts by wind direction [%] for Bahariya.
The wind speed is indicated by the color gradient: 0–2 m/s (blue); 2–4 m/s
(green); 4–6 m/s (orange); and 6-19 m/s (red).

A.2.4 Petrovaradin (Serbia)

Low wind speeds are observed for the Petrovaradin study site throughout the
year (Figures A.12 and A.13.).
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Figure A.10: Observed temperature and relative humidity for a location in
Petrovaradin (Serbia) 15 min (a,b), daily mean (c,d).

Figure A.11: GAM smooth daily temperature, relative humidity, wind and pre-
cipitation time-series for Petrovaradin (Serbia) for the period 2016–2017.



APPENDIX A. APPENDICES 174

Figure A.12: Observed wind speed and precipitation for a location in
Petrovaradin (Serbia) 15 min (a,b), daily mean (c,d).

Figure A.13: Monthly frequency of counts by wind direction [%] for
Petrovaradin. The wind speed is indicated by the color gradient: 0–2 m/s
(blue); 2–4 m/s (green); 4–6 m/s (orange); and 6-19 m/s (red).
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A.3 APPENDIX C - Entomological observations

Table A.2: Overview of observed entomological data.
Locations Time series Lat [◦] Lon [◦] Altitude [m] TS type Frequency Species of interest

Bahariya
01/04/2017
31/12/2018

28.41 28.93 97 Regular Daily Cx. pipiens

Guadeloupe

CRB 11/2015–10/2018 16.207 -61.507 4 Regular Week-Month Ae. aegypti
HFR 11/2015–10/2017 16.347 -61.776 6 Irregular Week-Month Ae. aegypti
HMC 11/2015–05/2019 16.212 -61.500 5 Irregular Week-Month Ae. aegypti
HCB (CAB) 11/2015–10/2018 16.207 -61.507 10 Irregular Week-Month Ae. aegypti
Zoo 11/2017-04/2019 16.180 -61.752 164 Irregular Week-Month Ae. aegypti
Aporier 11/2017-02/2019 16.259 -61.693 62 Irregular Week-Month Ae. aegypti
RV1

11/2017-04/2019
16.201 -61.649 91 Irregular Week-Month Ae. aegypti

RV2 16.257 -61.668 41 Irregular Week-Month Ae. aegypti
Gosier 11/2017-04/2019 16.212 -61.500 5 Irregular Week-Month Ae. aegypti

Petrovaradin 2016–2017 45.25 19.87 82 Regular Daily Cx. pipiens

A.3.1 Pointe-à-Pitre (Guadeloupe)

The field data for Gudeloupe was collected across 8 location within the MosqDyn
and SmartSenZ projects for the period 2015–2018. The locations are shown in
Figure A.14 and are all located on the main island of Guadeloupe.

Figure A.14: Guadeloupe sampling locations

Samples were collected on a weekly and monthly basis by standardized pro-
tocols using the BG Sentinel 2 mosquito trap and the BG-GAT trap.

Description of the breeding sites for Ae. aegypti :
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Figure A.15: The site of La Canella Beach and its surroundings. (A: Buildings,
B: Parking, C: Technical Area, D: Pool & Terrace, E1-3: Park & Garden,
F: Beach and Coast, Base Map Source: DigitalGlobe, WorldView 3, 2015).
Identified species: Culex quinquefasciatus & nigripalpus Anopheles sp, Aedes
taeniorhynchis, Deinocerites magnus.

Table A.3: Description of the breeding sites for Ae. aegypti :
CAB (i) Artificial containers; (ii) Used tires
HFR (i) Tree hollows; (ii),Water cisterns; (iii) Artificial containers

CRB
(i) Tree hollows; (ii) Concrete block hollows; (iii)
Used tires; (iv) Artificial containers

HMC
(i) Tree hollows; (ii) Manhole covers; (iii) Flower
pots

Aporier, Zoo, RV NA

Culex mosquitoes were found in the flooded meadows, mangroves and metal
drums.

The catches for each trap-location are shown in the sub-chapters below. The
model output for the same period is discussed in chapter 4.D.
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Figure A.16: The Fort Royal site and its structural areas. A: buildings; B:
parking; C: technical area; D: swimming pool & terrace; E1-6: park & gar-
den; F: beach and coast; Source base map: DigitalGlobe, WorldView 2, 2010).
Identified species: Aedes aegypti, Culex quinquefasciatus & nigripalpus, Aedes
taeniorhynchus, Culex astratus.
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Figure A.17: The Creole Beach site and its structural areas. (A: buildings; B:
parking; C: technical area; D: swimming pool & terrace; E1-6: park & garden; F:
beach and coast; Source base map: DigitalGlobe, WorldView 2, 2015). Identified
species: Aedes aegypti, Culex quinquefasciatus & nigripalpus.
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Figure A.18: The Maison Creole site and its structural areas. (A: buildings; B:
parking; C: technical area; D: swimming pool & terrace; E1-6: park & garden; F:
beach and coast; Source base map: DigitalGlobe, WorldView 2, 2015) Identified
species: Aedes aegypti, Culex quinquefasciatus & nigripalpus, Anopheles species,
Deinocerites magnus.
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A.3.1.1 HCB(CAB)

Figure A.19: Stacked bar chart of monthly Aedes catches from four traps (m1,
m2, m3, m4, s1) site CAB.

Figure A.20: Monthly Aedes catches from four traps (m1, m2, m3, m4, s1) site
CAB – each site.
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A.3.1.2 CRB

Figure A.21: Stacked bar chart of monthly Aedes catches from four traps (m1,
m2, m3, m4, s1) site CRB.
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Figure A.22: Monthly Aedes catches from four traps (m1,m2, m3, m4, s1) site
CAB – each site.

A.3.1.3 HFR

Figure A.23: Stacked bar chart of monthly Aedes catches from four traps (m1,
m2, m3, m4, s1) site HFR.
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Figure A.24: Monthly Aedes catches from four traps (m1,m2, m3, m4, s1) site
HFR – each site.

A.3.1.4 HMC

Figure A.25: Stacked bar chart of monthly Aedes catches from four traps (m1,
m2, m3, m4, s1) site HMC.
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Figure A.26: Monthly Aedes catches from four traps (m1,m2, m3, m4, s1) site
HMC – each site.

A.3.1.5 ZOO

Figure A.27: Bar chart of monthly Aedes catches for ZOO.

A.3.1.6 Aporier
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Figure A.28: Bar chart of monthly Aedes catches for Aporier.

A.3.1.7 RV

Figure A.29: Bar chart of monthly Aedes catches for RV.
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A.3.1.8 Gosier

Figure A.30: Bar chart of monthly Aedes catches for Gosier.

A.3.2 Bahariya (Egypt)

The field data for the Bahariya oasis (Egypt) was collected within the MosqDyn
project for the period 2017-2018.

Samples were collected on a daily basis by standardised protocols using the
BG Sentinel 2 mosquito trap. The trap was operating without a light source
(light aided traps proved not to have a significant attracting/repelling influence
on Culex mosquitoes [215]). Several experiments were run to examine the influ-
ence of a CO2 source attached to the trap. The CO2 was operated with a timer
and set to release for a total of 4 hours a day during intervals corresponding
to maximum activity for Cx. pipiens (morning and evening). The CO2 had a
significant influence on the daily abundance of trapped mosquitoes, however the
refiling of the bottles which had to be done in Cairo and transported to the oasis
was not feasible and hence this option was abandoned. The CO2 related counts
were rescaled before comparing the simulated abundance to field data [216]. A
correction for days with wind speed exceeding the wind speed limiting flight and
activity of Cx. pipiens was implemented using a sigma function to calculate the
stress factor, with 2 m/s and 5 m/s set as the threshold and saturation (limiting
most blood-seeking activity) values respectively.

The doughnut chart in Figure A.31 shows the proportion of total females
corresponding to the Culex and Aedes genus.



APPENDIX A. APPENDICES 187

Figure A.31: (a) Descripting of the site: A – agricultura area, B – buildings,
D – fountain; G – Garden; T – trees and shrubbery; C – technical area; F –
Ruminant barn; R – Road and camp bounday; (b) Proportion of total female
mosquitoes at DFC.

Table A.4: Count summary Bahariya 2017–2018
Culex M CulexF Aedes M Aedes F Total

Count 3377 5501 641 785 10304

The Culex species identified in the Oasis were Culex pipiens, biotype Cx.
pipiens pipiens and biotype Cx. pipiens molestus. The identified Aedes species
was Ae. caspius. According to the IRD historical data [165] Ae. detritus was
also found in the Oasis however it was not confirmed during our entomological
survey.

The identified breeding sites were: (i) Cut-off sections of irrigation canals
with stagnant water; (ii) Cesspool-canalization next to the house, with a lot of
vegetation; (iii) Road-side ditches with brackish water; (iv) Natural ponds cre-
ated by underground water sources forming a flooded area with brackish water;
(v) Salt lakes; (vi) Irrigation canals and wells/concrete pits for irrigation. The
identified Land Use types were Rural habitat, Agriculture and Nature LS types.
The highest abundance of larvae corresponded to the stagnant semi-permanent
water bodies i.e. small irrigation/drain pools and stagnant temporary water
bodies i.e. cut-off irrigation canals and flooded road-side ditches.

Culex pipiens was the prevailing species in the oasis. At the DFC site a
total of 10304 specimens were collected during the sampling period (April 2017
– December 2018) of which 3377 were Culex pipiens male, 5501 Culex pipiens
female, 641 Aedes caspius male, and 785 Aedes caspius female (Table A.4).

The observed summer minimum shown in Figure A.32 could have several
reasons for occurrence, but most likely due to a reduction in the total available
surface of stagnant water breading sites resulting from increase evaporation in
the summer months. This was reported for several breeding sites that were being
monitored during the experiment. However, following this minimum, observed
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Figure A.32: Monthly abundance for (a) Culex ; (b) Aedes for 2017 and 2018.

in June 2017, we see a significant increase in population. One of the possible
explanations for this rise is an irrigation event that brought fresh water to the
dried-out sites. A spike in relative humidity is observed for July 5 which could
be a response to a major irrigation action which caused the spike in the vector
count Figure A.33. However, there is no sure way to determine this and the
irrigation schedule is not recorded for the Oasis. More information regarding
the irrigation and water storage habits in the Oasis needs to be gathered and
cross-examined with the vector data.

Figure A.33: Relative humidity time-series (top) and daily observed Cx. pipiens
abundance for the period from 29 Jun – 23 July 2017 for Bahariya.

The humidity spike could also be a result of a process that was observed to
occur in oases where a 60-100 m cells shifts the higher-level humidity to surface
creating a temporary spike in observed RH.

The lower counts observed for 2018 when compared to 2017 can be a result
of the shift in wind regime shown in Figure A.33.

A.3.3 Petrovaradin (Serbia)

The field data for Petrovaradin was collected within the VECTORNET project.

Daily collection were carried out at stationary site February – December
(2016, 2017) for 670 trap nights. Weekly collection at 7 sites (rotation of the
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trap) for 48 trap nights (one per week).Samples were collected using the dry-ice
bated EVS without a light source

Figure A.34: Description of the site

The study location is a semi urban zone of Petrovaradin, Serbia with: Lots of
greenery; side drainage channels; most of the houses posses backyards with many
containers suitable for breeding Culex pipiens. The locations for the surveillance
activities were identified based on the availability of 8 years weekly sampling
data for Culex pipiens as an important vector species in Europe (WNV)

Figure A.35: Location of the site

Cullex pipiens was registered at all sampling stations, and 19,104 specimens
(update for 2017) were collected; Cx. modestus was found extremely rare, with
only one individual trapped at station 5 Aedes albopictus,Cx.perexiguus, Cx.
tritaeniorhynchus, Ae. aegypti, Ae. japonicus, Ae. koreicus and Ae. atropalpus
were absent from the samples. An. maculipennis.l. was present at all sampling
stations, with a total of 353 specimens sampled.
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A.4 APPENDIX D - Eigenvectors and eigenval-
ues

The characteristic equation of the ODE population dynamics model can be
written as:



a1,1 − iω 0 0 0 0 0 a17 0 0 a1,10

a2,1 a2,2 − iω 0 0 0 0 0 0 0 0
0 a3,2 a3,3 − iω 0 0 0 0 0 0 0
0 0 a4,3 a4,4 − iω 0 0 0 0 0 0
0 0 0 a5,4 a5,5 − iω 0 0 0 0 0
0 0 0 0 a6,5 a6,6 − iω 0 0 0 0
0 0 0 0 0 a7,6 a7,7 − iω 0 0 0
0 0 0 0 0 0 a8,7 a8,8 − iω 0 a810

0 0 0 0 0 0 0 a9,8 a9,9 − iω 0
0 0 0 0 0 0 0 0 a10,9 a10,10 − iω





Ê

L̂

P̂
ˆAem
Âb1
Âg1
Âo1
Âb2
Âg2
Âo2


= −iω



Ê

L̂

P̂
ˆAem
Âb1
Âg1
Âo1
Âb2
Âg2
Âo2


with:

a1,1 = iω + µE + fE

a1,7 = −γAo · β1

a1,10 = −γAo · β2

a2,1 = −fE
a2,2 = iω +mL + fL

a3,2 = −fL
a3,3 = iω +mP + fP

a4,3 = −fPσe−µem

a4,4 = iω +mA + γAem

a5,4 = −γAem
a5,5 = iω +mA + µr + γAb

a6,5 = −γAb
a6,6 = iω +mA + fAg

a7,6 = −fAg
a7,7 = iω +mA + µr + γAo

a8,7 = −γAo
a8,8 = iω +mA + µr + γAb

a8,10 = −γAo
a9,8 = −γAb
a9,9 = iω +mA + fAg

a10,9 = −fAg
a10,10 = iω +mA + µr + γAo

The parameters functions are listed in Chapter 3, Table 3.4. Solving for T
= 20 ◦C. We get the following eigenvalues:
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λ1 = 2.14444

λ2 = 1.973

λ3 = 1.41022

λ4 = 1.18034

λ5 = 0.834429− 0.144502i

λ6 = 0.834429 + 0.144502i

λ7 = 0.130386− 0.282081i

λ8 = 0.130386 + 0.282081i

λ9 = 0.154534

λ10 = −0.124548

λ5 and λ6 and λ7 and λ8 are complex conjugates pairs.
Expressing the solutions in the terms of frequencies ω = iλ:

ω1 = −2.14444

i
= 2.14444i

ω2 = −1.973

i
= 1.973i

ω3 = −1.41022

i
= 1.41022i

ω4 = −1.18034

i
= 1.18034i

ω5 = −0.834429 + 0.144502i

i
= 0.834429i− 0.144502

ω6 = −0.834429− 0.144502i

i
= 0.834429i+ 0.144502

ω7 = −0.130386 + 0.282081i

i
= 0.130386i− 0.282081

ω8 = −0.130386− 0.282081i

i
= 0.130386i+ 0.282081

ω9 = −0.154534

i
= 0.154534i

ω10 =
0.124548

i
= −0.124548i

The list of eigenvectors is given below:
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ψ1 =



−0.976662 + 0 · i
0.213921 + 0 · i
−0.00280433 + 0 · i
0.000143807 + 0 · i
−0.000147524 + 0 · i
0.0000679707 + 0 · i

0.0134056 + 0 · i
0.000148434 + 0 · i
−0.00006839 + 0 · i
−0.0134883 + 0 · i


ψ2 =



0.972424 + 0.i
−0.232052 + 0.i
0.00332357 + 0.i
−0.000208641 + 0.i
0.000252957 + 0.i
−0.00012797 + 0.i
−0.000117673 + 0.i

0.0190153 + 0.i
−0.00961976 + 0.i
−0.0088457 + 0.i


ψ3 =



0.946847 + 0.i
−0.319913 + 0.i
0.00658171 + 0.i
−0.00156438 + 0.i

0.0047057 + 0.i
−0.00350965 + 0.i
−0.000756277 + 0.i

0.0258325 + 0.i
−0.0192666 + 0.i
−0.00415167 + 0.i



ψ4 =



−0.866933 + 0.i
0.352852 + 0.i
−0.00883434 + 0.i
−0.0152021 + 0.i

0.115762 + 0.i
−0.107085 + 0.i
−0.0175776 + 0.i
−0.2289 + 0.i
0.211741 + 0.i
0.0347567 + 0.i


ψ5 =



−0.865373 + 0.i
0.491935− 0.0914337i
−0.0169051 + 0.00682171i
−0.0021835 + 0.0000320456i
−0.00834113− 0.00596841i

0.0133824 + 0.00548172i
0.00152544 + 0.000830517i
0.00413865 + 0.00456872i
−0.00716177− 0.00492536i
−0.000790147− 0.000682235i


ψ6 =



−0.865373 + 0.i
0.491935 + 0.0914337i
−0.0169051− 0.00682171i
−0.0021835− 0.0000320456i
−0.00834113 + 0.00596841i

0.0133824− 0.00548172i
0.00152544− 0.000830517i
0.00413865− 0.00456872i
−0.00716177 + 0.00492536i
−0.000790147 + 0.000682235i



ψ7 =



−0.134951− 0.518544i
0.840505 + 0.i

−0.00269413 + 0.0789545i
−0.000973651 + 0.00326187i
−0.00230867 + 0.00341954i
−0.0118301− 0.00333284i
−0.000876096− 0.000384644i
−0.000711938− 0.00158551i

0.00381881− 0.00349591i
0.000332154− 0.000228307i


ψ8 =



−0.134951 + 0.518544i
0.840505 + 0.i

−0.00269413− 0.0789545i
−0.000973651− 0.00326187i
−0.00230867− 0.00341954i
−0.0118301 + 0.00333284i
−0.000876096 + 0.000384644i
−0.000711938 + 0.00158551i

0.00381881 + 0.00349591i
0.000332154 + 0.000228307i


ψ9 =



−0.120407 + 0.i
0.564298 + 0.i
−0.443248 + 0.i
−0.020195 + 0.i
−0.0263591 + 0.i
−0.337634 + 0.i
−0.0268629 + 0.i
0.0462151 + 0.i
0.591968 + 0.i
0.0470983 + 0.i



ψ10 =



0.367119 + 0.i
−0.924714 + 0.i
−0.100003 + 0.i
−0.0036022 + 0.i
−0.00356542 + 0.i
−0.00906271 + 0.i
−0.000632393 + 0.i
−0.00158088 + 0.i
−0.00401833 + 0.i
−0.000280398 + 0.i


The corresponding set of normal modes is:

Ω1(t) = Ω1(0) · e−214444t (A.13a)
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Ω2(t) = Ω2(0) · e−1.973t (A.13b)

Ω3(t) = Ω3(0) · e−1.41022t (A.13c)

Ω4(t) = Ω4(0) · e−1.18034t (A.13d)

Ω5(t) = Ω5(0) · e(−0.834429−0.144502i)t (A.13e)

Ω6(t) = Ω6(0) · e(−0.834429+0.144502i)t (A.13f)

Ω7(t) = Ω7(0) · e(−0.130386−0.282081i)t (A.13g)

Ω8(t) = Ω8(0) · e(−0.130386+0.282081i)t (A.13h)

Ω9(t) = Ω9(0) · e−0.154534t (A.13i)

Ω10(t) = Ω10(0) · e0.124548t (A.13j)

Relating to the eigenvalues we see that eq. (A.13e) and eq. (A.13f), as well
as eq. (A.13g) and eq. (A.13h) are complex conjugate pairs. The modes with
amplitude set to 1 are visualized in Figure A.36.

Figure A.36: The real (top) and imaginary (bottom) parts of the exponential
terms corresponding to Ω6(1st and 2ndcolumn) and Ω8(3rd and 4thcolumn) are
shown. With the combined decaying and oscillatory (1st and 3rd column) and
only the oscillatory terms (2nd and 4th).
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A.5 APPENDIX E - Normal mode initialization

We have obtained the set of modes that are present in the ODE system evalu-
ated at a fixed temperature. We see that, depending on the temperature, the
frequency of the modes can assume a wide range of values. The high-frequency
modes generate noisy oscillations in the output that might not correspond to
reality and could be considered undesirable. The normal mode initialization
technique provides a way of eliminating the unwanted harmonics, by transform-
ing the original set of equations into a system that allows initialization which
controls the amplitudes of the modes in such a way that the high-frequency
modes are not excited.

In this section we will examine the feasibility of applying normal modes
initialization for a specific run of the ODE Culex pipiens model. With the main
aim of producing a more balanced integration which would result in a smoother
and less noisy curve.

We continue the analysis presented in Section 6.3.2. The steps of the initial-
ization procedure which are outlined in the previous section can be summarised
as follows: (i) Linearise the system around the state corresponding to a specific
temperature; (ii) Express the dependent variables as y = y ·eiωt; (iii) Formulate
the eigenvalue problem [M − λI] Ψ = 0, where λ = −iω; solve detM = 0 for
ω; (iv) Diagonalize the matrix as GDGT = M . Where G is a matrix of eigen-
vectors; (v) Transform to eigenspace; (vi) Formulate the normal mode system
of equations; (vii) Solve for E and P, keeping the adult stages and the aquatic
larva stage constrained (Xs); (viii) Transform back to real space.

From equations 6.45 and A.13 we can rewrite (E(t), L(t), ...Ao2(t)) in terms
of the eigenvectors and normal modes as follows:

Ê(t) = ψE1 ·Ω1+ψE2 ·Ω2+ψE3 ·Ω3+ψE4 ·Ω4+ψE5 ·Ω5+ψE6 ·Ω6+ψE7 ·Ω7+ψE8 ·Ω8+ψE9 ·Ω9+ψE10·Ω10

(A.14)
which can be expanded to:

Ê(t) = ψE1 · Ω1(0) · e−214444t+

ψE2 · Ω2(0) · e−1.973t+

ψE3 · Ω3(0) · e−1.41022t+

ψE4 · Ω4(0) · e−1.18034t+

ψE5 · Ω5(0) · e(−0.834429−0.144502I)t+

ψE6 · Ω6(0) · e(−0.834429+0.144502I)t+

ψE7 · Ω7(0) · e(−0.130386−0.282081I)t+

ψE8 · Ω8(0) · e(−0.130386+0.282081I)t+

ψE9 · Ω9(0) · e−0.154534t+

ψE10 · Ω10(0) · e0.124548t

(A.15)

ψEi (i = 1,10) are defined in Appendix A.4, and Ωi(0) (i = 1,10) can be writ-

ten in terms of Ê(0), L̂(0), P̂ (0), ˆAem(0)... from the relation |Ω1(0) Ω2(0) ... Ω10(0)|T =

ET |E(0) L(0) ... Ao2(0)|T . The same can be performed for the other 9 variables.
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Here we see that we have moved from the original coupled ODE system to a
decoupled set of equations.

An arbitrary initial state would have non-zero initial amplitudes Ωi. , From
the normal mode system of equations (eq. (A.13)), we see that by setting the
initial amplitudes Ωi(0) to zero they would remain zero for all t.

The objective of the initialization is to find the set of (Ê1 L̂1 ...Âo21) at
t=0 that lead to the elimination of the high-frequency motions. This values
are calculated by setting Ωi(0) = 0. By solving this system of equations we
get the desired relationship between (Ê1 L̂1 ...Âo21). However, to find the
actually initialization state we need to keep a subset of the variables con-
strained and calculate the rest from the equality. Here it is assumed that
(Ê, Âem, Âb1, Âg1, Âb1, Âo1, Âb2, Âg2, Âo2) are constrained and we solve for Ê

and P̂ .
After solving for the unknown variables, the results of the analysis yielded

negative solutions for E and P which is not realistic. This is because the system
is mathematically well defined over R10; however, the region of interest for a
real vector population is defined as:

∆ =



E ≥ 0
L ≥ 0
P ≥ 0
Aem ≥ 0

(E,L, P,Aem, Ab1 ≥ 0
Ab1, Ag1, Ao1, Ag1 ≥ 0
Ab2, Ag2, Ao2) Ao1 ≥ 0

Ab2 ≥ 0
Ag2 ≥ 0
Ao2 ≥ 0



(A.16)

Non-the-less, log transforming the negative values we see that the initial-
ization does results in a smooth integration with an integration that does not
excite the high-frequency oscillatory modes.
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Figure A.37: log(Y+a) transformed simulations showing two initialized (red
and gray) model runs and two non-initialized (black and blue) runs. For the
linearised and non-linearised set of model equations.

A.6 APPENDIX F - Overview of model param-
eters

The parameter functions for the temperature interval [-10 ◦C, 40 ◦C] are pre-
sented in Figures A.38 and A.39. Moreover the simulated range for Bahariya
(2017-2018), Petrovaradin (2016-2017) and Guadeloupe (2015 – 2018) are shown
in Table A.5.

Table A.5: Simulated parameter ranges
Parameter Bahariya Petrovaradin Guadeloupe
fE (0.1254, 0.9966) (0.01697, 0.551357) (1,1)
fL (0.003088, 0.175938) (0.001386, 0.231622) (0.4135, 0.9277)
fP (0.01235, 0.70375) (0.0005544, 0.0926489) (0.6823, 1.5307)
fAg (0.0000, 0.4275) (0.0000, 0.34406) (0.1583, 0.2330)
mA (0.02329, 0.25000) (0.02330, 0.2500) (0.06033, 0.07760)
mP (0.01460, 0.03207) (0.01460, 277.18647) (0.12,0.12)
mL (0.03040, 0.04787) (0.03040, 277.20227) (0.03670, 0.03671)
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Figure A.38: Aquatic development rates: the development rate [1/day] (y-axis)
is shown as a funciton of temperature [◦C] (x-axis).

Figure A.39: Adult mortality rates and development rates [1/day] as a function
of temperature [◦C] (x-axis).

A.7 APPENDIX G - 2nd equilibrium

X2
eq = (E∗, L∗, P ∗, A∗em, A

∗
b1, A

∗
g1, A

∗
o1, A

∗
b2, A

∗
g2, A

∗
o2). The trivial solution is

X1
eq = 0 and the second equilibrium has the following solution for L:

L = −
Wn

(
− c·e

(− ac
b

)

b

)
c

− a

b
(A.17)

Wn is the principle solution of the Lambert W function with b, c 6= 0. where
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a, b, c are:

a =
(fL +mL) · (fE + µE)

fE · γAo
· eµem · 1

ξ
(A.18)

b =
mL · (fE + µE)

fE · κL · γAo
· eµem · 1

ξ
(A.19)

c = − µemfL
(mP + fP ) · κP

where ξ is:

ξ =

(
fAgfLfPβ1γAbγAemσ

(fAg +mA)(fP +mP )(mA + γAem)(mA + γAb + µr)(mA + γAo + µr)

+
f2
AgfLfPβ2γ

2
AbγAemγAoσ

(fAg +mA)2(fP +mP )(mA + γAem)(mA + γAb + µr)2

1

(mA + γAo + µr)2(1− fAgγAbγAo
(fAg+mA)(mA+γAb+µr)(mA+γAo+µr)


The other variables expressed through L are:

E =

γAo

(
Ag2·fAg·β2

mA+γAo+µr
+

e
−µem·(1+

fL·L
κP ·(fP+mP )

)
fAgfLfPLβ1γAbγAemσ

(fAg+mA)(fP+mP )(mA+γAem)(mA+γAb+µr)(mA+γAo+µr)

)
fE +mE

(A.20a)

P =
fL · L

fP +mP
(A.20b)

Aem =
e
−µem(1+

fLL

κP (fP+mP )
)
fLfPLσ

(fP +mP )(mA + γAem)
(A.20c)

Ab1 =
e
−µem(1+

fLL

κP (fP+mP )
)
fLfPLσγAem

(fP +mP )(mA + γAem)(ma+ γAb + µr)
(A.20d)

Ag1 =
e
−µem(1+

fLL

κP (fP+mP )
)
fLfPLσγAbγAem

(fP +mP )(mA + γAem)(ma+ γAb + µr)(fAg +mA)
(A.20e)

Ao1 =
e
−µem(1+

fLL

κP (fP+mP )
)
fLfPLfAgσγAbγAem

(fP +mP )(mA + γAem)(ma+ γAb + µr)(fAg +mA)(mA + γAo + µr)
(A.20f)

Ab2 =
e
−µem(1+

fLL

κP (fP+mP )
)
fLfPLfAgσγAbγAemγAo

(fP +mP )(mA + γAem)(ma+ γAb + µr)2(fAg +mA)(mA + γAo + µr)
(A.20g)
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·

 1

1− fAgγAbγAo
(fAg+mA)(mA+γAb+µr)(mA+γAo+µr)



Ag2 =
e
−µem(1+

fLL

κP (fP+mP ) fLfPLfAgσγ
2
AbγAemγAo

(fP +mP )(mA + γAem)(ma+ γAb + µr)2(fAg +mA)2(mA + γAo + µr)
(A.20h)

·

 1

1− fAgγAbγAo
(fAg+mA)(mA+γAb+µr)(mA+γAo+µr)



Ao2 =
e
−µem(1+

fLL

κP (fP+mP )
)
fLfPLf

2
Agσγ

2
AbγAemγAo

(fP +mP )(mA + γAem)(ma+ γAb + µr)2(fAg +mA)2(mA + γAo + µr)2

(A.20i)

·

 1

1− fAgγAbγAo
(fAg+mA)(mA+γAb+µr)(mA+γAo+µr)


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A.8 APPENDIX H

Here we examine weather the daily ERA5 2 m temperature for four different
points across the island is sufficiently similar to justify to use a single model
output (at Pointe-à-Pitre) for the whole island. In the graphs below we see an
example interval with all four forcing temperature time-series (Figure A.40) and
the corresponding model outputs (Figure A.41).

Figure A.40: ERA5 t2m forcing temperature for the ERA1−4 points points
from the ERA5 native grid.

Figure A.41: Model output (emerging adults) produced by ERA5 forcing for
the ERA1−4.

We see that the temperature and model series are almost identical for the
examined interval. To quantify the similarity between the time series we exam-
ine a composite ARIMA model fitted to both time series and then an F test
to confirm that the parameters are significantly similar. Moreover, in a second
step the similarity between the two time-series is assessed by considering the
ability of one time series to forecast the other using the Granger test.
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A.8.1 ARIMA and F test

In the table below we see that the ARIMA parameters are very similar (ta-
ble A.6) and the F-test and p-values indicating that the true ratio of variance
is different than 1 can be rejected (table A.7).

Table A.6: Model coefficients
Coefficients

Model AR1 AR2 AR3 AR4 MA1
Era1 ARIMA (4,0,0) 1.2444 -0.2394 -0.0052 -0.1211 -0.9844
Era2 ARIMA (4,0,1) 1.3639 -0.4123 0.0511 -0.1119 -0.9807
Era3 ARIMA (4,0,1) 1.3314 -0.3356 0.0187 -0.1297 -0.9812
Era4 ARIMA (4,0,1) 1.2980 -0.2859 0.0026 -0.1340 -0.9817

Table A.7: F test; p values (alternative hypothesis: true ratio of variance is not
equal to 1

Era1 Era2 Era3 Era4
Era1
Era2 0.8881
Era3 0.9242 0.9636
Era4 0.9554 0.9324 0.9687

A.8.2 Granger causality test

The Granger causality test is a statistical hypothesis test to ascertain the degree
to which one time series can be suitable for forecasting another time series. A
time series X is said to Granger-cause Y if it can be shown, applying a series
of t-tests and F-tests on lagged values of X and Y, that those X values provide
statistically significant information about future values of Y.

Table A.8: F test, p-values
Era1 Era2 Era3 Era4
Era1
Era2 2.2 · 10−16

Era3 2.2 · 10−16 2.2 · 10−16

Era4 2.2 · 10−16 5.9 · 10−13 2.2 · 10−16
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Izvod:  
IZ  

Meteorološki uslovi bitno utiču na vreme pojave, 
brojnost vektora i njihovu aktivnost. U uslovima 
evidentnih promene klime, od ogromne je važnosti 
sagledati uticaj očekivanih promena klime na 
pogodnost uslova na pojavu izabranih vektora. 
Takodje, značajne promene kolebanja meteoroloških 
elemenata u odnosu na višegodišnji prosek i sve 
češće pojave nepovoljnih vremenskih prilika dovode 
do neočekivanog ponašanja populacije komarca što 
značajno utiče na kvalitet života i zdravlje ljudi. 
Jedini način da se sagledaju uzroci i posledice 
navedenih pojava zasniva se na simulaciji aktivnosti 
i brojnosti vektora uz mogućnost testiranja uticaja 
svakog pojedinačnog faktora. Ovu mogućnost 
pružaju samo visoko sofistikovani dinamički modeli 
koju su prošli proces kalibracije i validacije zasnovan 
na izmerenim vrednostima meteoroloških elemenata 
i karakteristika biološke populacije. 
 
Sofistikovani modeli za simulaciju dinamike 
populacije vektora i očekivane cirkulacije vektorskih 
transmisivnih bolesti se koriste sa ciljem modeliranja 
potencijalnog rizika od zaraze i epidemije. Modeli za 



simulaciju dinamike vektora mogu da se podele na 
dve glavne grupe: Mehanističke i Statističke. 
Prednost mehanističkih modela nad statističkim je 
što mogu da se koriste za evaluaciju uticaja 
izolovanog faktora na dinamički sistem i 
odgovarajuće promene brojnosti unutar svake faze u 
razvoju vektora. Mehanistički dinamički sistemi se 
koriste kako bi se opisao mehanizam biofizičkog 
procesa ili dela procesa u zavisnosti od forsirajuće 
veličine. 
 
Predmet istraživanja u ovom radu jeste 
identifikovanje najznačajnijih bioloških i fizičkih 
procesa kao i odgovarajućih faktora koji utiču na 
brojnost i aktivnost vektora roda Aedes i Culex. Ciljevi 
istraživanja mogu da se sumiraju na sledeći način: (i) 
analiza najznačajnijih meteoroloških parametara koji 
utiču na vreme pojave, brojnost i aktivnost vektora 
Aedes i Culex roda; (ii) definisanje najznačajnijih 
klimatskih faktora i stepena osetljivosti procesa na 
njih; (iii) modeliranje dinamike populacije vektora i 
analiza stabilnosti dinamičkog sistema;  (iv) 
verifikacija i analiza metoda verifikacije i validacije 
dinamičkog modela; (v) kratkoročna prognoza 
dinamike populacije komarca i formulacija 
hidrološkog modula upotrebom SURFEX površinske 
šeme sa ECOCLIMAP fiziogeografskim podacima. 

Datum prihvatanja teme od strane NN 
veća:  
DP  

12/05/2020 

Datum odbrane:  
DO  

 

Članovi komisije:  
KO  

 

Predsednik Prof. dr. Vladimir Đurđević, Vanredni profesor, 
Fizički fakultet u Beogradu, Srbija 

Član Prof. dr. Igor Balaž, Docent, Poljoprivredni fakultet 
u Novom Sadu, Srbija 

Član Prof. dr. Rafiq Hamdi, Vanredni profesor, Prirodno-
matematički fakultet u Gentu, Belgija 

Član Dr. Guy Hendrickx, CEO, Avia-GIS NV, Belgija 
 



Universiteit Gent 
Universiteit Novi Sad 

Trefwoord documentatie 
 
 
 

Toegangsnummer: 
TNO  

 

Identificatie Nummer 
INO 

 

Type document:  
DT  

Monografie documentatie 

Type record:  
TR  

Tekstueel bedrukt materiaal 

Inhoud code:  
IC  

Proefschrift 

Auteur: 
AU  

Mina Petrić 

Mentor:  
MN  

Prof. dr. Branislava Lalić 
Prof. dr. Milica Pavkov Hrvojević 
Prof. dr. Piet Termonia 
Dr. Bert Van Schaeybroeck 

Industriële promotors: 
IP 

Dr. Els Ducheyne 
Cedric Marsboom 

Titel:  
TI  

Modellering van de invloed van meteorologische 
omstandigheden op de populatiedynamiek van 
muggenvector (Diptera, Culicidae) 

Taal van de tekst: 
TT 

Engels 

Taal van abstract: 
TA  

Engels/Servisch/Nederlands  

Land van publicatie: 
LP  

Servië/België 

Plaats van publicatie: 
PP  

Vojvodina/Vlaanderen 

Publicatiejaar: 
PJ  

2020 

Uitgeverij:  
UG  

Herdruk van de auteur 

Publicatie plaats:  
PP  

Faculteit wetenschappen, Universiteit Novi Sad, Trg 
Dositeja Obradovića 4, Novi Sad;  
Faculteit wetenschappen, Universiteit Gent, 
Krijgslaan 281 9000 Gent 

 

Fysieke beschrijving:  
FB  

9 hoofdstukken / 203 pagina's / 110 figuren / 45 
tabellen / 216 referenties / 8 bijlagen 

Wetenschappelijk veld: 
WV  

Fysica 



Wetenschappelijke discipline: 
WD  

Meteorologie en milieumodellering 

Onderwerp, trefwoorden: 
OTW  

Vector populatiedynamiek modellering, Aedes 
aegypti, Culex pipiens 

UC   
Gegevens vasthouden:  
GV  

Bibliotheek van de afdeling Fysica, faculteit 
Wetenschappen in Novi Sad; Bibliotheek van 
Afdeling Fysica en Sterrenkunde, Faculteit 
Wetenschappen in Gent 

Notitie:  
N  

Resultaten van het onderzoek gepresenteerd in dit 
proefschrift werden gerealiseerd onder het MosqDyn 
#IWT.155010 onderzoeks- en ontwikkelingsproject 
van Avia-GIS gefinancierd door de Vlaamse 
Agentschap Innoveren & Ondernemen (VLAIO), 
binnen het gezamenlijk initiatief VectorNet 
#OC/EFSA/AHAW/2013/02 van de Europese 
Autoriteit voor Voedselveiligheid (EFSA) en het 
Europees Centrum voor ziektepreventie en -
bestrijding (ECDC),  met behulp van de SmartSenZ 
service ontwikkeld door Avia-GIS NV, binnen het 
IAP demonstratie project voor VECMAP 
#4000104503/11/NL/US van de Europese 
Ruimtevaartorganisatie (ESA) en het SenZitall 
#4000123267/18/NL/MM/gm IAP project van de 
Europese Ruimtevaartorganisatie. 

Abstract:  
AB  

Meteorologische omstandigheden hebben een 
significante invloed op het tijdstip van voorkomen, 
het aantal en de activiteit van de muskiet vector. In 
de huidige context van klimaatverandering is het van 
groot belang om de verwachte impact van 
verschuivingen in klimatologische omstandigheden 
in te schatten op de geschiktheid voor de vestiging en 
de jaarlijkse activiteit van de vectorsoort. Bovendien 
kunnen veranderingen in de variabiliteit van 
meteorologische elementen en hun extremen, 
onverwachte veranderingen in de populatie van 
muggenvectoren veroorzaken die op hun beurt een 
belangrijk effect hebben op de menselijke 
gezondheid. Eén van de manieren om deze oorzaken 
en gevolgen in perspectief te plaatsen, is door de 
activiteit van de vector te simuleren binnen een 
procesgebaseerd kader dat de bijdragen van 
individuele factoren op de verschillende levensfasen 
van de vector analyseert. Een dergelijke analyse 
wordt uitgevoerd door gebruik te maken van 
geavanceerde dynamische modellen voor het 
simuleren van de eigenschappen van de biologische 
populatie, gedreven door waargenomen 
meteorologische gegevens, het incorporeren van de 



lokale micro-omgeving van de vectorhabitat en 
gevalideerd door de waargenomen entomologie. 
 
Numerische modellen worden ontwikkeld om 
vectorpopulatiedynamica en de verwachte circulatie 
van het virus binnen een gesloten systeem te 
modelleren. Twee modelleringsbenaderingen 
worden standaard toegepast op dynamische 
vectorpopulatie modellen: mechanistisch en 
stochastisch. Het voordeel van mechanistisch ten 
opzichte van statistische modellen is dat ze een 
deterministisch raamwerk kunnen bieden voor de 
geïsoleerde evaluatie van elke invoerparameter en 
hun effect op het gemodelleerde systeem. 
Mechanistische dynamische modellen worden 
gebruikt om de biofysische processen of een deel van 
het proces te beschrijven als een reactie op een 
verandering in een meteorologische toestand. 
 
Het werk in dit proefschrift kan als volgt worden 
samengevat: (i) De analyse van het verband tussen de 
belangrijkste abiotische factoren die de 
populatiedynamiek, de jaarlijkse activiteit en het 
tijdstip van aanwezigheid van Culex pipiens en Aedes 
aegypti beïnvloeden; (ii) De identificatie van de 
belangrijkste klimatologische factoren en 
modelinstellingen als functie van de klimatologische 
kenmerken van de onderzoeksregio; (iii) De 
dynamische modellering van de vectorpopulatie en 
stabiliteitsanalyse van het dynamische systeem. (iv) 
De analyse van verschillende verificatietechnieken en 
de implicaties voor de toepassing van het model; (v) 
De haalbaarheidsanalyse van het verbeteren van het 
model met een parametrisatie voor het landgebruik 
en voorspelling op korte afstand van de dynamiek 
van de plaagpopulatie. 
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