
UNIVERSITY OF NOVI SAD
FACULTY OF SCIENCES

DEPARTMENT OF
MATHEMATICS AND INFORMATICS

Gordana Rakić

Extendable and Adaptable Framework

for Input Language Independent Static Analysis

- PhD Thesis -

Supervisor: Dr Zoran Budimac

Novi Sad, June 2015

Contents

Abstract xii

Sažetak xv

Preface xvii

1 Introduction 1

1.1 Outline . 4

2 Background 7

2.1 Software quality - standards and definitions 7

2.2 Static analysis . 8

2.2.1 Intermediate representations in static analysis 10

2.2.2 Representative static analysis techniques 13

2.2.2.1 Software metrics . 13

2.2.2.2 Software networks analysis 21

2.2.2.3 Code clone detection . 23

2.2.2.4 Software changes analysis 26

2.3 Computer languages . 27

2.3.1 General purpose languages . 29

2.3.1.1 Procedural languages . 29

2.3.1.2 Object-oriented languages 32

2.3.1.3 Functional languages . 33

2.3.1.4 Mixed-paradigm langauges 34

2.3.2 Domain-specific languages . 35

2.3.2.1 Specification languages 36

2.3.2.2 Modeling languages . 37

2.3.3 Script languages . 41

2.3.4 Legacy languages . 42

iii

CONTENTS

2.4 Summary . 44

3 Justification of SSQSA Concept 45
3.1 Motivation . 45
3.2 Preliminary investigation . 46
3.3 Intermediate representations . 52
3.4 Related software solutions . 57
3.5 Summary . 61

4 SSQSA framework 63
4.1 SSQSA overview . 63
4.2 SSQSA Internal source code representation 69

4.2.1 eCST: enriched Concrete Syntax Tree 69
4.2.1.1 Fundamental concept of universal nodes 75
4.2.1.2 Methodology . 77
4.2.1.3 Overview of universal nodes 79

4.2.2 Internal Representations Derived from eCST 82
4.2.2.1 eCFG: enriched Control-Flow Graph 82
4.2.2.2 eGDN: enriched General Dependency Network 84

4.3 SSQSA components . 87
4.3.1 Generators and manipulators of SSQSA internal representations . 87

4.3.1.1 eCST Generator: enriched Concrete Syntax Tree Generator 87
4.3.1.2 Generators of the internal representation derived from eCST 91
4.3.1.3 eCST Manipulators . 94

4.3.2 SSQSA static analysers . 97
4.3.2.1 SMIILE:

Software Metrics Independent on Input LanguagE 97
4.3.2.2 SNAIPL: Software Networks Analyser Independent of Pro-

graming Language . 100
4.3.2.3 SSCA: Software Structure Change Analyzer 102
4.3.2.4 LICCA: Language Independent Code Clone Anlysis . . . 103

4.3.3 Peripheral tools integrated in SSQSA framework 105
4.3.3.1 External software metrics repository 105
4.3.3.2 Integration with the Testovid 105

4.4 Adaptability of SSQSA framework . 106
4.4.1 Role of the parser generator . 110
4.4.2 Demonstration od Adaptability . 115

4.4.2.1 Procedural languages . 115
4.4.2.2 Object-oriented languages 117
4.4.2.3 Functional languages . 118
4.4.2.4 Mixed paradigm languages 120
4.4.2.5 Script languages . 121

iv

CONTENTS

4.4.2.6 Legacy languages . 122
4.4.2.7 Specification languages 123
4.4.2.8 Intermediate languages 125
4.4.2.9 Domain-Specific languages 126

4.5 Extendability of SSQSA framework . 127
4.5.1 Demonstration of extendability . 128

4.5.1.1 Syntax-independent analyses 128
4.5.1.2 Syntax-based analyses . 131
4.5.1.3 Dependency-based analyses 133

4.6 Summary . 134

5 Validation and results 137
5.1 Inspection of SSQSA results . 137

5.1.1 Internal consistency check . 138
5.1.1.1 Internal validation of eCST Generator 138
5.1.1.2 Internal validation of eGDN Generator 143
5.1.1.3 Internal validation of static analysers 144

5.1.2 External correctness check . 147
5.1.2.1 External validation of eGDN Generator 147
5.1.2.2 External validation of SMIILE 149

5.2 SSQSA potentials . 157
5.2.1 ATSE and project-oriented teaching 158

5.3 Summary . 161

6 Conclusion 163
6.1 Future work . 165
6.2 Summary . 166

A Catalog of universal nodes 167

B Student example 183

Prošireni sažetak 189

Bibliography 199

Short biography 211

Kratka biografija 213

Key words documentation 215

Ključna dokumentacijska informacija 219

v

CONTENTS

vi

List of Figures

2.1 Z specification of Stack . 36

2.2 Ontology example . 40

4.1 SSQSA architecture . 65

4.2 SSQSA architecture: pipes and filters . 68

4.3 CST, AST, and eCST: comparative view 70

4.4 eCST: comparative view (example in Java and Modula-2) 72

4.5 eCST: BubbleSort (Java example) . 74

4.6 eCST: comparative view (loop statement example in Java and Modula-2) 76

4.7 eCFG: BubbleSort example . 83

4.8 eGDN: comparative view (Part 1: Student example in Java) 84

4.9 eGDN: comparative view (Part 2: Student example in C# 84

4.10 SCG: GTK Scheme example . 85

4.11 UCN: Delphi example . 86

4.12 eCSTGenerator architecture . 88

4.13 Languages XML Schema . 89

4.14 eCT XML Schema . 90

4.15 eCST to eCFG transformation process . 92

4.16 eGDN XML Schema . 93

4.17 Software metrics XML Schema . 99

4.18 Structural changes XML Schema . 103

4.19 Code clones XML Schema . 104

4.20 Extendability: steps overview . 108

4.21 Enrichment of the syntax tree, part 1: before (while example) 109

4.22 Enrichment of the syntax tree, part 2: after (while example) 109

4.23 eCST: XML fragment view (class declaration example) 129

4.24 eCST: XML fragment view (comment example) 130

4.25 eGDN sub-graph: inheritance tree (SSQSA fragment example) 134

vii

LIST OF FIGURES

viii

List of Tables

3.1 Software metrics tools overview: part 1 . 48
3.2 Software metrics tools overview: part 2 . 50

4.1 High-level eCST universal nodes . 80
4.2 Middle-level eCST universal nodes . 81
4.3 Low-level eCST universal nodes . 81
4.4 Parser generators overview . 114
4.5 Halstead metrics results (example)) . 133

5.1 eCSTGenerator results . 143
5.2 Design metrics (eCST and eGDN - an comparative overview): eGDN Gen-

erator example . 144
5.3 CC values: QuickSort example . 146
5.4 eGDN Generator results . 148
5.5 Network extraction results: comparative overview 149
5.6 Size metrics: eGDN Generator example 150
5.7 Halstead metrics (basic) - comparative overview: eGDN Generator example152
5.8 Halstead metrics (derived 1) - comparative overview: eGDN Generator

example . 153
5.9 Halstead metrics (derived 2) - comparative overview: eGDN Generator

example . 154
5.10 CC metrics - comparative overview: eGDN Generator example 156

A.1 compilation unit universal node . 167
A.2 package decl universal node . 168
A.3 interface unit decl and concrete unit decl universal nodes 169
A.4 implements and extends universal nodes 170
A.5 import decl universal node . 171
A.6 type decl universal node . 171

ix

LIST OF TABLES

A.7 attribute decl universal node . 172
A.8 block scope universal node . 173
A.9 function decl universal node . 174
A.10 formal param list and parameter decl universal node 174
A.11 function call universal node . 175
A.12 argument list and argument universal nodes 175
A.13 var decl universal node . 176
A.14 statement universal node . 176
A.15 instantiates universal node . 177
A.16 loop statement universal node . 178
A.17 branch statement and BRANCH universal nodes 179
A.18 jump statement universal node . 180
A.19 condition universal node . 181
A.20 expression universal node . 181
A.21 keyword, operator, separator, and builtin type universal nodes . . 181
A.22 name and type universal nodes . 182
A.23 Universal nodes marking comments . 182

x

Listings

2.1 QuickSort algorithm implemented in Modula-2 30

2.2 ArbitraryList implemented in Java . 32

2.3 QuickSort implemented in Erlang . 33

2.4 QuickSort implemented in functional Scala 34

2.5 QuickSort implemented in object-oriented Scala 35

2.6 QuickSort specification written in Tempura 37

2.7 Contact ontology written in OWL notation 37

2.8 QuickSort implemented in PHP . 41

2.9 QuickSort implemented in COBOL . 42

4.1 BubbleSort implemented in Java . 72

4.2 Dynamic instantiation in Java . 94

4.3 Dynamic types in PHP . 95

4.4 Grammar rule for the while statement 107

4.5 Rewriting the rule . 108

4.6 Enrichment of the tree . 108

4.7 Simple example written in Modula-2 . 116

4.8 Records in Modula-2 . 116

4.9 Dynamic instantiation in Java . 118

4.12 Example of unit written in Delphi . 120

4.13 Example written in PHP . 122

4.14 Branch statement written in COBOL . 123

4.15 Simple example written in Tempura . 124

4.16 GCD example in Tempura . 124

4.19 Simple example written in C# . 131

4.20 Simple example written in Delphi . 132

5.1 QuickSort algorithm implemented in Java 140

5.2 QuickSort eCST: comparative view (Modula-2 and Java) 141

5.3 Successful eCST Generator execution message 142

5.4 Inconsistency of Halstead operators - example 151

xi

LISTINGS

B.1 Student example implemented in Java . 183
B.2 Student example implemented in C# . 186

xii

Abstract

In a modern approach to software development, a great importance is given
to monitoring of software quality in early development phases. Therefore,
static analysis becomes more important. Furthermore, software projects
are becoming more complex and heterogeneous. These characteristics are
reflected in a diversity of functionalities and variety of computer languages
and the technologies used for their development. Because of that, con-
sistency in static software analysis becomes more important than it was
earlier.

In this dissertation SSQSA: Set of Software Quality Static Analyzers is
described. The aim of the SSQSA framework is consistent static analysis.
This goal is reached by introducing new intermediate source code repre-
sentation called eCST: enriched Concrete Syntax Tree. The dissertation
mostly focuses on eCST, intermediate representations derived from it, and
their generation with description of the tools involved in it.

The main characteristic of eCST is language independence which gives
to SSQSA framework two-level extensibility: supporting a new language
and supporting a new analysis. This leads to efficiency of adding support
on both levels and consistency of added functionalities.

To prove the concept, support for more than 10 characteristic lan-
guages was introduced. Furthermore, characteristic static analysis tech-
niques (software metrics calculation, code-clone detection, etc.) were im-
plemented and integrated in the framework.

Established SSQSA framework provides the infrastructure for the fur-
ther development of the complete platform for software quality control.

xiii

Abstract

xiv

Sažetak

U modernim pristupima razvoju softvera veliki značaj pridaje se kontroli
kvaliteta softvera u ranim fazama razvoja. Zbog toga, statička analiza
postaje sve značajnija. Takod̄e, softverski proizvodi postaju sve komplek-
sniji i heterogeni. Ove karakteristike se ogledaju u raznovrsnosti jezika i
tehnologija koje se koriste u procesu razvoja softvera. Zbog toga, konzis-
tentnost u statičkoj analizi dobija veći značaj nego što je to bio slučaj
ranije.

U ovoj disertaciji opisan je SSQSA: skup statičkih analizatora za kon-
trolu kvaliteta (eng. Set of Software Quality Static Analyzers). Namena
SSQSA okvira je konzistentna statička analiza. Cilj se postiže uvod̄enjem
nove med̄ureprezentacije izvornog koda nazvane eCST (obogaćeno konkretno
sintaksno stablo, eng. enriched Concrete Syntax Tree). Naglasak disertacije
je primarno na eCST reprezenataciji koda, reprezentacijama izvedenim iz
eCST i procesu njihovog generisanja, sa opisom orud̄a angažovanim u ovim
procesima.

Osnovna i najbitnija karakteristika eCST reprezenatacije je nezavisnost
od jezika u kom je izvorni kod pisan, što SSQSA okviru daje proširivost na
dva nivoa: kroz podršku za nove jezike i kroz podršku za nove analize. Ovo
dovodi do efikasnog uvod̄enja funkcionalnosti na oba navedena nivoa, kao i
do kozistentnosti uvedenih funkcionalnosti.

Kao dokaz ispravnosti koncepta, podrška za vǐse od 10 ulaznih jezika
je uvedena. Takod̄e, implementirane su karakteristične tehnike statičke
analize (izračunavanje oftverskih metrika, otkrivanje duplikata u kodu, itd.)
i integrisane u SSQSA okvir.

Na opisani način, postavljanjem SSQSA okvira, obezbed̄ena je infras-
truktura za dalji razvoj kompletne platforme za kontrolu kvaliteta softvera.

xv

Sažetak

xvi

Preface

In the modern approach to software development, a great importance is
given to monitoring and control of software quality in the early stages of
development. Therefore techniques applicable during design and imple-
mentation phase become more important. These techniques applied to
an intermediate representation of design or implementation make integral
parts of static analysis.

Nowadays software projects are becoming more complex and heteroge-
neous. These characteristics are reflected in a wide variety of functionality
as well as in a wide variety of used computer languages and the technologies
used for the development of these functionalities. Therefore, consistency in
static analysis becomes more important than it was earlier.

In this thesis SSQSA: Set of Software Quality Static Analysers has been
described. The aim of the SSQSA framework is consistent software quality
monitoring and control on code level. This goal is reached by introducing
new intermediate source code representation called eCST: enriched Con-
crete Syntax Tree. The thesis mostly focuses on eCST, intermediate rep-
resentations derived from it, and their generation with description of the
tools involved in it.

The main characteristic of eCST is language independence. This char-
acteristic gives to SSQSA framework two-level extensibility: adding support
for a new language and adding support for new analysis in a a straightfor-
ward way. Advantages included in this extensibility are efficiency of adding
support on both supported levels and consistency of added functionalities.

xvii

CHAPTER 0. PREFACE

To prove the concept, support for more than 10 characteristic languages
of different paradigms (object-oriented, procedural, functional, etc.) was in-
troduced. Furthermore, characteristic static analysis techniques such are
software metrics calculation, code clone detection, structural changes anal-
ysis, and software network analyses were implemented and integrated in
the framework. Usability of this framework is additionally demonstrated
by integration with external tools to use the results of SSQSA analysers.

Motivation for developing a new framework begins with the intention
to fulfil gaps in the field of systematic application of software metrics by
improving characteristics of software metric tools. One of the important
weaknesses of available metric tools is the lack of support for calculation
of metric values independently on input programming language. In order
to fill this gap a new, language-independent software metrics tool SMIILE:
Software Metrics Independent on Input LanguagE has been developed.

The general idea for building SSQSA framework originated from SMI-
ILE tool. The development of this tool started in 2007 and its first pro-
totype was finalized in 2010. It was based on eCST as an intermediate
representation of the source code independent of input language.

Afterwards, the framework was gradually extended by integration of
new tools. Some tool already existed but they were independently devel-
oped for specific purposes and each supported only one programming lan-
guage. Some of analyses introduced in this manner are software networks
extraction and analysis, and structural changes analysis. For example, be-
fore inclusion of software network extractor and analyser in the SSQSA
system, a similar in-house software network extraction tool existed, but it
was limited only to Java programming language. Similarly tool for analysis
of structural changes of applications written in C# was previously imple-
mented. By accepting the eCST as an intermediate representation of the
source code and adapting the implementation, those tools were extended to
support all languages that are supported by the framework. Tools included
in the framework are applicable also to the software developed in combina-
tion of supported languages. In this way the Set of Software Quality Static
Analyzers (SSQSA) framework was gradually built up to meet described
goals.

xviii

Together with new static analysers, analysis specific internal represen-
tations were built. The main characteristic of all these representations and
their generators is that they are based on eCST representation and thus
also language independent.

During four-year period (since 2010), support for more than ten new
languages and several new analyses were added. More than 30 students
of bachelor, master, and doctoral studies were included and more than 15
research papers related to the SSQSA framework were published. In this
way SSQSA project finds application in education and academy, apart from
its potential application in industry.

The work descried in this thesis was partially supported by the Serbian
Ministry of Education, Science and Technological Development through
national projects ”Intelligent Techniques and Their Integration into Wide-
Spectrum Decision Support” no. OI174023 and ”Infrastructure for technol-
ogy enhanced learning in Serbia” no. III47003, but also through bilateral
projects. This support enabled exchange of ideas and experiences with
colleagues from different institutions. Similarly, exchanges through DAAD
project, CEEPUS network, and COST action helped in gaining valuable
results of the project. Special thanks also go to SQAMIA initiative 1.

Author is also grateful to all master and PhD students from Novi Sad,
but also from Skopje, Maribor, and Budapest for their work to enable
support of various programming languages and analyses. Special gratitude
goes to Miloš Savić (Novi Sad), Jozef Kolek (Novi Sad), Melinda Toth
(Budapest), and Črt Gerlec (Maribor) for their willingness to participate
in SSQSA project and to refer their research to it. Thanks to all colleagues
who participated in any way in SSQSA project.

The most important role in SSQSA project plays supervisor of this the-
sis. Therefore, there are no words which can express gratitude of author
to professor dr Zoran Budimac for his ideas, advices and absolute support.
Furthermore, thanks to committee members, professor dr Mirjana Ivanović
and professor dr Marjan Heričko (Maribor), and professor dr Vladimir Kur-
balija, for invested time and effort, and for their valuable comments.

1SQAMIA http://www.sqamia.org/

xix

CHAPTER 0. PREFACE

Thanks to all friends who remained present through all these years. Fi-
nally, the greatest gratitude belongs to family, but specially to my parents.
This doctorate is dedicated to them for their unlimited love and support.

xx

Chapter 1

Introduction

The quality of each product, and therefore the quality of the software prod-
uct can be described as the degree to which a given product meets the
needs and requirements of users. The main quality attribute of each soft-
ware product is correctness. Without correctness it is pointless to talk
about other quality attributes such are functionality, usability, reliability,
efficiency, portability, and maintainability.

Mentioned attributes of software quality can be monitored, evaluated,
and controlled at early phases of software development by examining the
source code and other static artifacts, or during the execution and test-
ing process. Assessment of software quality attributes that is made on the
source code or any of its internal representations without executing the
program is called static analysis, while analysis of the program during exe-
cution time is called dynamic analysis. In the modern approach to software
development, a great importance is given to monitoring and quality control
in the early phases of development. Therefore static analysis becomes more
important.

Static analysis can be described as a set of techniques for program
analysis without its execution. Each of these techniques involves the im-
plementation of analysis algorithms on a static representation of the code.

Nowadays software projects are becoming more complex. A number

1

CHAPTER 1. INTRODUCTION

of projects are going on for decades, and through their life cycle soft-
ware becomes complex and heterogeneous [Wagner, 2014]. These char-
acteristics are reflected in a wide variety of functionality as well as in a
wide variety of used computer languages and the technology used for the
development of these functionalities. Primarily, this heterogeneity com-
plicates the analysis and quality control over the product life cycle and
affects the consistency of the static analysis results. Furthermore, some
components have been developed in legacy programming languages such
are COBOL and FORTRAN. These components, as well as the languages
they were written in, are often older then these analyses so that they
usually remain left out of process monitoring and quality control during
maintenance. Therefore, when considering these components, the con-
sistency of measurement results for the whole project can not even be a
topic of analysis and discussion [Capers, 1996]. Under described conditions
it is extremely important to provide a consistent quality of static analy-
sis independent of language and technology used for software development
[Ben-Menachem and Marliss, 1997].

The overall subject of the research described in this thesis is consistency
of software quality analysis when applied to the source code written in dif-
ferent computer languages. This research focuses on creating a framework
for the consistent static analysis of the software product.

Advanced characteristic of created framework are based on the interme-
diate representation of source code: enriched Concrete Syntax Tree (eCST)
[Rakić and Budimac, 2011]. This representation of the source code, as well
as the process of its generation, are independent of the input language.
In this way, independency of all other integrated components of the input
language has been achieved as a basic contribution of the research.

In particular, when a unique representation of a software code regardless
of the language in which it was written in is available, it is possible to use
a single implementation of the analysis algorithms. Consequently, for each
new input language the whole set of integrated analyses is readily available.

The developed framework consists of:

• central component which is responsible for generating eCST repre-

2

sentation of the source code;

• generators of alternative representations of source code and design
derived from eCST;

• components responsible for analyses based on generated representa-
tions of source code;

• external tools integrated to use results of performed analyses.

Described approach contributes to the SSQSA framework with two cru-
cial features [Kolek et al., 2013]:

Adaptability or flexibility in supporting new languages and

Extendability or scalability in supporting new analyses.

In that way the consistency of results and reliable analysis of soft-
ware product quality regardless of the input language has been achieved.
This is the ultimate contribution of the thesis, especially considering de-
scribed trends in software development: size, complexity, and heterogeneity
of projects.

After adding a new language all available analyses are immediately ap-
plicable for this language. In case of adding a new analysis, a single imple-
mentation of the analysis algorithm is enough for all supported languages,
which means that after integration of a new analysis in the framework it is
applicable to all supported languages.

Currently, SSQSA framework support the following input languages:
Java, C#, Delphi, C, COBOL, Pascal, Modula-2, Scheme, Erlang, Python,
PHP, JavaScript, OWL, WSL, and Tempura. Furthermore, the follow-
ing analyses were implemented and integrated in the framework: software
metrics calculation, software network analyses, code clone detection, and
structural changes analysis.

3

CHAPTER 1. INTRODUCTION

1.1 Outline

This thesis describes created framework called SSQSA: Set of Software
Quality Static Analyzers. Chapter organisation of the rest of the thesis is
as follows.

Chapter 2: Background provides the basic concepts and terms to be
used in the text. It introduces software quality and related terminology
(section 2.1). Afterwards, focus is moved on static analysis and its role
in software quality monitoring (section 2.2). Finally (in section 2.3) term
of computer languages is introduced and their impact on static analysis is
explained. Special attention is paid on diversity of possible input languages
with focus on ones supported in SSQSA framework.

Chapter 3: Justification of SSQSA concept in its first section de-
scribes the starting motivation for the development of the first tool in
SSQSA framework, SMIILE, justifying it by preliminary research on weak-
nesses of available software metric tools at that point of time (in section
3.2). Furthermore, section 3.3 describe the state of the art in the field
of intermediate source code representations and their usage in the static
analysis techniques related to SSQSA framework. Finally, review of related
software solutions is given in the last section of this chapter (section 3.4).

Chapter 4: SSQSA framework provides full picture of SSQSA frame-
work and its architecture. SSQSA overview (section 4.1) provides archi-
tecture with brief overview of the SSQSA components. Section SSQSA
intermediate representations (4.2) describes the central intermediate repre-
sentation in SSQSA framework - eCST: enriched Concrete Syntax Tree, but
also intermediate representations derived from it. Section SSQSA compo-
nents (4.3) describes constituents of SSQSA framework at different levels:
generators and manipulators of intermediate representations, static anal-
ysers, higher-level external tool integrated to use results of the SSQSA
analysers, etc. The last two sections ot this chapters (4.4 and 4.5) explain
adaptability and extendability of the framework as its main characteristics.

4

1.1. OUTLINE

Chapter 5: Validation and Results describes results of the thesis on
two levels. On the first level, section 5.1 describes representative results of
testing SSQSA components and shows SSQSA applicability and consistency
and correctness of results. Following section, describes in which way SSQSA
can find application in industry and education, while applicability in science
is obvious.

Chapter 6: Conclusion summarises results of the thesis with conclu-
sion and possible further direction of SSQSA development and research.

Each of described chapters ends with brief summary of its contents. Fur-
thermore, as history of SSQSA framework and its components importantly
affected contribution of this dissertation. Some sections contain boxed text
with important historical facts in the development of SSQSA framework.

Appendix A: Catalog of universal nodes contains detailed overview
of universal nodes with description and their usage in supported languages.

Appendix B: Examples containes larger fragments of source code re-
lated to examples used in the dissertation.

5

CHAPTER 1. INTRODUCTION

6

Chapter 2

Background

2.1 Software quality - standards and definitions

The quality of each product, and therefore the quality of the software prod-
uct can be described as the degree to which a given product meets the needs
and requirements of users. This is the definition of the software quality used
by ISO (the International Organization for Standardization)1 in ISO 91262

standard. This definition refers to the level of compliance of requirements.
ISO (the International Organization for Standardization) and IEC (the

International Electrotechnical Commission) work actively in a field of world-
wide standardisation. As a result of this cooperation ISO 9126 standard
was replaced by ISO/IEC 25000 3. ISO/IEC 25000 is a series of standards
under the general title Systems and Software Quality Requirements and
Evaluation (SQuaRE). New standardisation uses new definition of software
quality and related terms.

Software Quality expresses degree to which a software product
satisfies stated and implied needs when used under specified
conditions.

1ISO, 2014 https://www.iso.org
2ISO 9126, 2014 http://www.sqa.net/iso9126.html
3ISO 25000, 2014 https://www.iso.org/obp/ui/#iso:std:iso-iec:25000:ed-1:v1:en

7

CHAPTER 2. BACKGROUND

Software quality standardisation mainly refers to a presence of software
quality attributes in final product.

Software Quality Attribute can be described as an inherent prop-
erty or characteristic of software product that can be distin-
guished quantitatively or qualitatively by human or automated
means.

Required quality attributes affect software quality which place these
categories to common categories.

Category of software quality attributes that bears on software
quality is defined as Software Quality Characteristic.

Thus, software quality attributes are grouped in characteristics of soft-
ware quality, but also into sub-characteristics which constitute characteris-
tics.

Software quality model defined by standard ISO 9126-1 distinguished six
attributes of software quality. These are: functionality, usability, reliabil-
ity, efficiency, portability, and maintainability. Currently, ISO 25010 defines
the following eight software product quality characteristics: functional suit-
ability, reliability, performance efficiency, usability, security, compatibility,
maintainability, and portability. Each of these characteristics is composed
of a set of related sub-characteristics 4.

Software quality assurance and control play an important role in soft-
ware development. During these processes mentioned attributes of software
quality are monitored, evaluated, and controlled at different phases of soft-
ware development. This is done by determining values of different quality
characteristics measures in process of software quality measurement.

2.2 Static analysis

Software quality monitoring and control is crucial throughout the whole life
cycle of a software product. Furthermore, it is very important to take care

4ISO 25010, 2014 https://www.iso.org/obp/ui/#iso:std:iso-iec:25010:ed-1:v1:en

8

2.2. STATIC ANALYSIS

of the quality from the very early phases of software development process
by examining the source code and other static artifacts, or during the ex-
ecution and testing process. Assessment of quality attributes of software
that is made on the source code or any of its internal representations with-
out executing the program is called static analysis, while analysis of the
program during execution time is called dynamic analysis. In the modern
approach to software development, a great importance is given to monitor-
ing and quality control in the early phases of development. Therefore static
analysis becomes more important.

Static analysis can be defined as a set of techniques for program
analysis without its execution.

Each technique involves the implementation of analysis algorithms on an
intermediate static representation of the source code. Examples of source
code representation used in static analysis are syntax trees and different
graph representations. Algorithms implemented on these representations
can be used for various purposes.

During the evolution of a software product it changes in various ways.
Some of these changes are made on request of users and usually refer to
adding a new or change of existing functionality. This affects functionality
of the product, but also its quality attributes. On the other hand, im-
provement of features and characteristics of software product is continuous
activity in its evolution. Such activities are reengineering and especially
refactoring as its characteristic part. Changes made in this direction usu-
ally do not affect functionality of the program but affect its quality. All
these changes are to be monitored and their effects on quality of software
product are to be supervised.

In software evolution static analysis techniques play multiple roles. Static
analysis can be applied to detect weak points of software product by prepa-
ration of the data for testing, detection of potential errors, exploring possi-
ble execution scenarios, timing analysis and execution time estimation, etc.
Furthermore, by static analysis different flaws in design and implementa-
tion (so called ‘bad smells‘) can be located. Special case of bad smell to be

9

CHAPTER 2. BACKGROUND

considered are duplicates or clones in the source code. Static analysis and
its role in locating of bad smells in the source code are crucial in prepa-
ration stage for improvement changes in software product. Furthermore,
static analysis is very important in observing quality attributes during the
changes and improvement of each software product. Static analysis are
used in detecting, monitoring, and directing the changes by following their
effects on observed quality attributes during the evolution.

Techniques of static analysis usually rely on software metrics - it is
used as the basic technique of static analysis to measure the attributes
of software quality. Since it is not possible to manage what you can not
measure [DeMarco, 1986], the measurement or numerical expression of facts
about events and objects in the software development process, is used as
an elementary process in process monitoring and quality control.

2.2.1 Intermediate representations in static analysis

Many concepts and approaches in software analysis (primarily techniques
of static analysis) are based on tree representations of the source code.
There are two widely used tree representations of a source code: concrete
syntax tree (CST) and abstract syntax tree (AST). We introduce eCST as
an innovation in a field of tree representations of the source code.

Syntax trees are usually secondary products of language processing tools
such are parser, compiler, etc. These tools could be produced automati-
cally by generators or developed manually by implementing the language
rules. Parser generators take a language specification usually provided as
a language grammar as its input and return parser for that language as an
output. This grammar is provided in some default form (e.g. EBNF: Ex-
tended Backus-Naur form) or in some generator-specific notation. These
generators usually have embedded mechanisms to generate syntax trees
as internal structures. Additionally, these mechanisms can be extended
with mechanism for enrichment of syntax trees with additional information
about language or input source code.

The concrete syntax tree (CST) representation shows how a program-
ming language construct is derived according to the context-free grammar

10

2.2. STATIC ANALYSIS

of the language. The root node of a CST represents starting non-terminal
symbol of the grammar. Interior nodes in CST correspond to syntactical
categories of the language identified by non-terminal symbols of the gram-
mar, while leaf nodes represent tokens of the represented construct.

Abstract syntax tree (AST) is an alternative and more compact way to
represent language constructs. While Concrete Syntax Tree (CST) repre-
sents all constituent of source code at a very concrete level, without any
abstraction, Abstract Syntax Tree (AST) is an abstraction of this repre-
sentation. It usually consists of abstract elements of language syntax and
often does not contain all parts of concrete syntax. AST representation
retains the hierarchical structure of language constructs, while omitting
details that are either visible from the structure of AST or unimportant
for a language processing task. Imaginary nodes are introduced for this
abstraction of syntax.

Imaginary nodes do not correspond to concrete tokens, which means
that node labels do not explicitly appear in the source code. These nodes
are usually root nodes of a sub-tree representing specific program con-
structs. Thus, imaginary nodes can help in marking the semantics of syn-
tactic constructs. For example, imaginary node var decl is a convenient
root node for the declaration of a variable.

Important characteristic of AST is that its content and structure is
not uniquely defined. For example, imaginary nodes can be added freely,
depending on the purpose.

Besides syntax trees, static analysis often relies on different graph rep-
resentation of source code. The commonly used internal representation of
the source code for static analysis is Control Flow Graph. Control Flow
Graph (CFG) represents the flow trough the control structure within a
single function where nodes are basic blocks or statements while directed
edges follow the possible execution paths.

Let G = (V, E, i) be a directed graph, where nodes V correspond
to basic program blocks and edges E ⊆ V ×V connect two nodes
vi, vj ∈ V iff vj is executed immediately after vi. This graph G
is called CFG: Control Flow Graph. Each node vi ∈ V which

11

CHAPTER 2. BACKGROUND

has no incoming edges (6 ∃vi ∈ V : (v, vi) ∈ E) represents the
start node or the program.

On the other hand, program can be represented by graphs of various
types of dependencies between different software units and entities.

Complex network theory is based on graph theory and statistical anal-
ysis. Complex real-world systems represented by typed and/or attributed
graphs form different kinds of complex networks. Statistical methods ap-
plied on these graphs provide powerful mechanism in network analysis.
Complex networks theory has an application in many areas where complex
systems are observed. Application areas vary from biology and physics to
social networks, computer networks, etc. In a context of software engineer-
ing and software development, software networks as a special type of com-
plex networks can be observed [Cohen and Havlin, 2010], [Newman, 2003],
[Boccaletti et al., 2006].

Software networks are directed graphs representing relationships or de-
pendencies between software entities (packages, classes, modules, methods,
functions, procedures, etc.). Software network can be observed as a static
representation of source code and can be used in analysis of the quality of
software development process and software product with particular applica-
tion in a field of large-scale software systems. Each node represents software
entity (package, class/module, procedure/function/method, etc.) defined
in the source code of a program. Each link denotes different types of depen-
dencies among them (calls, uses, references, contains, etc.) [Myers, 2003],
[Šubelj and Bajec, 2012].

Depending on dimension and the level on which software network repre-
sents the software product, several types of networks can be distinguished
[Savić et al., 2014].

• In horizontal dimension three levels of networks can be extracted:

Low level: network representing collaboration inside class/inter-
face/module (SCG: static call graph / MCN: method collabo-
ration network, FUGV: function uses global variables, etc.);

12

2.2. STATIC ANALYSIS

Middle level: network representing collaboration between class-
es/interfaces/modules;

High level: package collaboration network.

• Vertical dimension reflects dependencies between software entities on
different abstraction levels represented by hierarchy tree.

Graph including all described dependency networks is called GDN: Gen-
eral Dependency Network [Heckerman et al., 2001], [Savić et al., 2014].

Let G = (V, E, i) be a directed graph, where nodes V corre-
spond to software entities and edges E ⊆ V × V connect two
nodes vi, vj ∈ V iff vj depends on vi. This graph G is called
GDN: General Dependency Network.

By filtering appropriate information from GDN described graph repre-
sentations can be extracted.

2.2.2 Representative static analysis techniques

In this section, representative static analysis techniques will be described.
Techniques are carefully selected to vary from basic (such are software met-
rics) to advanced (such is hybrid code-clone detection). The most of de-
scribed analyses are integrated in the SSQSA framework.

2.2.2.1 Software metrics

The measuring and continual monitoring of a software product is crucial
for success in the software development process. The main instrument in
these processes are software metrics which can be defined as values that
reflect the status of a software product or its specifications.

Software metrics can be defined as numerical values that reflect
the properties of a software development processes and software
products [N. Fenton, 1996].

13

CHAPTER 2. BACKGROUND

The first software metrics have been introduced over a half of century
ago. Software metrics were changing along with the changing needs and
demands of the market of software products. The first published book that
describe software metrics appeared in 1976 [Gilb, 1976], but the first at-
tempts at applying software metrics had already taken place in the late
1960s [Fenton and Neil, 1999]. Originally, measuring was applied in con-
trolling the time and resources required for execution of the observed pro-
grams. Later, when the programs became more complex and possibility
of errors increased, metrics were used to measure the complexity of a pro-
gram and assess the possibility of the occurrence and frequency of errors.
Afterwards, the quality of software design became more important due to
the increased amount of errors that occurred in the early stages of software
development. Therefore, metrics for monitoring the characteristics of the
design were introduced. With growth of costs of software development, an
important place in this system of measurements take metrics for monitoring
the entire process of development of a software product.

Nowadays, software metrics can be categorised into three major sub-
groups: process metrics, project metrics, and product metrics [Kan, 2002].

Process metrics are related to the characteristics of the process. They
are used with intention to improve the observed software development pro-
cess. Frequently used measure is the amount of effort needed to invest in
the entire software development in specific phases or in specific activities
during the development phase. These efforts are reflected by some of the
standard measures such as man-months or man-days. Other examples of
the process metrics are frequency of repetition of errors, the time required
to eliminate or reduce errors, etc.

Project metrics represent certain values related to resources and costs,
their allocation to the individual stages in the evolution of products, pro-
ductivity, and other items related to project planning and management.

Product metrics reflect characteristics of software product itself. Some
software features are visible to the user, while others are only visible to a
development team. In accordance to availability of observed attributes to
participants in development process and end user, software metrics can be
divided into internal and external.

14

2.2. STATIC ANALYSIS

Characteristics of the software product reflected by external metrics are
available not only to the development team but also to an end user of the
product. It is not a rare case that external characteristics are expected to
meet the subjective attitude or feeling of a user. Therefore, it is a hard
task to define and measure external metrics.

Internal metrics reflect those characteristics visible only to the team
involved in a development. By subject of measurement they reflect the
size, complexity, structure, and architecture of the software product.

Focus in the dissertation is on internal product metrics.
Size as an internal attribute of a software product is usually measured

by number of lines of code. Lines of Code (LOC) family of metrics consists
of several modifications of this basic measure of length of source code such
are [Fenton and Neil, 2000], [Bhatt et al., 2012]:

• SLOC: Source Line of Code reflecting number of lines containing
source code without empty lines and lines containing comments;

• CLOC: Comment Line of Code reflecting number of lines containing
comments;

• BLOC: Blank Lines of Code reflecting number of lines containing nor
source neither comments;

• PLOC: Physical Line of Code reflecting size as it is without taking
into account programming style or code formatting;

• LLOC: Logical Line of Code reflecting size after applying codding
style rules or formatting and logical restructuring of statements over
the lines.

Maurice Halstead [?] introduced one of oldest product size and complex-
ity metrics set. Halstead Metrics (H) reflects the size and the complexity
of the program calculated based on number of operators and operands.
Metrics from the Halstead’s set are following:

• Basic Halstead metrics

15

CHAPTER 2. BACKGROUND

– n1 - the number of distinct operators;

– n2 - the number of distinct operands;

– N1 - the total number of operators;

– N2 - the total number of operands.

• Derived Halstead metrics

– n - Program vocabulary (n1 + n2);

– N - Program length (N1 + N2);

– N̂ - Estimated program length (n1log2n1 + n2log2n2);

– V - Volume (Nlog2n);

– D - Difficulty (n1∗N2
2n2

);

– E - Effort (V ∗D);

Halstead program volume (V) expresses the amount of the information
to be absorbed in order to understand the program, while program difficulty
(D) expresses how difficult is to understand the program after necessary
information are absorbed. Program effort (E) reflects how much effort
should be invested in rewriting the program.

Nowadays there exist different modifications and approximations of
these metrics, but also some process and project metric are derived from
above measures.

CC: Cyclomatic Complexity reflects complexity of the control-flow struc-
tures in the program. It was introduced by McCabe [McCabe, 1976] at the
same period as Halstead introduced his metrics. CC is currently one of the
mostly used metrics.

Value of CC represents the number of linearly independent (base) path
of program execution. Any execution path through the program sequence
can be created as an linear combination of these base paths. From this we
conclude that, when testing the program, it is enough to test only the base
paths. For this reason this metric is used also in the software testing as a
boundary of the number of needed test cases.

16

2.2. STATIC ANALYSIS

Graph which is representative of all possible execution paths of the
program is called the CFG: Control Flow Graph. Control flow graph, CFG
(N, E), consists of a set of nodes (N) and the set of edges (E). Each node
represents a single statement, while the branches represent the flow between
the commands, or the possible execution direction.

Let each control flow graph refers to a basic block (procedure,
method, ...), out of which each has exactly one input and exactly
one output, and for each path of program execution there is
exactly one path in the control flow graph. Let the CFG (N,
E) be the control flow graph, where N is the designated set of
nodes, and E is set of edges. Let e =| E | - the number of
branches in the graph and n =| N | number of nodes in the
graph. Then CC: Cyclomatic Complexity of graph CFG (N, E)
is defined as:

CC = v(CFG) = e− n + 2

For a non-empty graph the minimal CC is equal to 1. CC in the graph
increases with increasing number of branching, and there are some recom-
mendations from the experience that the CC should never exceed 10. If
such a great value occurs, it is possible to split the function to the multiple
functions with a smaller CC. Such functions are easier to test and maintain.

CC can be calculated by creating the CFG and counting the nodes and
the branches and using the formula, but also on some of the alternative
ways, such are counting control-flow predicates or counting graph areas.

When counting predicates, the basic idea relies on the fact that each
branching point in the graph represents a conditional statement, or an ap-
propriate predicate. Thus, for each conditional predicate with one condition
CC is increased by one, and for those with multiple conditions for each new
condition CC is also increased by 1. CC is also increased for each logical
operator (AND, OR, ...) under conditions of a observed statement.

In order to apply the method of counting the area of the graph, the
graph need to be a planar one. This means that it does not contain branches

17

CHAPTER 2. BACKGROUND

that intersect each other. Then, when observing the infinite area in which
the graph lies, where number of areas of the graph is labeled with R, CC
can be defined as CC = v(CFG) = R.

CC measure has its good and bad characteristics, and there are different
arguments pro and contra its usage. The fact is that it is widely used
in practice for decades and adaptable to new techniques in programming,
which adds value to this metric. Furthermore, there are numerous metrics
derived from CC used in data-flow analysis, program complexity analysis,
or in measurement for object-oriented systems.

Different design metrics are also widely used in static analysis (general
ones or specially devoted to object oriented design). Many variations of
design metrics were developed but some general groups can be selected as
mostly used:

Lorenz metrics [Lorenz and Kidd, 1994]

• AMS: Average Method Size (expressed in LOC);

• ANMC: Average Number of Comments per Method (expressed
in CLOC);

• ANMC: Average Number of Methods per Class;

• ANIVC: Average Number of Instance Variables per Class;

• CHNL: Class Hierarchy Nesting Level (counting starts from the
top level class);

• NSSR: Number of Subsystem-to-Subsystem Relationships;

• NCCR: Number of Class-to-Class Relationships in Each Subsys-
tem;

• IVU: Instance Variable Usage expresses the usage of instance
variables by methods. It can signalise some design problems;

• NPRC: Number of Problem Reports per Class (higher number of
reported problems can signalise that class should be redesigned);

• NTCR: Number of Times Class is Reused;

18

2.2. STATIC ANALYSIS

• NCMTA: Number of Classes and Methods Thrown Away ex-
presses level of redesigning in the development process when
classes are redesigned and methods and whole classes can be
replaced or excluded.

Morris metrics [Morris, 1989]

• NMC: Number of Method per Class;

• NID: Number of Inheritance Dependencies;

• DCBO: Degree of Coupling Between Objects express level of
dependency between objects. High coupling makes maintenance
difficult and decreases reusability;

• DCO: Degree of Cohesion of Objects expresses level of depen-
dency between elements of objects. Low cohesion can signalize
that object design should be redesigned;

• OLE: Object Library Effectiveness expresses the level of reusage
of objects of library classes;

• FE: Factoring Effectiveness expresses contribution of unique meth-
ods in total number of methods. Higher factoring means lower
level of code duplication;

• DRIM: Degree of Reuse of Inheritance Methods (potential and
real, overriding, etc);

• AVC: Average Method Complexity (where method complexity
is measured as CC);

• AG: Application Granularity reflects how small peaces of func-
tionality are objects responsible for. Finely grained applications
are easier for maintenance and reusage.

Chidamber & Kemerer metrics [Chidamber and Kemerer, 1994]

• WMC: Weighted Methods per Class (sum of method complexity
expressed as CC values);

• DIT: Depth of Inheritance Tree;

19

CHAPTER 2. BACKGROUND

• NOC: Number of Children;

• CBO: Coupling Between Object Classes;

• RFC: Response for a Class;

• LCOM: Lack of Cohesion in Methods;

MOOD: Metrics for Object Oriented Design [?]

Encapsulation metrics :

• MHF: Method Hiding Factor expresses contribution of hid-
den methods in total number of methods;

• AHF: Attribute Hiding Factor expresses level of attribute
encapsulation. It is contribution of hidden attribute in total
number of attributes.

Inheritance metrics :

• MIF: Method Inheritance Factor expresses how much is in-
heritance applied to methods;

• AIF: Attribute Inheritance Factor expresses how much is
inheritance applied to attributes.

Polymorphism metrics :

• PF: Polymorphism Factor expresses level of usage of poly-
morphism.

Coupling metrics :

• CF: Coupling Factor expresses level of communication be-
tween classes. This value should be low in good object de-
sign.

Nowadays, various software metrics tools are used for automatic calcu-
lations of software metrics. In chapter 3, problems in the area of consistent
and systematic application of software metrics will be presented. During
the exploration the strong dependency of software metrics of an input pro-
gramming language was recognized as one of the main weaknesses of the
applicability in this field.

20

2.2. STATIC ANALYSIS

2.2.2.2 Software networks analysis

As described in section 2.2.1, software network is a graph that represents
different aspects of software architecture and design. Each node repre-
sents one software entity (package, unit, function, etc.) while links reflect
the dependencies between them (package collaboration, class collaboration,
function calls, etc.). Obviously, the most of design metrics can be calcu-
lated based on these graph representations of the source code, while size
and complexity metrics can be used to reflect internal characteristics of
observed nodes. As software networks rely on formal theory of complex
networks the formal background for the calculation of design metrics can
be stated.

Important properties in complex networks analysis are [Newman, 2010],
[Cohen and Havlin, 2010], [Boccaletti et al., 2006], [Newman, 2003]:

Size expressed by number of nodes;

Density reflecting the ratio between number of existing links in the net-
work and number of all possible links (up to complete graph);

Node degree where distribution and correlation of in, out and total de-
grees are observed, existence of scale-free property (power low degree),
etc.;

Path length with shortest path lengths, diameters (path with maximum
length from the set of shortest paths), betweenness, small-worldness
(tendency of nodes to be neighbours to each others), etc;

Connectedness observed through the characteristics of connected com-
ponents;

Community structures grouping the nodes which are more densely in-
terconnected with respect to the rest of nodes in the network;

Clustering observed as local and global clustering through the clustering
coefficients;

21

CHAPTER 2. BACKGROUND

Motifs as patterns or frequently repeated sub-graphs.

When software networks are observed these attributes can be mapped to
different design metrics [Savić et al., 2014]. This mapping depends on view-
point of observation and abstraction level of observed network. For exam-
ple, when vertical software network representing entities hierarchy is ob-
served, the node degree has multiple meanings. If contains links between
a package and classes or interfaces are observed, the node degree represents
number of classes or interfaces (respectively) in the package.

Similarly, if relationships between classes and methods or attributes are
observed, the node degree represents number of methods or attributes in
the class.

Meaning of node degree in horizontal networks representing dependen-
cies in source code is based on referencing between packages, classes, or
methods. Number of ingoing links is fan-in and number of outgoing links
is fan-out of package, class, or method respectively. These values influence
coupling between entities.

If inheritance tree or, more precisely, sub-graph of class collaboration
network filtered by extends links is observed, the in-degree of a class
expresses number of children for that class. Furthermore, if length of paths
in the inheritance tree is observed, the shortest path from observed class
to the root node expresses the value of DIT metric for the observed class.

A very important step in network analyses is detection of connected
components. Connectedness is observed in calculation of cohesion metrics.
Number of connected components in SCG and FUGV restricted to methods
and attributes participate in calculation of LCOM metrics.

All example metrics are defined in the field of classical software metrics
while mapping from complex network analysis to software metrics calcula-
tion is an additional benefit to the subject.

Some properties of complex network applied on the software networks
give improvements of metrics defined in the field of software metrics. For
instance, graph clustering applied on software network result with an im-
proved measure of cohesion. GCE: Graph Clustering Evaluation metrics
determines the quality of clusters obtained by community detection algo-

22

2.2. STATIC ANALYSIS

rithms. While classical cohesion estimation algorithms consider only inter-
nal dependencies of software entities, GCE takes into account both, internal
and external links [Savić and Ivanović, 2014].

Software networks satisfy requirements for scale-free networks - node
degree follows some power-low distribution. High degree in class collab-
oration network means high complexity in the software design. It can
signalise flaws in software design because class functionality used by ob-
served class node is partially implemented in some other class. On the
other hand, high out degree implies high reusability of functionality of ob-
served class because its implementation is often used by other class. As
some nodes in the networks can be source of faults, decreasing of complex-
ity and reusability of the classes can decrease vulnerability of the observed
system. Described interventions can be done globally by affecting overall
node degrees or locally by following and affecting characteristics of selected
node[Šubelj and Bajec, 2012].

Detection of giant connected component, observing strongly and weakly
connected components in network by following number of nodes, the num-
ber of links, diameter, the small-worldness, the clustering, etc. can provide
important information about software quality attributes. Small-worldness
of the network is related to high clustering. It can be observed through the
average distance between nodes. These parameters express characteristics
od software structure and design [Šubelj and Bajec, 2012].

Motifs and other patterns in the network have an application in design
patterns detection, algorithmic patterns recognition, clone detection etc.
[Myers, 2003]

2.2.2.3 Code clone detection

Clones or duplicates in source code are one of the important factors affecting
maintenance of software products. They usually appear as a result of reuse
of existing source code by copy-paste with or without modifications. This
is known as cloning the code. Duplicates in the source code do not have
to be identical copies, but parts or fragments of the source code similar to
some extent. [Roy et al., 2009] introduces definition of code fragment in

23

CHAPTER 2. BACKGROUND

order to define code clone.

CF: Code fragment is any sequence of code lines (with or with-
out comments). It can be of any granularity, e.g., function def-
inition, begin-end block, or sequence of statements. A CF is
identified by its file name and begin-end line numbers in the
original code base and is denoted as a triple (CF.FileName,
CF.BeginLine, CF.EndLine).

A code fragment CF2 is a CC: Code Clone of another code
fragment CF1 if they are similar by some given definition of
similarity. This implies f(CF1) = f(CF2) where f is the similarity
function.

Two clone fragments form a clone pair, and more than two clone frag-
ments form a clone class or clone group.

Similarity function depends on similarity definition which is determined
by the viewpoint from which similarity is observed. Fragments of the code
can be similar by syntax or semantics. According to that clones can be
divided in four basic categories [Roy et al., 2009], [Rattan et al., 2013]:

Exact clones are real clones or identical segments of source code possibly
different with respect of white spaces

Renamed/parametrized clones are identical copies according to the
syntax, but with possible differences in identifiers, literals, types, lay-
out, and comments.

Near miss clones are syntactically similar copies with more important
changes such are statement insertions and deletions in addition to
changes in identifiers, literals, types, and layouts.

Semantic clones or functional clones are fragments of the source code
similar in their meaning or functionality but without important sim-
ilarities in syntax.

24

2.2. STATIC ANALYSIS

Additionally, [Rattan et al., 2013] introduce higher level clones:

Function clones reflect similarities in granularity of a function, proce-
dures, or method.

Structural clones reflect similarities in software design.

Model based clones are duplicates in models of software systems.

Article [Roy et al., 2009] provides overview, comparison, and evaluation
of available techniques for code clone detection. Observed approaches are
categorised as:

Textual approach in most cases uses directly raw source code in the clone
detection process. Selected segments (usually lines) of code are com-
pared. As a comparison criteria hash code of the text segment or
some other value representing it can be used.

Lexical approach or token-based clone detection relies on lexical analysis
of source code for splitting the source code into a sequence of tokens.
Afterward, sub-sequences are observed and compared in order to de-
tect duplicates.

Syntactic approach relies on syntactic analysis of source code. Parser
is used to produce an intermediate tree representation of the source
code (AST or CST). A duplicates detection algorithm can be applied
on this representation. There are two mostly used approaches:

Tree-matching approach for finding cloned sub-trees

Metrics-based approach relies on low-level code metrics gathered
on syntax level such are size and complexity metrics and com-
parison of their values in finding similar fragments in code.

Semantic approach relies on other static analysis techniques. It often
uses graph or network representation of the program to find duplicate
dependencies in it. This approach can also use metric results for clone
detection based on higher-level metrics gathered from semantics of the
program.

25

CHAPTER 2. BACKGROUND

There are various modifications or extensions of these basic approaches
by involving improved algorithms for comparison, different visualisations,
mining techniques, etc. In order to gain better results the basic techniques
are combined and new hybrid approaches relying on good properties of
isolated techniques are derived [Roy et al., 2009].

Lexical approaches are generally more robust over minor code changes
such as formatting, spacing, and renaming than textual techniques. In syn-
tactic approach tree representation allows abstraction of variable names,
literal values, and other tokens in the source code which enable more so-
phisticated duplication detection. Syntactic and semantic approaches give
even more freedom in duplicate detection.

Furthermore it can be noted that metric-based approach can be ob-
served as separate category applicable at two levels (syntactic and seman-
tic) and that this approach is very suitable to be combined with other
approaches to gain better results.

2.2.2.4 Software changes analysis

Software evolution could be understood as continuous adaptation of ob-
served software product. Software changes that are caused by this process,
are usually partitioned into three general categories [Madhavji et al., 2006]:

• fixes of errors in the source code, software design, architecture, etc.

• improvements of performances, usability, maintainability, etc.

• enhancements that involve new features or functionality

It is important to analyze evolutional changes from a quantitative and
qualitative point of view. By comparing these aspects of changes effective-
ness of changes can be estimated and discussed.

Structural source code changes are continuous during software develop-
ment. They are usually made during introduction of a new functionality or
in reengineering, refactoring, and debugging processes. These are situation
when it is needed to add, remove, or modify some unit (class, module, etc.),

26

2.3. COMPUTER LANGUAGES

function (method, procedure, etc), etc. All these changes are to be moni-
tored and analysed already on code level. For these purposes some other
techniques of static analysis such are software metrics, and clone detection
can be involved.

2.3 Computer languages

The term computer languages can be used for a broad set of artificial lan-
guages which can be processed by computer. Computer languages differ
depending on form of appearance, paradigm, purpose, phase of software
development in which they will be used, level of abstraction, etc.

Computer languages can appear in a graphical or textual form, while
textual form can be based on natural languages (linguistic) or rely on math-
ematics (formal). Textual code representation of the visual notation (graph-
ical or not) is always generated.

Following the software development process, different computer lan-
guages or notations are used for system and software requirement specifi-
cation, static (e.g. ADL: Architecture Description Language) and dynamic
software design description (e.g activity diagrams), construction of software
solution, etc. Construction includes coding, testing, debugging and all ac-
tivities related to producing executable solution of the problem. Construc-
tion languages can be categorised based on their purpose: configuration
languages, toolkit languages, scripting languages, and programming lan-
guages. Languages designed to be used for a specific purpose are known as
domain specific languages, while languages designed for general usage are
general purpose languages. [Bourque et al., 2014]

Languages used in early phases of software development are often formal
(specification languages) or graphical (modeling languages), while graph-
ical languages can also have formal background. Special set of languages
are designed for data and knowledge description and manipulation (OWL,
XML, SQL, etc.).

Languages can also be categorised based on a level of abstraction. Low-
level languages are, by syntax and semantic, close to the machine languages,

27

CHAPTER 2. BACKGROUND

while high level languages are much more readable by humans. Middle-
level languages are usually designed to be used in maintenance phase while
reenginering, refactoring, (software) migrating, and other transformation
techniques.

Furthermore, computer languages can be categorised by paradigm or
based on supported programming style. Some of programming paradigms
are: unstructured, structural (procedural, imperative), declarative (logic,
functional, etc.), object oriented, aspect oriented, etc.

Programming languages are subset of computer languages. They are de-
signed for implementation of an executable solution. The most of described
categorisations of computer languages (purpose, level, etc.) are applicable
on programming languages. Sometimes, the term programming language is
used as a synonym of the term computer language if programming is de-
fined to involve analysis, design, implementation, testing, debugging, and
maintenance of software in which case programming languages can be cat-
egorised also based on development phase (same as computer languages).
Otherwise, this categorisation is not applicable because usage of program-
ming languages is then strictly related to the implementation phase.

The history of computers and related languages begins in the middle
of 19th century with the Analytical Engine, mechanical general-purpose
computer designed by mathematician Charles Babbage. First electronic
computers and first programming languages appear the whole century later.
Some of the oldest languages which are still present in the practice are FOR-
TRAN (1957) designed for scientific and engineering applications, func-
tional language Lisp (1958), and business-oriented COBOL (1959). Fun-
damental paradigms were established a decade later (1970s), while the fol-
lowing decade (1980s) is characterised by consolidation in the field of im-
perative programming. 1990s are known by first appearance of internet
and development of script, mark-up, object-oriented, multi-paradigm and
domain-specific languages. 21st century is a period of enormous growth in
the field of information technologies. Software becomes large and complex
while spectrum of languages mixed in development of software products is
wide and diverse.

In this dissertation the term source code denotes a code written in any

28

2.3. COMPUTER LANGUAGES

computer language independently of notation, purpose and paradigm. Di-
versity of computer languages, their syntax and semantic makes static anal-
ysis to be a difficult task. The most affected is a consistency of results
of static analysis. Consistent static analysis is the main goal of SSQSA
framework, while the proof of concept will be done on the example of some
representative computer languages.

In the rest of this section, an overview of computer languages by cat-
egories is provided, with a focus on languages supported in the SSQSA
framework. Furthermore, the overview enables a reader to gain an insight
into the differences between the languages.

2.3.1 General purpose languages

The main characteristic of general purpose languages is that they are de-
signed to be used in development of wide range of software products. They
do not contain constructs dedicated to some concrete domain or if they
do, these constructs are introduced only to enrich the language but the
supported domain is not in the main focus of the language. Based on
applied programming style or paradigm, general purpose languages can be
categorised as procedural, object-oriented, functional, mixed-paradigm lan-
guages, etc. This categorisation is not very strict because nowadays general
purpose languages tend to become mixed-paradigm languages applicable in
many areas. Therefore, this categorisation is based mainly on the initial
design and the main characteristics of the languages. For example, many
languages (e.g. Java that is primarily object-oriented language) are intro-
ducing support for lambda calculus which is characteristic of functional
languages, while some other languages (e.g. Scala) originally supported
multiple paradigms including functional and object-oriented.

2.3.1.1 Procedural languages

Procedural languages are derived from the structured programming but fol-
lows the idea of splitting the program functionality into smaller functional
blocks, so-called procedures. In that way programming in these languages

29

CHAPTER 2. BACKGROUND

consists of splitting the problem to sub-problems, writing the solutions of
the sub-problems in a form of the procedures, and finally writing the main
program consisting of calls of the implemented procedures. Obviously, pro-
cedural programs are written in imperative style of programming.

Procedures can be grouped into modules. This facility is supported by
the modular languages. It is not the rare case that procedural languages
support modularisation.

Procedural languages were introduced in 1950s. Some of the first widely
used procedural languages were Fortran and BASIC. Nowadays, some of the
most present procedural languages are Pascal, Modula-2, C, etc.

Listing 2.1 contains QuickSort algorithm implemented in Modula-2 as
an illustrative example of source code written in a procedural language.

Listing 2.1: QuickSort algorithm implemented in Modula-2
Listing 2.1: QuickSort algoritam implementiran u Moduli-2

MODULE Quick; FROM IO IMPORT WrCard , RdCard , WrLn , WrStr , OK;

CONST

Max = 10;

TYPE

Index = [0 .. Max +1];

Arr = ARRAY [1 .. Max] OF CARDINAL;

VAR

arr: Arr;

PROCEDURE ReadInput(VAR arr: Arr);

VAR

i: Index;

BEGIN

FOR i:= 1 TO Max DO

REPEAT

WrStr(’Input ’);

WrCard(i, 2);

WrStr(’. array member: ’);

arr[i]:= RdCard ();

WrLn;

UNTIL OK;

END;

END ReadInput;

PROCEDURE WriteOutput(VAR arr : Arr);

VAR

i: Index;

30

2.3. COMPUTER LANGUAGES

temp : CARDINAL;

BEGIN

FOR i:= 1 TO Max -1 DO

temp := arr[i];

WrCard(temp , 1);

WrStr(’, ’)

END;

temp := arr[Max];

WrCard(temp , 1);

END WriteOutput;

PROCEDURE Sort(VAR arr : Arr; Left , Right : Index);

VAR

i, j : Index;

middle : Index;

temp : CARDINAL;

BEGIN

i := Left;

j := Right;

middle := arr[(i + j) DIV 2];

REPEAT

WHILE (arr[i] < middle) DO

INC(i);

END;

WHILE (arr[j] > middle) DO

DEC(j);

END;

IF (i <= j) THEN

temp := arr[i];

arr[i] := arr[j];

arr[j] := temp;

INC(i);

DEC(j)

END;

UNTIL (i > j);

IF (Left < j) THEN

Sort(arr , Left , j);

END;

IF (i < Right) THEN

Sort(arr , i, Right);

END

END Sort;

PROCEDURE QSort(VAR arr: Arr);

BEGIN

Sort(arr , 1, Max)

END QSort;

31

CHAPTER 2. BACKGROUND

BEGIN

ReadInput(arr);

WrStr(’Original array: ’);

WriteOutput(arr);

WrLn;

WrStr(’Sorted array: ’);

QSort(arr);

WriteOutput(arr)

END Quick.

2.3.1.2 Object-oriented languages

Historically and fundamentally, object-oriented languages follow procedu-
ral ones keeping imperative style, modularisation, and solution divided into
well defined operations. While procedural languages were focused on im-
plementing operations on data structures as functional blocks packed in
procedures, introducing of objects is based on idea of packing data struc-
tures and their operations into the logical units. Therefore it can be con-
cluded that object-oriented programming is derived from procedural one
and implicitly from structural programming. It keeps good characteristics
of previous approaches and introduces their improvements in the form of
objects. New approach brought numerous associated improving concepts
such is encapsulation, inheritance, and polymorphism.

Examples of mostly used object-oriented languages are currently Java,
C++, and C#. An illustrative example of source code is given in Listing
2.2. This Java implementation of some arbitrary list (by usage of Array
data structure) provides constructor for creating the list object and only
two basic operation over this data structure: insertion of new element and
access to the element at ith position. It can contain implementations of
sorting algorithms or any other needed operation over the list.

Listing 2.2: ArbitraryList implemented in Java
Listing 2.2: ArbitraryList klasa implementirana u Javi

import java.util.Arrays;

public class ArbitraryList <Element > {

32

2.3. COMPUTER LANGUAGES

private int size = 0;

private static final int DEFAULT_CAPACITY = 10;

private Object elements [];

public ArbitraryList () {

elements = new Object[DEFAULT_CAPACITY];

}

public void add(Element e) {

if (size == elements.length) {

extendCapacity ();

}

elements[size ++] = e;

}

public Element get(int i) {

if (i >= size || i < 0) {

throw new IndexOutOfBoundsException("Out_of_bounds!");

}

return (Element)elements[i];

}

private void extendCapacity () {

int currentSize = elements.length * 2;

elements = Arrays.copyOf(elements , currentSize);

}

}

2.3.1.3 Functional languages

Functional programming is based on the lambda calculus. Functional lan-
guages can be described as syntactic interfaces to lambda calculus with
less or more improvements by additional constructs. Declarative style of
programming is characteristic of programs written in functional languages.

Functional languages were introduced and developed in parallel with
structured and procedural languages. One of the first programming, and
thus, one of the first functional languages was Lisp. It appeared in the
middle of 20th century. Some of the most actual functional languages are
Erlang, Lisp, Haskell, Scheme, etc.

QuickSort algorithm implemented in Erlang is given in Listing 2.3.

33

CHAPTER 2. BACKGROUND

Listing 2.3: QuickSort implemented in Erlang
Listing 2.3: QuickSort algoritam implementiran in Erlangu

sort([Pivot|T]) ->

sort([X || X <- T, X < Pivot]) ++

[Pivot] ++

sort([X || X <- T, X >= Pivot]);

sort ([]) -> [].

2.3.1.4 Mixed-paradigm langauges

Mixed-paradigm or multi-paradigm languages are designed to support more
than one paradigm. As has been described earlier, actual trend is to use
multiple languages in software development, to apply different program-
ming styles, to mix paradigms, etc. Following these trends, language de-
signers tend to make languages as general as possible widening the set of
language constructs and mixing paradigms. Furthermore, some of the lan-
guages have grown from single-paradigm to mixed-paradigm, while some
others were initially designed to support different styles and paradigms.

Historical development of mixed-paradigm languages can not be clearly
determined, but definitely last decades shown the growth of this phe-
nomenon. Illustrative examples of mixed-paradigm languages widely used
at present are: Delphi that combines procedural and object-oriented ap-
proach, Scala mostly combining object-oriented and functional paradigm,
etc.

In Scala, it is possible to implement some algorithm (for example Quick-
Sort) by applying functional style (Listing 2.4) or in more object-oriented
way (Listing 2.5).

Listing 2.4: QuickSort implemented in functional Scala
Listing 2.4: QuickSort algoritam implementiran u Scali (funkcionalni pristup)

Array[Int]):

Array[Int] = { if (xs.length <= 1) xs

else {

val pivot = xs(xs.length / 2)

Array.concat(

sort(xs filter (pivot >)),

xs filter (pivot ==),

sort(xs filter (pivot <))

34

2.3. COMPUTER LANGUAGES

)

}

}

Listing 2.5: QuickSort implemented in object-oriented Scala
Listing 2.5: QuickSort algoritam implementiran u Scali (objektno-orientisani pristup)

def sort(xs: Array[Int]) {

def swap(i: Int , j: Int) {

val t = xs(i);

xs(i) = xs(j);

xs(j) = t

}

def sort1(l: Int , r: Int) {

val pivot = xs((l + r) / 2);

var i = l;

var j = r;

while (i <= j) {

while (xs(i) < pivot) i += 1;

while (xs(j) > pivot) j -= 1;

if (i <= j) {

swap(i, j);

i += 1;

j -= 1

}

}

if (l < j) sort1(l, j);

if (j < r) sort1(i, r)

}

sort1(0, xs.length - 1)

}

2.3.2 Domain-specific languages

Domain-specific languages are designed to enable easier software develop-
ment in some specific domain. Main characteristics of these languages are
the following ones: language is simple, syntax is based on thin domain vo-
cabulary, and constructs are raised to the higher level of of abstraction.
Thus, developers are relaxed of redundant details which are out of their
domain. It is easier to learn these languages and development is quicker.
On the other hand, possibilities are very restricted, usually only to the
specific domain (e.g. specification, modeling, etc.) While some languages

35

CHAPTER 2. BACKGROUND

are very pure, dedicated to the certain domain (e.g. BNF, Latex, Matlab,
VHDL, HTML, etc.), for some languages it is pretty hard to determine if
they belong to general-purpose or domain-specific languages (e.g. legacy
language COBOL, Script languages such are JavaScript and PHP, etc.).
[Fowler, 2010], [Raja and Lakshmanan, 2010], [Mernik et al., 2005]

2.3.2.1 Specification languages

Specification languages are used in phases of analysis and design to specify
system at high level of abstraction. These languages are usually formal,
which means that some formal theory (e.g. logic) is applied in their design.
Specification refinement and writing executable specifications enables easier
validation, verification, and further refinement up to the implementation.
A proper specification language will make these processes easier and more
efficient. Examples of specification languages are: Z notation, VDM, ITL,
Tempura, etc. Specification of a stack with two operations (new and push)
is given in Figure 2.1, while Listing 2.6 contains QuickSort specification
written in Tempura.

Figure 2.1: Specification of Stack written in Z notation
Slika 2.1: Specifikacija za Stek napisana u Z notaciji

36

2.3. COMPUTER LANGUAGES

Listing 2.6: QuickSort specification written in Tempura
Listing 2.6: Specifikacija QuickSort algoritma napisana u Tempuri

define serial_quicksort(L) = {

if |L| <= 1 then

empty

else

exists pivot : {

quick_partition(L,pivot);

{serial_quicksort(L[0 to pivot])

and stable L[pivot to |L|]};

{serial_quicksort(L[(pivot +1) to |L|])

and stable L[0 to (pivot +1)]}

}

}.

2.3.2.2 Modeling languages

Modeling languages are used to represent structure of the system or knowl-
edge and to define roles of its constituents. This is done through the set
of rules. Modeling languages can be textual and graphical. Graphical
representation through the different diagrams is very popular nowadays.
Diagrams always have their textual representation (often XML which is
also represent of modeling languages) but to be categorised as graphical
language, it has to have graphical interface. Spectrum of application of
modeling languages is very wide. Some well-known examples of modeling
languages are ADL: Architecture Description Language, different ontology
description languages such is OWL: Web Ontology Language, markup lan-
guages such are XML: Extensible Markup Language and HTML: Hyper-
Text Markup Language, Latex, etc. An illustrative example5 of ontology
diagram is given in Figure 2.2, while fragment of corresponding OWL code
is given in Listing 2.7.

Listing 2.7: Contact ontology written in OWL notation
Listing 2.7: Ontologija Contact napisana u OWL notaciji

Ontology(

Declaration(Class(: ContactInformation))

Declaration(DataProperty (:city))

5Ontology examples, 2015: http://ebiquity.umbc.edu/ontology/

37

CHAPTER 2. BACKGROUND

Declaration(DataProperty (: company))

Declaration(DataProperty (: country))

Declaration(DataProperty (: department))

Declaration(DataProperty (: email))

Declaration(DataProperty (: phone))

Declaration(DataProperty (: postalCode))

Declaration(DataProperty (:room))

Declaration(DataProperty (: state))

Declaration(DataProperty (: street))

Declaration(DataProperty (:url))

AnnotationAssertion(rdfs:label :ContactInformation "ContactInfo")

SubClassOf (: ContactInformation DataMaxCardinality (1 :city))

SubClassOf (: ContactInformation DataMaxCardinality (1 :company))

SubClassOf (: ContactInformation DataMaxCardinality (1 :country))

SubClassOf (: ContactInformation DataMaxCardinality (1 :department))

SubClassOf (: ContactInformation DataMaxCardinality (1 :postalCode))

SubClassOf (: ContactInformation DataMaxCardinality (1 :room))

SubClassOf (: ContactInformation DataMaxCardinality (1 :state))

SubClassOf (: ContactInformation DataMaxCardinality (1 :street))

AnnotationAssertion(rdfs:label :city "ContactCity")

DataPropertyDomain (:city :ContactInformation)

DataPropertyRange (:city xs:string)

AnnotationAssertion(rdfs:label :company "ContactCompany")

DataPropertyDomain (: company :ContactInformation)

DataPropertyRange (: company xs:string)

AnnotationAssertion(rdfs:label :country "ContactCountry")

DataPropertyDomain (: country :ContactInformation)

DataPropertyRange (: country xs:string)

AnnotationAssertion(rdfs:label :department "ContactDepartment")

DataPropertyDomain (: department :ContactInformation)

DataPropertyRange (: department xs:string)

AnnotationAssertion(rdfs:label :email "ContactEmail")

DataPropertyDomain (:email :ContactInformation)

DataPropertyRange (:email xs:string)

AnnotationAssertion(rdfs:label :phone "Contact Phone")

DataPropertyDomain (:phone :ContactInformation)

DataPropertyRange (:phone xs:string)

AnnotationAssertion(rdfs:label :postalCode "ContactPostalCode")

DataPropertyDomain (: postalCode :ContactInformation)

DataPropertyRange (: postalCode xs:string)

AnnotationAssertion(rdfs:label :room "ContactRoom")

DataPropertyDomain (:room :ContactInformation)

DataPropertyRange (:room xs:string)

AnnotationAssertion(rdfs:label :state "ContactState")

DataPropertyDomain (:state :ContactInformation)

DataPropertyRange (:state xs:string)

AnnotationAssertion(rdfs:label :street "ContactStreet")

38

2.3. COMPUTER LANGUAGES

DataPropertyDomain (: street :ContactInformation)

DataPropertyRange (: street xs:string)

AnnotationAssertion(rdfs:label :url "ContactURL")

DataPropertyDomain (:url :ContactInformation)

DataPropertyRange (:url xs:anyURI)

)

)

39

CHAPTER 2. BACKGROUND

F
ig

u
re

2
.2

:
G

ra
p

h
ica

l
rep

resen
ta

tio
n

o
f

a
n

o
n
to

lo
g
y

S
lik

a
2
.2

:
G

ra
fi

čk
a

rep
rezen

ta
cija

o
n
to

lo
g
ije

40

2.3. COMPUTER LANGUAGES

2.3.3 Script languages

Script languages are designed to be interpreted by some virtual machine in-
tegrated in a specific environment as an extension of the basic language. Il-
lustrative examples are JavaScript and PHP which are extensions of HTML
for writing client and server side applications, respectively. However, pur-
pose of Script languages differs from general purpose such is Python to
domain-specific purpose (e.g. JavaScript) while some domain specific script
languages such is PHP aim to broader usage. Concerning the paradigm,
most of script languages combine paradigms.

Implementation of QuickSort algorithm in PHP is given in Listing 2.8.

Listing 2.8: QuickSort implemented in PHP
Listing 2.8: QuickSort algoritam implementiran u PHP-u

function quicksort($arr){

$loe = $gt = array();

if(count($arr) < 2){

return $arr;

}

$pivot_key = key($arr);

$pivot = array_shift($arr);

foreach($arr as $val){

if($val <= $pivot){

$loe[] = $val;

}elseif ($val > $pivot){

$gt[] = $val;

}

}

return array_merge(quicksort($loe),

array($pivot_key=>$pivot),

quicksort($gt)

);

}

$arr = array(1, 3, 5, 7, 9, 8, 6, 4, 2);

$arr = quicksort($arr);

echo implode(’,’,$arr);

41

CHAPTER 2. BACKGROUND

2.3.4 Legacy languages

Legacy languages were created in 1950s and 1960s. These languages are
primarily imperative, unstructured languages, but during the decades they
were enriched and extended by language constructs to support structural
and object oriented programming, still keeping some traditional constructs
and characteristics. Observing contemporary versions of these languages
they could be categorised as multi-paradigm languages.

These languages are still present in current projects. Usually, compo-
nents written in these languages are integrated with modern components
and maintained. These components are in the most projects black boxes
concerning quality analysis techniques because the tool support is very
weak. In the best case quality analyses are done by usage of separate tool
dedicated to the specific language. Therefore, the results are not very us-
able or comparable considering overall picture of the project or product.

COBOL: Common Business-Oriented Language is nowadays one of the
most present legacy languages. It has all characteristic of language spe-
cific for business domain. Another illustrative examples are FORTRAN:
Formula Translation designed for scientific and engineering applications,
and BASIC: Beginner’s All-purpose Symbolic Instruction Code. These are
general-purpose languages.

An illustrative example of code written in COBOL is given in Listing
2.9. It contains an implementation of QuickSort algorithm. Realisation of
QuickSort in traditional COBOL would require additional space for sim-
ulation of recursion because COBOL originally did not support it, but
nowadays it is supported.

Listing 2.9: QuickSort implemented in COBOL
Listing 2.9: QuickSort implementiran COBOL-u

IDENTIFICATION DIVISION.

PROGRAM-ID. quicksort RECURSIVE.

DATA DIVISION.

LOCAL-STORAGE SECTION.

01 temp PIC S9(8).

01 pivot PIC S9(8).

42

2.3. COMPUTER LANGUAGES

01 left-most-idx PIC 9(5).

01 right-most-idx PIC 9(5).

01 left-idx PIC 9(5).

01 right-idx PIC 9(5).

LINKAGE SECTION.

78 Arr-Length VALUE 50.

01 arr-area.

03 arr PIC S9(8) OCCURS Arr-Length TIMES.

01 left-val PIC 9(5).

01 right-val PIC 9(5).

PROCEDURE DIVISION USING REFERENCE arr-area , OPTIONAL left-val ,

OPTIONAL right-val.

IF left-val IS OMITTED OR right-val IS OMITTED

MOVE 1 TO left-most-idx , left-idx

MOVE Arr-Length TO right-most-idx , right-idx

ELSE

MOVE left-val TO left-most-idx , left-idx

MOVE right-val TO right-most-idx , right-idx

END-IF

IF right-most-idx - left-most-idx < 1

GOBACK

END-IF

COMPUTE pivot = arr ((left-most-idx + right-most-idx) / 2)

PERFORM UNTIL left-idx > right-idx

PERFORM VARYING left-idx FROM left-idx BY 1

UNTIL arr (left-idx) >= pivot

END-PERFORM

PERFORM VARYING right-idx FROM right-idx BY -1

UNTIL arr (right-idx) <= pivot

END-PERFORM

IF left-idx <= right-idx

MOVE arr (left-idx) TO temp

MOVE arr (right-idx) TO arr (left-idx)

MOVE temp TO arr (right-idx)

ADD 1 TO left-idx

SUBTRACT 1 FROM right-idx

43

CHAPTER 2. BACKGROUND

END-IF

END-PERFORM

CALL "quicksort" USING REFERENCE arr-area ,

CONTENT left-most-idx , right-idx

CALL "quicksort" USING REFERENCE arr-area ,

CONTENT left-idx , right-most-idx

GOBACK

.

2.4 Summary

This chapter decribed terminology and background related to software qual-
ity monitoring. Software quality expresses the level to which a software
product satisfies the needs of its users. Software quality is observed through
quality attributes by application of static or dynamic analysis techniques.
Dynamic analysis requires execution of the program, while static analysis
techniques (e.g. software metrics, software networks analysis, code clone
detection and structural changes analysis) are applicable on static interme-
diate representation of the source code.

Input computer (or programming) language, or more precisely, pro-
gramming paradigm and style, have strong influence on implementation
of static analysers. This chapter provided terminology related to com-
puter and programming languages, categorisation of computer languages,
described characteristic ones representing specific categories with focus on
languages supported in SSQSA framework.

44

Chapter 3

Justification of SSQSA
Concept

This chapter describes the starting motivation for the development of the
first tool in SSQSA (Set of Software Quality Static Analyzers framework),
software metrics tool called SMIILE (Software Metrics Independent on In-
put LanguagE), justifying it by preliminary research on weaknesses of avail-
able software metric tools at that point of time. Furthermore this chapter
provides state of the art in specific fields related to SSQSA framework. Fi-
nally, review of related software solutions is provided in the last section of
this chapter.

3.1 Motivation

Systematic application of static analysis techniques can significantly im-
prove the quality of a software product. Software metrics are one of the
basic techniques of static analysis. Appropriate tool support for software
metric calculation, as well as static analysis in general, may constitute im-
portant step toward a success of software projects in general. Preliminary
investigation of the state of the art in the field shows that there is no wider
acceptance of these techniques in real life product quality monitoring. The

45

CHAPTER 3. JUSTIFICATION OF SSQSA CONCEPT

main problem in wider application of software metrics and other static anal-
ysis techniques lays in limitations and inappropriateness of involved tools.
Tools are generally not independent on input programming language or
underlying platform, different tools often give inconsistent results for the
same metric algorithm, tools usually support only a selection of possible
metrics, support for object-oriented metrics is still weak, tools usually do
not give explanations or suggestions of possible improvements of code etc.

Motivation for development of a new framework begins with the inten-
tion to fulfil gaps in the field of systematic application of software met-
rics by improving characteristics of software metric tools. Review of the
weaknesses of software metric tools which is made as a part of preliminary
research to whole SSQSA project is presented in section 3.2.

The general idea for the solution originated from a language-independent
software metrics tool SMIILE [Rakić and Budimac, 2011]. It was based on
eCST [Rakić and Budimac, 2011] as a universal intermediate representa-
tion of the source code. Overview of the usage of different intermediate
representations in static analysis and related techniques is given in section
3.3.

The framework was gradually extended by integration of new tools by
redirecting them to use eCST as an intermediate representation. In this
way the Set of Software Quality Static Analyzers (SSQSA) framework was
built up to meet the described goals. Review of related software solutions
is provided in chapter 3.4.

3.2 Preliminary investigation

In this subsection the justification of starting goals is provided. Preliminary
exploration of the problems existing in the field of application of software
metrics in practice [Rakić and Budimac, 2010] shows that the main prob-
lem lies in the weaknesses of available metric tools and techniques. These
observations are based on numerous reports on the weaknesses of exist-
ing tools in both practice and in the academic world [Lincke et al., 2008],
[Lanza and Marinescu, 2006].

46

3.2. PRELIMINARY INVESTIGATION

Following described assumptions, in order to determine certain weak-
nesses an inspection of the available tools has been done. Analysis included
more than 20 tools, with six of them chosen as representative examples. The
tools were analyzed with respect to two groups of criteria. The first group
was related to the possible broadness of application of a tool and to the na-
ture and structure of the software product being measured. Second group
of the criteria referred to the way of storing and processing the product
history and metric results by observed tools.

The first group of criteria consists of: platform independence, input
language independence, and a list of supported considered:

• LOC: Lines of Code (any metrics from the LOC family: SLOC,
CLOC, etc.),

• CC: Cyclomatic Complexity,

• H: Halstead metrics,

• OO: object-oriented metrics (if a tool supports any of the OO met-
rics, then the corresponding cell contains the ’+’ symbol. The mark
’*’ next to the symbol ’+’ means that a tool only partially satisfied
specified criteria) and

• the others (if a metric is supported and it does not belong to the list
above, then the criteria is marked with a ’+’).

From the described analysis the following important conclusions can be
made:

• The analyzed tools could be divided into two categories:

– The first category includes tools that only calculate simple met-
rics (i.e. the LOC metrics) but for a wide set of programming
languages.

47

CHAPTER 3. JUSTIFICATION OF SSQSA CONCEPT

T
o
o
l

P
ro

d
u

cer
P

la
tfo

rm
L

a
n

g
u

a
g
e

S
u

p
p

o
rted

m
etrics

in
d

ep
.

in
d

ep
.

L
O

C
C

C
H

O
O

O
th

ers

S
L

O
C

C
o
u

n
t

D
.

W
h

eeler
a

-
+

+
-

-
-

-

C
o
d

e
G

ero
n

eso
ft

b
-

+
+

-
-

-
-

C
o
u

n
ter

P
ro

S
o
u

rce
M

o
n

ito
r

C
a
m

p
w

o
o
d

S
o
ftw

a
re

c
-

-
+

-
-

+
-

U
n

d
ersta

n
d

S
cien

tifi
cT

o
o
lw

o
rk

s
d

+
-

+
+

-
-

-
R

S
M

M
S

q
u

a
red

e
+

-
+

+
+

-
-

T
ech

n
o
lo

g
ies

K
ra

k
a
ta

u
P

o
w

er
S

o
ftw

a
re

f
-

+
*

+
+

+
+

-

T
a
b

le
3
.1

:
O

v
erv

iew
o
f

so
ftw

a
re

m
etric

to
o
ls

b
y

th
e

fi
rst

g
ro

u
p

o
f

o
b

serv
ed

ch
a
ra

cteristics
T

a
b

ela
3
.1

:
P

reg
led

o
ru

d̄
a

za
so

ftv
ersk

u
m

etrik
u

p
rem

a
p

rv
o

j
g
ru

p
i

p
o
sm

a
tra

n
ih

k
a
ra

k
teristik

a

aD
av

id
A

.
W

h
eeler,S

L
O

C
C

o
u
n
t

U
ser’s

G
u
id

e,
o
n
lin

e
2
0
1
5
,

h
ttp

:/
/
w

w
w

.d
w

h
eeler.co

m
/
slo

cco
u
n
t/

bC
o
d
e

C
o
u
n
ter

P
ro

,
o
n
lin

e
2
0
1
5
,

h
ttp

:/
/
w

w
w

.g
ero

n
eso

ft.co
m

/
cS

o
u
rceM

o
n
ito

r,
o
n
lin

e
2
0
1
5
,

h
ttp

:/
/
w

w
w

.ca
m

p
w

o
o
d
sw

.co
m

/
so

u
rcem

o
n
ito

r.h
tm

l
dU

n
d
ersta

n
d
,

S
cien

tifi
c

T
o
o
lw

o
rk

s
o
n
lin

e
2
0
1
5
,

h
ttp

:/
/
w

w
w

.scito
o
ls.co

m
eR

S
M

,
M

S
q
u
a
red

T
ech

n
o
lo

g
ies,

o
n
lin

e
2
0
1
5
,

h
ttp

:/
/
m

sq
u
a
red

tech
n
o
lo

g
ies.co

m
/

fK
ra

ka
ta

u
S
u
ite

M
a
n
a
g
em

en
t

O
v
erv

iew
,

o
n
lin

e
2
0
1
5
,

h
ttp

:/
/
w

w
w

.p
ow

erso
ftw

a
re.co

m
/

48

3.2. PRELIMINARY INVESTIGATION

– The second category of tools is characterized by a wide range
of metrics but limited to a small set of programming languages.
There were attempts to bridge the gap between these categories,
but without success. This is a limitation because there are many
legacy software systems written in legacy languages, where mod-
ern metric tools cannot be applied uniformly.

• Even if the tools support some object-oriented metrics, the amount
of supported metrics is fairly small. This is especially true when
compared to the broad application of the object-oriented approach in
current software development.

The second group of criteria was related to storing, processing, and
interpreting the calculated metric results by the given tools through the
history of the product by involving versions of the source code.

The criteria were (table ??):

• the history of the source code storing facility;

• the metric results storing facility;

• visualization of the calculated values;

• an interpretation of the calculated values including suggestions for
improvements.

The general conclusion was that many techniques and tools compute
numerical results with no real interpretation of their meaning. The only
interpretations of numerical results that can be found are graphical. These
results possess little or no value for practitioners, who need suggestions or
advice on how to improve their project based on the metric results. Recom-
mendations for an improvement, or even the automation of an improvement
based on the obtained metrics results, would be significant contribution to
the real practical usability of software metrics.

Currently, situation in the field of application of the software metrics
and supporting tools in software product development is similar to de-
scribed one. During last years, support for design and object-oriented

49

CHAPTER 3. JUSTIFICATION OF SSQSA CONCEPT

T
o
o
l

P
ro

d
u

cer
S

o
u

rce
co

d
e

M
etrics

G
ra

p
h

ica
l

In
terp

reta
t.

&
h

isto
ry

sto
ra

g
e

rep
resen

t.
reco

m
m

en
d

.

S
L

O
C

C
o
u

n
t

D
.

W
h

eeler
a

-
+

-
-

C
o
d

e
C

o
u

n
ter

P
ro

G
ero

n
eso

ft
b

-
+

-
-

S
o
u

rce
M

o
n

ito
r

C
a
m

p
w

o
o
d

S
o
ftw

a
re

c
-

+
+

-

U
n

d
ersta

n
d

S
cien

tifi
cT

o
o
lw

o
rk

s
d

-
+

-
-

R
S

M
M

S
q
u

a
red

T
ech

n
o
lo

g
ies

e
+

+
-

-

K
ra

k
a
ta

u
P

o
w

er
S

o
ftw

a
re

f
-

+
+

-

T
a
b

le
3
.2

:
O

v
erv

iew
o
f

so
ftw

a
re

m
etric

to
o
ls

b
y

th
e

seco
n

d
g
ro

u
p

o
f

o
b

serv
ed

ch
a
ra

cteristics
T

a
b

ela
3
.2

:
P

reg
led

o
ru

d̄
a

za
so

ftv
ersk

u
m

etrik
u

p
rem

a
d

ru
g
o

j
g
ru

p
i

p
o
sm

a
tra

n
ih

k
a
ra

k
teristik

a

aD
av

id
A

.
W

h
eeler,S

L
O

C
C

o
u
n
t

U
ser’s

G
u
id

e,
o
n
lin

e
2
0
1
5
,

h
ttp

:/
/
w

w
w

.d
w

h
eeler.co

m
/
slo

cco
u
n
t/

bC
o
d
e

C
o
u
n
ter

P
ro

,
o
n
lin

e
2
0
1
5
,

h
ttp

:/
/
w

w
w

.g
ero

n
eso

ft.co
m

/
cS

o
u
rceM

o
n
ito

r,
C

a
m

p
w

o
o
d

S
o
ftw

a
re,

o
n
lin

e
2
0
1
5
,

h
ttp

:/
/
w

w
w

.ca
m

p
w

o
o
d
sw

.co
m

/
so

u
rcem

o
n
ito

r.h
tm

l
dU

n
d
ersta

n
d
,

S
cien

tifi
c

T
o
o
lw

o
rk

s
(S

ciT
o
o
ls),

o
n
lin

e
2
0
1
0
,

h
ttp

:/
/
w

w
w

.scito
o
ls.co

m
eR

S
M

,
M

S
q
u
a
red

T
ech

n
o
lo

g
ies,

o
n
lin

e
2
0
1
5
,

h
ttp

:/
/
m

sq
u
a
red

tech
n
o
lo

g
ies.co

m
/

fK
ra

ka
ta

u
S
u
ite

M
a
n
a
g
em

en
t

O
v
erv

iew
,

P
ow

er
S
o
ftw

a
re,

o
n
lin

e
2
0
1
5
,

h
ttp

:/
/
w

w
w

.p
ow

erso
ftw

a
re.co

m
/

50

3.2. PRELIMINARY INVESTIGATION

metrics was improved, but still tools limited only to specific languages are
important issue. Furthermore, integration of software metrics tools with In-
tegrated Development Environments (IDE) and versioning systems solved
the problem with storing of development history, visualization, etc. Prob-
lem of analysis of the gained information is still weak, but some progress
has been made. One of tools that prove this is the SQUALE: Software
QUALity Enhancement1[Bergel et al., 2009]. SQUALE applies new qual-
ity models, aggregates information contained in gained numerical values
into high level quality factors and provide users with more useful feedback.
This framework is designed to support quality enhancement in the multilin-
gual projects, but it has a potential weak point: collecting of the numerical
values is done by the usage of various language-specific tools which can
reduce the consistency and credibility of the overall feedback.

Nowadays, complex software projects are developed in several program-
ming languages while available software metric tools are not language in-
dependent. When taking these facts into account, we can conclude that
the use of several software metric tools in one project are required. An
additional problem is that different software tools often provide different
values for the same metric, calculated on the same product or its compo-
nent [Lincke et al., 2008], [Novak and Rakić, 2010]. One of the reasons for
this is the fact that the rule for metrics calculations could be differently
interpreted and implemented with different tools [Scotto et al., 2006]. This
confirms a possibility of mentioned weakness of the SQUALE framework.
On the other hand, SSQSA’s approach is to use a common internal repre-
sentation of the source code and meta-model for majority of programming
languages that represents a basis for metrics calculation. Such an approach
enables the same metrics calculation algorithms across different program-
ming languages.

Following this basic idea, a preliminary research was conducted. It
was based on an analysis of possibility to implement metric calculation
algorithms uniquely for different languages. Research methodology was
directed on splitting research subject in two segments:

1SQUALE: Software QUALity Enhancement, online 2015, http://www.squale.org/

51

CHAPTER 3. JUSTIFICATION OF SSQSA CONCEPT

• Comparative overview how is one metric applied on different lan-
guages. This exploration has been repeated or broad spectrum of
metrics;

• Comparative exploration on application of wide spectrum of metrics
on a single language. This observation was repeated on all languages
included in the research.

Focus of the research was on metric calculation algorithms and precondi-
tions for their implementations with respect to observed language. Another
aspect of the research was tool support for observed combination of lan-
guage and metric. Main contribution of conducted research was basic con-
cept for designing new, language independent intermediate representation
of source code used in development SMIILE tool.

It was demonstrated on more than 10 representative input languages
that the SMIILE is a language independent for currently implemented soft-
ware metrics (section 4.3.2.1). This means that for each metric algorithm
one implementation for all supported languages was enough. The process
of the metric calculation can be strictly connected with the language syn-
tax (e.g. the CC metric) or it can be less sensitive to its syntax and lexical
analysis, but still eCST contains enough information for these calculations
(e.g. the LOC metric based on lines data of the first and the last token
below the universal node). Moreover, suitable internal representation of
the source code and its design has been derived from eCST which is the
basis for the calculation of design and object-oriented metrics calculation.

3.3 Intermediate representations

The history of intermediate program representations is long - it starts more
than half of the century ago. Basic goal at that time was to represent
the program with the goal of cross-platform software migration. Nowa-
days, intermediate program representations are used in compiler engineer-
ing, reverse engineering, software modernization, etc. Intermediate repre-
sentations vary from the intermediate code written in some intermediate

52

3.3. INTERMEDIATE REPRESENTATIONS

languages to the full meta-model for representation of different aspects of
the program. Sometimes these representations are used to meet language
independency of some specific analysis. Also there are some approaches
tending to reach language independency of full functionality based on spe-
cific intermediate program representation.

Intermediate languages are pivot languages and they are widely used in
source code translation and analysis. Some intermediate languages are ini-
tially designed as domain-specific languages for program representation to
fulfill specific criteria. On the other hand, some general purpose languages
are used as intermediate languages. For example C, as an abstraction of
assembly language, is used as an intermediate language in the implementa-
tions of some other languages (Eiffel, Haskell, etc.).

Program translations can be done between the languages on the same
or different levels of abstractions, in different directions, and with vari-
ous aims. Sometimes, source code is only translated to an intermediate
language to enable some specific analysis. For example ALF language
[Gustafsson et al., 2009] is used as an intermediate representation of source
code written in different languages (C, PowerPC assembly, etc.) to enable
static timing analysis. More precisely this language enables control-analyses
which is precondition of WCET: Worst Case Execution Time estimation
[Lisper, 2014], [Wilhelm et al., 2008]. Even the language is well designed
and could represent code written in any language, translation process from
source languages to ALF is not language independent.

In compiler engineering intermediate languages are used in compiler
construction, decompiling or in source to source translations. These trans-
lations usually encompass some analyses, transformations, optimisations,
and refinements of the translated code.

Decompiler will translate low-level (assembly) code to some higher-level
language in the reverse engineering process. The WSL: Wide Spectrum
Language 2 is used for the intermediate representation of software programs
in translating legacy to maintainable code (eg. assembly code to C/COBOL
code). The main characteristic of WSL is a formal background and the ap-

2WSL, 2014 http://www.smltd.com/wsl.htm

53

CHAPTER 3. JUSTIFICATION OF SSQSA CONCEPT

plication of formal transformations of code internally represented by using
abstract syntax trees. WSL is meant to be independent of programming
languages. However, it still does not support object-oriented languages. In
the process of program transformation, a small set of software metrics is
used to measure the effects of transformations. In comparison to WSL, ap-
proach based on eCST supports a broader scope of languages and metrics
(including object-oriented).

Source to source translation (transcompilation) usually means transla-
tion between two languages of higher level of abstraction. For example,
LLVM: Low-Level Virtual Machine 3 translates any of languages supported
by GCC compiler4 (Pascal, Modula-2, Modula-3, C, C++, Java, Fortran,
etc.) to C, C++ and MSIL: Microsoft Intermediate Language. MSIL is
also an intermediate language and is also known as CIL: Common Inter-
mediate Language. LLVM uses an intermediate language at the level of
human-readable assembly language. [Lattner and Adve, 2004]

Represent of intermediate languages mostly used in compiler engineer-
ing is byte-code (e.g. Java byte code). Source code is translated to this
intermediate representation which is specific for interpreter and later in-
terpreted by a virtual machine. Another specific category of languages are
higher level assembly languages. They are at the similar level of abstrac-
tion as a byte code but this code is usually further translated to executable
machine code. One such language is already mentioned CIL which is used
as a common intermediate languages for all compilers in .NET framework.
Furthermore, XTRAN5 environment includes various analysers relying on
intermediate representation written in a C-like intermediate rule-based lan-
guage. Contrary to all mentioned intermediate languages, eCST is inter-
mediate representation based on syntax tree.

Another intermediate representation usually used in compiler construc-
tion, but also in static analysis and related techniques is a syntax tree.
Mentioned GCC compiler uses: GENERIC (an intermediate language), and

3LLVM: Low-Level Virtual Machine, online 2015, http://llvm.org/
4GCC: GNU Compiler Collection, online 2015, https://gcc.gnu.org/
5XTRAN, online 2015, http://www.xtran-llc.com/xtran.html

54

3.3. INTERMEDIATE REPRESENTATIONS

GIMPLE (an internal abstract syntax tree representation) [Merrill, 2003].
Both representations are language independent, idea is similar to idea be-
hind SSQSA and eCST, but results are not really comparable. Areas of
application of GCC compiler and SSQSA are complementary. While GCC
is oriented to compiling the code and possible static analyses techniques to
support it, SSQSA expects compilable code, generates internal representa-
tion of it without additional checks and applies supported analyses which
are complementar to ones provided by GCC compiler and supporting tools.

Syntax trees, abstract or concrete, are broadly used in numerous fields
of software engineering. Abstract Syntax Tree (AST) is used as a repre-
sentation of source code usually in static analysis which includes different
techniques for code clone detection, software metrics calculation, changes
monitoring, etc. In [Fischer et al., 2007] the role of AST as a representation
of model in Model Driven Engineering is described. Even if the construc-
tion of AST is language independent, the content of these trees is always
strongly related to language syntax. That can be clearly concluded from
all papers related to usage of AST referred in this thesis.

In [Baxter et al., 1998] and [Ducasse et al., 1999] authors use abstract
syntax trees for representation of the source code for duplicated code anal-
ysis. Those trees have some additional features designed for easier imple-
mentation of the algorithm for comparison. [Koschke et al., 2006] propose
similar but fresh idea for code clone detection using abstract syntax suffix
trees.

Software metrics tools often use AST as an internal representation. The
development of ATHENA [Christodoulakis et al., 1989], CodeSquale6, and
many other tools are based on AST representation of the source code.
Additionally, graph representation are often used to represent facts on
lower or higher level of abstraction. An illustrative example is Bauhaus
[Raza et al., 2006] tool which combines two intermediate representations:
IML: InterMediate Language, and RFG: Resource Flow Graph. Following
the trend of combining several internal representations at different levels of
abstraction in one complex internal representation, meta-models have been

6CodeSquale, 2015 http://code.google.com/p/codesquale/

55

CHAPTER 3. JUSTIFICATION OF SSQSA CONCEPT

introduced. Meta-models tend to include all required information needed
for intended analyses. FAMIX is a very prospective family of meta-models
developed as a part of MOOSE platform7. More information about men-
tioned tools can be found in the following section (section 3.4) dedicated
to related software solutions.

Finally, in parallel with efforts to establish eCST representation and
SSQSA architecture, OMG: Object Management Group 8 was working on
modernization meta-models9. They propose standard meta-models based
on similar ideas [Pérez-Castillo et al., 2011]. ASTM: Abstract Syntax Tree
Meta-model is conceptually similar to our eCST representation. Its idea is
usage of common imaginary nodes in enriching AST and it represents pro-
gram below the function level. KDM: Knowledge Discovery Meta-model by
the level of represented data corresponds to some aspects of network repre-
sentation used in SSQSA. It represents the program on the high (interface)
level. This is a good confirmation that approach applied in the development
of SSQSA framework has a future, primarily because these meta-models are
products of standardization initiatives. Still, there are some differences in
two approaches which give validity to our research direction. The main one
is that OMG tends to establish very broad set of imaginary nodes which dif-
fers through generations of programming languages. In SSQSA framework
there is a tendency to minimize this set and to keep the universality of the
nodes whenever possible. This is done by adding nodes at the higher levels
first and only if necessary adding them in deeper levels and by sharing the
nodes between generations. This minimization and universality gives sim-
plicity to implementation of the requested algorithms and provides easier
maintenance of the catalogue of nodes.

7MOOSE, 2014 http://moosetechnology.org/
8OMG: Object Management Group, 2014 http://www.omg.org/
9Architecture-driven modernisation, 2014 http://adm.omg.org/

56

3.4. RELATED SOFTWARE SOLUTIONS

3.4 Related software solutions

This section reviews available software solutions developed with similar
goals, following similar ideas, or applying similar approaches. Furthermore,
each analyzed software solution i compared with SSQSA framework.

One of the earliest attempts to reach language independency of software
metrics tool is made by development of the ATHENA software certifica-
tion tool [Christodoulakis et al., 1989]. This tool for assessing the quality
of software was based on the parsers that generate abstract syntax trees as
a representation of a source code. Used parsers were manually implemented
for each language to be supported and algorithms for calculation of software
metrics were partially built in parser implementation. The generated trees
were structured in such a way that the metric algorithms were easily ap-
plied. The final goal of the tool was to generate a report that describes the
quality. However, it was only executable under the UNIX operating system
and its official support is not available anymore. Our approach is to gen-
erate parsers by parser generator in order to automate process of adding
support for a new language. Furthermore eCST is richer representation
then AST. In the end, SSQSA component for software metrics calculations
- the SMIILE tool is implemented in Java and therefore it can be used on
broader range of platforms.

The development of the CodeSquale10 metrics tool was based on a
similar idea to the idea behind SSQSA framework but with usage of AST
as intermediate representation. The authors developed the first prototype
of the system and implemented one object-oriented metric for the Java
source code. Furthermore, an idea for the additional implementation of
other metrics and opportunities for extending the tree to other program-
ming languages was described. The final goal was an analyses which i inde-
pendent of input language. Unfortunately, later results were not published.
However, week point of this project was usage of AST for representing the
source code. By involving eCST, SSQSA get broader set of algorithms im-
plementable independently of programming language and uniqueness of the

10CodeSquale, 2015 http://code.google.com/p/codesquale/

57

CHAPTER 3. JUSTIFICATION OF SSQSA CONCEPT

implementation of the algorithms.
[Arbuckle, 2011] presented an interesting approach for the measuring

evolution of a multi-language software system. Difficulties related to syntax,
semantics, and language paradigms are avoided here by looking directly at
relative shared information content. In this approach author measures a
relative number of bits of shared binary information between artifacts of
consecutive releases. However, SSQSA approach uses source code changes
from software repositories to analyze software evolution.

Rigi [Kienle and Mller, 2010] is a reverse engineering environment that
allows the visual exploration of software systems. Visualisation is based
on graph representation of software entities and their relationships. It pro-
vides the fact extractors for C, C++, and COBOL, an interactive editor of
extracted graphs called Rigiedit, and language independent exchange for-
mat known as RSF: Rigi Standard Format. RSF is based on a graph-based
data model which is capable to represent software entities at architectural
level of abstraction and dependencies between them. In the Rigi architec-
ture, the fact extractors and the graph editor are autonomous components
communicating through the exchange of RSF files.

The fact extractors are parsers built with the help of Yacc parser gen-
erator. Those parsers identify software entities and their dependencies in a
source code and store extracted information in the textual RSF exchange
format. For the reverse engineering of software systems written in other
languages, users are expected to produce RSF files. The authors of Rigi
advocate usage of lightweight fact extractors based only on lexical analysis
which produce imprecise, but useful fact bases for analyses of legacy soft-
ware systems, because those systems are often in the state that the source
code cannot be compiled (due to missing files) or contains syntax errors.
However, there is no support in Rigi to build parser-based or lightweight
fact extractors. In other words, Rigi is capable to analyze and visualize
software networks representing software systems written in different pro-
gramming languages but their extraction is not strictly established and
based on language-independency which differs it from SSQSA framework.

Gupro: Generic Understanding of PROgram [Ebert et al., 2002] is an
integrated workbench to support program understanding of heterogeneous

58

3.4. RELATED SOFTWARE SOLUTIONS

software systems on different levels of granularity. In Gupro, software arti-
facts are stored in a graph repository which reflects relationships between
defined software entities, and abstraction is done by graph queries. Ana-
lyzed source code is parsed by parsers generated by the PDL: Parser De-
scription Language [Dahm, 1998]. PDL is parser generator which extends
the Yacc parser generator by EBNF syntax and by notational support for
translating source code into TGraphs [Ebert et al., 2008].

TGraphs are directed graphs whose nodes and edges may be attributed,
typed, and ordered. These graphs are used to conceptually represent soft-
ware systems: software entities are represented by nodes, relationships
among entities are represented by edges, a common type is assigned to sim-
ilar objects and relationships, and ordering of relationships is expressed by
edge order. TGraphs are produced by individualy developed PDL parsers,
and therefore the fact extraction in Gupro is not language-independent
and unified which decreases the consistency of the analyses. This makes an
important weakness of Gupro with respect to the SSQSA framework.

Bauhaus [Raza et al., 2006] is a tool suite that supports program un-
derstanding and reverse engineering on all layers of abstraction, from source
code to architecture. It is capable to analyze programs in Ada, C, C++
and Java. In Bauhaus two separate program representation exist: Inter-
Mediate Language (IML) and Resource Flow Graph (RFG) representation.
The IML representation is defined by the hierarchy of predefined classes,
where each class represents a certain universal programming language con-
struct. IML is generated from source code by a language-specific front-end.
While IML represent the system on a very concrete and detailed level, the
architectural aspects of the system are modeled by means of RFG. An RFG
is a hierarchical graph, which consists of typed nodes and edges.

Nodes represent architecturally relevant elements of software systems.
In other words, RFG is, similarly as GDN (that exists in SSQSA), a union
of software networks at different levels of abstractions. Using different gran-
ularity filters, a different aspects of the architecture can be obtained (call
graph, hierarchy of modules, etc.). For C and C++, an RFG is auto-
matically generated from IML representation, whereas for other languages
RFG is generated from other intermediate representations (such as Java

59

CHAPTER 3. JUSTIFICATION OF SSQSA CONCEPT

class files) or compiler supported interfaces (such as Ada Semantic Inter-
face Specification).

Therefore, fact extraction in Bauhaus is not fully language-independent,
since RFGs for some languages are not constructed directly from IML.
This is an important weakness in comparison to SSQSA framework and its
intermediate representations.

XTRAN11 is another try to achieve language independent environment
for various types of analyses. Contrary to SSQSA, whose intermediate
structure is based on syntax tree, its intermediate representation is based
on a C-like intermediate rule-based language.

It supports several versions of assemblers, C, C++, Java, COBOL,
FORTRAN, Pascal, PL/I, several 4th generation languages (SAS, RPG,
...), HTML, and XML. While supported languages may be regarded as
analogous to those supported by SSQSA, it does not support functional
languages (e.g., Scheme, Erlang, ...) , mixed paradigm languages (e.g.,
Delphi), and script languages (e.g., PHP), which means that SSQSA is
more general.

The goals of XTRAN and SSQSA are however different with respect to
analyses they are meant to perform - having a language as its intermediate
representation XTRAN is more oriented to syntax-level analyses - construc-
tion of function trees, translation from one language to another, location
of dead code, cross-reference documents, etc. SSQSA and XTRAN have
in common only code-clone analysis and calculation of CC metrics, and in
this respect SSQSA is also more general and capable of implementing more
analyses than XTRAN.

MOOSE12 is a platform for software and data analysis in reverse engi-
neering and re-engineering of object-oriented software systems. It consists
of a repository to store language-independent models of software systems,
and provides query and navigation facilities. Moose models are instances of
the members of the FAMIX meta-models family [Tichelaar et al., 2000a]
and capture architectural elements of software systems: defined entities

11XTRAN, online 2015, http://www.xtran-llc.com/xtran.html
12The MOOSE book, 2014 http://www.themoosebook.org/book

60

3.5. SUMMARY

and their dependencies. MOOSE and FAMIX have the most similar gen-
eral goals to the SSQSA project. Their joint goals were established by the
European project FAMOOS [Bär and Ducasse, 1999] and their strength is
mainly in language independency. They support OO design at the interface
level of abstraction for various input programming languages. Different in-
put languages are supported by separate tools for filling in the meta-model
with the information from the input source code [Tichelaar et al., 2000b].
SSQSA approach is more general. It is based on eCST representing all as-
pects of source code and not only the design. It is thus equally appropriate
to support broader set of software metrics. However, it also fully supports
procedural languages, including the legacy ones (e.g. COBOL).

3.5 Summary

Motivation for development of SSQSA framework started with development
of SMIILE tool for calculation of software metrics. The aim of SMIILE tool
were improved characteristics with intention to bridge the gap in the field of
application of software metrics. This chapter described starting motivation
and preliminary investigation of the field. This investigation resulted with
conclusion that the main weaknesses are in strong dependency of available
tools on input language which is caused by used intermediate represen-
tation. Afterwards, chapter contained review of alternative intermediate
representations and available related software solution. Final conclusion is
that concept used in development of SSQSA framework makes it innovative
with planed characteristics.

61

CHAPTER 3. JUSTIFICATION OF SSQSA CONCEPT

62

Chapter 4

SSQSA framework

This chapter describes SSQSA framework, the central contribution of the
dissertation. SSQSA overview (section 4.1) provides architecture with brief
overview of the SSQSA components. Section 4.2: SSQSA intermediate rep-
resentations describes the central intermediate representation in SSQSA
framework - eCST: enriched Concrete Syntax Tree, but also intermediate
representations derived from it. Section 4.3: SSQSA components describes
constituents of SSQSA framework at different levels: generators and ma-
nipulators by intermediate representations, static analysers, higher-level
external tool integrated to use results of the SSQSA analysers, etc. Last
two sections (4.4 and 4.5) describe two crucial characteristics of SSQSA
framework: adaptability and extendability, respectively.

4.1 SSQSA overview

Set of Software Quality Static Analyzers (SSQSA) [Rakić et al., 2013b] is
the set of software tools for static analysis that are incorporated in the
framework developed to target the common aim: consistent software qual-
ity analysis. The main characteristic of all integrated tools is the indepen-
dency of the input computer language. This characteristic gives the tools
more generality comparing to the other similar static analyzers. Each of

63

CHAPTER 4. SSQSA FRAMEWORK

incorporated analyzers can be uniformly applied to any software systems
that are written in different computer languages. Furthermore, integration
of the analyzers into the framework enables consistent analysis of software
product from different viewpoints combining benefits of different techniques
of static analysis. This consistency gives the additional value to the frame-
work having in mind the fact that software systems are every day more
complex and heterogeneous, consisting of many components usually devel-
oped using the different programming languages.

Language independency is achieved by enriched Concrete Syntax Tree
(eCST) [Rakić and Budimac, 2011] that is used as an intermediate rep-
resentation of the source code representations (section 4.2). It is unique
representation of a software code regardless of the language in which it was
written. When this representation of input code is available it is possible
to use a single implementation of the analysis algorithms. Consequently,
for each new input language the whole set of integrated analyses is readily
available.

Currently, SSQSA supports some representative input languages: Java,
C#, Delphi, Modula-2, Pascal, C, COBOL, Erlang, Scheme, Python, PHP,
JavaScript, OWL, WSL, and Tempura in different stages of support. Sup-
ported languages are designed to be used in different phases of software
development and belong to variety of paradigms. Based on the experi-
ence, adding support for a new input language is a straightforward activity
(section 4.4)[Kolek et al., 2013]. After adding a new language all available
analysis are immediately applicable for that language. Furthermore, in or-
der to prove the concept the framework consists of some fully functional
tools. It is also possible to add new analysis. In this case a single imple-
mentation of the analysis algorithm is enough for all supported languages,
which means that after integration of a new analysis in the framework it is
immediately applicable to all supported languages.

Components and tools in SSQSA framework can be divided in three
categories and layered in five levels (see Figure 4.1) according to their role
in the framework.

64

4.1. SSQSA OVERVIEW

F
ig

u
re

4
.1

:
A

rc
h

it
ec

tu
re

o
f

th
e

S
S

Q
S

A
fr

a
m

ew
o
rk

S
li
k
a

4
.1

:
A

rh
it

ek
tu

ra
S

S
Q

S
A

o
k
v
ir

a

65

CHAPTER 4. SSQSA FRAMEWORK

First category of SSQSA components consists of first three levels of
components with common responsibility: generation and manipulation of
internal representations.

First level. Central role in the framework plays eCST representation
of the source code as a basis for language independency. As a prerequisite
for all analyses to be applied independently of input language this internal
representation of the source code has to be generated. Therefore, generator
of the enriched Concrete Syntax Tree (eCSTGenerator) is placed at the
first level and its execution is the first step in using the framework.

Second level in the framework consists of components responsible
for generation of additional internal representations of the source code to
make analyses easier and more comfortable. All these representations are
generated from eCST and therefore they retain language independency.

eCFG Generator: enriched Control Flow Graph Generator is in charge
of generating language independent Control-Flow Graph based on
eCST representation of the source code.

eGDN Generator: Software Networks Extractor Independent of Program-
ming Language [Savić et al., 2012], [Savić et al., 2014] is a component
that provides software network generation to represent relationship
between software entities.

Third level consists of components responsible for manipulation of
eCST (section 4.3.1.3).

eCST Adaptor : enriched Concrete Syntax Tree Adaptor is a component
that is currently under development. Its responsibility is a manipu-
lation of eCST in order to remove detected imperfections of eCST. It
provides all functionalities related to adaptations of eCST to certain
algorithm implementations.

66

4.1. SSQSA OVERVIEW

eCST AntiGenerator: component that re-generates a source code from
the eCST representation.

Second category of components (static analysers) corresponds to fourth
level. On an eCST and its derived representations of the source code,
needed analyses algorithms are implemented uniformly. The following fourth-
level tools are examples of fully integrated analyzers in the SSQSA frame-
work (section 4.3.2.

SMIILE: Software Metrics Independent of Input LanguagE
[Rakić and Budimac, 2011];

LICCA: Language Independent Code Clone Analysis;

SSCA: Software Structure Change Analyzer [Gerlec et al., 2012];

SNAIPL: Software Network Analyser Independent of Programming Lan-
guage [Savić et al., 2012], [Savić et al., 2014];

ONGRAM: Ontology analyzer based on software metrics and net-
work analysis [Savić et al., 2013].

Third category of components consisting of external tools integrated in
SSQSA, corresponds to fifth level. Some of tools on the fifth level are still in
development phase. These tools are using internal representations but also
rely on results of basic analysis techniques implemented on a third level.
These are:

Testovid: a tool for automated assessment of students programming so-
lutions [Pribela et al., 2011], [Pribela et al., 2012];

Third part repository integration: SMIILE tool is integrated with ex-
isting external software metrics repository so that its results could be
imported in it [Rakić et al., 2011].

67

CHAPTER 4. SSQSA FRAMEWORK

F
ig

u
re

4
.2

:
P

ipes
a

n
d

fi
lters

a
rch

itectu
re

o
f

th
e

S
S

Q
S

A
fra

m
ew

o
rk

S
lik

a
4
.2

:
P

ipes
a

n
d

fi
lters

a
rch

itectu
ra

S
S

Q
S

A
o
k
v
ira

68

4.2. SSQSA INTERNAL SOURCE CODE REPRESENTATION

Components do not have direct communication. They communicate
by exchanging XML documents using pipes and filters (Figure 4.2). For
these purposes, results of all components that may be used by some other
component are extracted to XML document and stored to shared data
storage.

Described approach supply the SSQSA framework with two crucial fea-
tures [Kolek et al., 2013]:

Adaptability or flexibility in supporting a new language and

Extendability or scalability in supporting a new analysis.

In that way the consistency of results and reliable analysis of software
product quality, regardless of the input language has been achieved. This
is the ultimate contribution of the SSQSA framework.

4.2 SSQSA Internal source code representation

Enriched Concrete Syntax Tree (eCST) is a primary internal representa-
tion of the SSQSA framework. Each compilation unit is represented as
one eCST. It serves as a starting point for generation of derived internal
representations representing input program at two levels of abstraction:
(1) eCFG enriched Control-Flow Graph generated from eCST as low-level
code representation, and (2) as each of these trees are independent, software
networks are used to reflect higher level connections between compilation
units. Consequently, eCFG and software networks are secondary internal
representations.

This section describes mentioned code representations used in SSQSA.

4.2.1 eCST: enriched Concrete Syntax Tree

As described in section 2.2.1 there are two tree representations of a source
code widely used in static analysis: abstract syntax tree (AST) and concrete
syntax tree (CST). We introduce eCST as an innovation in a field of tree
representation of the source code. Enriched Concrete Syntax Tree (eCST)

69

CHAPTER 4. SSQSA FRAMEWORK

represents a union of concepts used in abstract and concrete syntax. It
consists of both:

• abstraction of the program structure needed for most of program
analyses;

• all concrete program elements, sometimes needed for sophisticated
program analyses.

Figure 4.3 represents described similarities and differences between these
three types of syntax trees on the common example (figure taken from
[Savić et al., 2014]).

Figure 4.3: Java-like fragment of source code class A extends B represented by (a) CST: Con-
crete Syntax Tree , (b) AST: Abstract Syntax Tree, and (c)eCST: enriched Concrete Syntax Tree
Slika 4.3: Fragment izvornog koda class A extends B napisan u jeziku poput Jave, predstavl-
jen (a) konkretnim sintaksnim stablom (CST), (b) apstraktnim sintaksnim stablom (AST) i
obogaćenim konkretnim sintaksnim stablom (eCST)

Enriched Concrete Syntax Tree (eCST) [Rakić and Budimac, 2011] is
the classical concrete syntax tree (or a parse tree) enriched with so-called

70

4.2. SSQSA INTERNAL SOURCE CODE REPRESENTATION

universal nodes that describe elements of language semantics. Here, the
concept of imaginary nodes used in AST building has been involved. Uni-
versal nodes can be described as specific imaginary nodes that are carefully
chosen (section 4.2.1.2) to be uniformly used for all input languages. This
characteristic gives language independency to eCST and correspondingly
to all tools using it.

As concept of trees has background in graph theory where tree is con-
nected graph without cycles, we can introduce the following semi-formal
definition of eCST:

Let T = (V, E, i) be a tree where V is set of concrete, universal,
and optionally imaginary nodes; and edges E ⊆ V xV connect
two nodes vi, vj ∈ V iff between vj and vi exists parent-child
relationship defined by language construct building rules defined
by language grammar. Tree T is called eCST: enriched Concrete
Syntax Tree. Node vi ∈ V which has no incoming edges (6 ∃v ∈
V : (v, vi) ∈ E) represents the root node. Each node vi ∈ V
which has no outcoming edges (6 ∃v ∈ V : (vi, v) ∈ E) represents
the terminal nodes (leafs), while each node vi ∈ V which has
out-coming edges (∃v ∈ V : (vi, v) ∈ E) represents the non-
terminal node.

An illustrative example is given in Figure 4.4 where two equivalent seg-
ment of the source code for declaration of the concrete unit in two languages,
class in Java, and module in Modula-2 are represented by the same sub-tree
of the eCST. To simplify the graphical representation some keywords are
intentionally omitted from the picture, but their inclusion would not affect
the essence of the example.

71

CHAPTER 4. SSQSA FRAMEWORK

Figure 4.4: Fragment of source code written in Java and Modula-2 represented by common tree.
Picture taken from [Savić et al., 2014]
Slika 4.4:Fragment izvornog koda napisan u Javi i Moduli-2 predstavljen zajedničkim stablom.
Slika preuzeta iz [Savić et al., 2014]

Figure 4.5 illustrates the reasons for simplification of the tree in the
previous example. eCST shown in the figure represents a simple Java class
containing only one method - implementation of the BubbleSort algorithm
(Listing 4.1).

72

4.2. SSQSA INTERNAL SOURCE CODE REPRESENTATION

Listing 4.1: BubbleSort implemented in Java
Listing 4.1: BubbleSort algoritam implementiran u Javi

class bs{

public static int BubbleSort(int[] num){

int j;

boolean flag;

flag = true;

int temp;

do{

int count , addElse;

count = 0;

addElse = 0;

flag= false;

for(j=0; j < num.length -1; j++){

if (num[j] < num[j+1]){

temp = num[j];

num[j] = num[j+1];

num[j+1] = temp;

flag = true;

}

else{

count ++;

addElse +=1;

}

}

}while (flag);

return j;

}

}

73

CHAPTER 4. SSQSA FRAMEWORK

F
ig

u
re

4
.5

:
eC

S
T

rep
resen

tin
g

B
u

bbleS
o

rt
a
lg

o
rith

m
im

p
lem

en
ted

in
J
a
v
a

S
lik

a
4
.5

:
eC

S
T

k
o

jim
je

p
resta

v
ljen

B
u

bbleS
o

rt
a
lg

o
rita

m
im

p
lem

en
tira

n
u

J
a
v
i

74

4.2. SSQSA INTERNAL SOURCE CODE REPRESENTATION

There are two classes of nodes that always appear in the construction
of eCST:

• universal nodes with predefined, language-independent meanings which
denote semantic concepts expressed by constructs of the language;

• tokens, elements of the source code, which are leaf nodes of eCSTs.
Important characteristic is that every single symbol existing in the
source code has to appear in leafs of the corresponding eCST.

Sometimes eCST can contain some imaginary nodes with language-
dependent meaning which correspond to a subset of non-terminal symbols
in the grammar. Those nodes serve only to retain natural hierarchical struc-
ture of language constructs in case that there is no need for universal node
corresponding to some non-terminal symbol. These nodes have no meaning
for the analysers and could also be eliminated without any consequences.

One universal node can substitute a chain of none or more non-terminal
symbols in the CST that is derived through a sequence of unary produc-
tions. Therefore an eCST is usually more compact than the corresponding
CST, but still more detailed than AST. Furthermore, for our purposes. It is
more informative and more useful than both AST and CST: It is complete
which means that it contains full source code without skipping any details.

4.2.1.1 Fundamental concept of universal nodes

Imaginary nodes are usually used while building AST to group some log-
ically related units of the source code in its sub-tree. These nodes are
imaginary in the sense that they do not represent concrete source code
elements and they are not part of the language syntax. They can be intro-
duced freely without following any rule. Usually creator of the grammar or
the tree introduce such nodes to satisfy his own needs.

Unification of the imaginary node is a basis on which the concept of
eCST is built up. The basic idea is to create the finite set of unified imag-
inary nodes. These nodes are to be used to annotate the syntax tree in a
specific way so that they mark all semantic elements needed for the analy-
ses to be implemented. The same set of nodes is built in the grammar for

75

CHAPTER 4. SSQSA FRAMEWORK

all languages to be supported. Based on this universality these nodes are
called universal nodes. Furthermore, this concept is based on tendency to
keep the set of universal nodes as minimal as possible, which additionally
differs this approach from other similar ones. (section 4.2.1)

An illustrative example to present important characteristics of the uni-
versal node is the one used to mark loops in the source code. In different
languages there are: for, do-while, while-do, repeat-until, etc. loops with
very different syntactical rules. If we use loop statement universal node
to group each of these loops in its sub-tree we will be able to recognize all
loops in the source code independently of language and its syntax. Here we
can note two levels of the universality. On the first level loop statement
represents loops in all languages, but also, it represents all loops in each
of these languages. Figure 4.6 displays eCST representing two loop state-
ments: do-while written in Java, and repeat-until written in Modula-2 (Fig-
ure taken from [Rakić and Budimac, 2011]).

Figure 4.6: Loop statement written in Modula-2 and Java represented by eCST
Slika 4.6: Naredba ponavljanja napisana u Moduli-2 i Javi reprezentovana eCST-om

76

4.2. SSQSA INTERNAL SOURCE CODE REPRESENTATION

4.2.1.2 Methodology

Initial set of universal nodes has been derived from nodes used by the
first prototype of SMIILE tool [Rakić and Budimac, 2011], [Rakić, 2010].
Therefore, software metrics calculation algorithms were main guidelines for
establishing the initial set of universal nodes.

These nodes where defined after the preliminary research and analysis
of programming languages and their constructs that are important for met-
rics calculation. The research included investigation of various computer
languages, structure of the code written in these languages, and influence of
constructs of these languages on the implementation of different metric al-
gorithms. Initially the set of languages consisted of three representative lan-
guages: Modula-2 (represent of procedural and modular languages), Java
(represent of object-oriented languages) and COBOL (represent of legacy
languages). The first two languages served for creation of the set of nodes,
while COBOL was used as a reference for checking the applicability for
legacy languages.

First the basic building blocks were identified (packages, units, at-
tributes, functions, blocks, statements, expressions, etc.) and represented
by appropriate universal nodes. In the next step statement was refined
to loop, branch, jump (also needed for COBOL), and condition. Further
refinement of statement categories (e.g. refinement of loop to for, do-while,
while-do, repeat-until, foreach, etc.) was not necessary and this early de-
cision did not change since then. Note that eCST retains all elements of
the source code and the kind of the loop statement is saved in the tree. If
needed, it can be used for some subtle or language specific analyses.

At this point the cyclomatic complexity (CC) was implementable for
all three languages and the set of universal nodes (containing at the time
14 nodes) proved to be stable during further analyses, testing, and ap-
plications. The next step was the refinement of interface-level nodes and
introduction of nodes that would enable (a) calculation of design/object-
oriented metrics and (b) creation of dependency network between units. For
the goal of design metrics a unit has been refined to concrete and interface
unit (note that the separate node for the abstract unit was not necessary

77

CHAPTER 4. SSQSA FRAMEWORK

so far). To enable the creation of dependency networks additional nodes to
name various entities have been introduced (e.g. types - built-in, declared,
or imported).

At this point of time, the set of universal nodes contained 34 nodes and
the creation of software networks (as the next important milestone) was
possible. The set of universal nodes was fixed, catalogued, documented,
and made public for the further usage and inclusion of more languages and
more analyses. This represented the end of first phase (creation of the set
of nodes), and the emphasis moved to the second (and continual) phase of
maintenance. In the process of maintenance some more nodes were needed,
as expected. For example, inclusion of Halstead metrics required four new
nodes to represent keywords, operators, separators, and directives. On the
other hand, structural changes analyzer (SSCA) and code clone analyzer
(LICCA) required no additional nodes.

Regarding additional languages, the established set of nodes proved to
be stable meaning that no new nodes were necessary.

During the process of creation of (minimal) set of universal nodes,
only several ones were dropped in the process. An illustrative example
is main block scope. In the beginning, this node was used to mark the
main block of the program - a fragment of code that does not belong to
any function (procedure, method, etc.) and usually initializes the program
for execution. At the same time it existed a block scope which denoted
any block-scope in the program. After detailed consideration of possible
usage of these nodes, the conclusion was made that only one of these nodes
is sufficient. Decision was to keep more general one: block scope, having
main block scope only as a special case of block-scope. In eCST, when
block scope does not belong to a sub-tree of some function then block
scope node denotes a main block of the program.

The method of inclusion of new nodes in the phase of maintenance
nodes follows the prescribed and strict procedure described in sections 4.4
and 4.5. We are aware that new analyses (e.g. data-flow analysis, timing
analysis, and program slicing) will probably required introduction of several
new nodes, while inclusion of more languages will probably do not enforce
inclusion of new nodes.

78

4.2. SSQSA INTERNAL SOURCE CODE REPRESENTATION

In other words, regarding the front-end (new computer languages) inclu-
sion of new nodes is not probable. Inclusion of new nodes for the back-end
(new analysis algorithms) will be probably needed, but will be kept at the
minimal level.

4.2.1.3 Overview of universal nodes

There are two categories of universal nodes: general purpose universal nodes
and domain-specific universal nodes. General purpose universal nodes are
nodes used by static analysers independently of the domain. The most
of the universal nodes belong to this category. Still it is also needed to
enable introduction of new universal nodes used for specific purposes which
will not be used by all analyzers. These nodes are appearing usually while
introducing support for a new, domain specific languages. It is also possible
to introduce new universal node which will be used only in the particular
domain. Afterwards, the purpose of these new nodes is to be observed from
different points of view and finally from the domain-independent point of
view. Conclusions of these observations could be very different. Some of
the following situations can happen:

• New domain specific universal node has the same purpose in specific
domain as already existing general purpose universal node (that are
independent of the domain). In that case it can be easily replaced by
general purpose universal node.

• New domain specific universal node has the same purpose in the spe-
cific domain as the other domain specific universal node in the other
domain. In that case these nodes could be unified. Furthermore it
can be considered if these nodes could be moved to general usage if
their usage is general enough.

• New domain specific node has the application only in the specific
domain and remains the domain specific one.

The set of eCST general purpose universal nodes contains 37 nodes and
is stable. Still, by extending the framework with new languages and new

79

CHAPTER 4. SSQSA FRAMEWORK

analysers this set can grow. However, the goal is to keep this set as small
as possible. According to their usage in the analyses they can be classified
into three categories:

• High-level eCST universal nodes (Table 4.1) denote entities declara-
tion on the architectural level. Interface-level declarations of pack-
ages, classes, modules and methods, procedures, functions, etc., as
well as explicitly stated high-level relations between them (such as
inheritance, instantiation, implementation, etc.)

Universal Node Description

attribute decl Declaration of class fields, global variables, etc.
block scope Root of the sub-tree containing one block scope

Block of the source code which does not belong to any function
declaration corresponding to main block scope

compilation unit Fragment of a source code recognized by the compiler as a
independent unit
It usually marks content of an input file

concrete unit decl Declaration of a software unit containing implementation
(concrete class, implementation module, etc.)

extends Inheritance
formal param list Root of the sub-tree containing one or more formal parameters
function decl Declaration of a method, procedure, function, etc
implements Indicates that a concrete unit implements an interface unit
import decl Import of entities declared outside of unit to be used inside it
instantiates Creating a new instance.
interface unit decl Declaration of a software unit not containing implementation

(interface, definition module, etc.)
package decl Package/namespace/. . .
parameter decl Declaration of a formal parameter
type decl Declaration of a new user/defined type

Table 4.1: High-level eCST universal nodes
Tabela 4.1: eCST univerzalni čvorovi visokog nivoa

• Middle-level eCST universal nodes (Table 4.2) are those used at the
level of entity definition. They appear in the body of the entities and
mark individual statements, groups of statements, or parts of state-
ments with appropriate concept expressed by them (jump statement,
loop statement, branch statement, condition, import statement, etc.)

80

4.2. SSQSA INTERNAL SOURCE CODE REPRESENTATION

Universal Node Description

argument Argument of the function
argument list Root of the sub-tree containing one or more argument of the

function
branch Root of the sub-tree containing single branch in a branch

statement
branch statement Root of the sub-tree containing one or more branches in a

branching (branch statement)
condition Root of the sub-tree containing condition for loops/branchings
const Declaration of the constant
expression Root of the sub-tree containing any expression
function call Function call
jump statement Root of the sub-tree containing jump
loop statement Root of the sub-tree containing looping (loop statement)
statement Root of the sub-tree containing any statement
var decl Declaration of the local variable

Table 4.2: Middle-level eCST universal nodes
Tabela 4.2: eCST univerzalni čvorovi srednjeg nivoa

• Low-level eCST universal nodes (Table 4.3) are universal nodes that
mark individual tokens with appropriate lexical category (keywords,
separators, identifiers, comments, etc.).

Universal Node Description

builtin type Type built into the language
directive Directive of a language
keyword Keyword of the language
logical operator Logical operator
name Name defined by user
operator Operator (in general)
separator Separator
type Type defined by user

comment Multy-line comment
doc comment Documentation comment
line comment Line comment

Table 4.3: Low-level eCST universal nodes
Tabela 4.3: eCST univerzalni čvorovi niskog nivoa

81

CHAPTER 4. SSQSA FRAMEWORK

More details with mapping constructs of characteristic languages to
corresponding universal nodes can be found in appendix A.

4.2.2 Internal Representations Derived from eCST

Two internal representations of input source code are derived from eCST
to be used by analysers in SSQSA framework.

• eCFG: enriched Control-Flow Graph to represent possible program
execution paths through the blocks of the program;

• eGDN: enriched General Dependency Network as a union of software
networks that reflect dependencies between software entities on dif-
ferent levels of abstraction.

.

4.2.2.1 eCFG: enriched Control-Flow Graph

Enriched Control-Flow Graph (eCFG) is the CFG generated from eCST.
The main difference between eCFG and CFG is that eCFG is generated
based on detection of universal nodes. Edges in eCFG connect nodes
representing universal nodes while sub-trees of universal nodes still keep
language-specific constructs. In that way we retain language independency
of internal representations. Furthermore, the transformation from eCST to
eCFG is language independent.

Figure 4.7 represent the eCFG generated for the BubbleSort method
implemented in Java (Listing 4.1). Graph on the figure displays only
universal nodes contained in corresponding fragment of eCST and con-
nected during the transformation of eCST to eCFG. Two elliptic nodes
(BEGIN BubbleSort and END BubbleSort) are representing entry and exit
points to the BubbleSort method. These nodes are not universal nodes or
part of eCST concept. They are included to play role of real nodes from
the set of nodes that can represent entry and exit points of the method or,
more generally, function.

82

4.2. SSQSA INTERNAL SOURCE CODE REPRESENTATION

Figure 4.7: eCGF representing BubbleSort method
Slika 4.7: eCFG reprezentacija BubbleSort metoda

83

CHAPTER 4. SSQSA FRAMEWORK

4.2.2.2 eGDN: enriched General Dependency Network

As a part of presented concept software networks are built among the subset
of eCST nodes. From a set of eCST representations, each representing
one compilation unit, software networks can be extracted independently on
input programming language. Extracted networks reflect internal structure
of a software system at different levels of abstractions (section 4.3.1.2). In
that way generated GDN is called eGDN: enriched General Dependency
Network.

On figures 4.8 and 4.9 software networks generated for one simple ex-
ample written in two different languages, Java and C#, are provided. Ex-
amples contain equivalent implementation of basic functionality related to
a student placed in a class Student. Class Student extends a class Person
and implements an interface IStudent. Implementations written in both
languages consist of 1 package, 5 classes, 1 interface, and 25 methods.

Figure 4.8: Software network generated for
Student example written in Java (appendix
B, Listing B.1)
Slika 4.8: Softverska mreža generisana za
primer Student napisan u Javi (appendix
B, Listing B.1)

Figure 4.9: Software network generated for
Student example written in C# (appendix
B, Listing B.2)
Slika 4.8: Softverska mreža generisana za
primer Student napisan u C# (appendix B,
Listing B.2)

Source code of the example is provided in appendix B. Listing B.1 con-
tains implementation of Student example written in Java, while correspond-
ing eGDN is provided on Figure 4.8. Similarly, Listing B.2 contains source

84

4.2. SSQSA INTERNAL SOURCE CODE REPRESENTATION

code of Student example written in C#, while corresponding eGDN is pro-
vided on Figure 4.9. Example and figures taken from [Savić et al., 2012].

Beside keeping semantic equivalence, the aim of the example requires
keeping structural equivalence and the same hierarchy among entities. In-
put languages were carefully selected to satisfy these requirements. As pre-
sented on figures 4.8 and 4.9 eGDN Extractor extracted isomorphic software
networks.

Software networks for real-life applications are usually very complex.
However, simple example of software network representing a real-life project
is Static Call Graph of a small Scheme Project (GTK1 LOC 5.000). This
network contains 35 nodes and 18 links which means that 35 functions are
defined, and 18 function calls are made. Figure 4.10 taken from [Kolek, 2014].

Figure 4.10: SCG for GTK Scheme project
Slika 4.10: Graf statičkih poziva za GTK Scheme projekat

1GTK, 2015: http://www.gnu.org/software/guile-gtk/

85

CHAPTER 4. SSQSA FRAMEWORK

Another example is Unit Collaboration Network (UCN) of a middle-
size in-house Delphi project (LOC 100.000) which consists of 465 nodes
(Units) and 816 links between them (Figure 4.11). Example taken from
[Rakić et al., 2013b].

Figure 4.11: UCN of middle-size in-house Delphi project
Slika 4.11: Mreža saradnje jedinica za interni Delphi projekat srednje veličine

More results of application of eGDN Generator and SSQSA framework
in general are provided in Chapter 5.

86

4.3. SSQSA COMPONENTS

4.3 SSQSA components

As described in an introductory section of this chapter, SSQSA compo-
nents can be categorized according to their role in the framework in three
categories. First category of components is responsible for generation of in-
ternal source code representations and their manipulation in order to enable
language independency of integrated analyses. Integrated static analysers
form the second category, while external higher level tools integrated into
the framework to use analyses results make third category.

4.3.1 Generators and manipulators of SSQSA internal rep-
resentations

According to described categorisation of the internal representations, gen-
erators of these representations can also be divided in two levels. On the
first level, eCST Generator is used to produce eCST, while the second
level consists of generators of internal representations derived from eCST.
Manipulators of internal representations (eCST Adaptor and eCST Anti-
Generator) make the third level in the first category of the components.

4.3.1.1 eCST Generator: enriched Concrete Syntax Tree Gen-
erator

The most important tool in SSQSA environment is the eCST Generator.
The responsibilities of the eCST Generator are to generate the universal
representation of the source code independent of input programming lan-
guage and to export generated eCST in XML format.

Precondition to support any language by SQSSA is to generate appro-
priate parser for that language. Recommendation is to use ANTLR parser
generator 2. This parser generator provides simple, declarative-like syntax
for insertion of imaginary nodes in the syntax tree. This mechanism is used
to add universal nodes as special type of imaginary nodes to the syntax tree
in order to produce eCST.

2http://www.antlr.org

87

CHAPTER 4. SSQSA FRAMEWORK

Figure 4.12: Architecture of the eCST Generator component
Slika 4.12: Arhitektura eCST Generatora

When scanner and parsers for producing eCST have been generated, in-
put source code can be processed. After submitting an input file containing
the source code written in any of supported languages, an input language
will be recognized based on file extension and an appropriate scanner and
parser will be called. This is enabled by the storing of all needed infor-
mation about the input language to shared XML storage. XML scheme
for storing information about languages is provided in Figure 4.13. From
the shared data storage, eCST Generator reads all needed data about the
language and invokes corresponding scanner and parser. As a result, the
source code will be translated to an eCST intermediate representation and
the result will be saved in the form of XML file. These XML files are inputs
for all available tools (Figure 4.12).

88

4.3. SSQSA COMPONENTS

Figure 4.13: XML schema for storing information about supported input languages in XML
format
Slika 4.13: XML šema za smeštanje informacija o podržanim jezicima u XML formatu

For storing of eCST, eCST Generator uses XML schema that was cre-
ated based on standard output for AST used in ANTLR parser generator
(Figure 4.14). In this way we keep all information provided by generated
scanner and parser that can be useful to the further analysis, but also keep
them in widely accepted conventional form.

For each compilation unit one XML file is created. In this form source
code representation do not directly reflect different relations between com-
pilation units even if needed information are present in each eCST. For
complete source code representation we introduce software networks, as
described in section 4.2.2.2, to connect compilation units. Extraction of
software networks is done by eGDN Generator (section 4.3.1.2).

89

CHAPTER 4. SSQSA FRAMEWORK

Figure 4.14: XML Schema for storing eCST in XML format
Slika 4.14: XML šema za smeštanje eCST-a u XML formatu

History of eCST Generator begins with SMIILE tool (section
4.3.2.1) which was the basis for development of the whole SSQSA
framework. Motivation for its development was fulfilment of the
gap in the field of systematic application of software metrics
and corresponding tools in software industry by overcome of
difficulties caused by the weak points of available tools described
in section 3.2.

First version of the SMIILE tool consisted of the first proto-
type of eCST Generator and software metrics calculator . It
supported only two characteristic languages: object-oriented
Java and procedural Modula-2. Currently, more than 10 dif-
ferent paradigm language such are Java, C#, Python, Delphi,
Modula-2, Pascal, C, PHP, JavaScript, COBOL, Scheme, Er-
lang, Tempura, WSL, OWL, etc. are supported. [Rakić, 2010],
[Rakić and Budimac, 2011]

90

4.3. SSQSA COMPONENTS

4.3.1.2 Generators of the internal representation derived from
eCST

As described in section 4.2, eCST is a starting point for deriving eGDN and
eCFG as subordinate internal representations. In this section, generators
of these representations are described.

eCFG Generator: enriched Control-Flow Graph Generator. The
main task of this component is to enrich existing eCST representation with
edges that represent control flow between statements or basic blocks con-
tained in source code. It is done based only on universal nodes. More
particular, algorithm looks for universal nodes representing general state-
ments (e.g. assignment) and statements taking care of control flow struc-
tures (branches, loop, jumps, etc.) as special cases of statements. Here is
important not to omit pre-conditions and post-condition as special cases
of condition in the sub-tree of these structures. Finally these nodes are to
be connected in a directed graph where branches follow possible execution
paths of the program.

General approach for eCFG construction is presented in Figure 4.15.
Result is stored to XML file according to Schema provided in Figure 4.16.
This XML Schema has been adopted from GraphML3: XML based file
format for graph representation and can be described as sub-schema of
official GraphML XML Schema. In SSQSA framework, XML schema shown
in Figure 4.16 is used as a common schema for storing all graph-based
internal representations.

eGDN Generator: enriched General Dependency Network Gen-
erator. From a set of eCST trees, each representing one compilation unit,
eGDN Generator extracts a set of networks which reflect internal structure
of a software system at different levels of abstractions (section 4.2.2.2).

eGDN Generator consists of two sub-components: GDN Extractor and
GDN Filter. From the set of eCST trees GDN extractor constructs struc-

3GraphML, 2014: http://graphml.graphdrawing.org

91

CHAPTER 4. SSQSA FRAMEWORK

Figure 4.15: Construction of eCFG from eCST
Slika 4.15: Konstrukcija eCFG-a polazeći od eCST

ture called General Dependency Network (GDN). GDN is the union of
collaboration networks at different levels of abstractions with added CON-
TAINS links that maintain hierarchy among nodes contained in GDN.
After GDN is extracted, GDN Filter will filter the network and extract the
network at certain dimension and level (section 4.2.2.2).

GDN is incrementally built from a set of eCST trees in two phases and
stored to XML file according to corresponding XML Schema for graph rep-
resentation used in SSQSA framework (Figure 4.16). Analyzers in both
phases traverse each eCST in the set realizing trigger-deduce-action mech-
anism, where triggers are some of eCST universal nodes. The aim of de-
ducing is to determine the source and destination node for a link that
will be created, while actions create one or more GDN nodes and links
[Savić et al., 2014].

92

4.3. SSQSA COMPONENTS

Figure 4.16: XML Schema for storing eGDN in XML format
Slika 4.16: XML šema za smeštanje eGDN-a u XML formatu

93

CHAPTER 4. SSQSA FRAMEWORK

History of this component begins with similar in-house software
network extraction tool named YACCNE [Savić et al., 2011]. It
was built to extract and analyse software networks representing
programs written in Java programming language. By accepting
the eCST as an intermediate representation of the source code
and adapting the implementation, this tool started to support
all languages that are supported by the framework. It becomes
integrated component of SSQSA framework named SNEIPL:
Software Networks Extractor Independent of Programming Lan-
guage [Savić et al., 2014]. This component was still responsible
for extraction and analysis of extracted networks. Therefore
this tool was only one more analyser and GDN was only its own
intermediate representation derived from eCST. After accepting
GDN as common internal representation in SSQSA framework,
renaming it with eGDN, and separating these responsibilities ac-
cording to layers in the framework, SNEIPL tool becomes only
extractor of the networks as an internal representation (eGDN),
and gets the name eGDN Generator. Finally, component in
charge for analysis of generated networks, the other part of orig-
inal responsibility on SNEIPL, is SNAIPL: Software Networks
Analyser Independent of Programing Language (section 4.3.2.2).

4.3.1.3 eCST Manipulators

SSQSA components at this level are involved in manipulating eCST. This
level includes: specific eCST post-processor called eCST Adaptor and the
tool that generates source code from its eCST representation called eCST
AntiGenerator.

eCST Adaptor. Even if the eCST is quite universal representation of
source code, some imperfections caused problems during some analyses.
One of the typical examples is dynamic instantiation in Java.

94

4.3. SSQSA COMPONENTS

Listing 4.2: Dynamic instantiation in Java
Listing 4.2: Dinamičko instanciranje u Javi

String exampleClassName =

getExampleImplClass (); Example example

= (Example)Class.forName(exampleClassName). newInstance ();

On the level of eCST it would be recognized as a function (method) call
with return type of a super-class or interface.

Another difficulty that often appears is related to languages where types
are not statically but dynamically defined.

Listing 4.3: Dynamic types in PHP
Listing 4.3: Dinamički tipovi u PHP-u

$variable = 1;

print gettype($variable)." variable = ".$variable."
";

$variable = "Some string";

print gettype($variable)." variable = ".$variable."
";

There are two common characteristics of described imperfections to be
solved:

• these imperfections do not affect all the tools and their analysis;

• elimination of some imperfections directly on the generated trees
could break the main rule that the eCST is matching the source code.

Therefore, eCST Adaptor which explicitly provides functions to adapt
some aspect of the tree has been introduced. Some of these adaptations
which would damage the content of the input code (example: adding of
determined type of the variable) are done only temporarily by the tool
calling the function while the final eCST stored to XML remains identical
to source code. However, the modified eCST can be stored to the shared
storage if history will be needed.

Each eCST Adaptor function provides stand-alone functionality that
is independent on programming language and depends only on content
and structure of the eCST. An illustrative example is a unit marked as
concrete unit (class, module) in which no function (method, procedure)
has its implementation (block scope in the body of the function does not

95

CHAPTER 4. SSQSA FRAMEWORK

exist or it is empty). This (concrete) unit should become an abstract
unit and concrete unit decl universal node should be replaced by ab-
stract unit decl) independently of an input language. In the case of
dynamic instantiation function call will not be replaced by instan-
tiate, as it is still function call, but this will be simply added so that
analysers recognize this as both: function call and instantiation. These
functionalities serve to analyzer components to solve some inner problems.

Since the adaptations are language-independent, it is possible that some
tools will call the adaptation function for the language in which certain
modification does not make sense. In that case the function will not produce
any result. For example, if we call adaptor to find and adapt tree for
dynamic instantiation for Modula-2 code, function will not find any segment
of the tree to modify. Or in the case of conversion of concrete units to
abstract ones, in some languages it is done already on the level of grammar
because it can be solved on syntax level and it will not be affected by this
function. In some other languages syntax of the language does not enable
to distinguish concrete and abstract units and it has to be done based
on the definition of differences between concrete and abstract units. The
important point in these considerations is that the same definition, the most
logical one from our point of view, is used for adapting the trees representing
all languages. In that way we tend to keep valuable consistency.

eCST AntiGenerator. eCST contains complete source code in sub-trees
of universal nodes including whitespaces and comments. For each token,
line and column are stored as attributes of a XML element representing
a eCST node (Figure 4.14). This enables full reconstruction of the source
code represented by eCST.

eCST AntiGenerator takes eCST representation of the source code,
parses it and produces source code written in original input language. This
functionality will get its value after development of automatic improvement
of the design and/or implementation such is refactoring. In this case, after
required changes on eCST, it will be possible to generate improved source
code.

96

4.3. SSQSA COMPONENTS

4.3.2 SSQSA static analysers

In this section SSQSA static analysers are briefly described.

4.3.2.1 SMIILE:
Software Metrics Independent on Input LanguagE

SMIILE is a software metrics tool [Rakić and Budimac, 2011]. It accepts
set of XML input files containing eCST and eGDN and calculates values
of software metrics that reflect characteristics of corresponding source code
and design. Results are stored to XML and placed to shared storage ac-
cording to XML Schema provided in Figure 4.17.

SMIILE currently supports calculation of several software metrics rep-
resenting different categories of metrics.

Metrics applied on compilation unit level are calculated on the level of
eCST. Metrics reflecting relations between entities are derived from soft-
ware networks. The list of metrics follows.

Size and Complexity of the source code measured on eCST representa-
tion of source code:

LOC : Lines of Code calculated only based on lexical structure;

CC : Cyclomatic Complexity;

WFCU : Weighted Function per Concrete Unit which is paradigm
independent equivalent of Weighted Method per Class (WMC);

H : Halstead.

Design metrics calculated on eCST level even if applicable also on de-
pendency network level:

NOP : Number of Packages;

NOCU : Number of Concrete Units which is paradigm independent
equivalent of of object-oriented Number of Classes (NOC);

NOF : Number of Functions which is paradigm independent equiv-
alent of Number of Methods (NOM).

97

CHAPTER 4. SSQSA FRAMEWORK

Design and complexity metrics reflecting dependencies between enti-
ties involved in software design are calculated on the level of depen-
dency networks. Some of these metrics follow:

CBI : Coupling Between Instances which is paradigm independent
equivalent of Coupling Between Objects (CBO);

NOC : Number of Children;

DIT : Depth of Inheritance Tree;

RFCU : Response for a Concrete Unit which is paradigm indepen-
dent equivalent of Response for a Class (RFC);

LCOF : Lack of Cohesion in Functions which is paradigm indepen-
dent equivalent of Lack of Cohesion in Methods (LCOM);

Henry-Kafura complexity fan-in, fan-out, etc.

All metrics raised to paradigm independency level can be calculated
in the domain where not applicable. In this case these metrics will have
default value so that their appearance does not lead to confusion in software
system analysis and understanding. For example, DIT metric applied to
non-object-oriented code will have value 0 because inheritance does not
exist in non-object-oriented languages.

SMIILE relies on language independency based on eCST representation
of the source code and calculates broad range of metrics with possibility
to extend this set if needed. History of the source code and corresponding
metrics results are stored to shared storage. Source code is stored in the
original format and in its internal representations, while metric results are
stored to XML documents according to already mentioned XML Schema
(Figure 4.17). Furthermore this shared storage enables the usage of results
by other integrated or external tools.

98

4.3. SSQSA COMPONENTS

Figure 4.17: XML Schema for storing values of software metrics in XML format
Slika 4.17: XML šema za smeštanje softverskih metrika u XML formatu

99

CHAPTER 4. SSQSA FRAMEWORK

History. Motivation for development of SMIILE was fulfilment
of the gap in the field of software quality monitoring and assur-
ance. First step in this direction is improvement of applicabil-
ity of software metrics and corresponding tools by introducing a
new tool with enhanced features. Thus, the weak points of avail-
able tools described in section 3.2 were avoided and the stable
foundation for further development was built.

First version of the SMIILE tool [Rakić, 2010,
Rakić and Budimac, 2011] consisted of the first prototype
of eCST Generator and software metrics calculator with
implementation of only two characteristic metric algorithms:
language-independent LOC and CC which is very influenced
by syntax constructs of observed language. Furthermore, it
supported two characteristic languages: object-oriented Java
and procedural Modula-2. The prototype proved that described
approach can lead to expected results but still some obstacles
were to be overcome. The most important one was that
each eCST was representing one compilation unit. Even all
information needed for extraction of facts about dependencies
and relation between units, functions, and other entities were
contained in the eCST, support for extraction still was not
implemented. This was an obstacle for implementation of
design metrics. After integration of SNEIPL tool for extraction
of software networks, later reengineered and named eGDN
Generator (section 4.3.1.2), this problem was solved.

4.3.2.2 SNAIPL: Software Networks Analyser Independent of
Programing Language

As described, in SSQSA framework GDN: General Dependency Networks
representing dependencies between software entities figuring in collected
set of eCST representation of source code is extracted by eGDN Genera-

100

4.3. SSQSA COMPONENTS

tor component (section 4.3.1.2). eGDN Generator provides also filtering of
GDN and extraction of software networks according to parameter repre-
senting perspective (vertical and horizontal) and level of abstraction. Cor-
responding set of design software metrics are calculated on these networks
by SMIILE (section 4.3.2.1).

Based on all supplied facts shared in the XML storage, statistical analy-
ses and visualizations are applicable on software networks (section 2.2.2.2).
SNAIPL tool observes generated networks taking into account metrics re-
sults, visualise them, applies statistical analyses, and finds different anoma-
lies in software system.

History of SNAIPL tool start with integration of Java lan-
guage specific software networks extractor and analyser (YAC-
CNE) [Savić et al., 2011] into SSQSA framework. This tool was
integrated into SSQSA framework as united component called
SNEIPL [Savić et al., 2012], [Savić et al., 2014]. First this was
only one more analyser with its own intermediate representa-
tion of the source code and design in form of a graph (soft-
ware network later named eGDN) but generated from eCST.
After the incorporation and acceptance of eGDN as one of the
common intermediate representations into SSQSA framework,
SNEIPL was re-engineered so that it fulfils the needs of the
framework. SNAIPL remained the analysis component while
extractor (eGDN Generator) has been moved one level up to
the level of generators of intermediate representation.

ONGRAM: ONtology GRAphs and Metrics. Special, domain-specific
case of SNAIPL tool is ONGRAM [Savić et al., 2013]. It observes networks
in the ontology domain. Currently its results are applied only on eCST rep-
resentation of OWL code. Even ontology domain is specific in some sense,
this analyser is to be generalised and integrated with general SNAIPL to
meet domain independency.

101

CHAPTER 4. SSQSA FRAMEWORK

4.3.2.3 SSCA: Software Structure Change Analyzer

SSCA is a software tool that is able to track and analyze changes in the
structure and design of the software product over the time. These changes
occurs during the software evolution as a result of refactoring and reengi-
neering of the software product, but also due to functional changes in the
program.

SSCA takes a set of eCSTs as its input and produces the set of changes
in the program structure. It uses appropriate meta-model which is to be
filled only with data from eCST that are sufficient to apply algorithms
detecting software changes. Since it is done based on the information taken
from eCST, it is completely independent on the programming language.
Detected changes are stored to XML according to a schema given in Figure
4.18. Type of the change can be some of the standard changes such are
move method, move fragment, move field, extract method, etc.

History. Similarly to some other components this tool has his-
tory in the language specific domain. Previously used source
code representation restricted loading data to meta-model only
for C# programming language. After accepting eCST, this tool
achieved language independency of the change analysis which
was the basic goal of this integration. Additional benefit of in-
clusion in the framework is possibility to collaborate with other
tools. One example of this collaboration is tracking changes and
analysis of real effect of these changes to the software quality.
This is possible by comparing values of software metrics before
and after the changes. The first results and experiences on the
SSCA can be found in [Gerlec et al., 2012].

102

4.3. SSQSA COMPONENTS

Figure 4.18: XML Schema for storing detected structural changes in XML format
Slika 4.18: XML šema za smeštanje detektovanih strukturnih izmena u XML formatu

4.3.2.4 LICCA: Language Independent Code Clone Anlysis

As described in section 2, clones in source code can be defined as fragments
of source code which are real duplicates or similar enough (different up to
some level). Clones can be considered as syntactic or semantic duplicates.
Consequently, different techniques can be applied for their detection. Some
of used techniques are token based, tree based, metrics based, but in prac-
tice these techniques are usually combined into different hybrid approaches
to clone detection.

Taking into account nature of eCST representation of source code,
LICCA combines token based and tree based approach. Combined tech-
niques can be categorized as syntax-based and semantic-based. Analysis
relies on universal nodes which contains semantics of marked syntax con-

103

CHAPTER 4. SSQSA FRAMEWORK

structs. Therefore, some of semantically similar code fragments will be
recognized. Additional advantage of this tool is that it is capable to detect
duplicates in fragments of source code written in different languages. For
example, if some code fragment is duplicate to another fragment even if it
is placed in the other component written in some other language it will still
be detected, if the difference is only in the language specific syntax.

Furthermore, having in mind overall potential of SSQSA framework,
next prototype of LICCA tool will include software metric results into clone
detection. Thus, applied hybrid approach will be extended with some of
metrics based technique. Additionally, it is possible to involve graph-based
techniques. Since this tool is based on eCST, it is capable of clone detection
in programs written in different programming languages which gives com-
pletely new possibilities rarely considered in other tools for clone detection.

Detected clones are exported to XML document and stored to shared
storage according to XML Schema provided in Figure 4.19.

Figure 4.19: XML Schema for storing detected code clones in XML format
Slika 4.19: XML šema za smeštanje detektovanih klonova koda u XML formatu

104

4.3. SSQSA COMPONENTS

4.3.3 Peripheral tools integrated in SSQSA framework

Some external tools used in the domains where static analysis can be ap-
plied, are integrated into SSQSA framework as consumers of generated
results. In this section two characteristic and the most prospective compo-
nents are described.

4.3.3.1 External software metrics repository

SMIILE tool was completely integrated with the software metrics repository
that stores metrics data and enables investigation of the Quality Index
[Heričko et al., 2007]. Furthermore, repository gives opportunity to user to
define new composite metrics based on previously calculated values of basic
metrics [Gerlec and Živkovič, 2009], [Gerlec et al., 2011].

This integration provides possibility to import XML metrics history
with the intention to make conclusions based on metrics data and to provide
meaning of the calculated numbers to the end user.

At this point of evolution this component is integrated into SSQSA
framework communicating directly with shared storage without communi-
cation with SMIILE tool. It is also possible to collect results of SSCA in
this repository.

4.3.3.2 Integration with the Testovid

Application of software metrics can significantly improve quality of educa-
tion in the field of computer science. Apart from easier and more consistent
assessment of students’ solutions, a teaching staff acquires additional time
for interactive work with students. This is additional benefit of introducing
of automatic assessment.

The first results and the small example of usage of software metrics in
automatic assessment of the students programming assignment solutions
are given in [Pribela et al., 2012]. Even if the import of metric results gen-
erated by SMIILE tool into the Testovid [Pribela et al., 2011] environment
through XML is fully implemented, there are still many open questions re-
lated to this integration. The one of the weak points is that the instructor

105

CHAPTER 4. SSQSA FRAMEWORK

should use his knowledge and experience to choose appropriate metrics to
be used for the assignment in question. There is no automatically gener-
ated recommendation which metrics are appropriate to express quality of
student solution for some specific problem. In this direction an extensive
research has to be done and afterward some intelligent techniques may be
needed.

Another open direction to full integration is engagement of code clone
analyser and its results in plagiarism detection in students solutions.

4.4 Adaptability of SSQSA framework

Based on all facts presented, it can be noted that eCST Generation, and
indirectly the whole SSQSA framework can be easily adapted to accept
inputs written in new languages. Process for adding support for a new
languages is described in [Kolek et al., 2013]. After adding support for new
language all analyses integrated into SSQSA framework are immediately
applicable to inputs written in this language.

To add support for a new input language we will primarily need the
language specification. The best option is to base further steps on formal
language specification, hopefully represented by language grammar. Since
ANTLR parser generator is the primary tool for adding and maintaining
language supports (and its notation is very similar to EBNF: Extended
Backup-Naur Form notation), it can be concluded that the most appropri-
ate starting point for adding a new language is its specification in a form
of grammar written in EBNF notation. Counterpart example is a language
specification in BNF notation, where left recursion is a natural feature and
repetitions are expressed with recursion. Grammars that contain a left re-
cursion can not be handled by the recommended version of ANTLR parser
generator and hence one who introduce a new language has has an addi-
tional task: to eliminate the left recursion during the translation to ANTLR
notation. More precisely, eCST Generator relies on parser generated by
ANTLR v34 which generates standard LL(*) parsers and consequently can-

4ANTLR3 2015, http://www.antlr3.org

106

4.4. ADAPTABILITY OF SSQSA FRAMEWORK

not handle left recursion in grammar rules [Parr and Fisher, 2011]. The
last version of ANTLR (v4)5 introduces support for left recursion through
adaptive LL(*) parsing [Parr et al., 2014]. However, ANTLR v4 is not
recommended for generation of parsers for the SSQSA framework since it
does not support tree-rewriting: currently ANTLR v3 is the last version of
ANTLR supporting tree-rewrite rules. Although, generation of parser by
ANTLR v3 is recommended, it is not the only possible choice for adding
support for a new language in SSQSA framework (see the following section).

Finding the most ideal language specification, written in EBNF notation
and with LL(1) property is very rare case, because most popular languages
have ambiguous grammars. Still, any language specification can be used.
In that case the process for introducing the language in the framework
consists of the following steps (Figure 4.20):

1. write an ANTLR grammar for the language:

• translate the given language specification to ANTLR notation;

• add rules for syntax tree generation to the grammar (rewrite the
rules);

• add the universal nodes to the syntax tree (extend the rules).

2. generate the parser and the scanner;

3. add the information about the new language required for the auto-
matic invocation of scanner and parser to the XML document con-
taining supported languages.

We illustrate step (1) with a simple example - a rule for while statement
in a Pascal-like language (Listing 4.4).

Listing 4.4: Grammar rule for the while statement
Listing 4.4: Pravilo gramatike za naredbu while

whileStatement : WHILE expression DO statement;

5ANTLR4 2015, http://www.antlr.org

107

CHAPTER 4. SSQSA FRAMEWORK

Figure 4.20: Steps for introducing support for a new language in the SSQSA framework
Slika 4.20: Koraci za uvod̄enje podrške za novi jezik u SSQSA okvir

We rewrite the rule (Listing 4.5) by adding syntax tree generation (Fig-
ure 4.21).

Listing 4.5: Rewriting the rule
Listing 4.5: Prepisivanje pravila

whileStatement : WHILE expression DO statement

-> ^(WHILE expression DO statement) ;

By adding universal nodes (Listing 4.6) we convert syntax tree to the
eCST: enriched Concrete Syntax Tree (Figure 4.22)

Listing 4.6: Enrichment of the tree
Listing 4.6: Obogaćivanje stabla

whileStatement : WHILE expression DO statement

108

4.4. ADAPTABILITY OF SSQSA FRAMEWORK

-> ^(LOOP_STATEMENT

^(KEYWORD

^(WHILE

^(CONDITION expression)

^(KEYWORD DO)

Statement

)

)

);

Figure 4.21: Syntax tree before
enrichment
Slika 4.21: Sintaksno stablo pre
obogaćivanja

Figure 4.22: Syntax tree after enrichment
Slika 4.22: Sintaksno stablo nakon obogaćivanja

When all rules are defined as described, scanner and parser can be
generated and the language can be included in the framework.

109

CHAPTER 4. SSQSA FRAMEWORK

4.4.1 Role of the parser generator

Syntax trees are usually secondary product of language processing tools
such are parser, compiler, etc. These tools could be produced automati-
cally by generators or developed manually implementing the language rules.
Automation of parser generation process has its pros and cons. It can be
justified by amount of work needed to implement a new parser. In con-
trast, we have constraints given by functionalities provided by automatic
generation tools.

To justify the usage of parser generator we can provide overview of
number of lines of code needed to produce a grammar and to implement
full scanner and parser. If we consider the example provided in section 4.4
(while statement), we can see that the rule without tree generation rules
is contained in one line of code, with flat tree generation it occupies two
lines; and when we add universal node for tree enrichment it takes 6 lines.
The parser method generated for this rule takes 43 lines without eCST
generation and 85 including it. These are all lines of code excluding empty
lines and comments. In the case of manual implementation this size could
eventually be reduced but not importantly.

Parser generators take a language specification usually provided as a
language grammar as its input and return parser for that language as an
output. This grammar is provided in some default form (e.g. EBNF Ex-
tended Backus-Naur form) or in some generator-specific notation. These
generators usually have embedded mechanisms to generate syntax trees
as internal structures. Additionally, these mechanisms can be extended
with mechanism for enrichment of syntax trees with additional information
about language or input source code. This opportunity is our key instru-
ment. In this thesis, parser generator is used to generate scanner and parser
for each supported language.

To be used by SSQSA framework parser generator has to fulfil certain
requirements. The following characteristics of parser generator are required:

Set of supported target languages. eCST Generator and the most of
SSQSA components are written in Java programming language. There-
fore, it is desirable to generate scanner and parser written in Java.

110

4.4. ADAPTABILITY OF SSQSA FRAMEWORK

Rules notation. Language syntax can be specified using different nota-
tions. It is important that notation used by parser generator is easy
to learn and similar common or standard notations.

Syntax tree generation. Parser generated by parser generator has to be
able to extract syntax tree as intermediate source code representa-
tion. This is crucial facility of parser generator to be used in SSQSA
framework.

Adaptability of content of syntax tree. Apart from generation of syn-
tax trees it is important that parser generator supports modifications
of syntax trees (rewriting) by affecting their content. It is important
to enable:

• inserting imaginary nodes into the trees;

• inclusion of complete source code containing both code and com-
ments.

Rewriting notation. Parser generators, if support rewriting of syntax
trees, require implementation of rewriting rules in target language.
More convenient option is to enable definition of rewriting rules using
common notation.

Structure of generated syntax tree To be used by SSQSA framework,
parser generator should produce syntax trees in a structure which is
easily convertible to standard SSQSA eCST output in XML format
(Figure 4.14)

Parsing algorithm. With respect to parsing algorithms, parsers can be
generally categorised as top-down and bottom-up ones. The most
characteristic represent of top-down parsing algorithms is LL(x). It
analyses the input from Left to right, performing Leftmost derivation
of it, while x denotes that parser uses x tokens of look-ahead when
parsing a sentence (e.g. LL(1), LL(k) and LL(*)). The most charac-
teristic bottom-ut algorithm is LR. It processes the input from Left
to right and produces a reversed Rightmost derivation. Variations

111

CHAPTER 4. SSQSA FRAMEWORK

of this algorithm are LARL: Look-Ahead LR and SLR: Simple LR
parsing [Aho et al., 2006].

According to fulfilment of these requirements, it is possible to determine
possibility of usage of each available parser generator in SSQSA framework.
Table 4.4 provides overview of parser generators the most similar to ANTLR
considering described characteristics.

Based on described advantages of ANTLR comparing to other parser
generators, ANTLR is recommended parser generator for integration of
support for a new language in SSQSA framework. The main advantage is
its notation for specifying the rules for generation and enrichment of syntax
trees by imaginary nodes. There are some parser generators that do not
enable generation of the code for producing syntax trees, or they provide
building only basic syntax trees without possibility to affect its content
or structure. Some other parser generators provide possibility to enrich
the syntax tree, even to change the structure of the trees, but changes are
possible at the level of implementation in the target programming language
(Coco-R, JavaCC, etc). In ANTLR these changes are at the declarative
level and require only simple changes in the grammar rule.

In this direction, further automation of the grammar development and
parser generation process would be valuable. This is possible by involving
additional tools as described in [Porubän et al., 2010]. The aim of this tool
is to make easier development of domain-specific languages. It provides
graphical interface [Baciková et al., 2013], and generation of the grammar
directly from the graphical representation of the language. Further steps
involve selected (third-party) parser generator to generate parser of the lan-
guage. There are two precondition for involving this tool to improve SSQSA
adaptability: (1) to enable development of general purpose languages, and
(2) to involve ANTLR (or alternative parser generator with required charac-
teristics) in generation of the parsers. With two additional characteristics,
this tool would become candidate to be recommended as default tool for
introducing support for new language in the SSQSA framework.

Finally, recommendation to use ANTLR parser generation does not
mean limitation to use only this mechanism to produce the parser. If some-

112

4.4. ADAPTABILITY OF SSQSA FRAMEWORK

one want to add support for some language and has a mechanism to generate
syntax tree with possibility to enrich the tree by imaginary nodes, in that
case we do not need to start writing grammar from the scratch and passing
through presented steps. In this case it is more painless to modify existing
mechanism and to adapt the generated intermediate representation to be-
come convertible to eCST. One such example is integration of support for
Erlang into SSQSA environment [Páter-Részeg, 2013], [Tóth et al., 2015]
by transforming semantic graph produced by RefactorErl6 tool.

6RefectorErl, 2014 http://plc.inf.elte.hu/erlang/

113

CHAPTER 4. SSQSA FRAMEWORK

P
a
rser

J
a
v
a

ta
rg

et
R

u
le

S
T

:
A

d
a
p

t.
o
f

R
ew

ritin
g

S
tru

ctu
re

P
a
rsin

g
g
en

era
to

r
la

n
g
u

a
g
e

n
o
ta

tio
n

S
y
n
ta

x
T

rees
g
en

era
tio

n
S

T
co

n
ten

t
o
f

S
T

a
lg

o
rith

m

A
N

T
L

R
a

+
E

B
N

F
+

+
D

ecla
ra

tiv
e

+
L

L
(*

)

C
o
co

-R
b

+
E

B
N

F
+

req
u

ires
im

p
lem

en
ta

-
tio

n

Im
p

era
tiv

e
A

d
a
p

ta
b

le
L

L
(1

)

J
a
v
a
C

C
c

+
E

B
N

F
+

+
d

ecla
ra

tiv
e

/
im

p
era

tiv
e

+
L

L
(k

)

L
isa

d
+

B
N

F
+

+
d

ecla
ra

tiv
e

a
d

a
p

ta
b

le
L

L
,

S
L

R
,

L
A

L
R

,
L

R

T
a
b

le
4
.4

:
O

v
erv

iew
o
f

p
a
rser

g
en

era
to

rs
co

n
sid

erin
g

req
u

irem
en

ts
o
f

S
S

Q
S

A
fra

m
ew

o
rk

T
a
b

ela
4
.4

:
P

reg
led

g
en

era
to

ra
p
a
rsera

u
zim

a
ju

ći
u

o
b

zir
za

h
tev

e
S

S
Q

S
A

o
k
v
ira

aA
N

T
L

R
v
3
,

o
n
lin

e
2
0
1
5
,

h
ttp

:/
/
w

w
w

.a
n
tlr3

.o
rg

/
bC

o
co

-R
,

o
n
lin

e
2
0
1
5

h
ttp

:/
/
w

w
w

.ssw
.u

n
i-lin

z.a
c.a

t/
C

o
co

/
cJ

ava
C

C
,

o
n
lin

e
2
0
1
5

h
ttp

s:/
/
java

cc.java
.n

et/
dL

isa
,

o
n
lin

e
2
0
1
5
,

h
ttp

:/
/
la

b
ra

j.feri.u
m

.si/
lisa

/

114

4.4. ADAPTABILITY OF SSQSA FRAMEWORK

4.4.2 Demonstration od Adaptability

The aim of this section is to demonstrate the adaptability of SSQSA frame-
work to a new language. Hence, characteristic issues during integration of
characteristic languages representing corresponding paradigm will be de-
scribed and illustrated by appropriate examples. The basic idea is to mark
all constructs with common semantic by the same universal node. Following
this idea all units (modules, classes, etc.) are marked by corresponding unit
node, all functions (procedures, functions, methods, etc.) are marked by
function node, all loop statements are marked by universal node for loops,
similar holds for all branch statements, etc. General approach applied
for mapping language constructs to universal nodes is described in section
4.2.1.1, while more details about mapping certain constructs of supported
languages to universal nodes is provided in appendix A.

4.4.2.1 Procedural languages

As described in section 2.3, the main concept of procedural languages is
splitting program functionality into smaller functional units (procedures).
It is not a rare case that procedural languages support modularisation as a
mechanism to group logically related functional units into modules. Rep-
resents of pure procedural languages supported in SSQSA framework are
Modula-2, Pascal, and C. These languages are at the moment in different
stages of support. While Modula-2 is fully integrated in the framework,
Pascal is still in testing phase. C is in the last phase of introducing of
universal nodes in the grammar.

Modula-2 was one of the first languages fully-supported by eCST Gener-
ator. Mapping of language constructs has been made according to semantics
and natural flow of thoughts. Modula-2 is strongly typed and modularised
language with strict syntax rules which enabled setting of baselines and
fundamental guidelines for further mappings.

There are some noticeable characteristics of Modula-2:

• Packaging and other constructs close to object-oriented programing
are not supported.

115

CHAPTER 4. SSQSA FRAMEWORK

• Even there is no object-oriented constructs in Modula-2, appearance
of definition and implementation modules enabled distinguishing be-
tween interface and concrete units.

• Main blocks are code fragments that do not belong to functions and
procedures. They usually serve as the initialisation fragments of mod-
ules. These fragments are to be distinguished from functions and pro-
cedures but, according to their roles in program operation, in some
analyses they has to be observed as main functions. Therefore, appro-
priate marking of these code fragments is very important. Example
of main block is given in Listing 4.7.

Listing 4.7: Simple example written in Modula-2
Listing 4.7: Jednostavan primer napisan u Moduli-2

MODULE Example;

FROM Terminal2 IMPORT WriteString , WriteLn;

PROCEDURE DoNothing ();

BEGIN

WriteString ("This procedure is doing nothing ,...)

WriteString (" except of writing this message .");

END DoNothing;

BEGIN (* Main block *)

DoNothing ();

END Example.

• Observation of records as constructs close enough to object-oriented
concepts of classes and objects has been left as an open topic for
further discussion. Usage of records can be demonstrated by example
given in Listing 4.8

Listing 4.8: Records in Modula-2
Listing 4.8: Slogovi u Moduli-2

TYPE

FullName = RECORD

FirstName : ARRAY [0..12] OF CHAR;

Initial : CHAR;

LastName : ARRAY [0..15] OF CHAR;

END;

116

4.4. ADAPTABILITY OF SSQSA FRAMEWORK

Date = RECORD

Day , Month , Year : CARDINAL;

END;

Person = RECORD

Name : FullName;

City : ARRAY [0..15] OF CHAR;

State : ARRAY [0..3] OF CHAR;

BirthDay : Date;

END;

VAR

Self ,Mother ,Father : Person;

Important notice related to mapping of Modula-2 constructs to eCST
universal nodes is that all mappings are manageable already on grammar
level without any eCST Adaptor actions.

Fundamental mapping established in Modula-2 is used in further map-
pings, not only for other procedural languages, but for all other languages
integrated in SSQSA framework.

4.4.2.2 Object-oriented languages

Object-oriented approach brings many new language constructs. New uni-
versal nodes are to be involved to mark inheritance, instantiation and other
object related syntax elements. Still, there are much more similarities be-
tween procedural and object-oriented languages than differences. As a rep-
resent of object-oriented languages Java is fully integrated in the framework,
while C# is still in a testing phase.

When Java programming language is observed, many language con-
struct are to be mapped very similarly as it was done in case of Modula-2.
Some characteristic mappings are the following:

• There are packages and appropriate universal node is introduced.

• Classes and interfaces are mapped to the same universal nodes as im-
plementation and definition modules in Modula-2, respectively. Still,
Java introduces one more kind of units: abstract unit.

117

CHAPTER 4. SSQSA FRAMEWORK

• Methods are marked by the same node as functions and procedures.
Main block is placed to main method which means that characteristic
main block code fragment does not exist in Java, but if it appears in
other object-oriented languages the same approach as used in Modula-
2 can be applied.

• Method calls are marked by the same node as function and procedure
calls. The special case of method call can be recognized as dynamic
instantiation. This is an issue which is not resolvable on level of lan-
guage grammar, but by the eCST Adaptor (section 4.3.1.3). Example
code is provided in Listing 4.9.

Listing 4.9: Dynamic instantiation in Java
Listing 4.9: Dinamićko instanciranje u Javi

String exampleClassName = getExampleImplClass ();

Example example

= (Example)Class.forName(exampleClassName). newInstance ();

4.4.2.3 Functional languages

As explained in section 2.3, functional languages can be described as syn-
tactic interfaces to lambda calculus with less or more improvements with
additional constructs. SSQSA fully supports Scheme as one of dialects of
Lisp. Even pretty simple functional language, Scheme covers all charac-
teristics of lambda calculus and therefore it is demonstrative enough to
show supportability of functional constructs by SSQSA framework. To
demonstrate deeper support of functional paradigm with all accompany-
ing difficulties, Erlang is in process of integration in SSQSA framework.
Integration of Erlang has introduced alternative approach for adding new
language in SSQSA framework [Páter-Részeg, 2013], [Tóth et al., 2015].

Some characteristics of Scheme detected during its inclusion into SSQSA
framework follow.

• Scheme is dynamic language where types are not explicitly defined in
the code. Types are resolved in eCST Adaptor.

118

4.4. ADAPTABILITY OF SSQSA FRAMEWORK

• Packaging is enabled by manipulation of libraries (Listing 4.10)

Listing 4.10: Packaging in Scheme
Listing 4.10: Paketi u Scheme-u

(library (example-lib) (export example-function)

(import example-lib-import)

(define example-function 0))

• Units (concrete, abstract, and interface ones) are not defined. Fuc-
tions are contained in package (i.e. library)

• There is not a certain point where the running of the program starts.
Any of the functions can be called and executed. Therefore existence
of a main block or main function is not a subject of discussion.

• Tail-recursive calls are used a mechanism to simulate loops, but these
recursive calls were not marked as loop statements but as function
calls to keep consistency with other languages. After analysis of the
example given in Listing 4.11, it is clear why is this construct marked
as a function call.

Listing 4.11: Recursive calls in Scheme
Listing 4.11:Rekurzivni poziv u SCheme-u

(let los ((i n) (res ’()))

(if (< i 0)

res

(los (- i 1) (cons (* i i) res)))))

This construct is not marked as a loop statement because in other
languages which support recursive call, these calls are not marked as
loops. This was subject of consideration but this issue was postponed
to the analysers and generators of specific representations. These
algorithms detect loops in call graphs and other code representations
appropriate for observing these cases. This deeper consideration of
the recursion over the languages resulted with first ideas for specific
and new complexity metrics [Rakić et al., 2013a].

119

CHAPTER 4. SSQSA FRAMEWORK

4.4.2.4 Mixed paradigm languages

Many languages, even designed to be dedicated to one paradigm, during the
evolution introduced elements of other paradigms. Thus, recently lambda
calculus has been introduced in Java. On the other hand some languages
are designed to be mixed paradigm languages. SSQSA fully supports Delphi
as an example of mixed-paradigm programming language. Another mixed
paradigm language, Python, is currently in the testing phase.

Delphi programming language mixes procedural and object-oriented
programming. This means that syntax of Delphi enables writing programs
in both styles (e.g. creating modules, but also classes and interfaces). After
previous mapping for one procedural (Modula-2) and one object-oriented
language (Java) has been introduced, mapping of Delphi constructs was
quite a simple task. Still, some characteristics of the language were no-
ticed.

• Delphi is not case-sensitive.

• Similarly to Modula-2, declarations are separated from the imple-
mentation, but in Delphi it is not easy to recognize (at the grammar
level) which implementation belongs to which declaration. This re-
quired additional effort to be resolved. Code example is given in
Listing 4.12.

Listing 4.12: Example of unit written in Delphi
Listing 4.12: Primer jedinice napisane u Delphiu

unit ExampleUnit; interface

uses

Windows , Messages , SysUtils , Variants , Classes ,

Graphics , Controls , Forms , Dialogs , StdCtrls;

type

exampleTForm = class(TForm);

exampleLabel: TLabel;

exampleButton: TButton;

procedure exampleButtonClick(Sender: TObject);

private

120

4.4. ADAPTABILITY OF SSQSA FRAMEWORK

{ private declarations }

public

{ public declarations }

end;

var

exampleForm: exampleTForm;

implementation

{$R *. dfm}

procedure exampleTForm.exampleButtonClick(Sender: TObject);

begin

exampleLabel.Caption := ’Hello World’;

end;

end.

4.4.2.5 Script languages

As described in section 2.3, script languages are designed to be used for writ-
ing application extensions executable in particular environment. Everyday
examples are extensions of web pages written in some script language to
extend the functionality of a web page and to be executed in a browser or
on the web server. However, it is not a rare case that script languages mix
different paradigms.

Representatives of script languages (in testing phase of the integration)
in the SSQSA framework are PHP and JavaScript. JavaScript is designed
for development of client-side web functionality. PHP is programming lan-
guage which can be used as general-purpose language, but it is designed
for development of server-side of web applications. It combines several pro-
gramming paradigms such are imperative, procedural, functional, object-
oriented, etc. There are several characteristics of PHP those are important
for mapping of code written in this language to eCST.

• Packaging and modularisation are not explicitly enabled, but devel-
opers often simulate this by:

1. Placing all elements that logically belong to the same module to
one file simulating modularisation;

121

CHAPTER 4. SSQSA FRAMEWORK

2. Placing all files containing units logically belonging to one pack-
age to the same folder simulating packaging.

• Main block is expressed in a form of sequence of statement at top-
level scope. It is not explicitly delimited by separators, but all code
placed out of all available functions (e.a. methods) belongs to main
block of corresponding unit. In the example in Listing 4.13 function
call is the only statement in the main block.

Listing 4.13: Example written in PHP
Listing 4.13: Primer napisan u PHP-u

<?php

function writeMsg () {

echo "Hello world!";

}

writeMsg ();

?>

• Types are dynamically assigned and this issue is like in case of Scheme
resolved in eCST Adaptor. It is important that implementation of
this algorithm is language independent and that there exists only
one implementation for marking types for all supported languages.
Regardless the language (e.g. Scheme or PHP) types are assigned
universally.

4.4.2.6 Legacy languages

Legacy languages are very specific. COBOL is one of the most present
legacy language and as such it is represent of legacy languages integrated
in SSQSA framework. COBOL is primarily an imperative language, but
during the decades it was extended by language constructs to support struc-
tural and object oriented programming. However, conventional language
constructs are the most interesting in this research because modern con-
structs are already covered. Hence, support for COBOL was not fully
introduced, but only its core. However, the most characteristic aspects of
language are covered and tested on small examples.

122

4.4. ADAPTABILITY OF SSQSA FRAMEWORK

Some of characteristic facts about basic versions (e.g. COBOL-68) of
COBOL are the following ones:

• The most difficult step in integration of COBOL in SSQSA framework
was writing a grammar because of the specific nature of the language.
One of the reasons is very rich vocabulary of the language (set of re-
served words, keywords, operators, etc.) which made a problem with
generation of scanner because of limitations set by ANTLR parser
generator.

• COBOL program is divided into divisions. These divisions seman-
tically correspond to certain constructs in modern languages. For
example, procedure division corresponds to concrete unit.

• In the rich vocabulary of the language, semantics of some constructs
is not very obvious. For example, branching and loop statements have
unusual and sometime not so obvious syntax. For example, to make
branching in COBOL some easily recognizable constructs such are
when, if, on, etc. are used, but also end-of-page, invalid key,
etc. Example of usage of invalid key is given in Listing 4.14

Listing 4.14: Branch statement written in COBOL
Listing 4.14: Naredba grananja napisana u COBOL-u

READ FILENAME NOT INVALID KEY

perform good-read INVALID KEY

perform bad-read

END-READ

• COBOL supports explicit jumps such is go-to.

4.4.2.7 Specification languages

Specification languages can be described as formal languages used in early
phases of software development process to formally specify product prop-
erties. Representative specification language fully integrated in the SSQSA

123

CHAPTER 4. SSQSA FRAMEWORK

framework is Tempura. It is formal specification language and can be de-
scribed as syntactic interface to ITL: Interval Temporal Logic. ITL rep-
resents First Order Language extended by temporal expressions. It is de-
signed for specification of systems by formal description of time intervals
which represent sequence of states. States are mapping variables to values.

Tempura is a logical language, but also procedural because it is possible
to define functions representing ITL formulae. Code fragment given in
Listing 4.15 represents one function written in Tempura. This function
defines an interval consisting of one state. Consequently the length of the
interval is equal to 0 (len=0). Formula is true on that interval if in the
initial state (the only one) X has value of 1 (X=1).

Listing 4.15: Simple example written in Tempura
Listing 4.15: Jesdnostavan primer napisan u Tempuri

define example () = {X = 1 and len (0)}.

Furthermore, Tempura has many other characteristics similar to char-
acteristics of dynamically typed procedural language. For example, state
and static variables characteristic for temporal formulae can be observed as
variables and constants. Other example is operator chopstar which can be
described as repeated self-composition of an interval and which is observed
as loop statement. Example that illustrate usage of chopstar operator is
GCD:Greatest Common Divisor (Listing 4.16).

Listing 4.16: GCD example in Tempura
Listing 4.16: GCD primer napisan u Tempuri

define gcd(M, N, R) = {

exists Mt, Nt: {

Mt = M and

Nt = N and

fin(R = Nt) and

halt(Mt = 0) and

chopstar{

skip and

(next Mt) = Nt mod Mt and

(next Nt) = Mt

} and

always(format ("M=%d, N=%d\n",Mt , Nt))

}

}.

124

4.4. ADAPTABILITY OF SSQSA FRAMEWORK

Therefore, translation of Tempura code to eCST was highly influenced
by the experience gained during integration of procedural languages.

4.4.2.8 Intermediate languages

Intermediate languages are used to represent input code in an intermedi-
ate form in process of program translation, transformation, migration, or
modernisation. For example, WSL: Wide Spectrum Language is designed
to be intermediate language used for program translations and transfor-
mations in reverse engineering and software modernisation. It contains
low-level and high-level constructs and code written in both, low and high
level languages, can be expressed in WSL. WSL is integrated in the SSQSA
framework as a representative of intermediate languages and its testing is
in progress.

From the perspective of program structure and simplicity of syntax it is
similar to scripting languages. An illustration is given in Listing 4.17 which
contains GCD example in WSL. Program is sequence of statements and has
mainly linear structure. It is dynamic, weakly typed language which does
not support object-oriented concepts and modularisation. Main difficulties
met during translation of WSL code to eCST are related to packaging and
modularisation, and to types which are not explicitly assigned. Both prob-
lems can be resolved in eCST Adaptor, and solution and its implementation
is unique for all languages with the same characteristics.

Listing 4.17: Example in WSL
Listing 4.17: Primer napisan u WSL-u

WHILE x <> y DO

IF x >= y THEN

x := x - y

ELSE

y := y - x

FI

OD

125

CHAPTER 4. SSQSA FRAMEWORK

4.4.2.9 Domain-Specific languages

Domain-specific languages are designed to satisfy needs related to certain
domain. One of the important domains nowadays is knowledge-description.

OWL2: Web Ontology Language is a declarative, domain-specific knowl-
edge description language. It has a functional-style syntax and formal se-
mantics. These characteristics distinguish OWL2 from languages already
supported by SSQSA framework. Additionally, OWL2 axioms represent
explicitly stated relations among ontological entities, but there are no ex-
isting universal node for marking relations. Therefore, new universal nodes
had to be introduced. These nodes are initially related closely to ontology
domain.

Following procedure for introduction of new nodes described in section
4.2.1.1 three domain-specific universal nodes that denote different cate-
gories of explicitly stated relations in general are defined:

• binary relation (br) marks binary relations;

• symetric relation (sr) marks symmetric n-ary relations;

• partially known binary relation (pnbr) marks binary relations
in which one of the arguments is not known at the moment.

An illustrative example for binary relation is SubClassOf relation which
denotes that one class is a subclass of another one (Listing 4.18).

Listing 4.18: Binary relation in OWL2
Liting 4.18: Binarna relacija u OWL2

SubClassOf (:C :CPP))

In OWL2 binary relation marks all OWL2 relations that denote
subsumptions and assertions. The symetric relation universal node
is associated with relations indicating the equivalent and disjoints classes,
same and different individuals, and equivalent and disjoint object prop-
erties. The partially known binary relation universal node marks
object property domain and object property range relations.

126

4.5. EXTENDABILITY OF SSQSA FRAMEWORK

The newly introduced universal nodes are currently used only as domain-
specific universal nodes for the eCST representation of ontological descrip-
tions. However, they can be used to mark explicitly stated binary and
symmetric relations in other descriptive languages as well. Explicitly stated
relations among entities in already supported imperative programming lan-
guages are marked with specific, more concrete universal nodes, such as
extends and implements. Those universal nodes can be viewed as sub-
concepts of the binary relation universal node. Therefore, usage of
these nodes has to be observed with special attention in the future in order
to keep the set of universal nodes as minimal as possible having in mind
procedure described in section 4.2.1.1

4.5 Extendability of SSQSA framework

When eCST and derived representations are generated all available analy-
ses are applicable for all supported languages. Furthermore, set of analysers
is extensible by integration of new analyses. Adding support for new anal-
ysis means implementing corresponding algorithm over an internal code
representation. If this algorithm is to be implemented on some of internal
representation derived from eCST than it is enough to implement it. If
implementation of the algorithm requires traversing of eCST than, to add
support for this analysis in SSQSA framework the following steps are to be
followed [Kolek et al., 2013]:

1. Analyse the set of available universal nodes from the catalog of nodes
and determine the role of each one in the algorithm to be imple-
mented. In this step it can be concluded that some nodes has to
be included in the set of universal nodes. As defined by the proce-
dure (section 4.2.1.1) nodes are primarily included in the catalog as
domain-specific (or analysis-specific) nodes.

In the procedure of introducing of new universal node, the following
steps can be determined:

127

CHAPTER 4. SSQSA FRAMEWORK

• Consider all supported languages and include new nodes to cat-
alog of nodes;

• Extend existing grammar rules (for all supported languages) as
it is described in section 4.4;

• Generate new scanner and parser classes (for all changed gram-
mars).

2. Traverse the eCST to accomplish the analysis according to parameters
determined in step (1). It is possible that this step will require gener-
ation of some additional analysis-specific internal representation. For
example, techniques relying on control-flow analysis required genera-
tion of eCFG because algorithms are implemented on this represen-
tation.

Important facts are:

• Newly integrated analysis is applicable to all supported languages;

• Integration of new analysis and potential introduction of new univer-
sal nodes must not affect exiting functionality.

4.5.1 Demonstration of extendability

To demonstrate extendability, this section will provide description of char-
acteristic examples of analyses and procedures for their inclusion in SSQSA
framework. There are three characteristic cases of possible new analysis:
syntax-independent, syntax-based, and dependency-based.

4.5.1.1 Syntax-independent analyses

Analyses which do not depend on syntax of input language keep this char-
acteristic when implemented directly on source code or any internal repre-
sentation. Example of such analyses are LOC, SLOC, CLOC and BLOC
metrics (section 2.2.2.1). When calculating these metrics, the only infor-
mation needed is the usage of certain lines in the input file. Calculating of

128

4.5. EXTENDABILITY OF SSQSA FRAMEWORK

these metrics is based on counting all lines in the file, lines containing code,
and lines containing comments. This can be done by parsing input source
code or any representation of it that contains these information. Calcula-
tion of other metrics from this family (PLOC: Physical Lines of Code and
LLOC: Logical Lines of Code) requires additional information related to
language syntax, programming style, etc.

In the SSQSA framework, all analyses are implemented on some of inter-
nal representations of source code. The most appropriate is to implement
LOC, SLOC, CLOC and BLOC metrics on eCST as it contains all required
information:

Figure 4.23: Fragment of eCST representing part of class declaration (class name)
Slika 4.23: Fragment u eCST koji predstavlja deo deklaracije klase (ime klase)

• each node in the tree contains information about its position in the
source code as line and column attributes (Figure 4.14). Example
of fragment of eCST consisting of two universal and one node rep-

129

CHAPTER 4. SSQSA FRAMEWORK

resenting concrete element of the source code (class name) is shown
in Figure 4.23. If attributes line and column has value 1 this means
that this node is an universal node. Otherwise this token appears in
the input source code.

• all concrete syntax elements (tokens) are contained in the tree (section
4.2.1) which means that nothing is omitted (separators, comments,
etc.). Each comment is stored to the eCST as one string as a child
node of corresponding universal node: comment, line comment
and doc comment (Figure 4.24).

Figure 4.24: Fragment of eCST representing comments
Slika 4.24: Fragment u eCST koji predstavlja komentar

In these conditions, an implementation of the algorithm of these metrics
consists of traversing the tree, taking care of content of each line (each line
can contain code, comment, both, or none of it), and accumulating these
values.

For example, Listing 4.19 contains example written in C#. For this ex-
ample these metrics have following values: LOC=32, SLOC=26, CLOC=1

130

4.5. EXTENDABILITY OF SSQSA FRAMEWORK

and BLOC=5. Chapter 5 contains more about application of SSQSA frame-
work on real-life examples.

Listing 4.19: Simple example written in C#
Listing 4.19: Jednostavan primer napisan u C#

namespace CSharpStudent {

using System;

public class Student : Person , IStudent

{

private Mark _mark;

public int StudentNumber { get; set; }

public Student ()

{

}

private decimal CalculateAverageMark(int level)

{

/* Business logic */

return 0;

}

}

public interface IStudent

{

int StudentNumber { get; set; }

}

public class Person

{

public int Age { get; set; }

public string Name { get; set; }

public string Surname { get; set; }

}

}

4.5.1.2 Syntax-based analyses

The characteristic of syntax-based analyses is that they rely on syntax of
input language. For example, calculation of all complexity metrics need
information about concrete syntax elements independently of the fact if
it will be done directly on the source code or based on some of internal
representations.

131

CHAPTER 4. SSQSA FRAMEWORK

An illustrative example of syntax-based analyses is Halstead metrics.
It expresses program size and complexity (section 2.2.2.1). Calculation of
Halstead metrics are based on number of occurrences of the operators and
the operands.

In SSQSA environment the calculation of Halstead metrics is imple-
mented on eCST. While traversing the tree, the implemented algorithm
must count the total and distinct number of occurrences of the operators
(keywords, operators, and separators) and the operands (variables, con-
stants, types, and directives).

To recognize keywords, operators and separators the algorithm for com-
puting Halstead metrics uses keyword, operator and separator uni-
versal nodes, respectively. type, builtin type, directive and const
universal nodes are used to identify operands. Initial test cases were se-
lected in that way that generated values can be manually verified. One of
such examples (implemented in Delphi) is given in Listing 4.20. Values of
Halstead metrics generated for this example are given in Table 4.5.

Listing 4.20: Simple example written in Delphi
Listing 4.20: Jednostavan primer napisan u Delphiu

unit Primer;

interface

uses Windows , Messages;

implementation

uses Azbucnik , Stanje , Saradnici , SarFunkcije;

{$R *.DFM}

const a = b + 11;

var x, y, z: integer;

procedure TfBioIstorija.FormCreate(Sender: TObject);

begin

x := y + z;

end;

begin

PrimerProcedure ();

end.

132

4.5. EXTENDABILITY OF SSQSA FRAMEWORK

Metric Value

Distinct Operators (n1) 19
Distinct Operands (n2) 16
Total Operators (N1) 41
Total Operands (N2) 20
Program Vocabulary (n) 35
Program Length (N) 61
Program Volume (V) 312.88626000
Program Level (L) 0.08421053
Program Difficulty (D) 11.87499900
Programming Effort (E) 3715.52420000
Programming Time (T) 206.41801000
Intelligent Content (I) 26.34831800

Table 4.5: Halstead metrics generated for example in Listing 4.20
Tabela 4.5: Halstead metrike generisane za primer u Listingu 4.20

4.5.1.3 Dependency-based analyses

Dependency-based analyses are selected as analyses whose algorithms im-
plicitly depend on syntax but require generation of some additional infor-
mation. More specific example is set of design software metrics reflecting
relationships between software entities. Calculation of these metrics re-
quires existence of code representation reflecting collaboration between the
entities in the code. Implementation of these metrics in SSQSA framework
relies on eGDN representation of the source code (section 4.2.2.2) which is
derived from eCST based on universal nodes (section 4.3.1.2).

For example, DIT metric (section 2.2.2.1) calculates depth of the in-
heritance tree. For these purposes eGDN Generator can filter inheritance
tree as one of possible middle-level horizontal dimension software network
(section 2.2.1). This graph is actually a tree. When inheritance tree is
generated then implementation of DIT metrics consists of traversing the
tree and counting levels in it.

This example is appropriate to illustrate language and paradigm in-
dependence of the implementation. This implementation is immediately
applicable to all supported languages independently if they support inher-
itance or not. If inheritance is not supported, all the nodes of the corre-

133

CHAPTER 4. SSQSA FRAMEWORK

sponding graph will have in and out degrees equal to 0 and the graph will
not contain edges. Therefore, DIT metric will have the value 0. Further-
more, in some specific cases when declarations are separated from imple-
mentations (e.g. in definition and implementation modules in Modula-2)
this metric can have a value different from default one (i.e. 1). Even in
mentioned cases inheritance in not supported this value reflects the real
situation in the source code.

Sub-graph of unit collaboration network (UCN) representing SSQSA li-
braries for manipulation of eCST and eGDN, and eGDNGenerator is shown
in Figure 4.25. This graph is actually inheritance tree of these components.
Maximal depth of inheritance tree (DIT) is 3.

Figure 4.25: Inheritance tree representing SSQSA libraries and eGDGenerator
Slika 4.25: Stablo nasled̄ivanja koje predstavlja SSQSA biblioteke i eGDN Generator

4.6 Summary

SSQSA: Set of Software Quality Static Analyzers is the set of static analy-
sers that are integrated in the framework with the common goal: to achieve
consistent software quality analysis. The main characteristic of all in-
tegrated analysers is the independency of the input computer language.
Language independency is achieved by introducing a new intermediate rep-
resentation of source code eCST: enriched Concrete Syntax Tree. eCST
is designed based on concepts of universal nodes. Furthermore, analysers
in the framework rely on alternative intermediate representations of source
code derived from eCST. In this section, SSQSA framework and its archi-
tecture are described. Furthermore, fundamentals of eCST and description

134

4.6. SUMMARY

of concept of universal nodes are provided and integrated components and
tools are described. Finally, two crucial characteristics of the described
framework are described and demonstrated on examples: adaptability and
extendability.

135

CHAPTER 4. SSQSA FRAMEWORK

136

Chapter 5

Validation and results

In this chapter results of SSQSA framework will be described in two levels.
At the first level validation of the results of the SSQSA framework will
be demonstrated by application of its components and tools is some rep-
resentative projects. At the second level, potential benefits of the SSQSA
framework for the industry and education will be discussed.

5.1 Inspection of SSQSA results

Validation of the results of application of SSQSA framework is a very com-
plex task. Described inconsistency between the results generated by al-
ternative available tools additionally complicates this activity. Therefore,
validity of results generated by SSQSA components is observed i two steps:

Internal consistency check. This validation step is to be done in order
to compare the results generated for the same examples (where pos-
sible) written in different languages as demonstrated in [Rakić, 2010]
and [Savić et al., 2012]. It is clear that this activity is possible only on
small examples as it is usually impossible to find or create equivalent
large systems written in different languages.

External correctness check. In this step the goal is to find language

137

CHAPTER 5. VALIDATION AND RESULTS

specific analysers for each supported analysis and compare their re-
sults with SSQSA generated ones. This is to be done for each lan-
guage and each analysis as described in section 5.1.1.3. According to
conclusions of available tools review (section 3) two important fac-
tors affect this process: (1) inconsistency of the results between two
or more external tools and therefore unreliability of the external re-
sults, and (2) weak support for majority of languages by the tools.
Hence, the main difficulty in this process is related to finding appro-
priate external tool to compare results. Therefore, most of analysers
were externally checked selectively, for languages supported by al-
ternative tools. However, an conclusion about external validity of
SSQSA results for all supported languages can be made based on the
consistency of SSQSA results among languages which was proved by
internal consistency check.

5.1.1 Internal consistency check

Internal validation of results generated by SSQSA components will be
demonstrated following a basic execution scenario as described in section
4.1 and illustrated in the Figure 4.2. Pipes and filters architectural style
[Shaw and Garlan, 1996] is selected to describe the information flow and
collaboration between the components. Following the execution flow, test-
ing process and results (pipes) of the the components (filters) will be de-
scribed.

5.1.1.1 Internal validation of eCST Generator

Precondition for application of any analyser integrated in the SSQSA frame-
work is a generated eCST representation of the source code. Correctness of
the eCST representation is very important for all the analysers. Therefore,
special attention is paid to correctness checking of the eCST generation. To
ensure correctness of the generated eCST, eCSTGenerator has to be under
constant multiple crosscheck. The reason for this are continual language
adaptations and their integrations into the generator.

138

5.1. INSPECTION OF SSQSA RESULTS

For each newly introduced language first testing phase is already in the
step (1) - writing a language grammar (section 4.4). During the process
of writing grammar for a new language, a set of small examples is created
so that inspection of each construct defined by language specification, each
grammar rule, and each alternative is ensured. Thus, validation of the
grammar against the language specification is done. These test cases are
used again in testing rules for tree generation and again in the phase of
enrichment of the tree by universal nodes. Test cases in this basic set are
small enough so that visual inspection is possible (see example in section
4.4). This is the only possible way to validate if the grammar correspond
to the language specification. In this way, testing is started early enough
and quality of results is importantly improved.

Another level of crosscheck is done by usage of the preliminary defined
small examples (e.g. sorting algorithms). These examples are suitable
because they are small enough so that they can be re-written in each new
language. Important characteristic of these test cases is the tendency to
keep equivalency between the implementations of the same algorithm in all
languages (as much as possible) so that generated trees stay comparable.
By generating, comparing, and correcting the eCST representation for the
same set of the small examples, consistency of the results is increased (if
not ensured).

Comparisons are done partially automatically by involving SMIILE
(section 4.3.2.1) and LICCA components (section 4.3.2.4). Here is im-
portant to change the depth of the comparisons during the clone analyses
to make sure that possible differences in trees are representing differences
in the implementations and that they are not result of the failure of the
eCST generator. If the QuickSort example and its Java (Listing 5.1) and
Modula-2 (Listing 2.1) implementations are observed, results of the dupli-
cates analysis will differ depending on the depth of the comparisons. If it is
observed only based on the universal nodes and to the interface or control-
flow level, similarity will be close to 99%. The only difference is in the main
block which is in Java placed to the function declaration (method), while
in Modula-2 this is not the case (Listing 5.2). If the analysis go deeper to
the expression level, these values will be lower as expected.

139

CHAPTER 5. VALIDATION AND RESULTS

Listing 5.1: QuickSort algorithm implemented in Java
Listing 5.1: QuickSort algoritam implementiran u Javi

public class QuickSort {

public static unos(String [] args , int[] niz){

int n = Integer.parseInt(args [0]);

niz = new int[n];

for (int i = 0; i < n; i++) {

do{

niz[i] = Integer.parseInt(args[i+1]);

}while (((Object)niz[i]). equals(null));

}

}

public static void ispis(int[] niz){

int n = niz.length;

String strN = "";

for (int i = 0; i < n; i++) {

strN += niz[i] + ", ";

}

System.out.println(strN);

}

public static void sort(int[] niz , int levi , int desni){

int temp;

int i = levi;

int j = desni;

int sredina = niz[(i + j) / 2];

do{

while (niz[i] < sredina)

i++;

while (niz[j] > sredina)

j--;

if (i <= j) {

temp = niz[i];

niz[i] = niz[j];

niz[j] = temp;

i++;

j--;

}

}while (i <= j);

if (levi < j)

sort(niz , levi , j);

if (i < desni)

140

5.1. INSPECTION OF SSQSA RESULTS

sort(niz , i, desni);

}

public static void qSort(int[] niz)

{

sort(niz , 0, niz.length - 1);

}

public static void main(String [] args) {

int[] niz = unos(args);

System.out.println (" Uneti niz je:");

ispis(niz);

qSort(niz);

System.out.println (" sortirani niz je:");

ispis(niz);

}

}

Listing 5.2: QuickSort eCST: comparative view (Modula-2 and Java)
Listing 5.2: QuickSort eCST: uporedni pregled (Modula-2 i Java)

Modula -2 |Java

============================== |==============================

CONCRETE_UNIT_DECL |CONCRETE_UNIT_DECL

FUNCTION_DECL | FUNCTION_DECL

LOOP_STATEMENT | LOOP_STATEMENT

LOOP_STATEMENT | LOOP_STATEMENT

FUNCTION_DECL | FUNCTION_DECL

LOOP_STATEMENT | LOOP_STATEMENT

FUNCTION_DECL | FUNCTION_DECL

LOOP_STATEMENT | LOOP_STATEMENT

LOOP_STATEMENT | LOOP_STATEMENT

LOOP_STATEMENT | LOOP_STATEMENT

BRANCH_STATEMENT | BRANCH_STATEMENT

BRANCH | BRANCH

BRANCH_STATEMENT | BRANCH_STATEMENT

BRANCH | BRANCH

BRANCH_STATEMENT | BRANCH_STATEMENT

BRANCH | BRANCH

FUNCTION_DECL | FUNCTION_DECL

BLOCK_SCOPE | FUNCTION_DECL

These examples are very important for later testing of other components
by comparing the results trying to confirm their consistency. Furthermore,
processing them by SMIILE and LICCA components provides additional
test for these analysers.

141

CHAPTER 5. VALIDATION AND RESULTS

Furthermore, after generating an eCST, eCSTGenerator will check the
structure of the generated tree: hierarchy of the entities, existence of the
name and type of each entity, etc. The set of the rules that have to be
satisfied so that other generators and analysers can be successfully executed
is precisely defined. Successful execution completes with message which
looks like the one shown in Listing 5.3.

Listing 5.3: Successful eCST Generator execution message
Listing 5.3: Poruka nakon uspešnog izvršavanja eCST Generatora

eCSTGenerator started (Mon Feb 23 23:21:19 CET 2015)

InputOutputManipulator warning , outDir ..\ test\toy_ecst already exists

Cleaning ..\ test\toy_ecst

Creating InputOutputManipulator (Mon Feb 23 23:21:20 CET 2015)

tree: (COMPILATION_UNIT ...)

tree: (COMPILATION_UNIT ...)

tree: (COMPILATION_UNIT ...)

[eCSTGenerator status: OK] - 3 compilation units successfully parsed

LOC: 251,

LOCwoEmpty: 230,

ecstNodes: 2064

Suspicious node checker [OK]

Empty node checker [OK]

eGDNGenerator compatibility checker [OK]

Metrics compatibility checker [OK]

eCSTGenerator finished (Mon Feb 23 23:21:27 CET 2015)

Checks can generate errors or warnings. In case that errors occurred,
generated tree does not contain some critical property and component re-
lated to that property can not be successfully executed. For example, func-
tion declaration does not satisfy the requirement that it is contained in the
unit (abstract or concrete). This requires immediate reparation of the tree
(i.e. its generation) because eGDNGenerator can not process this tree. If
some warnings are listed this means that some unexpected constructions
appeared, but all required rules are followed and components can be exe-
cuted. However the quality of the results can be lowered.

Recommendation is to process some large enough test cases through all
phases of development to support a new language, but when language is fi-
nally integrated in the eCSTGenerator, real-life examples can be processed.
Table 5.1 contains overview of some of the largest real-life test cases written
in representative languages successfully processed by eCSTGenerator.

142

5.1. INSPECTION OF SSQSA RESULTS

Software system Language Number of
LOC1 eCSTs eCST nodes

Tomcat Java 329924 1083 1641488
MAS Modula-2 100546 329 824043
DelphiProp Delphi 104438 491 1099961
Kernel Compiler Scheme 10986 1 232534
Supermarket Tempura 663 1 9443

Table 5.1: Examples of the application of eCSTGenerator
Table 5.1: Primeri primene eCST Generatora

5.1.1.2 Internal validation of eGDN Generator

After the set of XML files containing eCST representation of input source
code is generated and stored to the shared storage, the next task is to
generate derived internal representations (eCFG and eGDN). At this point
analyses applicable to eCST (syntax independent and syntax based ones)
can be executed, but as tools partially rely on eGDN, results would not
be complete. For example, if SMIILE tool would be applied only on the
eCST, it would report that certain set of dependency metrics can not be
calculated and will offer to generate it. If user rejects it, SMIILE will
calculate only LOC, Halstead, CC and other metrics applicable on the
level of eCST. Therefore, next logical step is generation of eGDN (and
eCFG). As described in section 4.3.1.2, eCFG is still at a prototype level
of development. Therefore, focus of this section is on eGDN Generator.

eGDNGenerator takes a set of XML files containing eCST representa-
tion, extracts eGDN, and stores it in XML format. This component takes
input whose acceptable level of correctness is already ensured (previous
section). Therefore, eGDN generation process is in the main focus of ob-
servation. Testing of this component is also divided in steps.

The first step is monitoring of the generation process. This is done by
usage of software metrics applied on eCST and afterward calculating the
same metrics on the level of eGDN. These are the design metrics appli-
cable on both representations: eCST and eGDN representation (number
of packages, number of units, number of attributes, number of functions,

143

CHAPTER 5. VALIDATION AND RESULTS

number of children, number of function calls, etc.). By comparing these
values calculated on two levels, correctness of generated representation is
checked. This testing process has double value: apart from testing eGDN
generation process, two implementations of the applied metrics are tested.
If some differences are found all involved aspects of SSQSA framework are
checked in order to locate and solve the issue.

As an illustrative test example, eGDN Generator is selected as an in-
ternal and familiar component. Table 5.2 contains values of design metrics
applied on the two code representations: eCST and eGDN.

Metric Value calculated on
eCST eGDN

NoCU: Number of Compilation Units 14 14
NoP: Number of Packages 2 2
NoU: Number of Units (concrete and interface) 15 15
NoF: Number of Functions 124 124
NoFC: Number of Function Calls 1419 1419

Table 5.2: Values of Design metrics calculated on eCST and eGDN representation
Tablela 5.2: Vrednosti metrika dizajna izračnatih na osnovu eCST i eGDN reprezentacijom

The next step in testing eGDN Generator is consistency check. This
is done based on already used set of test cases used in testing of consis-
tency of eCST Generation process among the languages. Therefore these
examples are enriched by dependencies. Tendency to make equivalency of
the realisations between the languages remains which is not always an easy
task. Therefore, this process has some limitations. These limitations are
partially eliminated by involving software metrics as described. An addi-
tional limitation is that these examples are always very simple (Figures 4.8
and 4.9) and do not reflect real characteristics of the software networks so
that they can not enable reliable test for network analyses (SNAIPL tool).

5.1.1.3 Internal validation of static analysers

After internal representations are generated and stored to shared data stor-
age, different static analysers can be applied uniformly. This means that

144

5.1. INSPECTION OF SSQSA RESULTS

each analyser has only one implementation of analysis algorithm indepen-
dently of input language because it is executed on the unique, language
independent representation of the source code.

All results produced by static analysers are also collected to shared data
storage. All these data together are used by all tools involved in SSQSA
framework. This enables collaboration of the analysers in the service of
achieving better quality analysis results. Example of such collaboration
is usage of metric results provided by SMIILE in network analysis imple-
mented by SNAIPL tool. Apart of static analysers stored data are used
by peripheral tools integrated in SSQSA framework as consumer of static
analysis results.

Collaborative application of SSQSA components give an importance to
the execution order. Still components are not always fully dependent on
collaborative results. For example, if SNAIPL does not receive on input
metric result it still can execute statistical analyses of the networks based
on eGDN structure if eGDN is generated. Furthermore it can exploit needed
components to complement the set of information in order to complete the
analyses.

Each analyser has to be tested separately and correctness of each imple-
mented algorithm has to be ensured. Afterward, additional testing effort is
invested in integration testing. As collaboration with other components is
in charge of actual component, its integration into the framework has to be
tested. As software metrics are basics of other static analysis techniques,
description of testing process will be illustrated by the example of SMIILE
tool.

Correctness of the implemented analyses is verified on the two levels:
internally and externally. Internal verification is done based on comparative
analysis of the results generated by the implementations of the multiple ver-
sions of the analyses algorithms. For example, CC: Cyclomatic Complexity
metric can be implemented based only on the source code or its represen-
tation by eCST by counting control-flow predicates in the code. Another
algorithm is based on CFG (in SSQSA terminology eCFG) representation of
the source code. Implementing these two algorithms and comparing the re-
sults quality of the CC implementation is monitored. This example is used

145

CHAPTER 5. VALIDATION AND RESULTS

for double check in monitoring eCFG building process because differences
in the CC values can signalize faults in one of these two domains.

For example, BubbleSort algorithm implemented in Java (Listing 4.1)
is represented by eCST (Figure 4.5) and by eCFG (Figure 4.7). CC value
in both cases is 5.

Similar example is used in previous section as an illustration of the cor-
rectness verification of eGDN generation process (Table 5.2). In this case,
basic set of design metrics is used as a double test: for eGDN extraction
and design metric calculation.

Another dimension of internal verification is a consistency check be-
tween the languages. Already mentioned equivalent implementations of
small examples (section 5.1.1.1) are processed by analysers (in this case
by SMIILE tool) and metric results are compared among the languages.
An illustrative example is QuickSort algorithm implemented in different
languages. Listing 5.2 provides the comparative overview of the relevant
constructs (universal nodes) in Java and Modula-2 implementations for CC
calculation. Table 5.3 contains CC metric results for QuickSort implemen-
tations in various representative languages supported by SSQSA. It can
be mentioned that Tempura and Erlang code have pretty different values.
This is caused by simulating loops by recursive calls which is characteris-
tic of declarative style of programming. As other languages also support
recursion, these simulations are not marked as loop statement to keep con-
sistency. However, this issue did not stay unprocessed (section 6.1).

Language Listing CC

Java 5.1 7
Modula-2 2.1 7
COBOL 2.9 7
PHP 2.8 7
Erlang 2.3 4
Tempura 2.6 2

Table 5.3: Values of CC metric calculated for QuickSort implementation in various languages
Tabela 5.3: Vrednosti CC metrike za QuickSort implementacije u raznim jezicima

146

5.1. INSPECTION OF SSQSA RESULTS

5.1.2 External correctness check

External validation consists of application of SSQSA components to real-
life software systems. Afterwards, gained results are compared with results
gained after application of external tools on the same examples. The main
difficulty in this process is related to finding appropriate external tool for
comparison of the results. Two factors affect this: (1) inconsistency of the
results between two or more external tools and therefore unreliability of the
external results, and (2) weak support for majority of languages by the tools
(section 3). The most appropriate validation is possible for software systems
written in Java. However, validity of SSQSA results for other languages
can be derived from the consistency of SSQSA results among all supported
languages which was proved by internal validation. External validation
will be demonstrated by examples of application of eGDN Generator and
SMIILE tool.

5.1.2.1 External validation of eGDN Generator

Testing of the eGDN extraction process on the large (real-life) examples is
done by comparing extraction results with results gained from other soft-
ware networks generation tool. As support for language-independent net-
work extraction is pretty weak, results of eGDN Generator are compared to
results of the language dependent tools. It is sometimes hard to find the tool
supporting specific language. For example, currently there is no available
dependency extraction tool able to process Modula-2 source code, while the
support for Delphi is available only by commercial and closed-source de-
pendency extractors. The best support is available for Java programming
language. Therefore, statement on correctness of the eGDN Generator is
mainly based on comparing result of network extraction from source code
written in Java. Still, available real-life examples written in supported lan-
guages are processed and results are analysed. An overview of some of the
largest real-life test cases written in representative languages successfully
processed by eGDN Generator is given in the table 5.4.

147

CHAPTER 5. VALIDATION AND RESULTS

Software system Language Number of
GDN nodes GDN links

Tomcat Java 23118 64545
MAS Modula-2 6857 31193
DelphiProp Delphi 13721 18153
Kernel Compiler Scheme 1334 4743
Supermarket Tempura 51 191

Table 5.4: Examples of the application of eGDN Generator
Tabela 5.4: Primeri primene eGDN Generatora

In order to investigate the correctness and completeness of the eGDN
extraction process, real-world open-source software systems mostly written
in Java are observed. Results of application of eGDN Generator (eGDNG)
were compared with the class collaboration networks extracted by a Java
language dependent tool Dependency Finder2 (DF) and Doxygen 3(DX) a
language-independent tool currently supporting C, C++, C#, Objective-C,
Java, JavaScript, D, PHP and IDL.

The characteristics set of 10 real-life examples written in Java, with the
extraction results and comparisons is given in [Savić et al., 2014]. Overview
of the results is given in Table 5.5 The article describes how the networks
are compared and measured with final conclusion that extracted networks
are correct. Even all observed products are written in Java, identified cor-
rectness is an important contribution to the correctness verification. Based
on these explorations and considering previous testing of all the steps in
generation of the eGDN it can be concluded that generated eGDN is reliable
representation of the source code.

2Dependency Finder, online 2015, http://depfind.sourceforge.net/
3Doxygen, online 2015, http://www.stack.nl/ dimitri/doxygen/

148

5.1. INSPECTION OF SSQSA RESULTS

Software system LOC Number of GDN nodes Number of GDN links
eGDNG. DF DX eGDNG DF DX

CommonsIO 25663 108 108 100 174 174 71
Forrest 4683 35 35 33 56 52 21
PBeans 8502 58 58 36 143 144 19
Colt 84592 299 299 228 1272 1280 263
Lucene 111763 789 789 637 3544 3606 925
Log4j 43898 251 251 230 853 853 246
Tomcat 329924 1494 1487 1310 6839 6832 1707
Xerces 216902 876 876 813 4775 4677 1494
Ant 219094 1175 1175 1055 5521 5517 1406
JFreeChart 226623 624 624 597 3218 3249 792

Table 5.5: Results of the application of eGDN Generator (eGDNG) in comparison with results
gained from Dependency Finder (DF) and Doxygen (DX)
Tabela 5.5: Rezultati primene eGDN Generatora u pored̄enju sa rezultatima dobijenim od De-
pendency Finder (DF) and Doxygen (DX)

Therefore, during the evolution of SSQSA framework each new sup-
ported language was tested on a broad set of small examples such that rep-
resentation of most constructs can be observed and analysed [Kolek, 2014],
[Savić et al., 2012]. Furthermore, generation of internal representations
were tested on large and medium software systems [Rakić et al., 2013b].

5.1.2.2 External validation of SMIILE

External verification is based on comparison of the results with other tools
with same functionality. Selected tools are both: language specific, or ones
applicable to more than one language. Furthermore, as unstable metric
values among the tools were recognised as one of the problems in the area
[Lincke et al., 2008], [Novak and Rakić, 2010] preferred option is to com-
pare results with various tools (if available). In this testing phase the ac-
cent is on real-life examples, but if some important divergence is detected,
small examples are used to locate and eliminate the problem.

An illustrative test example is again eGDN Generator. Values of basic
size metrics (LOC: Lines of Code and number of units) are calculated by

149

CHAPTER 5. VALIDATION AND RESULTS

usage of two external tools (Source Monitor (SM)4 and Understand (U)5)
and SMIILE tool integrated in SSQSA framework.Results are equal after
application of all three tools (table 5.6).

LOC Units
Compilation unit SM/U/SSQSA S/U/SSQSA

Filters.java 176 1
HierarchyTreeAnalyzer 132 1
NetworkQDAnalyzer 191 1
FuncCallResolver 785 1
HardToMatchFunction 118 1
ImportList 346 2
NameResolver 443 1
Phase1 254 1
Phase2 80 1
Phase3 143 1
RuneGDNGenerator 84 1
eGDNGenerator.java 331 1
SymbolTableSearch 411 1
TypeResolver 637 1

Total 4131 15

Table 5.6: Value of size metrics for the test example
Tabela 5.6: Vrednosti metrika veličine testnog primera

In SSQSA framework, complexity of the source code is observed by two
characteristic metric sets: Halstead and CC: Cyclometic Complexity based
metrics. Correctness check for Halstead metrics is very difficult task be-
cause of two main obstacles: (1) it is hard to find available tools calculating
Halstead metrics, and (2) there are many open questions concerning rules
for calculating these metrics.

The first and the main difficulty faced during external checking of Hal-
stead metrics gained from SMIILE tool is unavailability of alternative tools
to which the results would be compared. Available tools compute Hal-
stead metrics only for one language, usually for Java. The other obstacle

4SourceMonitor, Campwood Software, 2015,
http://www.campwoodsw.com/sourcemonitor.html

5Understand, SciTools, online 2015, https://scitools.com/

150

5.1. INSPECTION OF SSQSA RESULTS

are inconsistent results among the tools. Generated results are usually
completely different which can be explained by different approaches or by
different interpretation of the rules for the calculation of the metrics, but
sometimes results are not logical and obviously wrong.

Example of the cause for differences in the results are separators of the
language (e.g. {, }, etc.). Consequences of such subtle differences in the
approaches can be illustrated by the following example:

Listing 5.4: Inconsistency of Halstead operators - example
Listing 5.4: Nekonzistentnost Halstead operatora - primer

if (l.getSrc (). getType () == GDNNodeType.PACKAGE &&

l.getDst (). getType () == GDNNodeType.PACKAGE)

In this example the dot (‘.‘) can be observed as an operator or not,
depending on the approach. Consequently, total number of operands in
this example may vary from 6 to 17. Hence, differences between the results
gained from the different tools for the large programs will be larger. How-
ever, an adjustment of the sets of operators and operands between the tools
would result with adjustment of the results, too. Furthermore, in the case of
SSQSA frameworks mentioned changes would have effects on all supported
languages because consistency has to be retained. Afterwards, changing
the approach would result with new differences comparing to other exter-
nal tools that calculate these metrics applying similar approach as SMIILE
tool.

This observation of such specific metric increase benefits of the SSQSA
framework. Once, when an approach and interpretation of the considered
algorithm is defined, it is applied consistently to all languages. Described
justifiable differences in the results among the tools are shown in the tables
5.7, 5.8 and 5.9 where SMIILE tool is compared with CodePro AnalitiX6

6CodePro Analytix, online 2015,
https://developers.google.com/java-dev-tools/codepro/doc/

151

CHAPTER 5. VALIDATION AND RESULTS

n
1
:

D
ist.

o
p

era
to

rs
n

2
:

D
ist.

o
p

era
n

d
s

N
1
:

T
o
ta

l
o
p

era
to

rs
N

2
:

T
o
ta

l
o
p

era
n

d
C

o
m

p
ila

tio
n

u
n

it
S

S
Q

S
A

C
P

A
a

S
S

Q
S

A
C

P
A

S
S

Q
S

A
C

P
A

S
S

Q
S

A
C

P
A

fi
lter/

F
ilters

2
9

1
7

1
1
7

1
0
9

7
8
5

2
2
7

1
4
5
5

3
7
8

fi
lter/

H
iera

rch
y
T

reeA
n

a
ly

zer
3
0

1
5

1
5
9

7
8

8
6
2

1
5
8

2
5
7
9

2
7
0

fi
lter/

N
etw

o
rk

Q
D

A
n

a
ly

zer
2
7

1
7

2
2
7

1
0
6

1
4
3
9

2
4
3

4
2
1
7

4
6
3

F
u

n
cC

a
llR

eso
lv

er
3
1

2
2

4
1
1

2
3
5

3
1
6
3

7
3
2

9
3
2
9

1
3
8
9

H
a
rd

T
o
M

a
tch

F
u

n
ctio

n
3
1

1
9

4
2
1

7
4

2
3
4
5

1
0
6

9
9
9
9

2
0
0

Im
p

o
rtL

ist
3
2

2
1

4
7
5

1
1
9

3
3
3
6

3
4
1

1
2
4
2
1

6
5
6

N
a
m

eR
eso

lv
er

3
1

2
1

5
2
9

1
4
7

4
0
3
7

4
5
8

1
5
7
6
3

8
4
4

P
h

a
se1

3
2

2
1

5
6
6

1
1
2

4
1
6
3

2
2
0

1
7
5
6
2

4
6
6

P
h

a
se2

2
7

1
4

5
6
0

4
4

3
9
3
4

4
9

1
7
9
9
1

1
1
0

P
h

a
se3

2
6

1
7

5
7
9

7
6

4
2
3
4

1
0
6

1
8
9
1
1

2
2
3

R
u

n
eG

D
N

G
en

era
to

r
2
3

1
1

6
5
5

9
1

4
1
8
5

4
3

1
9
4
6
6

1
3
9

eG
D

N
G

en
era

to
r

3
6

2
2

7
2
7

2
2
6

5
2
0
8

3
0
4

2
1
6
9
9

6
3
1

S
y
m

b
o
lT

a
b

leS
ea

rch
2
6

1
5

6
7
5

5
4

5
0
0
0

1
2
4

2
2
5
4
1

2
2
9

T
y
p

eR
eso

lv
er

3
2

2
0

7
6
5

2
1
7

6
5
5
0

5
4
7

2
6
1
1
1

1
0
4
9

T
a
b

le
5
.7

:
C

o
m

a
ra

tiv
e

o
v
erv

iew
o
f

th
e

v
a
lu

es
o
f

b
a
sic

H
a
lstea

d
m

etrics
ca

lcu
la

ted
fo

r
th

e
eG

D
N

G
en

era
to

r
ex

a
m

p
le

b
y

u
sa

g
e

o
f

d
iff

eren
t

to
o
ls

T
a
b

ela
5
.7

:
U

p
o
red

n
i

p
reg

led
v
red

n
o
sti

o
sn

o
v
n

ih
H

a
lstea

d
m

etrik
a

za
eG

D
N

G
en

era
to

r
p

rim
er

u
p

o
treb

o
m

ra
zličitih

o
ru

d̄
a

aC
P

A
:

C
o
d
eP

ro
A

n
a
ly

tiX
,

o
n
lin

e
2
0
1
5
,

h
ttp

s:/
/
d
ev

elo
p

ers.g
o
o
g
le.co

m
/
java

-d
ev

-to
o
ls/

co
d
ep

ro
/
d
o
c/

152

5.1. INSPECTION OF SSQSA RESULTS

n
:

P
ro

g
ra

m
V

o
ca

b
u

la
ry

N
:

P
ro

g
ra

m
L

en
g
th

N̂
:

E
st

.
p

ro
g
ra

m
le

n
g
th

C
o
m

p
il
a
ti

o
n

u
n

it
S

S
Q

S
A

C
P

A
a

S
S

Q
S

A
C

P
A

S
S

Q
S

A
C

P
A

fi
lt

er
/
F

il
te

rs
1
4
6

1
2
6

9
0
2

4
8
7

9
4
4
,7

1
9
0
7
,2

2
fi

lt
er

/
H

ie
ra

rc
h
y
T

re
eA

n
a
ly

ze
r

1
8
9

9
3

1
0
2
1

3
4
8

1
3
0
9
,9

6
5
4
8
,8

6
fi

lt
er

/
N

et
w

o
rk

Q
D

A
n

a
ly

ze
r

2
5
4

1
2
3

1
6
6
6

5
6
9

1
9
0
5
,0

1
7
8
2
,6

5
F

u
n

cC
a
ll
R

es
o
lv

er
4
4
2

2
5
7

3
5
7
4

1
6
2
4

3
7
2
2
,2

9
1
9
4
9
,0

9
H

a
rd

T
o
M

a
tc

h
F

u
n

ct
io

n
4
5
2

9
3

2
7
6
6

2
7
4

3
8
2
3
,7

2
5
4
0
,2

1
Im

p
o
rt

L
is

t
5
0
7

1
4
0

3
8
1
1

7
7
5

4
3
8
3
,6

0
9
1
2
,7

2
N

a
m

eR
es

o
lv

er
5
6
0

1
6
8

4
5
6
6

9
9
1

4
9
3
9
,5

1
1
1
5
0
,5

9
P

h
a
se

1
5
9
8

1
3
3

4
7
2
9

5
7
8

5
3
3
5
,8

8
8
5
4
,6

6
P

h
a
se

2
5
8
7

5
8

4
4
9
4

1
5
4

5
2
4
0
,7

8
2
9
3
,5

2
P

h
a
se

3
6
0
5

9
3

4
8
1
3

2
9
9

5
4
3
5
,9

4
5
4
4
,3

3
R

u
n

eG
D

N
G

en
er

a
to

r
6
7
8

1
0
2

4
8
4
0

2
3
0

6
2
3
1
,8

0
6
3
0
,2

6
eG

D
N

G
en

er
a
to

r
7
6
3

2
4
8

5
9
3
5

8
5
7

7
0
9
6
,8

4
1
8
6
5
,4

7
S

y
m

b
o
lT

a
b

le
S

ea
rc

h
7
0
1

6
9

5
6
7
5

2
8
3

6
4
6
6
,3

6
3
6
9
,3

7
T

y
p

eR
es

o
lv

er
7
9
7

2
3
7

7
3
1
5

1
2
6
6

7
4
8
8
,1

8
1
7
7
0
,7

0

T
a
b

le
5
.8

:
C

o
m

a
ra

ti
v
e

o
v
er

v
ie

w
o
f

th
e

d
er

iv
ed

v
a
lu

es
o
f

H
a
ls

te
a
d

m
et

ri
cs

ca
lc

u
la

te
d

fo
r

th
e

eG
D

N
G

en
er

a
to

r
ex

a
m

p
le

b
y

u
sa

g
e

o
f

d
iff

er
en

t
to

o
ls

(p
a
rt

1
)

T
a
b

el
a

5
.8

:
U

p
o
re

d
n

i
p

re
g
le

d
v
re

d
n

o
st

i
iz

v
ed

en
ih

H
a
ls

te
a
d

m
et

ri
k
a

za
eG

D
N

G
en

er
a
to

r
p

ri
m

er
u

p
o
tr

eb
o
m

ra
zl

ič
it

ih
o
ru

d̄
a

(1
.

d
eo

)

a
C

o
d
eP

ro
A

n
a
ly

ti
X

,
o
n
li
n
e

2
0
1
5
,

h
tt

p
s:

/
/
d
ev

el
o
p

er
s.

g
o
o
g
le

.c
o
m

/
ja

va
-d

ev
-t

o
o
ls

/
co

d
ep

ro
/
d
o
c/

153

CHAPTER 5. VALIDATION AND RESULTS

V
:

P
ro

g
ra

m
v
o
lu

m
e

D
:

D
iffi

cu
lty

E
:

P
ro

g
ra

m
m

in
g

E
ff

o
rt

C
o
m

p
ila

tio
n

u
n

it
S

S
Q

S
A

C
P

A
a

S
S

Q
S

A
C

P
A

S
S

Q
S

A
C

P
A

fi
lter/

F
ilters

6
4
8
5
,2

2
3
3
9
7
,9

4
1
8
0
,3

2
2
9
,4

8
1
1
6
9
4
1
8
,5

1
1
0
0
1
6
1
,1

6
fi

lter/
H

iera
rch

y
T

reeA
n

a
ly

zer
7
7
2
1
,0

5
2
2
7
5
,6

3
2
4
3
,3

0
2
5
,9

6
1
8
7
8
5
4
5
,9

2
5
9
0
7
8
,7

8
fi

lter/
N

etw
o
rk

Q
D

A
n

a
ly

zer
1
3
3
0
9
,1

5
3
9
5
0
,2

9
2
5
0
,7

9
3
7
,1

3
3
3
3
7
8
1
1
,3

7
1
4
6
6
6
3
,8

6
F

u
n

cC
a
llR

eso
lv

er
3
1
4
0
7
,9

6
1
3
0
0
1
,1

3
3
5
1
,8

2
6
5
,0

2
1
1
0
5
0
0
6
2
,9

0
8
4
5
2
9
5
,0

2
H

a
rd

T
o
M

a
tch

F
u

n
ctio

n
2
4
3
9
6
,6

2
1
7
9
1
,7

3
3
6
8
,1

3
2
5
,6

8
8
9
8
1
2
2
8
,4

5
4
6
0
0
3
,8

7
Im

p
o
rtL

ist
3
4
2
4
5
,0

4
5
5
2
5
,1

9
4
1
8
,3

9
5
7
,8

8
1
4
3
2
7
8
3
7
,8

7
3
1
9
8
1
1
,2

5
N

a
m

eR
eso

lv
er

4
1
6
8
4
,3

1
7
3
2
5
,7

9
4
6
1
,8

6
6
0
,2

9
1
9
2
5
2
5
1
5
,4

1
4
4
1
6
4
0
,2

8
P

h
a
se1

4
3
6
2
0
,3

0
4
0
7
7
,9

5
4
9
6
,4

5
4
3
,6

9
2
1
6
5
5
4
0
0
,0

7
1
7
8
1
5
5
,5

8
P

h
a
se2

4
1
3
3
2
,2

9
9
0
2
,1

3
4
3
3
,7

1
1
7
,5

0
1
7
9
2
6
2
9
4
,7

1
1
5
7
8
7
,2

6
P

h
a
se3

4
4
4
7
5
,9

3
1
9
5
5
,2

1
4
2
4
,6

0
2
4
,9

4
1
8
8
8
4
4
4
8
,5

9
4
8
7
6
4
,4

4
R

u
n

eG
D

N
G

en
era

to
r

4
5
5
2
0
,8

8
1
5
3
4
,6

6
3
4
1
,7

7
8
,4

0
1
5
5
5
7
6
4
8
,4

3
1
2
8
9
2
,8

1
eG

D
N

G
en

era
to

r
5
6
8
3
0
,8

3
6
8
1
6
,7

5
5
3
7
,2

5
3
0
,7

1
3
0
5
3
2
4
5
8
,6

8
2
0
9
3
5
8
,5

6
S

y
m

b
o
lT

a
b

leS
ea

rch
5
3
6
4
7
,3

1
1
7
2
8
,7

1
4
3
4
,1

2
3
1
,8

1
2
3
2
8
9
5
2
9
,5

4
5
4
9
8
2
,6

6
T

y
p

eR
eso

lv
er

7
0
5
0
5
,1

6
9
9
8
7
,1

5
5
4
6
,1

1
4
8
,3

4
3
8
5
0
3
7
4
2
,7

3
4
8
2
7
8
8
,9

1

T
a
b

le
5
.9

:
C

o
m

a
ra

tiv
e

o
v
erv

iew
o
f

th
e

d
eriv

ed
v
a
lu

es
o
f

H
a
lstea

d
m

etrics
ca

lcu
la

ted
fo

r
th

e
eG

D
N

G
en

era
to

r
ex

a
m

p
le

b
y

u
sa

g
e

o
f

d
iff

eren
t

to
o
ls

(p
a
rt

2
)

T
a
b

ela
5
.9

:
U

p
o
red

n
i

p
reg

led
v
red

n
o
sti

izv
ed

en
ih

H
a
lstea

d
m

etrik
a

za
eG

D
N

G
en

era
to

r
p

rim
er

u
p

o
treb

o
m

ra
zličitih

o
ru

d̄
a

(2
.

d
eo

)

aC
o
d
eP

ro
A

n
a
ly

tiX
,

o
n
lin

e
2
0
1
5
,

h
ttp

:

154

5.1. INSPECTION OF SSQSA RESULTS

Results of Cyclomatic Complexity of this component calculated by us-
age of two external tools (Source Monitor7 and Understand8) are given in
table 5.10. There are certain differences in the values observing among the
tools. This can be explained by some specific differences in the calcula-
tions implemented by the tools. For example, while SMIILE tool takes into
account explicitly defined constructors when counting functions and all con-
structor calls when counting function calls (call of the constructor is also
an instantiation), other tools have exclude these values when calculating
metrics related to functions (methods in their case).

Characteristic difference in the results of CC values is caused by always
open topic on adaptations of basic CC algorithm to different conditions in
programing practice. For example, jump statements (break, return, etc. in
Java) has to affect CC in some extent. Open question is in which cases
different jumps increase the complexity. SMIILE follows recommendations
from the practice that jump statement should affect complexity only in the
case when it causes creation of an extra path in the program execution.
Jump statements are currently under testing and deeper consideration in
te SSQSA framework as a part of control-flow analyses, and the results
of the investigation can cause some changes in current approach to CC
calculation. Currently, jump statements is affecting CC only if it is not the
last statements and there are alternative path to be taken otherwise.

Another characteristic difference in the CC values is caused by different
approaches when observed conditions for loops and branching. SMIILE
increases complexity whenever finds some logical operation in the condition.

7SourceMonitor, Campwood Software, 2015,
http://www.campwoodsw.com/sourcemonitor.html

8Understand, SciTools, online 2015, https://scitools.com/

155

CHAPTER 5. VALIDATION AND RESULTS

F
u

n
ctio

n
s

M
a
x

C
C

T
o
ta

l
C

C
A

v
era

g
e

C
C

C
o
m

p
ila

tio
n

u
n

it
S

M
a

U
b

S
S

Q
S

A
S

M
U

S
S

Q
S

A
S

M
U

S
S

Q
S

A
S

M
U

S
S

Q
S

A

F
ilters.ja

v
a

6
6

6
1
8

1
6

2
1

3
7

3
4

4
5

6
,1

7
6

7
,5

0
H

iera
rch

y
T

reeA
n

a
ly

zer
4

4
4

8
8

9
1
7

1
7

2
1

4
,2

5
4

5
,2

5
N

etw
o
rk

Q
D

A
n

a
ly

zer
8

8
8

5
5

5
2
0

2
0

2
0

2
,5

0
3

2
,5

0
F

u
n

cC
a
llR

eso
lv

er
1
7

1
8

1
8

3
1

2
8

3
1

1
3
8

1
4
0

1
3
8

8
,1

2
8

7
,6

7
H

a
rd

T
o
M

a
tch

F
u

n
ctio

n
5

5
5

1
1

1
1

9
2
0

2
0

1
7

4
,0

0
4

3
,4

0
Im

p
o
rtL

ist
1
6

1
6

1
6

2
0

2
0

1
8

7
0

6
7

6
6

4
,3

8
4

4
,1

3
N

a
m

eR
eso

lv
er

1
1

1
1

1
1

4
0

3
8

4
2

1
0
2

9
8

9
6

9
,2

7
9

8
,7

3
P

h
a
se1

1
0

1
0

1
0

1
6

1
2

1
5

5
1

4
1

5
5

5
,1

0
4

5
,5

0
P

h
a
se2

4
4

4
8

7
9

1
1

1
0

1
2

2
,7

5
3

3
,0

0
P

h
a
se3

7
7

7
1
3

1
2

1
8

2
4

2
2

2
8

3
,4

3
3

4
,0

0
R

u
n

eG
D

N
G

en
era

to
r

2
2

2
3

3
3

5
5

5
2
,5

0
3

2
,5

0
eG

D
N

G
en

era
to

r.ja
v
a

1
0

1
0

1
0

9
7

8
4
1

3
6

4
0

4
,1

0
4

4
,0

0
S

y
m

b
o
lT

a
b

leS
ea

rch
5

5
5

1
9

1
8

2
0

2
3

2
2

2
4

4
,6

0
4

4
,8

0
T

y
p

eR
eso

lv
er

1
8

1
8

1
8

2
5

2
5

2
5

1
3
1

1
2
1

1
1
6

7
,2

8
7

6
,4

4

T
o
ta

l
1
2
3

1
2
4

1
2
4

2
2
6

2
1
0

2
3
3

6
9
0

6
5
3

6
8
3

5
,6

1
5

5
,5

1

T
a
b

le
5
.1

0
:

C
o
m

a
ra

tiv
e

o
v
erv

iew
o
f

th
e

v
a
lu

es
o
f

C
C

m
etrics

ca
lcu

la
ted

fo
r

th
e

eG
D

N
G

en
era

to
r

ex
a
m

p
le

b
y

u
sa

g
e

o
f

d
iff

eren
t

to
o
ls

T
a
b

ela
5
.1

0
:

U
p

o
red

n
i

p
reg

led
v
red

n
o
sti

C
C

m
etrik

e
za

eG
D

N
G

en
era

to
r

p
rim

er
u

p
o
treb

o
m

ra
zličitih

o
ru

d̄
a

aS
o
u
rceM

o
n
ito

r,
C

a
m

p
w

o
o
d

S
o
ftw

a
re,

o
n
lin

e
2
0
1
5
,

h
ttp

:/
/
w

w
w

.ca
m

p
w

o
o
d
sw

.co
m

/
so

u
rcem

o
n
ito

r.h
tm

l
bU

n
d
ersta

n
d
,

S
ciT

o
o
ls,

o
n
lin

e
2
0
1
5
,

h
ttp

s:/
/
scito

o
ls.co

m
/

156

5.2. SSQSA POTENTIALS

5.2 SSQSA potentials

Due to described characteristics, but primarily its two-dimensional extensi-
bility, SSQSA framework can be easily adapted to the needs of management
of any software company or software department. Such tool can be used to
manage resources and processes during the development of software prod-
ucts as well as to monitor and control the quality of the product. The main
advantage of application of SSQSA framework in these processes is consis-
tency of all taken observation and analysis. Applicability of the SSQSA
framework in quality monitoring in real-life projects is partially demon-
strated on the example of the self-assessment in development and testing
of the components and their integration.

Furthermore, present framework can be used in education at different
levels.

• SSQSA framework can be applied in automated assessment of stu-
dent programming solutions. The benefit of this application of the
framework is double:

In progress benefit. Automating the assessment process enables
greater consistency and eliminates the possibility of a subjec-
tive evaluation of student solutions. In addition, teachers have
more time to work with students emphasizing specific problems.

After progress benefit. Using the tools suitable for the applica-
tion in the industry allows students an early introduction to the
technologies used in a real working environment and getting used
to the tools for evaluating the quality of their work and the im-
pact of the project. This contributes to the completeness of the
competencies of students.

• The presented framework is a suitable basis for the inclusion of stu-
dents in the development of certain functionalities. It is suitable for
individual supervised work, with a wide range of topics available:
from compiler construction and computational linguistics to advanced

157

CHAPTER 5. VALIDATION AND RESULTS

topics in the field of software engineering with elements of XML tech-
nology and a variety of other areas. It is possible to include students
from all three levels of study.

Undergraduate students are planned as developers of technical
solutions. Based on exactly specified requirements they need to
develop specific functionality.

Master students are expected to invest a little research effort. There-
fore, based on documentation and description of the framework,
they are required to explore and choose the most appropriate ap-
proach to the presented problem and to implement the required
functionality following selected approach.

Doctoral students must demonstrate the ability to identify the
topic that they will deal with in the framework, and based on
their own research to lead a small team of students of lower lev-
els of study through the research and development process for
the selected functionality.

Described application in education is already implemented through the
various courses and achieved results are witnesses of this. One successful
examples of such course is ATSE: Advanced Topics in Software Engineer-
ing9 at master and doctoral level of studies.

5.2.1 ATSE and project-oriented teaching

Education in the field of computer science and software engineering requires
engagement of the students in practice. Practical activities of students can
be organized in companies, but in this case there exists a risk that students
will become tightly related to the company and technologies used in it.
This technology-oriented development of the personnel is for the company
shorter way to the future employees. For the students it is a shorter way
to the future job. Still, this is pretty risky option for the students. They

9ATSE: Advanced Topics in Software Engineering 2015, http://www2.informatik.hu-
berlin.de/swt/intkoop/daad/bans2013/index.html#atse

158

5.2. SSQSA POTENTIALS

risk to stay with a limited knowledge and experience. Changing between
the companies during the studies in order to expand horizons is often very
difficult task for the students. Finally, some universities still have a weak
connection with the industry and can not offer very rich experience in the
practice through the courses.

In the described conditions, project-oriented courses can importantly
increase the quality of the practical education in the field. During these
courses students are included in real-life projects and participate in it
through different levels of the studies. Early inclusion into the project
and growth through the years of studies, observing the problem from the
different viewpoints, passing through the different roles in the project organ-
isation, and cooperation with other students and lecturers provide students
with very rich experience. To keep the continuity and broadness of the top-
ics, approaches, and technologies covered by the project oriented-courses,
without switching between projects when moving to the each next course,
appropriate project is necessary.

SSQSA framework has all the important characteristics of appropriate
project for project-oriented teaching. The main course organised around
the SSQA framework is ATSE: Advanced Topics in Software Engineering.
This course is delivered at fourth year of studies when students have the
main prerequisites to successfully participate in the project. At this point
of studies, students have passed all elementary programming courses and
have basic knowledge about software engineering.

After introductory presentations about architecture of the SSQSA frame-
work and related topics, student can chose the aspect of SSQSA they are
interested in. The offered aspects are:

• front-end development which means adapting the framework to new
languages and domains. This aspect requires basic knowledge in com-
piler construction and computer languages.

• back-end development which means extending the framework with
new analyses. This aspect requires basic knowledge about static anal-
ysis techniques.

159

CHAPTER 5. VALIDATION AND RESULTS

• external development which means integration of the framework with
external tool. This aspect requires the knowledge in the field of appli-
cation. Possible application field are project management, informa-
tion storage and manipulation, visualisation, educational tools, etc.

• maintenance of the framework which means integration of the newly
developed functionalities and continual work on the improvement of
the framework quality. This is very important activity because of
variety of developers with different levels of knowledge, different ex-
perience, different (sometimes unexpected) ideas, etc. This becomes
easier task with the component-based organisation of the framework
based on pipes and filters architectural style.

The course on ATSE is usually the first effort invested by students in the
SSQSA framework. After this course students are familiar with the frame-
work and become curious. Furthermore, during the semester they got some
new knowledge and become interested in other aspects of the SSQSA.

Additionally, another fourth-year course ADP: Architecture, Design and
Patterns is also organised around SSQSA. At the begining of the course,
students work on an architecture of a (at that moment unknown) framework
for static analyses based on its description. After that they receive the real
architecture and source code of the early prototypes of some components.
Their task is to restructure it according to the architecture and to refactor
it. The last task in this course is to add some analyses with obligated usage
of appropriate design patterns.

Some other courses where SSQSA framework can be used are:

• compiler construction advanced level, where emphasis is on parser
generators and languages;

• software project and student practice with emphasis on practical work
and development of SSQSA components;

• seminar work and research methods with accent on research related
to characteristics of SSQSA framework;

160

5.3. SUMMARY

• different courses at doctoral level (Advanced topic in Software Engi-
neering, Software Quality, Research Methods, etc.) where students
are required to be leaders of the groups or teams of younger students.
They are expected to guide the teams through their research and de-
velopment process. Finally, following the principles learned during
the studies, students write research papers to describe the results.

. Obviously, activities on SSQSA framework are related to many other
study subjects such are communication skills, databases, XML technologies,
parallel programming, etc.

SSQSA framework and teamwork organized around it, make good envi-
ronment for realisation of student practice. In this case students would be
guided through the real-life project and all processes, but with possibility
to follow their work personally by examiner. Additional advantage in this
case is that all students participating in SSQSA team projects have the
same working environment, equivalent conditions, and therefore differences
in their results are less affected by different attributes of working conditions
in various companies. Thus the higher fairness of the assessment of results
will be gained.

5.3 Summary

Chapter described the process of inspection of results gained by applica-
tion of SSQSA framework. This is done on two levels: (1) internally by
checking consistency of the generated results, and (2) externally by check-
ing correctness of the results. Correctness is observed by comparing results
with available external tools from the same domain. External validation is
demonstrated on large examples written only in Java because of described
limitations of available alternative tools. However, this proves the cor-
rectness for all supported languages because of demonstrated consistency.
Furthermore this chapter describes triple potential benefits from SSQSA
framework: for industry, for education and implicitly for the science.

161

CHAPTER 5. VALIDATION AND RESULTS

162

Chapter 6

Conclusion

In this thesis SSQSA: Set of Software Quality Static Analysers framework
has been described. The whole SSQSA system and its particular parts
are in-house products aimed for academic research in the field of software
quality. The final goal of the SSQSA framework is a consistent software
quality monitoring and control on code level. This goal is gained by in-
volving new intermediate source code representation called eCST: enriched
Concrete Syntax Tree. Therefore the thesis emphasizes on description of
eCST and intermediate representations derived from it (section 4.2). The
main contribution of the thesis is an infrastructure established to enable
further development of fully functional platform for software quality mon-
itoring and control. The infrastructure is based on concepts which are
proved by integration of characteristic functionalities, while certain exten-
sions are still to be integrated. However, procedures to be followed through
these integrations are precisely stated and described in the thesis. Finally,
when consistent results of static analysis techniques are obtained, SSQSA
framework can be strengthen by involving intelligent techniques and follow-
ing the quality standards in order to gain useful feedback instead of only
numerical values.

The main characteristic of eCST is language independence. This char-
acteristic gives to SSQSA framework two-dimensional flexibility: by adding

163

CHAPTER 6. CONCLUSION

support for new language, and by adding support for new analysis. All in-
tegrated static analyses tools take as an input eCST or code and design
representations derived from it. Consequently all integrated tools are ap-
plicable to all programming languages that are supported by the SSQSA
system and any combination of these languages. This ensures consistency
of all implemented analyses. Furthermore, it promotes efficiency in de-
velopment of tools even in analyses that will be done only on one input
language. It is enough to include a new language in the framework, and
set of already implemented tools are immediately available. Similarly, after
the new tool is implemented, it is immediately applicable to a whole range
of included languages.

Currently, SSQSA framework supports some characteristic input lan-
guages such are Java, C#, Delphi, COBOL, C, Pascal, Modula-2, Scheme,
Erlang, Python, PHP, JavaScript, OWL, WSL, and Tempura. Validation of
correctness and consistency are at different levels among the tools and lan-
guages. The set of supported languages is not finite because new languages
are continuously integrating, but the languages which are not explicitly
enumerated in the above list are still in the early phases of the integration.
However, at least on language from each category described in section 2.3
i integrated in the framework.

Using eCST as an input for static analysis tools proves its usefulness in
theory and in practice. However, its potential in industrial and educational
applications is huge (section 5.2). Software metrics calculation, code clone
detection, structural changes analysis and software network analyses are
static analysis techniques developed to prove the concepts. Some of these
tools are still on level of prototype and will be improved as a part of future
work (section 6.1).

Correctness cross-check of the intermediate representation generation
process and analysers has been done on simple examples covering main
language constructs building cases and afterward on large and medium size
software systems (section 5).

164

6.1. FUTURE WORK

6.1 Future work

The main and continual activity related to the front-end development is
languages integration and consolidation. Variety of supported languages
opened some questions. One example is mentioned simulation of loops by
recursion. This topic is currently under an investigation. The main point
is to keep the consistency, but not to skip this information in measuring
complexity. Therefore, a new software metric is to be involved.

The first next activity at the back-end side of SSQSA development will
be upgrading the tools which are still on a prototype level such is code
clone detector. Additional testing is to be done also for all the analysers
integrated in the framework.

Even if absolute validation is not really possible two options to ensure
the correct and consistent results are available: internal consistency vali-
dation and external correctness check. Both validation steps were partially
done during the development of the tools. Application of SSQSA to large
and complex industrial software systems is very important in further test-
ing.

Extension of eCST to enable some domain specific analysis could be
very valuable. Some of possible directions are static timing analysis and
agent activity analysis on the code level.

Furthermore, we can notice that eCST possibly could be used for au-
tomatic source code translation between programming languages, but also
full source code representation including networks could be used in model
transformations.

Another complex task is to develop (semi)automatic refactoring tool
which would use as much of SSQSA results as possible to find anomalies
in code or design. Possibly, this tool would involve intelligent techniques
to decide which improvement approach to chose. As this task is complex
enough it can be distributed in steps. First steps are already done by
development of appropriate analysers, but also by development of eCST
AntiGenerator tool which can generate source code from eCST, originally
generated or changed after refinements. Refinement could also be done
semi-automatically. In this case at least some recommendations for code

165

CHAPTER 6. CONCLUSION

and design improvements could be done based on results of the analysers,
while employment of intelligent techniques can be replaced by human rea-
soning in the early stages of prototyping development.

Adding support for more computer languages including declarative,
even modelling languages will continue. Although complicated at some
times, this should be fairly straightforward activity.

Still, there is more space to investigate additional possibilities in this
direction. We can consider other parser generators and their mechanisms
to enrich syntax trees. Furthermore, development of translator through
different grammar notations would make adding support for new language
much easier. Usually we can find grammar written in some notation, but it
has to be translated to ANTLR notation. And finally, development of visual
tools to support front-end and back-end development would be valuable.
For example, visualisation of adding nodes in the tree would make easier
to any user to add new language or new analyser by adding nodes for these
purposes.

Further processing of the obtained results and visualisation of the feed-
back is final goal of the SSQSA development as described in the introduction
to this chapter. The first prototype of eCST Visualisator tool is described
in [Škatarić, 2012].

6.2 Summary

The last chapter of the thesis summarises the results and the contribution
of SSQSA framework confirms achievement of the stated goals. Finally,
focus is moved to the open topics for the future work.

166

Appendix A

Catalog of universal nodes

This appendix provides description of universal nodes and current state of
mapping of the certain nodes to language specific constructs. As consoli-
dation of the languages is continual activity, set of nodes can grow and the
mapping can change.

compilation unit

Description

The root node for whole content of a single input file. More precisely
it marks each fragment of a source code recognized by the
compiler/translator as a self-sufficient unit.

Java
C#
Delphi
Modula-2
Pascal
C
COBOL
WSL
Tempura
Scheme
Erlang
Python
PHP
JavaScript
OWL

Table A.1: compilation unituniversal node
Tabela A.1: compilation unituniverzalni čvor

167

APPENDIX A. CATALOG OF UNIVERSAL NODES

package decl

Description Package/namespace/. . .
Remark If the package is not defined or the name of the package does not

exist in the sub-tree, the package is considered as a default package.
If a language does not support packaging, it can be simulated by
structuring the files and folders or by introducing default package.

Java package declaration
C# namespace declaration
Delphi unit declaration
Modula-2 -
Pascal -
C preprocessed compilation unit containing header declaration unit and

implementation unit
COBOL -
WSL -
Tempura -
Scheme artificially created default package corresponding to all compilation

units available in the project
Erlang artificially created default package corresponding to all compilation

units available in the project
Python compilation unit
PHP artificially created default package corresponding to all compilation

units available in the project
JavaScript artificially created default package corresponding to all compilation

units available in the project
OWL ontology declaration

Table A.2: package decl universal node
Tabela A.2: package decl univerzalni čvor

Package, interface and concrete unit declarations are basic entities for
analyses. All following universal nodes have to be contained in sub-tree of
these modes.

168

interface unit decl concrete unit decl

Description Declaration of a software unit not
containing implementation

Declaration of a software unit con-
taining implementation

Remark Direct or indirect parents of each of these nodes should be an pack-
age decl nodes, while in sub-tree UNIT has to contain a NAME

Java interface class
C# interface class
Delphi interface in object-oriented con-

cept and interface of the unit
class and implementation of the
unit

Modula-2 definition module implementation module
Pascal - program
C header declaration unit corre-

sponding to content of a .h file
implementation unit correspond-
ing to content of .c file

COBOL - procedure division
WSL - compilation unit
Tempura - compilation unit
Scheme - compilation unit
Erlang interface of the module specified by

export
module

Python - class, module
PHP - compilation unit
JavaScript - compilation unit
OWL - -

Table A.3: interface unit decl and concrete unit decl universal nodes
Tabela A.3: interface unit decl and concrete unit decl univerzalni čvorovi

169

APPENDIX A. CATALOG OF UNIVERSAL NODES

implements extends

Description Indicates that an unit (concrete
one usually) implements an inter-
face unit

Indicates that an unit extend an-
other one

Remark These nodes are contained in the sub-tree of an unit declaration.
Sub-tree of each of these nodes has to contain the name of the type
which is extended/implemented.

Java implements extends
C# : :
Delphi In procedural aspect of the language implementation part of the

unit by default implements an interface part of the unit. In object-
oriented aspect of the language inheritance is inbuilt in the syntax.
Syntactical constructs for both cases of inheritance is the same.
type unitToBeDeclared = class(baseUnit)
this is resolved in eCSTAdaptor.
IF baseUnit IS interface THEN IMPLEMENTS
ELSE EXTENDS

Modula-2 an implementation module by de-
fault implements an definition
module

-

Pascal - -
C .c file by default implements enti-

ties declared in .h file
-

COBOL - -
WSL - -
Tempura - -
Scheme - -
Erlang module implementation by default

implements the interface specified
in export

-

Python Similar as in Delphi
class DerivedClassName(BaseClassName)

PHP - -
JavaScript - -
OWL - -

Table A.4: implements and extends universal nodes
Tabela A.4: implements and extends univerzalni čvorovi

170

import decl

Description Import of other entities (packages, units, functions, types, etc.)
Java import other entities
C# using other entities
Delphi using other entities
Modula-2 import other entities
Pascal using other enities
C import other entities
COBOL -
WSL -
Tempura load other specification
Scheme import other entities
Erlang import other entities
Python import other entities
PHP -
JavaScript -
OWL import ontology

Table A.5: import decl universal node
Tabela A.5: import decl univerzalni čvor

type decl

DEscription Declaration/definition of an user specified type.
Remark —

All types defined by users not encompassed by concrete or interface
unit declarations.
Type is defined by its name. Therefore in the sub-tree this node has
to contain a name of the type.

Java
C#
Delphi
Modula-2
Pascal
C
COBOL
WSL
Tempura
Scheme
Erlang
Python
PHP
JavaScript
OWL

Table A.6: type decl universal node
Tabela A.6: type decl univerzalni čvor

171

APPENDIX A. CATALOG OF UNIVERSAL NODES

attribute decl (AND const)

Description Declaration of global parameters (class fields, global variables, etc.)
Remark If attribute is constant const universal node in the sub-tree will mark

it.

Java field declaration/definition
C# field declaration/definition
Delphi field declaration/definition, global variable declaration/definition,

constant definition
Modula-2 global variable declaration/definition, constant definition
Pascal global variable declaration/definition, constant definition
C global variable declaration/definition, constant definition
COBOL global variable declaration/definition, constant definition
WSL global variable declaration/definition, constant definition
Tempura static variable
Scheme -
Erlang -
Python field declaration/definition, global variable declaration/definition,

constant definition
PHP global variable definition
JavaScript global variable definition
OWL property declarations

Table A.7: attribute decl universal node
Tabela A.7: attribute decl univerzalni čvor

172

block scope

Description Root of the sub-tree containing one block scope
Remark Block of the source code which does not belong to any function dec-

laration corresponds to main block scope
Java code between { and }
C# code between { and }
Delphi code between BEGIN and END
Modula-2 code between BEGIN, DO, THEN, etc. and END
Pascal code between BEGIN and END
C
COBOL code between indent and dedent
WSL code between BEGIN-WHERE and END
Tempura code between { and }
Scheme code between (and) in a function definition
Erlang code between (and) in a function definition
Python code between indent and dedent
PHP code between { and } or block of the code on the top level (between

¡?php and ?¿) which is not function definition (out of function)
JavaScript code between { and } or block of the code on the top level which is

not function definition (out of function)
OWL -

Table A.8: block scope universal node
Tabela A.8: block scope univerzalni čvor

173

APPENDIX A. CATALOG OF UNIVERSAL NODES

function decl

Description Declaration/definition of the method, function, procedure, etc.
Remark This node is contained in the sub-tree of package and/or unit. It has

to contain its name in the sub-tree, while type does not have to be
specified.

Java declaration/definition of a method
C# declaration/definition of a method
Delphi declaration/definition of a method and/or function
Modula-2 declaration/definition of a procedure/function
Pascal declaration/definition of a procedure/function
C declaration/definition of a procedure
COBOL declaration/definition of a procedure
WSL declaration/definition of a procedure/function
Tempura definition of a procedure/function
Scheme definition of a function (standard, annonymous, let, etc)
Erlang definition of a function
Python definition of a function and/or method
PHP definition of a function
JavaScript definition of a function and/or method
OWL -

Table A.9: function decl universal node
Tabela A.9: function decl univerzalni čvor

formal param list parameter decl

Description Root node of a sub-tree contain-
ing parameter declarations

One element in the list of de-
clared formal parameters of the
function

Remark All formal parameters de-
clared in a header of the
function have to be contained
in a sub-tree of this node.
This node is placed the a sub-
tree of the function declaration
tree and consists of branches.
Each branch contains one formal
parameter declaration.

A parameter declaration has to
be placed in the sub-tree of
the root of all parameter dec-
larations (formal parameter list)
Each of these nodes in its sub-
tree has to contain the name and
the type of the parameter.

Table A.10: formal param list and parameter decl universal node
Tabela A.10: formal param list i parameter decl univerzalni čvorovi

174

function call

Description Call of the function
Remark Function call has to contain name of the function in the sub-tree.

Sub-tree of this node has to contain argument list which can be empty.

Java method call
C# method call
Delphi procedure/function/method call
Modula-2 procedure/function call
Pascal procedure/function call
C procedure/function call
COBOL procedure call (explicit bay usage of CALL keyword)
WSL procedure/function call
Tempura function call
Scheme function call (basic one or explicit by usage of apply keyword
Erlang function call
Python procedure/function/method call
PHP method call
JavaScript method call
OWL -

Table A.11: function call universal node
Tabela A.11: function call univerzalni čvor

argument list argument

Description Root node of of sub-tree contain-
ing arguments of the function

One element in the list of argu-
ments of the function

Remark All arguments (actual parame-
ters) passed to the function in
the function call have to be con-
tained in a sub-tree of this node.
This node is placed in the a sub-
tree of the function call sub-tree
and consists of branches. Each
branch contains one argument.

An argument has to be placed
in the sub-tree of the root
of all arguments passed to
the function (argument list).
Each of these nodes in its sub-
tree can to contain the name
node and in that case the argu-
ment is attribute, variable, con-
stant, etc.

Table A.12: argument list and argument universal nodes
Tabela A.12: argument list i argument univerzalni čvorovi

175

APPENDIX A. CATALOG OF UNIVERSAL NODES

var decl

Description The root node of the sub-tree containing declaration/definition of one
or more local variable.

Remark

Local variable is any variable whose visibility is limited to specific
block scope (function/main block/. . .)
This node is always contained in the sub-tree of the block scope in
which the variable will be visible.
In the sub-tree of var declaration/definition the name and the type
of the variable have to be specified.

Java
C#
Delphi
Modula-2
Pascal
C
COBOL
WSL
Tempura
Scheme
Erlang
Python
PHP
JavaScript
OWL

Table A.13: var decl universal node
Tabela A.13: var decl univerzalni čvor

statement

Description The root node of the sub-tree containing any statement.
Remark

Statement node is general mark for any statement. In special cases
of the statements figuring in analyses, separate statement node will
appear in the tree (branch, loop, jump, etc.)
This node is always contained in the sub-tree of the block scope.

Java
C#
Delphi
Modula-2
Pascal
C
COBOL
WSL
Tempura
Scheme
Erlang
Python
PHP
JavaScript
OWL

Table A.14: statement universal node
Tabela A.14: statement univerzalni čvor

176

instantiates

Description Special kind of statement related primarily to object-oriented. Marks
creation of new object which is instance of concrete unit (class).

Remark

Instantiation is basically done by call of constructor method often
with keyword new in front.
Some languages support dynamic instantiation which has to be
resolved in eCSTAdaptor

Java
C#
Delphi
Modula-2
Pascal
C
COBOL
WSL
Tempura
Scheme
Erlang
Python
PHP
JavaScript
OWL

Table A.15: instantiates universal node
Tabela A.15: instantiates univerzalni čvor

177

APPENDIX A. CATALOG OF UNIVERSAL NODES

loop statement

Description The root node of the sub-tree containing any loop statement.
Remark Specialisation of the statement node.

This node is always contained in the sub-tree of the block scope.
Sub-tree of the loop statement usually contains a condition for
continuation or completion of the repetition.

Java for, while-do, repeat-until, and do-while
C# for, foreach, while-do, repeat-until, and do-while
Delphi for, while-do, and repeat-until
Modula-2 for, while-do, repeat-until, and loop
Pascal for, while-do, and repeat-until
C
COBOL VARYING, TIMES, and PERFORM-UNTIL
WSL WHILE-DO-OD, DO-OD, FOR-DO-OD, D DO-OD
Tempura for, while-do, repeat-until, and chopstar
Scheme do
Erlang - (simulated by recursion)
Python for and while-do
PHP for, foreach, while-do, and do-while
JavaScript for, and do-while
OWL -

Table A.16: loop statement universal node
Tabela A.16: loop statement univerzalni čvor

178

branch statement branch

Description The root node of the sub-tree con-
taining any branch statement.

The root node of the sub-tree
containing separate branch in a
branch statement.

Remark One branch statement can consist of one or more branches.
Each branch is marked by separate branch node.
Each branch can contain a condition for entering the branch.

Java if-else, ? - :, switch-case-default, try-catch
C# if-elseif-else, ? - :, switch-case-default, try-catch, finally
Delphi if-then-else, case-else, try-except, on
Modula-2 IF(THEN)-ELSIF(THEN)-ELSE, CASE
Pascal if-then-else, case-otherwise
C if-else,switch-case-default
COBOL WHEN, END-OF-PAGE,(ON) EXCEPTION, INVALID KEY, (ON)

OVERFLOW, (ON) SIZE ERROR, IF
WSL IF-ELSIF-ELSE, D IF, []
Tempura if-then-else
Scheme case, cond, else, if, unless, when
Erlang if, case, try-catch, pattern matching
Python if-elsif-else, try, finally, except
PHP if-elsif-else, switch
JavaScript if-else, case-default, try-catch, finally
OWL -

Table A.17: branch statement and BRANCH universal nodes
Tabela A.17: branch statement i branch univerzalni čvorovi

179

APPENDIX A. CATALOG OF UNIVERSAL NODES

jump statement

Description The root node of the sub-tree containing any jump statement.
Remark Specialisation of the statement node.

This node is always contained in the sub-tree of the block scope.
Jump statements usually take part in conditional statements where
condition for jumping has to be satisfied.

Java break, return, continue, throw
C# break, return, continue, throw
Delphi abort, break, continue, exit, goto, halt, raise, runerror
Modula-2 EXIT, RETURN
Pascal goto
C
COBOL STOP, EXIT, GO-TO, GO-BACK
WSL EXIT
Tempura -
Scheme continuations
Erlang
Python break, continue, return, pass, raise
PHP break, continue, return
JavaScript break, return, continue, throw
OWL -

Table A.18: jump statement universal node
Tabela A.18: jump statement univerzalni čvor

180

condition

Description Condition which has to be satisfied for execution of some statement(s)
- usually related to loops or branchings.

Remark

Condition consists of boolean expression.
Condition can be precondition or postcondition depending on the
moment of evaluation of the expression.
Condition can be positive or negative depending on which logical
value is expected. For example, for entering the branch condition
has to be true, while repeat loop is executed until condition is false.
These parameters are related to control-flow and data-flow analysis
which is still in the development.

Java
C#
Delphi
Modula-2
Pascal
C
COBOL
WSL
Tempura
Scheme
Erlang
Python
PHP
JavaScript
OWL

Table A.19: condition universal node
Tabela A.19: condition univerzalni čvor

expression

Description Root of the sub-tree containing any expression.
Remark -

Table A.20: expression universal node
Tabela A.20: expression univerzalni čvor

keyword operator separator builtin type

Description Elements of the language
Remark Special case of the operators is logical operator

(marked by logical operator universal node) figur-
ing in some analyses such is CC:Cyclomatic Complexity.
Directives (universal node directive), as part of some languages, are
usually eliminated by pre-processing and/or compiling the code after
which a native code is being parsed and translated to eCST.

Table A.21: keyword, operator, separator, and builtin type universal nodes
Tabela A.21: keyword, operator, separator, i builtin type univerzalni čvorovi

181

APPENDIX A. CATALOG OF UNIVERSAL NODES

name type

Description Name defined by user Type of the defined name
Remark In dynamically typed languages type can initially have value EMPTY.

This can be resolved in eCST Adaptor if needed by assigning the
appropriate type.

Table A.22: name and type universal nodes
Tabela A.22: name i type univerzalni čvorovi

comment line comment doc comment

Description Multi-line comment Single-line comment documentation com-
ment

Remark Comments can be marked in eCST Adaptor.

Table A.23: Comments universal nodes
Tabela A.23: Comments univerzalni čvorovi

182

Appendix B

Student example

Listing B.1: Student example implemented in Java
Listing B.1: Klasa Student implementirana u Javi

package JavaTest;

import java.util.Date;

import java.util.Iterator;

import java.util.List;

public class Student extends Person implements IStudent {

private Schedule _schedule;

private Mark _mark;

private int studentNumber;

private String programName;

public Student (){

}

public int getStudentNumber () {

return studentNumber;

}

public void setStudentNumber(int studentNumber) {

this.studentNumber = studentNumber;

}

183

APPENDIX B. STUDENT EXAMPLE

public String getProgramName () {

return programName;

}

public void setProgramName(String programName) {

this.programName = programName;

}

public List <Exam > getExams(Date from , Date to) {

/* Business logic */

return null;

}

private double calculateAverageMark(int level) {

/* Business logic */

return 0;

}

public void test1() {

double t = calculateAverageMark (1);

List <Exam > e = getExams(new Date(), new Date ());

Iterator <Exam > it = e.iterator ();

while (it.hasNext ()) {

it.next (). dummyExam ();

}

Person per = Person.createJohnDoe ();

_schedule.dummySchedule ();

_mark.dummyMark ();

}

}

interface IStudent{

int getStudentNumber ();

void setStudentNumber(int studentNumber);

String getProgramName ();

void setProgramName(String programName);

List <Exam > getExams(Date from , Date to);

}

class Person {

private int age;

private String name;

184

private String surname;

public int getAge () {

return age;

}

public void setAge(int age) {

this.age = age;

}

public String getname () {

return name;

}

public void setName(String name) {

this.name = name;

}

public String getSurname () {

return surname;

}

public void setSurname(String surname) {

this.surname = surname;

}

public static Person createJohnDoe () {

Person jd = new Person ();

jd.setName("John");

jd.setSurname("Doe");

jd.setAge (33);

return jd;

}

public void initJohnDoe () {

setName("John");

setSurname("Doe");

setAge (33);

}

public String report () {

StringBuilder sb = new StringBuilder ();

sb.append(getname ()). append(getSurname ()). append(getAge ());

return sb.toString ();

}

}

185

APPENDIX B. STUDENT EXAMPLE

class Exam {

public void dummyExam () {}

}

class Schedule {

public void dummySchedule () {}

}

class Mark {

public void dummyMark () {}

}

Listing B.2: Student example implemented in C#
Listing ??: Klasa Student implementirana u C#-u

namespace CSharpStudent

{

using System;

using System.Collections.Generic;

public class Student : Person , IStudent

{

private Schedule _schedule;

private Mark _mark;

private int studentNumber;

private String programName;

public Student () {

}

public int getStudentNumber () {

return studentNumber;

}

public void setStudentNumber(int studentNumber) {

this.studentNumber = studentNumber;

}

public String getProgramName () {

return programName;

}

public void setProgramName(String programName) {

this.programName = programName;

}

public List <Exam > getExams(DateTime from , DateTime to) {

return null;

}

186

private double calculateAverageMark(int level) {

return 0;

}

public void test1() {

double t = calculateAverageMark (1);

List <Exam > e = getExams(new DateTime(), new DateTime ());

/* Iterator <Exam > it = e.iterator ();

while (it.hasNext ()) {

it.next (). dummyExam ();

}*/

foreach (Exam ex in e) {

ex.dummyExam ();

}

Person per = Person.createJohnDoe ();

_schedule.dummySchedule ();

_mark.dummyMark ();

}

}

interface IStudent {

int getStudentNumber ();

void setStudentNumber(int studentNumber);

String getProgramName ();

void setProgramName(String programName);

List <Exam > getExams(DateTime from , DateTime to);

}

public class Person {

private int age;

private String name;

private String surname;

public int getAge () {

return age;

}

public void setAge(int age) {

this.age = age;

}

public String getname () {

return name;

}

public void setName(String name) {

this.name = name;

187

APPENDIX B. STUDENT EXAMPLE

}

public String getSurname () {

return surname;

}

public void setSurname(String surname) {

this.surname = surname;

}

public static Person createJohnDoe () {

Person jd = new Person ();

jd.setName("John");

jd.setSurname("Doe");

jd.setAge (33);

return jd;

}

public void initJohnDoe () {

setName("John");

setSurname("Doe");

setAge (33);

}

public String report () {

/* StringBuilder sb = new StringBuilder ();

sb.append(getname ()). append(getSurname ()). append(getAge ());

return sb.toString (); */

string s = getname () + getSurname () + getAge ();

return s;

}

}

public class Exam {

public void dummyExam () {}

}

class Schedule {

public void dummySchedule () {}

}

class Mark {

public void dummyMark () {}

}

}

188

Prošireni sažetak

Predmet istraživanja disertacije obuhvata metode za kreiranje prilagodljivog
i proširivog okvira za statičku analizu softvera pod nazivom Skup statičkih
analizatora za kvalitet softvera (eng. SSQSA: Set of Software Quality Static
Analyzers). Okvir je nezavisan od ulaznog (kompjuterskog) jezika. Ova
karakteristika zasnovana je na univerzalnoj med̄u-reprezentaciji izvornog
koda nazvanoj obogaćeno konkretno sintaksno stablo (eng. eCST: enriched
Concrete Syntax Tree).

SSQSA okvir je realizovan na osnovu precizno definisane softverske
arhitekture, koja omogućava laku prilagodljivost novim ulaznim jezicima
i proširenje novim algoritmima za statičku analizu, tako da su: (1) sve
raspoložive analize odmah primenljive na novi jezik i (2)) svaka nova anal-
iza je odmah primenljiva na sve podržane jezike.

Uvod

U modernim pristupima razvoju softvera veliki značaj pridaje se kontroli
kvaliteta softvera u ranim fazama razvoja. Zbog toga, statička analiza
postaje sve značajnija. Takod̄e, softverski proizvodi postaju heterogeni i
sve kompleksniji. Tačnije, danas se razvijaju i koriste softverski proizvodi
pisani u vǐse kompjuterskih jezika. Ova heterogenost otežava analizu i
kontrolu kvaliteta u toku životnog ciklusa proizvoda. Posebno je ugrožena
konzistentnost dobijenih rezultata analize. Takod̄e, još uvek su prisutne
komponente starije i od ovih analiza, razvijene u (u to vreme) aktuelnim

189

Prošireni sažetak

jezicima, tako da one neretko ostaju nepokrivene analizom kvaliteta tokom
održavanja, dok se o konzistentnosti ne može ni govoriti.

Predmet istraživanja disertacije je ostvarivanje konzistentnosti anal-
ize kvaliteta softverskih proizvoda pri primeni na izvorni kod pisan u ra-
zličitim kompjuterskim jezicima. Istraživanje je usmereno na kreiranje
okvira za statičku analizu softverskog proizvoda. Dve su osnovne karakter-
istike okvira: (1) prilagodljivost različitim ulaznim jezicima i (2) proširivost
skupa dostupnih analiza novim algoritmima po potrebi. Ove karakteristike
zasnovane su na internoj reprezentaciji izvornog koda koja je nezavisna od
ulaznog jezika čime se postiže jedinstvena implementacija analizatora za sve
ulazne jezike. Na ovaj način postiže se konzistentnost dobijenih rezultata
i pouzdanija analiza kvaliteta softverskog proizvoda, nezavisno od jezika u
kom je proizvod razvijan.

U ovoj disertaciji opisan je okvir SSQSA : skup statičkih analizatora
za kontrolu kvaliteta softvera (eng. Set of Software Quality Static Ana-
lyzers). Namena SSQSA okvira je konzistentna statička analiza. Cilj se
postiže uvod̄enjem nove med̄ureprezentacije izvornog koda nazvane eCST:
obogaćeno konkretno sintaksno stablo (eng. enriched Concrete Syntax
Tree). Naglasak disertacije je primarno na eCST reprezenataciji koda,
reprezentacijama izvedenim iz eCST i procesu njihovog generisanja, sa opi-
som orud̄a angažovanih u ovim procesima.

Osnovna i najbitnija karakteristika eCST reprezenatacije je nezavisnost
od jezika u kom je izvorni kod pisan, što SSQSA okviru daje proširivost na
dva nivoa: kroz podršku za nove jezike i kroz podršku za nove analize. Ovo
dovodi do efikasnog uvod̄enja funkcionalnosti na oba navedena nivoa, kao i
do kozistentnosti uvedenih funkcionalnosti.

Kao dokaz ispravnosti koncepta, podrška za vǐse od 10 ulaznih jezika
je uvedena. Takod̄e, implementirane su karakteristične tehnike statičke
analize (izračunavanje oftverskih metrika, otkrivanje duplikata u kodu, itd.)
i integrisane u SSQSA okvir.

Na opisani način, postavljanjem SSQSA okvira, obezbed̄ena je infras-
truktura za dalji razvoj kompletne platforme za doslednu kontrolu kvaliteta
softvera.

U uvodnom poglavlju disertacije dat je sažet prikaz ciljeva disertacije

190

Osnove

kao i naznaka konačnih rezultata. Naznačeno je na koji način su ciljevi
ispunjeni i okolnosti u kojima je to učinjeno.

U narednom poglavlju izloženi su osnovni pojmovi iz oblasti kvaliteta
softvera, statičke analize i kompjuterskih jezika. Pored opšte podele i tak-
sonomije (tehnika, analizatora i jezika), naročita je pažnja posvećena onim
tehnikama, jezicima i jezičkim paradigmama koji su realizovani u okviru za
statičku analizu.

Sledi poglavlje koje sadrži motivaciju i obrazloženje za odabir opisanog
pristupa razvoju SSQSA okvira, sa akcentom na probleme u oblasti analize
kvaliteta softverskog proizvoda, alternativne interne med̄u-reprezentacije
i dostupna alternativna softverska rešenja razvijena sa sličnim ciljem ili
bazirana na sličnim principima i pristupima.

Centralno poglavlje opisuje SSQSA okvir. Prvo je opisana arhitektura
okvira. Zatim se akcenat prebacuje na interne med̄ureprezentacije i nji-
hovo generisanje. Sledi opis komponenti po slojevima kako je to opisano
arhitekturom. Na samom kraju poglavlja dato je detaljno obrazloženje kako
se u pisanom ookviru obezbed̄uju dve ključne karakteristike: proširivost i
prilagodljivost.

Sledi poglavlje koje opisuje način na koji se vrš validacija istih i pruža
uvid mogućnosti primene okvira u privredi i edukaciji, dok su mogućnosti
primene u nauci očigledne.

U zaključku se sumiraju rezultati i opisuju mogući pravci za dalja is-
trazivanja.

Dodaci pružaju dodatne informacije kao što je katalog univerzalnih
čvorova sa opisima i načinima mapiranja za pojedine jezike i izvorni kodovi
za veće primere korǐsćene u tekstu.

Osnove

Kvalitet svakog proizvoda, a samim tim i kvalitet softverskog proizvoda
može se opisati kao nivo do kog dati proizvod zadovoljava potrebe i za-
hteve korisnika. Model kvaliteta softvera definisan standardom ISO 9126-1
razlikuje šest atributa kvaliteta softvera. To su: funkcionalnost, upotre-

191

Prošireni sažetak

bljivost, pouzdanost, efikasnost, prenosivost i lakoća održavanja. ISO 25010
uvodi osam kvalitativnih karakteristika: funkcionalna primerenost, pouz-
danost, efikasnost performansi, upotrebljivost, sigurnost, kompatibilnost,
lakoća održavanja i prenosivost1.

Navedeni atributi kvaliteta softvera mogu se pratiti, ocenjivati i kon-
trolisati od ranih faza razvoja softvera na nivou izvornog koda i drugih
statičkih artefakata ili u fazi izvršavanja i testiranja. Ocenjivanje atributa
kvaliteta softvera koja se vrši nad izvornim kodom ili nekoj njegovoj in-
ternoj reprezentaciji bez izvršavanja programa naziva se statička analiza,
dok se u vreme izvršavanja programa vrši dinamička analiza. U savre-
menim pristupima razvoja softvera veliki značaj se pridaje praćenju i kon-
troli kvaliteta od ranih faza razvoja čime statička analiza dobija na značaju.

Kako nije moguće upravljati onim što nije moguće izmeriti, numeričko
izražavanje činjenica o pojavama i objektima u procesu razvoja softvera,
koristi se kao elementarni postupak u procesu praćenja i kontrole kvaliteta.
Za merenje atributa kvaliteta softvera koriste se softverske metrike kao
osnovna tehnika statičke analize. Softverska metrika može biti definisana
kao mera koja odražava neko svojstvo softverskog proizvoda ili njegove
specifikacije. Vrednost softverske metrike može odražavati svojstvo celog
proizvoda ili neke njegove sastavne jedinice.

Statička analiza obuhvata i niz tehnika koje se neretko manje ili vǐse
oslanjaju na softverske metrike. Svaka od ovih tehnika podrazumeva im-
plementaciju algoritama nad statičkom reprezentacijom programskog koda.
Primer ovih analiza su lociranje duplikata u kodu, otkrivanje manjkavosti
u dizajnu i implementaciji, praćenje izmena tokom evolucije, priprema po-
dataka za fazu testiranja, detekcija potencijalnih grešaka i sl.

Pojam kompjuterskih jezika označava sve veštačke jezike koji se obrad̄uju
od strane računara. Kompjuterski jezici se kategorǐsu na osnovu pojavnog
oblika, paradigme, namene, faze u toku procesa razvoja softvera u kojoj se
koristi, nivoa apstrakcije, itd. Svaka od navedenih kategorizacija je opisana
u ovoj sekciji. Polazi se od globalne podele jezika po njihovoj nameni na
jezike opšte namene i jezike namenjene specifičnom domenu. Dalje se ova

1ISO, 2014 https://www.iso.org

192

Obrazloženje SSQSA koncepta

kategorizacija profinjava na kategorije po paradigmi i bazičnom stilu pro-
gramiranja, sa osvrtom na jezike koji koriste vǐse paradigmi. Kod jezika na-
menjenih specifičnim domenima pažnja je posvećena karakterističnim pred-
stavnicima ovih domena (specifikacija i modeliranje).

Programski jezici čine podskup skupa kompjuterskih jezika. Program-
ski jezici su dizajnirani za pisanje implementacije izvrsnog rešenja posma-
tranog problema. Programski jezici se kategorǐsu na isti način i po istim
kriterijumima kao kompjuterski jezici.

Pojam izvorni kod označava kod pisan u bilo kom kompjuterskom jeziku
bez obzira na notaciju, namenu i paradigmu.

Obrazloženje SSQSA koncepta

U ovom poglavlju se opisuje motivacija za postavljene ciljeve disertacije,
istraživanja koja opravdavaju tu motivaciju, kao i pored̄enje sa drugim
pristupima i softverskim rešenjima.

Motivacija ima svoje korene u nesavršenosti orud̄a i tehnika za soft-
verske metrike: često nekonzistetnim rezultatima izmed̄u različitih soft-
verskih orud̄a, nedovoljnoj podržanosti za objektno-orijentisane metrike,
nemogućnosti da se softverske metrike na konzistentan način primene na
vǐse-jezične projekte koji neretko sadrži kod pisan u starim programskim
jezicima poput COBOL-a i FORTRAN-a.

Obavljeno je preliminarno istraživanje dostupnih orud̄a za softverske
metrike. Dostupna orud̄a su posmatrana kroz dve grupe karakteristika:
(1) podrška za razne jezike i metrike i (2) mogućnosti ćuvanja i korǐsćenja
različitih istorijskih činjenica u toku raspoloživih analiza (istorija koda,
med̄urezultata i rezultata, itd.)

Na osnovu ovih istraživanja i uočenih nedostaka, nastao je analizator za
softverske metrike SMIILE (eng. Software Metrics Independent on Input
LanguagE), nezavisan od kompjuterskog jezika [Rakić and Budimac, 2011],
[Rakić, 2010]. Pristup primenjen pri razvoju SMIILE-a će kasnije po-
stati osnova za kreiranje proširivog i prilagodljivog okvira za statičku anal-
izu. Ove karakteristike okvira su posledica upotrebe univerzalne med̄u-

193

Prošireni sažetak

reprezentacije izvornog koda nazvane obogaćeno konkretno sintaksno stablo
(eng. eCST: enriched Concrete Syntax Tree) [Rakić and Budimac, 2011].

Pored̄enje sa drugim softverskim rešenjima, pristupima i radovima sas-
toji se iz: (1) pored̄enja eCST i izvedenih med̄u-reprezentacija sa sa alterna-
tivnim reprezentacijama koda i (2) pored̄enja SSQSA okvira sa dostupnim
alternativnim softverskim rešenjima.

Alternativne med̄u-reprezentacije koda pojavljuju se u vidu med̄u-jezika,
alternativnih sintaknih stabala, grafovskih reprezentacija ili meta-modela.
Najsličniji pristup zabeležen je u predlogu za upotrebu standardnog meta-
modela na dva nivoa apstrakcije koji bi bili generisani upotrebom au-
tomatski generisanog parsera. Ovi meta-modeli definisani su od strane kod
OMG (eng. Object Management Group)2 koji daje samo opis standardnog
meta-modela dok realizacija ideje u vidu konkretne implementacije još uvek
nedostaje. Ipak, ovo je potvrda da ideja na kojoj je zasnovana disertacija
ima izglede da bude uspešno realizovana.

Alternativna softverska rešenja, sa sličnim ciljem ili pristupem, postoje,
ali svako od ovih rešenja ima neki od ograničavajućih faktora kao sto su se-
lektivna mogućnost podrške kada su kompjuterski jezici u pitanju, nekonzis-
tentnost rezultata usled različitih implementacija za različite jezike, itd.
Primer jednog ovakvog orud̄a je MOOSE platforma 3 za analizu softvera
koja se oslanja na FAMIX metamodel [Tichelaar et al., 2000b] nezavisnih
od jezika. Ipak ostaje zavisnost od ulaznog jezika u procesu popunjavanja
podataka iz izvornog koda u metamodel. Ovo učitavanje se vrši korǐsćenjem
namenskog orud̄a za svaki podržani jezik, što dovodi do opravdane sumnje u
konzistentnost uvezenih podataka. Dodatno ograničenje je i orijentisanost
platforme ka analizi samo objektno-orijentisanog dizajna i koda.

SSQSA okvir

Okvir SSQSA i njegove karakteristike baziraju se na specifičnoj med̄u-
reprezentaciji izvornog koda. Sve komponente okvira sadrže tačno jednu

2OMG: Object Management Group, 2014 http://www.omg.org/
3The MOOSE book, 2014 http://www.themoosebook.org/book

194

Validacija i rezultati

implementaciju za svaki jezik. Na ovaj način obezbed̄uje se konzistentnost
analiza kao i proširljivost i prilagodljivost okvira.

eCST, interna med̄u-reprezentaciju koda, omogućava nezavisnost od
kompjuterskog jezika. Polazeći od eCST generǐsu se dve izvedene med̄u-
reprezentacije: eGDN (eng. enriched General Dependency Network)[Savić et al., 2014]
i eCFG (eng. enriched Control Flow Graph).

Univerzalni čvorovi su osnova univerzalnosti eCST reprezentacije, a
dizajnirani su tako da jedinstveno za sve jezike obeleže semantiku sintak-
snih konstrukcija u izvornom kodu. Dodatno, vodi se računa o minimalnosti
skupa univerzalnih čvorova. U tekstu je dat opis koncepta univerzalnih
čvorova i opis svih čvorova, kao i metod koji je korǐsćen da bi se odabrao
minimalan skup čvorova stabla eCST tako da omogućava nezavisnost od
ulaznog jezika.

Sve komponente predloženog okvira podeljene su po ulozi u okviru na
pet nivoa. Prva tri nivoa komponenti namenjena su radu sa internim
reprezentacijama koda (generisanje, konverzija i adaptacija). Ove kom-
ponente čine prvu kategoriju komponenti. Druga kategorija komponenti
čine orud̄a za statičku analizu, dok treću kategoriju čine eksterna orud̄a
integrisana u okvir.

Opisano je kako se u prikazanoj arhitekturi (Slika ??) obezbed̄uje pri-
lagodljivost u odnosu na uključenje novih kompjuterskih jezika, pri čemu
su prikazani i karakteristični problemi prilikom uključenja karakterističnih
primera jezika za različite klase jezika uzimajući u obzir namenu, paradigmu
i stil programiranja.

Peti odeljak prikazuje kako se u predloženom okviru postiže proširivost
okvira u odnosu na nove i postojeće statičke analizatore. Ova osobina je
demonstrirana na karakterističnim primerima tri različite kategorije anal-
iza: analize bazirane na leksičkim konstrukcijama u kodu, analize bazirane
na sintaksnim konstrukcijama u izvornom kodu i analize bazirane na zav-
isnostima izmedju softverskih entiteta sadržanih u kodu.

195

Prošireni sažetak

Validacija i rezultati

Ovo poglavlje disertacije prikazuje postupak testiranja i validacije okvira
pri dodavanju novog kompjuterskog jezika i novog analizatora. Takod̄e
prikazuje i neke karakteristične rezultate pri primeni okvira na velike pro-
grame (reda veličine oko 100,000 redova koda) pisanim u raznim program-
skim jezicima. Konzistentnost i korektnost rezultata su proveravani: (1)
Interno: u odnosu na rezultate nastale primenom SSQSA okvira na pro-
grame pisane u različitim jezicima. Zbog prirode problema, ova analiza
se može izvršiti samo na manjim i analognim primerima. (2) Eksterno:
u odnosu na rezultate drugih analizatora. Ove analize su vršene na sred-
njim i velikim programima , a upored̄ivane su vrednosti metrika dizajna,
Halstedova metrika i metrika ciklomatske složenosti.

Na osnovu dve vrste opisanih analiza rezultata, pokazuje se da su rezul-
tati dobijeni primenom okvira SSQSA tačni i konzistentni, izmed̄u ostalog
i zato što svi ulazni programi imaju istu unutrašnju reprezentaciju zas-
novanu na eCST. Na primer, da bi se pokazala validnost dobijenih vred-
nosti primene analize X na Modula-2 programu, dovoljno je pokazati valid-
nost dobijenih vrednosti analize Y u (npr. Javi) pored̄enjem sa nekoliko
drugih analizatora. Validnost analize X tada sledi automatski na osnovu
činjenice da su programi pisani u Javi i Moduli-2 predstavljeni istom med̄u-
reprezentacijom.

Opisani okvir očigledno ima primenu u naučnim istraživanjima, ali i
mogućnosi dalje primene u privredi i obrazovanju.

Zaključak

SSQSA okvir za statičku analizu poseduje dve bitne karakteristike: pri-
lagodljivost novom kompjuterskom jeziku i (2) laka proširivost za nove
analize. Osobine SSQSA okvira koje su preduslov za obezbed̄ivanje ovih
karakteristika osnov su i za doslednost podržanih analiza.

Navedene karakteristike su prikazane na reprezentativnom skupu podržanih
jezika i analiza. Od komjuterskih jezika u okvir su uključeni: Java, C#,

196

Zaključak

Delphi, Modula-2, Pascal, C, COBOL, Erlang, Scheme, Python, PHP,
JavaScript, OWL, WSL, i Tempura. Od statičkih analizatora uključeni su
analizatori za softverske metrike, softverske mreže [Savić et al., 2014], de-
tekciju klonova i praćenje strukturnih izmena u softveru [Gerlec et al., 2012].

Ovakav okvir predstavlja dobru infrastrukturu za doslednu statičku
analizu, ali i dobru polaznu osnovu za budući rad koji se primarno sas-
toji iz ukljčivanja novih analiza i unapred̄enja postojećih. Takod̄e u planu
je unapred̄enje upotrebljivosti okvira različitim interpretacijama dobijenih
rezultata analiza. Ove interpretacije mogu biti u vidu vizuelizacije ali i u
vidu pružanja saveta korisnicima za unapred̄enje kvaliteta proizvoda što
bi bilo zanovano na upošljavanju inteligentnih tehnika za zaključivanje na
osnovu generisanih rezultata.

197

Prošireni sažetak

198

Bibliography

[Aho et al., 2006] Aho, A. V., Lam, M. S., Sethi, R., and Ullman, J. D.
(2006). Compilers: Principles, Techniques, and Tools (2Nd Edition).
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA.

[Arbuckle, 2011] Arbuckle, T. (2011). Measuring multi-language software
evolution: a case study. In Proc. of the 12th International Workshop
on Principles of Software Evolution and the 7th annual ERCIM Work-
shop on Software Evolution, IWPSE–EVOL ’11, pages 91–95, Szeged,
Hungary. ACM.

[Baciková et al., 2013] Baciková, M., Porubän, J., and Lakatos, D. (2013).
Defining Domain Language of Graphical User Interfaces. In Leal, J. P.,
Rocha, R., and Simões, A., editors, Proc. of the 2nd Symposium on Lan-
guages, Applications and Technologies, volume 29 of OpenAccess Series
in Informatics (OASIcs), pages 187–202, Dagstuhl, Germany. Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik.

[Bär and Ducasse, 1999] Bär, H. and Ducasse, S. (1999). The FAMOOS
Object Oriented Reengineering Handbook. Karlsruhe, Forschungszentrum
Informatik an der Univerzitet.

[Baxter et al., 1998] Baxter, I., Yahin, A., Moura, L., Sant’Anna, M., and
Bier, L. (1998). Clone detection using abstract syntax trees. In Proc.
of the International Conference on Software Maintenance (ICSM), pages
368–377, Bethesda, Maryland.

199

BIBLIOGRAPHY

[Ben-Menachem and Marliss, 1997] Ben-Menachem, M. and Marliss, G.
(1997). Software Quality: Producing Practical, Consistent Software,
Slaying the Software Dragon Series. Boston, International Thomson
Computer Press.

[Bergel et al., 2009] Bergel, A., Denier, S., Ducasse, S., Laval, J.,
Bellingard, F., Vaillergues, P., Balmas, F., and Mordal-Manet, K. (2009).
Squale–software quality enhancement. In Proc. of the 13th European
Conference on Software Maintenance and Reengineering (CSMR’09),
pages 285–288, Kaiserslautern, Germany. IEEE.

[Bhatt et al., 2012] Bhatt, K., Tarey, V., Patel, P., Mits, K. B., and Ujjain,
D. (2012). Analysis of source lines of code (SLOC) metric. International
Journal of Emerging Technology and Advanced Engineering, 2(5):150–
154.

[Boccaletti et al., 2006] Boccaletti, S., Latora, V., Moreno, Y., Chavez, M.,
and Hwang, D.-U. (2006). Complex networks: Structure and dynamics.
Physics reports, 424(4):175–308.

[Bourque et al., 2014] Bourque, P., Fairley, R. E., et al. (2014). Guide to
the Software Engineering Body of Knowledge (SWEBOK (R)): Version
3.0. IEEE Computer Society Press.

[Capers, 1996] Capers, J. (1996). Applied software measurement. McGraw-
Hill.

[Chidamber and Kemerer, 1994] Chidamber, S. R. and Kemerer, C. F.
(1994). A metrics suite for object oriented design. IEEE Transactions
on Software Engineering, 20(6):476–493.

[Christodoulakis et al., 1989] Christodoulakis, D., Tsalidis, C., van Gogh,
C., and Stinesen, V. (1989). Towards an automated tool for software
certification. In Proc. of the IEEE International Workshop on Architec-
tures, Languages and Algorithms, Tools for Artificial Intelligence, pages
670–676, Fairfax, Virginia, USA.

200

BIBLIOGRAPHY

[Cohen and Havlin, 2010] Cohen, R. and Havlin, S. (2010). Complex net-
works: structure, robustness and function. Cambridge University Press.

[Dahm, 1998] Dahm, P. (1998). Parser description language – an overview.
In Winter, A., Stasch, H., Gimnich, R., and Ebert, J., editors, GUPRO
– Generische Umgebung zum Programmverstehen, pages 137–156.

[DeMarco, 1986] DeMarco, T. (1986). Controlling software projects: man-
agement, measurement, and estimates. Prentice Hall PTR.

[Ducasse et al., 1999] Ducasse, S., Rieger, M., and Demeyer, S. (1999). A
language independent approach for detecting duplicated code. In Proc.
of the International Conference on Software Maintenance (ICSM), pages
109–118, Oxford, England, UK.

[Ebert et al., 2002] Ebert, J., Kullbach, B., Riediger, V., and Winter, A.
(2002). {GUPRO} - generic understanding of programs an overview.
Electronic Notes in Theoretical Computer Science, 72(2):47 – 56.

[Ebert et al., 2008] Ebert, J., Riediger, V., and Winter, A. (2008). Graph
technology in reverse engineering, the TGraph approach. In Proc. of the
10th Workshop Software Reengineering (WSR 2008), volume 126 of GI
Lecture Notes in Informatics, pages 67–81, Bonn, Germany.

[Fenton and Neil, 1999] Fenton, N. E. and Neil, M. (1999). Software met-
rics: Success, failures and new directions. Journal of Software and Sys-
tems, 47(2-3):149–157.

[Fenton and Neil, 2000] Fenton, N. E. and Neil, M. (2000). Software met-
rics: roadmap. In Proc. of the Conference on the Future of Software
Engineering, pages 357–370, Limerick, Ireland. ACM.

[Fischer et al., 2007] Fischer, G., Lusiardi, J., and von Gudenberg, J. W.
(2007). Abstract syntax trees-and their role in model driven software
development. In Proc. of the International Conference on Software En-
gineering Advances (ICSEA), pages 38–38, Cap Esterel, French Riviera,
France. IEEE.

201

BIBLIOGRAPHY

[Fowler, 2010] Fowler, M. (2010). Domain Specific Languages. Addison-
Wesley Professional, 1st edition.

[Gerlec et al., 2012] Gerlec, Č., Rakić, G., Budimac, Z., and Heričko, M.
(2012). A programming language independent framework for metrics-
based software evolution and analysis. ComSIS: Computer Science and
Information Systems, 9(3):1155–1186.

[Gerlec and Živkovič, 2009] Gerlec, Č. and Živkovič, A. (2009). Software
metrics repository architecture. In Proc. of the 12th International Multi-
conference on Information Society (IS 2009), pages 265–268, Ljubljana,
Slovenia.

[Gerlec et al., 2011] Gerlec, v., Krajnc, A., Marjan, H., and Jan, B. (2011).
Mining source code changes from software repositories. In Proc. of the 7th
Central and Eastern European Software Engineering Conference, CEE-
SECR ’11, pages 1–5, Washington, DC, USA. IEEE Computer Society.

[Gilb, 1976] Gilb, T. (1976). Software Metrics. Chartwell-Bratt.

[Gustafsson et al., 2009] Gustafsson, J., Ermedahl, A., Lisper, B., Sand-
berg, C., and Källberg, L. (2009). ALF–a language for WCET flow
analysis. In Proc. of the 9th International Workshop on Worst-Case
Execution Time Analysis (WCET2009), pages 1–11, Dublin, Ireland.

[Heckerman et al., 2001] Heckerman, D., Chickering, D. M., Meek, C.,
Rounthwaite, R., and Kadie, C. (2001). Dependency networks for in-
ference, collaborative filtering, and data visualization. The Journal of
Machine Learning Research, 1:49–75.

[Heričko et al., 2007] Heričko, M., Živkovič, A., and Porkolb, Z. (2007). A
method for calculating acknowledged project effort using a quality index.
Informatica, 31(4):431–436.

[Kan, 2002] Kan, S. H. (2002). Metrics and models in software quality
engineering. Addison-Wesley Longman Publishing Co., Inc.

202

BIBLIOGRAPHY

[Kienle and Mller, 2010] Kienle, H. M. and Mller, H. A. (2010). Rigian
environment for software reverse engineering, exploration, visualization,
and redocumentation. Science of Computer Programming, 75(4):247 –
263.

[Kolek, 2014] Kolek, J. (2014). Translation of scheme programming lan-
guage to universal intermediate representation eCST (prevod̄enje pro-
gramskog jezika scheme u univerzalnu med̄u-reprezentaciju eCST). MSc
thesis, Faculty of Sciences, University of Novi Sad, Serbia (in Serbian).

[Kolek et al., 2013] Kolek, J., Rakić, G., and Savić, M. (2013). Two-
dimensional extensibility of SSQSA framework. In Proc. of the 2nd
Workshop on Software Quality Analysis, Monitoring, Improvement, and
Applications(SQAMIA), pages 35–43, Novi Sad, Serbia.

[Koschke et al., 2006] Koschke, R., Falke, R., and Frenzel, P. (2006). Clone
detection using abstract syntax suffix trees. In Proc. of the 13th Work-
ing Conference on Reverse Engineering, (WCRE ’06), pages 253–262,
Benevento, Italy.

[Lanza and Marinescu, 2006] Lanza, M. and Marinescu, R. (2006). Object-
Oriented Metrics in Practice - Using Software Metrics to Characterize,
Evaluate, and Improve the Design of Object-Oriented Systems. Springer.

[Lattner and Adve, 2004] Lattner, C. and Adve, V. (2004). LLVM: A com-
pilation framework for lifelong program analysis & transformation. In
Proc. of the International Symposium on Code Generation and Optimiza-
tion: Feedback-directed and Runtime Optimization, CGO ’04, page 75,
Palo Alto, California. IEEE Computer Society.

[Lincke et al., 2008] Lincke, R., Lundberg, J., and Löwe, W. (2008). Com-
paring software metrics tools. In Proc. of the International Symposium
on Software Testing and Analysis, ISSTA ’08, pages 131–142, Seattle,
WA, USA. ACM.

[Lisper, 2014] Lisper, B. (2014). SWEET - a tool for WCET flow analysis
(extended abstract). In Margaria, T. and Steffen, B., editors, Leveraging

203

BIBLIOGRAPHY

Applications of Formal Methods, Verification and Validation. Specialized
Techniques and Applications, volume 8803 of Lecture Notes in Computer
Science, pages 482–485. Springer Berlin Heidelberg.

[Lorenz and Kidd, 1994] Lorenz, M. and Kidd, J. (1994). Object-oriented
software metrics: a practical guide. Prentice-Hall, Inc.

[Madhavji et al., 2006] Madhavji, N. H., Fernandez-Ramil, J., and Perry,
D. (2006). Software Evolution and Feedback: Theory and Practice. John
Wiley & Sons.

[McCabe, 1976] McCabe, T. J. (1976). A complexity measure. IEEE
Transactions on Software Engineering, (4):308–320.

[Mernik et al., 2005] Mernik, M., Heering, J., and Sloane, A. M. (2005).
When and how to develop domain-specific languages. ACM Comput.
Surv., 37(4):316–344.

[Merrill, 2003] Merrill, J. (2003). Generic and gimple: A new tree repre-
sentation for entire functions. In Proc. of the GCC Developers Summit,
pages 171–179, Ottawa, Ontario, Canada.

[Morris, 1989] Morris, K. L. (1989). Metrics for object-oriented software
development environments. PhD thesis, Massachusetts Institute of Tech-
nology.

[Myers, 2003] Myers, C. R. (2003). Software systems as complex networks:
Structure, function, and evolvability of software collaboration graphs.
Physical Review E, 68(4):046116.

[N. Fenton, 1996] N. Fenton, S. L. P. (1996). Software Metrics: A Rigorous
and Practical Approach. Thomson Computer Press.

[Newman, 2010] Newman, M. (2010). Networks: An Introduction. Oxford
University Press, Inc., New York, NY, USA.

[Newman, 2003] Newman, M. E. (2003). The structure and function of
complex networks. SIAM review, 45(2):167–256.

204

BIBLIOGRAPHY

[Novak and Rakić, 2010] Novak, J. and Rakić, G. (2010). Comparison of
software metrics tools for: net. In Procedings of 13th International Multi-
conference Information Society (IS’10), pages 231–234, Ljubljana, Slove-
nia.

[Parr and Fisher, 2011] Parr, T. and Fisher, K. (2011). Ll (*): the founda-
tion of the antlr parser generator. In ACM SIGPLAN Notices, volume 46,
pages 425–436. ACM.

[Parr et al., 2014] Parr, T., Harwell, S., and Fisher, K. (2014). Adaptive ll
(*) parsing: the power of dynamic analysis. In Proc. of the ACM Interna-
tional Conference on Object Oriented Programming Systems Languages
& Applications, pages 579–598, Portland, Oregon, USA. ACM.

[Páter-Részeg, 2013] Páter-Részeg, A. (2013). Mapping the semantic pro-
gram graph of a functional programming language to the syntax tree
of imperative languages (Funkcionális program szemantikus program
gráfjának leképezése imperat́ıv program szintaxisfájára) . TDK Thesis,
Scientific Students’ Associations Conference, ELTE, Budapest, Hungary
(in Hungarian, received second prize).

[Pérez-Castillo et al., 2011] Pérez-Castillo, R., De Guzman, I. G.-R., and
Piattini, M. (2011). Knowledge discovery metamodel-iso/iec 19506: A
standard to modernize legacy systems. Computer Standards & Interfaces,
33(6):519–532.

[Porubän et al., 2010] Porubän, J., Forgáč, M., Sabo, M., and Běhálek, M.
(2010). Annotation based parser generator. ComSIS: Computer Science
and Information Systems, 7(2):291–307.

[Pribela et al., 2012] Pribela, I., Budimac, Z., and Rakić, G. (2012). First
experiences in using software metrics in automated assessment. In Proc.
of the 15th International Multiconference on Information Society (IS
2012), pages 250–253, Ljubljana, Slovenia.

[Pribela et al., 2011] Pribela, I., Ivanović, M., and Budimac, Z. (2011).
System for testing different kinds of students programming assignments.

205

BIBLIOGRAPHY

In Proc. of the 5th International Conference on Information Technology
ICIT, Amman, Jordan.

[Raja and Lakshmanan, 2010] Raja, A. and Lakshmanan, D. (2010). Do-
main specific languages. International Journal of Computer Applications,
1(21):99–105.

[Rakić, 2010] Rakić, G. (2010). Software metrics tool independent of pro-
gramming language (orud̄e za softverku metriku nezavisno od program-
skog jezika). MSc thesis, Faculty of Sciences, University of Novi Sad,
Serbia (in Serbian).

[Rakić and Budimac, 2010] Rakić, G. and Budimac, Z. (2010). Problems
in systematic application of software metrics and possible solution. In
Proc. of The 5th International Conference on Information Technology
(ICIT), Amman, Jordana.

[Rakić and Budimac, 2011] Rakić, G. and Budimac, Z. (2011). Introducing
enriched concrete syntax trees. In Proc. of 13th International Multicon-
ference Information Society (IS’13), pages 211–214, Ljubljana, Slovenia.

[Rakić and Budimac, 2011] Rakić, G. and Budimac, Z. (2011). SMIILE
prototype. AIP Conference Proceedings, 1389(1):853–856.

[Rakić et al., 2013a] Rakić, G., Budimac, Z., and Bothe, K. (2013a). Intro-
ducing recursive complexity. AIP Conference Proceedings, 1558(1):357–
361.

[Rakić et al., 2013b] Rakić, G., Budimac, Z., and Savić, M. (2013b). Lan-
guage independent framework for static code analysis. In Proc. of the
Balkan Conference in Informatics, BCI’13, pages 236–243, Thessaloniki,
Greece. ACM.

[Rakić et al., 2011] Rakić, G., Črt Gerlec, Novak, J., and Budimac, Z.
(2011). XML-Based integration of the SMIILE tool prototype and soft-
ware metrics repository. AIP Conference Proceedings, 1389(1):869–872.

206

BIBLIOGRAPHY

[Rattan et al., 2013] Rattan, D., Bhatia, R., and Singh, M. (2013). Soft-
ware clone detection: A systematic review. Information and Software
Technology, 55(7):1165 – 1199.

[Raza et al., 2006] Raza, A., Vogel, G., and Plödereder, E. (2006).
Bauhaus–a tool suite for program analysis and reverse engineering. In
Reliable Software Technologies–Ada-Europe 2006, pages 71–82. Springer.

[Roy et al., 2009] Roy, C. K., Cordy, J. R., and Koschke, R. (2009). Com-
parison and evaluation of code clone detection techniques and tools: A
qualitative approach. Science of Computer Programming, 74(7):470 –
495. Special Issue on Program Comprehension (ICPC 2008).

[Savić et al., 2013] Savić, M., Budimac, Z., Rakić, G., Ivanović, M., and
Heričko, M. (2013). SSQSA ontology metrics front-end. In Proc. of the
Second Workshop on Software Quality Analysis, Monitoring, Improve-
ment and Applications (SQAMIA), page 95, Novi Sad, Serbia.

[Savić and Ivanović, 2014] Savić, M. and Ivanović, M. (2014). Graph clus-
tering evaluation metrics as software metrics. In Proc. of the 3rd Work-
shop on Software Quality Analysis, Monitoring, Improvement and Ap-
plications (SQAMIA), pages 81–89, Lovran, Croatia.

[Savić et al., 2011] Savić, M., Ivanović, M., and Radovanović, M. (2011).
Characteristics of class collaboration networks in large Java software
projects. Information Technology And Control, 40(1):48–58.

[Savić et al., 2012] Savić, M., Rakić, G., Budimac, Z., and Ivanović, M.
(2012). Extractor of software networks from enriched concrete syntax
trees. AIP Conference Proceedings, 1479(1):486–489.

[Savić et al., 2014] Savić, M., Rakić, G., Budimac, Z., and Ivanović, M.
(2014). A language-independent approach to the extraction of dependen-
cies between source code entities. Information and Software Technology,
56(10):1268 – 1288.

207

BIBLIOGRAPHY

[Scotto et al., 2006] Scotto, M., Sillitti, A., Succi, G., and Vernazza, T.
(2006). A non-invasive approach to product metrics collection. Journal
of Systems Architecture, 52(11):668–675.

[Shaw and Garlan, 1996] Shaw, M. and Garlan, D. (1996). Software archi-
tecture: perspectives on an emerging discipline, volume 1. Prentice Hall
Englewood Cliffs.

[Tichelaar et al., 2000a] Tichelaar, S., Ducasse, S., and Demeyer, S.
(2000a). FAMIX and XMI. In Proc. of Seventh Working Conference
on Reverse Engineering (WCRE), pages 296 –298, Brisbane, Australia.

[Tichelaar et al., 2000b] Tichelaar, S., Ducasse, S., Demeyer, S., and Nier-
strasz, O. (2000b). A meta-model for language-independent refactoring.
In Proc. of International Symposium on Principles of Software Evolution,
pages 154 –164, Kanazawa, Japan.

[Tóth et al., 2015] Tóth, M., Páter-Részeg, A., and Rakić, G. (2015). In-
troducing support for erlang into ssqsa framework. AIP Conference Pro-
ceedings, 1648(1):310012.

[Škatarić, 2012] Škatarić, V. (2012). Visual eCST editor (vizuelni eCST
editor). MSc thesis, Faculty of Sciences, University of Novi Sad, Serbia
(in Serbian).

[Šubelj and Bajec, 2012] Šubelj, L. and Bajec, M. (2012). Software sys-
tems through complex networks science: Review, analysis and applica-
tions. In Proc. of the First International Workshop on Software Mining,
SoftwareMining ’12, pages 9–16, Beijing, China. ACM.

[Wagner, 2014] Wagner, C. (2014). Model-Driven Software Migration: A
Methodology: Reengineering, Recovery and Modernization of Legacy Sys-
tems. Springer Science & Business Media.

[Wilhelm et al., 2008] Wilhelm, R., Engblom, J., Ermedahl, A., Holsti, N.,
Thesing, S., Whalley, D., Bernat, G., Ferdinand, C., Heckmann, R., Mi-
tra, T., et al. (2008). The worst–case execution–time problem-overview

208

BIBLIOGRAPHY

of methods and survey of tools. ACM Transactions on Embedded Com-
puting Systems (TECS), 7(3):36.

209

BIBLIOGRAPHY

210

Short biography

Gordana Rakić was born on October 27, 1981
in Novi Sad. After finishing secondary school
in economics (in 2000) she enrolled studies at
Faculty of Sciences, Univeristy of Novi Sad.
She obtained bachelor degree in Business In-
formatics in 2006 with average mark of 8.58
(max. 10) and defended bachelor thesis enti-
tled ”Example of the cost estimation with func-
tion points method” (in Serbian) with mark 10.
Gordana completed master studies in Business
Informatics in 2010. with the average mark
9.80 (max. 10), defending the masters thesis
entitled ”Programming language independent
software metrics tool”, with the highest mark. In 2008, she enrolled PhD
Studies in Informatics at the Faculty of Sciences in Novi Sad. She has
passed all the exams with the highest marks (10).

From 2006 to 2009 he was engaged in teaching and research at the
Faculty of Sciences in Novi Sad with several roles as a master and PhD
student. Since 2009 she has been employed at the position of an assistant
for the scientific field of computer science at the Faculty of Sciences in
Novi Sad, Department of Mathematics and Informatics. She is involved in
courses for students of computer science on the bachelor and master level.

She has participated in the organization of several international sci-
entific conferences, symposia and workshops, as a member, secretary, co-
chairman, and chairman of the organizing committees.

In the period 2011 - 2013 she was one of the managing editors of the in-
ternational scientific journal ”ComSIS: Computer Science and Information
Systems” in a role of managing editor.

She actively participates in research projects funded by the Ministry
of Education, Science and Technological Development of the Republic of
Serbia. She participated in several ongoing and completed research projects

211

Biography

of bilateral and multilateral cooperation, an international project supported
by the DAAD foundation, one Tempus, one COST project, as well as in
the CEEPUS research networks.

As a part of research activities, in the period from 2006 until nowadays
she has actively participated in the exchange of ideas and results with
colleagues from country and abroad. She has received grants research for
stays in Germany (Berlin and Munich), Austria (Linz), Slovenia (Maribor),
Hungary (Budapest), Bulgaria (Plovdiv) and Italy (Venice).

She has published (as author or co-author) more than 20 scientific pa-
pers in the field of software metrics, software quality and software engineer-
ing.

She has received awards for outstanding scientific or professional work
for papers written in the academic year 2006/2007. She was awarded by the
University of Novi Sad, for the paper entitled ”Requirement Engineering
for Critical Systems”.

Novi Sad, March 2015 Gordana Rakić

212

Kratka biografija

Gordana Rakić je rod̄ena 27. oktobra 1981. go-
dine u Novom Sadu. 2000. godine je završila
je srednju ekonomsku školu. Školovanje nas-
tavlja na Prirodno−matematičkom fakultetu u
Novom Sadu u oblasti poslovne informatike.
Diplomirala je 2006. godine sa prosečnom
ocenom 8.58, odbranivši diplomski rad pod
naslovom ”Primer procene troškova metodom
funkcijskih bodova” sa ocenom 10.

Master studije završila je sa prosečnom
ocenom 9.80, dok je master rad pod naslovom
”Orud̄e za softversku metriku nezavisno od
programskog jezika” odbranila 2010. godine
ocenom 10. 2008. godine upisuje doktorske studije informatike na
Prirodno-matematičkom fakultetu u Novom Sadu. Sve ispite predvid̄ene
planom i programom za doktorske studije položila je ocenom 10.

Od 2006. do 2009. godine je bila angažovana u nastavi i istraživačkom
radu na Prirodno−matematičkom fakultetu u Novom Sadu po nekoliko os-
nova kao student master i doktorskih studija. Od 2009. godine je zaposlena
na radnom mestu asistenta za užu naučnu oblast Računarske nauke na De-
partmanu za matematiku i informatiku Prirodno−matematičkog fakulteta
u Novom Sadu. Uključena je u izvod̄enje nastave za osnovnih i master
studija informatike.

Učestvovala je u organizaciji nekoliko med̄unarodnih naučnih konfer-
encija, simpozijuma i radionica kao član, sekretar i ko−predsedavajući i
predsedavajući organizacionog odbora.

U periodu 2011. 2013. bila je angažovana na administrativnim poslovima
vezanim za ured̄ivanje med̄unarodnog časopisa (eng. managing editor)
”ComSIS: Computer Science and Information Systems”

Aktivno učestvuje na naučnim projektima koje finansira Ministarstvo
prosvete, nauke i tehnološkog razvoja Republike Srbije. Učesnik je vǐse

213

Biografija

tekućih i okončanih bilateralnih naučnih projekata i projekata multilater-
alne saradnje, jednog med̄unarodnog projekta podržanog od strane DAAD
fondacije, jednog Tempus, jednog COST projekta i CEEPUS istraživačke
mreže.

U okviru naučno−istraživačkog rada, uperiodu od 2006. godine do
danas aktivno je učestvovala u razmeni ideja i rezultata sa kolegama iz
zemlje i inostranstva. Iza sebe ima istraživačke boravke i usavršavanja u
Nemačkoj (Berlin i Minhen), Austriji (Linc), Sloveniji (Maribor), Mad̄arskoj
(Budimpešta), Bugarskoj (Plovdiv) i Italiji (Venecija).

Autor je i ko−autor vǐse od 20 naučnih radova u oblasti softverskih
metrika, kvaliteta softvera i softverskog inženjerstva.

Dobitnik je Izuzetne nagrade za naučne i stručne radove studenata
napisane u akademskoj 2006/2007. godini koju dodeljuje Univerzitet u
Novom Sadu, za rad Requirement Engineering for Critical Systems.

Novi Sad, March 2015 Gordana Rakić

214

University of Novi Sad
Faculty of Science

Key Words Documentation

Accession number:
NO
Identification number:
INO
Document type: Monograph documentation
DT
Type of record: Textual printed material
TR
Contents code: Doctoral dissertation
CC
Author: Gordana Rakić
AU
Advisor: Dr.Zoran Budimac
MN

Title: Extendable and Adaptable Framework for Input Language
Independent Static Analysis

TI
Language of text: English
LT
Language of abstract Serbian/English
LA
Country of publication: Republic of Serbia
CP
Locality of publication: Vojvodina
LP
Publication year: 2015
PY

Publisher: Author’s reprint
PU
Publ. place: Novi Sad, Trg D. Obradovića 4
PP

Physical description: 6/XX+214/82/40/27/0/2
(no. of chapters/pages/bib. refs/tables/figures/graphs/appendices)

PO
Scientific field: Computer Science
SF
Scientific discipline: Software Engineering
SD
Subject/Key words: software quality

static analysis
intermediate representation

SKW
UC
Holding data:
HD
Note:
N

Abstract: In modern approach to software development, a great impor-
tance is given to monitoring of software quality in early de-
velopment phases. Therefore, static analysis becomes more
important. Furthermore, software projects are becoming
more complex and heterogeneous. These characteristics are
reflected in a diversity of functionalities and variety of com-
puter languages and the technologies used for their develop-
ment. Because of that consistency in static analysis becomes
more important than it was earlier.
In this dissertation SSQSA: Set of Software Quality Static
Analyzers is described. The aim of the SSQSA framework
is consistent static analysis. This goal is reached by intro-
ducing new intermediate source code representation called
eCST: enriched Concrete Syntax Tree. The dissertation
mostly focuses on eCST, intermediate representations de-
rived from it, and their generation with description of the
tools involved in it.
The main characteristic of eCST is language independence
which gives to SSQSA framework two-level extensibility:
supporting a new language and supporting a new analysis.
This leads to efficiency of adding both level supports and
consistency of added functionalities.
To prove the concept, support for more than 10 character-
istic languages was introduced. Furthermore, characteris-
tic static analysis techniques (software metrics calculation,
code-clone detection, etc.) were implemented and integrated
in the framework.
Established SSQSA framework provides the infrastructure
for the further development of the complete platform for
software quality control.

AB
Accepted by Scientific Board on: 11.06.2014.
AS
Defended:

DE
Dissertation Defense Board:

(Degree/first and last name/title/faculty)
DB
President: Dr Vladimir Kurbalija,

associate professor,
Faculty of Science,
University of Novi Sad

Advisor: Dr Zoran Budimac, full professor,
Faculty of Science,
University of Novi Sad

Member: Dr Mirjana Ivanović, full professor,
Faculty of Science,
University of Novi Sad

Member: Dr Marjan Heričko, full professor,
Faculty of Electrical Engineering
and Computer Science,
University of Maribor

Univerzitet u Novom Sadu
Prirodno-matematički fakultet

Ključna dokumentacijska informacija

Redni broj:
RBR
Identifikacioni broj:
IBR
Tip dokumentacije: Monografska dokumentacija
TD
Tip zapisa: Tekstualni štampani materijal
TZ
Vrsta rada: Doktorska disertacija
VR
Autor: Gordana Rakić
AU
Mentor: dr Zoran Budimac
MN

Naslov rada: Proširiv i prilagodljiv okvir za statičku analizu nezavisnu od
ulaznog jezika

NR
Jezik publikacije: engleski
JP
Jezik izvoda: srpski/engleski
JI
Zemlja publikovanja: Republika Srbija
ZP
Uže geografsko područje: Vojvodina
UGP
Godina: 2015
GO

Izdavač: autorski reprint
IZ
Mesto i adresa: Novi Sad, Trg D. Obradovića 4
MA

Fizički opis rada: 6/XX+214/82/40/27/0/2
(broj poglavlja/strana/lit. citata/tabela/slika/grafika/priloga)

FO
Naučna oblast: Računarske nauke
NO
Naučna disciplina: Softversko inženjerstvo
ND
Predmetna odrednica/
Ključne reči:

kvalitet softvera
statička analiza
med̄ureprezentacija

PO
UDK

Čuva se:

ČU
Važna napomena:
VN

Izvod: U modernim pristupima razvoju softvera veliki značaj pri-
daje se kontroli kvaliteta softvera u ranim fazama razvoja.
Zbog toga, statička analiza postaje sve značajnija. Takod̄e,
softverski proizvodi postaju sve kompleksniji i heterogeni.
Ove karakteristike se ogledaju u raznovrsnosti jezika i
tehnologija koje se koriste u procesu razvoja softvera. Zbog
toga, konzistentnost u statičkoj analizi dobija veći značaj
nego što je to bio slučaj ranije.
U ovoj disertaciji opisan je SSQSA skup statičkih analizatora
za kontrolu kvaliteta (eng. Set of Software Quality Static
Analyzers). Namena SSQSA okvira je konzistentna statička
analiza. Cilj se postiže uvod̄enjem nove med̄ureprezentacije
izvornog koda nazvane eCST (obogaćeno konkretno sin-
taksno stablo, eng. enriched Concrete Syntax Tree).
Fokus disertacije je primarno na eCST reprezenataciji koda,
reprezentacijama izvedenjim iz eCST i procesu njihovog
generisanja, sa opisom orud̄a angažovanim u ovim proces-
ima.
Osnovna i najbitnija karakteristika eCST reprezenatacije
je nezavisnost od jezika u kom je izvorni kod pisan, što
SSQSA okviru daje proširivost na dva nivoa: kroz podršku
za nove jezike i kroz podršku za nove analize. Ovo dovodi do
efikasnog uvod̄enja funkcionalnosti na oba navedena nivoa,
kao i do kozistentnosti uvedenih funkcionalnosti.
Kao dokaz ispravnosti koncepta, podrška za vizvse od 10
ulaznih jezika je uvedena. Takod̄e, implementirane su karak-
teristične tehnike statičke analize (izračunavanje oftverskih
metrika, otkrivanje duplikata u kodu, itd.) i integrisane u
SSQSA okvir.
Na opisani način, postavljanjem SSQSA okvira, obezbed̄ena
je infrastruktura za dalji razvoj kompletne platforme za kon-
trolu kvaliteta softvera.

IZ
Datum prihvatanja teme od strane

NN veća: 11.06.2014.
DP
Datum odbrane:
DO

Članovi komisije:
(Naučni stepen/ime i prezime/zvanje/fakultet)

KO
Predsednik: dr Vladimir Kurbalija,

vanredni profesor,
Prirodno-matematički fakultet,
Univerzitet u Novom Sadu

Mentor: dr Zoran Budimac, redovni profesor,
Prirodno-matematički fakultet,
Univerzitet u Novom Sadu

Član: dr Mirjana Ivanović, redovni profesor,
Prirodno-matematički fakultet,
Univerzitet u Novom Sadu

Član: dr Marjan Heričko, redovni profesor,
Fakultet za elektrotehniku,
računarstvo i informatiku,
Univerzitet u Mariboru

