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Introduction

Starting from the last decade in the previous century non-standard solutions
to conservation laws become more popular. Usually, these solutions are un-
bounded and correspond to some kind of a measure instead of functions with
bounded variation.

There are a lot of approaches in solving systems with above type of sin-
gular solutions. Let us mention some of them:

• The numerical evidence for existing of unbounded weak solutions, [19].

• Using measure valued solutions, but for BV solutions only, [10]

• Using Vol’pert product ([48]) to obtain measure solutions, [21].

• Vanishing viscosity, [46].

• Methods of geometrical optics and generalized solutions, [36].

• Deep analysis, smooth, box approximations, singular shocks, weighted
measure spaces, [18].

• Using theoretical measure theory, [1].

• Generalized variational principle, [11].

• Sticky particle method, [2].

• Split delta shocks, [30], [33].

• Vanishing pressure, [5], [6], [28].

• Smooth approximations, sided delta functions, [31].

• Weak asymptotic methods, [8], [9].

• Shadow waves, [32].
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Contents

This thesis is devoted to applications of split delta shocks to conservation
law systems. The main result is a definition of an inverse of split delta shock
and its applications to a fairly general class of conservation laws. The main
example is well known chromatography model fully described in [27] and [37].
Some results are given in [45], [14], [43], and [47]. The main result is briefly
described in [29].

The thesis is organized as follows.
In the first chapter, we give definitions and properties of different spaces

used in solving both linear and nonlinear PDE’s, especially hyperbolic PDE’s
and systems.

In the second chapter, we present some classical ideas how to solve one
dimensional hyperbolic semilinear and quasilinear quasilinear system. The
main tool is the method of characteristics and all solutions are strong and
local in general.

The third chapter is devoted to basic properties and BV solutions to
Riemann and initial data problems for one dimensional conservation law
systems. We introduce elementary solutions, shocks, rarefaction waves and
contact discontinuities.

A bit original look at split delta shock solutions is given in the fourth
chapter. Delta shocks are added to other classical elementary waves defined
in the previous chapter in order to solve a wider class of problems arising in
the science and technology.

The original part is the fifth chapter. It contains the definition of a split
delta shock inverse and its application to different problems. A complete
analysis is done for the singular chromatography model.
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Chapter 1

Basic spaces

1.1 Classical function spaces

1.1.1 Space of differentiable functions

Denote by Ω ⊂ Rn an open set, its closure by Ω̄ and a boundary by ∂Ω.

Ck(Ω) is the set of all functions u : Ω → R (or C, but all functions
in conservation laws are real-valued) with continuous derivatives of order k,
0 ≤ k ≤ ∞.

Ck(Ω̄) is the set of all functions u ∈ Ck(Ω) such that there exists a
function φ ∈ Ck(Ω′), u ≡ φ on Ω̄ ⊂ Ω′, where Ω′ is an open set.

Ck
b (Ω) consists of functions from Ck(Ω) bounded together with all their

derivatives. It satisfying

Ck(Rn)
∣∣∣
Ω
⊂ Ck(Ω̄) ⊂ Ck(Ω).

If Ω is bounded, then Ck(Ω̄) ⊂ Ck
b (Ω).

Denote by suppu, u : Ω→ R, the complement of the largest open set Ω′

such that u
∣∣
Ω′

= 0. The set suppu is called support of the function u since
Ω ∈ Rn,

suppu = {x ∈ Ω : u(x) 6= 0}.

Note that A b B means that there exists a compact K such that A ⊂ K ⊂ B.

Ck
0 (Ω) = {u ∈ Ck(Ω) : suppu b Ω}.

Elements of C∞0 are called test functions.
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Chapter 1. Basic spaces

1.1.2 Lp−spaces

A set A ⊂ Ω ⊂ Rn is of Lebesgue measure zero, L(A) = 0, if for each ε > 0
there exists a numerable union

⋃
i∈NCi of parallelepipeds Ci ⊂ Rn such that

mes
⋃∞
i=1Ci < ε (the measure of parallelepipeds is the product of its edges

lengths). For a definition of Lebesgue measure for sets in Rn one can look in
[40], for example.

In the set of all Lebesgue measurable functions u : Ω→ R (all elementary
functions and their compositions are Lebesgue measurable, for example). We
define the equivalence relation “equal almost everywhere in Ω”, f ∼ g, if
L({x : f(x) 6= g(x)}) = 0.

Let 1 ≤ p ≤ ∞. From now on Ω will be an open connected set. “Mea-
surable” stands for Lebesgue measurable.

Lp(Ω) = {f/∼ : Ω→ R : f is measurable,

∫
Ω

|f(x)|p dx <∞}

is Banach space with the norm

‖f‖Lp(Ω) =
(
|f(x)|p dx

)1/p

.

L2(Ω) is Hilbert space with the product (f |g) defined by

(f |g) =

∫
Ω

f(x)g(x) dx,

where g(x) stands for complex conjugate of g(x). If we are in the space of
real-valued functions (which will usually be the case), then

(f |g) =

∫
Ω

f(x)g(x) dx.

For p =∞ we have a different definition:
We define

L∞(Ω) = {f/∼ : Ω→ R : f is measurable and there exists real

M such that |f(x)| ≤M, for every x ∈ Ω}.
(1.1)

L∞(Ω) is also Banach space with the norm ‖f‖l∞ = inf M, where the constant
M is from (1.1).

The most important spaces are L2−spaces and L1
loc−spaces which are

defined by

L1
loc(Ω) = {f/∼ : Ω→ R : f is measurable and for every

K b Ω we have

∫
k

|f(x)|p dx <∞}.
(1.2)
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Chapter 1. Basic spaces

Functions from L1
loc are called locally integrable ones.

Hölder inequality∫
Ω

|u(x)v(x)|dx ≤ ‖u‖Lp‖v‖Lq , u ∈ Lp(Ω), v ∈ Lq(Ω),
1

p
+

1

q
= 1 (1.3)

will be often used. The special case p = q = 2 is called Schwartz inequality.
Corollaries of Hoölder inequality are:

1. mes(Ω)−1/p‖u‖Lp ≤ mes(Ω)−1/q‖u‖Lq , u ∈ Lq(Ω), p ≤ q,

2. ‖u‖Lq ≤ ‖u‖λLp‖u‖λLr , u ∈ Lr(Ω), p ≤ q ≤ r, 1
q

= λ
p

+ 1−λ
r
,

3.
∫

Ω
u1 · . . . · um dx ≤ ‖u‖Lp1 · . . . · ‖u‖Lpm , ui ∈ Lpi(Ω), i = 1, . . . ,m,

1
p1

+ . . .+ 1
pm

= 1.

1.2 Weak solutions

1.2.1 Weak derivative

Denote by |α| = α1 + . . .+ αn multiindex α = (α1, . . . , αn) ∈ Nn
0 and

∂αf(x) =
∂|α|

∂α1x1 · . . . · ∂αnxn

(is αi = 0 for some i, there is no derivative with respect to the variable xi.)

Definition 1.1. A function f ∈ L1
loc(Ω) has α−th weak derivative, |α| ≤ m,

denoted again by ∂αf , if there exist a function g ∈ L1
loc(Ω) such that∫

Ω

f(x)∂αφ(x) dx = (−1)|α|
∫

Ω

g(x)φ(x) dx,

for every φ ∈ C∞0 . The function g will be called α−th weak derivative for f .

Theorem 1.1. If there exists a weak derivative for a locally integrable func-
tion u, then u is almost everywhere differentiable and the weak derivative
equals to a strong at the points where it exists.

1.2.2 Weak solution of partial differential equations

Notion of a weak solution is not defined in a unique manner. It should be
defined to fit a physical problem as much as it can.

First, we shall give the definition for first order systems. Later on, the
definition will be easily adopted to an equation of higher order.
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Chapter 1. Basic spaces

Definition 1.2. A system of first order partial differential equation is in
divergence form if it can be written as

∂ta0(t, x, u) + ∂x1a1(t, x, u) + . . .+ ∂xnan(t, x, u) = b(t, x, u), (1.4)

where u = u(t, x1, x2, . . . , xn) is a vector-valued function. Let that u satisfies

initial condition u(x, 0) = u0(x). It is said that u ∈
(
L1
loc([0, T ) × Ω)

)n
is

weak solution to the system (1.4) with the above given initial data if∫ t

0

∫
Ω

∂tφ(t, x)a0(t, x, u) + ∂x1φ(t, x)a1(t, x, u) + . . .

+ ∂xnφ(t, x)an(t, x, u) dxdt+

∫
Ω

u0(x)φ(x, 0) dx

=

∫ t

0

∫
Ω

b(t, x, u)φ(t, x) dxdt,

(1.5)

for every φ ∈ C∞0
(
(−∞,∞)× Ω

)
.

As one can see, vector-valued function u is not necessary differentiable
and the name “weak solution” comes from that fact. Also, it is easy to check,
using integration by parts, that every C1−solution of (1.4) also satisfied (1.5),
i.e. it is weak solution, too. For practical reasons we shall use the following
simpler (and weaker) condition instead of (1.5):∫ t

0

∫
Ω

∂tφ(t, x)a0(t, x, u) + ∂x1φ(t, x)a1(t, x, u) + . . .

+ ∂xnφ(t, x)an(t, x, u) dxdt

=

∫ t

0

∫
Ω

b(t, x, u)φ(t, x) dxdt,

lim
t→0

u(t, x) = u0 almost everywhere in Ω,

(1.6)

for every φ ∈ C∞0
(
(0,∞) × Ω

)
. Note that now φ is defined on a smaller

domain, i.e. it equals zero on the x−axes (t = 0).

Remark 1.1. If a system is not given in the divergence form, then a definition
of a weak solution is much more difficult to give and more specific.

Systems where t is distinguished variable are called evolution systems (or
systems “written in evolution form”).
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Chapter 1. Basic spaces

1.3 Distribution spaces

In this section we shall present a simplified version of distribution theory by
using a convergence in vector spaces instead of a topology.

Mapping from a vector space over some field into that field (usually R or
C) is called functional. Let us introduce a convergence in the set C∞0 (Ω).

Definition 1.3. A sequence {φj} ⊂ C∞0 (Ω) converge to zero as j →∞ if

• There exists a compact K b Ω such that suppφj ⊂ K for every j ∈ N.

• For each α ∈ Nn
0 , ‖∂αφ‖L∞(Ω) → 0 as j → ∞. This convergence is

denoted by
D−→ .

The set C∞0 (Ω) with the convergence defined in this way will be denoted by
D(Ω). Elements of this space will be called test functions.

Definition 1.4. Linear continuous functional S with the domain D(Ω) is
called distribution. Its acting on the test function φ is denoted by 〈S, φ〉.

Continuity is understood in the means of convergence: S is continuous
if for each sequence of test functions {φj}j converging to zero as j → ∞ it
holds 〈S, φj〉 → 0 as j → ∞. Vector space of distributions is denoted by
D′(Ω).

Now, we shall give some important examples of distributions. The first
one show how locally integrable function can be treated as distributions and
the second one is an example of distributions which cannot be treated as a
usual function.

Example 1.1. Let f ∈ L1
loc(Ω) and φ be a test function. Then mapping from

D into R defined by

Sf : 〈Sf , φ〉 =

∫
Ω

f(x)φ(x) dx

define a distribution. Functional Sf is obviously linear and

|〈Sf , φ〉| ≤ ‖φ‖L∞(Ω)

∫
suppφ

|f(x)| dx.

That means that if a sequence {φj} converges to zero in D, then 〈Sf , φ〉 → 0
as j →∞, i.e. Sf is a distribution.

Example 1.2. Let a ∈ Ω. Relation 〈δa, φ〉 = φ(a) defines Dirac delta distri-
bution at the point a. If a = 0, then we write just δ instead of δ0.

7



Chapter 1. Basic spaces

1.3.1 Properties and operations with distributions

1. For a sequence of distributions {Sj} ⊂ D′(Ω) is said to converge to zero
if

〈Sj, φ〉 → 0 as j →∞

for every φ ∈ D(Ω). Convergence in the distribution space is denoted

by
D′−→. (In distribution theory this convergence is called “weak”.)

Convergence to zero is enough since the distribution space is a vector
one: Sj → T, T ∈ D′(Ω) if and only if 〈Sj − T, φ〉 → 0 as j → ∞ for
every test function φ.

2. S ∈ D′(Ω) is zero on ω ⊂ Ω is 〈S, φ〉 = 0 for every test function φ with
a support in ω.

Definition 1.5. Support of a distribution S ∈ D′(Ω), suppS, is a comple-
ment of the maximum open set where S = 0 (i.e. set of points in Ω which do
not have a neighborhoods ω where S = 0.)

Definition 1.6. E ′(Ω) in the space of distributions with compact support.

Example 1.3. supp δ = {0}, because for each x ∈ Ω, x 6= 0, there exists its
neighborhoods ω not containing zero and there exist a test function φ with
a support in Ω. In the same way we can define

〈δa, φ〉 = φ(a) = 0.

Definition 1.7. Distributional derivative S of order α ∈ Nn
0 is defined by

〈∂αS, φ〉 := (−1)|α|〈S, ∂αφ〉

for every φ ∈ D(Ω). Since ∂αφ is also in D(Ω), one can see that the definition
makes sense, i.e. each distribution has a derivative of every order. That fact
is the main reason why distributions are so important.

Lemma 1.1. Differentiation is a continuous operation in the distribution
space.

Example 1.4. We can easily calculate derivative of the delta distribution

〈∂αδ, φ〉 = (−1)|α|〈δ, ∂αφ〉 = (−1)|α|∂αφ(x).

One can easily verify the following. If g ∈ L1
loc(Ω) is α−th weak derivative

of f ∈ L1
loc(Ω), then Sg = ∂αSf , where Sf (or Sg) is the distributional image

of f (or g).
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Chapter 1. Basic spaces

Example 1.5. Define Heaviside function

H(x) =

{
0, x < 0

1, x > 0.

Since H is locally integrable function we can identify it with a distribution
defined on R, we will show that its derivative is the delta distribution. Let
φ be an arbitrary test function on R. Then

〈H ′, φ〉 = −〈H,φ′〉 =

∫ ∞
0

φ′(x) dx = φ(0) = 〈δ, φ〉.

If W k(Ω) stands for the space of locally integrable functions on Ω having
all derivatives of order less or equal to k, then

Ck(Ω) ⊂ W k(Ω) ⊂ D′(Ω).

(Here, function is identified with its image in the space of distributions.)
If f ∈ C∞(Ω), then we can define its product with a distribution S,

T = Sf , in the following way

〈T, φ〉 := 〈S, fφ〉, φ ∈ D(Ω).

But there is no general definition of the product if f is not. This is the main
disadvantage of distributions.

Definition 1.8. We say that T ∈ D′(Ω) is zero at an open set U ⊂ Ω,
T |U = 0 if 〈T, ϕ〉 = 0 for every ϕ ∈ D(Ω), ϕ|U = 0. Let us now define
support of a distribution:

suppT = compl

 ⋃
U is open ,T |U=0

U

 .

Denote by E ′(Ω) the subspace of distributions having a compact support.
It is isomorphic with a dual space of smooth functions with the uniform
convergence of all its derivatives.

1.3.2 Fourier transform

In this subsection, we will assume that Ω = Rn.
In order to extend the Fourier transform for distributions, we have to

restrict the space D′(Rn) to a smaller one.

9



Chapter 1. Basic spaces

Definition 1.9. Define

S = {φ ∈ C∞(Rn) : lim
|x|→∞

|xα∂βφ(x)| = 0 for every α, β ∈ Nn
0}

with the convergence: We say that a sequence {φj}j ⊂ S(Rn) converge to 0

in S, denoted by Sj
S→ 0, as j →∞, if

lim
j→∞

sup
x∈Rn

|xα∂βφj(x)| = 0, for every α, β ∈ Nn
0 .

Definition 1.10. The dual of S(Rn) is called the space of tempered distri-
butions (Schwartz distributions) denoted by S ′(Rn).

The classical Fourier transform is defined on Lp(Rn), 1 ≤ p ≤ 2 in the
following way. Let f ∈ Lp(Rn), 1 ≤ p ≤ 2. Then

F(f)(x) = f̂(x) := (2π)−n/2
∫
f(y)eix·ydy ∈ Lq(Rn),

where q satisfies 1/p+ 1/q = 1
We have the following theorem.

Theorem 1.2. (a) If f ∈ L1(Rn), then f̂ ∈ C0(Rn).

(b) If yjf(y) ∈ Lq(Rn), q ≥ 1, then there exists ∂xj f̂ , f̂ ∈ Lp(Rn), 1/p +
1/q = 1, and

∂xj f̂(x) = −i ̂(yjf(y))(x), x ∈ Rn.

(c) If ∂yjf(y) ∈ Lp(Rn) ∪ C(Rn), 1 ≤ p ≤ 2, then

̂(∂yjf(y))(x) = ixj f̂(x), x ∈ Rn.

If f ∈ L2, then F(F(f(x))) = (2π)−nf(−x). As S ⊂ L2, the assertions
above hold for f ∈ S. Also, we have the following theorem.

Theorem 1.3. Let φ, ψ ∈ S. Then

• φ 7→ φ̂ is injective and continuous iz S na S.

• (̂φ̂)(x) = (2π)−nφ(−x).

• ̂(−i∂xjφ(x))(y) = yj ˆφ(x)(y).

• ̂(xjφ(x))(y) = i∂yj
ˆφ(x)(y).

10



Chapter 1. Basic spaces

• (̂φ ∗ ψ) = (2π)n/2φ̂ψ̂.

• (̂φψ) = (2π)n/2φ̂ ∗ ψ̂.

Definition 1.11. For S ∈ S, let us define its Fourier transform Ŝ by

〈Ŝ, φ〉 := 〈S, φ̂〉, za svako ψ ∈ S.

It is well defined, since φj
S→ 0 implies 〈Ŝ, φ̂j〉 = 〈S, φ̂j〉 → 0, due to (i) from

the above theorem.

Example 1.6. If φ ∈ S(Rn), then

〈δ̂, φ〉 = 〈δ, φ̂〉 = (2π)−n/2
∫
e−i0·xφ(x)dx = (2π)−n/2〈1, φ〉,

or δ̂ = (2π)−n/21.
One can show in the same way that

〈êia·x(y), φ(y)〉 = 〈eia·x, φ̂(x)〉 =

∫
eia·xφ̂(x)dx

=(2π)−n/2
∫ ∫

e−ix·(y−a)φ(y)dydx

(after a change of variables)

=(2π)−n/2
∫ ∫

e−ix·yφ(y + a)dydx

=(2π)−n/2〈1, ̂φ(y + a)〉
(as above)

=〈δ, φ(y + a)〉 = 〈δa, φ〉.

Thus, êia·x(y) = δa(y).

Theorem 1.4. Mapping S 7→ Ŝ iz S ′ on S ′ is injective and continuous. Also

(i) If S ∈ E ′, T ∈ S ′, then Ŝ ∈ C∞ i T ∗ S ∈ S ′.

(ii) If S ∈ E ′, T ∈ S ′, then ̂(S ∗ T ) = ŜT̂ .

(iii) If P is a polynomial, then

̂(P (∂)u(x))(ξ) = P (iξ)û(ξ)

for every u ∈ S ′.

11



Chapter 1. Basic spaces

(iv) ̂(yjS(y))(x) = i∂xj Ŝ(x).

The inverse Fourier transform is defined by

F−1(φ)(x) = (2π)−n/2
∫
eix·yφ(y)dy.

It has the same properties as the Fourier one and

F(F−1(φ)) = F−1(F(φ)) = (2π)−nφ.

1.4 Sobolev spaces

1.4.1 Definitions

Let m ∈ N0, p ≥ 1 and Ω be an open subset of Rn. Denote by W k(Ω) the
vector space of all locally integrable functions on Ω which has all weak deriva-
tives of order less or equal to k. We are in position to define its subspaces
which will have the advantage to be normed (space W k(Ω) is only locally
convex, with topology defined by a sequence of seminorms).

Definition 1.12. Sobolev space Hm,p(Ω) is the set of functions u ∈ Wm(Ω),
such that ∂αu ∈ Lp(Ω) for every α ∈ Nn

0 , |α| ≤ m. Norm is given by

‖u‖Hm,p(Ω) = ‖u‖m,p,Ω :=
(∫

Ω

∑
|α|≤m

|∂αu(x)|p dx
)1/p

.

One can use the rquivalent norm given by

‖u‖′Hm,p(Ω) =
∑
|α|≤m

‖∂αu‖Lp(Ω).

In the rest of the text, we will not distinguish them by symbols, that is,
for any of these norms we use the symbol ‖u‖Hm,p(Ω).

If p = 2, we omit that number in the upper index for Sobolev’s spaces or
norms.

It is easy to see that the spaces of Sobolev can be viewed as subspaces of
the space of tempered distributions.

We will now dedicate our attention to the very important one because it
occurs naturally in many physical phenomena described by partial differential
equations, the space H1(Ω).

12



Chapter 1. Basic spaces

Lemma 1.2. The space H1(Ω) has an inner product compatible with the
above defined norm. The product is given by

(u|v) =

∫
Ω

u(x)v(x)dx +

∫
Ω

∇u(x)∇v(x)dx

=

∫
Ω

u(x)v(x)dx +

∫
Ω

( n∑
j=1

∂xju(x)∂xjv(x)dx
)
.

(1.7)

Proof. The norm induced by (1.7) is

√
(u|u) =

√∫
Ω

|u(x)|2dx +

∫
Ω

|∇u(x)|2dx,

and it is exactly the same as one of the norms for H1(Ω) given above.

Lemma 1.3. H1(Ω) is Hilbert space.

Proof. We have to show that that space is complete. We will use the ele-
mentary fact that L2(Ω) is complete without a proof.

Define

F :H1(Ω) →
(
L2(Ω)

)n+1

v 7→(v, ∂x1 , ..., ∂xn) = w := (v := w0, w1, ..., wn).

Let us define a norm in
(
L2(Ω)

)n+1
by

‖w‖ =

√√√√ n∑
j=0

∫
Ω

|wj(x)|2dx,

taht is consistent with the product topology of
(
L2(Ω)

)n+1
.

F is an isometry and linear bijection of the space H1(Ω) onto F (H1(Ω)) ⊂(
L2(Ω)

)n+1
in addition. One can easily check that.

Since L2(Ω) is complete, then
(
L2(Ω)

)n+1
is also complete, so for each

Cauchy sequence {v(j)}j ⊂ H1(Ω) there exists w ∈
(
L2(Ω)

)n+1
such that

F (v(j))→ w, u
(
L2(Ω)

)n+1
, as j →∞. That is

v(j) → w0,

∂xkv
(j) → wk, k = 1, ..., n u L2(Ω), j →∞.

13



Chapter 1. Basic spaces

Since φ ∈ C∞0 (Ω), the Hölder inequality implies

|
∫

Ω

(v(j) − w0)φdx|

≤‖v(j) − w0‖L2(Ω)‖φ‖L2(Ω) → 0, j →∞,

because v(j) L2

→ w0, i.e.

v(j) D′→ w0

too.
Using the same arguments, one can see that

∂xkv
(j) D′→ wk.

Due to the fact that differentiation is continuous in the distribution space,
we have

∂xkv
(j) D′→ ∂xkw0.

That is
wk = ∂xkw0, k = 1, ..., n.

So, w = F (w0), ant the assertion follows from that fact that F is an isometry.

Similarly, one can prove the following theorem.

Theorem 1.5. Hm(Ω) is Hilbert space for each m ∈ N0.
If p ≥ 1, Hm,p(Ω) is only Banach space.

Now, we will use the fact that the Fourier transform maps L2 onto L2 as
well as other its properties.

Denote 〈ξ〉 =
√

1 + ξ2. Then Hm(Rn) norm of u is equivalent to

sup
ξ∈Rn

m∑
j=0

‖〈ξ〉jû‖L2(Ω).

In order to define a value of a Sobolev function on the boundary ∂Ω.

Definition 1.13. The space Hm,p
0 (Ω) is defined to be a closure of C∞0 (Ω) in

the Hm,p(Ω)–norm: v ∈ Hm,p
0 (Ω) means that there is a sequence {φj}j ⊂

C∞0 (Ω) such that

φj
Hm,p

→ v, j →∞.
We will use the following interpretation. u|∂Ω = 0, u ∈ Hm,p(Ω) in the

weak sense if u ∈ Hm,p
0 (Ω). We say that u = v na ∂Ω, v ∈ Hm,p(Ω) if and

only if u− v ∈ Hm,p
0 (Ω).

14



Chapter 1. Basic spaces

Embedding theorems

We will give only a few among a lot of variations theorems about embedding
Sobolev spaces into some other ones.

Definition 1.14. We say that a Banach space B1 is embedded into a Banach
space B2, B1 → B2 if there is a bounded injective and linear mapping from
B1 in B2.

Theorem 1.6. For an open Ω ⊂ Rn there holds:

Hm,p(Ω)→ Lq(Ω), mp > n, p ≤ q ≤ ∞
Hm,p(Ω)→ Lq(Ω), mp = n, p ≤ q <∞
Hm,p(Ω)→ C0

b (Ω), mp > n

Theorem 1.7. Let Ω be bounded and posses the conic property: For each
x ∈ Ω there is a cone with height h and center in the point x which is subset
of Ω. Then

Hm,p(Ω)→ Lq(Ω), p ≤ q ≤ np/(n−mp)
Hm+j,1(Ω)→ Cjb (Ω), mp > n

x

ω

The conic property
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Chapter 2

Formulation of the Cauchy
problem for a system of
quasilinear equations of
hyperbolic type

2.1 Formulation of the problem

A system of quasilinear equations of hyperbolic type

∂u

∂t
+ A

∂u

∂x
= b, (2.1)

where u = u(x, t) ∈ Rn, x ∈ R, t > 0, and A = A(x, t, u(x, t)) ∈ Rn×Rn, we
can write in characteristic form

lk
(∂u
∂t

+ ξk
∂u

∂x

)
= fk, k = 1, . . . , n,

where {lk} are left eigenvectors and {ξk} are eigenvalues of the matrix A,
k = 1, . . . , n.

Hyperbolicity means that all n eigenvectors {lk} are left eigenvectors and
k = 1, . . . , n are linearly independent. The system is strictly hyperbolic if all
eigenvalues {ξk}, k = 1, . . . , n, are real and different.

17



Chapter 2. Formulation of the Cauchy problem for a system of quasilinear
equations of hyperbolic type

2.2 Solving the Cauchy problem by method

of characteristics

Assume a solution u(x, t) of the system (2.1) is known having the initial
condition

u(x, 0) = u0(x), a ≤ x ≤ b.

x

t

a a′ b′ b

M
x = xn(t) x = x1(t)

Figure 2.1: Domain of determinacy

Suppose that we can draw the characteristics x = xk(x
0, t0, τ) defined by

the equations

dxk
dτ

= ξk(xk, τ, u(xk, τ)), k = 1, 2, . . . , n

through a point M = (x0, t0) of the half plane t > 0 until their intersection
with the axis t = 0. Let that they intersect this axis at certain point and we
call the two extreme intersection points a′ and b′ (a′ < b′) (see Figure 2.1).
The segment a′ ≤ x ≤ b′ of the initial axis t = 0 is called the domain of
dependence for the solution u(x, t) at the point M .

In the case of semilinear systems the domain of determinacy G can be
calculated independently of u and it is given by

G = {(x, t)| t ≥ 0, Xn(t) ≤ x ≤ X1(t)},

where X1(t) and Xn(t) denote the solutions of the differential equations

dXn(t)

dt
= max

k=1,...,n
ξk(Xn(t), t),

dX1(t)

dt
= min

k=1,...,n
ξk(X1(t), t),

18
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equations of hyperbolic type

which assume for t = 0 the values Xn(0) = a and X1(0) = b. In the other
words, X1 and Xn are extremal characteristics. As usual, we assume ξ1 ≤
· · · ≤ ξn without losing in generality.

Similarly, we define the domain of influence for the interval [a, b],

D = {(x, t)| t ≥ 0, X1(t) ≤ x ≤ Xn(t)}.

It contain all the points influenced by the initial values defined on interval
[a, b].

The fact that there is a nonzero time interval that influence reach a point
x > b or x < a is called the finite speed of propagation property.

Multiplication by a matrix Q containing the right eigenvalues as columns,
we write the semilinear system

∂u

∂t
+ A(x, t)

∂u

∂x
= b(x, t, u) (2.2)

in the diagonalized ()canonical) form (or written in invariants),

∂vj
∂t

+ ξj(x, t)
∂vj
∂x

= gj(x, t, v). (2.3)

Here, the function g is obtained by collecting all the terms that do not contain
derivative of u.

Suppose that on some segments [a, b] of the axis t = 0 for the system
(2.2) there are given the initial conditions

u(x, 0) = u0(x). (2.4)

Setting v0
j (x) = lj(x, 0)u0(x), we obtain the initial conditions

v(x, 0) = v0(x) (2.5)

for the system (2.3). Functions v(x, t) continuous in G are called a solution
of the Cauchy problem (2.3, 2.5) in the broad sense if r(x, 0) = r0(x) and
each of the functions vj(x, t) is continuously differentiable in t along the
corresponding characteristic x = xj(ξ, τ, t) and

d

dt
vj(xj(ξ, τ, t), t) = gj(xj, t, v(xj, t)). (2.6)

The vector u(t, x) obtained from a vector v(x, t) according to

uj = λjava = λjr, v = (v1, . . . , vn), Λ = [lji (x, t)]i,j, Λ−1 = [λji (x, t)]i,j,
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equations of hyperbolic type

is called a solution in the broad sense of the Cauchy problem (2.2, 2.4).
Let us present some results for hyperbolic semilinear systems from the

book [35].
Integrating (2.6) from 0 to t, we get

vj(x, t) = u0
j(xj(x, t, 0)) +

∫ t

0

gj(xj(x, t, τ), τ, u(xj(x, t, τ), τ))dτ (2.7)

This system is equivalent for differentiable solution to (2.6) provided that
g(x, t, u(x, t)) is continuously differentiable. But system (2.7) may have lo-
cally integrable solutions in the cases when the original system does not have
smooth solutions or if the function g is not smooth enough. We call such
solutions the mild solutions. One can prove that these kind of solutions are
week ones, but the contrary is maybe false.

Theorem 2.1. Let K be an interval in R. Denote by KT the area bounded
by K, the extremal characteristics form end ponts of the interval K and the
line t = T .
(a) Let u0 ∈ C(K0). Thet there exists T > 0 such that (2.7) has a solution
v ∈ C(KT ).
(b) For every T0 > 0 there exists at most one solution u ∈ C(KT ).

One can prove the theorem by Fixed Point Method for a space of contin-
uous functions.

Sometimes, we can obtain global solution, i.e. solution for every T . Also, a
solution obtained in such a way has additional regularity provided a regularity
of given data. The following theorems are also proved in [35].

Theorem 2.2. Suppose that ∇ug(x, t, u) is uniformnly bounded as (x, t) lies
in a compact set. Then the initial data problem (2.3), (2.5) has a unique
solution v ∈ C(R2) if v0 ∈ C(R).

Theorem 2.3. Let v0 ∈ Ck(R), 1 ≤ k ≤ ∞ and suppose that there exists a
solution v ∈ C(KT ) od (2.3), (2.5) for T0 > 0. Then v ∈ Ck(R× (0, T )).

The quasilinear case when A depends on u also is more complicated.
Now, a system could be hyperbolic or not for different solutions since a
set of eigenvalues and eigenvectors depends on u in general. In one space
dimension, one can find a fairly general method for a construction of local
solution in [12]. The proof is based on the method of characteristics and
successive approximations.
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equations of hyperbolic type

Let us note that one can rarely expect that a global classical solution for
quasilinear initial data problem exists. For example, let us take the simplest
example, so called Burgers’ inviscid equation

∂u

∂t
+ u

∂u

∂x
= 0

with the initial data u(x, 0) = u0(x). Using the method of characteristics
one can find that a classical solution exists until

T = − 1

supx∈R u
0′(x)

.

Then, the solution blow up (its gradient tends to infinity, and we have so
called gradient catastrophe) and we have to deal with discontinuous initial
data and weak solutions after that point. That we will do in the rest of this
thesis.
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Chapter 3

System of conservation laws

A very important class of homogeneous hyperbolic equations called conser-
vation laws.

The simplest case of conservation law in one space dimension is the partial
differential equation (PDE) of the form

∂tu+ ∂x
(
f(u)

)
= 0, u(x, 0) = u0(x).

Let us to start to one dimensional case is much better understood than more
dimensional cases.

And we will discuss a lot of examples, and how to use the Rankine-
Hugoniot (RH) condition in examples, from literature given in the introduc-
tion.

3.1 Single 1-D equation

3.1.1 Rankine-Hugoniot condition

Let u ∈ C1
(
R× [0,∞)

)
be solution to the following partial differential equa-

tion

ut +
(
f(u)

)
x

= 0

u(x, 0) = u0(x).
(3.1)
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Chapter 3. System of conservation laws

Take ϕ ∈ C1
0

(
R × [0,∞)

)
, i.e. smooth function such that its support inter-

sected by R× [0,∞) is compact. Then

0 =

∫ ∞
0

∫ ∞
−∞

(
ut(x, t) + f(u)x

)
ϕ(x, t) dtdx

=−
∫ ∞

0

∫ ∞
−∞

f(u)ϕx dtdx+

∫ ∞
−∞

u(x, t)ϕ(x, t) dx
∣∣∣t=∞
t=0
−
∫ ∞

0

∫ ∞
−∞

uϕt dxdt

=−
∫ ∞

0

∫ ∞
−∞

(
uϕt + f(u)ϕx

)
dxdt−

∫ ∞
−∞

u0(x)ϕ(x, 0) dx.

The above calculation inspired the following definition of weak solution for
(3.1).

Definition 3.1. u ∈ L∞
(
R× (0,∞)

)
(u is bounded function up to a set of

Lebesgue measure zero) is called weak solution of (3.1) if∫ ∞
0

∫ ∞
−∞

(
uϕt + f(u)ϕx

)
dxdt+

∫ ∞
−∞

u0(x)ϕ(x, 0) dx = 0,

for every ϕ ∈ C1
0

(
R× [0,∞)

)
.

Remark 3.1. 1. All classical solutions are also weak.

2. If u is a weak solution, then u is also a distributive solution.

3. If u ∈ C1
(
R× [0,∞)

)
is a weak solution, then it is a classical, too.

In the next step, we will prove important theorem about necessary and
sufficient conditions for existence of piecewise differentiable weak solution to
some conservation law.

Theorem 3.1. Necessary and sufficient condition that

u(x, t) =

{
ul(x, t), x < γ(t), t ≥ 0

ud(x, t), x > γ(t), t ≥ 0,

where ul and ud are C1 solutions on their domains, be a weak solution to
(3.1) is

γ̇ =
f(ud)− f(ul)

ud − ul
=:

[f(u)]γ
[u]γ

. (3.2)

Proof. The proof will be given in few steps
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x

supp j

t

supp j Ì @0, ¥L´R

Figure 3.1: Supports of test functions in half plane

1. Let

u(x, t) =

{
ul(x, t), x < γ(t), t ≥ 0

ud(x, t), x > γ(t), t ≥ 0
,

where ul and ud are defined above, be a weak solution to (3.1). Then∫ ∞
0

∫ ∞
−∞

(
uϕt + f(u)ϕx

)
dxdt+

∫ ∞
−∞

u(x, 0)ϕ(x, 0) dx = 0,

for every ϕ ∈ C1
0

(
R× [0,∞)

)
.

Also, (ul)t+f(ul)x = 0 for x < γ(t) and t > 0 as well as (ud)t+f(ud)x =
0 for x > γ(t) and t > 0. That is consequence of the fact

0 =

∫∫
ulϕt + f(ul)ϕx dxdt−

∫∫
(ul)tϕ+

(
f(ul)

)
x
ϕdxdt,

for every ϕ, suppϕ ⊂ {(x, t) : x < γ(t), t > 0} and C1 function ul.
And since ϕ is arbitrary, we have

(ul)t +
(
f(ul)

)
x

= 0.

The same argument hold for ud, too.
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2. We have∫ ∞
0

∫ ∞
−∞

(
uϕt + f(u)ϕx

)
dxdt+

∫ ∞
−∞

u0(x)ϕ(x, 0) dx

=

∫ ∞
0

∫ γ(t)

−∞

(
ulϕt + f(ul)ϕx

)
dxdt+

∫ ∞
0

∫ ∞
γ(t)

(
udϕt + f(ud)ϕx

)
dxdt

+

∫ ∞
−∞

u0(x)ϕ(x, 0) dx.

3. Let us calculate the first integral from above. It holds

d

dt

∫ γ(t)

−∞
ulϕdx = γ̇(t)ul

(
γ(t), t

)
ϕ
(
γ(t), t

)
+

∫ γ(t)

−∞

(
ulϕt+f(ul)ϕx

)
dx.

That implies∫ ∞
0

∫ γ(t)

−∞
ulϕt dxdt = −

∫ ∞
0

∫ γ(t)

−∞
(ul)tϕdxdt

−
∫ ∞

0

γ̇(t)ul
(
γ(t), t

)
ϕ
(
γ(t), t

)
dt+

∫ ∞
0

d

dt

∫ γ(t)

−∞
ulϕdxdt,

on the other hand∫ ∞
0

∫ γ(t)

−∞
f(ul)ϕx dxdt = −

∫ ∞
0

∫ γ(t)

−∞
f(ul)xϕdxdt

+

∫ ∞
0

f
(
ul(γ(t), t)

)
ϕ
(
γ(t), t

)
dt.

Adding these terms and using the fact that ul is a solution of PDE on
the left-hand side of the curve (γ(t), t), one gets the following∫ ∞

0

(
f(ul)− γ̇ul

)
ϕdt+

∫ ∞
0

d

dt

∫ γ(t)

−∞
ulϕdxdt

as a value of that integral.

4. Analogously, concerning the right-hand side, one can see that the sec-
ond integral equals

−
∫ ∞

0

(
f(ud)− γ̇ud

)
ϕdt+

∫ ∞
0

d

dt

∫ γ(t)

−∞
udϕdxdt.
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5. After adding all the above integrals one gets

0 =

∫ ∞
0

(
f(ul)− f(ud)− (ul − ud)γ̇

)
ϕdt+

∫ ∞
0

d

dt

∫ ∞
−∞

uϕ dxdt

+

∫ ∞
−∞

u0(x)ϕ(x, 0) dx,

and ∫ ∞
−∞

u(x, t)ϕ(x, t) dx
∣∣∣t=∞
t=0

= −
∫ ∞
−∞

u0(x)ϕ(x, 0) dx.

That is true if

γ̇ =
f(ud)− f(ul)

ud − ul
=:

[f(u)]γ
[u]γ

.

Obviously, the above condition is sufficient. Condition (3.2) is called
Rankine-Hugoniot (RH) condition.

3.1.2 Rarefaction waves

Solution of equation (3.1) of the form u(x, t) = ũ
(
x
t

)
is called self-similar

solution.
Lets try to find such a solution of (3.1) in a simple way, just by sub-

stituting a function of this form into the equation. After differentiation we
have

− x
t2
ũ′
(x
t

)
+ f ′

(
ũ
(x
t

))1

t
ũ′
(x
t

)
= 0.

After multiplication of the equation with t and the substitution x
t
7→ y one

gets the ODE

ũ′(y)
(
f ′
(
ũ(y)

)
− y
)

= 0.

After neglecting constant, so called trivial solutions (ũ′ 6= 0), one can see
that solution is given by the implicit relation

f ′(u) = y, i.e. ũ(y) = f ′−1(y),

if f ′ is bijection (locally). One can interpret the initial data in the following
way:

u(x, 0) =

{
ul, x < 0

ud, x > 0
⇒ ũ(+∞) = ud, ũ(−∞) = ul. (3.3)
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x

x = ctt

u º ul

u º ud

Figure 3.2: Shock wave

If f ′′ > 0 (f is convex), then f ′ is an increasing function and solution ũ to
the equation satisfying (3.3) exists if ul < ud. Such solution is called centered
rarefaction wave (the initial data has singularity at zero).

Let use some examples, to know how to use the condition (3.2) to find
the solution of the Riemann problem.

Example 3.1. Consider the following Riemann problem

ut +
(u2

2

)
x

= 0

u0 =

{
ul ∈ R, x < 0

ud ∈ R, x > 0
.

(3.4)

Since ul and ud are constants, there exist two trivial solutions of (3.4) out of
the discontinuity curve, and RH-condition gives

γ̇ =
u2
d − u2

l

2(ud − ul)
=
ud + ul

2
,

i.e. γ̇(t) = ct, c = ul+ud
2

(see Figure 3.2).

u(x, t) =

{
ul, x < ct

ud, x > ct
(3.5)
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x

x = ul tt

u º ul

u º ud

x = ud t

Figure 3.3: Rarefaction wave

if ul < ud, then except the above solution there exist also following solution
(Figure 3.3)

u(x, t) =


ul, x < ult
x
t
, ult ≤ x ≤ udt

ud, x > udt,

(3.6)

or (Figure 3.4)

u(x, t) =


ul, x < ult
x
t
, ult ≤ x ≤ at

a, at ≤ x ≤ a+ud
2
t

ud, x > a+ud
2
t,

(3.7)

for some a ∈ (ul, ud).

Example 3.2. Let us multiply partial differential equation (3.4) by u and
transfer it into divergence form.

ut + uux = 0 / · u
uut + u2ux = 0(1

2
u2
)
t
+
(1

3
u3
)
x

= 0.
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x

x = ul tt

u º ul

u º ud

x = at

u º a

x = ud t

Figure 3.4: Non-entropic weak solution

After nonlinear change of variables 1
2
u2 7→ v, one gets the following conser-

vation law

vt +
(2
√

2

3
v

3
2

)
x

= 0

v
∣∣∣
t=0

=

{
vl = 1

2
u2
l x < 0

vd = 1
2
u2
d, x > 0.

RH-condition gives the following speed of shock wave c and the discontinuity
line is γ = ct :

γ̇(t) =

[
3
2
v

3
2

]
[v]

=
2
√

2
3

1
2

(
u2
d

) 3
2 − 2

√
2

3
1
2

(
u2
l

) 3
2

1
2

(
u2
d − u2

l

)
=

1
3

(
u3
d − u3

l

)
1
2

(
u2
d − u2

l

) 6= ul + ud
2

,

in general. (For example, for ul = 1, ud = 0 one has 1/3
1/2
6= 1

2
.)

3.1.3 Linear hyperbolic systems

We will look at linear systems before we start with systems of conservation
laws.
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Homogeneous linear scalar Cauchy problem with constant coefficients

ut + λux = 0

u(x, 0) = ū(x), λ ∈ C(R), ū ∈ C1
(
[0,∞)× R

) (3.8)

has a simple solution in a traveling wave form

u(x, t) = ū(x− λt). (3.9)

If ū ∈ L1
loc, then the above function (3.9) is a weak solution to (3.8), what

one can show easily.
Let a homogeneous system with constant coefficients

ut + Aux = 0

u(x, 0) = ū(x)
(3.10)

be given, where A is n× n hyperbolic matrix with real characteristic values
λ1 < . . . < λn and left-hand side li (resp. right-hand sided ri) i = 1, . . . , n
eigenvectors.

They are chosen in a way that liRi = δij, i, j = 1, . . . , n. Denote by
ui := liu coordinates of the vector u ∈ Rn with respect to the {r1, . . . , rn}.
Multiplying (3.10) from the left-hand side with li one gets

(ui)t + λi(ui)x = (λiu)t + λi(liu)x = liut + liAux = 0.

So, (3.10) decouples into n scalar Cauchy problems, which can be solved
same (3.8), one. Using (3.9) one can see that

u(x, t) =
n∑
i=1

ūi(x− λit)ri(u) (3.11)

is solution to (3.10) because

ut(x, t) =
n∑
i=1

−λi
(
liūx(x− λit)

)
ri = −Aux(x, t).

Thus, initial profile ū decouples into sum of n waves with speeds λ1, . . . , λn.
As a special case, take Riemann problem

ū(x) =

{
ul, x < 0

ud, x > 0.

We use write down a solution to (3.11) using
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x

x ' = Λ1
t

w0 = ul
wn = ud

w1

w2 ...wn-1

x ' = Λ2

x ' = Λn

Figure 3.5: Waves and linear system

ud − ul =
n∑
j=1

cjrj

and we define the intermediate states by

wi := ul +
∑
j≤i

cjrj, i = 0, . . . , n

such that wi − wi−1 is (i − n)−th characteristic vector of A. Solution is of
the form (Figure 3.5)

u(x, t) =



w0 = ul,
x
t
< λi

. . . ,

wi, λi <
x
t
< λi+1

. . . ,

wn = ud,
x
t
> λn.

(3.12)

.
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3.2 Quasilinear hyperbolic system of balance

laws in n dimensions

We shall briefly give some notions for conservation and balance laws in gen-
eral case when x ∈ Rn. That is given just for the sake of completeness since
we are not dealing with singular solutions in more than one space dimension.

Consider the following system of balance laws

∂tH
(
U(x, t), x, t

)
+ divG

(
U(x, t), x, t

)
= Π

(
U(x, t), x, t

)
, (3.13)

where x ∈ Rm and t ≥ 0. Here, matrix functions F, G and Π are at least
continuous (for our purposes, but one can permit lower regularity like in
porous flow equations).

Also dim(U) = m × 1, U = [U1, . . . , Um], dim(H) = m × 1, Π = m × 1,
dim(Π) = m×1, dim(G) = m×n, G = (G1, . . . , Gn) and Gα is a row matrix.
Here and bellow, all operators acting on (x, t)−space are capitalized (Div,
for example) while the ones action on x−spaces are not (div, for example),
D denotes the differential regarded as a row operation,

D =
[ ∂

∂U1
, . . . ,

∂

∂Un

]
.

The system (3.13) is called a canonical (evolutionary) form if H(U, x, t) ≡ U.

Definition 3.2. The system (3.13) is called hyperbolic in the t−direction if
the following holds.

For a fixed U ∈ Ω (physical domain) and U ∈ Sm−1 (the unit sphere),
the matrix DH(U, x, t) (with dimension n × n) is nonsingular, while the
eigenvalue problem( m∑

α=1

ναDGα(U, x, t)− λDH(U, x, t)
)
R = 0

has real eigenvalues

λ1(ν;U, x, t), . . . , λn(ν;U, x, t),

called characteristic speeds, and n linearly independent eigenvectors

R1(ν;U, x, t), . . . , Rn(ν;U, x, t).

Note that there are no strictly hyperbolic systems in more than one space
dimension, see [7].
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3.3 Elementary waves for conservation laws

in one space dimension

Systems for n > 1 dimensions are still not well understood, there are a lot of
open questions. One of te most important question is to find an appropriate
space for a weak solution to system of conservation laws.

One can find the class of functions with finite total variation being very
useful for one dimensional systems of conservation laws.

Definition 3.3. Total variation of a function v is defined by

TV(v) = sup
N∑
j=1

|v(ξj)− v(ξj−1)|, (3.14)

where the supremum is taken by all partitions of the real line

−∞ = ξ0 < ξ1 < . . . < ξN =∞.

We can write (3.14) in the form

TV(v) = lim sup
ε→0

1

ε

∫ ∞
−∞
|v(x)− v(x− ε)| dx.

Let

∂

∂t
u1 +

∂

∂x
f1(u1, . . . , un) = 0

...

∂

∂t
un +

∂

∂x
fn(u1, . . . , un) = 0

(3.15)

be n×n one-dimensional conservation laws system, where u = (u1, . . . , un) ∈
Rn, f = (f1, . . . , fn) : Rn → Rn.

Denote by A(u) := Df(u) Jacobi matrix of f at a point u. The above
system using vector notation

ut + f(u)x = 0. (3.16)

If a solution is smooth enough (C1), the qusilinear form

ut + A(u)ux = 0 (3.17)

34



Chapter 3. System of conservation laws

defines the equivalent system. That system is called strictly hyperbolic if all
characteristic values of A(u) are real and distinct. They are ordered in the
following way

λ1(u) < λ2(u) < . . . < λn(u).

If there exist n linearly independent characteristic vector, the system is called
hyperbolic.

Left-hand sided l1(u), . . . , ln(u) and right-hand sided r1(u), . . . , rn(u) char-
acteristic vectors are determined in a way that it holds

li(u)ri(u) =

{
1, i = j

0, i 6= j.

To avoid technical complications we consider 1-D system

∂tU(x, t) + ∂xF (U(x, t)) = 0, (3.18)

with F be a C3 map from Ω ⊂ Rn into Rn.

3.3.1 Riemann invariants

Definition 3.4. We can say that an Riemann invarian of (3.18) is a smooth
scalar-valued function such that

Dω(U)Ri(U) = 0, U ∈ Ω.

We say that the system (3.18) has a coordinate system of Riemann invariants
if there exist n scalar-valued functions (ω1, . . . , ωn) on Ω such that ωj is an
i−Riemann invariant of the system for i, j = 1, . . . , n, i 6= j.

We have the following theorem.

Theorem 3.2. The functions (ω1, . . . , ωn) form a coordinate system of Rie-
mann invariants for (3.18) if and only if

DωiRj(U)

{
= 0, if i 6= j

6= 0, if i = j.

In other words, Dωi is left i−th eigenvector of the matrix DF .

It is convenient to normalize eigenvectors R1, . . . , Rn if the Riemann co-
ordinate system exists such that

DωiRj(U) =

{
0, if i 6= j

1, if i = j.

Multiplying i−th equation of the system (3.18) by Dωi, i = 1, . . . , n we get

∂tωi + λi∂xωi = 0, i = 1, . . . , n.
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3.3.2 Shock waves

Like in the case of n = 1, we will suppose that x = γ(t) defines a discontinuity
curve of piecewise smooth solutions ul(x, t) and ud(x, t), i.e.

u(x, t) =

{
ul(x, t), x < γ(t)

ud(x, t), x > γ(t).

In order that u defines a weak solution one has to find γ from Rankine-
Hugoniot conditions for system

γ̇(ud − ul) = f(ud)− f(ul). (3.19)

Now ud, ul, f(ud) and f(ul) are n−dim vectors. That means that discontinu-
ity curve x = γ(t) can not be found in direct way like in the case of a single
equation. That is, it is not true for each pair of constant initial vectors ul,
ud there exists a shock wave solution. Denote by

A(u, v) :=

∫
A(θu+ (1− θ)v) dθ

averaged matrix, where λi(u, v), i = 1, . . . , n are its characteristic values.
Then (3.19) can be written as

γ̇(ud − ul) = f(ud)− f(ul) = A(ud, ul)(ud − ul). (3.20)

In the other word, RH conditions hold if (ud, ul) is a characteristic speed γ̇
equals its characteristic value.

3.3.3 Rarefaction waves

Let us find solution of the form u = u
(
x
t

)
(self-similar solutions) for system

(3.17)

ut + A(u)ux = − x
t2
u′(y) +

1

t
A
(
u(y)

)
u′(y) = 0,

where y = x
t
. From the last equation it follows

A(u)u′ = yu′,

u′ is equal to the right-hand sided characteristic vector ri and y = λi, for
i = 1, . . . , n.

36



Chapter 3. System of conservation laws

3.3.4 Entropy conditions

As one could see, even for the case n = 1 there is problem of uniqueness for
weak solutions.

In order to choose physically relevant solution we can use so called entropy
conditions. The solution will satisfy it is called admissible.

Entropy condition 1 - vanishing viscosity. A weak solution u to (3.15)
is admissible if there exists a sequence of smooth solutions uε to

uεt + A(uε)uεx = εuεxx

which converges to u in L1 as ε→ 0.
Entropy condition 2 - entropy inequality. C1 function η : Rn → R is
called entropy for system (3.15) with appropriate entropy flux q : Rn → R if

Dη(u)Df(u) = Dq(u), u : Rn → Rn. (3.21)

Note that (3.21) implies(
η(u)

)
t
+
(
q(u)

)
x

= 0,

for u ∈ C1 as a solution to (3.15). When one substitutes ut = −Df(u)ux
into the above equation,

Dη(u)ut +Dq(u)ux = Dη(u)
(
−Df(u)ux

)
+Dq(u)ux = 0.

A weak solution u to (3.15) is admissible if(
η(u)

)
t
+
(
q(u)

)
x
≤ 0

in a distributional sense, i.e.

−
∫
η(u)ϕt + q(u)ϕx ≥ 0,

for every ϕ ≥ 0, ϕ ∈ C∞0
(
R× [0,∞)

)
. Thus, Dη(u)ut +Dq(u)ux = 0 outside

discontinuity, and

ẋα

(
η
(
u(xα+)

)
− η
(
u(xα−)

))
≥ q
(
u(xα+)

)
− η
(
u(xα−)

)
on the discontinuity curve x = ẋα(t).
Entropy condition 3 - Lax condition. Shock wave connecting states ul
and ud and has a speed γ̇ = λi(ul, ud) is admissible if

λi(ul) ≥ λi(ul, ud) = γ̇ ≥ λi(ud). (3.22)

Because of the ordering of characteristic values

λj(ul) > γ̇, j > i

λj(ud) < γ̇, j < i

such a wave is called i−th shock wave.
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3.3.5 Rarefaction (RW) and shock wave (SW) curves

Fix u0 ∈ Rn and i ∈ {1, . . . , n}. Integral curve for vector field ri through u0

is called i−th rarefaction curve (RWi). One can get it explicitly solving the
Cauchy problem

du

dσ
= ri(u), u(0) = u0. (3.23)

That curve will be denoted by

σ 7→ Ri(σ)(u0).

Next to the above definition, u0 can be joined with u ∈ RWi(u0) by a single
rarefaction wave.

We note that a curve parametrization depends on a choice of ri. If |ri| = 1
then the curve is parametrized by its length.

We fix u0 ∈ Rn again. Let u be a right-hand state which can be joined
to u0 with i−th shock wave. (We use RH conditions and also Lax condition
(3.22).)

Values of u lies on a curve Wi(s, ul) for some s. A shock speed is then
c = ci(s, ul). So, the vector u − ul is a right-hand side i−th eigenvector of
the averaged matrix A(u, ul). We can use the some theorem of linear algebra
that is true if and only if u−ul is an orthogonal to all left eigenvectors lj for
every j 6= i. That means

lj(ul)(u− ul) = 0, ∀j 6= i, γ̇ = λi(u, ul). (3.24)

Also we can see that (3.24) is the system of n − 1 scalar equation with n
variables (u1, . . . , un).

Linearizing (3.24) in a neighborhood of u0 we get the linear system

lj(ul)(u− ul) = 0, j 6= i

which it has a solution w = ul + Cri(ul), c ∈ R.
By Implicit function theorem, a set of solutions forms a regular curve

(C1−curve) which can be connected to ul with a tangent vector ri in the
point ul. That curve is called the curve of i−th shock wave and denoted by
Si.

And also both of the above curves exist in neighborhood of ul (if f is
smooth enough).
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riHu0L

RiHΣL
SiHΣL

Figure 3.6: Shock wave and rarefaction curve

3.3.6 Riemann problem

In the rest of this thesis we are dealing with piecewise constant initial data

u|t=0 =

{
u0, x < 0

u1, x > 0.

The most of this section is from [4].

Definition 3.5. We say that the i−th characteristic field is genuinely non-
linear if

Dλi(u)ri(u) 6= 0.

If

Dλi(u)ri(u) = 0

then i−th field is said to be linearly degenerate.

We note that in this case when i−th field is genuinely nonlinear one can
chose the orientation of ri (by choosing its sign, eventually) such that

Dλi(u)ri(u) > 0.

The system (3.15) is called strictly hyperbolic with smooth coefficients. For
each i ∈ {1, . . . , n}, i−th characteristic field is either genuinely nonlinear or
linearly degenerate.
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Assumption 1. Assume that i−th field be genuinely nonlinear and suppose
that ud lies on a positive part of rarefaction curve starting from ud, i.e.
ud = R(σ)(ul), for some σ > 0.

Theorem 3.3. Assume us define

λi(s) = λi
(
Ri(s)(ul)

)
,

for every s ∈ [0, σ], by genuine nonlinearity. The mapping s 7→ λi(s) is
strictly increasing. Let t ≥ 0, the function

u(x, t) =


ul, x < tλi(ul)

Ri(s)(ul), x = tλi(s)

ud = Ri(σ)(ul), x > tλi(ud)

(3.25)

such that x
t

= y = λi(s), s ∈ [0, σ], is a piecewise smooth solution to Riemann
problem

ut + f(u)x = 0

u
∣∣∣
t=0

:= u0 =

{
ul, x < 0

ud, x > 0.

Proof. It is easily to see that

lim
t→0
‖u(x, t)− u0‖L1 = 0.

So, the initial data are satisfied. Also, the equation (3.15) trivially holds
true for x < tλi(ul) and x > tλi(ud), because ∂tu = ∂xu = 0. Suppose
that x = tλi(s), for some s ∈ (0, σ). Since u is constant along each halfline
{(x, t) : x = tλi(s)}, then there holds

∂tu(x, t) + λi(s)∂xu(x, t) = 0. (3.26)

Since

∂xu =
∂u

∂x
=
dRi(s)(ul)

ds

(dλi(s)
ds

)−1dλi
dx

= ri(u)
(dλi(s)

ds

)−1 1

t
,

such that ∂xu is eigenvector for the Jacobian matrix A(u), when λi(s) =
λi(u(t, x)), i.e.

A(u)∂xu = λi∂xu.

We note that the assumption σ > 0 is crusial for the above construction
of a solution. If σ < 0, (3.25) would define a triple function in the area
x
t
∈ [λi(ud), λi(ul)].
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Assumption 2 (Shock waves). Let i−th characteristic field be genuinely
nonlinear and let ud be connected with ul by i−shock wave, ud = Si(σ)(ul).

Then λ := λi(ud, ul) is the speed of that wave and

u(t, x) =

{
ul, x < λt

ud, x > λt
(3.27)

is piecewise constant solution to the above Riemann problem.
We note that in the case σ < 0 this solution is admissible in the Lax-sense,

because

λi(ud) < λ(ul, ud) < λi(ul),

while σ > 0, we would have

λi(ul) < λi(ud)

and Lax condition could not be satisfied.

Assumption 3. Let the i−th characteristic field is linearly degenerate and
ud = Ri(σ)(ul) for some σ.

By the assumption, λi is constant along that curve. i.e. Dλiri = 0.
Let put λ = λi(ul), we can see that piecewise constant function given

by (3.27) solves the above Cauchy problem, because the Rankine-Hugoniot
conditions is satisfied at discontinuity curve.

f(ud)− f(ul) =

∫ σ

0

Df
(
Ri(s)(ul)

)
ri
(
Ri(s)(ul)

)
ds

=

∫ σ

0

λi
(
Ri(s)(ul)

)
ri
(
Ri(s)(ul)

)
ds

= λi(ul)

∫ σ

0

dRi(s)(ul)

ds
ds = λi(ul)

(
Ri(σ)(ul)− ul

)
We will use here that

d

ds
λi
(
Ri(s)(ul)

)
= Dλi

(
Ri(s)(ul)

)dRi(s)(ul)

ds
=
(
DλiRi

)(
Ri(s)(ul)

)
= 0,

as well as the definition of linear degeneracy.
In that case Lax conditions hold, thus regardless to the sign of σ, because

λi(ud) = λi(ul, ud) = λi(ul),

because for the above calculations, we can deduce that

Ri(σ)(u0) = Si(σ)(u0), for every σ.
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u1 = Y1HΣ1L HulL

ul

Σ1

Σ2

Σ3

u2 = Y2HΣ2L Hu1L

ud = Y3HΣ3L Hu2L

Figure 3.7: Sketch of a solution to Riemann problem

3.3.7 General solutions

As we have seen before, the set of points {ud : u ∈ Rn} which could be
connected with a left-hand side state of Riemann problem produces a curve
in R2.

In order to connect two arbitrary points ul, ud ∈ Rn with an entropic
solution of Riemann problem, we can insert at most n− 1 vectors

ul =: u0, u1, u2, . . . , un−1, un := ud.

Note that between each pair (ul, u1), (u1, u2), . . . , (un−1, ud) there exist the
previously described elementary waves: rarefaction, shock waves or contact
discontinuity. That is possible for sure if the total variation of the initial
data is small enough. We can see that in illustration in Figure 3.7. Here Ψ
denotes any kind of elementary wave.

Remark 3.2. For bounded initial date, we can approximate it by piecewise
constant functions. So, there are Riemann problems which have to be simul-
taneously solved. And also we can by one solution in the form of elementary
waves can be easily find, but the important problem is how to deal with a
huge number of mutual wave interaction.

There are two famous methods to do it.

• Glimm scheme ([13]). Before the first interaction of the initial ele-
mentary waves, we can approximates a solution with new piecewise
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constant function by choosing finite number of points in a random way.

That because a new initial data and procedure is repeated as many
times as needed. Rarefaction wave is approximated by a fan of non-
admissible shock waves in this procedure.

The procedure will converge for small enough variation of initial states,
i.e. when the total variation of the initial data is small enough. We
can also be sure that each approximation is independent of the previous
ones.

There are a lot of technical problems concerning the above scheme, so
a lot of effort was given to find a new procedure. Later on, randomness
was excluded the assumptions above, see [26].

• Front - tracking method ([3, 38]). The following scheme is the good
choice both for proving solution existence and numerical approximation
of a solution.

Again, rarefaction is approximated with a fan of non-entropic shock
waves. But now waves are permitted to interact. In a point of interac-
tion there is a new Riemann problem. Also we can solve it accurately
or approximately. In the later case, one constructs non physical shock
wave with small amplitude, but with the larger speed of all possible
waves in order to prevent blow - up effect.

After that we can again use the same method for later interactions.
Again, this procedure will converge when total variation of the initial
data is small enough.
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Chapter 4

Split delta shocks

In this part we are introducing the concept of split delta shocks. For an
overview one can see in [34].

4.1 The definition of split delta shocks

Let us now briefly characterize what we mean by a solution in the form of
a split delta shock wave. We suppose R2

+ is divided into finitely disjoint
open sets Ωi 6= ∅, i = 1, ..., n with piecewise smooth boundary curves Γi,
i = 1, ...,m, that is Ωi ∩Ωj = ∅, ∪ni=1 = R2

+ such that Ωi is the closure of Ωi.
Let C(Ωi) be the space of bounded and continuous real - valued func-

tions on Ωi, equipped with the L∞ - norm. Suppose M(Ωi) be the space of
measures on Ωi. We will consider the spaces

CΓ =
n∏
i=1

C(Ωi), MΓ =
n∏
i=1

M(Ωi).

The product of the element G = (G1, ..., Gn) ∈ CΓ and D = (D1, ..., Dn) ∈
MΓ is defined as an element D · G = (D1G1, ..., DnGn) ∈ MΓ, where each
component is defined as the usual product of continuous function and a
measure. Every measure on Ωi can be seen as a measure on R2

+ with support
in Ωi. This way we can get a mapping

m : MΓ →M(R2
+),

m(D) = D1 +D2 + ...+Dn.

A typical example is obtained when R2
+ is divided into regions Ω1, Ω2 by a

piecewise smooth curve x = γ(t). The delta function δ(x − γ(t)) ∈ M(R2
+)
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along the line x = γ(t) can be split in a non unique way into a left - hand
side D− ∈M(Ω1) and the right - hand component D+ ∈M(Ω2) such that

δ(x− γ(t)) = α0(t)D− + α1(t)D+

= m(α0(t)D− + α1(t)D+)

with α0(t) + α1(t) = 1. The solution concept which allows to incorporate
such two sided delta functions as well as shock waves is modeled along the
lines of the classical weak solution concept and proceeds as follows:

Step 1: perform all nonlinear operations of functions in the space CΓ.
Step 2: perform multiplications with measures in the space MΓ.
Step 3: Map the space MΓ into M(R2

+) by means of the map m and
embed it into the space of distributions.

Step 4: perform the differentiation in the sense of distributions and require
that the equation is satisfied in this sense.

We note that in the case of absence of a measure part (Step 2), this is
precisely the concept of a weak solution to equations in divergence form.

Example 4.1. Consider the following combination of shocks in u and v along
the curve Γ : x = ct and a two sided delta function along Γ:

u(x, t) =

{
u0, x < ct
u1, x > ct

v(x, t) =

{
v0, x < ct
v1, x > ct

}
+ α0(t)D−Γ + α1(t)D+

Γ

Observing that the derivative of the Heaviside function along Γ is the delta
function on Γ, we will get the following weak derivatives:

vt(x, t) = (−c[v] + α′0(t) + α′1(t))δ(x− ct)− c(α0(t) + α1(t))δ′(x− ct),

where [v] denotes the jump in v along Γ, and

((u−1)v)x(x, t) = [(u−1)v]δ(x−ct)+((u0−1)v0α0(t)+(u1−1)v1α1(t))δ′(x−ct).

Thus equation vt + ((u− 1)v)x = 0 is satisfied if and only if

−c[v] + α′0(t) + α′1(t) + [(u− 1)v] = 0,

−c(α0(t) + α1(t)) + (u0 − 1)v0α0(t) + (u1 − 1)v1α1(t) = 0.

4.2 Simplified magnetohydrodynamics model

We start the study of different models from the literature that contain solu-
tions with SDSs.
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The first model equation solved in the paper [33]

ut +
(u2

2

)
x

= 0

vt +
(
(u− 1)v

)
x

= 0
(4.1)

both the Riemann problem and all possible interactions of two waves (given
by three constant states as the initial data). The system is introduced in [15].
More precisely, it is derived from a simplified model magnetohydrodynamics.
We get the eigenvalues of the above system λ1(u, v) = u − 1, λ2(u, v) = u,
and the right - hand side eigenvectors arer1(u, v) = (0, 1)T , r2(z, v) = (1, v)T .
The first characteristic field is linearly degenerate and the second is genuinely
nonlinear. Thus, there are three types of solution for the Riemann data

(u, v)(x, 0) =

{
(u0, v0), x < 0,

(u1, v1), x > 0.

(i) When u1 > u0 the solution is a contact discontinuity followed by a
rarefaction wave

u(x, t) =


u0, x ≤ u0t,
x

t
, u0t < x < u1t,

u1, x ≥ u1t

v(x, t) =


v0, x ≤ (u0 − 1)t,

v1 exp(u0 − u1), (u0 − 1)t < x < u0t,

v1 exp
(x
t
,−u1

)
, u0t < x < u1t,

v1, x > u1t

(ii) If u1 < u0 < u1 + 2, the solution is given in the form of contact
discontinuity followed by a shock wave,

u(x, t) =

{
u0, x ≤ ct,

u1, x > ct,

v(x, t) =


v0, x ≤ (u0 − 1)t,

v∗, (u0 − 1)t < x < ct,

v1, x ≥ ct,

where v∗ = v1
2−u0−u1
2+u1−u0 .
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(iii) If u0 ≥ u1 + 2 the solution is given in the form of delta shock wave,

u(x, t) =

{
u0, x ≤ ct
u1, x > ct

v(x, t) =

{
v0, x ≤ ct
v1, x > ct

}
+ α0(t)D− + α1(t)D+,

such that D− and D+ are the left and right hand side delta functions
with the support on the line x = ct,

c = (u0 + u1)/2,

α0(t) =
δt(c− (u1 − 1))

u0 − u1

, α1(t) =
δt(c− (u0 − 1))

u0 − u1

.

α(t) = α0(t) +α1(t) is called the strength of the delta shock wave, and

s := c(v1 − v0)−
(
(u1 − 1)v1 − (u0 − 1)v0

)
is called the Rankine - Hugoniot deficit (see [18]).

4.3 Simplified chromatography equations

The full chromatograpy system is given by the following equations((
1 +

A

1− u+ v

)
u
)
t
+ ux = 0,((

1 +
B

1− u+ v

)
v
)
t
+ vx = 0.

(4.2)

The physical condition is given by A < B, and the physical domain for
solutions is defined by 1− u+ v > 1 or v − u > −1.

In [27] and [37] one can find all relevant things about that system. Let us
note that the real model has determined values for (x, 0), x > 0 and (0, t),
t > 0 instead of the standard initial data, as we have assumed above.

The Riemman problem for the simplified model in nonlinear chromatog-
raphy given gy the system

ut +
(

(1 +
1

1− u+ v
)u
)
x

= 0,

vt +
(

(1 +
1

1− u+ v
)v
)
x

= 0.
(4.3)
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is solved in [45]. The system has

λi =
1

1− u+ v
, λj =

1

(1− u+ v)2

as eigenvalues. Note that i = 1, j = 2 if −1 < v − u < 1, and i = 2, j = 1
if v − u ≥ 1.Note that the system is strictly hyperbolic if u 6= v with i - th
field being linearly degenerate and j-th field being genuinely nonlinear.

The Riemann problem

(u, v)(x, 0) =

{
(u0, v0), x < 0,

(u1, v1), x > 0.

We can study here only the case v0 − u0 < 0, v1 − u1 > 0 when there are no
elementary wave solutions. In that case, we will try with SDS solution

u(x, t) =

{
u0, x ≤ ct
u1, x > ct

+ α0(t)D− + α1(t)D+

v(x, t) =

{
v0, x ≤ ct
v1, x > ct

+ β0(t)D− + β1(t)D+,

(4.4)

A split delta function can be multiplied only with continuous function on
the domains {(x, t) : x ≤ ct} and {(x, t) : x ≥ ct}. That is, 1

1−u+v
has to be

continuous on these sets. That is possible if delta parts in 1 − u + v cancel
each other, i.e. when

α0 + α1 = β0 + β1. (4.5)

Exchange of (4.4) into the system (4.3) gives the following two equations.
The first equation is satisfied if the following relation is true(

− c[u] + α0 + α1 +
[(

1 +
1

1− u+ v

)
u
])
δ(x− ct)

+

(
− c(α0 + α1)t+

((
1 +

1

1− u0 + v0

)
u0α0

+
(
1 +

1

1− u1 + v1

)
u1α1

)
t

)
δ′(x− ct) = 0,

while the second one holds if(
− c[v] + β0 + β1 +

[(
1 +

1

1− u+ v

)
v
])
δ(x− ct)

+

(
− c(β0 + β1)t+

((
1 +

1

1− u0 + v0

)
v0β0

+
(
1 +

1

1− u1 + v1

)
v1β1

)
t

)
δ′(x− ct) = 0.
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Note that these relations produce four equations

α0 + α1 = k1 := c[u]−
[
(1 +

1

1− u+ v
)u
]
,((

1 +
1

1− u0 + v0

)
u0 − c

)
α0 +

((
1 +

1

1− u1 + v1

)
u1 − c

)
α1 = 0,

β0 + β1 = k2 := c[v]−
[
(1 +

1

1− u+ v
)v
]
,((

1 +
1

1− u0 + v0

)
v0 − c

)
β0 +

((
1 +

1

1− u1 + v1

)
v1 − c

)
β1 = 0.

The condition α0+α1 = β0+β1 implies k1 = k2 and that condition determines
the speed by

c[u]−
[(

1 +
1

1− u+ v

)
u
]

= c[v]−
[(

1 +
1

1− u+ v

)
v
]
,

i.e.

c = 1 +
1

(1− u0 + v0)(1− u1 + v1)
.
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Inverse of a split delta shock
with applications

5.1 The definition of an inverse of split delta

shock

The definition of the split delta shocks is well adopted to the case when a
given system is linear in one of dependent variables. Then we can easily
perform all necessary multiplication of split delta shocks with piecewise con-
tinuous functions as described above. But we have seen that it is possible
to solve some other systems (like (4.3) above). It was possible to solve it
because two split delta functions annihilate in the denominators there. Now,
we will extend the split delta solutions to some other systems where there is
a division with delta functions and there is no their annihilation in denomi-
nators.

So, let us define an inverse of a split delta function in the following way.
Suppose that

u(x, t) =

{
u0, x ≤ ct
u1, x > ct

+ α0D
−(x− ct) +D+(x− ct).

We define 1
u
∈ CΓ, Γ = {(x, t) : x = ct}, to be a function satisfying 1

u
· u = 1

in the MΓ sense. Using the above definition that means

1

u
·
({

u0, x ≤ ct
u1, x > ct

+ α0D
−(x− ct) +D+(x− ct)

)
1 +

α0(t)

u0

D−(x− ct) +
α1

u1

D+(x− ct) m−→ 1 + (
α0

u0

+
α1

u1

) · δ(x− ct).

51



Chapter 5. Inverse of a split delta shock with applications

Thus,

α0(t)

u0

+
α1(t)

u1

= 0

should hold in order to justify the above calculation.

5.2 System given in a general form

Let us consider Riemann problem

ut +

(
a0 + a1u

v
+
b0 + b1v

u

)
x

= 0, u(x, 0) =

{
u0, x < 0,

u1, x > 0,

vt +

(
a0 + a1u

v
+
b0 + b1v

u

)
x

= 0, v(x, 0) =

{
v0, x < 0,

v1, x > 0,

(5.1)

We suppose that (u, v) ∈ Ω, where Ω ⊂ R2 is a physical domain, i.e. a set
of all possible values for (u, v). Let us look for a solution in the form of two
component split delta shock

u(x, t) =

{
u0, x ≤ ct
u1, x > ct

+ α0tD
− + α1tD

+ =: û+ α0tD
− + α1tD

+

v(x, t) =

{
v0, x ≤ ct
v1, x > ct

+ β0tD
− + β1tD

+ =: v̂ + β0tD
− + β1tD

+,

(5.2)

where the support of all split delta function components is x = ct.
In the sequel, notation [u] is used for a jump in û. For a given point

(u0, v0) in a physical domain Ω for (5.1), a set of all (u1, v1) in the domain
such that there exists a split delta shock connecting these states is called
split delta locus denoted by L((u0, v0)).

Theorem 5.1. There is a split delta shock solution to (5.1) if there exists c
such that ui, vi, i = 0, 1 satisfy

a1

[u
v

] k1

[u]
+ b1

[v
u

] k2

[v]
=ck1

ā1

[u
v

] k1

[u]
+ b̄1

[v
u

] k2

[v]
=ck2, v1 6= v0, u1 6= u0.

(5.3)

Here

k1 := c[u]−
[a0 + a1u

v
+
b0 + b1v

u

]
, k2 := c[v]−

[ ā0 + ā1u

v
+
b̄0 + b̄1v

u

]
,

are so called Rankine–Hugoniot deficits for the first and second equation.
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Proof. The definition of the inverses of u i v gives the following equations
α0

u0

+
α1

u1

= 0,

β0

v0

+
β1

v1

= 0.
(5.4)

Using the procedure for split delta shock calculations, from the first equation
in (5.1) one gets

− c[u]δ +

[
a0 + a1u

v
+
b0 + b1v

u

]
δ + (α0 + α1)δ

− c+ (α0 + α1)tδ′ +

(
a1

v0

α0 +
a1

v1

α1 +
b1

u0

β0 +
b1

u1

β1

)
tδ′ = 0

where the support of δ and δ′ is the line x = ct. The above equality is true
if and only if

α0 + α1 = c[u]−
[
a0 + a1u

v
+
b0 + b1v

u

]
=: k1 (5.5)

c(α0 + α1) =
a1

v0

α0 +
a1

v1

α1 +
b1

u0

β0 +
b1

u1

β1. (5.6)

With the same arguments, one gets

β0 + β1 = c[v]−
[
a0 + a1u

v
+
b0 + b1v

u

]
=: k2 (5.7)

c(β0 + β1) =
a1

v0

α0 +
a1

v1

α1 +
b1

u0

β0 +
b1

u1

β1 (5.8)

from the second equation in (5.1).

A general algorithm. If u0 6= u1 and v0 6= v1 then the variables α0, α1, β0, β1

are uniquely determined by the following systems

α0 + α1 = k1, β0 + β1 = k2,

α0

u0

+
α1

u1

= 0,
β0

v0

+
β1

v1

= 0.
(5.9)

We have used (5.2), (5.5) and (5.7). All possible values for c and a relation
between left and right - hand initial data are determined combining (5.5) and
(5.6) and solving the following system of equations (quadratic in c)

a1

(
α0

v0

+
α1

v1

)
+ b1

(
β0

u0

+
β1

u1

)
= ck1,

a1

(
α0

v0

+
α1

v1

)
+ b1

(
β0

u0

+
β1

u1

)
= ck2.
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After solving (5.9) and inserting a solution in the above system one gets

a1

[u
v

] k1

[u]
+ b1

[v
u

] k2

[v]
= ck1

a1

[u
v

] k1

[u]
+ b1

[v
u

] k2

[v]
= ck2.

(5.10)

In general, we expect that one could get a value(s) for c and a curve
with possible right - hand states that could be connected the left - hand
ones by a split delta shock. Of course, there are a lot of specific situations.
We will look at some of them in this thesis. For a real model one has to
check whether (u1, v1) ∈ Ω and an admissibility condition for split delta
shocks, too. The most usual admissibility condition is that split delta shock
are required to be overcompressive, i.e. all characteristics should run into
the shock curve. Another admissible solution is delta shock that propagates
along a characteristic. It is called a delta contact discontinuity (see [33]).
That is possible for systems having a linearly degenerate field.

5.2.1 Some special cases

1. b0 = b1 = a0 = a1 = 0. In this case, (5.10) reduces to a1

[
u
v

]
=

c[u], b1

[
v
u

]
= c[v]. That is, a speed c is uniquely determined with split

delta locus given by the relation

L((u0, v0)) =
{

(u1, v1) ∈ Ω : a1

(
u1

v1

− u0

v0

)
(v1 − v0)

= b1

(
v1

u1

− v0

u0

)
(u1 − u0)

}
.

We note that this relation can be easily solved now (quadratic equation
for v1 or u1), contrary to the general case given in (5.10).

2. b0 = b1 = b0 = b1 = 0. Now, there is only one condition for an inverse

54



Chapter 5. Inverse of a split delta shock with applications

1/v, relation (5.2). Equations (5.5)− (5.8) are reduced to

α0 + α1 = c[u]−
[
a0 + a1u

v

]
=: k1, (5.11)

c(α0 + α1) =
a1

v0

α0 +
a1

v1

α1, (5.12)

β0 + β1 = c[v]−
[
a0 + a1u

v

]
=: k2, (5.13)

c(β0 + β1) =
a1

v0

α0 +
a1

v1

α1. (5.14)

One could easily see that the above equations imply k1 = a1
a1
k2 and that

relation uniquely determined a speed c of a split delta shock and (5.14)
is satisfied. Provided u0 6= u1 and v0 6= v1, one could also see that
β0 and β1 are determined from (5.2) and (5.13) while α0 and α1 are
determined from (5.11) and (5.12). That means there are no restriction
on (u1, v1) and L((u0, v0)) = Ω. Of course, one can exclude all non -
physical and non - admissible points, but that depends on a concrete
model.

5.2.2 Chromatography system – singular case

Here, we will present results from the paper [29] for the following chromatog-
raphy system

∂tu+
( u

1− u+ v

)
x

= 0

∂tv +
( v

1− u+ v

)
x

= 0
(5.15)

taking a singular choice A = B made by some simplifications and change of
dependent variables in the full one, system (4.2). We assume the Riemann
initial data

u(x, 0) =

{
u0, x < 0,

u1, x > 0,

v(x, 0) =

{
v0, x < 0,

v1, x > 0,

(5.16)

Theorem 5.2. There exists a unique solution to Riemann problem for (5.15)
in the region where u, v and 1−u+v are non-negative. The solution consists
of elementary waves, vacuum states and split delta shocks. Uniqueness holds
in the sense of distributions.
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Proof. System (4.2) has the eigenvalues λa = 1
1−u+v

and λb = 1
(1−u+v)2

with

the appropriate eigenvectors ra = (1, 1) and rb = (1, v/u). The a–field is
linearly degenerate, while b–field is genuinely nonlinear for v 6= u.

The constant discontinuity curve for a–field starting in the point (u0, v0)
is given by

dv

du
= 1, v(u0) = v0,

i.e.

Cda : v = u− u0 + v0.

The rarefaction curve for b–field starting in the point (u0, v0) is given by

dv

du
=
v

u
, v(u0) = v0,

i.e.

Rb : v =
v0

u0

u, u > u0.

The shock curve for b–field starting in the point (u0, v0) is given by(
u

1−u+v

)
−
(

u0
1−u0+v0

)
(

v
1−u+v

)
−
(

v0
1−u0+v0

)
i.e.

Sb : v =
v0

u0

u, u < u0

and the appropriate shock speed is

c =
u0− u

u0− v0− 1
.

The analysis depends on position of (u0, v0). Let us denote by I the region
where v ≥ u and by II the one where u > v > u− 1.
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I

II

Figure 5.1: Regions in (u, v)–plane

In I, λ1 = λb, r1 = rb and λ2 = λa, r2 = ra. The opposite holds in II.

Region I Assume the initial data given in (5.16). If (ui, vi) ∈ I, i = 0, 1. a
solution is the following combination S1+Cd2 orR1+Cd2. See the illustration
at Figure 5.2
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R1+Cd2

R1+Cd2

S1+Cd2

S1+Cd2

Figure 5.2: Solution in region I

Region II If (ui, vi) ∈ II, i = 0, 1. a solution is the following combination
Cd1 + S2 or Cd1 +R2. See the illustration at Figure 5.3

Cd1+S2

Cd1+R2

Cd1+S2

Cd1+R2

Figure 5.3: Solution in region II
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If initial data values lie in different regions, there is no direct solution.
The curves change a type the situation is a bit complicated. We could try
with connections with states were u or v equals zero (”vacuum in u or v”
variable). In one situation it can be done by using only elementary waves,
but the other one requires the split delta shock solution.

Case 1. Suppose that (u0, v0) ∈ I and (u1, v1) ∈ II. Then one could connect
(u0, v0) with (0, 0) by S1 with speed c0 = 1

(1−u0+v0)2
∈ (0, 1). Then, one can

connect the point (0, 0) with some (us, 0) by a rarefaction wave in u while
v = 0: u is a solution to the scalar equation ut+

(
1

1−u

)
x

= 0, λ(0, 0) = 1 > c0

and λ(us, 0) = 1
1−us > 1. The value us is chosen such that (us, 0) could be

connected by a contact discontinuity following the vacuum rarefaction wave
which speed equals c1 = 1

1−us = λ(us, 0). See the illustration in Figure 5.4

(u0,v0)

(u1,v1)

S1

(R,0)

us

Cd1

Figure 5.4: Connecting I on the left and II on the right

Case 2. Let (u0, v0) ∈ II and (u1, v1) ∈ I. Then, there is no classical solution
to the problem. One can try to connect (u0, v0) to (0, 0) by an S2 with speed
c0 = 1

1−u0+v0
> 1. If we want to connect (0, 0) to some (us, vs) ∈ I (or

us = 0), a speed would be cs = 1
1−us+vs

< 1 < c0 that is impossible.

Let us try with a split delta shock solution of the form (5.2). One can use
the definition for inverse since 1 − u + v is again split delta shock function.
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The inverse condition (5.4) is now

β0 − α0

1− u0 + v0

+
β1 − α1

1− u1 + v1

= 0, (5.17)

with α0 +α1 ≥ 0, β0 +β1 ≥ 0. Using a similar calculations as in the proof of
Theorem 5.1 one could see that the following equations should be satisfied.

α0 + α1 = κ1 := c[u]−
[ u

1− u+ v

]
c(α0 + α1) =

α0

1− u0 + v0

+
α1

1− u1 + v1

β0 + β1 = κ2 := c[v]−
[ v

1− u+ v

]
c(β0 + β1) =

β0

1− u0 + v0

+
β1

1− u1 + v1

.

One can find α0 and α1 from the first two, and β0 and β1 from the last two
equations since v1 − v0 − (u1 − u0) > 0. Substitution of these values into
(5.17) gives the condition κ1 = κ2. From that condition one can calculate a
speed c,

c =
1

(1− u0 + v0)(1− u1 + v1)
.

The overcompressiblity condition

1

1− u0 + v0︸ ︷︷ ︸
=λ1(u0,v0)

≥ 1

(1− u0 + v0)(1− u1 + v1)︸ ︷︷ ︸
=c

≥ 1

(1− u1 + v1)2︸ ︷︷ ︸
=λ2(u1,v1)

is satisfied since u0 > v0 and u1 < v1. That completes the proof.
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neku vrstu delta funkcije u rešenju kao posledicu
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