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ABSTRACT

Ceramic parts are increasingly produced by compacting loose powders to form, what is

called a ”green body”, which is further subjected to sintering, to give the final product.

During the sintering stage, the green body undergoes shrinkage inversely proportional to

its density, so defects and even large cracks can appear in the presence of density gradients.

Such circumstance affects the quality of production of ceramic parts, with still elevated

number of rejected pieces.

Numerical simulations of green body formation are increasingly used as a support for

the stable production. Modeling the compaction process usually involves complex

constitutive models with an elevated number of parameters. The current praxis of

evaluating the governing constants relies on a large number of experiments on the green

body, like, Brazilian, crush, triaxial tests etc. Therefore, the model calibration is time

consuming and rather difficult, presenting an obstacle for routine industrial purposes.

To tackle this problem, an alternative procedure based on Inverse Analysis (IA) is

developed, which relies on the data collected from the compaction experiment only.

Such approach fully eliminates the need for further testing on the green body, making it

practicable for routine industrial purposes. Within this methodology, a discrepancy

function is formed that quantifies the difference between experimental and simulated

quantities collected from the compaction test, which is further minimized to give the

constitutive parameters. To ascertain the strong influence of sought parameters on

measurable data, certain new green body geometries are designed.

Proposed approach is tested and validated on the calibration of ”modified” Drucker-

Prager Cap (DPC) model, which is frequently adopted for powder pressing simulations.

To this purpose, rigorous experimentation involving both compaction tests for calibration

and destructive tests for verification are performed. The parameters obtained through IA

are used to simulate complex geometries, followed by a comparative study between the

currently adopted praxis vs. inverse analysis methodology.

Further on, calibration of a more sophisticated material model relying on the

Bigoni-Piccolroaz yield surface is considered. Certain instabilities in the numerical



implementation of this fairly complex model, lead to discontinuous discrepancy

function, and therefore, parameters are assessed by performing the minimization through

genetic algorithms. Computational burden coming from recursive simulations required

by the genetic algorithm is made consistent by employing controllably ”enriched”

reduced basis model based on proper orthogonal decomposition. Finally, a comparison

between the novel model and the ”modified” DPC model is presented.



Keywords: Inverse Analysis, Powder Compaction, Material Calibration, Drucker-Prager

Cap, Bigoni-Piccolroaz, Reduced Basis Model

Scientific Discipline: Mechanical Engineering

Scientific Sub-discipline: Strength of Materials
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САЖЕТАК

Производња керамичких компоненти најчешће се састоји из процеса механичког

компактирања керамичког праха у циљу добијања испреска, који се потом

подвргава синтеровању на повишеној температури. У току синтеровања,

евентуално присуство шупљина у отпреску изазива интензивније локално

скупљање материјала у тој зони, што за последицу има нехомогеност финалног

производа или стварање унутрашњих прскотина. Сходно томе перформансе

финалног производа у великој мери су условљене квалитетом произведеног

отпреска.

Значајан фактор за стабилну и ефикасну производњу керамичких отпресака

представља могућност извођења реалистичних нумеричких симулација самог

процеса. Моделирање овог процеса најчешће укључује комплексне конститутивне

моделе са великим бројем параметара. Процедуре калибрисања ових параметара,

које су тренутно у примени, захтевају извођење низа деструктивних тестова на

отпреску. Овакав приступ је захтеван и неприлагођен за рутинску индустријску

примену.

У оквиру ове дисертације развијена је алтернативна метода, са низом

предности при решавању описаног проблема калибрације параметара, заснована

на примени инверзних анализа. Развијена метода користи као експерименталне

податке искључиво оне вредности које се могу измерити у току процеса сабијања,

чиме је искључена потреба за спровођењем деструктивних испитивања на

отпреску. У оквиру развијене методе формирана је циљна функција која

квантификује дискрепанцу између експериментално измерених, и одговарјућих

нумерички добијених вредности. Тако је процес калибрације конститутивних

параметара сведен на проблем нумеричке минимизације формиране циљне

функције. Како би се обезбедила одговарајућа осетљивост експериментално

измерених вредности на тражене параметере, дефинисане су посебне геометрије

отпресака као резултат детаљне геометријске анализе. Тиме је формиран

експериментлани протокол који тачно дефинише геометрију отпресака, избор



експерименталних вредности, и примену одговарајућих алгоритама и циљу

аутоматског добијања тражених конститутивних параметара.

Развијена метода је тестирана на решавању проблема калибрације

”Drucker-Prager Cap” конститутивног модела, који се често примењује у

симулацијама процеса сабијања праха. Тестирање је укључило и обимну

експерименталну кампању коришћењем деструктивних тестова на отпресцима,

чиме су добијене референтне вредности, употребљене као база за поређење.

Допунска верификација састојала се у симулирању комплексних геометрија,

коришћењем конститутивних параметара добијених применом развијене методе.

Предложена метода је примењена и на калибрацију сложенијег конститутивног

модела који користи ”Bigoni-Piccolroaz” модел пластичности. Ово представља нов

и изразито комплексан конститутивни модел, па је његова нумеричка

имплементација резултирала нестабилним нумеричким симулацијама, чинећи

циљну функцију дисконтинуалном. При решавању овог проблема калибрације,

минимизација је извршена употребом „генетичких алгоритама“, уз развијени

редуковани модел за нумеричке симулације теста, чиме је постигнуто значајно

смањење компјутерског времена при извођењу нелинеарних симулација. На самом

крају, упоређени су резултати добијени применом једног и другог конститутивног

модела уз назначене смернице о групи проблема на којима их је могуће применити

са задовољавајућом тачношћу.
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Chapter 1

INTRODUCTION

Production of parts by using powders as starting material, is a vital part of the

manufacturing industry. This route finds its applications in many sectors, such as

powder metallurgy, production of ceramic components, hard metals, pharmaceutical

tablets, detergents, magnets, and others [58]. The popularity of this method of

production is derived from several benefits offered by the process such as: possibility to

manufacture complex shapes, producing parts of high melting point materials as casting

is not a viable option and also, where the two constituents of the system cannot be mixed

(e.g. tungsten/copper system) [67].

Production usually comprises of two steps. The first step is the formation of ”green

body” (compact) by cold compaction which refers to the use of mechanical force to

densify the powder so as to give a green body (figure 1.1). The second step is the

sintering step, which is consolidation of weakly bonded compact at elevated

temperatures, with or without additional pressure [55]. Following the cold compaction,

green body should have enough cohesion to remain intact after mold ejection, free of

macro defects and handleable for subsequent stages without failure. The presence of

defects within the green body can cause local shrinking during the sintering phase,

resulting in non-homogeneity of final product, appearance of residual stresses or even

formation of macro cracks (see [50, 51]). Such circumstances pose the need for detailed

study of cold compaction phase and is a topic of extensive research.
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CHAPTER 1. INTRODUCTION

Figure 1.1. Schematic representation of cold compaction

Numerical simulations are increasingly used to better understand the powder

compaction process. A successful simulation requires detailed constitutive description of

the involved material. In general, one can use either a discrete approach, where it is

attempted to separately model particles and their interaction, or continuum approaches

where overall macroscopic effects of the powder are studied.

Within discrete approach, each powder particle is treated individually and the contact

and friction between the particles are studied [29, 54, 68]. Rojek et al. [54] in their work

involving cold compaction of NiAl powder at low pressures (up to 50 MPa), modeled the

contact between powder particles following approaches based on elastic Hertz model

and plastic Storȧkers model. The plastic Storȧkers contact model was deemed more

suitable to represent a local interaction associated with yielding at the contact point for

particles, however, both models produced very similar macroscopic behavior. In another

work by Huang et al. [29], multi-particle finite element simulation was performed on

Al/SiC composite powders. The aim of the study was to understand the effects of

particle size ratio, initial packing structure and composition on compaction process. This

method involved generation of initial packing structure, imported into finite element

model, with each particle discretized by finite element meshes. Yan et al. [68]

investigated La0.6Sr0.4Co0.2Fe0.8O3 (LSCF) cathode which is used in solid oxide fuel

cells. The research involved a combination of Discrete Element Method (DEM) with

Kinetic Monte Carlo (KMC) simulations. DEM was used to create a number of

numerical samples containing spheres or clumped spheres to take into consideration

particle size, particle size distribution, aspect ratio, sphericity and orientation generating
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distinct powder packings. Further on, a cubic representative volume is sampled from

each powder packing and voxelized, serving as starting micro-structure for KMC

simulations used to model sintering mechanism.

Clearly, discrete modeling approach can be fairly useful to simulate the physical

processes in compaction. However, the difficulty lies in the fact that these models are

intrinsically ”multi-scale”. Such modeling effectively implies that the true experiment is

scaled down to a representative volume to enact the original behavior. This leads to

several assumptions such as uniform distribution of density over the representative

volume, preserving the size ratio and particle distributions etc. Even after such

adjustments, the computational burden associated with the modeling is fairly high [53].

Alternatively, continuum based approach can be used to model powder compaction,

since from computational point of view, it is better suited for engineering applications [28].

This is related to the fact that even though the powder is clearly discontinuous at particle

level, such discontinuity becomes irrelevant when compacting it to a relatively dense state.

The use of continuum based approach employs phenomenological models like Cam-Clay,

Drucker-Prager, cap plasticity models etc. These models were originally developed for

soil mechanics [35], but are extensively used also to model powder compaction [2, 58,

59]. In particular, researchers have established Drucker-Prager Cap (DPC) model as a

good constitutive model [28] and most accepted one [26, 31]. This is due to the fact

that in DPC model the elliptical cap surface is added to shear failure surface, existing

in typical Drucker-Prager model. The shearing phenomenon becomes important during

decompression and ejection of powder whereas the cap surface takes into account the

densification of the powder [21, 59]. Furthermore, the DPC model is readily available in

commercial finite element modeling softwares. Clearly, such modeling necessitates the

complete knowledge of constitutive parameters entering the governing equations. The

assessment of these parameters is within the main focus of the present research.
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1.1 General Motivations

Quantification of material parameters used within constitutive models employed for

powder compaction simulation is a challenging task. Current practice relies on

performing destructive tests like Brazilian tests, uniaxial compression tests (crush tests),

triaxial tests and/or acquisition of stresses from mold used for compaction. Transition

from experimentally measured quantities to parameters of interest is done through

simplified relations, occasionally representing source of an error. This is evidenced by

works of Han et al. [28] and Lamarche et al. [35] on pharmaceutical tablets, Sinha et al.

[59] on sensitivity study of DPC model, Almanstötter [2] on doped tungsten powder,

Diarra et al. [23] on cosmetic products, Zhou et al. [70] on mixed metal powders and

many others [3, 26, 31, 58]. Such experimentations and the related calculations, provide

a reasonable estimate of the parameters but they involve large number of experiments,

particularly when the number of constitutive parameters is elevated. Another

complication comes from the fact that during compaction a loose powder transforms into

a dense solid and these two states have fairly different mechanical behaviour. Such

transition must be accounted for in the modeling.

From mechanical point of view, the above mentioned transition implies that the

governing parameters should change with progressing of compaction. When continuum

based approach is used, which is the strategy adopted in this research, it is common to

relate relative density to volumetric plastic strain, as the internal state variable of the

model. It is therefore required to define parameters which are changing with

accumulated plastic strain. This is not a straightforward task since, for example, in the

classic form of DPC model hardening affects only ”cap” parameters, while it assumes

fixed shear failure surface. Similar holds also for other plasticity models.

During the powder compaction, the values of most of the parameters change as the

relative density of the compact increases. This has been evidenced in [21, 28] for example

and can be visualized in the figure 1.2 (note the changing slope of the unloading branch at

different density levels) and figure 1.3 (shear surface also shifts alongwith the growing cap

surface). It is therefore needed to introduce a so called ”elasto-plastic” coupling, where

also the elastic properties will depend on accumulated plastic strain.
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Figure 1.2. Unloading phase of powder compaction at different relative densities
evidencing change in elastic properties as compaction progresses

Figure 1.3. Representation of changes in plastic property with changing relative density
evidenced by shift in DPC yield surface

As a possible remedy to the above mentioned limitations, some authors have

introduced and numerically implemented the field dependency of constitutive parameters

within continuum models (refer to [2, 3, 23, 26, 28, 31, 35, 58, 59, 70]). It assumes

constitutive parameters as a function of volumetric plastic strain, thereby enabling to
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incorporate also the elasto-plastic coupling. For compaction, relative density is derived

from the plastic strain and is treated as the solution dependent variable making it

possible to have parameter definition as a function of relative density. Clearly, such

modifications significantly affect the calibration procedure, since constitutive parameters

change as the density increases. Thus, the required number of experiments on green

bodies significantly increases. This circumstance creates the need for heavy

experimental protocol, making the industrial routine application rather difficult and

fairly expensive. Furthermore, some of the parameters cannot be determined by the

conventional experimental route of calibration at relatively low and high densities [26].

In a view of the listed difficulties, the research is motivated on finding an alternative

procedure for the calibration of constitutive models for powder compaction without

involving such heavy experimental regime.

1.2 Primary Objectives

The primary objective of the thesis is to develop a full characterization procedure to

determine the evolution of properties of the green body as a function of relative density,

throughout the cold compaction based on the Inverse Analysis (IA) methodology. The

IA approach synergically combines the experiments with numerical simulations and

mathematical programming for minimization of discrepancy between experimentally

measured quantities and their computed counterpart [13]. The novelty pursued relies on

the development of calibration protocol depending only on experimental quantities

collected from compaction test, and therefore excluding all the heavy experimentation

needed for evaluating the properties of green body. Such characterization is obviously

more appropriate for industrial applications and could lead to, hopefully important,

reduction of rejected pieces, as more information is available on the green body before it

subsequently undergoes sintering, leading to obvious economical and environmental

advantages.

To achieve this goal, numerical implementation of the DPC model, capable of taking

into account the elasto-plastic coupling together with other sources of non-linearities

observed from the experiments is done. The implemented model is optimized
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specifically for ceramic powders. After the successful development of the model with

the required features, a calibration procedure based on IA is setup. The evaluated

parameters from the IA are verified against the values obtained from traditional route of

performing experiments within an extensive testing campaign. As the final step, the

assessed parameters are fed to the developed constitutive model and the results are tested

on compaction of industrial powder, for a few different geometries.

1.3 Outline of the Method

Central methodological ingredient of developed calibration procedure represents the

Inverse Analysis (IA). The IA approach has already been successfully implemented in

different fields, like, material characterization based on instrumented indentation [14,

16], identification of stress states and elastic properties of concrete dams using flat jack

tests [25], determination of boundary temperatures and heat flux for a steady state heat

conduction problem [69], shape optimization of transonic airfoil [37], quantification of

unknown impact forces on a beam [65] and many others [8, 10, 11, 22, 48, 61].

The focus of this research is to implement IA in the present context of calibrating

models for simulation powder compaction based only on the data collected during

compaction experiment (e.g. using force vs. displacement curve). The developed

procedure is tested with reference to DPC model, however, the methodology can be

extended to the calibration of other models as well. In fact, with some modification the

developed methodology is also applied to the calibration of more sophisticated model

based on Bigoni-Piccolroaz yield criterion [49, 51].

One of the key ingredients required for IA includes the simulation of experiment. To

this purpose, the DPC model in its classic form is modified to include dependency of

constitutive parameters on the relative density. The selection of the experiment plays an

important role within the IA protocol, as it is of primary importance that all the sought

parameters are sensitive to the selected measurable quantities. To ascertain this,

systematic sensitivity analyses are performed through numerical simulations of

experiment. Different mold geometries are considered to optimize the overall

experimental protocol. Once the experiment is selected and the measurable quantities are
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available from both the experiment and its numerical model, a discrepancy function is

formed to quantify the difference between the experimentally measured quantities and

their computed counterparts. This discrepancy function is further minimized using

mathematical programming techniques within an iterative procedure to give the required

parameters.

1.4 Organization of the Thesis

Chapter 2 presents an overview of the currently adopted praxis to calibrate the models

used in powder compaction. In particular the reference is made to Drucker-Prager Cap

(DPC) model, which is described with the relevant equations. This is followed by the

detailed description on the evaluation of model parameters through crush tests, Brazilian

tests and acquisition of radial stress.

In Chapter 3, the methodology based on Inverse Analysis (IA) is introduced. A brief

description of the compaction experiment with the testing machine used for it is given.

Following this, the general aspects of the compaction simulation are presented with the

specific details on the implementation of the ”modified” DPCmodel. Finally at the end of

the chapter, a survey ofmost frequently employed algorithms for constrainedminimization

of the discrepancy function is outlined.

Chapter 4 describes the proposed calibration protocols. A sensitivity study is

presented, which is used to establish different mold geometries for compaction to

optimize the overall experimental protocol.

In Chapter 5, comparative results of the developed calibration procedure based on IA

and current praxis are presented with reference to the DPC model. At the beginning of

the chapter, the relevant experimental details of the compaction test for the production of

green bodies, for both flat cylindrical and modified mold geometries is mentioned. The

destructive tests on the former is used to establish reference values of parameters through

the procedure employed as current praxis, while the data from the compaction tests of

the latter is selected for IA identification. Following this, the comparison between the

assessed values on the basis of these two approaches is given. Finally at the end of the

chapter, the designed calibration protocol based on IA is summarized.
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Chapter 6 deals with the application of the developed IA procedure to calibrate a

more sophisticated material model relying on Bigoni-Piccolroaz yield criterion. This

novel constitutive model is outlined with the relevant equations. The main features of the

Genetic Algorithm (GA) which is used for the minimization of the discrepancy function

is further presented. Following this, reduced basis model based on proper orthogonal

decomposition is introduced to significantly reduce the associated computational burden

from recursive simulations required by GA. Finally, the developed calibration procedure

combining the reduced basis models with genetic algorithm is explained and the obtained

results are discussed and comparisons between novel model and DPC model are shown.

Chapter 7 concludes the thesis with final remarks and suggestions for potential future

research.
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Chapter 2

CURRENT CALIBRATION

PROCEDURES FOR POWDER

COMPACTION MODELS

The current method of quantifying constitutive parameters entering the models used in

powder compaction relies on performing experiments on the green body. Recently, Diarra

et al. [24] performed a comparative study between ”modified” Cam-Clay (CC) model

and ”modified” Drucker-Prager Cap (DPC) model (modification so to include the elasto-

plastic coupling). For the modified CC model, the radial stresses measured from the die-

wall were used for evaluating the slope of critical state line (M), the size of the yield

surface (a) and the hydrostatic yield stress (pc). However, the modified CC model can

only be used to study densification and cannot take into account the failure behavior (for

example, the failure during ejection). Thus, DPC model must be selected to model such

behavior along with the densification and in fact, is the most accepted model for powder

compaction for different categories of materials, such as pharmaceutical tablets [21, 28],

ceramic powders [58], metal powders [2, 70], cosmetic products [23] etc. In what follows,

a brief description of the DPC model is outlined, proceeded by presenting the procedure

employed for the identification of its governing parameters.
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2.1 The Drucker Prager Cap Model

Graphical representation of DPC yield surface in p-q plane is visualized in figure 2.1. As

indicated in the figure, p represents a hydrostatic pressure and q, the equivalent von Mises

stress, namely:

p =
σxx + σyy + σzz

3
(2.1)

q =

√
(σxx − σyy)2 + (σyy − σzz)2 + (σzz − σxx)2 + 6

(
σ2xy + σ2yz + σ2zx

)
2

(2.2)

Figure 2.1. The DPC yield surface in p-q plane

In addition to the shear failure surface in the DP model in its classic form, here, a cap

surface is added to take into account yielding due to hydrostatic stress only. In the DPC

yield function, the elastic domain is enclosed by three surfaces, namely shear failure

surface, cap surface and transition surface (from shear to cap surface). The shear failure

surface is the boundary between the stress state that causes dilation and shape changes

and usually determines the failure of the compact. The densification and hardening is

11
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controlled by the expanding cap surface, governed by volumetric plastic deformation.

The third surface ensures a smooth transition between the shear and the cap surface to

avoid numerical instabilities. The parameters that define these surfaces are as follows:

• Shear failure surface (Fs) is defined through material cohesion (d) which is an indicator

of the shear strength, and friction angle (β) through the following expression:

Fs = q− p tan β − d = 0 (2.3)

• Cap surface (Fc) is governed by evolution pressure (pa) and parameter R, which controls

the shape of the cap surface (usually known as cap eccentricity). Therefore, cap surface

is defined by:

Fc =

√√√√√√√√√√(p− pa)2 +


Rq

1 + α −
α

cos β


2

− R(d+ pa tan β) = 0 (2.4)

• Transition surface (Ft) is defined by transition radius (α):

Ft =

√
(p− pa)2 +

[
q−

(
1− α

cos β

)
(d+ pa tan β)

]2
− α(d+ pa tan β) = 0 (2.5)

Hardening is described by hydrostatic yield compression stress (pb) as a function of

volumetric plastic strain (εvp). Here, pb is the magnitude of stress needed to compact the

material using hydrostatic stress alone. It can be calculated using the values of d, β, pa
and R such that:

pb = pa (1 + R tan β) + Rd (2.6)

In compaction modeling, the volumetric plastic strain plays the role of relative density of

the compact and the correlation between the two can be given by:

εvp = ln
(

ρ
ρ0

)
(2.7)
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where, ρ and ρ0 are the current and initial relative density respectively.

In addition to the yield function, the plastic flow rule is defined. The plastic potential

is defined by an associative component (Gc) on the cap surface whereas, a non-associative

component (Gs) is used for shear failure surface and transition regions, shown in equations

below:

Gc =

√√√√√√√√√√(p− pa)2 +


Rq

1 + α −
α

cos β


2

(2.8)

Gs =

√√√√√√√√√√[(p− pa) tan β]2 +


q

1 + α −
α

cos β


2

(2.9)

To uniquely define the DPC yield function, a total of five parameters are required,

namely: cohesion (d), friction angle (β), transition surface radius (α), evolution pressure

(pa), cap eccentricity (R). The transition surface radius (α) is typically a small number

between 0.01 and 0.05 and is assumed as a constant value throughout the compaction (for

example, α = 0.02 in [3, 28], 0.03 [23]). In what follows, the current procedure employed

for identification of the rest of parameters is laid out.

2.2 Current Practice for Calibration of DPC Model

In the works carried out so far, the governing parameters of the DPC yield criterion are

evaluated using experiments on green body. Han et al. [28] in their study of

die-compaction simulation of pharmaceutical powders, assessed the material cohesion

(d) and friction angle (β) by using Brazilian disc test (diametrical compression) along

with uniaxial compression test (crush test). The samples of different densities were

formed and tested, so as to give the evolution of these parameters over the range of

relative density. The cap surface parameters, namely: evolution pressure (pa) and cap

eccentricity (R), were found out by forming green bodies at different densities and
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analyzing the loading path of the involved compaction tests. These values were then

used to calculate hydrostatic yield compression stress (pb). Shang et al. [58] in their

study tried to quantify the effect of deformation of the punches on the evaluated

parameters of the DPC model. For the assessment of shear failure surface, Brazilian disc

test along with uniaxial compression test were employed. The parameters of the cap

surface were estimated using measurements from axial and die-wall stresses. In another

research conducted by Cunningham et al. [21] analyzing tablet compaction, similar

approach was used to find the shear failure surface. The work carried out by Sinha et al.

[59] on the sensitivity of DPC parameters during decompression phase, also relied on the

methodology mentioned above for quantifying constitutive parameters.

In the more recent works, LaMarche et al. [35] performed studies for a range of

excipients and formulated products. The material cohesion and friction angle were

evaluated using Brazilian disc test and uniaxial compression test. The values of material

cohesion and friction angle were used along with die wall stress and axial stress to

quantify evolution pressure, cap eccentricity and hydrostatic yield stress. Garner et al.

[26] proposed a scheme to extrapolate parameters for the relative densities that are not

accessible experimentally so as to cover a full range from initial relative density to a

relative density of unity. To carry out the extrapolation, the parameters were identified at

some particular densities using the tests mentioned above. Almanstötter [2] in his study

of doped tungsten powder, Diarra et al. [23] in their work on compaction of cosmetic

products, Kadiri and Michrafy [31] in their research on effect of punch shape in powder

compaction process, employed the above mentioned techniques to characterize the

plastic parameters of the DPC model.

In the previous studies, shear failure surface parameters are assessed on the basis of

Brazilian disk tests and uniaxial compression tests, while cap surface parameters are

quantified through measuring radial stress on the die wall and analyzing the loading path

during compaction, whereas the elastic parameters were evaluated from the unloading

curves of radial stress vs. axial stress and axial stress vs. axial strain. In what follows,

the description of the above mentioned methodologies and their application to identify

the constitutive parameters is given.
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2.2.1 Shear Failure Surface Characterization

The most common method to characterize the shear failure surface involves carrying out

Brazilian test and crush test [2, 21, 23, 26, 28, 31, 35, 58, 59, 70]. These tests exhibit

shear in two different loading patterns and thus offer a good combination to determine the

shear failure surface, which is represented by a line in 2-dimensional p-q space. In the

Brazilian disk test, a disc shape specimen is loaded by two opposing normal strip loads

at the disc periphery. The schematic representation is shown in figure 2.2. The load is

continuously increased at a constant rate until the failure occurs. The load at which the

specimen fails (maximum load L) is then in turn used to calculate the failure limit (σd) of

the sample using following formula:

σd =
(

2L
πDH

)
(2.10)

where D is the diameter and H is the height of the sample respectively.

Figure 2.2. Brazilian test setup

The crush test gives the stress vs. strain evolution of the green body using uniaxial

compression. The experimental setup is shown in figure 2.3. In the crush test, a cylindrical

sample is compressed until failure. As can be seen in the figure, one of the punches is kept

fixed, whereas the other punch applies load. The force and the displacement are recorded
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and failure load (Fm) is picked from this curve. This is then used to compute failure stress

(σc) using diameter of the sample (D) by the following equation:

σc =
(
4Fm

πD2

)
(2.11)

Figure 2.3. Crush test setup

The combination of Brazilian test and crush test is used to determine the shear failure

line as can be visualized in the figure 2.4. These two tests give two points on the shear

failure line, which in turn gives the cohesion as the intersection with y-axis, and friction

angle as the slope of this line. The equations used to calculate the points of shear failure

starting from stress values (σd) and (σc) are given below.
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Figure 2.4. Schematic representation of different tests needed for calibration of shear
failure line DPC yield criterion

In the Brazilian test, the stress state can be represented as:

pd =
(
2σd
3

)
(2.12)

qd =
(√

13σd
)

(2.13)

whereas, in the crush test it is given by:

pc =
(
−σc
3

)
(2.14)

qc = (−σc) (2.15)

Using these equations, the material cohesion (d) and friction angle (β) can be deduced

through the formulae given below:

d =

(
σdσc

√
13− 2

σc + 2σd

)
(2.16)
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β = tan−1

(
3σc + d

σc

)
(2.17)

From what precedes, it can be realized that the evaluation of cohesion and friction

angle at a particular level of density requires two compaction tests and two destructive

tests (Brazilian and crush). It is reasonable to perform these tests at least twice at a

particular density level to check and establish reciprocity of results. This effectively

means that characterizing cohesion and friction angle at a single density point, involves

in total minimally eight experiments. Such characterization needs to be done at an

elevated number of densities (say, five or more) to have a reasonable estimate of

parameters over the range of relative density.

2.2.2 Cap Surface Characterization

The cap surface parameters are obtained by analyzing the stress state of the loading point

(A). The intersection of loading path OA (see figure 2.4) with the cap surface gives the

maximum value of axial stress and radial stress. The radial stress is measured from the die-

wall during compaction, usually, by employing strain gages and calibrating them details on

which can be found in appendix A. Axial stress can be recorded from the testing machine

used to perform compaction.

Figure 2.5. Visualization of loading path in compaction test
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The available values of axial stress (σz) and radial stress (σr) are then converted to

hydrostatic pressure (p0) and equivalent mises stress (q0) by the following relations:

p0 =
(
σz + 2σr

3

)
(2.18)

q0 = |σz − σr| (2.19)

With an assumption that the die-wall is rigid, the radial strain rate at point A is null

and can be denoted as:

ε̇pr = λ̇
∂Gc

∂σr

∣∣∣
(p0,q0)

= 0 (2.20)

Given that λ̇ is a positive quantity in equation (2.20), it implies:

∂Gc

∂σr

∣∣∣
(p0,q0)

= 0 (2.21)

By using (2.8) and (2.21), the cap eccentricity (R) can be determined and is given as:

R =

√√√√√√√
(p0 − pa)

2

1 + α −
α

cos β

2

3q0
(2.22)

Substituting value of R from equation (2.22) into (2.4), evolution pressure (pa) can be

computed as:
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pa =

√√√√√9q02 + 24dq0

1 + α −
α

cos β

2

tan β + 8 (3p0q0 + 2q02)

1 + α −
α

cos β

 tan β

2

1 + α −
α

cos β

 tan β

2

−

3q0 + 4d tan β

1 + α −
α

cos β

2


1 + α −
α

cos β

 tan β

2

(2.23)

Once the compaction is finished, compact’s relative density can be measured using

the volume of the sample and the absolute density of the material. This in turn can be

used to compute the volumetric plastic strain using equation (2.7). The hydrostatic yield

compression stress (pb) can be calculated using formula (2.6) and hardening law can be

defined.

From the above given relations, the cap surface can be fully determined at a particular

relative density. This needs to be done for multiple compacts, formed at different density

levels, to evaluate the cap surface and the hardening of DPC yield criterion.

2.2.3 Evaluation of Elastic Properties

The elastic behavior of compacting powder is assumed to be isotropic [2, 23, 31, 70].

Thus, only two elastic parameters, namely Young’s modulus (E) and Poisson’s ratio (ν)

need to be evaluated. The elastic constants E and ν are related to the bulk modulus (K)

and shear modulus (G), describing the elastic behavior under hydrostatic stress and shear

stress, respectively. This can be expressed as:

K =
E

3 (1− 2ν)
(2.24)
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G =
E

2 (1 + ν)
(2.25)

In the elastic range, the behavior of isotropic materials is governed by the Hooke’s

law, which in incremental form reads:

dϵϵϵeij =
dI1
9K
δδδij +

dsij
2G

(2.26)

where, dϵϵϵeij is the elastic strain increment, I1 is the first stress invariant, δδδij is the Kronecker

delta and sij (σσσij− I1/3) is the deviatoric stress tensor. In the compaction test, the die-wall

is assumed to be rigid, implying:

εr = εθ = 0 (2.27)

σr = σθ (2.28)

here, εr, εθ, σr and σθ is radial strain, hoop strain, radial stress and hoop stress, respectively.

Using (2.27) and (2.28), axial strain increment can be computed from equation (2.26) as:

dεz =
dσz + 2dσr

3K
=

dp
K

(2.29a)

dεz =
dσz − dσr

2G
=

dq
2G

(2.29b)

The relationship between stress and strain can be expressed using the Young’s modulus

such that:

dσz =
E

(ν + 1) (2ν − 1)
[(ν − 1) dεz] (2.30a)

dεz =
dσz − ν(2dσr)

E
(2.30b)

since, εr = εθ = 0 and σr = σθ. Substituting, values of dεz (2.29) and K (2.24) into the

above formula (2.30a), the following relation can be obtained:
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dσz =
(1− ν)

ν
dσr (2.31)

Using the value of dσr from (2.31) andG from (2.25), and putting it into equation (2.30b),

following can be expressed:

dσz =
E (1− ν)

(1 + ν) (1− 2ν)
dεz (2.32)

The value of Poisson’s ratio can be calculated from (2.31) by using the slope of

unloading curve of axial stress vs. radial stress. For the Young’s modulus, slope of the

axial stress vs. axial strain needs to be plugged into equation (2.32). This needs to be

repeated at multiple level of densities.

From the above characterization procedure, it is obvious that multiple tests need to

be performed. To put more light on this, the full characterization of DPC model at a

particular level of density requires ten experiments (eight for shear failure line, two for

cap and elastic parameters) in the minimum case scenario. Thus, to calibrate a density

dependent DPC model which will require parameters to be defined as a function of

relative density, one should perform about fifty experiments for evaluating constitutive

parameters at five different levels of relative density. It is abundantly evident that such

procedure for calibration is very heavy experimentally and not so feasible for routine

industrial purposes. Similar heavy experimental regime can be expected with other

models for powder compaction simulations. Therefore, such circumstances invoke the

need for an alternative route to calibrate the models used for powder compaction and can

be tackled using the methodology based on IA presented in Chapter 3.
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Chapter 3

ON INVERSE ANALYSIS, POWDER

COMPACTION SIMULATION AND

RELATED NOVELTIES

In present research, the material constants entering the models employed in powder

compaction are evaluated through Inverse Analysis (IA). These are analyses performed

backwards, meaning that the solution is known but not the causes leading to it. As

opposed to commonly used direct analysis, here, the full result of the forward problem is

at the disposal, while the complete knowledge of all the inputs, namely, initial/boundary

conditions, geometry details, constants (constitutive parameters entering governing

equations) etc. is not available. Such problems are referred to as the ”inverse problems”

and they are tackled within the growing branch in applied mechanics under the name of

inverse analysis [13, 63, 64].

The IA methodology synergically combines the experiment, its simulation and

mathematical programming. The idea is to perform the experiment along with its

simulation, and record the measurable quantities from both. The difference between

these measured values is estimated within, what is called a discrepancy function. As the

final step, this function is minimized with respect to the sought quantity of interest. The

flow of the IA procedure is visualized in figure 3.1. For more details on the subject, refer

to [13, 63, 64].
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Figure 3.1. Schematic representation of IA procedure

Over the last two decades, IA methodology has seen diverse applications in multiple

areas. These range from determination of initial/boundary conditions [65, 69] to shape

optimization [37, 61] and parameter identifications [10, 14, 25]. For example, Wang and

Chiu [65], employed IA to quantify the impact force on a beam, using experimentally

measured accelerations. In the work carried out by Sobieczky and Center [61], the shape

of the airfoil was optimized, respecting the geometry constraints, based on target

pressure distribution, used as the input data. Damasceno and Fratta [22], monitored the

chemical diffusion in a porous media using electrical resistivity tomography. Sodium

chloride solution was seeped in the porous media and electrical currents and voltages

were measured at the boundaries, helping to make electrical resistivity tomographic

images. Similar kind of study was done on sandy soils by Borsic et. al. [11] using water

as the conductor. Ostrowski et. al. [48] evaluated the heat conductivity and the heat

transfer coefficient utilizing the temperature field measurements. In another research,

Bolzon et. al. [10] used the indentation curve and the imprint of the indenter on the

specimen under test, to assess the sample’s mechanical properties, such as Young’s

modulus, yield limit and exponent of hardening. In more recent works, Xie et. al. [66]

estimated the endothermic reaction parameters like thermal conductivities, reaction

temperature and heat, making use of the temperature history curves. In a research by

Nakamura et. al. [44], a prediction of transient heat flux during aerodynamic heating
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was done relying on finite temperature data points. Liang et. al. [38] estimated the

inherent deformation in thin plate aluminum alloy joints during welding. Shrinkage and

bending in longitudinal and transverse directions were determined using the

measurements of deformations at limited locations.

From what precedes, it can be realized that the IA procedure is increasingly

employed in diverse fields of engineering. The common point in all these applications is

that the quantity of interest is evaluated on the basis of some experimentally measured

data. Clearly, such strategy offers an important advantage for assessing quantities

difficult, or even impossible to measure otherwise. This feature of the methodology is

particularly important for determination of parameters entering complex constitutive

models. The current research focuses on these kinds of problems.

By observing literature one can find many recent applications of IA methodology

employed for the assessment of material parameters. Fedele and Maier [25], identified

the stress states and the elastic properties of concrete used in dam structures. Flat jack

was inserted into the concrete and reference points were marked. The device was then

pressurized, and consequent variations in distances of these marked reference points was

measured and fed as an input for IA procedure. Applying similar principles, Chisari et.

al. [20] evaluated the material parameters of mortar joints in unreinforced masonry.

Buljak and Maier [15] in their research, showed the possibility to quantify residual

stresses in the material based on indentation tests alone. Elliptical indenters of novel

shape were proposed and the obtained indentation curve was used as an input to the IA

procedure. In a study performed by Magalhaes et. al. [40], the Young’s modulus of a

cantilever beam made of ASTM A36 steel was estimated from the displacement of the

structure. Jiang et. al. [30] quantified linear and nonlinear elastic properties of porcine

brain tissue. The ultrasonic probe was pushed into the soft tissue, which generated an

acoustic radiation force inducing plane shear waves. The velocity of these waves was

employed as input to the IA procedure. Chen et. al. [19] evaluated the cohesive model

parameters for crack growth simulations by analyzing the key points on the load-crack

extension experimental curve. Based on a similar approach, Buljak and Maier [12],

designed novel shape of sharp indenters to be specifically used for calibration of fracture

properties of brittle materials. Li et. al. [36] employed the IA procedure to determine the
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material models for work hardening and dynamic recovery. Bainite steel was subjected

to hot compression tests at high temperatures (1100◦C-1400◦C) at varying strain rates.

The obtained stress-strain curve was then used to evaluate the material constants of the

established constitutive equations to predict work hardening and recovery. Bolzon et. al.

[9] characterized aluminum-based metal matrix composites relying on the data of

indentation test. The material behavior was modeled through Drucker-Prager

constitutive model and parameters were determined by IA.

In a view of recent developments of inverse analysis methodology, and the

complications involved in evaluating parameters of constitutive models for compaction,

the research is motivated in employing IA within the present context considered in this

thesis. The difficulty with characterizing constitutive parameters for compaction

modeling is derived from their elevated number and the way they change throughout

pressing. These circumstances make the application of IA procedure more challenging,

however, offering important benefits by eliminating the need for heavy experimental

regime described in the previous chapter. In the light of these potential novelties, IA

procedure is adopted as the central methodology in this research work.

For applying such concept to determine parameters entering the governing equations,

die compaction tests are performed. A compaction curve, which is a typical output of

this experiment, is considered as experimental data Uexp. The same experiment is further

simulated using the commercial Finite Element (FE) code ABAQUS [1] to give the

computed data Ucom. These measurements are used to form the residual vector R:

R(p) = Uexp − Ucom(p) (3.1)

Further on, a discrepancy function ω is formulated:

ω(p) = RT · R = [Uexp − Ucom(p)]T [Uexp − Ucom(p)] (3.2)

Parameter set that minimizes discrepancy function (3.2) represents the solution of the

inverse problem. To reach a numerical solution of this minimization problem, a suitable

mathematical programming algorithm is usually employed.
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From the above outline, it is clear that there are three crucial ingredients in

constructing the IA procedure: (1) the selection of the experiment, with proper

measurable quantities collected from it; (2) numerical simulation of the formulated

experiment and (3) the employment of appropriate iterative algorithm. In what follows,

all these ingredients are briefly discussed in the present context.

3.1 Compaction: Experiment and its Simulation

3.1.1 Experiment

The experiment to be considered within the inverse analysis is the compaction (pressing)

test itself. An attempt is made to define punch/mold (or die) geometry as simple as

possible, considering first the simplest cylindrical specimen formed through pressing test

performed in uniaxial strain regime. During the compaction, loose powder particles are

compressed in a die cavity by the application of pressure, to form a solid green body of

relatively high density, that conforms to the shape of the mold used. The pressure is

applied along one axis, whereas, the cavity into which the powder is pressed gives it a

lateral constraint. To perform compaction, the powder is filled in a corrosion resistant

steel mold. A combination of a movable punch along with a fixed one is subjected to a

force, which is then transferred to the powder.

For the purpose of applying force, an ”Instron” testing machine (servo-hydraulic) is

used in this research. This machine has a maximum load capacity of 600 kN and an

uncertainty of less than 0.5% in measuring the applied force. The experimental setup is

visualized in the figure 3.2, with reference to cylindrical green body, shown in the bottom

part of the figure.
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Figure 3.2. Experimental setup of compaction test

The force applied during the compaction vs. the displacement of the punch, can be

recorded from the machine and typically, has the form given in figure 3.3. This curve is

selected as the main measurable quantity from the experiment, to be used as an input

within the IA procedure. The solution of the subsequently formed inverse problem will

serve as a platform for definition of die/punch geometry (or geometries) required for the

calibration of the considered model. Systematic sensitivity analysis, by employing

numerical simulation of the experiment will be performed to motivate proper selection of

measurable quantities.
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Figure 3.3. Force vs. displacement (of the punch) curve from compaction experiment

3.1.2 General Aspects of Experiment Simulation

The FE models are designed by exploiting axial or planar symmetries wherever possible.

The powder is modeled as 2-D deformable body with fully integrated four node

axisymmetric element (CAX4) for 2-D cases, or fully integrated tri-linear iso-parametric

element (C3D8) in 3-D models. The punches and the mold are considered as analytical

rigid surfaces owing to their high stiffness as compared to the powder. The contact is

assumed to be hard in the normal direction (i.e. no penetration is allowed) while a

coefficient of friction is defined for the lateral direction. All contacts are assumed to

operate in finite sliding conditions, according to the implementation in ABAQUS [1].

For the constitutive description, DPCmodel is chosen as the reference material model.

In the numerical implementation of DPC yield function within ABAQUS, seven plastic

parameters are required: cohesion (d), friction angle (β), cap eccentricity (R), hydrostatic

compression yield stress (pb), transition surface radius (α), cap position (a) and the flow

stress ratio (k). Further on, the elastic parameters, namely: Young’s modulus (E) and

Poisson’s ratio (ν) are also required.

In order to fulfill the need for transformation of the typical DPCmodel, so as to include

elasto-plastic coupling, field dependency of the parameters needs to be incorporated. For

suchmodifications, ABAQUS proves to be a very suitable choice as it offers the possibility

to amend the existing model using the user-subroutine ”USDFLD”. Within the USDFLD
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subroutine, the parameters can be defined as a function of some solution dependent field.

Here it is selected to be plastic strain, which in turn can be converted to relative density

using equation (2.7). To formulate the dependency of governing parameters on relative

density, following relationship is proposed:

P(ρ) = (Pf − P0)

[
ρ− ρ0
ρf − ρ0

]n
+ P0 (3.3)

where, Pf and P0 are the values of the parameter at final and initial relative density

respectively, ρf and ρ0 are final and initial value of density selected a priori, hence, not

subjected to the identification, while, n is the exponent governing this transition.

With this approach the trend of parameter change over a wide range of relative density

is assessed by its initial value, final value and the exponent. Apart from introducing the

elasto-plastic coupling (i.e. the dependency of elastic parameters on accumulated plastic

strain), such description offers a framework for introducing more complex hardening rule

with respect to what is available within typical DPC model implementation.

Within present research it is proposed that four plastic parameters (d, β, R, pb) along

with the elastic ones (E, ν) are going to be identified by using the above formula, while

the others (α, a, k) will be kept fixed at a constant value throughout the simulation. This

assumption is reasonable since the transition radius which enables smoothening, cap

position that is related to the history of the material and the flow stress ratio controlling

the shape of yield surface, usually change marginally with progressing compaction.

Therefore, a total of 21 inputs are required for the numerical simulation. Coefficient of

friction is an additional quantity needed for the simulation. In the current work, it is

assumed as an unknown, and therefore subjected to identification along with other

parameters, offering a more realistic alternative as compared to previous studies [23, 26]

where its value was a priori assumed.
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Figure 3.4. FE model of compaction simulation and the digitally extracted curve

Upon performing the test simulation, the force vs. displacement curve is extracted

from the simulation and transferred to the digital form visualized in figure 3.4.

Simulated curve together with the experimental one serve to form discrepancy function

in the form given by equation (3.2), which is subsequently minimized. Main features of

the minimization algorithms employed to this purpose are outlined in what follows.
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3.2 Mathematical Programming

3.2.1 Forming the Discrepancy Function

The results from the experiment and the simulations are collected to form the residual

vector using equation (3.1). In the present context, the entries to the vector R are the

differences between displacements corresponding to a certain level of force (see figure

3.5). The discrepancy function (ω) given in relation (3.2) represents the sum of squares

of the residual vector members.

Figure 3.5. Visualization of the residual vector formation as the difference between
experimental and simulated curve for compaction.

Such an expression of the discrepancy function (usually referred to as the objective

function in the minimization jargon) in the least square sense is the most frequently used

formulation in engineering for fitting actual data employing parameterized models [13].

This kind of definition offers certain advantages, particularly when calculating derivatives.

Differentiating the objective function with respect to the parameters p, gives:

∂ω
∂p

= 2

[
∂R
∂p

]T
R (3.4)
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where,
[
∂R
∂p

]
= J is the Jacobian, which is a m x n matrix. Here, m is the size of residual

vector R and n is the total number of sought parameters. Hessian matrix of second order

derivatives of the objective function can be written as:

∂2ω
∂p∂pT

= JT · J+
m∑
i=1

ri
∂2ri
∂p2

(3.5)

where, ri is the component of vector R. The contribution of the second part in above

equation (3.5) vanishes in the vicinity of the solution, since ri members are close to zero

there. Hence, approximating Hessian matrix just by the first term in (3.5) represents a

reasonable simplification. This approximation is a very peculiar feature of the least square

type of problem formulation adopted in many engineering problems and is going to be

used throughout this work. The minimization of this function with respect to the sought

parameters is the solution to the inverse problem. Some of the minimization techniques

employed to this purpose are outlined in what follows.

3.2.2 Minimization Algorithms

Minimization algorithms usually solve the problem iteratively. After the initial guess is

supplied, the procedures iteratively propagates by generating new parameter sets with the

improved value of the objective function, even though some algorithms are not providing

continuous reduction of it. The scheme employed to proceed from one iteration to another,

distinguishes the type of algorithm. There are two fundamental strategies for moving from

current solution point to the next one: (1) line searchmethods and (2) trust regionmethods.

Line Search Methods

Within the line search minimization technique, it is required to find the direction αααk and

to determine how far to go along that direction (dk). If the current iterate is pk, the new

one is given by:

pk+1 = pk + dkαααk (3.6)
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The effectiveness of this method relies on the choice of the direction as well as the step

length determined by the scalar dk. The selection of these two quantities distinguishes

different types of line search methods, where the two most common ones, are: line search

with steepest descent and Newton line search technique. These two are briefly described

here.

Steepest Descent Method:

In this method, the direction of steepest descent is found by calculating the gradient

and dividing it by its magnitude, as it is the most logical approach, namely:

αααk = −
∂ω
∂pk∥∥∥ ∂ω
∂pk

∥∥∥ (3.7)

Once the direction is determined, the algorithm needs to find the appropriate step length

that minimizes the following equation:

min
dk

ω(pk + dkαααk) (3.8)

Ideally, the best step length would be the one that globally minimizes the relation (3.8).

However, it may be computationally too expensive to find this value. Usually, a few

different combinations of the step lengths are tried and then the best of them is selected.

Choosing different step lengths means solving the forward problem each time, for that

particular length. This needs to be repeated for each iteration. Note that the steepest

descent is the direction at the current iterate and may not match the direction of global

minimizer. Such a circumstance, which is almost always there in non-convex problems,

causes this method to take small steps. Since, the difficulty is related to the direction itself,

there are no effective ways to improve the overall performance. Therefore, a high number

of iterationswould be required to solve the problem, usuallywith a linear convergence rate.

This is a major drawback when using this method, since each iteration is computationally

expensive, as the forward solver is a FEM simulation. An alternative line search strategy,

that potentially provides quadratic convergence relies on the objective function expressed

as a quadratic form. Such approach is adopted within Newton line search method.
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Newton Line Search Method:

In this technique, the direction αααk is derived by minimizing (with respect to αααk) the

Taylor series approximation of the objective function truncated at the second order. The

numerical relation is given by:

ω(pk +αααk) u Mk(αααk) = ω(pk) + (αααk)
T
[
∂ω
∂p

]
(pk) +

1

2
(αααk)

T
[
∂2ω
∂p2

]
(pk) · (αααk) (3.9)

where, pk is the current iterate, αααk is the direction and Mk represents the model function.

Assuming Hessian matrix to be positive definite, Newton direction can be evaluated by

taking first derivative of the model function with respect to the direction and setting it to

zero, which gives:

αααk = −
[
∂2ω
∂p2

]−1 [
∂ω
∂p

]
(3.10)

It can be observed that the Newton direction has a step length of one (i.e. no

additional scaling is required), as it is derived by setting the first derivative of model

function to zero. This implies that Newton direction is the exact minimizer of the model

function and therefore, it can give the solution in just one iteration if the model function

closely represents the real objective one. However, that is not usually true in the cases of

non-convex problems, since the model approximation of the objective function starts to

worsen far from the current iterate, which could potentially lead to an increase in

objective function’s value. Another issue is that the Hessian matrix can be non-positive

definite. Clearly, in this case the Newton direction cannot be defined. There are methods

which modify Hessian matrix to make it positive definite, but it is arguable if such a

modification would yield a descending step. This hampers the performance of Newton

method in complicated problems, such as the one considered in this research, where the

objective function depends on elevated number of parameters. As a possible remedy, the

second strategy based on the trust region method can be used.
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Trust Region Methods

Trust Region Algorithm (TRA) also relies on the quadratic approximation of the objective

function (3.9), but used in a different way. In TRA, a region around the current iterate is

defined, within which the model function can be ”trusted” to be a good approximation of

the real objective function. The minimization is further performed but restricted to only

this region around the current iterate. This is implemented by simultaneously seeking both

the direction and the step length that makes, hopefully, the best possible improvement of

the function, within the radius δk of the trust region. This minimization sub-problem is

formulated by:

min
αkαkαk

Mk(αααk) such that ∥αααk∥ ≤ δk (3.11)

The evaluation of this minimizerαkαkαk distinguishes the different trust regionmethods. In

the Cauchy point trust region,αkαkαk is found out by using the steepest descent method within

this trusted area. The presence of the model function makes the steepest descent method

muchmore effective as trying different step lengths can be donewithout any computational

cost. However, Cauchy point does not involve Hessian matrix and uses it only to compute

the model function in the steepest descent direction. Therefore, the Hessian matrix is not

contributing in determining the direction and quadratic convergence cannot be expected.

Another strategy known as the Lavenberg Marquardt technique, employs the Newton

method to evaluate the directionαkαkαk and restricts it to the trust region. The positive definite

nature of the Hessian matrix is ascertained by adding a small scalar quantity to it, when

needed. However, in the cases when the scalar is too large, the approximation of the

Hessianmatrix itself could be erroneous, thus, limiting the algorithm to linear convergence

only, or even step rejection due to bad step evaluation. In the cases when the scalar is too

small, the Hessian matrix could be very close to being non-positive definite leading to ill

conditioned problem, making this technique difficult to use.

Both these methods have their advantages. Steepest descent on one side always

ensures that the direction is that of descent while, Newton method offers quadratic

convergence. The combination of the two would help derive maximum benefits, and is

most commonly used trust region method. In this technique, minimizer αkαkαk can be
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expressed as the linear combination of steepest descent and Newton direction, such that:

αkαkαk =
∥∥a1αkαkαk

SD + a2αkαkαk
N∥∥ ≤ δk (3.12)

Expressing the direction αkαkαk in the above form makes the problem two-dimensional,

irrespective of its initial dimension: once that αkαkαk
SD and αkαkαk

N are formulated, the goal is to

find the values of the coefficients a1 and a2 that define the direction αkαkαk. These

coefficients can be evaluated using the Langrange multipliers technique, details on

which can be found in [13].

The effectiveness of TRA highly depends on the trust region size. The usually adopted

criterion to select its radius (δk) is given by the ratio written below:

ω(pk)− ω(pk +αααk)

M(0)−M(αααk)
(3.13)

Numerator of the above ratio is the actual decrease in the value of the objective function

while the denominator is the predicted reduction, which is clearly always a positive

number. This ratio, which is calculated a posteriori once that next parameter set is

evaluated, gives information for potential modification of the trust region radius for the

subsequent iteration depending on its value. If the ratio is close to one, it means that the

model and the objective function are in good agreement, and one could possibly enlarge

the trust region, helping to progress with larger steps and potentially, move much closer

to the minimizer of the objective function. If the ratio is negative, it means that the value

of the objective function has increased and thus, the step is rejected and trust region is

shrank. If the ratio is very close to zero, it implies that the model function is not a good

approximation of the real objective function and the trust region radius should still be

reduced, to avoid possible step rejection in the subsequent iteration. The presence of this

radius constrains the search of the direction in the region where model function is in

close approximation of real objective one, thereby, avoiding possible step rejections.

This makes TRA more robust for complicated problems, as the one dealt within this

research.

Another advantage offered by TRA is the possibility to deal with constraints of the

type lb ≤ p ≤ ub, where, lb and ub are the lower and upper bounds respectively, imposed
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on the sought parameters. This is particularly important from the point of view of the

current problem, since the variables in question are material parameters, which need to

have physically acceptable values. In the light of these mentioned benefits, TRA will be

used throughout this research as the minimization algorithm.

Within the TRA, the first derivatives are calculated using finite differences, meaning

that the number of simulations required is one more than the total count of the sought

parameters. The minimization generally involves about ten iterations, with mostly

continuous reduction of the objective function (i.e. limited number of step rejections),

provided that the problem is well-posed. When the minimum change of the objective

function or the parameters between two consecutive iterations reaches a predefined

threshold (specified by the tolerances), iterative procedure is stopped. The final

converged solution at the end of the iterative procedure is the best estimate of the sought

parameters.

The IA methodology outlined in this chapter is applied in the context of powder

compaction, offering several advantages. IA procedure gives the possibility to assess the

material parameters by using data from the compaction test only, without any further

experimentation. The constitutive parameters are defined such that it provides the

capability to simulate compaction behavior for a range of materials, by the virtue of the

exponent. It can take into account the transitions of parameters ranging from linear

(n = 1) to exponentially increasing or decreasing. Another big advantage that can be

derived is the ability to determine the material properties from a low density up to a high

density in a continuous manner, something which is not possible through conventional

experiments [26]. Such benefits drive the research towards the use of IA methodology as

an alternative to the current methods for calibration of constitutive models. Detailed

description of designed testing protocol centered on the discussed techniques, followed

by the assessed results is shown in the following chapters.
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Chapter 4

PROPOSED CALIBRATION

PROTOCOLS

To calibrate Drucker-Prager Cap (DPC) constitutive model, the Inverse Analysis (IA)

procedure described in the previous chapter is applied. Material under consideration is a

mix of alumina powder with graphite as the binder. Such composition is a commonly

used mixture to make refractory materials especially in steel making process [43, 52,

71]. As the first attempt, only a flat cylindrical configuration is going to be used for the

calibration purposes and considered measurable quantities are the data collected from

digitalized force-displacement curve.

A cylindrical green body of 60 g weight with 36 mm final height and 30 mm diameter

(see figure 4.1b) is formed, applying a compaction force of 17675 N corresponding to

about 25 MPa pressure. Resulting compaction curve measured from the experiment is

shown in figure 4.2.
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(a) Schematic Representation (b) Sample made from
alumina-graphite powder

Figure 4.1. Cylindrical green body

Figure 4.2. Compaction curve corresponding to the cylindrical green body

The simulation is performed within force control regime, corresponding to the

experimental conditions listed above. The height up to which the mold was filled is

taken as the initial height of the modeled specimen, which is calculated by adding the

final green body height (36 mm) to the maximum displacement from the compaction

curve (28.6 mm). The powder specimen is discretized in 672 four node fully integrated

axisymmetric (CAX4) elements. The other simulation conditions are those described in

the previous chapter (see section 3.1.2).
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Using the experimental and simulated results IA procedure is developed in order to

assess the unknown parameters. The parameters subjected to identification are four

plastic parameters namely: material cohesion (d), friction angle (β), cap eccentricity (R)

and hydrostatic compression yield stress (pb); two elastic parameters: Young’s modulus

(E) and Poisson’s ratio (ν); and the coefficient of friction defining the lateral contact

between the powder and the mold. Only the friction coefficient is assumed as a constant

throughout the compaction and it is evaluated as independent of the relative density,

while the other six parameters are estimated as a function of the relative density using

equation (3.3) by quantifying the initial and the final value of the parameter

(corresponding to initial and final density) along with an exponent governing the

transition for this density range. Therefore, a total of 19 parameters are assessed. The

parameters are initialized with some ”expert” values to start the IA procedure, and the

bounds within which these parameters are searched is decided by using the expected

range of properties for this type of material. The mathematical programming is done in

MATLAB [41], employing the already implemented Trust Region Algorithm (TRA) for

minimization. The parameters are normalized between zero and one, where zero

corresponds to the parameter’s lower bound and one to the upper bound. Gradients are

calculated through forward difference with the perturbation of 10−4. The iterative

procedure is stopped when the change in the objective function value is less than 10−6 or

difference between the norm of the parameter vector within two consecutive iterations is

lower than 10−2. The comparison of compaction curve corresponding to the final

parameters evaluated through IA against the experimental one is given in the following

figure.
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Figure 4.3. Experimental vs. computed curves (initialization 1)

From the above figure it can be seen that the solution to the inverse problem is found.

However, since the problem at hand is rather complex and governed by an elevated

number of parameters, it is important to check if the found solution represents a global

minimizer of the objective function. The most common way to assess this is to use a

different parameter initialization and perform an additional inverse analysis. If the

procedure converges to the same solution as before, only then other checks (for example,

comparison against experimentally determined values) are worthwhile to perform. In the

following figure, the compaction curve obtained on the basis of IA procedure starting

from a different initialization is visualized.

Figure 4.4. Experimental vs. computed curves (initialization 2)
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As can be seen, both the above figures give a good agreement between the

experimental and simulated curve. This indicates that the minimum was found in both

cases. The final parameters at the end of IA procedure are compared in the following

table 4.1. The parameters were evaluated for a density range of 0.5-0.9 and their

transition can be obtained by equation (3.3) .

Table 4.1. Final parameters corresponding to two different initializations

Parameter Initial Value Final Value Exponent
Init-1 Init-2 Init-1 Init-2 Init-1 Init-2

Young’s
modulus

0.024
[GPa]

0.059
[GPa]

0.766
[GPa]

0.729
[GPa] 4.230 4.733

Poisson’s
ratio 0.223 0.251 0.238 0.256 1.205 1.068

Material
cohesion

0.494
[MPa]

0.435
[MPa]

2.141
[MPa]

3.087
[MPa] 1.929 1.573

Friction
angle 54.304[◦] 56.279[◦] 59.229[◦] 58.963[◦] 1.315 0.971

Cap
eccentricity 0.268 1.064 0.199 0.271 2.931 4.358

Hydrostatic
yield stress

0.185
[MPa]

0.149
[MPa]

44.081
[MPa]

25.933
[MPa] 2.853 2.867

Friction
Coefficient 0.256 0.248

Although the compaction curves are nominally the same, it can be realized from table

4.1 that there is a noticeable difference in the values of the parameters. For example, there

is a difference of more than 30% in cohesion value between the two sets, while the cap

parameters (i.e. R and pb) have even larger discrepancy. Following figures are further

demonstrating the mentioned difference, by comparing these parameters over the whole

considered range of relative density.
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Figure 4.5. Cohesion corresponding to initialization 1 and 2

Figure 4.6. Hydrostatic yield compression stress corresponding to initialization 1 and 2
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Figure 4.7. Cap eccentricity corresponding to initialization 1 and 2

Previous results clearly illustrate that the inverse problem is ”ill-posed” as the

objective function is not featured by only one well defined global minimum. Therefore,

neither of the parameter sets, which represent the solution of the inverse problem, can be

regarded as the representative material parameters. This ill-posedness usually occurs

when the measured data from the simulations are not ”rich-enough”, meaning that the

sensitivity with respect to sought parameters is questionable. In the flat cylindrical

geometry (configuration-1) considered above, the stress state is fairly homogeneous. The

stress distribution over the sample can be visualized in figure 4.8. The simulation

leading to the visualized result in the figure is performed without friction, in order to

demonstrate the influence of specimen’s geometry only to the stress distribution. Note

that the model considered here is 3-D for comparison purposes later on.

(a) Equivalent von Mises stress (b) Shear stress

Figure 4.8. Stress distribution in configuration-1
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Such stress distribution implies uniform density distribution throughout the sample.

Given the complexity of the model with a high number of parameters, it is of vital

importance to have a fairly reasonable density distribution over the sample, so that the

overall response of the simulation is more sensitive to the sought parameters. Particular

difficulty related to the use of curve collected from configuration-1 alone is that the shear

component of the stress (figure 4.8b) in the considered geometry is practically equal to

zero. This results in the fact that the sensitivity of measurable quantities with respect to

cohesion and friction angle, defining the shear failure line, are rather low.

From what precedes, it is clear that more complex geometries need to be considered to

have heterogeneous stress distribution within the sample. In particular, the sensitivity of

shear failure parameters must be increased by producing specimen which has zones with

dominant shear component of the stress. To fulfill these requirements, different geometries

will be manufactured in order to address the above mentioned needs. Prior to the selection

of these new geometries, first numerical simulations of experiments with different shapes

of green body are done. A systematic sensitivity analysis of these designs is carried out

to motivate the geometry selection. Some selected results are given in what follows.

4.1 Sensitivity Analysis

The first proposed step for the selection of geometries is to make sure that there is a zone

with reasonably large shear component of stress. The most logical way to do so is to use

an inclined punch with an angle of 45◦, as it represents the surface with maximal value

of shear stress. Figure 4.9a shows the proposed punch design. With a view to maximize

the heterogeneity in the stress distribution, different geometries are formed combining the

flat punch (figure 4.9b) and the newly proposed punch. As opposed to only flat punches

used conventionally to form cylindrical green bodies, here, different shapes of the green

body are realized by substituting either the top, the bottom or both punches, with the

inclined (proposed) geometry. A schematic representation of few such geometries that

are considered for the stress distribution evaluation (hereafter, referred as configurations)

is given in the figure 4.10.
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(a) Proposed punch design (b) Cylindrical design

Figure 4.9. Proposed punch design along with the conventional cylindrical one

Figure 4.10. Schematic representation of proposed green body configurations

To study the stress distribution, numerical simulations of the above shown

configurations are performed within a force control regime. Considered models are three

dimensional exploiting planar symmetry. The specimens are discretized into 3200 eight

node fully integrated tri-linear iso-parametric elements (marked by C3D8 in ABAQUS).

To ensure similar conditions, number of elements are kept the same for all configurations
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and a compaction force of 20 kN is considered. In order to have the same starting density

(in an averaged sense), the initial height (mean value of longer and shorter heights) is

also kept equal for all simulations. Frictionless contact is defined between the powder

and mold/punch to emphasize the effect to stress distribution coming only from the

different geometry considerations. The study of effects of friction to the stress

distribution is given in the following section 4.2. All other simulation conditions are

explained in section 3.1.2. The results of stress distribution are given in Figures 4.11

to 4.13.

(a) Equivalent von Mises stress (b) Shear stress

Figure 4.11. Stress distribution in configuration-2

(a) Equivalent von Mises stress (b) Shear stress

Figure 4.12. Stress distribution in configuration-3

48



CHAPTER 4. PROPOSED CALIBRATION PROTOCOLS

(a) Equivalent von Mises stress (b) Shear stress

Figure 4.13. Stress distribution in configuration-4

From the above figures, it can be visualized that incorporating such geometries

produces a heterogeneous stress distribution within the compacted powder. In particular,

the equivalent von Mises stress distribution is most diverse in the configuration-2, while

configuration-3 gives the highest value for shear stress. These results justify the choice

to use the proposed design, as the source of experimental results to calibrate considered

constitutive model. Figures 4.11 to 4.13 show only the final stress distribution over the

sample upon the completion of the compaction process. More detailed observations can

be made by studying the complete history of a few material points within the sample

over the whole compaction experiment.

To perform a quantitative study, stress state of the material points circled in the

figure 4.14 is analyzed throughout the compaction and their relative position is kept the

same for the comparison purpose. For these material points, stress state over the

complete compaction process is presented in a form of hydrostatic pressure (p) vs.

equivalent von Mises stress (q) graph, given in Figures 4.15 to 4.18.
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Figure 4.14. 2-D Schematic representation of specimen to show material point locations

50



CHAPTER 4. PROPOSED CALIBRATION PROTOCOLS

Figure 4.15. Stress path of selected material points in configuration-1

Figure 4.16. Stress path of selected material points in configuration-2
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Figure 4.17. Stress path of selected material points in configuration-3

Figure 4.18. Stress path of selected material points in configuration-4
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Figure 4.19. Stress path of material point-3 in all configurations

From the above figures, following conclusions can be derived: (a) The plots

corresponding to material point 1, 2 and 3 are all distinct in figure 4.16, implying the

most diverse stress distribution in configuration-2. (b) In figure 4.19, the stress path of

configuration-3 shows comparatively higher values of q for the same p. This suggests

that such a loading path of some of the material points (e.g. material point 3 here) in

configuration-3 will lie in closer vicinity of shear failure line, making the measurable

quantities from configuration-3 the most sensitive to cohesion and friction angle. (c) The

plot of material point 3 in figure 4.18 shows a changing stress path within the same

element in configuration-4. This further contributes to the heterogeneity in the stress

distribution.

Another advantage of employing multiple experiments is that it helps to regularize

the inverse problem by providing enriched measurable quantities. Regularization here

implies dealing with situations whenmeasurable quantities are sensitive with respect to the

parameters but a compensation happens as a result of parameters having opposite effects

on the measured data. This leads to circumstances where one parameter (or more) has a

lower value, which is compensated by a higher value of the other(s). This would result in

multiple combinations of parameters fitting the same experiment, however, none of them

would be representative of the material’s properties. Such problems were encountered by

Bolzon et. al. [8] in an attempt to characterize ”mystical” materials through indentation

tests. The study used indentation curve (typical output of indentation test) as an input
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for IA procedure in order to identify three parameters: Young’s modulus, yield limit and

exponent of hardening. The latter two compensated for each other’s influence as they had

opposing effects on the indentation curve. This led to the situation where two (or more)

different sets of parameters had exactly the same response.

To tackle this problem, researchers used imprint of the indenter (on the sample) as

an additional measurable quantity along with the indentation curve. The imprints were

fairly distinct for different sets of parameters that gave similar indentation curve. The

parameter set representing the material’s properties must also fit the imprint along with

the indentation curve, hence, introduction of imprints helped to regularize the inverse

problem. In the current work, elevated number of parameters (19) are evaluated presenting

a strong probability for such compensation. Therefore, to overcome the possible parameter

compensation, employing multiple experiments represents a reasonable strategy.

The results from the numerical simulations of the above mentioned geometries

strongly motivate their selection, however, contact friction has not been considered in

the performed simulations. Since it is well evidenced in the literature [21, 28] that

friction leads to density distribution, it is important to study the effect of contact friction

coefficient on the compaction. This study is presented in what follows.

4.2 Effects of Friction

Friction between the powder and punch/mold leads to a heterogeneous stress distribution

within the compacted sample, demonstrated in figure 4.20. This heterogeneity in stress

caused by friction affects the measurable quantities and it is visualized in the figure 4.21.

Since the measurable quantities are sensitive to the friction, it is important to assess the

value of coefficient of friction, otherwise the DPC parameters will be estimated

erroneously.
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(a) Simulation without friction (b) Simulation with friction

Figure 4.20. Stress distribution highlighting effect of friction in configuration-1

Figure 4.21. Comparison of simulated compaction curves with and without friction

In the works so far, friction coefficient is either fixed as a constant value for the

compaction process [26] or it is evaluated using the Janssen-Walker theory [45]. Due to

friction, the load transmitted to bottom punch (usually kept fixed during the compaction)

is lower than that applied on the top punch. The difference between the loads of the top

and the bottom punch can be used to estimate the friction coefficient (μ) utilizing the

radial stress measured from the die-wall (mold) based on the Janssen-Walker theory as

follows:

μ =

(
D
4H

)(
σB
σr

)(
σT
σB

) z
H

ln
(
σT
σB

)
(4.1)
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where σT, σB are the stress at the top and bottom punch respectively, σr is the radial stress,

z is the distance of the strain gage from the top punch, while H and D are the height and

diameter of the sample respectively.

In the research of Han et. al. [28] on compaction of pharmaceutical tablets, friction

coefficient was identified using the above formula (4.1). Similar approach was used by

Zhou et. al. [70] for studying mixed metal powders, Diarra et. al. [23] in their research

on cosmetic products, Almanstötter in his work on doped tungsten powder and many

others [31, 35, 58] etc. Cunningham et. al. [21] conducted a detailed study on evaluating

friction between powder/tooling using the above equation (4.1). The research

recommended to perform compaction using single action press for friction estimation as

the maximum effects of friction are observed in the compacted specimen, while a double

action press was suggested to evaluate the material parameters of the DPC model since it

will minimize the frictional effects. Therefore for accurate determination of constitutive

parameters along with the friction coefficient, two different compaction experiments are

needed in addition to all the destructive tests. Another possible drawback is that such

estimation based on the above relation could potentially represent an additional source of

error as the quantity of interest (friction) is not directly measured but rather recalculated

from the other available measurements.

As a remedy to overcome the above mentioned difficulties, friction coefficient can be

evaluated directly through the IA procedure using the measured radial stress from the die-

wall. Due to the friction, the transmitted load keeps on decreasing along the height of the

specimen when moving farther from the top punch. This drop in load is larger for a higher

value of friction coefficient. Such gradient in the force would lead to different values of

radial stresses at different locations within the sample. This implies that the radial stress

(measurable data) is directly affected by the coefficient of friction (quantity of interest)

between the powder and mold. Hence, extracting the stress at multiple locations from the

sample and using it as an input for the IA procedure offers the solution to quantify friction.

To the purpose of obtaining radial stress values, strain gages are fitted on the mold.

Strain gages 1, 2 and 3 visualized in figure 4.22 are at a distance of 13 mm, 35 mm and

55 mm from the bottom of the mold, while the distance of these gages from the bottom

of sample is 3 mm, 25 mm and 45 mm, respectively. For configurations 2-4 the gages are
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placed on the longer side of the sample (i.e. left side of samples in figure 4.10). Schematic

representation is given in figure 4.23 showing only 2 configurations here for brevity.

Figure 4.22. Fitted strain gages on the mold

Figure 4.23. Schematic representation of strain gage locations on the sample

The value of the strain recorded from these gages is converted to the stress, with details

on this given in appendix A. The stresses are also extracted from the simulations. The

experimental and simulated measurements are fed to IA in the form of pressing force vs.

radial stress curve visualized in the figure 4.24, corresponding to stress measurement from

one strain gage
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Figure 4.24. Force vs. radial stress from compaction experiment

Inverse analysis relies on the collected data from the experiment and simulation,

therefore, the quantification of friction is independent of the type of compaction

experiment (single or double action press). Further on, since the parameters are directly

evaluated from the measured data within IA, any possible errors coming from

recalculation, such as those in equation (4.1), can be avoided.

From the investigations summarized in this chapter, it can be realized that employing

proposed geometries is essential for successful implementation of IA in the present

context. However, it is important to determine how many of these different experiments

(configurations) are needed. To this purpose, compaction curve and radial stress curve

from different combinations of these mentioned geometries are going to be used as

inputs for IA procedure. On the basis of these results, minimum number of such

experiments required for successful calibration are going to be established. The results

of the parameter identification employing various combinations of configurations are

presented in the next chapter.
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RESULTS

Described test procedures are employed as resources of experimental results to be used

for the assessment of constitutive parameters entering Drucker-Prager Cap (DPC) yield

criterion through developed methodology based on Inverse Analysis (IA). Comparative

IA employing different combinations of configurations should serve to draw a

conclusion about minimum amount of data required for identifying representative

material parameters. For comparison the same parameters are evaluated by relying on

the currently adopted methods following the guidelines laid out in Chapter 2. The test

conditions and details regarding material used are given in what follows.

5.1 Materials and Experiments

In the current research, alumina graphite powder mixture is studied. Alumina has high

thermal, wear and corrosion resistance, and can operate in the temperature range of 1500
◦C - 2000 ◦C. On the other hand, graphite acts as a binder and has low thermal expansion

coefficient (1.2 × 10−6 ◦C - 8.2 × 10−6 ◦C) [47], high thermal conductivity (25 W m−1

K−1 - 470 W m−1 K−1) [47] and a low wettability by the slag. Combination of the two

powders provides excellent thermo-mechanical properties, thus, making the mixture a

popular choice for refractory linings of ladles in steel making processes, shrouds for

transferring molten steel from tundish to continuous casters, etc. [43, 52, 71].

For the current study, the powder mixture is manufactured by the partner on this

project, Vesuvius Inc. (Mons, Belgium). The absolute density of the mixture is
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determined through pyconometry and found to be equal to 2.638 g/cm3. Figure 5.1

shows the Scanning Electron Microscope (SEM) micro-graph [32] of the powder. Long,

plate like, particles are graphite, while the irregularly shaped ones are the alumina

particles, present in different sizes. This mixture is a topic of research at Vesuvius Inc., a

partner in this research, and due to the industrial constraints on sharing information,

further details about the composition of powder cannot be provided. The compaction

behavior of mentioned powder mixture is characterized in the current work and detailed

description of the performed compaction experiments is presented in what follows.

Figure 5.1. SEM micro-graph of alumina graphite powder

5.1.1 Compaction Tests

The compaction tests are performed in a closed die setup. Therefore, it is not possible to

measure the displacement of the sample directly, rather the displacement of the punch is

recorded. The punch displacement includes the deformation of the specimen and elastic

compliance of various elements of the testing apparatus, namely the load cells and

punches. This inevitably introduces errors in the measured compaction curve. To

quantify the compliance of the experimental apparatus the top and the bottom punches

are pressed together with no powder in the die. Load is applied on the top punch, and

force displacement response is measured, which has a form as presented in the figure
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5.2. This curve is subtracted from the compaction curve of the pressed powder, to give

corrected response. All the compaction curves shown in this thesis have been adjusted

for this error due to machine compliance.

Figure 5.2. Elastic deformation of the testing system

To protect the tooling (mold and punches) against the potential corrosion and wear,

nitriding treatment is performed on it. Nitriding is case hardening treatment making the

outer metal surface harder while keeping the inner surface intact. Prior to being used

within the compaction experiment, the tooling is lubricated by the ceramic lacquer

manufactured by Sogelub special lubricants. The mold employed for the compaction

made from steel subjected to nitriding is 150 mm high with a cylindrical opening of 30

mm in diameter. The load is applied on the top punch moving at a speed of 1.5 mm/min

throughout the pressing, while the bottom punch is kept fixed. For the purpose of

applying force, an ”Instron” testing machine is used and details on this can be found in

section 3.1.1. Using this setup, flat cylindrical green bodies of different densities are

formed for the destructive tests (crush and Brazilian), while for the calibration through

inverse analysis, also additional green bodies of newly proposed shapes are produced,

with relevant details outlined in section 4.1. Clearly, for these green bodies different

punches are used, but the mold is the same.
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Sample Preparation for Crush Tests

For the crush test, samples are produced in a relative density range of 69%-93%. The

diameter of the samples is 30 mm while the height ranged from 50-53 mm, giving the

height to diameter ratio of 1.75 approximately. The compaction force and the weight of

powder is adjusted for preparing required samples. Two green bodies are formed

corresponding to the same level of relative density to control the reproducibility of the

results. Experimental details are given in table 5.1. Prepared samples for crush tests are

visualized in figure 5.3. Compaction curve corresponding to sample of 93% relative

density is given in figure 5.4, while others are omitted for brevity.

Table 5.1. Experimental details of the compaction tests performed to prepare crush test
samples

Sample
Name

Sample
Mass [g]

Compaction
Force [kN]

Sample Height
Final [mm]

Relative
Density

Relative Density
Averaged

93-1 90 24.84 51.88 0.9303 0.927993-2 52.15 0.9255
89-1 87 13.85 52.46 0.8893 0.890389-2 52.35 0.8912
83-1 80 7.86 51.49 0.8332 0.831483-2 51.71 0.8296
81-1 78 6.86 51.48 0.8125 0.810581-2 51.73 0.8086
78-1 77 5.36 53.02 0.7791 0.780678-2 52.80 0.7820
73-1 70 2.36 51.05 0.7353 0.731973-2 51.52 0.7286
69-1 65 1.16 50.54 0.6897 0.690369-2 50.45 0.6909
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Figure 5.3. Prepared samples for crush tests

Figure 5.4. Compaction curves of the crush test samples of 93% relative density
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Sample Preparation for Brazilian Tests

The Brazilian test is performed in accordance with the ASTM standard D3967-95a [4]

which specifies that the height to diameter ratio of the sample must be between 0.2÷0.75.

Following the ASTM guidelines, the green bodies are formed with a diameter of 30 mm,

while the height varied from 18-21 mm (for different relative densities), corresponding

to the aspect ratio of 0.6 ÷ 0.7. It is worth noting that here it is crucial to produce green

bodies that have the same relative densities as those of the samples prepared for the crush

test. This is to ensure that the failure stresses from both the destructive tests (i.e. crush

and Brazilian test) are obtained at the same relative density and therefore, cohesion and

friction angle, defining the shear failure line, at that particular level of relative density can

be determined. To achieve the desired height and the aspect ratio mandated by ASTM

standard, the weight of the powder along with the compaction force need to be adjusted

accordingly. Relevant experimental details regarding diverse experiments are given in

table 5.2. The formed samples are shown in figure 5.5. Compaction curve of the specimen

of 93% relative density is given in figure 5.6, while the rest are skipped for brevity.

Table 5.2. Experimental details of the compaction tests performed to prepare Brazilian
test samples

Sample
Name

Sample
Mass [g]

Compaction
Force [kN]

Sample Height
Final [mm]

Relative
Density

Relative Density
Averaged

93-1 36 24.92 20.73 0.9313 0.930293-2 20.67 0.9340
89-1 33 13.87 19.94 0.8875 0.889589-2 19.88 0.8902
83-1 30 7.86 19.45 0.827 0.830083-2 19.38 0.8301
81-1 28 7.46 18.52 0.8107 0.809881-2 18.6 0.8073
78-1 27 5.62 18.56 0.7801 0.780978-2 18.51 0.7822
73-1 25 2.56 18.27 0.7338 0.732073-2 18.36 0.7302
69-1 23 1.46 17.85 0.6910 0.689869-2 17.93 0.6879
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Figure 5.5. Prepared samples for Brazilian tests

Figure 5.6. Compaction curves of the Brazilian test samples of 93% relative density

For each of the seven relative density values, namely, 69%, 73%, 78%, 81%, 83%,

89% and 93%, two samples are formed for both of the tests (i.e. crush and Brazilian

test). Upon performing these tests, cohesion and friction angle are estimated at a particular

relative density level. Experimental description and results of the destructive tests are

given in section 5.1.2.

Sample Preparation of the Proposed Geometries for Calibration through IA

For calibration through IA, green bodies of various shapes (figure 4.10) along with the

flat cylindrical one (figure 4.1a) are formed. For all configurations, pressing force of 17

kN is applied to compact 60 g of the powder in already described mold with cylindrical

opening of 30 mm in diameter. Along with the measured force displacement curves, also

radial stresses are acquired from the die-wall using the calibrated strain gages with details
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given in appendix A. The locations of the strain gages on the mold are visualized figure

4.22.

Relevant experimental details are given in table 5.3. Figure 5.7 shows the formed

samples. Resulting compaction and radial stress curves are visualized in figures 5.8 to

5.10. Note that a high compaction force is used so as to form green bodies with a high

relative density and therefore, the radial stress from the top gage (gage-3) is not considered.

With progressing compaction, the sample gradually leaves the zone where the top strain

gage is positioned, and hence the radial stress measurement is not available throughout

the whole compaction experiment.

Table 5.3. Experimental details of the compaction tests performed to prepare samples
for calibration through IA

Configuration Initial Height [mm] Final Height[mm] Average Relative
DensityLonger Shorter Longer Shorter

1 64.60 64.60 36.18 36.18 0.888
2 79.12 49.13 51.87 21.89 0.873
3 63.84 63.81 37.79 37.75 0.843
4 87.78 27.80 64.39 4.41 0.865
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Figure 5.7. Prepared samples for calibration through IA

Figure 5.8. Compaction curve corresponding to configuration-1 to configuration-4
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Figure 5.9. Radial stress curves corresponding to configuration-1 to configuration-4 for
middle strain gage

Figure 5.10. Radial stress curves corresponding to configuration-1 to configuration-4
for bottom strain gage

Resulting compaction curves and the radial stress curves corresponding to

configuration-1 to -4 are further used as inputs for the IA procedure and the results are

given in section 5.3. The radial stress curves shown here will also be utilized to obtain

cap surface parameters based on methods of calibration applied as current praxis, with

detailed description of the procedure provided in section 5.2. In what follows, Brazilian

tests and crush test results of the compacted samples are reported.
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5.1.2 Crush and Brazilian Tests

The samples shown in figures 5.3 and 5.5 are subjected to crush and Brazilian tests

respectively. These destructive tests are performed on a Tinius Olsen H50KT type press

within this research. The force is applied on the top punch which is moving at a speed of

0.3 mm/min, while the bottom punch is kept fixed. A load cell of 10 kN is used, which

has an uncertainty of less than 0.05% in force measurement. The machine is shown in

figure 5.11. Experimental setup corresponding to crush and Brazilian tests are visualized

in figure 5.12 and 5.13 respectively.

Figure 5.11. Tinius Olsen H50KT press for performing destructive tests
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Figure 5.12. Experimental setup of crush test

Figure 5.13. Experimental setup of Brazilian test

Typical output of both these experiments is a force vs. displacement curve, where the

maximum force is a quantity required for further calculations. It is used to compute the

failure stress corresponding to the two tests using equations (2.10) and (2.11). For more

details on these calculations, refer to section 2.2.1. Specimens subjected to the crush and
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Brazilian tests are shown in 5.14 and 5.15, respectively. The force vs. displacement curves

measured from the crush tests performed on the samples of relative densities 93% and 78%

are given in figures 5.16 and 5.17, respectively, as the most representative ones. Similarly,

figures 5.18 and 5.19 show the Brazilian test results for the green bodies of 93% and 73%

relative density. The other force-displacement graphs of crush and Brazilian tests have

been omitted for brevity.

Figure 5.14. Samples corresponding to 69% to 93% relative density (left to right)
subjected to crush test

Figure 5.15. Samples corresponding to 69% to 93% relative density (left to right)
subjected to Brazilian test

Figure 5.16. Resulting curves of crush test performed on samples of 93% relative density
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Figure 5.17. Resulting curves of crush test performed on samples of 78% relative density

Figure 5.18. Resulting curves of Brazilian test performed on samples of 93% relative
density
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Figure 5.19. Resulting curves of Brazilian test performed on samples of 73% relative
density

The bulging in the samples which can be seen in figure 5.14 and crack on the

diametrical surface, visualized in figure 5.15, are characteristics of the specimens

subjected to crush and Brazilian test, respectively. Force vs. displacement curves of the

crush test shown in figure 5.17, corresponding to the sample of a relative density 78%

demonstrates that the curves of the two specimens having the same relative density are

fairly different. Similar is observed for Brazilian test samples of relative density 73%

given in figure 5.19. Such behavior is typically encountered in this research when

specimens of low relative density are subjected to destructive tests. As the relative

density of the sample increases, the force vs. displacement curves of the two samples at

the same density start becoming coherent. Indeed, no such dispersion is noticed on the

curves corresponding to samples with higher density, like those in figures 5.16 and 5.18.

The difference between the two curves at lower relative densities can be corroborated to

the fact that powder particles are still very loosely bonded together. This can clearly be

observed from the samples, like those visualized on the left side in figures 5.14 and

figure 5.15. The discrepancy between the curves is even more pronounced as the density

decreases. Therefore, the results of the commonly used destructive tests are questionable

at lower densities. Additional difficulty encountered with the powder studied here is that

it turned out to be impossible to eject the samples from the mold, when relative density is

lower than 70%. Such circumstances highlights the limitations of the currently applied
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procedures for characterizing green body formed at low density, and puts a practical

constraint on the specimens of relative density lower than 70%.

In order to deal more effectively with experimental data having significant variation,

it is recommended to produce more samples (usually 5-10) at each density level for crush

and Brazilian test to establish statistically meaningful results. However, this increases

the number of experiments to be conducted making the procedure industrially very

demanding. Since, in the current work destructive tests are performed only to provide

reference values of the parameters, further tests are not done. All calculations are

therefore performed on two samples for single density, and representative maximum load

is taken as averaged value recorded in crush and Brazilian tests. Failure stress can then

be calculated using equations (2.11) and (2.10) for crush and Brazilian test, respectively.

The results of these calculations are given in the table 5.4 and 5.5. Figures 5.20 and 5.21

graphically show how the assessed failure stresses are changing with relative density.

Table 5.4. Results of the performed crush tests

Sample
Name

Maximum
Load [kN]

Maximum Load
Averaged [kN]

Failure
Stress [MPa]

Failure Stress
Averaged [MPa]

93-1 3.506 3.48 4.96 4.9293-2 3.456 4.89
88-1 3.308 3.29 4.68 4.6688-2 3.279 4.64
83-1 2.353 2.37 3.33 3.3583-2 2.382 3.37
81-1 1.597 1.52 2.26 2.1581-2 1.449 2.05
78-1 1.187 1.14 1.68 1.6178-2 1.088 1.54
73-1 0.693 0.65 0.98 0.9273-2 0.608 0.86
69-1 0.530 0.47 0.75 0.6669-2 0.403 0.57
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Table 5.5. Results of the performed Brazilian tests

Sample
Name

Maximum
Load [N]

Maximum Load
Averaged [N]

Failure
Stress [MPa]

Failure Stress
Averaged [MPa]

93-1 256.43 248.75 1.05 1.0293-2 241.08 0.99
88-1 199.67 200.31 0.85 0.8588-2 200.95 0.86
83-1 162.92 158.97 0.71 0.6983-2 155.03 0.68
81-1 94.25 100.59 0.43 0.4681-2 106.93 0.49
78-1 70.84 74.67 0.32 0.3478-2 78.50 0.36
73-1 49.50 42.05 0.23 0.1973-2 34.61 0.16
69-1 19.76 27.83 0.09 0.1369-2 35.90 0.17

Figure 5.20. Averaged failure stress of all samples for crush tests
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Figure 5.21. Averaged failure stress of all samples for Brazilian tests

5.2 Determination of Parameters Based on Currently

Adopted Praxis

Drucker-Prager Cap (DPC) yield surface parameters can be divided into three groups:

shear failure surface parameters (cohesion and friction angle), cap surface parameters

(cap eccentricity and evolution pressure) and the transition surface parameter (transition

surface radius). Here, the transition radius (α) is treated as a constant with an assumed

value of 0.025 as usually it is suggested to be within the range of 0.01 and 0.05 [28, 70].

Comparative numerical results also confirmed that there is a very small influence of the

value of this parameter to the pressing curve. Hydrostatic yield compression stress (pb)

can be calculated from the values of cohesion (d), friction angle (β), cap eccentricity (R)

and evolution pressure (pa) using equation (2.6). Therefore, four plastic parameters (d,

β, R and pa) along with the two elastic parameters (E and ν) need to be evaluated as a

function of relative density for full characterization of the alumina-graphite mixture

considered in this research. Clearly, these parameters cannot be assessed as a continuous

function of relative density, but in a discrete manner corresponding to previously

mentioned seven relative densities, for which the data are available. More precise

”resolution” would require additional green bodies, and hence make the procedure even
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more time consuming. The evaluation of above listed parameters is given in what

follows.

5.2.1 Shear Failure Surface Parameters

In the 2-D p-q space, where p is the hydrostatic pressure and q is the equivalent von Mises

stress, the shear failure surface is represented by a single line. Failure stress values of the

samples having the same relative density from both crush and Brazilian test are used to

find the corresponding point in p-q plane of the two tests for that particular density using

equations (2.12), (2.13), (2.14) and (2.15). Point (pc, qc) of the crush test and (pd, qd) of

the Brazilian test, represent two points in the p-q plane (refer to figure 2.4). Therefore, the

shear failure line can be determined from these two points, where the slope of the line is

the friction angle while the intercept on the y-axis is the cohesion, assessed from equations

(2.16) and (2.17). For detailed description, see section 2.2.1.

The averaged failure stress values given in tables 5.4 and 5.5 are used to find the points

(pc, qc) and (pd, qd) at each relative density. These values of p and q from both crush test

and Brazilian tests are then utilized to assess material cohesion and friction angle. The

parameters are determined at seven levels of relative densities namely, 69%, 73%, 78%,

81%, 83%, 89%, and 93%. Results are presented in table 5.6 and figures (5.22 and 5.23).

Table 5.6. Assessed parameters defining the shear failure surface of DPC yield function

Relative
Density

pc
[MPa]

qc
[MPa]

pd
[MPa]

qd
[MPa]

Cohesion
[MPa]

Friction Angle
[Degrees]

0.93 1.64 4.92 0.68 3.68 2.80 52.22
0.88 1.55 4.66 0.57 3.07 2.16 58.18
0.83 1.12 3.35 0.47 2.52 1.93 51.89
0.81 0.72 2.15 0.31 1.66 1.29 50.16
0.78 0.54 1.61 0.23 1.23 0.95 50.76
0.73 0.31 0.92 0.13 0.69 0.52 52.34
0.69 0.22 0.66 0.09 0.47 0.34 55.12
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Figure 5.22. Experimentally determined cohesion as a function of relative density

Figure 5.23. Experimentally determined friction angle as a function of relative density

5.2.2 Cap Surface Parameters

To determine R and pa, stress state of the point corresponding to the intersection of loading

path of the green body and the cap surface is analyzed (see figure 2.5). The stress state

of this point can be fully characterized by the axial stress, axial strain and radial stress

under the assumption that the die-wall is rigid. As the compaction progresses, cap surface

continuously expands uniquely representing a particular density at every instance during

the compaction. Since the point lies on the cap surface, yielding is active at this point and

therefore, equation (2.4) is satisfied. Given that the information on the stress state of this
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point is available, it can be converted to hydrostatic pressure (p0) and equivalent vonMises

stress (q0) following equations (2.18) and (2.19). If the friction angle is known, R can be

evaluated, by setting the radial plastic strain rate at (p0, q0) equal to zero (since the die-

wall is assumed to be rigid), as visualized in equations (2.22) and (2.21). By substituting

the value of R into formula (2.4), pa can be determined as shown in equation (2.23), if

the cohesion is known. Since the values of cohesion and friction angle are available only

at discrete relative density points, R and pa can also be evaluated only at these particular

densities. Detailed explanations can be found in section 2.2.2.

Axial and radial stresses are continuously recorded throughout the compaction and the

curves are given in figures 5.8 to 5.10. Given that the values of cohesion and friction angle

are available only for relative densities of 69%, 73%, 78%, 81%, 83%, 89%, and 93%,

consequently, R and pa can be evaluated at these particular relative densities. However,

in the current work, radial stresses were only measured from the samples that are formed

for the calibration through IA. Therefore, the maximum relative density (see table 5.3)

up to which R and pa can be estimated is 89%, corresponding to configuration-1. Using

the values of axial and radial stress (corresponding to bottom gage) from configuration-1

along with cohesion and friction angle from 5.6, cap eccentricity and evolution pressure

are assessed from equations (2.22) and (2.23). Hydrostatic yield compression stress (pb)

is calculated from formula (2.6). The results are presented in table 5.7 and figures 5.24 to

5.26.

Table 5.7. Assessed parameters defining the cap surface of DPC yield function

Relative
Density

p0
[MPa]

q0
[MPa]

Cap
Eccentricity

Evolution
Pressure
[MPa]

Hydrostatic Yield
Compression Stress
[MPa]

0.88 17.84 10.74 0.71 8.94 20.70
0.83 11.56 7.08 0.66 6.57 13.41
0.81 9.68 5.92 0.63 5.93 11.24
0.78 7.41 4.54 0.63 4.51 8.61
0.73 4.55 2.96 0.61 2.80 5.33
0.69 2.67 1.80 0.62 1.54 3.14
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Figure 5.24. Experimentally determined cap eccentricity as a function of relative density

Figure 5.25. Experimentally determined evolution pressure as a function of relative
density
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Figure 5.26. Experimentally determined hydrostatic yield compression stress as a
function of relative density

5.2.3 Elastic Parameters

The elastic behavior of the compacting powder is assumed to be isotropic, therefore, only

two elastic parameters, namely, Young’s modulus (E) and Poisson’s ratio (ν) are evaluated.

Poisson’s ratio is assessed from the slope of the unloading part of axial stress vs. radial

stress curve following equation (2.31). Young’s modulus is evaluated on the basis of

formula (2.32) using Poisson’s ratio and the slope of the unloading curve of axial stress

vs. axial strain graph. This implies that axial and radial stresses need to be measured by

forming green bodies at different relative densities.

In the current research, the focus is on applying new methodology for calibration of

DPC yield function and hence, such extensive experimentations are not carried out. A

simplified approach is followed and the Poisson’s ratio is assumed to lie between 0.05 and

0.30, as this is the typical range for such powder mixtures. Force vs. displacement data of

the compaction tests (to form crush test samples) is converted to axial stress vs. axial strain

curve. The slope of the first 20% of the unloading curve is taken for the calculations. The

slope of this 20% of the unloading plot along with the limit values of Poisson’s ratio (0.05

and 0.3) are used as inputs to the equation (2.32) to give two corresponding limit values

of Young’s modulus. This is done for five different compaction curves corresponding to
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samples of 93%, 89%, 83%, 78%, and 73% relative density. The results are presented in

table 5.8 and figure 5.27.

Table 5.8. Assessed Young’s modulus corresponding to Poisson’s ratio of 0.05 and 0.3

Relative
Density

Young’s Modulus [GPa]
for Poisson’s Ratio = 0.05

Young’s Modulus [GPa]
for Poisson’s Ratio = 0.30

0.93 2.62 2.12
0.88 2.37 1.85
0.83 1.92 1.46
0.78 1.68 1.27
0.73 1.15 0.86

Figure 5.27. Experimentally determined Young’s modulus as a function of relative
density

5.3 Determination of Parameters based on Inverse

Analysis

To setup the Inverse Analysis (IA) procedure, measurable quantities which are the

compaction curve and radial stress measurements in two different points are collected

from both the experiment and its simulation. Source of the experimental data to be

considered as inputs to IA are the results of pressing tests (figures 5.8 to 5.10) performed

to form green bodies of configurations -1 to -4 (see figures 4.1a and 4.10). Numerically

computed counterpart of these quantities are collected from the simulations through
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finite element models done in ABAQUS [1]. For each of the configurations -1 to -4 ,

separate finite element models are built, corresponding to the experimental conditions

given in table 5.3. Configuration-1 is modeled as 2-D to exploit the axial symmetry and

the specimen is discretized into 672 four-node fully integrated axisymmetric elements

(marked by CAX4 in ABAQUS), while 3-D models of configurations -2 to -4 contain

3200 eight-node fully integrated tri-linear iso-parametric elements (marked by C3D8 in

ABAQUS). Other simulation conditions are those given in section 3.1.2.

Simulations are performed within the force control regime and a maximum load of

17 kN is used corresponding to peak force applied within the experiments to form green

bodies exploiting configurations -1 to -4. Therefore, the displacements from the

compaction curves along with the measured radial stresses corresponding to middle and

bottom gage are considered (both from the experiment and its simulation) from all

configurations, to form the residual vector, which is constructed as the difference

between experimentally measured data and its simulated counter-parts. There are 300

entries in residual vector corresponding to one configuration, where 100 points are the

differences between displacements corresponding to a certain level of force for the

compaction curves, while 200 points (100 for middle and additional 100 for bottom

gage) are the differences between the radial stresses. The collected measurements in the

residual vector are then normalized for both displacements and radial stresses separately,

to ensure similar contribution of these entities to the overall discrepancy between

experimental and computed results. As the next step, discrepancy function is formed as

the sum of the squares of the members of residual vector. Finally, the so formed

discrepancy function is iteratively minimized with respect to the sought parameters. For

minimization, Trust Region Algorithm (TRA) based on 2-D subspace minimization

already implemented in MATLAB [41] is used. Detailed explanations on the

construction of discrepancy function along with main features of TRA are outlined in

Chapter 3.

The sought parameters are four plastic (d, β, R, pb) and two elastic parameters (E and

ν) along with the coefficient of friction between the powder and mold/punches. Note that

in the numerical implementation of DPC yield criterion in ABAQUS, hydrostatic yield

compression stress (pb) is used instead of evolution pressure (pa). Further on, transition
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surface radius (α), to which usually a value is attributed within a range of 0.01 and 0.05 [1]

is assumed as a constant here, throughout the compaction and therefore not subjected to the

identification. In order tomotivate this assumption, simulations are performed considering

α = 0.01 in one case, and α = 0.05 in another, while keeping all the other parameters fixed.

The results of the simulation can be visualized in figure 5.28. Indeed, the value of α has

marginal influence on the compaction simulation as the curves are practically the same

for both cases, justifying the assumption to treat α as a constant.

Figure 5.28. Effect of transition surface radius on the simulated compaction curve

Given that the DPCmodel is modified to include dependency of parameters on relative

density, plastic (d, β, R, pb) and elastic parameters (E,ν) are assessed as a function of

relative density by using the proposed relation (3.3). According to it, each parameter is

quantified by its initial value (corresponding to initial relative density, here specifically

taken as 0.5), final value (final relative density, here adopted as 0.95) and the exponent

governing the transition of the parameter from initial to final value. All the six material

parameters (four plastic and two elastic) are assessed in this manner, while the friction

coefficient is evaluated as a single value independent of the relative density, making a

total of 19 parameters that are subjected to identification. The initial and final relative

densities are a priori selected and not considered for the evaluation.

To start the IA procedure, parameters are initialized with some ”expert” values and

are searched within certain bounds which are selected based on the expected range of the
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properties of alumina-graphite powder mixture. Further on, the parameters are

normalized between 0 and 1, where 0 represents the lower bound and 1 is the upper

bound. For the minimization of discrepancy function employing TRA, gradients are

calculated using a forward difference with a perturbation of 10−4. This implies that the

number of simulations is one more than the number of sought parameters for one

iteration. The iterative procedure is stopped when the change in the objective function is

less than 10−6 or when the difference between the norm of the parameter vector within

two consecutive iterations is lower than 10−2. Note that the range of relative density

(0.5-0.95) in which the parameters are assessed, the value of transition radius (α = 0.025)

and the mentioned algorithm tolerances are kept the same for all the inverse analyses

shown in this Chapter.

As the final step to design a calibration protocol based on Inverse Analysis (IA)

methodology, it is important to determine the minimum number of experiments needed

to be used as inputs for the IA procedure. To this purpose, a combination of experiments

(i.e. configurations -1 to -4) are selected and the results are presented in what follows.

5.3.1 Results of IA by Employing Two Configurations

As shown in Chapter 4, employing only configuration-1 was not enough to evaluate the

representative material properties. Therefore, the next logical step is to try and assess the

parameters employing two configurations. In the first attempt, inverse analysis relying on

the experimental data (compaction and radial stress curves) of two configurations (-1 and

-2) was used. The IA procedure terminated after six iterations. Computations are done on

a regular desktop computer with a 3.1 GHz (intel i-7) processor and 16 G-Byte RAM. The

computational time required for one iteration on this computer is about 4 hours, implying

total time needed for a full inverse analysis to be approximately 1 day.

Assessed parameters are given in table 5.9. Compaction curves corresponding to the

final parameters are given in figures 5.29 and 5.30. Note that the radial stress curves

corresponding to middle and bottom gages are also used as inputs to the IA procedure but

the curves are omitted here for brevity.
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Table 5.9. Final parameters corresponding to IA identification employing
configuration-1 and -2 as inputs

Parameter Initial Value
(ρ0 = 0.50)

Final Value
(ρf = 0.95)

Exponent

Young’s
Modulus

0.031
[GPa]

1.041
[GPa] 4.082

Poisson’s
Ratio 0.112 0.241 1.587

Material
Cohesion

0.367
[MPa]

2.796
[MPa] 1.596

Friction
Angle 56.877[◦] 50.808[◦] 1.601

Cap
Eccentricity 0.153 0.788 1.842

Hydrostatic
Yield Stress

0.145
[MPa]

36.078
[MPa] 3.014

Friction
Coefficient 0.247

Figure 5.29. Experimental vs. computed compaction curves for configuration-1
corresponding to parameters identified through IA employing configuration-1 and -2 as

inputs
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Figure 5.30. Experimental vs. computed compaction curves for configuration-1
corresponding to parameters identified through IA employing configuration-1 and -2 as

inputs

The above figures show a good agreement between the experimental and computed

curves, as the inverse converged to a global minimum. To assess if the parameters

identified are the representative material parameters, configurations -3 and -4 are

simulated using the same parameters. The compaction curves corresponding to the two

configurations are given in 5.31 and 5.32.

Figure 5.31. Experimental vs. final compaction computed curve for configuration-3
corresponding to parameters identified through IA employing configuration-1 and -2 as

inputs
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Figure 5.32. Experimental vs. final computed compaction curve for configuration-4
corresponding to parameters identified through IA employing configuration-1 and -2 as

inputs

Clearly, it can be observed that the parameters assessed by employing only two

configurations are not representative material parameters, as they cannot fit other

experiments. Therefore, similarly to the identification where only one configuration is

used, the solution to the inverse analysis represents a fitting of data specific to the

experiments, and clearly are not possessing the uniqueness of the solution. Similar

results are observed when using other combinations like configuration -1 and -3,

configuration -2 and -4, etc. These investigations illustrate that the measurable quantities

collected from two experiments are not rich enough to calibrate the DPC model. For

further enrichment of the experimental data, the combination of three configurations is

considered. Assessed results are given in what follows.

5.3.2 Results of IA by Employing Three Configurations

Three configurations selected as the source of input data to IA procedure are

configurations -1, -2 and -3. Configuration-2 has the most heterogeneous state of stress,

while the stress path of certain elements in configuration-3 lies in the close vicinity of

shear failure line of DPC yield function (see 4.1). It is therefore expected that this

combination provides reasonable diversity of stress paths covered by certain material

points, generating experimental data good enough to calibrate all the parameters of the
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considered model. Indeed, the combination of these configurations turned out to be

enough to calibrate the DPC model parameters. IA procedure is started using

compaction and radial stress curves from these three configurations. The IA procedure

finished after only 7 iterations in a total time of about 45 hours. The solution to the

inverse problem is found as demonstrated in figures 5.33 to 5.41. Identified parameters

are given in table 5.10.

Table 5.10. Final parameters corresponding to IA identification employing
configuration-1, -2 and -3 as inputs

Parameter Initial Value
(ρ0 = 0.50)

Final Value
(ρ0 = 0.95)

Exponent

Young’s
Modulus

0.248
[GPa]

2.907
[GPa] 1.577

Poisson’s
Ratio 0.048 0.204 3.128

Material
Cohesion

0.257
[MPa]

3.274
[MPa] 2.909

Friction
Angle 49.640[◦] 56.836[◦] 1.272

Cap
Eccentricity 0.521 0.740 1.166

Hydrostatic
Yield Stress

0.230
[MPa]

35.581
[MPa] 3.032

Friction
Coefficient 0.051
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Figure 5.33. Experimental vs. computed compaction curves for configuration-1
corresponding to parameters identified through IA employing configuration-1, -2 and -3

as inputs

Figure 5.34. Experimental vs. computed radial stress curves (middle gage) for
configuration-1 corresponding to parameters identified through IA employing

configuration-1, -2 and -3 as inputs
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Figure 5.35. Experimental vs. computed radial stress curves (bottom gage) for
configuration-1 corresponding to parameters identified through IA employing

configuration-1, -2 and -3 as inputs

Figure 5.36. Experimental vs. computed compaction curves for configuration-2
corresponding to parameters identified through IA employing configuration-1, -2 and -3

as inputs
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Figure 5.37. Experimental vs. computed radial stress curves (middle gage) for
configuration-2 corresponding to parameters identified through IA employing

configuration-1, -2 and -3 as inputs

Figure 5.38. Experimental vs. computed radial stress curves (bottom gage) for
configuration-2 corresponding to parameters identified through IA employing

configuration-1, -2 and -3 as inputs
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Figure 5.39. Experimental vs. computed compaction curves for configuration-3
corresponding to parameters identified through IA employing configuration-1, -2 and -3

as inputs

Figure 5.40. Experimental vs. computed radial stress curves (middle gage) for
configuration-3 corresponding to parameters identified through IA employing

configuration-1, -2 and -3 as inputs
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Figure 5.41. Experimental vs. computed radial stress curves (bottom gage) for
configuration-3 corresponding to parameters identified through IA employing

configuration-1, -2 and -3 as inputs

From the above figures it can be observed that there is a good agreement between the

experimental and the final computed curves (both compaction and radial stresses curves)

for configurations -1, -2 and -3. For verification purposes, the assessed parameters are

used to simulate the configuration-4. Corresponding compaction curve along with the

experimental one given in 5.42 shows an excellent agreement between the two.

Figure 5.42. Experimental vs. final computed compaction curve for configuration-4
corresponding to parameters identified through IA employing configuration-1, -2 and -3

as inputs
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To further verify the uniqueness of the solution, an additional IA is performed using

a different parameter initialization. The IA procedure required 7 iterations taking a total

time of about 42 hours. The obtained compaction curves corresponding to configurations

-1, -2 and -3 are given in figures 5.43 to 5.45. Radial stress curves are not shown here for

brevity.

Figure 5.43. Experimental vs. computed compaction curves for configuration-1
corresponding to parameters identified through IA starting from a different initialization

Figure 5.44. Experimental vs. computed compaction curves for configuration-2
corresponding to parameters identified through IA starting from a different initialization
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Figure 5.45. Experimental vs. computed compaction curves for configuration-3
corresponding to parameters identified through IA starting from a different initialization

Identified parameters upon starting IA from a different initialization led to a good

agreement between the experimental and computed compaction curves. Assessed

parameters from the two initializations are also found to be very similar. The change in

the values of some selected parameters over the course of IA for both initializations are

demonstrated in the form of convergence plots given in figures 5.46 to 5.47. Here,

initialization-1 refers to results contained in table 5.10, while initialization-2 is the

second one.

Figure 5.46. Convergence plot of cohesion for IA starting from 2 different initializations
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Figure 5.47. Convergence plot of hydrostatic yield compression stress for IA starting
from 2 different initializations

Figure 5.48. Convergence plot of Young’s modulus for IA starting from 2 different
initializations

Figures visualizing the compaction curves and the convergence plots, contribute to

the conclusion that the designed inverse problem is well-posed. In a view of performing

further checks, the results are validated by comparing parameters’ values assessed through

IA against the experimentally determined ones given in section 5.2. Additionally, the

assessed parameters are used to simulate compaction test for complex geometries, not

considered within calibration. The comparison is summarized in what follows.
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5.4 Simulation ofComplexGeometries Using Parameters

Obtained from IA

To analyze if the assessed parameters can be used to model the compaction of

alumina-graphite powder, miniaturized green bodies typically resembling industrial parts

are produced and their compaction is modeled through DPC model using the obtained

parameters from the developed IA procedure. The schematic representation of these

different shapes can be visualized in the following figure.

Figure 5.49. Schematic representation of configurations -5 to -7

To produce samples corresponding to the shapes given in figure 5.49, the top punches

are designed as shown in figure 5.50, while a flat cylindrical punch is used as the bottom

one. The mold employed for the pressing has a cylindrical opening with a diameter of 40

mm and 150 mm height, made from nitrided steel. Compaction is performed on the same

”Instron” testing machine (upper part of figure 3.2). A load of 20 kN is applied to compact

60 g of alumina-graphite powder, with the top punch moving at a speed of 1.5 mm/min,
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while the bottom punch is kept fixed. All the mentioned experimental conditions are kept

the same for all configurations and the other relevant details are given in table 5.11. The

formed samples are visualized in 5.50.

Configuration Sample
Height Initial [mm]

Sample
Height Final [mm]

Relative Density
Averaged

5 80.929 53.447 0.886
6 78.953 52.209 0.885
7 73.249 47.808 0.873

Table 5.11. Experimental details of the compaction tests performed to prepare samples
for configurations -5 to -7

Figure 5.50. Samples made from alumina-graphite powder along with the required
punches to produce configurations -5 to -7 (Left to Right)

Simulation of the compaction test for configurations -5, -6 and -7 is done in

ABAQUS. All finite element models are designed as axially symmetric. The specimens

for all configurations are meshed into 2480 four node fully integrated axially symmetric

elements (marked as CAX4 in ABAQUS). Simulations are performed within a force

control regime using a maximum load of 20 kN, corresponding to experimental details

listed in table 5.11. Other simulation conditions are the same as those listed in section
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3.1.2. Performed simulations led to the curves which are compared against the

experimental in the figures 5.51 to 5.53.

Figure 5.51. Experimental vs. final computed compaction curve for configuration-5
corresponding to parameters identified through IA employing configuration-1, -2 and -3

as inputs

Figure 5.52. Experimental vs. final computed compaction curve for configuration-6
corresponding to parameters identified through IA employing configuration-1, -2 and -3

as inputs
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Figure 5.53. Experimental vs. final computed compaction curve for configuration-7
corresponding to parameters identified through IA employing configuration-1, -2 and -3

as inputs

A good agreement between the experimental and simulated compaction curves given

in figures 5.52 to 5.53 shows that the obtained parameters through IA can be used to

model compaction involving an arbitrary geometries. These results confirm that the

calibration protocol relying on IA methodology offers an alternative, and a more

effective route to calibrate the DPC model instead of the currently adopted methods

based on destructive tests. To conclude this comparative study, values assessed through

developed IA procedure are finally compared to those evaluated on the basis of a lot

more time consuming destructive tests. The results are given in the following section.

5.5 Inverse Analysis Approach vs. Currently Adopted

Praxis

Through the IA procedure, plastic parameters namely, cohesion (d), friction angle (β),

cap eccentricity (R) and hydrostatic compression yield stress (pb), and the two elastic

parameters Young’s modulus (E) and Poisson’s ratio (ν) are assessed in a relative density

range of 0.5-0.95. To establish reference values of parameters, four plastic parameters

and Young’s modulus are also evaluated from the existing methods relying on crush

tests, Brazilian tests and acquiring radial stresses from the die-wall, as demonstrated in
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section 5.2. From the experimental route, evolution pressure (pa) is assessed, while via

IA, pb is evaluated. The values of pa and pb are related through the equation (2.6). The

comparison of the parameters obtained from the two approaches are visualized in figures

5.54 to 5.59.

Figure 5.54. Comparison of material cohesion assessed from IA vs. experimentally
determined values

Figure 5.55. Comparison of friction angle assessed from IA vs. experimentally
determined values
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Figure 5.56. Comparison of cap eccentricity assessed from IA vs. experimentally
determined values

Figure 5.57. Comparison of hydrostatic yield compression stress assessed from IA vs.
experimentally determined values
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Figure 5.58. Comparison of evolution pressure assessed from IA vs. experimentally
determined values

Figure 5.59. Comparison of Young’s modulus assessed from IA vs. experimentally
determined values

From the above figures, it can be realized that the parameters identified through IA

are in a good agreement with those evaluated on the basis of the industrially adopted

praxis of performing destructive tests. Obtained results contribute to the conclusion that

relationship between the parameters and relative density proposed by equation (3.3) is

general enough to capture both exponential trend (encountered for cohesion, for instance)

as well as the linear one (for friction angle).
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Furthermore, the parameters are assessed as a continuous function of relative density,

within the proposed IA approach, while through the currently adopted praxis, material

parameters can only be evaluated at discrete points of relative density. It is noteworthy

that even though IA provides richer results, it still involves a much fewer number of

experiments for calibration. This is evidenced by the fact that identifying parameters

using IA approach requires only three compaction experiments (configuration -1, -2 and

-3), while through current methods, assessing a parameter at only a particular relative

density requires performing a minimum of four compaction and four destructive tests (i.e

at least two samples for both crush and Brazilian tests) making a total of 56 experiments

for parameters estimated at only 7 relative density points in the current work.

Another advantage of IA is that it can be used to assess parameters in low relative

density range, while the same is not true when the method based on destructive tests is

employed. As demonstrated in section 5.2, the lowest possible relative density to produce

and test green bodies turns out to be 73%. Therefore, the accuracy of assessed cohesion

and friction angle at this level of relative density or lower is arguable. Within the IA

approach, the parameters are determined at relative densities as low as 50%. One can

even go lower to represent the initial relative density of the specimen if needed, as the

parameters are evaluated using the available measurements from the compaction tests.

Even though the sample cannot be ejected or tested further, the data from the compaction

experiment is at the disposal to perform IA to determine the parameters in this low relative

density range.

From what precedes, it can be realized that inverse analysis offers a feasible, more

flexible and a very efficient approach to identify material parameters of models employed

in powder compaction. Such features of IA make it a promising alternative for calibration

within the industries, as opposed to the tedious and experimentally demanding approach

followed currently. The developed IA protocol is summarized in what follows.
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5.6 Summary of the Inverse Analysis Protocol

• Compaction experiments are performed to form green bodies of three different

configurations (-1, -2 and -3) with geometries given in figures 4.1a and 4.10. From the

experiment, measurable quantities are collected in the form of a digitalized pressing

force vs. displacement curve along with radial stresses corresponding to two strain

gages installed at different locations on the mold.

• Simulation of compaction tests corresponding to configurations -1, -2 and -3 is done

by employing finite element method (here, through commercial code ABAQUS).

Considered material model for simulation is the ”modified” DPC model. Modification

is done to include field dependencies of constitutive parameters of DPC model on

relative density by using the ”USDFLD” subroutine already available in ABAQUS.

Once the simulation is finished, force-displacement graph along with radial stress vs.

pressing force curves corresponding to the same location of the strain gages as in the

experiment, are extracted.

• Residual vector is formed as the difference between experimentally measured data and

their computed counter-parts. Entries to the residual vector are taken to be the

displacements (100 points) from the compaction curves and the radial stresses (100

points each from bottom and middle gages) from radial stress plot corresponding to a

certain level of force.

• Discrepancy function is formed as the sum of the squares of the residual vectormembers.

Trust region algorithm based on 2-D subspace minimization is used to minimize the

discrepancy function. The parameters which minimize the discrepancy function is the

solution to the inverse problem and also the representative material parameters.
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CALIBRATION OF NOVEL

MATERIAL MODEL THROUGH

INVERSE ANALYSIS

Employing the Drucker-Prager Cap (DPC) model for powder compaction modeling is a

reasonable strategy to test the calibration procedure based on Inverse Analysis (IA)

methodology, developed within this research. This is due to the obvious advantages

offered by DPC model, such as, availability in commercial codes and stable numerical

implementation. Moreover, there is still a good amount of powder compositions, whose

behavior under certain conditions, can be modeled accurately enough through this

constitutive model.

However, the main limitation of continuum plasticity models, like DPC, is that they

do not model well the transition of the powder under compaction, from its granular to

fully dense state. It is experimentally observed that the powder compaction features

three phases: (1) granule sliding and rearrangement; (2) granule deformation and (3)

granule densification [50, 51]. It is furthermore evidenced that the cohesion of green

body starts to develop only within second phase, while already during the first phase

there is some growth in relative density. Clearly, models like DPC, which relate

equivalent plastic strain to the relative density, fail to take into account this transition,

namely to identify the level of relative density at which cohesion starts to develop. This

peculiarity of powder compaction is not addressed within the currently adopted models

107



CHAPTER 6. CALIBRATION OF NOVEL MATERIAL MODEL THROUGH
INVERSE ANALYSIS

for simulation of compaction, hence, posing a need to develop a novel constitutive

model. The task of formulating the novel model was a topic of research of the group at

the University of Trento who are partners at the current (CERMAT-2) project.

Description of the developed model is presented in section 6.1.

From the viewpoint of calibration, the complexities are further enhanced when such

a sophisticated model is considered. The most obvious difficulty is an elevated number

of parameters. Further on, the numerical implementation and testing of the novel model

showed unstable simulations for certain combinations of parameters. The assessment of

parameters based on the developed IA procedure so far relied on the minimization of

objective function which is achieved by using Trust Region Algorithm (TRA)

throughout this research. Employing TRA involves calculations of first derivatives

which are approximated by finite forward differences. Such feature of TRA makes the

use of developed IA procedure rather difficult when combined with an unstable model,

exhibiting convergence difficulties for certain combinations of parameters.

As a remedy to solve the minimization problem, Genetic Algorithms (GA) can be used

which are capable of finding a global minimum for a discontinuous function even with

high non-convexity. However, the number of function evaluations when employing GA

is considerably elevated, usually larger by one to two orders of magnitude as compared to

TRA. Given that the function evaluation here involves a Finite Element (FE) simulations,

minimization technique based on GA is rendered unfeasible for practical purposes. The

only way in which this approach can be made applicable is to develop a faster alternative

to replace the FE simulations.

Potential replacement of Finite Element Model (FEM) is offered by an appropriately

designed Reduced Basis Model (RBM). Such techniques are relying on “correlation” of

numerically computed data, in order to design a subspace with significantly reduced

dimensionality. This approach offers a substantial reduction of computing time

preserving almost the same accuracy as that of the original model by extracting the most

meaningful information from it. Different kinds of RBM have already been employed in

various fields of science and engineering, such as transient thermal analysis [6], damage

detection in structures [56], human face recognition methods [60], analysis of turbulent

flows [5] and many others [34, 39, 62]. In particular, the work of Buljak and Maier [16]
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is a typical example of the application of RBM in structural mechanics. In that research,

material characterization based on instrumented indentation tests was done by

performing numerical simulations of the experiment through RBM, instead of

computationally expensive FEM simulations.

In the present research, implementation of RBM for the acceleration of numerical

simulations of powder compaction is studied. To assess the parameters of the novel

model, IA procedure is designed, relying on the combination of GA and RBM. In what

follows, an overview of the novel model is given, proceeded by a brief description on

genetic algorithm and reduced basis model employed for the acceleration of non-linear

simulations.

6.1 Novel Constitutive Model for Powder Compaction

During powder compaction, material transforms from a loose to a dense state. Modeling

powder compaction accurately, through continuum plasticity, requires the yield criterion

to take into account the evolution of a material undergoing compaction from granular to

dense state. Most of the authors are using the modified Drucker-Prager Cap (DPC) yield

criteria to this purpose [28, 70], while some have also employed modified Cam Clay

(CC) criterion [24]. The modified DPC and CC criterion model the powder compaction

fairly well, however, these yield functions fail to provide any information about the

particular point at which the material is no longer granular and starts developing

cohesion. To address this shortcoming, yield function formulated by Bigoni and

Piccoloroaz [7] can be used.

The model presented here is based on Bigoni-Piccolroaz (BP) yield function, two

micro-mechanical hardening laws and elasto-plastic coupling. Short description of these

different ingredients is given in what follows.
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6.1.1 Bigoni-Piccolroaz Yield Function

BP yield criterion has an important capability to change the shape of yield surface. In the

present context, this feature is exploited to describe the transition between two distinctly

different states of a material undergoing compaction [51]. Figure 6.1 visualizes the

evolution of BP yield surface as the compaction progresses. Here, the breakpoint

pressure (pcb) marks the onset of 2nd phase of compaction, namely, granule deformation.

Cohesion is almost negligible throughout the 1st phase and substantially starts to increase

in the 2nd phase, as seen from figure 6.1. Density of the green body also grows rapidly

during the 2nd phase, which is observed by the steep increase in slope in figure 6.2.

Figure 6.1. Bigoni-Piccolroaz yield surface at three different instances during
compaction
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Figure 6.2. Semi logarithmic plot of compact density vs. applied pressure

Mathematical formulation of Bigoni-Piccolroaz yield function is given as:

F(σσσ,M, pc, c) = f(p,M, pc, c) +
q

g(θ)
(6.1)

where, f(p,M, pc, c) is the meridian function describing the pressure sensitivity part of

the function, while (q/g(θ)) is the deviatoric function defining the Lode dependence of

yielding. Here, σσσ is the stress tensor, p is the hydrostatic pressure, M is the pressure

sensitivity parameter of the material, pc is the hardening parameter, c is the cohesion, q is

the equivalent von Mises stress and θ is the Lode’s angle.

Analytical expression of f(p,M, pc, c) reads:

f(p,M, pc, c) =

−Mpc
√
[φ− φm] [2(1− α)φ + α], if φ ⊂= [0, 1]

∞, otherwise
(6.2)

here, α and m are shape factors of meridian section of the yield surface, while φ and M

respectively, are defined as:

φ =
p+ c
pc + c

(6.3)
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M = M0 +
k1
δ

(1 + δJp2)
n1−1 − 1

(n1 − 1)(1 + δJp2)
n1−1 (6.4)

where, M0 is the initial pressure sensitivity parameter, k1, δ and n1 are the parameters

defining the transition of M during the compaction and Jp2 is the second invariant of the

deviatoric strain.

The g(θ) part of the deviatoric function is expressed as:

1

g(θ)
= cos

[
βπ
6

− 1

3
cos-1 (γ cos 3θ)

]
(6.5)

where, β and γ are shape factors of deviatoric section of the yield surface and Lode’s angle

is defined in the form below:

θ =
1

3
cos-1

[
3
√
3

2

J3
J23/2

]
(6.6)

The plastic flow rule used in combination with the BP yield function can take both,

associative and non-associative form, depending on the value of parameter η, helping to

model behavior of different types of powders [51]. The analytical formulation of the flow

rule is given as:

ϵ̇p = λ̇
[
Q− 1

3
η(1− φ)(TrQ)I

]
, and Q =

∂F
∂σσσ

(6.7)

here, TrQ is the trace of matrix Q, ϵ̇ϵϵp is the plastic strain rate tensor, λ̇ is the plastic flow

multiplier and I is the identity matrix. For η=0 the flow is associative, while for other

values of η it is non-associative.

The parameters needed to be quantified in order to define this plasticity model are:

cohesion (c), hardening (pc), pressure sensitivity parameters (M0, k1, δ and n1), plastic

flow (η), meridian shape factor (α and m), deviatoric shape factor (β and γ). Parameters

controlling the shape of BP yield surface, namely: α, m and γ are evaluated for both initial

(α1, m1 and γ1) and final state (α2, m2 and γ2) of the powder, while β is identified as a

single constant assumed not to change during compaction. Initial hardening parameter

(pc0) is also needed to describe the phase (1) of the powder compaction. The increase in

cohesion and evolution of parameter pc with plastic deformation is dealt under hardening,
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which is given in what follows. For more detailed description of BP yield function and

developed plasticity model for powder compaction, refer to [7].

6.1.2 Description of Hardening Rules

Two hardening rules are defined by the dependency of hardening parameter (pc) and

cohesion (c) on the volumetric plastic strain (epv). The relation between pc and epv is

determined by employing Cooper-Eaton hardening law which describes the densification

behavior of the material under isotropic compression. Cooper-Eaton formula takes into

account first two phases of the compaction through a double exponential law as given in

equation (6.8), where the exponents a1 and Λ1 correspond to the 1st phase, while the

exponents a2 and Λ2 represent the 2nd phase. Constants a1 and a2 denote the increment of

void ratio (e0) that would be achieved at infinite pressure by each of the two mechanisms

of compaction. Coefficients Λ1 and Λ2 are the values of pressure at which the 1st and the

2nd phase of compaction become dominant, respectively.

epv = − e0
1 + e0

{
a1 exp

(
−Λ1

pc

)
+ a2 exp

(
−Λ2

pc

)}
(6.8)

The second hardening rule models the growth in cohesion with progressing

compaction. Given that the relation between pc and epv is established, increase in

cohesion can be defined as a function of hardening parameter (pc) by the formula given

as:

c = c∞ [1− exp (−Γc ⟨pc − pcb⟩)] (6.9)

where, c∞ is the limit value of cohesion after substantial plastic deformation, pcb is the

breakpoint pressure marking the onset of phase (2) of compaction and Γc controls the

growth of cohesion from initial to final state of the powder. The Macaulay operator ”⟨⟩”

implies that value contained in it is non-negative, since the cohesion is null before pcb is

reached.

Parameters needed to characterize the two hardening rules are: a1, Λ1, a2, Λ2, c∞, pcb
and Γc. Definition of hardening rules and the BP yield function constitute the plastic part

of novel model, while the formulation of elasticity law is given in what follows.
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6.1.3 Elastic Response and Elasto-Plastic Coupling

The elastic response of the powder becomes stiffer as the compaction progresses, as

evidenced in figure 1.2. In the initial phase of compaction, the granular material obeys

the non-linear elastic law, while compacted powder behaves like a dense solid following

the linear elastic law [49]. In order to take these details into account, elastic rule is

defined such that: a) it incorporates transition from non-linear elastic law to a linear one

(i.e granular to solid) during the compaction and b) elasto-plastic coupling is defined in

order to include the dependence of elastic properties on the plastic deformation.

The mathematical formulation of the elastic law is given as:

σσσ(ϵϵϵe, epv) =

{
−2

3
μeev + c+ (p0 + c)

[(
d(epv)−

1

d(epv)

)
(1 + e0)eev

κ
− exp

(
−(1 + e0)eev

d(epv)1/nκ

)]}
I

+ 2μϵϵϵe

(6.10)

where,

d = 1 + ΓE ⟨pc − pcb⟩ , μ(d) = μ1 + c
(
d− 1

d

)
μ2 (6.11)

In equation (6.10), ϵϵϵe is the elastic strain tensor, eev and epv are volumetric elastic and

plastic strains respectively, μ is the shear modulus such that μ1 and μ2 correspond to initial

(granular) and final (dense) state of the powder respectively, p0 is the initial confinement

pressure (i.e. pre-consolidation pressure before compaction starts), d is elastic transition

parameter, n is the constant defining the exponential decay of d, e0 is the initial void ratio,

κ is the bulk modulus, while ΓE in formula (6.11) controls how quickly the elastic response

changes from granular to compacted material. From the above relations, the elastic law

of the granular material can be recovered by setting d=1. For detailed explanations, see

[51].

In the numerical implementation of the model, I Lame parameter (λ) is used instead

of bulk modulus, while shear modulus represents I Lame constant (μ). The parameters

required to model the elastic behavior are: Lame’s parameter I and II corresponding to

the initial (λ1 and μ1) and final (λ2 and μ2) state of the powder respectively, initial void
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ratio (e0), pre-consolidation pressure (p0), exponential decay term n and parameter ΓE

controlling the change in the elastic behaviour.

From the outline of the novel model presented here, a total of 28 parameters (13 for

yield function, 7 for hardening, 8 for the elasticity) are needed to define the model. Out

of these 28, two elastic parameters, namely initial void ratio (e0) and exponential decay

term (n) are assumed as a priori known constants and are not subjected to the

identification. The remaining model parameters, which are given in table 6.1, are

subjected to the identification through inverse analysis procedure designed by combining

the concepts of genetic algorithms and reduced basis modeling, outlined in the following

sections.
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Table 6.1. Parameters defining the novel constitutive model

Serial
Number Parameter Units Parameter

Description
Yield Surface Parameters

1. pc0 [MPa] Initial Hardening
2. M0 -

Pressure
Sensitivity

3. k1 -
4. δ1 -
5. n1 -
6. m1 [MPa] Meridian

Shape
Parameters

7. m2 -
8. α1 -
9. α2 -
10. β - Deviatoric

Shape
Parameters

11. γ1 -
12. γ2 [MPa]
13. η - Plastic flow

Hardening Parameters
14. a1 -

Cooper-Eaton
Hardening

15. λ1 [MPa]
16. a2 -
17. λ2 [MPa]
18. pcb [MPa] Cohesion

Related
Hardening

19. c∞ [MPa]
20. Γc [MPa−1]

Elastic Parameters
21. Λ1 [MPa]

Lame’s
Constants

22. μ1 [MPa]
23. Λ2 [MPa]
24. μ2 [MPa]
25. ΓF [MPa−1] Elasto-plastic

Coupling26. p0 [MPa]

6.2 Genetic Algorithms

Genetic Algorithms (GA) represent a methodology to solve both constrained and

unconstrained minimization problems, iteratively. In the present context, the solution of

the minimization problem are the constitutive parameters of the novel material model.

Within the GA jargon, these candidate solutions (i.e. different parameter sets of novel

model) are referred to as members of the ”population”. During each iteration

(”generation” in GA terminology), the population is modified by the process of ”natural”
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selection. Through this process (sometimes also referred as ”selection rules”), members

of the current population are used to produce three different types of ”kids”, namely,

”elite”, ”cross-over” and ”mutation” kids, to form the next generation. Over subsequent

generations, the population ”evolves” towards an optimal solution. The working

principle of GA is given in what follows.

• At the beginning of the minimization, the initial population is formed by randomly

generated members (i.e. parameter vectors), which represent different points in the

parameter space. The domain is defined by an ”expert” such that it correctly limits the

values of each of the sought parameter.

• The value of the objective function (referred as ”fitness” function in GA jargon) is

calculated for the members of the current generation. This step is computationally

most demanding as each evaluation of the objective function represents solving of the

forward problem, which in the present context, involves finite element simulations.

• Once the values of the objective function are assessed, they are sorted in an ascending

order. Further on, the current population is modified through the natural selection

process, to form a new generation by creating kids, by employing the following

operations:

⋆ Selection of the elite kids: These are the members with best (i.e. smallest) value

of the objective function within the current generation. They are directly passed to

the next generation without any modification, hence, preserving the members with

currently the best value of fitness function. Usually, the elite kids amount 2-5% of

the population size.

⋆ Forming cross-over kids: A certain number of members are chosen as ”parents”

which contribute their ”genes” (i.e. parameter values) to create the cross-over

kids. The selection of the parents can be random, however, the most common

criterion is to consider the members from best to intermediate values of the fitness

function to be treated as the parents. Usually 50%-70% of the population is used

as the parents, which are then randomly combined to form ”couples”. Obviously

with such an implementation, repetition of the same parent in different couples

is possible. After the couples are formed, the crossing-over of the genes of each

117



CHAPTER 6. CALIBRATION OF NOVEL MATERIAL MODEL THROUGH
INVERSE ANALYSIS

parent is performed to produce cross-over kids. A straightforward cross-over rule

which is also adopted in the present work, generates random vector of the same

size as the parameter vector, with only zeroes and ones as entries. Applying this

rule to the previously formed couple, one cross-over kid is constructed on the basis

of this random vector such that entry 1 means taking the corresponding parameter

value from the first parent, while entry 0 means taking it from the second one. As

an example, crossing over two parents, X=[X1,X2,X3,X4]
T and Y=[Y1,Y2,Y3,Y4]

T

with the random vector R=[1, 1, 0, 1]T, results in [X1,X2,Y3,X4]
T. The number

of cross-over kids is controlled by the ”cross-over ratio”, which is the fraction

between cross-over kids and total remaining members after the elite are passed

to the next generation. Clearly, total number of members per generation remains

unchanged.

⋆ Forming mutation kids: These are created by applying mutation (i.e. random

changes) to all the parameters of members remaining in the population after the

elite and cross-over kids are formed. The remaining members in the population

represent the worst ones (in terms of the objective function values). Therefore,

wasting these members by applying a fully random modification to create new

ones is a reasonable strategy, since, it may produce better members. The amount

of mutation that the parameters are subjected to is governed by a factor called

”mutation range”. This factor plays a very important role by preventing GA to be

trapped in a local minima. A simple one-dimensional example to demonstrate

this is given in figure 6.3. It can be clearly visualized from the figure, that with a

small amount of mutation the algorithm will not have the capability to jump out

from the local minimum. In the present work, the parameters are all normalized

within the range of zero (lower bound) and one (upper bound), and the mutation

used is equal to ±0.1 to ±0.4, specified in more details in section 6.5.
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Figure 6.3. The influence of amount of mutation to demonstrate capability of algorithm
to avoid trapping in local minima

• Using this procedure, a new generation is formed, replacing the old one. The process

iteratively continues until the stopping criteria are met. Two most commonly used rules

for terminating the minimization, adopted also in this study are: a) when a maximum

number of generations is met, or, b) when the number of ”stalling” generations reaches

a previously prescribed value, which represents the number of consecutive generations

with no improvement in the objective function value. For more detailed explanation of

GA, refer to [13, 42].

From the outline of GA presented above, it can be realized that this algorithm is a

zero-order, since it computes only the value of the objective function, and not its

derivatives. Such feature plays a very important role in minimizing discontinuous,

non-differentiable or highly nonlinear objective functions. However, this aspect of GA

comes at the expense of increased computational cost. The total number of objective

function evaluations (and therefore, FEM simulations in the present context) is equal to

the product between the size of the population and the total number of generations

required within the minimization procedure. Given that the total number of parameters

of the novel model to be evaluated is 26, from statistical reasons it is expected to have at

least about 150-200 members in each population, while the number of generations could
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be between 100 and 150. Clearly, the total number of FEM simulations is at least two

orders of magnitude larger than what is needed when traditional derivative based

algorithms (like, trust region) are employed. It is not practically possible to run such a

huge amount of simulations on a regular desktop computer as total time needed will be

measured by months. This contributes to the conclusion that the only viable option to

use GA for characterizing the novel model is to reduce significantly the computational

time required for FEM simulations. To this purpose, reduced basis modeling appears to

be a promising prospective. The description of the adopted form of reduced basis model

is outlined in what follows.

6.3 Reduced Basis Model

ReducedBasisModel (RBM) adopted in this study, is a projection based technique, relying

on the Proper Orthogonal Decomposition (POD). This is motivated by the fact that using a

POD basis gives the best approximation (or maximum accuracy), as it is the most efficient

way to capture the dominant components of a high dimensional process, through a fairly

small number of directions [18].

In the present work, RBM is designed to construct a low order approximation of

numerical simulations, therefore, only the discrete POD theory is presented. To

understand this better, let us suppose a finite element simulation of compaction test is

performed within force control regime, with some quantities of interest collected in a

resulting vector. Constitutive description for the simulation is defined through the novel

material model, that depends on some parameters, collected in a vector p. The recorded

output from the simulation is a compaction curve, which is stored in a vector

ui=[u1, u2, ....uY]T, whose entries are displacement of the same point (on the punch)

corresponding to Y force levels from zero to maximum specified force. Assuming that X

different simulations are performed by keeping all the conditions the same and only

changing the parameters of the material model, the resulting outputs of the simulations,

can be projected in a new coordinate system, through a linear combination of some

vectors as:
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ui(p) =
X∑

i=1

aji ·ψψψi(p), j = 1, 2...Y (6.12)

Here, ψψψi are the directions in the new coordinate system and aji are the unknown

coefficients (or ”amplitudes”) of the expansion, whose values are computed through a

minimization process in the least square sense such that:

min

∥∥∥∥∥u(p)−
X∑

i=1

ai ·ψψψi(p)

∥∥∥∥∥ (6.13)

where, ∥·∥ is the L2 norm.

Within the POD theory, u(p) in equation (6.12) represents a ”snapshot” which is

some output of a certain system corresponding to some input parameter p. A set of X

different snapshots is stored in a snapshot matrix U=[u1,u2, .....uX], such that each

column corresponds to different input parameters collected in matrix P=[p1,p2, .....pX].

Therefore, in the present context, a snapshot matrix (size Y by X ) represents a collection

of X different vectors that are recording displacements from the compaction test,

generated by changing the parameters entering the novel model, while keeping all other

simulation conditions fixed. Using relation (6.12), snapshots in the matrix form can be

expressed in a new coordinate system as:

U = ΨΨΨA (6.14)

In the above equation, matrix Ψ = [ψψψ1,ψψψ2...ψψψX] contains all the directions within the

new coordinate system and matrix A contains the corresponding amplitudes. The choice

of directions ψψψ to construct the basis for U is arbitrary and different set of amplitudes

correspond to each selected basis. However, using directions which are orthogonal to each

other, as given in equation (6.15), is advantageous, since, the determination of coefficients

becomes a simple task. This can be realized from the fact that due to orthogonality of

vectors, the amplitude aji will depend only on the vectorψψψi and not on the others, while if

the chosen basis is non orthogonal, the evaluation of amplitudes would involve solving a

set of linear equations.
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ψψψs1(p) ·ψψψs2(p) =

1, if s1 = s2

0, if s1 ̸= sk
(6.15)

Clearly, if all the directions in the new coordinate system are taken to represent the

snapshot matrix, no error is introduced and the quantities of each snapshot are merely

projected in a different reference system. Given that the goal here is to reduce the

dimensionality of the snapshot matrix and still maintain reasonable accuracy of its

approximation, the next step is to construct an ”optimal” orthogonal basis. Optimal here

implies that a sequence of specially ordered orthonormal directions Ψ = [ψψψ1,ψψψ2...ψψψi]

needs to be determined such that the first two of these directions (i=2) gives the best

possible two-term approximation, the first three the best possible three term

approximation and so on. Once found, they provide a favorable basis for reduction of the

dimensionality of vectors (i.e. snapshots) in set, due to their optimal property,

guaranteeing that there cannot be any other basis that can have better approximation for

any selected number of reduced components.

The construction of optimal orthogonal basis can be achieved through Principal

Component Analysis (PCA) [57]. Procedure based on PCA uses an orthogonal

transformation to convert a set of observations of possibly correlated variables into a set

of values of linearly uncorrelated variables, called Principal Components (PC). This

transformation is defined in such a way that the first PC (direction) contains most of the

variation in the data, and each succeeding direction has the highest variation possible

under the constraint that it is orthogonal to the preceding directions. Therefore, the

dimensionality of the original space of variables is reduced by keeping just the first few

PCs, still preserving a good accuracy of the approximation.

In the present context, it is reasonable to expect that there will be a strong correlation

between the snapshots since they represent the outputs of the same systemwhere just some

parameters are changed. The expected correlation suggests that previously presented POD

theory can be interpreted through PCA,making it effective to apply on the snapshotmatrix,

allowing to construct a new orthogonal basis in which the dimensionality can be drastically

cut-down. The sequence of steps to generate the POD basis for the snapshot matrix is the

following:
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• Find a direction in which the summations of all projections of the snapshots gives a

maximum.

• Construct a direction orthogonal to the previous one and choose the one giving

maximum projection of all the snapshots.

• Repeat this process until last direction is found.

To use the above mentioned steps to construct a POD basis, one needs to solve the

eigenvalue problem, on positive semi-definite matrix S = UUT. It is evidenced in the

literature [13, 18, 48] that for vectors in set U, the POD directions are represented by

eigenvectors sorted in descending order of corresponding eigenvalues. To reduce the

dimensionality of the snapshot matrix, first few directions K (with K ≪ X ) are kept

which have the largest projection of all the snapshots. This decision can be made based

on the eigenvalues, which are sorted in descending order. The usual practice is to keep

the first eigenvalues whose summation is 99.9% of the total sum of the eigenvalues.

Thus, the corresponding eigenvectors represent the directions which contain the majority

of ”information” kept in the snapshot matrix. Therefore, by truncating the new basis to

only a small number of axes, a significant reduction of dimensionality is achieved by

preserving high accuracy of the approximation. The projection of snapshot matrix to a

reduced space is given as:

U u ΨΨΨ A (6.16)

and each individual snapshot can be written as:

ui(p) u ΨΨΨ ai(p), i = 1, 2...X (6.17)

where, A (size K by X ) and ΨΨΨ = [ψψψ1,ψψψ2...ψψψK] (size Y by K, such that K ≪ X) are the

truncated amplitude and direction matrices respectively. The whole snapshot matrix can

be reconstructed just by the multiplication of the two matrices given by equation (6.16).

In what precedes, it is shown how the POD theory can be applied to construct the low

order approximation of a Finite Element (FE) simulations. However, this “light” model

obviously can give the responses of the simulations of compaction experiment, only for a
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discrete number of parameter combinations of the novel model: those that were previously

used to generate the snapshot matrix. Since the goal here is to use inverse analyses to

evaluate parameters of the novel model itself, the procedure relies on performing multiple

FE simulations corresponding to different input parameters within a range suggested by an

”expert”. Therefore, the required reduced basis model needs to be capable of computing

an approximate response of the system for any arbitrary combination of parameters within

that range. To this purpose, the existing data within the snapshot matrix in form of vectors

collecting displacements for discrete parameter combinations, need to be interpolated and

it is achieved through Radial Basis Functions (RBF) described in what follows. For more

details on POD, reader is referred to [13, 57].

6.4 POD-RBF Model for Direct Analysis

Radial Basis Functions (RBF) are frequently used to construct an approximation of a

certain multi-variable function by interpolation between the existing data [6, 13]. In the

present context, RBF are applied to form one continuous function: to compute the

numerical response of compaction experiment for any arbitrary parameter combination

of the novel model, within a certain range. To achieve this, RBF utilize the already

available values of snapshots computed for some discrete parameter combinations, and

interpolates these responses in such a way that the output is a snapshot defined over the

whole domain of parameters. A brief explanation of the methodology employed for this

interpolation is presented here.

Under the assumption that amplitude vector a given in equation (6.17) can be written

as the linear combination of some vectors, it can be expressed as:

ai(p) =
X∑

i=1

bji · gi(p), j = 1.2....K (6.18)
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In the above equation, bji are the coefficients of the interpolation and the entries to the

vector g are functions of sought parameters written as:

g(p) =



g1(p− p1)

g2(p− p2)

.

.

gX(p− pX)


(6.19)

The choice of interpolation function gi in formula (6.18) is arbitrary and here, radial basis

functions are chosen to represent them. There are a few types of RBF and it can be found

in [13]. In the current work, an inverse multi-quadric function is selected which reads:

gi(p− pi) =
1√

∥p− pi∥+ 1
(6.20)

where, ∥·∥ is the L2 norm.

After defining the functions gi, the unknown coefficients bji need to be determined.

This can be done by making the equation (6.18) exact for all the snapshots. This leads to

the following formulation:

A = B ·G (6.21)

such that,

B =


b11 b12 . . . b1X
b21 b22 . . . b2X
...

... . . . ...

bK1 bK2 . . . bKX

 G =


g1(p1 − p1) g1(p2 − p1) . . . g1(pX − p1)

g2(p1 − p2) g2(p2 − p2) . . . g2(pX − p2)
...

... . . . ...

gX(p1 − pX) gX(p2 − pX) . . . gX(pX − pX)


(6.22)

where, A is the amplitude matrix, G (size X by X ) is a matrix comprising of the values of

the interpolation functions in all points in the parameter space used to generate snapshot

matrix, while matrix B (size K by X ) stores the coefficients of interpolation. Here, X is
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number of available snapshots and K is the number of directions kept in the truncated

POD basis. It should be noted that before construction of matrix G, parameters should be

normalized such that all entries are in dimensionless range between 0 and 1. This is done

in order to avoid numerical problems as parameters can differ by orders of magnitude (for

instance, Lame’s constants and the hardening parameter in the novel model).

After computing matrix B, the snapshot u for any arbitrary parameter vector p can be

approximated through the relations (6.17) and (6.18), which gives the analytical

formulation for snapshot approximation as:

u(p) u ΨΨΨ · B · g(p) (6.23)

Considering the way in which the interpolation coefficients are determined, equation

(6.23) gives exact results for the parameters used to generate the snapshots, while it will

give some interpolated value for any other parameter. The above formulation represents

the ”light” model since the system response can be computed by a simple matrix

multiplication. To use this approximation, one only needs to compute vector g as a

function of any arbitrary parameter combination according to formula (6.19), since

matrices ΨΨΨ and B, that are collecting constants, are computed once-for-all. The

determination of the matrix B, however, requires to know the responses for a certain

range of the input parameters. This is done by collecting the sets of outputs

corresponding to different values of the input vectors through phase called ”training” of

the POD-RBF model.

In the present context, training of the model is represented by performing a set of

Finite Element (FE) simulations to generate snapshots for multiple combinations of

parameters of the novel model, which should cover reasonably well the range of interest.

For this purpose, the common practice is to use a regular grid over the parameter space.

Given that the number of parameters to be identified within the novel model is 26,

regular grid distribution would lead to extremely elevated number, requiring 226

parameter combinations in the minimum case. Even for these bare minimum number of

parameter sets, required to form a regular grid, it is practically impossible to perform FE

simulations, or generally to calibrate matrices ΨΨΨ and B. Such circumstances penalizes

the training of the POD-RBF procedure and therefore, constrains the application of the
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outlined approach, since, it is obvious that for a reasonable approximation, the training

of the model must take into account adequate number of points in the parameter space.

To overcome the above mentioned shortcoming, a scheme is proposed within which

the POD-RBF model will be trained ”selectively”. Selective training here implies that

the snapshot matrix is generated only for those parameter combinations which are in the

zone of the solution, or generally where the value of the objective function is low. To

this purpose, a scheme is proposed with employment of POD-RBF model with

controllable training, seen as ”enrichment”, by gradually adding new points in the

parameter space throughout the minimization. Therefore the training is directly

incorporated into the minimization through genetic algorithm to perform inverse

analysis. The description of the proposed methodology is given in the following section.

The initial FE simulations, and subsequent operations required to calibrate matrices

for reduced order model, together form the ”training” of the model. The sequence of

operations is summarized as follows:

(i) Select X points within the domain of parameters that are subjected to identification.

(ii) Perform numerical simulations of the considered experiments for these X different

parameter vectors pi to generate X snapshots ui. Store the snapshots and parameters

in two matrices U and P, respectively.

(iii) Solve the eigen-value problem for matrixUUT and sort the eigenvectors in descending

order of the corresponding eigenvalues.

(iv) Keep the first few eigenvectorsψψψi (with i = 1, 2, ...K, with K ≪ X ) corresponding to

the eigenvalues whose summation is 99.99% of the total sum of all the eigenvalues.

These directions represent the truncated POD basis of the snapshot matrix and are

stored in the matrix ΨΨΨ.

(v) Compute the truncated amplitude matrix A using the equation (6.16).

(vi) Construct matrix G for the existing parameter combinations as shown in (6.22).

(vii) Solve for matrix B containing the interpolation coefficients utilizing equation (6.21).

This step concludes the design and training of the POD-RBF model.
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(viii) To approximate numerical response by POD-RBF model, for any arbitrary parameter

p, compute vector g(p) according to relation (6.19) and use formula (6.23) to evaluate

system response.

6.5 POD-RBF Model with Controllable Enrichment for

Inverse Analysis

To setup the Inverse Analysis (IA) procedure, considered measurable quantities are the

compaction curves collected from both experiment and simulation of configurations -1

and -5 (figure 4.1a and figure 5.49). The radial stress curves are not employed as input

data, since the coefficient of friction has already been determined to be equal to 0.05 for

this powder-mold system, as given in the results in the previous chapter, otherwise it can

also be considered as an additional parameter to identify. The motivation behind selection

of configurations -1 and -5 is the complexity of the novel material model as well as an

elevated number of parameters. Therefore, along with configuration-1 which represents a

simple geometry (and hence, fairly homogeneous stress distribution over the sample), the

purpose of using configuration-5 is to have a more heterogeneous stress distribution and

thus ”richer” experimental data as input to the IA.

Another advantage of employing a combination of configurations -1 and -5 is that

their Finite Element (FE) models can be designed as axially symmetric, thus, requiring

far lesser computational time, as opposed to that needed for 3-D models of the

configurations -2 and -3 (figure 4.10), used previously as input data for IA procedure.

Configuration-1 is discretized into 672 four-node fully integrated axisymmetric elements

(marked by CAX4 in ABAQUS), while configuration-5 contains 2480 CAX4 elements.

Simulations are performed within the force control regime applying a maximum load of

14 kN, corresponding to experimental details given in tables 5.3 and 5.11. The

coefficient of friction defining the lateral contact is kept fixed at a value of 0.05, as

previously mentioned. Other simulation conditions are those given in section 3.1.2.

Note, that the peak force used within the simulations is smaller than that applied during

the experiments, to avoid potential numerical instabilities of FE model for certain
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parameter combinations of the novel model, which tend to occur at higher values of

relative density.

Compaction curves are recorded both from the experiments and the simulations for

both configurations -1 and -5. The curves from the experiments are adjusted accordingly

to represent data up to the peak force of 14 kN applied within the simulations. After

collecting the experimental and simulated measurements, residual vector is formed

quantifying the difference between the two quantities. There are 200 entries in residual

vector, such that, from each configuration, 100 points are the differences between

displacements corresponding to 100 equidistantly spaced force levels from zero to

maximum specified force of 14 kN. Finally, the objective function is formed as the sum

of the squares of the members of residual vector and it is minimized with respect to

sought parameters of the novel model using genetic algorithms.

In the Genetic Algorithm (GA) methodology, value of the objective function which

quantifies the difference between experimental and simulated results, is sorted in

ascending order, to create elite, cross-over and mutation kids. Such a feature of GA

helps to potentially narrow down the zone of the solution, since the first few members of

a generation corresponding to the low values of objective function can be expected to lie

in proximity of the final solution. This serves as a reasonable ground to identify the zone

where the enrichment of the POD-RBF model should be performed.

Step-by-step description of the developed method, which combines GA with POD-

RBF model is given in what follows.

(i) The first generation is formed by randomly generating X = 300 parameter vectors of

the novel model, within the pre-defined range suggested by an ”expert”. These

parameters are used to perform FE simulations of the compaction tests for both

configurations -1 and -5. In the case of lack of convergence of FE simulations, for

either of the two configurations, the member is replaced by another one, with a slight

modification of parameters so that the overall number of members in each generation

is kept constant.

(ii) Previous step also served to design two distinct POD-RBF models for configurations

-1 and -5, since the responses from FE simulations of both models can be represented
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as individual snapshots. For each configuration, every simulation yields a snapshot

u which is formed by recording Y = 100 displacement points corresponding to 100

equidistantly spaced force levels from zero to maximum specified force of 14 kN.

These snapshots of individual configurations are collected in snapshot matrices U1

(for configuration-1) and U5 (for configuration-5). To project these matrices into an

optimal orthogonal basis, eigenvalue problem is solved on the matrices S1 = U1U1
T

and S5 = U5U5
T. Obtained eigenvalues are sorted in descending order, and the drop by

several orders of magnitude is evidenced for the 15th value with respect to the largest

one for both configurations. Therefore, the truncated basis ΨΨΨ1 and ΨΨΨ5 corresponding

to configuration -1 and -5 respectively, gathered first 14 directions. The amplitudes

for these orthogonal directions are computed through equation (6.16) and stored in the

matrices A1 and A5.

(iii) Once the truncated POD basis is formed, Radial Basis Functions (RBF) are

employed to interpolate the response from the existing data to compute the numerical

response of compaction experiments for any arbitrary parameter combination of the

novel model. To this purpose, parameter vectors (p) used to perform these

simulations are normalized between 0 (lower bound) and 1 (upper bound) to take into

account the diverse order of magnitude of different entries and are stored in

parameter matrix (P). Using the respective amplitude matrices and the parameter

matrix, two corresponding POD-RBF models are designed.

(iv) From each simulation, compaction curve is extracted and it is compared against the

experimental one, for both configurations, to form the residual vector and eventually

the objective function as described above. Its value corresponding to each parameter

vector is assessed, and these values are then sorted in ascending order.

(v) Apart from the first generation, all the subsequent generations are formed by

performing computations through the POD-RBF models to create elite, cross-over

and mutation kids such that: a) the first four parameter vectors with the best (lowest)

values of objective function are directly passed to the next generation as the elite

kids; b) the next 216 parameter sets are selected to form cross-over kids and c) the

worst 80 parameter vectors are subjected to mutation (random perturbation). Instead
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of using a constant value for the mutation, an alternative approach is used. The

amount of perturbation is kept to be ± 0.4, ± 0.3, ± 0.2 and ± 0.1, up to 50, 100,

150 and 200 generations, respectively. This strategy is driven from the fact that as

the number of generations increases, it is reasonable to expect that more and more

members would find themselves in the global minimum zone.

(vi) In the case of replacement of the elite members due to the improvement of the

objective function within any particular generation, the response for these members

is also calculated through FE simulations for comparative purposes. The vectors

collecting displacements corresponding to elite members are collected, from

POD-RBF model and FE simulations, for both configurations. The error vector (100

by 1) is formed for each configuration, such that it quantifies the difference between

the displacements from the two models (i.e FE and POD-RBF), corresponding to the

same force levels, as indicated in step (ii). Further on, the entries of the error vector

for both configurations are divided by the corresponding members of the vector

collecting displacements from FE simulations and the mean of its entries is

computed. Error for each of the two configurations is represented as the mean

percentage. The tolerance values for the error is kept to be 8%, 6%, 3% and 1% up to

50, 100, 150 and 200 generations, respectively. If the error between the two models

(i.e FE and POD-RBF) is larger than the prescribed tolerance for any of the

configurations, enrichments are performed as explained in the next step.

(vii) Enrichment here refers to performing additional FE simulations for the first few

members having low values of the objective function, within the current generation.

The responses from these simulations are collected in form of snapshots as described

in step (ii) for both configurations. These newly generated snapshots are respectively

added as ”enrichments” to the already available snapshot matrices formed in step (ii),

giving ”enriched” snapshot matrices for the two configurations, which are further

employed to construct new version of POD-RBF model, following already described

sequence of operations. In this way, controllable enrichment of POD-RBF models is

performed, with new reduced basis model used for further computations of the new

generations of GA. An important aspect of the procedure is the number of members
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within each generation that are taken into account for enrichment. Here, 15, 20, 25

and 30 members are considered for enrichment, if the total number of generations is

up to 50, 100, 150 and 200, respectively. Such a strategy is reasonable, since it can

be expected that within the first few generations, fewer members are in the global

minimum zone and this number increases as the algorithm progresses. Therefore, the

POD-RBF models for both configurations becomes more accurate, particularly

within the zone of interest.

(viii) In the event of the elite members being replaced, or those that are selected for the

enrichments, have convergence difficulties through FE simulations, for either of the

configurations, a slight modification of parameters is done. Such a scheme guarantees

the same number of members in each generation as well as makes the best possible

use of the computational time consumed during FE simulations.

(ix) The outlined sequence of steps from (ii) to (viii) is repeated until the convergence

criteria of the algorithm are met. Here, specifically as stopping criteria, the following

values are selected: the total number of generations reaches 200 or the stalling

generation exceeds 30 (i.e number of generations without any improvement of best

member’s objective function value), the algorithm is stopped. From the last

generation upon the termination of the minimization process, the best member is

taken as solution to the inverse analysis.

The procedure of combining the GA with POD-RBF model relies on three major

factors: a) the ability of GA to find the global minimum even when the objective

function is neither continuous nor differentiable, thereby helping to deal with certain

numerical instabilities of the novel model; b) sorting of the values of the objective

function within GA, enabling to perform controllable enrichment of POD-RBF model;

and c) the use of POD-RBF model to substitute FE simulations, contributing to the

significant reduction of computational burden, and hence, making minimization through

GA viable. Such features of GA and POD-RBF model are exploited simultaneously to

perform inverse analysis procedure for determining parameters of the novel model, with

the results of the identification presented in what follows.
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6.6 Results and Discussions

The novel material model is defined through 28 parameters. Out of these, 26 parameters

are assessed and the two parameters, namely: initial void ratio (e0) and exponential decay

term of elasto-plastic coupling (n) are not subjected to the identification, and kept fixed at

values of 0.5 and 2, respectively. The evaluated values of the parameters are given in table

6.2. The comparison between the experimental and simulated curves for configurations

-1 and -5 is presented in figures 6.4 and 6.5.

Table 6.2. Parameters of the novel constitutive model corresponding assessed through
IA employing configuration-1 and -5 as inputs

Serial
Number Parameter Parameter

Value Units Parameter
Description

Yield Surface Parameters
1. pc0 0.366 [MPa] Initial Hardening
2. M0 0.984 -

Pressure
Sensitivity

3. k1 0.537 -
4. δ1 227.940 -
5. n1 2.004 -
6. m1 1.825 [MPa] Meridian

Shape
Parameters

7. m2 2.033 -
8. α1 0.183 -
9. α2 1.312 -
10. β 1.811 - Deviatoric

Shape
Parameters

11. γ1 0.863 -
12. γ2 0.450 [MPa]
13. η 0.521 - Plastic flow

Hardening Parameters
14. a1 0.701 -

Cooper-Eaton
Hardening

15. λ1 0.486 [MPa]
16. a2 0.252 -
17. λ2 8.825 [MPa]
18. pcb 1.196 [MPa] Cohesion

Related
Hardening

19. c∞ 1.124 [MPa]
20. Γc 0.047 [MPa−1]

Elastic Parameters
21. Λ1 209.090 [MPa]

Lame’s
Constants

22. μ1 28.107 [MPa]
23. Λ2 4648.020 [MPa]
24. μ2 599.830 [MPa]
25. ΓF 0.996 [MPa−1] Elasto-plastic

Coupling26. p0 0.113 [MPa]
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Figure 6.4. Experimental vs. final computed compaction curve from FE simulation for
configuration-1, corresponding to parameters of the novel model identified through IA

employing configuration-1, and -5 as inputs

Figure 6.5. Experimental vs. final computed compaction curve from FE simulation for
configuration-5, corresponding to parameters of the novel model identified through IA

employing configuration-1, and -5 as inputs

The above figures show that the compaction curves from experiment and simulation

are in good agreement for both configurations -1 and -5. The minimization result is

achieved in 188 generations and it is terminated due to reaching the stopping criterion of

exceeding 30 generations with no improvement in the objective function. The other

details of the developed procedure are given in table 6.3. The complete first generation

comprising of 300 simulations each for both configurations and an additional 2570,
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making a total of 3170 simulations are performed by the full order finite element model,

which is about 5% of the overall number of objective function evaluations. Considering

that remaining function evaluations are done on the basis of POD-RBF model, such

strategy represents computational time reduction by almost five times, since calculation

of system response through POD-RBF model is practically done in a real time. It

represents significant time savings as one compaction simulation for both configurations

takes about 7 minutes on a computer with i7 processor and 8GB of RAM.

Table 6.3. Parameters of the novel constitutive model corresponding assessed through
IA employing configuration-1 and -5 as inputs

Generation

Members for
Enrichment
through FE
Simulations

Number of
Enrichments

FE Simulations
Performed

(Column 1 x Column 2
x 2 Configurations)

FE
Simulations

(if
Classical GA)

2-50 15 36 1080 14700
51-100 20 23 920 15000
101-150 25 9 450 15000
151-188* 30 2 120 11400

Total FE Simulations 2570 57100

Furthermore, the accuracy of POD-RBF model is verified by comparing its results

against FE simulations, for the final set of parameters obtained at the end of minimization

process, which are listed in table 6.2. The comparison is presented in figures 6.6 and 6.7.

It can be observed that there is an insignificant difference between the two curves, which

corroborates that the fast computations offered by POD-RBF models are not introducing

any additional error within the identification procedure.
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Figure 6.6. Comparison of compaction curves generated through POD-RBF model and
FE simulation for configuration-1, corresponding to parameters of the novel model

identified through IA employing configuration-1, and -5 as inputs

Figure 6.7. Comparison of compaction curves generated through POD-RBF model and
FE simulation for configuration-5, corresponding to parameters of the novel model

identified through IA employing configuration-1, and -5 as inputs

To validate the proposed calibration method, and in turn the identified parameters of

the novel model listed in table 6.2, compaction simulations of complex geometries,

namely, configuration -6 and -7 (given in figure 5.49) are performed using these

parameters. The simulated curves are compared against the experimental ones, with

results visualized in figures 6.8 and 6.9.
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Figure 6.8. Experimental vs. final computed compaction curve from FE simulation for
configuration-6, corresponding to parameters of the novel model identified through IA

employing configuration-1, and -5 as inputs

Figure 6.9. Experimental vs. final computed compaction curve from FE simulation for
configuration-7, corresponding to parameters of the novel model identified through IA

employing configuration-1, and -5 as inputs

The above results evidence that the inverse problem is well posed. The fact that the

parameters obtained through the developed calibration strategy can be used to model

compaction involving arbitrary geometries, confirms that the established procedure

provides an efficient transition from experimental data, collected from pressing test, to

the constitutive parameters, even for complex material models like the one considered

here.
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The Inverse Analysis (IA) procedure inherently contains numerical simulations of

the experiment, which may be unstable when complex constitutive models are utilized.

Such circumstance penalizes the use of efficient derivative based algorithms for

providing the solution to the resulting minimization problem within IA. Alternatively,

Genetic Algorithms (GA) can be exploited, with increased computational effort, as these

algorithms are involving a larger number of simulations. To make the computational

burden consistent with constrains related to the employment of GA, the use of reduced

basis model, as considered within this work, turns out to be crucial. Proposed training

scheme, different from previous studies (see e.g. [16, 48]) works fairly effective in

present context, by providing the enrichments of the POD-RBF model throughout the

minimization. The computational effort is therefore concentrated within the zone of

parameters with a low value of the objective function.

However, due to an elevated number of parameters, the designed POD-RBF model

cannot be trained once-and-for-all over the whole domain of parameters. This presents

a limitation since the system response cannot be computed for any arbitrary parameter

combinations that are far from the zone where the model is enriched. This implies that

full order FE model will again be employed to perform simulations for such parameter

combinations, as opposed to the POD-RBF models utilizing regular grids over the whole

parameter space, which can calculate the numerical response for any arbitrary parameter

once their training is complete. However, for any situation, where the number of sought

parameters is high, it is practically impossible to train the POD-RBF procedure according

to regular grid distribution, and the proposed training scheme may be an advantageous

alternative.

6.6.1 Comparison between Drucker-Prager Cap and Bigoni

Piccolroaz Yield Surface

One of the unique features of the novel constitutive model is represented through the

Bigoni-Piccolroaz (BP) yield criterion, which has the ability to change the shape of the

yield surface. To demonstrate this, the yield surface corresponding to initial and final
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stages of compaction are visualized in figure 6.10, which is plotted by inputting the

parameters listed in table 6.2 into equation 6.1.

(a) Bigoni-Piccolroaz yield surface resembling Drucker-Prager Cap type yield surface during
initial stages of compaction

(b) Bigoni-Piccolroaz yield surface resembling either Cam Clay type yield surface during final
stages of compaction

Figure 6.10. Evolution of Bigoni-Piccolroaz yield surface during compaction for
powder from granular to dense state

Indeed, the above figure indicates the transformation of the yield surface from

Drucker-Prager Cap (DPC) type, which is typical for granular material, to Cam Clay like

surface for dense solid. Therefore, it is more relevant to compare the DPC and BP yield

surface only for the initial stages of compaction. It should be recalled that according to

BP yield criterion, cohesion only starts to develop once the breakpoint pressure (pcb) is
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reached, which is identified as 1.19 MPa, while no such rule is defined for DPC yield

criterion. Therefore, to establish a fair comparison, the BP yield surface is plotted for

hydrostatic pressure (p=1.25 MPa), which is slightly higher than the breakpoint pressure,

marking the onset of cohesion. The relative density of the sample is recalculated from

the plastic strain through equation (2.7), which corresponds to 62% for this hydrostatic

pressure. For obtaining the DPC parameters at 62% relative density, previously

identified values listed in table 5.10 are used in combination with equation (3.3). The

comparison between the two yield surfaces is presented in the following figure.

Figure 6.11. Comparison between Drucker-Prager Cap and Bigoni-Piccolroaz yield
surface in initial stages of compaction after cohesion starts developing in the powder.

The above figure shows a good agreement between the DPC and novel material model

for the initial part of the compaction. This contributes to the conclusion that DPC yield

criterion models the initial compaction accurately enough.

To establish some relevant comparison for the final part of compaction between the

BP and DPC criterion, final values of some of the similar parameters are listed in table 6.4.

Note that the cohesion here for DPC model refers to the intersection of yield surface with

the hydrostatic pressure axis on the tension side (negative side on the p-q plot). Hardening

parameter here is the intersection of yield surface with the hydrostatic pressure axis on the

compression side (positive side), which is marked as hydrostatic yield compression stress

(pb) in the DPCmodel and hardening parameter (pc) in the novel model. Young’s modulus

for the novel model is recalculated from the values of Lame’s constants.
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Table 6.4. Comparsion between the final values of similar parameters for novel
constitutive model and DPC model

Parameter
Final Value
(Relative Density=0.82)
DPC Model Novel Model Difference

Young’s Modulus 1.724 GPa 1.801 GPa 4.275 %
Cohesion 1.071 MPa 1.124 MPa 4.715 %
Hardening Parameter 13.231 MPa 14.020 MPa 5.627 %

It can be observed that values of the parameters for the two criteria are comparable

and the points at which these surfaces intersect the hydrostatic pressure axis are

reasonably close. This indicates that even though the shape of the final yield surfaces are

fairly different for BP and DPC yield criterion, both of them represent similar extreme

values for the allowed stress. In the present research, for this powder composition, the

loading path of the considered geometries tends to be closer to the hydrostatic axis (for

instance, see figure 2.5). Therefore, satisfactory results are obtained from the DPC

model, since the transformation of the yield surface becomes irrelevant for the examples

treated within this work. However, such flexibility of the yield surface could be

advantageous and play an important role when modeling compaction of certain powder

compositions or even more complex geometries, which cannot be taken into account

through the DPC model.
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CONCLUSIONS AND FUTURE

WORK

7.1 Conclusions

In the present work, a fully automated procedure is designed to calibrate the constitutive

models used in powder compaction simulations. During the compaction, powder

transforms from a granular state to a dense solid called ”green body”, exhibiting fairly

different mechanical properties for these two states. Therefore, modeling of the

compaction process is a challenging task, with simulations often involving complex

constitutive models like, Drucker-Prager Cap (DPC) [28, 31, 70], Cam-Clay [24], etc.,

which are defined through an elevated number of parameters.

Currently adopted praxis to evaluate the constants entering the material models relies

on performing time consuming destructive tests on a green body (for instance, Brazilian

and crush tests) [2, 28, 70]. Even though such calibration protocol provides a reasonable

estimate of the material parameters, a large number of experiments is needed.

Furthermore, some of the parameters cannot be determined at relatively low densities of

green body through the conventional experimental route [26]. Such circumstances make

the application of the current praxis rather difficult and fairly expensive for routine

industrial purposes.

To tackle this problem, an alternative approach based on Inverse Analysis (IA) is

developed. The central novelty of this research is the development of more accurate and
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more economical parameter calibration method, that relies on data collected from the

compaction tests only. Such scheme is obviously more efficient and advantageous for

routine industrial applications, since it fully eliminates the need for heavy experimental

regime adopted currently.

Inverse Analysis (IA) procedure is centered on the minimization of the discrepancy

between experimentally measured quantities and their numerically computed

counterparts [13]. From the compaction experiment, digitalized compaction force vs.

displacement (of the punch) curve and compaction force vs. radial stress (measured from

the die-wall) graphs are collected as measurable quantities. To ascertain the strong

influence of sought parameters on the measured data, systematic sensitivity analyses are

performed, and different mold geometries (i.e configurations) are designed. A

combination of these configurations represents the source of experimental data, while

their simulations, performed in commercial code ABAQUS, give the simulated data.

Discrepancy function is setup quantifying the difference between the two measured

quantities and the parameters which minimize this function represent the solution to the

inverse problem and also the representative material properties.

The developed IA approach is tested to calibrate the Drucker-Prager Cap (DPC)

model which is frequently adopted for powder compaction simulations [2, 23, 28, 31,

70]. For accurate modeling, the typical DPC model is ”modified” such that the

parameters are defined as a continuous function of accumulated plastic strain, which is

then converted to relative density. The proposed relationship between the parameters

and relative density is very general, capable of taking into account distinct trends of

evolution for different parameters. Such modification provides very flexible definition

of hardening (i.e. the dependency of yield function parameters on accumulated plastic

strain), which incorporates both linear and exponential trends. Along with the DPC

model parameters, the coefficient of friction is also evaluated as opposed to previous

studies where it has been assumed as a constant value [26] or derived through empirical

relations [28, 45, 59] usually representing a source of an error.

The minimization problem is solved through the Trust Region Algorithm (TRA). The

obtained parameters from IA successfully simulate the compaction of miniaturized green

bodies typically resembling industrial parts, validating the established calibration
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protocol. The parameters assessed via IA are in good agreement with those evaluated

through conventional experimental route, with multiple advantages that are listed here:

• The number of experiments required for the calibration by the IA procedure are three as

compared to about 60 that are needed based on the currently adopted praxis, highlighting

significant efficiency of the developed calibration method.

• Through IA, the parameters are assessed as a continuous function of relative density as

compared to the current praxis, where the parameters can only be estimated for discrete

relative densities.

• Through proposed procedure the parameters can also be evaluated for very low relative

densities, which cannot be done via conventional experimental route.

To further test the IA methodology, calibration of a more sophisticated constitutive

model relying on the Bigoni-Piccolroaz yield criterion is considered [7, 49, 51]. Apart

from the elevated number of parameters, this model showed unstable simulations for

certain parameter combinations. Such circumstance penalizes the use of efficient Trust

Region Algorithm (TRA) for the minimization. As a remedy, Genetic Algorithms (GA)

are employed. The computational burden coming from GA is made consistent with

repetitive routine applications through reduced basis model.

In the present work, Proper Orthogonal Decomposition (POD) is chosen as the

model reduction technique. Such strategy allows to approximate the system response by

projecting it in new reference frame with significant reduction in its dimensionality,

while still preserving reasonable accuracy of the approximation. Within the POD model,

the spatial distribution of the field of interest (displacements from compaction curve in

this case) are described using POD directions, while its amplitudes depend on the sought

parameters. This functional dependence of amplitudes on the parameters is expressed as

a linear combination through a priori chosen Radial Basis Functions (RBF), which are

frequently used for scattered data interpolation. The coefficients of this combination are

evaluated by satisfying the solution exactly for pre-selected inputs (parameters of novel

model) and outputs (vectors collecting displacements from compaction curve) through a

phase called ”training”. However, the previously adopted training methods [16, 48]
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utilizing the regular grid over parameter space, cannot be employed for the current

POD-RBF model, since the number of parameters is quite high.

To overcome this difficulty, a scheme is designed to controllably train the POD-RBF

model, seen here as ”enrichments”, only for those parameter combinations that are in the

zone of the solution. It is achieved by incorporating the training procedure directly into

the minimization through genetic algorithms. The best members within each generation

in GA lie in the proximity of the final solution, serving as a reasonable ground to identify

the zone for performing enrichment of POD-RBF model.

Using the developed scheme, the minimization problem is solved and obtained

parameters successfully simulate complex geometries, validating the established

procedure. It is interesting to note that almost 95% of function evaluations of GA are

performed through POD-RBF model, which are done in almost real-time, offering

significant time savings. It is also observed that the fast computations offered by

POD-RBF model do not represent any additional source of error. This contributes to the

conclusion, that the developed IA procedure employing POD-RBF model with

controllable enrichment can be effectively used to calibrate complex constitutive models,

with an elevated number of parameters and whose numerical implementation is not fully

stable. This particular scheme can be useful also in other applications when dealing with

complex material models, and not only in the present context of powder compaction.

7.2 Future Research

In the current research, developed protocol based on Inverse Analysis (IA) is

successfully applied to the calibration of Drucker-Prager Cap (DPC) model and novel

constitutive model. However, the methodology could very well be extended to other

material models like Cam-Clay or Gurson, and even for different groups of powders.

The examples treated in this thesis use IA in a deterministic sense, however, such

procedure could be tailored to include the uncertainty within the process by employing

techniques like Kalman filters [27, 33]. In practical applications it is often observed that

the compaction curves corresponding to the same powder under similar conditions are

slightly different, and this discrepancy becomes even more pronounced at lower relative
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densities. Such behavior could be accounted through stochastic IA. The main idea to

perform such an IA remains the same, and the parameters are evaluated with some

standard deviation corresponding to the associated noise endowed in measurable

quantities, or generally some errors of different origins present in the model. To this

purpose, Kalman filters look promising and have been already been employed in

material characterization through indentation tests [17], flat jack tests [25], etc. Their

implementation in the present context requires further investigations, and can be the

topic of future research.

The reduced basis model used herein employs controllable training in the zone of

interest. Such scheme could be useful for any complex constitutive model involving an

elevated number of parameters, where the regular grid distribution is not possible, as

previously mentioned. A desirable extension of this strategy would be its investigation in

the context of multi-scale models. It would also be interesting to explore the model

reduction based on proper generalized decomposition as it eliminates the need for

laborious training which is involved when proper orthogonal decomposition is used.

This technique has already been applied in other fields of research [46], but the context

was different and its application to goals pursued in this study requires further

investigations.
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APPENDIX A

EVALUATION OF THE RADIAL

STRESS FROM STRAIN GAUGE

To measure the radial stress at different locations during the compaction test, strain gages

are attached on the outer surface of the die-wall (mold). However, given that the gages

are on the external surface of die-wall, the lateral stress (radial stress) cannot be measured

directly, making it obsolete to calibrate the strain gage.

For the calibration of the strain gage, sample made from rubber (with the same

diameter as the mold) is compacted in a well lubricated mold (to minimize the frictional

effects). It is assumed that for such materials, the Poisson’s ratio is almost equal to 0.5.

From elementary elasticity theory it can be seen that for uniaxial strain compaction, the

relationship between axial and radial stress is given by:

σz =
(1− ν)

ν
σr (A.1)

where, σz and σr are axial and radial stress respectively. Therefore, for rubber (with

Poisson’s ratio assumed to be 0.5), axial stress applied during compaction is equal to the

radial stress that the material exerts on the die-wall, as visualized from figure A.1.
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APPENDIX A. EVALUATION OF THE RADIAL STRESS FROM STRAIN GAUGE

Figure A.1. Schematic representation of strain gages pasted on the die-wall

From the available value of axial stress and Poisson’s ratio, a relationship can be

established such that, for each value of circumferential strain, the corresponding radial

stress is known. The relationship between the circumferential strain and radial stress is

obviously linear, since the mold material made from steel deforms within elastic limits.

Therefore, the calibration factor of the strain gage is calculated as the slope of this plot.

For instance, in the present thesis, the following graph is obtained for strain gage

calibration and the slope (i.e. calibration factor) is found to be 466.6 MPa.
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Figure A.2. Axial stress (= radial stress) vs. circumferential strain for rubber sample

Once the calibration factor is assessed, the measured circumferential strain from the

powder compaction can directly be converted to the radial stress. Obviously, the load used

during the calibration is kept higher than what will be eventually applied on the powder

under consideration. Such a scheme allows to calculate radial stress for any pressing force

up to that limit, since the value of radial stress is known for all possible readings obtained

from the strain gage.

In the current work, the initial height up to which the powder is filled in the mold

is very similar for all the experiments in which the radial stress is recorded. However,

when specimen with relatively different initial heights are subjected to compaction, rubber

samples of different heights should be considered and the calibration factor can then be

calculated as the function of initial height.
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умножавање, дистрибуцију и јавно саопштавање дела, и прераде, ако се наведе 

име аутора на начин одређен од стране аутора или даваоца лиценце и ако се 

прерада дистрибуира под истом или сличном лиценцом. Ова лиценца не 

дозвољава комерцијалну употребу дела и прерада. 

5. Ауторство – без прераде. Дозвољавате умножавање, дистрибуцију и јавно 

саопштавање дела, без промена, преобликовања или употребе дела у свом делу, 

ако се наведе име аутора на начин одређен од стране аутора или даваоца 

лиценце. Ова лиценца дозвољава комерцијалну употребу дела. 

6. Ауторство - делити под истим условима. Дозвољавате умножавање, 
дистрибуцију и јавно саопштавање дела, и прераде, ако се наведе име аутора на 
начин одређен од стране аутора или даваоца лиценце и ако се прерада 
дистрибуира под истом или сличном лиценцом. Ова лиценца дозвољава 
комерцијалну употребу дела и прерада. Слична је софтверским лиценцама, 
односно лиценцама отвореног кода. 
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