%\wirlrsn"@ . . .
SF- S University of Novi Sad) s
y £y
SRk Faculty of Sci = LI &
R T aculty of Sciences N §
N . . 6
ey e Department of Mathematics and Informatics “Hogy O

UNIVERSITY OF NOVI SAD

DOCTORAL DISSERTATION

Metadata-Supported Object-Oriented
Extension of Dynamic Geometry Software

DOKTORSKA DISERTACIJA

Objektno-orijentisano proSirenje softvera za
dinamicku geometriju podrzano metapodacima

Supervisor:

Dr. Milos RADOVANOVIC

Author:
Davorka RADAKOVIC, M.Sc.

Novi Sad, June 2019

https://www.uns.ac.rs/index.php/en/

iii

“No mathematical subject is more relevant than geometry. It lies at the heart of physics,
chemistry, biology, geology and geography, art and architecture. It also lies at the heart of
mathematics, though much of the 20th century the centrality of geometry was obscured by
fashionable abstraction. This is changing now, thanks to computation and computer graphics
which make it possible to reclaim this core without loss of rigor. (Marhorie Senechal, personal

communication)”

Julie Sarama, Douglas H. Clements (2009).
Early Childhood Mathematics Education Research:
Learning Trajectories for Young Children.
Studies in Mathematical Thinking and
Learning Series. Taylor & Francis.

Contents

Contents viii
Abstract ix
Apstrakt xi
Preface xiii
Acknowledgements XV
List of Figures xviii
List of Tables Xix
List of Listings xxi
List of Abbreviations xxiii
I Preliminaries 1
1 Introduction 3
1.1 Metadata o e e e e e 4

1.2 Functional Domain-Specific Languages 5

1.3 DGSExtensibility o o 7
1.3.1 Introducing OO FeaturesIntoDGS 8

14 MainGoals e e 9

1.5 Contributions e 10

1.6 Summary e 10

2 Related Work 11
2.1 Dynamic Geometry Software 11
22 LazyEvaluation 15
23 Metadata e e 17
24 Components e 19
25 DISCUSSION v v vt e e e e e e e e e e e 21

26 SUMMATIY . . . o v v vt e e e e 22

vi

II Implementation

3 Motivation

3.1
3.2
3.3
34

3.5

AttributesinC# L L L
Why Not Use Attributes?
Property Functions vs. Objects with Properties
Dot Notation for Property Access
3.4.1 Introducing Semantic Extensionsinto FLG
3.4.2 Language Composition Considerationsin FLG
3.4.3 Evaluation Optimization.
Summary

4 System Architecture Overview

4.1
4.2
4.3

44

SLGeometry Framework
FLG Grammar Definition
Expressions
43.1 Functions and Visual Functions
432 Constants e
433 ObjectConstants
Summary

5 Implementation Details

51

52
53

54

55

Metadata
51.1 Metadata for Arguments.
51.2 Metadata for Signatures L.
51.3 Metadata for Properties
514 Metadata for Functions and Controls

5141 Namelnfo.

5142 FnInfo o .

5.1.4.3 Constlnfo and ConstObjectInfo
5.1.5 Metadata for User Interactive Controls
5.1.6 Implementation Examples.

5161 ASimpleFunction.

51.6.2 Visual Functionsand Objects
TypeConversions o
Operations e
531 ResultCaching
53.2 Operation Examples
5.3.3 Latevs. Early Operation Binding
53.4 Generalized Binary Operation Algorithm
Lazy Evaluation with Property Activation
5.4.1 Implementation Requirements
54.2 Structural Correspondence
5.4.3 Backing Fields and Accessors
544 Property Evaluators
545 Instance Initialization and Updating
Partial Compilation of Expression Trees

23

25
25
27
28
30
30
32
35
36

37
37
39
42
43
43
44
44

5.5.1 Partial Compilation Implementation
5.6 XML-Based Serialization of Geometrical Constructions
57 Summary e

IIT Validation

6 Subject-Specific Components in DGS
6.1 Motivation
6.2 ComponentsinDGS
6.3 The Country and City Components
6.3.1 TheExperiments
6.3.1.1 Task 1 - Measuring a River’s Length
6.3.1.2 Task 2 — Tracing the Great Explorers” Voyages
6.3.1.3 Task 3 —Tracing One’s Own Travels
6.3.2 Resultsand Comments.
6.4 Sequential Behavior Controllers in SLGeometry
6.4.1 Example1- ArithmeticSum
642 Example2-ASimpleGame
643 Experiment 0
6.43.1 Assignments
644 Resultsand Comments.
6.5 Summary
7 Testing Lazy Evaluation
71 WhytheTriangle?
72 Constructions e
7.3 ExperimentalSetup o oL
74 Results, Analysis and Discussion
74.1 CPU Time Tests for 5 Triangles
742 CPU Time Tests for 100 Evaluations
74.3 Object Count and Memory Tests
74.3.1 Measuring for 9 Properties of Triangle
7432 Measuring for 27 Properties of Triangle
75 Summary e
8 Conclusion and Future Work
81 Conclusion e
82 FutureWork
Bibliography

Prosireni izvod (Extended Abstract in Serbian)

Biography

Biografija (in Serbian)

Key Words Documentation

vii

66
69
70

71

73
74
75
76
76
77
78
78
78
79
80
81
83
83
83
85

101
101
103

105

123

139

141

143

viii

Kljuéna dokumentacijaska informacija 147

X

Abstract

Metadata-Supported Object-Oriented Extension of Dynamic Geometry Software

by Davorka RADAKOVIC, M.Sc.

Nowadays, Dynamic Geometry Software (DGS) is widely accepted as a tool for cre-
ating and presenting visually rich interactive teaching and learning materials, called
dynamic drawings. Dynamic drawings are specified by writing expressions in func-
tional domain-specific languages. Due to wide acceptance of DGS, there has arisen a
need for their extensibility, by adding new semantics and visual objects (visuals). We
have developed a programming framework for the Dynamic Geometry Software,
SLGeometry, with a genericized functional language and corresponding expression
evaluator that act as a framework into which specific semantics is embedded in the
form of code annotated with metadata. The framework transforms an ordinary ex-
pression tree evaluator into an object-oriented one, and provide guidelines and ex-
amples for creation of interactive objects with dynamic properties, which participate
in evaluation optimization at run-time. Whereas other DGS are based on purely
functional expression evaluators, our solution has advantages of being more gen-
eral, easy to implement, and providing a natural way of specifying object properties
in the user interface, minimizing typing and syntax errors.

SLGeometry is implemented in C# on the NET Framework. Although attributes
are a preferred mechanism to provide association of declarative information with
C# code, they have certain restrictions which limit their application to represent-
ing complex structured metadata. By developing a metadata infrastructure which
is independent of attributes, we were able to overcome these limitations. Our so-
lution, presented in this dissertation, provides extensibility to simple and complex
data types, unary and binary operations, type conversions, functions and visuals,
thus enabling developers to seamlessly add new features to SLGeometry by imple-
menting them as C# classes annotated with metadata. It also provides insight into
the way a domain specific functional language of dynamic geometry software can
be genericized and customized for specific needs by extending or restricting the set
of types, operations, type conversions, functions and visuals.

Furthermore, we have conducted experiments with several groups of students
of mathematics and high school pupils, in order to test how our approach compares
to the existing practice. The experimental subjects tested mathematical games using
interactive visual controls (UI controls) and sequential behavior controllers.

Finally, we present a new evaluation algorithm, which was compared to the
usual approach employed in DGS and found to perform well, introducing advan-
tages while maintaining the same level of performance.

Apstrakt

Objektno-orijentisano prosirenje softvera za dinami¢ku geometriju podrzano
metapodacima

mr Davorka RADAKOVIC

U danasnje vreme softver za dinami¢ku geometriju (DGS) je Siroko prihvacen kao
alat za kreiranje i prezentovanje vizuelno bogatih interaktivnih nastavnih mater-
ijala i materijala za samostalno ucenje, nazvanih dinamickim crtezima. Kako je
raslo prihvatanje softvera za dinamicku geometriju, tako je i rasla potreba da se
oni prosiruju, dodajudi im novu semantiku i vizualne objekte. Razvili smo pro-
gramsko okruZenje za softver za dinamic¢ku geometriju, SLGeometry, sa generickim
funkcionalnim jezikom i odgovarajué¢im evaluatorom izraza koji ¢ini okruZenje u
kom su ugradene specificne semantike u obliku koda oznacenog metapodacima.
Ovo okruZenje pretvara uobicajen evaluator stabla izraza u objektno orijentiran, te
daje uputstva i primere za stvaranje interaktivnih objekata sa dinamickim osobi-
nama, koji sudeluju u optimizaciji izvrSenja tokom izvodenja. Dok se drugi DGS-
ovi temelje na ¢isto funkcionalnim evaluatorima izraza, naSe rjeSenje ima prednosti
jer je uopstenije, lako za implementaciju i pruZa prirodan nacin navodenja osobina
objekta u korisni¢ckom interfejsu, minimizirajuéi kucanje i sintaksne greske.

SLGeometry je implementirana u jeziku C# NET Framework-a. lako su atributi
preferiran mehanizam, koji povezuje C# kod sa deklarativnim informacijama, oni
imaju odredena ograni¢enja koja limitiraju njihovu primenu za predstavljanje sloZenih
strukturiranih metapodataka. Razvijanjem infrastrukture metapodataka koja je neza-
visna od atributa, uspeli smo prevladati ta ograni¢enja. NaSe reSenje, predstavljeno
u ovoj disertaciji, pruza prosirivost: jednostavnim i sloZenim vrstama podataka,
unarnim i binarnim operacijama, konverzijama tipova, funkcijama i vizuelnim ob-
jektima, omogucavajuci time programerima da neprimetno dodaju nove osobine u
SLGeometry implementirajudi ih kao C# klase oznacene metapodacima. Takode,
okruZenje pruza uvid na koji se nacin jezik specifican za funkcionalni domen soft-
vera za dinamic¢ku geometriju moZe napraviti generickim i prilagoden specifi¢cnim
potrebama: prosirivanjem ili ograni¢avanjem skupa tipova, operacija, konverzija
tipova, funkcija i vizuelnih elemenata.

Pored toga, sproveli smo nekoliko eksperimenata sa vise grupa studenata matem-
atike i srednjoskolaca, sa ciljem da testiramo kako se na$ pristup moze uporediti sa
postoje¢om praksom. Tokom eksperimenata testirane su matematicke igre koristeci
interaktivne vizualne kontrole (UI kontrole) i kontrolere sekvencijalnog ponasanja.

Na kraju je prikazan i novi algoritam za izracunavanje, koji se pokazao uspesnim
u poredenju sa uobicajenim pristupom koji se koristi u DGS-ima, a opet uvodeci
prednosti dok je zadrZao istu razinu performansi.

xiii

Preface

Ever since the invention of the Jacquard loom’, people have been trying to develop
automata and programs to help them in everyday life. Today, computers are in ev-
eryday use, in all segments of our lives. One of the most important of these segments
is education. Hence, one of the primary purposes of computers is their use in edu-
cation. However, computers are not all that we need for teaching, proper software is
also needed. This is the reason why software for dynamic geometry (DGS) is becom-
ing increasingly more developed over the years. DGS allows the user to manipulate
(‘drag’) the geometric object into different shapes or positions, in that manner being
able to see what is happening with construction. However, DGS is not used only for
teaching geometry, but also other subjects, such as physics, geography, etc.

In time, two shortcomings of the current DGS have surfaced and come to our
attention: DGS are not well suited for universal application, as they mostly contain
geometric objects and those objects carry only a few properties, in order to be light
and efficiently evaluated. Having this in mind, our aim is to develop DGS as a
foundation for experiments in improving the development of teaching materials and
games.

This dissertation presents an novel approach to source code annotations which
contain as metadata complex structural information, allowing the use of custom
value types, in a flexible and a simple way to use, and also, accessible via reflection.
We created a generalized extensible DGS SLGeometry in C# on the .NET Frame-
work, in order to observe the design requirements of such a software and propose a
viable implementation of the extensibility framework based on metadata.

The main components of developed framework are:

e Expression parser;
e Expression evaluator (Engine);
e Graphical surface (GeoCanvas).

The described approach contributes to the SLGeometry framework with crucial
features:

¢ Extensibility with new types, functions and visual objects;

e The unification of objects with their properties and accessing them using dot
notation;

e Enriched structural metadata specification for DGS with optimization and lazy
evaluation mechanisms.

The work in this dissertation is organized in tree parts: preliminaries, implemen-
tation, and validation. The parts are divided into chapters as follows.

Part I - Preliminaries provides the basic concepts and overview of the current
state-of-the-art. Chapter 1 gives a brief introduction presenting the formulation of
the problems that we intend to solve, the main goals in the development of the
framework, as well as an explicit list of contributions of this work. In Chapter 2 we
briefly overview the state-of-the-art concerning some well-known DGS, lazy evalu-
ation, metadata and object-oriented extensions, and use of components.

Thttps:/ /www.computerhope.com /jargon/j/jacquard-loom.htm

xiv

Part II - Implementation presents several motivating examples which highlight
the problems in implementation of attributes and use of DGS with purely functional
languages and gives implementation details of the proposed solution, along with
the system architecture overview. Chapter 3. gives an overview of attributes in .INET
and shows its shortcomings; discusses advantages of objects with properties and dot
notation; introduces semantic extensions and language composition consideration in
a functional domain-specific language (FLG). In Chapter 4, the SLGeometry frame-
work and its architecture are described, as well as FLG language descriptions and
the infrastructure of expression classes. The more detailed implementation repre-
sents our main contribution concerning the metadata-supported object-oriented ex-
tensions of DGS and mechanisms for lazy evaluation of calculated properties. Also,
type conversions, operations with result caching, partial compilation of expression
trees and XML representation of drawings are given in Chapter 5.

Part I1I - Validation deals with the validation of given concepts and mechanisms
which we introduced in last part. A pattern for building mathematical games in
SLGeometry, along with the features of our components are presented in Chap-
ter 6. Furthermore, we conducted several experiments with pupils and students, and
tested our approaches in the class environment. In addition, the experimental ver-
ification which confirms that our proposed metadata infrastructure with lazy eval-
uation is comparable with the functional evaluation scheme is presented in Chap-
ter 7. Experiments were conducted with three different expression tree evaluation
strategies: eager, functional, and lazy evaluation. Finally, Chapter 8 concludes the
dissertation and discusses current and future work.

Relevant papers published during the development of this thesis are following:
Radakovi¢ and Herceg (2010), Radakovi¢, Herceg, and Loberbauer (2010), Herceg
and Radakovi¢ (2011), Herceg, Herceg-Mandi¢, and Radakovi¢ (2012),
Herceg, Radakovi¢, and Herceg (2012), Radakovi¢ and Herceg (2013), Steingartner
et al. (2016), Radakovi¢ and Herceg (2017), Herceg et al. (2019), and Radakovié¢ and
Herceg (2018).

XV

Acknowledgements

I am grateful to all of those with whom I have had the pleasure to work with dur-
ing this long, hard, challenging and amazing journey, with many ups and downs.
This research would not have been possible without the support of my family, su-
pervisor and professors, colleagues and friends. They all have earned my gratitude
for their contribution and inspiration during my doctoral studies.

I would like to give special thanks to my dissertation committee. Each of you
have given of your time, patience, energy, and expertise and I am richer for it.

First and foremost, I would like to express my sincere gratitude to my supervisor
Dr. Milo$ Radovanovi¢, who encouraged me to pursue this degree and who has
mentored me over the last years. I am indebted for his time, insightful comments,
and careful attention to detail, which influenced this dissertation and made it much
better.

Further, I owe a profound gratitude to Dr. Dorde Herceg and his family, for many
hours we had spent together working on this research and writing papers, and many
insightful discussions and suggestions. Also, I have regarded him as my co-mentor.
Similar, my debt of gratitude goes to Dr. Zoran Budimac and Dr. Milan Vidakovi¢
for the friendly support, their input, and a careful reading of this dissertation.

I owe my thanks to the great people, Dr. Valerie Novitzka and Dr. William Stein-
gartner, who hosted me during several CEEPUS network grant researches at KPI,
Technical University of KoSice, Slovakia, and where I have done one part of tests.

My special thanks are also addressed to colleagues Dr. Gordana Raki¢ with sms-
support, Dr. Doni Pracner and Dr. Diana Stoeva with Latex support. My thanks also
go to my colleagues from the Chair of Computer Science and lab mates for listening,
offering me advice, and supporting me through this entire process. Completing
this work would have been all the more difficult were it not for the major source
of support provided by the other members of the Department of Mathematics and
Informatics.

To my friends scattered around the world, thank you for your thoughts, well-
wishes, long talks and walks, e-mails, and being there whenever I needed a friend.

Thanks are also due to the ResearchGate and Mendeley Researcher Network
where I have found many scientific discoveries.

Finally, nobody has been more important to me, in the pursuit of this research,
than the members of my family. Thank you for encouraging me in all of my aspira-
tions and inspiring me to follow my dreams. I am especially grateful to my parents,
my aunt Marija Lavrnja, my brother and his family, grandma Nada and Slobodan,
who supported me emotionally and endlessly. I always knew that you believed in
me and wanted the best for me.

I dedicate this dissertation to my dearly missed mother, Stanka, who taught me
that my job in life was to learn, to be happy and enjoy. She guided me as a person,
supported, encouraged, and most importantly unconditionally loved. I am deeply
indebted to her for all she gave me, how she raised me and how there were no limits
to the things she did for me. Mum, I miss you very much...

xvii

List of Figures

3.1 Parameter value suggestions in the input box in GeoGebra 33
3.2 The Suggestions Bar in Mathematica 33
41 SLGeometry system architecture overview 38
42 Mapping of C# implementations to membersof v 40
43 Syntax diagrams for SymbFunc, Prop and Factor 41
44 Productions Expression, Termand Pow 41
45 Productions Or-, And-andRel-Exp 42
4.6 Productions Expressions and Longldent 42
4.7 Expression classesin SLGeometry 43
51 Constant and function metadata 46
5.2 Metadata for binary and unary operations 58
5.3 Chained activation for the CTriangle.MedianA property 63
5.4 Dependency tree for the CTriangle.Circumcircle property 63
5.5 Result types of various expressions L. 66
5.6 A subset of the compilation infrastructure 67
57 CompiledCILcode 68
5.8 Execution flow illustration of CompileNew method in Plus function . 69
6.1 Straightforward path to the solution 74
6.2 Deviating from the original problem to construct auxiliary visuals . . . 74
6.3 Mainland Italy, drawn by the Country component 76
6.4 Measuring the lengthofariver 77
6.5 Tracing the voyages of the great explorers Magellan and Cook 77
6.6 Tracing a voyage using the Country and City components 77

6.7 Propagation of triggers between components - Arithmetic Sum example 81
6.8 The “guess the midpoint” game in SLGeometry 81

7.1 Single triangle with all 27 properties (A) and an example for n = 40

inSLGeometry (B) o 92
7.2 Comparative graphs of mean values of CPU time for ratio Lazy /Eager

(A) and Lazy/Functional (B) on all configuration (n =5) 93
7.3 Box Plot of results made on Configuration 1: (A) 5 triangles (B) 10 triangles 95
74 Comparative graphs of mean values of CPU time of ratio Lazy/Eager

(A) and Lazy/Functional (B) on all configuration (n = 5,10,20,30,40) 95
7.5 Memory (A) and object (B) comparison for Configuration 1 (9 properties)

7.6 Average memory and object comparison Functional/Lazy for all 27
properties of the triangle o0 L 98

List of Tables

1.1

3.1
3.2
3.3

51
52

6.1
6.2
6.3
6.4
6.5
6.6

7.1

7.2

7.3
7.4

7.5

7.6

7.7

A dynamic drawing, specified by four expressions, explicit and im-
plicit expression input via textand tools

A subset of calculated properties of a triangle
Dot notation transformed into the functional equivalent
Functional vs dot notation in determining the foot of the altitude A . .

Function result type metadatainthe Fnclass
Binary operations applied to atomic values and lists

Percentage of finished tasks,
Sequential behavior controllers and their properties
Daisychaining the components via triggers
Definition of the ‘guess the midpoint'game
Students’ testscores L oo
Pollresults

Constructions used in tests, specified in OO syntax. For dependent
triangles, i =1,...,mk=1i|5j=1i5
Constructions used in tests, specified in Functional syntax. For de-
pendent triangles, i = 1,..,m;k=1i|5j=id5.
Computer configurations used for testing
Multiple Comparisons p values (2-tailed); Results Conf3M50, Inde-
pendent (grouping) variable: Groups Conf3M50 Kruskal-Wallis test:
H(2, N = 30) = 25.82944 p < 0.05 Computer configurations used for
testing
Mean =+ standard deviation values of CPU time on all configurations
(M=05) . . e e
Mean =+ standard deviation values of CPU time on all configurations
(n=5,10,20,30,40)
Average difference between heap object count and memory consump-
tion before and after the test examples are loaded for Lazy, Functional
and Eager testing (Config. 1,9 properties)

Xix

xxi

Listings

3.1
3.2
3.3
34
3.5
3.6
51
52
5.3
54
55
5.6
5.7
5.8
5.9
5.10
5.11
5.12
5.13
5.14
5.15
5.16
5.17
5.18
5.19
5.20
5.21
5.22
5.23
524

5.25
5.26
5.27
6.1
6.2

Accessing attributes with reflection 26
Attribute annotations for the FCircle function 27
The FunctionAttributeclassin C#. 27
The CSegment class annotated with property metadata 29
Table algorithm 31
Metadata specification of arguments for the Table function 31
ArgNamedInfometadata. 47
SignatureBasemetadata 0 0L 48
PropInfometadata 50
Namelnfometadata, 51
FnInfometadata 51
ConstObjectInfometadata 52
UlControlInfometadata 53
Visuallnfometadata. 53
Struct reprezentingaline. o oL 54
Metadata for the Sqrt function 55
Metadata for the Plus function 55
Metadata for the CCircle object constanttype 55
Metadata registration for the FCircle and FCircle3 functions 56
Metadata for the VCircle helperclass 56
Conversion metadata for the Number datatype 57
Explicit conversion methods for the Number datatype 57
Operations for the Number datatype 59
The default late bound binary operation 60
The generalized late bound binary operation 61
Metadata for the CTriangle object datatype 62
Backing fields and accessors for CTriangle 64
Property evaluators for the CTriangle object data type 64
Initialization and updating of the CTriangle object instance 64
Implementation of CanCompile method for different superclasses of

GExpression 67
Implementation of CompileNew method for the Plus function 68
Implementation of CompileNew method for the Sqrt function 68
XML representation of the drawing withonepoint 69
Country component-1Italy 76
Country and City components 78

xxiii

List of Abbreviations

CAI
CAS
CIL
CLR
CoOM
CSCL
CTS
DIMLE
DGS
DLL
DSL
FLG
GC
GCLC
HL
ICT
KRC
PSE
STEM

Computer-Assisted Instruction program

Computer Algebra Systems

Common Intermediate Language

Common Language Runtime

Component Object Model

Computer Supported Collaborative Learning
Common Type System

Dynamic and Interactive Mathematics Learning Environments
Dynamic Geometry Software

Dynamic-Link Library

DomainSpecific Language

Functional Language for Geometry

Garbage Collector

Geometry Constructions - LaTeX Converter

Host Language

Information and Communications Technologies
Kent Recursive Calculator

Problem-Solving Environment

Science, Technology, Engineering and Mathematics

Dedicated to my brave and everlasting beloved Mum,
an amazing, remarkable, obliging, high-minded lady...

Cancer takes too many lives!
It strikes you down when you do not expect. ..

Part1

Preliminaries

Chapter 1

Introduction

Dynamic geometry software (DGS) is widely accepted by teachers around the world
as a tools for creating, demonstrating and disseminating interactive teaching mate-
rials in the form of dynamic drawings at all levels of education, from elementary
school to university. It has made a significant impact on the way geometry is taught
in schools (Abramovich, 2013). The main reason for such enthusiastic reception,
in the era of modern learning (Tankeleviciené, 2004; Targamadzé and Petrauskiené,
2010), is that DGS are intuitive and easy to use. Several good DGS have stood the
test of time: GeoGebra (2019), The Interactive Geometry Software Cinderella (2019), Cabri
(2019), and The Geometer’s Sketchpad (2019).

Creation of geometric drawings, that was once a tedious process, has become
easy and available to anyone with even a modest personal computer. In time, teach-
ers started using DGS to create teaching and learning materials for subjects other
than geometry. Many examples in the subjects of geography (Herceg, Herceg-Mandi¢,
and Radakovi¢, 2012), numerical analysis (Herceg and Herceg, 2009; Mulansky and
Ahnert, 2011), combinatorics, architecture, mechanical engineering etc. can be found,
see for example GeoGebraTube (GeoGebra Materials, 2019).

A typical DGS consists of an evaluation engine and a front end. The evaluation
engine maintains expressions that make up a drawing and evaluates them. The
front end receives user input and displays visual objects (visuals). Interactivity in
DGS stems from a simple principle: as one part of dynamic drawing changes, all
parts that depend on it are recalculated automatically.

Dynamic drawings are defined by expressions that are written in functional domain-
specific languages. Consequently, there was a need for their expandability and ap-
plication in other fields, in addition to the primarily conceived geometry.

Although the use of attributes is a preferred mechanism that allows the associ-
ation of declarative information with C# code, they have certain restrictions which
limit their use in the representation of complex structured metadata. This research
primarily wants to overcome this problem and seeks to develop a metadata infras-
tructure that is independent of attributes and thus overcomes their shortcomings,
focusing on the C# language and the .NET platform.

The new concepts in this research will provide extensibility to simple and com-
plex data types, unary and binary operations, type conversions, functions and visual
objects, thus enabling developers to seamlessly add new features to SLGeometry by
implementing them as C# classes annotated with metadata. One of advantages of
this concept is the introduction of alternatives for .NET attributes, further develop-
ment of metadata specification suitable for the description of complex hierarchical

4 Chapter 1. Introduction

structures and their inter-dependencies, type and operational independent calcula-
tion optimization implemented, and metadata developed as plug-in elements.

In this chapter, we present the formulation of the problems that we intend to
solve, giving the reader a clearer picture of the problems. We present main advan-
tages over the current state-of-the-art. Finally, we note that results presented in the
thesis are based on our previous publications with additional clarifications, and en-
riched with many useful examples.

1.1 Metadata

Metadata and techniques such as metaprogramming, attribute-oriented program-
ming and component-object programming are widely used in last decades (Chli-
pala, 2016; étuikys, Damasevicius, and Ziberkas, 2012; Lilis and Savidis, 2015; Haz-
zard and Bock, 2013). Attribute-oriented programming is a program-level mark-
ing technique that allows developers to declaratively enhance programs through
the use of metadata. More precisely, developers can mark program elements (e.g.
classes, interfaces, methods, fields) with attributes (annotations) to indicate that they
maintain application-specific or domain-specific semantics (Noguera and Pawlak,
2007). Attributes are declarative marks, associated with program elements, to indi-
cate that they maintain application-specific or domain-specific semantics (Schwarz,
2004; MSDN, 2019). The existence of attributes can be checked at runtime and actions
taken depending on their values. Besides providing data which have an effect on the
runtime program behavior, they are used as an indication to developers about the
aim and the behavior of the tagged code. Component software design has experi-
enced enormous benefits from the re-usability point of view (Burikov4, Steingartner,
and Eldojali, 2016; Bose, 2010).

Metadata is data about data in computer science and can be interpreted in differ-
ent ways according to needs. When observed in object-oriented programming, it is
the information about the program structure itself (Guerra, Fernandes, and Fagun-
des Silveira, 2010). Metadata can be used in various scopes: it started with metadata
in public digital libraries (Tarver et al., 2015), pedagogical metadata for learning
objects (LO) (Dagiene, Jevsikova, and Kubilinskiene, 2013; Alvino et al., 2009), meta-
data for ontology description and publication (Dutta, Nandini, and Shahi, 2015),
metadata in social-networks (Aggarwa, 2011; McAuley and Leskovec, 2012), meta-
data in DSL (Kendall, 2016; Mernik, 2013), up to database systems (Risti¢ et al., 2014).
Metadata standards are introduced for simple and generic resource descriptions (The
Metadata Community — Supporting Innovation in Metadata Design, Implementation &
Best Practices, 2019). Most scientific databases consist of datasets with an identical
structure which is associated with rich metadata, i.e. descriptive information about
the content (e.g. genoms metadata describe data about DNA sequencing), and for
their search metadata-aware query languages are used (Pinoli et al., 2019; Guzzi,
2019).

Obviously, a robust metadata specification is required to successfully describe
all current and future members of types, type conversions, operations, functions
and visuals, and enable their integration into a working DGS.

1.2. Functional Domain-Specific Languages 5

Due to design restrictions on attributes in the .NET Framework (Using Attributes
in C#,2019; Alvi, 2002), only a subset of built-in Common Language Runtime (NET
run-time environment, abbreviated CLR) value types are allowed as attribute prop-
erties. Since expressions in SLGeometry are not CLR value types, default values for
function arguments cannot be stored in attributes. Furthermore, complex structural
information, such as constant and function metadata (described in detail in Section
3.2), is also impossible to store in attributes. We have devised another approach to
specifying complex metadata, which is flexible, accessible via reflection and simple
to use.

1.2 Functional Domain-Specific Languages

Dynamic Geometry Software (Narboux, 2007; Botana and Valcarce, 2001; Freixas,
Joan-Arinyo, and Soto-Riera, 2010; Winroth, 1999; Kortenkamp, 1999; GeoGebra,
2019; Cabri, 2019; The Interactive Geometry Software Cinderella, 2019) is software that
enables creation and real-time manipulation of visually rich interactive teaching and
learning materials, called dynamic drawings. Dynamic drawings are specified by
writing expressions in a functional domain-specific language (abbreviated: FLG -
Functional Language for Geometry) and assigning them to named variables. In that
regard, the set of variables can be considered equivalent to the drawing it represents.
The set of types (T), type conversions (C), operations (O), functions (F) and visuals
(V) in the FLG is denoted with T = {T,C,O, F, V}. A DGS consists of an expression
evaluator (Engine) and a front end which displays dynamic drawings on the screen
(GeoCanvas). Visual objects (visuals) are declaratively bound to certain types, and
the DGS takes care of drawing them on the GeoCanvas. If a visual exists that corre-
sponds to the constant type obtained by evaluating a variable, that visual appears on
the screen. Dynamic drawings consist of visual and non-visual objects. Some objects
are dependent on other objects, i.e. their expressions contain variable references. For
example, a line segment is defined by its two endpoints. Whenever an endpoint is
moved, the segment also moves. The Engine can also make use of a Computer Alge-
bra System (CAS) (Ginsburg et al., 1997; Wolfram Mathematica Comparative Analyses -
Computer Algebra Systems, 2019; MathWorks - Computer Algebra System, 2019; Wester,
1999) to manipulate and transform expressions.

A DGS is implemented in a host language (HL) (Chodarev and Kollar, 2016) such
as Java or C#. FLG types, functions and operations, as well as visuals, are written as
HL classes which conform to some pre-established contracts. For example, all func-
tion classes must implement the Eval() method. It is possible to use the DGS directly
from the HL, by programmatically creating expressions and calling the Engine APL
In that sense, the FLG can be considered a language extension of the HL (Mernik,
2013; Erdweg, Giarrusso, and Rendel, 2012), since its classes are compiled with the
unmodified HL compiler. Usually, however, the FLG is used as a standalone lan-
guage inside a dedicated DGS, which provides at least two ways of entering expres-
sions: by textual input through a parser, or by using drawing tools in the graphical
user interface (GUI). From this point on, we shall consider C# as the HL of choice.

Dynamic drawings contain visuals such as geometric shapes and other objects,
and can be conveniently described by a set of named expressions written in a domain

6 Chapter 1. Introduction

TABLE 1.1: A dynamic drawing, specified by four expressions,
explicit and implicit expression input via text and tools

Expression tree Explicit expression Implicit expression
input input in GUI

Point(Number(1), Number(1)) A=(11) O s

Point(Number(3), Number(2)) B = (3,2) k e ==
4 4 7/’7/‘/7;‘7!/\7@741NA5C7L

Segment(ValueOf (A), ValueOf (B))S = Segment(A, B) T

o o 27 |
Midpoint(ValueOf(S)) M = Midpoint(S) : : p

specific functional language, which are stored in variables as shown in Table 1.1.
Dependencies between variables, established by variable references, form directed
acyclic graphs which are traversed during recalculation to maintain the consistency
of the drawing. Each visual is generated by a function which produces a constant
of a specific type that causes the visual to appear on screen. The functions can be
roughly divided into the following categories:

Visual functions which return geometric shapes. For example, Point(2,3) returns
a point constant and Segment(pl, p2), where pl and p2 are points, returns a
segment constant. Other shapes are also created in this way; Geometric oper-
ations, which are applied to geometric shapes and perform constructions. For
example, Bisector(s) returns a line that is a bisector of the segments. Normal(s, p)
and Normal(l, p) calculate and return a line that is a normal through the point
p to the segment s or the line /, respectively;

Property functions which extract or calculate properties of geometric shapes. They
have the form F(v), where v is a constant. The results are usually geometric
objects and numerical values. For example, Midpoint(s) returns a point con-
stant that is a midpoint of the segment s, while Area(p) returns the area of the
polygon p;

Other functions for example, mathematical, logical, string manipulation, vector and
matrix functions.

Our aim is to use SLGeometry as a foundation for experiments in improving the
development of teaching materials and games. Since SLGeometry is under our con-
trol, we are able to modify it, introduce new features, and develop some new princi-
ples of operation. Each Ul control is represented by a single variable in SLGeometry,
and has a number of properties, which control its appearance and behavior. Some
UI controls react to user input, either by mouse or keyboard, and the changes are
propagated to appropriate properties. Further, a special kind of custom components
which we developed are behavior controller components. They act in a sequential
manner, i.e. they have inputs, memory and outputs. With controllers, it is possible
to achieve the most common behavior needed in mathematical games, without the
need for programming.

1.3. DGS Extensibility 7

1.3 DGS Extensibility

In time, two shortcomings of the current DGS have surfaced and come to our atten-
tion.

First, DGS are not well suited for universal application, as they mostly contain
geometric objects and functions that operate on them. Tomiczkova and Lavicka
(2013) support this viewpoint, arguing that the majority of available computer-aided
teaching materials in geometry are oriented towards fundamental problems in ele-
mentary and secondary school mathematics. Authors employed the GeoGebra DGS
(GeoGebra, 2019), supplemented with a professional-grade 3D modeling software
Rhinoceros, to present and solve an array of practical engineering problems. In our
early paper (Herceg, Herceg-Mandi¢, and Radakovi¢, 2012) we successfully applied
GeoGebra to solving geographical problems, but this effort resulted in very complex
dynamic drawings. This is a common occurrence, because many simple geometric
shapes need to be combined to represent complex visual objects. The number of
those objects and their respective variables can quickly become overwhelming for
the user.

Second, geometric objects in DGS carry within them only the minimal necessary
amount of data. Additional properties of objects are calculated by applying separate
functions to those objects. This way, expressions are light and efficiently evaluated.
For example, a constant which represents a linear segment between two points car-
ries only the data for the two points. The midpoint of the segment is calculated
only if needed, by using the Midpoint function. One significant disadvantage of
this approach is function namespace congestion, because Midpoint shares the same
namespace with numerous other functions, although it is limited to a very specific
argument type and purpose. This issue becomes pronounced as more geometric
objects are added to DGS, because each new object type can have many properties,
which all require separate functions to be imported into 7. The other problem af-
fects HL developers of DGS, who have to know the current state and anticipate the
future functions in T and invest additional work to avoid name clashes or provide
overloads.

There are two choices available to developers who wish to extend a DGS with
new features: either try to include as many different visual objects and correspond-
ing functions into a DGS as possible, or provide an extensibility mechanism, such as
plug-ins, and defer the development of new features to plug-in authors. It is evident
in GeoGebra and other DGS that many new functions, visual shapes and other func-
tionalities are added in each new version, for example see Tomiczkové and Lavicka
(2013) or Hall and Chamblee (2013).

Having this in mind, our aim was to create a DGS which would mitigate the
aforementioned problems. We created a generalized extensible DGS SLGeometry in
C# on the .NET Framework, in order to observe the design requirements of such a
software and propose a viable implementation of the extensibility framework based
on metadata.

8 Chapter 1. Introduction

1.3.1 Introducing OO Features Into DGS

Many teachers have gained significant experience with DGS, and the scope and com-
plexity of their teaching materials has increased. A large number of examples in
geometry, analysis, physics, mechanics, geography and other subjects have been de-
veloped. Creating complex drawings from basic geometric shapes, however, can be
inconvenient. In time, developers of DGS have started introducing additional geo-
metric shapes and graphical representations of complex concepts, such as numerical
integration. This has caused some inherent drawbacks of the functional languages
employed in DGS to become obvious. The ever—increasing number of new visuals
requires at least as many new functions. Some visuals have numerous properties
which are of interest to teachers, (see, for example, properties of triangles in Kimber-
ling (2019)). Accessing these properties leads to complex expression compositions
which are difficult to read, contain many parentheses and, due to the functional lan-
guage semantics, are formed in the order opposite from natural one. For the user, it is
difficult to distinguish numerous functions, some of which only apply to a very nar-
row subset of types or even just one type. DGS are written in classical object-oriented
languages, and their functional languages are usually interpreted at run-time. Each
function is implemented as a separate entity, i.e. C# or Java class. For the developer,
maintaining an increasing set of functions, scattered in many unrelated files can be
a tedious task.

The main idea behind this dissertation is to address the above problems by bring-
ing structure to both the syntax of the expressions and to the underlying implemen-
tation of the functional languages used in DGS. This can be accomplished by intro-
ducing object-oriented features, i.e. support for objects with calculated properties
and dot syntax for property access. Our aim is to unify the objects with their proper-
ties, both from the users” and the developers’ point of view. The obvious advantages
of our approach are simpler expression notation (Radakovi¢ and Herceg, 2010) and
natural support for helper mechanisms during input, such as code completion. In a
pedagogical experiment (Radakovi¢ and Herceg, 2013) we demonstrated that creat-
ing dynamic drawings using the object-oriented approach was better adopted by the
students than the functional approach. The benefit for developers is that all proper-
ties of an object can be implemented inside a single class, i.e. one source file, rather
than being scattered through a number of unrelated functions. The global context,
i.e. namespace which contains all available functions, is also freed of a large number
of property functions.

A naturally occurring question is how the added complexity in the evaluation
engine affects performance and memory footprint, since DGS are used on many
low-spec devices such as tablets and phones. In a purely functional DGS, an ob-
ject contains only the necessary properties that describe it, such as coordinates for a
point or endpoints for a segment. In contrast, placing a large number of calculated
properties inside an object can quickly lead to a growth in heap space allocation due
to deep nesting of objects. A sensible approach is that the properties be instantiated
and calculated only if they are referenced. Therefore, it is essential to devise a lazy
evaluation scheme which would provide efficient evaluation of potentially infinite
structures. Object oriented extensions to functional languages and an approach to
function overloading, discussed in Savidis (2006), are, to an extent, applicable to

1.4. Main Goals 9

our work. We also followed ideas for lazy evaluation and path analysis, especially
concerning reducing the evaluation costs, from Bloss, Hudak, and Young (1988).

The concrete implementation of the proposed solution is based on the SLGeom-
etry DGS (Radakovi¢, Herceg, and Loberbauer, 2010; Herceg and Radakovi¢, 2011;
Herceg, Herceg-Mandi¢, and Radakovi¢, 2012; Herceg, Radakovi¢, and Herceg, 2012).
Computational costs and memory consumption were compared against the purely
functional expression evaluation engine. Load tests were performed with dynamic
drawings of increasing complexity. The results demonstrate that the modifications
introduce only a negligible increase in performance cost for simpler constructions,
while the advantage shifts towards the object-oriented engine as the complexity of
the drawings increases.

1.4 Main Goals

The overall subject of the research described in this dissertation is object-oriented
extension of Dynamic Geometry Software supported with metadata and based on an
expression evaluator which supports lazy evaluation of object properties and partial
compilation.

This research focuses on creating a framework with:

1. The unification of objects with their properties;

2. Realization of access to features without the use of special functions;

3. Defining the mechanism for extensibility with new types, functions and visual
objects;

4. Adopting a strategy of verification, evaluation and optimization;

5. Metadata specification for DGS.

To this end, we have identified the following goals:

1. Our aim is to unify the objects with their properties, both from the users” and
the developers” point of view. The obvious advantages of our approach are
simpler expression notation (Radakovi¢ and Herceg, 2010) and natural support
for helper mechanisms during input, such as code completion;

2. Answer on naturally occurring question of how the added complexity in the
evaluation engine affects performance and memory footprint, since DGS are
used on many low-spec devices such as tablets and phones;

3. Objects must be unified with their properties, so that they can be implemented
together in HL, and property access must be realized without the need for
separate functions;

4. An extensibility mechanism, such as plug-ins, must be devised for the DGS,
which would enable adding new types, operations, functions and visuals to T;

5. There must be no differences in treatment of built-in and imported members
of T;

6. Existing algorithms must be applicable to new types, i.e. highly decoupled and
generic;

7. Verification, evaluation and optimization strategies must also be generic;

8. All members of T must contain all necessary metadata to successfully integrate
with the DGS.

10 Chapter 1. Introduction

1.5 Contributions

The main contribution of this dissertation is the proposed system for efficient man-
agement of a set of interactive objects with dynamic properties, which is imple-
mented as an object-oriented extension of a classical expression tree evaluator. Fur-
ther, we proposed an alternative for .NET attributes, that are structurally designed,
and accessible via reflection. Computational efficiency is preserved by the intro-
duced caching scheme, dynamic property activation and lazy property evaluation.
Some of the contributions have already been mentioned throughout previous
discussion. Here we summarize all of the main contributions of this dissertation:

1. An alternative for .NET attributes, suitable for representing complex hierarchi-
cal metadata is described;

2. Anoverview of the SLGeometry DGS and its extensibility framework is given;

3. Pervasive use of metadata annotations enables decoupling of general algo-
rithms from concrete semantics;

4. Further development of the metadata specification, suitable for expressing com-
plex hierarchical structures and dependencies is implemented and discussed;

5. Type- and operation-neutral evaluation optimization schemes are implemented,
and metadata specification is provided for development of new pluggable im-
plementations;

6. An example of a generic functional language is presented, in which semantics
is decoupled from the language implementation and realized in the form of
pluggable types, operations and functions. The example is implemented on
the SLGeometry DGS, as C# classes annotated with our metadata;

7. Introduction of object data types with calculated properties;

8. A new algorithm for lazy property evaluation;

9. For users, dot notation reduces complexity of written expressions;

10. For developers, placement of logically related code inside single units;
11. No performance penalty in practical applications.

1.6 Summary

In this dissertation, we address the shortcomings of attributes, i.e. restrictions which
limit their application to representing complex structured metadata. We proposed
a structural metadata infrastructure which is independent of attributes, flexible, ac-
cessible via reflection and simple to use.

Further, we provide extensibility to simple and complex data types, unary and
binary operations, type conversions, functions and visuals. Developers are empow-
ered to seamlessly add new features to SLGeometry by implementing them as C#
classes annotated with metadata.

The presented architecture and the property activation infrastructure, using lazy
evaluation, result in substantially lower computational complexity compared to tra-
ditional functional solutions.

11

Chapter 2

Related Work

This dissertation is concerned with metadata-supported object-oriented extension
of a Dynamic Geometry Software with lazy evaluation. Thus, related work covers
several areas: the first part covers some well-known DGS, the second part covers
related work in lazy evaluation, the third part covers metadata and object-oriented
extensions and the fourth covers the use of components.

2.1 Dynamic Geometry Software

Since the late 1960s some of mathematics educators supported the role of mathemat-
ical applications, models and modeling in the teaching and learning of mathematics.
This was based on two compatible ideas: a) utilization of mathematics for applica-
tions, models and modeling and b) learning of mathematical concepts through appli-
cations, models and modeling (Niss, 2012). In that time the availability of computers
has changed the nature of the solution process in mathematics and mathematics cur-
riculum. Furthermore, many conferences held panels giving the recommendations
to explore and summarize current thinking about the role of the computer for the
curricula in the four fields of science: mathematics, physics, statistics and chem-
istry. This supported the fact that computer assisted instruction offers unexplored
opportunities for improving mathematics instruction and that the real problem is
the generation of appropriate learning situation coupled to a computer with well
defined educational objectives in view (Underkoffler, 1969).

The use of computers and different software for education constantly interests
scientists who discuss and disseminate school curricula, especially in science and
mathematics.

Kaufmann and Schmalstieg (2002) observe that using computer-aided design
software in high school and university education contributes to better and faster
comprehension of geometry problems than using traditional methods. Drijvers et
al. (2016) emphasize that new demands are imposed on educational systems in or-
der to prepare students for future professions where technology offers opportunities
for teaching and learning; i.e. exploiting these opportunities requires rethinking ed-
ucational paradigms and strategies.

In the early 1990s, Blum and Niss (1991) reviewed applied problem solving, mod-
eling and applications in mathematics education, extended with use of computers,
and its relations to other subjects. In contemporary mathematical modeling, the pro-
cess of translating between the real world and mathematics in both directions is one
of the topics in mathematics education (Blum and Borromeo Ferri, 2009).

12 Chapter 2. Related Work

STEM (science, technology, engineering, and mathematics) education tries to de-
velop tools and processes for teaching which integrate concepts that are usually
taught as separate subjects in different classes and emphasizes the application of
knowledge to real-life situations, enabling teachers to teach mathematics and science
much better and more effectively (Burkhardt, 2018; Gonzalez and Kuenzi, 2012).
Providing early exposure to STEM content can ensure that students will continue
their interest in STEM subjects through middle and high school up to university
level (DeJarnette, 2012). Nowdays, the new goal is to move from STEM to STE-A-M,
i.e. to include arts, design and creation, as one of the successful models of coexis-
tence between art and science education (Lavicza et al., 2018).

The use of computer-aided design software in education, starting from elemen-
tary school all the way to the university, contributes to better and faster comprehen-
sion of geometry problems than using traditional methods like the so called “chalk
and talk”. Sometimes the teachers are willing to learn new tools for teaching geome-
try, but they are not also ready to implement these tools in their teaching in schools.
This appears in particularly in developing countries, mostly in the rural parts where
resources for integration of technology in school education are very limited (Mainali
and Key, 2012; Bhagat and Chang, 2015; Khalil et al., 2018; Han et al., 2013).

Similar problem appears in Serbia as well, where adequate teaching materials
and applications in the Serbian language that teachers can use and display to the
students are lacking. Furthermore, teachers are obliged to have adequate skills
and knowledge to use computers, and there are curricula instructions compatibil-
ity improvement with modern trends also. However, there is an increasing num-
ber of teachers who successfully implement information and communication tech-
nologies (ICT) in their classroom environment (Radovi¢, Marié¢, and Passey, 2019;
Jezdimirovi¢, 2014; Ljajko and Ibro, 2013; Dikovi¢, 2009).

Notwithstanding that the computers are getting more and more into classrooms,
the importance of technology in mathematics is accepted at a rhetorical level, since
the computers are everywhere, but school mathematics has not changed to reflect
this, i.e. the school curriculum still needs to be improved. The use of well known
DGS makes the students play a much more active role than in the traditional learning
(Burkhardt, 2013).

According to Sarama and Clements (2009) geometry is the the most relevant
mathematical subject which lies at the heart of physics, chemistry, biology, geology
and geography, art and architecture. Using the Logo environment they showed that
computer manipulations can help students build on their physical experiences, tying
them tightly to symbolic representations. Also, computer manipulations can encour-
age students to make their knowledge explicit, which helps them build integrated-
concrete knowledge (Sarama and Clements, 2012).

Research and practice in education need to enhance each other through the de-
velopment of a new set of tools for understanding and supporting powerful mathe-
matics classroom instruction as well as instruction across a wide range of disciplines
(Schoenfeld, 2014).

Games, as educational tools, are also used in health care: Maskeliiinas et al.
(2018) propose their serious games related to dementia targeting directly at people

2.1. Dynamic Geometry Software 13

working with dementia (the carers themselves) believing that its use will eventually
improve the quality of life of both patients and caregivers.

Mathematical visualization is the process of forming images (either mentally,
with pencil and paper, or with the aid of technology) and afterwards applying such
images efficiently for mathematical discovery and understanding. Visual thinking
played a dominant role in the thinking of some of great scientists like Faraday, Gal-
ton, Tesla etc. (Shepard, 1978). Computers’ impact on visual reasoning in math-
ematics education is undeniable and learner’s use of visualization through DGS
which facilitates visualization processes has been discussed in the last few decades
(Jezdimirovi¢, 2014).

In the late 1950s, in the first decade of the computer age, Wang (1960) developed
a program on an IBM704 computer that proved 220 theorems in propositional logic
offered by Whitehead and Russell (1910) in the Mathematical Principle. Gelernter
and his co-workers at the IBM Research Center in New York (Gelernter, Hansen, and
Loveland, 1960; Gelernter, 1963) developed a system for Euclidean geometry. This
geometry machine was able to discover proofs for a significant number of interest-
ing theorems within the domain of its ad hoc formal system (comprising theorems
on parallel lines, congruence, and equality and inequality of segments and angles)
using the diagram only to indicate which sub-goals are probably valid.

In 1978 Wen-Tsiin introduced an algebraic method for mechanical proofs of ge-
ometry theorems, known as Wu’s method (Wu, 1978; Wu, 1999), where he explains
how to translate geometrical problems into polynomial equations. He also founded
the School of Mathematics Mechanization and re-studied ancient Chinese mathe-
matics.

Following theorem provers use algebraic style or synthetic style methods: the
area method, an efficient coordinates-free method for a fragment of Euclidean geom-
etry, developed by Chou, Gao, and Zhang (1994); algebraic method which is based
on some elimination procedures proposed by Wang (1993); synthetic proof methods
(Gelernter, 1995); the Grébner Cover algorithm Montes and Wibmer (2014).

It is important to mention that the proof theory has been deeply influenced by
the Haskell Curry and William Howard correspondence between propositions and
types, where each formal proof can be seen as a functional program (i.e. the proofs-
as-programs paradigm) that meets a specification given by the proved formula (i.e.
the formulee-as-types paradigm). It also led to the development of proof assistants
such as Coq, MinLog, Agda (Howard, 1980; The Coq Proof Assistant, 2019; Coquand
and Huet, 1988; Agda, 2019).

In 1963, Sutherland introduced Sketchpad (Sutherland, 1963), where the user
sketches directly on a computer display, as a novel complete graphical user interface.
It can be said that it was the pioneer of human-computer interaction (HCI) and also
the ancestor of modern CAD programs.

The use of mathematical software, starting with Computer Algebra Systems (CAS)
on HP calculators, and continuing with, e.g. Mathematica and Maple, has made sig-
nificant influence in teaching of mathematics. Some researchers use CAS and DGS
for the matematical modeling of a real-life problems as a problem-solving activity

14 Chapter 2. Related Work

that suits the purposes of mathematical learning, which contributes to the under-
standing of known mathematical concepts and establishing interdisciplinary rela-
tionships (Zbiek and Conner, 2006; Aktiimen, Horzum, and Ceylan, 2013).

Along with the development of automatic provers occurred the need for devel-
oping accompanying graphic interfaces which allow interactive manipulation by
mouse dragging and manipulation of mathematical expressions in symbolic form.
Commercial products such as Cabri (Cabri, 2019; Laborde and Capponi, 1994), Cin-
derella (The Interactive Geometry Software Cinderella, 2019) and Geometer’s Sketch-
pad (The Geometer’s Sketchpad, 2019; Jackiw and Finzer, 1993), cover high and mid-
dle school mathematics and physics education through algebra, analysis, geometry,
trigonometry, mechanics and optics, as well as many other subjects. Books, tutorials
and forums contain many teaching materials with presented and solved problems.

In the last few years, besides well-known commercial DGS emerged new free
and open source dynamic geometry systems, some of them having functionality of
computer algebra systems.

The SageMath (Software for Algebra and Geometry Experimentation) project
(Stein, 2019b; Stein, 2012), created by William Stein professor at the University of
Washington, is a viable free open source mathematics software system built out
of nearly 100 existing open-source packages like NumPy, SciPy, matplotlib, Sympy,
Maxima, GAP, FLINT, R. It is an alternative to Magma, MapleTM, Mathematica and
MATLAB, which are closed, i.e. it is not possible to modify or extend them, exactly
opposite to SageMath. Online computing extension is the CoCalc (Collaborative
Calculation in the Cloud) (Stein, 2019a) — online workspace for mathematical calcu-
lation, statistics, data science, document authoring with collaborative environment
and tools for teaching.

GeoGebra (GeoGebra, 2019; GeoGebra Materials, 2019) is a free DGS, created by
Markus Hohenwartner in 2001, which contribute to a more comprehensive set of fea-
tures integrating geometry, algebra, calculus, statistics, graphing, spreadsheets and
3D augmented reality, and it is maintained by an international team of developers.
A large self-sustained community of users helps students and teachers with numer-
ous examples of teaching materials and offers help through online forums. It had
become the leading provider of DGS worldwide as software for teaching and learn-
ing: available in many languages, organizing International GeoGebra institutes (IGI)
which focus on training and maintain on-line support system for teachers, develop
and share workshop resources and classroom materials, conduct and implement re-
search projects in teaching and learning mathematics and other STEM subjects.

Users can create and manipulate geometric constructions in GeoGebra, they dis-
cover conjectures and interactively build formal proofs with the support of Coq, a
system which allows users to construct fully traditional proofs in the same style as
the ones in school (Pham and Bertot, 2012). In the last years GeoGebra was extended
with several automated deduction tools as presented by Botana et al. (2015) along
with the educational scenarios that could be supported by automated reasoning fea-
tures. Both, teachers and students, can benefit from these scenarios.

In the last couple of years, a tremendous number of works has been accumu-
lated on technology use in mathematics education and visual learning of mathemat-
ics. There are thousands of pre-made GeoGebra illustrations that teachers can use in

2.2. Lazy Evaluation 15

their classrooms to motivate and teach with, to help pupils better learn and under-
stand mathematics concepts (Furner and Marinas, 2016). GeoGebra Applets can be
used to visualize the concepts taught in the Calculus course, such as limits, deriva-
tives, integrals, in order to facilitate the teaching and learning, since it is even more
difficult to understand when only static images are used, no matter how good they
are (Caligaris, Schivo, and Romiti, 2015).

GeoGebra can be used with Critical Thinking skills as reflective tools to de-
velop student understanding of probability (Aizikovitsh-Udi and Radakovic, 2012).
There are many researches that investigated students” achievements and analyzed
the contributions and benefits of GeoGebra in teaching mathematics (Hohenwarter
et al., 2009; Reis, 2010; Tatar, 2013; Takaci, Stankov, and Milanovic, 2015). By us-
ing parametrization it is possible to visualize geometric objects, discover and prove
formula correctness, etc. (Pech, 2012).

An interactive environment, joining open source software (Sage, GeoGebra and
InterGeo), a dynamic geometry system and a computer algebra system is presented
in Botana and Abdnades (2014). It provides robust algebraic methods to handle
automatic deduction tasks for a dynamic geometry construction, and it is illustrated
with several examples of loci and envelopes.

GCLC (Janici¢, 2019; Janici¢, 2010; Janicic, Narboux, and Quaresma, 2012) is a
mathematical tool for visualizing geometry, teaching geometry and producing math-
ematical illustrations based on formal descriptions. It was initially built as a tool
for producing LaTeX figures from descriptions of geometric constructions. It also
contains automated theorem provers. It has been integrated as one of the theorem
provers in GeoGebra (Botana et al., 2015).

ArgoTriCS (Automated Reasoning GrOup Triangle Construction Solver) (Marinkovi¢,
2016; Schreck et al., 2016) is a system that automatically solves triangle construction
problems using some background geometrical knowledge.

The common feature of the aforementioned DGS is that dynamic drawings are
specified using the functional approach.

2.2 Lazy Evaluation

In the late 1970s and early 1980s idea of lazy (non-strict) languages appeared as
a response to Scheme (Sussman and Steele Jr, 1975; Sussman and Steele Jr, 1998),
Milner’s meta-language ML (Milner, 1978) and some other strict (call-by-value) lan-
guages. Lazy evaluation, also called call-by-need, is used mostly in functional lan-
guages as an evaluation strategy. The lazy evaluation approach is intuitive: expres-
sions and sub-expressions are evaluated at run-time only as they are needed, and
if so, they should be evaluated only once. This enables infinitely recursive data-
structures to be expressed directly in the language, and allows for improved perfor-
mance in some cases by leaving unnecessary calculations unevaluated (Sinot, 2008;
Peelar, 2016).

According to Hudak et al. (2007) lazy evaluation has been invented indepen-
dently three times:

e The technical report by Friedman and Wise (Friedman and Wise, 1976) intro-
duces the Cons constructor function and redefines five elementary functions

16 Chapter 2. Related Work

presented by McCarthy to postpone evaluation of its arguments, getting it
from a LISP perspective;

e Henderson and Morris (Henderson and Morris, 1976) presented algorithms
that delay the evaluation of parameters and list structures in LISP programs;

e Kent Recursive Calculator (KRC) developed by David Turner (Turner, 1982;
Kent Recursive Calculator, 2019) is a “miniaturised” version of SASL (St An-
drews Static Language), used for teaching functional programming at the Uni-
versity of Kent and Oxford University in the early 1980s.

Subsequently, by the mid-1980s there were a lot of researchers who indepen-
dently designed their own pure lazy languages, intently concerned with both design
and implementation techniques:

e Miranda is the direct successor to KRC, with a non-strict (i.e. “lazy”) semantics
developed by David Turner (Turner, 1985);

e Lazy ML is a strongly typed, statically scoped functional language with lazy
evaluation and an abstract graph manipulation machine, the G-machine by
Johnsson (1984) and Augustsson (1984);

e Orwell, a lazy language developed by Wadler, as a free alternative to Miranda
(Wadler, 1988);

e Id, a non-strict dataflow language developed at MIT by Arvind and Nikhil
(Arvind, Nikhil, and Pingali, 1989; Nikhil, Pingali, and Arvind, 1986), whose
target was the MIT Tagged-Token Dataflow Machine.

As reported by Hudak et al. (2007) at the time Haskell was born, by far the
most mature and widely used non-strict functional language was Miranda by which
Haskell’s design was, therefore, strongly influenced. Laziness was undoubtedly the
single theme that united the various groups that contributed to its design. So, techni-
cally, Haskell as a language with a non-strict semantics and lazy evaluation is simply
one implementation technique for a non-strict language.

By the early 1990s, considering a growing interest in lazy functional program-
ming languages, as Miranda had a well supported implementation, and a nice inter-
active user interface, it was installed and taught at 250 universities (Bird and Wadler,
1988; Joosten, Van Den Berg, and Van Der Hoeven, 1993). Van Den Berg (1995) in his
doctoral thesis addresses some issues on the quality of software with respect to the
programmers where the experimental findings supported the main hypothesis that
programmers perform better on structured Miranda function definitions than on
non-structured definitions.

A class of program schemes for use in programming methodology for lazy func-
tional languages is shown by Gilst and Broek (1995) using a divide and conquer
strategy, dividing problems into sub-problems, which are given by a call graph for
functions. Frost and Karamatos (1993) have shown that the integration of lazy func-
tional programming and attribute grammar paradigms is straightforward.

In functional programming (Backus, 1978; Slodi¢dk and Macko, 2011) lazy evalu-
ation enables the use of powerful structures such as infinitely long lists, but typically
with penalties in execution time compared to some imperative languages. The paper
by Bloss, Hudak, and Young (1988) presents a detailed overview of several optimiza-
tion techniques for thunk evaluation, including path analysis, which are applicable

2.3. Metadata 17

to non-strict functional languages. Ariola et al. (1995) showed equivalence between
the call-by-name and call-by-need evaluator and proved its correctness with respect
to the original lambda calculus, i.e. that the call-by-need theory is a strict sub-theory
of the call-by-name lambda-calculus.

Hughes (1990) emphasizes modularity of a programming language as support to
programmers, by means of decomposing a problem and gluing solutions together
— which is enabled in functional programming languages by higher-order functions
and lazy evaluation. Hughes stressed the need for lazy evaluation as the most pow-
erful tool for modularization in functional programming.

Researchers in the Intel corporation (Seger et al., 2005) designed the Forte veri-
fication environment for data-path-dominated hardware. It uses FL, a full-featured
lazy functional programming language to script proof efforts. FL provides a spec-
ification language for hardware, where the implementation language of the Forte
theorem prover as well as the term language for its higher-order logic are included.

Chang (2013) demonstrates the theoretical and practical feasibility of a semantics-
based refactoring that helps strict programmers manage manual lazy programming.
Developed tool uses laziness analysis to automatically insert delay and force expres-
sions as needed. Barzilay and Clements (2005) stress that usually students have trou-
ble understanding the difference between lazy and strict programming. They used
PLT Scheme’s syntax to add extension of laziness to show students in a program-
ming languages course the difference between strict and lazy languages in isolation,
i.e. students could compare strict and lazy evaluations of the same program text.

Another use of lazy evaluation is implemented in Lazy] (Warth, 2007) — the ex-
tension of the Java programming language where variables with type lazy T are
evaluated with a recipe for their computation. Kiselyov, Peyton-Jones, and Sabry
(2012) proposed simple generators for the pretty-printing problem to complement
or supplant lazy evaluation in stream-preprocessing programs.

Object-oriented extensions to functional languages have been explored in Delta
(Savidis, 2006), Wolfram Mathematica (Maeder, 1993) and many other languages.
Classes and objects are first class citizens in functional languages such as F# (Pod-
wysocki, 2019).

2.3 Metadata

Mechanisms which enable the attachment of arbitrary metadata to portions of a pro-
gram have become more and more common in programming languages. Many au-
thors use attributes for metadata specification. An attribute carries the information
in two ways: its type and the values of its properties.

The specification of meta-information, by using attributes in .INET or annotations
in Java, attached to parts of a program is widely used among programmers. Some
researchers noticed certain shortcomings of existing metadata specification mecha-
nisms, such as validation of the correctness of metadata or re-usability. Even though
there exist code completion abilities of contemporary Integrated Development En-
vironments (IDE) such as Eclipse or Visual Studio, they can not determine if anno-
tations are used in the right place or if there will be some errors at deployment-time
or even at run-time. Some of solutions are presented next.

18 Chapter 2. Related Work

The annotations mechanism in Java attaches custom, structured meta-data to
declarations of classes, fields and methods. It has some limitations because anno-
tations can be attached to declarations and their instantiation can only be resolved
statically. Cazzola and Vacchi (2014) proposed an extension to Java (called @Java)
where they introduced block and expression annotations which allow every annota-
tion to hold dynamically evaluated values.

Noguera and Duchien (2008) observe that the validation of constraints in the use
of annotations requires more engineering support. Thus, they propose a tool that
allows to specify the annotations by adding to their declarations meta-annotations
that define wanted constraints, and then they are validated using a given domain
model at compile time. Eichberg, Schéfer, and Mezini (2005) check the correctness of
the properties of annotated elements, defined with constraints, via a user-extensible
framework.

Cepa and Mezini (2004) check the correctness of using custom attributes in .NET
by providing meta-attributes that define dependency relationships between custom
attributes, i.e. stating that a certain attribute requires or excludes another attribute.

Song and Tilevich (2015) stress that the mainstream metadata formats, such as
annotations in Java, attributes in .NET or XML configuration files, are not sufficiently
expressive to be systematically reused. Annotations ease a program understanding
but they provide no structural or summary information. They present a new for-
mat (PBSE - Pattern Based Structural Expressions) for specifying metadata reuse in
program code, its advantages over attributes are discussed and a translator from
attributes to PBSE is developed.

Plux.NET (Loberbauer et al., 2010; Jahn et al., 2013) is a framework that allows
building of extensible applications consisting of an ultra-thin core using dynamic
plug-and-play composition for .NET. It uses the analogy of slot-extension, where
the slot declares the kind of information a host expects, and extensions provide this
information.

Schult and Polze (2002) have developed tools which allow automatic generation
of proxy classes and a replica management mechanism that deals with crash faults
of objects. They discuss the usage of aspect-oriented programming techniques in
the context of the .NET framework using C# custom attributes for non-functional
component properties. Using a simple calculator as a case study they showed how to
express non-functional component properties without any programming language
extension using attributes.

Berzal et al. (2005) stress the need for mechanisms which allow the representation
and management of fuzziness in the object-oriented data model. They propose a
framework which provides management of imprecision in description (such as age,
name, height, room floor etc.) of objects, i.e. an easy-to-use transparent mechanism
that can be used to develop applications which deal with fuzzy information. The
framework defines a metadata attribute, FuzzyImportance, which is used to indicate
the weight of a property during comparison. In this way the implementation of
fuzzy user-defined classes is easy and can be used without interfering with the usual
object-oriented software development tasks.

Greaves and Singh (2008) use attributes for hardware specification, such as I/O
port declarations, register widths, clocks, etc. They are used by the Kiwi compiler

2.4. Components 19

as input, along with .NET assembly language, producing Verilog output. The im-
plementation is described through examples. Benton, Cardelli, and Fournet (2004)
proposed a join-based syntactic extension of the C# language with modern concur-
rency abstraction for asynchronous programming called Polyphonic C#. They used
OneWay attribute which indicates to the .NET infrastructure that appropriate meth-
ods should be genuinely non-blocking. Using the Dependency attribute, Casero,
Cesarini, and Monga (2003) have developed a tool which extracts attribute-defined
dependencies from components and helps programmers in sub-classing. The tool
shows how far a modification to a method would propagate and prevents unde-
sired behaviors. A programmer can easily see dependencies in a flat fashion (the
set of all members directly or indirectly influenced) or can see all possible paths of
execution toward a given member.

Solutions other than attributes have also been used successfully. In (Windows Pre-
sentation Foundation, 2019) (WPF), component metadata are specified using custom
classes, which are instantiated and assigned to a static field of each annotated class.
This approach enables the use of arbitrary data types, as well metadata discovery
and querying at runtime, which is a foundation for the extensibility of the WPF.

Nosal’, Sulir, and Juhar (2016) examine source code annotations from the view-
point of formal languages, their abstract syntax, concrete syntax, and semantics.
They scrutinize a set of all annotations and their parameters processed by the same
reference implementation, thus showing how pure embedding with annotations can
be used for language unification, language referencing by extension, and language
extension. The paper by Sulir, Nosdl’, and Porubdn (2016) regards an interesting
idea of recording developer’s intentions behind a piece of code, and explores the
correspondence of the mental model of a problem with the actual code, as well as
the benefits for program comprehension and correctness.

Erdweg, Giarrusso, and Rendel (2012) present a classification of language com-
position. This classification and Robot language is also used for case studies by
Mernik (2013) and Chodarev et al. (2014). Mernik uses attribute grammars as a for-
malism for language supported by LISA compiler generator tool, while Chodarev et
al. use abstract syntax supported by the YAjCo parser generator.

A language composition editor Eco (Diekmann and Tratt, 2014) is an excellent
example of an incremental parser with language boxes.

24 Components

According to Heineman and Councill (2001), a software component is a software el-
ement that conforms to a component model and can be independently deployed and
composed without modification, according to a composition standard. Component-
Based Design (CBD) addresses issues related to providing, developing, and inte-
grating such components in order to improve reuse (Bourque and Fairley, 2014).
Component-based software development is associated with a shift from statement-
oriented coding to system building by plugging together components. Reused and
off-the-shelf software components should meet the same security requirements as
new software. In general, reuse of software has obvious advantages,such as reduced

20 Chapter 2. Related Work

development and maintenance costs and a positive impact on software quality (Pree,
1997).

The component technologies that meet these definitions include Java and Enter-
prise Java Beans (introduced by Sun Microsystems), the COM (Component Object
Model), DCOM (Distributed Component Object Model), and .NET components from
Microsoft Corporation, and CORBA (Common Object Request Broker Architecture).
The systems which are developed as component-based products (Bass, Clements,
and Kazman, 2012) are able to take faster advantage of new products and new tech-
nology, significantly reduce time-to-market, increase employee productivity. They
are also more reliable, more changeable and more extensible systems.

Chen et al. (2007) have proposed a model supporting component-based pro-
gramming using processes to model application programs, and glue programs to
build new components from existing ones. Component] (Seco, Silva, and Piriquito,
2008) is a Java-like programming language with the basic idea to be employed as
a glue language for existing components that are afterwards used in standard Java
code. ArchJava (Aldrich, Chambers, and Notkin, 2002) is used for expressing soft-
ware architectural structure, thereby providing the confirmation for implementation
of the specified architecture at every stage of the software life cycle.

The Dream framework, i.e. a domain specific type system for messages and com-
ponents that manage messages is presented by Bidinger et al. (2005). Bruneton et al.
(2004) define a hierarchical component model with sharing, Fractal, that supports an
extensible set of component control capabilities.

As already mentioned in the previous section, Rouvoy and Merle (2006) have
presented an abstract component model as an annotation framework which assem-
bles the basic concepts of the abstract component model. Fabresse, Dony, and Huchard
(2008) propose an extended version of the Simple Component Language (SCL) that
tulfills five requirements: decoupling, adaptability, unplanned connections, encap-
sulation and uniformity, that need to be satisfied to support Component-Oriented
Programming based on an analysis of the state-of-the-art and the limitations of ex-
isting work.

Granstrom (2012) introduces the notion of world map and shows that worlds
and world maps form a category with arbitrary products. The construction of the
category is carried out entirely in type theory and directly implementable in depen-
dently typed programming languages. After replacing the notion of world map with
the standard notion of component, he obtains a rigorous paradigm for component-
based development.

The notion of Abstract Behavior Type (ABT) as a higher-level alternative to Ab-
stract Data Type (ADT) is introduced by Arbab (2005). They propose it as a proper
foundation model for both components and their composition, which encapsulate
data structures behind operations that manipulate them, and hide the details of
those operations as well.

2.5. Discussion 21

2.5 Discussion

Nowadays, software is complex, and development in parts is enabled with the intro-
duction of software components. Many modern programming languages, develop-
ment tools and development methodologies support the development of software
in parts, where different teams cooperate and have different development cycles for
different parts of the final software product.

In the sense of Lakos (1996), components embody a subset of the logical design
that makes sense to exist as an independent, cohesive unit. Classes, functions, enu-
merations and so on are the logical entities that make up these components. We
wanted to introduce this principle into DGS by allowing component development,
independent of the development of DGS itself. These components are included in
DGS at run-time and have the same treatment as first-class citizens in DGS. The nat-
ural extension of this approach is to provide visual components that, beside their
program logic aspects (properties and behavior), also have a graphical representa-
tion. Our components are either interactive visual controls (UI controls) or sequen-
tial behavior controllers. Their use is further demonstrated in Chapter 6.

Visualization in modern teaching is of immense importance. New generations
like to see and feel what they are learning and want to try it themselves. Dynamic
Geometry Software enables these learning concepts and encourages the pupils/stu-
dents autonomy. We can notice that in the given overview of DGS state-of-the-art,
the widely accepted approach for specifying dynamic components is the functional
approach, i.e. object properties are defined with separate functions from those ob-
jects, whilst we introduce OO features and dot notation into DGS.

The use of attributes as mentioned by Loberbauer et al., 2010, Jahn et al., 2013,
Schult and Polze, 2002, Berzal et al., 2005, Greaves and Singh, 2008, Casero, Cesarini,
and Monga, 2003, Benton, Cardelli, and Fournet, 2004 was initially used in SLGeom-
etry, but was found insufficient, as discussed in Chapter 3, and later matured to our
metadata model (Chapter 5) where we followed the idea of structured component
metadata (Windows Presentation Foundation, 2019).

We leaned on the idea presented in Sulir, Nosél’, and Poruban (2016), Nosal’,
Sulir, and Juhéar (2016), providing a way to express correspondence between mathe-
matical definitions of geometric objects’ properties and the code to correctly imple-
ment them in SLGeometry. To implement our metadata model as by Nosal’, Sulir,
and Juhér (2016), we also apply some kind of binding rules, i.e. each annotated part
with metadata targets some program element, while metadata references are used
as with the reflection mechanism and can be used as a plug-ins (Chapter 5). We also
expect that the bindings between metadata and their target elements are meaning-
ful (see Sections 5.4.1 and 5.4.2). Tansey and Tilevich (2008) present their solution
for annotation refactoring and upgrading scenarios to solve the Vendor and Ver-
sion lock-in problems used in annotation-based frameworks. This solution differs
from ours since it makes automatic transition between annotation-based versions of
frameworks, while our framework enables automatic generation of plug-ins based
on metadata from manually annotated code.

Our extensible framework leverages the common Component Object Program-
ming practices. After identifying the core structures, mechanisms and behaviors in

22 Chapter 2. Related Work

a typical DGS, we devised the abstract model of an expression evaluator, and a set of
code annotations (metadata) to provide concrete functionality (Rouvoy and Merle,
2006). Principles of template metaprogramming are employed in SLGeometry to
develop the generic operation meta-algorithm, which supports pluggable operation
implementations depending on data types, see Mulansky and Ahnert (2011) and
references cited therein.

Our findings correspond to those expressed by Guerra and Fernandes (2013),
that is, frameworks bring benefits to software design, such as higher reuse level,
coupling reduction and increase of productivity of developers (Siqueira, Silveira,
and Guerra, 2016).

The introduction of object-oriented features in our system (Section 3.4.2) rep-
resents a step in the direction explored by Mernik (2013), Erdweg, Giarrusso, and
Rendel (2012), Chodarev et al. (2014), while in laying the groundwork for partial
expression compilation we followed the guidelines from Palmer and Smith (2011).

One of the language workbenches that support language composition on the
semantic level is Sugar] (Erdweg et al., 2011), which enables syntax and semantics
extensions of a language via plug-ins. This is similar to our work, where the base
language FLG contains only the basic semantics and generic actions. The semantics
is added via plug-ins. The difference between Sugar] and FLG is that the syntax
of FLG cannot be changed via plug-ins, which is a design limitation. However, in
the designated domain of application, semantic extensibility of FLG is sufficiently
appropriate.

The functions in FLG can be considered as semantic boxes, as they carry within
them arbitrary HL code, which represents action units embedded in FLG (Section
3.4.1). Different developers can implement different functions, and the final user
will be able, by using function composition, to achieve action composition, without
breaking the enclosing functional paradigm of FLG. Our approach to metadata in
DGS serves as a foundation for the development of the editor environment for non-
programming users with the similar aim as presented by Nosal, Porubén, and Sulir
(2017).

Lazy evaluation is still one of the very popular strategies for evaluation, in the
manner of the expression and sub-expression evaluation at run-time only as they
are needed, and only once. Considering our objects with large numbers of proper-
ties, such as the triangle (Section 7.2), we needed to implement lazy evaluation in
our framework. Once an object’s property is denoted for evaluation, a property ac-
tivation mechanism starts the evaluation of required properties, and after they are
all evaluated the given property can be evaluated. This approach is described in
Section 5.4.

2.6 Summary

In this chapter we briefly overview the state-of-the-art concerning some well-known
DGS, lazy evaluation, metadata and object-oriented extensions, and use of compo-
nents. Also, we discussed how our results follow these established principles and
add value to them.

Part 11

Implementation

25

Chapter 3

Motivation

The goal of this chapter is to present several motivating examples which highlight
the problems in implementation and use of DGS with purely functional languages,
and demonstrate how they can be overcome by using our metadata infrastructure in
SLGeometry.

First, we give an overview how attributes in .NET are used. In Section 3.2 we
give the main reason why we could not use attributes anymore for our system, as
it became more complex. Section 3.3 discusses advantages of objects with proper-
ties as an alternative to a large number of property functions, which contributed
to introducing the dot notation into FLG. The last two sections introduce semantic
extensions and give an overview of language composition consideration in FGL.

3.1 Attributes in C#

We can say that an attribute is like an adjective, which gives more information about
some program entity. It is a declarative tag that is used to convey information to run-
time about the behaviors of various program entities like types, classes, methods,
modules, properties, structures, enumerators, assemblies etc. in a program (Using
Attributes in C#, 2019; Writting Custom Attributes, 2019; C# - Attributes, 2019; Alvi,
2002; Agarwal, 2013).

The .NET framework stipulates two types of attribute implementations:

Predefined Attributes All .NET assemblies contain a specified set of metadata that
describes the types and type members defined in the assembly;

Custom Attributes Any additional information that is required can be specified us-
ing custom attributes.

In the NET Framework predefined attributes are: AttributelUsage — describes how
a custom attribute class can be used; Conditional — marks a conditional method whose
execution depends on a specified preprocessing identifier; and Obsolete — marks a
program entity that should not be used.

Attributes have the following properties:

o Attributes add metadata to a program, e.g. information about the types de-
fined in a program;

e One or more attributes can be applied to entire assemblies, modules, or smaller
program elements such as classes and properties;

e Some attributes can be specified more than once for a given entity;

26 Chapter 3. Motivation

o Attributes can accept arguments in the same way as methods and properties;
e The metadata is examined by using reflection.

To create an attribute which has some additional information, we use custom
attributes by defining an attribute class, a class that derives directly or indirectly
from System.Attribute, as in Listing 3.3, which makes identifying attribute definitions
in metadata fast and easy.

An attribute is specified by placing the name of the attribute enclosed in square
brackets (e.g. [NamedArgsSignature(“A”,“r”]), line in Listing 3.2) above the decla-
ration of the entity to which it applies. By convention, all attribute names end with
the word “Attribute” to distinguish them from other items in the .NET libraries.
However, you do not need to specify the attribute suffix when using attributes in
code (e.g. attribute NamedArgsSignature can be used instead of Named ArgsSignature-
Attribute).

Attributes can have parameters, which can be:

Positional Any positional parameters must be specified in a certain order and can-
not be omitted, and they are specified first;

Unnamed Any unnamed parameters used in the attribute are passed to the con-
structor in the order in which they are given;

Named Any named parameters are used as initialization statements after the in-
stance has been constructed, they are optional and can be specified in any or-
der.

The C# specification recommends to use named parameters, because there is
less possibility to become invalidated, while with positional parameters the posi-
tion of the parameters is defined in the constructor. The named parameters can be
assigned to initial values by using their names. The following form describes the at-
tribute specification [attribute(positional — param — list, namedl = valuel, named2 =
value2, ...)]. The target of an attribute is the entity which the attribute applies to. By
default, an attribute applies to the element that it precedes.

After an attribute is associated with the program entity, the attribute can be
queried at run-time using reflection, which provides objects that describe assem-
blies, modules and types (Reflection (C#) (2019), Retrieving Information Stored in At-
tributes (2019), Listing 3.1).

LISTING 3.1: Accessing attributes with reflection

System.Reflection.MemberInfo info = typeof (FCircle);

object[] attributes = info.GetCustomAttributes (true);

for (int i = 0; i < attributes.Length; i ++){
System.Console.WriteLine (attributes[i]);

}

To summarize, attributes are mostly used for:

e Describing component object model properties for classes, methods, and inter-
faces;

¢ Calling unmanaged code;

e Describing assembly in terms of title, version, description, etc.;

3.2. Why Not Use Attributes? 27

Describing which members of a class to serialize for persistence;
Describing how to map between class members and XML nodes for XML seri-

alization;
Describing the security requirements for methods;

Specifying characteristics used to enforce security;

Controlling optimizations by the just-in-time compiler;
Obtaining information about the caller to a method.

3.2 Why Not Use Attributes?

As was seen in the previous section, the use of attributes is multipurpose. In this
section we explain why we needed to propose a new metadata infrastructure when
we encountered insurmountable obstacles.

As an illustration we use a circle. The circle as a geometric object in geometry can
be defined in several ways. One way is defining a center of the circle and a radius.
To define the circle in SLGeometry function FCircle needs the following data: a name
of her call “Circle’and a return type CCircle; arguments data: A —a center of a circle
(a point), r — a radius (a number); a thickness of the circle; signatures: A, r — circle
is defined with a point A and a radius and r — a center of circle is a point (0,0) with
radius r.

The source code in Listing 3.2 shows how custom attributes were used to an-
notate the Circle function in SLGeometry. The metadata required to describe the
function contains the following information:

e Function name and return type;
e Argument names and types, one occurrence for each argument;
¢ Function signatures, one occurrence for each signature.

LISTING 3.2: Attribute annotations for the FCircle function

[Function("Circle", typeof (CCircle))]
[NamedArgument ("A", typeof (CPoint))]
[NamedArgument ("r", typeof (Number))]
[VisualProperty ("Width", typeof (Number))]
[NamedArgsSignature ("A", "r")]
[NamedArgsSignature ((Expr)new CPoint(0,0), "r")]
public class FCircle { }

The FunctionAttribute is presented in Listing 3.3 as an example. It contains the
metadata about the function name and its result type. The Named ArgumentAttribute
and NamedArgsSignatureAttribute are quite similar and thus omitted for brevity.

LI1STING 3.3: The FunctionAttribute class in C#

[AttributeUsage (AttributeTargets.Class)]
public class FunctionAttribute : Attribute{
public FunctionAttribute(string name, Type resultType){
Name = name;
ResultType = resultType;
}
public FunctionAttribute(string name): this(name, null) { }
public string Name { get; private set; }
public Type ResultType { get; private set; }

28 Chapter 3. Motivation

We could use custom attributes to describe all functions needed for any DGS,
but a problem occurs when the function metadata is more complex and has default
values that are not standard .NET types, i.e. Common Type System (CTS) constants.
A special case of the Circle function is defined only with the radius, i.e. the center
is assigned a default value, point (0,0) represented with the CPoint class instance
(the last attribute in Listing 3.2). The NamedArgsSignatureAttribute specified in
this way is accepted by the C# code editor, but it is not possible to use this con-
structor since a compilation error occurs: ‘‘Attribute constructor parameter ’p’
has type ’Expr’, which is not a valid attribute parameter type’’. This be-
havior is by design, as the parameters to attribute constructors are limited to simple
types/literals and arrays of those types (Using Attributes in C#, 2019; Alvi, 2002)
which prevents their use for the annotation of C# classes that comprise T in SLGe-
ometry. Since default values of named arguments are impossible to specify with
attributes, we needed another solution (see Section 5.1 for a detailed discussion).

Another argument against attributes is that they cannot represent structural re-
lationships. In the example in Listing 3.2 the FCircle class is annotated with six at-
tributes which only make sense if observed together. Should any of the six attributes
be omitted, the information carried by the remaining ones would become incorrect
or meaningless. Although attribute validation could be performed at run-time using
reflection, it would only detect errors, not help avoid them in the first place.

Our solution to this problem was to develop custom C# classes to represent meta-
data. The same function, annotated with our metadata classes, is shown in Listing
5.12, Section 5.1. By convention, function metadata is stored in the public static Meta-
data field, which is assigned in the static class constructor. Two important points
must be noted in this example. First, all metadata related to the function is con-
tained within a single FnInfo object, and second, metadata for named arguments is
assigned to static variables so it can be later quickly referenced from the C# code.

With our custom metadata classes, we were able to obtain the following advan-
tages over attributes:

1. Values of non-CLR types are allowed in metadata;

2. Structural relationships are correctly represented;

3. Correctness checks are performed in constructors of metadata classes;

4. The IntelliSense and AutoComplete features of the Visual Studio IDE provide
help to developers while writing metadata.

3.3 Property Functions vs. Objects with Properties

In most DGS, objects are lightweight and carry within them only the mandatory
properties (GeoGebra, 2019; Cabri, 2019; The Interactive Geometry Software Cinderella,
2019). In SLGeometry, objects can have many additional properties. Let us consider
the triangle as a geometric concept. It has three vertex points as mandatory prop-
erties. Besides, it has many additional calculated properties which can be calculated
from the values of mandatory properties by some algorithms. A subset of those
properties is listed in Table 3.1.

If each of the calculated properties was implemented as a separate function, the
number of functions in the global namespace would increase significantly. One must

3.3. Property Functions vs. Objects with Properties 29

TABLE 3.1: A subset of calculated properties of a triangle

Property Type
A,B,C CPoint
Area, Perimeter Number
SideA, SideB, SideC CSegment
AngleA, AngleB, AngleC CAngle
MedianA, MedianB, MedianC CSegment
Centroid, Orthocenter CPoint
AltitudeA, AltitudeB, AltitudeC CSegment
Incircle, Circumcircle CCircle

have in mind that any object type, such as segment, circle, ellipse, polygon etc. can
introduce multiple new properties, each requiring a new function. From the point
of view of a DGS user, this leads to an overwhelming number of functions to choose
from when writing expressions. From the point of view of a DGS developer, care
must be taken when writing new function implementations, to avoid name clashes
and provide correct overloads when a function operates on different types. To mit-
igate these problems, we decided to include calculated properties into object types
in SLGeometry, thus eliminating the need for a separate function for each property.
Instead, the properties are declared in the object type metadata, inside the corre-
sponding C# class. For each property, its name, type, dependencies and property
evaluator delegate are specified. A property evaluator is a method within the class
which calculates the value of the property and stores it into the backing field. The
property infrastructure within the Engine takes care of invoking the delegate when
needed, i.e. only if the property is referenced from within an expression. This way,
only the required properties are calculated.

In Listing 3.4, a fragment of the CSegment object constant type implementation
is presented, which shows how mandatory properties (A, B) and calculated prop-
erties (Length, Midpoint, Bisector) are declared in the metadata. The metadata for
each property contains its name, type and the name of a backing private field, used
to store the property value for easy access. The metadata for calculated properties
contains additional information about property evaluators and dependencies. De-
pendencies are properties which must be calculated before the value of the current
property can be calculated. For example, the Bisector property metadata specifies
that the Midpoint property must be calculated beforehand.

LISTING 3.4: The CSegment class annotated with property metadata

public class CSegment: ConstObject{
// Property metadata
public static ConstObjectInfo Metadata;
public static readonly PropInfo AProperty =

new PropInfo("A", typeof (CPoint), "_a");
public static readonly PropInfo BProperty =
new PropInfo("B", typeof (CPoint), "_b");
public static readonly PropInfo LengthProperty =
new PropInfo("Length", typeof (Number), "_length");

public static readonly PropInfo MidpointProperty =
new PropInfo("Midpoint", typeof (CPoint), CalcMidpoint,
public static readonly PropInfo BisectorProperty =

_midpoint");

new PropInfo("Bisector", typeof(CLine), CalcBisector, "_bisector",
MidpointProperty) ;

30 Chapter 3. Motivation

static CSegment () { // Metadata initialization
Metadata = new ConstObjectInfo(typeof (CSegment), AProperty, BProperty,
MidpointProperty, LengthProperty, BisectorProperty);

}
// Backing private fields
private CPoint _a, _b, _midpoint;

private Number _length;
private CLine _bisector;

3.4 Dot Notation for Property Access

By introducing calculated properties, the need for separate property calculation func-
tions was eliminated from SLGeometry. All property values are extracted from ob-
jects by way of the Property function, with the following syntax:
Property(object,” propertyname”). However, actually using this function during ex-
pression input would produce cumbersome expressions. Therefore, the dot notation
was taken from object-oriented languages and introduced into FLG as an example
of language extension (Mernik, 2013; Erdweg, Giarrusso, and Rendel, 2012). In our
case, the inclusion of this syntactic feature does not restrict any features from the
base language. Furthermore, it is transformed into the functional equivalent during
parsing, thanks to appropriate semantic actions (Mossenbock, 2010), which can be
applied recursively.

Let us consider the following input example where point C = Poinf(2,3) and a
segment D = Segment(C, (0,0)) are defined. Table 3.2 shows how dot notation gets
translated into its functional equivalent during parsing.

TABLE 3.2: Dot notation transformed into the functional equivalent

Input Result
E=CX E = Property(C,”X")
F=D.AX F = Property(Property(D,”A”),”X")

Thanks to the fact that object metadata contains descriptions of the object’s prop-
erties, this feature is a good starting point for the development of code completion
in the expression editor. Also, in the GUI, properties of objects can now be “discov-
ered”by the user, since the system can simply show a list of properties from metadata
for the selected object.

3.4.1 Introducing Semantic Extensions into FLG

Thanks to metadata, arbitrary C# code can be annotated and imported as a function
into SLGeometry, which can significantly expand the domain of application of the
DGS. The Table function demonstrates inclusion of a procedural concept
(for loop, iterative array building) into FLG. The syntax is
Table(expression, iterator, min, max, step) where step has a default value of 1 and can
be omitted. The function returns a list of values obtained by evaluating expression
(expression) when iterator (iterator) takes values from min to max with the given step.
It is assumed that iterator occurs in expression. The function is implemented in C#

3.4. Dot Notation for Property Access 31

and executes the following procedural algorithm, presented in C#-like pseudo-code
(Listing 3.5):

LISTING 3.5: Table algorithm

list = { }

for (int i = min; i<=max; i+=step){
tempExpr = replace iterator with i in expression
tempResult = evaluate tempExpr
append tempResult to list

}

return list;

For example, the expression Table(Point(i,i*2),i,1,4) returns the list of points
{(1,1),(2,4),(3,9), (4,16) }. For simplicity, we shall use the notation Point(x,y) and
(x,y) interchangeably.

The expression argument requires non-standard evaluation order, because the
iterator argument is an identifier, which should remain unevaluated and replaced
with a concrete integer value in each cycle of the for loop. Thus it is marked with the
ArgNamedSymbollnfo metadata type (Listing 3.6).

It should be noted that the Table function does not break the functional nature
of the FLG, as it returns a single list as a result for each evaluation, with a concrete
set of arguments. There are no side-effects, because all procedural code and local
variables are confined to the internal implementation of Table. In this regard, we
consider the semantics within the Table function as a “semantic box” within the
FLG, a term somewhat analogous to the language box (Diekmann and Tratt, 2014),
since both are imported as plug-ins.

The metadata specifies two signatures, one without the step argument and one
with it. If the first signature is used, the argument is assigned the default value of
1, specified in the argument metadata. The example of the Table function demon-
strates an extension of the dynamic semantics of the language, which is immersed in
the existing syntax without artifacts, that is, we obtain procedural behavior without
breaking the functional paradigm of the language.

LISTING 3.6: Metadata specification of arguments for the Table
function

public class Table : Fn {
public static readonly ArgNamedInfo ExpressionProperty =
new ArgNamedInfo ("Expression", typeof (GExpression));
public static readonly ArgNamedInfo IteratorProperty =
new ArgNamedSymbolInfo("Iterator", ExpressionProperty);
public static readonly ArgNamedInfo MinProperty =
new ArgNamedInfo("Min", typeof (Number));
public static readonly ArgNamedInfo MaxProperty =
new ArgNamedInfo ("Max", typeof (Number));
public static readonly ArgNamedInfo StepProperty =
new ArgNamedInfo("Step", typeof (Number), false, new Number (1));
static Table () {
Metadata = new FnInfo("Table", typeof (CList),
new ArgNamedInfo[] {ExpressionProperty, IteratorProperty,
MinProperty, MaxProperty, StepProperty
1,
new stringl[] {"Expression,Iterator,Min,Max",
"Expression,Iterator ,Min,Max,Step"

1

32 Chapter 3. Motivation

3.4.2 Language Composition Considerations in FLG

Domain-specific languages (DSLs) provide abstraction over the concrete realization
of domain concepts, i.e. enable programmers to think about the components and
their relations without delving too deep into unnecessary detail (Erdweg, Giarrusso,
and Rendel, 2012). Since each application domain provides a separate DSL, there is
a need to compose them together if a project covers several domains. Erdweg, Giar-
russo, and Rendel (2012) propose a classification of language composition: language
extension, language restriction (it is also subsumed in language extension), language
unification, self-extension and extension composition.

In language extensions (<) a base language is extended or restricted with a new
language without been modified (e.g. Java before support for generics and after).
Language unification (&) denotes two equally dominant and standalone languages
that are connected without modification, using some glue code (e.g. HTML and
JavaScript). Self-extension (<—) does not change the language description, i.e. it is im-
plemented as pure language embedding (e.g. the embedding of XML into Java using
JDOM). Extension composition combines all previously described types to produce
composition of several language extensions.

Using a simple language for controlling robot movements Mernik (2013) pro-
vides a comprehensive discussion of language composition terminology in a case
study of his object-oriented language composition framework in the LISA tool. The
same Robot language is used by Chodarev et al. (2014) to demonstrate all types of
composition using language description tool YAJCo, where language notion defini-
tion is separated from the semantics definition.

In our case we presented several examples of language composition:

1. FLGis a self-extension of C#, as expressions can be instantiated and SLGeome-
try Engine API invoked directly from the C# code. This is not a preferred way
of using FLG, however;

2. Dot notation for property access is a syntax extension of FLG, Section 3.4,

3. Semantic language extension of FLG by importing functions (Chapter 4), op-
erations (Section 5.3) and types (Section 5.2). The example of Table function
demonstrates an extension of the dynamic semantics of the language, where
we obtain procedural behavior without breaking the functional paradigm of
the language (see Section 3.4.1),

In practical application of SLGeometry, a C# developer may develop the geo-
graphic map data type CMap, which contains information pertinent to a country
on a map, a Map(countryname) function, as well as a corresponding visual, VMap,
which actually draws the map on GeoCanvas. The developer must annotate the
classes with metadata and compile them into a plug-in (DLL) file. Let us note that
many properties of a country map, such as population, cities, rivers, mountains,
roads etc. can be implemented as object constant properties inside a single C# class.
This way, the developer captures the information, actions and visuals which repre-
sent a certain domain (i.e. a teaching subject).

A teacher (non-programming user) can import the metadata-annotated DLL into
SLGeometry and immediately use one or more instances of the geographic map in

3.4. Dot Notation for Property Access 33

Midpoint[=<Segment=)
Midpoint{ =Conic=)
Midpoint(=Interval=)
Midpoint(=Paoint=, =Paint=)

Input:

FIGURE 3.1: Parameter value suggestions in the input box in
GeoGebra

mi- a={{2, 1}, {4,106}, {19, 77}}
oar= {2, 1}, {4, 10}, {19, 77}}

Assuming a tally | Use as a matrix or & generic list of pairs instead

tally barchart |~ sort by count most frequent element |~ transpose more... E

FIGURE 3.2: The Suggestions Bar in Mathematica

dynamic drawings. In general, save for a few of mandatory functions such as Val-
ueOf, Property and generic operations, SLGeometry can be customized by import-
ing new members into T, or removing some of existing ones.

We refer to the dynamic geometry software, based on functional languages, as
"functional” or ’classical’ DGS throughout this dissertation. The classical DGS have
certain drawbacks which stem from the nature of their underlying functional lan-
guages. Textual input can be difficult. In Steketee (2010) it is argued that using
textual input and a functional language to create a geometric drawing can be con-
fusing and error-prone. This is mainly due to the following reasons: the long list
of functions is difficult to remember, the command line fails to inform the user of
possible choices, and the rigid syntax of commands results in errors. Some of these
issues have been addressed in different ways. For example, GeoGebra shows a code
completion popup when the user starts typing into the input box (Figure 3.1).

An interesting feature is used in the functional language of Mathematica
(Figure 3.2). When a result is displayed, its structure is analyzed, and several func-
tions which can be applied to it are offered in the Suggestions Bar. There is no guar-
antee that the offered functions are what the user needs, so she can change Mathe-
matica’s assumptions by clicking "Use as a matrix or a generic list of pairs instead",
and get another list of suggested functions.

A DGS based on an object-oriented language has significant advantages in this
regard. The dot syntax is cleaner and free of the clutter caused by parentheses. It
is also a natural way of expressing structural relationships in object-oriented lan-
guages. The input editor can recognize the type of the object being entered, read
its properties from metadata and show them as suggestions. For example, when a
user types in an expression that evaluates to a triangle, its properties can be shown
in a code-completion popup. This approach also applies to the GUI paradigm. For
this approach to work, object constants must have their properties specified in the
metadata.

Functional notation can be counterintuitive. Using function composition to per-
form constructions can be difficult for users, because functions are specified in the

34 Chapter 3. Motivation

reverse order from the construction steps. Moreover, the functional approach to con-
structions only reflects how the construction is performed, but does not reveal its
meaning or name. Function composition also tends to produce expressions which
have many parentheses and are difficult to manage. On the other hand, by using an
object-oriented language with dot notation, simpler expressions are obtained.

Let us observe a textbook exercise in Table 3.3: In a triangle ABC, to obtain the
foot of the altitude from vertex A, first create a perpendicular from A on the side
[BC| and then find the intersection D of the perpendicular with the line through B
and C. The solution in a functional language strictly follows the construction steps,
albeit in reverse order. The dot notation in an object-oriented language simply leads
the user through the properties of a triangle, until the foot B of the altitude from
vertex A is found. This approach is simpler to write, and was preferred by students
in our tests. Note that the T.AltitudeA is a segment with two endpoints, A and
B, which are different from the free points A, B and C. The object-oriented DGS
hides the construction steps from the user, but it can still implement exactly the
same functions as the functional DGS, and offer the user a choice between using the
purely functional approach and the object-oriented one.

TABLE 3.3: Functional vs dot notation in determining the foot of the

altitude A
Functional notation Dot notation
T = Polygon(A,B,C) T = Triangle(A, B,C)
D = Intersect(Line(B, C), PerpendicularLine(A, a)) D = T.AltitudeA.B
A
21 b 3
6 1
C 2
11 1
a 1
0 . : ® 1 2 3
0 1 2

For this approach to work, object constants must have a mechanism that calcu-
lates all their properties, based on the state of the object. Implementing new shapes
and their properties saturates the global context. As the scope of a DGS expands, the
developers are adding new data types and functions which operate on them. Nu-
merous properties of many geometric objects, such as triangles (Kimberling, 2019),
polygons, curves, conics etc. are of interest to teachers, but implementing them as
separate functions quickly saturates the global context. Namely, as the number of
distinctly named functions and their type polymorphic implementations increases,
the user has to memorize or look up a large number of function names when dealing
with objects that have many properties. For a developer, maintaining a large number
of functions, some of which target only very specific argument types, can become a
tedious task. This problem can be overcome by introducing support for objects with
calculated properties into the evaluation engine, and dot notation into the syntax of
the language.

3.4. Dot Notation for Property Access 35

3.4.3 Evaluation Optimization

In a functional language, if an expression references a property of an object, it does
so by way of a property function. When two distinct references are created, the
property function is written and evaluated twice. The redundant evaluation can be
avoided by assigning the property function to a variable, as a new expression, and
then referencing that variable. In the proposed object-oriented language, property
references are tracked by the engine, and referenced properties activated only when
needed. The activated properties are calculated only once, regardless of the number
of references. Pure functional languages are efficient to evaluate and their expression
evaluators can be simple. On the other hand, object support and dot notation pro-
vide benefits both to the users and developers, but with the penalty of more complex
evaluation algorithms and the possibly increased cost in memory and performance.
These points can be summarized as follows:

1. Pure functional approach

e Geometric objects contain the minimal number of mandatory properties;

e Efficient evaluation;

e To obtain additional properties of objects, new specific functions must
be implemented, which co-exist in the same namespace and increase the
number of names available to users, which can be confusing;

¢ In the case of two different objects having the same named property, two
specific implementations of a function must be created, which only differ
in argument types;

e Deep property referencing is possible via function composition, but prop-
erties are chained backwards and the syntax produces expressions con-
taining lots of parentheses;

e Dependencies are established by using variable references.

2. Object-oriented approach

e Geometric objects can contain additional properties, besides the manda-
tory ones;

e Properties are referenced by using the dot syntax, and property names
exist only in the domain of objects they belong to;

o Different object types can have same named properties, with separate im-
plementations;

e Property activation must be employed to instantiate only the referenced
properties;

e Lazy evaluation must be used;

e Deep property referencing is possible via the dot notation, in the natural
order;

e Dependencies are established by using variable and property references.

36 Chapter 3. Motivation

3.5 Summary

Main motivation for development of the data structure suitable to express non-CLR
types in metadata, represented in structural relationships, is to overcome the short-
comings of existing metadata specification mechanisms. This kind of representation
of metadata and its structure enable all metadata to be contained within one meta-
data object, for which correctness is checked in the constructors of metadata classes,
while data structures are suitable for expressing complex property dependencies.

In SLGeometry, objects are given with all properties, not only the mandatory
one as can be seen in most DGS. In this way, the number of additional functions is
reduced to a minimum. This also empowers the dot notation like in object-oriented
languages.

Furthermore, it is easy to implement semantic extension into FLG, due to straight-
forward import of arbitrary C# code using our metadata structure. In addition, all
this facilitates the syntax extension of FLG and semantic language extension of FLG
by importing functions, operations and types.

Finally, we present on-demand property evaluation in the following way: each
time when a set of expressions is changed, there is a need to re-evaluate the expres-
sions; property references are tracked by the engine, and referenced properties are
activated only when needed, so lazy property evaluation is implemented. The ac-
tivated properties are calculated only once, regardless of the number of references.
The corresponding algorithm is given in Section 5.4.

37

Chapter 4

System Architecture Overview

In this chapter we describe our SLGeometry framework for dynamic geometry, the
central contribution of this dissertation. Section 4.1 describes the architecture, and
includes a brief overview of SLGeometry components. Section 4.2
presents the language description for the functional domain-specific language (FLG).
Dynamic drawings in SLGeometry are specified by writing expressions in FLG and
assigning them to named variables. Structure T = {T,C,O, F,V} consists of the set
of types (T), type conversions (C), operations (O), functions (F) and visuals (V) in
the FLG.

The last section describes expressions, which are made from atomic values, ob-
jects, lists and functions.

4.1 SLGeometry Framework

The SLGeometry framework is complex dynamic geometry software, written in C#
on the .NET platform. The source code consists of more than 200 .cs files repre-
senting more than 16500 lines of code. Implementation details for the classes which
create objects on the screen are given in Section 5.1.6. SLGeometry can be used for
teaching different subjects besides geometry, i.e. mathematics, such as geography.
Shapes on screen (GeoCanvas) are represented by expressions, which can depend
on other expressions. The result is interactivity — when, for example, the user moves
one point, everything connected to that point also moves. In this way, the user can
create and manipulate geometric constructions. In Chapter 6 we show some of our
tests with students and pupils. The framework extensible, therefore software devel-
opers can design new functions following the design requirements based on meta-
data and easily extend the software with new objects.

SLGeometry follows the motivation and ideas given in Chapter 3 and consists
of:

Specifications for Types, Functions and Visual elements;
CAS Engine;
Graphical surface;

Extensibility infrastructure;
JIT compilation subsystem;
Expression parser;
Interactive components.

38 Chapter 4. System Architecture Overview

The main components are: the parser, the expression evaluator (Engine) and the
graphical surface (GeoCanvas) (Figure 4.1). The Engine maintains a set of expres-
sions, stored in named variables, which represent the elements of a dynamic draw-
ing. GeoCanvas displays geometric shapes and UI controls, and responds to user
interaction.

When the program is started, the Engine initializes the variable storage, name
registration storage, operations storage and conversion storage, and scans assem-
blies and registers the built-in functions using reflection. The name registration stor-
age contains the function factory and function metadata management, i.e. all func-
tions, types, Ul controls, constants and constant objects are registered there. Regis-
tration of visuals is initiated in GeoCanvas. The visual registration holds forward
type mappings, e.g. CPoint — V Point and reverse type mappings, e.g. V Point —
CPoint. All these classes can be imported and registrated via external DLLs.

The user can interact with the system in two ways: by writing text input or
using the mouse and moving objects along the screen. Textual input is processed
by the parser which uses the expression factory to convert expression trees from
SLGParserTypes classes into GExpression derived objects. We introduced SLGParser-
Types classes to store the result of parsing, where the name of the variable to be
assigned to and its value are kept. Further, it also holds the type of the result, i.e.
whether the variable gets the value, a property of an object needs to be assigned,
the value is deleted, the property is deleted, or just expression is parsed without the
variable name.

All evaluation is placed in the Engine, and the Engine listens to the GeoCanvas
events and recalculates all needed properties.

N

Visual

| registrations
\ -

CAS Engine

|
|
Interaction GeoCanvas listen :
~ N | External DLL
Text input (: . |
t Variable Evaluation
X Input parser stores Ly |
variables storage core | /S
- e - ——{ Visuals ‘
N v
(Type h
uses e N
conversion < —import—— { Type. ‘
. . {_conversions)
registrations —
N)
. (Function (
Expression factory —uses L registrations < —import——{ Functions
\
) .

=

< -
Operation (R

'.J R <——import——{ Operation ‘
registrations | L p,

s

T R
ype) W
- tr—= T
registrations % mpor L ypes)
S/

FIGURE 4.1: SLGeometry system architecture overview

Hence, dynamic drawings are created by constructing expressions and assigning
them to variables in the Engine. The Engine evaluates the variables. If the evaluation
result of a variable corresponds to a visual type registered with the GeoCanvas, the
visual is created and shown on the GeoCanvas. In this way, a one-to-one mapping
is established between a variable and a visual. Dependencies between variables are

4.2. FLG Grammar Definition 39

established by using variable references within expressions. A change in one vari-
able triggers recursive recalculation of all dependent variables. Since the variables
are bound to visuals on the GeoCanvas, the user can change a variable by interacting
with the visual. All dependent variables are then recalculated and their correspond-
ing visuals on the GeoCanvas are updated.

FLG is type-, operation- and function- agnostic, i.e. it only contains generic al-
gorithms, while all types, operations, and functions are imported from metadata-
annotated C# classes (Figure 4.1, Figure 4.2). Visuals and type conversions are im-
ported into the GeoCanvas, also as metadata-annotated C# classes. Using reflection,
SLGeometry checks for existence of static fields containing metadata in all imported
classes, and registers them into 7, i.e. FLG set of types (T), type conversions (C),
operations (O), functions (F) and visuals (V) (Figure 4.1). This makes SLGeometry
adaptable for various purposes, beyond the domain of computer geometry.

FLG recognizes the following constructs:

1. Constants of simple types, such as numbers, logical values and strings, that
appear as literals in expressions;

2. Functions with or without arguments;

3. Variable references, i.e. variable names that appear in expressions. Variable
names are replaced with the ValueO f("name”) function by the parser;

4. Operators for the usual operations: addition, subtraction, multiplication, divi-
sion and modulus. They are replaced with appropriate functions by the parser;

5. Variable assignment in the form v = expression which, strictly speaking, is not
a part of the language. Itis interpreted by the Engine and cannot appear within
expressions;

6. Object constants with mandatory and calculated properties, which appear as
results of function evaluation and cannot be entered manually;

7. Dot notation for property access. Itis replaced with the Property(object, "name”)
function by the parser;

8. Property assignment in the form v.property = expression which, strictly speak-
ing, is not a part of the language. It is interpreted by the engine as visual prop-
erty assignment and cannot appear within expressions.

Compared to other mainstream DGS, 6, 7 and 8 are new features which we intro-
duced in SLGeometry. Visual properties are of particular importance, since they can
be bound to FLG expressions, which makes visual properties dynamic.

4.2 FLG Grammar Definition

In this section we present the language description for the FLG, i.e. its syntax and
semantics specifications.

Attribute grammars were introduced by Knuth Knuth (1968); Knuth (1971) as
a tool for describing and implementing the static semantics of programming lan-
guages. An attribute grammar is a context-free grammar, each production of which
is augmented with a set of semantic rules. Each semantic rule states how the value
of an attribute associated with a syntactic construct in the production is derived by

40 Chapter 4. System Architecture Overview

SLGeometry

FLG Const-derived C# classes

— Metadata
Atomic constants /

Object constants /

ConstObject-derived C# classes

| — Metadata

Operations < Op-derived C# classes
— Metadata
Functions
Fn-derived C# classes
™~ Metadata
C# CLR Types
.NET Runtime

FIGURE 4.2: Mapping of C# implementations to members of T

applying a semantic function to values of attributes associated with other syntactic
constructs in the production.

The production rules are shown in Figures 4.3 - 4.6. The productions of the syn-
tax of the SLGeometry language are described with the compiler description lan-
guage Cocol/R (Mossenbock, 2010) which is written in Extended Backus-Naur Form
(EBNF).

The vocabulary of the language (lexical specification) consists of identifiers, num-
bers, strings, operators and comments. Blanks, line feeds, carriage returns and tabs
are ignored. All statements are terminated with new line. The syntax of a termi-
nal symbol is presented by a regular EBNF expression. Identifiers start with letter
or special characters (“$” and “_") and contain letters, digits and special characters.
Numbers are sequences of digits with usual decimal interpretation and they repre-
sent NumberConstants. StringConstants are sequences of arbitrary characters exclud-
ing the quotation mark, or a single quotation mark, enclosed by a pair of quotation
marks or single quotation marks. LogicalConstants are treated as a predefined enu-
meration type with elements ‘false” and "true’. Attribute specifications (Knuth, 1968)
carry semantic information from leaves up to the root of a derivation tree.

Factor can be NumberConstants, StringConstants, LogicalConstants, SymbFunc, a se-
quence of expressions (Expression) separated by comma, enclosed in a pair of paren-
theses or arguments Arguments enclosed in a pair of braces, e.g. A = true,B =
A,C = Point(A,5 + B) (Figure 4.3). Prop denotes Factor followed by zero, one or
more dots with property names. SymbFunc represents a function where the iden-
tifier refers to the name of the function whose arguments are enclosed in a pair of
parentheses.

Pow expressions represents raising the Prop to a power (") of another Prop (Fig-
ure 4.4). Term consists of one or more Pow which are separated with multiplying
operators (", ’/’, '%’), e.g. A/2. Expression (Expression) is built from one or more

4.2. FLG Grammar Definition 41

symbFunc —-{ identifier]—F—I e]——[arqm-nts]——l "y ‘j——

prop H identifier]—l—j—v

factor — symbFunc

= numConst
= logicalConst Ir
—"‘l stringConst

g W g —— HrL.; o p— g_ﬂ -

—i-l |—l-[a:rqucmam:.s

FIGURE 4.3: Syntax diagrams for SymbFunc, Prop and Factor

expression —l——l (4, "='1 }

o~ e

FIGURE 4.4: Productions Expression, Term and Pow

Term, where the first term has an optional sign, and they mutually represent addition
('+’) or subtraction ('-'), e.g. —6 + A.

RelExp denotes two expressions (Expression) separated by relational operators
(<, <=, ">, >=",1=" ==") (e.g. A < C.X). It can also consist of only one Expres-
sion. One or two AndExp separated by an or sign (’[|), create OrExp, whilst analo-
gously RelExp separated by an and sign ('&&’) constitute AndExp (Figure 4.5). They
both form the basis for logical expressions (e.g. D||E, D&&E). Zero, one or more Or-
Exp separated with comma sign (*,") represent function arguments (Arguments), e.g.
Point(2,3).

The long identifier (Longldent, Figure 4.6) consists of an identifier or two identi-
fiers separated by a dot (".”). The first case is the variable name (e.g. A), while the
other is a variable with its property (e.g. C.X). Although properties can be chained
(explained in Section 5.4.2) (e.g. C.X yields 2 and D.A.Y yields 3), assignment is only
allowed to the properties at the first level (e.g. C.X = 5is allowed, while D.A.X =5
is not). This behavior stems from the principle of operation of DGS (explained in
Chapter 1).

The starting input of our language is defined with Expressions (Figure 4.6). Ex-
pressions is an assignment expression in the formal or informal way. Formal assign-
ment is represented by an expression consisting of a left-hand side and a right-hand

42 Chapter 4. System Architecture Overview

orExp andExp i |—"[andExp

andExp "&&" l—p[r.lExp]—fP-
relExp —"'l eaxpression :

< | { expression |—j=
'<='|—={ expression |—=
'>' |——m={ expression |—=
'>='|—={ expression |—=
'=='|—={ expression |—=
"1='|—={ expression }—=

Lot

FIGURE 4.5: Productions Or-, And- and Rel-Exp

expressions longident]—"'I fut : : : ’

orExp

longident —#{ identifier | l I { identifier]—1——-

FIGURE 4.6: Productions Expressions and Longldent

side which are separated by an equals sign. It can present a special assignment which
clears a value of some variable in the form “longindent = .” (e.g. A = .). Otherwise,
the variable is assigned the value of an OrExp (e.g. B = 3,C = Point(2,3),D =
Segment(C, (0,0))). If the expression is not formal assignment, i.e. there is no vari-
able to which the expression is assigned to, SLGeometry automatically transforms it
to an informal assignment to the next available name (e.g. B 4 2 is transformed to
E = B + 2, because the E is next available letter).

4.3 Expressions

Expressions are built from atomic values, objects, lists and functions. GExpression is
the base class for all expressions. Simple data types and errors are derived from the
Const and CLRConst<T> classes, while object data types derive from the ConstOb-
ject class. Functions derive from the Fn class. Visual functions, represented by the
VisualFn class, can have their arguments updated when corresponding visuals are
manipulated on screen. All base classes for expressions are shown in Figure 4.7, as
well as several classes that contain concrete implementations of simple data types
(Number, CString, Logical), object data types (CPoint, CSegment, CTriangle) and func-
tions (FPoint, FSegment, FTriangle).

Data types, conversions, operations, functions and visuals are implemented as
C# classes which derive from the supplied base classes, and follow the implementa-
tion guidelines described in Chapter 5.

4.3. Expressions 43

? IVisitable

GExpression ¥ -i
Abstract Class |

' Fn ¥

Error ¥ Const ¥ ; I | Visualfn ¥ i
Clazs r~j Abstract Class i i Abstract Class LJ Abstract Class i
- Const - GExpression E - GExpression i E + Fn
- : i) Fay i) Py
| ClrConst<cirType= ¥ | ConstObject ¥ | CUIControl ¥
i Generic Abstract Class i Abstract Class Class
i + Const i + Const + ConstObject
Fay ' ' Fay
Number ¥ CPoint ¥ Sqrt ¥ FPoint ¥
—— Class Clazs | | Class Clazs
—+ CiriConst<double> —+ ConstObject —+ Fn —+ VisualFn
CString ¥ CSegment ¥ Plus ¥ FSegment ¥
Clazs Clazs || Class || Class
—+# CIriConst<string > —+ ConstObject —+ Fn —+ VisualFn
Logical ¥ CTriangle ¥ Times ¥ FTriangle ¥
Clazs L | Class L | Class L | Class
—+ CiriConst<bool> —+ ConstObject —+ Fn —+ VisualFn

FIGURE 4.7: Expression classes in SLGeometry

4.3.1 Functions and Visual Functions

Functions can have zero or more arguments, and can be overloaded. The return type
can be known in advance, as is the case of basic functions (Abs, And, Cos, Sin, Sqrt
etc.), geometric functions (Line, Segment, Triangle etc.) and UI controls. Some func-
tions, such as conditionals, can return results of different types. Results of functions
can be constants (Const) such as numbers, boolean values and strings, or object con-
stants (ConstObject), such as lines, circles and triangles. Functions are implemented
by deriving from Fn and VisualFn. It is possible to have more than one C# class im-
plementing the same function (i.e. with the same name), but their signatures must
be distinguishable.

A visual in SLGeometry is implemented with three classes: a function, which
generates an object constant; the object constant which represents the actual visual;
and a helper class which draws the visual on the GeoCanvas. When the function
is evaluated, GeoCanvas is notified that its result has been changed and the corre-
sponding visual is drawn.

4.3.2 Constants

Constant values are atomic values or objects. Atomic values, such as numbers,
boolean values and strings, can be entered directly as literals, or appear as results
from functions. Simple data types are derived from the Const class. Types which
have CLR equivalents, such as Logical, Number and CString, are derived from the
CLRConst<T> class. Implementing a new atomic data type in SLGeometry is sim-
ple: a new C# class needs to be written, which derives from one of the constant base

44 Chapter 4. System Architecture Overview

classes, and the Clone method needs to be implemented, which creates a deep copy
of the current instance. Standard binary and unary operations for the new data type
can also be defined in the same class and provided with metadata, as described in
Section 5.1.

4.3.3 Object Constants

Object data types are objects with named properties, which appear as results of func-
tion evaluation. Object constants are implemented as C# classes that derive from the
ConstObject class. Property metadata is initialized in the static class constructor and
assigned to the Metadata static field of the ConstObjectInfo type. Each property is
described by an instance of the PropInfo class. Properties are either mandatory or
calculated. Mandatory properties are necessary for the object to be valid, and are
assigned during function evaluation. Calculated properties are obtained by some
algorithm from the values of other properties within the object. Properties can also
be of object types, thus a single constant value in FLG can actually be represented by
a complex tree of C# objects.

Visuals are C# classes which expose public visual properties that control their ap-
pearance, such as point size, line width, color etc. Each visual contains C# code
which draws it on the GeoCanvas. Since visual properties are ordinary .NET prop-
erties, type conversions between .NET (CLR) types and FLG types must be provided.

4.4 Summary

In this chapter the SLGeometry framework and its architecture are described. As the
user communicates with the system through textual input, the language description
for the FLG is given in detail, along with constructs which FLG recognizes. Further-
more, the infrastructure of expression classes is explained.

More detailed implementation descriptions are given in Chapter 5, while valida-
tions of these implementations, through various examples built in SLGeometry, are
given in Part IIL.

45

Chapter 5

Implementation Details

In this chapter we present implementation details of metadata-supported object-
oriented extension of DGS, based on the papers by Radakovi¢ and Herceg (2017) and
Radakovi¢ and Herceg (2018). In Chapter 3 we have demonstrated the shortcom-
ings of attributes as declarative tags that are used to carry information into run-time,
which we used in previous versions of our framework (Radakovi¢ and Herceg, 2010;
Radakovi¢, Herceg, and Loberbauer, 2010; Herceg and Radakovi¢, 2011; Herceg,
Herceg-Mandi¢, and Radakovi¢, 2012; Herceg, Radakovi¢, and Herceg, 2012; Radakovié
and Herceg, 2013). Also, we have proposed an object model with calculated prop-
erties, instead of the concept which uses property functions that can be numerous.
Furthermore, we introduced dot notation for property access, as an example of lan-
guage extension.

After the first version of our metadata-based extensibility framework was com-
pleted and tested in practice, we tried to perceive the bigger picture and identify key
components of a DGS which can benefit from becoming generic and extensible.

We decoupled unary and binary operations from the types they operate on and
introduced generic operation templates. A generalized binary operation algorithm
was developed, which is suitable for matrix and vector calculus, but also applicable
to other data types. By leveraging the information available in operation metadata,
we were able to implement result caching and early operation binding, which re-
sulted in performance improvements. Also, knowing the result types of functions
makes a good starting point for development of a partial expression tree just-in-time
compiler.

The most significant result, however, is the support for lazy evaluation of ob-
ject properties (Radakovi¢ and Herceg, 2018). More specifically, the metadata data
structures suitable for expressing complex property dependencies in object constants
were developed, similar to the idea discussed by Nosal’, Sulir, and Juhar (2016).

In next section we give a detailed overview for metadata infrastructure which
covers all data types, operations, type conversions and functions we need to anno-
tate to have stable structure. Metadata structure covers metadata for: arguments,
signatures, properties, functions, controls and UI controls. At the end of the sec-
tion, metadata implementation examples are given. Section 5.2 specifies explicit
conversion methods between CLR-based constant types and equivalent CLR types.
Overview of operations in FLG presented in Section 5.3. One of the main contri-
butions of the dissertation, lazy evaluation with property activation, is described in
Section 5.4. Section 5.5 proposes partial compilation of expression trees which are

46 Chapter 5. Implementation Details

created by users at run-time. The last section shows how geometrical constructions
are saved and loaded in our framework.

5.1 Metadata

All data types, operations, type conversions and functions need to be annotated with
metadata and registered with the Engine, and visuals should be registered with the
GeoCanvas. The metadata are bound via static fields, defined by convention. The
FLG is an annotation-enabled language in the sense given by Nosal’, Sulir, and Juhar
(2016).

The metadata required by the extensibility infrastructure includes instances of
custom classes, as well as dependency graphs in the form of N-ary trees. Visual
objects may contain other related objects, thus creating complex structural relation-
ships. For example, a triangle contains as properties special points, segments and
lines, such as orthocenter, heights, angles, angle bisectors, circumcenter, circumra-
dius, etc.

Metadata specification is straightforward and intuitive. At the top level, each
expression type has an associated metadata class. Functions are described with
FniInfo, simple constants and objects constants with ConstInfo and ConstObjectInfo
respectively. Visual functions are described with Visuallnfo, and UI controls with
UlControllnfo. Function metadata contains signatures: SignatureEmpty for functions
without arguments, SignatureUnnamed for functions with one or more arguments,
such as lists, and SignatureNamed for functions with a fixed number of named argu-
ments, such as points, lines and circles. Named arguments are represented by the
ArgNamedInfo class, which contains data such as argument name, type and default
value. Unary and binary operations, as well as data type conversions are repre-
sented in a similar way. Special attention should be paid to the Proplnfo metadata
class, which describes properties of object constant types. Besides the property name
and type, it contains additional information which is used during evaluation and op-
timization. In order to successfully describe functions and objects, metadata classes
shown in Figure 5.1 are used. A more complete overview is given in following sec-

tions.
| Namelnfo ¥ | | Visualinfo ¥ | SignatureBase ¥ Propinfo A |
—> Abstract Class — Class Abstract Class Class
))) i) i = Properties
[Fninfo ¥ [UlControlinfo ¥ | SignatureEmpty ¥ & CacheFieldName
Class Class Class & EvalMethod
> > + .
Namelnfo Visualinfo SignatureBase & InitMethod
) ~ P S & Name
Constinfo v SignatureNamed g & RequiredProps
a P ") a
*al\s.lsamelnfn an=medinfa g *assis natureBase # Type
1 class g & Value
e g \ = Methods
ConstObjectinfo ¥ SignatureUnnamed ¥
Class [=) Class ® Chain
ArgNamedSymbolinfo ¥ i
=+ Namelnfo ~ SignatureBase * Nested Types
Class
- =+ ArgNamedinfo

FIGURE 5.1: Constant and function metadata

5.1. Metadata 47

5.1.1 Metadata for Arguments

Classes ArgNamedInfo (Listing 5.1) and ArgNamedSymbollnfo are used to describe
named function arguments.
Metadata for each function argument carries the following information:

1. Argument name;
2. Argument type;
3. Default value (optional).

Thus, this classes have data for the argument name, argument type and default
value. Also, it is controlled whether:

e The argument should be held unevaluated;
e The argument binds directly to a named property of the visual control;
e The argument needed to denote as a symbolic name.

If argument is denoted as a symbolic name, the names of the parameters in which
the symbolic name appears is denoted, and ArgNamedSymbolInfo is used, e.g. in Table
function Iterator argument is a symbol (see Listing 3.6).

LISTING 5.1: ArgNamedInfo metadata

public class ArgNamedInfo{
public ArgNamedInfo (string argName, Type argType){

Name = argName;
ArgumentType = argType;
IsVisualProperty = false;

IsSymbol = false;
DefaultValue = Empty.Value;
}
public ArgNamedInfo(string argName, Type propType, bool
isVisual) :this (argName, propType){
IsVisualProperty = isVisual;
}
public ArgNamedInfo(string argName, Type propType, bool isVisual, Const
defaultValue) :this (argName, propType, isVisual){
DefaultValue = defaultValue;
}

public string Name { get; private set; }

public Type ContainingType { get; private set; }
public Type ArgumentType { get; private set; }
public Const DefaultValue { get; private set; }
public bool IsHeld { get; private set; 1}

public bool IsVisualProperty { get; private set; 1}
public bool IsSymbol { get; protected set; }

5.1.2 Metadata for Signatures

Classes SignatureBase (Listing 5.2), SignatureEmpty, SignatureNamed and
Signaturellnamed present signatures for functions, which contain named arguments
in a specific order. Upon instantiation, instances of this class cache NamedArgInfo
records about named arguments from the Engine. Signatures should be matched
against supplied arguments for number and for their type, i.e. it is checked whether
the supplied arguments match the given signature. Further, it is checked whether

48 Chapter 5. Implementation Details

the given signature conflicts another signature. Additionally, an argument list is
created, based on the signature and supplied argument values.

LISTING 5.2: SignatureBase metadata

public abstract class SignatureBase{
public abstract bool Match(IList<GExpression> args);
public abstract ArgList CreateArglList(FnInfo fn, IList<GExpression> args);
public abstract bool Conflicts(SignatureBase sig);

Functions without arguments use signature SignatureEmpty, while functions with
one or more unnamed arguments use signature SignatureUnamed, e.g. signatures
"Expression,Iterator,Min,Max" and "Expression,Iterator,Min,Max,Step" in
Table function (Listing 3.6). The most functions belong to the group with fixed
number of named arguments, such as point, lines, triangles, and they use signature
SignatureNamed (e.g. functions for circle in Listing 5.13).

Since signatures are written in string format, arguments are split by comma (, ’).
Loaded arguments are checked to match between raw function arguments and the
signature in the following way:

1. The number of arguments is compared;

2. The arguments declared with ArgNamedSymbollnfo must be of the TIdent type
and it is marked false, furthermore it should be replaced with a ConstSymbol;

3. The arguments are checked for type compatibility, one by one, except the ones
marked false;

4. To the argument, which has not been specified in the signature, is assigned the
default value.

5.1.3 Metadata for Properties

Metadata for named properties of objects constant types (ConstObject) is given in the
class PropInfo (Listing 5.3). Along with property name, value, type and owner class,
properties hold the data about required properties which must be
evaluated before this property. Accordingly, a ReqP object is created which reference
this property and all its required subproperties, e.g.
SideAProperty.Chain(CSegment.MidpointProperty) returns a ReqP object contain-
ing: required property SideAProperty and subproperty CSegment.MidpointProperty,
which needs to be calculated first. It also performs type—checking to ensure that
the type containing all subproperties is the same as the type of this property. Fur-
thermore, it checks whether the chain of required properties is valid, i.e. whether a
property only requires subproperties that it owns.

We introduced this complex structure to accomplish optimization in evaluation.
This kind of objects can be very bulky, e.g. triangle with his properties (see Section
7.2). Therefore, we need delegate which calculates the property, the local variable
which caches the property value for quick access during evaluation, a mechanism to
initialize the property value when it is activated, and to dispose the property value
when it is deactivated. A given property is activated when its value needs to be
calculated, and it is deactivated when there is no longer need for its value, in order
not to burden evaluation of object properties when the object is moving along the
GeoCanvas. This mechanism is presented in more details in Section 5.4.

5.1. Metadata 49

The function metadata contains the following information:

O R

S

Property name;

Property value;

Property type;

The type of owner class, i.e. the type of class which owns given property;
Holds information about a required property, properties which must be eval-
uated before this property, and all its required subproperties;

Delegate which calculates the property;

The name of the local variable which caches the property value for quick access
during evaluation;

Delegate which is called when the property is activated to initialize the prop-
erty value, before it can participate in evaluations;

Delegate which is called when the property is deactivated, to dispose of the
property value.

50 Chapter 5. Implementation Details

LISTING 5.3: PropInfo metadata

public class PropInfo{
public string Name { get; private set; }
public Const Value { get; set; 1}
public Type Type { get; private set; }
public Type OwnerType { get; set; }
public ReqP[] RequiredProps { get; private set; }
public PropInfo(string name, Type type, Type ownerType){

Name = name;
Type = type;
OwnerType = ownerType;

}
public PropInfo(string name, Type type, Type ownerType, params ReqP[]
requiredProps) :this(name, type, ownerType){

if ((requiredProps != null) && (requiredProps.Length > 0)){
if (requiredProps.Where(p => p == null).Count() == 0){
RequiredProps = requiredProps;
}else

throw new ArgumentNullException("requiredProps",
string.Format ("PropInfo constructor for {0}.{1}: One or more
null values encountered. Check the order of property
registrations in the metadata.", type.FullName, name));
foreach (ReqP r in RequiredProps)
if (!r.CheckChain())
throw new ArgumentException("requiredProps",
string.Format ("PropInfo constructor for {0}.{1}: Types not
equal. Check the types required properties of property

registrations in the metadata.", type.FullName, name));
}
}
public ReqP Chain(params PropInfo[]l subProps){
if (subProps.Length == 0)
return new ReqP(this);
elsed{

ReqP me = new ReqP(this);
me . SubProps = new ReqP[subProps.Lengthl;
for (int i = 0; i < subProps.Length; i++)
me . SubProps [i] = new ReqP (subProps[i]);
return me;

}
public Action<GExpression> EvalMethod { get; set; 1}
public string CacheFieldName { get; set; }
public Action<GExpression> InitMethod { get; set; }
public Action<GExpression> DisposeMethod { get; set; 1}
public static implicit operator ReqP(PropInfo p){
return new ReqP(p);
}
public class ReqP{
public PropInfo Info;
public ReqP[] SubProps;

public bool CheckChain(){...}

5.1.4 Metadata for Functions and Controls
5.1.4.1 Namelnfo

Abstract class Namelnfo (Listing 5.4) holds information about a Fn-derived type or
a Control-derived type registration in the Engine. The name is used in the parser

5.1. Metadata 51

as a function name, which creates instances of the type. The unique name, used to
distinguish between different classes implementing multiple variants of a function.
Registration types for specific types should inherit from this class. Assembly denotes
the assembly this function was imported from, while it is null for built-in functions.

LISTING 5.4: Namelnfo metadata

public abstract class NameInfof{
public Type Type { get; protected intermnal set; }
public string Assemblyq{ get; set; 1}

public string Name { get; protected internal set; }
public string UniqueName { get; protected internal set; }

}

5.1.4.2 FnInfo

FnInfo describes a function type for use in the parser and the evaluation Engine
(Listing 5.5). A dictionary ArgDescriptors keeps all names of the named arguments
belonging to the function together with the metadata for function argument. All
arguments are checked if they exist in ArgDescriptors. The type of the result of this
function is kept in ResultType.

Signatures determines a collection of signatures for the Fn—derived function. The
matching signature is returned, or null, if no match is found. IsFlat
determines whether this function can be flattened, ie.
Ff(f(x,0),b),¢) = f(x,a,b,0).

The function metadata contains the following information:

1. Function name;

2. Result type;

3. An array of arguments;

4. An array of function signatures.

LISTING 5.5: FnInfo metadata

public class FnInfo : NamelInfof{
protected FnInfo (){

Signatures = new List<SignatureBase>();
}
public FnInfo(string name, Type resultType, IList<ArgNamedInfo> arguments,
string[] signatures, bool isFlat = false){
this.Name = name;

this.ResultType = resultType;
this.IsFlat = isFlat;

this.ArgDescriptors = new Dictionary<string,
ArgNamedInfo>(arguments.Count) ;

foreach (ArgNamedInfo ai in arguments)
ArgDescriptors.Add(ai.Name, ai);

this.Signatures = new List<SignatureBase>();
foreach (string sig in signatures)
if (CheckArguments (sig)){
SignatureNamed sn = new SignatureNamed(this, sig);
Signatures.Add(sn);

52 Chapter 5. Implementation Details

public FnInfo(string name, Type resultType, Type argType, int minArgs, int
maxArgs, bool isFlat = false)
this (name, argType, minArgs, maxArgs, isFlat){
this.ResultType = resultType;
}
public FnInfo(string name, Type argType, int minArgs, int maxArgs, bool
isFlat = false){
this.Name = name;
this.IsFlat = isFlat;
SignatureUnnamed sig = new SignatureUnnamed (argType, minArgs, maxArgs);
this.Signatures = new List<SignatureBase>();
this.Signatures.Add(sig);

private bool CheckArguments(string args){
string[] argArray = args.Split(’,’);
foreach (string a in argArray)
if (!ArgDescriptors.ContainsKey(a.Trim()))
return false;

return true;
}
public Dictionary<string, ArgNamedInfo> ArgDescriptors = new
Dictionary<string, ArgNamedInfo>();
public Type ResultType{ get; set; 1}
public bool IsFlat{ get; set; 1}
public List<SignatureBase> Signatures { get; internal set; }

public SignatureBase GetMatchingSignature (IList<GExpression> args){
foreach (SignatureBase sig in Signatures){
if (sig.Match(args))
return sig;
}

return null;

5.1.4.3 ConstInfo and ConstObjectInfo

ConstInfo and ConstObjectInfo (Listing 5.6) are metadata classes for constants and

constants objects. Unlike ConstInfo, ConstObjectInfo contain a list of properties. Usu-

ally, constant objects are result of UI controls functions, e.g. CCircle in Listing 5.12.
The metadata for the constant object contains the following information:

1. Constant object type;
2. A list of properties, each described with an instance of the PropInfo metadata
class.

LISTING 5.6: ConstObjectInfo metadata

public class ConstObjectInfo: NamelInfof{
public Dictionary<string, PropInfo> Properties { get; private set; }

public ConstObjectInfo(Type constType, params PropInfo[]l properties)
{
if (!constType.GetTypelInfo().IsSubclass0f (typeof (ConstObject)))
throw new ArgumentException(string.Format("{0} does not
inherit ConstObject"),constType.FullName) ;

Assembly = constType.AssemblyQualifiedName;
Type = constType;

5.1. Metadata

53

Name = UniqueName = constType.Name;

Properties = new Dictionary<string, PropInfo>();
foreach (PropInfo pi in properties)
Properties.Add(pi.Name, pi);

5.1.5 Metadata for User Interactive Controls

Metadata class Visuallnfo (Listing 5.8) contain: a constant which corresponds to a
type VisualBase-derived class in the GeoCanuvas, a type of visual, a belonging assem-

bly, dictionaries with visual properties and dependency properties. At initialization
following visual properties: visibility, label, label offset, and weather the object is

selected.

LI1STING 5.7: UIControllnfo metadata

public class VisualInfo{

public
public
public
public
public
public

this

this

Type ConstType { get; private set; }

Type VisualType { get; protected internal set; 1}

Assembly Assembly { get; set; }

Dictionary<string, ArgNamedInfo> VisualProperties { get; set; }
Dictionary<string, PropertyInfo> DependencyProperties { get; set;
VisualInfo (Type constType){

.ConstType = constType;
.VisualProperties = new Dictionary<string, ArgNamedInfo>();

VisualProperties.Add("$Visible", new ArgNamedInfo("$Visible", null,

typeof (Logical), true, new Logical(true)));

VisualProperties.Add("$Label", new ArgNamedInfo("$Label", null,

typeof (CString), true, new CString()));

VisualProperties.Add("$LabelOffset", new ArgNamedInfo("$LabelOffset",

null, typeof (CPoint), true, new CPoint()));

VisualProperties.Add("$Selected", new ArgNamedInfo("$Selected", null,

}
public

typeof (Logical), true, new Logical(false)));

VisualInfo(Type constType, ArgNamedInfo[] visualProperties):

this (constType){
foreach (ArgNamedInfo ai in visualProperties)

VisualProperties.Add(ai.Name, ai);

}
}

}

Metadata class UIControllnfo (Listing 5.7) contains metadata for UI controls such
as control type, and its dependency properties. All dependency properties, which
have CLR property wrappers, are discovered and registered, while dependency
properties without CLR property wrappers are ignored. Also, ArgNamedInfo meta-

data are created for all discovered properties and added to the ArgDescriptors list.

LISTING 5.8: Visuallnfo metadata

public class UIControlInfo: VisualInfo{
public Type ControlType { get; set; }

public UIControlInfo(Type controlType, Conversion.Conv conv):
base (typeof (VUIControl)){
ControlType = controlType;

RegisterDependencyProperties (conv) ;

}

private void RegisterDependencyProperties(Conversion.Conv conv){

DependencyProperties = new Dictionary<string, PropertyInfo>();

54 Chapter 5. Implementation Details

VisualProperties.Add("$Location", new ArgNamedInfo("$Location",
this.VisualType, typeof (CPoint), true, new CPoint()));
VisualProperties.Add("$LocationMode", new ArgNamedInfo("$LocationMode",
this.VisualType, typeof (Number), true, 0.N()));
VisualProperties.Add("$Rotation", new ArgNamedInfo("$Rotation",
this.VisualType, typeof (Number), true, 0.N()));
VisualProperties.Add("$RotationCenter", new
ArgNamedInfo ("$RotationCenter", this.VisualType, typeof (CPoint),
true, new CPoint()));
DiscoverProps (ControlType, conv);
}
private void DiscoverProps(Type t, Conversion.Conv conv){
IEnumerable <PropertyInfo> propInfos = t.GetProperties(BindingFlags.Public
| BindingFlags.Instance);
foreach (PropertyInfo pi in propInfos)
if (conv.IsCLRTypeSupported(pi.PropertyType))
DependencyProperties.Add(pi.Name, pi);
var resultO = from p in propInfos
where conv.IsCLRTypeSupported(p.PropertyType)
select new ArgNamedInfo(p.Name, t,
conv.GetTypeForCLRType (p.PropertyType), true);
List<ArgNamedInfo> final = resultO.ToList();
final.ForEach(argInfo => VisualProperties.Add(argInfo.Name, argInfo));

5.1.6 Implementation Examples

To represent one geometric object on the screen we need to implement tree differ-
ent C# classes which are structurally connected via metadata. This classes repre-
sent function, constant object and visual representation. Each geometric object have
unique ConstObject class that represents a result of a function. Its value is a light
structure of a type struct representing lightweight objects (Listing 5.9). The reason
why we decided to chose struct type for this value because it might be more efficient.
For example, as the drawing can have several hundreds objects, the additional mem-
ory needs to be allocated for referencing each object, in this case, a struct would be
less expensive.

One constant can be result of several C# classes which implement the polymor-
phic function with the same name for the parser. For example, a line can be defined
with tree Number parameters a, b, ¢ like ax + by + ¢ = 0, or with two Point param-
eters A, B as a line through two points. This functions differ in the number and
names of arguments, i.e. the signatures are not the same, therefore they are recog-
nized properly by the parser. A definition how the object is drawn on the screen is
contained in its visual function. The visual function contains data about the shape,
color, width and how to update screen location. This principle is shown on example
in Section 5.1.6.2.

LISTING 5.9: Struct reprezenting a line

public struct SLine{
public double a { get; set; }
public double b { get; set; }
public double c¢ { get; set; }
public bool IsValid { get; private set; 1}
public SLine(double a, double b, double c): this(){
Assign(a, b, c);
}

5.1. Metadata 55

public void Assign(double a, double b, double c){

this.a = aj;
this.b = b;
this.c = c;
IsValid = (a !'= 0) || (b !'= 0);

The following examples demonstrate how metadata is specified for a basic func-
tion (Sqrt, Plus), geometric functions (FCircle, FCircle3), constant objects (CCircle) and
visual objects (VCircle).

5.1.6.1 A Simple Function

The square root function (Sqrt), given in Listing 5.10, is an example of a simple func-
tion with one unnamed argument. The metadata contains the name of the function,
the type of the result, argument type and minimal and maximal number of argu-
ments. The signature for this function is inferred from the metadata automatically
by the Engine.

This function is called in input as ‘Sqrt’. It expect Number as argument, and
results Number, also. Minimum and maximum number of arguments is equal, i.e. it
is only one.

LISTING 5.10: Metadata for the Sqrt function

public class Sqrt : Fn {
public static FnInfo Metadata;
static Sqrt (){
Metadata = new FnInfo("Sqrt", typeof (Number), typeof (Number), 1, 1);
F.o..

Plus function has at least 2 arguments, where upper bound is limited with inte-
ger maximum value. Differently from the Sqrt function, the Plus function accepts
arguments which are not only limited to Number. It can be also e.g. Matrix, but all
arguments must have the same type.

LISTING 5.11: Metadata for the Plus function

public class Plus : Fn{
public static FnInfo Metadata;
static Plus (){
Metadata = new FnInfo("Plus", typeof (GExpression),
typeof (GExpression), 2, int.MaxValue);

5.1.6.2 Visual Functions and Objects

Let us consider a circle, as it demonstrates some important features shared by many
geometric objects. The object constant class of type CCircle (Listing 5.12) contains
relevant geometric properties of a circle, such as center and radius.

LISTING 5.12: Metadata for the CCircle object constant type

public class CCircle : ConstObject {
public static ConstObjectInfo Metadata;
public static readonly PropInfo SProperty =

56 Chapter 5. Implementation Details

new PropInfo("S", typeof (CPoint));
public static readonly PropInfo RProperty =
new PropInfo("r", typeof (Number));
public static readonly PropInfo RadiusSegmentProperty =
new PropInfo("RadiusSegment", typeof (CSegment));
static CCircle() {
Metadata = new ConstObjectInfo(typeof (CCircle), SProperty, RProperty,
CenterProperty, RadiusProperty, RadiusSegmentProperty);

There are two C# classes which implement the polymorphic function named
"Circle" (Listing 5.13), one defined by center S and radius r (FCircle) and the other
defined by three points A, B, C (FCircle3). The signatures inferred from the metadata
differ in the number and names of arguments, therefore they are distinguished by
the parser and the correct function can be instantiated. The FCircle and FCircle3 func-
tions both return a CCircle constant. Additional functions can be added in a similar
way, as long as signatures are different.

LISTING 5.13: Metadata registration for the FCircle and FCircle3
functions

public class FCircle : VisualFn{
public static FnInfo Metadata;
public static readonly ArgNamedInfo SArgument = new ArgNamedInfo("S",
typeof (CPoint), false, new CPoint(new SPoint (0, 0)));
public static readonly ArgNamedInfo RArgument = new ArgNamedInfo('"r",
typeof (Number)) ;
static FCircle () {
Metadata = new FnInfo ("Circle", typeof(CCircle), new ArgNamedInfol[] {
SArgument , RArgument }, new string[]l {"S,r", "r"});

}
public class FCircle3 : VisualFn{
public static FnInfo Metadata;
public static readonly ArgNamedInfo AArgument = new ArgNamedInfo("A",
typeof (CPoint));// BArgument, CArgument omitted for brevity
static FCircle3 (){
Metadata = new FnInfo("Circle", typeof(CCircle), new ArgNamedInfo []
{AArgument , BArgument, CArgument }, new string[] { "A,B,C" 1});

The VCircle helper class (Listing 5.14) contains code that actually draws a circle
on the GeoCanvas. Its metadata, stored in a Visuallnfo object, specifies the association
with the CCircle type. The metadata also defines visual properties, such as line style
and width, which affect the appearance of the circle.

LISTING 5.14: Metadata for the VCircle helper class

public class VCircle : VisualBasef{
public static VisualInfo Metadata; // StyleProperty omitted for brevity
public static readonly ArgNamedInfo WidthProperty = new
ArgNamedInfo ("Width", typeof (Number), true, 1.NQ));
static VCircle (){
Metadata = new VisualInfo(typeof (CCircle), new ArgNamedInfo[] {
StyleProperty, WidthProperty 1});

5.2. Type Conversions 57

5.2 Type Conversions

For CLR-based constant types, explicit conversion methods must be implemented,
to enable conversions to and from equivalent CLR types. The conversion metadata
is assigned to the static Conversions field. It is represented by the ConvInfo class,
which specifies the data type it applies to (FLG source type), the default conversion
method to an equivalent CLR type, an array of conversion methods to other CLR
types (if any) and an array of conversion methods from CLR types. An example for
the Number data type is shown in Listing 5.15. For simplicity, lambdas are used for
some conversions. Other conversions are defined as static methods (Listing 5.16).

LISTING 5.15: Conversion metadata for the Number data type

Conversions =
new ConvInfo(typeof (Number), // applies to Number
new ToCLR(typeof (double), n => ((Number)n).Value), // default ToCLR
new ToCLR[] {
new ToCLR(typeof (int), TolInt32), // other ToCLR conversions
new ToCLR(typeof (long), ToInt64),
new ToCLR(typeof (string), ToString)
},
new FromCLR[] { // FromCLR conversions
new FromCLR(typeof (double), typeof (Number), n => new Number ((double)n)),
new FromCLR(typeof (int), typeof (Number), n => new Number ((int)mn)),
new FromCLR(typeof (long), typeof (Number), n => new Number ((long)n))
}
)

LISTING 5.16: Explicit conversion methods for the Number data type

public static object ToInt32(Const c){
double d = ((Number)c) .Value;
if (double.IsInfinity(d) || double.IsNaN(d) || (d > int.MaxValue) || (4
< int.MinValue))
return null;
else
return (int)d;
}
public static object ToInt64(Const c){
Number n = (Number)c;
if (n.Value > long.MaxValue)
return long.MaxValue;
else if (n.Value < long.MinValue)
return long.MinValue;
else
return (long)n.Value;
}
public static object ToString(Const c){
return ((Number)c).ToString();
}

5.3 Operations

Operations in FLG are generic and extensible. Standard built-in unary and binary
operators act as templates, which only execute general algorithms. The actual code
that performs calculations for each data type or a pair of types is implemented sep-
arately and registered in the Engine. Standard binary operations, addition, subtrac-
tion, multiplication, division, exponentiation and unary negation are specified by
appropriate operators in textual form. In expression trees, operators are translated

58 Chapter 5. Implementation Details

into template functions, such as Plus and Times. When a template function is eval-
uated, it finds the appropriate implementation to execute, based on the operand
types.

It is preferable that the code for new operations is placed in the class that imple-
ments the related constant type. In order to be recognized by the Engine, operations
metadata (Figure 5.2) must be grouped in the Operlnfo collection and stored within
the static Operations field in the class. This step is done in the static class construc-
tor. Unary and binary operation metadata are stored in the UnaryOp and BinaryOp
classes respectively. The UnOpDelegate and BinOpDelegate reference static methods
which perform the actual operation on the concrete operand(s). The ResultInitDele-
gate, if specified, is used to create a single instance of the result type, which is then
cached and reused for performance.

[Convinfo A [operlnfo A OpType A
Class Class Enum
+ List<Op>
= Fields r Negate
@, fromCLRMetad... . Plus
% Glype:Type | FromCLRDelegate # Minus
@, toCLRDefault .. Delegate i A T'.m_es
@, toClRMedatata... Mfstrm . Divide
S clrObject : object Power
o 3 3 Fields _ i
[FromCLR A (ToCLRDelegate A @ Init: ResultinitDelegate | ResultinitDelegate ¥
Class Delegate @ Operation : OpType Delegate
@ Tr:Type :
= Fields constValue : Const y)
@ clrType: Type h L‘A UnOpDelegate A |
@ del : FromCLRD... Delegate
@ gType:Type
} } e : GExpression
UnaryOp A | BinaryOp A | result : GExpression
f ™ Class Class _
A
IIDCLR +op +op —_—
= - r r BinOpDelegate A
= Fields = Fields Delegate
= Fields -
@ Del: UnOpDelegate @ Del: BinOpDelegate
@ clrType: Type @ T1:Type @ T1:Type a: GExpression
@ del: ToCLRDele...) ° T2:Type b : GExpression
~ result : GExpression

FIGURE 5.2: Metadata for binary and unary operations

5.3.1 Result Caching
The usual way operations are executed is given by the following algorithm:

Evaluate operand(s);

Check operand(s) for errors;

If an error is found, pass it up the expression tree as the result;
Create a new instance of the result data type;

Perform the actual operation and store the result in the result object;
Return the result object.

SR NS

Since the expressions in a DGS are repeatedly evaluated many times per sec-
ond, it makes sense to avoid unnecessary object instantiation in the heap. The result
constant can be created beforehand by the ResultInitDelegate and cached. For that

5.3. Operations 59

reason, step 4 is moved out of the evaluation cycle and invoked once after the ex-
pression tree is constructed, and before evaluation starts. Whenever the operation is
executed, the cached result object is passed to the UnOpDelegate and BinOpDelegate
to be updated. In special cases, the implementers may choose to bypass caching and
keep creating new instances of the result on each operation evaluation. In that case,
the ResultInitDelegate should be assigned null in the metadata and the operation cal-
culation methods should ignore the result parameter.

5.3.2 Operation Examples

An example of operation implementations for one unary operation (negation) and
one binary operation (addition) in the Number data type is shown in Listing 5.17.
The metadata is created in the static class constructor, and assigned to the static
Operations field. The NumberInit method is used to create result objects.

Metadata for a unary and a binary operation contains the following information:

1. Operation type, used to bind with the actual operator;
2. Operand type (unary), i.e. operand types (binary);

3. Delegate which performs result initialization;

4. Delegate which performs the operation.

LISTING 5.17: Operations for the Number data type

public class Number : ClrConst<double>{
public static OperInfo Operations;
public static ConvInfo Conversions;
static Number (){
BinaryOp addition = new BinaryOp(OpType.Plus, typeof (Number),
typeof (Number), typeof (Number), NumberInit, NumberPlus);
UnaryOp negation = new UnaryOp(OpType.Negate,
typeof (Number), typeof (Number), NumberInit, NumberNegate);
Operations = new OperInfo(addition, negation);
}...// Conversions omitted for brevity
private static GExpression NumberInit (){
return new Number ();
}
private static GExpression NumberPlus (GExpression cl, GExpression c2,
GExpression result){
((Number)result).Value = ((Number)cl).Value + ((Number)c2).Value;
return result;

}
private static GExpression NumberNegate (GExpression cl, GExpression result){
((Number)result).Value = -((Number)cl).Value;
return result;
Fo..
}

5.3.3 Late vs. Early Operation Binding

The Fn class contains three properties, which describe the return type of the func-
tion, based on function metadata in derived classes (Table 5.1). GeoCanvas uses
these properties to determine whether the result of the function is a visual object or
a list of visual objects, which should be drawn on screen. Optimization algorithms
can make use of these properties to determine whether parts of the expression tree
can be more efficiently evaluated, or to discover type incompatibilities. Execution

60

Chapter 5. Implementation Details

of unary and binary operations also depends on these properties. When operand
types are known beforehand, early operation binding can be employed. In that case,
the correct calculation method is found immediately after the expression tree is con-
structed, and the result constant is instantiated in advance. Late operation binding is
employed when operand types are unknown until execution. The default late bound
binary operation (Listing 5.18) is used as fallback, if no early bound operations can

be found.

TABLE 5.1: Function result type metadata in the Fn class

Property

Value

DefiniteResultType

FirstResultType

AtomicResultType

Guaranteed return type of the function.
If the function returns different types,
typeof(GExpression).

Same as DefiniteResultType, if the function has a
single return type. If the function returns different
types, the type of the first result (or any result). If
return value is a list, typeof(CList).

Same as FirstResultType, if the function returns
atomic values. If the function returns a list, Atom-
icResultType of the first element.

LISTING 5.18: The default late bound binary operation

public static GExpression BinaryOpLateBinding(OpType opt, GExpression al,
GExpression a2){

Type ti1

= al.GetType ();

Type t2 = a2.GetType();

BinaryOp bop = Engine.Oper.GetBinaryOp(opt, tl, t2);

if (bop

== null)

return Error.IncompatibleTypes;

else{

GExpression result2

= bop.Init();

return bop.Del(al, a2, result2);

5.3.4 Generalized Binary Operation Algorithm

Binary operations can be applied to operands which are either atomic, lists of equal
lengths or mixed (Table 5.2). This behavior is suitable for vector and matrix oper-
ations. Let us note that, by applying the operation recursively in cases 2, 3 and 4,
we get the generalized binary operation algorithm. The lazy bound variant of the

generalized binary operation algorithm is presented in Listing 5.19.

TABLE 5.2: Binary operations applied to atomic values and lists

Case Argument a

Argumentb Resultofaob

1

2
3
4

Atomic
Atomic

{a1, ay, ...
{aq, az, ...

/an}
/ai’l}

Atomic aob
{b1,by,... by} faoby,aoby, .. a0by)
Atomic {ayob,ar0b, ..., a,0b}

{bll b2/ a4 bm} {al © bl/ az ° b2/ st ai’l © bm} lf
n = m; Error otherwise

5.4. Lazy Evaluation with Property Activation 61

LISTING 5.19: The generalized late bound binary operation

public GExpression BinOpRec (OpType opType, GExpression argl, GExpression arg2){
if (argl is CList) {
CList 11 = (CList)argil;
if (arg2 is CList) { // list + list
CList 12 = (CList)arg?2;
if (11.Elements.Length == 12.Elements.Length) {
int len = 11.Elements.Length;
Const [] tempRes = new Const[len];
for (int k = 0; k < len; k++) {
tempRes [k] = (Const)BinOpRec (opType, 11[k]l, 12[k]);
if (tempRes[k] is Error)
return tempRes[k];
}
return new CList (tempRes);
} else
return Error.ListsNotEquallengths;
} else { // 1list + atomic
int len = 1l1.Elements.Length;
Const [] tempRes = new Const[len];
for (int k = 0; k < len; k++) {
tempRes [k] = (Const)BinOpRec (opType, 11[k], arg2);
if (tempRes[k] is Error)
return tempRes[k];

¥
return new CList (tempRes);
}
} else {

if (arg2 is CList) { // atomic + 1list

// omitted for brevity, analogous to the previous case
} else { // atomic + atomic

return (Const)Engine.BinaryOpLateBinding(opType, argl, arg2, Oper);
}

5.4 Lazy Evaluation with Property Activation

Objects with a large number of calculated properties may require significant time to
be updated. Furthermore, since their properties can also be objects, this creates the
possibility of infinite N-ary trees in the heap. To mitigate this problem, we devel-
oped a property activation algorithm, which follows the call-by-need paradigm as
presented by Sinot (2008), and evaluates only those properties which are referenced
by other expressions, and if so, evaluate them only once. The property activation in-
frastructure in the Engine tracks property references in expressions, activates prop-
erties which are referenced, and deactivates them when references are removed. A
property can also be activated if its value is required to calculate another activated
property within the same object constant.

5.4.1 Implementation Requirements

There are several requirements for implementing constant object types, which par-
ticipate in property activation:

1. Each property must be backed by a private field of the same type;
2. Metadata for a mandatory property must contain property name, type and the
name of the backing private field;

62 Chapter 5. Implementation Details

3. Metadata for a calculated property must contain a delegate to a static evaluator
method which calculates the property;

4. If a calculated property requires values of other calculated properties within
the same object, those dependencies must be stated in the metadata;

5. If a calculated property requires the value of a subproperty of one of its proper-
ties (deep property dependency), the whole chain of properties must be stated
in the metadata.

These requirements and guidelines are demonstrated on the example of the CTri-
angle data type in FLG, which is implemented as the CTriangle class in C# (Listing
5.20). The CTriangle object constant is returned from the Triangle(A, B, C) function,
which first evaluates its arguments and then assigns the results to the mandatory
properties A, B and C of the CTriangle. The CTriangle defines calculated properties
such as SideA, AltitudeAFoot, AltitudeA, Perimeter and MedianA. The SideA
calculated property depends only on mandatory properties A, B and C, therefore no
additional dependencies are specified. Analogous properties for sides B and C also
exist, as well as many other properties which are omitted from this example (Kim-
berling, 2019). Examples of dependent properties are the AltitudeAFoot property,
which depends on SideA, and the Al1titudeA property, which depends on both SideA
and AltitudeAFoot.

LISTING 5.20: Metadata for the CTriangle object data type

public class CTriangle : ConstObject{
public static ConstObjectInfo Metadata;
// Mandatory properties (BProperty, CProperty omitted for brevity)
public static readonly PropInfo AProperty = new PropInfo("A",
typeof (CPoint), "_a");
// Calculated properties
public static readonly PropInfo SideAProperty =
new PropInfo("SideA", typeof (CSegment), CalcSideA, "_aside");
public static readonly PropInfo AltitudeAFootProperty =
new PropInfo("AltitudeAFoot", typeof (CPoint), CalcAltitudeAFoot,
"_altitudeafoot", SideAProperty);
public static readonly PropInfo AltitudeAProperty =
new PropInfo("AltitudeA", typeof (CSegment), CalcAltitudeA, "_altitudea",
SideAProperty, AltitudeAFootProperty);
// Deep property dependency
public static readonly PropInfo MedianAProperty =
new PropInfo("MedianA", typeof (CSegment), CalcMedianA, "_mediana",
SideAProperty.Chain(CSegment.MidpointProperty)) ;
static CTriangle () {
Metadata = new ConstObjectInfo(typeof (CTriangle), AProperty, BProperty,
CProperty, SideAProperty, SideBProperty, SideCProperty,
MedianAProperty, AltitudeAProperty, AltitudeAFootProperty);

5.4.2 Structural Correspondence

We can observe the structural correspondence between the concrete objects in the
language and the metadata. In particular, deep property dependency is specified in
the metadata for the MedianA property, = which requires the
Midpoint property of the SideA property (Figure 5.3). By invoking
SideAProperty.Chain(CSegment.MidpointProperty) in the metadata specification,

5.4. Lazy Evaluation with Property Activation 63

a chained activation is specified, which states that the CTriangle.MedianA property
requires the CTriangle.SideA.Midpoint property in order to be calculated. Since
the required property is a subproperty of the CTriangle.SideA property, it is also
marked for activation.

L MedianA ~ ‘Tangle

~ . annotates Modiarh
pass-through - edian

activation /] Sidefl-\
requires | CalcMedianA()

annotates :CSegment -
chained - — ‘Coegment
L - ~ Midpoint
activation e
annotates 7~
Midpoint T T T —— :CPoint
Metadata Expression tree

FIGURE 5.3: Chained activation for the CTriangle.MedianA property

It is worth noting that property dependencies can form more complex depen-
dency graphs. For example, in Figure 54 the dependency graph for the
CTriangle.Circumcircle property is shown. Explicit property requirements are
marked with solid lines, while mandatory properties CTriangle.A, CTriangle.Band
CTriangle.C are always updated and do not need to be activated.

Circumcircle

v v
(Circumcenter > (Circumradius)
v, v required

ﬁea perimm calculated
) l\ properties

=T

-~) C =) C <<)

FIGURE 5.4: Dependency tree for the CTriangle.Circumcircle
property

mandatory
properties

5.4.3 Backing Fields and Accessors

The ConstObject class provides access to properties via indexers: property names or
property metadata can be used as indexes. From experience, we found it convenient
to provide get accessors for all significant property values. Backing fields can also
be used to access property values from within the class and they are automatically
initialized by the property activation infrastructure. The developer needs only to
declare them in the class and register them in the metadata (Listing 5.21).

64 Chapter 5. Implementation Details

LISTING 5.21: Backing fields and accessors for CTriangle

public class CTriangle : ConstObject{
...// Backing fields for properties
private CPoint _a, _b, _c, _altitudefoota;
private CSegment _aside, _bside, _cside, _mediana, _altitudea;

// Get accessors for the commonly used properties
public SPoint A { get { return _a.Value; } }
public SPoint B { get { return _b.Value; 1} }
public SPoint C { get { return _c.Value; } }

5.4.4 Property Evaluators

A property evaluator is implemented as a static method which accepts a reference
to the instance of the object and subsequently calculates and updates the designated
property. In the example in Listing 5.22, several property evaluators for the CTriangle
constant object type are shown. Let us note that backing fields are used to quickly
access property values, avoiding indexers which are slower. Also, the GMath helper
class is used to perform actual geometric calculations.

LISTING 5.22: Property evaluators for the CTriangle object data type

public class CTriangle : ConstObject{
...// Property evaluators
private static void CalcSideA (GExpression e){
CTriangle ct = (CTriangle)e;
ct._aside.Assign(ct.B, ct.C);
}
private static void CalcAltitudeAFoot (GExpression e){
CTriangle ct = (CTriangle)e;
ct._altitudeafoot.Assign(GMath.AltitudeFoot(ct.A, ct._aside));
}
private static void CalcMedianA (GExpression e){
CTriangle ct = (CTriangle)e;
CSegment aside = (CSegment)ct._aside;
CPoint midpoint = (CPoint)aside[CSegment.MidpointPropertyl];
ct._mediana.Assign(ct.A, midpoint.Value);

5.4.5 Instance Initialization and Updating

The lifetime of object constants is divided between two phases: initialization and
repeated updating. An object constant is usually initialized when a function is cre-
ated, and then updated each time the function is evaluated. The initialization is
conducted by invoking the InitializeProperties() method from the instance con-
structor (Listing 5.23). By convention, updating is done in the Assign method, which
is implemented independently for each object type. The mandatory fields are up-
dated first, followed by the activated calculated fields. By analyzing a dependency
graph inferred from the property metadata, the system takes care of invoking prop-
erty evaluators in a correct sequence.

LISTING 5.23: Initialization and updating of the CTriangle object
instance

public class CTriangle : ConstObject{

5.5. Partial Compilation of Expression Trees 65

public CTriangle() {
InitializeProperties(); // Property initialization
}
// Assign is used to update the object state
public void Assign(Point ptl, Point pt2, Point pt3){
a.Assign(ptl);
b.Assign(pt2);
c.Assign(pt3);
// Calculate activated properties

for (int i = 0; i < propEvals.Count; i++)
propEvals [i] (this);

5.5 Partial Compilation of Expression Trees

Expression trees are created by users at run-time. Expressions are either typed in as
text, or created implicitly by placing geometric objects on the graphic display. Since
FLG is dynamically typed, a function must perform type checks on all of its argu-
ments before each evaluation. This occurs on each node in an expression tree. The
structure of the expression tree does not change between evaluations, and evalua-
tions occur many times per second, due to the interactive nature of DGS. It is thus
reasonable to assume that, in most cases, repeated type checks are unnecessary and
can be avoided, or at least moved out of the evaluation cycle, resulting in a decrease
in evaluation time.

The other point to be addressed is range checking. In specific cases, depending
on the functions and allowed argument ranges, it could be avoided altogether. In
general, however, range checking is necessary. Should an intermediate value fall out
of the allowed range, the error should occur and propagate up the expression tree.
Calculation errors of all kinds should stop evaluation and propagate to the root of
the expression tree immediately.

Furthermore, functions can accept arguments of different types, and provide
type specific implementations. This is a form of polymorphism in FLG. Since, in gen-
eral, the types of arguments are not known beforehand, i.e. until evaluation, static
binding is impossible. However, there are cases when data types of a function’s
arguments and result can be known beforehand.

Functions in FLG are implemented as C# classes which derive from the Fn base
class. The Fn.Eval method must be overridden in the derived classes. It provides the
implementation of the function’s logic. The Fn class provides argument handling
and the metadata infrastructure. The function metadata contains static information
on the allowed function signatures, argument types and the expected result type,
which is returned from the Eval method. Should a function’s return type metadata
be unspecified, special fields contain the runtime type information. Polymorphic
functions contain several branches — evaluation paths — in the Eval method, which
process particular combinations of argument tuples and types. Branch commands
are executed upon each invocation of the Eval method in such functions.

Example 1. Let us observe a simple expression b = Sin(a). Metadata for the Sin
function specifies that its argument, as well as the result, are of type Number.

66 Chapter 5. Implementation Details

It is thus obvious that variable b must hold a value of the same type. If the
type of variable a could unequivocally be determined beforehand, then type
checking could be omitted altogether during the evaluation cycle.

Example 2. Let us observe the expression ¢ = Sqrt(If(b > 0,b,"negative”)). Meta-
data for the Sgrt function specify that its argument, as well as the result, are
of type Number. Therefore, the result of the evaluation depends on the return
type of the If function, which cannot be determined beforehand.

Figure 5.5 presents several compilation cases.

s I ¢ | Number
/ \\ \\
— - -
1ot O E B E
a=2 a='string’ a=8
b=3 b=Sin(a) b=3 b=3
c=a+b c=a+b d=true d=true
c=if(d,a,b) c=if(d,a,b)

FIGURE 5.5: Result types of various expressions

5.5.1 Partial Compilation Implementation

Uncompiled expression trees are evaluated by recursively invoking the Eval method
on each node. The compilation process transforms parts of the expression tree by
replacing them with compiled code. There are three approaches we used.

o ExpressionTree with the simulated stack (ES);
e ExpressionTree with variables (EV);
e Delegates with lambdas (DL).

The first two make use of the ExpressionTree classes in the .NET Framework,
which produce the Common Intermediate Language (CIL) code. The aim with the
first two approaches was to generate the most efficient code possible. However, this
approach requires substantial knowledge of the intricacies of the CIL bytecode. The
third approach makes use of lambda expressions to implement each evaluation path
separately.

In all three approaches, the expression node classes are extended with properties
and methods which enable partial compilation (Figure 5.6).

Compiled CIL code, obtained using the first two approaches, has the structure
shown in Figure 5.7. First, the input parameters are accepted. Next, the evaluation
code is executed, followed by result checking. Execution then jumps either to error
handling code or to the 'finish” label, where the result is saved and subsequently
returned to the caller.

Upon creation, the expression tree is scanned for compilable subtrees. Each func-
tion node determines, based on the metada, arguments and supplied compilation

5.5. Partial Compilation of Expression Trees 67

Recursive functions for stack

implementation

Meth.ods for |d'ent.|fy|ng parts “."th Visitors for input parameters
possible compilation acceleration

A

s s (
L CanCompile } L CollectValueOfVisitor J L SetStackPosition J
(4 4
L CompileSubtrees J L SetValueOfVisitor J L SetStackVariables
4
L CollectParameterVisitor J
(-
L SetParameterindexVisitor
Auxiliary structures) Methods for OPFIF“zed code) Methods for code optimization
composition
(- (. e
L CompilerData L CompileDoubleArray L CompileNew J
(\(~
(CheckVariabIeResuItsDoubIeArray/\ CompileDoubleVariables j CompileNew-Number
\(
CheckParametersDouble L CreateOptimizedCode] CompileNew-ValueOf
4 (
L UsefulExpressionConstants) L CompilelistNew] CompileNew-Plus /
(J (]
Results CompileDelegate C ileNew-Sqrt
L L pi g ompileNew-Sqr)
(A e e
L ExtendingExistingElements L SetDelegates L ResultToStack
(X \ P
GExpression) L ArgFromStack]
‘ 4
Fn) L SetDelegate J
Validation] Evaluation methods
4 4 i
L AddRangeCheck L EvalCompiledDoubleArray
4 (
L AddDoubleCheck j \EvaICompiledDoubleVariabIes]
4 4
L RangeCheckDelegate j L EvalDelegateDouble)
4
L InvokeMyDeoubleDelegate]

FIGURE 5.6: A subset of the compilation infrastructure

extensions, whether it can be compiled. A general rule is that a numeric function
with numeric arguments must be compilable. This requirement is easily extended
to any supported data type. Based on the chosen compilation approach, the Eval
method of the topmost node is then replaced with the compiled code. Some general
rules for compilation:

e Numeric constants are always compilable;
ValueOf is compilable if its DefiniteResultType is numeric;

o Arhithmetic operations are compilable if their arguments are numeric;
e Simple mathematical functions are compilable if their arguments are numeric.

Listing 5.24 shows the implementations of the CanCompile method for various
node types.

LISTING 5.24: Implementation of CanCompile method for different
superclasses of GExpression

//Number
public override bool CanCompile{get { return true; } }

68 Chapter 5. Implementation Details

[———|
e input parameters

commands
validation

ZoOXxIP =

m=®=™on

- v m

jump to finish
error label
error handling

finish label

|
e
[———
[——]
[———————|
—————— saving the result

FIGURE 5.7: Compiled CIL code

//ValueOf
public override bool CanCompile{get{ return Var.Expr.DefiniteResultType ==
typeof (Number) ; }}
//Plus
public override bool CanCompile{ get { return ((Args.Count == 2)
%% (Args[0].Expression.DefiniteResultType == typeof (Number))
&& (Args[1].Expression.DefiniteResultType == typeof (Number)));

}
//8qrt
public override bool CanCompile{get { return
Args [0] .Expression.DefiniteResultType == typeof (Number) ;}}

The third approach, with lambdas, provides a good balance between implemen-
tation complexity and computational performance. Listings 5.25 and 5.26 show the
Compile methods for the Plus and Sqrt functions.

LISTING 5.25: Implementation of CompileNew method for the Plus
function

public override void CompileNew(Compiler c, CompileType type){

Args [0] . Expression.CompileNew(c, type);

if (CheckRequired(type)){
c.AddRangeCheck (Args [0], type);

}

Args[1].Expression.CompileNew(c, type);

if (CheckRequired (type)){
c.AddRangeCheck (Args [1], type);

}

c.AddExpression (Expression.MakeBinary (
System.Linqg.Expressions.ExpressionType.AddAssign,
c.ArgFromStack (Args [0], type),
c.ArgFromStack (Args [1], type)));

LISTING 5.26: Implementation of CompileNew method for the Sqrt
function

public override void CompileNew(Compiler c, CompileType type){
arg.Expression.CompileNew(c, type);
if (CheckRequired(type)){
c.AddRangeCheck (arg, type);
}
c.AddExpression(c.ResultToStack (this,
Expression.Call(sqrtMethod, c.ArgFromStack(arg, type)), type));

5.6. XML-Based Serialization of Geometrical Constructions 69

In functions which are possible to compile, the number of arguments is always
known. Let us consider the Plus function, depicted in Figure 5.8. Execution flow is
composed recursively, in several steps:

e Calculation of the first argument and pushing the value on the stack;
Validation of calculated value (optional);

Calculation of the second argument and pushing the value on the stack;
Validation of calculated value (optional);

Calculation of the function value, using the arguments from stack, and push-
ing the calculated value on the stack.

Expression

plUS{X1,X2}
3 A~

» 'Y
Calculate X; Validate X, Calculate X Validate Xz Calculate Result

Stack

FIGURE 5.8: Execution flow illustration of CompileNew method in
Plus function

5.6 XML-Based Serialization of Geometrical Constructions

We can say that all DGS use some formal languages for describing geometrical ob-
jects, e.g. GeoGebra .ggb, where is hidden XML format. XML is widely used, because
it is strict and has verification mechanisms, along with a large number of supporting
tools (Vidakovi¢ and Rackovié¢, 2006; Dimi¢ and Surla, 2009; Jani¢i¢, 2010). Therefore,
we have chosen xml-based format for representation of geometrical constructions.
Listing 5.27 represents a point A = (2,3) shown on the GeoCanvas.

Converting from a DGS language to xml, would be performed by a specific con-
verter which serializes variables from the engine into XML. Converting from xml
to a FLG language is more complicated, and Engine is needed to deserialize given
XML file. All expressions are loaded in proper order, maintaining the dependencies.
Each function is mapped with its name, unique name and class that represent it.

LISTING 5.27: XML representation of the drawing with one point

<Root>
<Assemblies>
<Assembly Index="1" Name="SLGCore, Version=1.0.0.0, Culture=neutral, PublicKeyToken=null" />
</Assemblies>
<TypeMappings >
<Mapping Name="$Grid" UniqueName="$Grid" Class="SLGeometry.Shapes.FGrid" />
<Mapping Name="Logical" UniqueName="Logical" Class="SLGeometry.Expressions.Logical" />
<Mapping Name="CString" UniqueName="CString" Class="SLGeometry.Expressions.CString" />
<Mapping Name="CPoint" UniqueName="CPoint" Class="SLGeometry.Shapes.CPoint" />
<Mapping Name="Number" UniqueName="Number" Class="SLGeometry.Expressions.Number" />
<Mapping Name="Point" UniqueName="Point" Class="SLGeometry.Shapes.FPoint" />
</TypeMappings >
<Variables>
<Var Name="$Grid">
<Fn UniqueName="$Grid">
<Args />
</Fn>
...//Visual properties
</Var>
<Var Name="A">
<Fn UniqueName="Point">

70 Chapter 5. Implementation Details

<NamedArgs >
<Arg Name="X">
<Number Value="2" />
</Arg>
<Arg Name="Y">
<Number Value="3" />
</Arg>
</NamedArgs >
</Fn>
<VisualProperties>
<NamedArgs >
<Arg Name="$Visible">
<Logical>True</Logical>
</Arg>
<Arg Name="$Label">
<CString></CString>
</Arg>
<Arg Name="$LabelOffset">
<CPoint >
<X>
<Number Value="0" />
</X>
<Y>
<Number Value="0" />
</Y>
</CPoint>
</Arg>
<Arg Name="$Selected">
<Logical>False</Logical>
</Arg>
<Arg Name="Shape'">
<Number Value="0" />
</Arg>
<Arg Name="Size">
<Number Value="8" />
</Arg>
</NamedArgs >
</VisualProperties>
</Var>
</Variables>
</Root>

5.7 Summary

In this chapter we have described the main contributions of the dissertation: a
metadata-supported object-oriented extension of DGS with a lazy evaluation mech-
anism. Our initial focus has been on expressing metadata, as an alternative for INET
attributes, that are structurally designed, easy to use and accessible via reflection.
Metadata defined in this way allow the use of non-CLR types values.

Further, this metadata structure directly contributes to an extensibility mecha-
nism, such as plug-ins. This mechanism enables adding new types, operations, func-
tions and visuals. Structural relationships are correctly represented, and correctness
is checked in the constructors of metadata classes.

Finally, the property activation infrastructure, using lazy evaluation and opti-
mization, reducing the evaluation costs, is devised. Geometric constructions are
kept in XML format.

Part 111

Validation

73

Chapter 6

Subject-Specific Components in
DGS

Computer-aided visualization provides meaningful insight into teaching, which helps
improve comprehension. With dynamic geometry software, a teacher can easily cre-
ate interactive mathematical learning materials. To fully benefit from DGS applied
to subjects other than mathematics, their functionality must be extended with fea-
tures which are inherent to those subjects. We demonstrate how a DGS, extended
with components, can be applied to geography as well as mathematics teaching.
Through experiments, we confirmed the benefits of our approach in practice.

SLGeometry can import and use software components from DLL files. These
components are either interactive visual controls (UI controls) or sequential behav-
ior controllers. UI controls represent objects such as buttons, light bulbs, clocks,
geographic maps, etc. Behavior controllers contain control logic, which is employed
to control the behavior of interactive drawings. We implemented a set of compo-
nents, which facilitate development of interactive materials, especially mathematical
games.

In this section we present a pattern for building mathematical games in SLGe-
ometry, and describe the features of our components, which help teachers develop
games without programming. We tested our approach using our experimental DGS
platform SLGeometry (Herceg, Radakovi¢, and Herceg, 2012; Radakovi¢ and Herceg,
2013; Radakovi¢ and Herceg, 2018; Herceg et al., 2019) in two separate experiments.
The first experiment had two stages:

1. Graduate students of mathematics were required to create dynamic drawings
which contained geographic maps, to be used as learning materials in a high
school classroom;

2. High school pupils were assigned tasks based on the materials prepared in the
tirst experiment.

One of the tasks was performed twice, first using a DGS without components and
then using a DGS with components. The second experiment involve use of sequen-
tial behavior controllers, which make the development of games without program-
ming possible. The students” and pupils” performance, reactions and comments
were recorded and compared.

74 Chapter 6. Subject-Specific Components in DGS

,f-""{ Teacher }---..hx
” . S ™
| \ ic |
Problem Dynamic)| solution
drawing
~— (A »
T Pupils lf""’
J

FIGURE 6.1: Straightforward path to the solution

'_,..-ft Teacher }'"‘"--a
/ Additional | _

> |_construction \\>
Dynamic
drawing /
Pupils |

FIGURE 6.2: Deviating from the original problem to construct auxil-
iary visuals

6.1 Motivation

Creation of mathematical learning materials in DGS is easy and straightforward.
Due to their interactive nature, DGS are also used to implement learning materials
for other subjects (Blum and Niss, 1991; Herceg and Herceg-Mandi¢, 2013). Many
authors, for example Sarama and Clements (2009) stress that geometry is the most
relevant mathematical subject which lies at the heart of physics, chemistry, biology,
geology, geography, art and architecture. However, DGS have certain shortcomings
when applied to subjects other than mathematics, as they are designed to operate
primarily with numerical data, geometric objects and mathematical functions. Set-
ting up a DGS to show interactive drawings for subjects other than mathematics can
be a tedious and time consuming task. For example, to create an interactive draw-
ing which contains a geographical map, the author must temporarily set aside his
primary goal and focus on the mathematical construction of the map. Furthermore,
when a finished map is included in the dynamic drawing, it consists of many ob-
jects which can draw the pupils” attention away from the main focus of the drawing.
The same limitation also appears when creating materials for other subjects. Thus,
one may find that creation of learning materials for subjects other than mathematics,
while feasible, is not easily achieved in a DGS, except where examples are essentially
mathematical.

In the ideal case, teacher and pupils consider a mathematical problem, create a
dynamic drawing to visualize the problem and develop a solution from there (Figure
6.1). For other subjects, the original problem must be set aside while the auxiliary

6.2. Components in DGS 75

construction is performed, and only when this is finished, can the original task be re-
sumed (Figure 6.2). In the classroom, when time is limited, this can pose a significant
problem.

The aforementioned problem can be solved by implementing subject-specific
components and their corresponding functions in a DGS. The visual appearance and
behavior of each component is programmed in advance, so that authors are freed of
the unnecessary work and complexity is removed from the dynamic drawings. The
pupils can regard the components as they would their real life counterparts: for
example, a map in real life corresponds to a map component on the screen.

6.2 Components in DGS

A software component is a self-contained unit, which is developed independently
and can be loaded and executed in the host software. Components in SLGeometry
are either functions or visual objects, which are added to the existing functions and
visual objects. When considering the use of components, one should have in mind
several important points.

Without components:

One complex object is constructed from many geometric shapes;

Many variables required to hold these shapes;

No logical connection between the shapes;

Construction can be completed in DGS alone;

Duplicating the complex object requires duplication of all its constituent parts.

Ol LN

With components:

1. One complex object is represented by one component;

2. One variable is required to hold the component;

3. One-to-one correspondence between the component and its real life counter-
part;

4. Component is developed by an experienced developer, outside the DGS;

5. Duplicating the complex object creates only one additional variable.

As one can see, the components have many positive aspects. However, there
is one significant drawback — each component must be purposefully developed in
C# by an experienced developer, outside of SLGeometry. This means that the ma-
jority of ordinary users do not possess the necessary skills for component develop-
ment. On the other hand, given the proper instructions and guidelines, a reasonably
skilled developer could make a number of components and make them available for
download, for example via a dedicated Web site or from within the DGS.

Simplicity is probably the most important property of DGS, which has made
them popular among teachers. Components bring simplicity back into DGS, when
they are used in subjects other than mathematics. Considering the subject of geogra-
phy, there is a pronounced need for maps of all kinds. A map component can draw a
country map, while other components can draw locations of cities, rivers and other
geographical objects.

76 Chapter 6. Subject-Specific Components in DGS

FIGURE 6.3: Mainland Italy, drawn by the Country component

Components may extend the reach of DGS even more. For example, by adding
interfaces to educational hardware, such as Arduino and micro:bit, the concept of
the "generic organizer”, as defined by Tall (1986), can be extended into the realm
of tangible tools. Learning materials based on dynamic geometry software comple-
mented with educational hardware can be a valuable asset in "blended learning", as
defined by Kashefi, Ismail, and Yusof (2012).

6.3 The Country and City Components

The Country function returns a list of points, which represent geographic coordi-
nates of the border of a country. When a polygon is created from the list, a visual
representation of the country appears on the screen. Country has two arguments,
the country name and the part index — useful for countries which consist of more
than one continuous territory (Listing 6.1). The City function returns geographic lo-
cation of the city (Listing 6.2). It also has two arguments, the first being the city name
and the second index, useful when there are multiple cities with the same name.

LISTING 6.1: Country component - Italy

italy = Country("Italy", 0)
italy.$Visible = false
pItaly = Polygon(Italy)
The Country function returns a list of points on the Italian border. The points
are then made invisible, and a polygon is drawn. The resulting image on the screen
(Figure 6.3) represents mainland Italy, shown at correct geographic coordinates.

6.3.1 The Experiments

For the experiments, we chose the topic “Age of discovery’, which is an important
part of the high school geography curriculum. Graduate students of mathematics
were required to create dynamic drawings which contained geographic maps, and
high school pupils were assigned three tasks based on the learning materials:

1. Measuring the length of a river,

2. Tracing the voyages of the great explorers, Ferdinand Magellan and James
Cook,

3. Tracing the students’/pupils’ own travels.

6.3. The Country and City Components 77

AR ClO)lEdke<]e=] [+] - e
Algebarskipri| " prava kroz dve tacke

2 M=(3.0

> M, =(3.," Dufodredenadvematalaka | < -

@ M, =(3] &* Du zadate dufine iz tacke o

SN=(34 3

2 N, =(3.4 ; 1
5N, = (34
40=(34 * tziomiena inja
50,=(3
2 0,=(3 # Vektor odreden dvema tatkama ™
JP=(34] _. . <
5 P, =(3 . Vekioriztacke B
o P,=(3.55387 é C
) Q=(3.16,6.52)
3 Q,=(3.19,5.42

N _—i2E4 2047
i [

/ Poluprava kroz dve tacke

FIGURE 6.4: Measuring the length of a river
m!’ - -

13074771

Batavia ¢
1010 - 2612177045,

14.07.4760
Ria de Janeir
13.11.- 06121768

Cape Town
1503.1504.0771

Cabo de Homos MNeve Zealand
16.01.-20.01.1768 07.10.- 01.041770

FIGURE 6.5: Tracing the voyages of the great explorers Magellan and
Cook

6.3.1.1 Task 1-Measuring a River’s Length

The first task is to measure the length of a river. In the first step, a map showing the
assigned river must be found on the Web. The map is then imported into GeoGebra.
In the next step the river is traced with the polygonal line (Figure 6.4). Since the co-
ordinates on the image are arbitrary and unrelated to geographic coordinates, in the
final step the actual, real life length of the polygonal line must be calculated. This is
accomplished by obtaining the scale of the map: a linear distance between two cities
on the map is found and divided by the real distance. The length of the polygonal
line is then divided by the scale to calculate the approximate real life length of the
river.

Tas

FIGURE 6.6: Tracing a voyage using the Country and City compo-
nents

78 Chapter 6. Subject-Specific Components in DGS

Both students and high school pupils were required to perform all the steps in
this task within one class, i.e. 45 minutes. The DGS of choice was GeoGebra.

6.3.1.2 Task 2 — Tracing the Great Explorers’ Voyages

The second task assigned was to trace the voyages of Ferdinand Magellan and James
Cook on the world map (Figure 6.5). Two lists of geographic coordinates, each corre-
sponding to one explorer, were provided in annotated text files. The files contained
geographic locations, expressed as pairs of coordinates, and some of the locations
were annotated with city names and dates. The students were required to import the
coordinates in chronological order into GeoGebra and construct the polylines from
both lists. Durations of the voyages and distances traveled were also requested. The
pupils were handed out the prepared drawings, without the locations and dates of
the significant places. They were given a list of locations and asked to mark them on
the map.

6.3.1.3 Task 3 — Tracing One’s Own Travels

The students and the pupils were tasked with creating a map of their vacation trav-
els. This task was different from the previous ones, in the sense that each person
had traveled to a different place and there were no materials prepared in advance.
Being an open-ended problem, the task was discussed with both groups, and the
consensus was reached, that the resulting drawing must contain, as a minimum, the
countries and cities traveled. The task was first done in GeoGebra, and later in SLGe-
ometry, using the Country and City components. An example solution is shown in
Figure 6.6.

LISTING 6.2: Country and City components

City("NoviSad", 0)
City("Belgrade", 0)

City ("Zurich", 0)
City("Lisbon", 0)
City("Coimbra", 0)

path = Polyline({n, b, z, 1, c})

o H N O B
LI | | R | N

sw = Country("Switzerland", 0)
sw.$Visible = false
psw = Polygon(sw)

pt = Country("Portugal", 0)
pt.$Visible = false
ppt = Polygon(pt)

6.3.2 Results and Comments

Both groups were allotted a time limit of 45 minutes for each test. The percentage
of students and pupils who have successfully finished the tasks was recorded and is
shown in Table 6.1. Being future mathematics teachers, the students showed greater
proficiency and motivation to finish the tasks. As expected, the pupils were more
successful in simpler tasks, and quickly lost interest when faced with a difficult and
repetitive task (Test 3 without components).

6.4. Sequential Behavior Controllers in SLGeometry 79

TABLE 6.1: Percentage of finished tasks

Test Students Pupils

T1 100% finished on time 65% finished on time
T2 72% finished on time 80% finished on time
T3 — without components 72% finished on time 30% finished on time
T3 — with components 100% finished on time 80% finished on time

Given authors” experience in teaching with GeoGebra and previous tests con-
ducted with SLGeometry, obtained results were more or less expected. After the
experiments, we conducted interviews with both groups and asked for their opin-
ions on the tests and suggestions on how the DGS they used could be improved. The
students were satisfied with GeoGebra, and, knowing how it operates internally, did
not have many suggestions for radical changes. For example, one student remarked
that she would like to have a collection of GeoGebra drawings representing maps
of all relevant countries, which she would be able to import into her own drawings.
Another one wished for a special version of GeoGebra aimed specifically at geogra-
phy. Several students, however, took a slightly passive attitude and only regretted
performing too slow in the experiments. The pupils, on the other hand, expressed
more radical ideas, such as having an Al assistant which would recommend the
tools based on the task at hand, or being able to download and choose add-ons, in
the manner of the popular Web browsers. Both the students and the pupils found the
Country and City components very helpful, and one pupil suggested that, instead
of having to look for city and country names in the documentation, the DGS should
automatically suggest possible argument values — similar to the way AutoCorrect
works in programming environments. An insightful comment came from a pupil
who said that, with components, he did not have to waste precious time drawing a
map, and could focus at the real problem instead. One particular conclusion was not
heard in any of the groups, however — duplicating a complex map in a DGS without
components leads to the duplication of all the objects it consists of, while duplicating
a map component introduces only one additional object. After this conclusion was
explained to them, the members of both groups agreed with it.

6.4 Sequential Behavior Controllers in SLGeometry

Further extending our previous work with custom components, we developed be-
havior controller components for SLGeometry, which act in a sequential manner,
i.e. they have inputs, memory and outputs (Table 6.2). With controllers, it is possi-
ble to achieve the most common behavior needed in mathematical games, without
the need for programming. Instead, the user places controllers on the drawing and
sets their properties accordingly. Each type of controller performs a specific type
of action, based on input values, and produces the appropriate output. The action
does not occur immediately, however. Instead, it is triggered by assigning the log-
ical value True to the special Trigger property of a controller. Controller’s outputs
are updated immediately after-wards. A special output property, named Done is
then briefly set to True and then again to False. The controllers can be daisy-chained

80

Chapter 6. Subject-Specific Components in DGS

together, by connecting the Done output of one controller to the Trigger input of an-
other. If used correctly, this enables users to create sequential behavior without the
need for writing program code.

TABLE 6.2: Sequential behavior controllers and their properties

Controller/property Type

Description

Sequencer
Min
Max

Value
Trigger

Done
Randomizer
Min

Max

Trigger
Done
Scorekeeper
Points

Score

Trigger

Done

Number
Number
Number
Logical

Logical,
read only

Number
Number
Logical

Logical,
read only

Number

Number,
read only
Logical

Logical,
read only

A counter which cycles through an interval of
integer values

Lower bound of the interval

Upper bound of the interval

Current value of the Sequencer

On transition from False to True, the trigger
causes Value to increase by 1. After Max is
reached, the Sequencer starts again from Min.
Transitions from False to True to False after
Value is updated

Produces a random value from the specified
interval

Lower bound of the interval

Upper bound of the interval

On transition from False to True, causes the
Randomizer to generate a new Value
Transitions from False to True to False after
Value is updated

Adds points to the total score when triggered
Score in the current round of a game

Total score

On transition from False to True, the value of
Points is added to Score.

Transitions from False to True to False after
Value is updated

The following examples demonstrate the practical use of the controllers.

6.4.1 Example 1 - Arithmetic Sum

The following example (Figure 6.7) demonstrates the use of triggers and their prop-
agation from one component to another. The goal of this example is to calculate the
arithmetic sum of numbers from 1 to 9. We use the Sequencer to produce values
from 1 to 9, and the Scorekeeper to add them together. A Pushbutton triggers the
Sequencer, and the Sequencer’s Done property then triggers the Scorekeeper. The
current value of the Sequencer is fed into the Points property of the Scorekeeper.
Clicking the button causes the Sequencer to cycle through numbers from 1 to 9,
which are then added to the score, thereby producing an arithmetic sum as a result.
In order to achieve this behavior, the user needs only to connect the controllers to

each other, as shown in Table 6.3.

6.4. Sequential Behavior Controllers in SLGeometry 81

Sequencer Scorekeeper]
6 21
7 pZ)p
FIGURE 6.7: Propagation of triggers between components -
Arithmetic Sum example

TABLE 6.3: Daisychaining the components via triggers

s.Trigger = p.Pressed The Sequencer’s trigger is connected to the button, so
that it advances each time the button is clicked

k1.Points = s.Value The current value of the Sequencer is connected to the
input of the Scorekeeper

k1.Trigger = s.Done The Scorekeeper adds Points to the sum right after the

Sequencer finishes

6.4.2 Example 2 - A Simple Game

This example demonstrates (Figure 6.8) the implementation of the ‘guess the mid-
point’ game in SLGeometry. The game is set up in a similar way as in GeoGebra,
with one important difference — the behavior is controlled without script programs.
Instead, the game logic is implemented by using controllers. Randomizers r1 and
r2 provide random coordinates for point B. Sequencer q keeps track of how many
times the game has been played. PushButton p signals that the user has placed the
marker and wants to check his/her solution. When the button is clicked, Score-
keeper increases by 1 if the user’s solution is correct. Scorekeeper’s Done property
then triggers the Sequencer and the Randomizers, thus moving point B to a new
random location and starting a new round of the game.

The complete code that produces the game is shown in Table 6.4. It should be
noted that the code is provided only for the sake of completeness, as the users will
create the game using toolbars and mouse. Important commands, which provide
sequential behavior, are shown in boldface.

Randomizer Sequencer
4 4 5

Randomizer Scorekeepe
3 4 3

FIGURE 6.8: The “guess the midpoint” game in SLGeometry

82

Chapter 6. Subject-Specific Components in DGS

TABLE 6.4: Definition of the ‘guess the midpoint’game

rl = Randomizer()

r2 = Randomizer()

rl.Min =2

rl1.Max =8

r2Min=1

r2.Max =7

A =(0,0)

B = (r1.Value, r2.Value)

X=(22)

X.Size =15

f = Segment(Segment(A,B).Midpoint,

X).Length

p = PushButton()

q = Sequencer()

s = Scorekeeper()
s.Points = If(f<1, 1, 0)
s.Trigger = p.Pressed
q.Trigger = s.Done

rl.Trigger = s.Done

r2.Trigger = s.Done

Two Randomizers are created and
their intervals set.

Point A is fixed.

Point B is placed randomly.

Point X is supposed to be moved by
the user, so we make it appear big-

ger.

f is the distance between the point
X and the midpoint of the segment
AB.

A PushButton, a Sequencer and a
Scorekeeper are created.

Current score is fed into the Score-
keeper.

Sequential behavior is defined here.
The PushButton activates the
Scorekeeper, which adds the cur-
rent score.

When the Scorekeeper finishes, it
activates the sequencer and both
randomizers, preparing the game
for the next round.

6.4. Sequential Behavior Controllers in SLGeometry 83

6.4.3 Experiment

In order to test our behavior controllers in practice, we conducted an experiment
with a group of 23 first year students of mathematics. We looked for answers to the
following questions:

e Are behavior controllers easier to learn and use than script programming?

e Given the choice, how many participants would choose behavior controllers
over script programs to implement a mathematical game?

e How well can the students solve a problem, which was not previously demon-
strated, using the behavior controllers?

e Do the students find the behavior controllers significantly easier to use than
scripting?

6.4.3.1 Assignments

The experiment was conducted during two classes, in a computer lab. In the first
class, we taught the students script programming and behavior controllers, and pre-
sented the two examples from Section 6.4. Then we asked them to reproduce the
examples, with our help. One week later, in the second class, the students were
given two assignments:

1. Implement the "Guess the midpoint" game from Example 2, with two random
points A and B:

(a) using script programming;
(b) using behavior controllers.

2. Implement the three-digit counter, which consists of three Sequencers. The
counter should advance when a PushButton is pressed. (A car mileage meter
was shown as an example.)

The second assignment, which was not presented before, was to implement a multi-
digit counter using the Sequencer control. Both assignments were graded from 1
(fail) to 4 (excellent). Finally the students were polled on their opinions about the
behavior controllers.

6.4.4 Results and Comments
The students were graded in the following manner:

e First, the students which had solved their assignments correctly, were graded
"Excellent’;

e The students which had made minor syntax errors were shown how to correct
them. Such students were graded "Good’;

e Finally, we gave additional instructions to the rest of the students. Then, the
ones which successfully solved the problems were graded ’Satisfactory’, and
the rest received "Fail’.

84 Chapter 6. Subject-Specific Components in DGS

TABLE 6.5: Students’ test scores

Assignments
Ala Alb A2
Fail 6 2 0
Satisfactory 2 4 3
Good 8 7 6
Excellent 7 10 14

TABLE 6.6: Poll results

Question Yes No
Are behavior controllers easier to use than script programs? 23 0
Do you find one class enough to learn behavior controllers? 20 3
Do you find one class enough to learn script programming? 6 17

If you had to choose only one method of controlling the behav- 15 8
ior of your interactive drawing, would you choose behavior con-

trollers over scripting? Explain.

Your opinion on behavior controllers, in writing? - -

Test results are shown in Table 6.5. Columns ‘Ala’and “Alb’contain results from
the first assignment, solved using scripting and behavior controllers, respectively.
Column “A2’contains results from the second assignment.

Regarding the first assignment, success rate was better with behavior controllers
than with scripts. While eight students struggled with script programming and sub-
sequently six of them failed to complete the assignment, only two failed to complete
the same assignment using controllers. The number of excellent results was also
bigger with the controllers (10 versus 7).

The amount of help we had to provide was also different in favor of controllers.
In Ala, we had to explain both the syntax and semantics of the script commands,
while in Alb we only had to remind the students how to correctly address controller
properties.

The second assignment was successfully completed by all the students. As with
the previous assignment, we helped the students, which scored ‘Good’, by correct-
ing minor syntax errors. The three students which scored "Satisfactory” could not
formulate the correct criterion for triggering the next digit by themselves.

We polled the students on their opinions about our behavior controllers. The
questions and answers are presented in Table 6.6.

We conclude from the answers that all the participants recognized the simplicity
that the behavior controllers offer. Most of the students learned how to use them
without difficulty. The opposite holds for script programming. Learning how to
program was difficult for students, especially for those who had no previous pro-
gramming knowledge. However, approximately one third of the students recog-
nized that scripting offers more choice and versatility. They stated that they were
confident enough in their programming skills to use script programming instead of
controllers.

The participants answered the last question in writing, and later we had a dis-
cussion with them, which resulted in some interesting opinions and observations:

6.5. Summary 85

e ‘I can actually see what the controllers do. Scripts are invisible and not very
clear to me.’

e ‘With controllers, I don’t have to memorize commands.’

e ‘Scripting is more powerful, but too difficult for me.”

¢ ‘I wish you created more behavior controllers for more complex games.”’

While most students agreed that the controllers are a useful addition to a DGS,
some argued that they did not offer enough flexibility. On the other hand, more than
half of the students said that they were able to create a simple mathematical game
with controllers, while they could not do the same with scripting. As the students
of mathematics are the future teachers of mathematics, we find that this conclusion
justifies the use of behavior controllers.

6.5 Summary

Components in dynamic geometry software bring new functionality without the
need for programming. Instead of constructing complex objects from geometric ob-
jects, authors can simply place a visual component on the drawing surface and use it
as an atomic object. Components allow authors to focus on the main task instead of
looking for ways to make DGS do things they weren’t designed for in the first place.
Also, components enable application of DGS in subjects other than mathematics and
help authors who are not proficient in development of learning materials. Besides
the many benefits of the components, there is one significant shortcoming — com-
ponents must be implemented by programmers, outside of the DGS, which puts
component development out of the reach of ordinary DGS users. This problem may
be alleviated by developing an online component library.

We identified a pattern of behavior, common to many mathematical games cre-
ated in GeoGebra. The behavior of such games is usually controlled by script pro-
grams, which can be difficult to write and maintain. We developed several sequen-
tial behavior controllers, which help in creation of mathematical games in SLGeom-
etry DGS without the need for programming. It is our aim to develop additional
controllers, to enable the users to create games with more complex behavior. The
use of controllers needs not be limited to games only.

In our experiments we found that our results are, in general, in accordance with
the conclusions of other authors, see, for example, Hohenwarter et al. (2008), Hohen-
warter and Preiner (2007), Mott et al. (2008), Prensky (2007), Tatarczak and Medrek
(2017). As others have also noted, the students take a more active role when learn-
ing is supported with a DGS. Blended learning and phenomenon-based learning
(Kashefi, Ismail, and Yusof, 2012; Lavicza et al., 2018) in geography were made pos-
sible by DGS, and the approach we took by extending SLGeometry with components
was well received by our pupils and students. Regarding the implementation aspect,
SLGeometry is a component-based system as outlined by Crnkovic, Chaudron, and
Larsson (2005), Jahn et al. (2013), Radakovi¢ and Herceg (2018). Separation of devel-
opment cycles for the host application and the components enables independent cre-
ation of extensions for various subjects. We can conclude that a DGS, extended with
components, can easily be adapted for specific subjects and hardware (Tomaschko

86 Chapter 6. Subject-Specific Components in DGS

and Hohenwarter, 2017), or connected to other software (Quaresma, Santos, and
Baeta, 2018; Quaresma et al., 2008).

87

Chapter 7

Testing Lazy Evaluation

In the previous chapters, Chapter 4 and Chapter 5, we have presented the SLGeom-
etry framework architecture and its components, along with the proposed structural
metadata infrastructure and the property activation mechanism which implements
lazy evaluation.

But to be sure, that the given infrastructure also benefits, both, the evaluation
speed and memory footprint, we need an experimental verification. In other words,
the main motivation for the experimental work presented in this chapter is the proof
that our infrastructure is not slower, or with larger number of created objects, com-
pared to traditional functional solutions.

To achieve that, we compare three different expression tree evaluation strategies:

1. eager,
2. functional, and
3. lazy evaluation.

For each of these approaches we developed a separate project with the same core,
but different evaluation engines. The performances of all evaluation schemes were
compared. Since in the eager evaluation scheme, all calculated properties are instan-
tiated and evaluated, regardless of whether they are referenced or not, this approach
is considered as the 'worst case” scenario, to better highlight advantages of the other
two approaches.

Certainly, it is supposed that the lazy evaluation brings the best results, although
it could be easily expected that the overhead of objects happened, in particular with
objects with big number of properties.

Evaluation speed and memory footprint were observed as performance indica-
tors. The experiment was based on repeated evaluation of drawings with different
number of objects with calculated properties (Figure 7.1), using all three evaluation
strategies.

Next, we argument why we have chosen the triangle for the geometrical shape
that we use in our experiments. Section 7.2 gives the list of properties which are
added to the triangle and calculated. Experimental setup is presented in Section 7.3.
We compare and discuss performance and memory footprint of all tree evaluation
schemes in last two sections.

88 Chapter 7. Testing Lazy Evaluation

7.1 Why the Triangle?

Since the triangle is one of the basic geometrical shapes that is taught from early
childhood, a great number of interactive examples have been developed in many
DGS or other mathematical software (GeoGebra materials: triangle, 2019; Cinderella
Gallery: Altitudes in a triangle, 2019; Engstrom, 2001; Arzarello et al., 2002; Cabrilog:
Echantillon de Cabri Factory — Parallélogramme, 2019; Wolfram Math World: Triangle,
2019) and many tutorials exist that can be found on the Web, including Wikipedia,
YouTube, etc. (Lernpfad, 2019; Math Open Reference, Triangles, 2019; StackExchange
— Mathematics, 2019; Cut The Knot: The many ways to construct a triangle, 2019; Ge-
ometrie interactive - le cercle qui tourne le triangle, 2019; Dahan, 2014). In Euclidean
geometry, special points and lines of the triangle, including the incenter, centroid,
circumcenter and orthocenter, have always attracted interest. Many researches in-
vestigate the construction task in geometry while some concentrate on learning tra-
jectory for the triangle topic, especially triangle construction (Wernick, 1982; Yiu,
2008; Marinkovi¢ and Janic¢i¢, 2012; Marinkovié¢, 2015; Zhuravlev and Samovol, 2016;
Anwar and Rofiki, 2018).

Clark Kimberling’s Encyclopedia of Triangle Centers — ETC (Kimberling, 2019;
Kimberling, 1993) counts more than 10 000 triangle centers. Since the triangle is a
well-known geometrical shape, and pupils in schools should learn its properties ac-
cording to the national curricula for mathematics in European countries (Lehrplan
PLUS Mittelschule — Juni 2016, Bayerisches Staatsministerium fiir Bildung und Kultus,
Wissenschaft und Kunst, Staatsinstitut fiir Schulqualitiit und Bildungsforschung Miinchen,
2016; Nastavni plan i program za osnovnu Skolu 2013, Ministarstvo znanosti i sporta Re-
publike Hrvatske, 2013; Progressions pour le cours préparatoire et le cours élémentaire pre-
miere année: Mathématiques, Ressources pour I'école élémentaire, 2012; Nastavni planovi i
programi za osnovne i srednje skole, Zavod za unapredenje obrazovanja i vaspitanja, Repub-
lika Srbija, 2016; Statny pedagogicky dstav, Statny vzdeldvaci program, Vzdelédvacia
oblast: Matematika a praca s informdciami, Slovenskej republiky, Slovakia, 2019;
Departmen for education, Mathematics programmes of study: key stages 1 and 2, National
curriculum in England, September 2013, 2013), we decided to use the triangle and its
properties as the base for constructions in the experiments.

7.2 Constructions

Test examples are created starting from a base group of objects, similar to one in
Wernick’s list (Wernick, 1982), which consists of a triangle with:

altitude on side g;

angle bisector for angle «;
perpendicular bisector for side a;
circumcenter O;

circumcircle cc.

For the extended testing of object and memory consumption, the following prop-
erties are added to the triangles:

7.3. Experimental Setup 89

e triangle perimeter;

e sidea;

e side b;

e altitude foot of altitude on side c;

triangle area;

inradius;

median from A;

median line through B;

median line through C;

orthocenter;

coordinate X from midpoint of side 4;

coordinate Y from altitude foot on side b;

e triangle with vertices in midpoints of sides 4, b, c;

e coordinate X from midpoint of side c of the inner triangle;

coordinate Y of vertex C of the inner triangle;

e coordinate Y from midpoint of side b of the inner triangle;
e coordinate Y of vertex B of the inner triangle;

e perimeter of the inner triangle.

Given the parameter n, additional n groups of objects are created, using the construc-
tion steps in Table 7.1 and Table 7.2. The vertices of the base triangle have constant
coordinates, and the vertices of the dependent triangles are calculated from them, so
that dependent triangles are arranged in rows with five triangles in each row. The
dependent triangles are shifted by 1 on the x-axis, and each row is shifted by —1 on
the y-axis. The parameter i = 1, ..., n denotes the index of a dependent triangle, and,
the expressions k = i|5 and j = i|5 specify its position.

For experiments involving lazy and eager evaluation, the constructions were
specified in the object oriented syntax. For experiments involving functional eval-
uation, the constructions were specified using the functional syntax, i.e. for each
property a separate function was applied. The constructions were created for n =
5,10, 20, 30, 40.

7.3 Experimental Setup

All experiments were conducted on three computer configurations shown in Table
7.3. The software was run from inside Visual Studio 2015 and its built-in Diagnostic
Tools were used to track and measure performance. CPU time was measured on
each computer in the following way:

1. For a given 1, the construction was created,

2. Coordinates of the point A in the base triangle were changed, causing all the
dependent objects to be evaluated,

3. Step 2 was repeated a set number of times and total time was taken.

We started with n = 5, by timing 50,100,200, 300 and 500 evaluations. Since
there were no significant deviations in the results, we performed all subsequent ex-
periments with 100 evaluations. We performed the same measurements for n =
10, 20, 30,40. Memory footprint was measured in the following way:

90

Chapter 7. Testing Lazy Evaluation

TABLE 7.1: Constructions used in tests, specified in OO syntax. For
dependent triangles, i = 1,...,n;k = i|5;j = i|5

Base group

Dependent groups

A = (0.68, 0.83)
B = (0.14,0.14)
C =(0.79, 0.26)

Ai=(AX+kAY-)
B_i=(BX+k BY-j)
C_i=(CX+k CY-j)

wn
§ t = Triangle(A, B, C) t_i = Triangle(A_i, B_i, C_i)
§ uab = Angle(B, A, C).Bisector uab_i = Angle(B_i, A_i, C_i).Bisector
& sab =t.SideA.Bisector sab_i = t_i.SideA.Bisector
al = t. AltitudeA al_i =t_i.AltitudeA
o = t.Circumcenter o_i = t_i.Circumcenter
cc = Circle(o, A) cc_i = Circle(o_i, A_i)
~per = tPerimeter ~ per_i=t_iPerimeter
a =t.SideA a_i=t_i.SideA
b = t.SideB b_i =t_i.SideB
hcf =t. AltitudeFootC hcf i = t_i. AltitudeFootC
ar = t.Area ar_i=t_i.Area
inr = t.Inradius inr_i = t_i.Inradius
» mma=t.MedianA ma_i=t_i.MedianA
-‘é mbl = t MedianLineB mbl i=t iMedianLineB
% mcl = t. MedianLineC mcl_i = t_i.MedianLineC
§ 02 = t.Orthocenter 02_i = t_i.Orthocenter
% amx = a.Midpoint.X amx_i = a_i.Midpoint.X
E afby = t.AltitudeFootB.Y afby_i = t_i.AltitudeFootB.Y
t2 = Triangle(t.SideA.Midpoint, t2_i = Triangle(t_i.SideA . Midpoint,
t.SideB.Midpoint, t.SideC.Midpoint) t_i.SideB.Midpoint, t_i.SideC.Midpoint)
scmx = t.SideC.Midpoint. X scmx_i = t_i.SideC.Midpoint.X
2cmx = t2.C.X 2cmx_i =t2_i.C.X
sbmy = t.SideB.Midpoint.Y sbmy_i = t_i.SideB.Midpoint.Y
t2bmy = t2.B.Y t2bmy_i =t2_i.B.Y
per2 = t2.Perimeter per2_i = t2_i.Perimeter
1. The number of objects on the heap and heap size were taken after the applica-
tion was run,
2. For a given n, the construction was created,
3. The number of objects on the heap and heap size were taken after the example

was created.

We started with example of triangle with 9 properties (Table 7.1 and Table 7.2,

basic test) for all tree approaches. Since lazy and functional evaluations produced
close values, we increased the number of properties, starting with 3 and increasing

by 3 until 27 properties (Table 7.1 and Table 7.2) for both approaches. These mea-

surements were repeated three times.

As the eager evaluation scheme always calculates all properties of all the trian-

gles and other geometric objects in the drawing, we therefore expect it to perform
slowest. On the other side, with the lazy evaluation scheme only referenced proper-
ties are calculated. In the functional evaluation scheme for each property a separate
function is employed for each property that needs to be calculated. With regards to
the postulates, we assume that the lazy evaluation scheme should perform at least

7.4. Results, Analysis and Discussion 91

TABLE 7.2: Constructions used in tests, specified in Functional syn-
tax. For dependent triangles, i = 1,...,n;k = i|5;j = i|5

Base group Dependent groups
A =(0.68, 0.83) Ai=(AX+k AY-j
B =(0.14,0.14) B_i=(BX+k BY-j)
» C=1(0.79,0.26) Ci=(CX+k CY-j)
% t = Triangle(A, B, C) t_i = Triangle(A_i, B_i, C_i)
> uab = Bisector(Angle(B, A, C)) uab_i = Bisector(Angle(B_i, A_i, C_i))
f;ﬁ sab = Bisector(Side(1, t)) sab_i = Bisector(Side(1, t_i))
al = Altitude(1, t) al_i = Altitude(1, t_i)
o = Circumcenter(t) o_i = Circumcenter(t_i)
cc = Circle(o, A) cc_i = Circle(o_i, A_i)
~per =Perimeter(t)y =~ per.i=Perimeter(ti)
a = Side(1,t) a_i = Side(1,t_i)
b =Side(2,t) b_i = Side(2,t_i)
hcf = AltitudeFoot(3,t) hcf_i = AltitudeFoot(3,t_i)
ar = Area(t) ar_i = Area(t_i)
inr = Inradius(t) inr_i = Inradius(t_i)
@ ma = Segment(Midpoint(Side(1,t)),A) ma_i = Segment(Midpoint(Side(1,t_i)),A)
§ mbl = Line(Midpoint(Side(2,t)),B) mbl_i = Line(Midpoint(Side(2,t_i)),B)
= mcl = Line(Midpoint(Side(3,t)),C) mcl_i = Line(Midpoint(Side(3,t_i)),C)
Eo2= Orthocenter(t) 02_i = Orthocenter(t_i)
% amx = Coordinate(1,Midpoint(a)) amx_i = Coordinate(1,Midpoint(a_i)
S afby = Coordinate(2,AltitudeFoot(2,t)) afby_i = Coordinate(2,AltitudeFoot(2,t_i))
< t2 = Triangle(Midpoint(Side(1,t)), t2_i = Triangle(Midpoint(Side(1,t_i)),

Midpoint(Side(2,t)) Midpoint(Side(3,t))) Midpoint(Side(2,t_i)), Midpoint(Side(3,t_i)))
scmx = Coordinate(1,Midpoint(Side(3,t))) scmx_i = Coordinate(1,Midpoint(Side(3,t_i)))

t2cmx = Coordinate(1, Vertex(3,t2)) t2cmx_i = Coordinate(1,Vertex(3,t2_i))

sbmy = Coordinate(2, Midpoint(Side(2,t))) sbmy_i = Coordinate(2, Midpoint(Side(2,t_i)))
t2bmy = Coordinate(2,Vertex(2,t2)) t2bmy_i = Coordinate(2,Vertex(2,t2_i))

per2 = Perimeter(t2) per2_i = Perimeter(t2_i)

TABLE 7.3: Computer configurations used for testing

Computer CPU RAM oS

Configuration1 Intel Corei52.4GHz 8Gb Windows 10 Pro 64-bit
Configuration 2 Intel Corei53.2GHz 16 Gb Windows 10 Pro 64-bit
Configuration3 AMDE-4501.6 GHz 4Gb Windows 10 Pro 64-bit

as fast as the functional evaluation scheme, while both should outperform the ea-
ger by a great margin. As for memory consumption, the lazy evaluation scheme is
expected to require more memory compared to the functional approach, because of
the implementation requirements

7.4 Results, Analysis and Discussion

We analyze the performance and memory footprint of all tree evaluation schemes.
One-way Analysis of Variance (ANOVA) and non-parametrical Kruskal-Wallis ANOVA
are used to test the statistical significance of differences between test results of all
three experimental approaches. The statistical significance level is set to p < 0.05.
For these analyses we used Statistica 13.

92 Chapter 7. Testing Lazy Evaluation

P) .
"' 'I' '!' "' "'
1" it (// J [/ ld () l'\

.’l" '.’!"’ !'.,," '.’:! !.'
|/] 1 1
T [w w '\

l'll' 'l“" Y ‘ﬂl

(A) triangle with all 27 properties (B) example forn =40

FIGURE 7.1: Single triangle with all 27 properties (A) and an example
for n = 40 in SLGeometry (B)

The ANOVA testing is used to determine whether at least two groups are dif-
ferent, but without noticing which group-pairs. Therefore, we checked all the pairs
between eager, lazy and functional schemes for each measurement, using the Post-
hoc Tukey HSD test and obtained that all group-pairs are statistically significantly
different from each other with p < 0.05.

CPU time measurements for all approaches are presented together, and are shown
in tables with mean+standard deviation values for all approaches and different val-
ues of n. To compare the values we also observed the ratio of the mean values for
Lazy/Eager and Lazy/Functional evaluation schemes.

The study is divided into three subsections. In the first one, we analyze CPU
time tests for n = 5. In the second subsection, we widen our analysis to speed
tests for n = 10,20,30,40. In the third subsection, we perform object count and
memory consumption testing. Each group of tests is discussed for each computer
configuration separately.

7.4.1 CPU Time Tests for 5 Triangles

We started the testing using the example for n = 5 by measuring CPU time for 50,
100, 200, 300 and 500 evaluations. We ran 10 tests for each evaluation scheme on
each computer. Since the number of tests is not large and we could not check the
assumption of a normal distribution of the results, we used the non-parametrical
Kruskal-Wallis ANOVA test to compare the results. In Table 7.4 multiple compar-
isons of p-values for each approach with p < 0.05 are shown (for Configuration
3, 50 evaluations), thus the data samples have statistically significantly different re-
sults. The comparisons of p-values for all other configurations and all numbers of
triangle movements are similar, i.e. all the data are comparable.

All three configuration tests have the best results for the lazy evaluation scheme,
shown in Table 7.5. Eager performed slower than lazy, 37-39% (1 and 3) and 33-38%
(2), while functional was slower 10-13% (1), 12-15% (2) and 9-12% (3) (Figure 7.2).

7.4. Results, Analysis and Discussion

93

0.72 Comparison of mean values for Lazy/Eager
0.70
;ﬁn 0.68 —+—Conf.1 —#—Conf.2 Conf. 3
L]
H:; 0.66
5 0.64
0.62 N
v—__—_—vr’
0.60
50 100 200 300 500
number of evaluations
(A) Lazy/Eager
Comparison of mean values for Lazy/Functional
0.92 1 —4—Conf.1 ——Conf.2 Conf. 3
0.91 -
T090 1 N
-% 0.89 - -
S 0.88 -
L
:;..“ 0.87 -
8086
0.85 -
0.84 T T T T 1
50 100 200 300 500

number of evaluations

(B) Lazy/Functional

FIGURE 7.2: Comparative graphs of mean values of CPU time for
ratio Lazy/Eager (A) and Lazy/Functional (B) on all configuration

(n=15)

94

Chapter 7. Testing Lazy Evaluation

TABLE

Conf3M50, Independent (grouping) variable:

7.4:

Multiple Comparisons p values (2-tailed); Results

Groups Conf3M50

Kruskal-Wallis test: H(2, N = 30) = 25.82944 p < 0.05 Computer con-
figurations used for testing

Besults Conf3m50 (Conf3 m all
epend.:

Multiple Comparisons p values (2-tailed); Results Conf3m50

data 2 better) Independent (grouping) variable: Groups Conf3m50
Kruskal-Wallis test: H (2, N = 30) = 25.83519 p = .0000

50eager R:25.500 50lazy R:5.5000 50func R:15.500
50eager 0.000001 0.033255
50lazy 0.000001 0.033255
50func 0.033255 0.033255

TABLE 7.5: Mean = standard deviation values of CPU time on all
configurations (n = 5)

Mean values+SD 50 100 200 300 500

— Eager 1008.3+54.052 1972.4+£55.9 3940429.38 5916.6+78.09 9867.5+92.16
ug Lazy 616.5+14.269 1201.4+28.98 24724+25.05 3657.1+38.31 6104.7+88.82
U Functional 682.9+10.969 1379+18.71 2761.3+45.83 4114.24+96.94 7019.4+121.35
™ Eager 648.6+12.231 129341296 2576.7+£17.02 4066.84+19.29 6376.4+33.13
ué Lazy 429+48.692 847.4+10.606 1675.5+13.87 2536.24+20.35 4267.3+19.19
U Functional 505.8+12.164 972.6+10.814 1937.5+16.47 2889.44+19.91 4848+25.1

© Eager 4414.4430.1 8963.3+£67.72 17456.5+453.6 26591.14+184.2 43148.94+343.1
ué Lazy 2717.9443.76 5472.4+69.38 10855.6+88 16198.3+140.9 27244.2+296.3
U Functional 3037.2+43.21 6037.6+58.8 12030.44129.7 18306.1+249.5 29999.3+274.8

7.4.2 CPU Time Tests for 100 Evaluations

Since there were no significant deviations in the results presented in Section 7.4.1,
performance testing on more complex drawings with n = 10, 20, 30, 40 was carried
out by measuring CPU time for 100 evaluations. We used one-way ANOVA to an-
alyze our results in these tests. The observed results are consistent with the normal
distribution (N = 30 for each approach and each computer). Table 7.5 presents the
CPU time test results ran on all configurations.

Configuration 1 CPU time tests. Figure 7.3 shows the results in box plot dia-
grams for n= 5, 10. Both plots in Figure 7.3 show the CPU time for all 5 loads of
triangles. Plots use the point in the center of the box to show the mean, with its nu-
meric value in the text box; box edge values are mean+standard deviation; whiskers
denote minimal and maximal values. In the diagrams it is easily seen that the lazy
approach is better than eager and functional in all cases. The eager approach is
worse than the functional. When we compare the mean values in Figure 7.4, we can
say that the lazy approach is better than the functional cca. 11%, and compared with
the eager approach up to 46%.

Configuration 2 CPU time tests. In this case, according to better computer con-
figuration all results were faster than Configuration 1 results. For all groups, the lazy
approach is the fastest, afterwards the functional comes with cca. 10% delay, while
the eager values have a delay ranging from 34% to 57% (Figure 7.4).

Configuration 3 CPU time tests. As this configuration is the weakest; all results
were the slowest (Table 7.6). Again the lazy approach was the fastest. This time, the
functional approach varied from 10% to 16% delay, while eager delays were 38-54%
(Figure 7.4).

7.4. Results, Analysis and Discussion

95

Box Plot of Configuration 1 - 5 triangles
2100

2000

B Mean = 1934.37

1800

1700
1600

Mean = 1379

1500

result Configuration 1

1400

1300

1200

1100

Seager Slazy 5func
groups Configuration 1

(A) 5 triangles

FIGURE 7.3: Box Plot

Box Plot of Configuration 1 - 10 triangles
5800

5600 [Mean = 5430.57]

5400

5200

Mean = 5114.2

[Mean = 4562.43|

5000

'
@
=]
=]

result Configuration 1

4600

4400

4200

10eager 10lazy 10func
groups Configuration 1

(B) 10 triangles

of results made on Configuration 1:

(A) 5 triangles (B) 10 triangles

0.90 -

0.85

0.80

0.75 A

0.70

0.65

Lazy/Eager

0.60 -

0.55

0.50

0.45 -

Comparison of mean values for Lazy/Eager

—+—Conf. 1
== Conf. 2

Conf. 3

0.40

0.92
0.91

0.90

0.88

087 | 4

Lazy/Functional

10 20 30 40

n - number of triangles

(A) Lazy/Eager

Comparison of mean values for Lazy/Functional

—4+—Conf. 1
——Conf. 2

Conf. 3
T

10 20 30 40

n - number of triangles

(B) Lazy/Functional

FIGURE 7.4: Comparative graphs of mean values of CPU time of
ratio Lazy/Eager (A) and Lazy/Functional (B) on all configuration
(n =5,10,20,30,40)

96 Chapter 7. Testing Lazy Evaluation
TABLE 7.6: Mean = standard deviation values of CPU time on all
configurations (n = 5, 10, 20, 30, 40)
Mean values+SD 5 10 20 30 40
: Eager 1934.37+£57.57 5430.574+98.05 16975.40+1218.7 35001.304+1735.1 70502.50£12461.6
g Lazy 1201.4427.97 4562.43+126.1 12257.60+364.6 23396.904+-848 38137.90+1433.9
O Functional 1379+18.05 5114.204+119.6 13701.404+299.5 26338.60+739 42887.60+£1737.6
N Eager 1315.9004+28.92 3496.07+17.65 11000.94+102.9 22489.5+78 38312.6+197.6
g Lazy 869.667+20.704 2012.13+33.72 5371.2+98.49 10276.5+197.2 16546+372.4
O Functional 962.1334+18.821 2231.57+24.67 5992.34+32.27 11270.4+73.1 18152.9+80.3
™ Eager 8515.10+418.45 25612.9+1512.7 87274.3+1469.8 1799954146729 283862+12391
“g Lazy 5260.934287.94 12717.4+833.3 41883.4+129.5 81739.9459191 13080744461
O Functional 6048.40+521.23 14866+1418.8 46928.74+1193.5 94138.94+68539.3 155030+2691

7.4.3 Object Count and Memory Tests

In addition to CPU time testing we conducted memory footprint tests, by measuring
the number of objects on the heap and total memory consumption. Tests are divided
in two parts, measuring object count and memory consumption for triangles:

1. with 9 properties;
2. starting with triangle vertices and triangle, and adding 3 more properties for
each new test.

In the first part all tree approaches were compared, and in second only the lazy and
functional ones.

7.4.3.1 Measuring for 9 Properties of Triangle

Table 7.7 shows the average difference values of objects and used memory, before
and after a test example is loaded from file, on Configuration 1. The values differ be-
tween evaluation schemes due to different evaluation engine implementations. With
the increase of the number of loaded objects, the number of objects on the heap and
memory consumption also increases. Figure 7.5 shows average differences between
object count (a) and memory consumption (b) values before and after loading of test
examples for Configuration 1. The graphs for other configurations are very similar
(with only up to 0.5% difference). In all cases the eager approach shows worst re-
sults. The best values for object count are obtained with the functional approach and
compared to lazy evaluation the results are 7% better. Similar results are obtained
for memory consumption, with functional requiring up to 10% less memory.

TABLE 7.7: Average difference between heap object count and mem-
ory consumption before and after the test examples are loaded for
Lazy, Functional and Eager testing (Config. 1, 9 properties)

n Lazy Functional Eager
Objects Memory (Kb) Objects Memory (Kb) Objects Memory (Kb)
5 10649.33 397.65 9911.00 35495 18158.00 686.57
10 19673.33 738.38 18312.00 661.52 33464.00 1268.59
20 37702.67 1405.74 35120.67 127447 64092.00 2420.19
30 55727.00 2088.75 51913.67 1877.09 94714.00 3587.52
40 73762.67 2749.47 68832.00 2490.43 125369.67 4733.99

7.4. Results, Analysis and Discussion 97

Configuration 1 - memory comparison

5000 A
4500
4000 /

\
\

\
\\

== Lazy memory

== Functional memory

1500
1000 & —— Eager memory

500 -

0 T T T T 1
5 10 20 30 40
n - number of triangles
(A) Memory comparison
Configuration 1-objects comparison

140000

120000 /A
100000
/ / ——Lazy objects
60000

/ —m— Functional objects
40000 / ~— Eager objects
20000

K

number of objects

5 10 20 30 40

n - number of triangles
(B) Object comparison

FIGURE 7.5: Memory (A) and object (B) comparison for
Configuration 1 (9 properties)

98 Chapter 7. Testing Lazy Evaluation

-=i-0Objects Memory

Functional/Lazy
oS o o o o ¢
R
A
N

3 6 9 12 15 18 21 24 27
Number of properties

FIGURE 7.6: Average memory and object comparison
Functional/Lazy for all 27 properties of the triangle

7.4.3.2 Measuring for 27 Properties of Triangle

According to the Table 7.1 and Table 7.2 first comparison of the number of objects
on the heap and total memory consumption was for triangle with its vertices. Each
next step we added 3 more properties. As the number of properties increases, the
properties are more complicated in a sense that they need more property activations
and the activations occur on several levels, as explained in Section 4.

Figure 7.6 shows the ratio of average values for each group of properties of Func-
tional/Lazy memory and object consumption. The values >1 show cases when Lazy
approach is better than Functional, what is our aim prove that they exist after some
conditions are achieved. It is easy to see that the object consumption is equal for
starting triangle. When triangles have 6 and 9 properties Lazy approach takes 8-10%
more objects and with 12 and 15 properties that backlog is better cca. 5%, while with
18-21 properties it is just 0.5-0%. The turnaround is reached after having 24 and 27
properties, when Lazy approach gives better results for cca. 1-2%.

The memory ratio Functional /Lazy consumption looks similar with the excep-
tion of the starting triangle, where Functional approach is better for 8% due to com-
plex metadata in Lazy approach.

7.5 Summary

Bestow to the results from the experiments we can make several observations.

7.5. Summary 99

First, the lazy evaluation scheme has the best execution time for all configura-
tions and all experimental settings. The functional evaluation scheme is second best
with a delay of 9-12%, while for the eager approach delays range between 33-57%.
The advantage of the lazy evaluation scheme over the functional one can be at-
tributed to optimized evaluation of properties, where common intermediate results
are calculated only once.

Second, memory consumption and object count tests confirmed that the eager
approach yields worst results. Functional evaluation performed slightly better than
lazy evaluation regarding memory footprint for triangles without many properties.
Looking closely at the results in Table 7.7, however, we can conclude that the slight
increase of memory and object consumption is easily offset by the benefits of the
object oriented approach, which were discussed in detail in Section 3.4.2.

Third, memory and object consumption for lazy evaluation gives better results
for triangles with more complex properties after the number of properties exceeds
24. This value may vary depending on the complexity of the construction and objects
involved.

101

Chapter 8

Conclusion and Future Work

8.1 Conclusion

In this dissertation we presented a framework for specifying metadata which bears
structural and semantic information in the FLG and demonstrated its use on several
types of code entities (Chapter 4). The proposed framework offers greater flexibility
than attributes, while retaining their functionality and declarative nature. The prob-
lem of storing values of custom types in metadata (Section 3.2), as well as structural
information, which could not be overcome using attributes, is easily solved using
our approach (Section 5.1). We also provided guidelines for implementation of new
data types, operations, type conversions and functions.

Thanks to pervasive use of metadata to annotate all aspects of DGS, we have suc-
cessfully decoupled specific data types, operations, functions and visuals from the
core components of the software, which means that the software can be extended
with new features, or the default set of features can be completely replaced (Section
3.4.1, Section 3.4.2). By introducing the constant object data type and dot notation,
we have avoided complex syntax from the language and unified the objects with
their properties (Section 3.4). This achievement benefits the users and developers
of SLGeometry alike. For the user, expression syntax has become simpler and more
straightforward; for the developer, the implementation of an constant object type
and its properties can be unified inside a single C# class instead of being scattered
throughout multiple functions. Thanks to the metadata, object properties have be-
come discoverable and various typing and visual aids can be developed, which will
assist the user while manipulating objects with properties.

The field of DGS has been developing quickly in the last decade. Due to ease of
use and general availability, DGS are widely used by teachers to create and dissem-
inate teaching and learning materials, and increasingly so in the fields other than
geometry. Therefore a need has arisen for easy extensibility of DGS. We believe that
the principles and methods highlighted in this dissertation can easily be adapted to
any DGS developed in C#, Java and similar languages, since the implementation in
the Engine is relatively simple, and the main weight of the solution lies with the idea
of structured metadata.

Components in dynamic geometry software bring new functionality without the
need for programming. Our aim is to develop additional controllers, to enable the
users to create games with more complex behavior. Besides the many benefits of
the components, there is one significant shortcoming — components must be imple-
mented by programmers, outside of the DGS, what can be allayed by developing

102 Chapter 8. Conclusion and Future Work

additional component library. In our experiments we noticed the students take a
more active role when learning is supported with a DGS (Chapter 6).

We have developed extensions to the computational engine and expression tree
definition of SLGeometry DGS, which demonstrate the following improvements:

e Provide support for objects (in the OOP sense) to represent geometric shapes
and their properties; this concept is easily extended to supporting user inter-
face elements in SLGeometry, and, in general, any object type that can be im-
plemented in C# (Section 3.4);

e Provide a framework for simple definition and evaluation of object properties
(Section 3.3, Chapter 4, Chapter 5);

e Define expression tree extensions and an algorithm for lazy evaluation of ob-
ject properties, which reduce evaluation time by only evaluating properties
that are referenced, and also by calculating common intermediate results only
once (Section 5.4);

e Define a result caching scheme which can significantly reduce heap load and
speed up rapid consecutive evaluation of expression trees (Section 5.3.1);

e Provide support for context-aware code completion, therefore alleviating com-
plexity and effort often associated with textual input of expressions.

The extensions are implemented on SLGeometry, dynamic geometry software
developed as Universal Windows Application in C# on .NET 4.5. We have tested our
approach to expression evaluation and compared it to a purely functional evaluation
scheme, which is regarded as standard in today’s state-of-the-art dynamic geometry
software (Chapter 7). CPU time, heap load and RAM consumption were measured
and compared.

From experimental results, the proposed algorithm for lazy evaluation gives very
good results considering speed, while memory consumption and heap load are also
satisfactory. We have found that our approach is comparable with the functional
evaluation scheme, having a better CPU time with only a marginal increase in mem-
ory footprint (Section 7.4).

The main contribution of this dissertation is the proposed system for efficient
management of a set of interactive objects with dynamic properties, which is imple-
mented as an extension of a classical expression tree evaluator. Computational effi-
ciency is provided by the introduced caching scheme, dynamic property activation
and lazy property evaluation. From the software development point of view, our
proposal enables developers to encapsulate all required metadata and functionality
in one source file for each object type. This is a step forward from the functional
implementations, where the introduction of a new type means that a number of
functions must also be introduced or overloaded in order to support that type. Our
solution supports efficient manipulation of complex objects with numerous prop-
erties. The presented solution can also be applied to other functional expression
evaluators.

8.2. Future Work 103

8.2 Future Work

Available metadata for registered operations and functions allows for various opti-
mizations of expression trees. One of the most interesting optimizations would be
early binding of all operations, which are applied to operands of known types. The
generalized binary operation from Listing 5.19 would require a new recursive struc-
ture to be created, which would substitute calls to the BinaryOpLateBinding method
with actual operation evaluation methods, for all operands whose types are known
beforehand. This structure would then be held in place of the actual expression tree
and evaluated more efficiently.

Considering the available information about return types of functions, parts of
expression trees can be identified, which are good candidates for compilation. For
example, a subtree which only consists of numerical constants and functions return-
ing numerical values can easily be compiled into more efficient code. By extrap-
olating this principle, a skeleton compiler can be written, which could be popu-
lated with metadata and separate compiling methods for operations and functions
applied to arbitrary data types. Implementers of new data types, operations and
functions would only need to write specific compilation methods and register them
with metadata, in order for their data types, operations and functions to take part
in compilation. The work on a generalized expression tree compiler is presently in
progress.

Currently, the all components which are contained in SLGeometry framework
are mutually dependent, with attempts to make them isolated and autonomous as
stand alone framework, and ready for use to other developers.

105

Bibliography

Abramovich, S (2013). “Computers in Mathematics Education: An Introduction”.
In: Computers in the Schools: Interdisciplinary Journal of Practice, Theory and Applied
Research 30.1-2, pp. 4-11. DOI: 10.1080/07380569.2013.765305.

Agarwal, V'V (2013). Using Attributes With C# .NET. [Online; accessed 02-June-2019].
URL: https://www.c-sharpcorner.com/UploadFile/84c85b/using-attributes-
with-C-Sharp-net/.

Agda (2019). [Online; accessed 02-June-2019]. URL: https://wiki.portal.chalmers.
se/agda/pmwiki. php.

Aggarwa, CC (2011). Social Network Data Analytics. Springer. DOI: 10.1007/978-1-
4419-8462-3.

Aizikovitsh-Udi, E and N Radakovic (2012). “Teaching Probability by Using Geoge-
bra Dynamic Tool and Implemanting Critical Thinking Skills”. In: Procedia - So-
cial and Behavioral Sciences 46. 4th WORLD CONFERENCE ON EDUCATIONAL
SCIENCES (WCES-2012) 02-05 February 2012 Barcelona, Spain, pp. 4943 —4947.
ISSN: 1877-0428. DOI: https://doi.org/10.1016/j.sbspro.2012.06.364. URL:
http://www.sciencedirect.com/science/article/pii/S1877042812021003.

Akttimen, M, T Horzum, and T Ceylan (2013). “Modeling and Visualization Pro-
cess of the Curve of Pen Point by GeoGebra”. In: European Journal of Contempo-
rary Education 4.2, pp. 88-99. DOI: 10 . 13187 /ejced . 2013 . 4. 88. URL: http:
//ejournall.com/journals_n/1373090541.pdf.

Aldrich, J, C Chambers, and D Notkin (2002). “Architectural reasoning in ArchJava”.
In: European Conference on Object-Oriented Programming. Springer, pp. 334-367.
Alvi, S (2002). CodeProject - Attributes in C#. [Online; accessed 02-June-2019]. URL:

https://wuw.codeproject.com/articles/2933/attributes-in-c.

Alvino, S et al. (2009). “An Exploratory Analysis of Subject Metadata in the Digital
Public Library of America”. In: Proceedings of ICWL: Advances in Web Based Learn-
ing — ICWL 2009, Springer, Berlin, Heidelberg. Vol. 5686, pp. 58—67. DOI: 10.1007/
978-3-642-03426-8_7.

Anwar and I Rofiki (2018). “Investigating students’ learning trajectory: a case on
triangle”. In: Journal of Physics: Conference Series 1088, p. 012021. DOI: 10 . 1088/
1742-6596/1088/1/012021. URL: https://iopscience.iop.org/article/10.
1088/1742-6596/1088/1/012021/pdf.

Arbab, F (2005). “Abstract behavior types: a foundation model for components and
their composition”. In: Science of Computer Programming 55.1-3, pp. 3-52.

Ariola, Z M et al. (1995). “A Call-by-need Lambda Calculus”. In: Proceedings of the
22Nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages.
POPL "95. New York, NY, USA: ACM, pp. 233-246. ISBN: 0-89791-692-1. DOI: 10.
1145/199448.199507. URL: http://doi.acm.org/10.1145/199448.199507.

http://dx.doi.org/10.1080/07380569.2013.765305
https://www.c-sharpcorner.com/UploadFile/84c85b/using-attributes-with-C-Sharp-net/
https://www.c-sharpcorner.com/UploadFile/84c85b/using-attributes-with-C-Sharp-net/
https://wiki.portal.chalmers.se/agda/pmwiki.php
https://wiki.portal.chalmers.se/agda/pmwiki.php
http://dx.doi.org/10.1007/978-1-4419-8462-3
http://dx.doi.org/10.1007/978-1-4419-8462-3
http://dx.doi.org/https://doi.org/10.1016/j.sbspro.2012.06.364
http://www.sciencedirect.com/science/article/pii/S1877042812021003
http://dx.doi.org/10.13187/ejced.2013.4.88
http://ejournal1.com/journals_n/1373090541.pdf
http://ejournal1.com/journals_n/1373090541.pdf
https://www.codeproject.com/articles/2933/attributes-in-c
http://dx.doi.org/10.1007/978-3-642-03426-8_7
http://dx.doi.org/10.1007/978-3-642-03426-8_7
http://dx.doi.org/10.1088/1742-6596/1088/1/012021
http://dx.doi.org/10.1088/1742-6596/1088/1/012021
https://iopscience.iop.org/article/10.1088/1742-6596/1088/1/012021/pdf
https://iopscience.iop.org/article/10.1088/1742-6596/1088/1/012021/pdf
http://dx.doi.org/10.1145/199448.199507
http://dx.doi.org/10.1145/199448.199507
http://doi.acm.org/10.1145/199448.199507

106 BIBLIOGRAPHY

Arvind, Rishiyur S. Nikhil, and Keshav K. Pingali (1989). “I-structures: Data Struc-
tures for Parallel Computing”. In: ACM Trans. Program. Lang. Syst. 11.4, pp. 598—
632. 1SSN: 0164-0925. DOI: 10.1145/69558.69562. URL: http://doi.acm.org/10.
1145/69558.69562.

Arzarello, F et al. (2002). “A cognitive analysis of dragging practises in Cabri envi-
ronments”. In: ZDM: the international journal on mathematics education 34.3, pp. 66—
72.DOIL: http://dx.doi.org/10.1007/BF02655708.

Augustsson, L (1984). “A Compiler for Lazy ML”. In: Proceedings of the 1984 ACM
Symposium on LISP and Functional Programming. LFP "84. New York, NY, USA:
ACM, pp. 218-227. 1SBN: 0-89791-142-3. DOI: 10 . 1145 /800055 . 802038. URL:
http://doi.acm.org/10.1145/800055.802038.

Backus,] (1978). “Can programming be liberated from the von Neumann style?: a
functional style and its algebra of programs”. In: Commun. ACM 21.8, pp. 613—41.
DOI: http://dx.doi.org/10.1145/359576.359579.

Barzilay, E and] Clements (2005). “Laziness Without All the Hard Work: Combining
Lazy and Strict Languages for Teaching”. In: Proceedings of the 2005 Workshop on
Functional and Declarative Programming in Education. FDPE ‘05. New York, NY,
USA: ACM, pp. 9-13. 1SBN: 1-59593-067-1. DOI: 10.1145/1085114.1085118.

Bass, Len, Paul Clements, and Rick Kazman (2012). Software Architecture in Practice.
3rd. Addison-Wesley Professional. ISBN: 0321815734, 9780321815736.

Benton, N, L Cardelli, and C Fournet (2004). “Modern concurrency abstractions for
C#”. In: ACM Transactions on Programming Languages and Systems 26.5, pp. 769—
804. 1SSN: 0164-0925. DOT: 10.1145/1018203.1018205.

Berzal, F et al. (2005). “Fuzzy Object-Oriented Modelling with Metadata Attributes
in C#”. In: Computational Intelligence, Theory and Applications, International Confer-
ence 8th Fuzzy Days in Dortmund, Germany. Springer Berlin Heidelberg, pp. 253
62.

Bhagat, K K and C Chang (2015). “Incorporating GeoGebra into Geometry Learning-
A lesson from India”. In: Eurasia Journal of Mathematics, Science & Technology Edu-
cation 11.1, pp. 77-86. 1SSN: 1305 - 8223.

Bidinger, P et al. (2005). “Dream types: a domain specific type system for component-
based message-oriented middleware”. In: International Conference on Software En-
gineering: Proceedings of the 2005 conference on Specification and verification of component-
based systems. Vol. 5. 06.

Bird, Richard and Philip Wadler (1988). An Introduction to Functional Programming.
Hertfordshire, UK, UK: Prentice Hall International (UK) Ltd. ISBN: 0-13-484189-
1. URL: https : //usi-pl. github. io/1lc/sp-2015/doc/Bird _Wadler .
%20Introduction’20to’%20Functional’20Programming. led.pdf.

Bloss, A, P Hudak, and] Young (1988). “Code optimizations for Lazy Evaluation”.
In: Lisp and Symbolic Computation 1.2, pp. 147-64.

Blum, W and R Borromeo Ferri (2009). “Mathematical Modelling: Can It Be Taught
And Learnt?” In: Journal of Mathematical Modelling and Application 1.1, pp. 45-58.

Blum, W and M Niss (1991). “Applied mathematical problem solving, modeling,
applications, and links to other subjects — state, trends and issues in mathematics
instruction”. In: Educational Studies in Mathematics, Kluwer Academic Publishers,
Dordrecht 22, pp. 37-68.

http://dx.doi.org/10.1145/69558.69562
http://doi.acm.org/10.1145/69558.69562
http://doi.acm.org/10.1145/69558.69562
http://dx.doi.org/http://dx.doi.org/10.1007/BF02655708
http://dx.doi.org/10.1145/800055.802038
http://doi.acm.org/10.1145/800055.802038
http://dx.doi.org/http://dx.doi.org/10.1145/359576.359579
http://dx.doi.org/10.1145/1085114.1085118
http://dx.doi.org/10.1145/1018203.1018205
https://usi-pl.github.io/lc/sp-2015/doc/Bird_Wadler.%20Introduction%20to%20Functional%20Programming.1ed.pdf
https://usi-pl.github.io/lc/sp-2015/doc/Bird_Wadler.%20Introduction%20to%20Functional%20Programming.1ed.pdf

BIBLIOGRAPHY 107

Bose, D (2010). Component Based Development. [Online; accessed 02-June-2019]. URL:
https://arxiv.org/ftp/arxiv/papers/1011/1011.2163.pdf.

Botana, F and M A Abédnades (2014). “Automatic deduction in (dynamic) geometry:
Loci computation”. In: Computational Geometry 47.1, pp. 75 =89. I1SSN: 0925-7721.
DOI: https://doi.org/10.1016/j . comgeo.2013.07.001. URL: http://www.
sciencedirect.com/science/article/pii/S0925772113000928.

Botana, F and J.L. Valcarce (2001). “Cooperation between a Dynamic Geometry En-
vironment and a Computer Algebra System for Geometric Discovery”. In: CASC
2001. Ed. by Vorozhtsov E.V. (eds) Ganzha V.G., Mayr E.W. Springer, Berlin, Hei-
delberg, pp. 63-74. DOL: https://doi.org/10.1007/978-3-642-56666-0_5.

Botana, F et al. (2015). “Automated Theorem Proving in GeoGebra: Current Achieve-
ments”. In: |. Autom. Reason. 55.1, pp. 39-59. ISSN: 0168-7433. DOI: 10 . 1007 /
s10817-015-9326-4. URL: http://dx.doi.org/10.1007/s10817-015-9326-4.

Bourque, P and R E Fairley (2014). Guide to the Software Engineering Body of Knowledge
(SWEBOK(R)): Version 3.0. 3rd. Los Alamitos, CA, USA: IEEE Computer Society
Press. ISBN: 0769551661, 9780769551661. URL: www . swebok . org.

Bruneton, E et al. (2004). “An open component model and its support in java”. In:
International Symposium on Component-based Software Engineering. Springer, pp. 7—
22.

Burikova, S, W Steingartner, and M.A.M. Eldojali (2016). “A Foundation Towards
the Classification of Categories for Component Oriented Programming”. In: EEI
7: proceedings of the Faculty of Electrical Engineering and Informatics of the TUKE,
pp- 20-5.

Burkhardt, H (2013). “Curriculum design and systemic change”. In: Mathematics cur-
riculum in school educationr, pp. 13-34. DOI: http://dx.doi.org/10.1007/978-
94-007-7560-2_2.

— (2018). “Towards Research-based Education”. In: Shell Centre for Mathematical Ed-
ucation Publications Ltd. Pp. 1-25. URL: https://www . mathshell . com/papers/
pdf/hb_2018_research_based_education.pdf.

Cabri (2019). [Online; accessed 02-June-2019]. URL: http://cabri.com/en/.

Cabrilog: Echantillon de Cabri Factory — Parallélogramme (2019). [Online; accessed 02-
June-2019]. URL: http://y2u.be/0GA8U87G41g.

Caligaris, M G, M E Schivo, and M R Romiti (2015). “Calculus & GeoGebra, an Inter-
esting Partnership”. In: Procedia - Social and Behavioral Sciences 174. International
Conference on New Horizons in Education, INTE 2014, 25-27 June 2014, Paris,
France, pp. 1183-1188. ISSN: 1877-0428. DOI: https://doi.org/10.1016/j.
sbspro.2015.01.735. URL: http://www.sciencedirect.com/science/article/
pii/S1877042815007879.

Casero, R, M Cesarini, and M Monga (2003). “Managing Code Dependencies in C#”.
In:] Obj Techol 3.2, pp. 47-55.

C# - Attributes (2019). [Online; accessed 02-June-2019]. URL: https://www.tutorialspoint.
com/csharp/csharp_attributes.htm.

Cazzola, W and E Vacchi (2014). “Java: Bringing a richer annotation model to Java”.
In: Computer Languages, Systems & Structures 40.1. Special issue on the Program-
ming Languages track at the 28th ACM Symposium on Applied Computing,
pp- 2 —18. ISSN: 1477-8424. DOI: https://doi.org/10.1016/j.c1.2014.02.002.

https://arxiv.org/ftp/arxiv/papers/1011/1011.2163.pdf
http://dx.doi.org/https://doi.org/10.1016/j.comgeo.2013.07.001
http://www.sciencedirect.com/science/article/pii/S0925772113000928
http://www.sciencedirect.com/science/article/pii/S0925772113000928
http://dx.doi.org/https://doi.org/10.1007/978-3-642-56666-0_5
http://dx.doi.org/10.1007/s10817-015-9326-4
http://dx.doi.org/10.1007/s10817-015-9326-4
http://dx.doi.org/10.1007/s10817-015-9326-4
www.swebok.org
http://dx.doi.org/http://dx.doi.org/10.1007/978-94-007-7560-2_2
http://dx.doi.org/http://dx.doi.org/10.1007/978-94-007-7560-2_2
https://www.mathshell.com/papers/pdf/hb_2018_research_based_education.pdf
https://www.mathshell.com/papers/pdf/hb_2018_research_based_education.pdf
http://cabri.com/en/
http://y2u.be/0Gd8U87G4lg
http://dx.doi.org/https://doi.org/10.1016/j.sbspro.2015.01.735
http://dx.doi.org/https://doi.org/10.1016/j.sbspro.2015.01.735
http://www.sciencedirect.com/science/article/pii/S1877042815007879
http://www.sciencedirect.com/science/article/pii/S1877042815007879
https://www.tutorialspoint.com/csharp/csharp_attributes.htm
https://www.tutorialspoint.com/csharp/csharp_attributes.htm
http://dx.doi.org/https://doi.org/10.1016/j.cl.2014.02.002

108 BIBLIOGRAPHY

Cepa, V and M Mezini (2004). “Declaring and Enforcing Dependencies Between
NET Custom Attributes”. In: Generative Programming and Component Engineer-
ing. Ed. by G Karsai and E Visser. Berlin, Heidelberg: Springer Berlin Heidelberg,
pp- 283-297. 1SBN: 978-3-540-30175-2. DOI: 10.1007/978-3-540-30175-2_15.

Chang, S (2013). “Laziness by Need”. In: Programming Languages and Systems. Ed.
by Matthias Felleisen and Philippa Gardner. Berlin, Heidelberg: Springer Berlin
Heidelberg, pp. 81-100. 1SBN: 978-3-642-37036-6. DOI: 10 . 1007 / 978 - 3 - 642 -
37036-6_5. URL: https://link.springer.com/content/pdf/10.1007%2F978-
3-642-37036-6_5.pdf.

Chen, X et al. (2007). “A Model of Component-Based Programming”. In: International
Symposium on Fundamentals of Software Engineering. Ed. by F Arbab and M Sirjani.
Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 191-206. DOI: 10.1007/978-
3-540-75698-9_13.

Chlipala, A (2016). “Ur: Statically-Typed Metaprogramming with Type-Level Record
Computation”. In: CACM 59.8, pp. 93-100. DOI: 10.1145/2958736.

Chodarev, S and] Kollar (2016). “Extensible Host Language for Domain-Specific
Languages”. In: Comp Inf 35.1, pp. 84-110. URL: http : //www . cai . sk/ojs/
index.php/cai/article/view/1507/745.

Chodarev, Sergej et al. (2014). “Abstract syntax driven approach for language com-
position”. In: Cen Eu | Comput Sci 4.3, pp. 107-17. DOI: 10 .2478/s13537-014-
0211-8.

Chou, S C, X Gao, and J-Z Zhang (1994). Machine proofs in geometry. Automated pro-
duction of readable proofs for geometry theorems. English. Vol. 6. Singapore: World
Scientific, pp. xvii + 461. ISBN: 981-02-1584-3 /hbk; 978-981-279-815-2 /ebook.

Cinderella Gallery: Altitudes in a triangle (2019). [Online; accessed 02-June-2019]. URL:
http://antique.cinderella.de/en/demo/gallery/altitudes.html.

Coquand, T and G Huet (1988). “The calculus of constructions”. In: Information and
Computation 76.2, pp. 95 —=120. 1SSN: 0890-5401. DOI: 10 . 1016 /0890 - 5401 (88)
90005 - 3. URL: http : //www . sciencedirect . com/ science /article /pii/
0890540188900053.

Crnkovic, I, M Chaudron, and S Larsson (2005). “Component-based Development
Process and Component Lifecycle”. In: Journal of Computing and Information Tech-
nology 13.4, pp. 321-327. DOI: 10.2498/cit.2005.04.10. URL: http://cit.fer.
hr/index.php/CIT/article/view/1586/1290.

Cut The Knot: The many ways to construct a triangle (2019). [Online; accessed 02-June-
2019]. URL: http://www.cut-the-knot.org/triangle/.

Dagiene, V, T Jevsikova, and S Kubilinskiene (2013). “An Integration of Methodolog-
ical Resources into Learning Object Metadata Repository”. In: Informatica 24.1,
pp- 13-34.

Dahan, JJ (2014). “Morphing examples in 2D and 3D with TIN’Spire at all levels”. In:
T3 Conference, Las Vegas. URL: https://www.youtube.com/watch?v=7tjnbBvnoil.

DeJarnette, N (2012). “America’s children: Providing early exposure to STEM (sci-
ence, technology, engineering and math) initiatives”. In: Education 133.1, pp. 77—
84. DOI: 10.1007/s10649-005-9002-4.

Departmen for education, Mathematics programmes of study: key stages 1 and 2, National
curriculum in England, September 2013 (2013). [Online; accessed 02-June-2019].

http://dx.doi.org/10.1007/978-3-540-30175-2_15
http://dx.doi.org/10.1007/978-3-642-37036-6_5
http://dx.doi.org/10.1007/978-3-642-37036-6_5
https://link.springer.com/content/pdf/10.1007%2F978-3-642-37036-6_5.pdf
https://link.springer.com/content/pdf/10.1007%2F978-3-642-37036-6_5.pdf
http://dx.doi.org/10.1007/978-3-540-75698-9_13
http://dx.doi.org/10.1007/978-3-540-75698-9_13
http://dx.doi.org/10.1145/2958736
http://www.cai.sk/ojs/index.php/cai/article/view/1507/745
http://www.cai.sk/ojs/index.php/cai/article/view/1507/745
http://dx.doi.org/10.2478/s13537-014-0211-8
http://dx.doi.org/10.2478/s13537-014-0211-8
http://antique.cinderella.de/en/demo/gallery/altitudes.html
http://dx.doi.org/10.1016/0890-5401(88)90005-3
http://dx.doi.org/10.1016/0890-5401(88)90005-3
http://www.sciencedirect.com/science/article/pii/0890540188900053
http://www.sciencedirect.com/science/article/pii/0890540188900053
http://dx.doi.org/10.2498/cit.2005.04.10
http://cit.fer.hr/index.php/CIT/article/view/1586/1290
http://cit.fer.hr/index.php/CIT/article/view/1586/1290
http://www.cut-the-knot.org/triangle/
https://www.youtube.com/watch?v=7tjnbBvnoiU
http://dx.doi.org/10.1007/s10649-005-9002-4

BIBLIOGRAPHY 109

URL: https://www.gov.uk/government/uploads/system/uploads/attachment_
data/file/335158/PRIMARY _national _curriculum_- _Mathematics_220714.
pdf.

Diekmann, L and L Tratt (2014). “Eco: A Language Composition Editor”. In: Inter-
national Conference on Software Language Engineering. Springer, Cham, pp. 82-101.
DOI: 10.1007/978-3-319-11245-9_5.

Dikovi¢, Lj (2009). “Applications GeoGebra into Teaching Some Topics of Mathemat-
ics at the College Level”. In: Computer Science and Information Systems 6.2, pp. 191-
203. DOI: 10.2298/¢sis0902191D. URL: http://www.comsis.org/pdf . php?id=
138-0812.

Dimi¢, Bojana and Dusan Surla (2009). “XML Editor for UNIMARC and MARC 21
cataloguing”. In: The Electronic Library 27.3, pp. 509-528.

Drijvers, P et al. (2016). Uses of Technology in Lower Secondary Mathematics Education.
1st ed. 2366-5947. The address: Springer International Publishing. ISBN: 978-3-
319-33666-4.

Dutta, B, D Nandini, and G Shahi (2015). “MOD: Metadata for Ontology Descrip-
tion and Publication”. In: Proceedings of International Conference on Dublin Core
and Metadata Applications, pp. 1-9. ISBN: 1939-1366. URL: http : / / dcpapers .
dublincore.org/pubs/article/view/3758.

Eichberg, M, T Schifer, and M Mezini (2005). “Using Annotations to Check Struc-
tural Properties of Classes”. In: Fundamental Approaches to Software Engineering.
Ed. by M Cerioli. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 237-252.
ISBN: 978-3-540-31984-9. DOI: 10.1007/978-3-540-31984-9_18.

Engstrom, L (2001). “Investigate a Triangle - An Amount of Different Answers Using
Cabri?” In: URL: http://www . tact . fse.ulaval.ca/outils2/Cabri/ 2001/
contributions/Engstrom.pdf.

Erdweg, S, PG Giarrusso, and T Rendel (2012). “Language Composition Untangled”.
In: Proceedings of Workshop on Language Descriptions, Tools and Applications (LDTA),
7:1-7:8. DOI: 10.1145/2427048.2427055.

Erdweg, S et al. (2011). “Sugar]: Library-based Syntactic Language Extensibility”. In:
Proceedings of the 2011 ACM international conference on Object oriented programming
systems languages and applications, pp. 391-406. DOI: 10.1145/2076021 .2048099.

Fabresse, L, C Dony, and M Huchard (2008). “Foundations of a simple and uni-
tied component-oriented language”. In: Computer Languages, Systems & Structures
34.2, pp. 130 —149. 1SSN: 1477-8424. DOI: 10.1016/j.¢c1.2007.05.002.

Freixas, Marc, Robert Joan-Arinyo, and Antoni Soto-Riera (2010). “A constraint-based
dynamic geometry system”. In: Compr-Aid Des 42.2, pp. 151-61. DOI: http://dx.
doi.org/10.1016/j.cad.2009.02.016.

Friedman, DP and DS Wise (1976). “Technical Report TR44: CONS should not Eval-
uate its Arguments”. In: Automata, Languages and Programming, Edinburgh Uni-
versity Press, Edinburgh, pp. 257-84.

Frost, R A and S Karamatos (1993). “Supporting the attribute grammar program-
ming paradigm in a lazy functional programming language”. In: Functional Pro-
gramming, Concurrency, Simulation and Automated Reasoning: International Lecture
Series 1991-1992 McMaster University, Hamilton, Ontario, Canada. Ed. by Peter E

https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/335158/PRIMARY_national_curriculum_-_Mathematics_220714.pdf
https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/335158/PRIMARY_national_curriculum_-_Mathematics_220714.pdf
https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/335158/PRIMARY_national_curriculum_-_Mathematics_220714.pdf
http://dx.doi.org/10.1007/978-3-319-11245-9_5
http://dx.doi.org/10.2298/csis0902191D
http://www.comsis.org/pdf.php?id=138-0812
http://www.comsis.org/pdf.php?id=138-0812
http://dcpapers.dublincore.org/pubs/article/view/3758
http://dcpapers.dublincore.org/pubs/article/view/3758
http://dx.doi.org/10.1007/978-3-540-31984-9_18
http://www.tact.fse.ulaval.ca/outils2/Cabri/2001/contributions/Engstrom.pdf
http://www.tact.fse.ulaval.ca/outils2/Cabri/2001/contributions/Engstrom.pdf
http://dx.doi.org/10.1145/2427048.2427055
http://dx.doi.org/10.1145/2076021.2048099
http://dx.doi.org/10.1016/j.cl.2007.05.002
http://dx.doi.org/http://dx.doi.org/10.1016/j.cad.2009.02.016
http://dx.doi.org/http://dx.doi.org/10.1016/j.cad.2009.02.016

110 BIBLIOGRAPHY

Lauer. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 278-295. 1SBN: 978-3-
540-47776-1. DOI: 10.1007/3-540-56883-2_13.

A review of the best pre-made interactive GeoGebra activities (2016). Vol. 28. Electronic
Proceedings of the Twenty-eighth Annual International Conference on Technol-
ogy in Collegiate Mathematics. Atlanta, Georgia. URL: http://archives.math.
utk.edu/ICTCM/VOL28/A015/paper.pdf.

Gelernter, H. (1963). “Computers & Thought”. In: ed. by Edward A. Feigenbaum
and Julian Feldman. Cambridge, MA, USA: MIT Press. Chap. Realization of a
Geometry-theorem Proving Machine, pp. 134-152. ISBN: 0-262-56092-5. URL: https:
//pdfs.semanticscholar.org/2edc/8083073837564306943aab77d6dcc19d0cdc.
pdf.

— (1995). “Computers & Thought”. In: ed. by Edward A. Feigenbaum and Julian
Feldman. Cambridge, MA, USA: MIT Press. Chap. Realization of a Geometry-
theorem Proving Machine, pp. 134-152. ISBN: 0-262-56092-5. URL: http://dl.
acm.org/citation.cfm?id=216408.216418.

Gelernter, H., J. R. Hansen, and D. W. Loveland (1960). “Empirical Explorations
of the Geometry Theorem Machine”. In: Papers Presented at the May 3-5, 1960,
Western Joint IRE-AIEE-ACM Computer Conference. IRE-AIEE-ACM 60 (Western).
New York, NY, USA: ACM, pp. 143-149. DOI: 10.1145/1460361 . 1460381. URL:
https://pdfs.semanticscholar.org/2edc/8083073837564306943aab77d6dcc19d0cdc.
pdf.

GeoGebra (2019). [Online; accessed 02-June-2019]. URL: https://www.geogebra.org/.

GeoGebra Materials (2019). [Online; accessed 02-June-2019]. URL: https://www.geogebra.
org/materials/.

GeoGebra materials: triangle (2019). [Online; accessed 02-June-2019]. URL: https://
www.geogebra.org/search/perform/search/triangle/materials/.

Geometrie interactive - le cercle qui tourne le triangle (2019). [Online; accessed 02-June-
2019]. URL: https://youtu.be/iDsjZThy_4s (visited on 04/17/2018).

Gilst, F A van and P M van den Broek (1995). “A New Programming Technique
for Lazy Functional Languages”. In: Sci. Comput. Program. 24.1, pp. 63-81. ISSN:
0167-6423. DOI: 10.1016/0167-6423(94)00024-9. URL: http://dx.doi.org/10.
1016/0167-6423(94)00024-9.

Ginsburg, D et al. (1997). The History of the Calculus and the Development of Computer
Algebra Systems. [Online; accessed 02-June-2019]. URL: http://www.math . wpi.
edu/IQP/BVCalcHist/calch5.html.

Gonzalez, H B and J] Kuenzi (2012). Science, technology, engineering, and mathematics
(STEM) education: A primer. URL: https://fas.org/sgp/crs/misc/R42642.pdf.

Granstrom,] G (2012). “A new paradigm for component-based development”. In:
Journal of Software 7.5, pp. 1136-1148.

Greaves, D and S Singh (2008). “Using C# Attributes to Describe Hardware Artefacts
within Kiwi”. In: Specification, Verification and Design Languages. IEEE, pp. 239 —
40.

Guerra, E and C Fernandes (2013). “A Qualitative and Quantitative Analysis on
Metadata-Based Frameworks Usage”. In: Computational Science and Its Applica-
tions — ICCSA 2013, Lecture Notes in Computer Science 7972, pp. 375-90. DOI: 10.
1007/978-3-642-39643-4_28.

http://dx.doi.org/10.1007/3-540-56883-2_13
http://archives.math.utk.edu/ICTCM/VOL28/A015/paper.pdf
http://archives.math.utk.edu/ICTCM/VOL28/A015/paper.pdf
https://pdfs.semanticscholar.org/2edc/8083073837564306943aab77d6dcc19d0cdc.pdf
https://pdfs.semanticscholar.org/2edc/8083073837564306943aab77d6dcc19d0cdc.pdf
https://pdfs.semanticscholar.org/2edc/8083073837564306943aab77d6dcc19d0cdc.pdf
http://dl.acm.org/citation.cfm?id=216408.216418
http://dl.acm.org/citation.cfm?id=216408.216418
http://dx.doi.org/10.1145/1460361.1460381
https://pdfs.semanticscholar.org/2edc/8083073837564306943aab77d6dcc19d0cdc.pdf
https://pdfs.semanticscholar.org/2edc/8083073837564306943aab77d6dcc19d0cdc.pdf
https://www.geogebra.org/
https://www.geogebra.org/materials/
https://www.geogebra.org/materials/
https://www.geogebra.org/search/perform/search/triangle/materials/
https://www.geogebra.org/search/perform/search/triangle/materials/
https://youtu.be/iDsjZThy_4s
http://dx.doi.org/10.1016/0167-6423(94)00024-9
http://dx.doi.org/10.1016/0167-6423(94)00024-9
http://dx.doi.org/10.1016/0167-6423(94)00024-9
http://www.math.wpi.edu/IQP/BVCalcHist/calc5.html
http://www.math.wpi.edu/IQP/BVCalcHist/calc5.html
https://fas.org/sgp/crs/misc/R42642.pdf
http://dx.doi.org/10.1007/978-3-642-39643-4_28
http://dx.doi.org/10.1007/978-3-642-39643-4_28

BIBLIOGRAPHY 111

Guerra, E, C Fernandes, and F Fagundes Silveira (2010). “Architectural Patterns for
Metadata-based Frameworks Usage”. In: Proceedings of the 17th Conference on Pat-
tern Languages of Programs (PLOP "10), ACM, New York, NY, USA, 4:1-4:25. DOL:
10.1145/2493288.2493292.

Guzzi, P H (2019). “Ontology-Based Annotation Methods”. In: Encyclopedia of Bioin-
formatics and Computational Biology. Ed. by S Ranganathan et al. Oxford: Aca-
demic Press, pp. 867 —869. 1SBN: 978-0-12-811432-2. DOI: https://doi.org/10.
1016/B978-0-12-809633-8.20400-7.

Hall,] and G Chamblee (2013). “Teaching Algebra and Geometry with GeoGebra:
Preparing Pre-Service Teachers for Middle Grades/Secondary Mathematics Class-
rooms”. In: Computers in the Schools: Interdisciplinary Journal of Practice, Theory, and
Applied Research 30, pp. 12-29. DOI: 10.1080/07380569.2013.764276.

Han, O B et al. (2013). “Computer Based Courseware in Learning Mathematics: Po-
tentials and Constrains”. In: Procedia - Social and Behavioral Sciences 103, pp. 238
—244. 1SSN: 1877-0428. DOI: https://doi.org/10.1016/j.sbspro.2013.10.331.
URL: http://www.sciencedirect.com/science/article/pii/S1877042813037762.

Hazzard, K and] Bock (2013). Metaprogramming in .NET. Manning Publ, pp. 1-360.
ISBN: 9781617290268. URL: https://www.manning. com/books/metaprogramming-
in-dot-net.

Heineman, G T and W T Councill, eds. (2001). Component-based Software Engineering:
Putting the Pieces Together. Boston, MA, USA: Addison-Wesley Longman Publish-
ing Co., Inc. ISBN: 0-201-70485-4.

Henderson, P and JH Morris (1976). “ A lazy evaluator”. In: Proceeding POPL '76 Proc.
of the 3rd ACM SIGACT-SIGPLAN symposium on Principles on programming lan-
guages, ACM New York, USA 1976, pp. 95-103. DOI: doi:10.1145/800168.811543.

Herceg, D and V Herceg-Mandi¢ (2013). “GeoGebra in a geography class”. In: Acta
Didactica Napocensia 6.1, pp. 61-68. URL: https://files.eric.ed.gov/fulltext/
EJ1053672.pdf.

Herceg, D, V Herceg-Mandi¢, and D Radakovi¢ (2012). “The Teaching of Geogra-
phy Using Dynamic Geometry Software”. In: Local Proceedings of the Fifth Balkan
Conference in Informatics , BCI2012, pp. 11-5. URL: http://ceur-ws.org/Vol-
920/pli-herceg.pdf.

Herceg, D and D Radakovi¢ (2011). “The Extensibility of an Interpreted Language
Using Plugin Libraries”. In: Numerical Analysis and Applied Mathematics ICNAAM
2011, AIP Conf. Proc. 2011. Vol. 1389, pp. 837—40.

Herceg, D, D Radakovi¢, and D Herceg (2012). “Generalizing the Extensibility of
a Dynamic Geometry Software”. In: Numerical Analysis and Applied Mathematics
ICNAAM 2012, AIP Conf. Proc. 2012. Vol. 1479, pp. 482-5.

Herceg, D et al. (2019). “Subject-specific components in dynamic geometry soft-
ware”. In: International Journal for Technology in Mathematics Education 26.2, pp. 97—
102. 1SSN: 1744-2710. DOI: 10.1564/tme_v26.2.07.

Herceg, D and D Herceg (2009). “The Definite Integral and Computer”. In: The Teach-
ing of Mathematics 12.1, pp. 33—44. URL: http://elib.mi.sanu.ac.rs/files/
journals/tm/22/tm1215.pdf.

Hohenwarter, | et al. (2009). “Introducing dynamic mathematics software to sec-
ondary school teachers: The case of GeoGebra”. In: The Journal of Computers in

http://dx.doi.org/10.1145/2493288.2493292
http://dx.doi.org/https://doi.org/10.1016/B978-0-12-809633-8.20400-7
http://dx.doi.org/https://doi.org/10.1016/B978-0-12-809633-8.20400-7
http://dx.doi.org/10.1080/07380569.2013.764276
http://dx.doi.org/https://doi.org/10.1016/j.sbspro.2013.10.331
http://www.sciencedirect.com/science/article/pii/S1877042813037762
https://www.manning.com/books/metaprogramming-in-dot-net
https://www.manning.com/books/metaprogramming-in-dot-net
http://dx.doi.org/doi: 10.1145/800168.811543
https://files.eric.ed.gov/fulltext/EJ1053672.pdf
https://files.eric.ed.gov/fulltext/EJ1053672.pdf
http://ceur-ws.org/Vol-920/p11-herceg.pdf
http://ceur-ws.org/Vol-920/p11-herceg.pdf
http://dx.doi.org/10.1564/tme_v26.2.07
http://elib.mi.sanu.ac.rs/files/journals/tm/22/tm1215.pdf
http://elib.mi.sanu.ac.rs/files/journals/tm/22/tm1215.pdf

112 BIBLIOGRAPHY

Mathematics and Science Teaching 28.2, pp. 135-46. DOI: 10.14221/ajte.2013v38n12.
6. URL: https://archive.geogebra.org/static/publications/2009-Hohenwarter_
Lavicza_IntroducingDynMathSoft-GeoGebra.pdf.

Hohenwarter, M and J Preiner (2007). “Dynamic mathematics with GeoGebra”. In:
Journal of Online Mathematics and its Applications 7. URL: https://www.maa.org/
external_archive/joma/Volume7/Hohenwarter/index.html.

Hohenwarter, M et al. (2008). “Teaching and learning calculus with free dynamic
mathematics Software GeoGebra”. In: Proceeding of International Conference in Math-
ematics Education, ICME 11, Monterrey, Mexico. URL: https://archive.geogebra.
org/static/publications/2008-ICME-TSG16-Calculus-GeoGebra-Paper.pdf.

Seldin, J P, Lambda Calculus Hindley J R: To H.B. Curry: Essays on Combinatory
Logic, and Formalism, eds. (1980). The formulae-as-types notion of construction.
(1969) unpublished manuscript. Academic Press, New York, 479—490. URL: https:
//www.cs.cmu.edu/"crary/819-£09/Howard80. pdf.

Hudak, Paul et al. (2007). “A History of Haskell: Being Lazy with Class”. In: Proceed-
ings of the Third ACM SIGPLAN Conference on History of Programming Languages.
HOPL III. San Diego, California: ACM, pp. 12-1-12-55. ISBN: 978-1-59593-766-7.
DOI: 10.1145/1238844.1238856. URL: http://doi.acm.org/10.1145/1238844.
1238856.

Hughes, J (1990). “Why Functional Programming Matters”. In: In D. Turner, editor,
Research Topics in Functional Programming, Addison Wesley, pp. 17-42.

Jackiw, N and W Finzer (1993). “Watch What I Do”. In: ed. by Allen Cypher et al.
Cambridge, MA, USA: MIT Press. Chap. The Geometer’s Sketchpad: Program-
ming by Geometry, pp. 293-307. ISBN: 0-262-03213-9.

Jahn, M et al. (2013). “Composing User-specific Web Applications From Distributed
Plug-ins”. In: Comput Sci - Res Dev 28.85, pp. 1-21. DOI: 10.1007/s00450-011-
0182-0.

Janicic, P,] Narboux, and P Quaresma (2012). “The Area Method - A Recapitulation”.
In: J. Autom. Reasoning 48.4, pp. 489-532. DOI: 10.1007/s10817-010-9209-7. URL:
https://doi.org/10.1007/s10817-010-9209-7.

Janici¢, Predrag (2010). “Geometry constructions language”. In: Journal of Automated
Reasoning 44.1-2, p. 3.

Janici¢, Predrag (2019). GCLC, Mathematical Tool GCLC (Geometry Constructions -> La-
TeX Conuverter). [Online; accessed 02-June-2019]. URL: http://poincare . matf .
bg.ac.rs/ janicic//gclc/.

Janici¢, Predrag (2010). “Geometry Constructions Language”. In: |. Autom. Reason.
44.1-2, pp. 3-24. 15SN: 0168-7433. DOI: 10.1007/s10817-009-9135-8. URL: http:
//dx.doi.org/10.1007/s10817-009-9135-8.

Jezdimirovi¢,] (2014). “Computer Based Support for Mathematics Education in Ser-
bia”. In: International Journal of Technology and Inclusive Education (I[TIE) 3.1, pp. 277-
285. ISSN: 2046-4568. DOI: 10.20533/ijtie.2047.0533.2014.0036. URL: https:
//infonomics - society . org/wp- content/uploads/ijtie/volume-3-2014/
Computer-Based-Support-for-Mathematics-Education-in-Serbia.pdf.

Johnsson, T (1984). “Efficient Compilation of Lazy Evaluation”. In: SIGPLAN Not.
19.6, pp. 58-69. 1SSN: 0362-1340. DOI: 10 . 1145/502949 . 502880. URL: http://

http://dx.doi.org/10.14221/ajte.2013v38n12.6
http://dx.doi.org/10.14221/ajte.2013v38n12.6
https://archive.geogebra.org/static/publications/2009-Hohenwarter_Lavicza_IntroducingDynMathSoft-GeoGebra.pdf
https://archive.geogebra.org/static/publications/2009-Hohenwarter_Lavicza_IntroducingDynMathSoft-GeoGebra.pdf
https://www.maa.org/external_archive/joma/Volume7/Hohenwarter/index.html
https://www.maa.org/external_archive/joma/Volume7/Hohenwarter/index.html
https://archive.geogebra.org/static/publications/2008-ICME-TSG16-Calculus-GeoGebra-Paper.pdf
https://archive.geogebra.org/static/publications/2008-ICME-TSG16-Calculus-GeoGebra-Paper.pdf
https://www.cs.cmu.edu/~crary/819-f09/Howard80.pdf
https://www.cs.cmu.edu/~crary/819-f09/Howard80.pdf
http://dx.doi.org/10.1145/1238844.1238856
http://doi.acm.org/10.1145/1238844.1238856
http://doi.acm.org/10.1145/1238844.1238856
http://dx.doi.org/10.1007/s00450-011-0182-0
http://dx.doi.org/10.1007/s00450-011-0182-0
http://dx.doi.org/10.1007/s10817-010-9209-7
https://doi.org/10.1007/s10817-010-9209-7
http://poincare.matf.bg.ac.rs/~janicic//gclc/
http://poincare.matf.bg.ac.rs/~janicic//gclc/
http://dx.doi.org/10.1007/s10817-009-9135-8
http://dx.doi.org/10.1007/s10817-009-9135-8
http://dx.doi.org/10.1007/s10817-009-9135-8
http://dx.doi.org/10.20533/ijtie.2047.0533.2014.0036
https://infonomics-society.org/wp-content/uploads/ijtie/volume-3-2014/Computer-Based-Support-for-Mathematics-Education-in-Serbia.pdf
https://infonomics-society.org/wp-content/uploads/ijtie/volume-3-2014/Computer-Based-Support-for-Mathematics-Education-in-Serbia.pdf
https://infonomics-society.org/wp-content/uploads/ijtie/volume-3-2014/Computer-Based-Support-for-Mathematics-Education-in-Serbia.pdf
http://dx.doi.org/10.1145/502949.502880
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.47.4238&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.47.4238&rep=rep1&type=pdf

BIBLIOGRAPHY 113

citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.47.4238&rep=repl&
type=pdf.

Joosten, S, K Van Den Berg, and G Van Der Hoeven (1993). “Teaching functional
programming to first-year students”. In: Journal of Functional Programming 3.1,
49-65. DOI: 10.1017/50956796800000599.

Kashefi, H, Z Ismail, and Y M Yusof (2012). “Supporting Engineering Students’
Thinking and Creative Problem Solving through Blended Learning”. In: Proce-
dia - Social and Behavioral Sciences 56, pp. 117 —125. 1SSN: 1877-0428. DOI: https:
//doi.org/10.1016/j.sbspro.2012.09.638. URL: http://www.sciencedirect.
com/science/article/pii/S1877042812041006.

Kaufmann, H and D Schmalstieg (2002). “Mathematics and Geometry Education
with Collaborative Augmented Reality”. In: ACM SIGGRAPH 2002 Conference
Abstracts and Applications. SIGGRAPH "02. San Antonio, Texas: ACM, pp. 37-41.
ISBN: 1-58113-525-4. DOI: 10 . 1145/1242073 . 1242086. URL: http://doi.acm.
org/10.1145/1242073.1242086.

Kendall, A (2016). Metadata-Driven Design: Creating an User-Friendly Enterprise DSL.
[Online; accessed 02-June-2019]. URL: https://www.infoq.com/articles/mdd-
creating-user-friendly-dsll.

Kent Recursive Calculator (2019). [Online; accessed 02-June-2019]. URL: http://krc-
lang.org/.

Khalil, M et al. (2018). “The Development of Mathematical Achievement in Analytic
Geometry of Grade-12 Students through GeoGebra Activities”. In: Eurasia Journal
of Mathematics, Science and Technology Education 14.4, pp. 1453-63. 1SSN: 1305 -
8223. DOI: http://dx.doi.org/10.29333/ejmste/83681.

Kimberling, C (1993). “Triangle centers as functions”. In: Journal of Mathematics 23.4,
pp- 1269-86.

— (2019). Clark Kimberling's Encyclopedia of Triangle Centers — ETC. [Online; accessed
02-June-2019]. URL: http://faculty.evansville.edu/ck6/encyclopedia/ETC.
html.

Kiselyov, O, S Peyton-Jones, and A Sabry (2012). “Lazy v. Yield: Incremental, Linear
Pretty-Printing”. In: Programming Languages and Systems, Lecture Notes in Com-
puter Science 7705, pp. 190-206. DOI: 10 . 1007 /978 - 3-642-35182-2_14. URL:
http://okmij.org/ftp/continuations/PPYield/yield-pp.pdf.

Knuth, DE (1968). “Semantics of context-free languages”. In: Mathematical Systems
Theory 2.2, pp. 127-45. 1SSN: 0025-5661. DOT: 10.1007/BF01692511.

— (1971). “Semantics of context-free languages: correction”. In: Mathematical Sys-
tems Theory 5.2, pp. 95-6. 1SSN: 0025-5661. DOI: 10.1007/BF01702865.

Kortenkamp, U (1999). “Foundations of dynamic geometry”. PhD thesis. Swiss Fed-
eral Institute of Technology Zurich. URL: https://www.research-collection.
ethz.ch/mapping/eserv/eth:23347/eth-23347-02.pdf.

Laborde, C and B Capponi (1994). “Cabri-géometre constituant d’un milieu pour
I'apprentissage de la notion de figure géométrique”. In: Recherches en didactique
des mathématiques 14.1.2, pp. 165-210. URL: https://rdm. penseesauvage . com/
Cabri-geometre-constituant-d-un.html.

Lakos,] (1996). Large-scale C++ Software Design. Redwood City, CA, USA: Addison
Wesley Longman Publishing Co., Inc. I1SBN: 0-201-63362-0.

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.47.4238&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.47.4238&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.47.4238&rep=rep1&type=pdf
http://dx.doi.org/10.1017/S0956796800000599
http://dx.doi.org/https://doi.org/10.1016/j.sbspro.2012.09.638
http://dx.doi.org/https://doi.org/10.1016/j.sbspro.2012.09.638
http://www.sciencedirect.com/science/article/pii/S1877042812041006
http://www.sciencedirect.com/science/article/pii/S1877042812041006
http://dx.doi.org/10.1145/1242073.1242086
http://doi.acm.org/10.1145/1242073.1242086
http://doi.acm.org/10.1145/1242073.1242086
https://www.infoq.com/articles/mdd-creating-user-friendly-dsll
https://www.infoq.com/articles/mdd-creating-user-friendly-dsll
http://krc-lang.org/
http://krc-lang.org/
http://dx.doi.org/http://dx.doi.org/10.29333/ejmste/83681
http://faculty.evansville.edu/ck6/encyclopedia/ETC.html
http://faculty.evansville.edu/ck6/encyclopedia/ETC.html
http://dx.doi.org/10.1007/978-3-642-35182-2_14
http://okmij.org/ftp/continuations/PPYield/yield-pp.pdf
http://dx.doi.org/10.1007/BF01692511
http://dx.doi.org/10.1007/BF01702865
https://www.research-collection.ethz.ch/mapping/eserv/eth:23347/eth-23347-02.pdf
https://www.research-collection.ethz.ch/mapping/eserv/eth:23347/eth-23347-02.pdf
https://rdm.penseesauvage.com/Cabri-geometre-constituant-d-un.html
https://rdm.penseesauvage.com/Cabri-geometre-constituant-d-un.html

114 BIBLIOGRAPHY

Lavicza, Z et al. (2018). “Mathematics Learning Through Arts, Technology and Robotics:
Multi-and Transdiscpilinary Steam Approaches”. In: 8th ICMI-East Asia Regional
Conference on Mathematics Education7-11 May 2018, Taipei, Taiwan, pp. 110-122.

Lehrplan PLUS Mittelschule — Juni 2016, Bayerisches Staatsministerium fiir Bildung und
Kultus, Wissenschaft und Kunst, Staatsinstitut fiir Schulqualitit und Bildungsforschung
Miinchen (2016). [Online; accessed 02-June-2019]. URL: http://www.lehrplanplus.
bayern . de / sixcms / media . php / 107 / LehrplanPLUS % 20Mittelschule % 20 -
%20Juni’%202016.pdf.

Lernpfad, SF (2019). S. Fink. Lernpfad: Mathe online - Points, lines and circles associated
with a triangle. [Online; accessed 02-June-2019]. URL: http://www.mathe-online.
at/lernpfade/triangle_fink/7kapitel=1.

Lilis, Y and A Savidis (2015). “An Integrated Implementation Framework for Compile-
time Metaprogramming”. In: Softw Pract Exper 45, pp. 727—63. DOI: 10.1002/spe.

Ljajko, E and V Ibro (2013). “Development of ideas in a GeoGebra —aided mathemat-
ics instruction”. In: Mevlana International Journal of Education (MIJE) 3.3, pp. 1-7.
DOI: 10.13054/mije.si.2013.01. URL: https://files.eric.ed.gov/fulltext/
ED544150.pdf.

Loberbauer, M et al. (2010). “Testing the Composability of Plug-and-Play Compo-
nents”. In: 8th IEEE International Symposium on Intelligent Systems and Informatics,
SISY 2010, pp. 413-8. DOI: 10.1109/SISY.2010.5647368. URL: http://ase. jku.
at/publications/2010/SISY2010_Composability_Testing.pdf.

Maeder, R (1993). “The Mathematica Programmer: Object-Oriented Programming”.
In: The Mathematica Journal 3.1, pp. 23-31.

Mainali, B R and M B Key (2012). “Using dynamic geometry software GeoGebra in
developing countries: A case study of impressions of mathematics teachers in
Nepal”. In: International Journal for Mathematics Teaching and Learning, pp. 1-16.
ISSN: 1473 - 0111. URL: http://www.cimt.org.uk/journal/mainali.pdf.

Marinkovi¢, V (2015). “On-line compendium of triangle construction problems with
automatically generated solutions”. In: The Teaching of Mathematics 18.1, pp. 29—
44. URL: http://www.teaching.math.rs/vol/tm1814.pdf.

Marinkovi¢, V (2016). “ArgoTriCS — automated triangle construction solver”. In:
Journal of Experimental & Theoretical Artificial Intelligence, pp. 1-25. DOIL: http :
//dx.doi.org/10.1080/0952813X.2015.1132271.

Marinkovié¢, Vesna and Predrag Jani¢i¢ (2012). “Towards Understanding Triangle
Construction Problems”. In: Proceedings of the 11th International Conference on In-
telligent Computer Mathematics. CICM’12. Bremen, Germany: Springer-Verlag, pp. 127-
142. 1SBN: 978-3-642-31373-8. DOI: 10.1007/978-3-642-31374-5_9.

Maskelitinas, R et al. (2018). “IDO: modelling a serious educational game based on
hands on approach for training dementia carers”. In: International Journal of En-
gineering & Technology 7.2.28, pp. 143-146. ISSN: 2227-524X. DOI: 10.14419/1jet.
v7i2 .28 .12898. URL: https : //www . sciencepubco . com/ index . php/ijet/
article/view/12898.

Math Open Reference, Triangles (2019). [Online; accessed 02-June-2019]. URL: http:
//www.mathopenref.com/tocs/triangletoc.html.

MathWorks - Computer Algebra System (2019). [Online; accessed 02-June-2019]. URL:

https://www.mathworks.com/discovery/computer-algebra-system.html.

http://www.lehrplanplus.bayern.de/sixcms/media.php/107/LehrplanPLUS%20Mittelschule%20-%20Juni%202016.pdf
http://www.lehrplanplus.bayern.de/sixcms/media.php/107/LehrplanPLUS%20Mittelschule%20-%20Juni%202016.pdf
http://www.lehrplanplus.bayern.de/sixcms/media.php/107/LehrplanPLUS%20Mittelschule%20-%20Juni%202016.pdf
http://www.mathe-online.at/lernpfade/triangle_fink/?kapitel=1
http://www.mathe-online.at/lernpfade/triangle_fink/?kapitel=1
http://dx.doi.org/10.1002/spe
http://dx.doi.org/10.13054/mije.si.2013.01
https://files.eric.ed.gov/fulltext/ED544150.pdf
https://files.eric.ed.gov/fulltext/ED544150.pdf
http://dx.doi.org/10.1109/SISY.2010.5647368
http://ase.jku.at/publications/2010/SISY2010_Composability_Testing.pdf
http://ase.jku.at/publications/2010/SISY2010_Composability_Testing.pdf
http://www.cimt.org.uk/journal/mainali.pdf
http://www.teaching.math.rs/vol/tm1814.pdf
http://dx.doi.org/http://dx.doi.org/10.1080/0952813X.2015.1132271
http://dx.doi.org/http://dx.doi.org/10.1080/0952813X.2015.1132271
http://dx.doi.org/10.1007/978-3-642-31374-5_9
http://dx.doi.org/10.14419/ijet.v7i2.28.12898
http://dx.doi.org/10.14419/ijet.v7i2.28.12898
https://www.sciencepubco.com/index.php/ijet/article/view/12898
https://www.sciencepubco.com/index.php/ijet/article/view/12898
http://www.mathopenref.com/tocs/triangletoc.html
http://www.mathopenref.com/tocs/triangletoc.html
https://www.mathworks.com/discovery/computer-algebra-system.html

BIBLIOGRAPHY 115

McAuley, | and] Leskovec (2012). “Image Labeling on a Network: Using Social-
Network Metadata for Image Classiffcation”. In: European Conference on Computer
Vision, pp. 828—41. URL: http://cs.stanford.edu/people/jure/pubs/image-
eccvl2.pdf.

Mernik, M (2013). “An object-oriented approach to language compositions for soft-
ware language engineering”. In: | Syst Softw 86, pp. 2451-64. DOI: 10.1016/] .
jss.2013.04.087.

Milner, R (1978). “A theory of type polymorphism in programming”. In: Journal of
Computer and System Sciences 17.3, pp. 257-84. URL: https://homepages.inf.ed.
ac.uk/wadler/papers/papers-we-love/milner-type-polymorphism.pdf.

Montes, A and M Wibmer (2014). “Software for Discussing Parametric Polynomial
Systems: The Grobner Cover”. In: Mathematical Software — ICMS 2014. Ed. by H
Hong and C Yap. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 406—413.
ISBN: 978-3-662-44199-2.

Mossenbock, Hanspeter (2010). The Compiler Generator Coco/R -User Manual. Univer-
sity of Linz, pp. 1-42. URL: http: //www.ssw.uni-linz.ac.at/coco/Doc/
UserManual . pdf.

Mott, | et al. (2008). “Making a Significant Difference: A Goal-Driven Approach to
Improving Teaching & Learning with Technology”. In: 2008 Annual Proceedings -
Orlando, On the Practice of Educational Communications and Technology. Vol. 2. URL:
https://members.aect.org/pdf/Proceedings/proceedings08/20081/08_16.
pdf.

MSDN (2019). Creating Custom Attributes. [Online; accessed 02-June-2019]. URL: https:
//msdn.microsoft.com/en-us/library/sw480ze8. aspx.

Mulansky, M and K Ahnert (2011). “Metaprogramming Applied to Numerical Prob-
lems”. In: AIP Conference Proceedings , Numerical Analysis and Applied Mathematics,
pp- 1582-5. DOI: 10.1063/1.3637933.

Narboux,] (2007). “A Graphical User Interface for Formal Proofs in Geometry”. In:
J Autom Reas 39.2, pp. 161-80. DOI: https://doi.org/10.1007/s10817 - 007 -
9071-4.

Nastavni plan i program za osnovnu skolu 2013, Ministarstvo znanosti i sporta Republike
Hroatske (2013). [Online; accessed 02-June-2019]. URL: http://public.mzos.hr/
fgs.axd?i1d=20542.

Nastavni planovi i programi za osnovne i srednje skole, Zavod za unapredenje obrazovanja
i vaspitanja, Republika Srbija (2016). [Online; accessed 02-June-2019]. URL: http:
//www . zuov.gov.rs/poslovi/nastavni-planovi/nastavni-planovi-os-i-
ss/71lng=lat.

Nikhil, R S., K Pingali, and Arvind (1986). Id Nouveau. Tech. rep. AIM-349. MIT. URL:
http://csg.csail.mit.edu/pubs/memos/Memo-265/Memo-265.pdf.

Niss, M (2012). “Models and Modeling in Mathematics Education”. In: EMS Newslet-
ter December 2012, pp. 49-52. URL: http : / /www . euro - math - soc . eu/ ems _
education/Solid_Findings_Modelling.pdf.

Noguera, C and L Duchien (2008). “Annotation Framework Validation Using Do-
main Models”. In: Model Driven Architecture — Foundations and Applications. Ed. by
I Schieferdecker and A Hartman. Berlin, Heidelberg: Springer Berlin Heidelberg,
pp. 48-62. 1SBN: 978-3-540-69100-6. DOI: 10.1007/978-3-540-69100-6_4.

http://cs.stanford.edu/people/jure/pubs/image-eccv12.pdf
http://cs.stanford.edu/people/jure/pubs/image-eccv12.pdf
http://dx.doi.org/10.1016/j.jss.2013.04.087
http://dx.doi.org/10.1016/j.jss.2013.04.087
https://homepages.inf.ed.ac.uk/wadler/papers/papers-we-love/milner-type-polymorphism.pdf
https://homepages.inf.ed.ac.uk/wadler/papers/papers-we-love/milner-type-polymorphism.pdf
http://www.ssw.uni-linz.ac.at/coco/Doc/UserManual.pdf
http://www.ssw.uni-linz.ac.at/coco/Doc/UserManual.pdf
https://members.aect.org/pdf/Proceedings/proceedings08/2008I/08_16.pdf
https://members.aect.org/pdf/Proceedings/proceedings08/2008I/08_16.pdf
https://msdn.microsoft.com/en-us/library/sw480ze8.aspx
https://msdn.microsoft.com/en-us/library/sw480ze8.aspx
http://dx.doi.org/10.1063/1.3637933
http://dx.doi.org/https://doi.org/10.1007/s10817-007-9071-4
http://dx.doi.org/https://doi.org/10.1007/s10817-007-9071-4
http://public.mzos.hr/fgs.axd?id=20542
http://public.mzos.hr/fgs.axd?id=20542
http://www.zuov.gov.rs/poslovi/nastavni-planovi/nastavni-planovi-os-i-ss/?lng=lat
http://www.zuov.gov.rs/poslovi/nastavni-planovi/nastavni-planovi-os-i-ss/?lng=lat
http://www.zuov.gov.rs/poslovi/nastavni-planovi/nastavni-planovi-os-i-ss/?lng=lat
http://csg.csail.mit.edu/pubs/memos/Memo-265/Memo-265.pdf
http://www.euro-math-soc.eu/ems_education/Solid_Findings_Modelling.pdf
http://www.euro-math-soc.eu/ems_education/Solid_Findings_Modelling.pdf
http://dx.doi.org/10.1007/978-3-540-69100-6_4

116 BIBLIOGRAPHY

Noguera, C and R Pawlak (2007). “AVal: An Extensible Attribute-oriented Program-
ming Validator for Java”. In: Research Articles. | Softw Maint Evol 19.4, pp. 253-75.
URL: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.220.
5933&rep=repl&type=pdf.

Nosél’, M, M Sulir, and] Juhdr (2016). “Language Composition Using Source Code
Annotations”. In: Comput Sci Inf Syst 13.3, pp. 707-29. DOI: 10.2298/CSIS160114024N.

Nosél, M,] Porubdn, and M Sulir (2017). “Customizing host IDE for non-programming
users of pure embedded DSLs: A case study”. In: Comput Lang Syst Struct 49.Sup-
plement C, pp. 101-18. ISSN: 1477-8424. DOI: https://doi.org/10.1016/j.cl.
2017.04.003.

Palmer, Zachary and Scott F. Smith (2011). “Backstage Java”. In: Proceedings of the
2011 ACM international conference on Object oriented programming systems languages
and applications - OOPSLA "11 46.10, p. 939. 1SSN: 03621340. DOI: 10.1145/2048066 .
2048137.

Pech, P (2012). “How integration of DGS and CAS helps to solve problems in geom-
etry”. In: 17th Asian Technology Conference in Mathematics, Suan Sunandha Rajabhat
University, Bangkok, Thailand. URL: http : //atcm . mathandtech . org/EP2012/
invited_papers/3472012_19796.pdf.

Peelar, S (2016). “Accommodating prepositional phrases in a highly modular natu-
ral language query interface to semantic web triplestores using a novel event-
based denotational semantics for English and a set of functional parser combi-
nators”. PhD thesis. Electronic Theses and Dissertations: University of Windsor.
URL: https://scholar.uwindsor.ca/etd/5911.

Pham, T M and Y Bertot (2012). “A Combination of a Dynamic Geometry Soft-
ware With a Proof Assistant for Interactive Formal Proofs”. In: Electronic Notes
in Theoretical Computer Science 285. Proceedings of the 9th International Work-
shop On User Interfaces for Theorem Provers (UITP10), pp. 43 -55. 1SSN: 1571-
0661. DOI: https://doi.org/10.1016/j .entcs.2012.06.005. URL: http:
//www.sciencedirect.com/science/article/pii/S1571066112000254.

Pinoli, P et al. (2019). “Metadata management for scientific databases”. In: Informa-
tion Systems 81, pp. 1 —20. 1SSN: 0306-4379. DOI: https://doi.org/10.1016/j.
is.2018.10.002.

Podwysocki, Matthew (2019). Matthew Podwysocki’s Blog: Object Oriented F# - Creat-
ing Classes. [Online; accessed 02-June-2019]. URL: https: //weblogs . asp .net/
podwysocki/object-oriented-creating-classes.

Pree, W (1997). “Component-based software development-a new paradigm in soft-
ware engineering?” In: Proceedings of Joint 4th International Computer Science Con-
ference and 4th Asia Pacific Software Engineering Conference. IEEE, pp. 523-524.

Prensky, M (2007). “How to Teach With Technology—keeping both teachers and stu-
dents comfortable in an era of exponential change”. In: Emerging Technologies for
Learning. Vol. 2. Becta. Chap. 4, pp. 40—46. URL: https : //www . calvin . edu/
~dsc8/documents/emerging_technologies07.pdf.

Progressions pour le cours préparatoire et le cours élémentaire premiere année: Mathéma-
tiques, Ressources pour I'école élémentaire (2012). [Online; accessed 02-June-2019].
URL: http : // cache . media . eduscol . education . fr/file /Progressions _

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.220.5933&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.220.5933&rep=rep1&type=pdf
http://dx.doi.org/10.2298/CSIS160114024N
http://dx.doi.org/https://doi.org/10.1016/j.cl.2017.04.003
http://dx.doi.org/https://doi.org/10.1016/j.cl.2017.04.003
http://dx.doi.org/10.1145/2048066.2048137
http://dx.doi.org/10.1145/2048066.2048137
http://atcm.mathandtech.org/EP2012/invited_papers/3472012_19796.pdf
http://atcm.mathandtech.org/EP2012/invited_papers/3472012_19796.pdf
https://scholar.uwindsor.ca/etd/5911
http://dx.doi.org/https://doi.org/10.1016/j.entcs.2012.06.005
http://www.sciencedirect.com/science/article/pii/S1571066112000254
http://www.sciencedirect.com/science/article/pii/S1571066112000254
http://dx.doi.org/https://doi.org/10.1016/j.is.2018.10.002
http://dx.doi.org/https://doi.org/10.1016/j.is.2018.10.002
https://weblogs.asp.net/podwysocki/object-oriented-creating-classes
https://weblogs.asp.net/podwysocki/object-oriented-creating-classes
https://www.calvin.edu/~dsc8/documents/emerging_technologies07.pdf
https://www.calvin.edu/~dsc8/documents/emerging_technologies07.pdf
http://cache.media.eduscol.education.fr/file/Progressions_pedagogiques/79/2/Progression-pedagogique_Cycle2_Mathematiques_203792.pdf
http://cache.media.eduscol.education.fr/file/Progressions_pedagogiques/79/2/Progression-pedagogique_Cycle2_Mathematiques_203792.pdf

BIBLIOGRAPHY 117

pedagogiques/79/2/Progression-pedagogique_Cycle2_Mathematiques_203792.
pdf.

Quaresma, P, V Santos, and N Baeta (2018). “Exchange of Geometric Information Be-
tween Applications”. In: 6th International Workshop on Theorem proving components
for Educational software. EPTCS 267, pp. 108-119. DOI: 10.4204/EPTCS . 267 .7.

Quaresma, P et al. (2008). “XML-Based Format for Description of Geometrical Con-
structions and Proofs”. In: Communicating Mathematics in the Digital Era. CRC
Press, Taylor and Francis Group, pp. 183-197. ISBN: 9781568814100. URL: http:
//poincare.matf.bg.ac.rs/"milena/publications/xml.pdf.

Radakovi¢, D and D Herceg (2010). “The Use of WPF for Development of Interactive
Geometry Software”. In: Acta Universitatis Matthiae Belii, Series Mathematics 16,
pp- 65-79. URL: http://actamath.savbb.sk/pdf/actal606.pdf.

— (2013). “A Platform for Development of Mathematical games on Silverlight”. In:
Acta Didactica Napocensia 6.1, pp. 77-90. URL: https://files.eric.ed.gov/
fulltext/EJ1053670.pdf.

— (2017). “Metadata Specification in a Dynamic Geometry Software”. In: Proc. of In-
ternational Conference of Numerical Analysis and Applied Mathematics ICNAAM?2016,
6th SCLIT. American Institute of Physics, pp. 330006/1-5. DOI: 10 . 1063 /1 .
4992504.

— (2018). “Towards a completely extensible dynamic geometry software with meta-
data”. In: Computer Languages, Systems and Structures 52, pp. 1-20. ISSN: 1477 -
8424. DOI1: 10.1016/j.¢1.2017.11.001. URL: http://www.sciencedirect.com/
science/article/pii/S147784241730057X.

Radakovi¢, D, D Herceg, and M Loberbauer (2010). “Extensible expression evaluator
for the dynamic geometry software Geometrijica”. In: XVIII Conference on Applied
Mathematics - PRIM 2009, pp. 95-100. URL: http://ase. jku.at/publications/
2009/PRIM09_095_RadakovicHercegLoeberbauer-p95-100.pdf.

Radovi¢, S, M Mari¢, and D Passey (2019). “Technology enhancing mathematics
learning behaviours: Shifting learning goals from “producing the right answer”
to “understanding how to address current and future mathematical challenges””.
In: Education and Information Technologies 24.1, pp. 103-126. 1SSN: 1573-7608. DOI:
10.1007/s10639-018-9763-x.

Reflection (C#) (2019). [Online; accessed 02-June-2019]. URL: https://docs.microsoft.
com/en-us/dotnet/csharp/programming-guide/concepts/reflection.

Reis, Z A (2010). “Computer supported mathematics with Geogebra”. In: Procedia
- Social and Behavioral Sciences 9. World Conference on Learning, Teaching and
Administration Papers, pp. 1449-1455. 1SSN: 1877-0428. DOI: https://doi.org/
10.1016/ j . sbspro.2010 .12 . 348. URL: http://www. sciencedirect . com/
science/article/pii/S1877042810024535.

Retrieving Information Stored in Attributes (2019). [Online; accessed 02-June-2019]. URL:
https://docs.microsoft.com/en-us/dotnet/standard/attributes/retrieving-
information-stored-in-attributes.

Risti¢, S et al. (2014). “Generic and Standard Database Constraint Meta-Models”.
In: Comput Sci Inf Syst 11.2, pp. 679-96. DOI: https : / /doi . org/ 10 . 2298/
CSIS140216037R.

http://cache.media.eduscol.education.fr/file/Progressions_pedagogiques/79/2/Progression-pedagogique_Cycle2_Mathematiques_203792.pdf
http://cache.media.eduscol.education.fr/file/Progressions_pedagogiques/79/2/Progression-pedagogique_Cycle2_Mathematiques_203792.pdf
http://cache.media.eduscol.education.fr/file/Progressions_pedagogiques/79/2/Progression-pedagogique_Cycle2_Mathematiques_203792.pdf
http://dx.doi.org/10.4204/EPTCS.267.7
http://poincare.matf.bg.ac.rs/~milena/publications/xml.pdf
http://poincare.matf.bg.ac.rs/~milena/publications/xml.pdf
http://actamath.savbb.sk/pdf/acta1606.pdf
https://files.eric.ed.gov/fulltext/EJ1053670.pdf
https://files.eric.ed.gov/fulltext/EJ1053670.pdf
http://dx.doi.org/10.1063/1.4992504
http://dx.doi.org/10.1063/1.4992504
http://dx.doi.org/10.1016/j.cl.2017.11.001
http://www.sciencedirect.com/science/article/pii/S147784241730057X
http://www.sciencedirect.com/science/article/pii/S147784241730057X
http://ase.jku.at/publications/2009/PRIM09_095_RadakovicHercegLoeberbauer-p95-100.pdf
http://ase.jku.at/publications/2009/PRIM09_095_RadakovicHercegLoeberbauer-p95-100.pdf
http://dx.doi.org/10.1007/s10639-018-9763-x
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/reflection
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/reflection
http://dx.doi.org/https://doi.org/10.1016/j.sbspro.2010.12.348
http://dx.doi.org/https://doi.org/10.1016/j.sbspro.2010.12.348
http://www.sciencedirect.com/science/article/pii/S1877042810024535
http://www.sciencedirect.com/science/article/pii/S1877042810024535
https://docs.microsoft.com/en-us/dotnet/standard/attributes/retrieving-information-stored-in-attributes
https://docs.microsoft.com/en-us/dotnet/standard/attributes/retrieving-information-stored-in-attributes
http://dx.doi.org/https://doi.org/10.2298/CSIS140216037R
http://dx.doi.org/https://doi.org/10.2298/CSIS140216037R

118 BIBLIOGRAPHY

Rouvoy, R and P Merle (2006). “Leveraging Component-Oriented Programming with
Attribute-Oriented Programming”. In: In Proc. of the 11th ECOOP International
Workshop on Component-Oriented Programming, pp. 10-8. URL: http://citeseerx.
ist.psu.edu/viewdoc/download?doi=10.1.1.94.4416&rep=repl&type=pdf.

Sarama,] and D H Clements (2009). Early Childhood Mathematics Education Research:
Learning Trajectories for Young Children. Studies in Mathematical Thinking and
Learning Series. Taylor & Francis. ISBN: 9781135592509. URL: https: //books .
google.rs/books?id=Z5K0AgAAQBAJ.

— (2012). “ "Concrete’” Computer Manipulatives in Mathematics Education”. In:
Child Development Perspectives 3.3, pp. 145-150. DOI: 10 . 1111/3 . 1750 - 8606 .
2009.00095.x. URL: https://www.du.edu/marsicoinstitute/media/documents/
dc_concrete_computer_manipulatives.pdf.

Savidis, A (2006). “Dynamic Imperative Languages for Runtime Extensible Seman-
tics and Polymorphic Meta-programming”. In: N. Guelfi and A. Savidis (Eds.):
RISE 2005, LNCS 3943. New York, NY, USA: ACM, pp. 113-28. DOI: https://
doi.org/10.1007/11751113_9.

Schoenfeld, A H (2014). “What Makes for Powerful Classrooms, and How Can We
Support Teachers in Creating Them? A Story of Research and Practice, Produc-
tively Intertwined”. In: Educational Researcher 43.8, pp. 404—412. DOI: 10.3102/
0013189X14554450. URL: http://map . mathshell . org/trumath/schoenfeld _
2014_ER.pdf.

Schreck, P et al. (2016). “Wernick’s List: A Final Update”. In: Forum Geometricorum
16, pp. 69-80. URL: http://icube-publis.unistra.fr/appli.php/2-SMMJI16.

Schult, W and A Polze (2002). “Aspect-Oriented Programming with C# and .NET”.
In: Proceedings of International Symposium on Object-oriented Real-time distributed
Computing, Crystal City, VA, USA, pp. 241-8.

Schwarz, D (2004). Peeking Inside the Box: Attribute-Oriented Programming with Java
1.5. [Online; accessed 02-June-2019]. URL: http://archive.oreilly. com/pub/
a/onjava/2004/06/30/insidebox1.html.

Seco,] C, R Silva, and M Piriquito (2008). “Component J: A component-based pro-
gramming language with dynamic reconfiguration”. In: Comput. Sci. Inf. Syst. 5.2,
pp- 63-86.

Seger, C] H et al. (2005). “An Industrially Effective Environment for Formal Hard-
ware Verification”. In: IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems 24.9, pp. 1381-1405. 1SSN: 0278-0070. DOI: 10 . 1109 /TCAD .
2005.850814.

Shepard, RN (1978). “The mental image”. In: American Psychologist 33, pp. 125-137.
DOI: 10.1037/0003-066X.33.2.125.

Sinot, FR (2008). “Complete Laziness: a Natural Semantics”. In: EI Not Theor Comput
Sci 204, pp. 129-45. DOI: 10.1016/j.entcs.2008.03.058.

Siqueira, JL de, FF Silveira, and EM Guerra (2016). “An Approach for Code Annota-
tion Validation with Metadata Location Transparency”. In: Computational Science
and Its Applications - ICCSA 2016, Lecture Notes in Computer Science. Vol. 9789.
Springer, Cham, pp. 422-38. DOI: 10.1007/978-3-319-42089-9_30.

Slodi¢ak, V and P Macko (2011). “Some New Approaches in Functional Program-
ming Using Algebras and Coalgebras”. In: Electronic Notes in Theoretical Computer

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.94.4416&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.94.4416&rep=rep1&type=pdf
https://books.google.rs/books?id=Z5KOAgAAQBAJ
https://books.google.rs/books?id=Z5KOAgAAQBAJ
http://dx.doi.org/10.1111/j.1750-8606.2009.00095.x
http://dx.doi.org/10.1111/j.1750-8606.2009.00095.x
https://www.du.edu/marsicoinstitute/media/documents/dc_concrete_computer_manipulatives.pdf
https://www.du.edu/marsicoinstitute/media/documents/dc_concrete_computer_manipulatives.pdf
http://dx.doi.org/https://doi.org/10.1007/11751113_9
http://dx.doi.org/https://doi.org/10.1007/11751113_9
http://dx.doi.org/10.3102/0013189X14554450
http://dx.doi.org/10.3102/0013189X14554450
http://map.mathshell.org/trumath/schoenfeld_2014_ER.pdf
http://map.mathshell.org/trumath/schoenfeld_2014_ER.pdf
http://icube-publis.unistra.fr/appli.php/2-SMMJ16
http://archive.oreilly.com/pub/a/onjava/2004/06/30/insidebox1.html
http://archive.oreilly.com/pub/a/onjava/2004/06/30/insidebox1.html
http://dx.doi.org/10.1109/TCAD.2005.850814
http://dx.doi.org/10.1109/TCAD.2005.850814
http://dx.doi.org/10.1037/0003-066X.33.2.125
http://dx.doi.org/10.1016/j.entcs.2008.03.058
http://dx.doi.org/10.1007/978-3-319-42089-9_30

BIBLIOGRAPHY 119

Science 279.3, pp. 41-62. URL: https://ac.els-cdn.com/S1571066111001861/
1-s2.0-S51571066111001861 -main . pdf 7 _tid=e744506a - 32bl1-4f12-a7ba-
04ecbOalab9e&acdnat=1548721948_d1572d1c01b3b3a78ded721cfe34abOb.

Song, M and E Tilevich (2015). “Reusing metadata across components, applications,
and languages”. In: Sci Comput Prog 98.4, pp. 617-44. DOI: 10.1016/j . scico.
2014.09.002.

StackExchange — Mathematics (2019). [Online; accessed 02-June-2019]. URL: http://
math . stackexchange . com/questions/361412/finding-the-angle-between-
three-points.

Stein, W (2012). “Sage: Creating a Viable Free Open Source Alternative to Magma,
Maple, Mathematica, and MATLAB”. In: Foundations of Computational Mathemat-
ics, Budapest 2011. Ed. by Felipe Cucker et al. London Mathematical Society Lec-
ture Note Series. Cambridge University Press, 230-238. DOI: 10.1017/CB09781139095402.
011. URL: https://wstein.org/papers/focmil/focmlil. pdf.

— (2019a). CoCalc - Collaborative Calculation in the Cloud. [Online; accessed 02-June-
2019]. URL: http://cocalc.com/.

— (2019b). SageMath - open source mathematical software. [Online; accessed 02-June-
2019]. URL: http://www.sagemath.org/.

Steingartner, W et al. (2016). “Some properties of coalgebras and their role in com-
puter science”. In: Journal of Applied Mathematics and Computational Mechanics
16.3, pp. 145-56. 1SSN: 2353-0588. DOI: 10.17512/jamcm.2016.4. 16.

Steketee, S (2010). “Comparison of Sketchpad and GeoGebra”. In: Key Curriculum
Press 3. URL: https://s3.amazonaws . com/keycurriculum. com/PDF/Sketchpad/
Detailed_Comparison_of_Sketchpad_and_GeoGebra.pdf.

étuikys, V, R Damasevicius, and G Ziberkas (2012). “Understanding of Heteroge-
neous Multi-Stage Meta-Programs”. In: Inf Technol Cont 41.1, pp. 23-32. DOI: 10.
5755/j01.itc.41.1.916.

Sulir, M, M Nosél, and] Porubén (2016). “Recording concerns in source code using
annotations”. In: Comput Lang Syst Struct 46, pp. 44-65. DOI: 10.1016/j.cl.
2016.07.003.

Sussman, G] and G L Steele Jr (1975). Scheme: An interpreter for extended lambda cal-
culus. Tech. rep. AIM-349. MIT. URL: https://dspace.mit.edu/handle/1721.1/
5794.

— (1998). “Scheme: A Interpreter for Extended Lambda Calculus”. In: Higher Order
Symbol. Comput. 11.4, pp. 405—439. 1SSN: 1388-3690. DOI: 10.1023/A:1010035624696.

Sutherland, I E (1963). Sketchpad: A Man-Machine Graphical Communication System.
Tech. rep. The address of the publisher: Lincoln Lalboatory, Massachusetts In-
stitute of Technology. URL: https://apps.dtic.mil/dtic/tr/fulltext/u2/
404549 . pdf.

Takaci, Dj, G Stankov, and I Milanovic (2015). “Efficiency of learning environment
using GeoGebra when calculus contents are learned in collaborative groups”. In:
Computers & Education 82, pp. 421-431. 1SSN: 0360-1315. DOI: https://doi.org/
10.1016/j . compedu . 2014 .12 .002. URL: http://www . sciencedirect . com/
science/article/pii/S0360131514002796.

Tall, D O (1986). “Using the computer as an environment for building and testing
mathematical concepts: A tribute to Richard Skemp”. In: Mathematics Education

https://ac.els-cdn.com/S1571066111001861/1-s2.0-S1571066111001861-main.pdf?_tid=e744506a-32b1-4f12-a7ba-04ecb0a1ab9e&acdnat=1548721948_d1572d1c01b3b3a78de9721cfe34ab0b
https://ac.els-cdn.com/S1571066111001861/1-s2.0-S1571066111001861-main.pdf?_tid=e744506a-32b1-4f12-a7ba-04ecb0a1ab9e&acdnat=1548721948_d1572d1c01b3b3a78de9721cfe34ab0b
https://ac.els-cdn.com/S1571066111001861/1-s2.0-S1571066111001861-main.pdf?_tid=e744506a-32b1-4f12-a7ba-04ecb0a1ab9e&acdnat=1548721948_d1572d1c01b3b3a78de9721cfe34ab0b
http://dx.doi.org/10.1016/j.scico.2014.09.002
http://dx.doi.org/10.1016/j.scico.2014.09.002
http://math.stackexchange.com/questions/361412/finding-the-angle-between-three-points
http://math.stackexchange.com/questions/361412/finding-the-angle-between-three-points
http://math.stackexchange.com/questions/361412/finding-the-angle-between-three-points
http://dx.doi.org/10.1017/CBO9781139095402.011
http://dx.doi.org/10.1017/CBO9781139095402.011
https://wstein.org/papers/focm11/focm11.pdf
http://cocalc.com/
http://www.sagemath.org/
http://dx.doi.org/10.17512/jamcm.2016.4.16
https://s3.amazonaws.com/keycurriculum.com/PDF/Sketchpad/Detailed_Comparison_of_Sketchpad_and_GeoGebra.pdf
https://s3.amazonaws.com/keycurriculum.com/PDF/Sketchpad/Detailed_Comparison_of_Sketchpad_and_GeoGebra.pdf
http://dx.doi.org/10.5755/j01.itc.41.1.916
http://dx.doi.org/10.5755/j01.itc.41.1.916
http://dx.doi.org/10.1016/j.cl.2016.07.003
http://dx.doi.org/10.1016/j.cl.2016.07.003
https://dspace.mit.edu/handle/1721.1/5794
https://dspace.mit.edu/handle/1721.1/5794
http://dx.doi.org/10.1023/A:1010035624696
https://apps.dtic.mil/dtic/tr/fulltext/u2/404549.pdf
https://apps.dtic.mil/dtic/tr/fulltext/u2/404549.pdf
http://dx.doi.org/https://doi.org/10.1016/j.compedu.2014.12.002
http://dx.doi.org/https://doi.org/10.1016/j.compedu.2014.12.002
http://www.sciencedirect.com/science/article/pii/S0360131514002796
http://www.sciencedirect.com/science/article/pii/S0360131514002796

120 BIBLIOGRAPHY

Research Center,Warwick Univ., pp. 21-36. URL: http://homepages . warwick.
ac.uk/staff/David.Tall/pdfs/dot1986h-computer-skemp.pdf.

Tankelevi¢ieng, L (2004). “Mobile Technologies for Mobile Students”. In: Informacinés
Technologijos Ir Valdymas 33.4, pp. 35—40.

Tansey, W and E Tilevich (2008). “Annotation Refactoring: Inferring Upgrade Trans-
formations for Legacy Applications”. In: Proceedings of the 23rd ACM SIGPLAN
Conference on Object-Oriented Programming Systems Languages and Applications (OOP-
SLA '08). New York, NY, USA: ACM, pp. 295-312. URL: http://people.cs.vt.
edu/tilevich/papers/rosemari-oopsla.pdf.

Targamadzé, A and R Petrauskiené (2010). “Impact of Information Technologies on
Modern Learning”. In: Information Technology and Control 39.3, pp. 169-75. URL:
http://itc.ktu.lt/index.php/ITC/article/view/12375/6847.

Tarver, H et al. (2015). “An Exploratory Analysis of Subject Metadata in the Digital
Public Library of America”. In: Proceedings of International Conference on Dublin
Core and Metadata Applications, pp. 30—40. ISBN: 1939-1366. URL: http://dcpapers.
dublincore.org/pubs/article/view/3761.

Tatar, E (2013). “The Effect of Dynamic Software on Prospective Mathematics Teach-
ers’ Perceptions Regarding Information and Communication Technology”. In:
Australian Journal of Teacher Education 38.12, pp. 1-16. 1SSN: 0360-1315. DOI: 10.
14221/ajte.2013v38n12.6. URL: https://ro.ecu.edu.au/cgi/viewcontent.
cgi?article=2140&context=ajte.

Tatarczak, A and M Medrek (2017). “Educational experience in teaching mathemat-
ics online: a case study on the implementation of GeoGebra in an interactive
learning environment”. In: INTED 2017, 11th annual International Technology, Ed-
ucation and Development, pp. 5416-5424. DOI: 10.21125/inted.2017.1262.

Statny pedagogicky tstav, Statny vzdelavaci program, Vzdelavacia oblast’: Matem-
atika a praca s informéciami, Slovenskej republiky, Slovakia (2019). [Online; ac-
cessed 02-June-2019]. URL: http://www.statpedu.sk/sites/default/files/
dokumenty/statny-vzdelavaci-program/matematika_iscedl.pdf.

The Coq Proof Assistant (2019). [Online; accessed 02-June-2019]. URL: https://coq.
inria.fr/.

The Geometer’s Sketchpad (2019). [Online; accessed 02-June-2019]. URL: http://wuw.
keycurriculum. com/sketchpad.1.html.

The Interactive Geometry Software Cinderella (2019). [Online; accessed 02-June-2019].
URL: https://cinderella.de/tiki-index.php.

The Metadata Community — Supporting Innovation in Metadata Design, Implementation
& Best Practices (2019). [Online; accessed 02-June-2019]. URL: http://dublincore.
org/metadata-basics/.

Tomaschko, M and M Hohenwarter (2017). “Integrating Mobile and Sensory Tech-
nologies in Mathematics Education”. In: Proceedings of the 15th International Con-
ference on Advances in Mobile Computing & Multimedia. MoMM2017. Salzburg,
Austria: ACM, pp. 39-48. I1SBN: 978-1-4503-5300-7. DOI: 10.1145/3151848.3151866.

Tomiczkovd, Sand M Lévicka (2013). “Computer-Aided Descriptive Geometry Teach-
ing”. In: Computers in the Schools: Interdisciplinary Journal of Practice, Theory, and
Applied Research 30.1-2, pp. 48-60. 1SSN: 0738-0569. DOI: 10 . 1080 / 07380569 .
2013.764480.

http://homepages.warwick.ac.uk/staff/David.Tall/pdfs/dot1986h-computer-skemp.pdf
http://homepages.warwick.ac.uk/staff/David.Tall/pdfs/dot1986h-computer-skemp.pdf
http://people.cs.vt.edu/tilevich/papers/rosemari-oopsla.pdf
http://people.cs.vt.edu/tilevich/papers/rosemari-oopsla.pdf
http://itc.ktu.lt/index.php/ITC/article/view/12375/6847
http://dcpapers.dublincore.org/pubs/article/view/3761
http://dcpapers.dublincore.org/pubs/article/view/3761
http://dx.doi.org/10.14221/ajte.2013v38n12.6
http://dx.doi.org/10.14221/ajte.2013v38n12.6
https://ro.ecu.edu.au/cgi/viewcontent.cgi?article=2140&context=ajte
https://ro.ecu.edu.au/cgi/viewcontent.cgi?article=2140&context=ajte
http://dx.doi.org/10.21125/inted.2017.1262
http://www.statpedu.sk/sites/default/files/dokumenty/statny-vzdelavaci-program/matematika_isced1.pdf
http://www.statpedu.sk/sites/default/files/dokumenty/statny-vzdelavaci-program/matematika_isced1.pdf
https://coq.inria.fr/
https://coq.inria.fr/
http://www.keycurriculum.com/sketchpad.1.html
http://www.keycurriculum.com/sketchpad.1.html
https://cinderella.de/tiki-index.php
http://dublincore.org/metadata-basics/
http://dublincore.org/metadata-basics/
http://dx.doi.org/10.1145/3151848.3151866
http://dx.doi.org/10.1080/07380569.2013.764480
http://dx.doi.org/10.1080/07380569.2013.764480

BIBLIOGRAPHY 121

Turner, D A (1982). “Recursion Equations as a Programming Language”. In: Darling-
ton, Henderson, Turner (eds.) Functional Programming and its Applications, Cambridge
University Press, pp. 1-28. DOIL: https://doi.org/10.1007/978-3-319-30936-
1_24.

— (1985). “Miranda: A Non-strict Functional Language with Polymorphic Types”.
In: Proc. Of a Conference on Functional Programming Languages and Computer Ar-
chitecture. Nancy, France: Springer-Verlag New York, Inc., pp. 1-16. ISBN: 3-387-
15975-4. URL: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.
1.105.6357&rep=repl&type=pdf.

Underkoffler, M M (1969). “Computer assisted instruction in college general edu-
cation mathematics”. PhD thesis. Digital Repository @ Iowa State University,
http://lib.dr.iastate.edu/: Iowa State University. DOIL: https://doi.org/10.
31274/rtd-180813-1201.

Using Attributes in C# (2019). [Online; accessed 02-June-2019]. URL: https://docs.
microsoft.com/en-us/dotnet/csharp/tutorials/attributes.

Van Den Berg, K G (1995). “Software Measurement and Functional Programming”.
PhD thesis. University of Twente Enschede.

Vidakovi¢,] and M Rackovié (2006). “Generating content and display of library cat-
alogue cards using XML technology”. In: Software: Practice and Experience 36.5,
pp. 513-524. DOL: 10.1002/spe . 707.

Wadler, P L et al (1988). Introduction to Orwell 5.00. Programming Research Group.
Oxford U. URL: https://homepages . inf . ed.ac.uk/wadler/papers/orwell/
orwelll.pdf.

Wang, D (1993). “An elimination method for polynomial systems.” English. In: J.
Symb. Comput. 16.2, pp. 83-114. 1SSN: 0747-7171.

Wang, H (1960). “Toward Mechanical Mathematics”. In: IBM Journal of Research and
Development 4.1, pp. 2-22. 1SSN: 0018-8646. DOI: 10 . 1147 /rd . 41 . 0002. URL:
http://dx.doi.org/10.1147/rd.41.0002.

Warth, A (2007). “Lazy]: Seamless Lazy Evaluation in Java”. In: In Workshop on Foun-
dations of Object-Oriented Languages. URL: http://www.cs.cmu.edu/ aldrich/
FOOL/FOOLWOODO7/program/warth.pdf.

Wernick, W (1982). “Triangle constructions with three located points”. In: Mathemat-
ics Magazine 5513.4, pp. 227-230. URL: http://www.polarprof . org/geometriagon/
pg/Wernick.pdf.

Wester, M (1999). Computer Algebra Systems: A Practical Guide. John Wiley & Sons,
Ltd, Chicester., pp. 1-436.

Whitehead, A N and B Russell (1910). Principia Mathematica. Vol. I. English. URL:
https://archive.org/details/principiamathemaOlanwh/page/n8.

Windows Presentation Foundation (2019). [Online; accessed 02-June-2019]. URL: https:
//msdn.microsoft.com/en-us/library/ms754130.aspx.

Winroth, H (1999). “Dynamic projective geometry”. PhD thesis. Stockholms Univer-
sitet. URL: https://www.nada.kth.se/utbildning/forsk.utb/avhandlingar/
dokt/winroth990324.pdf.

Wolfram Mathematica Comparative Analyses - Computer Algebra Systems (2019). [Online;
accessed 02-June-2019]. URL: https://www.wolfram.com/products/mathematica/
analysis/content/ComputerAlgebraSystems.html.

http://dx.doi.org/https://doi.org/10.1007/978-3-319-30936-1_24
http://dx.doi.org/https://doi.org/10.1007/978-3-319-30936-1_24
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.105.6357&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.105.6357&rep=rep1&type=pdf
http://dx.doi.org/https://doi.org/10.31274/rtd-180813-1201
http://dx.doi.org/https://doi.org/10.31274/rtd-180813-1201
https://docs.microsoft.com/en-us/dotnet/csharp/tutorials/attributes
https://docs.microsoft.com/en-us/dotnet/csharp/tutorials/attributes
http://dx.doi.org/10.1002/spe.707
https://homepages.inf.ed.ac.uk/wadler/papers/orwell/orwell1.pdf
https://homepages.inf.ed.ac.uk/wadler/papers/orwell/orwell1.pdf
http://dx.doi.org/10.1147/rd.41.0002
http://dx.doi.org/10.1147/rd.41.0002
http://www.cs.cmu.edu/~aldrich/FOOL/FOOLWOOD07/program/warth.pdf
http://www.cs.cmu.edu/~aldrich/FOOL/FOOLWOOD07/program/warth.pdf
http://www.polarprof.org/geometriagon/pg/Wernick.pdf
http://www.polarprof.org/geometriagon/pg/Wernick.pdf
https://archive.org/details/principiamathema01anwh/page/n8
https://msdn.microsoft.com/en-us/library/ms754130.aspx
https://msdn.microsoft.com/en-us/library/ms754130.aspx
https://www.nada.kth.se/utbildning/forsk.utb/avhandlingar/dokt/winroth990324.pdf
https://www.nada.kth.se/utbildning/forsk.utb/avhandlingar/dokt/winroth990324.pdf
https://www.wolfram.com/products/mathematica/analysis/content/ComputerAlgebraSystems.html
https://www.wolfram.com/products/mathematica/analysis/content/ComputerAlgebraSystems.html

122 BIBLIOGRAPHY

Wolfram Math World: Triangle (2019). [Online; accessed 02-June-2019]. URL: http://
mathworld.wolfram.com/Triangle.html.

Writting Custom Attributes (2019). [Online; accessed 02-June-2019]. URL: https://
docs.microsoft.com/en-us/dotnet/standard/attributes/writing-custom-
attributes.

Wu, W T (1978). “On the decision problem and the mechanization of theorem-proving
in elementary geometry”. In: Scientia Sinica 21.2, pp. 159-172. DOI: https: //
doi.org/10.1360/yal978-21-2-159. URL: http://engine . scichina.com/
publisher /ScienceChinaPress/ journal /ScientiaSinica/21/2/10. 1360/
yal978-21-2-1509.

— (1999). “ Automatic Geometry Theorem-Proving and Automatic Geometry Problem-
Solving”. In: Proceedings of the Second International Workshop on Automated Deduc-
tion in Geometry. ADG "98. London, UK, UK: Springer-Verlag, pp. 1-13. ISBN: 3-
540-66672-9. URL: http://dl.acm.org/citation.cfm?id=647692.731041.

Yiu, P (2008). “Conic Construction of a Triangle from the Feet of Its Angle Bisec-
tors”. In: Journal for Geometry and Graphics 12.2, pp. 171-182. URL: http: //www.
heldermann-verlag.de/jgg/jggl2/j12h2yiu. pdf.

Zbiek, RM and A Conner (2006). “Beyond Motivation: Exploring Mathematical Mod-
eling as a Context for Deepening Students” Understandings of Curricular Mathe-
matics”. In: Educ Stud Math 63.1, pp. 89-112. DOI: 10.1007/s10649-005-9002-4.

Zhuravlev, V and P Samovol (2016). “A new list of triangle construction problems
or supplementing Wernick”. In: Mathematics Competitions 29.1, pp. 31-64. URL:
http://www.wfnmc.org/Journaly2020167%201.pdf.

http://mathworld.wolfram.com/Triangle.html
http://mathworld.wolfram.com/Triangle.html
https://docs.microsoft.com/en-us/dotnet/standard/attributes/writing-custom-attributes
https://docs.microsoft.com/en-us/dotnet/standard/attributes/writing-custom-attributes
https://docs.microsoft.com/en-us/dotnet/standard/attributes/writing-custom-attributes
http://dx.doi.org/https://doi.org/10.1360/ya1978-21-2-159
http://dx.doi.org/https://doi.org/10.1360/ya1978-21-2-159
http://engine.scichina.com/publisher/Science China Press/journal/Scientia Sinica/21/2/10.1360/ya1978-21-2-159
http://engine.scichina.com/publisher/Science China Press/journal/Scientia Sinica/21/2/10.1360/ya1978-21-2-159
http://engine.scichina.com/publisher/Science China Press/journal/Scientia Sinica/21/2/10.1360/ya1978-21-2-159
http://dl.acm.org/citation.cfm?id=647692.731041
http://www.heldermann-verlag.de/jgg/jgg12/j12h2yiu.pdf
http://www.heldermann-verlag.de/jgg/jgg12/j12h2yiu.pdf
http://dx.doi.org/10.1007/s10649-005-9002-4
http://www.wfnmc.org/Journal%202016%201.pdf

123

Prosireni izvod (Extended Abstract in Serbian)

Predgovor

Jos od izuma Zakardovog razboja'ljudi Zele razviti automate i programe koji ¢e im
pomo¢i u svakodnevnom zivotu. U danasnje vreme su racunari u svakodnevnoj
upotrebi u svim segmentima nasih Zivota. Obrazovanje je u nasem Zivotu jedan
od najvaznijih segmenata. Stoga, moZemo re¢i da je jedna od glavnih svrha racu-
nara njihova upotreba u obrazovanju. No, nisu samo rac¢unari potrebni i dovoljni za
predavanje, takode je potreban odgovarajudi softver. To je razlog sto se softver za
dinamicku geometriju razvija godinama sve intezivnije.

Softver za dinamicku geometriju (DGS) dozvoljava korisnicima da manipulisu
geometrijskim objektima, vukudi ih, i na taj nacin pretvarajuci u druge oblike, ili
menjajudi im poziciju. Dakle, korisnik na taj nac¢in doZivljava Sta se deSava sa kon-
strukcijom. Medutim, DGS se ne koristi samo za poducavanje geometrije, ve¢ i
drugih predmeta, kao $to su fizika, geografija, itd.

U aktuelnim verzijama softvera za dinamic¢ku geometriju smo vremenom uocili
dva nedostatka: softver za dinamicku geometriju nije dobro prilagoden univerzal-
nim primenama, uglavnom sadrZe geometrijske objekte, i ti objekti sadrZe samo os-
novne osobine, da bi bili laksi i efikasniji za izra¢unavanje. Imajudi to u vidu, nas cilj
je razvoj softvera za dinamicku geometriju koji bi bio baza za eksperimente koji bi
rezultirali poboljSanjem razvoja materijala za poducavanje i igara.

Ova disertacija predstavlja nov pristup anotacijama izvornog koda, na fleksibi-
lan i jednostavan nacin, koji sadrZi kompleksnu strukturalnu informaciju metapo-
dataka, koja dozvoljava upotrebu vrednosnih tipova, koji nisu CLR tipovi, a dos-
tupan je koristeci refleksiju. Kreirali smo genericki prosiriv softver za dinamicku
geometriju SLGeometry, napisan u C# jeziku na .NET Framework-a, sa ciljem da se
postuju zahtevi dizajna takvog softvera i predloZzi odrZiva implementacija prosirivog
okvira zasnovanog na metapodacima.

Glavne komponente razvijenog okvira su:

e Parserizraza;
e Evaluator izraza (Engine);
e Graficka povrsina (GeoCanvas).

Opisan pristup donosi u SLGeometry okvir sledece znacajne osobine:

e Prosirivost novim tipovima, funkcijama i vizuelnim objektima;

¢ Ujedinjenje objekata sa njihovim osobinama pristupajuci im koriste¢i dot no-
taciju;

e Obogacena strukturna specifikacija metapodataka softvera za dinamicku ge-
ometriju sa optimizacijom i mehanizmom za lenjo izra¢unavanje.

Sadrzaj disertacije je organizovan u tri dela: uvodna razmatranja, implementacija,
i validacija. Delovi su organizovani u poglavlja na sledeéi na¢in.

Thttps:/ /www.computerhope.com /jargon/j/jacquard-loom.htm

124 Prosireni izvod

Deo I - Uvodna razmatranja daje pregled osnovnih pojmova kao i trenutnog
stanja postojecih reSenja. Poglavlje 1 daje kratak uvod predstavljajuci: formulaciju
problema koje Zelimo da reSimo, glavne ciljeve u razvoju okvira, kao i listu eksplicit-
nih doprinosa ove disertacije. U Poglavlju 2 daje se kratak pregled trenutnog stanja
dobro poznatih softvera za dinamicku geometriju, lenjog izratunavanja, metapo-
dataka i objektno-orijentisanih prosirenja, te upotrebe komponenti.

Deo II - Implementacija predstavlja nekoliko motivacijskih primera koji
naglasavaju probleme u implemetaciji atributa i koris¢enje softvera za dinamicku ge-
ometriju sa ¢isto funkcionalnim jezicima, te daje detalje implemetacije datog reSenja
zajedno sa pregledom arhitekture sistema. Poglavlje 3 daje: pregled atributa u .NET-
u i prikazuje njihove nedostatke; diskutuje o prednostima objekata sa osobinama i
dot (*.") notacije; uvodi semanticke ekstenzije i kompozicije jezika zasnovane na
funkcionalnom domen-specificnom jeziku (FLG). U poglavlju 4 su opisani SLGe-
ometry okvir i njegova arhitektura, predstavljen je opis FLG jezika i infrastruk-
tura klasa izraza. Detaljnija opisana implemetacija daje glavne doprinose koje se
ti¢u objektno-orijentisanog prosirenja softvera za dinamicku geometriju podrZanog
metapodacima, i mehanizma za lenjo izra¢unavanje izra¢unatih osobina. Takode su
date konverzije tipova, operacije sa kesiranjem rezultata, parcijalno kompajliranje
stabala izraza i XML reprezentacija crteza u Poglavlju 5.

Deo III - Validacija se bavi validacijom datih koncepata i mehanizama koje smo
uveli u prethodnom delu. Obrazac za kreiranje matematickih igara u SLGeometry
ukombinovan sa svojstvima nasih komponenti je predstavljen u Poglavlju 6. Osim
toga, sproveli smo nekoliko eksperimenata sa ucenicima i studentima gde smo te-
tirali naSe pristupe u ucionici. Za eksperimentalnu verifikaciju predloZene infras-
trukture metapodataka sa lenjim izrac¢unavanjem, koristeni su rezultati ispitivanja
uporedivanja brzina izvrSavanja i broja objekata i zauze¢a memorije prezentovani u
Poglavlju 7. Eksperimenti su sprovedeni u tri razli¢ite strategije izrac¢unavanja sta-
bla izraza: eager, funkcionalno i lenjo izra¢unavanje. Poglavlje 8, na kraju, zakljucuje
disertaciju i diskutuje o trenutnim rezultatima i budu¢im pravcima za daljnja istrazi-
vanja.

Relevantni radovi koji su objavljeni tokom pisanja disertacije su slede¢i: Radakovi¢
and Herceg (2010), Radakovi¢, Herceg, and Loberbauer (2010), Herceg and Radakovi¢
(2011), Herceg, Herceg-Mandi¢, and Radakovi¢ (2012), Herceg, Radakovi¢, and Herceg
(2012), Radakovi¢ and Herceg (2013), Steingartner et al. (2016), Radakovi¢ and Herceg
(2017), Herceg et al. (2019) and Radakovi¢ and Herceg (2018).

Uvod

Softver za dinamicku geometriju (DGS) nasiroko prihvataju nastavnici Sirom sveta,
na svim razinama obrazovanja, kao alat za kreiranje, demonstraciju i Sirenje interak-
tivnih nastavnih materijala u obliku dinamickih crteZa. To znacajno uti¢e na nacin
na koji se geometrija predaje u $kolama, primenjujuc¢i moderno uéenje koriste¢i DGS,
koji su intuitivni i laki za koriStenje (Abramovich, 2013; Tankelevic¢iené, 2004; Targa-
madzé and Petrauskiené, 2010). Nekoliko dobrih DGS-a je izdrZalo test vremena:
GeoGebra (2019), The Interactive Geometry Software Cinderella (2019), Cabri (2019), and
The Geometer’s Sketchpad (2019).

Prosireni izvod 125

Interaktivnost u DGS-u proizlazi iz jednostavnog principa: dok se jedan deo di-
namickog crteza menja, automatski se preracunavaju i svi delovi koji su zavisni o
njemu. Dinamicki crtezi su definisani izrazima koji su napisani domen-specifi¢nim
funkcionalnim jezicima, te je stoga nastala potreba za njihovom proSirivosti i pri-
menom u drugim oblastima, osim prvobitno predvidene geometrije.

Upotreba atributa je preferirani mehanizam, koji povezuje deklarativne informa-
cije sa C# kodom, no oni imaju odredene restrikcije koje limitiraju njihovu upotrebu
kod reprezentacije kompleksno struktuiranih metapodataka. Naime, samo podskup
ugradenih CLR tipova podataka su dozvoljeni da se koriste u osobinama atributa
(Using Attributes in C#, 2019; Alvi, 2002). Ovo istraZivanje prvenstveno Zeli prevla-
dati ovaj problem razvojem infrastrukture podataka koja je nezavisna od atributa, te
na taj nacin prevazici opisane nedostatke, bazirajuci se na C#jezik i .NET platformu.

Novi koncepti u ovom istraZivanju omogucuju prosirenje jednostavnih i kom-
pleksnih tipova podataka, unarnih i binarnih operatora, konverzije tipova, funkcija
i vizuelnih objekata, i na taj nac¢in omoguéujuéi programerima, da implementira-
juci ih kao C# klase koje su oznacene metapodacima, lako dodaju nove funkcional-
nosti u SLGeometry. Jedna od prednosti ovog koncepta je uvodenje alternative za
NET atribute, daljnji razvoj specifikacije metapodataka pogodnih za opis sloZenih
hijerarhijskih struktura i njihovih medusobnih zavisnosti, implementirajuéi tipski
i operacijski nezavisnu optimizaciju izra¢unavanja, a metapodaci su razvijeni kao
plug-in elementi.

Metapodaci i tehnike kao $to metaprogramiranje, atribut-orijentisano programi-
ranje i komponentno-objektno programiranje (razvoj zasnovan na komponentama)
su veoma zastupljeni zadnjih nekoliko decenija (Chlipala, 2016; gtuikys, Damase-
vidius, and Ziberkas, 2012; Lilis and Savidis, 2015; Hazzard and Bock, 2013). Atribut-
orijentisano programiranje je tehnika obeleZavanja programa koja omoguéava pro-
gramerima da deklarativno obogate program koriste¢i metapodatke. Dakle, pro-
grameri mogu da oznace elemente programa kao sto su klase, interfejsi, metode,
polja, itd., sa atributima (anotacijama), ukazuju¢i da odrzavaju domen-specificnu
semantiku (Noguera and Pawlak, 2007).

Dinamicki crtez sadrZi vizuelne objekte kao Sto su geometrijski likovi i sli¢ni
objekti, a po konvenciji se moZe opisati skupom imenovanih izraza, napisanih u
domen-specificnom funkcionalnom jeziku, koji se ¢uvaju u promenjivima. Zavis-
nosti medu promenjivima, ustanovljena referencama promenjivih, formira ureden
acikli¢an graf koji se prolazi tokom ponovnog izra¢unavanja da bi se odrzala konzis-
tentnost crteza. Svi vizuelni objekti su generisani funkcijama koje proizvode kon-
stante odredenog tipa, koje zatim prouzrokuju pojavu vizuelnog objekta na ekranu.
Funkcije moZemo podeliti na: vizulene funcije koje vracaju geometrijske oblike,
funkcije osobina koji vracaju ili izra¢unavaju osobine geometrijskih oblika ili druge
funkcije kao $to su matematicke, logicke, manipulacije stringovima, itd.

Vremenom smo uoc¢ili da postoje¢i DGS imaju sledec¢e nedostatke: (1) DGS nisu
pogodni za univerzalnu primenu, jer uglavnom sadrZe geometrijske objekte i funkcije
koje njima rukovode, i (2) geometrijski objekti sadrZze samo osnovne minimalno
potrebne koli¢ine podataka, dok se dodatne osobine izra¢unavaju primenjujuci posebne
funkcije na te objekte. Takode, kreiranje kompleksnih crteZa, koji su sastavljeni od
mnostva osnovnih geometrijskih oblika, je vrlo nezgodno. Isto tako je nezgodno i

126 Prosireni izvod

pristupanje njihovom osobinama, koje zbog sloZenosti konstrukcije vodi kompozi-
ciji sloZenih izraza, zbog semantike funkcionalnih jezika. Stoga je na3 cilj bio da se
ujedine objekti sa svim svojim osobinama, kojima bi se pristupalo uvodeci objektno-
orijentisan pristup, dot notacije za pristup osobinama objekata.

Osnovni cilj istraZivanja je specifikacija metapodataka za softvere za dinamicku
geometriju koja prevazilazi ograni¢enja atributa u vidu primenljivosti isklju¢ivo na
CLR tipove podataka, uz zahtev da sadrze podatke o tipu i vrednosti svojih osobina.
Uz to je kreirana strategija optimizacije izratunavanja, i algoritam za aktivaciju i
deaktivaciju osobina koje treba da se izra¢unavaju u nekom objektu. Predmet istrazi-
vanja je objektno-orijentisano prosirenje softvera za dinami¢ku geometriju (DGS) po-
drzano metapodacima i zasnovano na evaluatoru izraza koji podrzava lenjo izracu-
navanje i parcijalno kompajliranje.

IstraZivanje je fokusirano na kreiranju platforme sa:

1. Ujedinjenim objektima sa svim osobinama;

2. Realizacija pristupa osobinama bez upotrebe specijalnih funkcija;

3. Definisanje mehanizma za pro$irenje novim tipovima, funkcijama i vizuelnim
objektima;

4. Usvajanje strategija za verifikaciju, izra¢unavanje i optimizaciju;

5. Specifikacija metapodataka za DGS.

Dobijeni nau¢ni doprinosi disertacije su:

o Detaljno je dat opis alternative za .NET atribute, koja je pogodna za predstavl-
janje metapodataka kompleksne hijerarhijske strukture. Specifikacija metapo-
dataka je data za unarne i binarne operacije i konverzije tipova, objektne tipove
podataka, uvodedi zavisne osobine i duboke zavisnosti;

o Predstavljena je pro$iriva platforma za dinamic¢ku geometriju SLGeometry, ¢ije
su glavne komponente: parser, evaluator izraza i graficka podloga, i njena
arhitektura

o Rasprostranjena upotreba anotacija metapodataka omoguéuje odvajanje uopstenih
algoritama od konkretne semantike;

o Implementiran je i diskutovan daljnji razvoj specifikacije metapodataka pogod-
nih za izrazavanje kompleksnih hijerarhijskih struktura i zavisnosti;

o Implementirana je tipski i operacijski neutralna Sema optimizacije izracuna-
vanja, a specifikacija metapodataka podrzava razvoj i implementaciju novih
funkcionalnosti u vidu plug-in komponenti;

o Predstavljen je genericki funkcionalan jezik ¢ija je semantika odvojena od jez-
icke implementacije i realizovana u formi plug-in tipova, operacija i funkcija;

o Uvedeni su objektni tipovi podataka sa osobinama koje se izratunavaju;

o Za korisnika, objektna (dot) notacija smanjuje kompleksnost napisanih izraza;

o Programerima je olakSsan koncept logicki povezanog koda unutar jedne je-
dinice;

o U prakti¢noj primeni nisu uoceni zaostaci u izvrsavanju.

Prosireni izvod 127

Pregled postojeéih rezultata

S kraja Sezdesetih godina proslog veka, nastavnici matematike su poceli da po-
drZavaju upotrebu matematickih aplikacija u predavanju i u¢enju matematike. Mozemo
re¢i da je sve zapocelo sa Sutherlandovim uvodenjem Sketchpada (Sutherland, 1963),
gde je predstavljen korisnicki graficki interfejs. Zajedno sa razvojem automatskih
dokazivaca (Gelernter, Hansen, and Loveland, 1960; Wang, 1960; Wu, 1978; Chou,
Gao, and Zhang, 1994), razvila se potreba za razvojem adekvatnog grafickog inter-
fejsa koji dozvoljava interaktivnu manipulaciju miSem, i manipulaciju matematickih
izraza u simboli¢koj formi.

S vremenom i ve¢om dostupnosti ra¢unara, upotreba ra¢unara i softvera za edukaciju
je usla u Skolski program, pogotovo u matematicke i prirodne nauke (Niss, 2012;
Underkoffler, 1969; Kaufmann and Schmalstieg, 2002; Drijvers et al., 2016; Blum and
Borromeo Ferri, 2009). Upotreba racunarskog softvera u edukaciji je polako inte-
grisana u nastavi od osnovne 8kole pa sve do fakulteta. No problem je u njihovoj
dostupnosti, pogotovo u zemljama u razvoju (Mainali and Key, 2012; Bhagat and
Chang, 2015; Khalil et al., 2018; Han et al., 2013). Sli¢na situacija je u Srbiji, no sve
veli broj nastavnika se trudi da uvede informacijske i komunikacijske tehnologije
u ucionice (Radovi¢, Mari¢, and Passey, 2019; Jezdimirovi¢, 2014; Ljajko and Ibro,
2013; Dikovi¢, 2009).

Komercijalni proizvodi, kao $to su Cabri (Cabri, 2019; Laborde and Capponi,
1994), Cinderella (The Interactive Geometry Software Cinderella, 2019) i Geometer’s
Sketchpad (The Geometer’s Sketchpad, 2019; Jackiw and Finzer, 1993), pokrivaju Skol-
sku matematiku i fiziku zajedno sa algebrom, analizom, geometrijom, mehanikom i
optikom, itd. Veliku podrsku im daju forumi i tutorijali gde se nalaze mnogobrojni
nastavni materijali sa postavkama i reSenjima problemima.

Zadnjih godina, pored ve¢ poznatih komercijalnih programa, javljaju se besplatni
i otvorenog koda projekti za sisteme za dinamic¢ku geometriju: SageMath (Soft-
ware for Algebra and Geometry Experimentation) (Stein, 2019b; Stein, 2012), GCLC
(Janici¢, 2019; Janici¢, 2010; Janicic, Narboux, and Quaresma, 2012), ArgoTriCS (Au-
tomated Reasoning GrOup Triangle Construction Solver) (Marinkovi¢, 2016; Schreck
et al., 2016), GeoGebra (GeoGebra, 2019; GeoGebra Materials, 2019), itd.

Svim ovim softerima za dinamicku geometriju je zajednicko da imaju funkcionalan
pristup za kreiranje dinamickih crteza.

Krajem sedamdesetih i pocetkom osamdesetih godina proslog veka, pojavila se
ideja za lenjim (lazy) nestriktnim jezicima kao odgovor na Scheme (Sussman and
Steele Jr, 1975; Sussman and Steele Jr, 1998), Milnerov meta-language ML (Mil-
ner, 1978) i nekim drugim striktnim (call-by-value) jezicima. Lenjo izra¢unavanje,
takode nazvano call-by-need, se koristi kao strategija izra¢unavanja u funkcionalnim
jezicima. Lenjo izra¢unavanje je intuitivno; izrazi i njihovi podizrazi se izracunavaju
u run-time-u samo kad je to potrebno, i to samo jednom.

Prema Hudak et al. (2007) lenjo izra¢unavanje je bilo nezavisno uvedeno tri puta:

e Cons konstruktor funkcija predstavljena u tehni¢ckom izvestaju Friedman and
Wise (1976);

e Henderson and Morris (1976) su prezentovali algoritam koji odlaZe izrauna-
vanje parametara i listi u LISP-u;

128 Prosireni izvod

e David Turner je razvio Kent Recursive Calculator kao mini verziju SASL (St
Andrews Static Language)

Nakon toga je viSe istraZivaca isto tako nezavisno dizajniralo njihove ¢iste lenje
jezike: Miranda Davida Turnera (Turner, 1985), G-masina Johnsson (1984) i Augusts-
son (1984), Orwell razvijen kao besplatna alternativa Mirandi (Wadler, 1988), i Id
nestriktni jezik za protok podataka razvijen na MIT od Arvind, Nikhil, and Pingali
(1989).

Mehanizmi koji omogucuju prilaganje proizvoljnih metapodataka nekom delu
programa se sve viSe koriste u programskim jezicima, npr. koriste¢i atribute u .NET-
u ili anotacije u Javi. Njihova primena je veoma raSirena (Cazzola and Vacchi, 2014;
Loberbauer et al., 2010; Jahn et al., 2013; Schult and Polze, 2002; Berzal et al., 2005;
Greaves and Singh, 2008). Neki istraZivaci su primetili izvesne nedostatke u pos-
toje¢cem mehanizmu specifikacije metapodataka, kao sto su validacija ispravnosti
metapodataka ili njihova ponovna upotreba (Song and Tilevich, 2015; Noguera and
Duchien, 2008; Eichberg, Schéfer, and Mezini, 2005).

U danasnje vreme je softver kompleksan i razvoj po delovima je omogucen uvoden-
jem softverskih komponenti (Heineman and Councill, 2001; Bourque and Fairley,
2014; Chen et al., 2007; Seco, Silva, and Piriquito, 2008). Mnogi moderni programski
jezici, razvojni alati i metodologije razvoja podrZavaju razvoj softvera po delovima,
gde razni timovi saraduju i imaju razlicicte razvojne cikluse za razlicite delove kon-
a¢nog softvera.

Mi smo Zeleli da uvedemo ovaj princip u DGS, time §to smo omogucdili razvoj
komponenti, nezavistan od razvoja samog DGS. Te komponente se uklju¢uju u DGS
u runtime-u i imaju isti tretman kao first-class citizens u DGS-u. Prirodni nastavak
ovog principa je da se omoguce i vizuelne komponente, koje pored programskih
aspekata imaju i graficku prezentaciju.

Vizualizacija je veoma bitna u modernoj nastavi. Nove generacije Zele da vide
i osete same 5to uce. Softveri za dinamicku geometriju omogucuju te koncepte i
ohrabruju ucenicku autonomiju. Primetili smo da trenutni softveri za dinamicku
geometriju koriste funkcionalan pristup, tj. osobine objekata su definisane zasebnim
funkcijama, dok mi uvodimo OO principe i dot notaciju u DGS.

Upotreba atributa, kao $to su ih koristili Loberbauer et al., 2010, Jahn et al., 2013,
Schult and Polze, 2002, Berzal et al., 2005, Greaves and Singh, 2008, Casero, Cesarini,
and Monga, 2003, Benton, Cardelli, and Fournet, 2004, je u pocetku bila zastupljena
u SLGeometry, no ispostavila se nedovoljnom (predstavljeno u Poglavlju 3), i kasnije
preraslo u nas metamodel (Poglavlje 5) gde smo sledili ideju metapodatka struktur-
isanih komponenti (Windows Presentation Foundation, 2019).

Takode smo se vodili idejama prezentovanim u Sulir, Nosal’, and Porubén (2016),
Nosal’, Sulir, and Juhéar (2016), omogucujuéi korespodenciju izmedu matematickih
definicija osobina geometrijskih objekata i koda. Isto tako su primenjena pravila
vezivanja, tj. svaki ozna¢en deo sa metapodacima odgovara nekom programskom
elementu, dok se metapodaci mogu pretraziti refleksijom i koristiti se kao plug-in-
ovi (Poglavlje 5). Istodobno se o¢ekuje da je veza izmedu metapodataka i njihovih
cilinih elemenata smislena (Sekcije 5.4.1 i 5.4.2). Za razliku od Tansey and Tile-
vich (2008) na$ okvir omoguéuje automatsko generisanje plug-in-ova zasnovanih
na metapodacima ru¢no anotiranog koda.

Prosireni izvod 129

Nasa prosiriva platforma se vodi principima komponent-objektnog programi-
ranja. Predlozili smo apstraktni model evaluatora izraza i skup metapodataka koji
obezbeduju realne funkcionalnosti (Rouvoy and Merle, 2006; Guerra and Fernandes,
2013; Siqueira, Silveira, and Guerra, 2016).

Uvodenje objektno-orijentisanih svojstava u na$ sistem (Sekcija 3.4.2) zastupa
pravce proucavane od strane Mernik (2013), Erdweg, Giarrusso, and Rendel (2012),
Chodarev et al. (2014), dok je deo sa parcijalnim kompajliranjem izraza pratio smer-
nice Palmer and Smith (2011).

Lenjo izra¢unavanje i dalje veoma popularna strategija koju smo koristili zbog
objekata sa velikim brojem osobina (npr. trougao Sekcija 7.2). Kad je osobina objekta
obeleZena za izracunavanje, mehanizam za aktivaciju osobina zapocinje izracuna-
vanje neophodnih osobine, i nakon $to su one sve izracunate, data osobina se moze
izracunati. Ovaj princip je opisan u Sekciji 5.4.

Motivacija

Kao $to je ve¢ u uvodnim poglavljima naglaSeno, nedostaci atributa u .NET-u i
funkcionalni pristup softvera za dinamicku geometriju, doveli su do razvoja infras-
trukture podataka u SLGeometry. Za atribute se moZe re¢i da su kao pridevi, posto
daju podrobnije informacije o nekom delu programa (Using Attributes in C#, 2019;
Writting Custom Attributes, 2019; C# - Attributes, 2019; Alvi, 2002; Agarwal, 2013).

Upotreba atributa u .NET okviru je propisana slede¢im implementacijama: pre-
definisanim atributima i prilagodenim (custom) atributima. Atributi prihvataju ar-
gumente kao u metodama, i parametri mogu biti pozicionalni, imenovani i neimen-
ovani. Metapodaci se dobijaju koriste¢i mehanizam refleksije.

Za ilustraciju potrebe uvodenja nove infrastrukture metapodataka koja bi pre-
vaziSla nepremostive prepreke koje atributi u .NET-u imaju uze¢emo krug. Krug je
geometrijski objekat koji se moZe definisati na viSe nacina. Jedan nacin je definisan-
jem centra kruga i njegovog poluprecnika. Slede¢i podaci su potrebni za definisanje
kruga funkcijom FCircle u SLGeometry: ime poziva funkcije ‘Circle’i njen rezultat
CCircle; argumenti: A — centar kruga (tacka), r — poluprecnik (broj); debljina kruga;
potpisi: A,r — krug definisan tackom A i polupre¢nikom 7, i r — centar kruga je u
tacki (0,0) sa polupretnikom r.

Listing 3.2 predstavlja upotrebu prilagodenog atributa da bi se opisala funkcija
za krug u SLGeometry. Dakle, metapodaci koji su potrebni da bi se opisala funkcija
su sledeci:

e Ime funkcije i njen povratni tip;
e Tip i imena argumenata, za svaki argument jedna pojava;
e Potpisi funkcija, jedna pojava za svaki potpis.

Na sli¢an nacin su koristeni atributi za opisivanje svih funkcija koje su potrebne
za bilo koji softver za dinami¢ku geometriju, ali problem se pojavio kad je trebalo
opisati metapodatke koji su kompleksni i imaju podrazumevane vrednosti koji nisu
standardni .NET tipovi. U naSem slucaju je to podrazumevana vrednosti za centar
kruga, tacka (0, 0) predstavljena instancom klase CPoint (poslednji atribut u Listingu
3.2), kad je krug zadan samo polupre¢nikom. Dok se piSe modifikacija atributa

130 Prosireni izvod

C# kompajler ne daje nikakvu gresku, ve¢ se ona javlja pri pokretanju programa:
““Attribute constructor parameter ’p’ has type ’Expr’, which is not a valid
attribute parameter type’’.

Dakle, nije bilo moguce definisati podrazumevane vrednosti imenovanih argu-
menata koristeéi atribute, te je bilo potrebno koristiti neko drugo reSenje (pogledati
Sekciju 5.1). Takode, jo$ jedan argument protiv atributa je bila njihova nemoguénost
da se predstavi njihova hijerarhijska struktura. Ako posmatramo veé dati Listing
3.2, vidimo da je FCircle anotiran sa Sest atributa koji imaju smisla samo ako se pos-
matraju u celini.

Stoga je reSenje za date nedostatake razvoj prilagodenih C# klasa koje predstavl-
jaju metapodatke. NaSe klase metapodataka imaju sledeée prednosti nad atributima:

1. Vrednosti ne-CLR tipova podatka su dozvoljeni u metapodacima;

2. Hijerarhijska struktura je korektno predstavljena;

3. U konstruktoru klasa metapodataka izvrsava se provera korektnosti datih metapo-
datka;

4. IntelliSense i AutoComplete mehanizmi u Visual Studio IDE omogucuju pro-
gramerima pomo¢ pri pisanju metapodataka.

VazZno je naglasiti da se na ovaj na¢in metapodaci nalaze u jednom Fnlnfo ob-
jektu, a imenovani argumetni su dodeljeni statickim promenjivima koje se lakse
mogu kasnije referencirati u C# kodu.

U veéini DGS, objektu su lagani i nose samo obavezne osobine (GeoGebra, 2019;
Cabri, 2019; The Interactive Geometry Software Cinderella, 2019), dok u SLGeometry ob-
jekti imaju sve svoje osobine. Posmatrajmo trougao, kao geometrijski koncept. On
ima tri vrha koji su obavezne osobine, a pored toga ima i viSe izracunavajuéih os-
obina koje se mogu izracunati na osnovu obaveznih osobina posebnim algoritmima.
U slucaju kad su izra¢unavajuce osobine implementirane kao zasebne funkcije, broj
funkcija bi vrlo brzo znacajno porastao, jer svaki objekat donosi novi broj funkcija.

Ako se gleda sa korisnickog ugla, onda je veliki broj funkcija opterecujuci za
korisnika pri odabiru kad Zeli da piSe izraze. A, sa programerskog ugla, mora se
pratiti korektnost preoptereéenja funkcija da bi se izbegla konfuzija sa funkcijama
istog imena, ali koje deluju nad razli¢itim tipom podataka. Da bismo izbegli ove
probleme, odluéili smo da uklju¢imo izra¢unavajuce osobine u objekte unutar SLGe-
ometry, tj. osobine su deklarisane u metapodacima datog tipa unutar odgovarajuée
C# klase. Za svaku osobinu je definisano ime, tip, zavisnost i delegat evaluatora.
Infrastruktura osobina unutar Engine brine o pozivu delegata evaluatora kad je to
potrebno. Na ovaj nacin je postignuto da se izracunavaju samo traZene osobine.

Uvodedi izracunavanjuée osobine, potreba za dodatnim fukncijama je elimin-
isana. Sve osobine se mogu dobiti koristeéi Property funkciju:
Property(object,” propertyname”). No, ako se ona koristi za input, dobijaju se glo-
mazni izrazi. Stoga smo uveli dot notaciju iz objektno-orijentisanih jezika, i na taj
nacin uveli u FLG jezi¢ko prosirenje (Mernik, 2013; Erdweg, Giarrusso, and Rendel,
2012). Tokom parsiranja izraza, dot notacija je transformisana u funkcionalni ekvi-
valent, zahvaljujuc¢i odgovaraju¢im semantickim akcijama (Mossenbock, 2010), koje
se mogu primeniti rekurzivno.

Zahvaljujuéi metapodacima, proizvoljan C# kod se moZe oznaciti i uvesti kao
funkcija u SLGeometry, i na taj nacin znacajno prosiriti domen primene softvera za

Prosireni izvod 131

dinami¢ku geometriju. Table funkcija demonstrira inkluziju proceduralnog koncepta
(for petlja, pravljenje iterativnog niza) u FLG (Listing 3.5 i 3.6). No, istovremeno ona
je funkcionalnu prirodu FLG-a, posto vraca listu kao rezultat svakog izracunavanja,
sa konkretnim skupom argumenata. Sad procedurani kod i lokalne promenjive se
smatraju internom implementacijom Table funkcije. Stoga moZemo posmatrati se-
mantiku unutar Table funkcije kao “semantic box” unutar FLG, sli¢no kao jezicki
box (Diekmann and Tratt, 2014), posto su oba uvedena kao plug-inovi.

U predloZenom objektno-orijentisanom jeziku, reference osobina prati Engine, i
referencirane osobine su aktivirane samo kad je to potrebno. Takode se aktivirane
osobine izra¢unavaju samo jednom, bez obzira na broj referenci koji ih pozivaju.
Cist funkcionalan jezik je jednostavan za izratunavanje. S druge strane, objektna
podrskaidot (*.") notacija, iako donose benefite korisnicima i programerima, donose
kaznu kod kompleksnih algoritma za izratunavanje, $to moZe dovesti do povecanja
utroSene memorije i brzine izvrSavanja.

Pregled arhitekture sistema

SLGeometry okvir je kompleksan softver za dinamicku geometriju, napisan u C#
na .NET platformi. Izvorni kod sadrzi viSe od 200 .cs fajlova sa vise od 16500 linija
koda. Dinamicki crtezi u SLGeometry su navedeni izrazima u FLG-u i dodeljeni
imenovanim promenjivima. Izrazi mogu zavisiti od drugih izraza. Rezultat toga je
interaktivnost, npr. ako korisnik pomeri tacku, sve $to je povezano sa njom se isto
tako pomera.

Struktura T = {T,C,O, F, V} sadrzi skup tipova (T), konverzije tipova (C), op-
eracije (O), funkcije (F) i vizualne objekte (V) u FLG-u. Prate¢i motivaciju datu u
Poglavlju 3 SLGeometry sadrzi:

e Specifikaciju za tipove, funkcije i vizuelne elemente;
Racunarski algebarski sistem (CAS) Engine;
Grafi¢ku podlogu;

Prosirivu infrastrukturu;

JIT podsistem kompajliranja;

Parser izraza;

Interaktivne komponente.

Glavne komponente su: parser, evaluator izraza (Engine) i graficka podloga
(GeoCanvas) (Slika 4.1). Engine brine o skupu izraza, ¢uva imenovane promenjive,
koje predstavljaju elemente dinamickih crteza. GeoCanvas prikazuje geometrijske
objekte i UI kontrole i odgovara na korisni¢ku interakciju.

Kad se pokrene program, Engine inicijalizuje skladiSta promenjivih, registracije
imena, operacija i konverzija, te skenira asemblije i registruje ugradene funkcije ko-
risteci refleksiju. SkladiSte registracije imena sadrZi fabriku funkcija i upravljace
metapodataka funkcija, tj. sve funkcije, tipovi, UI kontrole, konstante i objektne
konstante su tu registrovani. Registracija vizuelnih elemenata je incijalizovana u
GeoCanvas-u. Sve ove klase se mogu uvesti i registrovati preko spoljasnjih DLL-
ova.

132 Prosireni izvod

Korisnik sa sistemom moZe da komunicira na dva nacina: piSu¢i tekstualne
izraze ili koriste¢i mi$ za pomeranje objekata po ekranu. Tekstualni unos proce-
sira parse koji koristi fabriku izraza da konvertuje stablo izraza iz tipova SLGParser
u GExpression nasledene objekte. Uveli smo SLGParser tipove podataka za ¢uvanje
rezultata parsiranja, gde se ¢uvaju ime promenjive kojoj se dodeljuje i njena vred-
nost. Nadalje, tu se takode ¢uvaju tipovi rezultata, tj. kad god promenjiva do-
bije neku vrednost dodeljuje joj se objekat, a ako je vrednost obrisana i osobina je
obrisana, ili se samo parsira izraz bez imena promenjive.

Sva se izratunavanja vrse u Engine-u, i on slusa dogadaje u GeoCanvas-u i po
potrebi preracunava neophodne osobine.

FLG se ponasa agnosticki za tipove, operacije i funkcije, tj. sadrZi genericke
algoritme kojima se svi tipovi, operacije i funkcije uvoze iz C# klasa oznacenih
metapodacima (Slike 4.1 4.2). Vizuelni objekti i konverzije tipova se takode uvoze u
GeoCanvas preko klasa ozna¢enih metapodacima. Koristeéi refleksiju, SLGeometri
proverava postojenje statickih polja koja sadrZe metapodatke svih uvezenih klasa, i
registruje ih u T (Slika 4.1).

FLG prepoznaje slede¢e konstrukcije:

1. Konstante jednostavnih tipova, kao $to su brojevi, logicke vrednosti i stringovi;

2. Funkcije sa i bez argumenata;

3. Reference promenjivih, tj. imena promenjivih koji se javljaju u izrazima, i oni
se u parseru zamenjuju funkcijom ValueOf("name”);

4. Operatore uobicajenih operacija: sabiranje, oduzimanje, mnoZenje, deljenje i
moduo. U parseru su zamenjeni odgovarajuéim funkcijama;

5. Dodela promenjivih u v = expression obliku, koji nije deo jezika, ali je inter-
pretiran u Engine-u i ne moze biti deo izraza;

6. Objektne konstante sa obaveznim i izra¢unavajuéim osobinama, koje su rezul-
tat evaluacije funkcija i ne mogu biti unosene ru¢no;

7. Pristup osobinama koriste¢i dot notaciju, koja se u parseru menja sa funkcijom
Property(object, "name”);

8. Dodela osobinama u obliku v.property = expression, nije deo jezika, i interpre-
tira se u Engine-u kao dodela vizuelnih osobina, te ne moze biti deo izraza.

Izrazi se grade iz atomskih vrednosti, objekata, listi i funkcija. GExpression je
osnovna klasa za sve izraze. Jednostavni tipovi podataka i greSke se nasleduju iz
Const i CLRConst<T> klasa, dok se objektni tipovi podataka nasleduju iz ConstObject
klase. Funkcije nasleduju Fn klasu, dok su vizelne funkcije predstavljene VisualFn
klasom. Sve bazne klase su predstavljene na Slici 4.7.

Funkcije mogu imati niti jedan ili viSe argumenata, i mogu biti preopterecene.
Povratni tip se moZe znati unapred, kao $to je to slu¢aj kod osnovnih funkcija (Abs,
And, Cos, Sin, Sqrt itd.), geometrijskih funkcija (Line, Segment, Triangle itd.) i UI kon-
trola. Neke funkcije, npr. If moZe imati rezultat razli¢itih tipova. Rezultati funkcija
mogu biti konstante (Const) kao $to su brojevi, logi¢ke vrednosti i stringovi, ili ob-
jektne konstante (ConstObject), kao $to su linije, krugovi i trouglovi.

Vizualni elementi u SLGeometry su implementirani sa tri klase: funkcijom, koja
generiSe objektnu konstantu; objektnom konstantom koji prezentuje stvarni vizalni
objekat; i pomoc¢na klasa koja iscrtava vizualni objekat na GeoCanvas. Kada se

Prosireni izvod 133

funkcija izra¢una, GeoCanvas je obavesten da se rezultat promenio i odgovarajuci
vizualni objekat je nacrtan. Posto su vizuelne osobine uobicajene .NET osobine,
morali smo obezbediti konverziju tipova izmedu .NET (CLR) tipova i FLG tipova
podataka.

Detalji implementacije

Sve tipove podataka, operacije, konverzije tipova i funkcije je potrebno oznaciti sa
metapodacima i registrovati sa Engine, dok se vizualni objekti trebaju registrovati
sa GeoCanvas-om. Metapodaci su povezani preko statickih polja, definisanih po
konvenciji. FLG je jezik sa anotacijama u smislu koji je prezentovan od Nosél’, Sulir,
and Juhér (2016).

Specifikacija metapodataka je jasna i intuitivna. Na najviSoj razini, svaki tip
izraza ima pridruZenu klasu metapodataka (Slika 5.1). Funkcije su opisane sa Fn-
Info (Listing 5.5), dok su jednostavne konstante i konstante objekata opisane sa tex-
titConstInfo i ConstObjectInfo (Listing 5.6), redom. Vizualne funkcije su opisane sa
Visuallnfo (Listing 5.8), a UI kontole sa UIControlInfo (Listing 5.7).

Metapodaci u funkciji sadrze potpise: SignatureEmpty za funkcije bez argume-
nata, SignatureUnnamed za funkcije sa jednim ili viSe argumenata, kao $to su liste,
i SignatureNamed za funkcije sa fiksnim brojem imenovanih argumenata kao $to su
tacke, linije i krugovi (Listing 5.2, Listing 5.13). U¢itani argumenti se proveravaju
da li odgovaraju potpisu na sledeéi nac¢in: uporeduje se broj argumenata; argumenti
koji su simboli¢ki moraju biti tipa Tldent, i zamenjeni sa ConstSymbol; proverava se
redom kompatibilnost tipova argumenata, osim onih koji su oznaceni; i na kraju se,
onim argumentima koji nisu odredeni u potpisu, dodeljuje podrazumevana vred-
nost.

Imenovani argumenti su prezentovani sa ArgNamedInfo klasom koja sadrzi po-
datke o imenu argumenta, njegovom tipu i podrazumevanoj vrednosti (opciono)
(Listing 5.1). Takode se brine da li argumenti trebaju biti neizrac¢unati, da li se argu-
ment direktno veZe za imenovanu osobinu vizualne kontrole, ili se argument treba
oznaciti simbolickim. Ukoliko je argument simbolicki (Listing 3.6), npr. Iterator ar-
gument u funkciji Table, koristi se ArgNamedSymbollnfo.

No, posebnu paznju treba posvetiti klasi Proplnfo, koja opisuje osobine tipova
konstantnih objekata. Pored imena osobine, vrednosti, njenog tipa i klase kojoj pri-
pada osobina, ona sadrzi dodatne informacije koje se koriste tokom izra¢navanja i
optimizacije (Listing 5.3), tj. sadrZi sve traZene osobine koje trebaju da se izracu-
naju pre te osobine, delegate za izracunavanje, ime lokalne promenjive koja kesira
vrednost osobine za brZi pristup tokom izracunavanja, delegate za aktivaciju i deak-
tivaciju. Npr. SideAProperty.Chain(CSegment.MidpointProperty) vraéa objekat
koji sadrzi traZenu osobinu SideAProperty i podosobine CSegment.MidpointProperty,
koji se prvo moraju izra¢unati. Takode se vrsi provera tipova koji sadrZe podosobine,
da li su istog tipa kao i osobina koja se prvobitno izra¢unava. Dodatno se vrsi
provera validnosti lanca traZenih osobina, tj. da li data osobina traZi podosobine
koje poseduje.

134 Prosireni izvod

Unarni i binarni operatori, kao i konverzije tipova podataka su predstavljeni na
slican nacin (Figure 5.2). PoSto se izrazi u softveru za dinamic¢ku geometriju kon-
stantno menjaju, i samim time izra¢unavaju, potrebno je bilo uvesti keSiranje rezul-
tata da bi se sprecilo nepotrebno gomilanje objekata na hipu. Dakle, kad god se
izvrsi neka operacija, keSirani rezultat se prosleduje delegatima na aZuriranje. Kod
izvrSavanja operacija, takode je vazno znati tip podataka operanada. Ukoliko je on
poznat vrsi se rano povezivanje, no ako to nije sluc¢aj potrebno je izvesti kasno povezi-
vanje, jer se tipovi operanada saznaju tek u momentu izvrSavanja (Tabela 5.2, Listing
5.19).

Objekti sa velikim brojem osobina zahtevaju znacajno viSe vremena da se aZuri-
raju. Da bi resili taj problem, uvodimo algoritam za aktivaciju osobina, koji prati
paradigmu poziva po potrebi kao sto je dato u Sinot (2008), i stoga izrac¢unava samo
one osobine koje su referencirane drugim izrazima, i to samo jednom. Infrasktruk-
tura aktivacije osobina u Engine-u prati reference osobina u izrazima, te ih aktivira
kad su referencirani, i deaktivira kad se referenca ukloni. Neka osobina se isto tako
moZe aktivirati, ako je ona traZena osobina za izra¢unavanje druge osobina unutar
istog objekta.

Isto tako moZemo posmatrati povezanost hijerarhijske strukture konkretnog ob-
jekta u jeziku i metapodataka. Duboka zavisnost osobina se moZe videti na primeru
metapodataka za osobinu MedianA, koja zahteva osobinu Midpoint osobine SideA
(Slika 5.3). Treba napomenuti da zavisnost osobina moZe formirati kompleksan graf
zavisnosti, npr. CTriangle.Circumcircle prikazan na Slici 5.4.

Nekompajlirano stablo izraza se izrac¢unava rekurzivno pozivaju¢i Eval metod
na svakom ¢voru, i na taj nacin se transformisu delovi stabla izraza sa kompajli-
ranim kodom. Koristili smo tri strategije optimizacije pri izvrSavanju: stablo izraza
sa simuliranim stekom, stablo izraza sa promenjivima, i delegati sa lambda izrazima.
Ako je moguce kompajliranje svakog dela elementa stabla izraza, onda se svaki izraz
moze kompajlirati. Ako deo nekog izraza nije moguce kompajlirati, to ne zna¢i da
nije moguca optimizacija, jer je vrlo moguce da postoje delovi koji se mogu sami po
sebi kompajlirati. Ukoliko se naide na izraz cije je celo stablo moguce kompajlirati,
tada je moguce izvrSavanje zameniti idealnijim i brzim kodom.

Kao i ve¢ina DGS, i mi smo odabrali XML format za prezentaciju crteza. Konver-
tovanje iz DGS jezika u XML se vrs$i posebnim konverterom koji serijalizuje promen-
jive iz Engine u XML, dok je konvertovanje u suprotnom smeru malo kompliko-
vanije, jer se mora paziti da se svi izrazi ucitaju u odgovaraju¢em redosledu, ocu-
vavajuéi medusobne zavisnosti.

Predmetno-specificne komponente u DGS

Kompjuterska vizuelizacija obezbeduje smislenost u poducavanju, sto pomaZe bol-
jem razumevanju gradiva. Koriste¢i softver za dinami¢ku geometriju nastavnici lako
mogu kreirati interaktivne nastavne materijale iz matematike. No, stvarna korist
DGS-a je njihova primena na druge predmete kao $to su geografija, fizika, itd. (Blum
and Niss, 1991; Herceg and Herceg-Mandi¢, 2013). Nasa Zelja je da demonstriramo
kako se DGS prosireni komponentama mogu primeniti uspesno u nastavi geografije,
na jednak nacin kao i u nastavi matematike.

Prosireni izvod 135

U SLGeometry se mogu uvesti i koristiti softverske komponenete iz DLL fajlova.
Ove komponente su ili interaktivne vizualne kontrole (UI kontrole) ili sekvencijalne
kontrole ponaSanja. UI kontrole mogu predstavljati objekte kao $to su dugmad, si-
jalice, satovi, geografske mape, itd. Kontrole ponasanja mogu sadrzati logi¢cku kon-
trolu, koja se koristi za kontrolu ponasanja interaktivnih crteza.

Koriste¢i komponente: sloZeni objekti se mogu predstaviti jednom komponen-
tom, samo jedna promenjiva je dovoljna da sadrZi celu komponentu, jedan na jedan
je odnos izmedu komponenti i onog $to ona predstavlja, za dupliciranje komplek-
snih objekata potrebna je samo jo$ jedna promenjiva. No, nedostak je sto se ove
komponente moraju razviti izvan DGS od strane iskusnih programera.

Nas pristup smo testirali koriste¢i SLGeometry platformu u dva zasebna eksper-
imenta. Prvi eksperiment je imao dve faze: studenti matematike su pripremili di-
namicke crteze koji su sadrzali geografske mape, a srednjoskolci su koristeéi te ma-
terijale reSavali zadatke.

Zadaci koje su dobili su: merenje duZine reke, pracenje putovanja Magellana i
Cooka, te kreiranje mape sopstvenog odmora koji je raden uz pomoé¢ komponenti i
bez njih. Studenti su svoje zadatke izvrsili prili¢no uspesno , dok su srednjoskolci
bili malo manje uspesni (Tabela 6.1). I srednjoskolcima i studentima se rad sa kom-
ponentama svideo, iako nisu bas za to da ih sami programiraju.

Prosiruju¢i nas prethodni rad, razvili smo kontrole ponasanja u SLGeometry koje
su sekvencijalnog tipa, tj. imaju ulaz, memoriju i izlaz (Tabela 6.2).

Primer sa Aritmeti¢kom sumom demonstrira koriStenje okidaca i njihovo propa-
giranje od jedne komponente ka drugoj (Slika 6.7). Koristimo komponente sekvencer
(Sequencer) za izbacivanje vrednosti od 1 do 9, i ¢uvara rezultata (Scorekeeper).
Kliktanjem na dugme se vrednost sekvencera ciklicno menja od 1 do 9, dok se rezul-
tat ¢uva u Scorekeeper-u. Naravno, potrebno je povezati komponente kao sto je to
uradeno u Tabeli 6.3.

Drugi eksperiment demonstrira implementaciju pogadanja sredisnje tacke izmedu
dve prouzvoljne tacke (Slika 6.8). Ovde je logika igre implementirana koriste¢i kon-
trolore, dok se ista postavka u GeoGebri radi pomocu skript programa. Generatori
slu¢ajnih brojeva (Randomizer) dodeljuju proizvoljno koordinate tacke B. Sekvencer
prati koliko se igara igralo. Dugme za pritiskanje (PushButton) signalizira da je ko-
risnik stavio marker za Zeljeno mesto i Zeli proveriti njegovo reSenje (Tabela 6.4).
Rezultati testova su dati u Tabelama 6.5 i 6.6. MoZemo zakljuciti da su sudionici pre-
poznali jednostavnost koju kontrole ponasanja nude, i veéina ih je lako savladala, za
razliku od pisanja skripti.

Kroz eksperimente sprovedene u nastavi sa uc¢enicima, potvrdujemo prednosti
naseg pristupa zasnovanog na kreiranju komponenti u DGS.

Testiranje lenjog izracunavanja

U prethodnim poglavljima smo predstavili SLGeometry arhitekturu i njene kom-
ponente, zajedno sa uvedenom kompleksnom hijerarhijskom strukturom metapo-
dataka i predloZenim mehanizmom za aktivaciju osobina koji implementira lenjo
izracunavanje. Da bismo bili sigurni da data struktura isto tako koristi brzini izvrsa-
vanja i memorijskom utrosku, sproveli smo eksperimentalnu verifikaciju.

136 Prosireni izvod

Stoga smo uporedivali tri razli¢ite strategije izracunavanja stabla izraza: marljivo
(eager), funkcionalno i lenjo (lazy). Za svaki od tih pristupa smo razvili poseban
projekat sa istim jezgrom, ali razli¢itim evaluatorima izraza. Uporedivali smo per-
formanse sve tri Seme izvrSavanja. Posto marljiva strategija zahteva inicijalizaciju i
izra¢unavanje svih osobina, bilo da su referencirane ili ne. Stoga se ona smatra da je
to najgora strategija, koja ¢e jasnije naglasiti prednosti druga dva pristupa. Naravno,
pretpostavlja se da ¢e lenjo izratunavanje doneti najbolje rezultate, ali se treba isto
tako pripaziti Sta bi se moglo desiti kad objekti imaju veliki broj osobina.

Posmatra se brzina izratunavanja, kao i memorijski utrosak, tj. broj objekata i
zauzeCe memorije. Eksperiment se bazira na viSestrukom izracunavanju crteZa sa
razli¢itim brojem objekata sa osobinama koje treba izracunati (Slika 7.1), koriste¢i
sve tri strategije.

Za objekat sa osobinama smo izabrali trougao, jer je jedan od osnovnih oblika
koji se uci od prvih razreda u osnovnoj skoli, a i rasprostranjen je u upotrebi i za
njega postoji veliki broj interaktivnih primera koji su predstavljeni u raznim DGS-
ima (GeoGebra materials: triangle, 2019; Cinderella Gallery: Altitudes in a triangle, 2019;
Engstrom, 2001; Arzarello et al., 2002; Wolfram Math World: Triangle, 2019; Lernpfad,
2019; Math Open Reference, Triangles, 2019; Cut The Knot: The many ways to construct a
triangle, 2019; Geometrie interactive - le cercle qui tourne le triangle, 2019; Dahan, 2014;
Kimberling, 2019; Marinkovi¢ and Jani¢i¢, 2012; Nastavni planovi i programi za osnovne
i srednje skole, Zavod za unapredenje obrazovanja i vaspitanja, Republika Srbija, 2016).

Test primeri su kreirani pocinjuci sa osnovnom grupom objekata, sli¢no kao kod
Wernick (1982), koji se sastoji od trouglova sa slede¢im osobinama: visina na stran-
icu a, simetrala ugla «, simetrala stranice a, centar opisanog kruga O; opisani krug
cc. Za testiranja zauze¢a memorije i koli¢ine objekata trouglu su dodavane sledece
osobine: obim trougla; stranica a; stranica b; podnoZje visine na stranicu c; povrsina
trougla; polupreénik upisanog kruga; medijana iz A; pravac medijane kroz B; pravac
medijane kroz C; ortocentar; X koordinata sredine stranice 4; koordinata Y podnozja
visine na stranicu b; trougao sa vrhovima na sredinama stranica a, b, ¢; koodinata
X sredine stranice ¢ unutradnjeg trougla; koodinata Y vrha C unutrasnjeg trougla;
koodinata Y sredine stranice b unutrasnjeg trougla; koodinata Y vrha B unutrasnjeg
trougla; obim unutrasnjeg trougla. Za dato n kreiran je dodatni broj objekata ko-
riste¢i konstrukcijske korake kao u Tabelama 7.1 i 7.2. Vrhovi baznog trougla imaju
konstantne koordinate, dok se zavisni trouglovi na osnovu njih izratunavaju. Za
eksperimente koji se ticu lenjog i marljivog izracunavanja konstrukcije su date u
objektno-orijentisanoj sintaksi, dok su za funkcionalni pristup primenjene odvojene
funkcije za svaku osobinu. Testiranja su vrSena na tri razli¢ite konfiguracije (Tabela
7.3).

CPU vreme je mereno na slede¢i nacin (Eksperiment 1 i Eksperiment2): (1)za
dato n kreirana je konstrukcija, (2) koordinate tacke A u baznom trouglu su men-
jane, izazvavsi izra¢unavanje zavisnih objekata, (3) korak 2 je ponavljan vise puta i
ukupno vreme izvrSavanja je mereno.

Eksperiment 1: Na pocetku smo za n = 5 vrsili merenja za 50, 100, 200, 300 i 500
ponavljanja.

Eksperiment 2: Posto nije bilo devijacija u rezultatima, odluéili smo da se dalji
eksperimenti vrse sa 100 ponavljanja. Isto merenje je ponavljano za n = 10, 20, 30, 40.

Prosireni izvod 137

Eksperiment vezan za utroSak memorije i broj kreiranih objekata je sprovoden
na sledeci nac¢in (Eksperiment 3): (1) Izmeren je broj objekata na hipu i veli¢ina hipa
nakon Sto je pokrenuta aplikacija; (2) za dato n ucitana je konstrukcija; (3) Izmeren
je broj objekata na hipu i veli¢ina hipa nakon §to je kreirana konstrukcija.

Na pocetku smo radili eksperimente sa trouglovima i njihovih 9 osobina, za sva
tri pristupa (Eksperiment 1 i Eksperiment 2). Posto su lenja i funkcionalna strategija
imali bliske vrednosti, uporedili smo ta dva pristupa ponovo, ali menjajuéi broj os-
obina koji se posmatra. Na pocetku se krenulo sa 3 osobine, sve dok se nije stiglo do
27 osobina (Eksperiment 3).

Za sve tri konfiguracije tokom Eksperimenta 1 je pokazano da strategija lenjog
izra¢unavanja daje najbolje rezultate (Tabela 7.5, Slika 7.2).

Za sve tri konfiguracije tokom Eksperimenta 2 je pokazano da je lenjo izra¢una-
vanje bolje od funkcionalnog od 10% do 16%, dok je u marljiva strategija losija od
lenje od 34% - 57% (Slika 7.4, Tabela 7.6).

Kod Eksperimenta 3 sa pocetnih 9 osobina su lenjo i funkcionalno izvrsavanje bili
ujednaceni, pa se preslo na jos finiju podelu krenuvsi merenje sa 3 osobine i dodajucéi
u svakom novom merenju jos 3 nove osobine.

Uporedujuéi broj objekata, funkcionalan pristup je bolji za 8%-10% kada objekat
ima 6 1 9 osobina, oko 5% bolji za objekte sa 12 i 15 osobina, dok je skoro ujednacen
za objekte sa 18 i 21 osobinom. Prekretnica u korist lenjog izra¢unavanja je nakon
Sto objekti imaju viSe od 24 osobine. Analogan je odnos poredenja zauze¢e memorije
(Slika 7.6).

Dakle iz svega priloZenog zaklju¢ujemo da je izvrSena verifikacija koncepata i
algoritama opisanih u prethodnim poglavljima.

Zakljucak i buduce smernice

U ovoj disertaciji je prezentovan okvir za specifikaciju metapodataka koja nosi u
sebi strukturalnu i semanticku informaciju u FLG, te je demonstrirana kroz vise
tipova. PredloZeni okvir nudi veéu fleksibilnost od atributa, dok i dalje imaju istu
funkcionalnost i deklarativnu prirodu. Problem sa ¢uvanjem vrednosti ne-CLR vred-
nosnih tipova u metapodacima, kao i strukturnih informacija, koji se nije mogao pre-
vazici koristeéi atribute, je lako reSen koriste¢i nas pristup. Takode su date smernice
za implementaciju novih vrsta podataka, operacija, konverzije tipova i funkcija.

Zahvaljujuéi rasirenoj upotrebi metapodataka za ozna¢avanje svih aspekata soft-
vera za dinamicku geometriju, uspesno smo razdvojili tipove podataka, operacije,
funkcije i vizuale objekte od osnovnih komponenti softvera. To znaci da se softver
lako moZe prosiriti novim funkcionalnostima, ili pak, da se podrazumevani skup
funkcionalnosti u potpunosti zameni.

Uvodedi tip podataka objektnih konstanti i dot notaciju, izbegli smo kompliko-
vanu sintaksu, i ujedinili objekte sa njihovim osobinama, $to pogoduje i korisnicima
i programerima podjednako. Sa korisnicke tacke gledista, sintaksa izraza je olaksana
i jasnija za koristenje, dok je programerima ujedinjena implementacija objekata za-
jedno sa svim svojim osobinama unutar jedne C# klase, umesto da se osobine pokri-
vaju kroz viSestruke funkcije.

138 Prosireni izvod

Zadnjih decenija se softver za dinami¢ku geometriju izuzetno brzo razvija, aisve
viSe upotrebljava u nastavi i pravljenju nastavnih materijala. Stoga je porasla potreba
za proSirivosti softvera za dinamicku geometriju. Smatramo da se principi i metodi
istaknuti u ovoj disertaciji mogu lako adaptirati na bilo koji softver za dinamic¢ku
geometriju razvijen u C#, Javi ili nekom sli¢nom jeziku.

Omogudili smo prosirenje evaluatora izraza i stabla izraza u SLGeometry koji
demonstrira slede¢a poboljsanja: omogucuje podrsku za objekte, u OOP smislu,
koja predstavlja geometrijske objekte i njihove osobine; omogucuje okvir za jednos-
tavnu definiciju i izratunavanje osobina objekata; definiSe pro$irenje stabla izraza
i algoritam za lenjo izra¢unavanje osobina objekata, koji redukuje vreme izra¢una-
vanja, ra¢unajuci samo osobine koje su referencirane, i ra¢unajuéi ih samo jednom;
definisana je Sema keSiranja rezultata koja znacajno redukuje zauzece hipa i ubrzava
izracunavanje stabla izraza.

Testirali smo na$ koncept uporedujuéi ga sa ¢isto funkcionalnom Semom izracu-
navanja, koja se smatra standardom za softvere za dinamic¢ku geometriju. Mereno je
CPU vreme, zauzece memorije i broj objekata na hipu. Na osnovu eksperimentalnih
rezultata predloZeni algoritam za lenjo izra¢unavanje daje veoma dobre rezultate
koji se ti¢u brzine, dok je zauze¢e memorije i optereéenje hipa zadovoljavajuce.

Glavni doprinos ove disertacije je predlozen sistem za efikasno upravljanje skupom
interaktivnih objekata sa dinami¢kim osobinama, koji je implementiran kao prosirenje
klasi¢nog evaluatora stabla izraza. Efikasnost izracunavanja je dobijena uvodenjem
Seme keSiranja rezultata, dinamickom aktivacijom osobina i lenjim izra¢unavanjem
osobina.

Dalji rad se moZe zasnovati na optimizaciji binarnih operacija. Takode se moze
raditi na odvajanju glavnih komponenti koje bi se onda mogle koristiti za druge
projekte kao samostane aplikacije.

139

Biography

Davorka Radakovi¢ was born on October 4, 1977 in
Zagreb. She graduated from Elementary School “Petar Pre-
radovi¢” and Music Elementary School “Zlatko Balokovi¢”
in 1992. She graduated from Secondary School “Svetozar
Markovi¢” and Music Secondary School “Isidor Baji¢” in
Novi Sad in 1996. She enrolled studies at Faculty of Sciences,
University of Novi Sad, module B. Sc. in Mathematics in
1996. and graduated in 2001. (G.P.A 8.88/10). At the same
faculty, she enrolled M. Sc. Studies in 2001. and has passed
all the exams with the highest marks (G.P.A 10). She de-
fended Master Thesis “Extended modular platform for dynamic
geometry” on September 2, 2010, and she enrolled Ph. D. Studies in Informatics.

Since August 1, 2000. she has been employed at Department of Mathematics and

Informatics, Faculty of Sciences, University of Novi Sad, at the following positions:

laboratory technician, August 1, 2000. - May 2001.
systems analyst, May 2001.-April 10, 2011.
assistant, scientific field of computer science, April 11, 2011.- April 10, 2017.

NS

teaching associate, April 11, 2017. — now.

She has conducted practical exercises in Introduction to Programming (for students
from Department of Geography) at Department of Mathematics and Informatics,
and Informatics in Sport/Introduction to Informatics at Faculty of Sport and Physical
Education. At the Chair of Computer Science she conducts practical exercises from
the following subjects: Introduction to Programming, Formal Methods Engineering, Data
Structures and Algorithms 1 i Software Lab 2 - Web design. During the several years she,
also, had conducted practical exercises from: Teaching of Informatics, Software Lab 1 -
Office management, Seminar paper A — C# and .NET., and Introduction to eBusiness.

She trainee as teacher of informatics at High School for Children with special
needs ,dr Milan Petrovi¢”. For many years, she held Preparatory classes from Math-
ematics at Faculty of Medicine and Faculty of Sciences.

She has participated in the several dozen domestics and international scientific
conferences. She coauthored more than 20 papers as conference proceedings and
journal articles.

She received OAD Short term research scholarship, April, 2009, RISC Institute,
Johannes Kepler Universitat, Linz, Austria, supervizor: Hanspeter Mossenbock, and
in August and September, the same year, DAAD Intensivsprachkursstipendium fiir
ausldndische Studierende, Berlin. In June 2011 she received CEEPUS grant research
for stay in Cluj, Romania, “Babes Bolyai” University, and in June 2013, 2016, and
2018, she was at the Technical University of Kosice, Slovakia. In 2012 and 2013, she
participated DAAD Summer School in Ohrid.

During faculty accreditation in 2007, she was a member of Faculty of Sciences
Team Accreditation. She was technical support and an organizing committee mem-
ber for several scientific conferences. During the Department reconstruction she
solved the issues of teaching placement at the other faculties. She maintains the

140 Biography

departments website, and she has been sceduling classes and colloquiums for sev-
eral years. She participated in the first two Internationa Education Fairs , Putokazi”,
and in 2017 at Senta Mini Education Fair.

She is fluent in english, german and french.

141

Biografija (in Serbian)

Davorka Radakovi¢ je rodena 4.10.1977. godine u
Zagrebu. Zavrsila Osnovnu 8Skolu “Petar Preradovic¢”
i Osnovnu muzicku Skolu “Zlatko Balokovi¢” 1992.
godine. Gimnaziju “Svetozar Markovi¢” i Srednju muz-
i¢ku 8kolu “Isidor Baji¢” zavrsava u Novom Sadu 1996. go-
dine. Prirodno matematicki fakultet u Novom Sadu, smer
diplomirani matematicar, upisala je 1996. godine, a zavrsila
je 2001. godine sa prosekom 8.88. Poslediplomske studije
je upisala na istom fakultetu 2001. godine, te polozila sve
predvidene predmete sa prose¢nom ocenom 10. Magistarsku
tezu “ProSiriva modularna platforma za dinamicku geometriju” je
odbranila 2.9.2010. godine. Doktorske akademske studije informatike upisuje 2010.

godine.

Zaposlena je na Departmanu za matematiku i informatiku Prirodno-matemati-
¢kog fakulteta, Univerziteta u Novom Sadu, od 1.8.2000. godine i bila u slede¢im
zvanjima:

laborant, 1. avgust 2000. — maj 2001.
sistem analiti¢ar, maj 2001.-10. april 2011.
asistent, uza nauc¢na oblast racunarske nauke, 11. april 2011.- 10. april 2017.

LN

saradnik u nastavi, 11. april 2017. — sada.

DrZala je vezbe iz predmeta Uvod u racunarstvo (za studente Departmana za ge-
ografiju) na Departmanu za matematiku i informatiku i Informatiku u sportu/Uvod
u informatiku i racunarstvo na Fakultetu sporta i fizickog vaspitanja. Na Katedri za
racunarske nauke trenutno drZi veZbe iz slede¢ih predmeta: Uvod u programiranje,
Formalni metodi u inZinjerstou, Strukture podataka i algoritmi 1 i Softverski praktikum 2
- Veb dizajn. Tokom godina je drzala i veZbe iz predmeta: Metodika informatike, Soft-
verski praktikum 1 - Kancelarijsko poslovanje, Seminarski rad A — C#i .NET. i Uvod u elek-
tronsko poslovanje. Volontirala je kao nastavnik informatike u Srednjoj skoli za decu
sa posebnim potrebama ,, dr Milan Petrovi¢”. Dugi niz godina drZi pripremnu nas-
tavu iz matematike na Medicinskom fakultetu i Prirodno-matematickom fakultetu.
Ucestvovala je na viSe desetina domacih i medunarodnih konferencija. Ima objavl-
jenih viSe od 20 nau¢nih i stru¢nih radova u domacéim i stranim ¢asopisima (od toga
jedan na SCI listi) i saopstenja sa medunarodnih i domacih skupova Stampanih u
celosti i izvodu.

Tokom aprila 2009. godine boravila je na Institutu za sistemsko inZinjerstvo Jo-
hannes Kepler Univerziteta u Linzu kao CEEPUS stipendista, a avgusta i septembra
iste godine je boravila u Berlinu kao DAAD stipendista. Kao CEEPUS stipendista
juna 2011. godine boravi na Univerzitetu “Babes Bolyai” u KluZzu, Rumunija, a juna
2013., 2016. 1 2018. godine boravi na Tehnickom Univerzitetu u KoSicama, Slovacka.
Letnje intezivne DAAD kurseve u Ohridu pohada 2012. i 2013. godine.

Tokom akreditacije fakulteta 2007. godine bila je ¢lan Akreditacionog tima
PMF-a. Kao tehni¢ka podrska i ¢lan organizacijonog odbora sudeluje u organizo-
vanju viSe razli¢itih nau¢nih skupova. Za vreme rekonstrukcije Departmana reSava

142 Biogratija

pitanje smestaja nastave na drugim fakultetima. Odrzava sajt DMI, a vise godina
je pravila raspored casova i kolokvijuma. Kao predstavnik DMI sudelovala je na
prva dva Medunarodna sajma obrazovanja , Putokazi” i na Mini-sajmu obrazovanja
u Senti 2017. godine.

SluZi se engleskim, nemackim i francuskim jezikom.

143

University of Novi Sad

Faculty of Science

Key Words Documentation

Accession number:
NO

Identification number:
INO

Document type:
DT

Type of record:

TR

Contents code:

CC

Author:

AU

Mentor:

MN

Title:

TI
Language of text:
LT

Language of abstract
LA

Country of publication:

cr

Locality of publication:

LP
Publication year:
PY

Publisher:
PU

Publ. place:
PP

Physical description:

Monograph documentation
Textual printed material
Doctoral dissertation
Davorka Radakovi¢, M.Sc.
Dr. Milos Radovanovi¢

Metadata-Supported Object-Oriented Extension
Dynamic Geometry Software

English
Serbian/English
Serbia
Vojvodina

2019

Author’s reprint

Novi Sad, Trg D. Obradovica 4

8/175 (xxvi + 149)/241/19/31/0/0

(no. chapters/pages/bib. refs/tables/figures /graphs/appendices)

PO

Scientific field:

SF

Scientific discipline:

Computer Science

Software Engineering

of

144 Key Words Documentation

SD

Subject/Key words: Source code annotations; Metadata; Dynamic
Geometry Software; Component develop-
ment; Functional languages; Lazy evaluation

SKW

uC

Holding data: Library of Department of Mathematics and
Informatics, Faculty of Sciences, Trg Dositeja
Obradovic¢a 4, Novi Sad, Serbia

HD

Note: None

N

Abstract: Nowadays, Dynamic Geometry Software (DGS) is widely accepted

as a tool for creating and presenting visually rich interactive
teaching and learning materials, called dynamic drawings. Dy-
namic drawings are specified by writing expressions in functional
domain-specific languages. Due to wide acceptance of DGS, there
has arisen a need for their extensibility, by adding new semantics
and visual objects (visuals). We have developed a programming
framework for the Dynamic Geometry Software, SLGeometry, with
a genericized functional language and corresponding expression
evaluator that act as a framework into which specific semantics
is embedded in the form of code annotated with metadata. The
framework transforms an ordinary expression tree evaluator into
an object-oriented one, and provide guidelines and examples for
creation of interactive objects with dynamic properties, which par-
ticipate in evaluation optimization at run-time. Whereas other DGS
are based on purely functional expression evaluators, our solution
has advantages of being more general, easy to implement, and pro-
viding a natural way of specifying object properties in the user in-
terface, minimizing typing and syntax errors.

SLGeometry is implemented in C# on the .NET Framework. Al-
though attributes are a preferred mechanism to provide association
of declarative information with C# code, they have certain restric-
tions which limit their application to representing complex struc-
tured metadata. By developing a metadata infrastructure which is
independent of attributes, we were able to overcome these limita-
tions. Our solution, presented in this dissertation, provides exten-
sibility to simple and complex data types, unary and binary oper-
ations, type conversions, functions and visuals, thus enabling de-
velopers to seamlessly add new features to SLGeometry by imple-
menting them as C# classes annotated with metadata. It also pro-
vides insight into the way a domain specific functional language
of dynamic geometry software can be genericized and customized
for specific needs by extending or restricting the set of types, oper-
ations, type conversions, functions and visuals.

Key Words Documentation 145

Furthermore, we have conducted experiments with several groups
of students of mathematics and high school pupils, in order to test
how our approach compares to the existing practice. The experi-
mental subjects tested mathematical games using interactive visual
controls (UI controls) and sequential behavior controllers.

Finally, we present a new evaluation algorithm, which was com-
pared to the usual approach employed in DGS and found to per-
form well, introducing advantages while maintaining the same
level of performance.

AB

Accepted on Senate: March 8th 2017

AS

Defended:

DE

Thesis Defend Board:

(Degree/first and last name/title/faculty)

DB

President: Dr. Zoran Budimac, full professor,
University of Novi Sad, Faculty of Sciences

Mentor: Dr. Milos Radovanovi¢, associate professor,
University of Novi Sad, Faculty of Sciences

Member: Dr. Dorde Herceg, full professor,
University of Novi Sad, Faculty of Sciences

Member: Dr. Milan Vidakovi¢, full professor,

University of Novi Sad, Faculty of Technical Sciences

147

Univerzitet u Novom Sadu
Prirodno-matematicki fakultet
Kljuc¢na dokumentacijaska informacija

Redni broj:

RBR
Identifikacioni broj:
IBR

Tip dokumentacije:
TD

Tip zapisa:

TZ

Vrsta rada:

VR

Autor:

AU

Mentor:

MN

Naslov rada:

NR

Jezik publikacije:

JP

Jezik izvoda:

I

Zemlja publikovanja:
zp

Uze geografsko podrugje:

UGP
Godina:
GO

Izdavac:

1Z

Mesto i adresa:
MA

Fizicki opis rada:

(broj poglavlja/strana/lit.

FO

Naucna oblast:
NO

Nauc¢na disciplina:

Monografska dokumentacija
Tekstualni Stampani materijal
Doktorska disertacija

mr Davorka Radakovi¢

dr Milos Radovanovié

Objektno-orijentisano ~ proSirenje softvera

dinamicku geometriju podrZano metapodacima
engleski

srpski/engleski

Srbija

Vojvodina

2019

autorski reprint

Novi Sad, Trg D. Obradovica 4
8/175 (xxvi + 149)/241/19/31/0/0
citata/tabela/slika/grafika/priloga)
Racunarske nauke

Softversko inZenjerstvo

za

148

Klju¢na dokumentacijaska informacija

ND

Predmetna odrednica

/Klju¢ne reci:

Anotacija izvornog koda; Metapodaci; Soft-
veri za dinamicku geometriju; Razvoj zasno-
van na komponentama; Funkcionalni jezici;
Lenjo izraCunavanje

PO

UDK

Cuva se: Biblioteka Departmana za matematiku i in-
formatiku, Prirodno-matematicki fakultet, Trg

5 Dositeja Obradovica 4, Novi Sad, Srbija

CuU

Vazna napomena: Nema

VN

Izvod: U danasnje vreme softver za dinami¢ku geometriju (DGS) je Siroko

prihvaéen kao alat za kreiranje i prezentovanje vizuelno bogatih in-
teraktivnih nastavnih materijala i materijala za samostalno ucenje,
nazvanih dinamic¢kim crteZima. Kako je raslo prihvatanje softvera
za dinamicku geometriju, tako je i rasla potreba da se oni prosiruju,
dodajuéi im novu semantiku i vizualne objekte. Razvili smo pro-
gramsko okruZenje za softver za dinamicku geometriju, SLGeome-
try, sa generickim funkcionalnim jezikom i odgovaraju¢im evalua-
torom izraza koji ¢ini okruZenje u kom su ugradene specifi¢ne se-
mantike u obliku koda oznadenog metapodacima. Ovo okruZenje
pretvara uobicajen evaluator stabla izraza u objektno orijentiran, te
daje uputstva i primere za stvaranje interaktivnih objekata sa di-
namickim osobinama, koji sudeluju u optimizaciji izvrSenja tokom
izvodenja. Dok se drugi DGS-ovi temelje na ¢isto funkcionalnim
evaluatorima izraza, naSe rjeSenje ima prednosti jer je uopstenije,
lako za implementaciju i pruZa prirodan na¢in navodenja osobina
objekta u korisni¢ckom interfejsu, minimizirajuéi kucanje i sintaksne
greske.

SLGeometry je implementirana u jeziku C# INET Framework-a.
Iako su atributi preferiran mehanizam, koji povezuje C# kod sa
deklarativnim informacijama, oni imaju odredena ograni¢enja koja
limitiraju njihovu primenu za predstavljanje sloZenih strukturi-
ranih metapodataka. Razvijanjem infrastrukture metapodataka
koja je nezavisna od atributa, uspeli smo prevladati ta ogranicenja.
Nase reSenje, predstavljeno u ovoj disertaciji, pruZa prosirivost: jed-
nostavnim i sloZenim vrstama podataka, unarnim i binarnim op-
eracijama, konverzijama tipova, funkcijama i vizuelnim objektima,
omogucavajudi time programerima da neprimetno dodaju nove os-
obine u SLGeometry implementirajuéi ih kao C# klase oznacene
metapodacima.

Klju¢na dokumentacijaska informacija 149

V4

Takode, okruZenje pruza uvid na koji se nacin jezik specifican
za funkcionalni domen softvera za dinamicku geometriju moZe
napraviti generickim i prilagoden specificnim potrebama: prosiri-
vanjem ili ogranicavanjem skupa tipova, operacija, konverzija
tipova, funkcija i vizuelnih elemenata.

Pored toga, sproveli smo nekoliko eksperimenata sa vise grupa stu-
denata matematike i srednjoskolaca, sa ciljem da testiramo kako
se na$ pristup moZe uporediti sa postojeéom praksom. Tokom
eksperimenata testirane su matematicke igre koristeci interaktivne
vizualne kontrole (UI kontrole) i kontrolere sekvencijalnog pon-
aSanja.

Na kraju je prikazan i novi algoritam za izracunavanje, koji se
pokazao uspeSnim u poredenju sa uobicajenim pristupom koji se
koristi u DGS-ima, a opet uvodeéi prednosti dok je zadrzao istu
razinu performansi.

Datum prihvatanja teme od strane Senata: 08.03.2018.

DP
Datum odbrane:
DO

Clanovi komisije:
(Naucni stepen/ime i prezime/zvanje/fakultet)

KO
Predsednik:

Mentor:

Clan:

Clan:

dr Zoran Budimac, redovni profesor,
Univerzitet u Novom Sadu, Prirodno-matematicki fakultet

dr Milo$ Radovanovi¢, vanredni profesor,
Univerzitet u Novom Sadu, Prirodno-matematicki fakultet

dr Dorde Herceg, redovni profesor,
Univerzitet u Novom Sadu, Prirodno-matematicki fakultet

dr Milan Vidakovi¢, redovni profesor,
Univerzitet u Novom Sadu, Fakultet tehni¢kih nauka

	Contents
	Abstract
	Apstrakt
	Preface
	Acknowledgements
	List of Figures
	List of Tables
	List of Listings
	List of Abbreviations
	I Preliminaries
	Introduction
	Metadata
	Functional Domain-Specific Languages
	DGS Extensibility
	Introducing OO Features Into DGS

	Main Goals
	Contributions
	Summary

	Related Work
	Dynamic Geometry Software
	Lazy Evaluation
	Metadata
	Components
	Discussion
	Summary

	II Implementation
	Motivation
	Attributes in C#
	Why Not Use Attributes?
	Property Functions vs. Objects with Properties
	Dot Notation for Property Access
	Introducing Semantic Extensions into FLG
	Language Composition Considerations in FLG
	Evaluation Optimization

	Summary

	System Architecture Overview
	SLGeometry Framework
	FLG Grammar Definition
	Expressions
	Functions and Visual Functions
	Constants
	Object Constants

	Summary

	Implementation Details
	Metadata
	Metadata for Arguments
	Metadata for Signatures
	Metadata for Properties
	Metadata for Functions and Controls
	NameInfo
	FnInfo
	ConstInfo and ConstObjectInfo

	Metadata for User Interactive Controls
	Implementation Examples
	A Simple Function
	Visual Functions and Objects

	Type Conversions
	Operations
	Result Caching
	Operation Examples
	Late vs. Early Operation Binding
	Generalized Binary Operation Algorithm

	Lazy Evaluation with Property Activation
	Implementation Requirements
	Structural Correspondence
	Backing Fields and Accessors
	Property Evaluators
	Instance Initialization and Updating

	Partial Compilation of Expression Trees
	Partial Compilation Implementation

	XML-Based Serialization of Geometrical Constructions
	Summary

	III Validation
	Subject-Specific Components in DGS
	Motivation
	Components in DGS
	The Country and City Components
	The Experiments
	Task 1 – Measuring a River's Length
	Task 2 – Tracing the Great Explorers' Voyages
	Task 3 – Tracing One's Own Travels

	Results and Comments

	Sequential Behavior Controllers in SLGeometry
	Example 1 – Arithmetic Sum
	Example 2 – A Simple Game
	Experiment
	Assignments

	Results and Comments

	Summary

	Testing Lazy Evaluation
	Why the Triangle?
	Constructions
	Experimental Setup
	Results, Analysis and Discussion
	CPU Time Tests for 5 Triangles
	CPU Time Tests for 100 Evaluations
	Object Count and Memory Tests
	Measuring for 9 Properties of Triangle
	Measuring for 27 Properties of Triangle

	Summary

	Conclusion and Future Work
	Conclusion
	Future Work

	Bibliography
	Prošireni izvod (Extended Abstract in Serbian)
	Biography
	Biografija (in Serbian)
	Key Words Documentation
	Ključna dokumentacijaska informacija

