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Theoretical Predictions of Highly Energetic Particles Energy Loss in

Quark-Gluon Plasma

Today, it is considered that the reached collision energies in the ultra-relativistic

heavy ion collisions (HIC) at the RHIC and the LHC are sufficiently high for the new

state of matter − quark-gluon plasma (QGP), consisting of liberated quarks, anti-

quarks and gluons, to be created under controlled experimental conditions. Upon

establishing that QGP is created, one of the main goals of heavy ion program at the

RHIC and the LHC is understanding the properties of newly created state of matter.

Thus created QGP is constituted of low-energetic particles, which represent ∼ 99.9%

of quarks and gluons created in ultra-relativistic HIC. The remaining ∼ 0.1% are

high-energy particles (tomographic probes), which are the subject of this thesis.

The suppression of high transverse momentum (p⊥) particles is considered to be

an excellent tomographic tool for mapping the properties of QGP, which requires

comparison of the available suppression data with the theoretical predictions. This

comparison tests various theoretical models and provides an insight into the underly-

ing QGP physics. Since jet-quenching is a consequence of the leading parton energy

loss in created medium, an accurate energy loss calculation is generally considered

to be the crucial ingredient for obtaining the reliable suppression predictions. To

this end, the subjects of this thesis are: i) testing the up-to-date dynamical energy

loss model and the numerical procedure, developed by Djordjevic et al., against

the experimental suppression data; ii) studying the importance of different ingre-

dients of this model; and iii) implementing improvements, i.e. relaxing one of the

approximations, in such model predecessor.

The advantage of the dynamical energy loss formalism, which is based on a

finite temperature pQCD calculations, is that it takes into account more details

of high p⊥ parton-medium interactions than any other energy loss model, and uses

no fitting parameters when comparing to experimental data. Thus, it includes: both

radiative and collisional energy loss in finite size optically thin medium, dynamical

scattering centers, finite magnetic mass and running coupling. This state-of-the-art

model is further incorporated in up-to-date numerical procedure, that can generate

suppression predictions. This procedure also includes: initial parton momentum
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distribution, multi-gluon and path-length fluctuations, as well as, fragmentation

and decay functions.

Regarding the first task of this thesis, note that the model is more reliable the

more it is capable of providing matching suppression predictions with experimen-

tal data for broader range of probes (both light and heavy flavor), collision energies

(both RHIC and LHC) and experimental conditions (all available centrality ranges).

Therefore, apart for extending the dynamical energy loss formalism towards gener-

ating suppression predictions for non-central collisions, we also provided suppression

predictions for both RHIC and LHC energies (200 GeV and 2.76 TeV, respectively)

and diverse set of particles (light: charged hadrons, neutral pions; heavy: D mesons

and non-prompt J/ψ). These predictions were generated by the same theoretical

formalism and within the same numerical procedure. We obtained a very good agree-

ment for all probes, collision energies and all (at that time) available non-central

experimental suppression measurements, for all momentum ranges larger than 10

GeV. Our results imply that dynamical energy loss model, incorporated in above

mentioned numerical procedure, can realistically model the jet-medium interactions

within QGP created in ultra-relativistic HIC, and the adequacy of applying pQCD

in modeling these interactions.

Another convenience of the dynamical energy loss model and the numerical pro-

cedure presents its reliable predictive power. Therefore, we predicted that suppres-

sions in central 2.76 TeV and 5.02 TeV Pb+Pb collisions at LHC are practically the

same for light probes (charged hadrons), which afterwards obtained its experimen-

tal validation. Another prediction for 5.02 TeV collision energy is that, at the high

momentum range p⊥ > 100 GeV, B and D meson suppressions will nearly overlap.

Additionally, at the same momentum range, we also predict unexpected suppression

decrease of charged hadron compared to heavier probes, such as D and B mesons

at central 5.02 TeV collisions, due to fragmentation functions effect. This, at the

time, presented a pure prediction to be tested in the future.

We also address the issue of which particles and at which p⊥ range are the most

adequate for mass tomography of the QGP. Namely, particles with different masses

should interact differently (lose different amounts of energy) in the QGP medium,

which highlights the mass tomography as another excellent tool for mapping the
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QGP properties. We obtained that notable mass hierarchy (tomography effects) for

single particles can be observed below 50 GeV, due to different suppressions (energy

losses) of underlying bottom, on one side, and the charm/light quarks, on the other.

We suggest that this study provides guidelines on where the future experimental

efforts, regarding the mass tomography, should be focused: on p⊥ < 50 GeV region

and on measuring B meson suppression, as a clear b suppression probe, instead of

non-prompt J/ψ.

In the second part of the thesis, upon obtaining experimental verification for the

dynamical energy loss model and the numerical procedure, we address the relative

importance of the above mentioned energy loss ingredients in obtaining accurate

suppression predictions. The significance of this undertaking reflects in a fact that

all these effects have to be included (based on theoretical grounds), but however, at

that time, the role of each effect in adequately explaining the experimental data was

unclear, while other approaches to suppression predictions neglected some or most

of these effects. To this end, we studiously examine how different ingredients affect

D meson suppression predictions (clear energy loss probe) at top RHIC and LHC

energies. We obtained that the most important effect in modeling the jet-medium

interactions is taking into account that medium constituents are dynamical (moving)

particles, which leads also to inclusion of collisional, apart from the usual radiative

energy loss. However, we found that all other effects are also important, and need

to be included, as they contribute to a finer agreement with the data. Therefore,

we conclude that the robust agreement between the theoretical predictions and the

experimental data is a cumulative effect of all considered energy loss effects.

In the final (theoretical) part of this thesis, we relax one of the most common, and

most widely used, assumptions used in calculating radiative energy loss of high p⊥
particles in QGP − the soft-gluon approximation. This approximation assumes that

radiated gluon carries away only a small fraction of initial parton’s energy and lon-

gitudinal momentum. While the soft-gluon approximation is convenient, its validity

was questioned by the obtained considerable radiative energy loss within different

theoretical models. On the other hand, the dynamical energy loss model, enclosing

the same approximation, reported a robust agreement with experimental suppres-

sion data (as previously mentioned), implicitly suggesting the applicability of this
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approximation. However, the approximation clearly breaks-down for intermediate

momentum range 5 < p⊥ < 10 GeV (note that our predictions were reliable for p⊥
only above 10 GeV), and primarily for gluons, due to the relative color factor of

9/4 compared to quarks. Therefore, we relax the soft-gluon approximation for high

p⊥ gluons, and since the calculations are technically very demanding, we divided

them into several steps: 1) first for massless gluons in the system of static scattering

centers (within GLV formalism), 2) then we include effective gluon mass (within

DGLV formalism, a predecessor of dynamical energy loss model) and 3) finally we

discuss generalizing this relaxation to the dynamical QGP medium.

The obtained analytical expressions to the 1st order in opacity beyond soft-gluon

(bsg) approximation are quite different and significantly more complex compared

to their soft-gluon (sg) analogons. However, we surprisingly obtained that numer-

ical predictions for fractional radiative energy loss and number of radiated gluons

are only slightly altered compared to the soft-gluon case, although in opposite di-

rections, so that their superposition results in almost indistinguishable suppression

predictions in bsg and sg cases. Additionally, we obtained that, due to exponen-

tially decreasing initial gluon momentum distribution, the main contribution to

suppression predictions comes from the region x . 0.4, making this region the most

relevant one for differentiating between bsg and sg suppression predictions. Conse-

quently, high p⊥ quaks are even less likely to be affected by this relaxation. This

implies that, contrary to commonly held doubts, the soft-gluon approximation re-

mains well-founded within DGLV formalism. Finally, based on our derivations, we

also expect that the soft-gluon approximation can be reliably applied when dynam-

ical medium is considered, which is out-of-scope of this thesis, and remains to be

rigorously tested in the future.

Keywords: heavy-ion collisions, parton’s energy loss, suppression, high p⊥ parti-

cle, beyond soft-gluon approximation, nuclear modification factor

Physics

High-energy and nuclear physics

UDK number: 539.12 (043.3)
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4.1 Comparison of charged hadron suppression predictions with LHC ex-

perimental data at different centralities. The panels show the com-

parison of charged hadron suppression predictions (gray band) with

ALICE [219] (the red circles) and CMS [223] (the blue squares) RAA
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= 0.4). The centrality ranges, for which the predictions are pre-

sented, are indicated in the lower right corner of each panel. Note
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4.2 Comparison of D meson suppression predictions with LHC experi-

mental data at different centralities, as a function of transverse mo-

mentum. The theoretical predictions are presented by gray bands,

where upper (lower) boundary of each band corresponds to µM
µE

= 0.6

(µM
µE

= 0.4). The centrality regions, for which the predictions are pre-

sented, are denoted in the upper right corner of each panel. At that

time D meson RAA experimental data for only two centrality bins

were available: 0− 7.5% central 2.76 Pb+Pb collisions at LHC [230]

(the red triangles in the left panel), and 30− 50% ALICE data [231]

(the red triangles in the third panel). Figure adapted from [225]. . . . . 72
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data at 200 GeV Au + Au collisions at RHIC (the purple triangles),
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= 0.6 (µM
µE

= 0.4). The centrality bins, for which
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dictions with PHENIX experimental data [232] for neutral pion in

200 GeV Au + Au collisions at RHIC, where π0 momentum is larger
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experimental data from 2.76 TeV Pb + Pb collisions at LHC, for:

charged hadrons [219], with momentum in 6−12 GeV range (the sec-

ond panel), D mesons [233], with momentum in 8−16 GeV range (the

third panel) and non-prompt J/ψ [234], with momentum in 6.5− 30
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gray bands, where upper (lower) boundary of each band corresponds
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4.5 Comparison of charged hadron RAA predictions at 2.76 and 5.02 TeV.

Suppression predictions for h±, as a function of transverse momentum
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bands with full (dashed) boundaries for 5.02 TeV (2.76 TeV) center-of-

mass energies. The upper (lower) boundary of each band corresponds

to µM
µE

= 0.6 (µM
µE

= 0.4). Figure adapted from [237]. . . . . . . . . . . . . . . . 76
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√
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aries, correspond to our theoretical predictions for D mesons and

non-prompt J/ψ in the appropriate momentum regions, respectively.

The right panel compares our RAA predictions for h± (white band

with full boundaries), D (white band with dashed boundaries) and

B meson (white band with dot-dashed boundaries) with ATLAS h±
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µE
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4.7 Contributions of initial distribution and energy loss to suppression.

(a) RAA predictions as a function of Npart are compared for D mesons

in 8 < p⊥ < 16 GeV region (dashed curve) and non-prompt J/ψ in
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the analogous non-prompt J/ψ predictions, if the originating bottom

quark would have the same energy loss as charm quark in QGP. (b)

RAA predictions as a function of Npart are compared for D and B

mesons in 8 < p⊥ < 16 GeV region. (c) RAA predictions as a function

of p⊥ are compared for D and B mesons. The full arrow denotes the

contribution of the different initial distributions to the difference in

the suppression betweenD meson and non-prompt J/ψ (or B meson),

while the dashed arrow indicates the contribution of the different

energy losses to the difference between D meson and the non-prompt

J/ψ (or B meson) suppression. On each panel the legend is the

same as in the first panel. Magnetic to electric mass ratio is set to

µM/µE = 0.4. Figure adapted from [237]. . . . . . . . . . . . . . . . . . . . . . . . . 78

4.8 Single particles suppression predictions as a function of p⊥ in 0−10%

central 5.02 TeV Pb+ Pb collisions at the LHC. (a) RAA predictions

for h±, D and B meson are presented by white bands with full, dashed

and dot-dashed boundaries, respectively. The upper (lower) bound-

ary of each band corresponds to µM/µE = 0.6 (µM/µE = 0.4). (b)

Bare quark RAA predictions for u (dotted curve), c (dashed curve)

and b quarks (dot-dashed curve). (c) Comparison of RAA predictions

for bare u quark (dotted curve) with h± (full curve). In (b) and (c)

panels µM/µE is set to 0.4. Figure adapted from [237]. . . . . . . . . . . . . 79
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5.1 Static radiative vs. collisional energy loss RAA. D meson suppression

predictions dependence on transverse momentum, is shown assuming

only radiative energy loss in static QGP medium (dotted curve), and

considering only collisional energy loss in dynamical QGP medium

(dot-dashed curve). Left (right) panel corresponds to RHIC (LHC)

conditions. Right panel also contains the D meson RAA experimen-

tal data for 0 − 7.5% central 2.76 TeV Pb + Pb collisions at the

LHC [221, 233] (red triangles). The standard values for the parame-

ters are assumed: Debye mass µE = gT , coupling constant αs = 0.3

(αs = 0.25) for RHIC (LHC). A finite size QGP medium is considered,

while the finite magnetic mass effect is not included (i.e. µM = 0).

Figure adapted from [159]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.2 Static vs. dynamical radiative energy loss RAA. D meson suppression

predictions dependence on transverse momentum is plotted, assuming

only radiative energy loss in static (dotted curve) and in dynamical

(dashed curve) QGP medium. Left (right) panel corresponds to the

RHIC (LHC) conditions. Right panel also shows the D meson RAA

experimental data for 0− 7.5% central 2.76 TeV Pb+Pb collisions at

LHC [221, 233] (red triangles). The standard values for the parame-

ters are assumed: Debye mass µE = gT , coupling constant αs = 0.3

(αs = 0.25) for RHIC (LHC). A finite size QGP medium is consid-

ered, while no finite magnetic mass effect is included (i.e. µM = 0).

Figure adapted from [159]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
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5.3 Radiative vs. colisional energy loss RAA in dynamical formalism. D

meson suppression predictions dependence on transverse momentum

is shown for radiative (dashed curve), collisional (dot-dashed curve)

and totatl, i.e. radiative + collisional (solid curve) energy loss. Left

(right) panel corresponds to the RHIC (LHC) conditions. Right panel

also contains the D meson RAA data for 0 − 7.5% central 2.76 TeV

Pb + Pb collisions at LHC [221, 233] (red triangles). Debye mass is

µE = gT , coupling constant is αs = 0.3 (αs = 0.25) for RHIC (LHC).

QGP medium of a finite size is assumed and no finite magnetic mass

effect is taken into account (i.e. µM = 0). Figure adapted from [159]. 93

5.4 Finite size effect on RAA in dynamical formalism. D meson suppres-

sion predictions dependence on transverse momentum is plotted with

(solid curve) and without (dashed curve) finite size effect included.

The first (the second) row corresponds to RHIC (LHC) conditions.

Left, central and right column shows, respectively, the finite size effect

on radiative, collisional and total (radiative + collisional) energy loss

in a dynamical QGP medium. The standard values for the parame-

ters are assumed: Debye mass µE = gT , coupling constant αs = 0.3

(αs = 0.25) for RHIC (LHC), whereas no finite magnetic mass effect

is included. Figure adapted from [159]. . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.5 Magnetic mass effect on RAA in dynamical formalism. D meson sup-

pression predictions dependence on transverse momentum is shown

for (total) radiative + collisional energy loss in dynamical QGP

medium of a finite size, with (gray band) and without (solid curve)

magnetic mass included. Left (right) panel corresponds to the RHIC

(LHC) conditions. Right panel also contains the D meson RAA data

for 0−7.5% central 2.76 TeV Pb+Pb collisions at LHC [221, 233] (red

triangles). Debye mass is µE = gT and coupling constant is αs = 0.3

(αs = 0.25) for RHIC (LHC). Upper (lower) boundary of each band
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5.6 Running coupling effect on RAA in dynamical formalism. D meson

suppression predictions dependence on transverse momentum is plot-

ted in case of constant coupling αs = 0.3 (αs = 0.25) for RHIC (LHC)

(solid curve) and when running coupling (dashed curve) is included.

No finite magnetic mass effect is assumed (i.e. µM = 0). In both cases

radiative + collisional contributions in dynamical QCD medium of a

finite size are considered. Left (right) panel corresponds to RHIC

(LHC) conditions. Right panel also shows the D meson RAA data for

0− 7.5% central 2.76 TeV Pb + Pb collisions at LHC [221, 233] (red

triangles). Figure adapted from [159]. . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.7 Joint effect of magnetic mass and running coupling on RAA. D

meson suppression predictions dependence on transverse momentum,

with the constant coupling αs = 0.3 (αs = 0.25) for RHIC (LHC)

(light gray band) and with the running coupling (dark gray band)

accounted. In both cases (total) radiative + collisional contributions

in dynamical QGP medium of a finite size are considered. Upper

(lower) boundary of each band corresponds to µM
µE

= 0.6 (µM
µE

= 0.4).

Left (right) panel corresponds to the RHIC (LHC) conditions. Right

panel also contains the D meson RAA data for 0− 7.5% central 2.76

TeV Pb + Pb collisions at LHC [221, 233] (red triangles). Figure

adapted from [159]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.1 Zeroth order diagram that includes no interaction with the QCD medium,

and contributes to gluon radiation amplitude to the 1st order in opacity.

The dashed circle represents the source J , which at longitudinal coordi-

nate z0 produces an off-shell gluon jet, propagating along z-axis. z de-

notes longitudinal coordinate at which the gluon is radiated. k denotes

4-momentum of the radiated gluon carrying the color c, and p denotes

4-momentum of the final gluon jet carrying the color d. . . . . . . . . . . . . . . . 105
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6.2 Representative diagrams that include interaction with the QCD medium,

and potentially contribute to gluon radiation amplitude to the 1st order in

opacity. The left panel corresponds to one interaction with QGP medium,

while the right panel corresponds to two interactions with the medium,

which only in contact-limit (z1 = z2) case contributes to the 1st order

emission spectrum (for more details see Appendices B.6 to B.9). zi, where
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6.3 Integrated variables: Effect of relaxing soft-gluon approximation to

the 1st order in opacity of DGLV formalism, as a function of p⊥.

The top left panel compares gluon fractional radiative energy loss

without (the solid curve) and with (the dashed curve) the soft-gluon

approximation. The top right panel quantifies the effect of relaxing

the soft-gluon approximation on ∆E(1)

E
and expresses it in percentage.

The bottom left panel compares number of radiated gluons without

(the solid curve) and with (the dashed curve) soft-gluon approxima-

tion, whereas the bottom right panel shows the relative change in this

number with respect to soft-gluon limit. Figure adapted from [248]. . 114

6.4 Differential variables: Effect of relaxing soft-gluon approximation to

the 1st order in opacity of DGLV formalism, as a function of x. The
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6.5 Relative change of single gluon radiation distribution in momentum

fraction in bsg compared to sg case for different p⊥ values. The per-

centage of dN
(1)
g

dx
change when soft-gluon approximation is relexed with

respect to sg case, calculated to the 1st order in opacity of DGLV

formalism, for different values of initial transverse momentum (as in-
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6.6 The effect of relaxing the soft-gluon approximation on gluon RAA.

The comparison of gluon nuclear modification factor RAA between

bsg (the solid curve) and sg (the dashed curve) cases is assessed in
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6.9 The relevant x region for studying importance of relaxing sg approx-

imation. The comparison of gluon RAA predictions between bsg (the

solid curve) and combined: bsg for x ≤ 0.4 +sg for x > 0.4 (the

dashed curve) cases is assessed in the left panel, as a function of the
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1. INTRODUCTION

1.1. A brief introduction to QCD

This subsection comprises a brief overview of how human knowledge of elementary

matter constituents developed historically and consequently, of the quantum chro-

modinamics (QCD) development. The late 1940’ marked the expansion of quantum

field theory (QFT) with Quantum Electrodynamics and another 30 years needed to

pass for QFT to overcome the obstacles and to regain the primacy in understanding,

explaining and trying to unite the nature’s forces, with the development of elec-

troweak [1] and the physics of the strong force: QCD [2] theories (as stated in [3]).

The QCD came under the spotlight, again in 2000’, simultaneously with building

new facilities for heavy ion (HI) collisions, such as the Relativistic Heavy Ion Collider

(RHIC) at Brookhaven National Laboratory (BNL) and the Large Hadron Collider

(LHC) at CERN, with its promising ability to interpret the measurements and as a

tool for tomography of a new phase on the horizon.

There were two lines of the QCD development: i) First was the recognition of the

elementary particles [4, 5] that interact through strong forces and ii) As a second,

accurately defining the interaction dynamics between the theory constituents.

The humans knowledge of the elementary matter constituents and the forces

among them has alternated along the time, such that not until the late 19th cen-

tury Faraday, Maxwell and Heaviside unified electric and magnetic fields (fields with

macroscopic manifestations) through the famous Maxwell’s equations. The experi-

mental discovery of an electron, as an indivisible particle, by J. J. Thomson [6] in

1897 was a milestone in properly modeling the atomic structure. This represented

a guideline for Ernest Rutherford to run the well-known experiment [7] by shooting

a beam of α particles (He2+) into a gold foil. This resulted in the atom model [8]

in 1911, where electrons, as negative charges, orbited around the positively charged

nucleus. Rutherford named the hydrogen atom nucleus as proton in 1920. After

J. Chadwick’s [9] discovery of neutron in 1932, the picture of atom was rounded.

Finally, along with the advancement of quantum mechanics and consequently, the
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quantum electrodynamics, both the particles and forces were well described.

However, this opened new questions of nucleons substructures and the "nuclear

force", and once again neither the set of fundamental particles nor their dynamic was

known and adequately addressed. To that end, in 1964 Gell-Mann [4] and Zweig [5]

independently formulated a model of proton consisting of three elementary particles

of spin 1/2 and fractional charge, which Gell-Mann named quarks. Thus, the first

question of particles classification was theoretically resolved, as all known particles

could be described by the representation of the group SU(3)f . This also analytically

suggested the more elementary particles than hadrons. Namely, the particles fitting

into fundamental (3 dimensional) representation of SU(3) flavor group are quarks

(u, d, s), while mesons and baryons are referred to as quark-antiquark states qq̄ (basis

vectors of 8 dimensional representation or singlet state) and as three bound quark

states qqq (basis vectors of 8 or 10 dimensional representations or singlet state),

respectively. Later, along with discovery of J/ψ meson by Richter and Ting at

SLAC in 1974, the fourth quark - charm quark was added to the list, expending the

symmetry group. Subsequently, in 1977 (by Lederman) and 1995 (at Fermilab) two

additional, and final quarks were discovered: top and bottom quarks, expanding the

flavor symmetry to SU(6)f .

Additionally, e.g. ∆++ resonance is composed of 3 up quarks, has spin 3/2 and

in spin state sz = +3/2 the quarks in ground state would have to be in (orbital and

spin) totally symmetric state, which violates Pauli principle of Fermi-Dirac statistics.

Due to this inconsistency, an additional degree of freedom emerged (Greenberg [10]

and Nambu [11]): the color, allowing each quark to be in one of the three color

states (denoted by index a) red (R), green (G), blue (B). In order to prevent the

unrealistic increase of particles number of states, all hadrons (detectable particles)

should be color singlets. The group of color symmetry is also SU(3)c, where, as

usual, quarks are transforming according to the fundamental representation and the

antiquarks according to the complex conjugate representation. This makes total

∆++ wave function antisymmetric:

εabcuaubuc = uRuGuB − uGuRuB − uRuBuG + uBuRuG − uBuGuR + uGuBuR,

(1.1.1)

which resolves the issue of Pauli principle. Also, is is straightforward to verify that
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Figure 1.1: Deep Inelastic scattering. Il-

lustration of deep inelastic scattering of

electron on proton. At leading order of

perturbation theory virtual electroweak

gauge boson (γ, Z,W±) "knocks" a quark

(q) "out" of proton. The arrows indi-

cate quark fragmentation into detectable

hadron. Figure adapted from Deutsches

Elektronen-Synchotron (DESY).

mesons are SU(3)c color singlets (qRq̄R̄ + qGq̄Ḡ + qB q̄B̄).

The experimental validation of their model came in 1968 from electron-proton

deep-inelastic scattering (Fig. 1.1) at SLAC [12] (Stanford Linear Accelerator Cen-

ter), in which electron was used to probe hadron structure. It confirmed that proton

consists of three spin 1/2 particles, which provided convincing evidence of quarks

existence. However, from the current point of view, this is a simplified picture of

hadron’s structure, since apart from enclosing two (mesons) or three (baryons) va-

lence quarks (antiquarks), it is known that hadron also consists of numerous virtual

quarks and antiquarks (also known as sea quarks) and gluons. From then on, QCD,

as the theory of strongly interacting particles (quarks) mediated via gluons became

the prevailing theory describing elementary particles.

It was still, however, unresolved why free quarks are not observed in nature, but

exist only as confined form of matter within the hadrons and the only way to produce

them as free particles was in deep-inelastic scattering. The idea of deconfined state of

the matter, which allowed quarks and gluons to move freely over the distances larger

than the size of hadron, was born within the QCD. In 1973 Politzer, Wilczek and

Gross [13] succeeded in proving that non-Abelian gauge theories, such as QCD, are

asymptotically free. Namely, the asymptotic freedom implies that at large distances

(i.e. for small exchanged momenta, consistently with Heisenberg’s uncertainty prin-
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ciple) between the quarks and/or gluons the coupling is stronger, leading to the

confinement into hadrons. This could be intuitively understood through compari-

son with rubber band: the wider one stretches it, the larger is the tension. On the

other hand, the coupling becomes weak at small distances (i.e. for large exchanged

momenta), allowing quarks to behave as a free particles. The exact expression for

running strong coupling is given by:

αs(Q2) = 4π
(11− 2/3nf ) ln( Q2

Λ2
QCD

)
, (1.1.2)

where nf denotes the number of the effective light-quark flavors and ΛQCD is per-

turbative QCD scale (200 MeV). From the expression for running strong coupling

constant (1.1.2), we infer that the deconfinement occurs at extremely high energies

(i.e. temperatures), and/or, as will be demonstrated in subsequent sections, at very

large baryon number densities. The experimental confirmation of the asymptotic

freedom is shown in Fig. 1.2. For the discovery of the asymptotic freedom, Politzer,

Wilczek and Gross were awarded by Nobel prize in 2004.

Figure 1.2: Running coupling αs(Q) as a function of energy scale Q. The figure

contains the summary of αs(Q) measurements (as indicated in legend). Figure

adapted from [14].
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1.2. Phases of hadronic matter, introduction of QGP and its importance

The fact that, the matter surrounding us, can be found in thermodynamically

distinct phases, is well-known. Since long ago, the phase transitions among these

phases, which assumed that small changes in temperature or pressure led to drastic

and abrupt changes in macroscopic properties of such matter, were also well under-

stood and described. However, in that case, both the existence of the various phases

and the phase transitions are governed by electromagnetic forces between atoms and

molecules.

By submerging deeper into subatomic world, where the strong force is dominant

one, the question of different phases of hadronic matter arose. Note that, contrary

to macroscopic matter, now, the number of particles is not conserved but instead the

baryonic number, i.e. the difference between number of baryons and anti-baryons,

is conserved [15]. So, the following three parameters describe thermodinamic prop-

erties of the strongly interacting relativistic matter: temperature (T ), pressure and

baryon number density µb [15].

The discovery of asymptotic freedom within pQCD influenced the birth of an idea

of the existence of new form of matter [16, 17], in which quarks, anti-quarks and

gluons are liberated at extremely high energy densities ε ∼ 1GeV/fm3. Historically,

the name for this form of matter was changing, so the terms: superdense matter,

quark soup [16] (1975), hot quark soup and plasma-like phase [18] (1978) all stand

for what is today known as "quark-gluon plasma" (QGP), the phrase that Edward

Shuryak coined 40 years ago [19]. Besides at high energy densities (i.e. when the

energy density of matter is of the order as the one in a proton, that is about an order

of magnitude larger than the energy density inside atomic nuclei), the transition into

QGP can also occur at very large baryon number densities [20].

There are two ways to achieve this state: 1) by compressing the nuclear matter,

so that nucleons overlap, or 2) by introducing a large amount of energy into nuclear

matter. The first way leads to the production of cold QGP, such as the one believed

to exists in neutron stars, supernovae, which is characterized by low temperature and

high baryon number density. The other way, which is relevant for the experiments

and consequently this study, leads to the formation of hot QGP, characterized by

5



very large temperature and sufficient energy density.

1.2.1. Lattice QCD at finite temperature

The transition from ordinary hadronic matter to the QGP, which corresponds to

the non-perturbative domain, can be studied numerically by applying lattice QCD

(lQCD) methods [21], that was the first to propose phase transition [18, 22]. Thus,

the estimates of thermodynamical properties of the phase transition are provided

by lQCD, such as critical temperature Tc and critical energy density εc, which were

roughly estimated to be 160 MeV and ∼ 1GeV/fm3, respectively. Note, however,

that this temperature is very close to the limiting ’ultimate’ temperature of hadronic

matter TH , as phenomenologically estimated in 1968 (before the QCD formulation,

and partons discovery) by Hagedorn [23].

One of the most relevant results of lQCD method [18, 22] is presented in Fig. 1.3,

which represents temperature dependence of energy density. We observe that in a

narrow temperature window of 10−20 MeV around the critical (point) temperature

Tc, the energy density changes for an order of magnitude. This rapid change in

energy density is subjected to the large change in the degrees of freedom. Namely,

at T � Tc, there are usually considered to be 3 active hadronic degrees of freedom

corresponding to a dilute gas of 3 charge states of pions [24]. Above Tc, the QGP is

formed and free gluons contribute by (8 colors times two helicity states) 16 degrees

of freedom, while quarks contribute by (nf ≈ 2 − 3 active light quark flavors, for

T not far above Tc, times 2 accounting for the anti-quarks, times two spin states

and three colors) 24 − 36 degrees of freedom. Thus, in the quark gluon plasma

phase, there are about 40− 50 internal degrees of freedom in the temperature range

(1 − 3)Tc. Since energy density, entropy and pressure are all proportional to the

number of degrees of freedom, the large change in degrees of freedom could explain

the rapid rise of ε in deconfined, compared to confined states.
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Figure 1.3: The energy density obtained by Lattice QCD. The figure shows energy

density of QCD matter, scaled by T 4 as a function of temperature from lQCD [21,

25]. Three different cases are considered, i.e. medium consisting of: two massless

quarks u, d (red curve), three massless quarks u, d, s (blue curve) and the most

realistic 2 + 1 case - two massless quark u, d and s quark with its real mass (green

curve). The arrows indicate the corresponding ideal gas limits, described by Stefan-

Boltzmann law. Figure adapted from [25].

Another important evidence of deconfinement is related to the Fig. 1.4, which

represents temperature dependence of the heavy quark potential (color screening

potential [26] for quarkonium formation, where term quarkonium denotes the bound

state of a heavy quark and its anti-quark, i.e. either charm or bottom) for three

flavor QCD [27]. The comparison with the confining Cornell potential: V (r) =

−α/r + σr, which corresponds to the quarkonium potential in QCD vacuum, i.e.

in hadronic matter and not in the QGP, is also addressed. We observe that at

lower temperatures, i.e. T . 0.5Tc the quarkonium potential curve agrees to a

great extent with Cornell potential, while with increasing temperature deviation

from confining potential is more pronounced, implying possibility of different phase

of matter. Additionally, we see that the screening starts to become important at

small distances, which strongly suggests melting of heavy quark bound states, i.e.

quarkonia.
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Figure 1.4: Heavy quark-antiquark potential with three flavor QCD for different

temperatures. The band of lines corresponds to the confining Cornell potential

normalized by the square root of the string tension V (r)/
√
σ = −α/(

√
σr) +

√
σr,

where α = 0.25± 0.05. Figure adapted from [27].

Nevertheless, despite acknowledging the existence of deconfined phase and of

sharp changes of thermodynamical properties, it still remained unclear weather this

transition is a textbook case of phase transition in statistical mechanical sense.

According to the definition, the first-order phase transition requires a discontinuity

in the first derivative of the free energy (or equivalently, a discontinuity in energy

density) with respect to some thermodynamical variable at Tc, while the second-

order phase transition assumes discontinuity in the second (first) derivative of the

free energy (energy density). So, although we observe a rapid change in Fig. 1.3, it

does not necessarily imply the phase transition, but could actually present a cross-

over.

Additionally, massless QCD Lagrangian possesses SU(3)L ⊗ SU(3)R symmetry,

i.e. is invariant under the flavor and chiral transformations, while the exsistence

of pions represents breaking of the chiral symmetry [26]. This is a known as spon-

taneous symmetry breaking, since this term denotes the phenomenon when the

Lagrangian respects the symmetry, while its eigenstates at low energies (vacuum)

do not. Also, the symmetry at higher energy should be restored. Indeed, the chiral
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symmetry is a good symmetry of QCD Lagrangian consisting of u and d quarks,

since mu,md � ΛQCD, but would not be valid if strange quarks were involved.

That is, the non-zero masses of the quarks explicitly break the chiral symmetry of

the QCD Lagrangian, therefore nothing prevents quarkonium states to survive the

"phase" transition (see section 1.5). Also, the spontaneous breaking of the chiral

symmetry is predicted by QCD, which therefore also predicts the existence of the

Goldstone bosons (order parameter - condensate 〈qq̄〉): the pions, kaons and eta

mesons. The chiral symmetry of QCD is restored at higher temperatures.

The restoration of the chiral symmetry would present a sufficient condition for the

existence of a QCD phase transition. For better understanding of this correlation

between symmetry breaking/restoration and phase transition, the comparison with

the macroscopic (more comprehensible) phenomenon - ferromagnetic phase transi-

tion - is made [26]. In the latter case the symmetry is the isotropy, which exists

at high energy, as there is no preferable space direction (invariance under rotation);

but which is spontaneously broken at low temperatures, as microscopic magnetic

moments of the matter constituents are aligned, producing macroscopic magnetiza-

tion of the system. Additionally, isotropy symmetry can be explicitly broken by the

external non-zero magnetic field (analogon of non-zero quark masses). This links

spontaneous symmetry breaking with phase transition.

However, it is not clear whether this phase transition, also called chiral transi-

tion, implies deconfinement of quarks, anti-quarks and gluons, i.e. coincides with

the aforementioned deconfinement transition to QGP. The one way to resolve this

issue within lQCD is to assess if the two critical temperatures coincide. To this

end, earlier lattice QCD calculations studied the order parameters of the chiral and

deconfinement transitions, obtained the same Tc and concluded that they represent

the same transition [28]. However, nowadays it is believed that the relationship

between chiral and deconfinement transition is more complicated than earlier lattice

studies suggested, indicating that chiral transition differs from the deconfinement

one, that it is model dependent and/or that the "phase" transition consists of several

stages (for an overview, see [29]). Additionally, it appears that there is no transition

temperature that can be associated with the deconfining stage of the transition for

physical masses of the light quarks [30].
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Figure 1.5: Lattice QCD calculations of the criticalness of the hadronic matter

phase transition. The left panel shows phase diagram at zero baryon density, for

mu = md 6= ms. Figure adapted from [31]. Possible phases of hadronic matter as a

function of temperature and baryon number density, in 2 + 1 case, are presented in

the right panel. Endpoint denotes the critical point. Figure adapted from [32].

The issue of whether there is a phase transition or cross-over, for zero baryonic

density, is addressed in the left panel of Fig. 1.5, which examines the criticalness

of the transition as a function of the quark masses. The masses of up and down

quarks are considered identical. Thus, the lQCD calculations suggest [31] that

for massive quarks, at both low and large masses, the first-order phase transition

occurs. The cross-over transition is predicted to take place for intermediate quark

masses, while the second-order phase transition occurs in the border line between

the first-order and cross-over regions. Nowadays, there has been consensus that for

the physical quark masses and µb = 0 there is not a phase transition but a cross-

over [25, 26, 28]. The cross-over nature of the transition (for µb ' 0) has been known

for years [33], but the most recent lQCD calculations (assuming chiral transition)

imply that the first-order phase transition is excluded down to mπ = 80 MeV [34],

while the starting temperature of cross-over (µb = 0) equals to 156.5± 1.5 MeV [35]

for real quark masses (3 flavor case). On the other hand, also for chiral transition the

most recently obtained critical temperature in 2 + 1 flavor case, where mu,md → 0,

is Tc = 138± 5 MeV [34] (for zero baryonic number density).
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Next, we display different phases of QCD matter as a function of both: temper-

ature and the baryon number density [32] (the right panel in Fig. 1.5). We observe

that at low baryon number density, there is probably a very fast cross-over from the

low density hadronic matter to the QGP phase. At higher baryon number density,

there is believed to be the first-order phase transition [32, 36], but the position of

this (critical) end point is still undetermined and the search for it is work in progress

using different numerical methods, with major theoretical obstacles being so-called

sign problem [37] (fermionic determinant is complex so that Monte Carlo simulations

are not feasible), and introduction of real physical quark masses.

Note that throughout this section, we use the same label Tc (critical temperature)

with few different meanings: critical point (where critical point denotes the end

point of a phase equilibrium curve, i.e. the curve on which two different phases

coexist), temperature of phase transition (either deconfining, or chiral) and cross-

over temperature, although in the latter case it is not well-defined quantity.

The phase above Tc, is named quark-gluon plasma due to the analogy with elec-

tromagnetic plasma, where ion and electron dissociation took a place, whereas in

QGP, one observes dissociation of color degrees of freedom. Additionally, another

resemblance between these two plasmas, is in charge screening, so that color screen-

ing in QGP (Yukawa potential) corresponds to the charge screening by the adjacent

moving charges in QED plasma (q → qe−r/α). The major difference is that QGP

obeys non-Abelian theory.

Like the QED plasma, the QGP recognizes two limiting regimes [16, 38]: i) the

strongly coupled, and ii) the weakly coupled limit. The strongly coupled limit,

which is attainable at RHIC and LHC, assumes the temperatures in the vicinity

of critical temperature, i.e. (1 − 3)Tc, and is predicted by non-perturbative lQCD

or AdS/CFT correspondence [39–42] (anti-de Sitter/conformal field theory corre-

spondence), which represents conjectured relationship between quantum gravity and

QCD-like theories. The weakly coupled limit, which implies extremely high energies

(T well above Tc), is predicted by pQCD.
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1.2.2. Detailed description of hadronic matter phase diagram

The contemporary view on hadronic matter phase diagram distinguishes two ma-

jor regions [26]: the region where electromagnetic force between atoms and molecules

dominates (for T < 1010 K ∼ 1 MeV and p < 1030 Pa ∼ 10−2MeV/fm3); and the

region where strong interaction prevails (for T > 1 MeV and/or p > 1MeV/fm3).

In the electromagnetic region hadrons are confined within atoms and molecules,

while with increasing T over 100 MeV, hadronic gas is formed. The transition into

deconfined state of quarks, anti-quarks and gluons (QGP) occurs at approximately

T ∼ 150 MeV (for µb = 0), which is 105 times higher temperature than at the center

of the Sun. Note that, Fig. 1.6 corresponds to the chiral transition, while decon-

finement transition curve departures from it, in upward direction, at higher baryon

number densities (baryon chemical potential). The Universe, however, developed in

the reverse order.

At low temperature and p > 1MeV/fm3 the matter can be described as de-

generated gas of neutrons and is believed to exists in neutron stars (cold nuclear

matter). By heating this neutron matter up to several MeV, it should turn into the

gas of nucleons, and due to similarities between nucleon-nucleon potential and Van

der Waals interaction of molecules, this transition is referred to as nuclear liquid-gas

phase transition. On the other hand, for even higher pressures p > 103MeV/fm3

(or baryon chemical potential > 103) MeV, at low temperatures, the formation of

quark-quark Cooper pairs [43] occurs, leading to the exotic state of color super-

conductivity [44]. It is a QCD analogon of condensed matter physics superconduc-

tivity [45] (with quarks replacing electrons), which despite being a quantum effect

(a result of electron-phonon interactions), can qualitatively be explained in the fol-

lowing classical manner. In a metal lattice electrons are free and, due to their same

(negative) charges, they repel each others. On the other hand, the electron at-

tracts positively charged ions, that are located at the lattice nods. This causes the

lattice distortion, moving the ions slightly toward the electron. Thus the positive

charge density increases in the electron proximity, attracting the other electrons.

At long distances, effectively this attraction between electrons, can overpower their

repulsion, leading to their pairing-up.
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It is worth nothing that recently it has been discovered that Cooper-pairing

is also responsible for superfluidity of the pair of Li atoms (system of ultracold

fermionic atoms) at low temperatures [46] and under additional specific experimental

conditions. Additionally, hydrodynamical models estimated that QGP behaves as

a nearly perfect fluid, with the shear viscosity to entropy ratio close to the lowest

bound predicted by Ads/CFT correspondence [47]. Consequently, the coldest and

the hottest known matter surprisingly share the same property (phenomenon), which

is known to be very rare on the Earth [48], and which therefore presents an even

more interesting coincidence.

Figure 1.6: Illustration of a possible QCD phase diagram. Hadronic matter phase

diagram as a function of both: temperature and baryon chemical potential. The

green oriented curve presents commonly accepted evolution path of the universe.

Figure adapted from [49].

1.2.3. The importance of QGP studying

There are multiple reasons for studying QGP and its properties, such as [24]:

• According to the current Cosmology [50], it is considered to be a primordial

form of matter, that existed at a first 10 µs after the Big Bang;

13



• It represents an example of phase transition that may have occurred at high

temperatures of the early universe;

• The nature of quark confining into hadrons and the origin of mass for matter

could be explained by studying QGP properties;

• It is considered to be the ultimate, primordial form of QCD matter at high T

or µb (at least up to the electro-weak scale at TEW ∼ 103Tc), and finally:

• It is assumed to be a constituent of supernova and neutron stars, color super-

conductivity [51] as matter at high baryon number density and relatively low

temperature.

Taking all these points into consideration, the only way to create and study QGP,

i.e. the matter of energy density of the order ∼ 1GeV/fm3, under the controlled

laboratory conditions are ultra-relativistic heavy ion collisions. As expected, the

probability of creating such a dense hot matter increases with colliding larger nuclei

and with higher collision energies. This marked the beginning of the new era in

building upgraded collider facilities, although they are multipurpose detectors also

used for different studies such as for instance: testing the Standard Model (e.g.

Higgs boson) and its different extensions (e.g. Supersymmetry), searching for Grand

Unification Theory, examining the nature of dark matter, etc.

1.3. The ultra-relativistic heavy ion collisions

Today, the experimental method of examining hadronic matter consists in ac-

celerating the heavy nuclus beams and colliding them. The range of accelerated

beam energies varies from GeV to TeV at laboratories, such as GSI (Darmstadt,

Germany), BNL (New York, USA) and CERN (Geneva, Switzerland) [26]. For dif-

ferent center-of-mass energy per nucleon pair (√sNN), different regions of the phase

diagram of hadronic matter can be studied.

During the collision of ultra-relativistically accelerated ions a fraction of the ini-

tial center of mass energy is being released, due to inelastic collisions between the

constituent, it converts, consistently with Einstein energy-mass equivalence, into
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new degrees of freedom (new particles) of the system, creating the QGP under the

laboratory conditions. Therefore ultra-relativistic HIC are termed as a Little Bang.

1.3.1. Overview of heavy ion colliders

The first heavy ion beams accelerated to relativistic energies where produced at

the Alternating Gradient Synchrotron (AGS) at Brookhaven National Laboratory

(BNL, USA) and at the Super Proton Synchrotron (SPS, CERN, Switzerland) in

the 80’s [26]. They represented a fixed target accelerators, where highly accelerated

particles were shot at stationary ones. However, significantly higher collision ener-

gies are accessible in the other type of heavy ion colliders (HIC) − colliding beam

accelerators, such as the RHIC and the LHC.

The Relativistic Heavy Ion Collider (RHIC) is the first ever build colliding beam

heavy ion (accelerator) collider and is still operating. It is sited at BNL in Upton,

New York. Its injector is AGS, that accelerates two nucleus beams within two sepa-

rate rings and in opposite directions. Further, the beams proceed to RHIC collider,

where they are being accelerated to their nominal energies and stored in two rings

of 3.85 km circumference length. There were four interaction points along the RHIC

ring, where the bunches of the two beams collided, also known as: PHENIX, STAR,

PHOBOS and BRAHMS experiments. Today, only the two of them, PHENIX

(Pioneering High Energy Nuclear Interaction eXperiment) and STAR (Solenoidal

Tracker at RHIC) are operating and collecting the data. So far the following types

of particle combinations have been explored at RHIC: p+ p, p+Al, p+Au, d+Au,
3He+Au, Cu+Cu, Cu+Au, Au+Au and U+U . RHIC provided the first Au+Au

collisions at √sNN = 130 GeV in June 2000 and reached in 2001 its nominal energy

of √sNN = 200 GeV. In these collisions the high enough energy density (in the

latter case ε ≈ 5 GeV/fm3) was produced, so it was safe to claim that QGP was

finally formed [26]. The evidences of deconfined state formation will be discussed

in section 1.5. In the near future, a fixed target program will also start at STAR,

where 3− 7.7 GeV Au+ Au collisions will be used to examine high baryon density

regime µb ∼ 420− 720 MeV, in attempt to study the first order phase transition as

well as the QCD critical point. To date RHIC has had 17 runs.
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Currently, the largest and the most powerful particle collider in the world is

the Large Hadron Collider (LHC), at CERN, located near Geneva, on France-

Switzerland boarder. It uses SPS as an injector, has 27 km in circumference and lies

175 m underground. However, it is worth noting that, the heavy ion fixed-target

experiments at SPS first hinted at the existence of new state of matter consisting

of freely roaming quarks, antiquarks and gluons, but as established later, the initial

temperature of thus obtained system appeared to be insufficient for such a transi-

tion. In November 2010, LHC provided the first Pb+Pb collisions at √sNN = 2.76

TeV, which represented ∼ 14 times higher center-of mass energy compared to the

RHIC. The produced matter had ε ∼ 10GeV/fm3, which is well above the transi-

tion point, ensuring that the deconfined state of QGP is reached within this collider

(which will be, as discussed above, well-argued in section 1.5).

The LHC has four crossing points, around which seven detectors are positioned,

corresponding to the seven experiments: ALICE, CMS, ATLAS, LHCb, TOTEM,

LHCf, MoEDAL. Four of them participate in the heavy ion program: ALICE

(A Large Ion Collider Experiment), CMS (Compact Muon Solenoid), ATLAS (A

Toroidal LHC Apparatus) and LHCb (LHC-beauty). ALICE was the first/only

LHC experiment dedicated to study the QGP, but presently the wealth of data is

coming from the remaining three experiments as well. It collides the following par-

ticle pairs: p+ p, p+ Pb, Pb+ Pb, and lately started program with smaller system

than the one created in Pb+Pb collisions: Xe+Xe. Now, the top colliding energies

for Pb + Pb and Xe + Xe systems are 5.02 TeV and 5.44 TeV, and the run 2 data

analysis is in full swing.

The remote future experimental plans in high-energy heavy-ion physics are build-

ing of 100 km in circumference Future Circular Collider at CERN and Super pp

Collider (SPPC) at China.

Along with these two the most renowned colliders, there are also other facil-

ities/experiments dedicated to studying some specific regions of hadronic matter

diagram. Thus, GSI Heavy Ion Synchrotron SIS18, in Darmstadt, Germany is built

for studying the onset of phase transition, i.e. pursuit for the first order transition

and critical point at high µb, while at the same place Facility for Antiproton and Ion

Research (FAIR) is being built. The similar function will have Nuclotron-based Ion
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Collider fAcility (NICA), whose putting into operation is forseen for 2021 in Dubna,

Russia and HIAF in China.

Additionally, also the facilities such as Electron-Ion colliders, that explore the nu-

clear parton distribution function (nPDF), i.e. the properties of cold nuclear matter

(CNM), and QCD at extremely high gluon densities (saturation), which provides

the knowledge of the nuclei just before the A + A collision occurs, are very impor-

tant. Thus, SLAC and HERA were the leading ones, whereas the future facilities

are: Jefferson Laboratory’s Electron-Ion Collider (JLEIC), at Newport, Virginia,

the upgrade of RHIC to eRHIC and Large Hadron elecrton Collider (LHeC).

1.3.2. Space-time picture of ultra-relativistic heavy ion collisions

The accepted picture of all preceding and subsequent phases of QGP formation

in ultra-relativistic HIC is illustrated in Fig. 1.7. Since nuclei are accelerated nearly

to the speed of light, they are Lorentz contracted along the beam direction in centre-

of-mass frame, and seen as two "pancakes", i.e. gluonic sheets.
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Figure 1.7: Space-time evolution of the heavy ion collision. The scheme of different

stages of a HIC as a function of longitudinal coordinate z (beam axis) and time t

is given on the left. The inserted figure on the right embodies the particles, from

nuclei to detectable hadrons, and is synchronized to the figure on left. τ denotes the

Lorentz-invariant proper time (τ ≡
√
t2 − z2), which is constant along the hyperbolic

curves separating different stages. Figure adapted from [52].

Historically, the first and the most simplified scenario of the system evolution

considers the Bjorken expansion, which is applicable for central collisions at the top

RHIC energy and at LHC energies, but is not a part of present-day most advanced

hydro-models. According to Bjorken scenario [53], the crossing time of the nuclei

τcross can be estimated as τcross = 2R/γ, where R denotes nucleus radius, while

γ is Lorentz factor. Additionally, he proposed that the crossing time should be

smaller than the time scale of the strong interactions τs ∼ 1/ΛQCD ∼ 1 fm/c,

i.e. τcross < τs, which is satisfied unless γ < 12. This assumption ensures that

the particles generated by the strong interaction between the nucleon partons, are

created once the nuclei have already passed each other. Note that, both RHIC and

LHC meet this condition, as in these collisions the order of magnitude of γ is well

above the threshold, i.e. 102 and 103, respectively. The scenario also assumes the
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uniform distribution of the particle multiplicity as a function of the rapidity. This

assumption greatly facilitates the hydrodynamical calculations of system evolution,

because it provides a rapidity symmetry of the system, resulting in a uniform energy

density in different rapidity slices.

Today it is considered that, in ultra-relativistic HIC, nuclei pass through each

other, practically intact, and that due to the enormous release of collision energy

new degrees of freedom are formed. Also, the QGP formation is first examined in

transverse plane (transverse to the beam axis, corresponding to mid-rapidity region),

in order to study the new matter under the zero baryonic number conditions (all

baryons are still enclosed and carried away within nuclei). Note also that we will

only generate predictions for mid-rapidity region. The first, therefore the fastest,

partons (hard probes) are produced within 0.2 fm/c post-collision[24]. However, still

the produced partons are not forming thermalized/equilibrated state called QGP.

This initial stage of parton (pre)production is described by different Initial state

models (for references see [54]), such as: Glauber [55] models (optical, Monte-Carlo),

QCD scattering in the Dipole Picture (which includes initial-state energy loss and

shadowing [56–58]) and Color Glass Condensate and Glasma (KLN models [59] and

IP glasma [60]), which assumes Lorentz contraction, then CGC [61, 62] stage before

the collision, and Glasma [63] right after the nuclei pass each other. Note that

under pre-production stage, one considers nucleus state just before the collision,

while under production stage one assumes the created partonic stage immediately

after nuclei cross each other.

A starting point of the glasma-based models (or CGC-inspired models, such as

KLP), which are considered most up-to-date ones (IP-Glasma), is the assumption

of nuclei before the collision being described by Color Glass Condensate (CGC).

This was motivated by HERA (Hadron Elektron Ring Anlage at DESY, Hamburg)

data [64] on gluon distribution function in e+p collisions, and could be explained in

following manner. One could argue that gluons dominate QCD dynamics. Namely,

at large energies, smaller fractional momentum xB (Bjorken xB = Q2/(2Pq) =

−q2/(2Mν), where P is proton momentum, while q2 = −Q2 and ν are the square of

the four momentum and energy transferred from the lepton (electron) to the target

nucleon (proton) at rest in laboratory frame in DIS, respectively; M is proton mass)
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and larger energy scales Q regions become accessible. With decreasing Bjorken xB
the gluon density increases much faster than quark density, due to non-Abelian

nature of QCD (i.e. due to 3- and 4-gluon vertices, that is, the color charge).

Thus, the intrinsic non-linearity of QCD causes gluon showers to produce more

lower xB gluon showers - generating an exponential avalanche toward small xB [24].

Additionally, the number of gluons rises more rapidly than their transverse area.

Thus, the gluon density xG(x,Q2) increases sharply with decreasing xB or increasing

Q (Fig. 1.8). Note that, low xB gluons are closely packed together in the transverse

plane, resulting in a weakly coupled (αs � 1), but dense system called CGC. The

opposite process, that competes with gluon shower production (∝ ρ), is the gluon

fusion (∝ −αsρ2). Consequently, at high enough energies, the transverse phase

space gluon density ρ = 1
R2π

dN
dyd2p⊥

(y denotes the rapidity) eventually reaches the

saturation point ρsat ∝ 1/αs(Q) [24]. Since αs is very small, the quantum mechanical

states are multiply occupied by colored gluons, which justifies the name Condensate.

Figure 1.8: Proton’s partons distribution functions. The gluon distribution function

as a function of xB for different values of Q2 from DGLAP fits to HERA [64] is

presented in the left panel. The right panel shows MSTW2008 next-to-leading order

(NLO) PDFs at scale Q2 = 10GeV 2 for the LHC. Figure adapted from [64, 65].

Additionally, from the right panel of Fig. 1.8 we observe that the HERA data for

DIS confirm that gluons totally dominate the dynamics for xB < 0.01 .

Also note that, the bound proton parton distribution function (PDF) in heavy
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nucleus, differs from the one in free proton. As xB decreases toward small values

(xB . 0.01), the ratio of the bound proton PDF (nPDF) fp/Ai (x,Q2) and the free

proton PDF fpi (x,Q2) is smaller than 1. This effect is known as shadowing or

screening [56–58], and it was first observed in photon-nucleus collision experiments.

The name comes from the fact that the cross section per nucleon in heavy nuclei is

smaller than the one in deuterium. In practice, this means that, the nuclear PDF

in heavy nucleus (nPDF) can not be simply expressed by the normalized sum of

free protons and free neutrons (nucleons) PDFs. And also, this affects the PDF

evolution equations such as DGLAP [66–68].

Upon production, free partons interact among each other until reaching QGP

equilibrium phase, which is considered to be accomplished few fm/c upon the nuclei

collision. The experimental data support the idea of very fast thermalization τ0 < 1

fm [53], but theory still fails to explain this phenomenon, which remained an open

question [69]. If indeed, the system reached the equilibrium very fast, then its

subsequent evolution could be described by relativistic perfect-fluid hydrodynamics.

The hydrodynamic expansion leads to more dilute system, and eventually the phase

transition from QGP to hadronic gas occurs.

There are various models describing hydrodynamic expansion, and addition-

ally hybrid models, which combine fluid dynamics with subsequent hadronic phase

and/or preceding partonic phase. Thus, there are hydrodynamic expansion mod-

els which assume strong coupling, which is in accordance with the temperatures

near Tc (for a review see [70, 71]), and include dissipative relativistic hydrodynam-

ics. Some of the more advanced models belonging to the second (hybrid) group

are: simulations combining 2D+1, 3D+1 viscous codes for QGP evolution with

UrQMD [72] (Ultra relativistic Quantum Molecular Dynamics) cascade for hadronic

phase, VISHNU [73] (Viscous Israel Stewart Hydrodynamics aNd UrQMD), MU-

SIC+UrQMD [74], SONIC [75], EPOS3 [76]. On the other hand, the models which

assume weakly coupled gas (at higher T ), belong to Parton transport theory [77, 78],

such as state-of-the-art: perturbative QCD based transport model BAMPS [79]

(Boltzmann approach to multiparton scatterings), PHSD [80] (Parton-Hadron Sting

Dynamics) and AMPT [81] (A Multi-Phase transport model).

Thus obtained strongly-interacting hot hadron gas exists within 2 fm/c, whereas
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the transition into weakly-interacting system of hadrons happens through at least

two stages: chemical and kinetic (thermal) freeze-out, that ends 10 fm/c after the

nuclei collision took place. The freeze-out is the general term used to describe the

stage of matter development, where the final hadrons are being emitted. Usually,

the chemical freeze-out takes place before the kinetic one.

Namely, at low colliding (rescattering) energies of hadrons the elastic cross sec-

tions are larger than the inelastic cross sections, which results in earlier fading away

of inelastic than the elastic (the same number of initial and final particles) collisions.

The moment when inelastic collisions cease is considered as the chemical freeze-out.

As the system evolves from chemical to thermal freeze-out, the dominant processes

are elastic cross sections and strong decays of heavier resonances into stable hadrons.

Note that, the measured ratios of hadron abundances are frozen at chemical-freeze-

out. The chemical freeze-out is studied by statical and thermal models, which aspire

to explain the ratio of hadron multiplicities. For an overview of the models, see [82].

It is also considered that Tchem is approximately equal to 153 MeV [83].

On the other hand, the thermal (kinetic) freeze-out is defined as the stage of

matter evolution when the particles stop interacting. The thermal freeze-out marks

the transition from strongly interacting hadron gas to the weakly coupled one (as-

suming freely streaming hadrons). This freeze-out is induced by the expansion of the

medium, which leads to rapidly growing mean free path λmfp. So, when timescale

connected with the collision τcoll ∼ λmfp becomes larger then the expansion time

scale τexp [84] of the medium, the thermal freeze-out occurs. Thus, the particles de-

part from each other very fast, which decreases the probability of collision happening.

Although different particles may have different freeze-out points, the fast expansion

implies fast thermal freeze-out, and is approximately assumed to be universal for

all types of particles. During this process, momentum distributions of particles are

frozen, and they do not change until particles (hadrons) reaching the detectors. The

thermal freeze-out is studied by hydro-inspired models, which analyse the transverse

momentum spectra and correlations. For an overview of the models see [85].
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1.4. Probes of QGP matter

In this section we give a brief review of the observables that can be measured in

ultra-relativistic HIC and their classification. These observables are expected to be

able to provide an answer whether the QGP is formed in these collisions, and if so,

to give deeper insight into the properties of this extreme form of matter.

1.4.1. The pQCD factorization formula

Before embarking on the relevant observables, we outline the idea of the collinear

factorization, which is very important for both theoretical and experimental study

of the matter created in ultra-relativistic HIC.

From Fig. 1.9, which represents DIS parton (predominantly gluon) evolution

in QCD, we distinguish three regions, that are accessible in ultra-relativistic HIC:

1) non-perturbative region for Q2 < Λ2
QCD (virtuality Q2 ≡ −q2 > 0, where q

presents exchanged momentum in DIS case), where interactions among partons are

too strong, keeping them confined within hadrons; 2) CGC region for large densities

and relatively small Q2, where gluon saturation occurs (as discussed above); and 3)

dilute region for low densities and high Q2(x), where the parton densities evolution

is described by linear Dokshitzer, Gribov, Lipatov, Altarelli and Parisi (DGLAP)

equations [66–68]. As mentioned earlier, in the last region, the perturbative QCD

(pQCD) is suitable, and it represents the region of deconfinement, i.e. the phase-

space where quark-gluon plasma can be formed. Further, we will concentrate on

this region.
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Figure 1.9: Phase diagram for parton evolution in QCD. Each colored circle in

figure depicts a parton with transverse area ∼ 1/Q2 and longitudinal momentum

equal to xP , where x is a fractional momentum of a parton at a given resolution

scale Q (or in DIS case Bjorken x = Q2

2Pq is a fraction of proton momentum carried

away by parton), and P being proton momentum. The straight line is a saturation

line, separating the dense from dilute regimes. In this thesis we consider a dilute

limit, where DGLAP evolution is applicable. Figure adapted from [86].

In our region of interest, an empirical pQCD factorization formula [87] is assumed

to be applicable, which considers that the differential hadron cross section in ultra-

relativistic HIC can be disentangled into three independent processes: 1) initial

parton production; 2) parton energy loss within QGP medium; and 3) fragmentation

(and decay) into detectable hadrons.

The generic pQCD factorized formula for inclusive hadron h production, i.e.

A+B → h+X, as depicted in Fig. 1.10 (where A and B denote accelerated heavy

or light ions and X all remaining detectable particles) reads:

1
TAB(b)

dNAB(b)
dyd2p⊥

=
∑
a,b,c,d

∫
dxadxbf

a/A(xa, Q2
a)f b/B(xb, Q2

b)
dσab→cd

dt̂
×

×
∫ 1

0
dεP (ε) 1

1− ε
Dh/c( zc

1−ε , Q
2
c)

πzc
, (1.4.1)

where a and b present produced initial partons, originating from A and B, respec-

tively. As previously explained, fa/A(xa, Q2
a) and f b/B(xb, Q2

b) denote corresponding

PDFs, where xa and xb (Bjorken x) stand for initial momentum fractions carried
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away by the corresponding hard-scattered partons. Note that, dσab→cd/dt̂ is dif-

ferential cross section for the process on partonic level. In our case P (ε) is pQCD

distribution of parton fractional energy loss, whereas zc = ph/pc is a momentum

fraction carried away by the leading hadron h. Dh/c denotes fragmentation function

(FF) of parton c hadronizing into h. The scalling factor of proton-proton colli-

sion is given by so-called nuclear thickness (overlap) function, for a given impact

parameter b (a relative distance between nucleus centers in a transverse plain):

TAB(b) =
∫
d2s TA(s)TB(s− b), where TA(s) =

∫
dzAρ(s, zA) denotes the probabil-

ity per unit transverse area of a given nucleon being located in the target/projectile

flux tub, which is all well-defined within Glauber [55] model of HIC.

Figure 1.10: Illustration of pQCD factorization. The figure shows an inclusive

A+B → h+X process, where A and B denote colliding nuclei. The production of

initial parton c is depicted at the leading order, upon which parton c traverses the

medium and loses energy via gluon bremsstrahlung. Finally c fragments (denoted

by arrows) into hadron h (the leading particle).

The asset of using the pQCD factorization formula reflects in ability to theoret-

ically study the complicated ultra-relativistic HIC processes, such as: production,

energy loss and fragmentation, as separate entities. The obtained separate numer-

ical results, when combined together produce a prediction, which can be further

tested against the data.
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Since the subject of this thesis is the energy loss of high p⊥ particles in QGP, we

will further focus our theoretical striving only on energy loss step. Also, we assume

that only high p⊥ parton energy loss occur in QGP, while its production, which

takes place well before thermalized QGP is formed, and fragmentation (and decay)

occur in QCD vacuum.

1.4.2. Observables classification

The heavy-ion observables, accessible to measurements with RHIC and LHC,

serve not only as an evidence of QGP formation, but also as a tomographic tool for

studying properties of this new state of matter. They are gathered in two groups:

1. Hard (perturbative) probes, i.e. particles with large transverse momentum

and/or large mass (p⊥,m & O(1 GeV)� ΛQCD), which represent perfect to-

mographic tool for studying QGP medium, since they are considered to: i)

be produced very early (τ ∼ 1/p⊥ . 0.2 fm/c [24] after the HIC), and ii)

originate from initial partonic scatterings with large momentum transfer Q2.

Therefore, these partons are assumed to traverse the entire QGP medium,

eventually to be affected by the medium and to encode "tomographic" infor-

mation of the hottest and densest phases of the collision. Additionally, they

can be theoretically studied within pQCD (pQCD factorization formula); and

2. Soft (bulk) observables, which are linked to the collective behavior of the

created system and mainly refer to the expansive phases of QGP evolution,

and consequently are studied within relativistic hydrodynamics. They provide

constraints on the collective properties, such as entropy density, viscosity,

etc., of the produced strongly-interacting medium. Among many of these

observable, we will refer only to the elliptic flow v2, as one of the smoking

guns of QGP formation and the one responsible for the coin "nearly perfect

fluid" used to describe the quark-gluon plasma.

Namely ∼ 99.9% of quarks and gluons created in ultra-relativistic HIC are low-

energetic particles (∼ kBT ) and they constitute QGP (bulk). The remaining ∼ 0.1%

26



are high-energy particles, that is hard probes (tomographic probes), which are the

subject of this thesis. Note that, QGP matter, due to its short-living, cannot be

tested by some external particles, which makes hard probes, as self-generated par-

ticles, the only tool for exploring the medium properties. Also, throughout the

thesis we use the term hard probes for both: the high p⊥ parent parton, or its frag-

mentation product: hadron. These probes yield: gluon rapidity density dN g/dy,

transport coefficient q̂ (average transverse momentum squared transferred to the

traversing particle per unit path-length), critical energy density εcrit, critical tem-

perature Tcrit or they serve to control the validity of the pQCD factorization formula

(i.e. σAA = A2σpp), and to constrain the nPDFs.

Hard probes [88, 89] refer to the following processes (as schematically shown in

Fig. 1.11) and the corresponding observables (for clarification of each see subsec-

tion 1.5):

• Jet quenching [90], i.e. "the attenuation or disappearance of the spray of

hadrons resulting from the fragmentation of a parton having lost energy in the

dense plasma produced in the reaction" [91]. The corresponding observables

include the suppression of:

– high pT hadron spectrum,

– heavy-quarks (i.e. D and B mesons),

– unbalanced back-to-back high-p⊥ di-hadron azimuthal correlations;

• Non-attenuated yield of electroweak particles (γ,W and Z bosons);

• γ jets, i.e. enchanced yield of thermal (secondary) photons, which provides an

estimate for the mean and consequently the initial temperature of QGP, with

the help of various hydro models.

• Quarkonium dissociation, where quarkonium denotes the bound state of heavy

quark and its anti-quark qq̄, that is charmonium (cc̄) and bottomonium (bb̄)

families.
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Figure 1.11: Illustration of the hard probes. Layout of hard probes (on the left-hand

side) together with the QCD matter features that the corresponding probe provides

(on the right-hand side). Figure adapted from [92].

On the other hand, soft (bulk) observables [93] include: charged hadron multi-

plicity dNch/dη, inclusive identified hadron spectra (dN/dp⊥), radiative v1, eliptic

flow v2 [94] and higher harmonics, etc.

Historically, the most prominent soft observable was elliptic flow (of light 2 − 3

GeV/c transverse momentum particles), the collective phenomenon which occurs

in peripheral A + A collisions, and only if QGP thermalizes quickly enough τ ∼

0.5 − 1 fm/c [24, 95]. It is quantified via the (non-zero) second Fourier coefficient

v2(p⊥, y) ≡ 〈cos(2∆Φ)〉 of the azimuthal expansion of the single inclusive hadron

spectra with respect to the reaction plan (RP) [96, 97]:

E
d3N

dp3 = 1
2π

d2N

p⊥dp⊥dy
(1 + 2

∞∑
n=1

vn cos[n(Φ− ΦRP )]). (1.4.2)

The reaction plain is determined by beam direction and impact parameter (see

Fig. 1.12), while ∆Φ = Φ− ΦRP . The explanation for the elliptic collective behav-

ior is following: in peripheral collisions the overlapping nuclei region is azimuthally

anisotropic (almond-shaped), and due to larger pressure gradient "in-plane" com-

pared to the "out-of-plane" (see left panel of Fig. 1.12) the initial coordinate-space

anisotropy translates into the final momentum-space asymmetry, i.e. elliptic flow

(see right panel of Fig. 1.12).
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Figure 1.12: Transfer of spatial into momentum azimuthal anisotropy. The figure

illustrates the peripheral collision of two nuclei, where the overlapping region (QGP)

lose its spherical shape and becomes almond-like (elliptic). Broken spatial isotropy

produces uneven pressure gradients in-plane and out-of-plane (indicated in figure),

leading to momentum anisotropy and elliptic collective behavior. The left panel is

adapted from [98], while the right panel is adapted from [99].

1.4.3. The nuclear modification factor

As discussed earlier, ultra-relativistic A + A (A is a heavy ion) collisions are

considered to be the only source of quark-gluon plasma in experiments, while in

p(d) +A collisions its precursor, i.e. the cold nuclear matter (CGC), can be studied

(see descriptive Fig. 1.13). Nowadays, there is a debate about whether a small

droplet of QGP could be produced in this smaller systems (p(d, 3He) + A), since

they also exhibit a collective behaviour (see the next section). However, p + p

collisions are still considered as a source of so-called "QCD vacuum". Therefore, in

order to extract thermodynamic and transport properties of QGP, the results for

a given observable obtained in A + A collisions need to be compared with the one

measured in p+ p collisions [92] , which thus serve as a baseline:

RAA = Yield(AA)
Yield(pp) = ”hot/dense QCD medium”

”QCD vacuum” . (1.4.3)

Along the same lines, the properties of CGC could be inferred by substituting

Yield(AA) by Yield(p(d)A) in the numerator of the previous equation.
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Finally, we define one of the central observables in this thesis, that quantifies the

medium effect on the yield of a hard probe in a A+A collision —nuclear modification

factor [92]:

RAA(p⊥, y; b) = d2NAA/dydp⊥
〈TAA(b)〉 × d2σpp/dydp⊥

, (1.4.4)

which is a quantitative form of descriptive Eq. (1.4.3), and which, due to the pQCD

factorization formula (Eq. (1.4.1)), measures the deviation of A + A (for a given

impact parameter) from an incoherent superposition of nucleon-nucleon collisions

(which corresponds to RAA = 1). Thus, if the probe is unaffected by the medium

then RAA = 1 (e.g. electroweak probes), if it is enhanced then RAA > 1, and for

suppression [90] RAA < 1.

It is worth noting, that throughout this thesis, we use angular averaged form [100,

101] of the nuclear modification factor:

RAA(p⊥) = dNAA/dp⊥
NbindNpp/dp⊥

, (1.4.5)

which represents the ratio of the quenched A+A spectrum to p+p spectrum, scaled

by the number of binary (nucleon-nucleon) collisions (Nbin), and which is shown

to be weakly sensitive to the details of medium evolution [102, 103], i.e. can be

characterized by medium averaged properties (e.g. Teff ).

Figure 1.13: A + A vs. p(d) + A collisions. The illustration of nucleus + nucleus

(left) and proton + nucleus (right) collision is shown. The gray area in the left panel

presents formed QGP medium after the collision. The gray area in the right panel

raises a question of QGP formation in p(d)+A systems. Figure adapted from [104].

The subsequent section gives an answer to whether initial state or final state

effects are responsible for suppression.
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1.5. Empirical evidence of QGP discovery

In this subsection first we will give historical review on dilemmas that scientist

encountered and experimental signatures of the QGP formation in the previously

mentioned colliders. Then we provide the updated measurements of the relevant

observables.

1.5.1. Historically

One of the historically most relevant observables for studying QGP formation and

properties is the jet quenching, as first proposed in [105, 106]. The reason behind this

choice, was the belief that at sufficiently high colliding energies at RHIC and LHC,

the radiative energy loss of high p⊥ parton would become large enough to lead to the

softening of p⊥ spectra. At that time, it was still believed that the main energy loss

channel was the gluon bremstrahlung, while the collisional energy loss was considered

practically negligible [107, 108] (which is now considered incorrect assumption).

Namely, at its way through the quark-gluon plasma, high p⊥ is considered to interact

with medium constituents, and eventually radiate gluons. For large enough initial

parton’s momentum, this radiative energy loss can be calculated within pQCD, and

is considered responsible for attenuation of p⊥ spectra compared to the spectra,

with no medium present. Based on the data from combined experiments at SPS,

CERN [109] on February 10th 2000 announced the creation of new state of matter

—the QGP, but later measurements proved that the collision energy was not large

enough either for such a transition or for creation of thermalized QGP (collective

flow measurements).

In the later years, the higher particle momenta become available at RHIC, that

led to Fig. 1.14, which presents one of the most important experimental result at the

time. In this figure the comparison of RHIC and SPS π0 RAA data as a function of p⊥
is presented. The SPS results display a significant enhancement of Pb+Pb spectrum

compared to scaled p + p spectrum. This is a consequence of Cronin effect [110–

114], which, on partonic level, could be explained in terms of multiple scatterings of

"projectal" partons from proton or nucleus off partons from the other nucleus, where
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"projectal" partons acquire a trensverse momentum kick, shifting their momentum

spectra toward higher values. Quantitatively, it can be expressed in the following

manner: Edσ/d3p(H + A → h + x) = An(p⊥)Edσ/d3p(H + N → h + x), where

A stands for the nucleon number, N and H denote the nucleon and the incoming

hadron, respectively, h is the produced hadron, while n(p⊥) > 1. Nowadays, it is

considered that Cronin effect occurs in p + A and A + A collisions for 2 . p⊥ . 6

GeV/c [110–114].

Figure 1.14: RHIC vs. SPS RAA as a function of p⊥. Comparison of neutral pion

suppression data from SPS (triangles and stars) and RHIC (squares and circles)

indicates the occurrence of jet quenching at RHIC [116], in distinction to previously

observed enhancement at SPS (see [115] and references therein). Figure adapted

from [115].

However, in central Au + Au collisions at RHIC no enhancement was detected,

but instead the factor of 4 − 5 suppression (RAA) of π0, which might indicate the

formation of QGP [115]. Keep in mind that, at the time of this measurement it

was unclear whether the suppression is a consequence of the initial state effect (i.e.

the saturation of gluon distribution, shadowing [56–58]) or the final state effect

(energy loss in QGP, i.e. jet quenching). Since, the initial state (cold nuclear

matter) effects are studied in p(d)+A, while both initial and final state (hot nuclear

matter —QGP) effects are considered to be achievable in energetic A+A collisions

(see descriptive Fig. 1.13), the final resolution to the suppression origin came by

comparing the particle suppression in these two collisions. Thus, in the summer

of 2003 Physical Review Letters published their famous issue (see the cover in the
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left panel of Fig. 1.15), where all four RHIC experiments (PHENIX, PHOBOS,

BRAHMS and STAR) preliminarily obtained that the suppression is due to the hot

nuclear matter effect.

Figure 1.15: Suppression due to hot and not cold QCD matter confirmed by all

four RHIC experiments. In the left panel the cover of Phys. Rev. Letters from 13

August 2003 is shown, confirming in all four RHIC experiments no suppression in

d+Au collisions. PHENIX light hadron RAA data from that volume [116] for d+Au

and Au+Au collisions at √sNN = 200 GeV are presented in the right panel. Figure

adapted from [104].

The most striking experimental evidence is given by the right panel of Fig. 1.15,

which shows the nuclear modification factor for non-identified charged hadrons (h±)

and π0-mesons measured by PHENIX [116] in √sNN = 200 GeV d+Au and central

Au+Au as a function of p⊥. The large suppression observed in Au+Au collision is

absent from d + Au collision. Besides this result, there were also another "smoking

guns" of QGP formation [24], such as: bulk collective flow (e.g. elliptic flow signa-

ture), breakdown of bulk collectivity and other jet quenching results [90, 105, 106].

Among these, the most representative ones are presented in Fig. 1.16. Thus, the

left panel of Fig. 1.16 shows the STAR [117] and PHENIX [118] data for the elliptic

flow, whose notable digression from zero value implies strong collective behavior of

the produced matter in peripheral 200 GeV Au + Au collisions. The exceptional

agreement of the v2 data with hydrodynamical predictions [119] was an unexpected
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finding, suggesting that the QCD matter produced at RHIC behaves as nearly per-

fect fluid.

Figure 1.16: Empirical evidence of QGP formation. Elliptic flow v2 data as a func-

tion of p⊥, extracted from STAR [117] (full symbols) and PHENIX [118] (open

symbols), are shown in the left panel. Hydrodynamical predictions are also plot-

ted [119]. Right panel compares two-particle azimuthal distributions in cases of

p+ p, central d+ Au and Au+ Au collisions, and is adapted from [120].

Additionally, RHIC experiments detected another jet-quenching observable —un-

balanced back-to-back high-p⊥ di-hadron azimuthal correlation. Namely, the detec-

tion of high p⊥ hadron evokes an expectation of detecting its partner jet in an

opposite direction, and due to momentum conservation low. The detected particle

is called trigger particle, whereas the particle, that is expected to be detected at

the azimuthal angle ∆φ = φ − φtrig = π is referred to as associated hadron. It is

measured that in p + p collision at midrapidity (η = 0), a di-jet signal appears as

two distinct back-to-back Gaussian-like peaks at ∆φ ≈ 0 (near-side) and at ∆φ ≈ π

(away-side), representing an enhanced correlation, due to correlation of fragments

originating from a single jet (either near-side or away-side jet). From right panel

of Fig. 1.16, which presents two particle azimuthal distribution relative to a trig-

gered hadron, we observe the same pattern in d + Au as in p + p collision, i.e.

both near-side and away-side picks. However, STAR [120] measurements showed a

monojet-like signal in central Au + Au collision, with a complete disappearance of

the away-side peak for 4 < p⊥(trig) < 6 GeV/c (p⊥(assoc) < p⊥(trig)). Again, the

difference between d+Au and central Au+Au collisions suggests that the reason for
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the away-side jet being depleted is related with the medium produced in Au + Au

(QGP), but absent from d+ Au collision.

All these measurements represent an empirical evidence of the formation of quark-

gluon plasma in √sNN = 200 GeV Au + Au collisions at RHIC. Even though, the

experimental data collected in 2005 also expressed strong support of QGP discovery

at the RHIC [121], not until 2010 the formal confirmation has arrived [122].

1.5.2. The updated experimental evidence

In this subsection we display the up-to-date experimental measurements of the

most relevant QGP matter probes, both the hard and the soft ones. Following the

same observable sequence listed in subsection 1.4.2, first we show the most recent

suppression data of high transverse momentum light particles. More specifically,

Fig. 1.17 comprises the suppression data from SPS era, over RHIC and√sNN = 2.76

TeV LHC to √sNN = 5.02 TeV LHC, for neutral and charged pions and charged

hadrons.
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Figure 1.17: Suppression of high p⊥ light particles. Measurements of RAA as a func-

tion of p⊥ in central collisions at four different center-of-mass energies (as indicated

in legend), for π± (at SPS), π0 (at SPS, RHIC), h± (at RHIC) and charged particles

(at LHC) are gathered. The newest CMS data at √sNN = 5.02 TeV are presented

by yellow rectangles. For experimental and theoretical references see [123]. Figure

adapted from [123].

From Fig. 1.17 we observe that at √sNN = 5.02 TeV LHC energies, the reachable

light particle momentum is ≈ 300 GeV, which is quite broader than at RHIC (∼ 20

GeV) and even √sNN = 2.76 TeV LHC (≈ 100 GeV). Interestingly, we see that at

these two LHC collision energies the light particle suppressions practically overlap.

Next we refer to heavy flavor particles, that is D and B mesons suppression

predictions. From Fig. 1.18 the following interesting observations emerge: i) D

mesons have nearly the same suppression as light particles (the left panel of Fig. 1.18)

in central (0− 10%) √sNN = 2.76 TeV Pb+Pb collisions, while in other two panels

we observe: ii) the suppression of heavy flavor (i.e. D meson) is practically the

same at √sNN = 2.76 TeV and √sNN = 5.02 TeV Pb + Pb collisions (compare the

left and the central panel, which are given for the same centrality); and iii) there
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is no significant flavor dependence of RAA at high p⊥ (the right panel). Also, we

notice that the increase of collision energy raises the p⊥ upper limit of detected

heavy flavors from ≈ 30 GeV/c to ≈ 100 GeV/c.

Figure 1.18: Suppression of heavy flavor particles. In the left panel comparison

of suppression predictions between prompt D meson (black circles); and charged

particles (magenta squares) and π± (green circles) as a function of p⊥ in central

Pb + Pb collisions at √sNN = 2.76 TeV is shown [124]. The middle panel presents

CMS D0 (green squares) and charged hadron (orange circles) RAA predictions as

a function of p⊥ in √sNN = 5.02 TeV Pb + Pb collisions. CMS RAA vs. p⊥ data

for charged hadrons (black circles), D0 (green squares) and B+ (bluesquares) at
√
sNN = 5.02 TeV Pb+ Pb collisions are shown in the right panel. The middle and

right panel are adapted from [125].

The updated experimental data for high p⊥ di-hadron azimuthal correlations are

shown in Fig. 1.19, and confirm the previous observation of away-side jet quenching

in central collisions. From Fig. 1.19 we see that in most central collision, when certain

conditions are met, the away-side peak in A + A central collisions gets quenched

compared to p + p and d + A collisions (left and central panels). Also from the

right panel of this figure we observe that in 5% most central Pb− Pb collisions the

yield of associated charged particles with p⊥ > 3 GeV/c on the away-side decreases

by approximately 60% compared to collisions ( while on the near-side a moderate

enhancement of 20− 30% is detected).
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Figure 1.19: Azimuthal di-hadron correlations. The left panel shows per-trigger jet

pair yield, where trigger is π0, while associated hadron is h± in p+ p (open circles)

and Au + Au (solid circles) √sNN = 200 GeV collisions at PHENIX [126]. p⊥

regions for trigger and associated hadrons, as well as centrality range are indicated

in legend. The central panel presents trigger charged particles for 6.0 < ptrig⊥ < 10.0,

and associated ones for 2.5 < passoc⊥ < 4 GeV/c in central d + Au (open circles)

and Au + Au (full circles and open squares) collisions at STAR [127]. Per-trigger

pair yield for associated charged particles 4 < passocT < 6 GeV/c, and trigger ones

8.0 < ptrigT < 15.0 GeV/c for central Pb+Pb events (histogram), peripheral Pb+Pb

events (red circles) and p+p events (blue squares) at√sNN = 2.76 TeV ALICE [128].

Figure adapted from [126–128].

Next we concentrate on weakly interacting particles, which comprise electro-

weak gauge bosons such as isolated photons (p⊥ & 20 GeV/c), W and Z bosons.

Due to absence of color charge they do not participate in strong interactions with

QGP medium constituents. Therefore, it is expected that these particles traverse

QGP unaffected by final-state interactions in the produced medium, which also

obtained its experimental verification. Consequently, electro-weak particles present

an excellent benchmark [129] in A + A collisions (RAA ≈ 1). They also allow one

to experimentally confirm the validity of the perturbative (A2) scaling of the p + p

cross sections and, on the other hand, they provide constraints on the nuclear PDFs

which, in particular for the Pb case, are still work in progress within deep-inelastic

e+ A data.
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Figure 1.20: Suppression of electroweak particles. RAA dependence on transverse

momentum for electroweak particles: γ (green stars), W± (open crosses) and Z0

(downward-pointing blue triangle) in central √sNN = 2.76 TeV at CMS is shown.

Comparison with charged particles suppression in central √sNN = 2.76 TeV Pb+Pb

(red squares for ALICE, pink triangles for CMS), and in √sNN = 5.02 p+Pb (blue

circles) collisions at ALICE is also displayed (for experimental references see [130]).

Figure adapted from [130].

Fig. 1.20 is in consistency with the above discussion, and thus we observe that

electroweak particles are unaffected by QGP medium, i.e. RAA ≈ 1. Additional

information from Fig. 1.20 is that for light particles no suppression is observed in

p+A (even at larger collision energy 5.02 TeV) as opposed to A+A collisions (the

same conclusion holds for heavy flavors as well).

Then we provide state-of-the-art experimental measurements of thermal direct

photons, which are defined as photons radiated during both thermalized partonic and

hadronic phases of QGP, but not originating from hadron decays nor hard scatterings

of incoming partons (prompt photons). At transverse momentum of p⊥ . 4 GeV/c

the production of these photons is enhanced compared to the prompt one and their

spectrum is practically exponential (see left panel of Fig. 1.21). Additionally, the

yield of thermal photons in A + A collisions is also in excess (although slightly, as
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RAA ≈ 1) compared to p+ p collisions.

Note that, in experiments only the inclusive direct photons are measured (prompt

+ thermal), so to obtain the thermal photons spectrum the subtraction of the

prompt photon component (the orange dashed curve, for which NLO pQCD cal-

culations were applied) from the inclusive direct photon spectrum is needed. The

remaining excess yield is fit with an exponential function ∝ exp−p⊥/Teff , from which

the estimate of an effective (mean QGP) temperature Teff can be inferred as an

inverse slope [131] (see right panel of Fig 1.21). Thus, the obtained Teff in 0− 20%

central 2.76 TeV Pb + Pb collisions at ALICE is approximately equal to ≈ 297

MeV [132], whereas in 0 − 20% central 200 GeV Au + Au collisions at PHENIX is

≈ 221 MeV [133, 134] or ≈ 239 MeV [132], depending on the applied hydro model.

The references of different hydrodynamical models, that are in good agreement with

the data, are listed in [132]. Note also that, by using an adequate hydrodynamical

model the initial QGP temperature can be estimated. Thus, as expected, larger

initial temperature at LHC than at RHIC is obtained. It is worth noting that, Teff
differs (is somewhat higher than) from the evolving true temperature of the fire-

ball, because the large photon emission rates at the highest T (initial QGP stage)

are compensated by an expanded space-time volume and blue-shift due to radial

flow [132] (later evolution stage).
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Figure 1.21: Thermal photons. In the left panel the direct photon spectra in Pb+Pb

collisions at √sNN = 2.76 TeV for the following centrality bins: 0−20% (scaled by a

factor of 100), 20−40% (scaled by a factor of 10) and 40−80% are compared to next-

to-leading-order pQCD predictions for the direct photon production in p+p collisions

at the same collision energy, scaled by Nbin for each centrality bin. The orange

dashed curves correspond to prompt photon component. In the right panel only

thermal photon spectra data in Pb+Pb collisions at√sNN = 2.76 TeV (ALICE) and

in Au+Au
√
sNN = 200 GeV (PHENIX) are presented. The full curves correspond

to exponential fits. Figure adapted from [132].

The quarkonium, denoting the bound state of heavy quark (Q = c, b) and its

antiquark (Q̄), has also being considered as a sensitive probe of the matter pro-

duced in ultra-relativistic HIC. Note that, the transition to QGP state affects only

the light quark flavors (u, d and s are considered massless), for which the chiral

symmetry is a good assumption. However, charm and bottom quarks do not fit into

that picture, as due to their large masses, these particles explicitly break the chiral

symmetry. Therefore, nothing constraints them from existing in the bound state

(quarkonium) even in the deconfined phase (QGP) [26]. Thus, quarkonia, which

includes charmonium (cc̄) and bottomonium (bb̄) families, emerged as important

probes for measuring the temperature of the QGP [26]. The charmonium family
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consists of ηc, J/ψ, Ψ(2S), χc... whereas the bottomonium family includes Υ’s and

χb.

In the following lines, we will summarize the qualitative reasoning, as displayed

in [26], for why is quarkonium a good QGP temperature probe. Although, the results

are not exact, the conclusions are valid. As previously mentioned, in vacuum the

interaction between Q and its Q̄ is modeled by the Cornell potential [135], where,

for simplicity, we leave only the Columbian-like potential V vac(r) ≈ −α/r, which

is a dominant term at small distances. When QQ̄ is surrounded by the QGP, the

free color charges of the QGP modify the interaction potential between heavy quark

and its antiquark. This phenomenon is known as screening of the potential, which

in QGP at temperature T acquires the following form: V QGP (r) ≈ −α/r × e−r/λD .

Here, the role of the screening length has the Debye length λD.

In [26], it was also assumed, for the simplicity, that the average distance between

Q and Q̄ in a ground (i.e. 1S) quarkonium state (J/ψ or Υ(1S), for charmonium

or bottomonium family, respectively) is given by the Bohr radius: rB = 1/(αmQ).

For rB � λD the screened potential reduces to the Coulombian one and the bound

state in the QGP effectively behaves as in the vacuum. On contrary, for rB ≥ λD

(i.e. when Debye color screening radius of the QGP falls below QQ̄ binding radius),

the potential is screened by the QGP medium compared to the vacuum value, lead-

ing to possible unstable state and melting of the quarkonium. If we consider the

same relation between Debye length and the temperature as in electromagnetic plas-

mas [136]: λD =
√
T/(8παρ), and assume the charge density as in ultra-relativistic

gases: ρ ∝ T 3, the following expression [26] is obtained: λD ∼ 1/(T
√

8πα). From

the last formula, one could infer the temperature Td above which the quarkonium

dissociate:

Td ∼
1√

8πα(T )rB
. (1.5.1)

On an intuitive level, this simplified model provides an explanation for why char-

monium excited state (resonance) Ψ(2S) dissociates at lower T , than the charmo-

nium ground state J/ψ (rB(Ψ(2S)) > rB(J/ψ), and the latter at lower T than the

bottomonium ground state Υ(1S) (mB > mC , since rB ∼ 1
m
).

Since long, the quarkonium dissociation study has served as an excellent tool
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for determination of critical (cross-over), as well as the initial temperature of the

QGP. Thus, the finite temperature lQCD [137] calculations confirmed the qualita-

tive tendencies (that is, the dissociation of different QQ̄ states at different T , for

which temperature dependent Debye length becomes lower than the QQ̄ binding

radius) and obtained the temperatures for charmonium and botomonium families

dissociation, as well as the sequential bottomonium suppression. Also, from that

calculation they inferred Tc, predicting that Υ(1S) survives up to ∼ 4Tc.

Additionally, the well known effect of anomalous J/ψ suppression is worth men-

tioning (see [92] and references therein). Namely, the experimentally obtained sim-

ilar J/ψ suppression at SPS and RHIC energies, although counter-intuitive (since

larger collision energies would imply larger T , ergo larger suppression), latter found

its explanation within lQCD. According to sequential-dissociation lattice predic-

tions, J/ψ survives up to T ≈ 2Tc, while its excited states (Ψ(2S), χc) already

melt at T ≈ Tc, due to larger rB than the ground state’s one. Thus, the similar

suppression at different center-of-mass collision energies, could be explained by the

lack of feed-down decay contribution of the resonances at RHIC (at higher RHIC

temperature, resonances dissociate more than at lower SPS temperature, where they

can through decay contribute to J/ψ yield). Note that, the decay of higher reso-

nances play a significant role in J/ψ yield, that is around 40% [92]. Thus, lQCD

obtained the upper limit of initial RHIC temperature T . 2Tc, which does not allow

dissociation of J/ψ bound state.

Also, the anomalous J/ψ suppression for lower p⊥ at LHC (see the left panel

of Fig. 1.22) could be explained by the recombination [138] effect, where higher

collision energy implies larger production of free c and c̄, enhancing J/ψ production.

However, for larger p⊥ at LHC energies the J/ψ suppression is larger than at RHIC

(left panel of Fig. 1.22), indicating the obtained initial QGP temperatures higher

than 2Tc, leading to depletion of J/ψ.

This J/ψ RAA vs. p⊥ pattern, which is very similar for 5.02 TeV and 2.76 TeV

LHC energies (compare the panels in Fig. 1.22), underlines that the small suppres-

sion at low p⊥ is due to (regeneration) recombination, while the large suppression

at higher p⊥ is a consequence of the dissociation, and an indicator of the obtained

high enough initial T for ground state to dissociate.

43



Figure 1.22: J/ψ suppression measurements as a function of transverse momentum.

Comparison of J/ψ RAA data between √sNN = 200 GeV Au+Au PHENIX (black

squares) and √sNN = 2.76 TeV Pb+Pb ALICE (blue squares) collisions is presented

in the left panel. For experimental references see [139]. In the right panel, the

J/ψ suppression data from √sNN = 5.02 TeV Pb + Pb collisions at ALICE are

shown for two different decay channels (for references see [140]). Figure adapted

from [139, 140].

With increasing collision energies at the LHC, the high temperatures became

approachable, so the bottomonium family could finally be experimentally studied

(due to the abundant production of heavy b quarks). From left panel of Fig. 1.23 we

observe the diminished yield of the the Υ family in Pb+Pb compared to the p+p colli-

sions, in accordance with the sequential dissociation picture. From the right panel of

Fig. 1.23, we see that even the ground state Υ(1S) is suppressed, although less than

resonances, which suggests no feed-down contributions of the heavily-suppressed

(dissociated) excited states (which is already mentioned to largely contribute to

ground state yield). Note that, the RAA is measured against the number of partic-

ipants Npart, which is directly proportional to centrality of the collision (the more

central collision is, the larger is Npart, where 0% denotes the most central collision).
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Figure 1.23: The sequential suppression of bottomonium family. Invariant mass

distribution of muon pairs, originating from Υ family decay, in p + p (fits to data

represented by dashed blue curve) and Pb + Pb (black squares, fits to data repre-

sented by red curve) √sNN = 5.02 TeV collisions is given in the left panel. The

three peaks in p + p case correspond to separate yields for each individual Υ state

(from left to right: ground state Υ(1S) and higher resonances Υ(2S) and Υ(3S) re-

spectively). RAA dependence on Npart for Υ(1S) (red circles), Υ(2S) (blue squares)

and Υ(3S) (green symbols) under the same CMS conditions as in the left panel is

shown in the right panel. Figure adapted from [141].

Additionally, the significantly suppressed ground state implies reaching the initial

temperature of Υ(1S) dissociation, which according to lQCD models [142] amounts

∼ 500 − 700 MeV and ∼ 600 − 800 MeV for 2.76 TeV and 5.02 GeV collisions,

respectively.

For a very long time, one of the soft probes, the elliptic flow (or heigher harmon-

ics) has been considered as an imprint of QGP formation and very fast thermaliza-

tion (since it was absent in p + p collisions), but a recent interest in small-systems

led to discovery of this collective phenomena also in p(d) +A systems (even in p+p,

see e.g. [143]), leaving an open question, if it is a truly exclusively related to QGP,

or a consequence of initial fluctuations.

Thus, a preliminary ALICE vn(p⊥) data is given in Fig. 1.24, confirming the

existence of elliptic flow in peripheral √sNN = 5.02 TeV both Pb + Pb and p + Pb
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collisions at the LHC, that are even comparable. One observing from the left panel

of this figure is that elliptic flow does not change appreciably between √sNN = 2.76

TeV and √sNN = 5.02 TeV energies. From the right panel we infer of Fig. 1.24 that

there is a clear mass ordering in small systems.

Figure 1.24: Elliptic flow coefficients measured in √sNN = 5.02 TeV Pb + Pb and

p+ Pb at ALICE. In the left panel the flow coefficients vn(p⊥) for charged particles

in 30−40% central Pb+Pb collisions are shown by symbols (as indicated in legend).

Comparison with the corresponding data in √sNN = 2.76 TeV (shaded areas) is also

presented. The right panel corresponds to elliptic flow of inclusive and identified

hadrons (as denoted in legend) in p+Pb collisions. Figure adapted from [144, 145].

Further we concentrate on investigating QGP medium properties through high

p⊥ energy loss and suppression, i.e. nuclear modification factor, theoretically and

phenomenologically.

1.6. Outline of the thesis

The outline of the thesis is the following: In Section 2 we provide a concise

historical review of: 1) collisional and 2) radiative in static QGP medium, that is

Gyulassy-Levai-Vitev (GLV) and Djordjevic-Gyulassy-Levai-Vitev (DGLV), energy

losses, whereas in Section 3 we outline the development of the state-of-the-art dy-
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namical energy loss formalism, by gradually transitioning from static to dynamical

medium, introducing all improvements to the model; and present the up-to-date

suppression computational formalism, that we use. Sections 4 to 6 represent our

original contribution. They are arranged in two parts: Sections 4 and 5 belong to

our phenomenological contribution, while Section 6 presents our theoretical contri-

bution, although the detailed calculations are presented in Appendices B.

In Section 4, we generate RAA predictions by applying the dynamical energy

loss model incorporated in suppression computational formalism, as explained in

Section 3. First we compare suppression predictions with the comprehensive set

of experimental data, which span from RHIC to the most recent LHC experimen-

tal conditions, across a large variety of particles and which takes into account all

available heavy-ion collisions centrality ranges. And finally, this section ends with

generating suppression predictions for the upcoming LHC measurements, that re-

main (or already are) to be tested in the future.

Section 5 is dedicated to addressing the importance of each individual improve-

ment (effect) introduced in dynamical energy loss model, with DGLV model serving

as a starting point. The idea is to isolate an individual effect of the dynamical

energy loss model, if possible, which is responsible for enhanced reliability of the

suppression predictions outlined in Section 4.

In Section 6 we relax the widely-used soft-gluon approximation, which assumes

that high p⊥ parton propagating through dense QGP medium loses only a small

fraction of its initial energy via gluon bremsstrahlung, in radiative energy loss cal-

culations to the 1st order in opacity. This is an important task, as validity of the

approximation was rightly questioned, and regardless also used in dynamical energy

loss model. Since this task is theoretically very demanding, we divided it into three

steps: 1) first, we relaxed the assumption within GLV formalism, 2) then within

DGLV model and 3) finally, we discuss generalization onto dynamical medium.

Finally, in Section 7 we give an overall conclusion based on the results presented

in this thesis. We also discuss some open problems that should be addressed in the

future.

47



2. HISTORICAL OVERVIEW OF ENERGY LOSS MODELS USED IN

THIS THESIS

2.1. Overview of collisional energy loss models

Already in 1982, Bjorken [90] was the first to start theoretical study of energetic

parton collisional energy loss. He assumed that, in the region between the Lorentz-

contracted hadrons, QGP in thermal equilibrium was formed and considered an

elastic scattering (2 → 2) of a massless high-energy parton (quark or gluon), prop-

agating through an ideal uniform quark-gluon gas, from medium constituents. He

calculated differential energy loss for the dominant, small momentum transfers, ergo

only the Mandelstam t-channel. Since he was using only tree-level diagrams, the

result was logarithmically infrared-divergent, so the cut off was introduced by hand.

For the lower and the upper limit of exchanged gluon momentum transfer q (3D-

momentum) the physically reasonable values of thermal parton mass M ∼ 0.5 − 1

GeV and
√
s/2 are taken, respectively. He neglected the leading-order part and kept

only the ln qmax
qmin

dependent term. The obtained average collisional energy loss per

unit length (dE
dL

) was� 1 GeV/fm for a particle of 20 GeV energy, assuming medium

temperature T = 0.3 GeV and the coupling constant αs = 0.2.

The study of collisional energy loss was continued by Thoma and Gyulassy [146]

at the early ′90s, within plasma and high temperature QCD approach. The signifi-

cant improvement compared to the Bjorken’s case is adequately accounting for the

chromoelectric screening (represented by Debye mass µE ∼ gsT ), resulting only in

naturally setting the lower boundary for momentum transfer equal to µE. Thus, the

infrared divergences are automatically self-regulated. The ultraviolet divergences

are artificially regulated by setting a reasonable upper limit of exchanged gluon mo-

mentum at hard quark momentum for light, and at a temperature dependent value

for heavy quarks. For T = 0.25 GeV, and the other parameters same as in Bjorken’s

calculation, they again obtained small dE
dL
≈ 0.2 GeV/fm for light quarks, and even

smaller values for heavy quarks. The shortcoming of Thoma and Gyulassy model

was not only in non-physically setting the upper q limit, but also in neglecting the
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recoil of the scattered thermal quark or gluon, and which become important at high

momentum transfer.

Thus, he next step was to construct the theory that would: i) naturally regulate

both: the infrared and the ultraviolet divergences to the leading order in gs, and ii)

correctly account for high momentum transfer, which was accomplished by Braaten

and Thoma [147, 148]. In order to separate soft (∼ gsT ) and hard (∼ T ) ranges of

momentum transfer, the arbitrary momentum scale q∗ was introduced. In the soft

momentum transfer range q < q∗, the exchanged gluon propagator is obtained by

resummation of hard thermal loop corrections (so-called effective gluon propagator,

that captures the screening), while in the hard momentum transfer range q > q∗,

only the tree level exchanged gluon propagator is considered. Upon adding the con-

tributions from soft and hard momentum transfer regions, the arbitrary momentum

scale dependence of the final result is lost. Thus obtained differential energy loss for

heavy quarks was of the similar order of magnitude as in the previous two models.

Since the collisional energy loss calculations failed to deliver a substantial energy

loss, the radiative energy loss comes to the focus of attention. Gyulassy, Thoma,

Plumer and Wang are consider the pioneers of this undertaking. They applied

Gunion-Bertsch [149] radiation spectrum in calculating Bjorken-like radiative energy

loss, and conveniently obtained significantly larger radiative compared to collisional

energy loss [107, 108]. That conclusion marked the beginning of radiative energy

loss dominance era (see subsection 2.2).

However, it’s worth mentioning, that the more recent collisional energy loss calcu-

lations, driven by heavy flavor RHIC experimental results [150, 151] (such as single

electron puzzle [152]), by Thoma [153] and Mustafa [154, 155] showed a similar colli-

sional and radiative quenching factors. Namely, the RHIC experiment obtained very

similar suppressions for both: light and heavy flavor particles, despite the dead cone

effect [156], connected with the heavy (bottom) quarks, which would reduce their

radiative energy loss compared to the light quarks (i.e. gluon radiation is suppressed

at angles θ < M/E). This raised a question of validity of previous collisional energy

loss models.

Further, Djordjevic [157] introduced a finite size effect in calculating 0th order

collisional energy loss within HTL approach (see subsection 3.1 for more details).

49



The detailed study of collisional energy loss importance, within dynamical energy

loss formalism, is presented in paper [159], and will be comprehensively discussed in

Section 5.

2.2. Overview of radiative energy loss models for static scatterers: GLV and

DGLV

Awaken interest in radiative energy loss put a new phenomena, earlier studied for

QED, ahead of the researchers: a Landau-Pomeranchuk-Migdal (LPM) effect [160].

Namely, the LPM effect can be explained as follows: an energetic particle, i.e. jet,

under eikonal approximation (i.e. experiencing a minor deflecting from the initial

direction), undergoing multiple soft scatterings from adjacent static target sites, ex-

periences interference effects between radiation amplitudes. The final amplitude to

radiate a single gluon is obtained after summation over the following cases: ampli-

tude for gluon emitted from any internal, initial and final jet lines (corresponding

to the absence of final gluon interactions), and amplitude involving only one three

gluon vertex (corresponding to existence of final gluon interaction). With decreasing

longitudinal momentum transfer, the particles wavelength increases, due to uncer-

tainty principle, and when the wavelength becomes larger than the mean free path

in the medium (the average distance between scattering sites), the scatterings can

no longer be treated as independent. This is contrary to Bethe-Heitler limit for

multiple scattering induced radiation, which assumes independent scatterings and

where the radiation intensity is additive in the number of scatterings. Note also

that Bethe-Heitler limit considers on-shell jets produced at remote past. The LPM

effect leads to destructive interference, i.e. to the suppression of radiation spectrum

compared to the Bethe-Heitler case.

To that end, Gyulassy and Wang [161], together with Plumer [162] were the first

to investigate non-abelian analogon of this effect for static QCD medium. The cause

of the destructive interference is a finite large formation time, that, due to being

inversely proportional to relative eikonal phase, leads to disappearance of phase

difference between the amplitudes, resulting in coherent amplitude summation, and
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consequently radiation intensity suppression. The formation time:

τf (k) ∼ 1/∆E(k) ∼ 2ω/k2 ∼ 2/ωθ2, (2.2.1)

where k = (ω, kz,k) denotes the radiated gluon momentum, and θ ≈ k/ω is the

angle between emitted gluon and incident parton, can also be interpreted as the

minimal time needed to differentiate the transverse wavepacket of gluon, having

∆x ∼ 1/k from its high-energy parent wavepacket (E � ω). Again, the destructive

interference occurs when τf � λ (so-called factorization limit, λ is the mean free

path), i.e. when the emitted gluon cannot resolve different scattering centers. They

assumed that the mean free path λ of the projectile is much larger than the screening

radius, λ � µ−1, which allows treating the successive scatterings as independent.

Also, under the assumptions (soft gluon: x � 1 and |k| � µE, where µE denotes

Debye screening), for energetic quark of 30 GeV propagating through QCD medium

of T = 300 MeV, and α = 0.3, they obtained that radiative energy loss is 3 times

larger than the collisional, thus dominating over elastic process.

2.2.1. GLV

Contrary to some energy loss models (such as BDMPS-Z [163] to [171], AMY [172]

to [179]), which assumed "thick" plasma, meaning that the high p⊥ parent parton un-

dergoes multiple soft scatterings with the medium (ns � 1, where ns stands for the

number of jet scatterings with medium partons), Guylassy, Lavai and Vitev [180–

184] considered the opposite limit of Gyulassy-Wang model: the "thin" plasma

(ns ∼ 1). The GLV addresses the computation of the energy loss of an energetic

light (massless) parton traversing a finite quark-gluon plasma, in which jet-medium

interactions were, as in Gyulassy-Wang case [161], modeled by static (Debye) color-

screened Yukawa potential. The Fourier and color structure of Yukawa potential

acquires the following form:

Vn = V (qn)eiqnxn = 2πδ(q0
n)v(~qn)e−i~qn~xn

×Tan(R)⊗ Tan(n), (2.2.2)

v(~qn) = 4παs
~q2
n + µ2

E

, (2.2.3)
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where xn denotes time-space coordinate of the nth scattering center, µE is Debye

screening mass, αs = g2
s/4π is strong coupling constant, while Tan(R) and Tan(n)

denote the generators in SU(Nc = 3) color representation of jet and the target

(scattering center), respectively. v(~qn) stands for effective cross section, sometimes

denoted by veff .

Since for finite nuclei L/λ < 10 is not that large, and it is also considered that a

great amount of jets are produced within nuclear "corona", that is L/λ ≤ 3, only few

collisional interactions with medium needed to be accounted. Here L/λ represents

the opacity, which, for a medium of a constant size, is given by the product of

the medium density with the scattering cross section, integrated along the path of

the parton. Therefore, GLV formalism is also referred to as "opacity expansion"

model. Thus, the expansion in the powers of opacity is equivalent to the expansion

in number of scattering events suffered by traversing parton. Additionally, 1st order

in opacity corresponds to one collisional interaction with the medium constituents

(one exchanged gluon), accompanied by radiation of a single gluon. Thus, effectively

they assumed ns = L/λ 6 3, that implied calculation of 2ns+1−1 amplitudes, which

was still a reasonably small number of pQCD calculations.

Note that, for expressing all in terms of opacity, the GW elastic cross section

where applied. The small transverse momentum transfer elastic cross section for

interaction between the jet and target parton in GW approach [161, 180] is given

by:
dσel
d2q1

= CRC2(T )
dG

|v(0,q1)|2
(2π)2 , (2.2.4)

where q1 corresponds to transverse momentum of exchanged gluon, dG is dimen-

sion of adjoint representation, CR represents Casimir operator in color SU(Nc = 3)

representation of jet, whereas C2(T ) denotes Casimir operator in target (T) repre-

sentation.

Historically, Gunion and Bertsch [149] were the first to study soft gluon radiation

associated with a single rescattering with the target, but they assumed the incident

on-shell quark produced at remote past t0 = −∞ relative to the collision time t1.

With distinction to GB, in GLV model a short time between parton production

and rescattering is assumed, and also off-shell partons are included. In particular,

in [180, 181] they calculated "self-quenching", i.e. initial jet radiation, and extra
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quenching associated with gluon radiation induced by the final state interactions

of the jet with static medium constituents. The soft-gluon and soft-rescattering

approximations were assumed, while explicit calculations for interactions with: 1,

2 and 3 scattering centers (where both jet and gluon final state interactions are

accounted) were presented.

The GLV model was further improved by generalizing energy loss calculations

to all orders in powers of the opacity, within reaction-operator approach [182, 183].

They grouped diagrams which contribute to the specific order ns in opacity radiation

distribution into classes. For instance, to the 1st order in opacity, i.e. one scattering

center, two different diagram types combination contribute to the result: 1) first

which includes one scattering interaction with the medium constituents in both the

amplitude and in its complex conjugate; 2) second where two scattering interactions

with the medium constituents are contained in the amplitude and no scattering

interaction in the complex conjugate (or vice verse). With reference to this, they

built an operator which, upon knowing one and two-scattering combinations at order

ns, generates the gluon radiation distribution at order ns + 1 in opacity. Thus this

recursive method enables calculations up to any order in opacity expansion.

However, they concluded that higher orders in opacity (ns > 2) have a very little

effect on fractional radiative energy loss and the mean number of radiated gluons

at RHIC. They found that 1st order in opacity is the dominant term, wheres the

second and third orders almost cancelled each other. Thus, at 0th order in opacity

the self-quenching (the gluon emission from hard production vertex) reads:

xd3N (0)
g

dxdk2 = CRαs
π2

1
k2 , (2.2.5)

while, induced radiation intensity spectrum in the 1st order in opacity acquires a

form:

x
dN (1)

g

dx
= CRαs

π

L

λ

∫ d2q1

π

µ2
E

(q2
1 + µ2

E)2

∫ dk2

k2 2 k · q1(k− q1)2

(4xE
L

)2 + (k− q1)4 , (2.2.6)

where k corresponds to radiated gluon transverse momentum, E represents initial jet

energy, while λ denotes mean free path. Additionally, in the case of small effective

formation probability γ = Lµ2
E

4xE the fractional energy loss recovers the L2 path-length

dependence.
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And finally, the multi-gluon fluctuations [184] were also incorporated in the for-

malism. The assumption was that fluctuations of the radiated gluon number are

uncorrelated, and therefore the spectrum of total radiative energy loss is expressed

via Poisson expansion, accounting for possibility that a certain number of gluons

can be radiated (for more details see [184] and subsection 3.2).

2.2.2. DGLV

The GLV formalism continued its expansion through the work of Djordjevic and

Gyulassy, who firstly introduced non-abelian QCD analogon of Ter-Mikayelian [185,

186] plasmon effect within HTL approach [187] in paper [188]. Naimly, the Ter-

Mikayelian effect could be summarized by the statement that in plasma, even the

0th order in opacity radiation is modified by the dielecric properties of the medium

compared to the vacuum case. It is well-known that gluons embedded in dielectric

medium (QGP) have modified dispersion relations and both transverse and longi-

tudinal polarizations (resumed HTL propagator). To this end, they calculated both

transverse and longitudinal contributions to the 0th order in opacity radiative heavy

quark (c and b) energy loss, and obtained that longitudinal is negligible compared

to the transverse contribution for both charm and bottom quarks, at lower Debye

masses (lower temperatures) accessible at the colliders. Quantitatively, the Ter-

Mikayelian effect reduced charm quark energy loss by ≈ 30% (for µE = 0.5 GeV),

while bottom quark remained practically intact, due to dead cone effect [156]. Re-

markably, they also demonstrated that gluon propagator in a hot dense medium

can be approximated simply by −iδabPµν
p2−m2

g+iε , where Pµν denotes transverse projector,

while dynamical gluon mass can be approximated by the effective one, equal to

the asymptotic value mg ≈ m∞ = µE/
√

2 (for a moderate range of temperatures

0.5 ≤ µE ≤ 1 GeV). Again the same assumptions of soft-gluon and soft-rescattering

radiation were applied throughout this subsection.

The next improvement to the DGLV formalism, governed by the same authors,

was the introduction of heavy quark mass M (together with Ter-Mikayelian effect,

in terms of including effective gluon mass mg in transverse modes only) in radiative

54



energy loss in static [161] finite size QGP medium, also known as DGLV formal-

ism [189]. It was also shown that the reaction operator method [183] can be applied

when massive quarks and gluons are taken into account, which therefore presents

generalization of GLV results to the case of massive heavy quarks to all orders in

opacity. Their main analitical result was simple mapping rule for radiation distri-

bution expressions between the massive and massless (GLV) cases of heavy quarks -

the energy shift by m2
g+x2M2

2xE in all GLV frequencies. In massless limit DGLV recovers

GLV results. In particular, the 0th order DGLV radiation spectrum reads:

xd3N (0)
g

dxdk2 = CRαs
π2

k2

(k2 +m2
g + x2M2)2 , (2.2.7)

which clearly displays reduction of radiation in dead cone, i.e. for the angles θ <

θc =
√
m2
g+x2M2

xE
, in the case of heavy quarks. The 1st order in opacity differential

energy loss in DGLV formalism is given by:

dE(1)

dx
= CRαs

π

L

λ
E
∫ d2q1

π

µ2
E

(q2
1 + µ2

E)2

∫ dk2

k2 +m2
g + x2M2

× 2
k · q1(k− q1)2 + (m2

g + x2M2)q1(q1 − k)
(4xE
L

)2 + ((k− q1)2 +m2
g + x2M2)2 . (2.2.8)

Thus, the main qualitative achievement (also numerically supported) of [189], is that

by increasing M the inverse formation time factor (4xE
L

)2 becomes more irrelevant

in the denominator od Eq. (2.2.8). Note that the incoherent limit (short formation

time) of radiation is reproduced by setting this factor to zero. Consequently, the

finite quark mass brings heavy quark energy loss closer to the incoherent Gunion-

Bertsch limit, and also its thickness dependence closer to the linear (∼ L) Bethe-

Heitler limit. This is contrary to the quadratic (∼ L2) thickness dependence typical

for light quarks (BDMS [156]) in the LPM limit.

And finally, Wicks, Horowitz, Djordjevic and Gyulassy generalized energy loss

probability P (Ei → Ef ) to include both radiative and collisional energy loss (which

appeared to be of the same order) and their fluctuations combined with path length

fluctuations (for more details on the last topic see [190, 191] or subsection 3.2). They

obtained better agreement with experimentally measured RAA for non-photonic sin-

gle electrons compared to a case when only DGLV radiative energy loss is accounted.

However, note that although by including both energy loss contribution they paved

the way for future theoretical striving, these contributions where not developed
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within same formalism. In particular, inelastic energy loss in finite size static QGP

medium is calculated within DGLV formalism, while for elastic contribution they

used TG [146] or BT [147, 148] model. It was latter shown that this inconsistency

led to some erroneous assumptions and results, that gained their correction in [157],

but waited for consistent inclusion in formalism.

Note that common kinematic assumptions are made for majority of radiative

energy loss models, and thus also for GLV, DGLV and subsequent dynamical energy

loss model (see the following section):

• Eikonal approximation (soft rescattering approximation), which assumes that

partons energies and longitudinal momenta are high compare to their trans-

verse momenta, which prevents the radiated and the final gluon from digressing

much from the initial longitudinal direction;

• Soft-gluon approximation, which considers that radiated gluon takes away a

small fraction of initial jet energy and longitudinal momentum;

Thus, throughout this thesis we will use this assumptions in generating predictions

for high p⊥ particles (also referred to as jets), except in section 6, which is dedicated

to relaxing the soft-gluon approximation.

3. DYNAMICAL ENERGY LOSS MODEL AND NUMERICAL

PROCEDURE

In the previous section, we introduced DGLVmodel, which assumes QGPmedium

consisting of randomly distributed static scattering centers. In static medium colli-

sional energy loss is equal to zero. However, some studies [192] implied that radiative

energy loss alone is insufficient to explain the heavy flavor RAA data at RHIC. Addi-

tionally, in series of studies [154, 155, 157, 193], it was shown for the first time that

collisional energy loss is comparable with radiative one under standard RHIC condi-

tions. Therefore, a need for more realistic medium modeling approach emerged, and

consequently the requirement for radiative energy loss revision within this approach.

This section is dedicated to addressing this issue by Djordjevic et al., i.e. to the

introduction of dynamical medium constituents (along with the other improvements)
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in energy loss calculations. The dynamical energy loss model is currently the most

sophisticated model (that does not assume time dependent QGP medium) and the

phenomenological part of this Thesis is based on it.

In this section we provide the outline of dynamical energy loss model development

and all its individual improvements in chronological order, the introduction of the

suppression numerical procedure fundamental for generating RAA predictions, while

the comparison of our predictions with exhaustive set of experimental data in order

to validate our energy loss model and also the numerical procedure itself will be

presented in section 4.

3.1. The historical development of the model: From static to dynamical

The first step toward the state-of-the-art dynamical energy loss model was made

by Djordjevic in 2006 [157], by calculating quark’s collisional energy loss in a finite

size QGP up to the 0th order in opacity. The computation was done within finite

temperature pQCD, with contribution to collisional energy loss coming from 1-

HTL diagram, explaining the origin of the term "0th order in opacity" through the

analogy with radiative energy loss (see the subsection 3.2 below). The reason for

constraining collisional energy loss onto final dimensions (and comparing the result

with the one recalculated for infinite medium), besides more reliably reproducing

created medium at RHIC and LHC, was to revise the importance of finite size effect

in collisional energy loss, since in a first study of that kind, made by Peigne et

al. [158], some omissions were found. Another motivation lies in an attempt to

remove the unphysical gain of energy at low jet momentum, obtained by [146, 147]

for infinite QGP medium.

Kinematically, the finite size was introduced by constraining the interaction be-

tween jet and a medium parton (massless quark, anti-quark or gluon) to occur

inside the QGP medium of a finite size L, through step function. Also, produced

jet needed to be off-shell, in order to exchange a virtual gluon with medium. Addi-

tionally, in [157] there is a smooth interpolation between soft (lower 3D exchanged

momentum) to hard (higher 3D exchanged momentum) contributions.
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For an infinite medium, they assumed that jet is produced at t = −∞, and thus

obtained collisional energy loss per unit length was simply multiplied by the medium

thickness L, in order to compare the result with the finite size case.

Regarding the first reason, note that in [158] the finite size effect led to significant

decrease of collisional energy loss compared to the infinite medium case. However,

in that paper collisional and radiative energy losses were not entirely separated. To

this end, in [157] the gluon dispersion relation is consistently applied, and these two

energy loss contributions did not overlap nor interfere, although originating from

the same 1-HTL diagram (for more details see the next subsection). By using this

consistent approach, Djordjevic obtained that introduction of finite size effect barely

affects collisional energy loss at all (moreover slightly increases it in finite compared

to an infinite case).

Another important aspect of paper [157] reflects in consistently treating lower

momentum range, and obtaining positive collisional energy loss in an infinite case

at the entire observed momentum range. This corrects the unphysical energy gain

at lower momentum region obtained in [146, 147]. The additional reason behind

this result lies in smooth transition between soft and hard contributions. More

specifically, Djordjevic’s result is the general one, that in limiting cases recovers

the results obtained in [146, 147]. The advantage of calculations presented in [157]

over [146] is the inclusion of hard contribution apart from the soft one and consistent

treatment of the integration limits. In comparison to [147], the gain of [157] reflects

in smooth compared to abrupt transition from soft to hard limits, and consequently

there was no need for introducing the arbitrary intermediate momentum scale, as

in [147].

The second step (now in the sphere of radiative energy loss) was made also by

Djordjevic and Heinz [194], by calculating heavy quark radiative energy loss in an

infinite and time-independent QGP medium consisting of dynamical constituents

(that is, recoils of the medium constituents are taken into account). For a process

embedded in QGP medium consisting of dynamical light quarks and gluons (i.e.

massless partons) in thermal equilibrium at temperature T , with zero baryon density

number assumed, thermal field theory [187, 195] and Hard-Thermal Loop (HTL)

resumed propagators (even for the exchanged gluon, contrary to the static case)
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are applied in evaluating diagrams. Standard assumptions of soft-gluon and soft-

rescattering were used. The infinite medium implies that the heavy quark, produced

at t = −∞, is on-shell, resulting in only central cuts of the appropriate diagrams

(see the left panel of Fig. 3.1). In each diagram two HTL gluon propagators are cut,

one corresponding to the exchanged virtual gluon of momentum q with a parton in

the medium, and the other corresponding to radiated gluon of momentum k. Note

that the exchanged gluon momentum is space-like [147, 148, 157] (q0 ≤ |~q|), while

radiated gluon momentum is time-like [187, 188] (k0 ≥ |~k|).

Thus, they calculated 9 diagrams, each of which was infrared divergent, contrary

to the case of static medium, where none of them was divergent. Namely, although

the Debye screening restored the infrared convergence of the longitudinal gluon ex-

change part, the transverse gluon exchange part was the origin of this divergence,

due to the absence of magnetic screening mass. However, conveniently but also re-

markably, the summation of all diagrams produced an infrared safe result, naturally

regulating the divergence, without the necessity of introducing an artificial magnetic

mass cut-off.

In order to calculate total energy loss in infinite dynamical medium and to com-

pare the result with the one in infinite static medium, in [194] the following sim-

plification was made: Total energy loss is obtain by multiplying dE
dL

by the effective

thickness of QGP medium L. The obtained analytical expression to the 1st order in

opacity formally resembled very much to the corresponding static infinite case, and

simple transcription rule between dynamical and static medium was established:

λdyn → λstat, vdyneff (µE,q)→ vstateff (µE,q), (3.1.1)

where λ stands for the effective mean free path, and veff denotes effective cross

section. Note that static radiative energy loss calculated in infinite QGP medium

differs from the one obtained in finite size medium (DGLV). However, the numerical

comparison of radiative energy loss in dynamical with static infinite medium showed

almost two times larger loss in dynamical case. Consequently the recoil of the

massless quarks and gluons in the medium was no more to be neglected. It is worth

noting, that obtained energy loss increases linearly with the path length through

QGP medium, i.e. corresponds to Bethe-Heitler limit. This is nevertheless an

expected dependence, as they considered an infinite medium, with (on-shell) jet
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produced at remote past, implying short formation time.

Figure 3.1: Representative 2-HTL Feynman diagram and three on-shell cuts. The

left, central and right panels correspond to the central, left and right cut of the

same diagram, respectively. In infinite dynamical QGP medium, only left diagram

is included, while in finite dynamical medium all tree cuts contribute to the 1st order

in opacity quark radiative energy loss. Gray ellipse represents quark-jet source and

the large dashed circles ("blob") represent effective HTL gluon propagators (see B

appendix from [188]). The radiated gluon is denoted by momentum k and color c,

whereas the exchanged gluon is denoted by momentum q and color a. p corresponds

to the final quark. Figure adapted from [196].

The next step was including finite size medium corrections, which enabled assess-

ing of Landau-Pomeranchuk-Migdal (LPM) effect [160, 197], in radiative energy loss

calculation within dynamical QGP medium [196, 198]. The constraint to the finite

size is important in order to realistically model the medium, and moreover produce

reliable predictions, since QGP created at RHIC and LHC has finite dimensions.

The same kinematic approximations were made in calculating 1st order in opac-

ity radiative energy loss of a heavy quark. The finite size effect was implemented

through the requirement that the distance between the jet production site and the

collisional interaction site has to be smaller than the length of the medium. Also,

it was assumed that the heavy quark is produced inside the QGP medium at time

t = 0.

Furthermore, a finite size medium allows the produced heavy quark to be not

only on-shell, but also off-shell (see Fig. 3.1), increasing the number of considered

diagrams to 25, by allowing left and/or right cuts of the same 2-HTL Feynman

diagrams, where possible, and new ones as well. Off-shellness of the produced jet

60



and the requirement imposed on the exchanged gluon vertex to be inside the medium

are the major differences compared to the infinite dynamical medium case.

Similarly to infinite dynamical medium, also in finite size dynamical medium

each diagram has logarithmic divergence in the limit of vanishing exchanged gluon

transverse momentum q → 0, which again was the consequence of accounting not

only longitudinal (which is infrared finite due to Debye screening) but also trans-

verse gluon exchange (which is infrared divergent, due to the absence of magnetic

screening). However, the logarithmic divergence is again (surprisingly) naturally

regulated after taking into account all relevant diagrams.

By comparing the radiative energy loss in finite size medium for dynamical and

static [189] (DGLV) case, the same simple mapping rule (3.1.1) is obtained, which is

quite remarkable considering complexity and different form of jet-medium interac-

tions in these calculations. This implies generality of the mapping rule for transition

from static to dynamical medium, regardless of its length. Quantitative formulas,

and their interpretations in finite medium will be discussed in more details in next

section.

Numerically, introduction of parton recoil in medium significantly increased (for

40−70%) radiative energy loss compared to the equally dense static finite QGP. Note

that constant energy loss increase of ≈ 20% (regardless of medium T , quark mass,

and momentum) comes from shorter effective mean free path [196] λdyn ≈ 0.84λstat
(which is also the case for infinite medium). Larger portion of increase in radiative

energy loss of dynamical compared to static case originate from the effective cross

section, and depends on T , quark mass end energy.

Additionally, another important and expected result is that finite size effect in dy-

namical medium reduces radiative energy loss compared to the an infinite dynamical

QGP medium.

Regarding the radiative energy loss dependence on medium thickness (L), note

that in finite size dynamical medium this dependence is non-trivial, i.e. neither linear

(as in Bethe-Heitler limit) nor quadratic (as in LPM limit), and is also dependent

on propagating parton’s mass and momentum. However, inclusion of a finite size

effect provided a common (framework) platform for addressing two limiting cases:

incoherent Gunion-Bertsch [149] (GB) and coherent LPM [160, 197] limits.
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The result obtained in incoherent, short formation time limit, which corresponds

to lower energy heavy quarks, is not the same as Bethe-Heitler limit (infinite dy-

namical medium case [194]), due to the fact that now off-shell jets are also allowed.

On the other hand, for asymptotically large jet energies (equivalently large forma-

tion times), their result recovers LPM coherent limit, since dependence of radiative

energy loss on L is quadratic. Consequently, for ultra-relativistic jets, inclusion of

finite size effects mimics destructive effects of LPM interference in an infinite QGP

medium (BDMPS [165, 166]), lowering energy loss compared to the incoherent limit.

This could be qualitatively explained by the fact that created medium has finite,

potentially smaller thickness compared to jet radiation coherence length (∼ τf ),

which is shown [196] to be the case for light partons or large jet energies. This can

also be seen from the formation time in finite dynamical QGP τf = 2xE
(k+q)2+m2

g+x2M2 ,

where E denotes initial jet energy, x the fraction of longitudinal momentum carried

away by radiated gluon; k and q transverse momentum of radiated and exchanged

gluon, respectively, and M is quark mass.

Quantitative assessment on thickness dependence of radiative energy loss [196]

confirmed mass hierarchy at low jet-energy: bottom quarks show the weakest de-

parture from the linear Bethe-Heitler pattern, while with decreasing quark mass

the LPM effect is more pronounced. However, all quark flavor exhibit quadratic L

dependence at very large jet-energies.

It is worth noting that, in finite size dynamical QGP, at asymptotically large jet

energies (LPM limit), the approximation of the medium by randomly distributed

static scatterering centers presents accurate medium description (when scaled by
λdyn
λstat

).

Continuing along these lines (by including dynamical medium, which triggered

infrared singularity of each individual diagram), the question of magnetic screening

absence emerged and waited for consistent inclusion in radiative energy loss calcu-

lus. Note that the HTL pQCD approach requires magnetic mass (µM) equal to zero,

consistently with the finite temperature field theory at one-loop perturbative level in

thermal equilibrium. However, different non-perturbative models [199–203] reported

non-zero magnetic screening mass, which, more precisely, is estimated to lie in the

region 0.4µE < µM < 0.6µE. Thus, Djordjevic et al. addressed this issue [204],
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through the modification of exchanged (and radiated) gluon self-energy. The ob-

tained result has (general) broader range of validity considering any well-defined

system of quasi-particles [205] (for details see subsection 5.2).

Namely, radiative energy loss expression can be factorized into: i) part represent-

ing interaction between the jet and exchanged gluon, referred to as effective cross

section (v(q)); and ii) part corresponding to the interaction between jet and radi-

ated gluon (the remaining part f(k,q, x)). This factorization cannot be modified

by a finite magnetic mass introduction, since it is independent on the particular

form of gluon self energy, which on the other hand is only affected by µM . Note

that v(q) is a function only of the exchanged gluon self-energy, whereas f(k,q, x)

depends solely on a radiative gluon self-energy. Fortunately, it was shown in [204],

that the introduction of finite magnetic mass notably alters only exchanged gluon

self-energy, thus the effect of v(q) change needed to be estimated.

The obtained v(q) for a finite magnetic mass has an extra µ2
M term in numerator

(subtracted from µ2
E) and in denominator (accompanying single q2 and not (q2 +

µ2
E)), compared to the zero magnetic mass case.

Numerically, they obtained that finite magnetic mass significantly decreases ra-

diative energy loss (25− 50%). Unexpectedly, this decrease is mainly a consequence

of µ2
M from the numerator and not the one in denominator, although the latter

could be seen as a cut-off for regulating infrared divergence. Intuitively, this could

be understood by the fact that there was no need for introduction of the artificial

cut-off, as divergence has already been naturaly regulated by taking into account all

relevant Feynman diagrams.

And finally, the most up-to-date improvement to the radiative energy loss formula

presents introduction of running strong coupling constant [206, 207] (see Eq. (1.1.2)),

according to [208]. The off-shellness of the jet ahead of collisional interaction is

Q2 = ET [209], while ahead of gluon radiation is Q2 = k2+M2x2+m2
g

x
[198]. Details

of implementing running αs in radiative and collisional energy loss in finite size

dynamical QGP medium are outlined in subsection 5.2. It is worth noting that each

running coupling is infrared safe, and furthermore of a moderate value, so there was

no need to include cut-offs, as was the usual procedure in other approaches.

Finally, we incorporate our up-to-date dynamical energy loss model into numeri-
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cal procedure, outlined in the next subsection, which allows generating state-of-the

art suppression predictions.

3.2. Suppression computational formalism

The use of generic pQCD convolution [190, 208] formula in the following form:

Efd
3σ

dp3
f

= Eid
3σ(Q)
dp3

i

⊗ P (Ei → Ef )⊗D(Q→ HQ)⊗ f(HQ → e, J/ψ), (3.2.1)

allows studying each step of particle suppression independently. In the above for-

mula, Q denotes quark (antiquark) or gluon, Efd
3σ

dp3
f

and Eid
3σ(Q)
dp3
i

stands for final and

initial particle distributions, respectively. P (Ei → Ef ) is the energy loss probabil-

ity, D(Q → HQ) is the fragmentation function (FF) of quark (antiquark) or gluon

hadronizing into hadron HQ, whereas for heavy quarks f(HQ → e, J/ψ) presents

decay function of HQ into single electron or J/ψ.

Thus, we plausibly assume that high p⊥ partons, whose suppression we observe,

are produced before QGP is formed (i.e. equilibrated), that is in a QCD vacuum. We

also consider that fragmentation and decay steps occur in vacuum. Consequently,

the QGP medium affects the propagating particle via medium induced energy loss

(the step 2 in Fig. 3.2), which is generally considered to be the crucial ingredient of

the suppression computational formalism, and which is the subject of this thesis.
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Figure 3.2: Suppression computational scheme. The chronological order of each in-

dependent step, separated by vertical dashed lines, in our numerical formalism: high

p⊥ parton production (yellow ellipse), medium induced energy loss, fragmentation

into hadron in vacuum and decay of heavy measons (D, B) into e, J/ψ. Figure

adapted from [211].

The chronological order of our computational formalism (see Fig. 3.2), used to

obtain the reliable suppression predictions, outlined in more distinct manner and

with all effects included reads:

1. Up-to-date initial distribution functions for light and heavy flavors, computed

at next to leading order, according to [212].

2. Dynamical energy loss formalism [208], which as mentioned above includes:

• Radiative energy loss

• Collisional energy loss

• Dynamical QGP medium, which considers that the recoil of the medium

constituents is taken into account as opposed to static scattering centers

• Finite size medium, that is, it also takes into account that medium created

in ultra-relativistic heavy ion collisions has a realistic finite size

• Running strong coupling constant [208] introduced in both radiative and

collisional energy loss

• A finite magnetic mass [204] incorporated in the radiative energy loss.

Note that in our numerical formalism, we treat collisional and radiative en-

ergy loss separately, which is possible when collisional and radiative processes
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are decoupled from each other, which is shown to be the case in HTL ap-

proach [213], and in our calculations. Namely, in [213] it was shown that

different diagrams (cuts of the same HTL diagram in 0th order) correspond

to collisional and radiative contributions (so there is no overlapping and con-

sequently over-counting). More qualitatively, collisional (elastic) processes

assume the same number of incoming and outgoing particles, while radia-

tive (inelastic) ones assume an additional gluon among outgoing particles (see

Fig. 3.3).

Also there is no interference between the two contributions, since from mo-

mentum conservation, it can be inferred that in diagrams corresponding to

radiative contributions, condition |ω| > |~q| (quasi-particle state of gluon) has

to be fulfilled, while in diagrams corresponding to collisional contributions,

the condition |ω| ≤ |~q| (virtual gluon) holds (where q denotes radiated (ex-

changed) gluon 3D momentum). Thus, these two contributions have zero

values in overlapping regions, and therefore avoid the interference.

More precisely, the collisional energy loss is calculated in 0th order, while

radiative energy loss is calculated to the 1st order in opacity (although 0th,

order goes into FF). The illustration of the difference between collisional and

radiative energy losses is displayed in Fig 3.3.
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Figure 3.3: Representative diagrams in calculating energy loss in finite size dynami-

cal QGP medium. The left panel corresponds to the collisional process (originating

from 1-HTL), while the right panel corresponds to radiative process (upper (lower)

originating from 1-HTL (2-HTL) gluon propagator). The black ellipse denotes par-

ton source, the "blob" (gray ellipse) represents the effective HTL gluon propagator

for collisional interactions, while denotes the transverse gluon propagator with the

effective gluon mass for radiative processes. Figure adapted from [213].

The energy loss probability comprises also the multi-gluon [184] and path-

length fluctuations [190]. The multi-gluon fluctuations are introduced under

the assumption that the fluctuations of the radiated gluon number are uncorre-

lated. More specifically, the energy loss probability takes into account that the

jet, during its propagation through QGP, can independently radiate number of

gluons. Therefore, the spectrum in the 1st order in opacity of the total radia-

tive energy loss fraction (ε = ∑
i
ωi
E
, where ωi and E denotes energy of radiated

gluon i and initial jet energy, respectively) is represented via Poisson expan-

sion [184] P (ε, E) = ∑∞
n=0 Pn(ε, E), where n counts the number of radiated

gluons. Here, P0(ε, E) = exp−〈N
(1)
g (E)〉 δ(ε), P1(ε, E) = exp−〈N

(1)
g (E)〉 dN

(1)
g (ε,E)
dε

,

67



while for n > 2:

Pn(ε, E) = 1
n

∫
dxn−1

dN (1)
g (xn−1, E)
dxn−1

Pn−1(ε− xn−1, E)

= e−〈N
(1)
g (E)〉

n!

∫
dx1...dxn−1

dN (1)
g (x1, E)
dx1

...
dN (1)

g (xn−1, E)
dxn−1

dN (1)
g (ε− x1 − ...− xn−1)
d(ε− x1 − ...− xn−1) ,

(3.2.2)

where xi denote energy fraction of initial jet energy caried away by ith gluon,

and where 〈N (1)
g (E)〉 =

∫
dε

dN
(1)
g (ε,E)
dx

holds. This ensures
∫∞

0 dεP (ε, E) = 1 and∫
dεP (ε, E)ε = ∆E

E
.

Regarding the path length fluctuations, note that the single gluon radiation

spectrum dN
(1)
g

dx
(Eq. (5.2.2)) is also a function of L, i.e. of the jet in-medium

path length. Instead of assuming the same averaged L for each jet, for more

realistic approach, we took into account the fact that jets can be produced

anywhere in the nuclei overlapping area, and consequently travel different dis-

tances in QGP. Therefore, depending on their production site and motion di-

rection in transverse plane, the jets can lose different amounts of energy. Quan-

titatively, these features are introduced in our numerical formalism through

functional dependence of radiative and collisional energy loss probability dis-

tribution on L. The path length probability is calculated according to the

procedure described in [100], where one assumes the Glauber [55] model for

the collision geometry, with implementation of Woods-Saxon nuclear density

profile [214].

Also note that the full fluctuation spectrum in collisional energy loss prob-

ability is presented via Gaussian [190, 215], where a mean is determined by

the average collisional energy loss 〈∆Ecoll(p⊥, L)〉 (taken from Eq.(14) [157])

and the variance is given by σ2 = 2T 〈∆Ecoll(p⊥, L)〉, where T is the effective

temperature of the QGP medium.

3. Up-to-date fragmentation functions, calculated according to [216, 217], and

4. State-of-the-art decay function, taken from [218].

It is very important to emphasize that, contrary to many other suppression for-

malism, in generating all RAA predictions we use:
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• the same numerical procedure

• the same energy loss formalism for both: radiative and collisional parts

• no fitting parameters.

4. EXPERIMENTAL VALIDATION OF DYNAMICAL ENERGY LOSS

MODEL AND NUMERICAL PROCEDURE

The main goal of ultra-relativistic heavy-ion collisions at RHIC and LHC is study-

ing the properties of created guark-gluon plasma. As an excellent tool for examina-

tion of these properties emerges the comparison of suppression predictions with the

corresponding experimental data. Since recently, a wealth of suppression measure-

ments for both light and heavy flavor, for diverse experimental conditions (center

of mass energies, different experiments at RHIC and LHC) and centrality regions

became available. The accurate predictions require primarily the reliable energy loss

calculations, because, as perviously mentioned, the suppression is the consequence

of the energy loss of high energy partons while traversing the QGP. Therefore, we

applied the state-of-the-art dynamical energy loss formalism [208] (from the previous

subsection), together with all aforementioned up-to-date computational formalism

ingredients to produce the suppression predictions. This comparison with extensive

set of data is also an exceptional test of the formalism, and consequently energy loss

model validity. Besides comparing with the available data, our formalism also has

predictive power for the upcoming experiments.

4.1. A very good agreement with suppression data

The first test of our understanding of QGP matter properties was done by Djord-

jevis et al. in [208], by generating suppression predictions for comprehensive set of

diverse particles (from light to heavy flavor observables) in most central 2.76 TeV

Pb+Pb collisions at LHC. In particular, they compared predictions, based on dy-

namical energy loss formalism incorporated in the aforementioned numerical pro-

cedure, for momentum dependence of RAA with corresponding data for: charged
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(light) hadrons, pions, kaons, D mesons, non- photonic single electrons and non-

prompt J/ψ. Namely, the non-prompt J/ψ originates from b-hadron decay, while

both D- and B-mesons contribute to non- photonic single electron yield.

They obtained that the suppression predictions for all six observables are in

a very good agreement with the experimental data from ALICE [219–222] and

CMS [223, 224]. To our knowledge, that presented the first unified suppression

predictions for set of probes spanning over huge particle diversity, generated within

the same theoretical framework, and the same numerical procedure (i.e. parameter

set, without fitting parameters). Consequently, they obtained that the suppression

of both light and heavy flavor particles at LHC can be reliably described within the

dynamical energy loss formalism. However for an unbiased comparison with experi-

mental measurements, different experimental conditions (i.e. RHIC data) should be

considered, as well as the non-central collisions.

To address this issue, in [225], we extended the dynamical energy loss formalism

towards generating RAA prediction in non-central collisions at the RHIC and the

LHC. More specifically, we generated suppression predictions for all (at that time)

available centrality ranges, for both LHC and RHIC energies (i.e. 2.76 TeV and

200 GeV, respectively), and for four different probes (both light and heavy flavor):

charged hadrons,D mesons, non-prompt J/ψ (at LHC) and neutral pions (at RHIC).

The starting point of an effective temperature Teff for different centralities at

LHC, is equal to 304 MeV (as extracted by ALICE [226] for 0 − 40% centrality

Pb + Pb collisions at LHC), while the effective temperature for different centrality

ranges is determined from the effective temperature of 221 MeV for 0−20% centrality

Au+Au collisions at RHIC (as extracted by PHENIX [133, 134]). For consideration

of different centrality collisions, our numerical formalism incorporated the new path-

length distributions for each centrality bin starting from [100]. Additionally, new

Teff for each centrality region is calculated according to [183, 227] T 3 ∼ dNg/dy
V
→

T = c(dNg/dy
Npart

)1/3, where dNg
dy

presents gluon rapidity density, V (∼ Npart assumption)

is the volume of created QCD medium and Npart is the number of participants in a

collision. Moreover, the gluon rapidity density per participants can be inferred from

the experimentally measured charged particle multiplicity per participant pair
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Figure 4.1: Comparison of charged hadron suppression predictions with LHC exper-

imental data at different centralities. The panels show the comparison of charged

hadron suppression predictions (gray band) with ALICE [219] (the red circles) and

CMS [223] (the blue squares) RAA data in 2.76 TeV Pb+Pb collisions at LHC, for dif-

ferent (fixed) centrality regions, as a function of transverse momentum. The upper

(lower) boundary of gray band on each panel corresponds to µM
µE

= 0.6 (µM
µE

= 0.4).

The centrality ranges, for which the predictions are presented, are indicated in the

lower right corner of each panel. Note that, on the third and the fourth panel, the

same CMS data for centrality range 10− 30% are shown; then, on the fifth and the

sixth panel, the same CMS data for centrality range 30− 50% are presented; simi-

larly on the seventh and the eight panel, the CMS data for centrality range 50−70%

are shown, while on the ninth panel CMS data for centrality region of 70− 90% are

presented. Figure adapted from [225].

dNch/dy
Npart/2 for different centralities at both RHIC [228] and LHC [229], since dNg/dy

Npart
∝
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dNch/dy
Npart/2 . The constant c, which characterizes specific colliding energy can be deter-

mined from aforementioned ALICE and PHENIX Teff measurements in the central

collisions at 2.76 TeV Pb+Pb collisions in LHC and 200 GeV Au+Au collisions in

RHIC.

In numerical calculations we used the following standard parameters: effective

light quark flavors nf = 2.5 for RHIC and nf = 3 for LHC. The light quark mass

is assumed to dominated by the thermal mass M = µE/
√

6, where temperature

dependent Debye mass µE(T ) is obtained from [207] (or see Eq. (5.2.8) in the next

section), whereas the charm and the bottom masses are, respectively, M = 1.2 GeV

and M = 4.75 GeV. In each figure of this subsection, the gray band correspond to

0.4µE ≤ µM ≤ 0.6µE [199–203], while the gluon mass is equal to mg = µE/
√

2 [188].

The values of the remaining ingredients of our suppression computational formalism

are specified in the previous section. The suppression is measured either as a function

of final transverse momentum (p⊥) for different fixed centrality bins or as a function

of participants number for fixed momentum ranges.

Figure 4.2: Comparison of D meson suppression predictions with LHC experimental

data at different centralities, as a function of transverse momentum. The theoretical

predictions are presented by gray bands, where upper (lower) boundary of each

band corresponds to µM
µE

= 0.6 (µM
µE

= 0.4). The centrality regions, for which the

predictions are presented, are denoted in the upper right corner of each panel. At

that timeD mesonRAA experimental data for only two centrality bins were available:

0− 7.5% central 2.76 Pb + Pb collisions at LHC [230] (the red triangles in the left

panel), and 30−50% ALICE data [231] (the red triangles in the third panel). Figure

adapted from [225].

First, we generated suppression predictions, as a function of p⊥ for charged (light)
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particles in 2.76 Tev Pb+Pb collisions at LHC, for nine different centrality regions,

and compared them with the available ALICE [219] and CMS [223] experimental

data in Fig. 4.1. Note that each panel corresponds to different (fixed) centrality bin.

Next, we concentrated on generating RAA vs. p⊥ predictions for D mesons (heavy

particles) at different centrality bins (also in 2.76 Tev Pb + Pb collisions at LHC),

and compared them with, at that time, available ALICE [230, 231] suppression data

in Fig. 4.2. Note that RAA predictions for 30−50% centrality region were generated

before the experimental data, which are now added to figure, became accessible.

From Figs. 4.1 and 4.2 we observe a very good agreement between our predictions

and experimentally obtained RAA for both light and heavy flavor particles in all

available centrality ranges at the LHC (for p⊥ & 10 GeV).

Figure 4.3: Comparison of neutral pion suppression predictions with RHIC exper-

imental data at different centralities. The panels show the comparison of π0 sup-

pression predictions (gray band) with PHENIX [232] RAA data at 200 GeV Au+Au

collisions at RHIC (the purple triangles), for different (fixed) centrality regions, as

a function of transverse momentum. The upper (lower) boundary of gray band on

each panel corresponds to µM
µE

= 0.6 (µM
µE

= 0.4). The centrality bins, for which the

predictions and the data are presented, are denoted in the lower right corner of each

panel. Figure adapted from [225].

Further, we proceeded with comparing ourRAA predictions with RHIC (PHENIX)
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data [232] for different centrality bins (Fig. 4.3). To that end, we provided sup-

pression predictions for π0 as a function of transverse momentum, for six different

centrality bins in 200 GeV Au + Au collisions at RHIC. Similarly as for LHC mea-

surements, from Fig. 4.3 we observe a robust agreement between our theoretical

predictions and experimental RHIC data for each centrality bin.

Figure 4.4: Suppression dependence on the number of participants for light and

heavy flavor at RHIC and LHC. The first panel compares RAA predictions with

PHENIX experimental data [232] for neutral pion in 200 GeV Au+Au collisions at

RHIC, where π0 momentum is larger than 7 GeV. The remaining panels compare

RAA predictions with experimental data from 2.76 TeV Pb+Pb collisions at LHC, for:

charged hadrons [219], with momentum in 6− 12 GeV range (the second panel), D

mesons [233], with momentum in 8−16 GeV range (the third panel) and non-prompt

J/ψ [234], with momentum in 6.5 − 30 GeV range (the last panel). Theoretical

predictions are presented by gray bands, where upper (lower) boundary of each

band corresponds to µM
µE

= 0.6 (µM
µE

= 0.4). Figure adapted from [225].

Finally, in Fig. 4.4 instead of fixing the centrality ranges, as done in previous

figures of this subsection, we fixed the momentum regions to address how suppression

changes as a function of centrality (that is number of participants). To that end, we

generated predictions for diverse probes and both RHIC and LHC experiments. In

particular, the comparison of our predictions with experimental data is performed

for neutral pions at the RHIC and charged hadrons, D mesons and non-prompt J/ψ

at the LHC. Again, we obtained a very good agreement of our predictions with the

experimental data.

Therefore, we conclude that our theoretical formalism works very well in repro-

ducing RAA data for diverse set of probes (light and heavy flavor) [208, 235], different
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collision energies (RHIC and LHC) and all available centrality regions [225].

4.2. The predictions for upcoming measurements

Another convenience of the dynamical energy loss model and our numerical pro-

cedure reflects in its reliable predictive power. In that manner, prior to the first

suppression measurements at 5.02 TeV Pb+Pb collisions at the LHC, Djordjevic et

al. provided RAA predictions for heavy flavors (c, b,D, J/ψ) [236] in most central col-

lisions. Namely, contrary to (naively) expected significant increase in suppression of

30%, they obtained qualitatively and quantitatively same heavy flavor suppressions

at 2.76 TeV and 5.1 TeV. This was explained [236] by cancellation of two opposite

effects: i) flattening of initial parton distribution at higher collision energy, and ii)

smaller than expected increase of heavy quark radiative and collisional energy loss

(practically only linear dependence on T ).

Along these lines, in paper [237] we showed that suppression predictions in central

2.76 TeV and 5.02 TeV Pb+ Pb collisions at LHC are practically the same for light

probes, i.e. charged hadrons as well (see most up-to-date data, released afterwards,

for light and heavy hadrons in subsection 1.5.2, i.e. see Fig. 1.17). Consequently,

we argue that predictions for all single particles, regardless of its mass, at 2.76 TeV

are also valid for 5.02 TeV beam energies (see Fig. 4.5).

In the same paper [237] we addressed the issue of which particles and at which

transverse momentum range are adequate for mass tomography of the QGP. Namely,

this issue is of a great importance, since particles with the different masses are ex-

pected to interact differently (lose different amounts of energy) in the QGP medium,

making the mass tomography an excellent tool for mapping the QGP properties.

Also, our predictions point towards the relevant momentum regions and where the

future experimental efforts, with regards to this matter, should be concentrated.

To this end, we generated RAA predictions at two p⊥ regions: the lower momen-

tum region (i.e. p⊥ ∼ 10 GeV in this context) and high momentum region (p⊥ ∼ 100

GeV), for charged hadrons, D mesons and B meson or non-prompt J/ψ (originating

from B meson decay).
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Figure 4.5: Comparison of charged hadron RAA predictions at 2.76 and 5.02 TeV.

Suppression predictions for h±, as a function of transverse momentum in 0 − 10%

central Pb+ Pb collisions at the LHC, are shown as white bands with full (dashed)

boundaries for 5.02 TeV (2.76 TeV) center-of-mass energies. The upper (lower)

boundary of each band corresponds to µM
µE

= 0.6 (µM
µE

= 0.4). Figure adapted

from [237].

From Fig. 4.6, we observe that predictions in these two momentum regions dis-

played different tendencies. While at lower momentum region the mass hierarchy is

present, that is J/ψ is notably less suppressed, due to dead cone effect [156], than

equally suppressed charged hadrons/D meson [238]; at high momentum region we

predicted almost the same suppressions regardless of the probe’s mass. An intu-

itive explanation for the latter region would be that particle mass becomes small

compared to its momentum, leading to mass irrelevance at high p⊥ region. Note

that our predictions at lower p⊥ agree to a great extent with experimental data

for both particles, while currently, at higher momentum range only charged hadron

data are available (and are in good agreement with our suppression predictions).

Therefore, the overlapping light and heavy flavor suppressions at high momentum

ranges presented our clear prediction to be experimentally tested in the future.

For the quantitative explanation of the smaller J/ψ suppression at lower p⊥ (left

panel of Fig. 4.6) compared to D meson, we individually examined the contribution

of initial b and c quark distributions and energy loss to the suppression predictions.

From the left panel of Fig. 4.7 we obtained that the contribution from the initial
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Figure 4.6: RAA as a function of participants number for single particles in √sNN =

2.76 TeV Pb + Pb collisions at the LHC. The left panel shows comparison of our

suppression predictions and CMS experimental data for D mesons [239] in 8 < p⊥ <

16 GeV region (red triangles) and non-prompt J/ψ [234] in 6.5 < p⊥ < 30 GeV region

(orange circles). Gray bands with dashed, and dot-dashed boundaries, correspond

to our theoretical predictions for D mesons and non-prompt J/ψ in the appropriate

momentum regions, respectively. The right panel compares our RAA predictions

for h± (white band with full boundaries), D (white band with dashed boundaries)

and B meson (white band with dot-dashed boundaries) with ATLAS h± data [240]

(green squares) in 60 < p⊥ < 95 GeV momentum region. On each panel, the upper

(lower) boundary of each band corresponds to µM
µE

= 0.6 (µM
µE

= 0.4). Figure adapted

from [237].

distributions is small, while the contribution due to the different energy loss is

significantly larger. However, note that non-prompt J/ψ suppression is not a clear b

suppression probe (there is a notable feed-down from B meson decay), so in order to

exclude the decay contribution, we compared D and B meson suppression at lower

p⊥ region in the middle panel of Fig. 4.7; note that the comparison of the left and

the middle panels provides an estimate of decay function effect to the contributions

analyzed in the left panel. Thus, the need for new probe: B meson suppression

emerged. This led to even further enhancement of the energy loss contribution

compared to the initial distribution. Consequently, the strong mass dependence of
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RAA (both predicted and observed) at lower momentum range is certainly due to

the differences in the energy loss. Therefore, the lower p⊥ range is convenient for

mass tomography.

Additionally, on the right panel of Fig. 4.7 we showed that there is no momentum

region in which initial distribution contributes notably to the suppression difference

between different types of particles. Consequently, the examination of different

suppression patterns of D and B mesons at lower momentum region allows studying

how different types of particles interact with QGP, without inference of production,

fragmentation or decay.

Figure 4.7: Contributions of initial distribution and energy loss to suppression. (a)

RAA predictions as a function of Npart are compared for D mesons in 8 < p⊥ < 16

GeV region (dashed curve) and non-prompt J/ψ in 6.5 < p⊥ < 30 GeV region (dot-

dashed curve). Gray curve shows the analogous non-prompt J/ψ predictions, if the

originating bottom quark would have the same energy loss as charm quark in QGP.

(b) RAA predictions as a function of Npart are compared for D and B mesons in

8 < p⊥ < 16 GeV region. (c) RAA predictions as a function of p⊥ are compared for

D and B mesons. The full arrow denotes the contribution of the different initial

distributions to the difference in the suppression between D meson and non-prompt

J/ψ (or B meson), while the dashed arrow indicates the contribution of the different

energy losses to the difference between D meson and the non-prompt J/ψ (or B

meson) suppression. On each panel the legend is the same as in the first panel.

Magnetic to electric mass ratio is set to µM/µE = 0.4. Figure adapted from [237].

However, to study the high p⊥ range in more detail, we compared RAA predictions
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for charged hadrons, D and B mesons at central 5.02 TeV collisions. Note that, since

no experimental data existed at the time, this presented pure prediction to be tested

in the future.

We obtained that below 50 GeV, B suppression is substantially smaller compared

to D mesons and charged hadrons probes (see left panel of Fig. 4.8). However, an

additional, non-intuitive feature appeared at p⊥ > 100 GeV: charged hadrons RAA

became notably larger than the one for D and B mesons (that are practically iden-

tical). Moreover, we obtained that the difference between light and heavy meson

suppression increases with increasing p⊥, leading to more than 10% smaller suppres-

sion of charged hadrons compared to heavy mesons for p⊥ > 150 GeV.

Figure 4.8: Single particles suppression predictions as a function of p⊥ in 0− 10%

central 5.02 TeV Pb+ Pb collisions at the LHC. (a) RAA predictions for h±, D and

B meson are presented by white bands with full, dashed and dot-dashed boundaries,

respectively. The upper (lower) boundary of each band corresponds to µM/µE = 0.6

(µM/µE = 0.4). (b) Bare quark RAA predictions for u (dotted curve), c (dashed

curve) and b quarks (dot-dashed curve). (c) Comparison of RAA predictions for bare

u quark (dotted curve) with h± (full curve). In (b) and (c) panels µM/µE is set to

0.4. Figure adapted from [237].

To that end, we added two additional panels in Fig. 4.8. From the middle panel,

where we compared bare u, c, b suppressions, we see that at p⊥ > 100 GeV, con-

sistently with pQCD, finite mass effects for all types of quarks become negligible,

resulting in the same suppressions of both light and heavy flavor partons. We showed

that the non-intuitively obtained smaller suppression of charged hadrons compared
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to heavy ones had nothing to do with different energy loss (i.e. mass effect, as mass

is negligible in this momentum region). Instead we explained (see the right panel

of Fig. 4.8) that the FF, which was not compensated by gluon contribution at this

high p⊥, was responsible for lowering the suppression of bare u quark.

The one of the main conclusions of paper [237] is that we predict that notable mass

tomography effects could be clearly observed below 50 GeV, which is connected with

the differences between the bottom, on one side, and the charm/light suppressions,

on the other, i.e. energy losses (dead cone effect).

4.3. Conclusions

In this section first we provided comparison of suppression predictions based on

our dynamical energy loss formalism with RAA experimental data. The predictions

were generated for: i) an extensive set of particles - from light to heavy flavor

observables, ii) different experiments - both RHIC and LHC, and iii) all available

centrality bins. Note that the predictions were obtained by applying the same

theoretical formalism and within the same numerical procedure. Moreover, the

same parameter set (corresponding to the standard literature values) was used for

generating the predictions for the same experiment. Also, it is worth noting that no

free parameters (obtained from the best fit) were used when comparing RAA with

the experimental data. We obtained robust agreement of our theoretical predictions

with all these diverse experimental measurements, for all momentum ranges larger

than 10 GeV.

Also, using the same procedure we provided heavy and light flavor suppression

predictions prior to 5.02 TeV Pb+ Pb measurements at the LHC. Although higher

collision energies intuitively imply larger suppression, we anticipated qualitatively

and quantitatively the same suppressions for 2.76 and 5.1 TeV collision energies.

This unexpected result was explained by coincidental interplay of initial momentum

distributions and energy loss, and recently obtained its experimental confirmation.

And finally, we predicted that momentum region below 50 GeV is mostly ade-

quate for mass tomography, directing future experimental efforts on this region, with

regard to assessing how different probes interact with QGP, and toward measuring B
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meson suppression, as a clear b suppression probe, instead of non-prompt J/ψ. And

additionally, our formalism obtained as a prediction abnormal suppression decrease

of charged hadron compared to heavier probes (B and D mesons whose suppressions

nearly overlap with each other) at p⊥ > 100 GeV.

The excellentRAA predictions agreement with comprehensive set of data, together

with providing accurate predictions for higher collision energies at LHC indicates

that our dynamical energy loss model incorporated in previously outlined compu-

tational formalism can reliably model hard probe-medium interactions. That is,

pQCD is capable of adequately describing the properties of QGP medium created

in ultra-relativistic HIC at RHIC and LHC.

5. THE IMPORTANCE OF DIFFERENT ENERGY LOSS EFFECTS IN

DYNAMICAL ENERGY LOSS MODEL

In the previous section, we demonstrated that our theoretical predictions of jet

suppression, which are based on recently developed dynamical energy loss formal-

ism [208] show a robust agreement with the available suppression data at both col-

liders, for a diverse set of probes [208, 235] and centrality regions [225]. Additionally,

we observed the formalisms predictive power [236, 237].

At this point, it’s worth noting (we recall), that the dynamical energy loss model

present a sophisticated formalism, which comprises several key ingredients, such as:

1. Radiative energy loss [196, 198]

2. Collisional energy loss [157]

3. QGP medium consisting of dynamical scattering centers

4. QGP medium of a finite size [196, 198]

5. Finite magnetic mass [204]

6. Running coupling [208].

Having all this in mind, a question arises whether such a good agreement of the

predictions with the experimental data is a consequence of a single dominant energy
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loss effect or is it a result of a cumulative effect of all energy loss ingredients. There-

fore, in this section we address the issue of which effect, if not a superposition of

several smaller improvements, is responsible for the accurate RAA predictions [159].

5.1. Introduction

This question is moreover important, as various pQCD approaches, such as

BDMPS-Z [165–167, 169, 170], ASW [241–243], AMY [172, 174, 175], (GLV)

DGLV [181, 183, 189] and HT [244, 245] to the energy loss calculations neglect

some (or many) of these effects. In particular, majority of these models consider

bremsstrahlung a dominant form of high p⊥ parton energy loss [246]. However,

there were some models that hinted that collisional energy loss is also impor-

tant [154, 193], or the complete opposite one, that assume only collisional energy

loss [146–148, 153, 155].

It is worth noting that, although accurate energy loss calculation is generally

considered to be the crucial ingredient in generating reliable suppression predictions,

in our numerical procedure (3.2.1) there are also other important steps, such as:

initial parton distribution, fragmentation and decay function. Therefore, in order to

isolate energy loss for assessing the importance of different energy loss ingredients in

the suppression calculations, it would be convenient to have a probe that is sensitive

only to the energy loss, i.e. for which fragmentation and decay functions do not

play a role. Luckily, the D meson suppression emerges as a suitable candidate,

since the fragmentation functions do not modify bare charm quark suppression, as

previously shown in [152, 235, 238]. Additionally, regarding the decay functions, D

meson presents genuine charm quark probe, since the feed-down from B meson is

subtracted from the experimental data [221].

In order to assess the importance of different energy loss effects, which have

been used in our suppression predictions, in this subsection we concentrate on the

D meson suppression in central 200 GeV Au + Au collisions at RHIC and 2.76

TeV Pb + Pb collisions at the LHC. Regarding the RHIC, note that suppression

measurements only up to 6 GeV are available (this p⊥ range is below our model

applicability), explaining the omission of our prediction comparison with the data in
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the further text. However, high momentum D meson suppression data are available

at the LHC, and they serve as a baseline for evaluating the importance of each

energy loss effect.

Our analysis is historically driven: we start from the static approximation, which

has been the first approach to the energy loss calculations. Then we systematically

include different energy loss effects, on-by-one. In particular, we first compare the

relative importance of static radiative and collisional contribution to the D meson

suppression predictions, to assess the adequacy of the historically widely used static

approximation. Next we address the importance of including the dynamical scat-

tering centers, by comparing static with dynamical radiative contributions to RAA.

Then we compare radiative and collisional energy loss RAA within the same: dy-

namical energy loss formalism. Next we examine the significance of constraining the

medium to a finite size (LPM effect). Finally, we also investigate the importance of

including the finite magnetic mass and the running coupling.

We start our analysis by outlining the analytical differences that each of the

energy loss effect brings into fractional energy loss formula. Then we embark on

addressing each effect numerically.

5.2. Theoretical framework

In this subsection we first outline details of the up-to-date numerical procedure,

that we use, whose main ingredient is the state-of-the-art dynamical energy loss

formalism, that gained its validation through comparison with extensive set of ex-

perimental data, as previously mentioned. Then we provide a brief overview of how

the energy loss expression is modified, as different ingredients are excluded from

this formalism. Note that, in the consecutive subsection, we numerically address

different energy loss effects in a reverse order: that is we start from the static ap-

proximation, and include the effects separately, as such historically-driven approach

is previously introduced (see subsection 3.1), and thus easier to follow.

The angular averaged nuclear modification factor RAA will be used for studying

the importance of different energy loss effects, since it has traditionally considered to
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be a sensitive observable for interaction of high p⊥ particles with the QGP medium.

The nuclear modification factor [100, 101] reflects how the QGP medium affects

the auto-generated jet (or in our case single particle), that propagates trough the

medium and is given by Eq. (1.4.5).

Since we are interested in assessing the importance of different jet-medium effects,

in an orderly fashion, and do not consider the details of the medium evolution in

this study, it would be convenient to have an observable, which is insensitive to the

specific aspects of the medium evolution. It turns out that angular averaged RAA

meets this criteria, as it was previously shown to be sensitive almost entirely to

the average properties (temperature) of the evolving medium [102, 103]. Therefore,

angular averaged RAA is considered to be practically pure test of the jet-medium

interactions, and used throughout this section. On the opposite side of sensitivity

scale would be, for instance, elliptic flow v2, which is considered highly susceptible

to the details of the medium evolution, and therefore inadequate for our study. In

this respect, we model the medium by assuming an effective temperature of 304

MeV at the LHC (as extracted by ALICE [226]) and effective temperature of 221

MeV at RHIC (as extracted by PHENIX [126]).

For obtaining the final D meson (charm quark) spectra, upon its passage

trough QGP medium, as usual, we use generic pQCD formula [190, 208], given

by Eq. (3.2.1), but in its reduced form:
Efd

3σ

dp3
f

= Eid
3σ(c)
dp3

i

⊗ P (Ei → Ef ), (5.2.1)

where in distinction to Eq. (3.2.1) we omitted fragmentation function of charm quark

into D meson (D(Q → HQ)), because fragmentation does not modify bare charm

quark suppression [235, 238]. Likewise, the decay function (f(HQ → e)) is disre-

garded because D mesons are directly measured in the experiments. In Eq. (5.2.1)
Eid

3σ(c)
dp3
i

stands for the initial charm quark spectrum computed at next-to-leading

order [212]. Energy loss probability Ei → Ef , in our most sophisticated dynamical

energy loss formalism includes all: radiative and collisional energy losses in a finite

size dynamical QGP medium, multi-gluon [184] and path length [190] fluctuations.

The path length distributions are extracted from [100]. The implementation of

multi-gluon and path-length fluctuations is described in subsection 3.2. Note that,

as some effect is excluded the energy loss probability changes accordingly.
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The radiative energy loss in a finite size, optically thin, dynamical QGPmedium [196,

198], obtained from HTL approximation, at 1st order in opacity [184, 247] is given

by the expression:

∆Erad
E

= CRαs
π

L

λ

∫
dx
d2k
π

d2q
π
v(q)

(
1−

sin( (k+q)2+χ
xE+ L)

(k+q)2+χ
xE+ L

) 2(k + q)
(k + q)2 + χ

×
( (k + q)

(k + q)2 + χ
− k

k2 + χ

)
, (5.2.2)

where E denotes initial jet energy, L is the dimension of the finite size QGP medium,

while k and q, typically for this thesis, present transverse momentum of radiated

and exchanged gluon, respectively. The color factor for quark-jet is CR = 4/3,

χ = m2
g + M2

c x
2, mg = µE/

√
2 is the effective (asymptotic) mass for gluon [188]

with the hard momenta k & T , µE is Debye (electric) screening mass and Mc = 1.2

GeV is the charm quark mass. λ is the mean free path in the QCD medium and in

the dynamical case [196] is given by:

1
λ

= 3αsT. (5.2.3)

For an infinite medium case, we use the incoherent limit [198] of Eq. (5.2.2), that is
sin( (k+q)2+χ

xE+ L)
(k+q)2+χ
xE+ L

→ 0.

The derivation of collisional energy loss in dynamical QGP medium is provided

in paper [157], and in this section for the finite size dynamical QGP medium we use

Eq. (14) from that reference (or see Eq. (A.0.6) from Section A). For mimicking

an infinite medium, the incoherent limit, i.e. Eq. (16) from [157] is applied (see

Eq. (A.0.12) from Section A).

The finite size effect is addressed by assuming dynamical medium and by taking

into account both radiative and collisional energy loss contributions, through com-

paring RAA prediction when both contributions are calculated in finite size medium

with the one when both contributions are taken in incoherent limits.

The effective cross section, when the finite magnetic mass is included, according

to the paper [204], as qualitatively explained in the previous section, is given by

Eq. (5.2.6) below. Here we provide a brief quantitative derivation of this formula.

Particularly, by introducing the finite magnetic mass in radiative energy loss, only

effective cross section is altered. Although v(q) was previously calculated through
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HTL for the self-energy, it is however independent from the particular form of gluon

self-energy [205]. Thus, the effective cross section can be written as:

v(q) = vL(q)− vT (q), (5.2.4)

where L and R denote longitudinal and transverse contributions, respectively. The

application of sum rules [205] gives:

vL,T (q) = 1
q2 +ReΠL,T (∞) −

1
q2 +ReΠL,T (0) , (5.2.5)

where ΠL,T (q0/|~q|) denotes longitudinal and transverse gluon self-energies. So, the

exact expression of gluon propagator is unimportant, but instead only knowledge of

gluon self-energies ΠL,T (q0/|~q|) for q0/|~q| =∞ and q0/|~q| = 0 is needed. Note that L

and T gluon masses at |~q| = 0 are equal and called plasmon mass (ΠL(∞) = ΠT (∞),

due to inability to distinguish longitudinal and transverse modes for particles at

rest), and they cancel each other. In the case of static gluon exchanges (q0 = 0),

longitudinal part corresponds to electric (Debye) screening mass µ2
E = ReΠL(0),

while transverse stands for magnetic screening mass squared µ2
M = ReΠT (0).

Thus, for the effective cross section at finite magnetic mass µM the following

expression was obtained:

v(q) = µ2
E − µ2

M

(q2 + µ2
M)(q2 + µ2

E) , (5.2.6)

where non-perturbative approaches [199–203] obtained lower and upper limits of

magnetic mass: 0.4 < µM/µE < 0.6.

Note that, in the case when magnetic mass is equal to zero, the above expres-

sion reduces to the well-known HTL effective cross section [172, 174, 175, 198] for

dynamical medium:

v(q) = µ2
E

q2(q2 + µ2
E) . (5.2.7)

Thus, the effect of finite magnetic screening mass is assessed by comparing RAA pre-

dictions, where the effective cross section that enters radiative energy loss Eq. (5.2.2)

is given either by Eq. (5.2.6) or by Eq. (5.2.7).

The running coupling is introduced according to [208] and is defined as in [206],

that is, given by Eq. (1.1.2), where nf = 2.5 (nf = 3) for RHIC (LHC) is the number
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of the effective light quark flavors. More specifically, in dynamical radiative energy

loss, the coupling constant is present in a form µ2
Eα

2
s [198], which can be factorized

into µ2
Eαs(Q2

v)αs(Q2
k), where αs(Q2

v) corresponds to the jet interaction with virtual

(exchanged) gluon, while αs(Q2
k) originates from jet interaction with radiated gluon.

The off-shellness is given by Q2 = ET [209], and by Q2 = k2+M2x2+m2
g

x
[198], as

previously mentioned, for the two cases, respectively.

In the case of the running coupling, Debye mass µE [207] is obtained by self-

consistently solving the equation:

µ2
E

Λ2
QCD

ln
( µ2

E

Λ2
QCD

)
= 1 + nf

11− 2/3nf

( 4πT
ΛQCD

)2
. (5.2.8)

Regarding the collisional energy loss in a finite dynamical QCD medium, the

strong coupling enters the expression in the form of α2
s [157], which can be factorized

as αs(µ2
E)αs(Q2

v) [209]. Note that every αs is given by Eq. (1.1.2).

Otherwise, when the running coupling is not included, fixed values of the strong

coupling constant αs = 0.3 for RHIC (αs = 0.25 for LHC) [210] and Debye mass

µE = gT are used. In that manner, the effect of running coupling is addressed

by comparing suppressions, where the strong coupling that enters both radiative

(Eq. (5.2.2)) and collisional (Eq. (14) from [157]) energy losses is given either by

constant value or by Eq. (1.1.2), with factorization and appropriate off-shellness

incorporated as explained above.

Transition from the dynamical to the static [189] approximation in the case of

the radiative energy loss is given by the following two substitutions and according

to the paper [196].

1. The mean free path in static and dynamical case is related through:

1
λstat

= 1
λg

+ 1
λq

= 61.202
π2

1 + nf/4
1 + nf/6

3αsT = c(nf )
1

λdyn
, (5.2.9)

where c(nf = 2.5) ≈ 0.84 is a slowly increasing function of nf that varies

between c(0) ≈ 0.73 and c(1) ≈ 1.09;

2. The effective cross section becomes:

v(q)stat = µ2
E

(q2 + µ2
E)2 , (5.2.10)

87



which is already presented in Eq. (2.2.8).

Note that in static medium, the only non-zero contribution to energy loss comes

from the radiative part. So the adequacy of static medium approximation is in-

vestigated by comparing suppression predictions, when only radiative energy loss is

taken into account in energy loss probability, in static and in dynamical medium.

5.3. Numerical results

In this subsection, we concentrate on generating suppression predictions for cen-

tral 200 GeV Au + Au collisions at RHIC and 2.76 TeV Pb + Pb collisions at the

LHC, starting from static QCD medium approximation, and address how the inclu-

sion of different energy loss ingredients affects the D meson RAA predictions. As

explained previously, since the high p⊥ D meson RAA data were available only at

the LHC [221, 233], the comparison with the LHC data is done, in order to obtain

qualitative and quantitative estimation of the importance of each individual effect.

Within the static approximation, we use a fixed value of the strong coupling

constant αs = g2

4π = 0.3 at RHIC (αs = 0.25 at LHC) and Debye screening mass

µE ≈ gT . Note that these values are used in Figs. 5.1 to 5.5. Also, note that

magnetic mass effect is not included (µM = 0) in Figs. 5.1 to 5.4 and 5.6, whereas

the finite magnetic mass is used in Figs. 5.5 and 5.7. The running coupling is

considered in Figs. 5.6 and 5.7. The finite size QCD medium is considered in each

figure, whereas Fig. 5.4 addresses the significance of constraining the dimension of

created QGP medium.

5.3.1. Adequacy of static approximation

In order to assess the suitableness of the static QGP medium approximation,

implying that the interaction between jet and medium constituents can be modeled

by static Yukawa color screened potential [161, 162], we compare relative impor-

tance of static radiative and collisional energy loss contributions to the suppression

predictions in a finite size QGP medium. Namely, the static medium approxima-

tion implies that collisional energy loss is negligible compared to radiative energy

loss, that is collisional energy loss equal to zero is assumed in this approximation.
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Nevertheless, the obtained comparable contributions of collisional energy loss - that

is even larger at lower p⊥ - compared to static radiative energy loss to suppres-

sion calculations, as can be observed in Fig. 5.1, pointed to inadequacy of static

approximation for D meson RAA predictions.

Figure 5.1: Static radiative vs. collisional energy loss RAA. D meson suppression

predictions dependence on transverse momentum, is shown assuming only radiative

energy loss in static QGP medium (dotted curve), and considering only collisional

energy loss in dynamical QGP medium (dot-dashed curve). Left (right) panel corre-

sponds to RHIC (LHC) conditions. Right panel also contains the D meson RAA ex-

perimental data for 0−7.5% central 2.76 TeV Pb+Pb collisions at the LHC [221, 233]

(red triangles). The standard values for the parameters are assumed: Debye mass

µE = gT , coupling constant αs = 0.3 (αs = 0.25) for RHIC (LHC). A finite size

QGP medium is considered, while the finite magnetic mass effect is not included

(i.e. µM = 0). Figure adapted from [159].

Additionally, by comparing with a baseline LHC experimental data, from the

right panel of Fig. 5.1, we also observe that the static approximation leads to a

strong disagreement with the data. Specifically, static radiative energy loss leads to

2−3 times smaller suppression than the one experimentally observed. Consequently,

we see that the static approximation is not an adequate one, and also that the

collisional energy loss has to be taken into account in the suppression predictions.

Therefore, a number of energy loss models which consider only radiative energy

loss (for an overview see e.g. [246]) - and some that consider only collisional energy
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loss [146–148, 153, 155] - are clearly not adequate. The next logical step is the

inclusion of dynamical QGP medium effect, where, as opposed to static QGP, the

recoil of the medium constituents is taken into account. This effect is first assessed

on radiative energy loss contribution to RAA.

5.3.2. Radiative energy loss RAA: static vs. dynamical cases

In Fig. 5.2, we compare the D meson suppression predictions obtained only from

radiative energy loss in the static, with the one in the dynamical finite size QGP

medium. We observe a large discrepancies in the two suppression predictions, with a

significant suppression increase in the dynamical case. From the left panel of Fig. 5.2,

we see that at the available RHIC jet energies this difference is consistent, implying

that there is no momentum range where static approximation would be an adequate.

Consequently, the dynamical energy loss effect has to be taken into account at RHIC.
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Figure 5.2: Static vs. dynamical radiative energy loss RAA. D meson suppression

predictions dependence on transverse momentum is plotted, assuming only radiative

energy loss in static (dotted curve) and in dynamical (dashed curve) QGP medium.

Left (right) panel corresponds to the RHIC (LHC) conditions. Right panel also

shows the D meson RAA experimental data for 0− 7.5% central 2.76 TeV Pb + Pb

collisions at LHC [221, 233] (red triangles). The standard values for the parameters

are assumed: Debye mass µE = gT , coupling constant αs = 0.3 (αs = 0.25) for

RHIC (LHC). A finite size QGP medium is considered, while no finite magnetic

mass effect is included (i.e. µM = 0). Figure adapted from [159].

From the right panel of Fig. 5.2, we observe that static approximation is not the

appropriate one on, at that time available momentum range at the LHC (up to 40

GeV/c), but the results indicate that the static approximation to radiative energy

loss may become valid for jet momentum larger than ≈ 100 GeV/c, in general

agreement with [165, 196, 198]. However, note that the dynamical effect has to be

included even for these higher transverse momenta, since the collisional energy loss

(see the right panel of Fig. 5.1) has significant contribution to the jet suppression,

which otherwise in the static approximation would be neglected.

Albeit the inclusion of dynamical effect considerably increases the radiative sup-

pression compared to the static approximation, from the right panel of Fig. 5.2

we see that, at least below 40 GeV/c, radiative energy loss alone is not capable

of explaining the experimentally obtained D meson RAA neither quantitatively nor

qualitatively (see the shape of Dyn Rad RAA curve). Consequently, the model of
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jet-medium interactions, which takes into account only the radiative energy loss is

inadequate. Therefore, one has to include also the collisional energy loss within

the same dynamical formalism, although the increased suppression due to radia-

tive energy loss in dynamical medium compared to static medium ( Fig. 5.2) raises

the question of the collisional contribution importance, when dynamical medium is

considered.

5.3.3. Dynamical formalisam: radiative vs. collisional energy loss RAA

To this end, now we concentrate on a finite size dynamical QCD medium and

address the relative importance of radiative and collisional energy losses in this

medium. In Fig. 5.3 we compare the D meson suppression predictions resulting

from: i) collisional, ii) radiative and iii) collisional + radiative (total) energy loss in

the dynamical QCD medium. We observe that, even when the dynamical effect is

taken into account, again both radiative and collisional contributions are compara-

ble and it is important to include them both in generating suppression predictions,

which is in accordance with claims in Refs. [154, 157, 193]. This further under-

scores the importance of including the collisional energy loss in calculating D meson

suppression at both RHIC and the LHC.
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Figure 5.3: Radiative vs. colisional energy loss RAA in dynamical formalism. D

meson suppression predictions dependence on transverse momentum is shown for

radiative (dashed curve), collisional (dot-dashed curve) and totatl, i.e. radiative +

collisional (solid curve) energy loss. Left (right) panel corresponds to the RHIC

(LHC) conditions. Right panel also contains the D meson RAA data for 0 − 7.5%

central 2.76 TeV Pb+Pb collisions at LHC [221, 233] (red triangles). Debye mass is

µE = gT , coupling constant is αs = 0.3 (αs = 0.25) for RHIC (LHC). QGP medium

of a finite size is assumed and no finite magnetic mass effect is taken into account

(i.e. µM = 0). Figure adapted from [159].

Furthermore, we see that taking into account the collisional contribution leads to

total D meson suppression prediction, that is: 1) somewhat less than twofold larger

than the same resulting only from dynamical radiative energy loss, 2) quantitatively

and qualitatively in a rough agreement with the LHC experimental data (see the

right panel of Fig. 5.3). Additionally, in accordance with the first perception (1)),

we observe that the total suppression is significantly larger than either of the two

contributions: radiative alone or collisional alone, which leads to the conclusion

that they jointly have to be taken into account for the accurate predictions. This

finally resolves the issue of the collisional contribution relevance. With regard to 2),

we infer that the dynamical effect is the main/necessary ingredient for the correct

description of the jet-medium interactions.

Further on, we consider both radiative and collisional energy loss within dynam-

ical QGP medium.
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5.3.4. The importance of LPM effect

Upon establishing that both collisional and radiative energy losses are important,

we further address how the finite size (LPM) effect influences them, which is ini-

tiated by a commonly held belief that for heavy flavor at RHIC this effect is not

important. To this end, in Fig. 5.4, we separately investigate the finite size effect

on radiative (the left panels), collisional (the central panels) and total, i.e. radiative

+ collisional (the right panels) energy loss. The first row in Fig. 5.4 presents trans-

verse momentum dependence of RAA at the RHIC, while the second row of Fig. 5.4

corresponds to suppression predictions at the LHC.

Figure 5.4: Finite size effect on RAA in dynamical formalism. D meson suppression

predictions dependence on transverse momentum is plotted with (solid curve) and

without (dashed curve) finite size effect included. The first (the second) row corre-

sponds to RHIC (LHC) conditions. Left, central and right column shows, respec-

tively, the finite size effect on radiative, collisional and total (radiative + collisional)

energy loss in a dynamical QGP medium. The standard values for the parameters

are assumed: Debye mass µE = gT , coupling constant αs = 0.3 (αs = 0.25) for

RHIC (LHC), whereas no finite magnetic mass effect is included. Figure adapted

from [159].

94



From Fig. 5.4 we observe that for D meson collisional energy loss the finite size

effect is indeed negligible at both RHIC and the LHC. However, contrary to the

above mentioned expectation, we obtained a substantially different radiative energy

loss suppressions with and without finite size effect at both RHIC and LHC, although

this difference is larger for LHC conditions. Consequently, the total suppression is

significantly altered by abandoning LPM effect, as well. More specifically, we see

that neglecting LPM effect can lead to as much as two times larger suppression at

RHIC and several times larger suppression at the LHC. Moreover, LPM effect leads

not only to quantitatively, but also qualitatively different suppression pattern, since

this effect can lead to a decrease - rather than an incorrect increase - of suppression

with increasing jet transverse momentum. Taking this into account, we conclude

that LPM effect is important ingredient of the energy loss calculations and therefore

needs to be included in heavy flavor suppression predictions at both RHIC and the

LHC

5.3.5. The importance of finite magnetic mass and running coupling

Along the same line of thinking (using the same concept), next we investigate

the effects of most recently added: 1) a finite magnetic mass µM and 2) running

coupling on the suppression predictions, first separately and afterwards jointly. The

first step is assessing the significance of including a finite magnetic mass in the

radiative energy loss calculations. Namely, consistently with perturbative QCD, all

previous energy loss models assumed zero magnetic mass, although the existence

of chromo-magnetic, just as chromo-electric, field screening is unambiguous. In

favor of this claim, different non-perturbative approaches [199–203] reported a non-

zero magnetic mass at RHIC and the LHC. This inevitable indicates that the finite

magnetic mass has to be incorporated in the energy loss calculations. Therefore, we

consistently included the finite magnetic mass, as determined by lattice QCD [199],

in our radiative energy loss calculations through sum-rules [204].
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Figure 5.5: Magnetic mass effect on RAA in dynamical formalism. D meson suppres-

sion predictions dependence on transverse momentum is shown for (total) radiative

+ collisional energy loss in dynamical QGP medium of a finite size, with (gray band)

and without (solid curve) magnetic mass included. Left (right) panel corresponds

to the RHIC (LHC) conditions. Right panel also contains the D meson RAA data

for 0− 7.5% central 2.76 TeV Pb + Pb collisions at LHC [221, 233] (red triangles).

Debye mass is µE = gT and coupling constant is αs = 0.3 (αs = 0.25) for RHIC

(LHC). Upper (lower) boundary of each band corresponds to µM
µE

= 0.6 (µM
µE

= 0.4).

Figure adapted from [159].

In order to obtain a quantitative assessment of the importance of a finite magnetic

mass introduction, in Fig. 5.5 we compare D meson suppression predictions with

and without the finite µM . Note that, in this figure we assume a constant strong

coupling, and a medium of a finite size. From Fig. 5.5 we infer that the inclusion of

the finite magnetic mass decreases the suppression by a notable ∼ 30% compared to

the case when zero magnetic mass was assumed. Consequently, the finite magnetic

mass effect is also important. Additionally, from the comparison of RAA predictions

with the available (LHC) experimental data (see the right panel of Fig. 5.5), we

observe that the inclusion of magnetic mass leads to somewhat worse agreement

with the data, compared to no magnetic mass case.

The second step of the triptych, is investigation of only the running coupling

96



significance. Therefore, in Fig. 5.6 we compare the D meson suppression predic-

tions obtained by applying the fixed value of strong coupling constant, with the

RAA predictions when the running coupling is accounted [208], as a function of the

transverse momentum. Note that a finite size medium and zero magnetic mass are

assumed.

Figure 5.6: Running coupling effect on RAA in dynamical formalism. D meson

suppression predictions dependence on transverse momentum is plotted in case of

constant coupling αs = 0.3 (αs = 0.25) for RHIC (LHC) (solid curve) and when run-

ning coupling (dashed curve) is included. No finite magnetic mass effect is assumed

(i.e. µM = 0). In both cases radiative + collisional contributions in dynamical QCD

medium of a finite size are considered. Left (right) panel corresponds to RHIC

(LHC) conditions. Right panel also shows the D meson RAA data for 0− 7.5% cen-

tral 2.76 TeV Pb + Pb collisions at LHC [221, 233] (red triangles). Figure adapted

from [159].

From Fig. 5.6 we observe that the introduction of the running coupling has an

opposite effect on RAA than the effect of the finite magnetic mass, that is, it leads

to somewhat less than twofold increase in the suppression at lower jet momenta,

while it makes no significant difference at higher jet momenta. Notice that such an

uneven contribution considerably changes the shape of the curve, which quantifies

suppression dependence on transverse momentum. Therefore, the inclusion of the
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running coupling for D mesons at both RHIC and the LHC, is also important. Addi-

tionally, from comparison of the predictions with the available (LHC) experimental

data (see the right panel of Fig. 5.6), we see that the inclusion of running coupling

also results in slightly worse agreement with the data (similarly to the inclusion of

finite magnetic mass) compared to the predictions with constant strong coupling.

To sum up the findings from Figs. 5.5 and 5.6, the finite magnetic mass and run-

ning coupling effects run in the opposite direction, and individually lead to some-

what larger discrepancies between the predictions and experimental data. These

two effects present an example, where inclusion of the individual improvements in

the energy loss calculations - specifically the magnetic mass alone, or the running

coupling alone - does not necessarily lead to the improvement in the reliability of

suppression predictions, but would their interplay?

Figure 5.7: Joint effect of magnetic mass and running coupling on RAA. D meson

suppression predictions dependence on transverse momentum, with the constant

coupling αs = 0.3 (αs = 0.25) for RHIC (LHC) (light gray band) and with the

running coupling (dark gray band) accounted. In both cases (total) radiative +

collisional contributions in dynamical QGP medium of a finite size are considered.

Upper (lower) boundary of each band corresponds to µM
µE

= 0.6 (µM
µE

= 0.4). Left

(right) panel corresponds to the RHIC (LHC) conditions. Right panel also contains

the D meson RAA data for 0−7.5% central 2.76 TeV Pb+Pb collisions at LHC [221,

233] (red triangles). Figure adapted from [159].
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This initiate the final figure of this section, where we consider what is the joint

effect of including both the running coupling and the magnetic mass on RAA. There-

fore, in Fig. 5.7 we assume a finite QGP medium and the finite magnetic mass [204],

and compare the D meson suppression predictions considering a fixed value of strong

coupling constant, with those when the running coupling is applied, as a function of

transverse momentum. Remarkably, from comparison with the available experimen-

tal (LHC) data (see the right panel of Fig. 5.7), we observe that these two effects,

when taken together, result in a very good agreement with the data. Moreover, the

improvement is observed in both quantitative and qualitative domain compared to

the case in Fig. 5.3, where both effects are omitted. This illustrates possible syn-

ergy in including different energy loss effects: taken individually the finite magnetic

mass and the running coupling lead to larger discrepancies between RAA predictions

and the experimental data, but taken jointly they notably improve the agreement

between suppression predictions and data. Consequently, accounting for all energy

losses, relaxing the assumptions in parton energy loss calculations, as well as the

inclusion of all important medium effects may be necessary to correctly model the

interactions of high p⊥ particles with the QGP medium.

5.4. Conclusions

In the previous section we showed that the dynamical energy loss formalism lead

to a robust agreement with the experimentally measured nuclear modification factor

for different experiments (i.e. collision energies and different colliding systems) [235],

probes [208] and experimental conditions (i.e. centrality ranges) [225]. Since our

formalism is complex and includes a number of improvements compared to the

DGLV formalism, as outlined in subsection 3.1 we wanted to asses how different

energy loss effects contribute to such a good agreement. That is, we asked whether

there is a single dominant effect, which is responsible for the agreement, or is this

agreement a joint effect of several smaller improvements. To answer this question,

it would be best to have a probe which is sensitive only to the energy loss, that is,

for which the fragmentation and decay functions do not play a role. Therefore, we

addressed this issue by using D mesons, whose suppression patterns are not modified
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by the fragmentation functions, so that they present a genuine energy loss probe. To

that end, we applied a historically driven approach, where we started from the DGLV

energy loss model, assuming static QGP medium and which therefore includes only

radiative energy loss, and then gradually added different model ingredients on-by-

one. The advantage of this approach is that it, apart from assessing the importance

of different energy loss effect, also provides a historical perspective on how the energy

loss model has been developed.

More specifically, we studied the importance of the transition from the static to

the dynamical QGP medium and consequently of including collisional energy loss,

the finite size effect, the finite magnetic mass and the running coupling. With the

LHC suppression data serving as a baseline, we here showed that, the inclusion of

dynamical scattering centers has the largest relative importance in obtaining accu-

rate suppression predictions. Furthermore, we found that all other considered effects

are also important and are responsible for the finer agreement with the data. So

the good agreement is a result of a superposition of several smaller improvements.

Therefore, detailed study of parton’s energy loss, as well as the inclusion of all im-

portant medium effects is necessary to correctly model the jet-medium interactions.

An interesting side result is that the synergy in including different energy loss

effects, in this case a finite magnetic mass and running coupling, may contribute to

the better agreement between prediction and data. Namely, taken individually these

effects lead to worse agreement with the experimental data, but taken together they

notably improve the agreement.

As an outlook, the presented conclusion imply that further improvements of the

dynamical energy loss model may contribute to even finer agreement with the data,

and also to the accurate predictions outside of the energy ranges and observables

(e.g. elliptic flow) that we provided here.

6. RADIATIVE ENERGY LOSS BEYOND SOFT-GLUON

APPROXIMATION

The soft-gluon approximation, which assumes that high p⊥ parton propagat-
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ing through dense QCD matter loses only a small amount of its initial energy via

gluon radiation, is a part of many jet-quenching formalisms. Nevertheless, these

formalisms predicted a sizable radiative energy loss of high p⊥ particles, questioning

the approximation reliability and implying necessity of its reconsideration. To ad-

dress this issue, we relaxed the soft-gluon approximation [248] within (GLV [183])

DGLV [189] formalism to the first order in opacity. We also refer to the extension

of this relaxation to the dynamical medium [208], which suggests generality of the

conclusions presented here.

6.1. Introduction

One of the most common assumptions in the radiative energy loss calculations of

high p⊥ parton (in the further text referred to as jet) traversing the QGP medium,

is the soft-gluon approximation which assumes that radiated gluon carries away a

small fraction of initial jet energy (longitudinal momentum), that is x = ω/E � 1,

where E denotes the energy of initial jet and ω presents the radiated gluon energy.

Various energy loss models applied this approximation in their calculations, such

as: i) multiple soft scattering based ASW model [241–243]; ii) BDMPS [165, 166]

and BDMPS-Z [169, 170]; iii) opacity expansion based GLV model [181, 183] and iv)

multi-gluon evolution based HT approach [244, 245], etc. Since, all these different

energy loss models predicted a substantial medium induced radiative energy loss,

the legitimacy of the soft-gluon approximation became questionable. In order to

address this issue, a finite x (or large x limiting case) was introduced in some of

these models [249, 250] or their extensions [251]. Nevertheless, the beyond soft-gluon

calculation in these models, did not yield unified conclusion on the importance of

relaxing the approximation, but led to different importance estimates, which span

from relatively small [251], but noticeable, to moderately large [250].

As mentioned earlier, in the radiative part [196, 198] of our dynamical energy

loss formalism [208] the soft-gluon approximation was also employed. In section 4

it was shown that our formalism leads to a robust agreement of angular averaged

nuclear modification factor [100, 101] with extensive set of experimental data, in
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particular for different beam energies [235, 238], wide diversity of probes (from light

to heavy) [208, 235], and all available centrality ranges [225]. Additionally, our

formalism was capable of explaining the long-standing heavy-flavor puzzle at both

RHIC [235] and LHC [238], and generated credible predictions for future experi-

ments [236, 237]. This might imply the reliability of our energy loss formalism, and

consequently the validity of the applied soft-gluon approximation.

Here, it is convenient to recall that our RAA predictions are reliable for p⊥ above

≈ 10 GeV. Among the other, the reason for this is that the soft-gluon approximation

obviously collapses for intermediate momentum ranges (5 < p⊥ < 10GeV ), where

the experimental data are most abundant and with the smallest error-bars. Further-

more, the approximation is least accurate for gluon radiative energy loss, since due

to the color factor of 9/4 gluons lose significantly more energy compared to quark

jets, therefore questioning the adequacy of applying this approximation in such a

case. Taken together (and for more precise predictions) these reasons impose ne-

cessity of revising the validity of the soft-gluon approximation in dynamical energy

loss formalism, by going beyond this approximation.

Along these lines, this section presents our first step toward this goal. Namely,

instead of in dynamical medium, we start relaxing the soft-gluon approximation

within static QGP medium, i.e. DGLV [189] formalism, which (slightly) reduces the

calculation complexity. The revised calculation is done for gluon jets (as they are

mostly affected by the approximation) within the pQCD approach for a finite size,

optically thin QCD medium, and since being computationally involving it is divided

into three stages: i) first, the expressions are derived within GLV [183] formalism,

i.e. in the simplest case, which assumes massless gluons and medium composed of

static scattering centers [161], ii) then it is expanded towards the gluons with the

effective mass [188], which represents extension of DGLV [189] toward larger energy

loss via gluon bremsstrahlung, and iii) finally, we discuss generalization of finite x

result onto the dynamical medium [208] (i.e. a recoil with the medium constituents

is accounted), which is facilitated by the simple mapping rule between static and

dynamical medium.

In accordance with [183, 189] the radiative energy loss of gluon jets is calculated to

the first order in the number of scattering centers (opacity), where we considered that
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the radiation of one gluon is induced by one collisional interaction (i.e.one exchanged

gluon) with the medium. Upon assessing the validity of the soft-gluon assumption

for gluon jets, the insight will be provided into whether or not radiative energy loss

should be generalized onto a finite x for the quark-jets within our formalism as well.

In that manner, if the relaxation of the soft-gluon approximation has insignificant

effect on gluon-jet radiative energy loss, then one would expect the quark jet to

be even less affected, thus making this relaxation in the latter case redundant.

Otherwise, if the introduction of a finite x appears to be a significant in gluon-jet

case, then the relaxation of the soft-gluon approximation in quark-jet case would

also be required, and would represent an important future task.

Another benefit from relaxing the soft-gluon approximation would be broadening

the p⊥ region of our model [208] applicability, that is its extension towards interme-

diate momentum region (as stated above).

The sections are organized as follows: In subsection 6.2, we provide the theoretical

framework, while subsections starting from 6.3 and ending with 6.5, contain concise

description of the computation of gluon-jet radiative energy loss beyond soft-gluon

approximation in static QCD medium to:1) the zeroth order in opacity for both

massless and massive gluons; 2) the first order in opacity for massless gluon, and

3) the first order in opacity for gluons with effective mass, as extracted from [188],

respectively. As expected, in a limit of very small x, subsections 6.3 to 6.5 recover

the corresponding results from [183, 189]. The detailed calculations of the results

outlined in these subsections are presented in the Appendices B.4 to B.11.

In subsection 6.6 we compare the numerical estimates based on our beyond soft-

gluon calculations for gluon jet with our previous DGLV results [189] (with soft-gluon

approximation). More specifically, we assess the effect of finite x on gluon-jet frac-

tional radiative energy loss, mean number of radiated gluons, fractional differential

radiative energy loss (intensity spec- trum), single gluon radiation spectrum and

gluon suppression [90]. Conclusions are presented in subsection 6.7.

6.2. Theoretical framework
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As mentioned in subsection 6.1, in this section we concentrate on relaxing soft-

gluon approximation in calculating the first order in opacity radiative energy loss

of high p⊥ eikonal gluon jets within (GLV) DGLV formalism [183, 189]. That is,

we assume that high p⊥ gluon jet is produced inside a "thin" finite QGP medium

at some initial point (t0, z0; x0), that the medium is composed of static scattering

centers [161], and that final jet is not significantly deflected from its initial (lon-

gitudinal) trajectory. Thus, the jet-static medium interactions are modeled, as in

(GLV) DGLV formalism, assuming a static (Debye) colored-screened Yukawa po-

tential [161, 183, 189], given by Eq. (2.2.2), where Tan(R) now denotes generator in

adjoint representation of gluon-jet SU(Nc = 3).

In order to stay consistent with [183, 189], we use the same notation for 4D

vectors (e.g. momenta), which is described in more details in Appendix B.1 and

proceed throughout using Light-cone coordinates. The same Appendix encloses

algebra manipulation and identities for SU(Nc) generators, as well as the Feynman

rules, used in the calculations from this section. The approximations that we assume

throughout the paper are listed in Appendix B.2.

The small transverse momentum transfer elastic cross section for interaction be-

tween gluon jet and target parton according to GW approach [161, 180] is given by

Eq. (2.2.4), and now reads:
dσel
d2q1

= C2(G)C2(T )
dG

|v(0,q1)|2
(2π)2 , (6.2.1)

where q1 corresponds to transverse momentum of exchanged gluon, CR is here re-

placed with C2(G) Casimir operator in adjoint representation (G) of gluons SU(Nc =

3) with dimension dG = 8, whereas C2(T ) denotes Casimir operator in target (T)

representation.

Since (GLV) DGLV formalism assumes optically "thin" plasma, we also expanded

our final results in powers of opacity, which may be defined as the mean number

of collisions in the medium: L/λ = Nσel/A⊥ [183], where L is the thickness of the

QCD medium, λ is a mean free path, while N denotes the number of scatterers

(targets) in transverse area A⊥. Note that, we restrict our calculations to the first

order in opacity, since it was proven [184, 247] to be the dominant term.

To gradually introduce technically demanding beyond soft-gluon calculations,

we first concentrate on massless gluons traversing static QCD medium in vacuum
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radiation case, then we take into account radiated gluon dispersion relation in QGP

medium (i.e. effective gluon mass) and further repeat the procedure when one

interaction with the medium constituents is taken into account.

6.3. Zeroth order radiative energy loss

Therefore, we start this subsection with massless gluon case of M0 Feynman dia-

gram, which corresponds to the source J that produces off-shell gluon with momen-

tum p + k, that further, without interactions with QCD medium, radiates on-shell

gluon with momentum k and emerges with momentum p (see Fig. 6.1). We will fur-

ther refer to these two outgoing gluons as the radiated (k) and the final (p) gluon.

It is important to notice that, in this and consecutive subsections that involve inter-

actions with one and two scattering centers, we consistently assume that initial jet

propagates along the longitudinal z axis. The detailed calculation of M0 for finite

x in massless case is given in Appendix B.4, while all assumptions are stated in

Appendix B.2.

J d

cM0

z0 z
p + k

p

k

Figure 6.1: Zeroth order diagram that includes no interaction with the QCD medium,

and contributes to gluon radiation amplitude to the 1st order in opacity. The dashed circle

represents the source J , which at longitudinal coordinate z0 produces an off-shell gluon

jet, propagating along z-axis. z denotes longitudinal coordinate at which the gluon is

radiated. k denotes 4-momentum of the radiated gluon carrying the color c, and p denotes

4-momentum of the final gluon jet carrying the color d.

Consistently with DGLV, we also assume that external gluons are transversely

polarized particles and although we work in covariant gauge, we can choose any

polarization vector for the external on-shell gluons [251, 252], so in accordance

with [183, 189, 251, 252] we choose nµ = [0, 2,0] (i.e. ε(k) · k = 0, ε(k) · n = 0
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and ε(p) · p = 0, ε(p) ·n = 0). Likewise, we assume that the off-shell p+ k gluon has

also the physical polarization as real gluons [251, 252] (i.e. ε(p + k) · (p + k) = 0,

ε(p+ k) · n = 0). Thus, the massless gluon momenta aquire the form:

p+ k = [E+, E−,0], k = [xE+,
k2

xE+ ,k], p = [(1− x)E+,
p2

(1− x)E+ ,p],

(6.3.1)

where E+ = p0 + k0 + pz + kz, E− = p0 + k0 − pz − kz and due to 4-momentum

conservation:

p + k = 0. (6.3.2)

The polarization vectors are given by:

εi(k) = [0, 2εi · k
xE+ , εi], εi(p) = [0, 2εi · p

(1− x)E+ , εi], εi(p+ k) = [0, 0, εi],

(6.3.3)

where i = 1, 2, and we also make use of Eq. (6.3.2). Thus, the amplitude that gluon

jet, produced at x0 inside QCD medium, radiates a gluon of color c without final

state interactions reads:

M0 = Ja(p+ k)ei(p+k)x0(−2igs)(1− x+ x2)ε · k
k2 (T c)da. (6.3.4)

The radiation spectrum is obtained when Eq. (6.3.4) is substituted in:

d3N (0)
g d3NJ ≈ Tr

〈
|M0|2

〉 d3~p
(2π)32p0

d3~k
(2π)32ω , (6.3.5)

where ω = k0, and where d3NJ reads:

d3NJ = dG|J(p+ k)|2 d3~pJ
(2π)32EJ

. (6.3.6)

Here EJ = E = p0 + k0 and ~pJ denotes energy and 3D momentum of the initial

gluon jet, respectively. Note that, E retains the same expression throughout the

manuscript (even when interactions with one and two scatterers are accounted).

The jet part can be decoupled by using the equality:

d3~p
(2π)32p0

d3~k
(2π)32ω = d3~pJ

(2π)32EJ
dxd2k

(2π)32x(1− x) , (6.3.7)
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which is obtained by substituting pz, kz → pJz , xE. Finally, energy spectrum is given

by:

xd3N (0)
g

dxdk2 = αs
π

C2(G)
k2

(1− x+ x2)2

1− x , (6.3.8)

which reproduces the well-known Altarrelli-Parisi [68] result.

Next we concentrate on obtaining energy spectrum expression in finite temper-

ature QCD medium. In contrast to the previous case, where gluons are treated

as massless particles, note that in finite temperature QGP they obey different dis-

persion relation and apart from transverse, they also have longitudinal polarization

(as previously discussed). In static medium case formally this does not concern

exchanged gluon. Luckily, in [188] it was shown that radiated gluons in finite tem-

perature QGP can be approximated as a massive transversly polarized plasmons

with mass mg = µE/
√

2, where µE is the Debye mass. In this case, M0 amplitude

becomes:

M0 = Ja(p+ k)ei(p+k)x0(−2igs)(1− x+ x2) ε · k
k2 +m2

g(1− x+ x2)(T c)da, (6.3.9)

leading to:

xd3N (0)
g

dxdk2 = αs
π

C2(G) k2

(k2 +m2
g(1− x+ x2))2

(1− x+ x2)2

1− x . (6.3.10)

6.4. First order radiative energy loss in massless case

Starting point for obtaining the expression for the first order in opacity radiative

energy loss of gluon jet for finite x, in accordance with [189], presents:

d3N (1)
g d3NJ =

( 1
dT

Tr
〈
|M1|2

〉
+ 2
dT
ReTr 〈M2M

∗
0 〉
)

d3~p
(2π)32p0

d3~k
(2π)32ω , (6.4.1)

where M0 corresponds to the diagram without final state interactions with QCD

medium, introduced in previous subsection, M1 represents the sum of all diagrams

with one scattering center (see the representative in the left panel of Fig. 6.2), M2

is the sum of all diagrams with two scattering centers (see the representative in the

right panel of Fig. 6.2) in the contact-limit case (z1 = z2), while dT denotes the
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dimension of the target color representation (for pure gluon medium dT = 8). For

obtaining differential energy loss expression, we again substitute Eqs. (6.3.6, 6.3.7)

in Eq. (6.4.1).

Since we consistently assume that initial jet propagates along z-axis, the momenta

acquire the following form in the two cases stated below:

1. One interaction with QGP medium (M1):

p+ k − q1 = [E+ − q1z, E
− + q1z,0], (6.4.2)

where p+ k − q1 corresponds to the initial jet, while k and p retain the same

expressions as in Eq. (6.3.1), with the distinction that now p 6= −k, since due

to energy and momentum conservation, the following relation holds:

q1 = p + k; (6.4.3)

Exchanged gluon momentum is q1 = [[qaz,−q1z,q1]], where q0
1 = 0, due to

static potential. The remaining notation is the same as in Eq. (6.3.1).

2. Two interactions with QGP medium (M2):

p+ k − q1 − q2 = [E+ − q1z − q2z, E
− + q1z + q2z,0], (6.4.4)

where p + k − q1 − q2 corresponds to the initial jet and qi = [qiz,−qiz,qi] to

exchanged gluons, i = 1, 2 with q0
i = 0, while p, k retain the same expressions

as in Eq. (6.3.1). Also, due to 4-momentum conservation, the following relation

between gluon transverse momenta holds:

p + k = q1 + q2, (6.4.5)

which in the contact-limit case (when q1 + q2 = 0) becomes p + k = 0, as in

M0 case.

Note that Eq. (6.4.3) has to be satisfied for M1 diagrams in order to claim that

initial jet propagates along z-axis, i.e. for M1 diagrams p + k is different from 0.

This is an important distinction between the calculations presented here, and the

calculations done within SCET formalism (see e.g. [251, 252]), where p + k = 0 was
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J

c

d

a1

M1,1,0

z0 z1 z

p

k

~q1

J d

a1 a2

cM2,2,0

z0 z1 z2 z

p

k

~q1 ~q2

Figure 6.2: Representative diagrams that include interaction with the QCD medium, and

potentially contribute to gluon radiation amplitude to the 1st order in opacity. The left

panel corresponds to one interaction with QGP medium, while the right panel corresponds

to two interactions with the medium, which only in contact-limit (z1 = z2) case contributes

to the 1st order emission spectrum (for more details see Appendices B.6 to B.9). zi, where

i = 1, (2), denotes longitudinal coordinate of the interactions with the consecutive scat-

tering centers. Crossed circles represent scatterers that exchange transverse momentum

~qi with the jet. Remaining labeling is the same as in Fig. 6.1.

used in calculating both M1 and M2 diagrams, though the assumption of initial jet

propagating along z-axis was used in that study as well.

It is straightforward to show that transverse polarization vectors εi(k) and εi(p)

for both: M1 andM2 amplitudes are given by the same expression as in the previous

section (but note that in M1 case: p 6= −k, as discussed above), while ε for initial

jets consistently has the same form as in Eq. (6.3.3), that is, for M1 amplitudes

εi(p+ k − q1) = [0, 0, εi], and for M2 amplitudes εi(p+ k − q1 − q2) = [0, 0, εi].

Here we omitted the expressions for the remaining 10 Feynman diagrams, which

contribute to the first order in opacity radiative energy loss. Their numeration as

well as their number is explained in Appendix B.3, whereas the thorough calculation

of each individual diagram under the same approximations as for M0 (given in

Appendix B.2), is provided in Appendices B.5-B.9. The detailed derivation of the

single gluon radiation spectrum beyond soft-gluon approximation in massless case

is given in Appendix B.10 and reads:
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dN (1)
g

dx
= C2(G)αs

π

L

λ

(1− x+ x2)2

x(1− x)

∫ d2q1

π

µ2
E

(q2
1 + µ2

E)2

∫
dk2

×
{ (k− q1)2

(4x(1−x)E
L

)2 + (k− q1)4

(
2− k · (k− q1)

k2 − (k− q1) · (k− xq1)
(k− xq1)2

)

+ k2

(4x(1−x)E
L

)2 + k4

(
1− k · (k− xq1)

(k− xq1)2

)
+
( 1

(k− xq1)2 −
1
k2

)}
, (6.4.6)

where we assumed a simple exponential distribution 2
L
e
−2∆z
L of longitudinal dis-

tance between the gluon-jet production site and target rescattering site, emerging

as (4x(1−x)E
L

)2 in the denominators of the integrand. This steep longitudinal distance

distribution was chosen, as, among other things, it facilitates the calculations and

also mimics rapidly expanding medium. However, the main reason of such a choice

was the demand for recovering (GLV) DGLV results for x � 1, knowing that the

predecessors of calculations presented here, i.e. (GLV) DGLV also employed this

distribution [181, 182, 184, 189]. To this end, note that, Eq. (6.4.6) reduces to

massless case of Eq. (11) from [189] in the soft-gluon limit (i.e. limit of Eq. (2.2.8)),

as expected. Note that energy loss expression can be straightforwardly extracted by

using this simple relation: dE(1)/dx ≡ ωdN (1)
g /dx ≈ xEdN (1)

g /dx.

We also tested the robustness of all results from this manuscript to the longitudi-

nal distance distribution. To this end, we assumed the opposite limit - the uniform

distribution (as done in [208]). The obtained same results with the respect to the

importance of soft-gluon approximation implied that conclusions presented in this

section are robust to the presumed longitudinal distance distribution (see Fig. 6.7).

Additionally, it is straightforward to show that Eq. (6.4.6) is symmetric under

the exchange of radiated (k) and final (p) gluon, as expected beyond soft-gluon ap-

proximation, and due to inability to distinguish between these two identical gluons.

6.5. Radiative energy loss in finite temperature QGP

Finally, we concentrate on more realistic approach, by acknowledging that

medium created in ultra-relativistic HIC has finite temperature T , which modi-

fies the self energies of gluons embedded in such medium, and thus could have
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significant impact on gluon’s radiative energy loss. Therefore for more accurate

calculations beyond soft gluon approximation it became essential to include finite

temperature effects. To this end, we recall that in [188], it was shown that gluons

with the hard momenta k & T can be approximated as massive transverse plasmons

with effective mass mg = m∞ =
√

ΠT (p0/|~p| = 1) = µE/
√

2 equal to its asymptotic

value, which represents non-abelian QCD analogon of Ter-Mikayelian plasmon ef-

fect [185, 186] on radiative energy loss in finite temperature QCD medium (within

HTL approach [187]), which was already mentioned in subsubsection 2.2.2. This

subsection is dedicated to incorporating finite temperature effects in our calcula-

tions.

The assumption of initial jet propagating along z-axis, for massive case, leads to

the following form of momenta, in the same three cases considered in the previous

subsection:

1. No interaction with QGP medium (M0):

p+ k = [E+, E−,0], k = [xE+,
k2 +m2

g

xE+ ,k], p = [(1− x)E+,
p2 +m2

g

(1− x)E+ ,p],

(6.5.1)

where due to energy and momentum conservation Eq. (6.3.2) holds. Note

that throughout this section, the only formal difference in p and k expressions

compared to the massless case (see Eq. (6.3.1)) is additional +m2
g term in

numerator of minus Light cone coordinate.

2. One interaction with QGP medium (M1):

k and p retain the same expressions as in Eq. (6.5.1), with addition that (as

in the previous section) Eq. (6.4.3) holds due to conservation of 4-momentum,

while initial jet has the momentum of the same form as in Eq. (6.4.2). That

is, again p 6= −k holds for M1 diagrams.

3. Two interactions with QGP medium (M2):

p, k have the same expressions as in Eq. (6.5.1). Also, due to 4-momentum

conservation Eq. (6.4.5) holds and in the contact-limit case reduces to p + k =

0, while initial jet momentum has the same form as in Eq. (6.4.4).
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The transverse polarization vectors remain the same as in the massless case.

The calculations are performed under the same approximations, which are legibly

outlined in Appendix B.2, as in massless case. We here display only the final result

of single gluon radiation spectrum, for which we needed to recalculate the same 11

diagrams from Appendices B.4 to B.9, also beyond soft-gluon approximation. The

overview of all intermediate results is contained in Appendix B.11. In that manner

obtained dN
(1)
g

dx
has more involved form than the one in massless case (Eq. (6.4.6)),

and reads:

dN (1)
g

dx
= C2(G)αs

π

L

λ

(1− x+ x2)2

x(1− x)

∫ d2q1

π

µ2
E

(q2
1 + µ2

E)2

∫
dk2

×
{ (k− q1)2 + χ

(4x(1−x)E
L

)2 + ((k− q1)2 + χ)2

(
2 (k− q1)2

(k− q1)2 + χ
− k · (k− q1)

k2 + χ

−(k− q1) · (k− xq1)
(k− xq1)2 + χ

)
+ k2 + χ

(4x(1−x)E
L

)2 + (k2 + χ)2

( k2

k2 + χ
− k · (k− xq1)

(k− xq1)2 + χ

)

+
( (k− xq1)2

((k− xq1)2 + χ)2 −
k2

(k2 + χ)2

)}
, (6.5.2)

where χ = m2
g(1−x+x2). In generating the above expression, again we applied the

same exponential distribution of longitudinal distance between jet production and

interaction with medium constituent sites, as done in the previous subsection. It

can easily be verified that, in the soft-gluon limit, we recover Eq. (11) from [189], i.e.

Eq. (2.2.8) (note that for gluon jet M ≡ mg, so that the term M2x2 from [189] is

also negligible), and that in the massless limit Eq. (6.5.2) reduces to our Eq. (6.4.6).

This result, to our knowledge, presents the introduction of effective gluon mass

(jet mass) in beyond-soft-gluon-approximation radiative energy loss calculations for

the first time. Additionally, we again validated that single gluon radiation spec-

trum is symmetric to substitution of p and k gluons, as necessary (see the previous

section and Appendix B.11). The most striking observation is that the analytical
dN

(1)
g

dx
expressions differ notably in beyond-soft-gluon and soft-gluon cases (compare

Eq. (6.5.2) and Eq. (11) from [189]). In the next subsection, we will evaluate the

extent of numerical differences that these two different analytical expressions induce.

More precisely, we are mostly interested in how the inclusion of finite x affects

gluon fractional radiative energy loss (∆E(1)

E
), mean number of radiated gluons (N (1)

g )

and the suppression (RAA). We accordingly note that dE(1)

dx
≡ ω

dN
(1)
g

dx
≈ xE

dN
(1)
g

dx
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from which we can further straightforwardly numerically evaluate ∆E(1)

E
, as well as

the mean number of radiated gluons (N (1)
g ).

6.6. Numerical results

This subsection contains comparison of numerical predictions based on the calcu-

lations presented in this section with the corresponding soft-gluon predictions [189],

to assess how the relaxation of soft-gluon approximation modifies gluon-jet energy

loss to the 1st order in opacity. The predictions are generated for gluons with effec-

tive mass mg = µE/
√

2, where µE =
√

4παs(1 + nf/6)T is Debye mass, and nf = 3

is the number of the effective light-quark flavors. For all figures, we use the following

set of parameters: constant αs = g2
s

4π = 0.3, L = 5 fm, λ = 1 fm and T = 300 MeV,

to mimic standard LHC conditions. Note that for gluons considered in this section,

their energy is approximately equal to their momentum, due to negligible effective

gluon mass compared to momentum, and in this sense we use p⊥ throughout this

subsection.

First we investigate the effect on the fractional radiative energy loss ∆E(1)

E
. To

this end, the top left panel of Fig. 6.3 presents comparison of ∆E(1)

E
, for calculations

beyond the soft-gluon approximation, and with the soft-gluon approximation, as

a function of initial jet transverse momentum (p⊥). In particular, the curve corre-

sponding to beyond soft-gluon approximation (bsg) case is obtained from Eq. (6.5.2)

multiplied by and integrated over x, while the curve corresponding to soft-gluon ap-

proximation (sg) case is obtained by numerically integrating Eq. (11) from [189]

(Eq. (2.2.8)). These two curves almost overlap, even converge towards one another

with increasing p⊥. Note that, the upper limit of x integration is equal to 1/2 in-

stead of 1, in order to avoid double counting. The upper integration limits for |k|

and |q1|, determined kinematically, are 2x(1− x)E and
√

4ET , respectively [189].

The bottom left panel of Fig. 6.3 shows comparison of the mean number of

radiated gluons in bsg and sg cases. Similarly to the previous variable, these two

curves practically overlap as well, with a slight disagreement at higher p⊥.
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Figure 6.3: Integrated variables: Effect of relaxing soft-gluon approximation to the

1st order in opacity of DGLV formalism, as a function of p⊥. The top left panel

compares gluon fractional radiative energy loss without (the solid curve) and with

(the dashed curve) the soft-gluon approximation. The top right panel quantifies

the effect of relaxing the soft-gluon approximation on ∆E(1)

E
and expresses it in

percentage. The bottom left panel compares number of radiated gluons without

(the solid curve) and with (the dashed curve) soft-gluon approximation, whereas

the bottom right panel shows the relative change in this number with respect to

soft-gluon limit. Figure adapted from [248].

Quantitative assessment of relaxing the soft-gluon approximation on these two

variables is provided in two right panels of Fig. 6.3. We observe that finite values

of x slightly increase fractional radiative energy loss by maximum of ≈ 3% up to

p⊥ ≈ 10 GeV compared to sg case. Thereupon, the difference between bsg and

sg ∆E(1)

E
steeply dies away. On the other hand, finite x decreases mean number of
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radiated gluons also for a small amount (up to 5%) compared to sg case for very low

transverse momenta. Further the relative difference reaches a peak of −2% also at

p⊥ ≈ 10 GeV, and for higher transverse momenta remains nearly constant somewhat

below −2%. Consequently, the overall conclusion from Fig. 6.3 is that the effect on

both variables is small (few percents) and with opposite signs.

Next we assess the finite x effect on two differential variables: the fractional

differential radiative energy loss ( 1
E
dE(1)

dx
= x

dN
(1)
g

dx
) and on single gluon radiation

spectrum (dN
(1)
g

dx
) and it’s relative change. These effects are plotted against x (see

Fig. 6.4) for different values of initial jet transverse momentum p⊥. Technical details

are as follows: bsg curves for 1
E
dE(1)

dx
are obtained from Eq. (6.5.2) multiplied by x,

whereas sg curves correspond to Eq. (11) in [189] (Eq. (2.2.8)). We observe two x

regions in Fig. 6.4: the lower region x . 0.3 (that goes roughly up to 0.4) where bsg

and sg curves barely differ (for only few percents, max up to 10%), as expected; and

the higher region 0.4 < x ≤ 0.5, where the discrepancies between our bsg fractional

differential radiative energy loss and previously obtained sg [189] rise to notable

values (∼ 50%) and increase with enhancing p⊥. We also recognize x ≈ 0.3 as a

"cross-over" value, below which fractional differential radiative energy loss and single

gluon radiation spectrum are somewhat lower in bsg compared to sg case, and above

which the opposite is true.

We further address the effect of relaxing the soft-gluon approximation on the

single gluon radiation spectrum by adding the third column in Fig. 6.4 (see also

Fig. 6.5), showing percentage of dN
(1)
g

dx
change. In accordance with the above discus-

sion over 1
E
dE(1)

dx
, this plot provides quantitative estimation of difference smaller than

10% for x . 0.4. Additionally, at higher x values, there is a notably larger spectra

in bsg compared to sg case, and this difference ascends (up to 60% at p⊥ = 50 GeV)

with increasing p⊥.
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Figure 6.4: Differential variables: Effect of relaxing soft-gluon approximation to the

1st order in opacity of DGLV formalism, as a function of x. The comparison of bsg

(the solid curve) and sg (the dashed curve) fractional differential gluon radiative

energy loss ( 1
E
dE(1)

dx
) for different values of initial jet p⊥ (5 GeV, 10 GeV, 50 GeV, as

indicated in the lower right corner of panels) is presented in the first column. The

second column shows comparison of bsg (the solid curve) and sg (the dashed curve)

single gluon radiation (spectrum) distribution in momentum fraction (dN
(1)
g

dx
) for the

same values of p⊥, as in the first column. The relative change of the single gluon

radiation spectrum when the soft-gluon approximation is relaxed with respect to

the soft-gluon limit is presented in the third column. Figure adapted from [248].

In order to investigate the effect of finite x on single gluon radiation spectrum

for different transverse momentum values of initial gluon jet in more detail, Fig. 6.5

is plotted. We observe that an evident, that is, tenfold increase of p⊥ leads to a
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modest increase (less than 25%) of dN
(1)
g

dx
in bsg compared to sg case. Note that the

same conclusion applies for ( 1
E

dE
(1)
bsg

dx
)/( 1

E

dE
(1)
sg

dx
) − 1, since 1

E
dE(1)

dx
= x

dN
(1)
g

dx
so that x

cancels when taking the relative ratio. Therefore, we infer that the relaxation of the

soft-gluon approximation has nearly the same effect on dN
(1)
g

dx
and 1

E
dE(1)

dx
across the

whole x region independently on p⊥ of the initial jet.

So far, we demonstrated that relaxing the soft-gluon approximation has small

numerical effect on: 1) integrated variables, such as ∆E(1)

E
, N (1)

g , across the whole x

region; and 2) differential variables, such as 1
E
dE(1)

dx
, dN

(1)
g

dx
, up to x ≈ 0.4. However,

the difference between bsg and sg cases can run in opposite directions (for ∆E(1)

E
,

N (1)
g ), then can ascend to 10% and moreover can be quite large for x > 0.4 (e.g. for

1
E
dE(1)

dx
, dN

(1)
g

dx
). This, therefore, invokes a question of what is the impact of relaxing

the soft-gluon approximation on predictions for measured observables, such as the

angular averaged nuclear modification factor RAA [100, 101]. Comparing RAA in

bsg and sg cases provides an insight into how adequate is this approximation in

obtaining reliable numerical predictions.
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Figure 6.5: Relative change of single gluon radiation distribution in momentum

fraction in bsg compared to sg case for different p⊥ values. The percentage of dN
(1)
g

dx

change when soft-gluon approximation is relexed with respect to sg case, calculated

to the 1st order in opacity of DGLV formalism, for different values of initial transverse

momentum (as indicated in the legend) is plotted as a function of x. The curves

fade as transverse momentum increases. Figure adapted from [248].

To that end, we next generate the predictions for bare gluon RAA, based only
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on radiative energy loss, with and without soft-gluon approximation. The nuclear

modification factor is defined as usual by the normalized ratio of the quenched A+A

spectrum to the p+p spectrum, and given by Eq. (1.4.5), while in obtaining the gluon

quenched spectra the generic pQCD convolution formula is applied (EQ. (3.2.1)) in

its reduced form, i.e. Eq. (5.2.1) (see also descriptive Fig. 3.2). Note that we omit-

ted fragmentation and decay functions, as we are considering the parton quenching,

because we are primarily interested in how the relaxation of the soft-gluon approx-

imation in energy loss affects RAA. Afterwards, we also assess how the initial gluon

distribution affects RAA.

Here the initial gluon spectrum is computed according to [212], while P (Ei → Ef )

denotes radiative energy loss probability, which includes multi-gluon [184] and path-

length [190] fluctuations. The multi-gluon fluctuations are introduced, in accordance

with [184], under the assumption that the fluctuations of the gluon number are un-

correlated, and therefore presented via Poisson distribution. Specifically, the energy

loss probability takes into account that the jet, during its propagation through QGP,

can independently radiate number of gluons (for more details on the implementation

procedure, please see ref. [184], as well as section 3.2). The path length distributions

are implemented as described in [100]. For more detailed explanation of how the

path-length fluctuations are calculated and introduced, see section 3.2.

In the left panel of Fig. 6.6 we compare thus obtained bsg RAA prediction with

the one when soft-gluon approximation is accounted, as a function of the final p⊥.

The right panel Fig. 6.6 provides the relative change arising from relaxing the ap-

proximation. We observe that this relaxation hardly affects RAA, more specifically

the relative change is somewhat less than −1% at p⊥ ≈ 10 GeV and further rises

to approximately 2%, with increasing p⊥. Thus, we obtained excellent agreement

between bsg and sg RAA, which moreover presents an improvement toward match-

ing between two cases compared to previously studied variables. This outstanding

agreement initiated questions of:
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Figure 6.6: The effect of relaxing the soft-gluon approximation on gluon RAA. The

comparison of gluon nuclear modification factor RAA between bsg (the solid curve)

and sg (the dashed curve) cases is assessed in the left panel, as a function of the

final p⊥. The right panel provides a percentage of gluon suppression change when

soft-gluon approximation is relaxed. Figure adapted from [248].

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

p⊥(GeV)

R
A
A

20 40 60 80 100

0

1%

2%

p⊥(GeV)

R
A
A
bs
g
/R
A
A
sg
-
1

Figure 6.7: The effect of relaxing the soft-gluon approximation on gluon RAA when

uniform longitudinal distance distribution is considered. The comparison of gluon

nuclear modification factor RAA between bsg (the solid curve) and sg (the dashed

curve) cases is assessed in the left panel, as a function of the final p⊥. The relative

change of gluon suppression when soft-gluon approximation is relaxed with respect

to sg limit is presented in the right panel.

i) why going beyond the soft-gluon approximation has negligible impact on RAA
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and ii) why the large differences observed in Figs. 6.4 and 6.5 for high x values does

not reflect on RAA?

To answer i) above, we claim that this pattern is expected, since it is well-known

that in suppression calculations both ∆E(1)

E
and N (1)

g non-trivially enter the RAA. On

qualitative level, by comparing the two right panels of Fig. 6.3 with the right panel

of Fig. 6.6, we observe that the superposition of the opposite effects of relaxing

the soft-gluon approximation on ∆E(1)

E
and N (1)

g results in negligible RAA change.

Note that the results are robust to the presumed longitudinal distance distribution,

which can be seen from Fig. 6.7, where we assumed the opposite limit - the uniform

distribution (as done in [208]).
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Figure 6.8: Illustrative figure of initial gluon distribution constraining the relevant

x region. The initial gluon distribution as a function of p⊥ (the solid black curve)

at the LHC is extracted from [212]. The final gluon transverse momentum, set at

p⊥ = 30 GeV, is represented by vertical dot-dashed gray boundary. For each x, the

dotted arrow links the descendant gluon with its parent gluon (of the corresponding

initial transverse momenta), that lost momentum fraction equal to x. The arrows

fade as x increases (as indicated in the legend). Figure adapted from [248].

Regarding ii) above, it is convenient to recall that suppression of gluon jet (see

Eq. (5.2.1)) is not only a function of the energy loss probability, but also of the

initial gluon distribution. In order to intuitively understand the role of the initial

gluon distribution, we advise a descriptive Fig. 6.8, which depicts its dependence

on initial transverse momentum. The idea is the following: Some parent gluon with
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unknown initial transverse momentum passes trough the QGP, loses its energy via

gluon bremsstrahlung, and emerges with final transverse momentum p⊥ = 30 GeV.

This final gluon can originate from the parent gluon with any p⊥ higher than its own,

but we restrict ourselves to 5 different initial transverse momenta, corresponding to

the following fractional momentum loss x ∈ {0.1, 0.2, 0.3, 0.4, 0.5}. For instance,

x = 0.5 corresponds to initial gluon transverse momentum of 30/(1−0.5) GeV = 60

GeV, i.e. to the parent gluon that lost half of its transverse momentum etc. The

question is which of these 5 gluons is the most likely to be the parent one, and how

is this probability correlated with x? The answer is obvious from Fig. 6.8 where,

due to the exponentially decreasing initial gluon p⊥ distribution, the initial gluon

corresponding to x = 0.1 is most likely to be the parent one, and as x increases the

probability steeply decreases (i.e. for x & 0.4 it diminishes for 2 orders of magnitude

compared to the x = 0.1 case).

Therefore, according to the initial distribution, the main contribution to the sup-

pression predictions comes from x . 0.4 region, making this region the most relevant

one for differentiating between bsg and sg RAA. In this region, bsg and sg dN
(1)
g

dx
(and

equivalently 1
E
dE(1)

dx
) curves deflect only slightly from each other (based on Figs. 6.4

and 6.5), which intuitively addresses nearly overlapping RAA in Fig. 6.6. Also, the

relevant x region qualitatively resolves the issue of why the large inconsistency be-

tween these curves at higher x does not affect RAA.

Along these lines, one could wrongly assume that the x > 0.4 region is irrelevant

for generating suppression predictions and could be comfortably neglected. There-

fore, it is important to make a distinction between terms generally irrelevant and

irrelevant (with respect to) for relaxing the soft-gluon approximation. That is, in

our suppression calculations we cannot simply reject the x > 0.4 region, since non-

negligible dN
(1)
g

dx
contribution to RAA (see the central panel of Fig. 6.4 in both bsg

and sg cases) comes from it. Therefore, for reliable suppression results, one has to

take into account the entire x region, while from the above analysis, we argue that

only x ≤ 0.4 region is relevant for studying the importance of relaxing the soft-gluon

approximation.

In order to provide more rigorous support to this claim in Fig. 6.9, we compared

suppressions obtained from bsg expression for the entire x ≤ 0.5 region, with results
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obtained from bsg expression for x ≤ 0.4 combined with sg expression for x > 0.4.

As expected from the above discussion, we obtained that these two approaches lead

to almost overlapping suppressions, confirming that the region above x = 0.4 is not

relevant for the importance of relaxing the soft-gluon approximation. In particular,

the obtained difference was less than approximately 3%, and decreased with increas-

ing p⊥, consistently with the second column in Fig. 6.4, where the area below dN
(1)
g

dx

curve for 0.4 < x ≤ 0.5 becomes less important compared to the remaining area

below the same curve with increasing p⊥.

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

p⊥(GeV)

R
A
A

20 40 60 80 100
0

1%

2%

3%

0

p⊥(GeV)

R
A
A

(x
⩽
0.
4)
/R
A
A

(x
⩽
0.
5)
-
1

Figure 6.9: The relevant x region for studying importance of relaxing sg approxima-

tion. The comparison of gluon RAA predictions between bsg (the solid curve) and

combined: bsg for x ≤ 0.4 +sg for x > 0.4 (the dashed curve) cases is assessed in

the left panel, as a function of the final p⊥. The right panel provides a percentage

of gluon suppression change when soft-gluon-approximation relaxation is omitted at

x > 0.4.

It is worth noting that the effect of relaxing the soft-gluon approximation on dN
(1)
g

dx

and 1
E
dE(1)

dx
is practically insensitive to initial transverse momentum (see Fig. 6.5),

which is the reason why finite x affects equivalently gluon RAA regardless of it’s

transverse momentum, as observed in Fig. 6.6.

6.7. Conclusions
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In our dynamical energy loss model, studied in previous sections, some standard

approximations were made in order to facilitate the calculations. The validity of one

of the assumptions - the soft-gluon approximation - was rightfully questioned, so the

main efforts of the theoretical part of this thesis were directed toward addressing

what effect relaxing of the soft-gluon approximation has on radiative energy loss,

and consequently on suppression, which depends only on initial distribution and

energy loss of high p⊥ parton in QGP. To this end, we chose gluon jet, because due

to the color factor of 9/4 compared to the quarks, this assumption has the greatest

impact on gluons.

In particular, we analytically calculated 11 Feynman diagrams contributing to

the first order in opacity radiative energy loss beyond soft-gluon approximation,

first within GLV [183] (massless case), and later within DGLV [189] (massive case)

formalism, and generated numerically predictions for: fractional integrated and dif-

ferential energy loss, mean number of radiated gluons, single gluon radiation spec-

trum and gluon’s suppression. The obtained analytical expressions are notably

different from the soft-gluon case, while the numerical effects due to this relaxation

are twofold: from i) ascending to notable values for single gluon radiation spectrum

at x & 0.4; to ii) small changes (within few percents) in fractional radiative energy

loss and mean number of radiated gluons, but of opposite signs.

However, we obtained that suppression is not affected by the large discrepancies

from i), which we explained in terms of the interplay of the initial p⊥ distribution

and energy loss probability. Namely, due to exponentially decreasing initial gluon

distribution, only x . 0.4 region effectively contributes to the differences between bsg

and sg integrated variable predictions. Additionally, the overall effect on suppression

is negligible, which can be intuitively understood by the cancellation of the effects

on variables mentioned in ii).

The obtained nearly indistinguishable suppression patterns in beyond-soft-gluon

and soft-gluon cases for gluons in QCD medium composed of static scattering cen-

ters, implied that quark radiative energy loss is even less likely to be notably modi-

fied, although this still remains to be thoroughly examined.

To our knowledge, this presents the first opportunity to assess the effect of relax-

ing the soft-gluon approximation on radiative energy loss within DGLV formalism.
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Some other radiative energy loss formalisms, which also imply static scatterers, gen-

erated their results on a finite x. However, contrary to the conclusions derived for

these formalisms (where significant difference in the radiative energy loss was ob-

tained [250–252]) we found that relaxing soft-gluon approximation brings negligible

change to the results. Consequently, our results surprisingly indicate that, contrary

to the doubts mentioned in subsection 6.1, the soft-gluon approximation remains

well-founded within DGLV formalism.

Grounded on the conclusions derived in this section, we believe that the soft-gluon

approximation can be reliably applied to the dynamical energy loss formalism, as

implicitly suggested by the previous very good agreement [208, 225, 235–238] (see

also section 4) of our theoretical predictions with a comprehensive set of experimen-

tal data. More specifically, the effective cross section v(q) (which corresponds to

interaction between the jet and exchanged gluon) [204] (see also sections 3 and 5)

does not depend on x, so introduction of finite x will not affect this term, as antic-

ipated. We also expect that the rest of the energy loss expression (i.e. f(k,q, x),

which corresponds to interaction between the jet and radiated gluon [204]) will be

modified in the similar manner as in the static case, since in the soft-gluon limit,

these two expressions coincide. However, relaxing the soft-gluon approximation in

dynamical energy loss formalism is out of the scope of this thesis, and this claim

still remains to be rigorously tested in the future.

7. CONCLUSIONS AND OUTLOOK

The comparison of angular averaged nuclear modification factor predictions with

the wealth of suppression experimental data, currently available, is generally con-

sidered to be an excellent tool for mapping the properties of created quark-gluon

plasma (sQGP) in ultra-relativistic heavy-ion collisions at the RHIC and the LHC

facilities. Among a few steps in suppression calculation, the accurate high p⊥ par-

ticle energy loss (as the main inducer of jet quenching) calculations are established

to be the crucial step. Therefore, in this thesis all our efforts are directed toward:

i) assessing to what extent our suppression predictions, based on dynamical energy
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loss formalism, agree with the measured RAA, which tests our understanding of jet-

medium interactions; ii) addressing the importance of different dynamical energy

loss ingredients in producing reliable suppression predictions; and iii) improving

the high p⊥ particles energy loss calculus, by relaxing one of the long-established

approximation in radiative energy loss calculations.

In this final section first we provide a brief summary of all conclusions obtained

in this thesis, from both parts: phenomenological and theoretical. Then, we discuss

the eventual improvements, that could be introduced in high p⊥ particles energy

loss calculations, which presents our future course of action. And finally, we provide

precise guidelines to experimental researcher on where, based on our suppression

predictions, they should concentrate their future efforts.

7.1. Summary of conclusions

First we obtained that our theoretical predictions of high p⊥ particles suppression,

which are based on recently developed dynamical energy loss formalism, show a

robust agreement with various experimental data for p⊥ & 10 GeV, which is, among

other, constrained by applying the soft-gluon approximation. This agreement spans

across different heavy-ion collision energies (i.e. experiments at both RHIC and

LHC), diverse probes (light and heavy one), and experimental conditions (i.e. all

available centrality regions). It is worth noting, that in generating the suppression

predictions we used: the same numerical procedure, the same energy loss formalism

(based on finite temperature QCD calculations) and no fitting parameters in model

testing.

Further, under the same computational auspices, we provided heavy and light

flavor suppression predictions prior to 5.02 TeV Pb+Pb measurements at the LHC.

We surprisingly predicted the same suppression (as well as the pattern) at two LHC

energies: √sNN = 2.76 TeV and √sNN = 5.02, which was explained by cancella-

tion of the opposite impacts of initial momentum distributions and energy loss on

suppression predictions. This prediction recently obtained its experimental confir-

mation. And finally, we predicted that only the momentum region below 50 GeV is

the adequate one for mass tomography.
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Since our focus is on energy loss (which in dynamical case has several key effects)

the above mentioned a very good agreement of our suppression predictions with

experimental data, raised a question of what is the individual contribution of each

energy loss effect in accurately interpreting the experimental data. To that end, we

separately included on-by-one effect, starting from DGLV model, in order of their

chronological introduction in model. In particular, we studiously addressed the im-

portance of: inclusion of dynamical scattering centers, collisional energy loss, finite

size QCD medium, finite magnetic mass and running coupling, by using the genuine

energy loss probe - D meson suppression. This approach allows both investigating

the importance of different energy loss effect, and obtaining the historical overview

of how the dynamical energy loss model has been improved. We inferred that all

ingredients are responsible for the accurate predictions, although the inclusion of

the dynamical scattering centers has the largest relative importance, while others

contribute to the finer agreement with the data. This implies that further improve-

ments, such as going beyond some approximation in energy loss calculations, could

contribute to even greater accuracy of our suppression predictions.

Therefore, our theoretical part of the thesis, addresses the validity of the widely-

used soft-gluon approximation, which was also used in dynamical radiative energy

loss calculations. The soft-gluon approximation assumes that radiated gluon takes

away a small amount of initial jet energy (quantified by x = ω/E � 1, where ω,E

denote energy of radiated gluon and initial jet, respectively); and breaks down for

5 < p⊥ < 10 GeV, while the gluons are mostly affected by it. Additionally, the well-

foundedness of this approximation was generally questioned, as different theoretical

approaches reported a notable radiative energy loss of high p⊥ particles.

In particular, we relaxed the soft-gluon approximation for 1st order in opacity

gluon jet radiative energy loss, within the pQCD approach for a finite size, optically

thin QCD medium and since the calculations are technically demanding, they were

divided in several steps: i) within GLV model, which assumes massless gluons and

medium composed of static scatterers ii) within DGLV model, which present exten-

sion of the previous step toward inclusion of effective gluon mass and iii) finally,

we discussed the impact of relaxing the approximation in the radiative energy loss,

when dynamical medium is considered.
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We surprisingly obtained that, although the analytical expressions are substan-

tially different compared to the soft-gluon case, the majority of numerical predictions

(apart from differential variables at higher x & 0.4 ), i.e. integrated variables such

as fractional energy loss, mean number of radiated gluons and suppression, where

nearly overlapping with the corresponding soft-gluon predictions. We explained that

due to exponentially decreasing initial gluon distribution, only x . 0.4 region ef-

fectively contributes to the differentiation between beyond-soft-gluon and soft-gluon

cases of integrated variables. Also, we demonstrated that the cancellation of the op-

posite finite x effects on the fractional energy loss and the mean number of radiated

gluons is responsible for negligible suppression change.

To advantage of this theoretical study is that, to our knowledge, this presents

the first opportunity to address the importance of the soft-gluon approximation

in radiative energy loss of high p⊥ particle within DGLV formalism. Some other

radiative energy loss models, that also assume medium composed of static scattering

centers, generated their results on a finite x, and obtained significant numerical

difference compared to the soft-gluon case. Contrary to their conclusions we found

that the soft-gluon approximation remains well-founded within DGLV formalism,

and that there is no need to go beyond soft-gluon approximation. Finally, we also

discussed generalizing this relaxation to the dynamical radiative energy loss, which

implies a more general applicability of the conclusions derived in DGLV model.

7.2. Outlook

In this subsection we briefly review some future research directions that could

improve our dynamical energy loss model and guide the future experiments, resulting

from the study presented in this thesis.

Regarding the collisional energy loss, the introduction of finite magnetic mass

lies ahead of us, in order to equalize the amount of improvements incorporated in

collisional and radiative contributions to energy loss.

Since we showed that gluon quenching in QCD medium composed of static scat-

tering centers is not altered by the soft-gluon assumption, quark radiative energy

loss is even less likely to be notably affected, although this remains to be tested in
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the future. Additionally, relaxing the soft-gluon approximation in dynamical energy

loss model is out of the scope of this thesis, and this needs to be further rigorously

tested.

In our phenomenological part we singled out the importance of directly measur-

ing B mesons instead of non-prompt J/ψ, at relevant momentum region (p⊥ . 50

GeV), reducing the uncertainties, and also increasing the number of available mea-

surements for this important mass-tomography probe. Thus, directed where some

future experimental efforts should be concentrated.

In addition to the angular average nuclear modification factor predictions, it is

also beneficial to extend the set of observables that could be predicted by our for-

malism, and compare them with the abundance of experimental data. For instance,

apart for current calculating suppression for averaged azimuthal angle, our goal is to

provide predictions for arbitrary angle (e.g. in-plane, out-of-plane). This, however

requires angular dependent nuclear modification factor.

In order to be able to generate predictions for e.g. elliptic flow, for more real-

istic approach, it is necessary to account for evolving QGP medium, instead using

averaged medium properties in modeling the medium. Redeveloping of the com-

plex dynamical energy loss formalism, so that it includes the evolving QGP medium

represents a serious undertaking. It requires redoing all calculations, with the dis-

tinction that T is no longer a parameter, but changes along the jet propagation

path. This significantly complicates the calculations, and also requires hydrody-

namical simulations to provide the temperature profiles.

These improvements and recalculations are our immediate future goal, and would

further test our formalism, possibly set some restraints and would enable us to

accurately explain the data outside the observables that we tested so-far. All this

would significantly contribute to better understanding of the jet-medium interactions

in QGP, as well as of the nature of quark-gluon plasma and the underlying physics.
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Appendix A: Expressions for collisional energy loss

The expressions outlined in this appendix are adapted from [157]. The effective

gluon propagator for gluon embedded in a finite temperature QGP medium has

both transverse and longitudinal contributions [253–256], and in Coulomb gauge

(for simplicity chosen, although final results are gauge invariant) reads:

Dµν(ω, ~q) = −P µν∆T (ω, ~q)−Qµν∆L(ω, ~q), (A.0.1)

where q = (ω, ~q) denotes (exchanged between high p⊥ quark and medium partons)

gluon 4-momentum, while ∆T and ∆L, respectively, are effective transverse and

longitudinal gluon propagators, given by [256]:

∆−1
T = ω2 − ~q2 − µ2

E

2 −
(ω2 − ~q2)µ2

E

2~q2 (1 + ω

2|~q| ln |
ω − |~q|
ω + |~q| |), (A.0.2)

∆−1
L = ~q2 + µ2

E(1 + ω

2|~q| ln |
ω − |~q|
ω + |~q| |), (A.0.3)

where Debye mass is given by µE = gsT
√

1 + nf/6. In transverse (P µν) and longi-

tudinal (Qµν) projectors the only surviving terms are:

P ij = δij − qiqj

|~q|
, (A.0.4)

Q00 = 1. (A.0.5)

The contribution for collisional (elastic) energy loss (up to the 0th order in opacity)

comes from 1-HTL gluon propagator, and for jet produced in a finite size (L) QGP
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medium expression for heavy quark collisional energy loss acquires the following

form [157]:

∆Ecoll = CRg
4
s

2π4

∫ ∞
0

neq(|~k|)d|~k|
( ∫ |~k|

0
|~q|d|~q|

∫ |~q|
−|~q|

ωdω +
∫ |~q|max
|~k|

|~q|d|~q|
∫ |~q|
|~q|−2|~k|

ωdω
)

×
(
|∆L(q)|2 (2|~k|+ ω)2 − |~q|2

2 J1 + |∆T (q)|2 (|~q|2 − ω2)((2|~k|+ ω)2 + |~q|2)
4|~q|4

× [(v2|~q|2 − ω2)J1 + 2ωJ2 − J3]
)
, (A.0.6)

where neq(|~k|) is equilibrium momentum distribution [147] at temperature T taking

into account quarks (Fermi-Dirac statistics) and gluons (Bose-Einstein statistics),

and reads:

neq(|~k|) = n

e|~k|/T − 1
+ nf

e|~k|/T + 1
. (A.0.7)

Here n and nf stand for number of colors and number of light-quark flavors, respec-

tively, whereas medium partons (k) are considered to be massless k = (|~k|, ~k). The

upper limit of |~q| integration [146] is:

|~q|max = Min [E, 2|~k|(1− |~k|/E)
1− v + 2|~k|/E

], (A.0.8)

where E and v represent energy and velocity magnitude of initial quark jet, respec-

tively. The integrals Ji from Eq. (A.0.6) are given by [157]:

J1 =
∫ dΩ

4π
sin[(ω − ~v · ~q) L2v ]2

(ω − ~v · ~q)2

= L

4|~q|v2

[
Si((v|~q|+ ω)L

v
) + Si((v|~q| − ω)L

v
)
]

− 1
4v|~q|

[1− cos((v|~q| − ω)L
v
)

v|~q| − ω
+

1− cos((v|~q|+ ω)L
v
)

v|~q|+ ω

]
, (A.0.9)

J2 =
∫ dΩ

4π
sin[(ω − ~v · ~q) L2v ]2

(ω − ~v · ~q)2 (ω − ~v · ~q)

= 1
4v|~q|

[
Ci((v|~q| − ω)L

v
)− Ci((v|~q|+ ω)L

v
) + ln(v|~q|+ ω

v|~q| − ω
)
]
, (A.0.10)

J3 =
∫ dΩ

4π
sin[(ω − ~v · ~q) L2v ]2

(ω − ~v · ~q)2 (ω − ~v · ~q)2 = 1
2

(
1−

cos(Lω
v

) sin(L|~q|)
L|~q|

)
, (A.0.11)

which corresponds to integrand averaging over the direction of ~v.
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The expression for the heavy quark collisional energy loss per unit length in an

infinite QGP medium reads [157]:

dEcoll
dL

= g4
s

6v2π3

∫ ∞
0

neq(|~k|)d|~k|
( ∫ |~k|/(1+v)

0
d|~q|

∫ v|~q|

−v|~q|
ωdω +

∫ |~q|max
|~k|/(1+v)

d|~q|
∫ v|~q|

|~q|−2|~k|
ωdω

)

×
(
|∆L(q)|2 (2|~k|+ ω)2 − |~q|2

2 + |∆T (q)|2 (|~q|2 − ω2)((2|~k|+ ω)2 + |~q|2)
4|~q|4

× (v2|~q|2 − ω2)
)
. (A.0.12)

Appendix B: Beyond soft-gluon approximation calculus

Note that all diagrams from this appendix are obtained by using [257].

B.1. Notations and useful formulas

In this paper we used the following notation for vectors, in consistency with

both [183, 189]:

• ~p denotes momentum 3D vector

• p denotes transverse momentum 2D vector

• pz denotes component of momentum vector along the initial jet

• p = (p0, pz,p) = [p+, p−,p] denotes momentum 4D vector in Minkowski and

Light Cone coordinates, respectively, where p+ = p0 + pz and p− = p0 − pz.

For simplicity, we here consider QCD medium consisting of static partons and

model the interactions of the gluon jet with the medium via static color-screened

Yukawa potential, whose Fourier and color structure acquires the following form

([161, 183]):

Vn = V (qn)eiqnxn = 2πδ(q0
n)v(~qn)e−i~qn~xnTan(R)⊗ Tan(n), (B.1.1)

v(~qn) = 4παs
~q2
n + µ2

E

, (B.1.2)

where xn denotes space-time coordinate of the nth scatterer (target), Tan(R) and

Tan(n) denote generators in SU(Nc = 3) color representation of jet and target,
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respectively, while µE is Debye screening mass and αs = g2
s/4π is strong coupling

constant. In the following lines we will briefly display the identities and algebra that

SU(Nc = 3) generators meet:

Tr(T a(n)) = 0 (B.1.3)

Tr(T a(i)T b(j)) = δijδ
abC2(i)di

dG
, (B.1.4)

where dG = 8 is the dimension of the adjoint representation (G). We assume that

all target partons are in the same dT dimensional representation (T ) with Casimir

operator C2(T ), while the gluon jet is in the adjoint representation (G), with Casimir

operator C2(G).

In SU(Nc = 3) color algebra, the following identities hold as well:

[T a, T b] = ifabcT c, (B.1.5)

while in the adjoint representation we have:

(T b)ab = ifabc, (B.1.6)

T a(G)T a(G) = C2(G)I, (B.1.7)

where I denotes identity matrix of dimension dG and the SU(Nc = 3) structure

constants fabc are completely antisymmetric to indices permutations, which we fre-

quently apply. In the adjoint representation the following equalities also stand:

C(G) = C2(G) = Nc = 3, (B.1.8)

Tr(T a(G)T a(G)) = dGC2(G). (B.1.9)

And finally, in our computations we frequently make use of the fact that trace is

invariant under cyclic permutations and that generators are Hermitian matrices.

Since our extensive calculations are done in pQCD at finite temperature and in-

clude only gluon interactions, below we list the necessary Feynman rules in covariant

gauge that we employ:
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• massless gluon propagator in Feynman gauge:

a,µ b,νp
= −iδabgµν

p2 + iε
, (B.1.10)

• 3-gluon vertex:

a,µ

b,ν

c,ρ

p1
p2

p3

= gsf
abc
(
gµρ(p1 − p3)ν + gµν(p2 − p1)ρ + gνρ(p3 − p2)µ

)
.

(B.1.11)

Since only physical transverse gluon states must be accounted, summing over final

and averaging over initial helicity states is done according to Eq. (57) from [68]:∑
λ

εi(k, λ)εj(k, λ) = δij − kikj

~k2
(B.1.12)

where i, j = 1, 2, 3.

B.2. Assumptions

Throughout the paper we assume that initial gluon jet propagates along the z-

axis, i.e. has transverse momentum equal to zero, while radiated gluon carries away

a finite rate x of initial gluon longitudinal momentum and energy, and final gluon

emerges with momentum p. Therefore, instead of assuming soft-gluon approxima-

tion (x � 1), as it was done in [183, 189], we allow x to acquire finite non-zero

values, thus relaxing the soft-gluon approximation.

Since we are calculating radiative energy loss within the (GLV) DGLV formalism

apart from abandoning the soft-gluon approximation, the following assumptions

remain:

• The soft-rescattering approximation. Consistently with [183, 189] we assume

that partons energies and longitudinal momenta are high compare to their

transverse momenta, which disables the radiated and the final gluon to digress

much from the initial longitudinal direction (the eikonal approximation).

E+ ∼ (1− x)E+ ∼ xE+ � |p|, |k|, |qi|, (B.2.1)
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• The first order approximation. The gluon-jet radiative energy loss is calculated

up to the first order in opacity expansion, as argued in [183, 184, 247].

• Scattering centers distribution and ensemble average. We consider that all

scattering centers xi are distributed with the same transversely homogeneous

density:

ρ(~x) = N

A⊥
ρ̄(z), (B.2.2)

where
∫
dzρ̄(z) = 1 and also that impact parameter (i.e. relative transverse

coordinate) b = xi − x0 alters within a large transverse area A⊥ compared to

the interaction area 1
µ2
E
. Therefore, the ensemble average over the scattering

center locations reduces to an impact parameter average:

〈...〉 =
∫ d2b
A⊥

..., (B.2.3)

which in our case is mainly used in the following form:

〈
e−i(qi+qj)b

〉
= (2π)2

A⊥
δ2(qi + qj). (B.2.4)

We also assume that the energy of initial hard probe is large compared to the

potential screening scale:

E+, (1− x)E+, xE+ � µE, µi⊥, (B.2.5)

where i, j = 1, 2 count for the scattering centers.

Next, we assume that the distance between the source J and the scattering centers

is large relative to the interaction length:

zi − z0 �
1
µE

, (B.2.6)

then, that source current varies slowly with momentum:

J(p+ k − q) ≈ J(p+ k), (B.2.7)

and that the source current can be written explicitly in terms of polarization vectors:

Jµa (p+ k − q) ≡ Ja(p+ k − q)εµ(p+ k − q)

≈ Ja(p+ k)εµ(p+ k − q). (B.2.8)
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In the following sections first we assume that gluons are massless (GLV) in order

to make the comprehensive derivations more straightforward and easier to follow,

but later we recalculate all the results with gluon mass [188] included (DGLV)

(Appendix Section B.11).

B.3. Amplitude numeration

As a digression, in this subsection we briefly outline the general rule for numer-

ating the amplitudes to radiate a gluon including final state interactions with ns

static scattering centers. Note however that, we restrict our calculations to ns ≤ 2.

As pointed out in [181], each diagram is unambiguously characterized by a label

Mns,m,l, where m (0 ≤ m ≤ ns) denotes at which time interval, between two con-

secutive scatterings tm < t < tm+1, the gluon has been radiated, while t0 marks the

jet creation moment (source). l carries the information, whether or not the gluon

radiated at the mentioned moment t interacts with any of the succeeding scattering

centers sited at: m+ 1,m+ 2, ..., ns.

Therefore, for a given ns and m the number of different diagrams is 2ns−m (since

either jet or radiated gluon can interact with each m + 1,m + 2, ..., ns scatterer),

which gives the overall number of diagrams for known number of scattering centers:∑ns
m=0 2ns−m = 2ns+1−1. Thus, the number of diagrams containing interaction with:

i) only one scatterer is equal to 3; ii) two scatterers equals 7. Also, for a given ns
and m, l is associated with an ns −m binary array, in the following manner:

~σ = (σm+1, σm+2, ..., σns)⇐⇒ l =
∑ns
j=m+1 σj2j

2m+1 , (B.3.1)

where each σj can be either 1 or 0, depending on whether or not the radiated gluon

interacts with j scattering center. Thus, we obtaine the upper limit: l ≤ 2ns−m− 1,

so, for instance, for fixed m, l = 0 corresponds to no final state radiated gluon

rescattering, while l = 2ns−m − 1 corresponds to the radiated gluon rescattering

with all ns −m remaining scattering centers after tm.
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B.4. Gluon jet M0

First we calculate gluon-jet radiation amplitude to emit a gluon, carrying a finite

fraction x of initial jet energy, with momentum, polarization and color (k, ε, c) and

without interactions with the medium M0.

Jµ
′

a′ a,µ
d,σ

c,ρM0

z0 z
p + k

p

k

Figure B.1: Zeroth order diagram that includes no interaction with the QCD medium,

and contributes to gluon radiation amplitude to the first order in opacity L/λ. The dashed

circle represents the source J , which at longitudinal coordinate z0 produces an off-shell

gluon jet, propagating along z-axis. z denotes longitudinal coordinate at which the gluon

is radiated. Latin indices denote color charges, while Greek indices denote components

of 4-vectors. k denotes 4-momentum of the radiated gluon carrying the color c, and p

denotes 4-momentum of the final gluon jet carrying the color d.

We assume that initial gluon (p + k) propagates along z-axis. By using M0

amplitude as an example, we will implement the aforementioned assumptions in

order to acquire momentum and polarization expressions. Thus, the initial gluon

4-momentum reads:

p+ k = (p0 + k0, pz + kz,0),

p+ k = [E+, E−,0], (B.4.1)

where E+ = p0 + k0 + pz + kz and E− = p0 + k0− pz − kz. Assuming massless (real)

gluons for simplicity, the momentum vectors of the radiated (k) and the final (p)

gluons acquire the following form:

k2 = 0⇒ k = [xE+,
k2

xE+ ,k], (B.4.2)

p2 = 0⇒ p = [(1− x)E+,
p2

(1− x)E+ ,p]. (B.4.3)

We also assume that gluons are transversely polarized particles. Although we work

in covariant gauge, we can choose any polarization vector for the external on-shell
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gluons, so in accordance with [183, 189, 252] we choose nµ = [0, 2,0], as stated

above:

ε(k) · k = 0, ε(k) · n = 0, ε(k)2 = −1,

ε(p) · p = 0, ε(p) · n = 0, ε(p)2 = −1, (B.4.4)

while we assume that the source, even though a virual (off-shell) particle, has also

the same polarization as real gluons [252]:

ε(p+ k) · (p+ k) = 0, ε(p+ k) · n = 0, ε(p+ k)2 = −1. (B.4.5)

Using Eqs.(B.4.2- B.4.5) we can now obtain the following expressions for the gluon

polarizations:

εi(k) = [0, 2εi · k
xE+ , εi], εi(p) = [0, 2εi · p

(1− x)E+ , εi], εi(p+ k) = [0, 0, εi].

(B.4.6)

where i = 1, 2 counts for polarization vectors. Note that the 4-momentum is con-

served, which leads to the relation:

p + k = 0, (B.4.7)

that we implement in Eqs.(B.4.3, B.4.6) in order to ensure that everithing is ex-

pressed in terms of k. Also, E+ ≈ 2E, E− = k2

x(1−x)E+ , where E = p0 + k0 is the

energy of initial jet.

Using the notation from Fig. B.1 we may write:

M0 = ε∗σ(p, λ1)ε∗ρ(k, λ2)gsfacd
(
gµσ(2p+ k)ρ + gµρ(−p− 2k)σ + gρσ(−p+ k)µ

) −iδaa′gµµ′
(p+ k)2 + iε

× iJa′(p+ k)ei(p+k)x0εµ
′(p+ k, λ3) ≈ Ja(p+ k)ei(p+k)x0(−2gs)(1− x+ x2)ε · k

k2 facd

= Ja(p+ k)ei(p+k)x0(−2igs)(1− x+ x2)ε · k
k2 (T c)da, (B.4.8)

where λi, i = 1, 2, 3 denotes helicity of corresponding gluons. Eq. (B.4.8) after

summation over helicities of final and radiated gluon, and averaging over helicity of

initial gluon by using Eq. (B.1.12) gives:
〈
|M0|2

〉
= |J(p+ k)|2(4g2

s)
C2(G)dG

k2 (1− x+ x2)2. (B.4.9)
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Next we substitute the Eq. (B.4.9) in:

d3N (0)
g d3NJ ≈Tr

〈
|M0|2

〉 d3~p
(2π)32p0

d3~k
(2π)32ω , (B.4.10)

Note that, contrary to soft-gluon approximation [189], where:

d3NJ ≈ dG|J(p+ k)|2 d3~p
(2π)32p0 , (B.4.11)

now p, denoting the momentum of the final gluon jet, is not approximately equal

to the momentum of initial gluon jet (i.e. the radiated gluon can carry away a

substantial amount of the initial jet energy and longitudinal momentum). Thus

instead of Eq. (B.4.11) throughout this paper we use the general one:

d3NJ = dG|J(p+ k)|2 d3~pJ
(2π)32EJ

, (B.4.12)

where EJ = E and ~pJ denotes energy and momentum of the initial gluon jet.

Knowing that the substitution of variables (pz, kz → pJz , xE) gives:

d3~p
(2π)32p0

d3~k
(2π)32ω = d3~pJ

(2π)32EJ
dxd2k

(2π)32x(1− x) , (B.4.13)

and by substituting Eqs.(B.4.9, B.4.12, B.4.13) in Eq. (B.4.10), for radiation spec-

trum we now obtain:
xd3N (0)

g

dxdk2 = αs
π

C2(G)
k2

(1− x+ x2)2

1− x , (B.4.14)

which recovers well-known Altarelli-Parisi result [68] and for x � 1 reduces to the

massless soft-gluon limit of Eq.(9) from [189]. The same result can be obtained by

directly implementing polarization vectors (Eq. (B.4.6)) in Eq. (B.4.8), instead of

using Eq.(B.1.12) when averaging.

B.5. Diagrams M1,1,0, M1,0,0, M1,0,1

In this section we provide a detailed calculations of Feynman amplitudes, corre-

sponding to gluon-jet interaction with one scattering center, which are depicted in

Fig. B.2. Again for consistency, we assume that initial jet (p + k − q) propagates

along z-axis. Throughout this section, momentum and polarization vector for initial

gluon read:

p+ k − q1 = [E+ − q1z, E
− + q1z,0], (B.5.1)
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k
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J
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p,d

M1,0,0
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J

~q1,a1

k,c
p,d

M1,0,1

z0 z1z

Figure B.2: Three diagrams, corresponding to interaction with one static scattering cen-

ter, that contribute to gluon-jet radiation amplitude to the first order in opacity L/λ.

z1 denotes longitudinal coordinate of the interactions with one scattering center. Crossed

circle represents scatterer that exchange transverse momentum ~q1 with the jet. Note that,

all three diagrams assume equivalently ordered Latin and Greek indices as indicated by

the first diagram. Remaining labeling is the same as in Fig. B.1.

εi(p+ k − q1) = [0, 0, εi], (B.5.2)

where q1 = [q1z,−q1z,q1], with q0
1 = 0, while p, k and corresponding polarization

vectors retain the same expression as in Eqs.(B.4.2, B.4.3, B.4.6), with the distinction

that the following relation between gluon transverse momenta, due to 4-momentum

conservation, holds:

q1 = p + k. (B.5.3)

B.5.1. Computation of M1,1,0 diagram

We chose to start with thorough derivation of the expression forM1,1,0 amplitude,

simply because it has no counterpart regarding the symmetry under (p ↔ k, x ↔

(1− x), c↔ d) substitutions, and it provides all necessary steps for calculating the

remaining two amplitudes from this chapter, apart from having one less singularity

compared to the amplitudes M1,0,0 and M1,0,1. Thus, using the notation from the
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left diagram of Fig. B.2, we write:

M1,1,0 =
∫ d4q1

(2π)4 ε
∗
σ(p)ε∗ρ(k)gsf bcd

(
gνσ(2p+ k)ρ + gνρ(−p− 2k)σ + gρσ(−p+ k)ν

)

× (−i)δbb′gνν′
(p+ k)2 + iε

fab
′a1

(
gµ0(p+ k − 2q1)ν′ + gµν

′(−2p− 2k + q1)0 + gν
′0(p+ k + q1)µ

)

× Ta1V (q1)eiq1x1
(−i)δaa′gµµ′

(p+ k − q1)2 + iε
iJa′(p+ k − q1)εµ′(p+ k − q1)ei(p+k−q1)x0

≈ Ja(p+ k)ei(p+k)x0f bcdfa1abTa1(−i)(1− x+ x2)
∫ d2q1

(2π)2 e
−iq1·(x1−x0)2gs

× (1− x)ε · k− xε · p
x(1− x) E+

∫ dq1z

2π
v(q1z,q1)e−iq1z(z1−z0)

((p+ k − q1)2 + iε)((p+ k)2 + iε) ,

(B.5.4)

where we used the equation:

(p+ k)2 = ((1− x)k− xp)2

x(1− x) , (B.5.5)

and assumed that J varies slowly with momentum q1, i.e. J(p+ k− q1) ≈ J(p+ k).

The longitudinal momentum transfer integral:

I1(p, k,q1, z1 − z0) ≡
∫ dq1z

2π
1

(p+ k − q1)2 + iε
v(q1z,q1)e−iq1z(z1−z0) (B.5.6)

has to be performed in the lower half-plane of the complex plain, since z1 > z0. In

order to determine the pole arising from potential, we rewrite Eq. (B.1.2) in a more

appropriate form:

v(~qn) = 4παs
(qnz + iµn⊥)(qnz − iµn⊥) , (B.5.7)

where µ2
n⊥ = µ2

E + q2
n. Aside from the pole originating from the potential (q1z =

−iµ1⊥ from Eq. (B.5.7)), there is also a singularity emerging from the gluon propa-

gator:

q̄1 = − k2

xE+ −
p2

(1− x)E+ − iε = −k2

2ω −
x

1− x
(k− q1)2

2ω − iε (B.5.8)

The residue around the pole at q̄1 is computed as (the negative sign is due to the

clock-wise orientation of the closed contour in the complex plain):

Res(q̄1) ≈− v(− k2

xE+ −
p2

(1− x)E+ ,q1) i

E+ e
i( k2

xE+ + p2

(1−x)E+ )(z1−z0)

=− v(−k2

2ω −
x

1− x
(k− q1)2

2ω ,q1) i

E+ e
i

2ω (k2+ x
1−x (k−q1)2)(z1−z0), (B.5.9)
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while the second pole (q1z = −iµ1⊥) does not contribute to the longitudinal integral,

since residue around that pole is exponentially suppressed in the well-separated case

µE(z1 − z0) = µEλ� 1 (and µE ∼ µ1⊥):

Res(−iµ1⊥) ≈ −i 4παs
(−2iµ1⊥)E+(−iµ1⊥)e

−µ1⊥(z1−z0) −→ 0, (B.5.10)

where we assumed that E+ � µE and soft rescattering approximation.

This makes only q̄1 singularity relevant for calculating longitudinal integral.

Therefore I1 coincides with (B.5.9), i.e.:

I1(p, k,q1, z1 − z0) ≈− v(− k2

xE+ −
p2

(1− x)E+ ,q1) i

E+ e
i( k2

xE+ + p2

(1−x)E+ )(z1−z0)

≈− v(0,q1) i

E+ e
i( k2

xE+ + p2

(1−x)E+ )(z1−z0)

=− v(0,q1) i

E+ e
i

2ω (k2+ x
1−x (k−q1)2)(z1−z0), (B.5.11)

where we used eikonal approximation (i.e. for a finite x: k2

(xE+)2 � 1 and p2

((1−x)E+)2 �

1). Finally, M1,1,0 amplitude reads:

M1,1,0 = Ja(p+ k)ei(p+k)x0(−i)(1− x+ x2)f bcdfa1abTa1

∫ d2q1

(2π)2v(0,q1)e−iq1·b1

×(−2igs)
ε · ((1− x)k− xp)
((1− x)k− xp)2 e

i( k2

xE+ + p2

(1−x)E+ )(z1−z0)

=Ja(p+ k)ei(p+k)x0(−i)(1− x+ x2)(T cT a1)daTa1

∫ d2q1

(2π)2v(0,q1)e−iq1·b1

×(−2igs)
ε · (k− xq1)
(k− xq1)2 e

i
2ω (k2+ x

1−x (k−q1)2)(z1−z0), (B.5.12)

where we denoted b1 ≡ x1 − x0. In this subsection, we constantly make use of

the following relation between gluon transverse momenta, that holds for all three

diagrams corresponding to the interaction with one scattering center:

q1 = p + k⇒ p2 = (k− q1)2, (B.5.13)

and also manipulate with SU(Nc = 3) structure constants by using (B.1.5, B.1.6).

Eq. (B.5.12) in soft-gluon approximation (i.e. for x� 1) leads to Eq.(A8) from [183]

and also to the massless limit of Eq.(51) from [189]. Note also from Fig. B.2 that,

as expected, M1,1,0 is symmetric under the substitutions: (p↔ k, x↔ (1− x), c↔

d), where the symmetry can be straightforwardly verified by implementing these

substitutions in the first two lines of (B.5.12).
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B.5.2. Computation of M1,0,0 diagram

Applying the same procedure as in the previous subsection, we proceed with

calculating M1,0,0. Note that the order of the color and Dirac indices denoting

vertices is the same for all three diagrams in Fig. B.2, and are therefore omitted in

the last two diagrams.

M1,0,0 =
∫ d4q1

(2π)4 ε
∗
σ(p)f bda1

(
gν0(p− 2q1)σ + gνσ(−2p+ q1)0 + gσ0(p+ q1)ν

)
Ta1V (q1)eiq1x1

× (−i)δbb′gνν′
(p− q1)2 + iε

gsf
acb′
(
gµν

′(2p+ k − 2q1)ρ + gµρ(−p− 2k + q1)ν′ + gρν
′(−p+ k + q1)µ

)

× ε∗ρ(k) (−i)δaa′gµµ′
(p+ k − q1)2 + iε

iJa′(p+ k − q1)εµ′(p+ k − q1)ei(p+k−q1)x0

≈ Ja(p+ k)ei(p+k)x0f bda1facbTa1(−i)(1− x+ x2)E+
∫ d2q1

(2π)2 e
−iq1·b12gs

ε · k
x

I2,

(B.5.14)

where:

I2(p, k,q1, z1 − z0) ≡
∫ dq1z

2π
v(q1z,q1)e−iq1z(z1−z0)

((p+ k − q1)2 + iε)((p− q1)2 + iε) . (B.5.15)

In order to calculate the previous integral, due to z1 > z0 we again have to close the

contour below the real axis. Similarly as in M1,1,0 amplitude, again only the poles

originating from the propagators contribute to the integral: (− k2

xE+− p2

(1−x)E+−iε) and

( k2−p2

(1−x)E+ − iε), while (−iµ1⊥) is exponentially suppressed (due to µE(z1 − z0)� 1).

Therefore we obtain:

I2(p, k,q1, z1 − z0) ≈ ix

E+k2v(0,q1)
(
e
i( k2

xE+ + p2

(1−x)E+ )(z1−z0) − ei(
(p2−k2)
(1−x)E+ (z1−z0)

)
≈ ix

E+k2v(0,q1)
(
e
i

2ω (k2+ x
1−x (k−q1)2)(z1−z0) − e

i
2ω

x
1−x ((k−q1)2−k2)(z1−z0)

)
,

(B.5.16)

leading to:

M1,0,0 = Ja(p+ k)ei(p+k)x0(−i)(1− x+ x2)f bda1facbTa1

∫ d2q1

(2π)2v(0,q1)e−iq1·b1

× (2igs)
ε · k
k2

(
e
i( k2

xE+ + p2

(1−x)E+ )(z1−z0) − ei
(p2−k2)
(1−x)E+ (z1−z0)

)
= Ja(p+ k)ei(p+k)x0(−i)(1− x+ x2)(T a1T c)daTa1

∫ d2q1

(2π)2v(0,q1)e−iq1·b1

× (2igs)
ε · k
k2

(
e
i

2ω (k2+ x
(1−x) (k−q1)2)(z1−z0) − e−

i
2ω

x
1−x (k2−(k−q1)2)(z1−z0)

)
.

(B.5.17)
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Also (B.5.17) in soft-gluon approximation (i.e. for x � 1) leads to the massless

limit of Eq.(45) from [189].

B.5.3. Computation of M1,0,1 diagram

Finally, we calculate M1,0,1 amplitude:

M1,0,1 =
∫ d4q1

(2π)4 ε
∗
ρ(k)f bca1

(
gν0(k − 2q1)ρ + gνρ(−2k + q1)0 + gρ0(k + q1)ν

)
Ta1V (q1)eiq1x1

× (−i)δbb′gνν′
(k − q1)2 + iε

gsf
adb′
(
gµν

′(p+ 2k − 2q1)σ + gµσ(−2p− k + q1)ν′ + gσν
′(p− k + q1)µ

)

× ε∗σ(p) (−i)δaa′gµµ′
(p+ k − q1)2 + iε

iJa′(p+ k − q1)εµ′(p+ k − q1)ei(p+k−q1)x0

≈ Ja(p+ k)ei(p+k)x0f bca1fadbTa1(−i)(1− x+ x2)
∫ d2q1

(2π)2 e
−iq1·b12gs

ε · p
(1− x)E

+I3

(B.5.18)

where the longitudinal momentum transfer integral:

I3(p, k,q1, z1 − z0) ≡
∫ dq1z

2π
v(q1z,q1)e−iq1z(z1−z0)

((p+ k − q1)2 + iε)((k − q1)2 + iε) (B.5.19)

again has to be performed in the lower half-plane of the complex plain, since z1 >

z0. Aside from the pole originating from the potential (q1z = −iµ1⊥), which is

again exponentially suppressed, there are also singularities emerging from the gluon

propagators (− k2

xE+ − p2

(1−x)E+ − iε) and ( (p2−k2)
xE+ − iε), which are the only two poles

contributing to the longitudinal integral:

I3(p, k,q1, z1 − z0) ≈ i(1− x)
E+p2 v(0,q1)

(
e
i( k2

xE+ + p2

(1−x)E+ )(z1−z0) − ei
(k2−p2)
xE+ (z1−z0)

)
≈ i(1− x)
E+(k− q1)2v(0,q1)

(
e
i

2ω (k2+ x
1−x (k−q1)2)(z1−z0) − e

i
2ω (k2−(k−q1)2)(z1−z0)

)
.

(B.5.20)
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Finally, by substituting (B.5.20) in (B.5.18), for M1,0,1 amplitude we obtain:

M1,0,1 = Ja(p+ k)ei(p+k)x0(−i)(1− x+ x2)f bca1fadbTa1

∫ d2q1

(2π)2v(0,q1)e−iq1·b1

× (2igs)
ε · p
p2

(
e
i( k2

xE+ + p2

(1−x)E+ )(z1−z0) − ei
(k2−p2)
xE+ (z1−z0)

)

= Ja(p+ k)ei(p+k)x0(−i)(1− x+ x2)[T c, T a1 ]daTa1

∫ d2q1

(2π)2v(0,q1)e−iq1·b1

× (2igs)
ε · (k− q1)
(k− q1)2

(
e
i

2ω (k2+ x
1−x (k−q1)2)(z1−z0) − e

i
2ω (k2−(k−q1)2)(z1−z0)

)
.

(B.5.21)

Eq. (B.5.21) in soft gluon approximation (i.e. for x� 1) leads to Eq.(A7) from [183]

and also to the massless limit of Eq.(41) from [189].

Notice from Fig. B.2 that M1,0,1 and M1,0,0 are symmetric under the following

substitutions: (p↔ k, x↔ (1− x), c↔ d); it can be straightforwardly verified that

Eqs.(B.5.17, B.5.21) are symmetric under these substitutions.

B.6. Diagram M220

Next we concentrate on the diagrams containing two interactions with the static

scattering centers, since they also contribute to the gluon radiative energy loss to the

first order in opacity, when multiplied by M∗
0 . There are seven such diagrams, that

we gather into four groups, each of which contains two (or one) diagrams symmetric

under (p↔ k, x↔ (1− x), c↔ d) substitutions.

For consistency the initial g-jet (with momentum p+k−q1−q2) propagates along

z-axis, i.e.:

p+ k − q1 − q2 = [E+ − q1z − q2z, E
− + q1z + q2z,0], (B.6.1)

εi(p+ k − q1 − q2) = [0, 0, εi], (B.6.2)

where qi = [qiz,−qiz,qi], i = 1, 2 with q0
i = 0, while p, k and corresponding polar-

izations retain the same expressions as in Eqs.(B.4.2, B.4.3, B.4.6), with distinction

that, due to 4-momentum conservation, the following relation between gluon trans-

verse momenta holds:

p + k = q1 + q2. (B.6.3)
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Figure B.3: Feynman diagram M2,2,0 and its contribution to the first order in opacity

gluon-jet radiative energy loss: contact-limit M c
2,2,0. zi, where i = 1, 2, denotes longitudi-

nal coordinate of the interactions with the consecutive scattering centers (or in the contact

limit z1 = z2). Crossed circles represent scatterers that exchange transverse momentum

~qi with the jet, which in contact-limit case merge into one gridded ellipse. Note that, all

the following figures assume equivalently ordered Latin and Greek indices as in this figure.

Remaining labeling is the same as in Figs.(B.1, B.2).

Again, from seven diagrams we chose one model diagram M2,2,0, based on the

same reason as in section D, for thorough derivation of the final amplitude ex-

pression. From Fig. B.3, where gluon-jet after two consecutive interactions with

scattering centers radiates a gluon with momentum k, we observe that there are two

limiting cases that we consider.

Using the notation from Fig. B.3 we write:

M2,2,0 =
∫ d4q1

(2π)4
d4q2

(2π)4 ε
∗
σ(p)ε∗ρ(k)gsf ecd

(
gξσ(2p+ k)ρ + gξρ(−p− 2k)σ + gρσ(−p+ k)ξ

)
× −iδee′gξξ′

(p+ k)2 + iε
f be
′a2

(
gν0(p+ k − 2q2)ξ′ + gνξ

′(−2p− 2k + q2)0

+ gξ
′0(p+ k + q2)ν

)
Ta2V (q2)eiq2x2

−iδbb′gνν′
(p+ k − q2)2 + iε

Ta1V (q1)eiq1x1fab
′a1

×
(
gµ0(p+ k − 2q1 − q2)ν′ + gµν

′(−2p− 2k + q1 + 2q2)0 + gν
′0(p+ k + q1 − q2)µ

)
× −iδaa′gµµ′

(p+ k − q1 − q2)2 + iε
iJa′(p+ k − q1 − q2)εµ′(p+ k − q1 − q2)ei(p+k−q1−q2)x0

≈ iJa(p+ k)ei(p+k)x0f ecdf bea2faba1Ta2Ta1(1− x+ x2)(−i)
∫ d2q1

(2π)2

× (−i)
∫ d2q2

(2π)2 2igs
ε · ((1− x)k− xp)
((1− x)k− xp)2 e−iq1·b1e−iq2·b2(E+)2

×
∫ dq1z

2π
dq2z

2π
v(q1z,q1)v(q2z,q2)e−iq1z(z1−z0)e−iq2z(z2−z0)

((p+ k − q1 − q2)2 + iε)((p+ k − q2)2 + iε) , (B.6.4)
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where bi ≡ xi − x0, i = 1, 2 denote transverse impact parameters. We used

Eq. (B.5.5) and assumed that J varies slowly with momentum qi, i.e. J(p+k− q1−

q2) ≈ J(p+ k).

Regarding the longitudinal q1z integral, we introduce a new variable: qz = q1z+q2z

throughout this, and the following sections involving Feynman amplitudes which

include interactions with two scattering centers. Therefore, we rewrite the exponent

in the following manner: e−iq1z(z1−z0)e−iq2z(z2−z0) = e−iqz(z1−z0)e−iq2z(z2−z1). Rewriting

q1z longitudinal integral in terms of qz, i.e. changing the variables, we obtain:

I2(p, k,q1, ~q2, z1 − z0) =
∫ dqz

2π
v(qz − q2z,q1)e−iqz(z1−z0)

(p+ k − q1 − q2)2 + iε
(B.6.5)

Again, due to z1 > z0, the contour must be closed in the lower half-plane of complex

qz plain, so additional minus sign arises from the negative orientation of the contour

and also we neglect the pole at qz = −iµ1⊥+q2z, since it is exponentially suppressed

in the well-separated case µE(z1 − z0) = µEλ� 1. Thus, only one pole, originating

from the gluon propagator, contributes to the first longitudinal integral:

q̄ = − k2

xE+ −
p2

(1− x)E+ − iε = −k2

2ω −
x

1− x
(k− q1 − q2)2

2ω − iε, (B.6.6)

where we used, as well as throughout Appendix Sections B.7 to B.9, the relation

between transverse momenta given by Eq. (B.6.3). The residue at (B.6.6) then gives:

I2(p, k,q1, ~q2, z1 − z0) ≈ − v(−q2z −
k2

2ω −
x

1− x
(k− q1 − q2)2

2ω ,q1) i

E+

×e
i

2ω (k2+ x
1−x (k−q1−q2)2)(z1−z0) (B.6.7)

Next we need to solve the remaining q2z longitudinal momentum transfer integral:

I3(p, k,q1,q2, z2 − z1) =
∫ dq2z

2π
v(−q2z − k2

2ω −
x

1−x
(k−q1−q2)2

2ω ,q1)v(q2z,q2)e−iq2z(z2−z1)

(p+ k − q2)2 + iε

(B.6.8)

Luckily, we are interested only in two limiting cases:

• The limit of well separated scattering centers z2 − z1 � 1/µE, where poles

originating from Yukawa potentials are exponentially suppressed;

• The contact limit z1 = z2, where these poles contribute to the final results.

156



In the case of two distinct scatterers (z1 6= z2) and in the limit of well-separated scat-

tering centers there is only one pole that contributes to the residue (the singularities

originating from Yukawa potential once again are exponential suppressed):

q̄ = − k2

xE+ −
p2

(1− x)E+ + q2
1

E+ − iε = −k2

2ω −
x

1− x
(k− q1 − q2)2

2ω + q2
1

E+ − iε,

(B.6.9)

Since z2 > z1 again we close the contour below the real q2z axis and thus obtain:

I3(p, k,q1,q2, z2 − z1) ≈ −v(0,q1)v(0,q2) i

E+ e
i

2ω (k2+ x
1−x (k−q1−q2)2−xq2

1)(z2−z1)

(B.6.10)

In the special case of contact limit, i.e. when z1 = z2 , instead of (B.6.8) we need

to calculate the following q2z integral:

Ic3(p, k,q1,q2, 0) =
∫ dq2z

2π
v(−q2z − k2

2ω −
x

1−x
(k−q1−q2)2

2ω ,q1)v(q2z,q2)
(p+ k − q2)2 + iε

(B.6.11)

Now, the contributions from Yukawa singularities (q2z = −iµ1⊥, q2z = −iµ2⊥) are

not negligible and need to be included together with (B.6.6). By choosing the same

integration contour we obtain:

Ic3(p, k,q1,q2, 0) ≈ −i
E+

(
v(0,q1)v(0,q2)− (4παs)2

2
1

µ2
2⊥ − µ2

1⊥
( 1
µ2

1⊥
− 1
µ2

2⊥
)
)

= − v(0,q1)v(0,q2) i

2E+ , (B.6.12)

which is exactly 1
2 of the strength of Eq. (B.6.10). Note that, in previous calculations

we applied soft rescattering approximation and also assuumed E+ � µi⊥, i = 1, 2.

Finally, contact limit of this amplitude reads:

M c
2,2,0 = − iJa(p+ k)ei(p+k)x0f ecdf bea2faba1Ta2Ta1(1− x+ x2)

× (−i)
∫ d2q1

(2π)2 (−i)
∫ d2q2

(2π)2v(0,q1)v(0,q2)e−i(q1+q2)·b1

× 1
22igs

ε · ((1− x)k− xp)
((1− x)k− xp)2 e

i( k2

xE+ + p2

(1−x)E+ )(z1−z0)

= − Ja(p+ k)ei(p+k)x0(T cT a2T a1)daTa2Ta1(1− x+ x2)

× (−i)
∫ d2q1

(2π)2 (−i)
∫ d2q2

(2π)2v(0,q1)v(0,q2)e−i(q1+q2)·b1

× 1
22igs

ε · (k− x(q1 + q2))
(k− x(q1 + q2))2 e

i
2ω (k2+ x

1−x (k−q1−q2)2)(z1−z0), (B.6.13)
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Figure B.4: Feynman diagrams M2,0,3 and M2,0,0 in well separated (left column) and in

contact-limit case (z1 = z2), which contributes to the first order in opacity of gluon-jet

radiative energy loss: M c
2,0,3 and M c

2,0,0 (right column). Remaining labeling is the same

as in Fig. B.3.

where we applied (B.6.3) and manipulated with SU(Nc = 3) structure constants

by using (B.1.5, B.1.6). Also we assumed that x1 = x2, since we are interested in

ensemble averaged values.

Note also that, we would naturally come to "contact-limit" case and the afore-

mentioned assumption in our calculations of radiative energy loss, since according to

Eq.(B.1.4) the trace would demand the equalities z1 = z2 and b1 = b2. Eq. (B.6.13)

in soft gluon approximation (i.e. for x � 1) leads to the massless limit of Eq.(67)

from [189]. Note also from Fig. B.3 that M2,2,0 is symmetric under the substitu-

tions: (p ↔ k, x ↔ (1 − x), c ↔ d), which can be straightforwardly verified by

implementing these substitutions in the first three lines of (B.6.13).

B.7. Diagrams M2,0,3 and M2,0,0

Next we considerM2,0,3 diagram, where the radiated gluon suffers two consecutive

interactions with the QCD medium (the first row of Fig. B.4). Note that the order
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of the color and Dirac indices denoting vertices is the same for all the remaining

diagrams containing two interactions with the scatterers as in Fig. B.3, and therefore

omitted onward.

M2,0,3 =
∫ d4q1

(2π)4
d4q2

(2π)4 ε
∗
ρ(k)f eca2

(
gξ0(k − 2q2)ρ + gξρ(−2k + q2)0 + gρ0(k + q2)ξ

)
Ta2V (q2)eiq2x2

× −iδee′gξξ′
(k − q2)2 + iε

f be
′a1

(
gν0(k − 2q1 − q2)ξ′ + gνξ

′(−2k + q1 + 2q2)0 + gξ
′0(k + q1 − q2)ν

)
× Ta1V (q1)eiq1x1

−iδbb′gνν′
(k − q1 − q2)2 + iε

ε∗σ(p)gsfadb
′
(
gµν

′(p+ 2k − 2q1 − 2q2)σ

+ gµσ(−2p− k + q1 + q2)ν′ + gσν
′(p− k + q1 + q2)µ

) −iδaa′gµµ′
(p+ k − q1 − q2)2 + iε

× iJa′(p+ k − q1 − q2)εµ′(p+ k − q1 − q2)ei(p+k−q1−q2)x0

≈ iJa(p+ k)ei(p+k)x0f eca2f bea1fadbTa2Ta1

(1− x+ x2)
1− x

× (−i)
∫ d2q1

(2π)2 (−i)
∫ d2q2

(2π)2 (2igs)ε · pe−iq1·b1e−iq2·b2

×
∫ dq1z

2π
dq2z

2π
E+k+v(q1z,q1)v(q2z,q2)e−iq1z(z1−z0)e−iq2z(z2−z0)

((p+ k − q1 − q2)2 + iε)((k − q1 − q2)2 + iε)((k − q2)2 + iε) .

(B.7.1)

Next, again by changing the variables q1z → qz = q1z + q2z, we define the following

integral:

I2(p, k,q1, ~q2, z1 − z0) =
∫ dqz

2π
v(qz − q2z,q1)e−iqz(z1−z0)

((p+ k − q1 − q2)2 + iε)((k − q1 − q2)2 + iε) .

(B.7.2)

Again, as explained in the previous section, we close the contour in lower half-plane,

and since µE(z1 − z0)� 1 the pole at qz = −iµ1⊥ + q2z is again exponentially sup-

pressed. Therefore the remaining qz singularities originating from gluon propagators

are:

q̄1 = − k2

xE+ −
p2

(1− x)E+ − iε = −k2

2ω −
x

1− x
(k− q1 − q2)2

2ω − iε,

q̄2 = − k2

xE+ + p2

xE+ − iε = −k2

2ω + (k− q1 − q2)2

2ω − iε.
(B.7.3)
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After performing the integration, i.e. summing the residues at these two poles, I2

now reads:

I2(p, k,q1, ~q2, z1 − z0) ≈ v(−q2z,q1) i(1− x)
E+(k− q1 − q2)2

(
e
i

2ω (k2+ x
1−x (k−q1−q2)2)(z1−z0)

− e
i

2ω (k2−(k−q1−q2)2)(z1−z0)
)
.

(B.7.4)

The remaining integral over q2z is:

I3(p, k,q1,q2, z2 − z1) =
∫ dq2z

2π
v(−q2z,q1)v(q2z,q2)e−iq2z(z2−z1)

(k − q2)2 + iε
, (B.7.5)

and since we are interested only in the contact-limit case (i.e. z1 = z2), we need to

calculate:

Ic3(p, k,q1,q2, 0) =
∫ dq2z

2π
v(−q2z,q1)v(q2z,q2)

(k − q2)2 + iε
, (B.7.6)

which gives:

Ic3(p, k,q1,q2, 0) ≈ −v(0,q1)v(0,q2) i

2xE+ , (B.7.7)

which can readily be shown to represent exactly 1
2 of the strength of the well-

separated limit Eq. (B.7.5), as for M2,2,0 amplitude. The contact limit of this

amplitude reduces to:

M c
2,0,3 = iJa(p+ k)ei(p+k)x0f eca2f bea1fadbTa2Ta1(1− x+ x2)

× (−i)
∫ d2q1

(2π)2 (−i)
∫ d2q2

(2π)2v(0,q1)v(0,q2)e−i(q1+q2)·b1

× 1
2(2igs)

ε · p
p2

(
e
i( k2

xE+ + p2

(1−x)E+ )(z1−z0) − ei
(k2−p2)
xE+ (z1−z0)

)
= Ja(p+ k)ei(p+k)x0 [[T c, T a2 ], T a1 ]daTa2Ta1(1− x+ x2)

× (−i)
∫ d2q1

(2π)2 (−i)
∫ d2q2

(2π)2v(0,q1)v(0,q2)e−i(q1+q2)·b1

× 1
2(2igs)

ε · (k− q1 − q2)
(k− q1 − q2)2

(
e
i

2ω (k2+ x
1−x (k−q1−q2)2)(z1−z0) − e

i
2ω (k2−(k−q1−q2)2)(z1−z0)

)
.

(B.7.8)

In the soft-gluon approximation (i.e. for x � 1) Eq. (B.7.8) leads to Eq.(B10)

from [183] and also to the massless limit of Eq.(60) from [189].
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Figure B.5: Topologically indistinct Feynman diagramsM c
2,0,1 andM c

2,0,2 in contact limit

(z1 = z2), which contribute to the first order in opacity of gluon-jet radiative energy loss.

Remaining labeling is the same as in Fig. B.3.

Proceeding in the same manner, for M c
2,0,0 amplitude we obtain:

M c
2,0,0 = iJa(p+ k)ei(p+k)x0f eda2f bea1facbTa2Ta1(1− x+ x2)

× (−i)
∫ d2q1

(2π)2 (−i)
∫ d2q2

(2π)2v(0,q1)v(0,q2)e−i(q1+q2)·b1

× 1
2(2igs)

ε · k
k2

(
e
i( k2

xE+ + p2

(1−x)E+ )(z1−z0) − ei
(p2−k2)
(1−x)E+ (z1−z0)

)
= Ja(p+ k)ei(p+k)x0(T a2T a1T c)daTa2Ta1(1− x+ x2)

× (−i)
∫ d2q1

(2π)2 (−i)
∫ d2q2

(2π)2v(0,q1)v(0,q2)e−i(q1+q2)·b1

× 1
2(2igs)

ε · k
k2

(
e
i

2ω (k2+ x
1−x (k−q1−q2)2)(z1−z0) − e

i
2ω

x
1−x ((k−q1−q2)2−k2)(z1−z0)

)
,

(B.7.9)

which in soft-gluon approximation (i.e. for x� 1) reduces to contact-limit analogon

of Eq.(C6) from [183] and also to the massless limit of Eq.(66) from [189]. From

Fig. B.4 we infer that M2,0,3 and M2,0,0 are symmetric under the following substi-

tutions: (p ↔ k, x ↔ (1 − x), c ↔ d), which can be straightforwardly verified by

implementing these substitutions in Eqs.(B.7.8, B.7.9).

B.8. Diagrams M2,0,1 and M2,0,2

Here we consider the case when both initial gluon jet and radiated gluon interact

with one scattering center. We provide only the contact-limit case diagrams M c
2,0,1

and M c
2,0,2 (Fig. B.5), since, in the end, only they are used in calculating radiative
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energy loss to the first order in opacity.

M2,0,1 =
∫ d4q1

(2π)4
d4q2

(2π)4 ε
∗
σ(p)f eda2

(
gξ0(p− 2q2)σ + gξσ(−2p+ q2)0 + gσ0(p+ q2)ξ

)
Ta2V (q2)eiq2x2

× −iδee′gξξ′
(p− q2)2 + iε

gsf
ae′b′

(
gµν

′(p+ 2k − 2q1 − q2)ξ′ + gµξ
′(−2p− k + q1 + 2q2)ν′

+ gξ
′ν′(p− k + q1 − q2)µ

)
ε∗ρ(k)f bca1

(
gν0(k − 2q1)ρ + gνρ(−2k + q1)0 + gρ0(k + q1)ν

)
× Ta1V (q1)eiq1x1

−iδbb′gνν′
(k − q1)2 + iε

× −iδaa′gµµ′
(p+ k − q1 − q2)2 + iε

× iJa′(p+ k − q1 − q2)εµ′(p+ k − q1 − q2)ei(p+k−q1−q2)x0

≈ − iJa(p+ k)ei(p+k)x0f eda2faebf bca1Ta2Ta1(1− x+ x2)

× (−i)
∫ d2q1

(2π)2 (−i)
∫ d2q2

(2π)2 (2igs)ε · (k− q1)e−iq1·b1e−iq2·b2(E+)2

×
∫ dq1z

2π
dq2z

2π
v(q1z,q1)v(q2z,q2)e−iq1z(z1−z0)e−iq2z(z2−z0)

((p+ k − q1 − q2)2 + iε)((k − q1)2 + iε)((p− q2)2 + iε) .

(B.8.1)

Again, by changing the variables q1z → qz = q1z + q2z, we define the following

integral:

I2(p, k,q1, ~q2, z1 − z0) =
∫ dqz

2π
v(qz − q2z,q1)e−iqz(z1−z0)

((p+ k − q1 − q2)2 + iε)((k − q1)2 + iε) . (B.8.2)

Since z1 > z0, we must close the contour in lower half-plane, and since µE(z1 −

z0)� 1 again we neglect the pole at qz = −iµ1⊥ + q2z. Therefore the remaining qz
singularities originating from gluon propagators are:

q̄1 = −k2

2ω −
x

1− x
(k− q1 − q2)2

2ω − iε,

q̄2 = −k2

2ω + (k− q1)2

2ω + q2z − iε.
(B.8.3)

Summing the residues gives:

I2(p, k,q1, ~q2, z1 − z0) ≈ iei
k2
2ω (z1−z0)

E+k+(q2z + (k−q1)2

2ω + x
1−x

(k−q1−q2)2

2ω )

×
(
v(−q2z −

k2

2ω −
x

1− x
(k− q1 − q2)2

2ω ,q1)ei
x

1−x
(k−q1−q2)2

2ω (z1−z0)

− v((k− q1)2

2ω − k2

2ω ,q1)e−i(q2z+ (k−q1)2
2ω )(z1−z0)

)
. (B.8.4)
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The remaining q2z integral is:

I3(p, k,q1,q2, z1 − z0, z2 − z1) =
∫ dq2z

2π
1

q2z + (k−q1)2

2ω + x
1−x

(k−q1−q2)2

2ω

v(q2z,q2)

×
(
e−iq2z(z2−z1)e

i
2ω (k2+ x

1−x (k−q1−q2)2)(z1−z0)

(p− q2)2 + iε
v(−q2z −

k2

2ω −
x

1− x
(k− q1 − q2)2

2ω ,q1)

− e−iq2z(z2−z0)e−
i

2ω ((k−q1)2−k2)(z1−z0)

(p− q2)2 + iε
v((k− q1)2

2ω − k2

2ω ,q1)
)
, (B.8.5)

where the singularity on q2z real axis: q2z = − (k−q1)2

2ω − x
1−x

(k−q1−q2)2

2ω ≡ −a, (a > 0)

has to be avoided by taking Cauchy Principal Value of I3 according to the Fig. B.6,

i.e.:

−a
•

IPV

= −a
•

IB

− −a
•

IC

− •
−a

ID

Figure B.6: Ilustration of calculating Cauchy principal value (IPV ) in the case when

singularity on the real axis arises.

I3 ≡ IPV = IB − IC − ID, (B.8.6)

where IB = −2πi∑iRes(I3(q̄i)), with i counting the poles in the lower-half plane.

Additionally IC = 0, and it’s straightforward to show, that after the following

substitution q2z = −a + reiϕ, where r → 0, also ID = 0. Therefore, principal value

of I3 reduces to IB, i.e. −2πi∑iRes(I3(q̄i)).

In the well separated case (B.8.5) poles originating from Yukawa potentials (q2z =

−k2

2ω −
x

1−x
(k−q1−q2)2

2ω − iµ1⊥ and q2z = −iµ2⊥) are again exponentially suppressed

(e−µi⊥(z2−z0,1) → 0, i = 1, 2) and therefore can be neglected, so only the pole from

the propagator survives q2z = x
1−x( (k−q1)2

2ω − (k−q1−q2)2

2ω )− iε. However, since we are

interested only in the contact-limit case (i.e. z1 = z2), instead of (B.8.5) we need to
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calculate the principal value of the following integral:

Ic3(p, k,q1,q2, z1 − z0) =
∫ dq2z

2π
1

q2z + (k−q1)2

2ω + x
1−x

(k−q1−q2)2

2ω

v(q2z,q2)

×
(
e
i

2ω (k2+ x
1−x (k−q1−q2)2)(z1−z0)

(p− q2)2 + iε
v(−q2z −

k2

2ω −
x

1− x
(k− q1 − q2)2

2ω ,q1)

−e
−iq2z(z1−z0)e−

i
2ω ((k−q1)2−k2)(z1−z0)

(p− q2)2 + iε
v((k− q1)2

2ω − k2

2ω ,q1)
)
, (B.8.7)

which again reduces to the sum of residua, with −a effectively not being a pole

(Fig. B.6). Particularly, for the second term in the bracket of Eq. (B.8.7), only the

propagator pole survives, while for the first term in the bracket all three poles have

to be accounted, although residues at poles from potentials sum to the order of

O( (k−q1)2

x(1−x)E+(µ1⊥+µ2⊥)), and thus can be neglected compared to the remaining residue.

Finally, in the contact-limit case we obtain:

M c
2,0,1 ≈ − iJa(p+ k)ei(p+k)x0f eda2faebf bca1Ta2Ta1(1− x+ x2)

× (−i)
∫ d2q1

(2π)2 (−i)
∫ d2q2

(2π)2v(0,q1)v(0,q2)e−i(q1+q2)·b1(2igs)

× ε · (k− q1)
(k− q1)2

(
e
i( k2

xE+ + p2

(1−x)E+ )(z1−z0) − ei(
k2

xE+ + p2

(1−x)E+−
(k−q1)2

x(1−x)E+ )(z1−z0)
)

= Ja(p+ k)ei(p+k)x0(T a2 [T c, T a1 ])daTa2Ta1(1− x+ x2)

× (−i)
∫ d2q1

(2π)2 (−i)
∫ d2q2

(2π)2v(0,q1)v(0,q2)e−i(q1+q2)·b1(2igs)
ε · (k− q1)
(k− q1)2

×
(
e
i

2ω (k2+ x
1−x (k−q1−q2)2)(z1−z0) − e

i
2ω (k2− (k−q1)2

1−x + x
1−x (k−q1−q2)2)(z1−z0)

)
.

(B.8.8)

Notice that, contrary to the previous three amplitudes that also included two scat-

tering centers, in Eq. (B.8.8) no factor 1
2 when comparing to well-separated limit ap-

pears. In soft-gluon limit approximation Eq. (B.8.8) reduces to Eq.(D6) from [183]

and also to the massless limit of Eq.(72) from [189].
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Figure B.7: Feynman diagrams M c
2,1,0 and M c

2,1,1 in contact limit (z1 = z2), which have

negligible contribution to the first order in opacity gluon-jet radiative energy loss. Re-

maining labeling is the same as in Fig. B.3.

Proceeding in the same manner, for M c
2,0,2 we obtain:

M c
2,0,2 ≈ iJa(p+ k)ei(p+k)x0f eca2fabef bda1Ta2Ta1(1− x+ x2)

× (−i)
∫ d2q1

(2π)2 (−i)
∫ d2q2

(2π)2v(0,q1)v(0,q2)e−i(q1+q2)·b1

× (2igs)
ε · (p− q1)
(p− q1)2

(
e
i( k2

xE+ + p2

(1−x)E+ )(z1−z0) − ei(
k2

xE+ + p2

(1−x)E+−
(p−q1)2

x(1−x)E+ )(z1−z0)
)

= Ja(p+ k)ei(p+k)x0(T a1 [T c, T a2 ])daTa2Ta1(1− x+ x2)

× (−i)
∫ d2q1

(2π)2 (−i)
∫ d2q2

(2π)2v(0,q1)v(0,q2)e−i(q1+q2)·b1(2igs)
ε · (k− q2)
(k− q2)2

×
(
e
i

2ω (k2+ x
1−x (k−q1−q2)2)(z1−z0) − e

i
2ω (k2− (k−q2)2

1−x + x
1−x (k−q1−q2)2)(z1−z0)

)
.

(B.8.9)

As for M c
2,0,1 amplitude, no factor of 1

2 appears. From well-separated analogon of

Fig. B.5 we could infer thatM2,0,1 andM2,0,2 are symmetric under the following sub-

stitutions: (p↔ k, x↔ (1−x), c↔ d), which can readily be verified by implement-

ing these substitutions in the first three lines of either of the two Eqs.(B.8.8, B.8.9)

and by using structure constant asymmetry as well as (B.6.3). Also, since in contact-

limit case these two diagrams are topologically indistinct, we need to either omit

one of them in order to avoid over counting, or to include both, but multiply each

by a factor 1
2 (we will do the latter).
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B.9. Diagrams M2,1,0 and M2,1,1

The contact-limit case of the remaining two diagrams is presented in Fig. B.7.

These diagrams correspond to the case when one interaction with the scattering

center located at ~x1 occurs before and the other interaction at the same place occurs

after the gluon has been radiated.

In order to avoid redundant derivations (i.e. repetition of the above calculations)

we briefly outline our derivation of Feynman amplitudes for only contact-limit case.

In the light of time-ordered perturbation theory from [180, 181] these two dia-

grams are identically equal to zero, since
∫ t1
t1
dt... = 0, but for the consistency we

will provide a brief verification of this argument.

M2,1,0 =
∫ d4q1

(2π)4
d4q2

(2π)4 ε
∗
σ(p)f eda2

(
gξ0(p− 2q2)σ + gξσ(−2p+ q2)0 + gσ0(p+ q2)ξ

)
× Ta2V (q2)eiq2x2

−iδee′gξξ′
(p− q2)2 + iε

ε∗ρ(k)gsf bce
′
(
gνξ

′(2p+ k − 2q2)ρ + gνρ(−p− 2k + q2)ξ′

+ gρξ
′(−p+ k + q2)ν

) −iδbb′gνν′
(p+ k − q2)2 + iε

fab
′a1

(
gµ0(p+ k − 2q1 − q2)ν′

+ gµν
′(−2p− 2k + q1 + 2q2)0 + gν

′0(p+ k + q1 − q2)µ
)
Ta1V (q1)eiq1x1

× −iδaa′gµµ′
(p+ k − q1 − q2)2 + iε

iJa′(p+ k − q1 − q2)εµ′(p+ k − q1 − q2)ei(p+k−q1−q2)x0

≈ iJa(p+ k)ei(p+k)x0f eda2f bcefaba1Ta2Ta1

(1− x+ x2)
x

× (−i)
∫ d2q1

(2π)2 (−i)
∫ d2q2

(2π)2 (2igs)ε · (k− xq1)e−iq1·b1e−iq2·b2(E+)2

×
∫ dq2z

2π
v(q2z,q2)e−iq2z(z2−z1)

((p+ k − q2)2 + iε)((p− q2)2 + iε)

∫ dqz
2π

v(qz − q2z,q1)e−iqz(z1−z0)

(p+ k − q1 − q2)2 + iε

≈ Ja(p+ k)ei(p+k)x0f eda2f bcefaba1Ta2Ta1(1− x+ x2)

× (−i)
∫ d2q1

(2π)2 (−i)
∫ d2q2

(2π)2 (2igs)ε · (k− xq1)e−iq1·b1e−iq2·b2(E+)2

×
∫ dq2z

2π
v(q2z,q2)e−iq2z(z2−z1)

((p+ k − q2)2 + iε)((p− q2)2 + iε)
1
k+

× v(−k2

2ω −
x

1− x
(k− q1 − q2)2

2ω − q2z,q1)e
i

2ω (k2+ x
1−x (k−q1−q2)2)(z1−z0).

(B.9.1)

In the contact-limit case there are four q2z poles of the above integral in the lower

half-plane: −k2

2ω −
x

1−x
(k−q1−q2)2

2ω + q2
1

E+ − iε, x
1−x( (k−q1)2

2ω − (k−q1−q2)2

2ω )− iε, −iµ1⊥ and
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−iµ2⊥, which give:

M c
2,1,0 ≈ − Ja(p+ k)ei(p+k)x0f eda2f bcefaba1Ta2Ta1(1− x+ x2)

× (−i)
∫ d2q1

(2π)2 (−i)
∫ d2q2

(2π)2v(0,q1)v(0,q2)e−i(q1+q2)·b1

× (igs)
ε · (k− xq1)
(k− xq1)2 e

i( k2

xE+ + p2

(1−x)E+ )(z1−z0)µ
2
1⊥ + µ1⊥µ2⊥ + µ2

2⊥
µ1⊥µ2⊥

(k− xq1)2

x(1− x)E+(µ1⊥ + µ2⊥)

= iJa(p+ k)ei(p+k)x0(T a2T cT a1)daTa2Ta1(1− x+ x2)

× (−i)
∫ d2q1

(2π)2 (−i)
∫ d2q2

(2π)2v(0,q1)v(0,q2)e−i(q1+q2)·b1

× (igs)
ε · (k− xq1)
(k− xq1)2 e

i
2ω (k2+ x

1−x (k−q1−q2)2)(z1−z0)µ
2
1⊥ + µ1⊥µ2⊥ + µ2

2⊥
µ1⊥µ2⊥

× (k− xq1)2

x(1− x)E+(µ1⊥ + µ2⊥) , (B.9.2)

where the residues at first two poles (i.e. originating from the gluon propagators)

cancel each other exactly, leading to the result (B.9.2) that is suppressed by a

factor of O( (k−xq1)2

x(1−x)E+(µ1⊥+µ2⊥)) compared to the all previous amplitudes (note that

x is finite), as in the case of soft gluon approximation [183, 189]. In soft gluon

approximation Eq. (B.9.2) reduces to the massless limit of Eq.(74) from [189].

The same conclusion applies to M c
2,1,1 amplitude, as one can see in the following
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lines:

M2,1,1 =
∫ d4q1

(2π)4
d4q2

(2π)4 ε
∗
ρ(k)f eca2

(
gξ0(k − 2q2)ρ + gξρ(−2k + q2)0 + gρ0(k + q2)ξ

)
× Ta2V (q2)eiq2x2

−iδee′gξξ′
(k − q2)2 + iε

ε∗σ(p)gsf bde
′
(
gνξ

′(p+ 2k − 2q2)σ + gνσ(−2p− k + q2)ξ′

+ gσξ
′(p− k + q2)ν

) −iδbb′gνν′
(p+ k − q2)2 + iε

fab
′a1

(
gµ0(p+ k − 2q1 − q2)ν′

+ gµν
′(−2p− 2k + q1 + 2q2)0 + gν

′0(p+ k + q1 − q2)µ
)
Ta1V (q1)eiq1x1

× −iδaa′gµµ′
(p+ k − q1 − q2)2 + iε

iJa′(p+ k − q1 − q2)εµ′(p+ k − q1 − q2)ei(p+k−q1−q2)x0

≈ iJa(p+ k)ei(p+k)x0f eca2f bdefaba1Ta2Ta1

(1− x+ x2)
(1− x)

× (−i)
∫ d2q1

(2π)2 (−i)
∫ d2q2

(2π)2 (2igs)ε · (p− (1− x)q1)e−iq1·b1e−iq2·b2(E+)2

×
∫ dq2z

2π
v(q2z,q2)e−iq2z(z2−z1)

((p+ k − q2)2 + iε)((k − q2)2 + iε)

∫ dqz
2π

v(qz − q2z,q1)e−iqz(z1−z0)

(p+ k − q1 − q2)2 + iε

≈ − Ja(p+ k)ei(p+k)x0f eca2f bdefaba1Ta2Ta1(1− x+ x2)

× (−i)
∫ d2q1

(2π)2 (−i)
∫ d2q2

(2π)2 (2igs)ε · (k− xq1 − q2)e−iq1·b1e−iq2·b2(E+)2

×
∫ dq2z

2π
v(q2z,q2)e−iq2z(z2−z1)

((p+ k − q2)2 + iε)((k − q2)2 + iε)
1

(1− x)E+

× v(−k2

2ω −
x

1− x
(k− q1 − q2)2

2ω − q2z,q1)e
i

2ω (k2+ x
1−x (k−q1−q2)2)(z1−z0)

(B.9.3)

Similar to the previous amplitude, again there are four q2z poles in the lower half-

plane for the contact-limit case : −k2

2ω −
x

1−x
(k−q1−q2)2

2ω + q2
1

E+ − iε, (k−q2)2

2ω − k2

2ω − iε,
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−iµ1⊥ and −iµ2⊥, which give:

M c
2,1,1 ≈ − Ja(p+ k)ei(p+k)x0f eca2f bdefaba1Ta2Ta1(1− x+ x2)

× (−i)
∫ d2q1

(2π)2 (−i)
∫ d2q2

(2π)2v(0,q1)v(0,q2)e−i(q1+q2)·b1

× (igs)
ε · (p− (1− x)q1)
(p− (1− x)q1)2 e

i( k2
xE+ + p2

(1−x)E+ )(z1−z0)µ2
1⊥ + µ1⊥µ2⊥ + µ2

2⊥
µ1⊥µ2⊥

× (p− (1− x)q1)2

x(1− x)E+(µ1⊥ + µ2⊥)

= iJa(p+ k)ei(p+k)x0([T c, T a2 ]T a1)daTa2Ta1(1− x+ x2)

× (−i)
∫ d2q1

(2π)2 (−i)
∫ d2q2

(2π)2v(0,q1)v(0,q2)e−i(q1+q2)·b1

× (igs)
ε · (k− xq1 − q2)
(k− xq1 − q2)2 e

i
2ω (k2+ x

1−x (k−q1−q2)2)(z1−z0)µ
2
1⊥ + µ1⊥µ2⊥ + µ2

2⊥
µ1⊥µ2⊥

× (k− xq1 − q2)2

x(1− x)E+(µ1⊥ + µ2⊥) , (B.9.4)

where again, the residues at first two poles (i.e. originating from the gluon propa-

gators) cancel each other exactly, leading to the result (B.9.4) that is, similarly to

M c
2,1,0, suppressed by a factor of O( (k−xq1−q2)2

x(1−x)E+(µ1⊥+µ2⊥)) compared to the amplitudes

from the previous sections, as in the case of soft gluon approximation [183, 189].

Therefore, we will neglect the contributions from M c
2,1,0 and M c

2,1,1 when calculating

energy loss.

Also, from Fig. B.7 we infer thatM2,1,0 andM2,1,1 are symmetric to the exchange

(p ↔ k, x ↔ 1− x and c ↔ d), which can easily be verified by comparing the first

three lines of Eqs.(B.9.2, B.9.4).

B.10. Calculation of radiative energy loss

In this section we provide concise outline of calculating the first order in opacity

radiative energy loss. We start with the equation:

d3N (1)
g d3NJ =

( 1
dT

Tr
〈
|M1|2

〉
+ 2
dT
ReTr 〈M2M

∗
0 〉
)

d3~p
(2π)32p0

d3~k
(2π)32ω , (B.10.1)

where M1 is sum of all diagrams with one scattering center and M2 is sum of all

diagrams with two scattering centers in the contact limit.
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The final results from Appendix Section B.5 yield:

M1 = M1,1,0 +M1,0,0 +M1,0,1 = Ja(p+ k)ei(p+k)x0(1− x+ x2)Ta1(−i)
∫ d2q1

(2π)2

× v(0,q1)e−iq1·b1(2igs)
{(

ε · (k− q1)
(k− q1)2 [T c, T a1 ]da −

ε · (k− xq1)
(k− xq1)2 (T cT a1)da

+ ε · k
k2 (T a1T c)da

)
e
i

2ω (k2+ x
1−x (k−q1)2)(z1−z0) − ε · (k− q1)

(k− q1)2 [T c, T a1 ]da

× e
i

2ω (k2−(k−q1)2)(z1−z0) − ε · k
k2 (T a1T c)dae

i
2ω

x
1−x ((k−q1)2−k2)(z1−z0)

}
, (B.10.2)

leading to:

1
dT

Tr
〈
|M1|2

〉
= N |J(p+ k)|2(4g2

s)
1
A⊥

(1− x+ x2)2
∫ d2q1

(2π)2 |v(0,q1)|2C2(T )
dG{

2α
(

2ε · (k− q1)
(k− q1)2 −

ε · k
k2 −

ε · (k− xq1)
(k− xq1)2

)
ε · (k− q1)
(k− q1)2 + (ε · (k− xq1)

(k− xq1)2 )2 Tr((T c)2(T a1)2)

+ 2
(
ε · k
k2 Tr((T c)2(T a1)2)− ε · (k− xq1)

(k− xq1)2 Tr(T cT a1T cT a1)
)
ε · k
k2

− 2α
(
ε · (k− q1)
(k− q1)2 −

1
2
ε · k
k2 −

1
2
ε · (k− xq1)
(k− xq1)2

)
ε · (k− q1)
(k− q1)2 2 cos ( (k− q1)2

x(1− x)E+ (z1 − z0))

+
(
α
ε · (k− q1)
(k− q1)2 −

ε · k
k2 Tr((T c)2(T a1)2) + ε · (k− xq1)

(k− xq1)2 Tr(T cT a1T cT a1)
)
ε · k
k2

× 2 cos ( k2

x(1− x)E+ (z1 − z0))− αε · k
k2

ε · (k− q1)
(k− q1)2 2 cos (k2 − (k− q1)2

x(1− x)E+ (z1 − z0))
}
,

(B.10.3)

where the number of scattering centersN comes from summation over scattering cen-

ters (B.2.2, B.2.3), then α ≡ Tr((T c)2(T a1)2−T cT a1T cT a1), and we also used the def-

inition of commutator, the fact that trace is invariant under the cyclic permutations,

Eq. (B.1.4) (with i = j and di = dT ) and the relation E+ ≈ 2E. We verified that

this result is also symmetric under the substitutions: (p ↔ k, x ↔ (1 − x), c ↔ d)

when written in terms of structure constants.

Next, we summarize contact limits of all diagrams that contain two scattering

centers from Appendix Sections B.6 to B.8 and then take their ensemble average
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according to Eqs.(B.2.2, B.2.3, B.2.4) in order to obtain M2:

M2 = M c
2,2,0 +M c

2,0,3 +M c
2,0,0 + 1

2(M c
2,0,1 +M c

2,0,2) = 1
2NJa(p+ k)ei(p+k)x0(−2igs)

1
A⊥

× (1− x+ x2)Ta2Ta1

∫ d2q1

(2π)2 |v(0,q1)|2
{
ε · k
k2

(
e
i

2ω
k2

1−x (z1−z0)
(
[[T c, T a2 ], T a1 ]da

+ [T a2T a1 , T c]da
)
− [[T c, T a2 ], T a1 ]da − (T a2T a1T c)da

)
+ ε · (k− q1)

(k− q1)2

(
e
i

2ω
k2

1−x (z1−z0) − e
i

2ω
k2−(k−q1)2

1−x (z1−z0)
)(

(T a2 [T c, T a1 ])da + (T a1 [T c, T a2 ])da
)}
.

(B.10.4)

Then, by multiplying the previous expression by M∗
0 , we obtain:

2
dT
ReTr 〈M2M

∗
0 〉 = N |J(p+ k)|2(4g2

s)
1
A⊥

(1− x+ x2)2
∫ d2q1

(2π)2 |v(0,q1)|2C2(T )
dG

×
{

(ε · k
k2 )2

(
2α cos ( k2

x(1− x)E+ (z1 − z0))− 2α− Tr((T c)2(T a1)2)
)

− 2αε · k
k2

ε · (k− q1)
(k− q1)2

(
cos ( k2

x(1− x)E+ (z1 − z0))− cos (k2 − (k− q1)2

x(1− x)E+ (z1 − z0))
)}
,

(B.10.5)

which can easily be verified to be symmetric to the exchange (p↔ k, x↔ (1−x), c↔

d), when written in terms of structure constants. By summing the expressions

(B.10.3, B.10.5) we obtain:
1
dT

Tr
〈
|M1|2

〉
+ 2
dT
ReTr 〈M2M

∗
0 〉 = NdG|J(p+ k)|2(4g2

s)
C2(T )
dG

C2
2(G) 1

A⊥
(1− x+ x2)2

×
∫ d2q1

(2π)2 |v(0,q1)|2
{(

1− cos ( k2

x(1− x)E+ (z1 − z0))
)(

ε · k
k2 −

ε · (k− xq1)
(k− xq1)2

)
ε · k
k2

+
(

1− cos ( (k− q1)2

x(1− x)E+ (z1 − z0))
)(

2ε · (k− q1)
(k− q1)2 −

ε · k
k2 −

ε · (k− xq1)
(k− xq1)2

)
ε · (k− q1)
(k− q1)2

+
(

(ε · (k− xq1)
(k− xq1)2 )2 − (ε · k

k2 )2
)}
, (B.10.6)

which in soft-gluon approximation coincides with massless limit of Eq.(82) from [189].

In obtaining the Eq. (B.10.6) we used the following equalities that are valid in ad-

joint representation: Tr(T cT a1T cT a1) = 1
2C

2
2(G)dG = α = 1

2 Tr((T a1)2(T c)2), which

follow from Eqs.(B.1.4-B.1.9) and the commutator definition.

Since we are considering optically "thin" QCD plasma, it would be convenient to

expand energy loss in powers of opacity, which is defined by the mean number of

collisions in QCD medium [183]:

n̄ = L

λ
= Nσel

A⊥
, (B.10.7)
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where the small transverse momentum transfer elastic cross section between the jet

and the target partons is taken from GW model (Eq.(6) from [183]), which in our

case reads:

dσel
d2q1

= C2(G)C2(T )
dG

|v(0,q1)|2
(2π)2 . (B.10.8)

Combining the Eqs.(B.10.7, B.10.8) we obtain:

L

λ
= N

A⊥

C2(G)C2(T )
4πdG

(4παs)2

µ2
E

. (B.10.9)

Next we incorporate Eq. (B.10.9) in Eq. (B.10.6), substitute obtained expression

in Eq. (B.10.1), keeping in mind that p is 3D momentum of a final jet, and that

we need to apply (B.4.12, B.4.13). The single gluon radiation spectrum in the first

order in opacity then becomes:

dN (1)
g

dx
= C2(G)αs

π

L

λ

(1− x+ x2)2

x(1− x)

∫ d2q1

π

µ2
E

(q2
1 + µ2

E)2

∫ d2k
π

×
{
− ε · (k− q1)

(k− q1)2

(
ε · k
k2 + ε · (k− xq1)

(k− xq1)2 − 2ε · (k− q1)
(k− q1)2

)

×
∫
dz1(1− cos( (k− q1)2

x(1− x)E+ (z1 − z0))) 2
L
e−

2(z1−z0)
L + ε · k

k2

×
(
ε · k
k2 −

ε · (k− xq1)
(k− xq1)2

) ∫
dz1(1− cos( k2

x(1− x)E+ (z1 − z0))) 2
L
e−

2(z1−z0)
L

+
(

(ε · (k− xq1)
(k− xq1)2 )2 − (ε · k

k2 )2
) ∫

dz1
2
L
e−

2(z1−z0)
L

}
, (B.10.10)

and the differential radiative energy loss dE(1)

dx
≡ ω

dN
(1)
g

dx
≈ xE

dN
(1)
g

dx
acquires the form:

dE(1)

dx
= C2(G)αs

π

L

λ
E

(1− x+ x2)2

1− x

∫ d2q1

π

µ2
E

(q2
1 + µ2

E)2

∫ d2k
π

×
{
− ε · (k− q1)

(k− q1)2

(
ε · k
k2 + ε · (k− xq1)

(k− xq1)2 − 2ε · (k− q1)
(k− q1)2

)

×
∫
dz1(1− cos( (k− q1)2

x(1− x)E+ (z1 − z0))) 2
L
e−

2(z1−z0)
L + ε · k

k2

×
(
ε · k
k2 −

ε · (k− xq1)
(k− xq1)2

) ∫
dz1(1− cos( k2

x(1− x)E+ (z1 − z0))) 2
L
e−

2(z1−z0)
L

+
(

(ε · (k− xq1)
(k− xq1)2 )2 − (ε · k

k2 )2
) ∫

dz1
2
L
e−

2(z1−z0)
L

}
, (B.10.11)

where we assumed a simple exponential distribution e−2 z1−z0
L between the scattering
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centers (as in [189]). So we finally obtain:

dN (1)
g

dx
= C2(G)αs

π

L

λ

(1− x+ x2)2

x(1− x)

∫ d2q1

π

µ2
E

(q2
1 + µ2

E)2

∫
dk2

×
{ (k− q1)2

(4x(1−x)E
L

)2 + (k− q1)4

(
2− k · (k− q1)

k2 − (k− q1) · (k− xq1)
(k− xq1)2

)

+ k2

(4x(1−x)E
L

)2 + k4

(
1− k · (k− xq1)

(k− xq1)2

)
+
( 1

(k− xq1)2 −
1
k2

)}
,

(B.10.12)

which is symmetric to the exchange of p and k gluons, and:

dE(1)

dx
= C2(G)αs

π

L

λ
E

(1− x+ x2)2

1− x

∫ d2q1

π

µ2
E

(q2
1 + µ2

E)2

∫
dk2

×
{ (k− q1)2

(4x(1−x)E
L

)2 + (k− q1)4

(
2− k · (k− q1)

k2 − (k− q1) · (k− xq1)
(k− xq1)2

)

+ k2

(4x(1−x)E
L

)2 + k4

(
1− k · (k− xq1)

(k− xq1)2

)
+
( 1

(k− xq1)2 −
1
k2

)}
,

(B.10.13)

which in soft-gluon approximation reduces to massless limit of Eq.(84) from [189].

B.11. Diagrams and radiative energy loss with gluon mass included

Finally, we recalculate the results from Appendices Sections B.4 to B.9 when the

gluon mass mg = µE√
2 is included, i.e. gluon propagator has the following form [188]:

• gluon propagator with mass mg in Feynman gauge:

a,µ b,νp
= −iδabPµν
p2 −m2

g + iε
, (B.11.1)

where Pµν , given by Eq.(12) from [188] (specifically Pµν = gµν−pµpνn2+nµnνp2−nµpν(np)−nνpµ(np)
n2p2−(np)2 ),

represents the transverse projector. Note that, since the transverse projectors act

directly or indirectly on transverse polarization vectors one may immediately re-

place Pµν with gµν in gluon propagators, in order to facilitate the calculations. This

observation is obvious for off-shell gluon propagator, whereas the derivation for the

remaining internal gluon lines is straightforward.

Consistently throughout this section, initial jet propagates long z-axis, 4-momentum

is conserved and minus Light cone coordinate of all momenta acquire an additional
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term +m2
g in the numerator compared to massless case (Appendices B.4-B.9), due

to relations k2 = p2 = m2
g, while the polarizations remain the same.

For the sake of simplicity, in this section we outline only the final expressions for

all 11 Feynman diagrams beyond soft-gluon approximation, when the gluon mass is

included, since its derivation is similar to the case of massless gluons (Appendix Sec-

tion B.4-Section B.9) and in order to avoid redundant derivations.

Thus, for M0 we obtain:

M0 = Ja(p+ k)ei(p+k)x0(−2igs)(1− x+ x2) ε · k
k2 +m2

g(1− x+ x2)(T c)da. (B.11.2)

The expression for M1,1,0 now reads:

M1,1,0 = Ja(p+ k)ei(p+k)x0(−i)(1− x+ x2)(T cT a1)daTa1

∫ d2q1

(2π)2v(0,q1)e−iq1·b1

×(−2igs)
ε · (k− xq1)

(k− xq1)2 +m2
g(1− x+ x2)e

i
2ω (k2+ x

1−x (k−q1)2+
m2
g(1−x+x2)

1−x )(z1−z0),

(B.11.3)

which differs from Eq. (B.5.12) in the term m2
g(1−x+x2), which now appears in the

denominator and in exponent, accompanying the squared transverse momentum.

Similarly, for M1,0,0 and M1,0,1 we obtain, respectively:

M1,0,0 = Ja(p+ k)ei(p+k)x0(−i)(1− x+ x2)(T a1T c)daTa1

∫ d2q1

(2π)2v(0,q1)e−iq1·b1

× (2igs)
ε · k

k2 +m2
g(1− x+ x2)

(
e
i

2ω (k2+ x
1−x (k−q1)2+

m2
g(1−x+x2)

1−x )(z1−z0)

− e−
i

2ω
x

1−x (k2−(k−q1)2)(z1−z0)
)
, (B.11.4)

M1,0,1 = Ja(p+ k)ei(p+k)x0(−i)(1− x+ x2)[T c, T a1 ]daTa1

∫ d2q1

(2π)2v(0,q1)e−iq1·b1

× (2igs)
ε · (k− q1)

(k− q1)2 +m2
g(1− x+ x2)

(
e
i

2ω (k2+ x
1−x (k−q1)2+

m2
g(1−x+x2)

1−x )(z1−z0)

− e
i

2ω (k2−(k−q1)2)(z1−z0)
)
. (B.11.5)

Proceeding in the similar manner, we obtain the following expressions for contact
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limit diagrams which include interactions with two scattering centers:

M c
2,2,0 = − Ja(p+ k)ei(p+k)x0(T cT a2T a1)daTa2Ta1(1− x+ x2)

× (−i)
∫ d2q1

(2π)2 (−i)
∫ d2q2

(2π)2v(0,q1)v(0,q2)e−i(q1+q2)·b1
1
2(2igs)

× ε · (k− x(q1 + q2))
(k− x(q1 + q2))2 +m2

g(1− x+ x2)e
i

2ω (k2+ x
1−x (k−q1−q2)2+

m2
g(1−x+x2)

1−x )(z1−z0),

(B.11.6)

M c
2,0,3 = Ja(p+ k)ei(p+k)x0 [[T c, T a2 ], T a1 ]daTa2Ta1(1− x+ x2)(−i)

∫ d2q1

(2π)2

× (−i)
∫ d2q2

(2π)2v(0,q1)v(0,q2)e−i(q1+q2)·b1
1
2(2igs)

ε · (k− q1 − q2)
(k− q1 − q2)2 +m2

g(1− x+ x2)

×
(
e
i

2ω (k2+ x
1−x (k−q1−q2)2+

m2
g(1−x+x2)

1−x )(z1−z0) − e
i

2ω (k2−(k−q1−q2)2)(z1−z0)
)
,

(B.11.7)

M c
2,0,0 = Ja(p+ k)ei(p+k)x0(T a2T a1T c)daTa2Ta1(1− x+ x2)(−i)

∫ d2q1

(2π)2

× (−i)
∫ d2q2

(2π)2v(0,q1)v(0,q2)e−i(q1+q2)·b1
1
2(2igs)

ε · k
k2 +m2

g(1− x+ x2)

×
(
e
i

2ω (k2+ x
1−x (k−q1−q2)2+

m2
g(1−x+x2)

1−x )(z1−z0) − e
i

2ω
x

1−x ((k−q1−q2)2−k2)(z1−z0)
)
,

(B.11.8)

M c
2,0,1 = Ja(p+ k)ei(p+k)x0(T a2 [T c, T a1 ])daTa2Ta1(1− x+ x2)(−i)

∫ d2q1

(2π)2

× (−i)
∫ d2q2

(2π)2v(0,q1)v(0,q2)e−i(q1+q2)·b1(2igs)
ε · (k− q1)

(k− q1)2 +m2
g(1− x+ x2)

×
(
e
i

2ω (k2+ x
1−x (k−q1−q2)2+

m2
g(1−x+x2)

1−x )(z1−z0) − e
i

2ω (k2− (k−q1)2
1−x + x

1−x (k−q1−q2)2)(z1−z0)
)
,

(B.11.9)

M c
2,0,2 = Ja(p+ k)ei(p+k)x0(T a1 [T c, T a2 ])daTa2Ta1(1− x+ x2)(−i)

∫ d2q1

(2π)2

× (−i)
∫ d2q2

(2π)2v(0,q1)v(0,q2)e−i(q1+q2)·b1(2igs)
ε · (k− q2)

(k− q2)2 +m2
g(1− x+ x2)

×
(
e
i

2ω (k2+ x
1−x (k−q1−q2)2+

m2
g(1−x+x2)

1−x )(z1−z0) − e
i

2ω (k2− (k−q2)2
1−x + x

1−x (k−q1−q2)2)(z1−z0)
)
.

(B.11.10)
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M c
2,1,0 = iJa(p+ k)ei(p+k)x0(T a2T cT a1)daTa2Ta1(1− x+ x2)(−i)

∫ d2q1

(2π)2

× (−i)
∫ d2q2

(2π)2v(0,q1)v(0,q2)e−i(q1+q2)·b1(igs)
ε · (k− xq1)

(k− xq1)2 +m2
g(1− x+ x2)

× e
i

2ω (k2+ x
1−x (k−q1−q2)2+

m2
g(1−x+x2)

1−x )(z1−z0)µ
2
1⊥ + µ1⊥µ2⊥ + µ2

2⊥
µ1⊥µ2⊥

×
(k− xq1)2 +m2

g(1− x+ x2)
x(1− x)E+(µ1⊥ + µ2⊥) , (B.11.11)

and:

M c
2,1,1 = iJa(p+ k)ei(p+k)x0([T c, T a2 ]T a1)daTa2Ta1(1− x+ x2)(−i)

∫ d2q1

(2π)2

× (−i)
∫ d2q2

(2π)2v(0,q1)v(0,q2)e−i(q1+q2)·b1(igs)
ε · (k− xq1 − q2)

(k− xq1 − q2)2 +m2
g(1− x+ x2)

× e
i

2ω (k2+ x
1−x (k−q1−q2)2+

m2
g(1−x+x2)

1−x )(z1−z0)µ
2
1⊥ + µ1⊥µ2⊥ + µ2

2⊥
µ1⊥µ2⊥

×
(k− xq1 − q2)2 +m2

g(1− x+ x2)
x(1− x)E+(µ1⊥ + µ2⊥) . (B.11.12)

Again we notice that amplitudes M c
2,1,0 and M c

2,1,1 are suppressed, respectively, by

factors of O( (k−xq1)2+m2
g(1−x+x2)

x(1−x)E+(µ1⊥+µ2⊥) ) and O( (k−xq1−q2)2+m2
g(1−x+x2)

x(1−x)E+(µ1⊥+µ2⊥) ) compared to the re-

maining amplitudes, and therefore will be omitted in further calculations.

After adding Eqs.(B.11.3, B.11.4, B.11.5), we obtain:
1
dT

Tr
〈
|M1|2

〉
= N |J(p+ k)|2(4g2

s)
1
A⊥

(1− x+ x2)2
∫ d2q1

(2π)2 |v(0,q1)|2C2(T )
dG{

2α
(

2 ε · (k− q1)
(k− q1)2 + χ

− ε · k
k2 + χ

− ε · (k− xq1)
(k− xq1)2 + χ

)
ε · (k− q1)

(k− q1)2 + χ

+ 2
(

ε · k
k2 + χ

Tr((T c)2(T a1)2)− ε · (k− xq1)
(k− xq1)2 + χ

Tr(T cT a1T cT a1)
)

ε · k
k2 + χ

− 2α
(

ε · (k− q1)
(k− q1)2 + χ

− 1
2

ε · k
k2 + χ

− 1
2

ε · (k− xq1)
(k− xq1)2 + χ

)
ε · (k− q1)

(k− q1)2 + χ

× 2 cos ((k− q1)2 + χ

x(1− x)E+ (z1 − z0)) + ( ε · (k− xq1)
(k− xq1)2 + χ

)2 Tr((T c)2(T a1)2)

+
(
α

ε · (k− q1)
(k− q1)2 + χ

− ε · k
k2 + χ

Tr((T c)2(T a1)2) + ε · (k− xq1)
(k− xq1)2 + χ

Tr(T cT a1T cT a1)
)

× ε · k
k2 + χ

2 cos ( k2 + χ

x(1− x)E+ (z1 − z0))− α ε · k
k2 + χ

ε · (k− q1)
(k− q1)2 + χ

× 2 cos (k2 − (k− q1)2

x(1− x)E+ (z1 − z0))
}
, (B.11.13)

where we introduced a shorthand notation χ = m2
g(1 − x + x2) in order to obtain

more concise expressions, and which we will use further in this section.
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Likewise, after adding Eqs.(B.11.6)-(B.11.10), we obtain:

2
dT
ReTr 〈M2M

∗
0 〉 = N |J(p+ k)|2(4g2

s)
1
A⊥

(1− x+ x2)2
∫ d2q1

(2π)2 |v(0,q1)|2C2(T )
dG

×
{

( ε · k
k2 + χ

)2
(

2α cos ( k2 + χ

x(1− x)E+ (z1 − z0))− 2α− Tr((T c)2(T a1)2)
)

− 2α ε · k
k2 + χ

ε · (k− q1)
(k− q1)2 + χ

(
cos ( k2 + χ

x(1− x)E+ (z1 − z0))

− cos (k2 − (k− q1)2

x(1− x)E+ (z1 − z0))
)}
, (B.11.14)

leading to:

1
dT

Tr
〈
|M1|2

〉
+ 2
dT
ReTr 〈M2M

∗
0 〉 = NdG|J(p+ k)|2(4g2

s)
C2(T )
dG

C2
2(G) 1

A⊥
(1− x+ x2)2

×
∫ d2q1

(2π)2 |v(0,q1)|2
{(

1− cos ( k2 + χ

x(1− x)E+ (z1 − z0))
)(

ε · k
k2 + χ

− ε · (k− xq1)
(k− xq1)2 + χ

)
ε · k

k2 + χ

+
(

1− cos ((k− q1)2 + χ

x(1− x)E+ (z1 − z0))
)(

2 ε · (k− q1)
(k− q1)2 + χ

− ε · k
k2 + χ

− ε · (k− xq1)
(k− xq1)2 + χ

)

× ε · (k− q1)
(k− q1)2 + χ

+
(

( ε · (k− xq1)
(k− xq1)2 + χ

)2 − ( ε · k
k2 + χ

)2
)}
. (B.11.15)

In the soft-gluon approximation the previous expression coincides with Eq.(82)

from [189] (note that contrary to the cited paper, we here consider gluon jet, so

that M no longer denotes heavy quark mass, but instead M ≡ mg and therefore the

term M2x2 is also negligible).

If we further apply the same procedure as in Appendix Section B.10, and again

assume the simple exponential distribution e−2 z1−z0
L between the scattering centers,

we obtain:

dN (1)
g

dx
= C2(G)αs

π

L

λ

(1− x+ x2)2

x(1− x)

∫ d2q1

π

µ2
E

(q2
1 + µ2

E)2

∫
dk2

×
{ (k− q1)2 + χ

(4x(1−x)E
L

)2 + ((k− q1)2 + χ)2

(
2 (k− q1)2

(k− q1)2 + χ
− k · (k− q1)

k2 + χ

− (k− q1) · (k− xq1)
(k− xq1)2 + χ

)
+ k2 + χ

(4x(1−x)E
L

)2 + (k2 + χ)2

( k2

k2 + χ
− k · (k− xq1)

(k− xq1)2 + χ

)

+
( (k− xq1)2

((k− xq1)2 + χ)2 −
k2

(k2 + χ)2

)}
, (B.11.16)
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which is symmetric to the exchange of p and k gluons, as expected, and also:

dE(1)

dx
= C2(G)αs

π

L

λ
E

(1− x+ x2)2

1− x

∫ d2q1

π

µ2
E

(q2
1 + µ2

E)2

∫
dk2

×
{ (k− q1)2 + χ

(4x(1−x)E
L

)2 + ((k− q1)2 + χ)2

(
2 (k− q1)2

(k− q1)2 + χ
− k · (k− q1)

k2 + χ

− (k− q1) · (k− xq1)
(k− xq1)2 + χ

)
+ k2 + χ

(4x(1−x)E
L

)2 + (k2 + χ)2

( k2

k2 + χ
− k · (k− xq1)

(k− xq1)2 + χ

)

+
( (k− xq1)2

((k− xq1)2 + χ)2 −
k2

(k2 + χ)2

)}
, (B.11.17)

which, in the soft-gluon approximation, reduces to Eq.(84) from [189] , and which

for mg → 0 coincides with our massless beyond soft-gluon approximation expre-

sion (B.10.13).

Further, we display the beyond soft-gluon approximation expressions needed for

numerical evaluation of the corresponding variables. So the number of radiated

gluons to the first order in opacity for gluons with effective mass mg and for a finite

x reads:

N (1)
g = C2(G)αs

π

L

λ

∫ 1
2

0
dx

(1− x+ x2)2

x(1− x)

∫ d2q1

π

µ2
E

(q2
1 + µ2

E)2

∫
dk2

×
{ (k− q1)2 + χ

(4x(1−x)E
L

)2 + ((k− q1)2 + χ)2

(
2 (k− q1)2

(k− q1)2 + χ
− k · (k− q1)

k2 + χ

− (k− q1) · (k− xq1)
(k− xq1)2 + χ

)
+ k2 + χ

(4x(1−x)E
L

)2 + (k2 + χ)2

( k2

k2 + χ
− k · (k− xq1)

(k− xq1)2 + χ

)

+
( (k− xq1)2

((k− xq1)2 + χ)2 −
k2

(k2 + χ)2

)}
. (B.11.18)

Similarly, the fractional energy loss is obtained after numerically integrating the

following expression:

∆E(1)

E
= C2(G)αs

π

L

λ

∫ 1
2

0
dx

(1− x+ x2)2

1− x

∫ d2q1

π

µ2
E

(q2
1 + µ2

E)2

∫
dk2

×
{ (k− q1)2 + χ

(4x(1−x)E
L

)2 + ((k− q1)2 + χ)2

(
2 (k− q1)2

(k− q1)2 + χ
− k · (k− q1)

k2 + χ

− (k− q1) · (k− xq1)
(k− xq1)2 + χ

)
+ k2 + χ

(4x(1−x)E
L

)2 + (k2 + χ)2

( k2

k2 + χ
− k · (k− xq1)

(k− xq1)2 + χ

)

+
( (k− xq1)2

((k− xq1)2 + χ)2 −
k2

(k2 + χ)2

)}
. (B.11.19)
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Áèîãðàôèjà

Áîjàíà Áëàãîjåâè£ jå ðî¢åíà ó Ïðèjåäîðó, Áîñíà è Õåðöåãîâèíà, 24. VIII 1984.

ãîäèíå. Ó Äîáîjó jå çàâðøèëà îñíîâíó øêîëó è ãèìíàçèjó Jîâàí Äó÷è£, êàî

¢àê ãåíåðàöèjå. Jóíà 2003. ãîäèíå áèëà jå ïîáåäíèê Ôèçè÷êå îëèìïèjàäå Áîñíå

è Õåðöåãîâèíå, à àâãóñòà 2003. ó÷åñòâîâàëà jå íà 34. Ìå¢óíàðîäíîj ôèçè÷êîj

îëèìïèjàäè ó Òàjïåõó, Òàjâàí.

Îñíîâíå àêàäåìñêå ñòóäèjå íà Ôèçè÷êîì ôàêóëòåòó Óíèâåðçèòåòà ó Áåîãðà-

äó, ñìåð Òåîðèjñêà è åêñïåðèìåíòàëíà ôèçèêà, çàïî÷è»å 2003. ãîäèíå è çàâð-

øàâà èõ 2013. ãîäèíå ñà ïðîñå÷íîì îöåíîì 10,00, îäáðàíèâøè äèïëîìñêè ðàä íà

òåìó Ïðîäóêöèjà, ìàñå è ðàñïàäè ñóïåðñèìåòðè÷íèõ ÷åñòèöà ó îêâèðó cMSSM

ìîäåëà íà LHC-ó. Äèïëîìñêè ðàä jå èçðà¢åí ó Ëàáîðàòîðèjè çà ôèçèêó âèñî-

êèõ åíåðãèjà Èíñòèòóòà çà ôèçèêó ó Áåîãðàäó, à èçðàäîì ðàäà ðóêîâîäèëà jå äð

Ìàðèjà Âðà»åø Ìèëîñàâ§åâè£, ñà Èíñòèòóòà çà ôèçèêó. Àêàäåìñêå 2013/2014.

ãîäèíå óïèñójå äîêòîðñêå àêàäåìñêå ñòóäèjå íà Ôèçè÷êîì ôàêóëòåòó Óíèâåð-

çèòåòà ó Áåîãðàäó, óæà íàó÷íà îáëàñò Ôèçèêà ÷åñòèöà è ïî§à.

Áîjàíà Áëàãîjåâè£ jå çàïî÷åëà ñâîj èñòðàæèâà÷êè ðàä ó Ëàáîðàòîðèjè çà

ôèçèêó âèñîêèõ åíåðãèjà Èíñòèòóòà çà ôèçèêó ó Áåîãðàäó, ó íîâåìáðó 2012.

ãîäèíå, à çàïîñëåíà jå îä 30. VI 2013. ãîäèíå. Àíãàæîâàía jå íà ïðîjåêòó îñíîâ-

íèõ èñòðàæèâà»à ÎÍ171004 (ATLAS åêñïåðèìåíò è ôèçèêà ÷åñòèöà íà LHC

åíåðãèjàìà) Ìèíèñòàðñòâà ïðîñâåòå, íàóêå è òåõíîëîøêîã ðàçâîjà Ðåïóáëèêå

Ñðáèjå, ãäe ñå áàâè òåîðèjñêîì ôèçèêîì êâàðê-ãëóîíñêå ïëàçìå (QGP) ïîä ìåí-

òîðñòâîì äð Ìàãäàëåíå �îð¢åâè£, íàó÷íîã ñàâåòíèêà Èíñòèòóòà çà ôèçèêó.

QGP jå íîâî ñòà»å ìàòåðèjå ó êîjåì ñó êâàðêîâè è ãëóîíè àñèìïòîòñêè ñëîáîä-

íè, è êîjå jå êðåèðàíî ó óëòðà-ðåëàòèâèñòè÷êèì ñóäàðèìà òåøêèõ jîíà ó RHIC

(Relativistic Heavy Ion Collider, Brookhaven National Laboratory) è LHC (Large

Hadron Collider, CERN) åêñïåðèìåíòèìà. Êîíêðåòíî, êàíäèäàòêè»à ðàäè íà

òåîðèjñêèì ïðåäâè¢à»èìà ñóïðåñèjå (ïðîìåíå äèñòðèáóöèjà åíåðãèjå) ¶åòîâà,

íà ïîðå¢å»ó äîáèjåíèõ ïðåäâè¢à»à ñà åêñïåðèìåíòàëíèì ðåçóëòàòèìà è òåî-

ðèjñêèì ïðîðà÷óíèìà. Îä jóíà 2014. ãîäèíå àíãàæîâàíà jå è íà ïðîjåêòó SNSF

SCOPES IZ73Z0-152297, ïîä ìåíòîðñòâîì äð Ìàðêà �îð¢åâè£à (âàíðåäíîã ïðî-

ôåñîðà íà Áèîëîøêîì ôàêóëòåòó Óíèâåðçèòåòà ó Áåîãðàäó) è äð Ìàãäàëåíå

�îð¢åâè£, ãäå ñå áàâè òåîðèjñêèì ïðîó÷àâà»åì èìóíîã ñèñòåìà áàêòåðèjà è
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ðåãóëàöèjå åêñïðåñèjå ãåíà.

Òîêîì îñíîâíèõ àêàäåìñêèõ ñòóäèjà Áîjàíà Áëàãîjåâè£ jå íàãðà¢åíà Eurobank

EFG øêîëàðèíîì, êîjà ñå äîäå§ójå íàjáî§èì ñòóäåíòèìà çàâðøíå ãîäèíå äð-
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