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Predgovor

Predmet istraživanja ove doktorske disertacije su uopšteni stohastički procesi.
Uopšteni stohastički procesi se javljaju kao rešenja široke klase stohastičkih parci-
jalnih diferencijalnih jednačina koje nemaju rešenje u klasičnom smislu. Stoga,
uopšteni stohastički procesi predstavljaju dobar teorijski okvir za proučavanje sto-
hastičkih parcijalnih diferencijalnih jednačina.

U disertaciji su proučavani uopšteni stohastički procesi Kolomboovog tipa, ili
kraće Kolomboovi stohastički procesi. Kolomboovi stohastički procesi su bili predmet
proučavanja u mnogim radovima navedenim u literaturi, ali ni u jednom od tih
radova nisu proučavane njihove probabilističke osobine. Glavni cilj istraživanja ove
doktorske disertacije su probabilističke osobine Kolomboovih stohastičkih procesa.
Takod̄e, cilj nam je da dobijene teorijske rezultate primenimo na rešavanje jedne
klase stohastičkih parcijalnih diferencijalnih jednačina.

U prvom delu dat je kratak pregled osnovnih pojmova Kolomboove teorije
uopštenih funkcija. Posebna pažnja je posvećena osobinama translatorno invarija-
ntnih Kolomboovih uopštenih funkcija. Potom su definisani Kolomboovi stohastički
procesi i uvoden je pojam vrednosti Kolomboovog stohastičkog procesa u tačkama sa
kompaktnim nosačem. To nam je omogućilo da pokažemo merljivost odgovarajuće
slučajne promenljive sa vrednostima u Kolomboovoj algebri uopštenih konstanti
sa kompaktim nosačem, snabdevenoj toplogijom generisanom oštrim otvorenim
loptama. Dat je pregled osnovnih osobina gausovskih Kolomboovih stohastičkih
procesa.

U drugom delu disertacije proučavano je uopšteno očekivanje, uopštena ko-
relacijska funkcija, uopštena kovarijansa i uopštena karakteristična funkcija Kolom-
boovog stohastičkog procesa. Nakon toga, definisani su Kolomboovi stohastički
procesi sa nezavisnim vrednostima i data je karakterizacija takvih procesa preko
njihove uopštene korelacijske funkcije u Kolomboovoj algebri uopštenih konstanti. U
disertaciji su proučavane i osobine stacionarnih Kolomboovih stohastičkih procesa,
pri čemu je napravljena razlika izmed̄u stroge stacionarnosti i slabe stacionarnosti.
Kolomboovi stohastički procesi sa stacionarnim priraštajima su definisani preko
stacionarnosti gradijenta procesa.
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U završnom delu disertacije dat je metod za rešavanje jedne klase stohastičkih
parcijalnih diferencijalnih jednačina u okvirima stacionarnih gausovskih temperi-
ranih Kolomboovih stohastičkih procesa. Predstavljena metoda za rešavanje sto-
hastičkih parcijalnih diferencijalnih jednačina koristi tehnike Furijeove transfor-
macije. Kao ilustracija, predstavljeno je rešenje stacionarne Klajn–Gordonove jed-
načine.

Ova doktorska disertacija predstavlja rezultat višegodišnjeg naučno–istraživačkog
rada pod mentorstvom Akademika dr Stevana Pilipovića i profesora dr Michael-a
Oberguggenberger-a, kao i saradnje sa profesoricom dr Dorom Seleši. Doktorska
disertacija nastala je kao rezultat rada na sledećim projektima:

1. Metode funkcionalne analize i PDJ sa singularitetima, evidencioni broj pro-
jekta 174024, finansiran od strane Ministarstva prosvete, nauke i tehnološkog
razvoja Republike Srbije.

2. Rešenja stohastičkih jednačina sa diferencijalnim i pseudodiferencijalnim
operatorima u algebrama uopštenih stohastičkih procesa, projekat 451-03-
01039/2015-09/26 bilateralne naučne i tehnološke saradnje izmed̄u Srbije i
Austrije.

Sombor, 16. maj 2018. Snežana Gordić
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Preface

The subject of this doctoral dissertation are generalized stochastic processes. Gen-
eralized stochastic processes occur as solutions of a wide class of stochastic partial
differential equations that do not have a solution in the classical sense. Therefore,
generalized stochastic processes represent a good theoretical framework for studying
stochastic partial differential equations.

Generalized stochastic processes of Colombeau-type, or shortly Colombeau
stochastic processes, are considered in the dissertation. Colombeau stochastic
processes were considered in many of the papers listed in bibliography, but none
of these papers addressed the question of probabilistic properties of Colombeau
stochastic processes. The main aim of the research in the dissertation are the
probabilistic properties of Colombeau stochastic processes. Also, our aim is to apply
the obtained theoretical results for solving a class of stochastic partial differential
equations.

In the first part of the dissertation, a brief overview of basic notions of Colombeau
theory of generalized functions is given. Special attention is devoted to the prop-
erty of translational invariance of Colombeau generalized functions. Thereafter,
Colombeau stochastic processes are defined. The notion of point values of Colombeau
stochastic processes in compactly supported generalized points was introduced. This
allowed us to prove measurability of the corresponding random variable with values
in a Colombeau algebra of compactly supported generalized constants, endowed with
the topology generated by sharp open balls. An overview of the basic characteristics
of Gaussian Colombeau stochastic processes is given.

In the second part of the dissertation generalized expectation, generalized corre-
lation functions, generalized covariances and generalized characteristic functions
of Colombeau stochastic processes were studied. After that, Colombeau stochastic
processes with independent values are defined and the characterization of such
processes is given. The properties of stationary Colombeau stochastic processes are
studied, distinguishing between strict stationarity and weak stationarity. Colombeau
stochastic processes with stationary increments are defined via stationarity of the
gradient of the process.
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In the closing part of the dissertation a method for solving a class of stochastic
partial differential equations in the framework of stationary Gaussian tempered
Colombeau stochastic processes is presented. The presented method uses the tech-
nique of the Fourier transform. As an illustration, the stationary Klein–Gordon
equation is considered.

This doctoral dissertation is the result of several years of scientific research super-
vised by Academician Stevan Pilipović and Professor Michael Oberguggenberger, as
well as cooperation with Professor Dora Seleši. The doctoral dissertation is supported
by the following projects:

1. Methods of Functional and Harmonic Analysis and PDE with Singularities,
number 174024 financed by Ministry of Education, Science and Technological
Development of the Republic of Serbia.

2. Solutions of Stochastic Equations Involving Differential and Pseudodifferential
Operators in Algebras of Generalized Stochastic Processes, project 451-03-
01039/2015-09/26 of the bilateral scientific and technological co–operation
between Serbia and Austria.

Sombor, May 16, 2018 Snežana Gordić
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1Introduction

„The scientific man does not aim at an immediate
result. He does not expect that his advanced
ideas will be readily taken up. His work is like
that of the planter - for the future. His duty is to
lay the foundation for those who are to come and
point the way.

— Nikola Tesla
(1856 - 1943)

The theory of generalized stochastic (random) processes, or shortly GSPs, was
introduced independently in the mid 1950s by K. Itô and I. M. Gel’fand (see [Itô54]
and [Gel55]). Ever since, GSPs have been investigated by many authors. The theory
of GSPs continues to be an active topic of research. This theory has proved to have
many useful applications.

The Colombeau approach into the settings of GSPs was introduced by M. Ober-
guggenberger and F. Russo (see [Obe95] and [Rus94]) in the mid 1990s. GSPs of
Colombeau-type are used in solving some nonlinear stochastic problems.

The subject of the research within this doctoral dissertation are Colombeau
generalized stochastic processes or shortly Colombeau stochastic processes (CSPs).
Aims of the research of this dissertation are probabilistic properties of CSPs and
applications in equation solving.

1.1 From Ordinary Stochastic Processes to
Generalized Stochastic Processes

An ordinary (classical) stochastic process (OSP) is a mapping from an open subset
O of Rd into a topological vector space of random variables over a probability space
(Ω,F , P ). On the contrary, a GSP is a linear and continuous functional from a space
of test functions over O into a space of random variables.

In [GV64] was given a physical justification for the concept of GSP. The concept
of an OSP is based upon the assumption that it is possible to measure the value of
the process at the particular time t. But, the concept of the value u(t) of the OSP u
at the time t is a mathematical idealization. In practice, one must use some device
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during a certain measurement. The reading on the device is not the value of random
variable u at time t, but rather a certain averaged value

〈u, φ〉 =
∫
u(t)φ(t) dt,

where φ(t) is a function characterizing the device. These considerations suggest
introducing a new definition of a stochastic process. Which properties should have a
new process? A new process u should be linear in φ. Also, different devices should
give approximately the same readings, i.e. if φ is close enough to φ1 then 〈u, φ〉 is
close to 〈u, φ1〉. Therefore, a new process should be a continuous linear random
functional.

Note that a GSP extends the notion of an OSP in a similar way as the Schwartz
generalized function is used to extend the notion of an ordinary (classical) function.
This similarity is not surprising since we can regard the GSP as a vector-valued
Schwartz generalized function.

The theory of GSPs has several advantages. The main advantage of GSPs is the
fact that the family of GSPs is closed under differentiation, i.e. the derivative of a
GSP always exists and is itself a GSP. In contrast, the family of OSPs is not closed
under differentiation. For example, the derivative of Brownian motion is not an OSP,
it is GSP. Some processes, for example white noise, can not be treated as OSPs, but
can be treated as a GSPs.

There are three equivalent ways to look on an OSP:

I An OSP u(ω, x), ω ∈ Ω, x ∈ O, can be regarded as a family of random variables
u(·, x), x ∈ O.

II An OSP u(ω, x), ω ∈ Ω, x ∈ O, can be regarded as a family of trajectories
u(ω, ·), ω ∈ Ω.

III An OSP u(ω, x), ω ∈ Ω, x ∈ O, can be regarded as a family of functions

u : Ω×O → Rd

such that

– for each fixed ω ∈ Ω, u(ω, ·) is Rd−valued random variable, and

– for each fixed x ∈ O, u(x, ·) is an Rd−valued random variable.

If one replaces the space of random variables with a space of generalized random
variables, or if one replaces the space of trajectories with the space of deterministic
generalized functions, then different types of GSPs are obtained. In such a way, we
can obtain
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• processes generalized with respect to the x argument,

• processes generalized with respect to the ω argument, and

• processes generalized with respect to both the x and ω arguments.

Each of these approaches have been investigated by many authors. We will give an
overview of various definitions of the GSPs in the following section.

1.2 Generalized Stochastic Processes from the
Mid 1950s to the Present

As mentioned in the previous section, GSPs can be introduced in several ways de-
pending on the type of generalization. Let us give a historical overview of definitions
of the concept of GSPs.

According to the definition given by K. Itô in [Itô54], a second-order GSP is
a linear and continuous operator from the Schwartz space D(O) of test functions
into a space L2(Ω) of random variables with finite second moment. In contrast,
a second-order OSP is a mapping from O into a space L2(Ω). K. Itô investigated
conditions for second-order GSP to be inducible by second-order OSPs and gave a
response in the stationary case. The general case is solved in [Mei80].

A GSP, in the terminology of I. M. Gel’fand and N. Ya. Vilenkin (see [GV64]),
is a continuous linear random functional u on the space of infinitely differentiable
functions having bounded supports. Recall that u is a random functional if with
every test function φ there is associated random variable u(φ). Note that this concept
of GSP originates from I. M. Gel’fand (see [Gel55]).

H. Inaba and B. T. Tapley used in [IT75] the definition of a GSP as a continuous
mapping from a certain space of test functions to the space L2(Ω). Also, they defined
the white Gaussian process as a GSP and gave its characterization.

GSPs as linear continuous mappings from a certain space of test functions to
some space of classical or generalized random variables are considered in [PS07b;
Sel07b; Urb61]. S. Pilipović and D. Seleši in [PS07b] referred to GSPs defined in
this sense as to GSPs of type (I). The Wick product for GSPs of type (I) is developed
in [PS07a; Sel07b].

Another approach is to define a GSP as a mapping u : O × V → C such that

(i) for every φ ∈ V, u(·, φ) is a random variable on (Ω,F , P ), and

(ii) for every ω ∈ Ω, u(ω, ·) is an element in V ′,

1.2 Generalized Stochastic Processes from the Mid 1950s to the Present 3



where V denotes a topological vector space and V ′ its dual space.

In particular, if V is taken to be the space D(O) then u is a random Schwartz
distribution as defined by M. Ullrich in [Ull57]. It has been shown that the GSP
defined by M. Ullrich is a special case of the GSP in the sense of I. M. Gel’fand. Also,
it has been shown that Ullrich’s definition is not equivalent to the definition given
by K. Itô. In [Ull59], a stochastic integral representation for a random Schwartz
distribution is given.

In [SM71], C. Swartz and D. E. Myers considered the case where V is a space
K{Mp} and on inductive limits of K{Mp} spaces. The reader is referred to [GS86]
for the definition and basic properties of space K{Mp}. Z. Lozanov–Crvenković and
S. Pilipović gave representation theorems for Gaussian GSPs on the space K{Mp}
(see [LCP94b]). Also, they studied and gave representation theorems for the GSPs on
Ω×A, where A is the Zemanian space (see [LCP89]). GSPs defined as mappings on
Ω× V were studied in [Han59; Crv89; Kit72; LCP88; LC92; LCP92; PS07b; Sel07a].
S. Pilipović and D. Seleši referred to GSPs defined in this sense as to GSPs of type
(II) (see [PS07b; Sel07a; Sel07c]).

In [PS07b], it is shown that the classes of GSPs of type (I) and (II) are not
contained in each other.

J. B. Walsh defined in [Wal86] a GSP as a measurable mapping u : Ω→ D′(O).
For each fixed test function φ ∈ D(O), the mapping Ω → R, ω 7→ 〈u(ω), φ〉 is a
random variable.

On the other hand, stochastic processes with paths in the Colombeau algebra
of generalized functions G(O) are considered in [MPS09; Obe95; OR98a; OR98b;
OR01; RĆS12; NR02a; LCP97]. In this sense, GSP is defined as a mapping u : Ω→
G(O) with the property that there exists a sequence of functions un : Ω× O → C,
n ∈ N, such that un(ω, ·) represents u(ω) for almost all ω ∈ Ω, and for every n ∈ N,
(ω, x) → un(ω, x) is an OSP. GSPs of this type are called Colombeau stochastic
processes (CSPs). Note that this definition of a GSP is a generalization of the Walsh
definition, which is due to the fact that Colombeau algebra contains the space
of Schwartz distributions D′(O) as subspace. In the next section we will give an
overview of existing results in theory of CSPs.

Another possibility is to generalize stochastic process with respect to the ω

argument. T. Hida, Y. Kondratiev, B. Øksendal, H.-H. Kuo, their coauthors and many
others (see [HKPS93; HØUZ96; Kuo96]) have developed a theory of GSPs via chaos
expansions. In [HØUZ96] a GSP is defined as a measurable mapping Rd 7→ (S)−1,

where (S)−1 denotes the Kondratiev space for the Gaussian measure. The Kondratiev
spaces are infinite-dimensional analogues of the space of tempered distributions
S ′(Rd). Note that one can consider other spaces of generalized stochastic functions
instead of Kondratiev space (S)−1. S. Pilipović and D. Seleši in [PS07a] referred
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to GSPs defined in this sense as to GSPs of type (O). Malliavin calculus for GSPs is
studied in [LPS11; LS17; Lev11].

Processes generalized with respect to both arguments were introduced in [PS07a].
The authors generalized and unified the notion of GSP in Inaba’s sense and the
notion of GSP via chaos expansions. Thus, they considered GSPs as linear continuous
mappings defined on the space of Zemanian test functions A and taking values in
the Kondratiev space (S)−1.

1.3 Generalized Stochastic Processes of
Colombeau-type

In this section we give an overview of the existing results on the theory of generalized
stochastic processes of Colombeau-type. M. Oberguggenberger and F. Russo were
pioneers in theory of CSPs.

In [Obe95], M. Oberguggenberger introduced algebras of Colombeau-type gener-
alized stochastic processes. The purpose of the Colombeau approach to the stochastic
setting was to obtain an existence theory for the stochastic ordinary differential
equation (SODE) {

u̇(t) = f(u(t), v(t)), t ∈ R,
u(0) = a,

where v is any generalized stochastic process and f can be a nonlinear, discontinuous
or generalized function.

Also, the applications to stochastic analysis of Colombeau theory were developed
in [Rus94]. F. Russo investigated the relation between Colombeau generalized
functions and stochastic integrals and equations of Stratonovich type. In this paper,
the following SODE was considered in Colombeau sence{

u̇(t) = f(u(t))w(t) + g(u(t)), t ∈ R+,

u(0) = X,

where f and g are smooth functions, w is a white noise and X is a random variable.
In the same paper, the author studied non-linear SPDE. Namely, a wave equation
which is perturbed by a white noise was considered.

In [AHR96; OR98a; OR98b; RO99; OR01; AHR01; ORĆ05; NR02a] SPDEs are
solved by regularization methods in the Colombeau framework. In [AHR96], the
authors considered linear and nonlinear stochastic wave equations perturbed by a
space-time Gaussian white noise in space dimension d ≥ 2. In the nonlinear case the
solution is a Colombeau random generalized function. A semilinear wave equation
is considered in [OR98a; OR98b; OR01]. In [RO99] a semilinear stochastic heat
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equation driven by a space-time Gaussian white noise is considered. In [AHR01]
the object of study was a two-space dimensional heat equation perturbed by white
noise in a bounded volume. The paper [NR02a] is devoted to a one-dimensional
nonlinear stochastic wave equation with additive white noise. Linear SODEs with
generalized positive noise processes are considered in [ORĆ05].

In order to study a nonlinear stochastic wave and Klein–Gordon equations, the
authors in [NR02b] have chosen to make use of the Colombeau approach. In this
paper one-dimensional and three-dimensional nonlinear stochastic wave equation
were considered. The existence and uniqueness of solution to the Klein–Gordon
equation with Lipschitz and cubic nonlinearities have been proved.

Different types of CSPs were considered in [LCP97]. Stationary CSPs determined
by Schwartz GSPs are studied. The authors defined CSPs with independent values,
and a characterization of such processes is given if they are determined by Schwartz
GSPs.

Gaussian Colombeau stochastic processes (GCSPs) were introduced and analyzed
in [LCP97; LCP94a; MPS09]. Necessary and sufficient conditions for existence of a
GCSP in terms of its generalized correlation function are given in [MPS09].

Paper [RĆS12] is devoted to some classes of nonlinear SODE containing general-
ized delta processes in the framework of the Colombeau theory and chaos expansions
of GSPs. The nonlinear SODE can be replaced with an infinite system of ordinary
differential equations (ODEs) by chaos expansion method. The system of ODEs
can be solved by deterministic Colombeau methods. Lastly, it remains to sum up
solutions and to prove convergence of the chaos expansions series. Paper [CO11] is
devoted to an algebra of generalized functions of Colombeau-type in the context of
the Hida stochastic distributions.

A theory of the Caputo fractional derivatives in the algebra of CSPs is intro-
duced in [RĆS11]. It has been shown that a Caputo fractional derivative of a
one-dimensional CSP u defined on [0,∞) is a CSP itself only if u satisfies certain
conditions. The fractional derivatives of a Colombeau generalized process defined
on entire Rd were introduced in [RĆS13]. It has been shown that a Caputo partial
fractional derivative of a compactly supported multidimensional CSP is a CSP itself,
but not with compact support. Colombeau fractional derivatives stochastic processes
are introduced and analyzed in [RĆ10]. In [RĆ11], it has been shown that the
Caputo fractional derivative of a CSP defined on (0,∞) is a CSP itself. Also, the
Riemann-Liouville fractional derivative of a CSP defined on [0,∞) is introduced.
As an illustration of the theory, a Cauchy problem with fractional derivatives is
considered. The Cauchy problem for some classes of fractional differential equations
in the Colombeau framework is considered in [JRĆ15; JRĆ17; JRĆ18; Jap16].
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1.4 Motivation and Problem Statement
In the previous section we have seen that CSPs are widely studied. Many authors
used the Colombeau theory to solve various classes of nonlinear SODEs and SPDEs.
On the other hand, probabilistic properties of CSPs are not studied.

In this dissertation, the object of study are the CSPs with values in spaces of
random variables with finite moments up to order p, the CSPs with values in spaces
of random variables with all finite moments, and the CSP with values in the space of
real valued measurable functions endowed with almost sure convergence. Two main
aims of research are formulated:

1. Studying the probabilistic properties of CSPs, and

2. Application of the obtained results to solving some classes of SPDEs.

In order to achieve the first aim of research, we will investigate measurability of
CSPs, expectation and correlation functions of CSPs, characteristic functions of CSPs,
CSPs with independent values, and stationary CSPs.

In order to illustrate the application of the theory, at the end of the dissertation
we give the method for solving a class of SPDEs in the framework of stationary
Gaussian tempered CSPs. The stationary Klein–Gordon equation driven by higher
order derivatives of white noise is considered.

1.5 Results
Main aims of research in the disseration have been achieved. All the results have
been obtaind in joint work with Michael Oberguggenberger, Stevan Pilipović and
Dora Seleši. The results are published in [GOPS18b] and [GOPS18a]. Some results
have been presented at conferences:

• Workshop and Conference: Wien–Innsbruck–Novi Sad–Gent,
June 29–July 3, 2016, University of Innsbruck, Austria,
Research talk: Generalized Stochastic Processes in Algebras of Generalized Func-
tions;

• The 14th Serbian Mathematical Congress,
May 16–19, 2018, Faculty of Sciences, University of Kragujevac, Serbia,
Research talk: Probabilistic Properties of Colombeau Stochastic Processes;

• International Conference on Generalized Functions,
Dedicated to Professor Michael Oberguggenberger’s 65th birthday,
August 27–31, 2018, Faculty of Sciences, University of Novi Sad, Serbia,
Research talk: Stationary Colombeau Stochastic Processes.
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1.6 Dissertation Structure

The dissertation is organized in seven chapters and three appendix chapters.

Chapter 1

The subject and aims of a research are introduced in Chapter 1. An overview of
different types of GSPs is given. Motivation for the concept of GSPs is considered.
The structure of the dissertation is presented.

Chapter 2

Chapter 2 is expository and it represents an overview of some basic concepts of
Colombeau theory, which are necessary to understand the sequent chapters of the
dissertation. We summarize definitions and the most important properties of positive
and positive–definite Colombeau generalized functions. We recall results on the
solvability of the equation P (D)u = f, where f is a given Colombeau generalized
function and P (D) is a differential operator of order k with generalized real constant
coefficients. All theorems are stated without proof since they are well-known.

Chapter 3

Chapter 3 is titled Translation Invariant Colombeau Generalized Functions. Transla-
tion invariance is a very important property in the theory of stationary stochastic
processes. It is known that translation invariant Colombeau generalized function
over Rd is generalized constant. The main result of this chapter is Theorem 3.2.1,
which claim that a translation invariant Colombeau generalized function over an
open convex subset of Rd is a generalized constant.

Chapter 4

Chapter 4, titled Colombeau Stochastic Processes, is concerned with spaces GkL(Ω,O),
GM∞(Ω,O) and GkLp(Ω,O), whose elements are called CSPs with values in L(Ω),
M∞(Ω) and Lp(Ω), respectively. Section 4.1, Section 4.4 and Section 4.5 contain
the original parts of the dissertation. Evaluation of CSPs at compactly supported gen-
eralized points gives generalized random variables in GL(Ω), GM∞(Ω) and GLp(Ω).
The main result (see Proposition 4.5.1) of this chapter states that the corresponding
mapping from Ω toRc is (Ω,B(Rc))-measurable, where B(Rc) denotes the σ-algebra
generated by sharp open balls of Rc. We recall the definition and basic properties of
Gaussian Colombeau stochastic processes, or shortly GCSPs, from [MPS09]. Also, we
recall that the space of CSPs contains the space of distributional stochastic processes
as a subspace.

Chapter 5

Chapter 5, entitled Probabilistic Properties of Colombeau Generalized Processes, repre-
sents the original part of the dissertation. The results are published in [GOPS18b]
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and [GOPS18a]. First, we recall the notions of generalized expectation and gener-
alized correlation function of CSPs from [MPS09]. We give a characterization of
generalized correlation function of CSPs. Generalized characteristic functions are
introduced for CSPs in GM∞(Ω,O) and Gk

Lkp
(Ω,O). We prove that two possibilities

to embed an element of space C∞M∞(Ω,O) into GM∞(Ω,O), namely by convolution
or as a constant sequence, are identical in the Colombeau quotient. For an element
of the space CM∞(Ω,O) this equality holds on the level of association. The gener-
alized expectation and generalized correlation function can be retrieved from the
generalized characteristic function. The definition of CSPs with independent values
is presented. A characterization of such processes via their generalized correlation
function in the set of compactly supported generalized points is given. Strictly and
weakly stationary CSPs are presented. We prove that the generalized expectation
of a stationary CSP is a generalized constant and we provide a special form of its
generalized correlation function. Stationarity of the increments of CSPs can be
defined via stationarity of the gradient of the process.

Chapter 6

Chapter 6 is titled Applications and it is devoted to solving a class of SPDEs in the
framework of stationary GCSPs. Techniques of the Fourier transform are used in
this chapter. We give a necessary condition (Theorem 6.1.1) for the existence of a
stationary Gaussian solution to P (D)u = f, where P (D) is a differential operator
of order k with generalized constant coefficients and f is a weakly stationary tem-
pered GCSP. We apply the method developed in this chapter to solve the stationary
Klein–Gordon equation driven by higher order derivatives of white noise, i.e. the
equation

(1−∆)u = c+ f∂kw,

where w is spatial white noise on Rd considered in the framework of GCSPs, a and
b are constants, ∆ the Laplace operator and ∂kw = ∂k1

x1∂
k2
x2 . . . ∂

kd
xd
w(ω, x) the kth

derivative of the white noise for k = (k1, k2, . . . , kd) ∈ Nd0.

Chapter 7

Chapter 7 gives a conclusion to the dissertation and possible directions for future
work.

Appendix A

Appendix A, entitled An Overview of Background Theory, is devoted to basic topics
from real and functional analysis, distribution theory, measure and probability
theory. All theorems are stated without proof since they are parts of well-developed
mathematical theories.

Appendix B

List of notation and list of abberivations are given in Appendix B.
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Appendix C

Appendix C is a biographical index.
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2An Overview of the Colombeau
Theory

„Pure mathematics is in its way, the property of
logical ideas.

— Albert Einstein
(1879-1955)

The aim of this chapter is to give a brief overview of key notions of Colombeau
theory that will be used extensively in the subsequent chapters of the dissertation.
The theorems mentioned here are known and therefore given without proofs. The
reader is referred to [Col84; Col85; GKOS01; NPS98; Obe92] for proofs and further
details.

Note that in this dissertation we focus our attention on the sequential approach
to Colombeau-type algebras. Instead of considering nets of functions (uε)ε, ε ∈ (0, 1],
we take sequences of functions (un)n indexed by ε = 1

n , n ∈ N.

2.1 Colombeau Generalized Functions
Let O be an open set in Rd. Further on, we use the conventional notation Ck(O)
for k times continuously differentiable functions and C∞(O) for smooth functions,
D(O) for the smooth test functions with compact support and its dual D′(O) for the
generalized functions. The space of Schwartz distributions with compact support is
denoted by E ′(O). Similarly, S(O) denotes the Schwartz space of rapidly decreasing
functions and S ′(O) the space of tempered Schwartz distributions. A general refer-
ences for properties of these spaces are [SP00; Vla79; GS86]. Also, the reader is
referred to Appendix A.2.

In the following K b O will be used to denote that K is a compact subset of O.
The notation an = O(bn) means that an ≤ Cbn, n > n0, for some constant C > 0
and n0 ∈ N.

Elements of E(O) = (C∞(O))N are called sequences of smooth functions and
denoted by (un)n. The space E(O) endowed with componentwise operations is a
differential algebra.

Omitting the general construction (see [Col84; Col85; GKOS01]) we recall only
the definition and basic properties of the Colombeau algebra G(O).

11



Definition 2.1.1 Set

EM (O) = {(un)n ∈ E(O) : (∀K b O)(∀α ∈ Nd0)(∃a ∈ N) (sup
x∈K
|∂αun(x)| = O(na))},

N (O) = {(un)n ∈ E(O) : (∀K b O)(∀α ∈ Nd0)(∀b ∈ N) (sup
x∈K
|∂αun(x)| = O(n−b))},

Elements of EM (O) are called moderate sequences of functions and elements of N (O)
are called negligible sequences of functions. The Colombeau algebra on O is defined as

G(O) = EM (O)/N (O)

and its elements are Colombeau generalized functions.

Notice that G(O) is a quotient space, thus its elements u ∈ G(O) are equivalence
classes denoted by u = [(un)n].

The space of all moderate sequences of functions EM (O) is a differential algebra
with pointwise operations. It is the largest differential subalgebra of E(O) in which
N (O) is a differential ideal. Hence, G(O) is an associative commutative differential
algebra.

Addition, multiplication and differentiation are carried out componentwise in
G(O), i.e. if u = [(un)n] ∈ G(O) and v = [(vn)n] ∈ G(O) then these operations are
given by

u+ v = [(un + vn)n], u · v = [(un · vn)n], ∂αu = [(∂αun)n].

Define a sequence of mollifiers ϕn ∈ S(Rd), n ∈ N, of the form

ϕn(x) = ndϕ(nx), x ∈ Rd, n ∈ N, (2.1)

where ϕ ∈ S(Rd) has the following properties:∫
ϕ(x) dx = 1, (2.2)

∫
xmϕ(x) dx = 0, m ∈ N. (2.3)

The Colombeau algebra contains the space of compactly supported Schwartz
generalized functions. Indeed, if f ∈ E ′(O) then

f ↪→ Cd(f) = [((f ∗ ϕn)|O)n] = ((f ∗ ϕn)|O)n +N (O)

defines a linear embedding of E ′(O) into G(O). Since the presheaf O → G(O) is a
sheaf, it follows that the above embedding can be extended to an embedding of
D′(O) and C∞(O) into G(O) for any open set O ⊂ Rd.

12 Chapter 2 An Overview of the Colombeau Theory



Example 2.1.1 The Dirac delta distribution δ as an element of the Colombeau algebra
G(Rd) is given by

Cd(δ) = [(ϕn)n] = (ϕn)n +N (Rd).

Now the expression δ2 obtains a meaning in G(Rd). It is defined by

Cd(δ)Cd(δ) = [(ϕ2
n)n] = (ϕ2

n)n +N (Rd). �

The following result shows that in order that an element (un)n ∈ EM (O) is in
N (O) it is enough to prove negligibility of its zeroth derivative. For a proof, see
[GKOS01] (Chapter 1, Theorem 1.2.3, p. 11).

Theorem 2.1.1 (un)n ∈ EM (O) is negligible if and only if for every K b O and every
b ∈ N

sup
x∈K
|un(x)| = O(n−b).

We have seen that all operations are carried out componentwise in G(O). It is
the same with the definition of integrals. Let A be a Lebesgue–measurable set such
that A b O. The integral of u = [(un)n] ∈ G(O) over A is defined by∫

A
u(x) dx =

(∫
A
un(x)

)
n

+N (O).

Some basic properties of the integral can be found in [GKOS01]. An important
property of integration of generalized functions is given in theorem below. Its proof
can be found in [GKOS01] (Chapter 1, Theorem 1.2.36, p. 46).

Theorem 2.1.2 Let f ∈ D′(O) and φ ∈ D(O). Then

lim
n→∞

∫
Cd(f)n(x)φ(x) dx = 〈f, φ〉.

The association relation is an important notion of the Colombeau theory.

Definition 2.1.2 Two Colombeau generalized functions u = [(un)n] ∈ G(O) and
v = [(vn)n] ∈ G(O) are called associated, denoted by u ≈ v, if

lim
n→∞

∫
O

(un(x)− vn(x))φ(x) dx = 0,

for all φ ∈ D(O).

Note that Definition 2.1.2 is independent of the chosen representatives (un)n and
(vn)n of u and v, respectively. Association is an equivalence relation which respects
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addition and differentiation. Also, the product of two continuous functions in G(O)
is associated with their classical product.

Observe that u = v implies u ≈ v. In general, the reverse implication is
false. Hence, association is weaker than equality in G(O). An equivalence relation
between association and equality is equality in the sense of distributions; see [Col84;
Col85].

Definition 2.1.3 Two Colombeau generalized functions u = [(un)n] and v = [(vn)n]
of G(O) are called equal in the sense of distributions, if∫

O
(un(x)− vn(x))φ(x) dx ∈ N (O)

for every φ ∈ D(O).

Definition 2.1.4 A Colombeau generalized function u = [(un)n] ∈ G(O) is associated
with a Schwartz distribution f ∈ D′(O) if

lim
n→∞

∫
O
un(x)φ(x) dx = 〈f, φ〉,

for all φ ∈ D(O). This will be denoted by u ≈ f and f will be called the distributional
shadow of u.

Note that not all elements of G(O) have a distributional shadow. Genuine
Colombeau generalized functions, as δ2 = [(ϕ2

n)n], are not associated with any
Schwartz distribution. If the distributional shadow of u exists, it is uniquely deter-
mined.

Let u = [(un)n] ∈ G(O) and O′ is an open subset of O. The restriction u|O′ ∈
G(O′) is defined as [(un|O′)n]. A Colombeau generalized function u = [(un)n] ∈ G(O)
vanishes on O′ if u|O′ = 0 in G(O′). The support of u = [(un)n] ∈ G(O) is defined
as

suppu =
(⋃
{O′ ⊆ O : O′ open and u vanishes on O′}

)c
.

Note that the support of u is the complement of the largest open set O′ such that
u vanishes on O′. In general, if u = [(un)n] ∈ G(O) is associated with an element
f ∈ D′(O), then suppu ⊇ supp f. The next example indicates that the support of u
can be strictly larger than the support of f .

Example 2.1.2 Let u ∈ G(R) be given by the representative

un(x) = nφ(nx) + 1
n
, n ∈ N,
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where ϕ ∈ D(R) satisfies φ(0) = 1 and
∫
φ(x) dx = 1. Let us show that u is associated

with the Dirac delta distribution. Using a change of variable y = nx, the Lebesgue
dominated convergence and properties of the function φ we obtain

lim
n→∞

∫
un(x)ψ(x) dx =

∫
lim
n→∞

nφ(nx)ψ(x) dx

= lim
n→∞

∫
φ(y)ψ

(
y

n

)
dy

= ψ(0)
∫
φ(y) dy

= 〈δ, ψ〉,

for any ψ ∈ D(R). It is clear that supp u = R and it is known that supp δ = {0}.
Therefore, the support of u is strictly larger than the support of δ. �

Observe that in Definition 2.1.1 we can consider functions with continuous
derivatives up to kth order instead of smooth functions and thus obtain the spaces

Ek(O) = (Ck(O))N,

EkM (O) = {(un)n ∈ Ek(O) : (∀K b O)(∀α ∈ Nd0, |α| ≤ k)

(∃a ∈ N)(sup
x∈K
|∂αun(x)| = O(na)},

N k(O) = {(un)n ∈ Ek(O) : (∀K b O)(∀α ∈ Nd0, |α| ≤ k)

(∀b ∈ N)(sup
x∈K
|∂αun(x)| = O(n−b))},

Gk(O) = EkM (O)/N k(O).

2.2 Tempered Colombeau Generalized Functions
J. F. Colombeau introduced the algebra of tempered generalized functions in [Col85].
His main aim was to develop a theory of Fourier transform in algebras of generalized
functions. The concept of Colombeau tempered generalized functions is a natural
generalization of Schwartz tempered distributions.

In this section, we will recall the definition and basic properties of Colombeau
tempered generalized functions.

Definition 2.2.1 Set

Eτ (O) = {(un)n ∈ E(O) : (∀α ∈ Nd0)(∃N ∈ N)

(sup
x∈O
|∂αun(x)|(1 + |x|)−N = O(nN ))},
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Nτ (O) = {(un)n ∈ E(O) : (∀α ∈ Nd0)(∃N ∈ N)(∀a > 0)

(sup
x∈O
|∂αun(x)|(1 + |x|)−N = O(n−a))}.

Elements of Eτ (O) and Nτ (O) are called moderate, respectively negligible sequences of
functions. The Colombeau algebra of tempered generalized functions is defined as the
quotient space

Gτ (O) = Eτ (O)/Nτ (O).

Elements of Gτ (O) are called tempered Colombeau generalized functions.

Let f ∈ S ′(Rd) be a Schwartz tempered distribution. Then

f 7→ [(f ∗ ϕn)n]

defines a linear embedding of S ′(Rd) into Gτ (Rd). Observe that OM (Rd) is a subal-
gebra of Gτ (Rd) via the constant embedding.

It is clear that Eτ (Rd) ⊂ EM (Rd) and Nτ (Rd) ⊂ N (Rd). It is well-known that
C∞(Rd) ⊂ EM (Rd), but C∞(Rd) is not contained in Eτ (Rd). For example, the function
ex ∈ C∞(R) is not in Eτ (R). Notice that Nτ (Rd) is a differential ideal in Eτ (Rd).
Hence, Gτ (Rd) is a differential algebra with componentwise operations.

Note that Eτ (Rd) ∩N (Rd) is a proper subset of Nτ (Rd) (see [Col85], Chapter 4,
Proposition 4.1.6, p. 101). Therefore, the mapping given by

ι : Gτ (Rd)→ G(Rd)

(un)n +Nτ (Rd) 7→ (un)n +N (Rd)

is not injective and it is not an embedding. So Gτ (Rd) is not a subalgebra of G(Rd).
But every (un)n representative of u ∈ Gτ (Rd) determines a unique element of G(Rd).
Mapping ι is called a canonical mapping.

2.3 Generalized Numbers and Point Values of
Colombeau Generalized Function

In this section, we recall the notion of generalized numbers, point values of Colombeau
generalized functions, and compactly supported generalized points.

Classical functions are completely characterized by their point value. Within
the Schwartz theory, generalized function cannot be characterized by their point
values in any similar way to classical functions. For Schwartz distributions a concept
of point values was given by S. Łojasiewicz in [Ło57], but an arbitrary Schwartz
distribution need not have point values in this sense at arbitrary points.
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Within the Colombeau theory, generalized functions do have point values. Natu-
rally, point values of Colombeau generalized functions are defined componentwise.
In contrast to classical functions Colombeau generalized functions are not completely
determined by their point values. It can happen that a Colombeau generalized func-
tion is not zero, but at every (classical) point its value is zero. But, Colombeau
generalized functions are completely determined by their values in generalized
points.

Let K be a field.

Definition 2.3.1 Let

EM = {(rn)n ∈ KN : (∃a ∈ N)(|rn| = O(na))},

N = {(rn)n ∈ EM : (∀b ∈ N)(|rn| = O(n−b))}.

The quotient space
K = EM/N

is called the ring of generalized numbers.

Especially, for K = R we obtain the ring of generalized real numbers denoted by R.
In case K = C we obtain the ring of generalized complex numbers and we denote it
by C.

It is clear that N is an ideal in EM . Hence, K is a ring. Observe that K is not a
field.

Note that R can be embedded into R by the identity mapping R ↪→ R, r 7→
(r)n +N .

Definition 2.3.2 Let u = [(un)n] ∈ G(O) (or u = [(un)n] ∈ Gτ (O)) and x0 ∈ O. The
point value of the Colombeau (tempered) generalized function u at x0 is the equivalence
class [(un(x0))n] in K.

Example 2.3.1 The point value of the Dirac delta distribution δ at zero is

Cd(δ)(0) = [(ϕn(0))n] = [(nϕ(0)))n]. �

Similarly as for classical functions, but now in terms of generalized numbers we
have the following result. For a proof, see [GKOS01] (Chapter 1, Proposition 1.2.35,
p. 33).

Theorem 2.3.1 Let O be a connected open subset of Rd and u = [(un)n] ∈ G(O) (or
u = [(un)n] ∈ Gτ (O)). Then, Du = 0 if and only if u ∈ K.
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The next example shows that Colombeau generalized functions are not deter-
mined by prescribing all their point values.

Example 2.3.2 All point values of the Colombeau generalized function Cd(x)Cd(δ) =
[(xϕn(x))n] ∈ G(R) are equal to zero. Indeed, for x0 6= 0, we have

x0ϕn(x0) = nx0ϕ(nx0) = O(n−b)

for every b ∈ N, since ϕ ∈ S(R). The case x0 = 0 is clear. It is known that x × δ = 0
in D′(O). But, Cd(x)Cd(δ) 6= 0 in G(R). Let us show it. Choose some x0 6= 0 with
ϕ(0) 6= 0, and set x = x0

n . Then xϕn(x) = x0ϕ(x0) 6= 0. Hence,

sup
x∈[−1,1]

|xϕn(x)| 6→ 0 as n→∞,

and (xϕn(x))n 6∈ N (R). �

In [OK99] the authors introduced the notion of generalized points of O and they
showed that Colombeau generalized functions are determined by their values at
compactly supported generalized points.

Definition 2.3.3 Let

OM = {(xn)n ∈ ON : (∃a ∈ N)(|xn| = O(na))}

and on OM define an equivalence relation ∼ by

(xn)n ∼ (yn)n ⇔ (∀b ∈ N)(|xn − yn| = O(n−b)).

The quotient space
Õ = OM/ ∼

is called the set of generalized points. The set

Õc = {x̃ = [(xn)n] ∈ Õ : (∃K b O)(xn ∈ K for all n)}

is called the set of compactly supported generalized points.

Especially, for O = R we obtain the set of generalized real numbers R̃ = RM/∼= R.
For R̃c we write Rc.

Definition 2.3.4 Let u = [(un)n] ∈ G(O) and x̃ ∈ Õc. The point value of u at the
compactly supported generalized point x̃ is the equivalence class u(x̃) = [(un(xn))n] ∈
Rc.
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Now, Colombeau generalized functions are completely characterized by knowing
their value at compactly supported generalized point. This is the main result of
paper [OK99] (see Theorem 2.4., p. 4, for a proof).

Theorem 2.3.2 Let u = [(un)n] ∈ G(O). Then u = 0 in G(O) if and only if u(x̃) = 0
in Rc for all x̃ ∈ Õc.

2.4 The Sharp Topology
The Colombeau theory was developed aiming to solve non-linear problems and it
has become an important tool in recent years. However, structure of the Colombeau
theory was purely algebraic. It was expected that it would be possible to define
topology compatible with the algebraic structure, in order to have a complete set of
algebraic and topological tools for studying of non-linear problems.

The first step in this direction was done by H. A. Biagioni, J. F. Colombeau and
M. Oberguggenberger in the mid 1980s. H. A. Biagioni and J. F. Colombeau had
introduced in [BC86] a coarser (non-Hausdorff) topology on the set of generalized
complex numbers. They proved that this topology is the topology of a uniform
structure. H. A. Biagioni used in [Bia88] this topology to prove the well posedness of
the Cauchy problem for semilinear hyperbolic systems with generalized functions as
initial conditions (the behavior of the solution changes continuously with the initial
conditions).

In [Obe91] the sharp topology was used to prove continuous dependence of
solutions to the Carleman system with positive measures as initial data. The sharp
topology in connection with the well posedness of the Burgers’ equation was intro-
duced in [BO92]. The sharp topology is mentioned in [Bia06] (Definition 5, p. 44),
though the author puts more emphasis on another topology in this book.

In the period 1992–1993 the sharp topology was independently reintroduced
and analyzed by D. Scarpalézos. His results were published later in [Sca98; Sca00;
Sca04]. The name "sharp topology" appeared in his papers and he was the first to
investigate its properties seriosly. D. Scarpalézos was the one who developed the
theory of the sharp topology. For more details on the sharp topology, the reader is
referred to [AFJ09; DHPV02; DHPV04; May07].

Omitting the general construction of the sharp topology on the Colombeau
algebra G(O), we give its construction on the set of compactly supported generalized
real numbers Rc.

Let (rn)n ∈ RN and define

‖(rn)n‖ = lim sup
n→∞

|rn|(logn)−1
.
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We have

‖(rn)n‖ <∞ ⇔ lim sup
n→∞

|rn|(logn)−1
<∞⇔ (∃σ > 0)

(
lim sup
n→∞

|rn|(logn)−1 = σ

)
⇔ (∃C > 0)(∃n0 ∈ N)(∀n ∈ N)

(
n > n0 ⇒ |rn| ≤ C logn

)
⇔ (∃C > 0)(∃n0 ∈ N)(∀n ∈ N)

(
n > n0 ⇒ |rn| ≤ nlogC

)
⇔ (∃a ∈ N) (|rn| = O(na)) ,

and

‖(rn)n‖ = 0 ⇔ lim sup
n→∞

|rn|(logn)−1 = 0

⇔ (∀C > 0)(∃n0 ∈ N)(∀n ∈ N)
(
n > n0 ⇒ |rn| ≤ C logn

)
⇔ (∀C > 0)(∃n0 ∈ N)(∀n ∈ N)

(
n > n0 ⇒ |rn| ≤ nlogC

)
⇔ (∀b ∈ N)

(
|rn| = O(n−b)

)
.

Therefore, the ring of generalized real numbers is given by

R = EM/N ,

where
EM = {(rn)n ∈ RN : ‖(rn)n‖ <∞},

N = {(rn)n ∈ EM : ‖(rn)n‖ = 0}.

The corresponding set of compactly supported generalized real numbers is given
by

Rc = EcM/N ,

where
EcM = {(rn)n ∈ EM : (∃K b R) (rn ∈ K)}.

The mapping

dc : EcM × EcM → R, dc((rn)n, (sn)n) = ‖(rn − sn)n‖

is an ultra-pseudometric on EcM , and the mapping

d̃c : Rc ×Rc → R, d̃c([(rn)n], [(sn)n]) = dc((rn)n, (sn)n)

is an ultrametric on Rc. The topology defined by d̃c is called the sharp topology on
Rc. For given [(rn)n] ∈ Rc and k ∈ R+, we call

L((rn)n, k)) = {[(sn)n] ∈ Rc : ‖(rn)n − (sn)n‖ < k}

= {[(sn)n] ∈ Rc : lim sup
n→∞

|rn − sn|(logn)−1
< k}
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the sharp open ball with center [(rn)n] and radius k. In this dissertation, we shall
endow the set of compactly supported generalized real numbersRc with the topology
generated by the sharp open balls. We will denote by B(Rc) the σ-algebra generated
by the sharp open balls of Rc. Observe that the σ-algebra generated by the sharp
open balls is smaller than the σ-algebra generated by the sharp topology in Rc. This
is a consequence of the fact that Rc is not separable. This fact was also observed in
[May07]. We will show this in the next chapter.

2.5 Positivity and Positive Definiteness

Concepts of positivity and positive definitness are very important in the theory
of GSPs. These concepts in the framework of the Colombeau algebras have been
introduced by M. Oberguggenberger, S. Pilipović and D. Scarpalézos in [OPS07]. In
this section we quote definitions and results given in [OPS07].

2.5.1 Positive Colombeau Generalized Functions

First, we recall the notions of positive generalized functions from D′(O); see [GV64;
Vla79]. An f ∈ D′(O) is positive if

〈f, φ〉 ≥ 0,

for every φ ∈ D(O) with φ ≥ 0. We write f ≥ 0.

An element r ∈ R is positive, denoted by r ≥ 0, if it has a representative (rn)n
such that for every a > 0 there exists n0 ∈ N satisfying the inequality

rn + n−a ≥ 0,

for every n > n0. If the above inequality is valid for some representative of r, it is
valid for every representative of r. It is not difficult to see that r ∈ R is positive if
and only if there is a positive representative (rn)n of r, i.e. there is a representative
(rn)n such that rn ≥ 0 for all n ∈ N.

Definition 2.5.1 A Colombeau generalized function u ∈ G(O) is positive if there exists
a representative (un)n of u such that for every a > 0 and K b O there exists n0 ∈ N
such that for every n > n0 it holds

inf
x∈K

un(x) + n−a ≥ 0. (2.4)

We write u ≥ 0.
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If (2.4) holds for some representative of u, it holds for every representative of u.
Note that u ∈ G(O) is positive if and only if there exists a representative (un)n such
that un(x) ≥ 0, x ∈ O, n ∈ N.

The proof of the following proposition is given in [OPS07] (see Proposition 3.4,
p. 1324).

Proposition 2.5.1 A Colombeau generalized function u = [(un)n] ∈ G(O) is positive
if and only if for every x̃ = [(xn))n] ∈ Õc the generalized number u(x̃) = [(un(xn))n]
is positive.

Next we recall the notion of D′-weakly positive Colombeau generalized func-
tion.

Definition 2.5.2 A Colombeau generalized function u = [(un)n] ∈ G(O) is D′-weakly
positive if for every positive φ ∈ D(O)

zφ =
[(∫

Rd
un(t)φ(t) dt

)
n

]
≥ 0.

Observe that positivity is a stronger property than D′-weak positivity. If u = [(un)n] ∈
G(O) satisfies u ≥ 0 and u ≤ 0, then u = 0. Also, if u = [(un)n] ∈ G(O) satisfies
u ≥ 0 and u ≤ 0 in the D′-weak sense, then u = 0 in the sense of distributions, i.e.
for every positive φ ∈ D(O) it holds∫

O
un(x)φ(x) dx ∈ N (O).

The following proposition gives the compatibility between positivity of Colombeau
generalized functions and positivity of Schwartz distribution. The proof may be
found in [OPS07] (see Proposition 3.16, p. 1328).

Proposition 2.5.2 Let f ∈ D′(O). Then Cd(f) is D′-weakly positive if and only if f is
a positive Schwartz distribution.

2.5.2 Positive-definite Colombeau Generalized Functions
Recall, see [GV64; Vla79], an f ∈ D′(Rd) is positive-definite if

〈f, φ ∗ φ∗〉 ≥ 0,

where φ∗(x) = φ(−x), φ ∈ D(Rd).

Next we recall the definition of positive-definite Colombeau generalized function
on Rd.
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Definition 2.5.3 A Colombeau generalized function u ∈ G(Rd) is positive-definite on
Rd if it has a representative (un)n such that

(∀K b Rd)(∀a > 0)(∃n0 ∈ N)(∀ζ1, . . . , ζm ∈ C)

inf
xk,xj∈K

m∑
k,j=1

(un(xk − xj) + n−a)ζkζj ≥ 0, n ≥ n0.

The proof of the next proposition may be found in [OPS07] (see Proposition 3.6,
p.1324).

Proposition 2.5.3 The following conditions are equivalent:

(i) u ∈ G(Rd) is positive-definite.

(ii) There is a representative (un)n such that

(∀K b Rd)(∃n0 ∈ N)(∀ζ1, . . . , ζm ∈ C)

inf
xk,xj∈K

m∑
k,j=1

un(xk − xj)ζkζj ≥ 0, n ≥ n0.

(iii) There is a representative (un)n such that

(∀K b Rd)(∀a > 0)(∃n0 ∈ N)(∀ζ1, . . . , ζm ∈ C)

inf
xk,xj∈K

m∑
k,j=1

un(xk − xj)ζkζj + n−a ≥ 0, n ≥ n0.

Next is the definition of D′-weakly positive-definite Colombeau generalized
function on Rd.

Definition 2.5.4 A Colombeau generalized function u = [(un)n] ∈ G(Rd) is D′-weakly
positive-definite if for every φ ∈ D(Rd),

zφ =
[(∫

Rd
un(t)(φ ∗ φ∗)(t) dt

)
n

]
≥ 0.

Proposition 2.5.4 Let f ∈ D′(Rd). Then Cd(f) is D′-weakly positive-definite if and
only if f is a positive-definite Schwartz distribution.

Positive-definite Schwartz distributions are in connection with translation in-
variant positive-definite bilinear functionals; see [GV64]. Recall, a real bilinear
functional B(φ, ψ) on D(Rd) is a functional which is linear in both arguments φ and
ψ. It is said that a real bilinear functional B(φ, ψ) on D(Rd) is translation invariant
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if its value does not change under simultaneous translation of φ(x) and ψ(x) by the
same vector h ∈ Rd, i.e.

B(φ(x), ψ(x)) = B(φ(x+ h), ψ(x+ h)), h ∈ Rd.

A real bilinear functional B(φ, ψ) on D(Rd) is positive-definite if for every φ ∈
D(Rd)

B(φ, φ) ≥ 0.

Let B(φ, ψ) be a positive-definite real bilinear functional on D(Rd). Recall, see
[GV64], if φ1, . . . , φm ∈ D(Rd) are linearly independent functions and ζ1, . . . , ζm ∈
R, then with

ψ =
m∑
i=1

ζiφi,

we obtain
m∑

i,j=1
B(φi, φj)ζiζj = B(ψ,ψ) ≥ 0.

Every real translation invariant bilinear functional on D(Rd) can be written in the
form

B(φ, ψ) = 〈F (x− y), φ(x)ψ(y)〉, (2.5)

where F is a generalized function in D′(Rd). Moreover, B(φ, ψ) is positive-definite if
and only if the generalized function F, which corresponds to B via (2.5), satisfies

〈F, φ ∗ φ∗〉 ≥ 0,

i.e. F is also positive-definite.

An element B ∈ G(O×O) is D′-weakly positive-definite if it has a representative
(Bn)n such that for every φ ∈ D(O),[(∫

Rd
Bn(x, y)φ(x)φ(y) dxdy ≥ 0

)
n

]
≥ 0.

2.6 Differential Operators With Generalized Real
Constant Coeficients

In this section we will briefly present results from [PS96] and we will use them in
Chapter 6.

Let P (D) be a differential operator of order k with coefficients inR of the form

P (D) =
∑
|α|≤k

aαD
α, aα ∈ R, (2.6)
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where Dα = i|α|∂α. Consider the equation

P (D)u = f, (2.7)

in G(Rd). In [PS96] the classical method for solving the equation (2.7) is adapted to
a method of solving the family of equations

Pn(D)un = fn, n ∈ N, (2.8)

where
Pn(D) =

∑
|α|<k

aα,nD
α, n ∈ N,

is a family of differential operators with moderate coefficients in the Colombeau
sense ((aα,n)n ∈ EM ), and (fn)n ∈ EM (Rd) is a representative of a given Colombeau
generalized function f ∈ G(Rd).

The main result is given in the following theorem. For the proof see [PS96] (see
Theorem 1, p. 311).

Theorem 2.6.1 Let P (D) be a differential operator with coefficients in R of the form
(2.6) such that ∣∣∣∣∣∣

∑
|α|=k

aα,nc
α

∣∣∣∣∣∣ > Cn−r, n ∈ N,

holds for some c ∈ Rd, C > 0 and r ∈ R. Then for every (fn)n ∈ EM (Rd) there exists a
solution (un)n ∈ EM (Rd) of the equation (2.8). In particular, [(un)n] is the solution of
equation (2.7).
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3Translation Invariant Colombeau
Generalized Functions

„ A mathematician is a person who can find
analogies between theorems; a better
mathematician is one who can see analogies
between proofs and the best mathematician can
notice analogies between theories.

— Stefan Banach
(1892 - 1945)

Invariance under translations is a very important concept of the theory of stationary
processes. Stationary CSPs are the subject of research in Chapter 5, Section 5.5.
Therefore, this chapter is devoted to properties of translation invariant Colombeau
generalized functions.

Analogies between the theory of Colombeau generalized functions and the theory
of classical functions are nontrivial. It is known that if a smooth function is invariant
under all translations, then it has to be a constant function. A conjecture of M.
Oberguggenberger was that the same is true for a Colombeau generalized function,
i.e. a translation invariant Colombeau generalized function is a constant generalized
function. His conjecture was proven by S. Pilipović, D. Scarpalézos and V. Valmorin
in [PSV06].

In [PSV06] (see Theorem 6, p.798), it has been shown that a Colombeau
generalized function u ∈ G(Rd) invariant under all translations is a generalized
constant. In [GOPS18a], we show that this fact also holds for u ∈ G(O), where O is
an open convex subset of Rd.

3.1 Translation Invariant Colombeau Generalized
Functions over Rd

In this section, we study a translation invariant Colombeau generalized function over
Rd. As mentioned above, translation invariant Colombeau generalized functions
over Rd are studied in [PSV06]. We recall the theorem on translation invariant
Colombeau generalized function over Rd from [PSV06].
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A Colombeau generalized function u = [(un)n] ∈ G(Rd) is said to be translation
invariant if

u(x+ h)− u(x) = 0, x ∈ Rd,

holds as an equality in G(Rd) for any h ∈ Rd.

Theorem 3.1.1 Let u = [(un)n] ∈ G(Rd) be a translation invariant Colombeau gener-
alized function. Then u is a constant generalized function in G(Rd).

In [PSV06] two proofs of above theorem are given. The Baire theorem was used
in the first proof. Arguments of the parametrix were used in the second proof. We
give a proof of Theorem 3.1.1 following the first proof in [PSV06]. Notice that H.
Vernaeve gave two original proofs of Theorem 3.1.1 in [Ver08] as well.

PROOF. Let R > 0. Let us show that u = [(un)n] is a constant generalized function,
i.e. for every p ∈ N

lim
n→∞

sup
t∈B(0,R)

np|un(t)− un(0)| = 0.

By assumption, u is invariant under all translations, i.e.

(∀R > 0)(∀p ∈ N)(∀x ∈ Rd)(∃n0 ∈ N)(∀n ∈ N)

(n ≥ n0 ⇒ sup
t∈B(0,R+δ)

np|un(x+ t)− un(t)| ≤ 1),

where δ > 0 is arbitrary. Let p, l ∈ N. Put

Fl,p = {x ∈ Rd : n > l⇒ sup
t∈B(0,R+δ)

np|un(x+ t)− un(t)| ≤ 1}.

The sets Fl,p are closed and
∞⋃
l=1

Fl,p = Rd.

By the Baire theorem, there exist l0 ∈ N, x0 ∈ Rd and r > 0 such that

B(x0, r) ⊂ Fl0,p.

Put r1 = inf{r, δ}. If h ∈ B(0, r1), then for n > l0

sup
t∈B(0,R)

np|un(h+ t)− un(t)|

≤ sup
t∈B(0,R)

np|un(h+ x0 + t)− un(h+ t)|+ sup
t∈B(0,R)

np|un(h+ x0 + t)− un(t)|

≤ sup
τ∈B(0,R+δ)

np|un(x0 + τ)− un(τ)|+ sup
t∈B(0,R+δ)

np|un(h+ x0 + t)− un(t)|

≤ 2, (3.1)
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where τ = h+ t ∈ B(0, R + δ). Chose n ∈ N such that n− 1 > R
r1
. Let x ∈ B(0, R)

be an arbitrary point. We can find points x1, x2, . . . , xn ∈ B(0, R) such that x1 = 0,
xn = x and d(xi, xi+1) < r1. We have

|un(x)− un(0)| ≤ |un(xn)− un(xn−1)|+ . . .+ |un(x3)− un(x2)|+ |un(x2)− un(x1)|.

Therefore, using estimate (3.1) we obtain

sup
t∈B(0,R)

np|un(t)− un(0)| ≤ 2n, n > l0.

From this the claim of the theorem follows. �

3.2 Translation Invariant Colombeau Generalized
Functions over an Open Convex Set O

In this section, we consider properties of translation invariant Colombeau generalized
functions over an open convex subset O of Rd.

The next theorem is the generalization of the Theorem 3.1.1. Its proof was given
by S. Pilipović in [GOPS18a]. The Baire theorem is again used in the proof.

Theorem 3.2.1 Let O be an open convex set in Rd. Assume that for every K b O and
every h ∈ R such that t ∈ K implies t+ h ∈ O, the following holds:

(∀p ∈ N)(∃np ∈ N)(∀n ∈ N)(n ≥ np ⇒ sup
t∈K

np|un(t+ h)− un(t)| ≤ 1). (3.2)

Then [(un)n] is a generalized constant on O, i.e. there exists (rn)n ∈ CN such that for
every K b O and every p > 0 there exists np > 0 such that

sup
x∈K

np−2|un(x)− rn| ≤ 1, n > np. (3.3)

PROOF. Assume first that O is a bounded convex set and that K b O, where m > 0
be chosen so that K b O3m; O3m is the set of t ∈ O such that d(t, ∂O) > 3m. We
know that Om ⊃ O2m ⊃ O3m are compact in O and that they are all convex. We will
show that there exists a generalized constant [(rn)n] such that for every p > 0 there
exists np > 0 such that (3.3) holds.

Let p ∈ N. Put

Fl,p = {h ∈ B(0,m) : (n ≥ l)⇒ ( sup
t∈Om

np|un(t+ h)− un(t)| ≤ 1)}.
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Then Fl,p are closed sets and

⋃
l∈N

Fl,p = B(0,m).

By the Baire theorem, there exist h0 ∈ B(0,m) and c ∈ (0,m) such that

B(h0, c) ⊂ Fl0,p,

that is,
sup

t∈Om,h∈B(h0,c)
np|un(t+ h)− un(t)| ≤ 1, n ≥ l0. (3.4)

We will show that

sup
t∈O2m,h∈B(0,c)

np|un(t+ h)− un(t)| ≤ 2, n ≥ l0. (3.5)

Note, if |ω| < m, then O2m − ω ∈ Om. Every h ∈ B(0, c) can be writen as h =
h1 − h0, h1 ∈ B(h0, c). Thus, for t ∈ Om, we write

|un(t+ h)− un(t)| ≤ |un(t+ h1 − h0)− un(t+ h1)|+ |un(t+ h1)− un(t)|

= |un(v)− un(v + h0)|+ |un(t+ h1)− un(t)|,

where t+ h1 − h0 = v. Since v ∈ Om, by (3.4), we have

sup
t∈O2m,h∈B(0,c)

np|un(t+ h)− un(t)|

≤ sup
v∈Om,h∈B(h0,c)

np|un(v)− un(v + h)|+ sup
t∈Om,h1∈B(h0,c)

np|un(t+ h1)− un(t)|

≤ 2, n ≥ l0.

For the moment, consider points of Rd as vectors ~h ≡ h. Any ~h ∈ Rd, so that
|~h| < m, can be written as a sum of vectors ~hi with the same direction as ~h so that
~h =

∑w
i=1

~hi, where w ≤ [m/c] + 1 and |~hi| < c, i = 1, . . . , w. Note that the returning
to the "point" notation we have that for any t ∈ O3m and h ∈ B(0,m),

|un(t+ h)− un(t)|

≤ |un(t+ h)− un(t+
∑

i≤w−1
hi)|+ |un(t+

∑
i≤w−1

hi)− un(t+
∑

i≤w−2
hi)|

+ . . .+ |un(t+ h1)− un(t)|

≤
(2m
c

+ 2
)
n−p, n ≥ l0. (3.6)

The last estimate follows from the fact that

t+
∑
i≤j−1

hi = s ∈ O2m,
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for any j = 2, . . . , w. So the summands become |un(s+ hj)− un(s)|; we have to use
(3.5) and obtain (3.6). Extending l0 and denote it by n′p, we obtain

sup
t∈O3m

np−1|un(t+ h)− un(t)| ≤ 1, n > n′p. (3.7)

Now, we will use the fact that K can be covered by a finite set of balls with
the radius less than m and all laying inside O3m. Denote them by B1, . . . , Bj with
centers at t1, . . . , tj and put

rn = fn(t1), n ∈ N,

where we assume that t1 ∈ K. We note that every t ∈ K can be connected by t1
by a finite (at most 2j − 1) number of segments connecting points belonging to the
intersections of two balls and the centers of the balls. Points of the intersections will
be denoted by

s1 ∈ B1 ∩B2, . . . , sj−1 ∈ Bj−1 ∩Bj .

Let t ∈ Bj . (If t ∈ Bk, k < j, the procedure is similar.) We write

|un(t)− un(t1)| ≤

|un(t)−u(tj)|+ |un(tj)−un(sj−1)|+ |un(sj−1)−un(tj−1)|+ . . .+ |un(s1)−un(t1)|.

Since
d(t, tj), d(tj , sj−1), d(sj−1, tj−1), . . . , d(s1, t1) < m

we apply for the each absolute value on the right hand side the same procedure as
above and in this way, obtain

sup
x∈K

np−1|un(x)− rn| ≤ C, n > n′p.

Again extending n′p to np, we obtain (3.3).

If O is unbounded open set and K b O, then, since the convex hull of K is
also compact, there exists an open bounded convex set O0 such that K b O0 ⊂ O.
Repeating the above given proof for K and O0 we obtain the complete proof of the
theorem. �

Theorem 3.1.1 and Theorem 3.2.1 will turn out to be very useful in Section 5.5.
Namely, Section 5.5 is devoted to stationary CSPs. Notice that an OSP is said to
be stationary when its distribution is translation invariant. An OSP is said to be
weakly stationary when its expectation and its covariance are translation invariant.
Therefore, the properties of translation invariant Colombeau generalized functions
are important for the study of stationary CSPs.
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4Colombeau Stochastic Processes

„ The moving power of mathematical invention is
not reasoning, but imagination.

— Augustus De Morgan
(1806 - 1871)

The aim of this chapter is to present Colombeau stochastic processes (CSPs). Section
4.1, Section 4.4 and Section 4.5 contain original parts of the dissertation, which are
published in [GOPS18b].

In Section 4.1 we define several classes of CSPs. The notion and basic properties
of Gaussian Colombeau stochastic processes (GCSPs) are recalled in Section 4.2. In
Section 4.3 we recall the embedding of a distributional stochastic processes into the
space of Colombeau stochastic processes. This section relies on [MPS09]. Finally, in
Section 4.4, we give the characterisation of CSPs via their generalized point values.
The main result in this chapter is the proof of the measurability of CSPs via their
point values. This result is presented in Section 4.5.

4.1 Definitions and Basic Properties
We fix a probability space (Ω,F , P ); F is a family of measurable subsets of Ω and
P is a probability measure (for more details, see Appendix A.3). Let O ⊂ Rd be an
open set.

In the sequel, we will use a sequence of mollifiers (ϕn)n defined by (2.1). Recall
that a function ϕ ∈ S(Rd) from the definition of a sequence of mollifiers has the
properties (2.2-2.3). Additionally, we assume that ϕ ∈ S(Rd) is positive-definite,
i.e. ϕ̂ ≥ 0, where ϕ̂ denotes the Fourier transform of ϕ. For example, one can take
ϕ̂ ∈ D(Rd), ϕ̂ ≥ 0 and ϕ̂ ≡ 1 in a neighborhood of zero.

4.1.1 Colombeau Stochastic Processes with Values in
Lp(Ω)

Let p ∈ [1,∞]. The space Lp(Ω) consists of random variables with finite pth moments
(see Appendix A.3). Now, we introduce the Colombeau stochastic processes over O
with values in Lp(Ω).
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Definition 4.1.1 Let k ∈ N ∪ {∞}. Let EkLp(Ω,O) = (CkLp(Ω,O))N be the set of se-
quences (un(ω, x))n, ω ∈ Ω, x ∈ O, n ∈ N, such that the mapping x 7→ un(ω, x) is in
Ck(O) for a.a. ω ∈ Ω, and for every x ∈ O, un(·, x) is in Lp(Ω). Define:

EkM,Lp(Ω,O) =
{

(un)n ∈ EkLp(Ω,O) : (∀K b O)(∀α ∈ Nd0, |α| ≤ k)

(∃a ∈ N)
(

sup
x∈K
‖∂αun(·, x)‖Lp = O(na)

)}
,

N k
Lp(Ω,O) =

{
(un)n ∈ EkLp(Ω,O) : (∀K b O)(∀α ∈ Nd0, |α| ≤ k)

(∀b ∈ N)
(

sup
x∈K
‖∂αun(·, x)‖Lp = O(n−b)

)}
.

Elements of the vector spaces EkM,Lp(Ω,O) and N k
Lp(Ω,O) are called moderate and

negligible sequences of functions with values in Lp(Ω), respectively. The elements of
the quotient space

GkLp(Ω,O) = EkM,Lp(Ω,O)/N k
Lp(Ω,O)

are called Colombeau stochastic processes (CSPs) over O with values in Lp(Ω).

For the case k =∞, in the above definition we will omit the superscript∞ and
use the notation EM,Lp(Ω,O), NLp(Ω,O) and GLp(Ω,O).

In the sequel, we will use the phrase CSPs u with values in Lp(Ω) if u is element
of GLp(Ω,O) or GkLp(Ω,O). In the cases where it is important for k to be specified,
we will do that.

Observe that pathwise continuity does not imply Lp-continuity and neither does
Lp-continuity imply pathwise continuity. Counterexamples are given in Appendix
A.3 (see Example A.3.1 and Example A.3.2). In above definition we require pathwise
continuity almost everywhere (a.e.) and pathwise differentiability k times, but in
general the mappings x 7→ un(·, x) do not have to be continuous or differentiable
with respect to the Lp-norm.

Also, observe that pathwise Ck-smoothness for a.a. ω ∈ Ω can easily be modified
to obtain Ck-smoothness for every ω ∈ Ω. Namely, there may exist at most countably
many sets An,α, n ∈ N, α ≤ k, of probability measure zero on which the mapping
x 7→ un(ω, x) is not of class Ck. Then A = ∪n,αAn,α is also a zero-probability set
and we can modify the representatives to be of class Ck by letting un(ω, x) = 0 for
ω ∈ A.

The following result is a generalization of Theorem 2.1.1.

Proposition 4.1.1 (un)n ∈ EM,Lp(Ω,O) is negligible if and only if for every K b O
and for every b ∈ N

sup
x∈K
‖un(·, x)‖Lp = O(n−b).
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PROOF. If (un)n ∈ EM,Lp(Ω,O) is negligible, then it trivially satisfies negligibility of
the zeroth order derivative.

Suppose that (un)n ∈ EM,Lp(Ω,O) satisfies negligibility of the zeroth order
derivative. By induction, it suffices to show that the same is true for (∂xiun)n for any
1 ≤ i ≤ d. Let K b O and set δ := min(1,dist(K, ∂O)), K1 := K + Bδ/2(0). Since
(un)n ∈ EM,Lp(Ω,O), there exists a ∈ N such that

sup
x∈K1

‖∂2
xiun(·, x)‖Lp = O(na)

as n→∞. From the given condition it follows that for any b ∈ N,

sup
x∈K1

‖un(·, x)‖Lp = O(n−(a+2b)).

Using Taylor’s theorem, we obtain

un(·, x+ n−(a+b)ei) = un(·, x) + ∂xiun(·, x)n−(a+b) + 1
2∂

2
xiun(·, xθ)n−2(a+b),

i.e.

∂xiun(·, x) = (un(·, x+ n−(a+b)ei)− un(·, x))na+b − 1
2∂

2
xiun(·, xθ)n−(a+b),

where xθ = x+ θn−(a+b)ei ∈ K1 for some θ ∈ (0, 1). Therefore,

sup
x∈K
‖∂xiun(·, x)‖Lp ≤

(
sup
x∈K1

‖un(·, x+ n−(a+b)ei)‖Lp + sup
x∈K1

‖un(·, x)‖Lp
)
na+b

+1
2 sup
x∈K1

‖∂2
xiun(·, x)‖Lpn−(a+b)

≤ Cn−b. �

Note that the operation of multiplication is not closed in the vector space
EkM,Lp(Ω,O).

Proposition 4.1.2 Let 1
p + 1

q = 1
r .

(a) If (un)n ∈ N k
Lp(Ω,O) and (vn)n ∈ EkLq(Ω,O), then (unvn)n ∈ N k

Lr(Ω,O).

(b) If (un)n ∈ EkM,Lp(Ω,O) and (vn)n ∈ EkLq(Ω,O), then (unvn)n ∈ EkLr(Ω,O).

PROOF.

(a) Let α ∈ Nd0 with |α| ≤ k. Let b ∈ N be arbitrary. For any β ∈ Nd0 with β ≤ α,
there exists a ∈ N such that

sup
x∈K
‖∂α−βvn‖Lq = O(na).
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It holds
sup
x∈K
‖∂βun‖Lp = O(n−(a+b)).

Now, we have

sup
x∈K
‖∂α(unvn)‖Lr ≤ C sup

x∈K
‖∂βun‖Lp‖∂α−βvn‖Lq = O(n−b).

This implies the assertions.

(b) Follow directly from the definition. �

Another fact to note is that the operation of differentiation is not closed in
the vector space EkM,Lp(Ω,O), k < ∞. Indeed, if (un)n ∈ EkM,Lp(Ω,O) and α ∈ Nd0,
|α| ≤ k, then there exists a ∈ N such that

sup
x∈K
‖∂β(∂αun(ω, x))‖Lp = sup

x∈K
‖∂α+βun(ω, x))‖Lp = O(na),

for every β ∈ Nd0, |β| ≤ k − |α|. Therefore, (∂αun)n ∈ Ek−|α|M,Lp (Ω,O).

If the elements of a sequence (un)n do not depend on x ∈ O, then Definition
4.1.1 reduces to the following definition.

Definition 4.1.2 Let k ∈ N ∪ {∞}. Define:

EkM,Lp(Ω) = {(un)n ∈ Lp(Ω) : (∃a ∈ N)(‖un(·)‖Lp = O(na)},

N k
Lp(Ω) = {(un)n ∈ Lp(Ω) : (∀b ∈ N)(‖un(·)‖Lp = O(n−b)}.

Elements of the vector spaces EkM,Lp(Ω) and N k
Lp(Ω) are called moderate and negligible

sequences of random variables, respectively. Elements of the corresponding quotient
space

GLp(Ω) = EM,Lp(Ω)/NLp(Ω)

are called generalized random variables with values in Lp(Ω).

4.1.2 Colombeau Stochastic Processes with Values in
M∞(Ω)

Denote by
M∞(Ω) =

⋂
1≤p<∞

Lp(Ω)

the space of random variables with finite seminorms

‖| · |‖s = sup
1≤p≤s

‖ · ‖Lp , s ∈ N.

36 Chapter 4 Colombeau Stochastic Processes



Definition 4.1.3 Let EM∞(Ω,O) = (C∞M∞(Ω,O))N be the set of sequences (un(ω, x))n,
ω ∈ Ω, x ∈ O, n ∈ N, such that the mapping x 7→ un(ω, x) is in C∞(O) for a.a. ω ∈ Ω,
and for every x ∈ O, un(·, x) is inM∞(Ω). Define:

EM,M∞(Ω,O) =
{

(un)n ∈ EM∞(Ω,O) : (∀K b O)(∀α ∈ Nd0)(∀s ∈ N)

(∃a ∈ N)
(

sup
x∈K
‖|∂αun(·, x)|‖s = O(na)

)}
,

NM∞(Ω,O) =
{

(un)n ∈ EM∞(Ω,O) : (∀K b O)(∀α ∈ Nd0)(∀s ∈ N)

(∀b ∈ N)
(

sup
x∈K
‖|∂αun(·, x)|‖s = O(n−b)

)}
.

Elements of EM,M∞(Ω,O) and NM∞(Ω,O) are called moderate and negligible se-
quences of functions with values in M∞(Ω), respectively. Elements of the quotient
space

GM∞(Ω,O) = EM,M∞(Ω,O)/NM∞(Ω,O)

are called Colombeau stochastic processes (CSPs) over Ω with values inM∞(Ω).

The spaces EM∞(Ω,O) and NM∞(Ω,O) are algebras. Clearly, NM∞(Ω,O) is an
ideal in EM∞(Ω,O), and so GM∞(Ω,O) is an algebra.

The following result gives a characterization of NM∞(Ω,O) as a subspace of
EM,M∞(Ω, O).

Proposition 4.1.3 (un)n ∈ EM,M∞(Ω,O) is negligible if and only if for every K b O,
for every s ∈ N and for every b ∈ N

sup
x∈K
‖|un(·, x)|‖s = O(n−b).

PROOF. The proof is analogous to the proof of Proposition 4.1.1. �

Let p ≥ q. Notice that

EM,L∞(Ω,O)→ EM,M∞(Ω,O)→ EM,Lp(Ω,O)→ EM,Lq(Ω,O)→ EM,L1(Ω,O),

NL∞(Ω,O)→ NM∞(Ω,O)→ NLp(Ω,O)→ NLq(Ω,O)→ NL1(Ω,O).

Therefore, for p ≥ q, there exist canonical mappings

GL∞(Ω,O)→ GM∞(Ω,O)→ GLp(Ω,O)→ GLq(Ω,O)→ GL1(Ω,O)

although the mapping is not injective. This means that a sequence (un)n determining
an element of the left space determines the element of the right space.
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Now, we introduce the notion of generalized random variables with values in
M∞(Ω).

Definition 4.1.4 Define:

EM,M∞(Ω) = {(un)n ∈M∞(Ω) : (∀s ∈ N)(∃a ∈ N)(‖|un(·)|‖s = O(na)},

NM∞(Ω) = {(un)n ∈M∞(Ω) : (∀s ∈ N)(∀b ∈ N)(‖|un(·)|‖s = O(n−b)}.

Elements of the vector spaces EM,M∞(Ω) and NM∞(Ω) are called moderate and negligi-
ble sequences of random variables, respectively. Elements of the corresponding quotient
space

GM∞(Ω) = EM,M∞(Ω)/NM∞(Ω)

are called generalized random variables with values inM∞(Ω).

4.1.3 Colombeau Stochastic Processes with Values in L(Ω)
The space L(Ω) comprises the real valued random variables (measurable functions)
on Ω endowed with almost sure convergence.

In this subsection, we consider a class of CSPs with values in L(Ω).

Definition 4.1.5 Let k ∈ N ∪ {∞} and EkL(Ω,O) be the set of sequences (un(ω, x))n,
ω ∈ Ω, x ∈ O, n ∈ N, such that (un(ω, ·))n ∈ (Ck(Ω))N for almost all (a.a.) ω ∈ Ω,
and for every x ∈ O, (un(·, x))n is a sequence of measurable functions on Ω. Define:

EkM,L(Ω,O) =
{

(un)n ∈ EkL(Ω,O) : (for a.a. ω ∈ Ω)(∀K b O)

(∀α ∈ Nd0, |α| ≤ k)(∃a ∈ N)
(

sup
x∈K
|∂α un(ω, x)| = O(na)

)}
,

N k
L(Ω,O) =

{
(un)n ∈ EkL(Ω,O) : (for a.a. ω ∈ Ω)(∀K b O)

(∀α ∈ Nd0, |α| ≤ k)(∀b ∈ N)
(

sup
x∈K
|∂α un(ω, x)| = O(n−b)

)}
.

Elements of EkM,L(Ω,O) and N k
L(Ω,O) are called moderate and negligible sequences of

functions with values in L(Ω), respectively. The elements of the quotient space

GkL(Ω,O) = EkM,L(Ω,O)/N k
L(Ω,O)

are called Colombeau stochastic processes (CSPs) over O with values in L(Ω).

If k =∞ in the above definition we will use the notation EM,L(Ω,O), NL(Ω,O)
and GL(Ω,O). Clearly, EkM,L(Ω,O) is an algebra with respect to multiplication and
N k
L(Ω,O) is an ideal in EkM,L(Ω,O), so we have that GkL(Ω,O) is an algebra.
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The following result shows that in order that an element (un)n ∈ EM,L(Ω,O) is
in N (Ω,O) it is enough to prove negligibility of its zeroth derivative.

Proposition 4.1.4 (un)n ∈ EM,L(Ω,O) is negligible if and only if the following condi-
tion is satisfied:

(for a.e.ω ∈ Ω)(∀K b O)(∀b ∈ N)
(

sup
x∈K
|un(·, x)| = O(n−b)

)

PROOF. If (un)n ∈ EM,L(Ω,O) is negligible, then it trivially satisfies negligibility of
the zeroth order derivative.

Let (un)n ∈ EM,L(Ω,O) satisfies negligibility of the zeroth order derivative. It
suffices to prove that for any 1 ≤ i ≤ d, (∂xiun)n satisfies negligibility of zeroth order
derivative. Let K b O and set δ := min(1,dist(K, ∂O)), K1 := K + Bδ/2(0). Let
b ∈ N be given. By assumptions we can choose a ∈ N such that both of the estimates
hold

sup
x∈K1

|∂2
xiun(·, x)| = O(na),

sup
x∈K1

|un(·, x)| = O(n−(a+2b)),

for a.a. ω ∈ Ω. Taylor expansion gives

∂xiun(·, x) = (un(·, x+ n−(a+b)ei)− un(·, x))na+b − 1
2∂

2
xiun(·, xθ)n−(a+b),

where xθ = x+ θn−(a+b)ei ∈ K1 for some θ ∈ (0, 1). Therefore,

sup
x∈K
‖∂xiun(·, x)‖Lp

≤
(

sup
x∈K1

‖un(·, x+ n−(a+b)ei)‖Lp + sup
x∈K1

‖un(·, x)‖Lp
)
na+b

+1
2 sup
x∈K1

‖∂2
xiun(·, x)‖Lpn−(a+b)

≤ Cn−b. �

Notice that if elements of a sequence (un)n do not depend on x ∈ O, then
Definition 4.1.5 reduces to the definition of generalized random variables with
values in L(Ω).

Definition 4.1.6 Let EL(Ω) be the space of sequences of measurable functions on Ω.
Define:

EM,L(Ω) = {(un)n ∈ EL(Ω) : (for a.a. ω ∈ Ω)(∃a ∈ N) (|un(ω)| = O(na))} ,

NL(Ω) =
{

(un)n ∈ EL(Ω) : (for a.a. ω ∈ Ω)(∀b ∈ N)
(
|un(ω)| = O(n−b)

)}
.
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Elements of EL(Ω) and NL(Ω) are called moderate and negligible sequences of random
variables, respectively. Elements of the quotient space

GL(Ω) = EM,L(Ω)/NL(Ω)

are called generalized random variables with values in L(Ω).

4.1.4 Tempered Colombeau Stochastic Processes with
Values in L2(Ω)

In Chapter 6 we will investigate the solutions for linear SPDEs with generalized
constant coefficients in the framework of CSPs. Since we will use the Fourier
transform in Chapter 6 we need to switch to tempered Colombeau generalized
function. Therefore, we introduce the notion of tempered Colombeau stochastic
processes over Rd with values in L2(Ω).

Definition 4.1.7 Set

Eτ,L2(Ω,Rd) =
{

(un)n ∈ EL2(Ω,Rd) : (∀α ∈ Nd0)(∃N ∈ N)(
sup
x∈Rd

‖∂αun(·, x)‖L2(1 + |x|)−N = O(nN )
)}
,

Nτ,L2(Ω,Rd) =
{

(un)n ∈ EL2(Ω,Rd) : (∀α ∈ Nd0, |α| ≤ k)(∃N ∈ N)(∀b ∈ N)(
sup
x∈Rd

‖∂αun(·, x)‖L2(1 + |x|)−N = O(n−b)
)}
.

Elements of the vector spaces Eτ,L2(Ω,Rd) and Nτ,L2(Ω,Rd) are called moderate and
negligible sequences of functions with values in L2(Ω), respectively. The elements of the
quotient space

Gτ,L2(Ω,Rd) = Eτ,L2(Ω,Rd)/Nτ,L2(Ω,Rd)

are called tempered Colombeau stochastic processes (tempered CSPs) over Rd with
values in L2(Ω).

Note that the mapping

Gτ,L2(Ω,Rd)→ GL2(Ω,Rd)

is a canonical mapping. Thus, every representative (un)n of u ∈ Gτ,L2(Ω,Rd) deter-
mines a unique element of GL2(Ω,Rd).

Another fact to note is that the whole theory of CSPs over Rd with values in
L2(Ω) can be adapted word by word, with the change of negligible sets, to tempered
CSPs.
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4.2 Gaussian Colombeau Stochastic Processes
with Values in L2(Ω)

Gaussian Colombeau stochastic processes (GCSPs) were introduced and analyzed in
[LCP94a; MPS09].

In this section we recall the basic assertions related to Gaussian Colombeau
stochastic processes with values in L2(Ω). This concept originates from the corre-
sponding one in distribution theory; see [GV64].

Definition 4.2.1 Let u ∈ GL2(Ω,O). It is said that u is a Gaussian Colombeau
stochastic process (GCSP), if there exists a representative (un)n and n0 ∈ N such
that for every n > n0 and arbitrary x1, . . . , xr ∈ O ⊂ Rd, the probability that
Xn = (un(x1, ω), . . . , un(xr, ω)) ∈ B, where B is a Borel set in Rr, is

P (Xn ∈ B) =
(detAn

(2π)d
)1/2 ∫

B
exp

(
−1

2 sTAns

)
ds, n > n0,

where An, n ∈ N, is a sequence of non-degenerate positive-definite matrices, and

sTAns =
r∑
i=1

r∑
j=1

aijnsisj , n > n0.

We will call (un)n a Gaussian representative of u. Also, instead of n > n0 we will write
n ∈ N.

Remark 4.2.1 As before, in above definition we can consider derivatives up to order k
instead of smooth functions, i.e. we can consider processes in GkL2(Ω,O).

The following example shows that not all representatives of GCSP are Gaussian
representative.

Example 4.2.1 Let (cn)n ∈ N be negligible sequence and s(ω, x) any non-Gaussian
stochastic process. Then cns(ω, x) is a non-Gaussian negligible sequence. If (un)n is a
Gaussian representative of a GCSP, then (un + cns)n is a non-Gaussian representative
of the same GCSP.

In the next chapter we will see some basic examples of GCSPs with values in
L2(Ω).

The proof of the following theorem can be found in [MPS09] (see Theorem 4.2,
p. 267).

Theorem 4.2.1 Partial derivatives of a GCSP in GL2(Ω,O) are again GCSPs.
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4.3 Embeddings of Distributional Stochastic
Processes in GLp(Ω, O)

In this section, we analyze the embedding of the space of distributional stochastic
processes into the space of Colombeau stochastic processes. The reader is referred
to [MPS09] for more details.

Recall, ξ : D(O)×Lp(Ω)→ C is a distributional stochastic process (or generalized
functional stochastic process) if the mapping φ 7→ ξ(·, φ) is a strongly continuous
mapping of D(O) into Lp(Ω).

The authors in [MPS09] have shown that distributional stochastic processes
can be embedded into Colombeau-type stochastic processes. Indeed, let ξ be a
distributional stochastic process on O. Denote by (κn)n a sequence of smooth
functions supported by

O−1/n =
{
x ∈ O : d(x,Rd \O) > 1

n

}
, n > n0,

such that κn ≡ 1 on O−2/n, n > n0. Then the assignment

ξ ↪→ Cd(ξ) = [(ξn)n] = [((κnξ)(ω, ϕn(x− ·)))n], ω ∈ Ω, x ∈ O, (4.1)

n ∈ N, defines an embedding of the space of distributional stochastic processes into
the space GLp(Ω,O) of Colombeau stochastic Lp(Ω)-valued processes.

Let ξ : E(O) × Lp(Ω) → C be a compactly supported distributional stochastic
processes. Then we may take

ξn(ω, x) = ξ(ω, ϕn(x− ·)), ω ∈ Ω, x ∈ O, n ∈ N,

for the representative of Cd(ξ), since

(κnξ)(ω, φ) = ξ(ω, φ), ω ∈ Ω, φ ∈ D(O),

for large n.

Note that every distributional stochastic process ξ : D(O)× Lp(Ω)→ C can be
written in the form

ξ =
∞∑
i=1

ξχi,

where (χi)i∈N is a partition of unity for an open cover of O consisting of bounded
sets so that Ki = suppχi b O, i ∈ N. Clearly, ξχi, i ∈ N, are compactly supported
distributional stochastic processes. Therefore, without loss of generality we will
assume that ξ is a compactly supported distributional stochastic process.
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4.4 Generalized Point Values of Colombeau
Stochastic Processes

In Section 2.3 we recall the notion of generalized point values of Colombeau gener-
alized functions. Now we introduce in a similar manner the notion of generalized
point values of CSP with values in L(Ω), in Lp(Ω) or inM∞(Ω), respectively.

Proposition 4.4.1 Suppose that u = [(un)n] belongs to GL(Ω,O) or GLp(Ω,O) or
GM∞(Ω,O). Then, for fixed x̃ = [(xn)n] ∈ Õc,

u(ω, x̃) = [(un(ω, xn))n]

is a generalized random variable in GL(Ω) or GLp(Ω) or GM∞(Ω).

It is called the point value of u (in L(Ω) or Lp(Ω) orM∞(Ω)) at the generalized
point x̃ ∈ Õc.

PROOF. Since x̃ = [(xn)n] ∈ Õc, there exists some K b O such that xn ∈ K for
all n ∈ N. If u = [(un)n] belongs to GL(Ω,O), then by definition un(ω) = un(ω, xn),
ω ∈ Ω, is a measurable function on Ω for any n ∈ N. Also, for a.a. ω ∈ Ω, it holds
that

|un(ω)| = |un(ω, xn)| ≤ sup
x∈K
|un(ω, x)| ≤ Cna,

for some a ∈ N and therefore (un)n ∈ EM,L(Ω). If u = [(un)n] belongs to GLp(Ω,O)
or GM∞(Ω,O), then in a similar way it can be shown that (un)n belongs to EM,Lp(Ω)
or EM,M∞(Ω).

Let ỹ = [(yn)n] ∈ Õc such that x̃ ∼ ỹ, i.e.

|xn − yn| = O(n−b)

for any b ∈ N. If u ∈ GL(Ω,O), then for a.a. ω ∈ Ω there exists a ∈ N such that

sup
x∈K
|∇un(ω, x)| = O(na).

Let us show that u(ω, x̃)− u(ω, ỹ) ∈ NL(Ω). For arbitrary b ∈ N, we have

|un(ω, xn)− un(ω, yn)| ≤ |xn − yn|
∫ 1

0
|∇un(ω, xn + σ(yn − xn))| dσ

≤ C1n
−(b+a)C2n

a

= Cn−b,

for a.a. ω ∈ Ω, since the point xn + σ(yn − xn) remains within some compact subset
of O.
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If u ∈ GLp(Ω,O) (the proof can be conducted in a similar way if u ∈ GM∞(Ω,O)),
then there exists a ∈ N such that

sup
x∈K
‖∇un(·, x)‖Lp = O(na).

Using Minkowski’s inequality in integral form (see Theorem A.3.14), we obtain

‖un(·, xn)− un(·, yn)‖Lp

≤ |xn − yn|
[∫

Ω

∣∣∣∣∫ 1

0
|∇un(ω, xn + σ(yn − xn)| dσ

∣∣∣∣p dP (ω)
] 1
p

≤ |xn − yn|
∫ 1

0

[∫
Ω
|∇un(ω, xn + σ(yn − xn))|p dP (ω)

] 1
p

dσ

= |xn − yn|
∫ 1

0
‖∇un(·, xn + σ(yn − xn)‖Lp dσ

≤ C1n
−(b+a)C2n

a
∫ 1

0
dσ

= Cn−b,

for arbitrary b ∈ N. Therefore, u(ω, x̃)− u(ω, ỹ) ∈ NLp(Ω). �

4.5 Measurablity of Colombeau Stochastic
Processes

In this section we will prove the main result, the measurability of CSPs, which will
allow us to investigate probabilistic properties of CSPs.

In the definition of CSPs we required measurability of each representative un(·, x),
i.e. un(ω, x) is an OSP for n ∈ N. We also required pathwise smoothness or that
a.e. path x 7→ un(ω, x) is of class Ck. Therefore, we have the joint measurability
of the mappings (ω, x) 7→ un(ω, x) in Ω × O. Recall that we can assume that the
representatives un(ω, x) are defined and of class Ck for all ω ∈ Ω. In this section we
will prove that the processes obtained by considering generalized point values of
CSPs are also measurable in the appropriate sense.

Let u = [(un)n] be CSPs in GL(Ω,O) or GLp(Ω,O) or GM∞(Ω,O). Similar to
Proposition 4.4.1 one has that (un(ω, xn))n belongs to RM .

Proposition 4.5.1 Suppose that u = [(un)n] belongs to GL(Ω,O) or GLp(Ω,O) or
GM∞(Ω,O). For fixed x̃ ∈ Õc the mapping

(Ω,F) 3 ω 7→ u(ω, x̃) ∈ (Rc,B(Rc))

is measurable.
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PROOF. Let

O = L((yn)n, k) = {[(zn)n] ∈ Rc : lim sup
n→∞

|yn − zn|(logn)−1
< k}

be an open ball in Rc. Then,

u−1(·, x̃)(O) = {ω ∈ Ω : u(ω, x̃) ∈ O}

= {ω ∈ Ω : lim sup
n→∞

|un(ω, xn)− yn|(logn)−1
< k}

= {ω ∈ Ω : |un(ω, xn)− yn| < nlog k for all n > n0 for some n0 ∈ N}

=
∞⋃
n=1

∞⋂
m=n
{ω ∈ Ω : |um(ω, xm)− ym| < mlog k}.

This is a measurable set. �

As we mentioned in Chapter 2, the σ-algebra generated by the sharp open balls
is smaller than the σ-algebra generated by the sharp topology in Rc. We show this
in the next example.

Example 4.5.1 Let Ω = R be endowed with the σ−algebra F of Lebesgue measurable
sets. Consider u : Ω→ Rc represented by

un(ω) = ω, n ∈ N,

i.e. the standard embedding of R into Rc. Then u is not measurable with respect to the
σ−algebra generated by the sharp topology. Let us show this.

Take a set E ⊆ R = Ω which is not Lebesgue measurable. Denote by L(x̃, p) the
sharp open ball with center x̃ = [(xn)n] ∈ Rc, i.e. the equivalence class of elements
ỹ = [(yn)n] ∈ Rc such that

|yn − xn| ≤ n−p, n→∞,

for p > 0. Take x̃ = u(ω0) for some ω0 ∈ Ω. Then

u−1(L(x̃, p)) =
{
ω ∈ Ω : |ω − ω0| ≤ n−p, n→∞

}
= {ω0}

is Lebesgue-measurable, which is in compliance with Proposition 4.5.1.

On the other hand, the set

V =
⋃
ω∈E

L(u(ω), p)

is open in the sharp topology, but

u−1(V ) = E
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is not Lebesgue measurable. �
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5Probabilistic Properties of
Colombeau Stochastic Processes

„It is remarkable that a science which began with
the consideration of games of chance should have
become the most important object of human
knowledge.

— Pierre Simon Laplace (1749-1827)
"Théorie Analytique des Probabilités,"1812.

Colombeau generalized processes (CSPs) were considered in [MPS09; LCP97;
NR02a; Obe95; ORĆ05; OR98a; OR98b; OR01; Sel08], but none of these papers
addressed the question of their probabilistic properties.

In the previous chapter we began to study the probabilistic properties of the
CSPs. We established the notion of the point value of CSPs in compactly supported
generalized points and proved measurability of the corresponding random variable
with values in a Colombeau algebra of compactly supported real generalized numbers
Rc, endowed with the topology generated by sharp open balls.

In this chapter, we continue to study the probabilistic properties of CSPs. The
first part of this chapter is devoted to generalized expectation and generalized
correlation function of CSPs with values in L2(Ω). A structural characterization of
generalized correlation functions of CSPs with values in L2(Ω) is given. Generalized
characteristic functions are introduced for CSPs in GM∞(Ω,O) and Gk

Lkp
(Ω,O). We

close this chapter by studying CSPs with independent values and stationary CSPs.

This chapter represents an original part of dissertation. The original results are
published in [GOPS18b] (Section 5.2 and Section 5.3) and [GOPS18a] (Section 5.4
and Section 5.5).

5.1 Generalized Expectation and Generalized
Correlation Function

In this section, we work with CSPs with values in L2(Ω). Namely, we consider the
CSPs in GkL2(Ω,O) and Gτ,L2(Ω,O).
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Following [MPS09], we introduce here the definitions of generalized expectation,
generalized correlation functions and generalized covariance functions of the CSPs
in GkL2(Ω,O) and Gτ,L2(Ω,O).

Let u = [(un)n] ∈ GkL2(Ω,O). By the mean value theorem we have that

un(ω, x+ h)− un(ω, x) = u′n(ω, x+ θh)h, θ ∈ (0, 1)

and
|E(un(·, x+ h))− E(un(·, x))| ≤

∫
Ω
|u′n(ω, x+ θh)|h dP (ω)→ 0,

as h → 0. Thus, E(un(·, x)) ∈ C(O). Similarly, it can be shown that (E(un(·, x)))n
belongs to Ek−1(O). Now, we prove moderateness of the sequence (E(un(·, x)))n.
Let K b O and α ∈ Nd0 with |α| ≤ k − 1. Using the Hölder’s inequality we obtain

sup
x∈K
|∂αE(un(·, x))| ≤ sup

x∈K
‖∂αun(·, ω)‖L2 ≤ Cna

for some a ∈ N, since (un)n ∈ EkM,L2(Ω,O). Let (vn)n ∈ N k
L2(Ω,O). Using the

Hölder’s inequality, it can be shown that sequence (E((un+vn)(·, x))−E(un(·, x)))n
belongs toN k−1(O). Therefore, [(E(un(·, x)))n] is a well-defined element of Gk−1(O).
In a similar way we prove that [(E(un(·, x)un(·, y)))n] is a well-defined element of
Gk−1(O ×O). This enables us to introduce the next definition.

Definition 5.1.1 Let u = [(un)n] ∈ GkL2(Ω,O) (resp. u = [(un)n] ∈ Gτ,L2(Ω,O)).

• The generalized expectation of u is an element m of Gk−1(O) (resp. Gτ (O)) with
representative

mun(x) = E(un(·, x)) =
∫

Ω
un(ω, x) dP (ω), x ∈ O, n ∈ N.

• The generalized correlation function of u is an element B of Gk−1(O ×O) (resp.
Gτ (O ×O)) with representative

Bun(x, y) = E(un(·, x)un(·, y)), x, y ∈ O, n ∈ N.

In addition, the generalized variance of u is an element of Gk−1(O × O) (resp.
Gτ (O ×O)) with representative Bun(x, x), x ∈ O, n ∈ N.

Let ξ be a distributional stochastic process. Suppose that Cd(ξ) = [(ξn)n] is the
corresponding element of GL2(Ω,O). Then the representatives of the generalized
expectation m = [(mξn)n] and the generalized correlation function B = [(Bξn)n],
as well as the process Cd(ξ) = [(ξn)n] itself, depend on the choice of the mollifier
function. However, they define elements of the Colombeau algebra which are equal
in the sense of distributions.
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Proposition 5.1.1 Let u ∈ Gk+1
L2 (Ω,O) and α ∈ Nd0 with |α| ≤ k. Then

(a) ∂αmun(x) = m∂αun(x), x ∈ O, n ∈ N, and

(b) ∂αx ∂
α
yBun(x, y) = B∂αun(x, y), x, y ∈ O, n ∈ N.

PROOF. Follows directly from Definition 5.1.1. �

Similarly, Proposition 5.1.1 is true for elements in Gτ,L2(Ω,O).

Definition 5.1.2 Let u ∈ GkL2(Ω,O) (resp. Gτ,L2(Ω,O)). The generalized covariance
function of u is an element of Gk−1(O ×O) (resp. Gτ (O ×O)) represented by

Cun(x, y) = Bun(x, y)−mun(x)mun(y), x, y ∈ O, n ∈ N.

Remark 5.1.1 In the spirit of [GV64], we use the term generalized correlation func-
tion for the noncentered expression Bun(x, y) = E(un(·, x)un(·, y)) and generalized co-
variance function for its centered counterpart Cun(x, y) = Bun(x, y)−mun(x)mun(y)
throughout the dissertation.

The generalized correlation function B = [(Bun(x, y))n] is positive-definite, i.e.
it has a representative with bilinear positive-definite functionals. Furthermore, its
generalized covariance function C = [(Cun(x, y))n] is positive-definite.

Next, we recall some results on GCSPs from [MPS09].

Note that with An, n ∈ N, we denote a sequence of non-degenerate positive-
definite matrices from Definition 4.2.1.

Theorem 5.1.1 Let u ∈ GkL2(Ω,O) be a GCSP with Gaussian representative (un)n and
let (Bun)n be a representative of its generalized correlation function. Then

An = (Bun(xi, xj))−1, n ∈ N,

for all x1, . . . , xd ∈ R.

PROOF. See [MPS09] ( Theorem 4.1, p. 266). �

The following theorem gives the complete characterization of GCSPs. The proof
is similar to the proof of Theorem 4.3 in [MPS09].

Theorem 5.1.2 Let m = [(mn(x))n] ∈ Gk(O) and B = [(Bn(x, y))n] ∈ Gk(O × O)
be such that the generalized covariance function C = [(Cn(x, y)))n] ∈ Gk(O × O)
is positive-definite (Cn are positive-definite). There exists a GCSPs u ∈ Gk+1

Lp (Ω,O)
with a Gaussian representative (un)n, whose generalized expectation and generalized
covariance function are m and C.
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The previous theorem implies the following result (see [MPS09] Corollary 4.1, p.
268).

Corollary 5.1.1 Let u = [(un)n] ∈ Gk+1
L2 (Ω,O) be a CSP with generalized expectation

m = [(mun(x))n] ∈ Gk(O) and generalized correlation function B = [(Bun(x, y))n] ∈
Gk(O×O). There exists a GCSP with the given generalized expectation and generalized
correlation function.

We shall now give some basic examples of GCSPs with values in L2(Ω). First, we
consider Brownian motion in the Colombeau sense, its generalized expectations and
generalized correlation functions.

Example 5.1.1 Let b be a Brownian motion1 (see Appendix A.3). It is an OSP and the
corresponding element of GL2(Ω,R) is given by

Cd(b) = [(bn)n] = [(b ∗ ϕn)n] =
[(∫

R
b(s)ϕn(x− s) ds

)
n

]
.

The generalized expectation of Cd(b) is

mCd(b) =
[(∫

R
E(b(s))ϕn(x− s) ds

)
n

]
= [(0)n] = 0,

and the generalized correlation function is

BCd(b) =
[(∫∫

R
E(b(s)b(t))ϕn(x− s)ϕn(y − t) dsdt

)
n

]
=

[(∫ ∞
0

∫ ∞
0

min{s, t}ϕn(x− s)ϕn(y − t) dsdt
)
n

]
,

where we use E(b(s)) = 0 and

E(b(s)b(t)) =
{

min{s, t}, s, t ≥ 0,
0, t < 0 or s > 0.

In the sequel, we write b = [(bn)n] instead of Cd(b), mb = [(mbn)n] instead of
mCd(b), and Bb = [(Bbn)n] instead of BCd(b).

Note that after integration by parts, we obtain

Bbn(x, y) =
∫ ∞

0

∫ ∞
0

min{s, t}ϕn(x− s)ϕn(y − t) dsdt

=
∫ ∞

0
ϕn(x− s)

∫ s

0
tϕn(y − t) dtds+

∫ ∞
0

ϕn(y − t)
∫ t

0
sϕn(x− s) dsdt

=
∫ ∞

0

(∫ ∞
t

ϕn(x− σ) dσ
∫ ∞
t

ϕn(y − τ) dτ
)
dt.

1Brownian motion is often called the Wiener process. It is named in the honor of Norbert Wiener.
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Therefore, (generalized) Brownian motion b = [(bn)n] ∈ GL2(Ω,R) as a GCSP
is defined by a zero generalized expectation and a generalized correlation function
Bb(x, y) = [(Bbn(x, y))n], where

Bbn(x, y) = min{s, t} ∗ ϕn(x)ϕn(y)

=
∫ ∞

0

(∫ ∞
t

ϕn(x− σ) dσ
∫ ∞
t

ϕn(y − τ) dτ
)
dt, n ∈ N. 2

Next, we consider white noise in the Colombeau sense, its generalized expectation
and its generalized correlation function.

Example 5.1.2 White noise w = [(wn)n] ∈ GL2(Ω,O) as a GCSP is defined by a zero
generalized expectation and a generalized correlation function that is associated to the
Dirac delta δ(x− y) supported on the diagonal. There are several ways to achieve this:
one possibility is to define

B1
w(x, y) = [(ϕn(x− y))n],

another to let
B2
w(x, y) =

[(∫
ϕn(x− s)ϕn(y − s)ds

)
n

]
.

Let us show that the two processes are associated in the Colombeau sense, but not equal.
First we show that B1

w(x, y) ≈ δ(x− y), i.e.

lim
n→∞

∫∫
ϕn(x− y)ψ(x, y) dxdy = 〈δ(x, y), ψ(x, y)〉 =

∫
ψ(s, s) ds

holds for every ψ ∈ D(R2). We have∫∫
ϕn(x− y)ψ(x, y) dxdy =

∫∫
nϕ(n(x− y))ψ(x, y) dxdy

=
∫∫

ϕ(τ)ψ
(
σ + τ

n
, σ

)
dτdσ,

where we use the change of varables n(x − y) = τ, y = σ. Now, letting n → ∞ we
obtein by the Lebesgue dominated convergence, Fubini’s theorem and properties of the
mollifier function, that the latter expression converges to∫

ϕ(τ) dτ
∫
ψ(σ, σ) dσ =

∫
ψ(σ, σ) dσ.

A similar computation can be carried out to show

lim
n→∞

∫∫
ϕn(x− s)ϕn(y − s)ψ(x, y) dxdy = 〈δ(x− y), ψ(x, y) =

∫
ψ(s, s) ds,

for every ψ ∈ D(Rd), i.e. B2
w(x, y) ≈ δ(x− y). Therefore, the elements B1

w(x, y) and
B2
w(x, y) are associated in G(R2) and they determine GCSPs which are associated as
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elements of GL2(Ω,R). Note that these two GCSPs are not equal. The generalized
variance of white noise is given by

Bw(x, x) = [(ϕn(0))n]

in the first case and
Bw(x, x) = [(‖ϕn(·)‖2L2)n]

in the second case. These two processes are equal provided that the mollifier satisfies

‖ϕ(·)‖2L2 = ϕ(0). 2

5.2 Characterizations of the Generalized
Correlation Function

In this section, without restriction of generality, we will assume that the generalized
expectation of a given process equals zero.

5.2.1 Structural Theorems

Denote the complement of the diagonal by

QO = {(x, y) ∈ O ×O : x 6= y}

and the diagonal by

DO = O ×O \QO = {(x, y) ∈ O ×O : x = y}.

In the case O = Rd, we use notation Q = {(x, y) ∈ R2d : x 6= y} and D = R2d \Q.

First, we give a structural characterization of generalized correlation functions
which correspond to embedded distributional stochastic processes.

Theorem 5.2.1 Let B = [(Bn)n] ∈ G(O × O) be a generalized correlation function
which corresponds to a CSP u = [(un)n] over O with values in L2(Ω) such that
u = Cd(ξ), where ξ is a distributional stochastic process on O.

a) Let F ∈ D′(O × O) be the correlation functional of ξ. Then B is given by
B = Cd(F ).

b) B(x̃, ỹ) = 0 for all (x̃, ỹ) ∈ (Q̃O)c, if and only if F is concentrated on the
diagonal x = y, i.e. suppF ⊆ DO.
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c) If B(x̃, ỹ) = 0 for all (x̃, ỹ) ∈ (Q̃O)c, then B is associated to a generalized
function which has a representative of the form

B∗n(x, y) =
∫

O

∑
j,k∈N0

Rj,k(s)ϕ(j)
n (x− s)ϕ(k)

n (y − s)ds, x, y ∈ O, (5.1)

where for every n ∈ N only a finite number of continuous functions Rj,k are
different from zero on any compact subset of O.

PROOF. a) We have

Bn(x, y) =

=
∫

Ω

(∫
O
κn(s)ξ(ω, s)ϕn(x− s) ds

)(∫
O
κn(s)ξ(ω, t)ϕn(y − t) dt

)
dP

=
∫∫

O×O
κn(s)κn(t)ϕn(x− s)ϕn(y − t)

(∫
Ω
ξ(ω, s)ξ(ω, t) dP (ω)

)
dsdt

=
∫∫

O×O
κn(s)κn(t)F (s, t)ϕn(x− s)ϕn(y − t) dsdt

= (κn(x)κn(y)F (x, y)) ∗ ϕn(x)ϕn(y).

Therefore, B = Cd(F ).

b) We know that suppB = suppF for embedded distributions. Now, F ≡ 0 in QO is
equivalent to B ≡ 0 in QO and Theorem 2.3.2 implies the statement.

c) From a) and b) we haveB = Cd(F ) and F is concentrated onDO. The generalized
function F has the form

〈F, θ〉 =
∫

O×O

∑
j,k∈N0

Qj,k(x, y) ∂j+k

∂xj∂yk
θ(x, y)dxdy, θ ∈ D(O ×O),

where the Qj,k(x, y) are continuous functions, only a finite number of which are
different from zero on any compact set of O. Since F is concentrated on the diagonal
DO, we obtain that

〈F, θ〉 =
∫

O

∑
j,k∈N0

Rj,k(x)
(

∂j+k

∂xj∂yk
θ(x, y)

) ∣∣∣∣
x=y

dx,

where we have put Rj,k(x) = Qj,k(x, x). The form of F over Rd was mentioned
in [GV64], page 287. A version of this theorem is also given in Theorem 2.3.5 in
[Hör03] for compactly supported distributions (see Appendix A.2). We apply the
quoted result of [Hör03] but rewritten in the form of [GV64].

Put

B∗n(x, y) =
∫

O

∑
j,k∈N0

Rj,k(s)ϕ(j)
n (x− s)ϕ(k)

n (y − s)ds, x, y ∈ O, n ∈ N.

5.2 Characterizations of the Generalized Correlation Function 53



We will show that [(B∗n)n] ≈ F , from which it will follow that [(B∗n)n] ≈ B. For any
φ ∈ D(O ×O) we have∫∫

O×O
B∗n(x, y)φ(x, y)dxdy

=
∑

j,k∈N0

∫∫∫
O×O×O

Rj,k(s)
∂j

∂xj
ϕn(x− s) ∂

k

∂yk
ϕn(y − s)φ(x, y) dxdyds

=
∑

j,k∈N0

n2
∫∫∫

O×O×O
Rj,k(s)

∂j

∂xj
ϕ (n(x− s)) ∂k

∂yk
ϕ (n(y − s))φ(x, y) dxdyds

=
∑

j,k∈N0

n2
∫∫∫

O×O×O
Rj,k(s)ϕ (n(x− s))ϕ (n(y − s)) ∂j+k

∂xj∂yk
φ(x, y) dxdyds

where we applied partial integration in the last step. Now, with t = n(x − s),
z = n(y − s), we obtain∫∫

O×O
B∗n(x, y)φ(x, y)dxdy

=
∑

j,k∈N0

∫∫∫
O×O×O

Rj,k(s)ϕ(t)ϕ(z)A
(
s+ t

n
, s+ z

n

)
dtdzds,

where

A

(
s+ t

n
, s+ z

n

)
= ∂j+k

∂xj∂yk
φ(x, y)

∣∣∣∣
x=s+ t

n
,y=s+ z

n

.

Letting n → ∞ we obtain by the Lebesgue dominated convergence theorem
that ∫∫

O×O
B∗n(x, y)φ(x, y)dxdy

→
∫

O
ϕ(t)dt

∫
O
ϕ(z)dz

∫
O

∑
j,k∈N0

Rj,k(s)A(s, s)ds

=
∫

O

∑
j,k∈N0

Rj,k(s)
∂j+k

∂xj∂yk
φ(x, y)

∣∣∣∣
x=y=s

ds

= 〈F, φ〉.

Thus, [(B∗n)n] ≈ F . Since B = Cd(F ) ≈ F, it follows [(B∗n)n] ≈ B. �

Next, we give a structural characterization of a generalized correlation function
which is associated to Schwartz distribution.

Proposition 5.2.1 Let B = [(Bn)n] ∈ G(O ×O) be a generalized correlation function
of a CSP u = [(un)n] over O with values in L2(Ω). Suppose that B is associated to
F ∈ D′(O ×O). If B(x̃, ỹ) = 0 for all (x̃, ỹ) ∈ (Q̃O)c, then

a) F is concentrated on DO,

54 Chapter 5 Probabilistic Properties of Colombeau Stochastic Processes



b) B is associated to a generalized function which has a representative of the form
(5.1).

PROOF. Let F ∈ D′(O × O) and suppose that B ≈ F . Let B(x̃, ỹ) = 0 for all
(x̃, ỹ) ∈ (Q̃O)c.

a) By Theorem 2.3.2, B|QO
= 0 in G(QO). In particular,

sup
(x,y)∈K

|Bn(x, y)| → 0

as n→∞, for every compact subset K of QO. We prove that F is concentrated
on the diagonal, i.e. 〈F, θ〉 = 0 for all θ ∈ D(O×O) with supp θ ⊂ QO. Indeed,
for such θ,

〈F, θ〉 = lim
n→∞

∫∫
O×O

Bn(x, y)θ(x, y)dxdy = 0.

b) From a) it follows that F is concentrated on DO. The rest of proof is analogous
to the proof of Theorem 5.2.1 c). �

5.2.2 Examples of the Generalized Correlation Function of
Gaussian Colombeau Stochastic Processes.

In this section, we give two examples of the generalized correlation function of
GCSPs.

The first example shows that if B = [(Bn)n] ∈ G(O × O) is a generalized
correlation function of some GCSP and B is associated to F ∈ D′(O ×O) which is
concentrated on the diagonal DO, then it does not necessarily follow that suppB ⊆
(D̃O)c.

Example 5.2.1 Let ϕ ∈ S(R) be a positive-definite function with
∫
R ϕ(x) dx = 1.

Define

Bn(x, y) = nϕ(n(x− y)) + 1
n
, x, y ∈ R, n ∈ N.

Since the sum of two positive-definite functions is positive-definite, it follows that
B = [(Bn(x, y))n] is positive-definite. From Theorem 5.1.2 (see also [MPS09], Theorem
4.3, p. 267) it follows that B is a generalized correlation function of some GCSP with
zero generalized expectation.

Let us show that B is associated in G(R2) to the Dirac delta distribution δ(x− y).
Using the change of variables, t = n(x− y), s = y, we obtain∫∫

R2
Bn(x, y)φ(x, y) dxdy =

∫∫
R2

(
nϕ(n(x− y)) + 1

n

)
φ(x, y) dxdy

=
∫∫

R2

(
ϕ(t) + 1

n

)
φ

(
t

n
+ s, s

)
dtds,
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for any φ ∈ D(R2). Now, letting n → ∞ we obtain by the Lebesgue dominated
convergence theorem, Fubini’s theorem and properties of the mollifier function that the
latter expression converges to

∫
R
φ(s, s) ds. Hence, B ≈ δ(x− y).

It is known that supp δ(x−y) = D. We have suppB = R2, so B is not concentrated
on D̃c. �

The second example shows that there exists a GCSP which does not have a
distributional shadow and which has a generalized correlation function that does
not have the form (5.1).

Example 5.2.2 Let B = δ2(x − y) ∈ G(R2) be the Colombeau generalized function
with the representative

Bn(x, y) = ϕ2
n(x− y) = n2ϕ2(n(x− y)), x, y ∈ R n ∈ N,

where ϕ ∈ S(R) is a positive-definite function such that
∫
R ϕ(x) dx = 1. Since δ2(x−y)

is positive-definite, from Theorem 5.1.2 (see also [MPS09], Theorem 4.3, p. 267) it
follows that there exists a GCSP u = [(un)n] whose generalized expectation is zero
and generalized correlation function is B. This is an example of a GCSP which is not
associated with any element of L(D(R), L2(Ω)), i.e. it does not have a distributional
shadow. Here L(D(R), L2(Ω)) denotes the space of linear continuous mappings of a
test space D(R) into the space L2(Ω). Clearly, Bn is supported by the diagonal D, thus
B(x̃, ỹ) = 0 for all (x̃, ỹ) ∈ Q̃c. We will show that B does not have the form (5.1), i.e.

〈Bn(x, y), φ(x)ψ(y)〉

6=
〈∫

R

∑
j,k∈N0

Rj,k(s)ϕ(j)
n (x− s)ϕ(k)

n (y − s) ds, φ(x)ψ(y)
〉
, (5.2)

for φ, ψ ∈ D(R). We have

〈Bn(x, y), φ(x)ψ(y)〉 = n2
∫∫

R2
ϕ2(n(x− y))φ(x)ψ(y) dxdy

= n

∫∫
R2
ϕ2(t)φ

(
t

n
+ y

)
ψ(y) dtdy,

where we used the change of variables t = n(x− y), y = y. Now, by letting n→∞ we
obtain that the latter expression converges to infinity. On the other hand, only a finite
number of the functions Rj,k are different from zero, so the sum on the right hand side
of (5.2) is finite, and it converges to the finite value

∫
R

∑
j,k∈N0

Rj,k(s)
∂j+k

∂xj∂yk
φ(x, y) |x=y=s ds

as n→∞ (see the proof of Theorem 5.2.1). �
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5.3 Generalized Characteristic Functions of
Colombeau Stochastic Processes

It is known that every classical stochastic process u is uniquely defined via its finite-
dimensional distributions, while those are uniquely defined via their characteristic
functions. Thus, the information about E(eit(u(·,x1),u(·,x2),...,u(·,xm))), m ∈ N, provides
enough to determine the process itself.

In this section, generalized characteristic functions are introduced for CSPs in
GM∞(Ω,O) and Gk

Lkp
(Ω,O). For technical simplicity we will consider only the one-

dimensional distributions E(eitu(·,x)), but one can easily carry out the proofs also for
all finite-dimensional distributions.

5.3.1 Generalized Characteristic Functions of Colombeau
Stochastic Processes in GM∞(Ω, O)

Let u = [(un)n] be a CSP with values in M∞(Ω). Let us show that sequence
(E(eitun(·,x)))n belongs to EM (R × O). Using that the paths are smooth, it can be
shown that sequence (E(eitun(·,x)))n belongs to E(R×O). We prove moderateness.
Let K1 = [−t0, t0] × K, where K b O and t0 ∈ R. The kth order derivative with

respect to the variable t of E(eitun(·,x)) is
∫

Ω
ikukn(ω, x)eitun(ω,x) dP (ω). Thus,

sup
(t,x)∈K1

|∂kt E(eitun(·,x))| ≤ sup
x∈K
‖un(·, x)‖kLk ≤ sup

x∈K
‖|un(·, x)|‖kk ≤ Cnak,

for some a ∈ N, since (un)n ∈ EM,M∞(Ω,O). The mth order derivative with respect
to the variable x of E(eitun(·,x)) is a linear combination of members of the form
E((u(i1)

n (·, x))k1 · . . . · (u(is)
n (·, x))kseitun(·,x)), where i1k1 + . . . + isks = m. So the

proof of moderateness is the same as for E((u′n(·, x))meitun(·,x)):

sup
(t,x)∈K1

∣∣∣∣∫
Ω

(u′n(ω, x))meitun(ω,x)dP (ω)
∣∣∣∣ ≤ sup

x∈K
‖u′n‖mLm ≤ sup

x∈K
‖|u′n|‖mm ≤ Cnam,

for some a ∈ N, since (un)n ∈ EM,M∞(Ω,O). Note that here and henceforth u′n
denotes some first order derivative of un. In a similar way we estimate the mixed
derivatives.

Let u = [(un)n] be a CSP with values in M∞(Ω) and let (vn)n be a negligible
sequence of functions with values in M∞(Ω). Let us prove negligibility of the
sequence of functions (E(eit(un+vn))−E(eitun))n. Let b ∈ N be arbitrary. Using the
mean value theorem we obtain

sup
(t,x)∈K1

∣∣∣E (eit(un+vn)(·,x)
)
− E

(
eitun(·,x)

)∣∣∣ ≤
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≤ sup
(t,x)∈K1

∣∣∣∣∫
Ω

(
eit(un+vn)(ω,x) − eitun(ω,x)

)
dP (ω)

∣∣∣∣
≤ sup

(t,x)∈K1

∫
Ω
|eitvn(ω,x) − 1| dP (ω)

≤ sup
(t,x)∈K1

|t|
∫

Ω
|vn(ω, x)||eiθtvn(ω,x)| dP (ω)

≤ C sup
x∈K

∫
Ω
|vn(ω, x)| dP (ω)

= O(n−b),

where θt lies on the segment (0, t) (or (t, 0)). We proved the negligibility of the zeroth
derivative and, by Theorem 2.1.1, this is sufficient. Therefore, [(E(eitun(·,x)))n] does
not depend on the representative and it is a well-defined element of G(R×O). This
enables us to introduce the next definition.

Definition 5.3.1 Let u = [(un)n] be a CSP in GM∞(Ω,O). Then

Lu(t, x) = [(Lun(t, x))n] = [(E(eitun(·,x)))n] ∈ G(R×O), t ∈ R, x ∈ O,

is called the generalized characteristic function of u.

The generalized characteristic function Lu(t, x) of a CSP u ∈ GM∞(Ω,O) is
positive-definite in t for every x ∈ O. The proof is the same as the well known one
for the classical characteristic function.

Note that if u = [(un)n] is a CSP with values inM∞(Ω), then

Lu(t̃, x̃) = E(eit̃u(·,x̃)),

for every x̃ ∈ Õc and t̃ ∈ Rc. Hence, we have

L(0̃, x̃) = 1̃,

(where 0̃ = (0, 0, 0, . . . , 0, . . .), 1̃ = (1, 1, 1, . . . , 1, . . .)) for every x̃ = [(xn)n] ∈ Õc,

since Lun(0, xn) = 1 for every n ∈ N.

5.3.2 Embedding Results

Let u(ω, x), ω ∈ Ω, x ∈ O, be an OSP such that u(ω, ·) ∈ L1
loc(O) for a.a. ω ∈ Ω.

Moreover, assume that u(·, x) ∈M∞(Ω) for every x ∈ O. The embedding of u into
the Colombeau algebra GM∞(Ω,O) is given by u 7→ [(un)n], where

un(ω, x) = (uκn ∗ ϕn)(ω, x) = (u ∗ ϕn)(ω, x),
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for sufficiently large n; see Section 4.3. One can prove that the sequence of charac-
teristic functions (Lun(t, x))n = (E(eitun(·,x)))n is in EM (R×O). Note that it would
not hold without the assumption u(·, x) ∈M∞(Ω).

Remark 5.3.1 Let u(ω, ·) ∈ L1
loc(O) for a.a. ω ∈ Ω and assume that u(·, x) is a

measurable function for all x ∈ O and belongs toM∞(Ω). Then

C∞0 (O) 3 φ 7→
∫
u(·, x)φ(x) dx ∈ Lp(Ω)

is a strongly continuous mapping from C∞0 (O) into Lp(Ω), p ≥ 1.

It is known that we can embed an element from C∞M∞(Ω,O) into GM∞(Ω,O)
by convolution with a mollifier function or as a constant sequence. Is equality
valid for the generalized characteristic functions of the corresponding elements in
GM∞(Ω,O)? The next proposition gives the answer to this question.

Proposition 5.3.1 Let φ ∈ C∞M∞(Ω,O) and assume that

sup
x∈K
‖φ(α)(·, x)‖Lp <∞

for every α ∈ N0 and every K b O. Let

φn(ω, x) = (φ(ω, ·) ∗ ϕn(·))(x), x ∈ O, ω ∈ Ω,

for sufficiently large n. Then

(φn(ω, x))n − (φ(ω, x))n ∈ NM∞(Ω,O)

and
(Lφn(t, x))n − (Lφ(t, x))n ∈ N (R×O),

where (φ)n is a constant sequence.

PROOF. One can prove easily that (φn(ω, x))n − (φ(ω, x))n ∈ EM,M∞(Ω,O). Hence,
for the proof of negligibility, by Theorem 2.1.1, it is enough to prove the negligibility
of the zeroth order derivative. For simplicity of exposition, we work out the case
d = 1 only, i.e. O ⊆ R. First,

‖|φn(ω, x)− φ(ω, x)|‖s

= sup
1≤p≤s

(∫
Ω
|(φ(ω, ·) ∗ ϕn(·))(x)− φ(ω, x)|p dP (ω)

)1/p

= sup
1≤p≤s

(∫
Ω

∣∣∣∣∫
O
φ(ω, x− t)ϕ(nt) dt− φ(ω, x)

∣∣∣∣p dP (ω)
)1/p
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= sup
1≤p≤s

(∫
Ω

∣∣∣∣∫
O

(
φ

(
ω, x− z

n

)
− φ(ω, x)

)
ϕ(z) dz

∣∣∣∣p dP (ω)
)1/p

By Taylor’s formula and the fact that
∫
zkϕ(z) dz = 0 for all k ∈ N, the inner integral

equals

∫
O

(
b−1∑
k=1

φ(k)(ω, x)
k!

(
− z
n

)k
+
φ(b) (ω, x− θn zn)

b!

(
− z
n

)b)
ϕ(z) dz

=
∫

O

φ(b) (ω, x− θn zn)
b!

(
− z
n

)b
ϕ(z) dz

where 0 < θn < 1. By Minkowski’s inequality in integral form (see Appendix A.3,
Theorem A.3.14),

‖|φn(ω, x)− φ(ω, x)|‖s

≤ sup
1≤p≤s

1
b!nb

(∫
Ω

∣∣∣∣∫
O
φ(b)

(
ω, x− θn

z

n

)
(−z)bϕ(z) dz

∣∣∣∣p dP (ω)
)1/p

≤ sup
1≤p≤s

1
b!nb

∫
O

(∫
Ω

∣∣∣∣φ(b)
(
ω, x− θn

z

n

)∣∣∣∣p dP (ω)
)1/p

|z|b|ϕ(z)| dz .

The points x− θn
z

n
, n ∈ N, remain within some compact set. Since by assumption

φ(b) is uniformly bounded on compact sets with respect to the Lp-norm, it follows
that the above expression is uniformly bounded by Cn−b on every compact set for
every s ∈ N and for every b ∈ N (C depends on b and s).

The fact that (Lφn(t, x))n − (Lφ(t, x))n ∈ N (R × O) is proven along the same
lines. �

In the sequel, CM∞(Ω,O) denotes the space of functions φ such that the mapping
x 7→ φ(ω, x) is in C(O) for a.a. ω ∈ Ω, and for every x ∈ O, φ(·, x) is inM∞(Ω).

The following proposition presents embedding results for an element of the space
CM∞(Ω,O). Now, equality holds on the level of association.

Proposition 5.3.2 If φ ∈ CM∞(Ω,O), then [(Lφ∗ϕn(t, x))n] is associated to the Colo-
mbeau generalized function with representative (Lφ(t, ·) ∗ ϕn(·))(x), t ∈ R, x ∈ O.

PROOF. Let θ(t, x) ∈ D(R×O). Then∫
R×O

(Lφ∗ϕn(t, x)− (Lφ(t, ·) ∗ ϕn(·))(x)) θ(t, x) dtdx

=
∫
R×O

(
Lφ∗ϕn(t, x)−

∫
R
Lφ(t, x− y)ϕn(y) dy

)
θ(t, x) dtdx

=
∫
R×O

(∫
Ω
eit(φ∗ϕn)(ω,x) dP (ω)−

∫
R

∫
Ω
eitφ(ω,x−y)ϕn(y)dP (ω) dy

)
θ(t, x) dtdx
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=
∫
R×O

∫
Ω

(
eit
∫
R φ(ω,x−y)ϕn(y) dy −

∫
R
eitφ(ω,x−y)ϕn(y) dy

)
θ(t, x) dP (ω)dtdx

=
∫
R×O

∫
Ω

(
eit
∫
R φ(ω,x−y)nϕ(ny) dy −

∫
R
eitφ(ω,x−y)nϕ(y) dy

)
θ(t, x) dP (ω)dtdx

=
∫
R×O

∫
Ω

(
eit
∫
R φ(ω,x− z

n
)ϕ(z) dz −

∫
R
eitφ(ω,x− z

n
) ϕ(z) dz

)
θ(t, x) dP (ω) dt dx,

where we used Fubini’s theorem and a change of variable ny = z. Now, letting
n→∞ we obtain by the Lebesgue dominated convergence theorem that

lim
n→∞

∫
R×O

(Lφ∗ϕn(t, x)− (Lφ(t, ·) ∗ ϕn(·))(x)) θ(t, x) dtdx

=
∫
R×O

∫
Ω

(
eit
∫
R φ(ω,x)ϕ(z) dz −

∫
R
eitφ(ω,x) ϕ(z) dz

)
θ(t, x) dP (ω) dt dx

=
∫
R×O

∫
Ω

(
eitφ(ω,x)

∫
R ϕ(z) dz − eitφ(ω,x)

∫
R
ϕ(z) dz

)
θ(t, x) dP (ω) dt dx

= 0.

Hence, [(Lφ∗ϕn(t, x))n] is associated to the Colombeau generalized function with
representative (Lφ(t, ·) ∗ ϕn(·))(x). �

5.3.3 Generalized Characteristic Functions of Colombeau
Stochastic Processes in GkLkp(Ω, O)

In this subsection, we suppose that k ≤ p. Our goal is to define generalized charac-
teristic functions of CSPs in Gk

Lkp
(Ω,O). The following proposition will enable us to

achieve this goal.

Proposition 5.3.3 If sequence (un)n belongs to Ek
M,Lkp

(Ω,O), then sequence (eitun(ω,x))n
belongs to EkM,Lp(Ω,R×O) and sequence (E(eitun(·,x)))n belongs to EkM (R×O).

PROOF. Denote K1 = [−t0, t0] × K, where K b O and t0 ∈ R. Note that the
derivative with respect to variable x of order m ≤ k of eitun(ω,x) is a linear com-
bination of members of the form (u(i1)

n (ω, x))k1 · · · (u(is)
n (ω, x))kseitun(ω,x), where

i1k1 + . . .+ isks = m. For example, for the member (u′n(ω, x))keitun(ω,x), we have

(∫
Ω
|(u′n(ω, x))keitun(ω,x)|p dP (ω)

) 1
p

=

∫
Ω
|u′n(ω, x)|p · · · |u′n(ω, x)|p︸ ︷︷ ︸

k

dP (ω)


1
p

≤
(∫

Ω
|u′n(ω, x)|pk dP (ω)

) 1
kp

· · ·
(∫

Ω
|u′n(ω, x)|pk dP (ω)

) 1
kp

︸ ︷︷ ︸
k

= ‖u′n(·, x)‖kLkp .
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Now, using (un)n ∈ EkM,Lkp
(Ω,O), we obtain that

sup
(t,x)∈K1

‖(u′n(·, x))keitun(·,x)‖Lp = O(na),

for some a ∈ N. In a similar way we estimate the other derivatives. Hence,
(eitun(ω,x))n ∈ EkM,Lp(Ω,R×O).

Using that the paths are of class Ck, it can be shown that (E(eitun(·,x)))n belongs
to Ek(R×O). Let j, l ∈ N such that j + l ≤ k. Using the previously proven estimates,
we obtain

sup
(t,x)∈K1

|∂jt ∂lxE(eitun(·,x))| ≤ sup
(t,x)∈K1

‖∂jt ∂lxeitun(·,x)‖Lp ≤ Cna,

for some a ∈ N. Therefore, (E(eitun(·,x)))n ∈ EkM (R×O). �

Proposition 5.3.3 enables us to introduce the next definition.

Definition 5.3.2 Let u be a CSP in Gk
Lkp

(Ω,O). Then

Lu(t, x) = [(Lun(t, x))n] = [(E(eitun(·,x))n] ∈ Gk(R×O), t ∈ R, x ∈ O,

is called the generalized characteristic function of u.

5.3.4 Calculating the Generalized Expectation and
Generalized Correlation Function

The generalized characteristic function determines the CSP. As in the classical case,
both the generalized expectation and the generalized correlation function can be
retrieved from the generalized characteristic function. Also, all the higher order
moments (if exist) can be retrieved from the generalized characteristic function. For
the purpose of the second moments (i.e. the generalized correlation function) we
will denote by

Lu(t, s;x, y) = E(ei(t,s)�(u(·,x),u(·,y))) = E(eitu(·,x)eisu(·,y)), t, s ∈ R, x, y ∈ O,

the generalized characteristic function of the joint distribution of the random field
(u(ω, x), u(ω, y)). Here � denotes the scalar product in R2.

Theorem 5.3.1 Let u = [(un)n] ∈ GM∞(Ω,O), resp. u ∈ Gk
Lkp

(Ω,O), for k ≥ 1,
p ≥ 2, and let Lu(t, x) ∈ G(R × O), resp. Lu(t, x) ∈ Gk(R × O) be its gener-
alized characteristic function. Furthermore, let Lu(t, s;x, y) ∈ G(R2 × O2), resp.
Lu(t, s;x, y) ∈ Gk(R2 × O2), be the generalized characteristic function of the joint
distributions.
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(a) The generalized expectation m ∈ G(O), resp. m ∈ Gk−1(O) satisfies

m(x) = i−1 d

dt
Lu(t, x)

∣∣∣∣
t=0

.

(b) The generalized correlation function B ∈ G(O × O), resp. B ∈ Gk−1(O × O)
satisfies

B(x, y) = − d

dt

d

ds
Lu(t, s;x, y)

∣∣∣∣
(t,s)=(0,0)

.

PROOF. Let u be given by the representative [(un(ω, x))n].

(a) We have

d

dt
Lun(t, x) = d

dt
E(eitun(·,x)) = E(iun(·, x)eitun(·,x)), n ∈ N,

and thus
d

dt
Lun(0, x) = iE(un(·, x)) = imn(x), n ∈ N,

i.e.
mn(x) = i−1 d

dt
Lun(0, x), n ∈ N.

(b) Similarly,

d

dt

d

ds
Lun(t, s;x, y) = d

dt

d

ds
E(eitun(·,x)eisun(·,y))

= −E(un(·, x)un(·, y)ei(tun(·,x)+sun(·,y))), n ∈ N,

and by smoothness of the representatives

d

dt

d

ds
Lun(t, s;x, y) = d

ds

d

dt
Lun(t, s;x, y).

Now,

d

dt

d

ds
Lun(0, 0;x, y) = −E(un(·, x)un(·, y)) = −Bn(x, y), n ∈ N,

so the claim follows. �

5.3.5 Generalized Characteristic Function of Gaussian
Colombeau Stochastic Process

We provide in this subsection examples of the generalized characteristic function
related to GCSPs with values in L2(Ω).

Let us compute the generalized characteristic function of a GCSP u = [(un)n] ∈
G1
L2(Ω,R). Let B = [(Bun)n] ∈ G1(R2) be the generalized correlation function of u
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determined by a Gaussian representative (un)n. According to Definition 4.2.1, the
distribution function of un is

P (un(ω, x) ∈ (−∞, b)) = 1√
2πBun(x, x)

∫ b

−∞
exp

(
− s2

2Bun(x, x)

)
ds,

so we obtain

Lun(t, x) =
∫
R
eitun(ω,x) dP (ω)

= 1√
2πBun(x, x)

∫
R

exp
(
it− t2

2Bun(x, x)

)
dt

= exp
(
−1

2Bun(x, x)t2
)
.

Therefore, the generalized characteristic function of a GCSP u with generalized
correlation function B is

Lu(t, x) = exp
(
−1

2B(x, x)t2
)
∈ G1(R2).

In the following two examples we consider the generalized characteristic func-
tions of Brownian motion and white noise.

Example 5.3.1 Recall, Brownian motion is b = [(bn)n] ∈ G1
L2(Ω,R) is a GCSP with

zero generalized expectation and with a representative of the generalized correlation
function

Bbn(x, y) = min{σ, τ} ∗ ϕn(x)ϕn(y), x, y ∈ R, n ∈ N;

see Example 5.1.1. Since

Bbn(x, x) = min{σ, τ} ∗ ϕ2
n(x), n ∈ N,

we obtain that the generalized characteristic function of a Brownian motion b is
represented by

Lbn(t, x) = exp
(
− t

2

2
(
min{σ, τ} ∗ ϕ2

n(x)
))

, n ∈ N. 2

Example 5.3.2 Recall, white noise w = [(wn)n] ∈ G1
L2(Ω,R) is a GCSP with zero

generalized expectation and with a representative of the generalized correlation function

Bwn(x, y) = ϕn(x− y), x, y ∈ R, n ∈ N;

see Example 5.1.2. Since

Bwn(x, x) = ϕn(x− x) = ϕn(0), n ∈ N,
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we obtain that the generalized characteristic function of a white noise w is represented
by

Lwn(t, x) = exp
(
−1

2ϕn(0)t2
)
, n ∈ N. 2

5.4 Colombeau Stochastic Processes with
Independent Values

The theory of GSP with independent values was developed by I. M. Gel’fand in
[Gel55]. Recall, a GSP with independent values u(φ) = 〈u, φ〉, φ ∈ D(O), has inde-
pendent values, if the random variables u(φ1) and u(φ2) are mutually independent,
whenever φ1(x)φ2(x) = 0.

In this section the main goal is to define CSPs with independent values and give
a characterization of such processes via their generalized correlation function in the
classical Colombeau algebra of generalized numbers.

Definition 5.4.1 A CSP u over O with values in Lp(Ω) has independent values if it
has a representative (un)n such that the following conditions hold:

(1) for every n ∈ N, un(ω, x) and un(ω, y) are independent random variables for
(x, y) ∈ K, K b QO, i.e. for every n ∈ N,

P{un(ω, x) ∈ B1 ∩ un(ω, y) ∈ B2} = P{un(ω, x) ∈ B1}P{un(ω, y) ∈ B2}

for all B1, B2 ∈ B(R) and (x, y) ∈ K, K b QO,

(2) for n 6= m, un(ω, x) and um(ω, y) are independent random variables for every
x, y ∈ O, i.e. for n 6= m,

P{un(ω, x) ∈ B1 ∩ um(ω, y) ∈ B2} = P{un(ω, x) ∈ B1}P{um(ω, y) ∈ B2}

for all B1, B2 ∈ B(R) and x, y ∈ O.

The following example shows that not all representations of such a process are
with independent values.

Example 5.4.1 Let (un)n be a representative of a CSP u satisfying the conditions of
Definition 5.4.1 and (Nn)n be a negligible CSP with non-independent values. Then
(un)n + (Nn)n is a representative of the same equivalence class (of the same CSP) which
has not independent values. Therefore, not all representatives are with independent
values. �
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In the sequel, we will call the representatives that satisfy the conditions of
Definition 5.4.1 shortly IV-representatives.

Remark 5.4.1 The notion of CSPs with independent values is dependent on the exis-
tence of a special representative that satisfies the conditions i Definition 5.4.1. Note
that it is not possible to give a characterization of a CSPs with independent values that
would not depend on the choise of representatives.

Note that by Proposition 4.5.1 inverse images of sharp open balls are always in
F .

Theorem 5.4.1 Let u be a CSP over O with values in Lp(Ω) and let u have independent
values. Then

P{u(ω, x̃) ∈ O1 ∩ u(ω, ỹ) ∈ O2} = P{u(ω, x̃) ∈ O1}P{u(ω, ỹ) ∈ O2} (5.3)

for all open balls O1,O2 in Rc and (x̃, ỹ) ∈ (Q̃O)c.

PROOF. Let u have independent values and let (un)n be the corresponding IV-
representative as stated in Definition 5.4.1. Let

Oi = L((ci;n)n, ki) = {[(zn)n] ∈ Rc : lim sup
n→∞

|ci;n − zn|(logn)−1
< ki}

= {[(zn)n] ∈ Rc : |ci;n − zn| < nlog ki for all n > n0 for some n0 ∈ N},

i = 1, 2, be two open balls in Rc and (x̃, ỹ) = ((xn)n, (yn)n) ∈ (Q̃O)c. There ex-
ists a compact set K b QO such that (xm, ym) ∈ K for all m ∈ N. Since u has
independent values and xm 6= ym, it follows that um(ω, xm) and um(ω, ym) are
independent random variables for every m ∈ N, un(ω, xn) and um(ω, xm) are inde-
pendent random variables for n 6= m, and un(ω, yn) and um(ω, ym) are independent
random variables for n 6= m. Therefore, the events {ω ∈ Ω : um(ω, xm) ∈ B1} and
{ω ∈ Ω : um(ω, ym) ∈ B2} are independent for every m ∈ N, as well as the events
{ω ∈ Ω : un(ω, xn) ∈ B1} and {ω ∈ Ω : um(ω, xm) ∈ B2} for n 6= m and the events
{ω ∈ Ω : un(ω, yn) ∈ B1} and {ω ∈ Ω : um(ω, ym) ∈ B2} for n 6= m.

We have

Ax̃ = {ω ∈ Ω : u(ω, x̃) ∈ O1}

= {ω ∈ Ω : lim sup
n→∞

|c1;n − un(ω, xn)|(logn)−1
< k1}

= {ω ∈ Ω : |c1;n − un(ω, xn)| < nlog k1 for all n > n0 for some n0 ∈ N}

=
∞⋃
n=1

∞⋂
m=n
{ω ∈ Ω : |c1;m − um(ω, xm)| < mlog k1}

=
∞⋃
n=1

Ax̃n,
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where
Ax̃n =

⋂
m≥n
{ω ∈ Ω : |c1;m − um(ω, xm)| < mlog k1} =

⋂
m≥n

Ixmm .

It holds Ax̃1 ⊂ Ax̃2 ⊂ Ax̃3 ⊂ . . . and by continuity of the probability measure we
obtain

P (Ax̃) = P

( ∞⋃
n=1

Ax̃n

)
= lim

n→∞
P (Ax̃n) = lim

n→∞
P

 ⋂
m≥n

Ixmm

 .
Put

Akn =
k⋂

m≥n
Ixmm , k ≥ n.

Then ⋂
m≥n

Ixmm =
∞⋂
k=n

Akn.

It holds Ann ⊃ An+1
n ⊃ An+2

n ⊃ . . . and hence

P (Ax̃) = lim
n→∞

P

 ⋂
m≥n

Ixmm

 = lim
n→∞

P

( ∞⋂
k=n

Akn

)

= lim
n→∞

lim
k→∞

P (Akn) = lim
n→∞

lim
k→∞

P

(
k⋂

m=n
Ixmm

)

= lim
n→∞

lim
k→∞

k∏
m=n

P (Ixmm ), (5.4)

where we used the independence of the events {ω ∈ Ω : |c1;m−um(ω, xm)| < mlog k1}
and {ω ∈ Ω : |c1;n − un(ω, xn)| < nlog k1} for m 6= n. Analogously, we have

Bỹ = {ω ∈ Ω : u(ω, ỹ) ∈ O2} =
∞⋃
n=1

Bỹ
n,

Bỹ
n =

⋂
m≥n
{ω ∈ Ω : |c2;m − um(ω, ym)| < mlog k2} =

⋂
m≥n

Jymm ,

Bk
n =

k⋂
m≥n

Jymm , k ≥ n,

and

P (Bỹ) = lim
n→∞

P (Bỹ
n) = lim

n→∞
P

 ⋂
m≥n

Jymm


= lim

n→∞
lim
k→∞

k∏
m=n

P (Jymm ). (5.5)
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We have

Ax̃ ∩Bỹ =

⋃
n∈N

Ax̃n

 ∩
⋃
l∈N

Bỹ
l

 =
⋃
n,l∈N

(Ax̃n ∩B
ỹ
l ).

Since Ax̃n ⊂ Ax̃n+1, n ∈ N, and Bỹ
l ⊂ Bỹ

l+1, l ∈ N, we have Ax̃n ∩ B
ỹ
l ⊂ Ax̃n+1 ∩ B

ỹ
l+1,

n, l ∈ N, and therefore

P (Ax̃ ∩Bỹ) = P

 ⋃
n,l∈N

(Ax̃n ∩B
ỹ
l )

 = P

⋃
n∈N

(Ax̃n ∩Bỹ
n)

 = lim
n→∞

P (Ax̃n ∩Bỹ
n).

Since

Ax̃n ∩Bỹ
n =

 ⋂
m≥n

Ixmm

 ∩
⋂
l≥n

Jyll

 =
⋂

m,l≥n
(Ixmm ∩ Jyll )

=
∞⋂
k=n

k⋂
m,l≥n

(Ixmm ∩ Jyll ) =
∞⋂
k=n

Cn;k,

and Cn;k ⊃ Cn,k+1, k ≥ n, we obtain

P (Ax̃ ∩Bỹ) = lim
n→∞

P (Ax̃n ∩Bỹ
n) = lim

n→∞
P

( ∞⋂
k=n

Cn;k

)
= lim

n→∞
lim
k→∞

P (Cn;k)

= lim
n→∞

lim
k→∞

P

 k⋂
m,l≥n

(Ixmm ∩ Jyll )

 = lim
n→∞

lim
k→∞

k∏
m,l≥n

P (Ixmm ∩ Jyll )

= lim
n→∞

lim
k→∞

k∏
m,l≥n

P (Ixmm )P (Jyll ), (5.6)

where we used the independence of the events {ω ∈ Ω : |c1;m−um(ω, xm)| < mlog k1}
and {ω ∈ Ω : |c2;m − um(ω, ym)| < mlog k2} in the last step.

Now, from (5.4), (5.5) and (5.6) we have

P (Ax̃ ∩Bỹ) = lim
n→∞

lim
k→∞

k∏
m,l≥n

P (Ixmm )P (Jyll )

=

 lim
n→∞

lim
k→∞

k∏
m,l≥n

P (Ixmm )

 lim
n→∞

lim
k→∞

k∏
m,l≥n

P (Jyll )


= P (Ax̃)P (Bỹ). �

In the next section we shall make use of the following characterization of CSPs
with independent values.
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Proposition 5.4.1 Let u be a CSP over O with values in L2(Ω) and let u have inde-
pendent values. Then the generalized correlation function B(x̃, ỹ) is supported by the
diagonal, i.e. B(x̃, ỹ) = 0 for all (x̃, ỹ) ∈ (Q̃O)c.

PROOF. Let (un)n be an IV-representative and suppose that the representative (Bn)n
of its generalized correlation function is determined by this same (un)n. Without
restriction of generality we may assume that all generalized expectations are zero,
thus we have E(un(·, xn)) = Nn, |Nn| = O(n−k) for all k > 0. Let (x̃, ỹ) ∈ (Q̃O)c be
arbitrary and choose its representatives such that xm 6= ym for all pairs (xm, ym) ∈ K,
m ∈ N, K b QO. Hence, by independence at different points we obtain

Bn(xn, yn) = E(un(·, xn)un(·, yn)) = E(un(·, xn))E(un(·, yn)) = NnMn,

where |Nn| = O(n−k) and |Mn| = O(n−k) for arbitrary k > 0. Thus, B(x̃, ỹ) = 0 in
Rc. �

Corollary 5.4.1 Let u and B be as in Proposition 5.4.1. If B is associated to F ∈
D′(O ×O), then B is associated to a generalized function which has a representative of
the form

B∗n(x, y) =
∫

O

∑
j,k∈N0

Rj,k(s)ϕ(j)
n (x− s)ϕ(k)

n (y − s)ds, x, y ∈ O, (5.7)

where for every n ∈ N only a finite number of continuous functions Rj,k are different
from zero on any compact subset of O.

PROOF. From Proposition 5.4.1 it follows that B(x̃, ỹ) = 0 for all (x̃, ỹ) ∈ (Q̃O)c.
Proposition 5.2.1 imply that B is associated to a generalized function which has a
representative of the form (5.1). �

5.5 Stationary Colombeau Stochastic Processes
The subject of this section are stationary CSPs. We will introduce strictly stationary
CSPs and weakly stationary CSPs. In this section the main goal is to show that the
generalized expectation of a stationary CSP is a generalized constant. We give a
special form of generalized correlation function of a stationary CSPs.

5.5.1 Strictly Stationary Colombeau Stochastic Processes
Definition 5.5.1 A CSP u over O with values in Lp(Ω) is called strictly stationary if it
has a representative (un)n such that for every n ∈ N, for arbitrary x1, . . . , xm ∈ O and
for every h ∈ Rd such that x1 + h, . . . , xm + h ∈ O, the random variables

(un(·, x1), . . . , un(·, xm)) and (un(·, x1 + h), . . . , un(·, xm + h)) (5.8)
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are identically distributed.

In the sequel, a CSP that satisfies (5.8) is called stationary CSP.

Remark 5.5.1 Observe that it is not possible to give a characterization of stationary
CSPs independently of the representatives.

Theorem 5.5.1 The generalized expectation m ∈ G(O) of a stationary CSP over
O ⊆ Rd is a generalized constant m ∈ Rc.

PROOF. If u is stationary, taking a representative (un)n which satisfies (5.8) and
calculating

mun(x+ h)−mun(x) = E(un(·, x+ h)− E(un(·, x)) = 0,

we immediately obtain that

mun(x) = cn, x ∈ O,

(It is known that if a smooth function is translation invariant, then it has to be a
constant.) that is, mu = [(mun)n] is a constant in Rc. �

Remark 5.5.2 Not all representatives have to be stationary, but all of them have
constant expectations. If (un)n is a representative of a CSP satisfying (5.8) and
(Nn)n is a representative of a negligible non-stationary CSP, then ((un)n + (Nn)n is a
representative of the same equivalence class which is not stationary.

In the sequel, we will assume that O is a centrally symmetric convex open set in
Rd. This will imply that O −O = {z ∈ R2 : z = x− y, x, y ∈ O} ∼= 2O.

Theorem 5.5.2 Let O ⊆ Rd be a centrally symmetric convex open set and let u be
a stationary CSP over 2O with values in L2(Ω). If B = [(Bn)n] ∈ G(O × O) is the
generalized correlation function of u, then there exists a positive-definite generalized
function B∗ = [(B∗n)n] ∈ G(2O) such that

Bn(x, y) = B∗n(x− y), x, y ∈ O, n ∈ N.

PROOF. Without loss of generality we may assume that the generalized expectation
of u is zero. Since u is stationary, it follows that

Bn(x, y) = E(un(·, x)un(·, y))

= E(un(·, x+ h)un(·, y + h))

= Bn(x+ h, y + h), n ∈ N, (5.9)
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for every x, y ∈ O and every h ∈ Rd such that x + h, y + h ∈ O. Thus, the
representative of its generalized correlation function is translation invariant. Putting
h = −y in (5.9), we obtain

Bn(x, y) = Bn(x− y, 0), n ∈ N.

Define
B∗n(x− y) = Bn(x− y, 0), n ∈ N.

Let us show that B∗ = [(B∗n)n] is a positive-definite generalized function. Let K b O.
Let a > 0 and ζ1, . . . , ζm ∈ R be arbitrary. Then we have

inf
xk,xj∈K

m∑
k,j=1

(B∗n(xk − xj) + n−a)ζkζj = inf
xk,xj∈K

m∑
k,j=1

(Bn(xk − xj , 0) + n−a)ζkζj

= inf
xk,xj∈K

m∑
k,j=1

(Bn(xk, xj) + n−a)ζkζj ≥ 0,

for all n ≥ n0, n0 ∈ N, since B is a translation invariant positive-definite generalized
function. Therefore, B∗ is positive-definite. �

This leads to:

Corollary 5.5.1 Let O ⊆ Rd be a centrally symmetric convex open set and let u be
a stationary CSP over 2O with values in L2(Ω). If B = [(Bn)n] ∈ G(O × O) is the
generalized correlation function of u, then there exists a positive-definite generalized
function B∗ = [(B∗n)n] ∈ G(2O) such that

B(x̃, ỹ) = B∗(x̃− ỹ), x̃, ỹ ∈ Õc.

Corollary 5.5.2 Let O ⊆ Rd be a centrally symmetric convex open set and let u be
a stationary CSP over 2O with independent values in L2(Ω). Then the generalized
function B∗ from Corollary 5.4.1 satisfies B∗(z̃) = 0 for every z̃ ∈ Õc, z̃ 6= 0̃.

PROOF. Since u has independent values, from Proposition 5.4.1 it follows that
B(x̃, ỹ) = 0 for all (x̃, ỹ) ∈ (Q̃O)c. Since u is stationary, from Corollary 5.5.1 it
follows that B(x̃, ỹ) = B∗(x̃ − ỹ). Put z̃ = x̃ − ỹ, for (x̃, ỹ) ∈ (Q̃O)c. Clearly, z̃ 6= 0̃
and B∗(z̃) = 0.

In the next example, we construct a stationary CSP.

Example 5.5.1 Let m be a generalized constant and B a positive-definite generalized
function. It is known by Theorem 5.1.2 (also see [LCP94a] and [MPS09]) that it is
possible to construct GCSPs u = [(un)n] ∈ GL2(Ω,O) such that m is the generalized
expectation of u and B is the generalized correlation function of u. Observe that process
u is stationary. �
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5.5.2 Weakly Stationary Colombeau Stochastic Processes
We procees now to the study of weakly stationary CSP. As we mentioned, our goal is
to prove that the generalized expectation of a weakly stationary CSP is a generalized
constant.

Definition 5.5.2 A CSP u over 2O with values in L2(Ω) is called weakly stationary if
its expectation mu ∈ G(O) and correlation function Bu ∈ G(O × O) are translation
invariant, i.e.

mu(x+ h) = mu(x)

for all h ∈ R such that x, x+ h ∈ O, and

Bu(x, y) = B∗(x− y), x, y ∈ O,

for some positive-definite generalized function B∗ ∈ G(2O).

Remark 5.5.3 Unlike the stationary CSP, the weakly stationary CSP is defined inde-
pendently of representatives.

Recall, Theorem 3.2.1 states that a generalized function u ∈ G(O) invariant
under all translation is a generalized constant. As an application of Theorem 3.2.1,
we obtain the following result.

Corollary 5.5.3 The generalized expectation m ∈ G(O) of a weakly stationary CSP
over a centrally symemetric convex open set O ⊆ Rd is a generalized constant m ∈ Rc.

Clearly, stationarity implies weak stationarity of a process (Theorem 5.5.1 and
Theorem 5.5.2). The converse is not true in general: weak stationarity is defined
only via the first two moments. However, since GCSPs are completely determined via
their generalized expectation and generalized correlation function (Corollary 5.1.1),
it follows that every weakly stationary GCSP is also stationary. Also, derivatives of a
(weakly) stationary CSP are (weakly) stationary.

5.5.3 Colombeau Stochastic Processes with Stationary
Increments

I. M. Gel’fand and N. Ya. Vilenkin develop the theory of processes with stationary
incerements in the framework of GSPs. In [GV64], a GSP u is called a process with
stationary increments of order n, if its nth derivative is a stationary GSP, that is
random variables

(u(n)(φ1(x+ h)), . . . , u(n)(φk(x+ h))) and (u(n)(φ1(x)), . . . , u(n)(φk(x)))
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are identically distributed for all functions φ1, . . . , φk ∈ D(O) and any h ∈ Rd such
that x+ h ∈ O.

Following [GV64], we introduce here the notion of CSP with stationary incre-
ments.

Definition 5.5.3 A CSP u over O with values in Lp(Ω) has stationary increments if
the derivative of the process ∇u is stationary.

Next, we introduce the notion of CSP with weakly stationary increments.

Definition 5.5.4 A CSP u over O with values in Lp(Ω) has weakly stationary incre-
ments if the derivative of the process ∇u is weakly stationary.

Thus, the study of processes with stationary increments reduces to the study of
their derivative process. This again reduces to the study of the derivatives of the
generalized expectation and the generalized correlation function, i.e. to checking
if

∇m(x) = ∇E(u(·, x)) = E(∇u(·, x))

corresponds to the expectation of a stationary process and if

∇x �∇yB(x, y) = ∇x �∇yE(u(·, x)u(·, y)) = E(∇xu(·, x) �∇yu(·, y))

corresponds to the generalized correlation function of a stationary process. Here �
denotes the scalar product in Rd.

Example 5.5.2 Let d = 1. The generalized correlation function of white noise w =
[(wn)n] is represented by

Bwn(x, y) =
∫
R
ϕn(s− x)ϕn(s− y) ds, n ∈ N.

White noise is a stationary GCSP. Brownian motion has the generalized correlation
function represented by

Bbn(x, y) = min{x, y} ∗ ϕn(x)ϕ(y), n ∈ N.

It holds
∂x∂yBbn(x, y) =

∫
R
ϕn(s− x)ϕn(s− y)ds, n ∈ N.

Thus Brownian motion has stationary increments as expected.
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6Applications

„All happy families resemble one another, each
unhappy family is unhappy in its own way.

— Leo Tolstoy
(1828 - 1910)„All linear problems resemble one another, each

nonlinear problem is nonlinear in its own way.

— Akademik Teodor Atanacković

In this chapter we present a method for solving a class of linear SPDEs in the
framework of stationary GCSPs over Rd with values in L2(Ω). The results presented
in this chapter are an original part of the dissertation; see [GOPS18a].

In order to find the solutions to a class of SPDEs in the framework of stationary
GCSPs, we use the Fourier transform. Therefore, we need to switch to tempered
CSPs over Rd with values in L2(Ω). Notice that the whole theory of CSPs over Rd

with values in L2(Ω) can be adapted word by word, with the change of negligible
sets, to tempered CSPs over Rd with values in L2(Ω).

6.1 Stationary Solutions to Some Class of
Stochastic Partial Differential Equations

Let
P (D) =

∑
|α|≤k

ãαD
α
x , ãα ∈ Rc,

be a differential operator of order k with generalized constant coefficients; see also
Section 2.6. Its symbol is

P (ξ) =
∑
|α|≤k

ãαξ
α, ξ ∈ Rd.

Our aim is to present a method for solving the equation

P (D)u(ω, x) = f(ω, x), ω ∈ Ω, x ∈ Rd, (6.1)
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where f = [(fn)n] is a weakly stationary tempered GCSP over Rd with values in
L2(Ω) with generalized expectation m̃f = [(mfn)n] ∈ Rc (it is a constant due to
Corollary 5.5.3) and generalized correlation function Bf = [(Bfn)n] ∈ Gτ (R2d).
Notice that a weakly stationary GCSP is also stationary.

6.1.1 Matching the Expectation and Correlation

We interpret equation (6.1) as a family of equations

Pn(D)un(ω, x) = fn(ω, x), ω ∈ Ω, x ∈ Rd, n ∈ N, (6.2)

in Eτ,L2(Ω,Rd), where

Pn(D) =
∑
|α|≤k

(aα)nDα
x , n ∈ N;

see Section 2.6 or [PS96] for more details.

It is known that Gaussian processes are completely determined by their expec-
tation and correlation. Therefore, we will match the expectations and correlations
on the left hand side of (6.2) with the corresponding ones on the right hand side of
(6.2). Note that it is the same technique as used in [MPS09]. Also, due to Corollary
5.5.3 the generalized expectation of any stationary solution u will have to be a
generalized constant, while its generalized correlation function will have to be of
the form B∗u(x− y) due to Theorem 5.5.2.

In the following theorem we will give a necessary condition for the existence of
a stationary Gaussian solution to the equation (6.1).

Theorem 6.1.1 Let f = [(fn)n] ∈ Gτ,L2(Ω,Rd) be a weakly stationary tempered GCSP
with generalized expectation m̃f = [(mfn)n] and generalized correlation function
Bf = [(Bfn)n].

(a) The generalized expectation m̃u = [(mun)n] ∈ Rc of a weakly stationary solution
to equation (6.1) satisfies

m̃u =


m̃f
ã0
, if ã0 6= 0̃,

arbitrary , if ã0 = 0̃ and m̃f = 0̃
does not exist , if ã0 = 0̃ and m̃f 6= 0̃.

(6.3)

Especially, if ã0 = 0̃ and m̃f 6= 0̃, then equation (6.1) has no weakly stationary
solutions in Gτ,L2(Ω,Rd).
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(b) The generalized correlation function [(Bun)n] ∈ Gτ (R2d) of a weakly stationary
solution to equation (6.1) satisfies

Pn(D)Pn(−D)Bun(z) = Bfn(z), z = x− y ∈ Rd, n ∈ N. (6.4)

Especially, if there exists an open set S ⊂ Rd such that

B̂fn(ξ) > 0,

for ξ ∈ S, n ∈ N, and
Pn(ξ)Pn(−ξ) < 0,

for ξ ∈ S, n ∈ N, for all representatives of the coefficients (aα)n, then Bun cannot
be a positive-definite function.

(c) Let
|Pn(ξ)| ≥ Cn−r(1 + |ξ|)k, n ∈ N, ξ ∈ Rd,

for some C > 0, r > 0, k > 0, for some representative of the coefficients (aα)n.
Then equation (6.1) has a weakly stationary solution u = [(un)n] ∈ Gτ,L2(Ω,Rd)
and its generalized correlation function satisfies

Pn(ξ)Pn(−ξ)B̂un(ξ) = B̂fn(ξ), ξ ∈ Rd, n ∈ N. (6.5)

PROOF. (a) If u = [(un)n] ∈ Gτ,L2(Ω,Rd) is the solution of equation (6.1), then
(un)n ∈ Eτ,L2(Ω,Rd) is the solution of the family of equations (6.2). Taking expec-
tations on both sides of equation (6.2) and using the fact that stationary processes
have constant expectations, we obtain

Pn(D)mun = mfn , n ∈ N. (6.6)

Since mun is a constant, Pn(D)mun = (a0)nmun if (a0)n 6= 0, while Pn(D)mun = 0
for (a0)n = 0. This means that equation (6.6) will have no solutions if (a0)n = 0 and
mfn 6= 0. If (a0)n = 0 and mfn = 0, then mun can be taken as an arbitrary constant
from EM . Finally, if (a0)n 6= 0, then from

P (D)mun = (a0)nmun = mfn

we obtain
mun = mfn

(a0)n
.

Thus, our claim (6.3) follows.

(b) Taking expectations on both sides in the equation

Pn(Dx)Pn(Dy)un(ω, x)un(ω, y) = fn(ω, x)fn(ω, y), ω ∈ Ω, x, y ∈ Rd, n ∈ N,
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we obtain

Pn(Dx)Pn(Dy)Bun(x, y) = Bfn(x, y), x, y ∈ Rd, n ∈ N. (6.7)

Since we seek for u stationary, from Theorem 5.5.2 it follows that

Bun(x, y) = Bun(x− y), x, y ∈ Rd, n ∈ N.

Therefore, we rewrite equation (6.7) in the form (6.4) and [(Bun)n] ∈ Gτ (R2d).

Applying the Fourier transform to (6.4), we obtain (6.5). Since [(Bfn)n] is a
generalized correlation function of f = [(fn)n] and thus positive definite, B̂fn is a
positive distribution for all n ∈ N. From (6.5) it follows that Pn(ξ)Pn(−ξ) must be
non-negative in order that B̂un(ξ) can be a positive distribution. By the Bochner
theorem, Bun(x) will be a positive-definite function.

(c) First we fix ω ∈ Ω. CSPs possess smooth regular paths on the representative
level, which enables one to construct pathwise solutions i.e. solutions for any fixed
realization ω ∈ Ω.

Applying the Fourier transform to (6.1) we obtain

Pn(ξ)ûn(ω, ξ) = f̂n(ω, ξ),

and since the polynomial Pn(ξ) has no real zeros, we obtain

ûn(ω, ξ) = 1
Pn(ξ) f̂n(ω, ξ),

i.e.,
un(ω, x) = Sn(x) ∗ fn(ω, x), ω ∈ Ω, x ∈ Rd, n ∈ N, (6.8)

as the solution to equation (6.1), where

Sn(x) = F−1
( 1
Pn(ξ)

)
(x).

Clearly we have
|Pn(ξ)| ≤ Cns(1 + |ξ|)k

for some C > 0 and s > 0. Then from the assumption

|Pn(ξ)| ≥ Cn−r(1 + |ξ|)k

we have that 1
Pn(ξ) is in OM (Rd) and Sn = F−1

(
1

Pn(ξ)

)
is in O′c(Rd).

The sequence (un)n is moderate, since Sn ∈ O′c(Rd); see [Hor66].
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We continue to investigate the stationarity of the solution. Since Pn(ξ) 6= 0
implies ã0 6= 0̃, the expectation of un is given by

mun = mfn

(a0)n

as stated in (a). Indeed, from (6.8) one can also derive by Fubini’s theorem that

mun = Sn ∗ E(fn) = mfnSn ∗ 1

= mfn

∫
Rd
Sn(x) dx = mfnŜn(0)

= mfn

1
Pn(0) = mfn

(a0)n
.

From (6.8) we obtain

un(ω, x)un(ω, y) = Sn(x) ∗ fn(ω, x) · Sn(y) ∗ fn(ω, y)

and taking expectations and applying Fubini’s theorem we get

E(un(·, x)un(·, y)) =
∫
Rd

∫
Rd
Sn(ξ)Sn(η)E(f(·, x− ξ)f(·, y − η) dξ dη,

i.e.
Bun(x, y) =

∫
Rd

∫
Rd
Sn(ξ)Sn(η)Bfn(x− ξ, y − η)dξ dη.

Since f is stationary,

Bfn(x− ξ, y − η) = Bfn(x− ξ − (y − η))

and we may apply the change of variables σ = ξ − η, τ = η, to obtain

Bun(x− y) =
∫
Rd

∫
Rd
Sn(ξ)Sn(η)Bfn(x− ξ − (y − η)) dξ dη

=
∫
Rd

∫
Rd
Sn(σ + τ)Sn(τ)Bfn(x− y − σ) dσ dτ

=
∫
Rd

(Šn ∗ Sn)(σ) ∗Bfn(x− y − σ) dσ

= (Šn ∗ Sn ∗Bfn)(x− y),

where Šn(τ) = Sn(−τ). Taking z = x− y we obtain

Bun(z) = (Šn ∗ Sn ∗Bfn)(z).

This is in compliance with (6.4) in (b). Taking the Fourier transform we obtain (6.5).
According to the assumption in (c), Pn(ξ)Pn(−ξ) is positive and bounded away from
zero. It follows that

B̂un(ξ) = B̂fn(ξ)
Pn(ξ)Pn(−ξ) , n ∈ N,
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is a positive distribution and hence [(Bun)n] is a positive-definite generalized function.
Thus, un given by (6.8) is weakly stationary. �

In Section 6.2 we will apply the method developed here to solve the stationary
Klein–Gordon equation driven by higher order derivatives of white noise.

6.1.2 Some Remarks on the Existence of a Solution

Let
Pn(ξ)Pn(−ξ) ≥ 0, ξ ∈ Rd, n ∈ N,

for some representative of the coefficients (aα)n. Let

N = {ξ ∈ Rd : Pn(ξ) = 0}, n ∈ N,

and
V = {ξ ∈ Rd : Pn(ξ)Pn(−ξ) = 0}, n ∈ N.

The sets N and V are assumed to be same for all n ∈ N. Assume that

P{ω ∈ Ω : f̂n(ω, ξ) = 0, ξ ∈ N} = 1

and
B̂fn(ξ) = 0, ξ ∈ V, n ∈ N.

Then, for the existence of a solution one needs to consider the problem of divi-
sion with P (ξ)P (−ξ) which is highly non-trivial. It is an old and classical result
of Łojasiewicz, cf. Hörmander [Hör63]. In the case of Colombeau generalized
functions, this is solved in [PS96] (see also [OPS03] for the general question of
extending distributions out of a set O). This question has not been considered in the
dissertation.

Let us continue with the same notation. If there exists a stationary CSP u =
[(un)n] ∈ Gτ,L2(Ω,Rd) as a solution to equation (6.1), then from Theorem 6.1.1 it
follows that its generalized expectation and generalized correlation function are
given by

m̃u = m̃f

ã0
(6.9)

and
Pn(ξ)Pn(−ξ)B̂un(ξ) = B̂fn(ξ), ξ /∈ V, n ∈ N. (6.10)

We will illustrate in the following example that in some special cases one may still
find a weakly stationary Gaussian solution. Notice that the solution does not have to
be unique.
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Example 6.1.1 We illustrate the case when the sets of points ξ for which P (ξ)P (−ξ) =
0 and for which B̂fn(ξ) = 0 coincide, n ∈ N.

Let d = 1 and consider the equation(
1 + d2

dx2

)
u = f,

where f = [(fn)n] is a stationary Gaussian CSP with zero generalized expectation and
generalized correlation function

Bfn(x− y) = ϕn(x− y) + 2ϕ(2)
n (x− y) + ϕ(4)

n (x− y), x, y ∈ R, n ∈ N.

Then
P (ξ) = 1− ξ2

and
P (ξ)P (−ξ) = (1− ξ2)2.

Clearly, V = {−1, 1}. Applying the Fourier transformation to the correlation function
we obtain

B̂fn(ξ) = (1− 2ξ2 + ξ4)ϕ̂n(ξ) = ϕ̂n(ξ), ξ ∈ R, n ∈ N.

Thus, we have

(1− ξ2)2B̂un(ξ) = (1− ξ2)2ϕ̂n(ξ), ξ ∈ R \ V, n ∈ N, (6.11)

and since ϕ̂n(ξ) is continuous on R, we may extend representatives of the generalized
correlation function of the solution to be

B̂un(ξ) = ϕ̂n(ξ), ξ ∈ R, n ∈ N,

i.e.
Bun(x− y) = ϕn(x− y), x, y ∈ R, n ∈ N.

Thus, u is a GCSP with zero generalized expectation and generalized correlation function
associated to the Dirac delta function. This means that the white noise GCSP is a solution
to the given equation.

This solution is not unique. Observe that

B̂vn(ξ) = B̂un(ξ) + δ(ξ − 1) + δ(ξ + 1), n ∈ N,

also satisfies equation 6.11. Therefore, a GCSP v = [(vn)n] with zero generalized
expectation and generalized correlation function given by

Bvn(x− y) = Bun(x− y) + 2 cos(x− y), n ∈ N,
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is a solution the given equation as well. �

6.2 The stationary Klein–Gordon equation driven
by higher order derivatives of white noise

Let us illustrate the method described in the previous section on the following
equation

(1̃−∆x)u(ω, x) = c̃+ f̃ · ∂kxw(ω, x), ω ∈ Ω, x ∈ Rd, (6.12)

where 1̃ = (1, 1, 1, . . .), c̃, f̃ ∈ Rc are generalized constants and w = [(wn)n] is the
white noise GCSP with zero generalized expectation and generalized correlation
function

Bwn(x, y) = ϕn(x− y), x, y ∈ Rd, n ∈ N.

It is known from Theorem 4.2.1 that all derivatives of a GCSP are also GCSPs.
Therefore, the process on the right hand side of equation (6.12)

g(ω, x) = c̃+ f̃ · ∂kxw(ω, x)

is a stationary GCSP. From Proposition 5.1.1 it follows that a GCSP g = [(gn)n] has
generalized expectation

[(mgn)n] = [(cn)n] = c̃ ∈ Rc

and generalized correlation function

[(Bgn(x, y))n] = [(c2
n + f2

n∂
k
x∂

k
yϕn(x− y))n], x, y ∈ Rd, n ∈ N.

Equation (6.6) reduces to

(1−∆x)mun = cn, x ∈ Rd, n ∈ N, (6.13)

and from this follows mun = cn. Therefore,

[(mun)n] = [(cn)n] = c̃ ∈ Rc.

Equation (6.7) reduces to

(1−∆x)(1−∆y)Bun(x− y) = c2
n + f2

n ∂
k
x∂

k
yϕn(x− y), x, y ∈ Rd, n ∈ N.

i.e. after the change of variables x− y = z

(1−∆)2Bun(z) = c2
n + f2

n(−1)k∂2k
z ϕn(z), z ∈ Rd, n ∈ N. (6.14)
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Applying the Fourier transformation to (6.14) we obtain

(1 + ‖ξ‖2)2B̂un(ξ) = c2
n(2π)d/2δ(ξ) + f2

nξ
2kϕ̂n(ξ), ξ ∈ Rd, n ∈ N.

Clearly, the condition of Theorem 6.1.1 (c) holds and the right hand side is also
positive. Now we have

Bun(z) = c2
n(2π)−d/2 ∗ F−1

( 1
(1 + ‖ξ‖2)2

)
(z)

+f2
n(2π)−d/2ϕn ∗ F−1

(
ξ2k

(1 + ‖ξ‖2)2

)
(z), z ∈ Rd,

which can be expressed as

Bun(z) = c2
n(2π)−d ∗ b∗2(z) + f2

n(2π)−d(−1)k
(
∂kz b

)∗2
∗ ϕn(z), z ∈ Rd,

where

b(z) = F−1
( 1

1 + ‖ξ‖2
)

(z) = 2π−d/2‖z‖1−d/2Kd/2−1(‖z‖), z ∈ Rd,

is the fundamental solution of 1 −∆x vanishing at infinity (see [Ort80], p. 128),
expressed in terms of the modified Bessel function Kd/2 − 1.
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7Conclusion

„Science is a beautiful gift to humanity, we should
not distort it.

— A. P. J. Abdul Kalam (1931-2015)
(11th President of India)

7.1 Overview
The main aims of research were probabilistic properties of CSPs and applications
in equation solving. Observe that all aims have been achieved. Therefore, this
dissertation brings relevant contributions to the theory of CSPs.

The measurability of the CSPs has been proven and the transfer of probabilistic
arguments into the Colombeau setting is enabled. The generalized expectation,
the generalized correlation function, the generalized characteristic function were
considered. Independence and stationarity of CSPs were studied.

In the natural science and engineering linear and nonlinear stochastic differential
equations often appear. Therefore, there is a great need to find different methods for
solving them. In this doctoral dissertation we have presented the method of solving
a class of SPDEs in the framework of a stationary Gaussian tempered CSPs.

7.2 Future work
In this section we give a few directions for future research.

We gave a structural characterization of the generalized correlation function of
CSPs with values in L2(Ω). A structural characterization of the pth-order moment of
CSPs with values in Lp(Ω) can be given.

IfX and Y are independent random variable, then LX+Y = LX ·LY . In [GV64], a
necessary and sufficient condition for a functional to be the characteristic functional
of a GSP with independent values. Is it possible to carry out the study of CSPs with
independent values with the help of their generalized characteristic functions?

In Chapter 6, the problem of division with P (ξ)P (−ξ) is left for future work.
Further application to SPDEs remain as possibilities for future investigation.
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AAn Overview of Background
Theory

In this appendix chapter some basic definitions and theorems of fundamental the-
ories, which are used in the previous chapters of the dissertation are presented.
Theorems presented here are familiar and therefore given without proofs but with
references for further reading.

A.1 Real and Functional Analysis
The relevant notions and theorems of real and functional analysis are briefly recalled
in this section. The reader is referred to [AK95; AK99; Rud06; Kur90; MV97] for
proofs of theorems.

A.1.1 Real Analysis: Basic Concepts and Theorems
In this subsection we recall three basic theorems of real analysis: Leibniz’s rule,
mean value theorem and Taylor’s theorem.

Theorem A.1.1 (Leibniz’s rule) If f and g are n-times differentiable functions, then
the product fg is n-times differentiable and

(fg)(n) =
n∑
k=0

(
n

k

)
f (n−k)(x)g(k)(x).

With the multi-index notation (see Chapter B, Section B.1), the Leibniz’s rule has
the following form

Dα(fg) =
∑
β≤α

(
α

β

)
Dα−βfDβg.

Theorem A.1.2 (Mean value theorem) Let O ⊆ Rd be open, a = (a1, a2, . . . , ad) ∈
O and h = (h1, h2, . . . , hd) ∈ Rd such that [a, a+h] = {x : x = a+th, 0 ≤ t ≤ 1} ⊆ O.
If f : O → R is continuous in all points in line segment [a, a+ h] and differentiable in
all points in line segment (a, a + h) = {x : x = a + th, 0 < t < 1}, then there exist
point c = a+ θh, 0 < θ < 1 in (a, a+ h) such that

f(a+ h)− f(a) =
d∑
i=1

∂f

∂xi
(a1 + θh1, a2 + θh2, . . . , ad + θhd)hi.
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Theorem A.1.3 (Taylor’s theorem) Let O be an open subset of Rd. Let f : O → R
be (n+ 1)-times continuously differentiable function and let x ∈ O, h ∈ Rd such that
{x+ th : 0 ≤ t ≤ 1} ⊆ O. Then there exist θ ∈ [0, 1] such that

f(x+ h) =
∑
|α|≤n

Dαf(x)
α! hα +

∑
|α|=n+1

Dαf(x+ θh)
α! hα.

A.1.2 Functional Analysis: Basic Concepts and Theorems
A metric on the nonempty setM is a function d : M×M → R+ with the following

properties:

(M1) d(x, y) = 0 if and only if x = y,

(M2) d(x, y) = d(y, x) for all x, y ∈M (symmetry),

(M3) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈M (triangle inequality).

The pair (M,d) is called a metric space.

A sequence (xn)n∈N in a metric space (M,d) is called a Cauchy sequence if for
every ε > 0 there exists an n0 ∈ N such that d(xn, xm) < ε, for all m,n > n0. A
convergent sequence is a Cauchy sequence. A Cauchy sequence converges if and
only if it contains a convergent subsequence. A metric space (M,d) is said to be
complete if every Cauchy sequence in (M,d) is convergent.

Theorem A.1.4 (Baire’s theorem) Let (M,d) be a complete metric space. If Cn,
n ∈ N, are closed subsets of M such that

⋃
n∈N

Cn = M,

then at least one of the sets Cn contains an open ball.

An ultrametric is a metric which satisfies the strong triangle inequality

d(x, z) ≤ max{d(x, y), d(y, z)}

for all x, y, z ∈ M. If d is an ultrametric on M , then the pair (M,d) is called an
ultrametric space.

A pseudometric on a set M is a mapping d : M ×M → R+ with the following
properties:

(PM1) (∀x, y ∈M)(x = y ⇒ d(x, y) = 0);

(PM2) (∀x, y ∈M)(d(x, y) = d(y, x));
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(PM3) (∀x, y, z ∈M)(d(x, z) ≤ d(x, y) + d(y, z)).

The pair (M,d) is called a pseudometric space. In case axiom (PM3) is replaced by a
stronger axiom

(PM3’) (∀x, y, z ∈M)(d(x, z) ≤ max{d(x, y), d(y, z)})

we come to the definition of an ulta-pseudometric. Clearly, every ultra-pseudometric
is a pseudometric, but not vice-versa.

LetM be a metric space and x0 ∈M. We say that f :→ R is upper semi-continuous
(resp. lower semi-continuous) at x0 if

lim sup
x→x0

f(x) ≤ f(x0) (resp. lim inf
x→x0

f(x) ≥ f(x0)).

The function f is called upper semi-continuous (resp. lower semi-continuous) if it is
upper semi-continuous (resp. lower semi-continuous) at every point of its domain.
Let fi : M → R be a linear lower semi-continuous (resp. upper semi-continuous)
function for every index i in a nonempty set I, and define

f(x) = sup
i∈I

fi(x) (resp. f(x) = inf
i∈I

fi(x)), x ∈M.

Then f is lower semi-continuous. (resp. upper semi-continuous). A function f is
lower semi-continuous if and only if {x ∈ M : f(x) > a} is an open set for every
a ∈ R. A function f is lower semi-continuous if and only if {x ∈ M : f(x) ≤ a} is
closed for every a ∈ R.

If u is continuous function on Rd with compact support and v is continuous
function on Rd, then the convolution u ∗ v is the continuous function defined by

(u ∗ v)(x) =
∫
Rd
u(x− y)v(y) dy, x ∈ Rd.

A.2 Distribution Theory
In this section, the most important concepts and results of the Schwarz theory of
generalized functions are presented. For deeper properties of Schwartz generalized
functions, the reader is referred to [SP00; Hör63; Hör03; Vla79].

A.2.1 Spaces of Functions
Let us recall the definition of some function spaces needed in the dissertation.

Let O ⊆ Rd be an open set. The space of smooth compactly supported functions
on O is denoted by D(O). A sequence (φn)n∈N ∈ D(O) is said to converge to zero in
D(O) if
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(i) there is K b O such that suppφn ⊂ K, and

(ii) for each α ∈ Nd0 the ∂αφn converge to zero uniformly as n→∞.

We say that φ ∈ C∞(Rd) is rapidly decreasing function, if for all α, β ∈ Nd0

γα,β(φ) = sup
x∈Rd

|xα∂βφ(x)| <∞.

The space of rapidly decreasing functions is denoted by S(Rd). A sequence (φn)n ∈
S(Rd) is said to converge to φ in S(Rd) if for every α, β ∈ Nd0 it holds γα,β(φn−φ)→ 0
as n→ 0.

By OC(O) we denote the space of smooth functions with the following property:
there exists p ∈ N such that for every α ∈ Nd0

sup
x∈O

(1 + |x|)−p|∂αf(x)| <∞

holds.

Let OM (O) be the space of functions with the following property: for every
α ∈ Nd0, there exists p ∈ N such that

sup
x∈O

(1 + |x|)−p|∂αf(x)| <∞.

A.2.2 Schwartz Generalized Functions

Let O ⊆ Rd be an open set. A Schwartz generalized function or Schwartz distribution
u on O is a linear functional on D(O), i.e. u : D(O)→ C is linear with the following
property:

φn → 0 in D(O)⇒ u(φn)→ 0 in C.

The space of Schwartz distributions on O is denoted by D′(O). We usually write
〈u, φ〉 instead of u(φ).

Let u : D(O)→ C be linear. Then u ∈ D′(O) if and only if for every compact set
K b O there exist C > 0 and k ∈ N0 such that

|〈u, φ〉| ≤ C
∑
|α|≤k

sup |∂αφ| (A.1)

for every φ ∈ D(K). A Schwartz distribution u ∈ D′(O) is said to be of finite order if
the same k ∈ N0 can be used in the estimate (A.1) for every K. The minimal k ∈ N0

satisfying the estimate (A.1) is called the order of the Schwartz distribution.
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The space of continuous functions on O can be identified with a subspace of
D′(O) by assigning

C(O) 3 f 7→
∫
f(x)φ(x) dx ∈ D′(O)

for all φ ∈ D(O). More generally we can embed the space L1
loc(O) into D′(O). Hence,

we have C(O) ⊆ L1
loc(O) ⊆ D′(O).

If u is a positive Schwartz distribution on O, i.e. 〈u, φ〉 ≥ 0 for all non-negative
φ ∈ D(O), then u is a positive measure.

Let O′ ⊂ O ⊂ Rd and u ∈ D′(O). The restriction of u to O′ is the Schwartz
distribution v ∈ D′(O) defined by 〈v, φ〉 = 〈u, φ〉, for all φ ∈ D(O′). The support of
u ∈ D′(O) is

suppu = {x ∈ O : u = 0 in some open neighborhood of x}c.

A Schwartz distribution on O with compact support is a linear functional on
C∞(O), i.e. u : C∞(O)→ C is linear with the following property:

φn → φ in C∞(O)⇒ 〈u, φn〉 → 〈u, φ〉 in C.

The space of Schwartz distribution on O with compact support is denoted by
E ′(O).

Let u : C∞(O)→ C be linear. Then u ∈ E ′(O) if and only if there exist a compact
set K b O, C > 0 and k ∈ N0 such that

|〈u, φ〉| ≤ C
∑
|α|≤k

‖∂αφ‖L∞(K)

for every φ ∈ C∞(O).

A.2.3 Structure of Schwartz distributions

It is known [Hör03], that all Schwartz distributions are in fact of the form

φ 7→
∑∫

fα∂
αφdx, φ ∈ D(O),

where the sum is locally finite, i.e. on every compact set there are only a finite
number of continuous functions fα which do not vanish identically. For a proof of
the following theorem see [Hör03] (Theorem 2.3.5, p. 47).
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Theorem A.2.1 Let x = (x′, x′′) be a splitting of the variables in Rd in two groups and
let u be a Schwartz distribution in Rd of order k with compact support contained in the
plane x′ = 0. Then

〈u, φ〉 =
∑
|α|≤k
〈uα, φα〉,

where uα is a Schwartz distribution of compact support and order k − |α| in the x′′

variables, α = (α′, 0) and

φα(x′′) = ∂αφ(x′, x′′)
∣∣∣∣
x′=0

.

Denote by K(a) the space of all infinitely differentiable functions φ(x) defined
in Rd and with support in the domain Ga = {|x1| ≤ a1, |x2| ≤ x2, . . . , |xd| ≤ ad},
where a = (a1, a2, . . . , ad) ∈ Rd. The general form of the functional in the space
K(a) is the following:

〈u, φ〉 =
∑
|α|≤k

uα(x)Dαφ(x) dx,

where uα(x) are bounded measurable functions in the domain {|x| ≤ a}. Integrating
by parts, we obtain

〈u, φ〉 =
∫
|x|≤a

U(x)Dβφ(x) dx,

where U(x) is a continuous function in Ga. The last expression can be written in the
following form

〈u, φ〉 = ±〈DβU(x), φ(x)〉.

Therefore, each Schwartz distribution in space K(a) is the derivative of some contin-
uous function. The reader is referred to [GS86] for more details.

A.2.4 Tempered Schwartz Generalized Functions

A tempered Schwartz generalized function or tempered Schwartz distribution on Rd

is continuous linear functional on S(Rd), i.e. u : S(Rd) → C is linear with the
following property:

φn → 0 in S(Rd)⇒ 〈u, φn〉 → 0 in C.

The space of tempered Schwartz distributions on Rd is denoted by S ′(Rd).

Let u : S(Rd) → C be linear. Then u ∈ S ′(Rd) if and only if there exist C > 0
and k ∈ N0 such that

|〈u, φ〉| ≤ C
∑

|α|,|β|≤k
‖xαDβφ‖L∞ .
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A.2.5 The Fourier Transform
The Fourier transform of u ∈ S(Rd) is given by

Fu(ξ) = û(ξ) = (2π)−d/2
∫
Rd
e−ix·ξu(x) dx, ξ ∈ Rd,

where x · ξ =
d∑
i=1

xi · ξi. The inverse Fourier transform of u ∈ S(Rd) is given by

F−1u(x) = (2π)−d/2
∫
Rd
eix·ξu(ξ) dξ, x ∈ Rd.

The Fourier transform and the inverse Fourier transform are linear mappings of
S(Rd) into S(Rd).

If u ∈ S(Rd), then
F(Dα

xu) = ξαF(u).

Moreover, if P (D) is a partial differential operator with constant coefficients, then

F(P (D)u) = P (ξ)F(u).

If u ∈ S(Rd), then for every h ∈ Rd

F(τhu) = e−ihξF(u),

where (τhu)(x) = u(x− h) is the translation by h ∈ Rd. If u, v ∈ S(Rd), then

F(u ∗ v) = (2π)d/2ûv̂.

Let u, v ∈ S(Rd). Then∫
Rd
u(x)v(x) dx =

∫
Rd
Fu(ξ)Fv(ξ) dξ.

Moreover, ∫
Rd
|u(x)|2 dx =

∫
Rd
|Fu(ξ)|2 dξ.

Theorem A.2.2 (Plancherel-Parseval) If u, v ∈ L2(Rd), then

1. (u, v)L2 = (Fu,Fv)L2 ,

2. ‖u‖L2 = ‖Fu‖L2 .

As consequence of Plancherel-Parseval theorem, we obtain that the Fourier
transform F : S(Rd)→ S(Rd) can be extended as isometry of L2(Rd)→ L2(Rd).
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A.3 Measure and Probability Theory
This appendix section is devoted to some definitions and theorems of measure and
probability theory that have been used in dissertation. The proofs of theorems can
be found in [PS12], [RĆ09] and [Kal97].

A.3.1 Measure and Probability Spaces
Let Ω be a non-empty set. A σ-algebra in Ω is a family F of subsets of Ω with the
following properties:

(i) Ω ∈ F ,

(ii) if A ∈ F , then Ac = Ω \A ∈ F , and

(iii) if Ai ∈ F , i ∈ N, then
∞⋃
i=1

An ∈ F .

The pair (Ω,F) is called F -measurable space. Elements of a σ-algebra F are called
F -measurable sets. A σ-algebra G is a sub-σ-algebra of F if G ⊆ F , i.e. A ∈ G implies
A ∈ F .

For any family M of subsets of Ω, the smallest σ-algebra BM containing M,

i.e.
BM =

⋂
{B|B is σ-algebra of subsets of Ω,M⊆ B},

is a σ-algebra generated by M. The Borel σ-algebra of subsets of Rd, denoted by
B(Rd) or B, is the smallest σ-algebra of subsets of Rd that contains all open sets. The
elements od B(Rd) are called Borel sets.

Let (Ω,F) be a measurable space. A measure on (Ω,F) is a mapping µ : F →
[0,∞] which satisfies: If Ai ∈ F , i ∈ N, are mutually disjoint sets in F then

µ

( ∞⋃
i=1

Ai

)
=
∞∑
i=1

µ(Ai) (σ − additivity).

The triple (Ω,F , µ) is called measure space.

Proposition A.3.1 Let µ be a non-trival measure on a measurable space (Ω,F).

1. µ(∅) = 0.

2. If Ai ∈ F , i = 1, 2, . . . , n, are mutually disjoint, then µ

(
n⋃
i=1

Ai

)
=

n∑
i=1

µ(An).

3. If A,B ∈ F and A ⊆ B, then µ(A) ≤ µ(B).

4. If Ai ∈ F , i ∈ N, then µ

( ∞⋃
i=1

Ai

)
≤
∞∑
i=1

µ(Ai).
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Theorem A.3.1 (Continuity of measure) Let µ be a non-trivial measure on a mea-
surable space (Ω,F), and suppose that Ai ∈ F , i ∈ N.

1. If Ai ⊆ Ai+1, i ∈ N, then µ

( ∞⋃
i=1

Ai

)
= lim

n→∞
µ(An).

2. If Ai ⊇ Ai+1, i ∈ N, and µ(A1) <∞, then µ

( ∞⋂
i=1

Ai

)
= lim

n→∞
µ(An).

Let (Ω,F , µ) be a measure space. All sets N ∈ F with µ(N) = 0 are called the
null sets. Note that if M ⊂ N and N is a null set, it does not follow that M is a null
set because M may not be in F . The space (Ω,F , µ) is a complete measure space if
and only if any subset of a null set is a null set.

Let (Ωi,Fi, µi), i = 1, 2, . . . , n, be a family of measure spaces. Their product is
the space (Ω,F , µ), where Ω = Ω1 × Ω2 × . . .× Ωn, F = F1 ⊗ F2 ⊗ . . .⊗ Fn is the
smallest σ-algebra containing all sets of the form A1 ×A2 × . . .×An for which each
Ai ∈ Fi, and µ = µ1 × µ2 × . . .× µn is the product measure given by

µ(A1 ×A2 × . . .×An) =
n∏
i=1

µ(Ai)

on the sets A1 ×A2 × . . .×An.

Any measure µ on (Ω,F) with µ(Ω) = 1 is called a probability measure and
it is denoted by P. The triple (Ω,F , P ) is called a probability space. Note that Ω
represents the set of outcomes of some random experiment. Elements of a σ-algebra
F are called events.

Let (Ω,F , µ) be a measure space. A proposition P about the elements of Ω is
said to hold almost everywhere (abbreviated as a.e.) with respect to µ if

A = {ω ∈ Ω : P(ω) is false} ∈ F

and µ(A) = 0. In the case of a probability measure, we say almost surely (abbreviated
as a.s.) instead of almost everywhere. We say that almost all (abbreviated as a.a.)
elements of set A have a certain property if the subset of A for which the property
fails has measure zero.

A.3.2 Measurable Functions
In this subsection, we recall the properties of measurable functions.

Let (Ωi,Fi), i = 1, 2, be measurable spaces. A mapping u : Ω1 → Ω2 is said to
be (F1,F2)-measurable or measurable if u−1(A) ∈ F1 for all A ∈ F2. If Ω1 ⊆ Rd1

and Ω2 ⊆ Rd2 and Fi = B(Ωi), i = 1, 2, u is said to be Borel measurable. Note that
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we have two σ-algebras on Ω1, namely the original σ-algebra F1 and the σ-algebra
u−1(F2) = {u−1(A) : A ∈ F2} induced by the mapping u. Hence, u is measurable if
the induced σ-algebra u−1(F2) is a sub-σ-algebra of F1.

Theorem A.3.2 Let Ω1 and Ω2 be metric spaces. Every continuous mapping u : Ω1 →
Ω2 is (B(Ω1),B(Ω2))-measurable.

Theorem A.3.3 Let (Ω,F) be a measurable space and u : (Ω,F) → (R,B(R)). The
following are equivalent:

1. u is measurable.

2. u−1((a,∞)) ∈ F for all a ∈ R.

3. u−1([a,∞)) ∈ F for all a ∈ R.

4. u−1((−∞, a)) ∈ F for all a ∈ R.

5. u−1((−∞, a]) ∈ F for all a ∈ R.

The following result says that measurability is inherited through composition.

Theorem A.3.4 Let (Ω1,F1), (Ω2,F2) and (Ω3,F3) be measurable spaces. If u :
Ω1 → Ω2 is (F1,F2)-measurable and v : Ω2 → Ω3 is (F2,F3)-measurable, then the
composition u ◦ v : Ω1 → Ω3 is (F1,F3)-measurable.

As a consequence, we get the following assertion.

Proposition A.3.2 Let (Ω,F) be a measurable space. If u : Ω → R is F -measurable
and v : R→ R is continuous then u ◦ v is F -measurable.

Let (Ω,F) be a measurable space. If u : Ω→ R and v : Ω→ R are F -measurable
functions on (Ω,F), then u+v, u−v and u ·v are F -measurable functions on (Ω,F).
In particular, if u is F -measurable, then cu is F -measurable function for every c ∈ R.
If u : Ω → R and v : Ω → R+ are F -measurable functions on (Ω,F), then u

v is
F -measurable function.

Recall, if (un)n∈N be a sequence of F -measurable functions on a measurable
space (Ω,F) with values in R = [−∞,∞], then

lim sup
n→∞

un(x) = inf
k∈N

(
sup
n≥k

un(x)
)

and
lim inf
n→∞

un(x) = sup
k∈N

(
inf
n≥k

un(x)
)
.
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Theorem A.3.5 Let (un)n∈N be a sequence of F -measurable functions on a measurable
space (Ω,F) with values in R. Then the functions sup

n∈N
un(x), inf

n∈N
un(x), lim sup

n→∞
un(x),

lim inf
n→∞

un(x), x ∈ Ω, are F -measurable.

The function u : Ω→ R on a measurable space (Ω,F) can be decomposed into
its positive and negative parts

u(x) = u+(x)− u−(x), x ∈ Ω,

where u+(x) = max{u(x), 0} and u−(x) = max{−u(x), 0}. Note that u+ and u− are
non-negative functions. If u is F -measurable, then u+ and u− are F -measurable.
Hence, every measurable function can be written as the difference of two non-
negative measurable functions. Note that |u| = u+ + u−. So, if u is F -measurable,
then |u| is F -measurable.

A.3.3 Integration
Let (Ω,F , µ) be a measure space.

The indicator function of a set A ∈ P(Ω) is defined by

χA(x) =
{

1, if x ∈ A,
0, if x /∈ A.

Note that χA is measurable if and only if A ∈ F .

A measurable function s : Ω→ R is called simple function if

s =
n∑
i=1

ciχAi ,

for some n ∈ N, where ci ∈ Rd and Ai ∈ F for 1 ≤ i ≤ d. The Lebesgue integral of s
on A ∈ F is defined by ∫

A
s dµ =

n∑
i=1

ciµ(A ∩Ai).

Let u : Ω→ [0,∞] be a F -measurable function.

The Lebesgue integral of u on A ∈ F is∫
A
u dµ = sup

{∫
A
s dµ : s simple measurable function and 0 ≤ s ≤ f

}
.

Finally if u : Ω→ R is F -measurable and A ∈ F , then the Lebesgue integral of u
is defined by ∫

A
u dµ =

∫
A
u+ dµ−

∫
A
u− dµ,
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provided at least one of the integrals on the right is finite.

Theorem A.3.6 (Monotone convergence theorem) Let (un)n∈N be a sequence of
non-negative measurable functions on (Ω,F , µ) that is a.e. monotone increasing and
converging pointwise to u a.e. Then

lim
n→∞

∫
Ω
un dµ =

∫
Ω
u dµ.

Theorem A.3.7 (Lebesgue’s dominated convergence theorem) If (un)n∈N is a se-
quence of measurable functions on (Ω,F , µ) converging pointwise to u a.e. and g ≥ 0
is an integrable function such that |un(x)| ≤ g(x) a.e. for all n ∈ N, then

lim
n→∞

∫
Ω
un dµ =

∫
Ω
u dµ.

Theorem A.3.8 (Fubini’s theorem) Let (Ω1,F1, µ1) and (Ω2,F2, µ2) be measure
spaces. If u : Ω1 × Ω2 → R is F1 ⊗F2-measurable with∫∫

|u(x, y)|µ1(dx)µ2(dy) <∞,

then ∫
Ω1×Ω2

u(x, y) (µ1 × µ2)(dx, dy) =
∫

Ω2

[∫
Ω1
u(x, y)µ1(dx)

]
µ2(dy)

=
∫

Ω1

[∫
Ω2
u(x, y)µ2(dy)

]
µ1(dx).

The functions y →
∫
u(x, y)µ1(dx) and x→

∫
u(x, y)µ2(dy) are defined µ2 a.e. and

µ1 a.e., respectively.

A.3.4 Random Varables. Expectation. Independence.
Characteristic Function

Let (Ω,F , P ) be a probability space.

A measurable mapping from Ω into Rd is called random variable. Random
variables are usually denoted by X, Y, Z, . . . .

Let X : Ω→ Rd be a random variable. Then

σ(X) = {X−1(B) : B ∈ B}

is a σ-algebra, called the σ-algebra generated by X. This is the smallest sub-σ-algebra
of F with respect to which X is measurable. For a family of random variables
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(Xi)i∈I on the same probability space (Ω,F), we denote by σ(Xi, i ∈ I) the smallest
σ-algebra contained in F with respect to which all the Xi are measurable.

If X is a random variable on (Ω,F , P ), its distribution or law is the probability
measure PX on (Rd,B) defined by

PX(B) = P (X−1(B)), B ∈ B.

In words, we pull B ∈ B back to X−1(B) ∈ F and then take the probability measure
P of that set. The associated distribution function FX : Rd → R is defined by

FX(x) = PX((−∞, x1]× . . .× (−∞, xd]) = P{ω ∈ Ω : X(ω) ≤ x},

for each x = (x1, . . . , xd) ∈ Rd.

Let (X,Y ) be a random variable taking values in R2d. The distribution of (X,Y )
is called the joint distribution of X and Y . The distributions PX and PY are then
called marginal distribution of (X,Y ), where PX(A) = P(X,Y )(A,Rd) and PY (A) =
P(X,Y )(Rd, A), for every A ∈ B.

A probability measure P1 on (Ω,F) is said to be absolutely continuous with
respect to probability measure P if A ∈ F and P (A) = 0 imply P1(A) = 0. Then, we
write P1 � P.

Theorem A.3.9 (Radon-Nikodym theorem) Let P and P1 be two probability mea-
sures given on (Ω,F) such that P1 � P. Then, there exists a unique measurable
function f : Ω→ R+ such that, for each A ∈ F ,

P1(A) =
∫
A
f dP.

Let X be a random variable with distribution PX that is absolutely continuous
with respect to Lebesgue measure on Rd. Then, the function appearing in the Radon-
Nikodym theorem is denoted by fX and it is called a probability density function. For
example, the uniform distribution on Ω = [a, b] has the probability density function

fX(x) = 1
b− a

, x ∈ R.

Two events A and B are independent if P (A ∩B) = P (A) · P (B). If A and B are
independent events, then so are Ac and B, A and Bc, and Ac and Bc. Events Ai,
i ∈ N, are independent if

P (Ai1 ∩Ai2 ∩ . . . ∩Aik) =
n∏
j=1

P (Aij ),
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for all choices of 1 ≤ i1 < i2 < . . . < ik. Let (Fi)i∈N be a sequence of sub-σ-algebras
of F . We say that a sequence (Fi)i∈N is independent if

P (Ai1 ∩Ai2 ∩ . . . ∩Aik) =
n∏
j=1

P (Aij ),

for all choices of 1 ≤ i1 < i2 < . . . < ik and of Aij ∈ Fj , 1 ≤ j ≤ k. A sequence of
random variables (Xi)i∈N is said to be independent if (σ(Xi))i∈N is independent.

The expectation of random variable X (when it exists) is given by

E(X) =
∫

Ω
X dP (ω) =

∫
Rd
x dPX(dx).

Note that if A ∈ F , then we sometimes write E(X,A) = E(XχA).

For a random variable X : Ω→ Rd and Borel measurable functions u : Rd → Rn,
it holds

E(u(X)) =
∫

Ω
u(X(ω))P (dω) =

∫
Rn
u(x)PX(dx),

if u ◦X is integrable.

Theorem A.3.10 If Xi : Ω → R, i = 1, 2, . . . , n are independent random variables,
with E(|Xi|) <∞, i = 1, 2, . . . , n, then E(|X1 ·X2 · . . . ·Xn|) <∞ and

E(X1 · . . . ·Xn) = E(X1) · E(X2) · . . . · E(Xn).

The integral E(Xp), p ∈ N, is called the pth moment of X, when it exists. We say
that X has moments to all orders if E(|X|p) <∞, for all p ∈ N.

The set of all random variables with finite pth moment is denoted by Lp(Ω). The
space L2(Ω) is a Hilbert space with the scalar product

(X,Y )L2 = E(XY ), X, Y ∈ L2(Ω),

which induces the norm

‖X‖2L2 = E(X2), X ∈ L2(Ω).

The set of random variables X such that |X| ≤ C a.s. for some constant C ∈ R,
is denoted by L∞(Ω). On the space L∞(Ω) we have the norm

‖X‖∞ = inf{C ∈ R : |X| ≤ C a.e.}.
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Theorem A.3.11 (Hölder’s inequality) Let p, q ∈ [1,∞] be such that 1
p + 1

q = 1. If
X ∈ Lp(Ω) and Y ∈ Lq(Ω), then XY ∈ L1(Ω) and

‖XY ‖L1 ≤ ‖X‖Lp · ‖Y ‖Lq .

A special case of Hölder’s inequality is the Cauchy-Schwarz inequality

‖XY ‖L1 ≤ ‖X‖L2 · ‖Y ‖L2 .

Theorem A.3.12 (Generalized Hölder’s inequality) Let p1, p2, . . . , pn > 0 be real

numbers such that
n∑
i=1

1
pi

= 1
p

. Let Xi ∈ Lpi(Ω), i = 1, 2, . . . , n. Then
n∏
i=1

Xi ∈ Lp(Ω)

and ∥∥∥∥∥
n∏
i=1

Xi

∥∥∥∥∥
Lp

≤
n∏
i=1
‖Xi‖Lpi .

Theorem A.3.13 (Minkowski’s inequality) Let p ∈ [1,∞] and X,Y ∈ Lp. Then

‖X + Y ‖Lp ≤ ‖X‖Lp + ‖Y ‖Lp .

Theorem A.3.14 (Minkowski’s inequality in integral form) Let (Ω1,F1, µ1) and
(Ω2,F2, µ2) be measure spaces. If u : Ω1 × Ω2 → R is F1 ⊗F2-measurable, then

(∫
Ω2

∣∣∣∣∫
Ω1
u(x, y) dµ1(x)

∣∣∣∣p dµ2(y)
) 1
p

≤
∫

Ω1

(∫
Ω2
|u(x, y)|p dµ2(y)

) 1
p

dµ1(x),

where 1 ≤ p <∞.

LetX = (X1, X2, . . . , Xd) and Y = (Y1, Y2, . . . , Yd) be two d-dimensional random
variables. The covariance of X and Y (when it exists) is the d × d matrix B =
Cov[X,Y ] = [(Cov(Xi, Yj))]d×d, where

Cov(Xi, Yj) = E[(Xi − E(Xi))(Yj − E(Yj))] = E(XiYj)− E(Xi)E(Yj).

The variance of a random variable X is defined by

V ar(X) = Cov(X,X).

Let X be an Rd-valued random variable on a probability space (Ω,F , P ) with
distribution PX . The characteristic function LX : Rd → C is defined by

LX(t) = E(ei(t,X)) =
∫

Ω
ei(t,X(ω)) dP (ω) =

∫
Rd
ei(t,x)PX(dx), t ∈ Rd,
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and it has the following properties:

1. |LX(t)| ≤ 1;

2. LX is hermitian, i.e. LX(−t) = LX(t) for all t ∈ Rd;

3. If X = (X1, X2, . . . , Xd) and E(|Xn
j |) < ∞ for some 1 ≤ j ≤ d and n ∈ N,

then
E(Xn

j ) = i−n
∂n

∂tnj
LX(t)

∣∣∣∣
t=0

.

Note that the characteristic function of random variable X determines the distribu-
tion of X.

If µ is a probability measure on Rd, then its characteristic function is the map

t→
∫
Rd
ei(t,x) µ(dx).

This mapping uniquely determines the probability measure µ.

Theorem A.3.15 (Bochner’s theorem) If L : Rd → C satisfies

1. the d × d matrix whose (i, j)th entry is L(ti − tj) is positive definite for all
t1, t2, . . . , td ∈ Rd,

2. L(0) = 1,

3. the map t→ L(t) is continuous at the origin,

then L is the characteristic function of a probability measure.

Proposition A.3.3 If Xi, i = 1, 2, . . . , n, are independent random variables, then

LX1+X2+...+Xn(t) = LX1(t) · LX2(t) · . . . · LXn(t), t ∈ Rd.

A random varable X is a 1-dimensional Gaussian (normal) random varaible if its
probability density function is

fX(x) = 1√
2πσ2

exp
(
−(x−m)2

2σ2

)
, x ∈ R,

and we write X : N (m,σ2). The expectation of X is

E(X) = m

and variance
V ar(X) = σ2.
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The characteristic function of X is given by

fX(t) = eitme−
σ2t2

2 , t ∈ R.

A d-dimensional random vector X = (X1, X2, . . . , Xd) has multi-dimensional Gaus-
sian (normal) distribution , if there exists a vector m = (m1,m2, . . . ,md) ∈ Rd and
a symmetric positive definite d× d matrix B such that X has a probability density
function of the form

fX(x) = 1√
(2π)d detB

exp
(
−1

2(x−m)TB−1(x−m)
)
, x = (x1, x2, . . . , xd) ∈ Rd.

The vector m is the expectation of X and B is the covariance matrix. The character-
istic function of X is given by

LX(t) = exp
(
i(t,m)− 1

2 t
TBt

)
, t = (t1, t2, . . . , td) ∈ Rd.

A.3.5 Convergence of Random Varaibles

Let (Xn)n∈N be a sequence of Rd-valued random variables on the probability space
(Ω,F , P ). We say that

• (Xn)n∈N converges to the random variable X : Ω→ Rd almost surely if

lim
n→∞

Xn(ω) = X(ω),

for all ω ∈ Ω \N, where N ∈ F satifies P (N) = 0.

• (Xn)n∈N converges to the random variable X : Ω→ Rd in probability if

(∀a > 0) lim
n→∞

P (|Xn −X| > a) = 0.

• (Xn)n∈N converges to the random variable X : Ω→ Rd in distribution if

lim
n→∞

∫
Rd
u(x)PXn(dx) =

∫
Rd
u(x)PX(dx),

for every continuous function u on Rd of compact support.

• (Xn)n∈N converges to the random variable X : Ω→ Rd in Lp, p ∈ [1,∞), if

lim
n→∞

‖Xn −X‖Lp = 0.

Figure A.1 summarizes how these types of convergence are related.
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Figure A.1.: Relations between different types of convergence of random variables
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A.3.6 Ordinary Stochastic Processes

This subsection is devoted to ordinary stochastic processes.

An ordinary (classical) stochastic process (OSP) is a parametrized family of random
variables {Xt}t∈T , T ⊆ Rd, defined on the same probability space (Ω,F , P ) taking
values in Rd.

Notice that the index t is often interpreted as time, so we refer to Xt as the state
of the OSP at time t. The set T is called the index set of the OSP. If the index set T
is a set of non-negative integers, we have a discrete time ordinary stochastic process.
If the index set T is an interval, R+ or R, it is called a continuous time ordinary
stochastic process.

Finite-dimensional distributions of an OSP {Xt}t∈T are given by

Pt1,t2,...,tn(B) = P ((X1(t1), X2(t2), . . . , Xn(tn)) ∈ B), B ∈ B(Rdn),

where t1, t2, . . . , tn ∈ T, t1 6= t2 6= . . . 6= tn, n ∈ N. The family of finite-dimensional
distributions of an OSP satisfies

(i) consistency condition:

Pt1,t2,...,tn,tn+1(B1 ×B2 × . . .×Bn × Rd) = Pt1,t2,...,tn(B1 ×B2 × . . .×Bn),

for all n ∈ N and all B1, B2, . . . , Bn ∈ B(Rd); and

(ii) symmetry condition:

Pt1,t2,...,tn(B1 ×B2 × . . .×Bn) = Ptπ1 ,tπ2 ,...,tπn
(Bπ1 ×Bπ2 × . . .×Bπn),

for allB1, B2, . . . , Bn ∈ B(Rd), all n ∈ N and all permutation π on {1, 2, . . . , n}.
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Theorem A.3.16 (Kolmogorov’s existence theorem) Given a family of probability
measures (Pt1,t2,...,tn : t1, t2, . . . , tn ∈ T, t1 6= t2 6= . . . 6= tn, n ∈ N) satisfies the consis-
tency condition and the symmetry condition, there exists a probability space (Ω,F , P )
and an OSP {Xt}t∈T having the Pt1,t2,...,tn as its finite-dimensional distributions.

We may regard the OSP Xt(ω) = X(t, ω) as a function of two variables ω ∈ Ω
and t ∈ T. For each fixed t ∈ T we can consider the random variable

X(t, ·) : Ω→ Rd, ω 7→ Xt(ω), ω ∈ Ω.

For each fixed ω ∈ Ω we obtain the function

X(·, ω) : T → Rd, t 7→ Xt(ω), t ∈ T,

which is called the (sample) path or trajectory of an OSP X.

We say that an OSP is continuous, if almost all of its paths are continuous.

Let {Xt}t∈T and {Yt}t∈T be OSPs on the same probability space (Ω,F , P ). We
say thet {Yt}t∈T is a version or modification of {Xt}t∈T , if for every t ∈ T

P ({ω ∈ Ω : Xt(ω) = Yt(ω)}) = 1.

It is clear that if {Yt}t∈T is a version of {Xt}t∈T , then {Xt}t∈T and {Yt}t∈T have the
same finite-dimensional distributions. Note that such processes are the same, but
they can have different path properties.

Theorem A.3.17 (Kolmogorov’s continuity criterion) Let {Xt}t be an OSP on Rd

and assume that there exist constants a, b, C > 0 such that

E|Xs −Xt|a ≤ C|s− t|d+b, s, t ∈ Rd.

Then {Xt}t has a pathwise continuous version.

The following example shows that pathwise continuity does not imply L2-
continuity.

Example A.3.1 Let φ ∈ D(R) be a function such that

• suppφ = [−1, 1],

•
∫
φ(x) dx = 0 and

•
∫
φ2(x) dx 6= 0.
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Take Ω = [−1, 1] with the uniform probability distribution. Let

X(t, ω) =


1√
t
φ

(
ω

t

)
, |ω| < t,

0, |ω| ≥ t or t ≤ 0.

Then E(X(t, ·)) = 0. Notice that all trajectories (except for ω = 0) are smooth. But

E((X(t, ·))2) =


1
2

∫
φ2(x) dx, t > 0,

0, t ≤ 0,

and it does not converge to zero as t→ 0. Therefore, L2-continuity does not hold. �

An OSP {Nt}t≥0 defined on (Ω,F , P ) taking values in N0 is a Poisson process of
intensity λ > 0 if

(i) N(0) = 0,

(ii) for any n ∈ N and any 0 ≤ t1 < t2 < . . . < tn the increments Ntn −Ntn−1 , . . . ,

Nt3 −Nt2 , Nt2 −Nt1 are independent random variables,

(iii) for any 0 ≤ s < t, the increment Nt − Ns has a Poisson distribution with
parameter λ(t− s), i.e.

P (Nt −Ns = k) = [λ(t− s)]k

k! e−λk, k = 0, 1, 2, . . . .

The following example shows that L2-continuity does not imply pathwise conti-
nuity.

Example A.3.2 A Poisson process {Nt}t of intensity λ > 0 is L2-continuous. Indeed,

E((Nt+s −Nt)2) = E(N2
s ) = λs+ (λs)2 → 0 as s→ 0.

Sample paths of Poisson process are not continuous. Notice that Poisson process violates
the Kolmogorov continuity criterion.

A real-valued OSP {Xt}t∈T is called a Gaussian (normal) ordinary stochastic
process if each of its finite-dimensional distributions is a multi-dimensional Gaussian
random variable. Notice that the joint distributions of every Gaussian OSP are
uniquely determined by its means and the covariance function.

A real-valued OSP b = {bt}t≥0 is called (standard) Brownian motion if the
following holds:

(i) b0 = 0 a.s.,
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(ii) increments are independent, i.e. for all times 0 < t1 < t2 < . . . < tn, the
random variables bt1 , bt2 − bt1 , . . . , btn − btn−1 are independent,

(iii) bt − bs : N (0, (t− s)σ2) for each 0 ≤ s ≤ t.

Note that
E(bt) = 0, E(b2t ) = t for every time t ≥ 0.

A Brownian motion is a Gaussian OSP. The sample paths of Brownian motion
are a.s. continuous, but nowhere differentiable functions. Therefore, OSP which is
equal to the first derivative of Brownian motion does not exist.

Figure A.2.: Sample paths of Brownian motion
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BNotation and Abbreviations

In this appendix chapter we give the lists of notations and abbreviations used in the
dissertation.

B.1 List of Notation

Sets, Fields, Rings, σ−algebras

N the set of natural numbers
N0 the set of natural numbers with zero
Z the set of integers
Q the set of rational numbers
R the set of real numbers
R+ the set of nonnegative real numbers
Rd the d-dimensional Euclidean space, Rd = R× . . .× R (d-times)
C the set of complex numbers
K field
O the open subset of Rd

K b O K is a compact subset of O
DO the diagonal in O ×O
D the diagonal in R2d

QO the complement of the diagonal in O ×O
Q the complement of the diagonal in R2d

R the ring of generalized real numbers
Rc the set of compactly supported generalized real numbers
Õ the set of generalized points
Õc the set of compactly supported generalized point
suppu the support of Colombeau generalized function u
L((rn)n, k) the sharp open ball of Rc
B(Rc) σ−algebra generated by the sharp open balls of Rc
EkL(Ω,O) the set of sequences (un(ω, x))n, ω ∈ Ω, x ∈ N, n ∈ N, such that

(un(ω, ·))n ∈ (Ck(O))N for a.a. ω ∈ Ω, and for every x ∈ O,
(un(·, x))n is a sequence of measurable functions on Ω

EkLp(Ω,O) the set of sequences (un(ω, x))n, ω ∈ Ω, x ∈ N, n ∈ N, such that the
mapping x 7→ un(ω, ·) is in Ck(O) for a.a. ω ∈ Ω, and for every
x ∈ O, un(·, x) is in Lp(Ω)
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EM∞(Ω,O) the set of sequences (un(ω, x))n, ω ∈ Ω, x ∈ N, n ∈ N, such that the
mapping x 7→ un(ω, ·) is in Ck(O) for a.a. ω ∈ Ω, and for every x ∈ O,
un(·, x) is inM∞(Ω)

CM∞(Ω,O) the set of functions f(ω, x), ω ∈ Ω, x ∈ O, such that the mapping
x 7→ f(ω, x) is in C(O) for a.a. ω ∈ Ω, and for every x ∈ O,
f(·, x) is inM∞(Ω)

B(Rd), B Borel σ-algebra of subsets of Rd

BM σ-algebra generated by a familyM
σ(X) σ-algebra generated by random variable X
R extended real line, i.e. R ∪ {−∞,+∞}

Measures, Operators, Functions, Generalized Functions, Colombeau
Generalized Functions

dx, dy, . . . Lebesgue measure on Rd

χA the indicator function of a set A
µ measure
P probability measure
δ Dirac delta distribution
u = [(un)n] Colombeau generalized function
F(u), û Fourier transform of u ∈ S(Rd)
P (D) differential operator of order k with generalized constant coefficients
∆ the Laplace operator
dc ultrapseudometric on EcM
d̃c ultrametric on Rc
� scalar product in Rd

(·, ·)L2 scalar product in L2(Ω)

Probability

(Ω,F , P ) the probability space
X,Y, . . . random variables
PX distribution (law) of random variable X
FX distribution function of random variable X
E(X) expectation of random variable X
V ar(X) variance of random variable X
LX(t) characteristic function of random variable X
L(Ω) the space of real valued random variables endowed with almost

sure convergence
M∞(Ω) the space of random variables with finite seminorms

‖| · |‖s = sup{‖ · ‖Lp , 1 ≤ p ≤ s}, s ∈ N
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Lp(Ω) the space of random variables with finite pth moments
EM,L(Ω) the space of moderate sequences of random variable with values

in L(Ω)
EM,Lp(Ω) the space of moderate sequences of random variable with values

in Lp(Ω)
EM,M∞(Ω) the space of moderate sequences of random variable with values

inM∞(Ω)
NL(Ω) the space of negligible sequences of random variable with values

in L(Ω)
NLp(Ω) the space of negligible sequences of random variable with values

in Lp(Ω)
NM∞(Ω) the space of negligible sequences of random variable with values

inM∞(Ω)
ξ distributional stochastic process
Cd(ξ) embedded distributional stochastic process
m = [(mun)n] generalized expectation of Colombeau stochastic process

u = [(un)n]
B = [(Bun)n] generalized correlation function of Colombeau stochastic process

u = [(un)n]
C = [(Cun)n] generalized covariance function of Colombeau stochastic process

u = [(un)n]
Lu(t, x) generalized characteristic function of Colombeau stochastic

process u in GM∞(Ω,O) or Gk
Lkp

(Ω,O)
Lu(t, s;x, y) generalized characteristic function of the joint distribution of the

random field (u(ω, x), u(ω, y))
w = [(wn)n] white noise
b = [(bn)n] Brownian motion

Spaces of Functions, Spaces of Sequences of Functions

Ck(O) the space of k times continuously differentiable functions
C∞(O) the space of the smooth functions
D(O) the space of the smooth test functions with compact support
D′(O) the space of Schwartz distributions on O
S(O) the Schwartz space of rapidly decreasing functions
S ′(O) the space of tempered distributions
E(O) the space of sequences of smooth functions
E ′(O) the space of Schwartz distribution with compact support
OC(O) the space of smooth functions such that there exist p ∈ N, for every

α ∈ Nd0, such that sup
x∈O

(1 + |x|)−p|∂αf(x)| <∞

L1
loc(O) the space of locally integrable functions on O
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OM (O) the space of functions such that for every α ∈ Nd0, there exist p ∈ N,
such that sup

x∈O
(1 + |x|)−p|∂αf(x)| <∞

EM (O) the space of moderate sequences of functions
N (O) the space of negligible sequences of functions
Ek(O) the space of sequences of functions with continuous derivatives

up to kth order
EkM (O) the subspace of Ek(O) of moderate sequence of functions
N k(O) the subspace of Ek(O) of negligible sequence of functions
EkM,L(Ω,O) the space of moderate sequences of functions with values in L(Ω)
N k
L(Ω,O) the space of negligible sequences of functions with values in L(Ω)
EkM,Lp(Ω,O) the space of moderate sequences of functions with values in

Lp(Ω)
N k
Lp(Ω,O) the space of negligible sequences of functions with values in

Lp(Ω)
EM,M∞(Ω,O) the space of moderate sequences of functions with values in

M∞(Ω)
NM∞(Ω,O) the space of negligible sequences of functions with values in

M∞(Ω)
EL(Ω) the space of sequences of measurable functions on Ω
Ekτ,L2(Ω,Rd) the space of tempered moderate sequences of functions

N k
τ,L2(Ω,Rd) the space of tempered negligible sequences of functions

K(a) the space of all infinitely differentiable functions defined in Rd with
support in domain Ga = {|x1| ≤ a1, . . . , |xd| ≤ ad}, a = (a1, . . . , ad)

Quotient Spaces, Algebras

G(O) Colombeau algebra on O
Gk(O) the quotient space EkM (O)/N k(O)
GkL(Ω,O) the quotient space of Colombeau stochastic processes over O with

values in L(Ω)
GkLp(Ω,O) the quotient space of Colombeau stochastic processes over O with

values in Lp(Ω)
GM∞(Ω,O) the quotient space of Colombeau stochastic processes over O with

values inM∞(Ω)
GL(Ω) the quotient space of generalized random variables with values in

L(Ω)
GLp(Ω) the quotient space of generalized random variables with values in

Lp(Ω)
GM∞(Ω) the quotient space of generalized random variables with values in

M∞(Ω)
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Gkτ,L2(Ω,Rd) the quotient space of tempered Colombeau stochastic processes

over Rd with values in L2(Ω)

Matrices

A−1 the inverse matrix of a matrix A
AT the transpose matrix of a matrix A
det(A) the determinant of a matrix A

Other

L(D(R), L2(Ω)) the space of linear continuous mappings of a test space D(R)
into the space L2(Ω) of random variables with finite second
moments

≈ association relation
x̃ = [(xn)n] generalized point
� end of proof
2 end of example

Multi-index notation

A multi-index α = (α1, α2, . . . , αd) is an d-tuple of non-negative integers.

The length (or order) of a multi-index α is defined by

|α| = α1 + α2 + . . .+ αd.

The factorial of a multi-index α is defined by

α! = α1! · α2! · . . . · αd! =
d∏
i=1

αi!.

Let α = (α1, α2, . . . , αd) and β = (β1, β2, . . . , βd) be two multi-indices. Sum and
difference of α and β are defined component-wise, i.e.

α± β = (α1 ± β1, α2 ± β2, . . . , αd ± βd).

Thus, |α± β| = |α| ± |β|.

For x = (x1, x2, . . . , xd) ∈ Rd we define

xα = xα1x
α
2 · . . . · xαd =

d∏
i=1

xαii .
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If βi ≤ αi for all i = 1, 2, . . . , d, then we write β ≤ α. For multi-indices α and β with
β ≤ α, we define (

α

β

)
= α!

(α− β)!β! .

For u : O → R we write

∂αu = ∂|α|u

∂α1
x1 ∂

α2
x2 . . . ∂

αd
xd

.

B.2 List of Abbreviations
ODE ordinary differential equation
PDE partial differential equation
SODE stochastic ordinary differential equation
SPDE stochastic partial differential equation
a.a. almost all
a.e. almost everywhere
a.s. almost surely
OSP ordinary stochastic process
GSP generalized stochastic process
CSP Colombeau stochastic process
GCSP Gaussian Colombeau stochastic process
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CBiographical Index

René Louis Baire (1874-1932) was a French mathematician. His doctoral disserta-
tion on the theory of functions of real variables applied concepts from set theory to
categorize functions. The Baire category theorem was the main result in dissertation.
He made significant contributions to the theory of irrational numbers.

Stefan Banach (1892-1945) was a Polish mathematician. He was the founder of
modern functional analysis. Banach made major contributions to the theory of
topological vector spaces. Also, he contributed to measure theory, the theory of sets
and orthogonal series.

Salomon Bochner (1899-1982) was an American mathematician. Areas of his
scientific interest are mathematical analysis, probability theory and differentail
geometry.

Félix Édouard Justin Émile Borel (1871-1956) was a French mathematician and
politician. He was among the pioneers of measure theory and its applications to
probability theory. The concepts of a Borel σ-algebra, a Borel measure, a Borel set
are named in his honor.

Robert Brown (1773-1858) was a Scottish botanist. He was a pioneer in the field
of microscopy. Brown is known for his descriptions of the nucleus of cells. He also
observed Brownian motion.

Augustin-Louis Cauchy (1789-1857) was a French mathematician, engineer and
physicist. He was one of the greatest mathematicians during the 19th century. Cauchy
was one of the first to state and prove theorems of calculus rigorously. He was a
developer of the theory of functions of complex variable. Cauchy made contributions
to the number theory, elasticity and wave theory. Algebra and mechanics are
indebted to him for many improvements. Cauchy collected works were published in
27 volumes.

Albert Einstein (1879-1955) was a German theoretical physicist. He has developed
the theory of relativity. He published more than 300 scientific papers.

Jean-Baptiste Joseph Fourier (1768-1830) was a French mathematician and physi-
cist. He was a government administrator during the reign of Napoleon. The Fourier
transform, the Fourier series and Fourier’s law are named in his honour.

Guido Fubini (1879-1943) was an Italian mathematician. His research focused on
differential equations, functional analysis, complex analysis, calculus of variations,
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group theory, non-Euclidean geometry, projective geometry. Fubini applied results
from his work to problems in electrical circuits and acoustics. He is known for
Fubini’s theorem and Fubini-Study metric. A main belt asteroid is named in his
honour.

Carl Friedrich Gauss (1777-1855) was a German mathematician and physicist, who
made important contributions to many different areas of mathematics. In addition
to mathematics, Gauss made significant contributions to astronomy and physics. He
published over 150 papers.

Israel Moiseevich Gel’fand (1913-2009) was a Russian mathematician. He was
a professor at Moscow State University and at Rutgers University. Gel’fand made
significant contributions to the group theory, representation theory and functional
analysis. He published over 800 papers and 30 books. Gel’fand is the recipient of
many honors and awards, including the Order of Lenin and the Wolf Prize.

Walter Gordon (1893-1939) was a German theoretical physicist. Max Planck was
his doctoral advisor.

Otto Ludwig Hölder (1859-1937) was a German mathematician. He was a student
of Karl Weierstrass, Ernest Kummer and Leopold Kronecker. Hölder is noted for many
theorems including: Hölder’s theorem on the Gamma function, Hölder’s inequality,
the Jordan-Hölder theorem and many theorems from the theory of groups. He is
known for the class of Hölder continuous functions.

Kiyosi Itô (1915-2008) was a Japanese mathematician. He was the founder of Itô
calculus. Itô has received numerous awards and honors. He was awarded the Gauss
Prize in 2006 for applications of mathematics.

Avul Pakir Jainulabdeen abdul Kalam (1931-2015) was elected as the 11th Presi-
dent of India. Also, he was a scientist. He studied physics and aerospace engineer-
ing.

Oskar Benjamin Klein (1894-1977) was a Swedish theoretical physicist. He was
awarded the Max Planck Medal in 1959.

Andrey Nikolaevich Kolmogorov (1903-1987) was a Russian mathematician. He
made contributions to almost all areas of mathematics. Kolmogorov was the founder
of modern probability theory.

Pierre Simon Laplace (1749-1827) was a French mathematician, physicist and
astronomer. He contributed in development of difference equations, differential
equations, probability and statistics. The Laplace’s equation, the Laplace transform
and the Laplacian differential operator are named after him.

Gottfried Wilhelm Leibniz (1646-1716) was a German mathematician and philoso-
pher. He is credited with the discovery of differential and integral calculus. Leibniz
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made important contributions to physics and technology, probability theory, medicine,
biology.

Henri Léon Lebesgue (1875-1941) was a French mathematician. In 1902, Lebesgue
defended his doctoral dissertation and in it he developed the theory of measure
and integration, which was a generalization of the Riemann concept of integral. In
addition, Lebesgue made important contribution to topology, Fourier analysis and
potential theory.

Joseph Liouville (1809-1882) was a French mathematician. He made contribution
to number theory, complex analysis, differential geometry, topology, mathematical
physics and astronomy.

Stanisław Łojasiewicz (1926-2002) was a Polish mathematician. He solved the
problem of distribution division by analytic functions.

Hermann Minkowski (1864-1909) was a German mathematician. He developed
the geometrical theory of numbers. Minkowski made important contributions to
number theory, mathemtical physics and the theory of relativity. Albert Einstein was
his student. In 1883, Minkowski was awarded by the French Academy of Science for
his manuscript on the theory of quadratic forms.

Augustus De Morgan (1806-1871) was a British mathematician and logician. He is
known for formulation of De Morgan’s law.

Steven Paul Jobs (1955-2011) was an American entrepreneur and business magnate.
He was a co-founder of Apple Computers.

Otto Marcin Nikodym (1887-1974) was a Polish mathematician. He made impor-
tant contribution in measure theory. The Radom-Nikodym theorem is named after
Nikodym, who proved the general case in 1930. Nikodym worked on the theory of
operators in Hilbert space, based on Boolean lattices. Nikodym was interested in
teaching of mathematics.

Marc-Antoine Parseval (1755-1836) was a French mathematician. He is known for
the Parseval’s theorem. He was nominated to the French Academy of Science five
times, but was never elected.

Michel Plancherel (1885-1967) was a Swiss mathematician. Areas of his scientific
interest are mathematical analysis, mathematical physics and algebra. He is known
for the Plancherel theorem in harmonic analysis.

Siméon Denis Poisson (1781-1840) was a French mathematician, engineer and
physicist. He published more than 300 papers. The Poisson distribution and the
Poisson process are named after him.
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Johan Karl August Radon (1887-1956) was an Austrian mathematician. Radon
received his doctoral degree at the University of Vienna in 1910. His doctoral
dissertation was on calculus of variations. In 1947, Radon became a member of
the Austrian Academy of Science. Radon is known for significant contributions,
including: the Radon measure, the Radon-Nikodym theorem (In 1913, Radon
proved the theorem for the special case where the underlying space is Rd.), the
Radon transform, the Radon-Hurwitz numbers.

Georg Friedrich Bernhard Riemann (1826-1866) was a German mathematician.
He made major contributions to real and complex analysis, differential geometry
and number theory.

Laurent-Moïse Schwartz (1915-2002) was a French mathematician. In 1950,
Schwartz was awarded the Fields Medal for his work on the theory of distribu-
tions.

Bogoljub Stanković (1924-2018) was a Serbian mathematician. He was a doctoral
student of Professor Jovan Karamata. Stanković has created mathematical school in
Novi Sad. The fields of his scientific interest were functional analysis, the theory of
generalized functions and their applications. He published 6 monographs and about
150 papers.

Ruslan Leont’evich Stratonovich (1930-1997) was a Russian physicist and engineer.
He was mathematician specializing in probability theory. Stratonovich was one of
the founders of the theory of stochastic differential equations. The Stratonovich
calculus is an alternative to the Itô calculus. The Stratonovich integral is named
after him.

Brook Taylor (1685-1731) was an English mathematician. He is known for Taylor’s
theorem and Taylor series.

Leo Tolstoy (1828-1910) was a Russian writer.

Naum Yakovievich Vilenkin (1920-1991) was a Russian mathematician. He was an
expert in combinatorics. In 1976, Vilenkin was awarded the Ushinsky prize for his
school mathematics textbooks.

Norbert Wiener (1894-1964) was an American mathematician. Wiener was a
professor at the Massachusetts Institute of Technology (MIT). He remained on the
MIT’s mathematics department until his retirement. Wiener remained active as
a professor, advisor and researcher until his death. The Norbert Wiener Prize in
Applied Mathematics was endowed in 1967 in his honor by MIT’s mathematics
department. Wiener was an expert in stochastic processes and, in particular, on
the theory of Brownian motion. He made significant contributions in the field of
electronic engineering, telecommunications and control systems. Wiener wrote

118 Chapter C Biographical Index



many books and hundreds of papers. He wrote science fiction book and two volumes
of autobiography. The crater Wiener at the moon is named after him.

Akiva Moiseevich Yaglom (1921-2007) was a Soviet mathematician and physicist.
He was known for his contributions to the theory of stochastic processes and the
statistical theory of turbulence. He published 6 books and about 120 papers.
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Proširen izvod

„U razvoju matematike, kao i svake druge nauke,
smenjuju se periodi ekstenzivnog razvoja, koji
slede nove značajne prodore matematǐcke misli, i
periodi sinteze i analize postignutog. U prvom
periodu preovlad̄uje kvalitet istraživanja; svaki
istraživač ili ekipa istraživača sa svoje strane
žure da što više iskoriste to novo. Kada se
mogućnosti njegovog korišćenja uglavnom iscrpe,
analizira se i ocenjuje postignuto; sa više
simetrǐcnosti i kritǐcnosti se odabira ono što
treba da ostane stvarni doprinos matematǐckoj
nauci i njenim rezultatima.

— Akademik Bogoljub Stanković
(1924-2018)

(odlomak iz akademske besede)

Sredinom XX veka teoriju uopštenih procesa razvili su Ito (vidi [Itô54]) i
Gelfand (vidi [GV64], nezavisno jedan od drugog. Uopšteni stohastički procesi
javljaju se kao rešenja stohastičkih parcijalnih diferencijalnih jednačina, koje modeli-
raju mnoge prirodne pojave. Stoga su uopšteni stohastički procesi postali predmet
istraživanja mnogih autora.

Sredinom devedesetih godina prošog veka stohastičke procese sa trajektorijama u
Kolomboovoj algebri počinju da proučavaju Ruso (vidi [Rus94]) i Obergugenberger
(vidi [Obe95]). Primene na rešavanje stohastičkih parcijalnih diferencijalnih jedna-
čina podstakle su razvoj stohastičkog kalkulusa u Kolomboovoj algebri uopštenih
funkcija.

Disertacija se bavi prostorima GkLp(Ω,O), GkL(Ω,O), (k ∈ N∪{∞}) i GM∞(Ω,O),
čiji elementi se nazivaju Kolomboovi stohastǐcki procesi sa vrednostima u Lp(Ω),
L(Ω) iM∞(Ω), redom. Primetimo da je O otvoren skup u Rd, (Ω,F , P ) je prostor
verovatnoće. Ako je k =∞, onda pišemo GLp(Ω,O) i GL(Ω,O).
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Neka je u = [(un)n] iz GL(Ω,O) ili GLp(Ω,O) ili GM∞(Ω,O). Tada, za fiksno
x̃ = [(xn)n] ∈ Õc, u(ω, x̃) = [(un(ω, xn)n] je uopštena slučajna promenljiva u GL(Ω)
ili GLp(Ω) ili GM∞(Ω). (To znači da niz (un)n ne zavisi od x ∈ O.)

Sledeća teorema predstavlja glavni rezultat u disertaciji.

Teorema 1 Neka je u = [(un)n] Kolomboov stohastǐcki proces u GL(Ω,O) ili GLp(Ω,O)
ili GM∞(Ω,O). Za fiksno x̃ = [(xn)n] ∈ Õc, preslikavanje

(Ω,F) 3 ω 7→ u(ω, x̃) ∈ (R,B(R))

je merljivo, gde je B(R) σ-algebra generisana oštrim otvorenim loptama u R.

Merljivost Kolomboovog stohastičkog procesa nam omogućava da proučavamo nje-
gove probabilističke osobine.

Uopšteno očekivanje Kolomboovog stohastičkog procesa u = [(un)n] ∈ GkL2(Ω,O)
je element m iz Gk−1(O) sa reprezentacijom

mun(x) = E(un(·, x)) =
∫

Ω
un(ω, x) dP (ω), x ∈ O, n ∈ N.

Uopštena korelacijska funkcija Kolomboovog stohastičkog procesa u = [(un)n] ∈
GkL2(Ω,O) je element B iz Gk−1(O ×O) sa reprezentacijom

Bun(x, y) = E(un(·, x)un(·, y)), x, y ∈ O, n ∈ N.

Označimo sa QO komplement dijagonale, a sa DO dijagonalu u O ×O. Ako je
O = Rd, onda koristimo oznake Q i D. U sledeća dva tvrd̄enja dajemo strukturnu
karakteizaciju uopštene korelacijske funkcije.

Teorema 2 Neka je B = [(Bn)n] ∈ G(O × O) uopštena korelcijska funkcija Kolom-
boovog stohastǐckog procesa u = [(un)n] na O sa vrednostima u L2(Ω) koji je dobijen
potapanjem distributivnog stohastǐckog procesa ξ na O, odnosno u = Cd(ξ).

a) Neka je F ∈ D′(O ×O) korelacijski funkcional procesa ξ. Tada je B = Cd(F ).

b) B(x̃, ỹ) = 0 za sve (x̃, ỹ) ∈ (Q̃O)c ako i samo ako suppF ⊆ DO.

c) Ako je B(x̃, ỹ) = 0 za sve (x̃, ỹ) ∈ (Q̃O)c, onda je B asocirana sa uopštenom
funkcijom koja ima reprezentaciju u sledećem obliku

B∗n(x, y) =
∫

O

∑
j,k∈N0

Rj,k(s)ϕ(j)
n (x− s)ϕ(k)

n (y − s)ds, x, y ∈ O, (1)

gde je za sve n ∈ N samo konačan broj neprekidnih funkcija Rj,k razlǐcit od nule
na svakom kompaktnom podskupu skupa O.
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Propozicija 1 Neka je B = [(Bn)n] ∈ G(O×O) uopštena korelacijska funkcija Kolom-
boovog stohastǐckog procesa u = [(un)n] na O sa vrednostima u L2(Ω). Pretpostavimo
da je B asocirana sa F ∈ D′(O ×O). Ako je B(x̃, ỹ) = 0 za sve (x̃, ỹ) ∈ (Q̃O)c, onda

a) F je asocirana na dijagonali DO,

b) B je asocirana sa uopštenom funkcijom koja ima reprezentaciju oblika (1).

Neka je u = [(un)n] Kolomboov stohastički proces u GM∞(Ω,O). Tada se

Lu(t, x) = [(Lun(t, x))n] = [(E(eitun(·,x)))n] ∈ G(R×O), t ∈ R, x ∈ O,

naziva uopštena karakteristǐcna funkcija procesa u.

Element φ prostora C∞M∞(Ω,O) možemo potopiti u prostor GM∞(Ω,O) na dva
načina: konvolucijom sa molifajerom ili kao konstantan niz. Postavlja se pitanje da li
će uopštene karakteristične funkcije dobijenih elemenata u GM∞(Ω,O) biti jednake.
Odgovor je dat u sledećoj propoziciji.

Propozicija 2 Neka je φ ∈ C∞M∞(Ω,O). Pretpostavimo da je

sup
x∈K
‖φ(α)(·, x)‖Lp <∞

za sve α ∈ N0 i sve K b O. Neka je

φn(ω, x) = (φ(ω, ·) ∗ ϕn(·))(x), x ∈ O, ω ∈ Ω,

za dovoljno veliko n. Tada je

a) (φn(ω, x))n − (φ(ω, x))n ∈ NM∞(Ω,O),

b) (Lφn(t, x))n − (Lφ(t, x))n ∈ N (R×O),

gde je (φ)n konstntan niz.

Med̄utim, ako φ ∈ CM∞(Ω,O), onda su odgovarajuće uopštene karakteristične
funkcije asocirane.

Propozicija 3 Ako φ ∈ CM∞(Ω,O), onda je [(Lφ∗ϕn(t, x))n] asocirana sa Kolom-
boovom uopštenom funkcijom čija je reprezentacija (Lφ(t, ·) ∗ ϕn(·))(x), t ∈ R, x ∈ O.

Sledeća propozicija nam omogućava da definišemo uopštenu karakterističnu
funkciju Kolomboovog stohastičkog procesa u Gk

Lkp
(Ω,O), k ≤ p.

Propozicija 4 Ako (un)n ∈ EkM,Lkp
(Ω,O), onda (eitun(ω,x))n ∈ EkM,Lp(Ω,R × O) i

(E(eitun(·,x)))n ∈ EkM (R×O).
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Dakle, uopštena karakteristǐcna funkcija Kolomboovog stohastičkog procesa u =
[(un)n] u Gk

Lkp
(Ω,O) je

Lu(t, x) = [(Lun(t, x))n] = [(E(eitun(·,x)))n] ∈ Gk(R×O), t ∈ R, x ∈ O.

Kao u klasičnom slučaju, uopšteno očekivanje i uopštena korelacijska funkcija
mogu se izračunati pomoću uopštene karakteristične funkcije.

Kolomboov stohastički proces u na O sa vrednostima u Lp(Ω) ima nezavisne
vrednosti ako ima reprezentaciju (un)n takvu da sledeća dva uslova važe:

(NV1) za sve n ∈ N, un(ω, x) i un(ω, y) su nezavisne slučajne promenljive za sve
(x, y) ∈ K, K b QO, odnosno za sve n ∈ N,

P{un(ω, x) ∈ B1 ∩ un(ω, y) ∈ B2} = P{un(ω, x) ∈ B1}P{un(ω, y) ∈ B2}

za sve B1, B2 ∈ B(R) i (x, y) ∈ K, K b QO,

(NV2) za n 6= m, un(ω, x) i um(ω, y) su nezavisne slučajne promenljive za sve x, y ∈
O, odnosno za n 6= m,

P{un(ω, x) ∈ B1 ∩ um(ω, y) ∈ B2} = P{un(ω, x) ∈ B1}P{um(ω, y) ∈ B2}

za sve B1, B2 ∈ B(R) i x, y ∈ O.

Neka je u Kolomboov stohastički proces sa nezavisnim vrednostima. Napomenimo
da osobine (NV1) i (NV2) ne ispunjavaju sve reprezentacije procesa u. Reprezentaciju
koja ispunjava uslove (NV1) i (NV2) nazivamo reprezentacija sa nezavisnim vred-
nostima.

Teorema 3 Neka je u Kolomboov stohastǐcki proces na O sa vrednostima u Lp(Ω) i
neka u ima nezavisne vrednosti. Tada

P{u(ω, x̃) ∈ O1 ∩ u(ω, ỹ) ∈ O2} = P{u(ω, x̃) ∈ O1}P{u(ω, ỹ) ∈ O2}

za sve otvorene lopte O1,O2 u Rc i (x̃, ỹ) ∈ (Q̃O)c.

U sledećoj propoziciji dajemo karakterizaciju Kolomboovog stohastičkog procesa
sa nezavisnim vrednostima preko uopštene korelacijske funkcije.

Propozicija 5 Neka je u Kolomboov stohastǐcki proces na O sa vrednostima u L2(Ω) i
neka u ima nezavisne vrednosti. Tada je B(x̃, ỹ) = 0 za sve (x̃, ỹ) ∈ (Q̃O)c.

U disertaciji smo proučavali strogo stacionarne i slabo stacionarne Kolomboove
stohastičke procese.
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Kažemo da je Kolomboov stohastički proces u na O sa vrednostima u Lp(Ω)
(strogo) stacionaran ako ima reprezentaciju (un)n takvu da za sve n ∈ N, za
sve x1, . . . , xm ∈ O i svako h ∈ Rd takve da x1 + h, . . . , xm + h ∈ O, slučajne
promenljive

(un(·, x1), . . . , un(·, xm)) i (un(·, x1 + h), . . . , un(·, xm + h))

su identički raspored̄ene.

Teorema 4 Uopšteno očekivanje m ∈ G(O) stacionarnog Kolomboovog stohastǐckog
procesa na O ⊆ Rd je uopštena konstanta.

Primetimo da ne moraju sve reprezentacije stacionarnog Kolomboovog sto-
hastičkog procesa biti stacionarne, ali sve imaju konstantno očekivanje.

Teorema 5 Neka je O ⊆ Rd centralno simetrǐcan konveksan otvoren skup i neka je u
stacionaran Kolomboov stohastǐcki proces na 2O ∼= O − O sa vrednostima u L2(Ω).
Ako je B = [(Bn)n] ∈ G(O ×O) uopštena korelacijska funkcija procesa u, onda postoji
pozitivno-definitna uopštena funkcija B∗ = [(B∗n)n] ∈ G(2O) takva da je

Bn(x, y) = B∗n(x− y), x, y ∈ O, n ∈ N.

Kolomboov stohastički proces u na 2O sa vrednostima u L2(Ω) se naziva slabo
stacionaran ako su njegovo uopšteno očekivanje mu ∈ G(O) i uopštena korelacijska
funkcija Bu ∈ G(O ×O) translatorno invarijante, odnosno

mu(x+ h) = mu(x)

za sve h ∈ R takve da x, x+ h ∈ O, i

Bu(x, y) = B∗(x− y), x, y ∈ O,

za neku pozitivno-definitnu uopštenu funkciju B∗ ∈ G(2O).

Teorema 6 Neka je O otvoren konveksan skup u Rd. Pretpostavimo da za sve K b O
i svako h ∈ R takvo da t ∈ K implicira t+ h ∈ O, važi

(∀p ∈ N)(∃np ∈ N)(∀n ∈ N)(n ≥ np ⇒ sup
t∈K

np|un(t+ h)− un(t)| ≤ 1).

Tada je [(un)n] uopštena konstanta na O, odnosno postoji (rn)n ∈ CN takav da za sve
K b O i svako p > 0 postoji np > 0 takvo da

sup
x∈K

np−2|un(x)− rn| ≤ 1, n > np.
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Iz Teoreme 6 dobijamo da je uopšteno očekivanje m ∈ G(O) slabo stacionarnog
Kolomboovog stohastičkog procesa na centralno simetričnom konveksnom otvorenom
skupu O ⊆ Rd uopštena konstanta m ∈ R.

Stroga stacionarnost implicira slabu stacionarnost Kolomboovog stohastičkog
procesa. Obrnuto ne važi. Med̄utim, pošto je gausovski Kolomboov stohastički proces
kompletno odred̄en uopštenim očekivanjem i uopštenom korelacijskom funkcijom,
sledi da je svaki slabo stacionaran gausovski Kolomboov stohastički proces strogo
stacionaran. Izvodi (slabo) stacionarnog Kolomboovog stohastičkog procesa su
(slabo) stacionarni.

Kolomboov stohastički proces u na O sa vrednostima u Lp(Ω) ima (slabo) sta-
cionarne priraštaje ako je ∇u (slabo) stacionaran proces. Lako se proverava da
Braunovo kretanje ima stacionarne priraštaje.

Na kraju disertacije je dat metod za rešavanje klase linearnih stohastičkih par-
cijalnih diferencijalnih jednačina u okviru stacionarnih gausovskih Kolomboovih
stohastičkih procesa na Rd sa vrednostima u L2(Ω). Pošto ćemo koristiti Furijeovu
transformaciju potrebno je da pred̄emo na temperirane Kolomboove stohastičke
procese na Rd sa vrednostima u L2(Ω).

Neka je
P (D) =

∑
|α|≤k

ãαD
α
x , ãα ∈ Rc,

diferencijalni operator reda k sa uopštenim konstantnim koeficijentima. Predstavimo
metod za rešavanje jednačine

P (D)u(ω, x) = f(ω, x), ω ∈ Ω, x ∈ Rd, (2)

gde je f = [(fn)n] slabo stacionaran temperiran gausovski Kolomboov stohastički
proces na Rd sa vrednostima u L2(Ω) sa uopštenim očekivanjem m̃f = [(mfn)n] ∈ Rc
i uopštenom korelacijskom funkcijom Bf = [(Bfn)n] ∈ Gτ (R2d). U sledećoj teoremi
dat je potreban uslov za egzistenciju stacionarnog rešenja posmatrane jednačine.

Teorema 7 Neka je f = [(fn)n] ∈ Gτ,L2(Ω,Rd) slabo stacionarni temperirani gausovski
Kolomboov stohastǐcki proces sa uopštenim očekivanjem m̃f = [(mfn)n] i uopštenom
korelacijskom funkcijom Bf = [(Bfn)n].

(a) Za uopšteno očekivanje m̃u = [(mun)n] ∈ Rc slabo stacionarnog rešenja jednačine
(2) važi

m̃u =


m̃f
ã0
, ako je ã0 6= 0̃,

proizvoljno , ako je ã0 = 0̃ i m̃f = 0̃,
ne postoji , ako je ã0 = 0̃ i m̃f 6= 0̃.
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Specijalno, ako je ã0 = 0̃ i m̃f 6= 0̃, onda jednačina (2) nema slabo stacionarno
rešenje u Gτ,L2(Ω,Rd).

(b) Uopštena korelacijska funkcija [(Bun)n] ∈ Gτ (R2d) slabo stacionarnog rešenja
jednačine (2) zadovoljava

Pn(D)Pn(−D)Bun(z) = Bfn(z), z = x− y ∈ Rd, n ∈ N.

Specijalno, ako postoji otvoren skup S ⊂ Rd takav da je B̂fn(ξ) > 0, za sve
ξ ∈ S, n ∈ N, i Pn(ξ)Pn(−ξ) < 0, za ξ ∈ S, n ∈ N, za sve reprezentacije
koeficijenata (aα)n, onda Bun ne može biti pozitivno-definitna funkcija.

(c) Neka je |Pn(ξ)| ≥ Cn−r(1 + |ξ|)k, n ∈ N, ξ ∈ Rd, za neke C > 0, r > 0,
k > 0, za neku reprezentaciju koeficijenata (aα)n. Tada jednačina (2) ima slabo
stacionarno rešenje u = [(un)n] ∈ Gτ,L2(Ω,Rd) i njegova uopštena korelacijska
funkcija zadovoljava

Pn(ξ)Pn(−ξ)B̂un(ξ) = B̂fn(ξ), ξ ∈ Rd, n ∈ N.

Kao iliustraciju, metod smo primenili na stacionarnu Klajn–Gordonovu jedna-
činu

(1̃−∆x)u(ω, x) = c̃+ f̃ · ∂kxw(ω, x), ω ∈ Ω, x ∈ Rd,

gde su 1̃ = (1, 1, 1, . . .), c̃, f̃ ∈ Rc uopštene konstante i w = [(wn)n] je beli šum.
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septembra 2016. godine do danas radi kao asistent na Katedri za matematiku i
metodiku nastave matematike na Pedagoškom fakultetu u Somboru.
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