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Rezime

Slike objekata već dugo vremena nisu samo način za predstavljanje svetlosti
koja se reflektuje od njihove površine, već pružaju mogućnost za izdvajanje, opisi-
vanje i evaluaciju mnogih osobina objekata koji su slikama predstavljeni. Upeča-
tljiv primer za to su rendgenske slike koje nisu samo korisne u istraživanju objekata,
već otkako ih je 1895. prvi put sistematski predstavio Vilhem Rendgen, omogućuju
istraživanje na jedan efikasan način koji nije bio moguć pre njihovog otkrića.

Mogućnost da se slikama obuhvate osobine objekata važne za njihovo istraži-
vanje nameću mnoge probleme koji su vezani za izdvajanje, vizualizaciju i mani-
pulaciju takvim osobinama na osnovu slika. Nakon pojave računarske tehnologije
u Drugom svetskom ratu intenzivno se istražuju mogućnosti da se slike obrađuju
računarski. Ovo istraživanje rezultuje 1957. godine nastankom računara pod nazi-
vom ”Standard Eastern Automatic Computer” ili ”SEAC” koji može biti programi-
ran, a istovremeno omogućuje da se slike pohranjuju u njegovu memoriju. Na ovaj
način nastaje nova naučna oblast pod nazivom digitalna obrada slike, tj. obrada
slike digitalnim računarima. Računari nastavljaju snažno da se razvijaju posle
svog nastanka, a taj razvoj se neće zaustaviti u budućnosti. Istovremeno, snažno
se razvijaju i uređaji za dobijanje slike. Digitalna kamera, magnetna rezonanca i
CT skener su samo neki pojmovi koji su sastavni deo svakodnevnog života. Ovakvi
uređaji obezbeđuju sve verodostojnije predstavljanje sve raznovrsnijih objekata u
sve različitijim uslovima. Sve navedeno uzrokovalo je prodor digitalne obrade slike
u skoro sva naučna polja, a izučavanje objekata na osnovu njihovih slika postalo
je standardna procedura u naučnom istraživanju.

Da bi se razmatrale osobine objekata na osnovu slika, ona se može posmatrati
kao signal, tj. kao promena jedne ili više veličina (najčešće energije koja potiče od
elektromagnetnog zračenja) koja nosi neku informaciju. Zbog toga se slika često i
modeluje na isti način kao signal, tj. kao realna funkcija: f : D −→ R, D ⊂ Rn, gde
su (x1, x2, ..., xn) ∈ D prostorne koordinate, a f(x1, x2, ..., xn) izražava količinu
energije koja se apsorbuje ili reflektuje u tački x(x1, x2, ..., xn) [36]. Domen D
je ograničen jer se samo ograničeni deo prostora može predstaviti slikom, a skup
intenziteta je ograničen jer se može koristiti samo ograničena količina zračenja u
procesu dobijanja slike.

i



Digitalne slike

Nakon dobijanja slike, obrada slike računarom je nerazdvojiva od dodatnog gu-
bitka informacija o objektima budući da računar može da obrađuje samo binarne
podatke. Proces prevođenja slike u podatke koji se mogu zapisati putem binarnog
zapisa naziva se digitalizacija. Nakon digitalizacije i domen i skup vrednosti po-
staju konačni skupovi budući da su ograničeni i diskretni. Slika čija funkcija ima
konačan domen i konačan skup vrednosti naziva se digitalna slika.

Da bi se diskretizovao domen, prostorne koordinate slike se najčešće aproksi-
miraju vrednostima koje su pravilno raspoređene u digitalnoj rešetki. Broj takvih,
uzorkovanih vrednosti po jedinici se naziva prostorna rezolucija. Svaka tačka re-
šetke nakon uzorkovanja predstavlja deo prostora koji se sastoji od svih tačaka
bližih njoj nego bilo kojoj drugoj tački rešetke. Takav deo prostora naziva se Vo-
ronoi oblast date tačke po Georgiju Feodoševiču Voronoiu (1868-1908) koji je dao
neprocenjiv doprinos teoriji regularnih podela prostora. U digitalnoj obradi slike,
Voronoi oblasti koje odgovaraju tačkama rešetke se nazivaju pikseli za dvodimen-
zionalne slike, vokseli za trodimenzionalne slike ili spelovi u opštem slučaju. Slično
kao prostorne koordinate, tokom digitalizacije, vrednosti intenziteta najčešće uz-
imaju vrednosti pravilno raspoređene u unapred utvrđenom intervalu [a, b] ⊆ R.
Taj proces se naziva kvantizacija. Broj vrednosti koje funkcija slike može uzeti po
jedinici naziva se rezolucija sivih vrednosti.

Poređenje objekata na osnovu njihovih digitalnih slika

Jedan od fundamentalnih postupaka nad objektima koji se pojavljuju na sli-
kama je njihovo poređenje. Neki referentan objekat se poredi sa drugima za pro-
bleme identifikacije i prepoznavanja. Objekti se porede jedan sa drugim za problem
klasifikacije. Jedan objekat može se porediti sa samim sobom u različitim vremen-
skim trenucima da bi se pratile promene u njegovom položaju ili obliku. Broj
primena poređenja objekata je daleko veći i ovo su samo neki od primera.

U zavisnosti od količine podataka koji se koriste, poređenje objektata na osnovu
njihovih digitalnih slika može se vršiti na dva načina. Kada je to moguće, jeftinije
je sa aspekta angažovanja računarskih resursa da se porede samo neke osobine
objekata, nego kompletni podaci digitalnih slika koji ih predstavljaju. Da bi se
to postiglo, često se samo takve, pogodne, osobine izdvajaju iz digitalnih slika i
koriste u daljoj obradi. Ukoliko se neka osobina oblika može opisati brojem, tj.
kvantifikovati, pretpostavlja se da je poređenje na osnovu nje jednostavno i ne
zahteva veliku računarsku snagu. Postoje situacije u kojima objekti moraju biti
poređeni direktnim poređenjem njihovih digitalnih slika. To je uobičajeno kada su
kompletni podaci bitni za razmatranje i kada izdvajanje samo nekih osobina vodi
do gubljenja elementarnih informacija.
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Oblik

U obradi slike, formalna definicija oblika ne postoji. Oblik je osnovno svojstvo
svakog objekta, kao boja ili tekstura. Uvek je predstavljen ograničenim skupom
tačaka sa koordinatama iz Rn koji izdvaja geometrijski sadržaj objekta od svih
drugih osobina. Oblik je invarijantan u odnosu sa translaciju, rotaciju, (uniformno)
skaliranje i osnu simetriju. Zbog toga se može posmatrati i kao klasa ekvivalencije u
odnosu na transformacije sličnosti u skupu svih objekata [105]. Često se posmatra
i kao silueta nekog objekta. U literaturi se takođe navodi i kao oblast. Primeri
nekih planarnih oblika dati su na Slici 1.

Slika 1: Primeri oblika realnih objekata.

Opis problema

Metode za kvantitativnu karakterizaciju objekata na osnovu njihovih digitalnih
slika se sve više koriste u svrhe u kojima greška može imati kritične posledice
kao što su medicinske slike ili autonomna kontrola vozila. Budući da se koriste
samo konačni skupovi podataka da bi se kvantifikovali stvarni objekti, ove metode
često u proseku precenjuju ili potcenjuju tačne vrednosti. Time nastaje određeno
odstupanje od prave, tačne, vrednosti koje se naziva pristrasnost metoda. Od
velikog je značaja da je pristrasnost mala, odnosno da metod ima veliku tačnost i
da u ponovnim, višestrukim, primenama pod nepromenjenim uslovima isti metod
daje vrednosti koje su blizu jedna druge, tj. da ima veliku preciznost. Dakle,
tačnost metoda odnosi se na to koliko je rezultat nekog metoda u proseku blizak
tačnoj vrednosti, a preciznost se odnosi na to koliko se vrednosti rezultata rasipaju
prilikom ponavljanja metoda u nepromenjenim uslovima.

Veoma često korišćena osobina za kvantitativnu karakterizaciju objekata je ra-
stojanje između njegove dve najudaljenije tačke mereno u datom pravcu. Takvo
rastojanje naziva se Fereov dijametar objekta. Estimacija Fereovog dijametra iz
digitalnih slika pripada tradicionalnim metodama koje se izvršavaju na binarnim
slikama čije vrednosti mogu biti samo 0 ili 1. Prilikom diskretizacije vrednost 1
se dodeljuje spelovima koji odgovaraju uzorkovanim tačkama koje pripadaju unu-
trašnjosti ili rubu objekta, a vrednost 0 spelovima koji odgovaraju uzorkovanim
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tačkama koje pripadaju spoljašnjosti objekta. Na taj način, spelovi su grubo po-
deljeni na one koji predstavljaju objekat i one koji predstavljaju njegovu pozadinu.
Pretpostavka da je spel ili deo objekta ili njegove pozadine uzrokuje nedostatak
preciznosti i tačnosti metoda jer su spelovi oblasti i mogu delom biti u unutrašnjo-
sti, a delom u spoljašnjosti.

Kada se porede kompletni podaci digitalne slike koriste se mere rastojanja. Ve-
oma je poželjno da se neka mera rastojanja između digitalnih slika može vezati za
određenu osobinu oblika objekata koji se upoređuju. Da bi se izdvojile relevantne
geometrijske strukture iz neke slike koriste se morfološke operacije dilatacije i ero-
zije. Prilikom dilatacije digitalne slike svakom spelu se dodeljuje maksimalna vred-
nost u nekoj njegovoj okolini. Pre dodeljivanja maksimalne vrednosti, intenziteti
slike u okolini mogu se povećati. Okolina spela koja se posmatra tokom dilatacije
naziva se ravan strukturni element, a povećanje u okolini je definisano neravnin
strukturnim elementom ili strukturnom funkcijom. Ravan strukturni element, kao
i strukturna funkcija mogu biti rigidni ako su isti za sve spelove digitalne slike ili
adaptivni ukoliko menjaju svoj oblik ili vrednosti u zavisnosti od spela. Erozija je
operacija slična dilataciji, ali se dodeljuje minimalna vrednost umesto maksimalne
i umesto da strukturna funkcija povećava vrednosti u okolini, ona ih smanjuje.
Morfološke operacije dilatacije i erozije koriste se prilikom definisanja rastojanja
da bi ona bila vezana za određenu osobinu oblika objekata. Rastojanja definisana
na ovakav način u digitalnoj obradi slike nazivaju se morfološka rastojanja.

Postojeća morfološka rastojanja zasnivaju se na upotrebi ravnog, rigidnog struk-
turnog elementa i imaju brojne nedostatke. Uopšteno govoreći, ona su nedovoljno
osetljiva na relevantne podatke digitalne slike koji predstavljaju oblik.

Cilj teze

Pored toga što ima veliku moć diskriminacije između objekata, oblik ima i ve-
lik broj osobina koje se mogu izraziti brojem i zbog toga je od ključnog značaja
prilikom poređenja objekata. Ipak, podaci koje pružaju digitalne slike ne koriste
se u potpunosti kada se vrši poređenje objekata na osnovu oblika i ima prostora za
poboljšanje. Ovo je uzrok opisanih problema vezanih za preciznost i tačnost kvan-
titativne karakterizacije objekata i neosetljivost morfoloških rastojanja. Glavni
cilj teze je razvoj i unapređenje metoda zasnovanih na obliku koji koriste digitalne
slike za poređenje objekata da bi se bolje iskoristili podaci koji su na raspolaganju
i prevazišli opisani problemi.

Pregled sadržaja i strukture teze

Teza je podeljena na pet poglavlja. U uvodnom poglavlju opisan je predmet,
cilj i značaj istraživanja. U drugom poglavlju je dato više detalja o pojmovima,
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metodama i modelima koji se u tezi koriste. Treće poglavlje istražuje ocenu Fere-
ovog dijametra iz digitalnih slika, a četvrto izračunavanje morfoloških rastojanja
između digitalnih slika. U petom poglavlju dat je zaključak teze i diskusija rezul-
tata, kao i pravci budućeg istraživanja.

Drugo poglavlje

Pregled U poglavlju 2.1 je dat pregled i značaj analize oblika kao oblasti. U
poglavlju 2.2 su opisani tradicionalni modeli za predstavljanje oblika digitalnim
slikama. Model zasnovan na pokrivenosti svakog spela oblikom dat je u poglavlju
2.3. Kratak pregled matematičke morfologije kao oblasti i njenih osnovnih pojmova
koji se u tezi koriste dati su u poglavlju 2.4. Rastojanja koja se često koriste u
obradi slike i koja se u tezi razmatraju data su u poglavlju 2.5.

Da bi se neka osobina oblika mogla kvantifikovati, najpre se sam oblik mora
izdvojiti od ostalih komponenata digitalne slike. Takav postupak izdvajanja vrši
se najčešće na osnovu homogenosti spelova koji predstavljaju objekat i njihovim
različitostima od spelova koji predstavljaju ostale komponente i naziva se segmen-
tacija slike. Pregledi raznih metoda za segmentaciju dati su u [6, 32, 80, 104].

Postupak analize oblika najčešće počinje reprezentacijom. Reprezentacija oblika
podrazumeva dalje uprošćavanje podataka dobijenih segmentacijom. Rezultat je
višedimenzionalni vektor koji predstavlja oblik tačno ili približno, ali očuvava oso-
bine oblika bitne za dalju obradu. Neke metode za reprezentaciju oblika mogu se
pronaći u [53, 86, 95, 133]. Proces kvantifikacije osobina oblika se naziva deskrip-
cija, a sama osobina koja se kvantifikuje naziva se deskriptor. Na primer, obim i
površina su dobro poznate osobine oblika čije izračunavanje iz digitalnih slika je
dobro izučeno u literaturi [10, 16, 107, 110], gde se navode kao deskriptori. Budući
da se istražuje ocena Fereovog dijametra iz digitalne slike, u tezi se daje njegova
formalna definicija. Pored toga, daju se definicije nekih od brojnih deskriptora
koji se na osnovu Fereovog dijametra mogu izračunati.

Deskripcija je veoma složen proces, a većina teškoća potiče iz činjenice da treba
dati meru stvarnog objekta na osnovu konačnih podataka. Zbog toga analiza oblika
pripada analizi slike, tj. izdvajanju relevantnih informacija iz digitalne slike. Pre-
gled različitih modela digitalizacije dat je u [117] gde su oni generalizovani na pro-
izvoljnu dimenziju i nazivaju se metodama za uzorkovanje. Uzorkovanje podskupa
podrazumeva uzimanje u obzir samo tačaka digitalne rešetke koje se nalaze unu-
tar oblika. Uzorkovanje na osnovu superpokrivenosti je alternativni metod koji
podrazumeva izdvajanje svih tačaka digitalne rešetke čije Voronoi oblasti imaju
neprazan presek sa oblikom koji se posmatra. Kada se primenjuje u kvadratnoj
digitalnoj rešetki za planarne oblike, uzorkovanje podskupa naziva se Gausova di-
gitalizacija po poznatom matematičaru Karlu Fridrihu Gausu (1777-1855) koji ju
je koristio za izučavanje oblika. Prva vrsta Gausove digitalizacije podrazumeva da
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se razmatra unija svih piksela čiji centri pripadaju skupu koji je uzorkovan, a druga
samo tačke digitalne rešetke unutar oblika. Postoje i druge vrste digitalizacije, ali
se veoma retko koriste u praksi prilikom poređenja objekata na osnovu oblika.

Da bi se razumeli i formalizovali uslovi za dobre performanse nekog metoda
analize oblika, prirodno se nameće pitanje: Koja informacija o obliku je očuvana
nakon digitalizacije? Postoji opširna literatura nastala u pokušaju da se odgovori
na ovo pitanje [81, 84, 102, 118, 122] i u svim ovim radovima fundamentalnu ulogu
ima pojam R−regularanog skupa, tj. skupa za čiju svaku tačku ruba postoje dve
lopte koje imaju zajedničku tangentu sa skupom u datoj tački (oskulatorne lopte).
Jedna u unutrašnjosti, a druga u spoljašnjosti skupa. U [118] se uvodi relacija
jake r−sličnosti za dva skupa X, Y ⊂ Rn da bi se dokazala osobina koja obuhvata
sve ostale koje se mogu očuvati prilikom digitalizacije i pominju se u literaturi.
X i Y su jako r−slični ako postoji homeomorfizam f : Rn → Rn tako da x ∈
X ⇔ f(x) ∈ Y i x ∈ ∂X ⇒ |x − f(x)| ≤ r. U istom radu dokazano je da
je R−regularan dvodimenzionalan oblik jako r−sličan sa svojom digitalizacijom
dobijenom uzorkovanjem podskupa u bilo kojoj dvodimenzionalnoj rešetki u kojoj
je veličina piksela r < R.

Relacija jake r−sličnosti između nekog dvodimenzionalnog oblika i njegove di-
gitalizacije uzorkovanjem podskupa u bilo kojoj dvodimenzionalnoj rešetki obez-
beđuje da konačan skup koji aproksimira oblik konvergira ka obliku kada prostorna
rezolucija teži beskonačnosti. Ipak, ovo nije dovoljno da neki deskriptor konver-
gira ka svojoj tačnoj vrednosti sa povećanjem rezolucije. Zbog toga se istražuje
problem multigrid konvergencije, tj. konvergencije vrednosti deskriptora ocenjene
iz digitalne aproksimacije oblika ka tačnoj vrednosti deskriptora sa povećanjem
prostorne rezolucije [17, 46, 56, 58, 112]. Problem multigrid konvergencije svodi se
na problem davanja gornje granice apsolutne greške metoda pri datoj rezoluciji i,
pored same konvergencije, od velikog je značaja jer omogućuje da znamo grešku
metoda pri datoj rezoluciji u realnim primenama.

Nedostatak preciznosti i tačnosti metoda analize oblika zbog grube podele pik-
sela u binarnim slikama navodi istraživače na traženje načina za korišćenje dru-
gih, dodatnih informacija da bi se preciznost i tačnost poboljšale. Glavni pravac
ovog istraživanja je upotreba informacije o tome koliko je svaki spel pokriven obli-
kom [52, 54, 61, 78]. U okviru fazi skupova razvija se i dobro definisan matema-
tički model za izdvajanje i dalje korišćenje informacije o pokrivenosti spelova obli-
kom [109]. Model omogućuje razvoj i poboljšanje mnogih metoda analize oblika.
U [107,110,111] se pokazuje da model, u poređenju sa binarnim slikama, značajno
povećava preciznost ocene površine, obima i deskriptora koji se naziva kompakt-
nost očuvavajući preciznost na istom, visokom nivou. U [106] je predstavljen metod
koji poboljšava ocenu momenata oblika. U [12,49] model zasnovan na pokrivenosti
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spela oblikom se koristi za poboljšanje ocene signatura. Razvija se i nekoliko algo-
ritama za segmentaciju koji omogućuju upotrebu navedenih metoda u različitim
realnim uslovima. U [107] je dat algoritam za izračunavanje pokrivenosti spelova
oblikom koji se zasniva na dvostrukom trešholdingu koji je pogodan za korišćenje
kada su oblik i pozadina dobro separabilni i uređaj za dobijanje slike ima linearan
odgovor. U [64, 108] je predložen metod koji se zasniva na lokalnom razdvajanju
koji izračunava pokrivenost svakog spela iz neke binarne slike. Teorijski okvir za
ovakvu segmentaciju dat je u [69] na grafovima.

Pored analize oblika, matematička morfologija je još jedno polje digitalne ob-
rade slike koje se bavi oblikom. Njen izvorni problem se javio u rudarstvu kada
je trebalo ukloniti spelove koji predstavljaju šupljine u stenama nebitne za izuča-
vanje tako da na digitalnim slikama ostanu samo spelovi koji predstavljaju stene.
Glavnu ideju za rešenje ovog problema uvode sredinom 1960. godine francuski na-
učnici Džordž Materon i Žan Sera [71, 101, 102]. Ideja se zasniva na zbiru i razlici
Minkovskog [73] dva skupa.

Tokom 1960-tih i većeg dela 1970-tih matematička morfologija se zasniva na
teoriji klasičnih skupova. Uobičajeno, spelovi sa vrednošću 1 smatraju se elemen-
tima skupa, a spelovi sa vrednošću 0 elementima komplementa, kao na primer
u [101]. Ovo ograničava matematičku morfologiju samo na binarne slike. Ograni-
čenje se prevazilazi uvođenjem operacija matematičke morfologije u [102] i daljim
razmatranjem njihovih osobina u [119].

Kada su dilatacija i erozija počele da se koriste, strukturni elementi bili su
fiksni, tj. jedan strukturni element se koristio za sve spelove slike. Takav strukturni
element uobičajeno se naziva rigidan [19]. Podaci digitalne slike koje predstavljaju
neku osobinu objekta mogu se menjati, iako se ta osobina ne menja u stvarnosti. Na
primer, identični objekti mogu se na slici pojaviti kao različiti u veličini u različitim
delovima slike zbog perspektive, ili se intenziteti koji ih predstavljaju mogu menjati
zbog različitog osvetljenja. Zbog toga nastaje potreba da se definišu struktrurni
elementi koji se prilgođavaju, menjaju u zavisnosti od lokalnih osobina na slici.
Takvi strukturni elementi koji mogu menjati svoju veličinu, oblik i vrednosti za
različite spelove nazivaju se adaptivni strukturni elementi [11, 19, 21].

Rastojanje je funkcija d : D×D → [0,∞), gde je D neprazan skup. Rastojanje
d se naziva metrika ako zadovoljava osobine separabilnosti, simetrije i nejednako-
sti trougla. Par (D, d) se uobičajeno naziva metrički prostor. Nije neophodno da
neko rastojanje bude metrika da bi se koristilo u obradi slike. Ukoliko zadovo-
ljava simetriju i nejednakost trougla rastojanje se naziva pseudometrika. Ukoliko
zadovoljava separabilnosti i simetriju naziva se semimetrika.

Rastojanja su jedan od najstarijih i najviše korišćenih alata u digitalnoj obradi
slike. Rastojanje koje je pogodno u svim situacijama kada se porede digitalne
slike ne postoji. Koje rastojanje je najbolje u određenoj situaciji zavisi od mnogo
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činilaca. Poređenje raznih osobina objekata, raznovrsni objekti predstavljeni digi-
talnim slikama, različiti uslovi dobijanja digitalnih slika su samo neki od činilaca
koji su uzrokovali upotrebu velikog broja različitih rastojanja u digitalnoj obradi
slike. Opširan pregled postojećih rastojanja dat je u [25]. Budući da se upotreba
rastojanja u obradi slike konstantno širi, postoji neprekidna potreba za originalnim
pristupima da se definišu nova i modifikuju postojeća.

Među najčešće korišćenim rastojanjima u digitalnoj obradi slike su rastojanja
Minkovskog ili Lp metrike. Lp metrika je Euklidsko rastojanje za p = 2. Rastojanja
između elemenata skupa D koriste se da se definiše rastojanje od nekog elementa
do podskupa skupa D. Rastojanja od elementa do skupa nazivaju se rastojanja
od tačke do skupa i koriste se da se definišu rastojanja od skupa do skupa. Rasto-
janje od skupa do skupa koje se smatra najstarijim u obradi slike je Hausdorfovo
rastojanje [38,82]. Iako je jedno od najviše korišćenih u obradi slike, Hausdorfovo
rastojanje je previše osetljivo na spelove koji predsavljaju anomalije na slici. Da
bi se takav nedostatak otklonio, rastojanja od tačke do skupa se često sumiraju
za sve tačke i skupove i računa se njihov prosek. Jedno rastojanje definisano na
ovaj način koje se često koristi u digitalnoj obradi slike je zbir najmanjih rastoja-
nja [30,79]. Jedno rastojanje koje se često koristi u obradi slike, a ne zasniva se na
rastojanju od tačke do skupa je simetrična razlika [55] između dva konačna skupa.

Postojeća morfološka rastojanja između dva skupa podrazumevaju Hausdor-
fovo rastojanje dilatacijom i erozijom [103], rastojanje dilatacijom za binarne slike
[93] i rastojanja dilatacijom i erozijom za sive slike [92]. Kao i Hausdorfovo ra-
stojanje dilatacijom i erozijom, rastojanje dilatacijom za binarne slike je previše
osetljivo na anomalije na slici. Zbog toga se u definiciji rastojanja dilatacijom i
erozijom za sive slike koriste sume, ali to istovremeno dovodi do drugih nedosta-
taka.

Treće poglavlje

Pregled Ovo poglavlje zasniva se na radovima "Precise estimation of the projec-
tion of a shape from a pixel coverage representation" [27] i "Estimation of Feret’s
Diameter from pixel coverage representation of a shape" [28]. U Poglavlju 3.1
opisuje se značaj Fereovog dijametra. U Poglavlju 3.2 daje se opis ocene Fereovog
dijametra iz digitalnih slika na tradicionalan način. U Poglavlju 3.2.1 opisuju se
detaljnije problemi vezani za ovakvu ocenu, a u Poglavlju 3.2.2 ispituje se greška i
multigrid konvergencija. U Poglavlju 3.3 dat je novi metod za ocenu Fereovog di-
jametra iz digitalnih slika koji koristi pokrivenost svakog piksela oblikom. Analiza
greške i multigrid konvergencija ovog metoda su dati u Poglavlju 3.3.1 i Poglavlju
3.3.2, a dalje poboljšanje na osnovu analize greške metoda u Pogavlju 3.3.3. U
Poglavlju 3.4 porede se performanse metoda na sintetičkim i realnim primerima.
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Predstavljanje nekog oblika binarnom slikom u praksi odgovara njegovoj Ga-
usovoj digitalizaciji. Obe varijante Gausove digitalizacije mogu se naći u lite-
raturi [14, 15, 31, 33]. Kada se Fereov dijametar ocenjuje iz binarnih slika, kori-
sti se Gausova digitalizacija oblika [48, 129]. U analizama gornje granice greške
koristi se Gausova digitalizacija za aproksimaciju oblika konačnim skupom ta-
čaka [17, 46, 56, 58, 112].

Kada se Fereov dijametar ocenjuje iz binarnih slika, najudaljenije tačke u datom
pravcu aproksimiraju se temenima piksela, ako se koristi prva varijanta Gausove
digitalizacije, ili centrima piksela, ako se koristi druga varijanta. U digitalnoj
rešetki u kojoj je veličina piksela r, ovo dovodi do velike maksimalne apsolutne
greške koja iznosi

√
2
2

· 1
r

u prvom slučaju i 1
r

u drugom slučaju za R−regularne
oblike. Iako je ocena Ferovog dijametra iz binarnih slika multigrid konvergentna
sa brzinom konvergencije O(1

r
), velika apsolutna greška je ozbiljno ograničenje

[48, 129]. Problem je posebno naglašen pri manjin rezolucijama.
U [27] predlaže se algoritam za ocenu Ferovog dijametra koji se zasniva na

pokrivenosti piksela oblikom. U eksperimentima je pokazano da je preciznost i
tačnost ovog algoritma veća u poređenju sa ocenom iz binarnih slika. Ipak, u
proseku, on ne daje tačnu vrednost, tj. ima određenu pristrasnost. Zbog toga
se ocenjuje maksimalna apsolutna greška za dati R−regularan oblik u digitalnoj
rešetki u kojoj je veličina piksela manja od R. Ovakav uslov obezbeđuje da se rub
oblika u nekom pikselu nalazi između tangente i oskulatornog kruga u datoj tački,
što je važno za razmatranje. U suprotnom, ne mogu se odrediti tačke preseka
piksela i ruba, a samim tim ni pokrivenost piksela oblikom.

Empirijskom analizom dolazi se do izraza kojim se popravlja estimacija Fereo-
vog dijametra iz digitalne slike tako da maksimalna apsolutna greška bude značajno
manja. Algoritam je multigrid konvergentan sa brzinom konvergencije O( 1

r2
). Da-

kle, značajno brže u poređenju sa ocenom iz binarnih slika.
U sprovedenim eksperimentalnim istraživanjima na sintetičkim primerima u

kojima je pretpostavljena tačna vrednost pokrivenosti piksela objektom pokazano
je da je maksimalna apsolutna greška za različite položaje u digitalnoj rešetki sma-
njena u proseku 192 puta kada se ocenjuje maksimalan i 16 puta kada se ocenjuje
prosečan Fereov dijametar za sve pravce. U realnim primerima, gde su prime-
nenjeni metodi za segmentaciju koji daju ocenu pokrivenosti piksela objektom,
pokazano je da je greška smanjena približno 7 puta za slike snimljene jednostav-
nom kućnom kamerom pri maloj rezoluciji i približno 6 puta za mikroskopske slike
ćelijskog jezgra pri različitim rezolucijama.

Četvrto poglavlje

Pregled Ovo poglavlje zasniva se na radu "Advanced morphological distances
based on dilation and erosion" [26]. U Poglavlju 4.1 opisuje se značaj morfoloških
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rastojanja. U Poglavlju 4.2 kratko opisujemo matematički model koji koristimo
za razmatranja. U Poglavlju 4.3 analiziramo probleme vezane za izračunavanje
rastojanja dilatacijom za sive slike. Definicije novih rastojanja kojima se problemi
prevazilaze date su u Poglavlju 4.4. Eksperimentalna evaluacija na sintetičkim i
realnim primerima data je u Poglavlju 4.5.

Da bi se jasno predstavili i analizirali problemi, slika se posmatra kao realna
funkcija f : [a, b] → R. Svi zaključi mogu se direktno preneti na dvodimenzionalne
diskretne funkcije. Najveći nedostatak rastojanja dilatacijom za sive slike, ddilate,
je to što ne može da se primeni na parove slika određenog tipa jer ne daje konačnu
vrednost. Nedovoljno jasno objašnjenje za to dato je u [92]. U tezi se dokazuje po-
treban i dovoljan uslov da ddilate(f1, f2) ∈ [0,∞), za dve slike f1, f2. Iz uslova sledi
da se ddilate ne može izračunati za velik broj parova slika čije vrednosti su ograni-
čene. Pored toga, postoje očigledni primeri da se f1 i f2 mogu značajno menjati,
što modeluje značajne promene osobina objekata koje funkcija slike predstavlja, a
da se ddilate(f1, f2) ne menja.

Problemi vezani za izračunavanje morfoloških rastojanja između sivih slika pre-
vazilaze se uvođenjem adaptivne strukturne funkcije koja menja svoje vrednosti
u zavisnosti od x ∈ [a, b]. Nova morfološka rastojanja definisana su korišećnjem
istog koncepta kao i za definisanje rastojanja dilatacijom i erozijom, ali se struk-
turna funkcija vezuje za |f1(x)− f2(x)|, x ∈ [a, b]. Predložena rastojanja mogu se
primeniti na proizvoljan par slika. Pored toga, imaju veću mogućnost da se vežu
za određenju osobinu oblika nego sva ostala morfološka rastojanja. Kada razlike
u objektima rastu, ona se povećavaju, a kada se smanjuju i rastojanja postaju
manja. Predložena rastojanja su semimetrike.

U eksperimentalnoj evaluaciji na sintetičkim primerima koji simuliraju realne
promene u osvetljenju jedne čestice u realnim uslovima za dobijanje slike pokazu-
jemo da predložena rastojanja dobro prate promene u sivim vrednostima i daju
važne informacije na osnovu njih. Na sintetički generisanim primerima koji si-
muliraju promene položaja čestica pokazujemo da predložena rastojanja mogu da
se koriste za složen problem praćenja čestica. To istovremeno pokazuje da do-
bro prate promene položaja objekta u prostoru. Na realnom primeru satelitskog
snimka pokazujemo da nova rastojanja imaju bolje performanse u poređenju sa
svim ostalim rastojanjima jer se mogu jednostavno vezati za osobinu oblika od
interesa izborom strukturnog elementa.

Peto poglavlje

U tezi je poboljšan način korišćenja digitalnih slika kada se porede objekti na
osnovu svojih osobina oblika. Razmotrena su oba problema ključna za poređenje:
kvantifikacija oblika i poređenje kompletnih podataka digitalne slike.
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Dobijeni rezultati pokazuju da teoretski modeli i praktični metodi razvijeni
za korišćenje pokrivenosti piksela oblikom, kao i modeli adaptivne matematičke
morfologije mogu da se koriste za efikasnije poređenje objekata predstavljenih di-
gitalnim slikama kada se poređenje zasniva na obliku.

Istraživanje predstavljeno u tezi može biti nastavljeno u mnogo pravaca, a neki
od njih su spomenuti u petom poglavlju.
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Abstract

A fundamental process performed over objects in many image processing tasks
is their comparison. These tasks include object identification, recognition, classi-
fication and tracking. Generally, comparing objects based on their digital image
representations can be conducted in two ways depending on the amount of used
image data. The first one is to extract suitable objects characteristics that can be
quantified and perform comparison just based on them. The second is to compare
complete digital image data representing objects. For both ways the shape of ob-
jects of interest plays a crucial role because it has a great discriminating power
between objects and allows many numerical quantifications.

The proposed thesis investigates development, improvement and evaluation of
methods for quantitative characterization of objects from their digital images and
similarity measurements between digital images. The digital image data used to
represent objects is not fully exploited when shape based comparison is performed.
Methods for quantitative characterization of objects from their digital images are
increasingly used in applications in which error can have critical consequences such
as medical imaging or autonomous vehicle control, but the traditional methods for
shape quantification are of low precision and accuracy. It is highly desirable that a
distance measure between digital images can be related to a certain shape property
and morphological operations are used when defining a distance for this purpose.
Still, the distances used in image processing defined in this manner turn out to
be insufficiently sensitive to relevant data representing shape properties in images.
The main goal of the thesis is the development and the improvement of methods for
comparison and quantification of objects from their digital image representation in
order to more successfully exploit data having at disposal and overcome mentioned
problems.

The theoretical framework and practical methods developed for utilizing pixel
coverage by an object are successfully used to overcome problems of lacking preci-
sion and accuracy of different methods for shape quantification. We show that the
framework and methods can be used to highly improve the accuracy and preci-
sion of using digital images to estimate the maximal distance between objects two
furthest points measured in a given direction. Adaptive mathematical morphology
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is a field developing rapidly to deal with extracting relevant geometrical structu-
res from an image. We show that the idea of adaptive mathematical morphology
can be used successfully to overcome problems related to sensitivity of distances
defined via morphological operations when comparing objects from their digital
image representations. Superiority of methods proposed in the thesis comparing
to existing is shown on theoretical toy examples, synthetic and real images.

Work presented in the thesis provides many directions for further research. We
found particular motivation for conducting this research in high outperformance
of the proposed methods comparing to other used for the same purpose in expe-
rimental evaluations as well as in fundamental role of comparing objects in many
image analysis tasks.
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Notation

R - the set of real numbers
Z - the set of integer numbers
N - the set of natural numbers
n - a natural number
(x1, x2, ..., xn) - an ordered n-tuple
| x | - the absolute value of a number x
| X | - the cardinal number of a set X
max
x∈X

f(x) - maximum of a function f over a set X

inf(x1, x2, ..., xn) - the infimum of a n−tuple
sup(x1, x2, ..., xn) - the supremum of a n−tuple
Per(S) - the perimeter of an object S
∂S - the border of an object S
A(S) - the area of an object S

A(f) on D - the definite integral of a function f on D: A(f) =
∫

x∈D
f(x)dx

V (S) - the volume of an object S
G1(S) - the first type of Gauss digitization of an object S
G2(S) - the second type of Gauss digitization of an object S
Xc - the complement of a set X
X̆ - the reflection of a set of position vectors X, X̆ = {x | −x ∈ X}
int(X) - the interior of a set X
cl(X) - the closure of a set X
Des(X) - A descriptor of a set of points X
⌊x⌋ - the nearest smaller integer of x
mod - the modulo operation

Abbreviations

CT - computer tomography
RGB - red, green, blue
px - pixels
cm - centimeters
mm - milimeters
m - meters
µm - micrometre
BAP1 - binary approach 1
BAP2 - binary approach 2
COV - coverage approach
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COV corr - coverage approach corrected
⊕nO - n subsequently performed dilations by a structuring element O
⊖nO - n subsequently performed erosions by a structuring element O
JAXA - Japan Aerospace Exploration Agency
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Chapter 1

Introduction

For a long time, imaging has been a possibility for extracting, describing and
evaluating many properties of objects and scenes instead just being the way for
capturing the light reflected by a two-dimensional surface. A striking and illustra-
tive example of using images for exploring properties of imaged objects are X-ray
images. X-rays are not just helpful in exploration, but since the first time system-
atically presented by Wilhelm Röntgen in 1895, they have enabled exploration in
an efficient manner, which was not possible before their discovery.

The capability of images to capture valuable information about observed ob-
jects imposed many problems related to extraction, visualization and manipulation
of objects and their properties. After the emergence of the computer technol-
ogy in World War II, researchers were intensively exploring possibilities for using
computers to process image data. This resulted in the development of the first
programmable computer (Standards Eastern Automatic Computer or SEAC) that
allowed images to be fed into its memory. The computer was developed by a
computer pioneer Russell Kirsch and his colleagues at National Bureau of Stan-
dards (NBS, now known as the National Institute of Standards and Technology,
or NIST) in 1957. In this way arose a new scientific field named digital image
processing, i.e. processing of images by digital computers. The computer tech-
nology continued its rapid development after the emergence and it will not stop
to develop in the future. In parallel, imaging devices are rapidly evolving. They
provide more and more credible digital image depiction of increasingly different
objects in increasingly different conditions. Digital cameras, magnetic resonance
imaging or computerized axial tomography scanners are just some notions inte-
grated in daily life. The great possibilities to capture object properties by images
and process them by computers have caused a breakthrough of digital image pro-
cessing into almost all scientific fields and studying objects based on their digital
image representations has become a standard procedure in scientific research.

To enable considering physical properties of real world objects based on their
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2 CHAPTER 1. INTRODUCTION

digital images, a mathematical formalization of the data represented by an image
is needed. For this purpose, an image can be observed as a change of one or more
quantities (usually energy that originates from the electromagnetic radiation or
ultrasound) that carries some information about objects being imaged, that is as
a signal. A signal is observed as a function, so the same can be used to model an
image as:

f : D −→ R, D ⊂ Rn, (1.1)

where (x1, x2, ..., xn) ∈ D are spatial coordinates and represent a point x(x1, x2, ...,
xn) in the observed space at which the signal is perceived. f(x1, x2, ..., xn) ex-
presses the reflected or absorbed energy by an environment being imaged at x and
is named image intensity or gray value at x(x1, x2, ..., xn) [36]. The domain of an
image function is bounded as only a limited portion of the space can be imaged
and the set of image intensities is bounded as only a limited amount of radiation
can be used.

A wide range of imaging techniques enable research of different physical prop-
erties by observing their images and we list just some examples. The intensity
of X−rays decreases exponentially with the distance from their source and the
density of passed material. When this is expressed by f(x1, x2, ..., xn), the internal
structure of a tissue can be studied. In [74] such an image function is used to
study morphological properties of cells. In [100] the data expressed in the same
manner is used to provide quantitative measurements of fibres of biomaterials such
as bones or teeth. Atmospheric pollutant can be studied when f(x1, x2, ..., xn) ex-
presses the intensity of electromagnetic radiation from the Sun that is absorbed
and reemitted by the Earth and atmosphere. On the basis of this, in [29] is given
a number of different measures suitable for tracking pollutant plumes.

Digital images

Processing by a computer is inherent with the loss of information about objects
provided by an image. This is due to the fact that an image function has to
be translated into a form which can be represented in a computer with finite
memory. This process is named digitization and involves two steps, discretization
and quantization. After a digitization, the domain and set of intensity values of
an image are discrete sets. Whereas they are bounded, they are both finite. An
image function with finite domain and finite set of intensity values represents a
digital image.

To discretize an image domain, spatial coordinates are usually approximated
with values regularly distributed in a grid. The number of these sample values per
unit is called spatial resolution of a digital image. The process of taking just some,
sample, values to represent real coordinates is called sampling. After sampling, a
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point in a grid represents a regular portion of the space Rn consisting of all the
points of Rn which are closer to it than to any other grid point. Such portion is
named the Voronoi region of the point under consideration, after Georgy Feodo-
sevich Voronoy (1868-1908) who gave unprecedented contribution in the theory of
the regular partition of spaces. In digital image processing, Voronoi regions that
correspond to grid points are called pixels (picture elements) for two-dimensional
images, voxels (volume elements) for three-dimensional images or spels (spatial
elements) in general.

Similarly to spatial coordinates, intensity values are usually allowed to be just
values equally distributed in a predetermined interval [a, b] ⊆ R. The number of
allowed values per unit is called gray level resolution. The process of taking only
some discrete values from the real interval is called quantization. It is frequently
performed such that values can be suitably represented by a binary code adapted
to the computer memory. In the most of digital images in daily use, an image
function is allowed to take 28 = 256 values from R which corresponds to the
number of values that can be represented by one byte.

Comparing objects from their digital images

The fundamental process performed over objects in many image processing tasks
is their comparison. A reference object is compared to other objects for the prob-
lem of identification and recognition. Objects are compared with each other for
the problem of classification. One object can be compared to itself in different
time moments to inspect changes in its position or shape. We listed just some of
the numerous situations when comparing is performed, but, generally, comparing
objects based on their digital image representations can be conducted in two ways
depending on the amount of image data used for that purpose.

When possible, it is computationally less expensive to compare just some object
characteristics than to compare the complete image data representing objects. Due
to this, only such, suitable, characteristics are frequently extracted from digital
images and used in further processing. For instance, if the two cells presented in
Figure 1.1 should be compared, internal patterns and color may be considered as
non-informative for a particular application. Intensity values expressing internal
patterns and color can be neglected and objects efficiently compared by considering
only properties of their shapes presented in Figure 1.1(c) and Figure 1.1(d). For
example, properties such as area or perimeter can be used. one such shape property
is presented in Chapter 3 and methods for its accurate extraction from digital
images are developed.

There are situations in which properties of imaged objects are compared by
the direct comparison of their digital images. This is common when the complete
image data is relevant for consideration and extracting just some characteristics
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(a) (b) (c) (d)

Figure 1.1: Cell nuclei in a) and b) can be compared by comparing just their
shapes presented in c) and d).

leads to the loss of principal information. For instance, in Figure 1.2, taken from
[29], intensity values express the number of nitrogen dioxide molecules per square
centimetre over the same area in different time periods. If the density of this
prominent indicator of pollution in different time intervals should be compared
by comparing presented digital images, rejection of some intensity values or some
spatial information about them would lead to loss of the principal data under
consideration. In situations like this, distance measures between images are used
for comparing objects of interest. For example, the sum of absolute differences
between image intensities can be computed to follow changes in pollution during
time. One such developed distance measure with particularly appealing properties
for comparing objects by comparing their digital image representations is presented
in Chapter 4.

Problem description

Methods for quantitative characterization of object properties extracted from dig-
ital images are increasingly used in applications in which an error can have criti-
cal consequences. The examples of such applications are medical imaging or au-
tonomous vehicle control. Because only a finite set of data is used to quantify a
real world object, these methods usually overestimate or underestimate true value.
Usually, a method on average has a certain deviation, named bias, from the true
value. Due to the negative consequences of relying on incorrect measurements, it
is of a great importance that the bias is low, i.e. that that the accuracy is high
and that in repetitions in unchanged conditions a method provides values which
are close to each other, i.e. that it has high precision.

A widely used property for quantitative characterization of an object is the
distance between its two furthest points measured in a given direction. This dis-
tance is named Feret’s diameter of an object. Estimation of Feret’s diameter from
digital images belongs to methods which are traditionally performed on binary
images in which intensity values can only be 0 or 1. Binary images are in contrast
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Figure 1.2: Image taken from [29]. a) From left to right, average nitrogen diox-
ide density (molecules

cm2 · 1015) for the period May-September in 2005, 2012 and the
difference of these two images. b) The same, but as the annual average (Januar-
December)

to gray scale images where other values are allowed. Value 1 is assigned to the
spels which correspond to the sample points considered to belong to the interior
or the border of an object and value 0 is assigned to the spels which correspond
to sample points considered to belong to the exterior. In this manner, spels are
sharply divided into those which represent an object and those which represent the
background. The assumption that a pixel is a part of an object or its background
in binary images, although pixels are regions and may be not completely part of
an object nor completely part of its background, causes lack of accuracy and pre-
cision of traditional methods. The problem is particularly pronounced when pixel
regions represent significant parts of an object under consideration, i.e. additional
resolution is needed. For example, in satellite images a pixel can represent a larger
part of land, or in microscopic images a pixel can represent a considerable part of
a cell. In this thesis, this issue of lacking accuracy and precision will be addressed
by using additional information, provided by gray scale images, about coverage of
every pixel by an object.

Distances between images are widely used in applications in which it is highly
desired to follow a certain geometrical property of objects over time. For instance,
it is needed to follow changes in position of objects in object tracking or it is fre-
quently needed to follow changes in the shape of different physical phenomena such
as lakes or elevation structures in geographical information science. Besides, dis-
turbances such as noise or outliers are often present in digital images. If a distance
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is sensitive to such irrelevant data it often becomes useless in real applications. Due
to this, it is highly desirable that a distance measure between digital images can
be related to a certain shape property of objects to be compared without being
disturbed by irrelevant data.

To extract the relevant geometrical structure from an image, morphological
dilation and erosion can be used. The dilation of an image is an operation which
assigns the maximal value in a neighborhood to every image spel. Before assigning
the maximal value, intensity values in a neighborhood can be increased. A spel
neighborhood considered during a dilation is called a flat structuring element and
its increase in values is defined via a non flat structuring element or a structuring
function. A flat structuring element as well as a structuring function can be rigid
if they are the same for all spels or adaptive if they change their shapes and values
depending on a spel in an image. The erosion of an image is similar to dilation,
but the minimal value in a neighborhood is assigned instead of the maximum and
a structuring function decreases values instead of increasing them. To denote the
collection of distances between digital images which are defined using dilation or
erosion to be related to a certain geometrical property, the notion morphological
distances is used.

The existing morphological distances are based on flat, rigid structuring el-
ements. Defined in this manner, they turn out to be insufficiently sensitive to
relevant data representing shape properties in images. More particularly, the mor-
phological distances mainly used for binary images are highly sensitive to distur-
bances in images such as noise and outliers. The morphological distances mainly
used for gray scale images do not provide finite value when computed for a large
number of digital image pairs with finite image intensities. Besides, it is possible
that dissimilarities between compared objects strongly grow and the distances do
not change their value when computed for digital images representing such changes,
i.e., they are too insensitive in many situations. In the thesis, the problem of the
insensitivity will be addressed by introducing an adaptive structuring element to
define morphological distances.

Thesis goal

The shapes of objects are of the crucial importance for their comparison, but the
digital image data used to represent objects is not fully exploited when shape
based comparison is performed and there is room for improvements. This causes
problems with the accuracy and precision of methods for quantitative character-
ization of object properties and insensitivity of morphological distances to shape
properties. The main goal of the thesis are the development and improvement
of methods for comparison and quantification of objects from their digital image
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representations in order to exploit more successfully data at disposal and overcome
described problems.

Publications and the structure of the thesis

Chapter 2 presents the overviews of shape analysis, mathematical morphology and
distances used in image processing together with definitions and basic notions to
be used in the thesis.

The problem of accuracy and precision of Feret’s diameter estimation from
digital images is addressed in Chapter 3 which is based on [27, 28]. The problem
is addressed by considering gray scale instead of binary images. The considered
gray values provide additional information about the coverage of every pixel by
the object under consideration. By comparing method that utilizes such informa-
tion with traditional methods, it is shown that it significantly outperforms them
in accuracy and precision. The comparison is performed on real and synthetic
examples.

The problem of computing morphological distances between digital images is
addressed in Chapter 4. The foundation of the chapter is [26]. The problem is
addressed by introducing adaptive structuring functions in defining morphological
distances. By comparing morphological distances based on flat rigid structuring
elements and morphological distances based on adaptive structuring functions,
increased applicability of the latter is shown. That the new morphological distances
highly outperform existing ones is shown on toy examples, as well as synthetic and
real digital images.

Chapter 5 concludes the thesis and discusses current and future work.
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Chapter 2

Background

The research subject of the thesis, in its broadest context, belongs to morphology
because the methods to be explored are based on shape. The word morphology
comes from Greek words morph and logia. Morph means shape, form and logia
means study of. So, morphology is the study of the shape. In image processing,
morpho-logy is represented in two fields, shape analysis and mathematical mor-
phology and we widely use models and methods existing in these fields in our
research.

During formation of an object, many different influences leave inscription in
its shape. This makes the shape of a real world object a comprehensive source of
information which is constantly explored to reveal and interpret such inscriptions.
The significance of shape reflects in the fact that it takes a central place in many
scientific fields. An example of such field is morphology in archaeology which
studies grouping archaeological artifacts into time periods based on their shapes.
One more example of studying object properties based on the shape is morphology
in biology dealing with drawing inferences about various properties of organisms
from their shapes.

Image analysis belongs to the fields in which morphology is of great importance
too. As it is breaking through a great variety of research tasks, image analysis faces
with more and more demanding criteria when dealing with shapes. Problems that
arise are numerous and vary from task to task.

Shape analysis covers a broad collection of methods based on shapes of objects
for reducing digital image data to form suitable for further processing. Mathemati-
cal morphology covers a broad collection of methods for extraction and exploration
of morphological properties of sets. Further on, we give basics of shape analysis
and mathematical morphology.

Since shape analysis methods will be explored, we give an overview of the
field of shape analysis and criteria and conditions for efficiency of shape analysis
methods. Since a morphological distance will be presented, we give an overview

9
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of the field of mathematical morphology and distances in image processing with
special emphasis on morphological distances.

2.1 Shape Analysis

In image analysis, the formal definition of the shape of an object does not exist. It
is a basic property of every object, like color and texture. The shape of an object is
always represented by a bounded set of points with coordinates in Rn that extracts
just the geometrical extent of the object while all the other properties such as color
or texture are ignored. Two sets of points represent the same shape if there exists
a similarity transformation that maps one set onto another. Therefore, a shape
can be understood as an equivalence class under the similarity transforms in the
set of all objects [105]. It is frequently considered as a silhouette of an object if
ignoring its size, rotation and position. In the literature, it is also referred to as
a region. In image processing, a planar shape is traditionally presented by binary
images. As an illustration, some examples of binary images representing planar
shapes of objects are given in Figure 2.1.

Figure 2.1: Some examples of shapes of objects

About the pivotal role of shapes in discerning between objects can be concluded
from the importance of shapes for the human visual system. The theories of human
visual system are frequently considered when shape analysis methods are discussed.
For a survey of such theories related to shape analysis, we refer to [67]. The human
visual system is one of the most sophisticated and the most versatile existing visual
systems and is not surpassed by any similar artificial system. In that system, it is
undeniable that shapes of objects have the principal weight in discerning between
them, before other properties such as color, texture and shades. In [60] it is shown
that children classify objects primarily based on shapes and secondarily based on
other properties. In [8,39] it is shown that other object properties do not contribute
to the speed and accuracy of discerning between objects having different shapes.
An established theory is that humans recognize objects based on the combinations
of small elementary shapes named geons [7]. One of aims of exploring the human
visual system is to follow it when developing artificial systems.
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(a) (b)

Figure 2.2: Two inner disks have the same image intensity, but the disk in b)
appears darker as background becomes brighter

The human visual system has the ability to adjust perception of the light in
order to single out a shape that is of interest in an image. To illustrate this, let
us consider Figure 2.2 where the inner discs have equal image intensities, but the
one in b) appears darker as the background becomes brighter. Image segmenta-
tion is the process of subdivision of an digital image into its component regions
that extracts the shape of interest out of other components in a digital image.
During a segmentation, the subdivision is commonly preformed based on the ho-
mogeneity of pixels representing an object and their dissimilarity with other image
components. The most widely used method for segmentation is thresholding. It
comprises determination of a threshold value such that the image intensities rep-
resenting object points are greater or equal to the value and the image intensities
representing background are lower, or vice versa. In [104] is given an overview of
techniques used for thresholding. In [32] is given a comparative study on region
growing segmentation which implies iterative addition of neighboring points to a
set of seed points according to a predefined similarity property. Region splitting
and merging is similar to region growing, but it begins with a division of an im-
age into regions and then splits or merges regions according to a set of predefined
criteria. This approach is often more efficient when objects and the background
are roughly indicated by a user as presented in [80] for instance. Boundary-based
segmentation implies detecting edges, lines and isolated points. An overview of
boundary based techniques is given in [6].

After segmentation, the shapes of objects are well defined and extraction of
shape properties by a shape analysis method is enabled. The process of shape
analysis commonly begins with a method for shape representation. Shape repre-
sentation entails further reduction of the image data obtained by segmentation.
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It results in a high-dimensional vector that encodes a shape truthfully or approxi-
mately, but preserves shape characteristics which are relevant for further process-
ing. Which characteristics are relevant depends on a particular application. The
high-dimensional vector provides a good visual interpretation and compression.
Further on, we give short overview of some methods for shape representation.

Representing shape by an one-dimensional function computed from shape boun-
dary points is a classical shape representation method named signature. Very
frequently used signature is centroid distance function:

C(t) =
√
(x(t)− xc)2 + (y(t)− yc)2, (2.1)

where (x(t), y(t)), t ∈ [a, b] ⊂ R are border points and (xc, yc) is the centroid of the
shape under consideration. The examples of some other signatures existing in the
literature are tangent angle and cumulative angle. Properties of signatures are pre-
sented in [53,133] and they are shown to be sensitive to noise when estimated from
binary images. Polygonal approximation of a shape is a polygon that represents it
in the best way according to a pre-selected criterion, as the minimization of sum
of distances of polygon vertices to border of approximated shape, for instance. An
evaluation of different methods for polygonal approximation is given in [86]. The
representation of a shape by the string of the neighboring border pixels is called
chain code. Efficiency of different algorithms for computation of chain codes is
examined in [95].

Because shape is known to have a strong discriminating power, a number of
shape characteristics have been developed to capture this power. A suitably chosen
characteristic for consideration is preferable to be quantified. For instance, a shape
can be convex or not in geometry. In shape analysis, convexity is the shape prop-
erty for which is developed probably the largest number of methods for measuring
and expressing by a number to which degree a shape is convex. In [68] one method
for computing convexity of a given shape is to, for randomly chosen two points of
the shape, compute the probability that the line segment determined by the points
is completely contained in the shape. Another method for computing convexity
from [68] is to compute the ratio of the shape area and the area of its convex hull.
In [87] the convex polygon that fits best a polygonal shape is computed instead
of the convex hull and the ratio of the shape area and the polygon is proposed as
a convexity measure of a polygonal shape. In [136], as a convexity measure of a
polygon, is proposed the ratio of the perimeter of the minimal rectangle having
the edges parallel to coordinate axes which includes the polygon and the perimeter
of the polygon. These are just some methods for computing convexity of shapes
in shapes analysis. They differ in terms of computation complexity, sensitivity to
noise, sensitivity to changes at the border or interior of a shape. We emphasize
that, although all being methods for computing convexity, every of them gives a
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different number for the same shape and that there is a permanent demand for
new methods for quantifying the same shape property. The aim is to uniquely
characterize a shape by numbers.

The process of quantification of shape properties is named description and a
shape property quantified by a number is named descriptor. Besides convexity,
many other descriptors exist in the literature, and we list just a few. Area and
perimeter are well known features of shapes used as descriptors and exhaustively
studied in the literature. For different methods for estimation of area and perimeter
of shapes from digital images and their evaluation we refer to [10, 16, 107, 110].
Some other descriptors are defined exclusively for the purpose of shape analysis.
A polygon is rectilinear if its interior angles belong to the set {π

2
, 3π/2}. Similarity

measure of a polygonal shape to a rectilinear polygon as a shape descriptor called
rectilinearity is studied in [89]. Similarly, descriptors which expresses how similar
a shape is to a perfect ellipse is called ellipticity and is studied in [134]. For an
exhausive overview of shape analysis techniques, we refer to [67, 133, 135].

Since the estimation of shape descriptors from digital images is investigated
in the thesis, we shortly illustrate the basic concept of shape description. Let
us observe the shapes given in Figure 2.1. The problem consists of providing
a description expressed by a number for every shape in the figure such that we
can discern between shapes just based on such number. Such number can be,
for example, the size of a shape along the direction 60◦. This number, would be
the largest for the second shape, thereafter for the fifth, the first, the third and
smallest for the fourth shape. To more clearly discern between the first and the
fifth shape, some other, additional, descriptor can be considered. The numbers
expressing descriptors can be used for recognition, classification or identification
of objects.

Feret’s diameter

To give a formal definition of the descriptor which is investigated in the thesis, we
consider projections of points of bounded planar sets onto a given line that passes
through the origin. We are interested in the maximal distance between pairs of
such projection points.
Definition 2.1.1. The scalar projection of the position vector of a point p(x, y)
onto the unit vector in the direction given by angle ϕ is:

projϕ(x, y) = (x, y) · (cosϕ, sinϕ) = x · cosϕ + y · sinϕ. (2.2)

For a given bounded set X, by projϕ(X) we denote the set of scalar projections of
position vectors of all points in X.

We refer to a point of X for which an extremal projection value min(projϕ(X)),
or max(projϕ(X)), is attained, as an extremal point of X in the direction ϕ.
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Definition 2.1.2. Feret’s diameter of a closed and bounded set X in the direction
ϕ is the difference between maximal and minimal value of projϕ(X):

Fϕ(X) = max(projϕ(X))−min(projϕ(X)). (2.3)

Some authors use the term width function [121] instead of Feret’s diameter.
These two notions represent the same concept. When computed for multiple angles
Feret’s diameter can be used for computing other shape descriptors. For instance,
classic diameter, diam(X), of a set X and elongation E(X)can be estimated using
following formulas:

diam(X) = max
ϕ

(Fϕ(X)), (2.4)

E(X) = max
ϕ∈[0,π]

Fϕ(X)

Fϕ+π
2
(X)

. (2.5)

To estimate the perimeter of a convex shape the following theorem can be used:
Theorem 2.1.3. (Cauchy’s theorem) [72] The perimeter of a convex shape X
is given by: Per(X) = π · F̄ , where F̄ is the average Feret’s diameter over all
directions.

2.2 Traditional Digital Representation of a Shape

The concept of shape description appears simple because shapes have a great
number of properties which have a great discriminating power between objects and
which can be easily measured. Still, shape analysis is a complex task and there
are many aspects to be taken into account when it is addressed. The majority of
these aspects is related to the fact that a shape analysis method should provide a
measure of a real world object based on a digital image. This places shape analysis
in the domain of image analysis, i.e. extracting relevant information from data
represented by digital images. In following, we give an overview and shortly discuss
the mostly used ways to represent a shape by digital data and describe a property
which a shape should have in order for its basic characteristic be preserved after
digitization. This is followed by a description of a framework for the error of
estimation of a shape descriptor from digital data.

Digitization

A single real world object can have many digital approximations of its shape.
To study such approximations many different digitization models are defined in
the literature. For an overview of different approaches for digitizing objects we
refer to [117] where they are generalized to an arbitrary dimension. We here state
methods that are mainly used for digitization of shapes. The subset sampling is
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the simplest, most widely used in practice, and the model with the most studied
theoretical properties. It assumes taking into account grid points contained in a
shape. The supercover sampling is an alternative model that assumes taking into
account grid points whose Voronoi regions have a non-empty intersection with a
shape under consideration.

(a) G1(K) is the union of
pixels with centres covered
by K (shaded area)

(b) G2(K) is the union of
pixel centers covered by K
(marked points)

(c) J1(K) is the union
of pixel intersected by K
(shaded area)

(d) J2(K) is the union of
pixels completely covered
by K (shaded area)

Figure 2.3: Different types of digitization of a disk K here visualized only as its
circular boundary.

When used for planar objects in a square digital grid, the subset sampling
is named the Gauss digitization after well known mathematician Carl Friedrich
Gauss (1777-1855) who was using it for studying shapes. We will use two variants
of Gauss digitization in the thesis:
Definition 2.2.1. For an object S ⊂ R2, inscribed into an integer grid with pixels
pi,j, the Gauss digitization of S is any of the following:

G1(S) = {pi,j | (i, j) ∈ Zn ∧ (i, j) ∈ S} , (2.6)
G2(S) = {(i, j) | (i, j) ∈ Zn ∧ (i, j) ∈ S} . (2.7)
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Famous mathematician C. Jordan (1838-1922) used supercover sampling to
study the volume of objects in the three dimensional space and two types of dig-
itization are named after him. The union of pixels, for two-dimensional shapes,
or voxels, for three-dimesional shapes, that corresponds to supercover sampling is
named Jordan outer digitization. The union of pixels or voxels that corresponds
to the set of points which are not in the supercover sampling of the complement
of a shape under consideration is named Jordan inner digitization. Jordan inner
digitization consists of all the pixels or voxels completely contained in the shape.
We denote Jordan outer digitization with J1 and Jordan inner digitization with
J2. Illustrations of mostly used types of digitization of shapes are given in Figure
2.3, where digitizations of a disk by these methods are presented.

Theoretical considerations of some other methods for digitization exist in the
literature, but they are rarely used in practice. Among them, we mention Hausdorff
digitization [84] that minimizes the distance between the border of a shape and
the border of the union of Voronoi regions used to represent the shape. The
Hausdorff digitization is not used in practice because it is defined globally and
heavily depends on the alignment of the digital grid and a shape.

Even in the same model for digitization, a shape has many different digiti-
zations. For instance, in [47] authors show that there is approximately 3πR2 +

R
330

208 (logR)
18627

8320 different Gauss digitizations of a simple shape as the disk with
radius R. After a digitization, the original shape is irretrievably lost and it is
approximated by another set of points, i.e. another shape. The approximation
does not necessarily preserve properties of the original shape and an error in com-
putation of shape descriptor from its digital image representation is inevitable in
the vast majority of cases.

To illustrate an error of computing a shape descriptor introduced by digitiza-
tion, let us observe Figure 2.4(a) of a disk and the Euclidean distance d(x,y) =√

(x2 − x1)2 + (y2 − y1)2 between points x(x1, x2) and y(y1, y2). The radius of the
disk is 2.5 px and the center is positioned at (xc, yc) = (4.5, 4.5) in the digital
grid. The diameter of G1 digitization representing the disk given in Figure 2.4(b)
is

√
34 ≈ 5.83 px. If the center is translated to the point with coordinates (5, 5),

G1 of the disk changes to the one presented in Figure 2.4(c), and the diameter
becomes 4

√
2 ≈ 5.66 px. Figure 2.4(d) illustrates G1 of the disk at the position

(xc, yc) = (4.25, 4.75) for which the diameter amounts
√
34 ≈ 5.83 px, again. If

there exists a position of the circle center for which the diameter is 5 px, the esti-
mation would be accurate and if it did not depend on the position, but provided
always the same value, it would be precise.
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x =4.5

y
=
4
.5

c

c

(a)

(b) (c) (d)

Figure 2.4: A disk with radius r = 2.5 px in a digital grid and some of its pos-
sible binary image representations depending on the position in the digital grid.
Estimated from the given binary images, a simple descriptor as diameter changes
its value and amounts

√
34 ≈ 5.83 px, 4

√
2 ≈ 5.66 px, and

√
34 ≈ 5.83 px,

respectively. An estimation of the diameter is marked with the red dashed line.

R-regularity

To understand and formalize the conditions of a good performance of a shape anal-
ysis method, a question naturally arises : Which shape information is preserved
during a digitization? There is an extensive literature as a result of the effort to
answer this question. In all these papers the concept of R−regular sets, given in
sequel after the notion of osculating disk, has a fundamental role.
Definition 2.2.2. Let ∂X be the smooth boundary of a shape X ⊂ Rn. A ball
that shares a tangent hyperplane with ∂X at a point p ∈ ∂X is referred to as an
osculating ball of X at p.

Definition 2.2.3. [118] A compact set X ⊂ Rn is R−regular iff for each boundary
point of X there exist two osculating open balls of radius R, such that one is entirely
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in X and the other entirely in Xc.

2R

Figure 2.5: An R−regular two dimensional set

An illustration of an R−regular shape in two dimensions is given in Figure 2.5.
We give an overview of the existing work on preserving shape properties when an
R−regular shape is digitized in sequel.

In [81] is shown following:
Theorem 2.2.4. There exists a bijective function f : S → G1(S), where f, f−1

are continuous, for an R−regular shape S ⊂ R2 and pixel size less than
√
2 · R.

The bijective function is named homeomorfism and the existence of a homeo-
morfism between two sets is topological equivalence of these sets.

The existence of a tree whose nodes are connected components of S and the
nodes are connected if connected components share a part of their borders is
explored in [102]. The tree is named homotopy tree and the following is shown:
Theorem 2.2.5. S and the set of pixels obtained by subset sampling of S have the
same homotopy tree for any hexagonal grid with pixel size less than R.

[84] considers an arbitrary dimension and the following is shown:
Theorem 2.2.6. The Hausdorff digitization of a shape converges towards the shape
when pixel size converges to zero for arbitrary dimension and arbitrary digital grid.

In addition, the same authors show [122]:
Theorem 2.2.7. There exists a homeomorphism between a two dimensional R−
regular shape and its Hausdorff digitization if pixel size is less than R

2
.

The existence of a homeomorphism, a homotopy three and a small distance
between shape border and the border of the set consisting of sampling points
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(a) (b) (c) (d)

Figure 2.6: The disk from Figure 2.4(d) at two times (b), four times (c) and eight
times (d) higher resolution.

provided by the Hausdorff digitization are criteria for preserving shape properties
after digitization, but there are examples in which they do not provide even visual
similarity. To address this problem, [118] introduce the term of strong r−similarity:

Definition 2.2.8. Two sets X, Y ⊂ Rn are called strongly r−similar if there exists
a homeomorphism f : Rn → Rn such that x ∈ X ⇔ f(x) ∈ Y and x ∈ ∂X ⇒
|x− f(x)| ≤ r.

The condition of strong r−similarity implies all the described conditions. More-
over, it limits the distance between arbitrary point x ∈ A and its homeomorphic
image f(x) instead of limiting distance between ∂X and ∂D(X) as Hausdorff dis-
tance does. In [118] authors prove several theorems which we summarize in the
following theorem:
Theorem 2.2.9. Let R ∈ R+. Then S is strongly r−similar to the union of pixels
corresponding to subset sampling of S in any two dimensional grid with pixel size
r < R.

Theorem 2.2.9 is extended to images exposed to blurring present in real imaging
conditions in [118]. Still, such a framework does not exist for higher dimension.
Moreover, a counterexample showing that the topological equivalence between
three or higher dimensional shape and its digitization cannot be achieved is pro-
vided [118].

From Theorem 2.2.9 it is clear that the deviation of a point belonging to S
and its homeomorphic image belonging to subset sampling becomes smaller as the
spatial resolution increases. This entails that the similarity between S and its
subset sampling increases as the spatial resolution increases. The enhancement of
visual similarity is presented in Figure 2.6 where the circle from Figure 2.4(d) is
given with pixels size two times (Figure 2.6(c)) smaller, four times smaller (2.6(c))
and eight times smaller (2.6(d)).
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It is clear that the digitization of a R−regular shape obtained by subset sam-
pling approaches the true shape when pixel size is r < R and decreases, i.e. the
spatial resolution increases. Is this sufficient that a descriptor of a R−regular
shape estimated from such digitization converges towards its true value when spa-
tial resolution increases? The answer is: No, in general.

Multigrid convergence

The problem of the convergence of an estimation of a descriptor from its digitiza-
tion towards the true value with increasing spatial resolution is named multigrid
convergence. The multigrid convergence reduces to the problem of deriving an
upper bound of the estimation at a given resolution. It has a dual significance.
Having such an upper bound we can know how reliable is the estimated value in
real applications and we can study the convergence of the estimated descriptor
towards its true value via the upper bound.

To give a formal definition of the multigrid convergence, we assume a digitiza-
tion in which the uniform spacing between grid points is equal to r, i.e. the grid
resolution is ν = 1

r
.

Definition 2.2.10. Let S be a shape and Des(S) a descriptor of S. Let D̃esν(S)
be a method for estimation of Des(S) from a digitization of S in the digital grid

with resolution ν. Method D̃es(S) is multigrid convergent iff:

Des(S) = lim
ν→∞

D̃esν(S). (2.8)

In order to analyse upper bounds of the error of D̃es(S) we consider following
definition:
Definition 2.2.11. The function f(ν) ≥ 0 is the asymptotic complexity class
O(g(ν)) (f(ν) = O(g(ν))) iff there exists a constant c ≥ 0 and a constant ν0 ≥ 0
such that |f(ν)| ≤ c · g(ν), for all ν ≥ ν0. In this case we say that g(ν) is the
worst-case upper bound of f(ν).

If f is an error measure of an estimation (f = D̃esr(S) − Des(S)) then g(s)
specifies a worst-case error bound of that estimation.

We point out that in almost all the literature on multigrid convergence one of
two variants of the Gauss digitization is assumed and the results we describe here
assume the same. The problem of multigrid convergence is a traditional problem
in mathematics. It appears in works of Gauss, Dirichlet and Jordan, but upper
bound errors have been improved trough time, i.e. lower upper bound errors
for the same descriptor have been provided. For instance, Gauss and Dirichlet
had already known that the number of grid points inside a planar convex shape
converges towards its area with the speed O( 1

ν
). This result is improved by [46]
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and the worst-case upper bound O(( 1
ν
)

7

11 · (log 1
ν
)
47

22 ) is given for convex shapes
that have continuous third order derivatives and positive curvature at every point
of the boundary. In [56] it is noticed that the condition on the shape border can
be relaxed and that it can contain a finite number of vertices and is given even
better upper bound O(( 1

ν
)
15

11
+ǫ), where ǫ > 0. For an analysis and worst-case error

bounds of estimation of different shape descriptors from binary images we refer
to [17, 58].

Although the problem of multigrid convergence has a long tradition and is
intensively explored, there are many shape analysis methods proposed and used
without any analysis of their multigrid convergence such as linearity [120], squar-
ness [88] and rectilinearity [89]. An interesting experimental evaluation of existing
theoretical worst-case upper bounds of methods for shape description is given
in [17]. This study shows that the results of an experimental evaluation frequently
do not coincidence with the existing theoretical. This indicates that the provided
theoretical worst-case error bounds are not optimal. For instance, the worst-
case upper bound O( 1

ν
) of estimating shape perimeter given in [112] shows to be

O(( 1
ν
)
4

3 ) in the experimental evaluation. Moreover, in [58] is made a conclusion
that for the most of the provided upper bounds is not yet known if they are optimal
or not and that this is an open problem.

2.3 Pixel Coverage Representation

The described traditional framework is mostly used for representing shapes and
studying errors of shape analysis methods at present. Still, it shows insufficiency
in many real situations and arises a need for different approaches.

The property of multigrid convergence of a method ensures that there is al-
ways a resolution increment that reduces the error to a desired value. Although
intuitively appealing, the existence of such an increment does not necessarily pro-
vide the arbitrary accuracy and precision of a shape analysis method in practice.
First of all, an arbitrary increment of the resolution is a theoretical procedure and
cannot be conducted in practice since imaging devices are always of the limited
reso-lution. This problem is frequently present when imaged objects are far away
from the imaging device (satellite images) or when imaged objects are very small
(viruses or nano-particles). Secondly, as possibilities for increasing the spatial res-
olution become greater, it becomes a desire to study smaller and smaller objects.
In such situations the performance of shape analysis methods at limited resolutions
is of great importance.

Stated problems imposed a question if there is some other, additional, informa-
tion that can be provided for usage in shape analysis, apart from the one provided
by binary images. This has led the scientific research into alternative directions for
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improving accuracy and precision of image analysis methods. Using coverage of a
pixel by a shape under consideration has been the main direction of this research.

A strong motivation for using pixel coverage by a shape in the shape analysis
tasks can be found in [54]. The authors showed that the error free reconstruction
of a polygonal shape is possible if the covered area by a shape is known for every
pixel and the spatial resolution is sufficiently high. It is shown that, at spatial
resolution ν and gray level resolution b, the maximal error of reconstruction of
shapes is:

1√
3ν(2b − 2)2

. (2.9)

The important point to note here is that the provided upper bound error decreases
faster with b than with ν.

In remote sensing the size of pixels range from a couple of meters to a couple of
kilometers due to the great distance between imaged objects and imaging device.
This causes that every pixel is in a large number of cases covered by several objects
and assigning a pixel to just one object causes large errors in further processing.
To reduce errors the idea of fractional pixels is introduced. A fractional pixel is
a pixel which gray scale value expresses how large pixel fraction is covered by
an object. Fractional pixels can be estimated using linear mixture models which
generally result in a poor performance or using neural networks which are able to
capture complex structures in the data as presented in [52].

An additional field of practical application of image analysis in which partially
covered spels attract significant attention is processing of tomographic images.
Due to inhomogeneities of regions of spels and sensitivity and finesse of imaged
objects, determining whether a spel belongs to an object is a difficult issue. The
problem, and the need for sub-voxel precision, is well illustrated in [78], where it
is shown that consistently misplacing the tissue borders in a brain volume having
voxels of size 1 mm3 by only a single voxel in image, resulted in volume errors
of approximately 30% for white matter, 40% for grey matter and 60% for cere-
brospinal fluid in a brain. This has lead to the various methods for estimating
portion of each of the tissues that is contained in a voxel. An approach based on
expectation-maximization in such estimation is presented in [61].

Although providing improvements in specific applications, the described work
is missing a well defined mathematical model for abstracting the essential data.
The absence of such model significantly obscures the development of general shape
analysis methods which are not related to a specific application or imaging condi-
tions.
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The coverage model

A binary image can be understood as a characteristic function of a shape that
assigns value 1 to points which belong to the shape and 0 in the opposite. In a
digital setting, the described characteristic function is applied to the whole Voronoi
regions corresponding to sampling points. The problem arises at the border pixels
which do not completely belong to a shape, nor its background. They belong to
the shape to a certain extent, while partially belonging to the shape complement,
i.e. background. A mathematical field which deals with sets to which elements
partly belong is fuzzy set theory and, having in mind aforementioned, it is natural
that a mathematical model for abstracting pixel coverage information is developed
within its framework.

A fuzzy subset F of a reference set D is a set of ordered pairs F = {(x, µF (x))},
where µF : D → [0, 1] is the membership function of F [132]. In other words, a
fuzzy set is a set whose membership function maps an arbitrary reference set to
the interval of real numbers [0, 1], where elements with the membership function
equal to 1 are completely in the set, while those with the membership function
equal to 0 are completely in its complement.

In the frame of fuzzy sets a coverage representation of a subset of Rn is pro-
posed:
Definition 2.3.1. [109] Given a partition Σ = {σi}i∈I of a reference set D, a
coverage representation of a set X ⊂ D on Σ is a fuzzy subset {(σi, α(σi)) | σi ∈
Σ}, such that α(σi) =

|σi∩X|
|σi| , where |X| denotes the cardinal number of X.

When the theoretical model is used in image processing, it is considered that
the reference set D is the Euclidean space Rn. Σ corresponds to the collection
of all the Voronoi regions, usually defined by the set of integer points Zn. A
pixel, voxel or spel (in more than three dimension) is indicated by its integer point
i(i1, i2, ..., in) ∈ Zn and denoted as σi1,i2,...,in.

The proposed theoretical framework has enabled development and improve-
ment of many shape analysis methods. For example, the area of a two dimensional
shape S can be estimated from its coverage representation using the definition of
area of discrete fuzzy set from [85] as

A(S) =
∑

i(i1,i2)∈S
α(σi1,i2). (2.10)

The same definition can be applied for estimating volume V (S) of a three dimen-
sional shape.

In [110, 111] is shown that, for a two or three dimensional shape S, usage
of coverage model instead of binary images significantly improves the precision
keeping accuracy on the same, high level in estimation of area, perimeter and the
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descriptor named compactness computed as:

P 2(S)

4π · A(S) , (2.11)

or
P (S)

3

√
36π · V (S)

. (2.12)

A method for improving shape moment estimation from digital images is presented
in [106]. The usage of coverage representation for computing shape signatures
from digital images is examined in [12, 49] and multiple improvement of accuracy
and precision shown when this model is used. A method that further improves
shape boundary length estimation from pixel coverage representation is examined
in [107]. Tests on real images show that the maximal error of estimation is reduced
5 to 60 times by method that utilizes coverage values comparing to 5 best known
and best performing local methods based on binary images.

Motivated by the described results, we explore the usage of coverage model
for estimation of Feret’s diameter from the digital image representations of two
dimensional objects in the thesis. The work related to this problem is presented
in [27, 28]. In accordance with Definition 2.3.1, we use the following digitization
model for this purpose:
Definition 2.3.2. [107] In the integer grid, the pixel coverage digitization of a
shape S ⊂ R2 is:

D(S) =
{(

(i, j), αi,j

) ∣∣∣ (i, j) ∈ Z2
}
, αi,j =

A(pi,j ∩ S)

A(pi,j)
. (2.13)

(a) (b)

Figure 2.7: The binary and pixel coverage digitization of a disk.

Coverage values αi,j in the digitization model can be computed for an analyt-
ically defined two dimensional shape by computing the intersecting points of its
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border with the digital grid. Knowing the intersecting points, the analytic expres-
sion is integrated to compute the area that shape covers in every pixel. This is how
we computed αi,j in experiments on synthetic images. A binary representation and
the coverage values computed in this manner for a disk are given in Figure 2.7.

For the more realistic evaluation of Feret’s diameter estimation of a shape from
its digital image representation, a segmentation algorithm that provides approxi-
mate values of αi,j (pixel coverage segmentation algorithm) is needed. There are
several pixel coverage segmentation algorithms presented in the literature that en-
able application of listed shape analysis methods based on the coverage in varying
conditions and applications. One such algorithm is proposed in [107]. The algo-
rithm is based on double thresholding which is suitable for usage when an object
and its background are well separable and imaging device has a linear response.
A method based on local unmixing for estimating coverage values from any bi-
nary image shape representation is proposed in [64, 108] . The importance of this
method is that it transfers good properties of a well chosen binary segmentation
method on pixel coverage digitization. In [69], a graph theoretic framework for
coverage segmentation is given. The framework enables estimation of coverage val-
ues in any dimension, and images sampled on non-Cartesian or spatially variant
grids.

In the following sections, we give description of the method based on double
thresholding and the method based on local unmixing since we use them to obtain
coverage values from real images in our experimental evaluation.

Coverage segmentation based on double thresholding

There are many imaging devices that provide approximate coverage values. For
example, the devices whose output is the integral of photons over finite sized
image sensors as present in a digital camera. When there is no variations of gray
levels caused by object properties which are not relevant for consideration, e.g. by
object texture, it is possible to map image intensity values into coverage values.
The method based on double thresholding provides such mapping.

Let us denote by f the intensity of the imaged foreground (object) and with
b the imaged background. The image intensity Ii,j can be modeled as a convex
combination of f and b:

Ii,j = αi,j · f + (1− αi,j) · b ⇒ αi,j =
Ii,j − b

f − b
. (2.14)

Not knowing the values f and b, the algorithm loops over all the possible
thresholds b′ and all the pixels whose value if lover than b′ are considered as
background. The complement of the set of pixels categorized as the background
by b′ is eroded by the 3× 3× 3× ...× 3 structuring element and every pixel in the
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obtained set is considered to be foreground. The threshold value f ′ for foreground
is chosen as the minimal gray value among gray values of pixels obtained by the
erosion. The border pixels between foreground and background are considered to
be those which are removed by the erosion. The structuring element for the erosion
is suitably chosen to be 3 × 3 × 3 × ... × 3 since the object border should not be
more than one pixel wide. In order to remove the individual dark noise points that
distort appropriate selection of f ′ morphological closing, i.e. a dilation followed by
the erosion by the same structuring element, before selecting f ′ is performed. At
every step, the difference l = f ′ − b′ is computed. The threshold values f ′ and b′

giving the largest difference are chosen and coverage values according to Equation
2.14 are calculated according to them. An example of a digital image of black
disks and the gray scale image that represents their coverage values computed by
the algorithm is presented in Figure 2.8.

(a) (b)

Figure 2.8: A digital image of black disks (a) and the gray scale image that rep-
resents their coverage values computed by the algorithm based on double thresh-
olding (b).

Coverage segmentation based on local unmixing

The method based on local unmixing uses a binary image representation to com-
pute coverage values. Assuming that the correct class is assigned to the pixels
which are completely covered by one object, the method utilizes this assignment
to estimate the coverage values of pixels being intersected by the border of some
object.

Having the binary image representation of a shape, the next step is to designate
all the pixels intersected by the shape border. In order to do this, all pixels which
are neighbors with a pixel of a class different from it are collected in the set B. It
is assumed that the set of pixels not belonging to just one object are subset of B.
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(a) cell nuclei (b) Binary segmentation of (a) (c) Coverage segmentation
of (a)

Figure 2.9: An image of a cell nuclei, its binary image representation and pixel
coverage representation computed by the algorithm based on local unmixing.

It is assumed that the value of a mixed pixel I(p) is a convex combination of
the image values corresponding to pure classes ck covering the pixel under consid-

eration: I(p) =

m∑

k=1

αk · ck,
m∑

k=1

αk = 1. Besides, it is assumed that the coefficients

in the combination correspond to the proportion of the pixel coverage by a class
denoted with αk. In a noise free conditions and if the number of equations is not
bigger than the number of classes m, coverage values are computed by solving
system of linear equations.

However, in real imaging conditions, it is not certain that there exists solution
of the problem due to the presence of noise. This is the reason why the problem
is converted into the problem of minimizing the function:

F (α1, α2, ..., αm, λ) = ‖I(p)−
m∑

k=1

αkck‖22 + λ · (
m∑

k=1

αk − 1). (2.15)

In general, the set of non-pure, or mixed, pixels should be an one-pixel thick
set. Nevertheless, due to a presence of noise, some of elements of B are assigned
partial coverage value, although they should be pure. To reduce this consequence
of noise, the thinning of the set of mixed pixels is performed by assigning the pure
class to pixels in B which are at a smallest distance to one pure class. This is
done until a one pixel thick set B is reached. In Figure 2.9 is given an image of
a cell nuclei, its binary image representation and the pixel coverage digitization
computed by the algorithm.

2.4 Mathematical Morphology

Mathematical morphology is one more field in image processing developed to treat
the shapes of studied objects. The original problem of mathematical morphology
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arised in the mining industry and we shortly describe it in following.
It was required that rocks be characterized based on their shapes using digital

images. The rocks were porous which made it hard to discern between the relevant
image spels representing the shapes of rocks and those which represent the cavities
in rocks and are irrelevant for the consideration. Operations on digital images
were required to remove spels representing cavities, at the same time preserving
spels representing the shapes of rocks. Mathematical morphology provides such
operations.

The main idea for a solution was introduced by French scientists Georges Math-
eron and Jean Serra in mid 1960 [71,101,102]. The idea is based on the Minkowski
sum and difference of two sets.
Definition 2.4.1. [73] Let X and Y be two sets of position vectors. Then, the
Minknowski sum of X and Y is given by:

X + Y = {x+ y | x ∈ X and y ∈ Y }, (2.16)

and the Minkowski difference of X and Y is given by

X − Y = {x− y | x ∈ X and y ∈ Y }. (2.17)

Generally speaking, if X is the set of position vectors of points which represent
an object, a set Y can be suitably chosen and positioned so that the Minknowski
sum adds points to remove potential redundant holes in X, i.e., representing afore-
mentioned cavities in rocks. Similarly, it is possible that there are irrelevant points
in X and the Minknowski difference can be used to remove them.

In mathematical morphology, the set Y is called structuring element. In se-
quel, we denote a structuring element with O and give the definitions of the basic
morphological operations:
Definition 2.4.2. [71] The dilation of a set X by a structuring element O is
given by:

X ⊕ O =
⋃

p∈O
Xp, (2.18)

the erosion of a set X by a structuring element O is given by:

X ⊖ O =
⋂

p∈O
Xp, (2.19)

where Xp is the translation of a set X along vector p: Xp = {x+ p|x ∈ X}.
Since satisfying X ⊕ O = (Xc ⊖ Ŏ)c, where Ŏ is the reflection of O, the

operations of dilation and erosion are dual. In image processing, they are usually
preceded by the process of segmentation. Due to this, the set X consists of position
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vectors of image spels representing an object. The structuring element O is then
a set of position vectors of spels conveniently chosen in the same digital grid as
X. Morphological operations are performed not just to remove the irrelevant
or emphasize relevant data that exist in the real world, but also to remove or
emphasize the data incurred during the image acquisition, not present in the real
world. For instance, they are frequently used to remove image noise or other
degradation.

(a) A microscopic image of a cell nuclei
imaged at resolution 2.0px/µm.

(b) Thresholding of (a) resulted in a poor
segmentation adding holes and regions of
non-convexities at border.

(c) A structuring element.

(d) Resulting image after dilating (b)
with structuring element (c) much better
approximates the shape of (a).

(e) Erosion of (d) by the same structuring
element, i.e. opening of (b), keeps the size
of (b).

Figure 2.10: An illustration of using dilation to remove holes disturbing the original
shape of a cell after segmentation. The dilation makes the object larger, so opening
can be performed to keep the size, but remove holes. Due to duality of dilation and
erosion, if we would switch positions of black and white pixels in (b) and perform
erosion, the result would be the same except that black pixels would represent the
cells shape.

For an illustration of performing dilation and erosion on a digital image, we give



30 CHAPTER 2. BACKGROUND

Figure 2.10. A digital image representation of a cell nuclei obtained at resolution
2.0 px

µm
given in Figure 2.10(a) is thresholded at 65 % of maximal image intensity

value. The resulting image shown in Figure 2.10(b) poorly approximates the shape
of cell nuclei since it contains holes and non convex regions in the border. The
dilation of thresholded image by the structuring element given in Figure 2.10(c)
provides much better approximation of the shape, as presented in Figure 2.10(d).
Due to the duality of dilation and erosion, the result would be the same if we have
replaced the white pixels with black and vice versa and performed the erosion with
the same, centrally symmetrical, structuring element.

We point out that, besides removing holes, a dilation makes an object larger
while an erosion makes an object smaller. The white region that represents the cell
nuclei in binary image in Figure 2.10(d) is larger than the one in Figure 2.10(b).
To restore the white region to the original size, once the holes are removed by
the dilation, the erosion by the same structuring element can be performed. The
result of such erosion is presented in Figure 2.10(e). Combinations of the two basic
morphological operations, with the same structuring element, lead to two other
important morphological operators opening and closing :
Definition 2.4.3. The opening of a set X by a structuring element O is given by:

X ◦O = (X ⊕O)⊖O, (2.20)

the closing of a set X by a structuring element O is given by:

X •O = (X ⊖O)⊕O. (2.21)

During 1960s and during most of 1970s mathematical morphology was based
on the classical set-theory. Commonly, pixels with value 1 were considered as the
elements of a set and pixels with value 0 as the elements of the set complement as
done in [101] for example. This limited mathematical morphology only on binary
images, although the most of digital image representations assume usage of gray
levels. Such limitation is overcame by proposing morphological operations for gray
level images in [102] and further considering them in [119].

The basic morphological operations for gray scale images are given by the
following definition.
Definition 2.4.4. The grayscale morphological dilation and erosion of a function
f : D −→ R by a flat structuring element O are respectively defined as:

f ⊕ O(x) = max
z∈O

(f(x− z)), x ∈ D (2.22)

f ⊖ O(x) = min
z∈O

(f(x− z)), x ∈ D. (2.23)
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The defined operations assign the maximal or minimal value in the neigh-
borhood defined by a structuring element to every pixel when applied on two
dimensional digital images. A simple illustration of usage of gray scale morphol-
ogy for removing noise in a two dimensional digital image is given in Figure 2.11.
Figure 2.11(a) represents the two cells of Escherichia coli which pixels mix with
the background noise. After performing the erosion by the structuring element
presented in Figure 2.11(b), the pixels which represent the noise are removed.
For improved visualization, the images are normalized according to the formula
norm(g) = g−min(g)

max(g)−min(g)
, where g is the image function. The resulting image is

given in Figure 2.11(c). We notice that Definition 2.4.4 reduces to 2.4.2 if image
codomain contains just two values, as for binary images.

(a) f (b) O (c) f ⊖O

Figure 2.11: (a) An image of Escherichia coli cells in which background noise mixes
with cell pixels. (b) A structuring element. (c) Dark regions in image are spread
and noise pixels removed by performing erosion. Both images are normalized
according to the formula norm(g) = g−min(g)

max(g)−min(g)
, where g is an image function.

Assigning to a pixel the maximal or minimal value in a neighborhood is the
procedure that corresponds to spreading of the existing dark or bright gray values
in an image, but does not enable changes of these values before the assignment.
The following definitions enable to increase or reduce deliberately gray values in a
neighborhood before the assignment and thereby provide more freedom in setting
an intensity to a desired value.
Definition 2.4.5. [102] A structuring function K on a support O ⊂ Rn is a
function K : O −→ R.
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Definition 2.4.6. The gray scale dilation and erosion of a function f : D → R by
a structuring function K are given by:

δK(f)(x) = sup
z∈O

(f(x− z) +K(z)), x ∈ D,

εK(f)(x) = inf
z∈O

(f(x− z)−K(z)), x ∈ D.

Since described operations were introduced, the simple idea of mathemati-
cal morphology found application in many fields of image processing. A number
of exquisite books on usage of mathematical morphology in image analysis exist
such as [114] and [75]. Together with their applications in different areas, various
theoretical frameworks were developed for mathematical morphology simplifying
studying of its properties and its usage. We here list just some of the most crucial.
A theoretical framework based on complete lattices is given in [41]. Besides that,
mathematical morphology is defined on structures such as multivalued images [3],
graphs [43, 127] and manifolds [40].

Adaptive mathematical morphology

When dilations and erosions of digital images have begun to be used, one structur-
ing element or function has been used for every point in an image. A structuring
element or a function which is the same for every image spel is named rigid [19].

Digital image data representing an object property frequently can be variable,
although the object property does not change. For instance, identical objects in
reality can appear different in size in different parts of an image due to image
perspective, or intensity values representing them can differ due to uneven illumi-
nation. Real imaging conditions frequently assume uneven illumination, presence
of noise and similar difficulties. This makes it hard and frequently impossible to
extract relevant image data without having more freedom in treating spels when
morphological operations are performed. It has become of interest to define struc-
turing elements and functions that adapt to local properties in an image. Such
structuring elements and functions are named adaptive and they change their
shape or values depending on the position, shape and values of image data to be
removed or emphasized. Adaptive mathematical morphology is a field of mathemat-
ical morphology in which rigid structuring elements and functions can be replaced
by adaptive.

To illustrate the basic idea of adaptive mathematical morphology, we give Fig-
ure 2.12 taken from [24]. The figure illustrates forming a type of adaptive struc-
turing elements named general adaptive neighborhoods [23]. A general adaptive
neighborhood is defined for every image point such that it is connected and con-
tains points with similar properties. More precisely, h is a criterion mapping that
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Figure 2.12: Forming a general adaptive neighborhood Oh
m(x). h is a criterion

mapping related to a local image property embraced by the image function f and
m is homogeneity tolerance that defines how much a property expressed by h can
vary within a general adaptive neighborhood.

expresses a local property of the image embraced by an image function. Such
local property can be luminance, for instance. m is homogeneity tolerance that
defines how much a property expressed by h can vary within a general adaptive
neighborhood. The local adaptive neighborhood Oh

m(x) is chosen around point x
such that it is connected and can be adjusted by choosing the parameter m.

Two categories of adaptive structuring elements are defined in [83]. In the
first category fall the structuring elements which adapt only to the position in the
image domain. They are named extrinsic or local-adaptive structuring elements.
Probably the earliest example of using an extrinsic structuring element and adap-
tive mathematical morphology in general is for analyzing the vehicles whose size in
images vary across spatial positions due to the distance from an imaging device [5].
To follow the size of vehicles, structuring element vary linearly with their vertical
position. In the similar manner structuring elements are designed in [18, 125].

The second category of adaptive structuring elements includes intrinsic or in-
put adaptive structuring elements that are dependent on the image content beside
being dependent on the location in an image. Approaches for defining input adap-
tive structuring elements are diverse and we list only a few. An approach from the
second category is to define a general adaptive neighborhood [23] in the manner
as already described. The most known are morphological amoebas [62] defined via
amoeba distance between pixels p and q for which exists path of adjacent pixels
P(p, q) = {p1, p2, ..., pn} such that p = p1 and q = pn:

dA(p, q) = min
P(p,q)

i=n∑

i=1

(d(pi, pi+1) + λ | f(pi)− f(pi+1) |), (2.24)
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where d is a distance and λ is a constant. The morphological amoeba is a struc-
turing element that decreases in its size at pixels close to edges. This is because dA
is high due to high differences in intensity values in image regions corresponding
to edges:

Amr(p) = {q | dA(p, q) < r}, r > 0. (2.25)

Another approach for defining a structuring element that decreases its size at
pixels close to the regions at which the differences of pixel intensities are high is to
compute salience map of an image and relate radius of the structuring element to
it. The salience map is an image in which image intensity grows with the smaller
distance of the pixel to an edge and the magnitude of that edge. The radius
of salience adaptive structuring elements is computed directly on salience maps
in [20] and shown that such structuring elements are more uniform in shape, have
fewer holes, and are less sensitive to noise than the morphological amoebas.

Adaptive structuring functions are not so well explored and there exist only a
few methods for computing them. The existing approaches are mainly extensions
of the classical and well explored filtering methods for removing noise or extract-
ing edges and corners in images. Bilateral filtering consists of smoothing pixel
intensities while preserving edges in images by means of nonlinear combinations
of nearby image intensities. This approach is related to the adaptive structuring
functions and spatially variant bilateral structuring functions defined in [1]. Non
local image filtering consists of computing a weighted average of different parts of
images, mainly to remove noise. This approach is extended to non local structur-
ing functions in [97,124]. In [2] different distances are examined to define adaptive
structuring functions based on random walks in which the step from one point to
another depends on the distance between them.

Motivated by the general idea of adaptive mathematical morphology, we ex-
plore usage of adaptive structuring functions in Chapter 4 to relate morphological
distances to relevant data in digital images. Although the exploration is grounded
in adaptive mathematical morphology, we use a different approach than any of the
existing. Instead of observing a single image to define a structuring function, we
observe two images f1 and f2 which should be compared. More precisely, we relate
structuring function to |f1 − f2|, which is the essential data for comparison.

2.5 Distances in Image Processing

Let D be a non-empty set. A distance is a function d : D × D → [0,∞). A
distance is called a metric on D if for arbitrary elements x, y, z from X the following
properties hold:
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1. Separability :
d(x, y) = 0 ⇔ x = y

2. Symmetry :
d(x, y) = d(y, x)

3. Triangle inequality :
d(x, y) + d(y, z) ≥ d(x, z).

The pair (D, d) is usually called a metric space. It is not necessary that d satis-
fies all the conditions 1.−3. to be used in image processing. If d satisfies symmetry
and triangle inequality, it is named pseudometric. If d satisfies separability and
symmetry, it is named semimetric.

Distances between images are one of the oldest and the most useful image anal-
ysis tools. They have been used in image processing since its raise in 1960s. Image
segmentation, image retrieval, object identification, recognition and classification
are just some of the subfields in which distances play a significant role. A distance
that is suitable for all the situations when comparing image data does not exist.
Which distance is the best for a specific application depends on many circum-
stances. Comparison of variety of properties of objects, diverse objects represented
by digital images, diverse conditions of imaging causing noise and degradation are
just some of the factors that caused usage of many different distances in image
processing. For an exhaustive overview of existing distances we refer to [25]. There
exists a constant need for original approaches to define new and modify the exist-
ing distances due to their continual spread of usage. In sequel, we give a review of
widely used distances in image processing that will be used later in the thesis.

Let x(x1, x2, ..., xn),y(y1, y2, ..., yn) ∈ Rn and n ∈ N. Probably the most widely
used distance in image processing is the Euclidean metric:

dE(x,y) = (
n∑

i=1

(xi − yi)
2)

1

2 . (2.26)

The Euclidean metric belongs to Lp metrics or Minkowski distances defined as:

Lp(x,y) =
( n∑

i=1

|xi − yi|p
) 1

p

, p > 0. (2.27)

After for p = 2, Lp metrics are mostly used for p = 1 and for p → ∞. L1 is named
the city block distance. When p → +∞, Lp converges toward the Chebyshev or
chessboard distance:

L∞ = max
i=1,2,...,n

{|xi − yi|}. (2.28)
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So far stated distances belong to the class of distances defined between points
for which is frequently used name point to point distances. A point to point distance
on a set D can be used to define a point to set distance between a point a ∈ D
and a non-empty subset X of D:

d(a, X) = inf
x∈X

(d(a,x)). (2.29)

Let Y be another non-empty subset of D. To define a set to set distance
for comparing properties of X and Y , a point to set distance is frequently used.
The set to set distance considered the earliest by most of the authors in image
processing appears in the PhD thesis of Pompeiu from 1905 [82] in a form similar
as given by the formal definition of Hausdorff in his famous book from 1914 [38]:

dH(X, Y ) = max{sup
x∈X

(d(x, Y )), sup
y∈Y

(d(y, X))}. (2.30)

a

b

c
d

e

f

g
h

Figure 2.13: Hausdorff distance between {a,b, c,d, e} and {f , g,h} depends only
on the distance of the point a to {f , g,h}. Other points are not rellevant and due
to this dH({a}, {f}) = dH({a}, {f , g,h} = dH({a,b, c,d, e}, {f , g,h})).

Usually, dH is called the Hausdorff distance or the Hausdorff metric because
satisfies metric properties when d is a metric and X and Y are compact sets. Some
authors use the name Hausdorff-Pompeiu metric or the Pompeiu-Hausdorff metric
[4,9]. Although having the impressive range of usage in different disciplines [4], the
Hausdorff distance has a strong drawback for many usages in image processing.
In particular, dH(X, Y ) depends exclusively on the point from X ∪ Y that is
furthest from X and Y . To illustrate this, let us observe X = {a,b, c,d, e} and
Y = {f , g,h} presented in Figure 2.13. For these sets is valid:

dH({a}, {f}) =dH({a}, {f , g,h} =

dH({a,b, c}, {f , g,h}) =dH({a,b, c,d, e}, {f , g,h})).
(2.31)

The problem escalates when the point on which the Hausdorff distance between
two sets depends represents an outlier. This is frequently case in image processing
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since a digital image can be corrupted by noise or other degradation caused by
imaging conditions.

In order that a set to set distance be sensitive to relevant changes of two sets,
point to set distances are usually summed or averaged over points and sets. A
distance computed in this manner, which is not a metric since it does not satisfy
the triangle inequality, named the sum of minimal distances is proposed in [79]
and its theoretical properties are examined in [30]:

dSMD(X, Y ) =
1

2

(∑

x∈X
d(x, Y ) +

∑

y∈Y
d(y, X)

)
. (2.32)

It is easy to conclude that dSMD(X, Y ) is sensitive to internal changes of sets X
and Y and will be different for sets of points from Figure 2.13 for which dH stays
the same.

One widely used distance in image processing which is not based on a point to
set distance is the symmetric difference [55] defined for finite sets F1 and F2 by:

dSD(F1, F2) = |F1∆F2|, (2.33)

where F1∆F2 = (F1∪F2)\ (F1∩F2) and |F | denotes the number of elements of F .
The main disadvantage of the symmetric difference is that it takes into account
only the number of points inside sets and is independent on their geometrical
properties.

When set to set distances are used for comparing digital image data, a digital
image is frequently observed as a fuzzy set and the notion of α-cut used:
Definition 2.5.1. [132] An α-cut of a fuzzy set F is the (crisp) set αF = {x ∈
X | µF (x) ≥ α}, α ∈ (0, 1].

One of fuzzyfication principles used to extend a function f̂ defined for (crisp)
sets to a function f defined for fuzzy sets is:

f(F) =

∫ 1

0

f̂(αF)dα. (2.34)

Every quantification value of a gray scale image is observed as an value of α.
Digital images are observed as fuzzy sets and Equation 2.34 is used to compute
set to set distances between them in [22, 65, 96] for instance.

Frequently, image intensity values are observed as points and a point to point
distance applied as done in [34, 63, 116]. For instance, the Minkowski distances
are used for comparing two gray value images f, g : D → R in this manner by
computing:

Lp(f, g) =
( ∑

(x1,x2,...,xn)∈D
| f(x1, x2, ..., xn)− g(x1, x2, ..., xn) |p

) 1

p

, p > 0. (2.35)
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Motivation for proposing morphological distances

In general, a distance used for comparing image data does not provide a possibility
to be adjusted to a specific change in the shape of objects of interest. To clearly
illustrate this and motivate the need for morphological distances, we compute L1,
dSD, dSMD and dH between finite sets of pixels representing Gauss G2 digitization
of two-dimensional objects. Figure 2.14 gives a square and its modifications for
which we compute the distances. In particular, Figure 2.14(a) shows the square.
In Figure 2.14(b) it is divided on two components by removing one pixel wide
segment. In Figure 2.14(c), one pixel wide segment is removed from the border.
Two line segments are added perpendicular to the border changing the convexity
in Figure 2.14(d). One pixel wide segment is added to the border in Figure 2.14(e).
L1 is mathematically equivalent with dSD when both are defined. Regardless, we
observe L1 and dSD because they are both extensively used in image processing
and they always appear in the literature separately. As in [63], we compute L1

between images f, g : D → R as L1(f, g) =
∑

x1,x2∈D
|f(x1, x2) − g((x1, x2)|, where

f(x1, x2), g(x1, x2) take value 1 at points which represent object and 0 otherwise.
The rest of the distances are computed on the coordinates of points representing
objects. We emphasize that the concept could easily be extended to more gray
levels, for example, using Definition 2.5.1 and Equation 2.34. For easy verification,
we use L∞ point to point distance to compute dH and dSMD. Obtained results are
given in Table 2.1.

(a) K (b) K1 (c) K2 (d) K3 (e) K4

Figure 2.14: A square K and its changes in connectivity (K1), size(K2 and K4)
and convexity (K3).

By just observing the values in the table, it is not possible to make conclusions
on a particular property in which K and Ki, i ∈ {1, , ..., 4} differ. Moreover,
L1 = dSD does not change the value. Because it depends on the point from K ∪Ki

that is furthest from K and Ki, only the value of dH that stands out from the rest
in the row indicates a protrusion or a strong change of the size. As shape is an
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Table 2.1: Different distances computed for Figure 2.14

K,K1 K,K2 K,K3 K,K4

L1 = dSD 5 5 5 5
dSMD 2.5 2.5 4.5 2.5
dH 1 1 3 1

important property of an object, dealing with its geometry is a crucial task when
objects are compared by comparing their digital image representation.

Existing morphological Distances

The term morphological distances appears for the first time in [92] to denote the
distances based on morphological dilation and erosion. Although the capability
of morphological distances to deal with the geometry of shapes is demonstrated
in several papers [90,92,103,126], an overview of existing morphological distances
and their properties is missing in the literature.

To express the Hausdorff distance in a way that is widely used to highlight the
usage of morphological operations in computing distances between sets points, let
us denote with Bc

R a compact ball in a metric space (D, d). The Hausdorff dis-
tance is frequently referred as the Hausdorff dilation distance [103] when computed
between compact subsets X and Y of a bounded set:

dH(X, Y ) = inf
R∈R

{R | X ⊕ Bc
R ⊇ Y and X ⊆ Y ⊕ Bc

R}. (2.36)

If X, Y are, also, regular, i.e. cl(int(X)) = X and cl(int(Y )) = Y , where
cl(X) denotes closure and int(X) interior of a set X, the Hausdorff distance can
be expressed as the Hausdorff erosion distance [103]:

dH(X, Y ) = inf
R∈R

{R | X ⊖ Bc
R ⊆ Y and X ⊇ Y ⊖ Bc

R}. (2.37)

Since they are based on an isotropic structuring element, i.e. a ball, Hausdorff
dilation and Hausdorff erosion distances do not provide a great possibility to be
adjusted to a specific shape property. Following the idea of Hausdorff dilation
distance, its modified definition that allows a structuring element of an arbitrary
shape to be used is proposed in [93]. Modified definition is given by the following
equation and the introduced distance is named dilation distance for sets:

dD(X, Y ) = min
n∈N

{n | X ⊆ (Y ⊕ nO)}, (2.38)

where Y ⊕ nO denotes subsequently performed morphological dilation of a set Y :
Y ⊕nO = (((Y ⊕O)⊕O)...⊕O) by a flat structuring element O. We emphasize that
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dD and dH are not the same. For instance, if X ⊂ Y then dD(X, Y ) 6= dD(Y,X),
while dH is symmetric.

The important point to note is that dD can be adjusted to certain types of
shape changes by choosing an appropriate structuring element. Such changes of
the square S1 with side q presented in Figure 2.15(a) are given in Figure 2.15(b)
and Figure 2.15(c), where horizontal and vertical segments of the same size are
added to S1 to obtain S2 and S3, respectively. If we choose the structuring element
presented in Figure 2.15(d), dD(S1, S2) = 1 and dD(S1, S3) = 3. By choosing a
structuring element oriented horizontally, we adjusted dilation distance to be more
sensitive to the shape changes oriented vertically.

q

(a) S1

1s
3

q

q

(b) S2

1

3
q

q

(c) S3

q2

2

3
q

(d) A strucuturing element ori-
ented horizontaly.

Figure 2.15: By choosing the structuring element oriented horizontally from (d),
we adjusted dD to be more sensitive to shape changes oriented vertically. For the
given structuring element dD(S1, S2) = 1, while dD(S1, S3) = 3.

Although having greater capability to be adjusted to shape changes than dH ,
dD still strongly depends on the furthest point from the border, which is frequently
an outlier. To compute distances between gray scale images the concept given by
Equation 2.38 is straightforwardly extended using gray scale dilation and erosion
[92]:
Definition 2.5.2. For a function pair f1, f2 : D → R, the dilation and the erosion
distance based on subsequently performed dilation and erosion are respectively given
by:

ddilate(f1, f2) = min{n | A((f1 ∧ f2)⊕ nO) > A(f1 ∨ f2)} (2.39)

derode(f1, f2) = min{n | A((f1 ∨ f2)⊖ nO) < A(f1 ∧ f2)} (2.40)

where (f1 ∧ f2)(x) = inf(f1(x), f2(x)), (f1 ∨ f2)(x) = sup(f1(x), f2(x)) and A(f) =∫

x∈D
f(x)dx.
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Being based on sums, ddilate and derode are not sensitive to outliers as dH and dD.
At the same time their discriminative power between shape changes is decreased.
For instance, ddilate would be the same when the binary image representation of
the shape form Figure 2.15(a) is compared with binary image representations of
shapes from Figure 2.15(b) and Figure 2.15(c).
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Chapter 3

Feret’s Diameter

Overview This chapter is based on papers "Precise estimation of the projection
of a shape from a pixel coverage representation" [27] and "Estimation of Feret’s
Diameter from pixel coverage representation of a shape" [28]. Section 3.1 briefly
describes the importance of Feret’s diameter. In Section 3.2 we give a description of
the estimation of Feret’s diameter from digital images in a traditional manner. In
Section 3.2.1 we give an overview of problems related to estimation in this manner
and in Section 3.2.2 error analysis and multigrid convergence. In Section 3.3 we
present a new method for estimation of Feret’s diameter from digital images that
utilizes pixel coverage representation of a shape proposed in [27]. We give error
analysis with multigrid convergence of this method in Section 3.3.1 and Section
3.3.2 and improvement based on this analysis in Section 3.3.3. In Section 3.4 we
compare performance of methods in synthetic and real examples.

3.1 Importance of Feret’s diameter

The usage of Feret’s diameter in real applications is extremely high since it can
be relatively easily measured in practice and provides a measure of such a basic
property of an object as the size. In sequel, we give an overview of some of work
in order to show that Feret’s diameter has a strong discriminating power between
objects worth further exploration and to illustrate significance of Feret’s diameter
in applications in which is of great importance that a used measure is as exact as
possible.

The classic diameter, which can be computed from Feret’s using Equation
2.4, is a basic and simple shape property standardly used as shape descriptor.
Nevertheless, it continues to be an active subject of research in shape analysis. For
comparing objects based on their shapes, the ratio of the squared distance between
two shape centroids (one computed from the whole shape and other computed from

43
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shape border) to the squared shape diameter is studied in [57]. In [128] is proven
that the circles have the minimal diameter among all the shapes having the same
area. Based on this, two measures, that reach their minima for disks, for shape
elongation are defined via shape diameter. The classical diameter is widely used
in real applications in which poor estimation can have critical consequences. For
example, obtaining exact vessel diameters during coronary interventions is essential
for sizing interventional devices such as angioplasty balloons and stents. Due to
this, extensive studies are conducted to evaluate and compare errors of widely used
image analysis systems for estimation of vessels diameter [51, 70, 115, 123]. The
classic diameter of a tumor is the fundamental prognostic factor of the outcome
of a medical treatment. A factor that suggest poor prognosis for the treatment
from [37] is tumor diameter above 10 cm. In [131] is concluded that tumor diameter
is related to lymph node metastases.

Feret’s diameter provides a more comprehensive shape information than classic
diameter as it gives a measure of object size along one or more selected directions.
It is standardly used for shape description when objects of interest are very small
which makes discerning between objects based on their size a delicate problem.
Consequently, precision and accuracy of measuring Feret’s diameter are of great
importance. As a measure of size of of very small objects, Feret’s diameter is
used even before emergence of digital image processing. For instance, it is used
to describe size of microscopic particles as seen in profile under the microscope
in [130]. After the appearance of digital image processing, Feret’s diameter stayed
irreplaceable descriptor for analysis of size of particles from their digital image
representation. An automated system based on Feret’s diameter calculated from
binary images for classification of spores is presented in [129]. In [48] Feret’s
diameter computed from binary images is used for estimation of length and width
of dust particles. In [35] Feret’s diameter for multiple directions is computed from
binary images to compare cells of yeasts. More particularly, maximal and minimal
Feret’s diameter as well as elongation computed in accordance with Equation 2.5
are used for this purpose.

3.2 Estimation from Binary Images

Binary image representation of a shape usually corresponds to the Gauss digitiza-
tion of that shape. When estimated in real applications, Feret’s diameter Fϕ(S)
of a compact set S ⊂ R2 is estimated from binary images in accordance with
Definition 2.1.2 as Fϕ(Gi(S)), i ∈ {1, 2} [48, 129]. We refer to these approaches,
respectively, as Binary Approach 1 (BAP1), based on G1, and Binary Approach
2 (BAP2), based on G2. Also, in theoretical considerations of the upper bound
error for shape analysis methods the Gauss digitization is used to represent digital
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Figure 3.1: An ellipse E in the digital grid with pixel size r and the error of
estimating min(projϕ(Gi(E))), i ∈ {1, 2}.

approximation of a two dimensional shape [17, 46, 56, 58, 112]. Both variants of
Gauss digitization are present in the literature. G1 is, e.g., used in [31, 33] and G2

is used, e.g., in [14, 15].

3.2.1 Examples and Motivation for Improvement

To illustrate the need for the improvement of accuracy and precision of estimation
of Feret’s diameter from Gauss digitization, we refer to Figure 3.1. In the figure
is given min(projϕ(Gi(E))), i ∈ {1, 2}, for a position of an ellipse E in the digital
grid with pixel size r. Whenever G1 is used, extremal point is approximated by a
vertex of a pixel in the grid as illustrated in Figure 3.1(a). For given example the
absolute error of approximation amounts

√
2
2
·r. Similarly, whenever G2(E) is used,

extremal point of an ellipse E is approximated by the center of a pixel. For such
approximation the absolute error of approximation amounts r in a given example.

Regardless of the used variant of digitization, the estimation of Feret’s diameter
will be accurate only if there exists a position of E in the digital grid for which
both extremal points in a given direction coincidence with its approximations. In
most of the cases such position does not exists. A change of the position of E
in the digital grid can change the error of approximation of extremal points and
therefore the error of estimation of Feret’s diameter. Due to this, the estimation
is not precise. All the consideration applies on an arbitrary shape.

In many real applications the mentioned error has a large negative impact on
performance. For instance, in [129] is shown that the automated method based on
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(a) If min(projϕ(H)) is estimated from
G1(H), maximal error of estimation is

reached for ϕ = 45◦ and is
√
2

2
· r.

(b) If min(projϕ(H)) is estimated
from G2(H), maximal error of estima-
tion is reached for ϕ = 0◦ and is r.

Figure 3.2: Position of a half plane H in the digital grid for which
maxϕ

∣∣∆min(projϕ(H))
∣∣ is reached for BAP1 and BAP2.

Feret’s diameter estimation from binary images is faster than the manual classi-
fication of spores. Yet, authors notice that the method shows increasing misclas-
sification when a larger amount of particles other than spores are present due to
imprecise evaluation of particle measurements. The method based on computing
Feret’s diameter from binary images from [48] shows high accuracy, speed and
reproducibility. The drawback is that for finer particles, increasing of resolution
and specialized computing resources are needed.

3.2.2 Error analysis and multigrid convergence

For further consideration we denote the error of estimation of min(projϕ(S)), for
a shape S, as:

∆min(projϕ(S))
method = min(p̃rojϕ(S))−min(projϕ(S)) , (3.1)

where method ∈ {BAP1, BAP2} and by min(p̃rojϕ(S)) is denoted the estimation
of min(projϕ(S)) by that method.

Consider an arbitrary R-regular shape S, inscribed in a digital grid with grid
resolution ν (pixel size r). We observe the estimation of min(projϕ(S)) by BAP1
and BAP2. W.l.o.g., we assume that ϕ ∈ [0◦, 45◦]. For simplicity we assume that
the curvature of ∂S close to the extremal point is κ = 0, such that the boundary
resembles the straight edge of a half plane H (perpendicular to the direction ϕ).
It is then fairly straightforward to derive the error bounds. This is the best case
situation; for shapes where the extremal point is on a curved boundary the errors
are equal or larger than the ones we observe here.
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As presented in Figure 3.2(a), the minimal value of ∆min(projϕ(H))BAP1 is
reached for ϕ = 45◦, when the diagonal of pixel centres are on the boundary of
the object:

min
ϕ

{
∆min(projϕ(H))BAP1

}
= −

√
2
2
· r . (3.2)

The least upper bound of ∆min(projϕ(H))BAP1 is approached for ϕ = 0◦, when
pixel centres are on the boundary of the complement. (This is similar to the case
shown in Figure 3.2(b).)

sup
ϕ

{
∆min(projϕ(H))BAP1

}
= 1

2
· r . (3.3)

Result 1. The error of BAP1 for a straight boundary is always in the interval[
−

√
2
2
· r, 1

2
· r
)
.

As presented in Figure 3.2(b), the supremum of ∆min(projϕ(H))BAP2 is ap-
proached for ϕ = 0◦ and amounts:

sup
ϕ

{
∆min(projϕ(H))BAP2

}
= r . (3.4)

Result 2. The error of estimation by BAP2 for a straight boundary is never
negative since G2(H) ⊂ H . This implies that the error of BAP2 is always in the
interval

[
0, r
)
.

We briefly mention that it is easy to verify that the upper bounds of G1 and
G2 can be reached if Jordan outer digitization, J1, or Jordan inner digitization,
J2, were examined. To illustrate this situation, we give Figure 3.3 where the error√

2
2
· r is doubled by J1 and the error r is reached by J2. Due to this, and the fact

that it is used in most theoretical investigations and real applications, we consider
only the Gauss digitization in our studies.

Multigrid convergence

For an R−regular shape S in the digital grid, increment of the resolution corre-
sponds to increment of R, with the same rate. Consequently, ν → ∞ produces
that the curvature κ = 1

R
of ∂S tends to zero, i.e., ∂S tends (locally) to a straight

line, at an arbitrary point of ∂S. Since, for both BAP1 and BAP2, the maximal
error is proportional to the size of a pixel, the error of these methods approaches
zero as ν → ∞ with the same speed. Consequently, the estimation of Fϕ(S) from
Gi(S), i ∈ {1, 2} is multigrid convergent for all R−regular shapes, with a rate of
convergence of O( 1

ν
). Still, the large maximal absolute error of BAP1 and BAP2

at lower resolutions is a serious limitation.
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Figure 3.3: The error
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G2(H) is reached by J2

proj (	
					))

min(
	

S

y

S

x

t

p

(a)

p

proj
( ))

min(
S

y

x

t

S
p
i,j

(b)

Figure 3.4: (a) Tangent line t at extremal point P that determines min(projϕ(S))
is perpendicular to the direction ϕ. (b) t locally approximates ∂S in pixel pi,j.

3.3 Estimation from Pixel Coverage Representa-

tion

For a given shape S, an extremal point p in a direction ϕ lies on the border
∂S. Let us assume that ∂S is smooth such that its tangent line is well defined
everywhere. The tangent line t of S at p is perpendicular to the direction ϕ and its
distance to the origin uniquely determines min(projϕ(S)) or max(projϕ(S)). The
illustration for min(projϕ(S)) is given in Figure 3.4(a). Also, t locally approximates
∂S in a pixel pi,j as illustrated in Figure 3.4(b). We consider the estimation of
min(projϕ(S)) in sequel. The estimation of max(projϕ(S)) is analogous.

Knowing the direction of t and the coverage αi,j of a pixel pi,j by the set S,
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we estimate the distribution of αi,j as follows: within pi,j we approximate the
boundary of S with a straight line l which is orthogonal to the direction ϕ and
encloses, together with the pixels edges, a polygon with area equal to the coverage
of the pixel. As presented in Figure 3.5, three types of polygons may occur:
triangle, trapeze or pentagon. For every case, minimal extremal projection value:

min(projϕ(S)) = min
(x,y)∈S

(x cosϕ+ y sinϕ), (3.5)

is computed as the signed distance d, from the centre of the pixel pi,j to the straight
line l, added as an offset to the projection of the pixel centre. The computation of
d, corresponding to the computation of a minimal extremal projection value from
Section III in [27], is as follows:

• l ∩ pi,j is a triangle. This is equivalent with 0 < αi,j <
tanϕ

2
.

If we set the origin in the lower left vertex of pi,j as illustrated in Figure
3.5(a), the length of the projection of the upper left vertex of pi,j onto the
direction ϕ is given by cosϕ+ sinϕ. Height h of the △abc can be calculated
as
√

sin 2ϕ · αi,j. Consequently, d = cosϕ+sinϕ

2
−
√

sin 2ϕ · αi,j.

• l ∩ pi,j is a trapeze. This is equivalent with tanϕ

2
≤ αi,j ≤ 1−tanϕ

2
.

Let us observe parallelogram abcd illustrated in Figure 3.5(a) which builds
l and a line l1 parallel with l that passes through the pixel center. The area
of abcd is given by A(abcd) = ad · d = 1

cosϕ
· d. The area of the trapeze

that l1 builds with pixel edges is equal 1
2
. This implies d = 1

cosϕ
(1
2
− αi,j).

We emphasize that (1
2
−αi,j) < 0 whenever αi,j >

1
2

providing negative value
of d.

• l ∩ pi,j is a pentagon. This is equivalent with αi,j > 1 − tanϕ

2
. This case is

analogous to the case of triangle since 1− αi,j is a triangle.

For the computation of Feret’s diameter only extremal points are relevant. The
algorithm from [27] treats each pixel of D(S) as if it contains an extremal point,
and estimates the projection of that point. In case that the pixel does not contain
an extremal point, the assumption about the tangent direction may be completely
wrong. However, this will only lead to an overestimate of the projection value.
Since we look for the minimal projection, such overestimates are not disturbing
the algorithm; for the pixel with the minimal projection value, the assumption
about the tangent direction is appropriate.
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Figure 3.5: The polygon, formed by the line l and the pixel edges, having an area
equal to the pixel coverage by the shape (dark gray shaded area), can be: (a)
triangle; (b) trapeze; (c) pentagon. The line l is perpendicular to the direction
ϕ. The are of pixel coverage outside the polygon is equal to the area inside the
polygon not covered by the shape (light gray shaded area). The signed distance
d, from the pixel center to the line l, is negative if the pixel center is covered by
the shape and positive otherwise.

Algorithm 1. [27] Minimal value of projϕ(S) for a given shape S and the
direction ϕ.

Input: Pixels pi,j, i ∈ {1, ...m}, j ∈ {1, ...n}, with pixel coverage values αi,j of
given shape S, and direction ϕ for projecting.

Output: Estimation min(p̃rojϕ(S)) of min(projϕ(S)).

for i ∈ {1, ..., m}, j ∈ {1, ..., n}, αi,j > 0

if 0 < αi,j <
tanϕ

2
(triangle)

d = cosϕ+sinϕ

2
−
√

sin 2ϕ · αi,j

elseif tanϕ

2
≤ αi,j ≤ 1−tanϕ

2
(trapeze)

d = 1
cosϕ

(1
2
− αi,j)

else /* i.e., αi,j > 1− tanϕ

2
*/ (pentagon)

d =
√

sin 2ϕ(1− αi,j)− cosϕ+sinϕ

2

end if
pri,j(S) = i cosϕ+ j sinϕ+ d

end for

min(p̃rojϕ(S))=min
{
pri,j(S) | i ∈ {1, ..m}, j ∈ {1, ..n}, αi,j > 0

}
.
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Figure 3.6: Example of signed relative error of Feret’s diameter of a circle with
radius 8 depending on the angle of projection.

In the sequel, we refer to estimation of min(projϕ(S)) from D(S), for a shape
S, by Algorithm 1, as Coverage Approach (COV).

To present the performance of estimation of Feret’s diameter F̃ by the algo-
rithm, we synthetically generate coverage digitizations of a circle with radius 8
pixels. To estimate pixel coverage values, we divide a pixel into 1× 1, 2× 2, 4× 4,
8 × 8 and 16 × 16 subpixels and count the number of subpixels centers contained
in the shape. In this way 1, 4, 16, 64 or 256 grey levels become available for
representation of pixel coverage by the shape.

Empirical signed relative error ǫ = F̃ϕ(S)−Fϕ(S)
Fϕ(S)

of estimation of the Feret’s
diameter by the different algorithms is given in Figure 3.6. The absolute relative
error reaches 6% for classical approaches (BAP1 and BAP2) and about 0.1% for
256 quantization levels for the new method (COV).

To present the performance of Feret’s diameter by Algorithm 1 when computing

other descriptors, we calculate elongation as Ẽ = max
ϕ∈[0,π]

F̃ϕ(S)

F̃ϕ+π
2
(S)

. To present
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improved accuracy and precision by the algorithm comparing to estimation from
binary images, we perform test on a group of 900 ellipses with different positions
in the digital grid and different sizes. For every ellipse, the positions of foci are
randomly chosen inside one pixel and every 5 randomly positioned foci are rotated
with step of 5 degrees in range [0◦, 90◦]. We increase major axis, but keep distance,
d, between two foci. Because minor axis can be expressed as: b =

√
a2 − (d/2)2,

an assumption of fixed value d implies that minor and major axes increase and
decrease together. Estimation of elongation consequently, may exhibit behaviour
less dependent on resolution changes. The obtained results are presented in Figure
3.7. For elongation, the signed relative error is approximately reduced from 16.36
to 0.05% when changing from BAP1 to COV.

Major axis (distance between foci d=40)
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Figure 3.7: Signed relative error of estimation of elongation of an ellipse using
different methods.

Although the assumption on smooth border is made, the algorithm can be used
for shapes with non smooth border, e.g. polygons. As extremal point of polygonal
shape is always a vertex, the error will strongly depend on the interior angle of
the vertex, as it is presented in Figure 3.8.
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Figure 3.8: Error of approximation for polygonal shapes depends on interior angle
of vertex.

To demonstrate the applicability of the algorithm on polygonal shapes we ob-
serve estimation of the diameter of a square for different side length. The results
are given in Figure 3.9. We note that the violation of the smoothness require-
ment does degrade the performance of the method. However, it still significantly
outperforms the best of the two methods based on binary images.

3.3.1 Lower and upper error bounds of Algorithm 1

Following notions from 3.1, we denote the error of estimation of min(projϕ(S))
by COV as ∆min(projϕ(S))

COV . To be able to study ∆min(projϕ(S))
COV and

theoretical properties of COV regardless of the error of estimation of coverage
values, we assume exact pixel coverage values. As demonstrated in experiments
presented in Figure 3.6, Figure 3.7 and Figure 3.9, the method works well for
approximate coverage values.

From experiment presented in Figure 3.6 we conclude that COV is more precise
than BAP1 or BAP2. In this experiment, the absolute relative error of estima-
tion of the diameter of a disk is reduced 50 times by COV, compared to binary
approaches. However, the output of Algorithm 1 does not give the correct value
on average, i.e. it is not accurate because it has a certain bias.

Following theorems and analysis enable further improvement of COV by further
reducing its maximal absolute error.
Proposition 3.3.1. For an arbitrary shape S and a direction ϕ, it holds that:

∆min(projϕ(S))
COV ≥ 0. (3.6)

Proof. It is easy to conclude that for any pixel with a coverage value αi,j > 0, the
estimate pri,j computed by Algorithm 1 is the upper bound of possible projection
values for any distribution of the same area within the pixel pi,j. The assumed
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Figure 3.9: Signed relative error of estimation for diameter of a square using
different methods.

distribution of area ensures the largest possible projection value given the covered
area. �

It is straightforward to conclude that the lower bound ∆min(projϕ(S))
COV = 0

is reached by any shape with a straight boundary perpendicular to the direction
ϕ which extends through a pixel. For this case, the polygonal approximation of
Algorithm 1 is exact.

To formally discuss convergence of ∂S ∩ pi,j toward l ∩ pi,j, we restrict the
analysis to R−regular shapes in a digital grid where R is greater than the pixel
diameter r. The condition r < R ensures that the ∂S ∩ pi,j can be polygonalized
in a reasonable way in the sense of Figure 3.5. An example of violation of this
condition is shown in Figure 3.10(a). For an extremal point, it holds by definition
that the shape boundary is situated between the inner osculating disk K and the
tangent line in the point (see Figure 3.10(b)).
Proposition 3.3.2. For an arbitrary angle ϕ, the upper bound of ∆min(projϕ(S))

COV ,
over all coverage digitizations of R−regular shapes S, in a grid where R is greater
than the pixel diameter, is reached for a coverage digitization of a disk with radius
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(a) (b)

Figure 3.10: (a) If the radius of the osculating disk is smaller than the diameter
of a pixel p, then two “independent parts“ of ∂S may intersect p. (b) At an
extremal point, the boundary of an R-regular shape S is situated between the
inner osculating disk K and the tangent line t.

R.

Proof. At an extremal point of a shape S, we can, according to Definition 2.2.3,
always fit an osculating disk K of radius R inside S. Since K ∩ pi,j ⊆ S ∩ pi,j
and the projection value pri,j of any pixel pi,j in Algorithm 1 is monotonically
non-increasing w.r.t αi,j, it follows that pri,j(K) ≥ pri,j(S). �

Besides providing us a shape for which analytic equation is known that limits
from above ∆min(projϕ(S))

COV , proposition 3.3.2 enables an analysis of multigrid
convergence of COV:

Increment of the grid resolution ν is equivalent to increment of the radius
R. As ν → ∞, the upper bound of the error, according to Proposition 3.3.2,
approaches the projection error for a disk with infinite radius, i.e., the error for a
(locally) straight boundary. Since Algorithm 1 provides a correct, error free result
for such a boundary, it is clear from Proposition 3.3.1 and Proposition 3.3.2 that
∆min(projϕ(S))

COV converges toward 0, as ν → ∞.

(a) (b) (c)

Figure 3.11: The projection estimation error changes depending on the direction
ϕ and the position of a shape in the digital grid.
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Figure 3.12: Maximal error of the estimation of min(projϕ(S))
COV for a shape

S with the maximal boundary curvature κmax = 1
R
, evaluated for ϕ ∈

{0◦, 1◦, 2◦, ..., 45◦} and R ∈ {1, 2, ..., 100}.

3.3.2 Empirical analysis of the error

To minimize the error of Algorithm 1 we seek an explicit expression for the maximal
error reached for R-regular objects of a given maximal boundary curvature κmax

and a given direction of projection ϕ. We note that a change of position of the
shape S in the digital grid, or a change of the direction of projecting ϕ, may lead
to a change of ∆min(projϕ(S))

COV . Some examples are illustrated in Figure 3.11.
Not knowing the exact position of S in the grid, we observe all positions and find

an upper bound of the error as a function of the direction ϕ. From Proposition 3.3.2
we know that the maximal value of ∆min(projϕ(S))

COV , over all translations and
rotations of S in the digital grid, is, for any angle ϕ, reached for the point with the
maximal curvature along ∂S. To estimate the maximal error of COV for a shape
with the maximal curvature κmax, it is therefore enough to observe a disk with
radius R = 1

κmax
, and seek for the maximal error over all positions in the digital

grid, for each given angle ϕ.
Neighbouring pixels interact in an intricate way and, despite the simplicity of

the studied shape, it turns out to be non-trivial to derive an analytic expression
for ∆min(projϕ(S))

COV .
Instead, we perform in [28] a thorough empirical study of the error for disks

of different radii and locations in the digital grid. Due to symmetry of the digital
grid, it is enough to observe ϕ ∈ [0◦, 45◦]. We observe ϕ ∈ {0◦, 1◦, ..., 45◦} and
for every value ϕ and given R, we evaluate all translations of the centre of the
disk inside one pixel in steps of 0.001 pixel, in the directions of x and y axes.
The maximal error over this range of data is plotted in Figure 3.12, for every
R ∈ {1, 2, 3, ..., 100}.
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Figure 3.13: Empirical values of correction term for R ∈ {1, 2, ..., 100} and
ϕ ∈ {0◦, 1◦, ..., 45◦} and the surface Corrfit obtained by fitting procedure. For
improved visualization are the radius R and the function value presented with a
logarithmic scale.

3.3.3 Improved method for estimation of Feret’s diameter

If ∂S is a straight line, COV provides an exact value of the projection. To reduce
the error for curved boundaries, we use, for any given ϕ, the empirical estimate
of max(∆min(projϕ(S))

COv), where the maximum is over all positions of S in the
digital grid.

The fact that the error of COV is in the range [0,max{∆min(projϕ(S))
COV }]

enables us to improve the estimate and to minimize the maximal error by intro-
ducing a correction term, to centre the range of errors around zero:

min(p̃roj
corr

ϕ (S)) = min(p̃rojϕ(S))− Corr(R,ϕ),

Corr(R,ϕ) =
1

2
max

{
∆min(projϕ(S))

COV
}
.

(3.7)

By introducing this correction term, we reduce the maximal absolute error of the
estimation to at most half of the original one.

To express the correction term Corr used in Equation (3.7), we perform a
fitting procedure on the point cloud of data described in the previous section,
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where the values of the maximal error are divided by two. The point cloud of
empirically obtained values, Corremp(R,ϕ), shows strong similarity to a power
function and asymptotic behaviour as R → ∞. Therefore, we tried fitting to
numerous expressions such as: a · Rb · ϕc, a+b·ϕc

Rd , a · Rb + c · ϕ

R
. When Levenberg-

Marquardt algorithm is applied to the non linear least square problem:

min
a,b,c

(
∑

R,ϕ

(Corremp(R,ϕ)− (a · Rb + c · (ϕ
R
))2

)
, (3.8)

we obtain the following expression for the correction term:

Corrfit(R,ϕ′) = 0.11142 · R−1.02808 − 1.01 · 10−3 · ϕ
′

R
. (3.9)

Due to symmetry, it is enough to observe angles ϕ′ ∈ [0◦, 45◦], ϕ′ =
∣∣∣(ϕ +

45) mod 90 − 45
∣∣∣ where mod denotes the modulo operation. In Figure 3.13 we

show empirical values of the correction term and the surface obtained by fitting
for R ∈ {1, 2, ...100}, ϕ ∈ {0◦, 1◦, ..., 45◦}.

The error introduced by fitting is acceptable; average residual is 5.368 · 10−4,
while average value ∆min(projϕ(S))

COV over all R and ϕ is 8.793 · 10−3. The fit
explains the variation of the data to a high degree; the coefficient of determination,
R2, is 1− 3.427 · 10−5.

Based on the above results and observations, we propose an improved method
for estimation of Feret’s diameter of an R−regular shape S, with the maximal
curvature of the boundary κmax, in the direction ϕ:

1. Compute extremal projections using Algorithm 1.

2. Calculate the correction term Corr(R,ϕ) for R = 1
κmax

and the considered
direction ϕ according to Equation (3.9).

3. Apply Equation (3.7) to obtain an estimate of Feret’s diameter with minimal
maximal error:

F̃ corr
ϕ (S) = max(p̃rojϕ(S)) + Corr(R,ϕ)−

(min(p̃rojϕ(S))− Corr(R,ϕ)) .
(3.10)

The estimated upper bound of the maximal absolute error of estimation of Feret’s
diameter by this method is

2 · Corrfit(R,ϕ) = 2 · (0.11142 · R−1.02808 − 1.01 · 10−3 · ϕ
R
) . (3.11)
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Figure 3.14: Relative error of estimation of Feret’s diameter for disks of increasing
radius. The error of the proposed method is reduced by a factor 100 when object
size is increased by a factor 10.

Multigrid convergence

From Equation (3.11) we see that the error (measured in pixels) converges toward
0, roughly at a speed 1

R
. If we increase the image resolution by a factor ν, the

radius of curvature increases with the same factor and the error measured in pixels
decreases as ≈ 1

ν
while, at the same time, the size of a pixel also decreases as 1

ν
.

From this, as previously noted, we conclude that the proposed method is multigrid
convergent for any R−regular set (with R > r) with an empirically observed rate
of convergence of O( 1

ν2
).

An empirical study, shown in Figure 3.14, where the relative error, |x̂−x|
x

, of
estimation of Feret’s diameter using observed methods is presented for disks of
increasing radii supports the observation on speed of convergence. We observe that
if the object size is increased by a factor 10, BAP1 and BAP2 show a reduction
of relative error by the same factor, whereas for the proposed method the same
change leads to a reduction of the relative error by the square of the change in
size, i.e., a factor 100.

3.4 Evaluation

In following, we refer to the method of Section 3.3.3 as COVcorr. We evaluate
COVcorr by comparing it with BAP1, BAP2 and COV. For synthetically generated
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Figure 3.15: Maximal absolute error of estimation of diameter for ellipses of differ-
ent eccentricity. For each value R ∈ {1, 1.5, 2, 2.5, ..., 99.5, 100}, 200 displacements
in the digital grid are observed.

ellipses, we examine the maximal absolute error in estimation of the maximal and
average Feret’s diameter. In real imaging conditions, we examine the error in
estimation of Feret’s diameter of ellipses in two perpendicular directions. Also, we
examine the rotational invariance of estimation of Feret’s diameter for a disk. At
the end, we evaluate the performance of COVcorr in a real application on a data
set of 368 microscopic images of cell nuclei.

In our experiments, we show that COVcorr exceeds the performance of other
methods. COVcorr shows especially good performance at low resolutions where it
outperforms other methods, often by a large margin.

3.4.1 Synthetic data

Classic diameter of ellipses

We evaluate performance of COVcorr in estimation of the classic diameter on
400000 synthetically generated ellipses. The minimal radius of the curvature R of
an ellipse with major and minor axis a and b is given by b2

a
. For fixed major axis

a = 100, we select R ∈ {1, 1.5, 2, ..., 100} by setting the minor axis b =
√
R · a. For

every value R, we rotate the ellipse with an angle of rotation in the range [0◦, 45◦]
with the step 5◦. For every rotation, we perform 200 random translations of the
centre of the ellipse inside one pixel. Knowing the minimal radius of curvature
and the angle ϕ, we calculate Corr as explained in Section 3.3.3. The obtained
maximal absolute error is presented in Figure 3.15.

For BAP1, observed maximal absolute error is in the range [1.3156, 1.3682]. For
BAP2 the error range is [0.1595, 2.0000]. The error of COVcorr is [0.0013, 0.0465].
On average, the reduction of the error is 210 times compared to BAP1 and 174
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Figure 3.16: Maximal absolute error of estimation of perimeter of ellipse for R ∈
{1, 1.5, 2, ..., 50} from Cauchy’s theorem.

times compared to BAP2. This is a dramatic improvement in performance. For
COV the error is in the range [0.0028, 0.2211] which is, on average, 2.3 times worse
performance than COVcorr.

Ellipse perimeter via average Feret’s diameter

We evaluate performance of COVcorr in estimation of the average Feret’s diameter.
We perform tests in the same manner as in the previous section, but exclude
rotations from consideration and observe R ∈ {1, 1.5, 2, ..., 50}. For every value
R, we perform 1000 random translations of the ellipse centre inside one pixel. For
every position in the digital grid, we estimate average Feret’s diameter F̄ over all
angles with a step of 1◦ and use Theorem 2.1.3 to estimate perimeter of the ellipse
as F̄ · π. Knowing the minimal radius of curvature and projecting direction, we
calculated Corr as explained in Section 3.3.3. The maximal absolute error over
1000 translations for perimeter estimation is given in Figure 3.16.

Maximal absolute error of the perimeter estimates is in the range [1.6471, 3.3381]
for BAP1. It is within [1.8541, 3.6956] for BAP2. The error for COVcorr is in the
range [0.0395, 0.4200]. On average, the reduction of the error is 18.4 times com-
pared to BAP1 and 13.7 times compared to BAP2. For COV, the range of the error
is [0.0491, 0.9632]. For ellipses with high maximal curvature along the boundary
(R = 1) the error of COV is 2.3 times larger than the error of COVcorr.

3.4.2 Real data

Digital photos of printed disks

To evaluate the method in more realistic conditions we take photos of 5 black disks
printed on a white paper. We set the digital camera at resolution 640× 480 px in
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Figure 3.17: Measurements of Feret’s diameter for different directions ϕ averaged
over five imaged disks. Correct result is a horizontal line with no variation. The
proposed method provides significant improvement over binary approaches. The
observed standard deviation of Feret’s diameter is 0.3193 for BAP1, 0.2289 for
BAP2, and 0.0789 for COVcorr.

the grey-scale mode.
To obtain coverage segmentation of the disks, we use the method for pixel cov-

erage segmentation based on double thresholding proposed in [107] and described
in Section 2.3.

In the first experiment, we take an image of disks at a distance of 2 m, with the
camera view perpendicular to the plane of the paper. In the obtained image, we
examine rotational invariance of the (classic) diameter estimation by considering
estimation of Feret’s diameter for different directions. We estimate the value R,
used for calculation of correction term Corr, as the average radius over all angles
and disks obtained by COV (without correction). Obtained average Feret’s diam-
eter over all disks as a function of angle is given in Figure 3.17. The difference
between the maximal and minimal value of the average Feret’s diameter is 1.534
px for BAP1 while for BAP2 it is 1.085 px. For COVcorr it is 0.415 px. This is an
improvement of 3.7 and 2.6 times compared to BAP1 and BAP2, respectively.

In our following experiment, the optical axis of the camera builds a vertical
angle with the plane of the imaged paper. Due to this the imaged disks appear
as ellipses. We estimate the tilt angle by arccos b

a
, where a and b are the major

and minor axis of the ellipse, respectively. Illustration of the setup is given in
Figure 3.18. To obtain the correction term Corr, we use ϕ = 0 and R = b2

a
,

where a and b are estimated by the method without correction. Results of this
experiment, for a setup where the true tilt angle is 60◦, are shown in Table 3.1.
The signed error is given in degrees. Average absolute error is 4.22◦ for BAP1,
4.60◦ for BAP2 and 0.591◦ for COV. Average absolute error for COVcorr is 0.569◦.
This corresponds to a reduction of the error by a factor 7.4 and 8.1 compared with
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Figure 3.18: We estimate the angle that the optical axis builds with the plane of
the imaged paper.

resp. binary approaches.

Table 3.1: Signed error of estimation of the tilt angle, in degrees.

disk BAP1 BAP2 without correction corrected
1 -3.557 -5.097 -0.836 -0.808
2 5.380 4.158 -1.097 -1.067
3 -3.557 -5.097 -0.987 -0.960
4 -3.557 -5.097 -0.020 0.005
5 -2.204 -3.557 -0.018 0.006

The obtained results show that also in real imaging conditions COVcorr clearly
outperforms binary methods for Feret’s diameter estimation and that it consis-
tently improves on COV.

Microscopic Images

We estimate Feret’s diameter on a data set of 368 microscopic images of cell nuclei.
Every cell is imaged with primary, secondary magnification and Numerical aper-
ture, respectively set to (20, 0.63, 0.40), (20, 0.63, 0.75), (20, 1, 0.40), (20, 1, 0.50),
(20, 1, 0.75), (40, 0.63, 0.95), (40, 1, 0.95). Approximate grid resolutions (in px

µm
) are

respectively: 2.0, 2.0, 3.125, 3.125, 3.125, 4.0, 6.25.
Cell nuclei are segmented using a marker-based watershed segmentation to

accurately delineate the nuclear boundaries [77]. To obtain coverage segmentations
of the cells we use the method of [108] based on a local linear unmixing of the
components described in Section 2.3.

Maximal curvature along the boundary of a cell is unknown, so we approximate
it by the curvature of a disk of equivalent area as the cell. Since BAP2 shows better
performance than BAP1 in estimation of average Feret’s diameter, as presented in
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(a) Low resolution image of
a cell (2.0px/µm)

(b) Binary segmentation
of (a)

(c) Coverage segmenta-
tion of (a)

(d) Reference image
(6.25px/µm)

(e) Reference segmented ac-
cording to BAP2

Figure 3.19: Example of an image of a cell used in our experiment (a). We com-
pared estimation of Feret’s diameter from binary segmentation (b) and coverage
segmentation (c). As a reference value we used the image given in (d) and its
binary segmentation (e).

Figure 3.16, we compare COVcorr with BAP2. We use the result obtained by BAP2
at the highest available resolution as a reference value F ref , and then we compare
the estimates achieved from the images of lower resolution with this reference.
Figure 3.19 presents binary and pixel coverage segmentations of one cell at a lower
resolution and the corresponding reference image and its segmentation. Applying
BAP2 and COVcorr, for every cell C, we estimate the mean squared difference as
1

720

∑
ϕ(Fϕ(C) − F ref

ϕ (C))2, ϕ ∈ {0.25◦, ..., 180◦}. We average this error over the
368 cells, for each fixed resolution.

Comparison is given in Figure 3.20, for the first six resolution settings, the sev-
enth resolution is used as reference. Obtained values in µm2 are: (0.6215, 0.5992,
0.1478, 0.1433, 0.1498, 0.0764) for BAP2 and (0.0531, 0.0463, 0.0490, 0.0536, 0.0481,
0.0413) for COVcorr. The proposed method gives better result on the poorest im-
ages (lowest resolution) than BAP2 applied to the best images (highest resolution).
The average reduction of the error over all settings is 5.96 times.

Obtained results clearly show that COVcorr can be used for improved estimation
of Feret’s diameter on real images.
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Figure 3.20: Average mean square difference between Feret’s diameter estimated
with resp. method on each of the first six resolution settings and using BAP2 on
the highest (reference) resolution. COVcorr shows excellent agreement with the
reference (presumed best estimate).
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Chapter 4

Advanced morphological distances

This chapter is based on paper "Advanced morphological distances based on di-
lation and erosion" [26]. The importance of morphological distances is briefly
described in Section 4.1. The mathematical model and some notation we use for
our study are given briefly in Section 4.2. In Section 4.3 we explore problems re-
lated to computing existing morphological distances between gray scale images. In
Section 4.4 we propose new morphological distances for comparing objects based
on their digital image representation. Experimental evaluation is given in Section
4.5.

4.1 Importance of morphological distances

The usage of a distance related to a specific shape property to compare objects
from their digital image representations has a great potential in many challenging
and topical research task. For instance, technological developments in the past two
decades have greatly advanced the field of bioimaging and made tracking particles
such as molecules, organelles or viruses using their digital images of key impor-
tance for the investigation of processes in cells like virus infections, intracellular
transports or gene transcriptions [98, 99]. As in [45], measuring of displacements
of a particle along the specific directions can be of great importance in particle
tracking, and a distance which is more sensitive to particle moves just along these
directions than to all the other directions is specially suitable for this purpose. In
geographical information science, shapes are in a large number of cases studied
to make conclusions on specific phenomena based on their digital image repre-
sentation. Lately, a highly topical researching is on melting and movements of
Antarctic ice shelf from satellite images [44,59]. Making a distance more sensitive
to internal shape changes, such as change of connectivity, is highly desirable in
order to distinguish between relevant and irrelevant changes when satellite images

67
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of an ice shelf at different time frames are compared. A relevant change can be
separating an iceberg from a shelf, when the shape becomes disconnected, and an
irrelevant change could be melting of the coast due to higher temperatures.

We mentioned just some applications in which there exists a strong need for
using morphological distances. Although the potential of their usage is great,
existing morphological distances have strong drawbacks which significantly limit
their broader usage. The work presented in the thesis is a great step toward
overcoming the drawbacks and making morphological distances more suitable for
a wider usage. In following, we give an overview of applications in which existing
morphological distances have been already successfully used.

The Hausdorff distance, dH , is frequently observed as a minimal radius of a ball
that a set A should be dilated with to become a superset of a set B and vice versa as
given by equation Equation 2.36 and Equation 2.37. In [103] authors shown that,
by performing morphological dilations, erosions and basic set operations (union
and intersection) on X and Y , can be constructed a sequence of sets {Si}, i =

1, ...n such that
∑

i=1,...n

dH(Si, Si+1) = dH(X, Y ) and dH(Si, Si+1) ≤ dH (X,Y )
n

. To

form such sequence interpolating two shapes, in order to simulate geometrical
changes of physical phenomena, Equation 2.36 and Equation 2.37 are used for
comparing image data in [90, 126]. The morphological distance dD based on the
number of subsequent dilations of A to cover B that allows usage of an arbitrary
structuring element given by Equation 2.38 is used in [93] to compare shapes of
digital elevation models. As an extension of dD to gray scale images, dilation
distance, ddilate, and erosion distance, derode, given by Definition 2.5.2 are used for
ranking images representing variable specific phenomena across spatial positions
in [92] and for morphing, i.e. transforming one digital image into another via a
sequence of intermediate images in [91].

4.2 Model description

A function f : D → R can be easily represented as a set of points by its umbra
U(f) = {(x, y) ∈ D × R | y ≤ f(x)} and dilation and erosion applied. A function
frequently models a signal which carries information about a phenomenon. Defini-
tion 2.5.2 is given for functions. If we switch ∧ and ∨ and use ⊖nO instead ⊕nO,
Equation 2.39 becomes Equation 2.40. Therefore, all conclusions we derive for
ddilate can also be dually derived for derode. To clearly illustrate the shortcomings
of ddilate, we observe functions: [a, b] → R. The extension of all considerations to
discrete two dimensional functions is straightforward.
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4.3 Examples and motivation for improvement

Although a good performance of morphological distances is shown in different
applications, they all have drawbacks that seriously limit their broader usage.
Namely, how much A should be dilated to become a superset of B depends ex-
clusively on the furthest point of B from A, and vice versa. The furthest points
are frequently outliers and dH and dD strongly depend on them. This frequently
makes them useless in real applications. Because they are on sums that depend on
all points of compared objects, ddilate and derode are less sensitive to outliers, but
authors notice some of their drawbacks. The strongest drawback of ddilate is that
it cannot be applied on image pairs of a certain type as it does not provide a finite
value. A vague explanation of situations when this problem arises is given in [92].
In following, we give a proposition which provides the clear condition that deter-
mines for which image pairs ddilate(f1, f2) = min{n | A((f1∧f2)⊕nO) > A(f1∨f2)}
can and cannot be computed.

4.3.1 Necessary and sufficient conditions for computing ddilate

Proposition 4.3.1. For a function pair f1, f2 : [a, b] → R, the necessary and
sufficient condition for ddilate(f1, f2) ∈ [0,∞) is:

max
x∈[a,b]

((f1 ∧ f2)(x)) >
A(f1 ∨ f2)

b− a
. (4.1)

Proof. We perform the proof using negations of the conditions:

max
x∈[a,b]

((f1 ∧ f2)(x)) ≤
A(f1 ∨ f2)

b− a
⇔ ddilate(f1, f2) /∈ [0,∞). (4.2)

We have:

max
x∈[a,b]

((f1 ∧ f2)(x)) ≤
A(f1 ∨ f2)

b− a
⇔

(b− a)max
x∈[a,b]

((f1 ∧ f2)(x)) ≤A(f1 ∨ f2).
(4.3)

As (f1 ∧ f2)⊕ nO is limited from above by max
x∈[a,b]

((f1 ∧ f2)(x)), we have:

max
n∈N

(A((f1 ∧ f2)⊕ nO)) = (b− a)max
x∈[a,b]

((f1 ∧ f2)(x)), (4.4)

and we can substitute max
n∈N

(A((f1 ∧ f2)⊕ nO)) with (b− a)max
x∈[a,b]

((f1 ∧ f2)(x)).

max
n∈N

(A((f1 ∧ f2)⊕ nO)) ≤ A(f1 ∨ f2) ⇔ (4.5)
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Figure 4.1: An example of ddilate(f1, f2) /∈ [0,∞) because max
x∈[a,b]

((f1 ∧ f2)(x)) <

min
x∈[a,b]

((f1 ∨ f2)(x)).

(∀n ∈ N)(A((f1 ∧ f2)⊕ nO)) ≤ A(f1 ∨ f2) ⇔ (4.6)

ddilate(f1, f2) /∈ [0,∞)� (4.7)

We notice that the consideration applies for both, positive and negative, func-
tion values. From Proposition 4.3.1 it follows that ddilate(f1, f2) does not provide
meaningful result for a large number of function pairs {f1, f2} within a finite range.
For instance, max

x∈[a,b]
((f1 ∧ f2)(x)) < min

x∈[a,b]
((f1 ∨ f2)(x)) implies ddilate(f1, f2) does

not have a finite value, regardless of the form of f1 and f2 and changes in their
gray values. This is illustrated in Figure 4.1.

4.3.2 Insensitivity of ddilate to changes in gray values

Another drawback of ddilate is a situation in which ddilate is not sensitive to sig-
nificant changes in differences of image values that can carry valuable informa-
tion about imaged objects. Let us assume that Proposition 4.3.1 is satisfied
and that we are computing ddilate(f, fi) where f(x) = 1 is a constant function
and fi is a piece-wise linear function namely a triangle wave ranging between
0 and 1 with the period p = 2−i: fi(x) = 2

p

(
|(x mod p) − p

2
|
)
, where mod

denotes the modulo operation. We observe functions on the interval [0, 1] as
given in Figure 4.2(a) for i ∈ {−1, 0, 1, 2, ..., n}. It is easy to conclude that
ddilate(f, fi) = min{n | ∀x ∈ [a, b], fi ⊕ nO(x) = 1}. Figure 4.2(b) illustrates a
neighborhood of a maximum m of fi for which fi ⊕ O becomes equal to 1 in a
single dilation step by a structuring element O. Observing just the spreading of
such neighborhoods, we conclude:

ddilate(f, fi) = min{n | n ≥ 1

2i+1 · l , n ∈ N}, (4.8)
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(a) A sequence of triangular waves
ranging between 0 and 1, fi(x) =
2

p

(
|(x mod p)− p

2
|
)
, where p = 2−i.

-

i

O

x

m

(b) A neigborhood of a maximum m
that becomes equal to 1 and the in-
crement of a value fi(x) in a single
step of dilation by O.

f

0 1

1

-1
f

-2
f

-3
f

-4
f

(c) The sequence of triangular waves
for i ∈ {−4,−3,−2,−2}.

Figure 4.2: A set of functions for which ddilate does not provide meaningful re-
sult. The distribution of maxima solely determines the value of ddilate while other
properties are neglected in 4.2(a). Higher slope of fi can cause smaller distance
regardles of f in 4.2(b). ddilate(f, fi) is the same for all fi, i ∈ {−4,−3,−2,−1}
presented in 4.2(c)

where 0 < l ≤ 1 is the width of O. The distance decreases exponentially with i.
We emphasize that other properties except the distribution of maxima of fi, such
as minima or shape of fi leading to strong changes in differences in gray values
in images, can be changed without any impact on ddilate(f, fi). For example,
ddilate(f, f−1) = ddilate(f, f−2) = ... = ddilate(f, f−n), n > 0, although fi becomes
closer to f as i decreases. More precisely, the minimum of fi becomes closer to 1
and the slope becomes closer to 0 with decreasing i, as illustrated in Figure 4.2(c).

Let us, now, observe fi ⊕ O(x) for an arbitrary x ∈ [0, 1] presented in Figure
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4.2(b). In a single step of the dilation the increment of fi is ∆fi ⊕ O(x) = si · l
2
,

where si = 2i+1 is the absolute value of the slope of fi. The increment ∆fi ⊕O(x)
is directly proportional to the absolute value of the slope. Due to this, ddilate(f, fi)
would strongly decrease with i if f is not constant and reaches values lower than
1, regardless of the shape of f . In many situations, this can be a disadvantage.
For example, if f has light changes in values representing image regions without
edges and high slope of fi represents strong changes of the border.

When Proposition 4.3.1 is not satisfied, then it is not possible to apply Defini-
tion 2.5.2 and [92] suggest two modification to be used for that matter. The first
one is to compute the distance as:

ddilate(f1, f2) =

min{n | (f1 ∧ f2)⊕ nO = (f1 ∧ f2)⊕ (n+ 1)O} =

min{n | (f1 ∧ f2)⊕ nO = max
x∈[a,b]

(f1 ∧ f2)(x) = const}.
(4.9)

Because a constant should be reached by dilations, ddilate depends exclusively
on the distribution of maxima of f1∧f2 when this suggestion is used. All the other
properties are neglected, as it is already discussed.

0 1

0

Figure 4.3: δK(fi) for a one-point wide structuring function K causes the same
change of the area (shaded region), regardless on i.

The second suggestion for modifying Definition 2.5.2 in [92] was to use struc-
turing functions for computing ddilate. However, details on how this can be done
and on impact of this modification are missing. To illustrate a problem with choos-
ing a structuring function, we refer to the sequence of described piece-wise linear
function fi and δK(fi) for a one-point wide structuring function K presented in
Figure 4.3. Regardless on i, the change of A(fi), presented as shaded area in the
figure, is equal to h · 1

2i
·2i = h in a single step of the dilation, where h is the height
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of K. Usage of the structuring function K causes the same change of A(fi) and
consequently ddilate is the same for all i, regardless of the function f . Minima of an
image function can represent holes or disconnected regions inside a shape and f
can represent a region without holes. In such a situation, the behavior of ddilate is
inappropriate. A dilation by a structuring function is performed in a similar man-
ner as the dilation by the flat structuring element, but image values are increased
by the values of the used structuring function before choosing maximum. Due to
this, the higher slope of an image function implies the higher increment in a single
step of the dilation for the same structuring function, as already considered for
the dilation by a flat structuring element. Due to this, ddilate(f, fi) would neces-
sarily decrease with i when widening the support of the used structuring function,
although this is not appropriate behavior when the number of holes increases, for
instance.

4.4 New morphological dilation and erosion dis-

tances

In this section, we propose new morphological distances based on the same mor-
phological concepts as ddilate and derode which overcome problems discussed in the
previous section. We base our definitions on Definition 2.4.6, but use the term of
adaptive structuring function that changes its values depending on x ∈ [a, b]. For
this purpose, we relate a structuring function to |f1(x)− f2(x)|, x ∈ [a, b].

The dilation of a concave function f with a convex structuring function K might
produce additional local extrema to δK(f) as illustrated in Figure 4.4(a). The same
is valid for erosion of a convex f with a concave K. A non-symmetric structuring
function K produces displacement of extrema for function f as illustrated in Figure
4.4(b). Due to the above-mentioned, to preserve basic morphological properties of
f , we use only symmetric structuring functions in defining morphological distances,
which are concave when performing a dilation and convex when performing an
erosion.

We propose novel morphological distances based on gray scale morphological
dilation and erosion with structuring functions as:
Definition 4.4.1. For a function pair f1, f2 : [a, b] → R and x ∈ [a, b], let Kx be
a structuring function which is concave, symmetric, non-negative and satisfies the
property max

z∈O
(Kx(z)) = max

z∈O,x−z∈[a,b]
|f1(x− z)− f2(x− z)| on a support O. For Kx,

the new dilation distance is defined as:

d′dilate(f1, f2) =

∫ b

a

δKx
(f1 ∧ f2)(x)− (f1 ∧ f2)⊕O(x)dx. (4.10)
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(a) (b)

Figure 4.4: Dilation of a concave function by a convex structuring element provides
a minimum in (a), and dilation by a non symmetric structuring element causes
displacement of maximum in (b).

Definition 4.4.2. For a function pair f1, f2 : [a, b] → R and x ∈ [a, b], let Kx be
a structuring function which is convex, symmetric, non-negative and satisfies the
property max

z∈O
(Kx(z)) = max

z∈O,x−z∈[a,b]
|f1(x− z)− f2(x− z)| on a support O. For Kx,

the new erosion distance is defined as:

d′erode(f1, f2) =

∫ b

a

(f1 ∨ f2)⊖ O(x)− εKx
(f1 ∨ f2)(x)dx. (4.11)

To illustrate the usage of the proposed definitions and computation of the
defined distances for discrete functions, we give following example of computing
δKx

((f1 ∧ f2))(x)− (f1 ∧ f2)⊕O(x). Two discrete functions, f1 and f2, are respec-
tively given in Figure 4.5(a) and 4.5(b). Their absolute difference | f1−f2 | is given
in Figure 4.5(c). For this example we use the support for structuring function O
given in Figure 4.5(d). In the neighborhood defined by O of every point of the
domain the maximal value of | f1−f2 | is computed. In Figure 4.5(e) is given such
computation for the domain point x = 3. After that, a structuring function that
have the maximal value equal to the computed is defined for every point of the
domain. We stress out that the imposed properties for the structuring functions
are that they all have the maximal value computed in the described manner, they
are all symmetric and defined on O. The structuring functions can differ in all
the other properties across the domain points. In Figure 4.5(f) is given a constant
structuring function K3(z) = max

z∈O
| f1(3 − z) − f2(3 − z) |, z ∈ O that we use

in this example. At a point of the domain, the difference of δKx
((f1 ∧ f2)) and

(f1 ∧ f2)⊕ O(x) is computed. We illustrate the computation in Figure 4.5(h) for
x = 3. To compute d′dilate(f1, f2), the computation is performed and the difference
summed over all the domain points.
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x

y

1 2 3 4 5

1

2

3

4

5

(g) (f1 ∧ f2)(3 − z) and
(f1∧f2)(3−z)+K3(z) for
z ∈ O
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(h) | δK3
((f1 ∧ f2))(3) −

(f1 ∧ f2)⊕ O(3) |= 2

Figure 4.5

We emphasize that ddilate cannot be computed for given example because (f1∧
f2)(x) < (f1∨f2)(x), ∀x ∈ {1, 2, 3, 4, 5}. Contrary to that, d′dilate can be computed
for any pair of images. All the necessary operations for computing d′dilate can be
performed and, instead of sequentially performed dilations which value is limited
from above, d′dilate is defined via a single step of the dilation by the structuring
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function Kx that provides δKx
((f1 ∧ f2)(x)) ≥ (f1 ∧ f2) ⊕ O(x), x ∈ D and the

problem from Proposition 4.3.1 is resolved.

0 1 2

M

(a) Kx(z) = M− | z |
0 1 2

M

(b) Kx(z) = ⌊M − a · z2⌋
0 1 2

M

(c) Kx(z) = M

Figure 4.6: Examples of computing a structuring function Kx. To shorten notation,
we use the letter M for max

z∈O
| f1(x − z) − f2(x − z) |. ⌊x⌋ denotes the nearest

smaller integer of x.

A structuring function can be chosen suitable to deal with image values in the
neighborhood of x which can differ in different parts of an image. Such a selection
is research for itself and we illustrate just some of possible, very simple structuring
functions in Figure 4.6. Together with the illustrations of the structuring functions
are given their analytic expressions Kx(z) = M− | z |, Kx(z) = ⌊M − a · z2⌋,
Kx(z) = M , where M = max

z∈O
| f1(x− z)− f2(x− z) |.

For our purpose, we choose to use the type of the structuring function presented
in Figure 4.6(c), i.e. a constant structuring function equal to the max

z∈O
| f1(x−z)−

f2(x− z) | over the whole support. In this manner, the proposed distances enable
intuitive clear and simple consideration of properties of sets of pixels at which
images differ. This is done in the similar manner as when extracting relevant
image properties from a single image using morphological operations. We obtain
results given in the first row of Table 4.1 if we choose a support O1 presented
in Figure 4.7(a) and a structuring function which is constant on it to compute
d′erode(K,Ki) for shapes in Figure 2.14. We easily make conclusions on certain
types of object changes by observing the obtained values.

The highest value is reached for the case with a change of connectivity. Smallest
value is reached for the cases where pixels at which images differ are surrounded by
the background, which is case for protrusions. Values between appear for changes
in the border. To more strongly highlight the protrusions in the vertical direction
the support O2 presented in Figure 4.7(b) can be considered. The results for d′dilate
for constant structuring function on O2 are given in the second row of Table 4.1
where d′dilate escalate only when this change occurs.
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(a) O1 (b) O2

Figure 4.7: A structuring element that stays the same for rotations for π
2

and a
horizontal structuring element

Table 4.1: New distances for Figure 2.14

K,K1 K,K2 K,K3 K,K4

O1 9 3 2 3
O2 7 7 13 7

As the absolute differences between f1 and f2 increase, the value (height) of
Kx increases, and the value of d′dilate(f1, f2) with it. Higher slope at a point
causes higher values of the dilation by Kx for the same reason as described for
Figure 4.2(b) for flat structuring element, but at the same time higher value of
δKx

(f1 ∧ f2)(x). It is not possible to freely change the differences between com-
pared functions without any impact on d′dilate and d′dilate(f, fi) monotonously grows
with i for the triangular wave considered in Section 4.3. The behavior of d′dilate for
the triangular wave when i ∈ {−4,−3, ..., 3, 4} is presented in Figure 4.8 for the
constant structuring function on the support O = [−0.1, 0.1].

If we choose the one-point wide support for the structuring function to compute
d′dilate, it reduces to L1 distance. Consequently d(f, fi) = const for such support
for sequence of functions from Figure 4.2. If the support is the widest possible and
completely covers [a, b], d′dilate behaves as d∞, if the constant structuring function is
chosen. The appropriate behavior of d′dilate in experimental settings, with regards
to both changes of objects in the spatial domain and image intensities, is shown
in Section 4.5.1 and Section 4.5.2.

4.4.1 Metric properties for d′dilate and d′erode
The proposed distances are semimetrics. In following we consider metric properties
of d′dilate. The consideration for d′erode is analogous.

1. Non negativity: d′dilate(f1, f2) ≥ 0 for every f1 and f2.
This property holds because Kx ≥ 0 for every x ∈ [a, b]. Consequently,
δKx

((f1 ∧ f2)(x)) ≥ (f1 ∧ f2)⊕ O(x) for every x ∈ [a, b].
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Figure 4.8: d′dilate(f, fi) for the triangluare wave. We use the constant function on
the support O = [−0.1, 0.1].

2. Separability: f1 = f2 ⇔ d′dilate(f1, f2) = 0 for every f1 and f2.
This is true because:

(⇒) If f1 = f2, then max
z∈O

(Kx(z)) = 0 for every x ∈ [a, b]. This implies

δKx
(f1 ∧ f2)(x) = (f1 ∧ f2)⊕ O(x) for every x ∈ [a, b].

(⇐) We prove by contra-position: If f1 6= f2 then d′dilate(f1, f2) 6= 0.
Assume that f1 6= f2. Then, max

z∈O
(Kx(z)) > 0 for some x ∈ [a, b].

Consequently, δKx
(f1 ∧ f2)(x) > (f1 ∧ f2)⊕O(x) for some x ∈ [a, b].

3. Symmetry: d′dilate(f1, f2) = d′dilate(f2, f1) for every f1 and f2.
This property trivial holds because: f1 ∧ f2 = f2 ∧ f1.

4. Triangle inequality does not hold: there exist f1, f2, f3 such that d′dilate(f1, f2)+
d′dilate(f2, f3) < d′dilate(f1, f3).
Let us consider the function triplet presented in Figure 4.9, where O is large
enough to cover the whole domain and

Kx(z) =

{
max
z∈O

(|f1(x+ z)− f2(x+ z)|) if z = 0

0 otherwise .
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Here, distance values are d′dilate(f1, f2) = 6, d′dilate(f1, f3) = 9 and
d′dilate(f2, f3) = 2, therefore d′dilate(f1, f2)+d′dilate(f2, f3) = 8, while d′dilate(f1, f3) =
9.
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Figure 4.9: Function triplet, f1, f2, f3, for which the triangle inequality
d′dilate(f1, f2) + d′dilate(f2, f3) ≥ d′dilate(f1, f3) is not satisfied. Distance values are
d′dilate(f1, f2) = 6, d′dilate(f1, f3) = 9 and d′dilate(f2, f3) = 2.

4.5 Experimental evaluation

4.5.1 Behavior depending on changes in gray levels

To show the advantage of using d′dilate over ddilate in a realistic experimental setting
to resolve a problem similar to the one illustrated on the toy example in Section
4.3.2, we compute ddilate and d′dilate between a simulated, but yet realistic, set
of images. The differences in image intensities including important information
are successively increased. Namely, we successively add noise to an image. The
noise causes larger fluctuations of image intensity values introducing smaller local
maxima and higher slopes of the image function. Due to this, A(f1 ∧ f2) reaches
A(f1 ∨ f2) in a single dilation step and ddilate is equal to 1 regardless of the dif-
ferences in gray vales which carry important information. In contrast, valuable
conclusions can be made based on values of d′dilate.

More particularly, we considered a two-dimensional Gaussian G(µx, µy; σ), as
often considered in studies of single particle tracking experiment [76]. Formally,

f1(µx, µy) = b+ A ·G(µx, µy; σ) + ζ, (4.12)

where b is the background, A is the amplitude and σ is the standard deviation of
the Gaussian, and ζ is noise.

The image f1 is corrupted by Poisson noise as done in [113] and with this pro-
cedure the image f2 is constructed in the following manner. We set the realistic
values for the parameters [113]: fixed background b = 1, fixed standard deviation
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of the Gaussian σ = 1.5 and variable amplitude A ∈ {100, 200, ..., 1000}, where a
larger amplitude means brighter and more distinctive particles. For every value
A we successively add Poisson noise using DIPimage function noise [42]. Poisson
noise is signal dependent. The intensities of the input image divided by the conver-
sion variable p are used as mean values for the Poisson distribution. On our image
set, this means that, as values of image function are increased by increasing A,
increases the mean value of the noise and images are corrupted to a larger extent
than images with smaller amplitude.

We note that the parameter p is inversely proportional to the amount of added
noise, i.e., smaller values of p correspond to larger amount of noise. An example of
f1 for A = 500 and f2 for the same A and p = 0.5 is given in Figure 4.10. For every
selection of the aforementioned parameters, we generate 1000 images (denoted here
as f1) with randomly placed the position (µx, µy) of particle. These 1000 images
are corrupted by the above aforemetioned procedure. Finally, we computed the
average value of ddilate(f1, f2) and d′dilate(f1, f2) over all the image pairs {f1, f2}
defined as above. For this experiment, we use image patches of size 11 × 11 and
the constant structuring function Kx(z) = max

z∈O
| f1(x − z) − f2(x − z) | on the

support O = {−1, 0, 1} × {−1, 0, 1}.

(a) f1 (b) f2

Figure 4.10: Examples of two-dimensional Gaussians with the amplitude A = 500.
f2 is corrupted by Poisson noise with the conversion factor p = 0.5.

The results are depicted in Figure 4.11. The obtained results show that the old
dilation distance ddilate does not distinguish between images if they are corrupted
with different amount of noise or have different amplitudes. Moreover, it does not
change its value at all. In contrast, the new dilation distance d′dilate increases with
increasing amplitude A and with increasing amount of noise matching the effect
of Poisson noise on signal presented by the images.
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Figure 4.11: The averaged distance between noise free f1 and degraded object f2
for different noise and amplitude levels. Up: Old morphological dilation distance
ddilate. Bottom: New morhological dilation distance d′dilate. Parameter p is the
conversion factor computed as the intensity of the image divided by the mean
value for the Poisson distribution.

4.5.2 Particle tracking

In this section, we show that the new dilation distance d′dilate follows well spatial
changes of an object. In particular, we present the applicability of the new dilation
distance d′dilate to a challenging problem of single particle tracking [13]. At the same
time we show insensitivity of ddilate to changes of image data which correspond to
object changes in the spatial domain.

A typical image analysis pipeline for single particle tracking analysis includes:
(1) detection of single particles in every frame, (2) connection of the previously
detected particles into trajectories and (3) analysis of the obtained trajectories.
A drawback of such analysis is that an incorrect detection of single particles or
assigning a particle to a wrong trajectory leads to a biased interpretation of the
data.
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For a real experimental data, it is not possible to know the exact position of a
particle. Therefore, we use a highly realistic synthetic data generated by SMeagol
software [66], which generates single molecule microscopy time-lapse videos by
incorporating complex reaction diffusion kinetics that occur in cells as well as
simulates realistic microscopy imaging. We generate a movie of 99 frames with
two molecules in an E. coli cell geometry, and some example frames are depicted
in Figure 4.12.
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Figure 4.12: Top: Example of different consecutive frames. Bottom: The d′dilate be-
tween consecutive frames, for different structuring elements, versus the Euclidean
distance between the position of molecules for all frames.

For this experiment, we compute the d′dilate for every two consecutive frames
in the movie. For the set of pairs of consecutive frames, we compute the distance
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for different size of the support and the constant structuring function. The results
are shown in Figure 4.12, together with the true Euclidean distance between the
molecules, where all distances are normalized for the purpose of comparison. From
the obtained results, it is clear that d′dilate to a large extent follows the movement
of a single and multiple molecules for the majority of frames. To determine the
most appropriate support for the structuring function, we compute the coefficient
of determination, R2, for distance values obtained by a structuring element and the
true euclidean distance values. The computed R2 measure amounts respectively
0.8311, 0.8356, 0.8151, 0.8070 and 0.7938 for 1×1 px, 3×3 px, 5×5 px, 15×15 px
and 31 × 31 px support for structuring function. We conclude that the most
appropriate support is 3× 3 px and that d′dilate explains the variation of euclidean
distance to a high degree as R2 reaches 0.8356.

For an illustration, we name a few frames at which d′dilate follows the movements
of one or two particles to a large extent: (i) a large movement for both molecules
as can be seen between frames 10 and 11; (ii) when one molecule disappears as
can be seen for frames 26 and 27, i.e., a molecule at the bottom of the image
vanishes; (iii) a larger movement of one molecule between frames 74 and 75; and
(iv) when both molecules vanishes (frames 82 and 83) for the rest of the movie
only the background noise is present in the image and the d′dilate is on the average
smaller than in the rest of the movie.

On the other hand, ddilate does not follow the motion of molecules. This be-
havior is depicted in Figure 4.13 where, both, the Euclidean distance and ddilate
are normalized to the interval [0, 1]. As the size of molecules is small and ranges
approximately 6 − 9 px, lower values in images reach higher in one or two dila-
tion steps and ddilate completely fails for this particular task. The R2 measure is
0.2427 for 3×3 px structuring element, while d′dilate becomes constant for 5×5 px
structuring element failing to discern between consecutive frames.

Obtained results clearly show that ddilate cannot be used for this purpose, while
the newly proposed d′dilate is applicable to the problem of single molecule tracking.
Single particle tracking is a complex problem composed of several steps and its
solution is beyond the scope of this paper. Herein, we show that d′dilate has a
potential to be applied to challenging real problems. A benefit of using d′dilate for
this particular purpose is, for example, when movements in a specific direction
should be followed. The proposed distances can easily be adjusted to be more
sensitive to movements in a specific direction by choosing a suitable structuring
element.

4.5.3 Satellite images

Morphological concepts and morphological distances are proved highly successful in
geographical information science for comparing specific phenomena based on their
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Figure 4.13: The ddilate between consecutive frames for structuring elements 3× 3
and 5 × 5 versus the Euclidean (true) distance between the position of molecues
for all frames. Increasing the size of structuring elements lead to the same results
as presented for 5× 5.

digital image representation [90, 92–94]. We evaluate them on satellite images of
separation of a large iceberg from Larsen-C Ice Shelf taken from a digital surface
model. The model is constructed by the Japan Aerospace Exploration Agency
(JAXA) and is publicly available at http://www.eorc.jaxa.jp [50]. The images
f1, f2, f3, f4 of separating iceberg on different dates (time frames) are given in
Figure 4.14. The physical phenomena of interest are cracking of the ice across
the ice shelf and movements of the iceberg. Consequently, a distance used for
comparison should be sensitive to these changes. In order to easily follow the
behavior of a distance with the changes, we give short description of the process
from [50]. The trace of a crack occurs in Figure 4.14(a). In Figure 4.14(b) the
crack expands in the vertical direction and iceberg separates from its shelf. The
iceberg moves to the left slightly narrowing the crack in Figure 4.14(c) because the
sea ice was thickening in the period between frames pushing the iceberg. As the
sea ice thins, the crack strongly expands and the iceberg moves toward the sea in
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(a) f1 (b) f2

(c) f3 (d) f4

Figure 4.14: Four image frames of separation of a large iceberg from Larsen-C Ice
Shelf

Figure 4.14(d) representing the last frame.
We compute L1, derode, dH , dD and d′dilate for every pair of frames. To compute

morphological distances, we use 3 × 3 flat structuring element. We use euclidean
L2 distance between points to compute dH and fuzzyfication in accordance with
Equation 2.34 to compute set distances on gray scale images, where α-cuts are
observed over all 256 gray levels. To simplify comparison, we normalize obtained
values for every distance to the interval [0, 1]. The results for dSPD, derode, dH, dD
are given in Figure 4.15.

From 4.15(a), we conclude that the differences in pixels values across spatial
coordinates follow well the phenomena of interest and provide useful information on
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L1 f1 f2 f3 f4
f1 0 0.81 0.77 1
f2 0.81 0 0.55 0.83
f3 0.77 0.55 0 0.72
f4 1 0.83 0.72 0

(a) dSPD

derode f1 f2 f3 f4
f1 0 0.67 0.33 1
f2 0.67 0 0.33 0.33
f3 0.33 0.33 0 0.33
f4 1 0.33 0.33 0

(b) derode

dH f1 f2 f3 f4
f1 0 0.86 0.64 1
f2 0.86 0 0.50 0.91
f3 0.64 0.50 0 0.84
f4 1 0.91 0.84 0

(c) dH

dD f1 f2 f3 f4
f1 0 0.69 0.58 0.76
f2 1 0 0.63 0.84
f3 0.91 0.54 0 0.89
f4 0.91 0.73 0.65 0

(d) dD

Figure 4.15: Different distances computed for image frames from Figure 4.14

changes. For instance, f1 is at the largest distance from f4, then from f2 and then
from f3. Still, the pixels values of f2 are more similar to f1 than to f4, mainly due
to non relevant pixels representing open sea. Due to this, dSPD(f1, f2) < d(f2, f4)
neglecting the occurrence of the crack. The same problem is present for dH and
cannot be overcome using any of these two distances. derode before normalization
takes values 1, 2, 3, 4 showing very low sensibility to changes. It completely fails to
provide any information on f3. The question is whether we can adjust a distance
to be more sensitive to the appearance of the cracks than on the differences in the
gray values.

(a) (b) (c) (d)

Figure 4.16: (a) An α-cut of f2 and (b) its 10 dilations. After these dilations,
the same α-cut of f1 given in (c) is not covered due to small points in the region
framed by rectangle and given in (d) enlarged
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d′dilate f1 f2 f3 f4
f1 0 0.89 0.85 1
f2 0.89 0 0.69 0.88
f3 0.85 0.69 0 0.80
f4 1 0.88 0.80 0

(a)

d′dilate f1 f2 f3 f4
f1 0 0.85 0.81 1
f2 0.85 0 0.64 0.87
f3 0.81 0.64 0 0.77
f4 1 0.87 0.77 0

(b)

Figure 4.17: d′dilate for constant structuring function on 3 × 3 flat structuring
element ((a)) and 3× 1 flat structuring element ((b))

Observing rows in table presented in Figure 4.15(d) we conclude that values
of dD follow the process in the preferable manner in the sense that the highest
values are dD(fi, f1), i ∈ {2, 3, 4}. The opposite conclusion is made if we observe
columns as dD is not symmetric. This asymmetry means that αf2 should much
more be dilated to cover αf1 than vice versa for majority of α-cuts. In sequel, we
briefly discuss the reason for asymmetry in more details, and show that dD cannot
be used to make relevant conclusions.
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Figure 4.18: d′dilate between consequtive frames for 1×3, 1×5, ..., 1×15 structuring
element

To illustrate the computation of dD(f2, f1) we give Figure 4.16 where αf2 and
αf1 are given for α = 100 in Figure 4.16(a) and Figure 4.16(c), respectively. In
Figure 4.16(b) is given αf2 ⊕ 10O, where O is the used structuring element for
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which is valid αf2 ⊕ 10O +α f1. High values of dD(fi, f1), i ∈ {1, 2, 3}, leading
to conclusion that it is strongly affected by the crack, are due to small points
representing sea ice which are not visible in the figure. The points are in the area
marked with rectangle in Figure 4.16(c). The enlarged area is given in Figure
4.16(d) where two white pixels on which dD(fi, f1) exclusively depends are visible.
We emphasize that it is not possible to overcome the problem by choosing any
structuring element.

Now, let us consider Figure 4.17 where the results for d′dilate are given. d′dilate
ranks pairs of frames as preferred when 3×3 flat structuring element and a constant
structuring function is used. For 3× 1 flat structuring element, it ranks pairs the
same as dSPD because is less sensitive to vertical changes.

If we want to make d′dilate more sensitive to the vertical crack, we can use
structuring element of the size 1×3, 1×5, ..., 1×15. In Figure 4.18 we give results
for these sizes of structuring element for d′dilate between consecutive frames. The
results show that the enlargement of structuring element causes d′dilate to be more
sensitive to changes, at the same time following them properly. d′dilate(f1, f2) >
d′dilate(f3, f4) > d′dilate(f2, f3) indicating the strongest change when the ice shelf
cracks, then weaker change comparing to that when the iceberg made a larger
move and the weakest when the ice shelf made a small move.



Chapter 5

Conclusion and discussion

The focus of the thesis has been on improving utilization of the digital image data
for comparing objects based on their shape. We considered both tasks crucial for
comparing objects from their digital image representations: shape quantification
and comparing complete image data comprising shape.

Results provided in Chapter 3 support the idea that the theoretical framework
and practical methods developed for utilizing pixel coverage by an object can be
used to overcome problems of lacking precision and accuracy resulting from binary
approaches in shape analysis. Presented method for estimation of Feret’s diameter
from digital image representation developed in this framework reduces the max-
imal absolute error of estimation. Particular weight is in the high reduction of
the error observed in real imaging conditions as well as on synthetically generated
data. The maximal absolute error over different positions is reduced on average
174 times when estimated for different sizes of synthetically generated ellipses. For
low resolution microscopic images of cells, mean square error is reduced 5.96 times
on the average and the presented method performs better at the lowest magnifi-
cation than the evaluated binary method at the highest evaluated magnification.
Besides the high reduction of the maximal absolute error, usability of the obtained
results contribute the fact that Feret’s diameter, as an basic shape property, can be
used for computing a number of shape descriptors used in shape analysis. Classic
diameter, perimeter and elongation are just some of them.

Evaluation of the performance of the proposed method in combination with dif-
ferent curvature estimators is worth further exploration. Also, the obtained results
clearly indicate that the better performance of all the shape descriptors computed
from Feret’s diameter can be achieved and their usage in practical applications
should be explored.

The distances proposed in Chapter 4 are a significant step in adjusting dis-
tances to a certain geometrical property of shapes under consideration. Although
the idea of extraction of relevant geometrical structure from an image by choosing

89
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a structuring element arises naturally when comparing complete image data com-
prising shape, the existing morphological distances have strong deficiencies that
prevent their more extensive usage. The deficiencies of dH and dD related to sen-
sitivity to outliers is resolved by proposing ddilate. However, we prove Proposition
4.3.1 from which follows that ddilate can not be computed for a large number of
pairs of digital images. Also, we show on toy examples, synthetic and real data
that it is possible that dissimilarity between objects which are compared grows
strongly, while the value of ddilate does not change. The distances proposed in
Chapter 4 resolve the described problems. They are less sensitive to outliers and
more to relevant data in digital images and their value increase with increasing
dissimilarity between objects. At the same time they provide higher possibility
than the other morphological distances to be adjusted to a certain shape property
by choosing a structuring element. The improvement is confirmed on toy examples
and synthetic and real data.

The concept presented in Chapter 4 provides many directions that are worth
further exploration. In particular, it would be interesting to explore selection of
values of structuring function to deal with different image properties created by
imaging conditions. The selection of a structuring function for every concrete
application is a separate issue. Also, a concrete selection of a structuring function
for every concrete application is a separate problem. As our distances have the
ability of adjustment to a specific situation, usage of machine learning methods
for this purpose is a good possibility.
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