

UNIVERSITY OF NOVI SAD

FACULTY OF TECHNICAL SCIENCES

Amel Abdyssalam Alhaag

Model-Driven Software Architecture for

the Management of Educational

Resources Metadata

Ph.D. DISSERTATION

June, 2018.

III

Dedication

For my father Abdyssalam Alhaag, to my mother Mahjoba Atea and for all

those who encouraged me to fly toward my dream.

IV

V

Apstrakt

Tema ove disertacije je upravljanje obrazovnim resursima. Preciznije,

istraživanje je fokusirano na pronalaženje resursa za šta je potrebno omogućiti

njihovo skladištenje tako da mogu biti identifikovani i isporučeni u skladu sa

zahtevima nastavne instrukcije. Pronalaženje obrazovnih resursa može biti

unapređeno uvođenjem dodatnih informacija kao što su metapodaci.

Disertacija se bavi upravljanjem ovim metapodacima putem specijalizovanih

softverskih aplikacija. Cilj istraživanja je bio da se omogući dinamičko

prilagođavanje skupa metapodataka kojim se opisuju obrazovni resursi u

nekom digitalnom repozitorijumu. Konkretno, sledeće teme su pokrivene

ovim istraživanjem:

 Opis semantike obrazovnih resursa korišćenjem metapodataka. Ovo se

odnosi na metapodatke koji su specifični za određeni domen, kao i na

one koji su domenski neutralni

 Softverske aplikacije za upravljanje metapodacima obrazovnih resursa

 Dinamičko prilagođavanje skupova metapodataka

 Programsko generisanje modela metapodataka zasnovano na modelom

vođenom pristupu

Bez obzira na njihovu upotrebu, metapodaci mogu biti podeljeni u dve

generalne kategorije. Prva kategorija se odnosi na metapodatke koji opisuju

one karakteristike obrazovnog resursa koje nisu striktno povezane sa oblašću

na koju se obrazovni resurs odnosi. Ovakve metapodatke nazivamo domenski-

nezavisni metapodaci. Ovi metapodaci su generalni i mogu biti korišćeni u

različitim obrazovnim resursima bez obzira na njihovu oblast. Primeri takvih

metapodataka su format dokumenta, autor, jezik itd. Ovakvi metapodaci mogu

biti opisani različitim formalnim modelima među kojima su trenutno

najpoznatiji IEEE LOM i Dublin Core. U drugu kategoriju spadaju

metapodaci koji koriste informacije specifične za određenu oblast. Na primer,

ako je obrazovni resurs iz oblasti računarstva, metapodaci mogu biti vezani za

programersku tehnologiju koju resurs objašnjava. U mnogim oblastima su

razvijene taksonomije koje dodatno klasifikuju obrazovne resurse u toj oblasti.

Kao primere takvih taksonomija pomenimo ACM Computing Classification

VI

System iz oblasti računarstva i Mathematics Subject Classification iz oblasti

matematike.

Istraživanje prikazano u ovoj disertaciji se bavi dinamičkim proširenjem skupa

metapodataka u softverskoj aplikaciji za upravljanje obrazovnim resursima.

Pri tome, koristi se pristup vođen modelom za automatsko generisanje

softverske aplikacije koja ima podršku za korisnički definisane skupove

metapodataka. Pristup koristi izvorne domenske modele kao osnovu za

generisanje ciljnih modela. Izvorni model opisuje strukturu i ponašanje

sistema na različitim nivoima apstrakcije. U ovakvom pristupu, proces razvoja

softverske aplikacije počinje kreiranjem izvornog modela. Izvorni model se

smatra platformski-nezavisnim modelom jer je fokusiran na reprezentaciju

domenskog znanja bez bavljenja detaljima implementacije. U temi kojom se

ova disertacija bavi, izvorni model je osnova za programsko generisanje

konačne softverske aplikacije. Ova aplikacija predstavlja ciljni model dobijen

transformacijom izvornog modela putem skupa transformacionih pravila. Za

razliku od izvornog modela, ciljni model je platformski-specifičan i sadrži

izvorni kod konačnog softverskog proizvoda. Ovakav, modelom-vođen

pristup, obezbeđuje da se pri razvoju inicijalno fokusira na domensko znanje,

umesto na algoritme i programerske detalje. Obzirom da se ciljni model

programski generiše, povećava se produktivnost, kao i prenosivost sistema,

obzirom da isti domenski model može biti korišćen za generisanje različitih

ciljnih modela. Takođe, odvajanje reprezentacija domenskog znanja od detalja

implementacije olakšava uključivanje domenskih eksperata u fazu razvoja.

Generalno, softverski sistemi za upravljanje obrazovnim resursima se

suočavaju sa dva izazova. Pre svega, oni treba da podrže neki generalni skup

metapodataka kako bi omogućili upravljanje obrazovnim resursima koji

pripadaju različitim domenima. Sa druge strane, neophodno je opisati i delove

značenja resursa koji su specifični za određeni domen. Vrlo je teško

implementirati softversku aplikaciju koja sadrži predefinisane skupove

metapodataka za najrazličitije oblasti. Čak i kada bi postojala aplikacija koja

inicijalno podržava vrlo raznolike skupove metapodataka, ostaje problem

kasnijeg uvođenja novih skupova metapodataka. Ako su skupovi

metapodataka statički predefinisani, aplikacija ne može da omogući izmenu

postojećih skupova metapodataka niti uvođenje metapodataka iz novog

domena.

Zato je cilj istraživanja predstavljenog u ovoj disertaciji da se omogući

dinamičko prilagođavanje skupova metapodataka u softverskoj aplikaciji za

upravljanje obrazovnim resursima. Osnovna ideja je da se omogući

VII

korisnicima da samostalno definišu skupove metapodataka. Na ovaj način,

korisnik može da prilagodi aplikaciju da koristi metapodatke iz domena kojim

se on bavi. Obzirom da korisnici u pravilu nemaju veštine potrebne za razvoj

softverske aplikacije koja bi bila prilagođena njegovim metapodacima, ova

disertacije predstavlja izvršivu platformu koja programski generiše konačnu

softversku aplikaciju za upravljanje obrazovnim resursima. Ovakvo rešenje

obezbeđuje da će korisnici moći da rade sa metapodacima iz svog domena bez

potrebe da razvijaju ili naručuju novu softversku aplikaciju. Predložena

izvršiva platforma je ta koja pruža dinamičko prilagođavanje skupa

metapodataka željenom domenu.

U skladu sa navedenim, definisana je hipoteza istraživanja: Da bi se

omogućilo upravljanje obrazovnim resursima čije je značenje opisano

nepredefinisanim domenski-specifičnim skupom metapodataka, potrebno je

kreirati sistem koji može jednostavno biti prilagođen upravljanju obrazovnim

resursima u određenom domenu. Moguće je ispuniti ovaj zahtev kroz

implementaciju podrške za dodavanje različitih domenski-specifičnih

metapodataka dinamički.

Za realizaciju je korišćen goreopisani pristup vođen modelom. Kao što je

objašnjeno, ovaj pristup omogućuje generisanje ciljnog modela na osnovu

formalno definisanog izvornog modela. Kada je reč o korišćenju ovog pristupa

za upravljanje metapodacima obrazovnih resursa, izvorni model je domenski

model određenog skupa metapodataka, a ciljni model je programski

generisana softverska aplikacija za upravljanje metapodacima obrazovnih

resursa u tom domenu. Rezultat ove disertacije je izvršiva platforma za

generisanje softverske aplikacije koja upravlja obrazovnim resursima koji su

opisani izmenjivim skupovima metapodataka. Platforma je proširenje Kroki

alata, koji omogućuje kreiranje softverskih prototipova kroz modelom vođen

pristup.

Platforma je verifikovana putem eksperimenta u kojem je 16 studenata

softverskog inženjerstva evaluiralo karakteristike platforme. Studenti su imali

zadatak da koristeći ovde predloženu platformu kreiraju novi model

metapodataka, generišu softversku aplikaciju na bazi ovog modela i opišu

obrazovne resurse koristeći metapodatke sadržane u kreiranom modelu.

Eksperiment je verifikovao da platforma zadovoljava postavljene zahteve.

VIII

IX

List of figures

Figure 1.1. The IEEE LOM hierarchy ... 31

Figure 1.2. DCMI resource model ... 34

Figure 1.3. DC-Education Application Profile .. 37

Figure 1.4. Singapore Framework for Dublin Core Application Profiles 41

Figure 1.5. First-level categories of Mathematics Subject Classification ... 45

Figure 1.6.Model-driven architecture .. 50

Figure 2.1. Kroki tool components .. 60

Figure 2.2. Kroki – main window .. 64

Figure 2.3. The mockup editor ... 66

Figure 2.4. Field attributes ... 67

Figure 2.5. Kroki UML editor .. 69

Figure 2.6. Association between standard panels in the Kroki UML editor 70

Figure 2.7. Association between standard panels in the Kroki mockup editor

... 71

Figure 2.8. Parent-child association in the Kroki UML editor 71

Figure 2.9. Parent Child panel in the Kroki mockup editor 72

Figure 2.10. The list of the resources in the Kroki administration subsystem

... 73

Figure 2.11. Setting permissions in the Kroki administration subsystem 74

Figure 2.12. Administering user roles in the Kroki administration subsystem

... 75

Figure 2.13. Customization of menus depending on the user roles 76

Figure 2.14. Standard panel of a generated application (View mode) 77

Figure 2.15. Standard panel of a generated application (Add mode) 77

Figure 2.16. Next and zoom forms in the generated application 78

Figure 3.1. Platform overview ... 80

Figure 3.2. The architecture of the final application 81

Figure 3.3. Application repository structure .. 85

X

Figure 3.4. The architecture of the web engine ... 87

Figure 3.5. The process of generating the web application 89

Figure 3.6. The model of educational resources metadata (part 1) 90

Figure 3.7. The model of educational resources metadata (part 2) 91

Figure 3.8. The model of educational resources metadata (part 3) 92

Figure 3.9. The model of educational resources metadata (part 4) 93

Figure 3.10. The model of educational resources metadata (part 5) 94

Figure 3.11. The model of educational resources metadata (part 6) 95

Figure 3.12. MSC model in the mockup editor ... 96

Figure 3.13. List of courses in the generated application 97

Figure 3.14. List of educational resources in the generated application 98

Figure 3.15. Editing MSC metadata in the generated application 98

XI

List of code listings

Listing 1.1. Educational resource metadata in accordance with IEEE LOM

specification ... 33

Listing 1.2. Educational resource metadata in accordance with Dublin Core

specification ... 39

XII

XIII

List of tables

Table 1.1. The root elements of IEEE LOM .. 31

Table 1.2. Dublin Core elements ... 36

Table 1.3. Educational resources classified by ACM Computing

Classification System ... 43

Table 1.4. An example of the MSC second level categories 46

Table 1.5. An example of the MSC third level categories 47

Table 4.1 The results of the background questionnaire 105

Table 4.2. The results of the experiment main task 107

Table 4.3. Task efficiency results .. 107

Table 4.4. The results of the CIF questionnaire ... 108

Table 4.5. The results of the PSSUQ questionnaire 113

Table 4.6. The results for the system characteristics based on PSSUQ

questionnaire .. 114

XIV

XV

Acknowledgement

I would like to thank many people, especially the enthusiastic supervisor Prof.

Goran Savić. My PhD was a great experience and I thank my supervisor

wholeheartedly, not only for his tremendous academic support, but also for

giving me a lot of wonderful opportunities.

Special thanks to the supervisor, Prof. Gordana Milosavljević, for her very

useful views, comments and suggestions. You have been very supportive and

always there when I have a question or concern.

I also express my sincere thanks to Prof. Zora Konjović who gave me the

opportunity to join their team as an intern. Without valuable support, this

research will not be possible.

Then, I would like to express my sincere gratitude to Prof. Milan Segedinac

for the continued support of related research, for his patience, motivation and

knowledge.

A great Thanks to my sister Iman Alhaag for her guidance helped her all the

time in researching and writing this thesis. I did not imagine a better consultant

and consultant to study for a doctorate.

In addition to my advisers, I would like to thank the rest of the theses

committee for their encouraging comments and encouragement, but also for

the difficult question that led me to expand my research from different points

of view.

In addition, I am grateful to Dr Siham Sassi Abdul Rahman for helping me

check this PhD dissertation.

I would like to thank all those who responded to the questionnaire and the

participants who were interviewed; without their support this work would not

have been completed.

My husband, Abdullah Alkash, who was a supporter throughout my education.

He has enabled me to love and encourage him throughout our marriage to

complete my dream.

XVI

XVII

Abbreviation

AP Application Profile

ACM Association For Computer Machinery

CCS Computing Classification System

DSL Domain Specific Language

DC Dublin Core Standard

ER Educational Resources

EUIS Enterprise User Interface Specification

GUI Graphic User Interface

LO Learning Object

LOM Learning Object Metadata

LTSC Learning Technology Standards Committee

MSC Mathematics Subject Classification

MDA Model-Driven Approach

PIM Platform Independent Model

PSM Platform Specific Model

MRDB Mathematical Reviewing Databases

XVIII

19

Table of contents

1. Introduction ... 21

1.1. Educational resources ... 21

1.2. Describing semantics of educational resources 25

1.2.1. Domain-neutral metadata .. 27

1.2.1.1. IEEE LOM ... 27

1.2.1.2. Dublin Core ... 33

1.2.2. Domain-specific metadata .. 39

1.2.2.1. Customization of domain-neutral metadata sets 39

1.2.2.2. ACM Computing Classification System 42

1.2.2.3. Mathematics Subject Classification 43

1.3. Repositories of educational resources .. 47

1.4. Model-driven engineering .. 49

1.4.1. The concepts of the model-driven approach 49

1.4.2. Model-driven approach in practice ... 55

1.5. Research motivation and goals ... 56

2. Kroki tool .. 59

2.1. Architecture .. 60

2.2. Features .. 64

2.2.1. Mockup editor ... 65

2.2.2. UML editor ... 68

2.2.3. Command window .. 72

2.2.4. Administration subsystem ... 73

2.3. Generated application ... 76

3. Executable platform for the management of educational resources

metadata .. 79

3.1. The platform architecture ... 79

3.2. Model transformation ... 83

20

3.3. Model of educational resources metadata 89

3.4. Web application for the management of educational resources

metadata .. 97

4. Verification ... 101

4.1. Experiment ... 101

4.1.1. Experiment goal .. 101

4.1.2. Data Collection Instruments ... 101

4.1.3. Participants .. 102

4.1.4. Experiment procedure ... 102

4.1.5. Experiment results .. 104

5. Conclusion .. 115

21

1. Introduction

Contemporary education heavily relies upon educational resources that are

distributed in digital form. A high-quality learning process demands for easily

discoverable digital learning resources. Such resources are mostly stored in

digital educational repositories, which provide their storage and retrieval. One

of the main factors that determine the availability of educational resources is

the expressiveness of metadata used for describing them.

The topic of this thesis is the management of educational resources. More

precisely, the research is focused on the discovery of such resources, which

relates to storing resources so that they can be identified and delivered in

accordance with the specific instructional demands. The discovery of

educational resources can be improved by introducing additional information

through external components, such as metadata.

The research deals with managing metadata of educational resources using a

software application. The purpose of the research is to enable dynamic

customization of metadata that describes educational resources in digital

repositories.

The research is focused on the following issues:

 Describing the semantics of educational resources using metadata.

This covers domain-neutral, as well as domain-specific metadata

 Software applications for the management of educational resources

metadata

 Dynamic customization of metadata sets

 Model-driven approach for programmatic generation of a software

platform for managing metadata of educational resources

1.1. Educational resources

A learning environment relies on documenting learning material and other

content that is used in learning process. Although the documents can vary

based on the content type, format or purpose, we use the term “educational

22

resources” as an umbrella term that includes all kinds of such documents.

Recently, the educational resources are commonly represented in digital

formats to be used in software learning environments. Different formats are

present, such as PDF and Office documents, images, videos, etc. Browser-

readable formats are preferred since the most learning platforms are used

online using an internet browser. Additionally, such format is suggested by

the popular e-learning specifications such as IMS Content Packaging,

SCORM and IMS Learning Design.

Traditionally, monolithic educational resources are used, which means that

learning content is grouped within a single document, such as textbook. Using

such resources can be inadequate in digital learning environments, since that

they make difficult reuse of learning content which is one of the main demands

set upon modern educational resources. To promote reusability of educational

content, as well as personalization and individualization, the learning process

should rely on small, durable and reusable educational resources (Littlejohn,

2003). Such resources can facilitate the creation of new courses (Cohen and

Nycz, 2006) and the same learning objects can be used across different courses

(Savic, Segedinac and Konjovic, 2012). This type of educational resources is

commonly named learning objects. Downes (2004) explains that learning

objects should be sharable, digital, modular, interoperable and discoverable.

Polsani (2005) explains that the term “learning objects” is introduced by

Wayne Hodgins in 1994 when he names his working group “Learning

Architectures, APIs and Learning Objects". Since then, many definitions have

been created to describe this kind of educational resources.

Wiley (2002) provides definition of the learning object by adopting the term

“object” from Dahl and Nygaard (1966). He defined learning object as

“elements of a new type of computer-based instruction grounded in the object-

oriented paradigm of computer science”. The fact that the term originated

from the terminology that was already established within computer science,

influenced further description techniques of learning objects. The techniques

are based on object-oriented modelling and principles such as “abstraction,

concurrency, encapsulation, hierarchy, persistence, polymorphism and typing”

(Friesen, 2003).

23

A study conducted by Young and Morrison (2002) provides a simple definition

for learning object which is “a computer mediated or delivered module or unit,

that stands by itself, that provides a meaningful learning experience in a

planned learning context”.

Within the IEEE standards body, there is a subgroup that focuses specifically

on learning technology standards, such as learning objects and their metadata.

This group is known as the IEEE P1484.12 Learning Object Metadata

Working Group. The group aims to develop standards, recommended

practices, and guidelines for learning technology and Learning Technology

Standards Committee (LTSC).

According to this group, a learning object has been defined as “any entity,

digital or non-digital, which can be used, reused or referenced during

technology supported learning. Examples of technology-supported learning

include computer-based training systems, interactive learning environments,

intelligent computer-aided instruction systems, distance learning systems, and

collaborative learning environments. Examples of Learning Objects include

multimedia content, instructional content, learning objectives, instructional

software and software tools, and persons, organizations, or events referenced

during technology supported learning.” (IEEE, 2000).

Due to popularity of the standards published by IEEE, this definition has got

the widest recognition. Still, Wiley (2002) argues that the IEEE’s definition of

learning object is inappropriate since it is too broad and too inclusive. As he

explains, the definition does not exclude “any person, place, thing, or idea”.

Similarly, Polsani (2005) explains that the IEEE’s definition is impractical

since it does not make any distinction between physical, digital and conceptual

entities.

Campbell (2007) analyses the opposing arguments of the IEEE’s definition.

He concludes that the definition has both its pros and cons. The broadness of

the definition provides flexibility to apply IEEE standards to diverse

resources. On the other hand, lack of constraints with regard to the meaning,

size and format of a resource can lead to quite inconsistent use of standard.

Some researches use a narrower definition and consider only digital entities as

learning objects. Lama (2001) defines that “a learning object is any stand-

alone, digital learning material that can be used and reused in technology

24

supported learning environment”. It should be noted that this definition sets

additional requirements for an educational resource to be considered a learning

object. Besides digital format, it is required for a learning object to be designed

in a way to be reusable in different contexts. Todorova and Petrova (2003)

additionally explain that a learning object should be built upon a single

learning objective in order to provide composing larger educational units such

as topics, lessons, chapters and courses.

A good overview of the concept of learning objects has been explained by

(Jovanovic, Zizovic and Milosevic, 2012). The authors explain that a learning

object should fulfil the following requirements:

 it is a stand-alone learning unit that can be reused in different contexts

in order to achieve different learning objectives

 it can be aggregated in larger units such as lessons

 the semantics of a learning object, as well as its purpose and place

within a bigger educational unit can be additionally described with

metadata

Although the concept of learning objects appeared within the field of

technology-supported learning, it should be focused both on the technological

and instructional aspects. Boyle (2003) explains that only by combining

multiple learning objects into a single pedagogical unit, the instructional

purpose of a learning object can be satisfied. In this regard, he classifies

learning objects into two types: simple and compound. The compound object

consists of two or more simple objects. Although simple objects are reusable,

a compound object can have a more significant pedagogical expressiveness.

With regard to the instructional aspects of learning objects, not all digital

material used in education should be considered learning objects. L’ Allier

(1997) makes a distinction between learning objects and information objects.

As the author explains, an information object contains a single piece of

information, e.g. text paragraph, image or a web page. In contrast, a learning

object must contain an instruction for using specific information.

Although the current trends promote the usage of small, reusable educational

resources, we must be aware that the educational settings are usually gathered

25

around monolithic resources such as text books. Additionally, the idea of

reusable educational resources has faced a lot of criticism. For example, Wiley

(2002) states that learning objects that are primary designed to be reusable are

less appropriate for automatic processing. The reason is that high level of

reusability requires very small learning objects. With too granulized learning

content, only humans could assemble them into a meaningful unit.

In general, there are no widely accepted technical methodologies for creating

and assembling learning material (Ros, 2005). From this point we can hardly

expect full reusability, accessibility and operability of learning content.

For this reason, this research is not focused exclusively to any specific kind of

representing educational content. In a goal to cover as broad scenario as

possible, we don’t want to set any constraint with regard to learning content,

purpose or the domain. In this regard, we consider educational resource as any

digital or non-digital content that can be used in the learning process. In the

rest of the text we are using the terms “learning object” and “educational

resource” interchangeably.

1.2. Describing semantics of educational resources

The searchability of educational resources can be significantly improved by

describing their semantics explicitly. This can be done by introducing

metadata which give an additional description of educational resources

(Laverde, Cifuentes and Rodríguez, 2007). Metadata are usually defined as

data about data. This term is firstly used in the librarian community. It is used

for any scheme that formally describes resources (Paunovic and Domazet,

2013).

Some of the benefits of using metadata as remarked in recent study (SREB-

SCORE, 2007) are:

 The document representation is extended with a structured description

that provide searching of objects based on their attributes

 The information are organized and classified in a more efficient

manner

 The discovery of relevant information is facilitated

26

 The interoperability is improved when the semantics of document is

clearly defined with metadata

With regard to the usage of educational resources metadata, IEEE specifies

that metadata is “information about an object, be it physical or digital. As the

number of objects grows exponentially and our needs for learning expand

equally dramatically, the lack of information or metadata about objects places

a critical and fundamental constraint on our ability to discover, manage, and

use objects.“ (Draft Standard for Learning Object Metadata, 2002).

Metadata provides the classification of learning objects since it represents a

controlled taxonomy combined with the predefined vocabulary that must be

used to describe the characteristics of learning objects (Boyle, 2003). Downes

(2004) explains that the concept of metadata is inseparable from learning

objects since the process of creation of a learning object actually consists of

two tasks. The first task is designing the learning object itself, but altogether

with this task, the annotation of the object with metadata should be done.

Roy, Sarkar and Ghose, (2010) list the benefits of tagging educational

resources with metadata as follows:

 It facilitates search, retrieval, and use of learning objects

 In personalized learning environments, such as intelligent tutoring

system, metadata can help retrieval of personalized learning objects for

each user

 It promotes reusability of learning objects, since same learning objects

can be used in different contexts through recognizing their semantics

described with metadata

 The interoperability of learning objects is improved since they can be

shared across different systems. Each system can process the learning

objects based on their metadata

Information specified as metadata can be related to the physical characteristics

(e.g. format, length etc.), object’s classification, as well as the semantics of an

educational resource. Besides its purpose, we can divide all metadata into two

categories. The first category consists of metadata describing the object’s

27

characteristics which are not related to the domain which the object belongs

to. These metadata are general and can be applied to all learning objects beside

their domain. Examples of such metadata are file format, author, language, etc.

The second category refers to metadata which use domain-specific

information to describe learning objects. In many domains there have been

developed classifications which categorize content in that particular domain.

This section describes Computing Classification System and Mathematics

Subject Classification, as two classifications specifically designed for the

computer science and mathematics domain, respectively.

1.2.1. Domain-neutral metadata

In this subsection we present IEEE LOM and Dublin Core as two popular

metadata sets used for describing the semantics of educational resources.

1.2.1.1. IEEE LOM

Learning Technology Standards Committee (LTSC), a group within IEEE, was

among the first who recognized the importance of creating the standards for

the e-learning domain. LTSC published the first real industry standard for e-

learning, named Learning Object Metadata (LOM) standard.

IEEE LTSC Learning Object Metadata (LOM) is the standard for describing

learning objects (IEEE, 2002). The fundamental idea of IEEE LOM

specification is to define a minimal set of attributes necessary for a complete

description, search and utilization of learning objects to allow these objects to

be managed, located, and evaluated. Other popular e-learning specifications

rely upon this standard considering the parts dealing with learning objects’

description, i.e. SCORM (Advanced Distributed Learning, 2015), RDCEO

(IMS Global Learning Consortium, 2002) or IMS Learning Design (IMS

Global Learning Consortium, 2003).

IEEE LOM is used for annotating a learning object with metadata that defines

and describes its characteristics. Introducing metadata into the representation

of learning objects facilitates the discovery, retrieval and evaluation of

learning objects. The applications that follow the standard are considered to

be IEEE-conformant. The standard specifies the rules that an IEEE-

conformant application must fulfill. The metadata specified by IEEE LOM

28

standard consists of various elements, whereby the standard defines element

names, data types, possible set of values and value formats (e.g. field length)

(IMS Global Learning Consortium, 2006).

Baker (2005) explains that the main objectives of the IEEE LOM standard are:

 Creating a well-structured description of learning resources and

facilitating the participation of students and teachers in the learning

process, as well as providing machine processing of educational

content

 Helping developing learning objects in a standardized format, which

should enable easier involvement of all stakeholders (i.e. educational

institutions, government, companies, ...) into an educational system

 Providing combining LOM description with other specifications like

Dublin Core, SCORM or IMS Learning Design

Additionally, other benefits of using LOM which are identified by IEEE LTSC

and listed in (Campbell, 2007) are:

 encouraging creation of small, independent learning objects that can

be used in different context

 enabling support for programmatic generation of personalized lessons

that organized in accordance with a learning current knowledge,

objectives or preferences

 making cost reduction of publishing and usage of learning resources

by supporting non-profit, not-for-profit and for-profit distribution

 sharing and comparison of educational resources is facilitated through

the widely recognized format as LOM. Stuempel et al. (2007) wrote

that LOM is based on specifications such as IMS Learning Resource

Meta-data (IMS Global Learning Consortium 2001), ARIADNE

Educational Metadata Recommendation (ARIADNE, 2017). While it

consider as the basis of another specifications as CanCore Learning

Resource Metadata Initiative for Canada (Friesen, 2005), UK LOM

29

Core Profile based on LOM (Campbell, 2007), SCORM (Advanced

Distributed Learning, 2017), and MERLOT(MERLOT, 1997)

The standard consists of two main parts. The first part specifies a conceptual

model for the metadata, while the second part contains an XML schema used

for representing data from conceptual model using the XML syntax. Duvel et

al (2002) explain that LOM is a “multi-part standard” meaning that it

represents semantic data model independently of its syntactical representation.

The syntactical formalization can be considered as an independent standard

developed as a specific binding of the LOM Data Model standard.

The data model standard, named 1484.12.1-2002, specifies the structure of a

metadata instance for a learning object. The Institute of Electrical and

Electronics (2002) clears that “by specifying a common conceptual data

schema, this Part of the standard ensures that bindings of Learning Object

Metadata have a high degree of semantic interoperability that lead to

transformations between bindings to be straightforward”.

The syntax binding for the data model standard is defined by 1484.12.3-2005

IEEE Learning Technology Standard - Extensible Markup Language (XML)

Schema Definition Language Binding for Learning Object Metadata. XML

language is chosen for syntax formalization as “a commonly used encoding,

transfer, and occasional internal system storage mechanism for metadata”

(Riley, 2017). This allows system to expose API for retrieving stored metadata

in the standardized and machine-readable format (Cebeci and Erdogan, 2005).

Many other education-related specifications allow for LOM metadata to be

embedded within XML instances, such as: describing the resources in the IMS

Content Package (IMS Global Learning Consortium, 2004) or Resource List

(The University of Edinburgh, 2001); describing the vocabularies and terms

in an IMS Vocabulary Definition and Exchange (IMS Global Learning

Consortium, 2004) file; and describing the question items in an IMS Question

and Test Interoperability (IMS Global Learning Consortium, 2015) file.

Besides XML, LOM metadata can be presented using the RDF format, to

express and define some of the semantics by RDF binding. (Nilsson, Palmer

& Brase, 2003). This format allows representing different conceptual models.

It was originally developed as a metadata data model. Nowadays it is mostly

used in the semantic web to represent web resources. Since the current trends

30

lead to usage of educational resources as digital documents in web

environment, the support for RDF binding should improve the management of

the educational resources in modern web-oriented systems.

With regard to the data model of IEEE LOM, there are nine main categories

of metadata, namely General, Lifecycle, Meta-metadata, Technical,

Educational, Rights, Relation, Annotation, and Classification). These

categories are represented as root elements in the data model. The description

of the categories is given in Table 1.1.

Name Description

General General information about learning object

Life Cycle

The information related to the learning object life

cycle. The elements in this category describe

object’s history as well as its current state. For

each event in the object’s lifecycle, the entities

involved in the event are recorded.

Meta-metadata
In contrast to other categories that describe

learning object, this category describes metadata

record itself

Technical
The technical aspects of a learning object, such as

technical requirements for the usage of the object.

Educational
The main instructional and pedagogical

information about using a learning object in the

learning process

Rights
Intellectual property rights related to the usage of

a learning object

Relation
Relations of a learning object with other learning

objects are defined using the elements from this

category

31

Annotation
Comments made about learning object during its

lifecycle are recorded within this category

Classification
Using this element, the learning object can be

categorized using an arbitrary classification

system.

 Table 1.1. The root elements of IEEE LOM

The LOM root categories consist of sub categories which gives 76 LOM

elements in total. The hierarchy of LOM elements are illustrated in Figure 1.1.

(Barker, 2005)

Figure 1.1. The IEEE LOM hierarchy (Barker, 2005)

For each element, name, datatype and value space are specified. An important

feature of IEEE LOM specification is its subjectivity, meaning that all

32

elements are optional and developer can choose to specify the values only for

the elements that are relevant for the particular scenario. As Duval and

Hodgins (2003) explain that one can choose to store an information that a

particular person recommends a particular LO (highly subjective metadata)

instead of storing the metadata on the exact size of that learning object (highly

objective metadata).

As illustrated in Figure 1.1, data elements are divided into two types:

 Aggregate elements which are represented as container elements. They

consist of other data elements and do not have individual values. Such

elements are Identifier, Contribute, and Requirement.

 Simple data elements which have individual values and they are leafs

in the elements tree. Examples of the elements of this type are Size,

Location, and Version.

Value space for elements specify the limitations on the possible values that can

be assigned to the element. The following value spaces are supported:

1. String of Unicode characters

2. Language code (optionally accompanied by a country code)

3. Vocabulary – in this case the set of values is enumerated meaning that

the value is limited to one of the values predefined in the vocabulary

4. IMC vCard 3.0 – the text that contains information commonly found

on a business card

5. MIME type – the format of a resource, if the resource is given in the

digital format

Listing 1.1. shows an example of the IEEE LOM document that describes a

learning resource. The example contains metadata for the learning resource

intended for learning databases.

33

Listing 1.1. Educational resource metadata in accordance with IEEE LOM specification

1.2.1.2. Dublin Core

The Dublin Core Metadata Element Set is a vocabulary of 22 properties for

describing resources (Currier, 2008). The vocabulary contains broad and

generic elements designed to cover a wide range of resources. Unlike IEEE

LOM standard which is specifically designed to describe educational

resources, Dublin Core is a more general standard that describes any resource

by means of metadata. As stated in the specification, any content “having the

identity” is considered a resource.

The components and constructs used in Dublin Core metadata are specified by

Dublin Core Metadata Initiative (DCMI) Abstract Model (Powell et al., 2007).

Figure 1.2 shows how a resource described by Dublin Core metadata set is

represented using this model.

<lom:lom>

 <lom:general>

 <lom:title>

 <lom:string language="en-GB">

 Semantic web

 </lom:string>

 </lom:title>

 <lom:language>en-GB</lom:language>

 <lom:description>

 <lom:string language="en-GB">

 Teaches the basics of Semantic web, on-

tologies and OWL language.

 </lom:string>

 </lom:description>

 </lom:general>

 <lom:technical>

 <lom:format>application/pdf</lom:format>

 </lom:technical>

</lom:lom>

34

Figure 1.2. DCMI resource model (Powell et al., 2007)

A resource is described using one or more property-value pairs. It should be

noted that the value of the property is also considered a resource. There are

two categories of values. If the value refers to some physical, digital or

conceptual entity, it is called non-literal value. The second category (literal

value) represents simple values presented as strings, numbers or dates.

Due to its generality, Dublin Core may be used for different purposes. The

original version of the specification contains 15 elements. Later, the

specification was refined to contain 3 more elements. The elements are

described in Table 1.2.

Name Description

Title The name of the resource

Creator

A person or an entity (e.g. an institution) that

created the resource or (in case of multiple

authors) is mainly responsible for the creation

of the resource content.

Subject

Topic of the resource content. For this

element, it is recommended to use a limited set

of values taken from some vocabulary. This

element serves for the resource classification.

For that reason, using some standard

classification system is recommended.

35

Description
More detail information on the content of the

resource

Publisher
A person or an entity responsible for

publishing the resource to be available

Contributor
Entities that contributed to the creation of the

learning resource content

Date
Date of the resource creation. In addition, this

element can refer to other events in the

resource lifecycle, such as publishing date.

Type

The type of the resource. It should refer to the

resource category, function or genre (not

resource digital format). The usage of a

controlled vocabulary is recommended.

Format

The type of the resource representation

(physical or digital). This element should

describe resource technical characteristics,

such as media format, length or specific

technical requirements for usage

Identifier

A unique identifier of the resource. The

identifier should follow the identification

system used in the particular context where the

resource will be used. For example, URL for

web resources, DOI for digital documents or

ISBN for books.

Source
A unique identifier of a resource that this

resource is derived from

Language
Language of the resource content. Standard

language codes according to ISO 639 are

recommended, e.g. en, en-GB, sr.

36

Relation
A unique identifier of a resource that this

resource is related to

Coverage

The scope of the resource content. As noted in

(Currier, 2008), this element can include

spatial location (place or geographic

coordinates), temporal period (year or date

range) or an administrative entity that has

jurisdiction on this resource. The values

should be taken from controlled vocabularies.

Rights

Intellectual rights on the resource. The

element specifies information such as

Intellectual Property Rights, Copyright and

various Property Rights. The element itself

contains this information or references another

service that provides such information.

Audience
Persons or entities that the resource is

intended to.

Provenance
This element records all changes made on the

resource during its lifecycle with regard to

the ownership on the resource.

Rights Holder

A person or an entity that holds the ownership

on rights over the resource. The owner should

be uniquely identified. The recommendation is

to use some global identifier such as URI

Table 1.2. Dublin Core elements

All Dublin Core elements are optional. Due to its simplicity, Dublin Core was

relatively early adopted in the community. Since it is designed as a general

metadata model, it has been used in various domains. In this research, we are

mainly focused on using Dublin Core to represent characteristics of

educational resources.

37

Since Dublin Core elements can be applied to any resource, they are

appropriate for describing educational resources. Still, the basic Dublin Core

model does not have specific elements related to the educational domain.

There are ongoing efforts to include education-specific elements in the Dublin

Core specification. The goal of Dublin Core Metadata Initiative is specifying

metadata that lead to support cross-domain resource discovery on the Internet

(Weibel and Koch, 2000). The community is developing the DC-Education

Application Profile. Dublin Core Application Profile (DCAP) is a framework

for extending basic Dublin Core model with domain-specific elements to

design metadata applications for maximum interoperability and reusability

(Nilsson , Baker & Johnston, 2008). More details on DCAPs are given in the

next subsection. In this part of the text we will present the current state of the

ED-Education Application Profile project. Although, the project is still not

completed and there is no the final version of this profile, it should be noted

which elements the profile is intended to contain. Figure 1.3 (Currier, 2008)

presents the profile elements.

Figure 1.3. DC-Education Application Profile (Currier, 2008)

It should be noted that DC-Education Application Profile is not intended to

describe educational resources in any particular domain. Although it extends

the basic Dublin Core model with educational-specific elements, it still covers

all educational resources besides their domain. In that context, the metadata

model represented using this profiles stands at the same abstraction level as

IEEE LOM.

mailto:mini@nada.kth.se
mailto:Pete.Johnston@eduserv.org.uk

38

The main requirements set for DC-Education Application Profile were to

support resource discovery, educational use of resources and profile

extensibility. The authors of the profile identified four groups of properties

that should find the place in the profile. The first group contains elements that

refer to educational resource audience. Different elements are created for this

purpose, such as audience educational level, age range, language that intended

users speak, etc.

The elements that relate to the instructional aspects of educational resource

belong to the second group. Some of the elements from this group are

instructional method, typical learning time and resource type (in the meaning

of its educational purpose, not physical representation). The third groups

relates to learning outcomes. This group contains elements such as learning

goal and course that the resource was used in or created for. The last group

contains the elements that refer to the student feedback on using resources.

Elements that contain user comments, reviews and ratings are added in this

group.

With regard to the profile structure presented in Figure 1.3, the above

mentioned elements are defined within the Resource, Audience and Outcome

concepts. For information stored within the model, the profile allows

specifying an authority that entered the particular information. This is done by

using the concept of Agent. Also, regarding the resource usage, the profile

separates intended plan from its realization. For this reason, there are two kind

of relationships between concepts. IsIntendedFor models the planned purpose,

while the WasUsedFor relationship describes the actual usage of the resource.

Just like IEEE LOM, Dublin Core model can be represented in different

syntax. The most widely used syntax bindings are those for XML and RDF.

An example of an educational resource described by Dublin Core metadata

represented in XML syntax is shown in Listing 1.2 .

39

Listing 1.2. Educational resource metadata in accordance with Dublin Core specification

1.2.2. Domain-specific metadata

In this subsection we discuss representing domain-specific metadata about an

educational resource. There are different ways to include this type of

information in the resource metadata:

1. Domain-neutral metadata sets can be customized for a particular

domain or

2. New metadata sets for a particular domain can be designed

In the following text we present both approaches. We illustrate designing new

domain-specific metadata sets by presenting ACM Computing Classification

System and Mathematics Subject Classification, as two specifications that

describe educational resources from the computer science and mathematics

domain, respectively.

1.2.2.1. Customization of domain-neutral metadata sets

As we mentioned, the first approach for describing domain-specific semantics

of an educational resource is to adapt some domain-neutral metadata set to a

particular domain. This is possible with two domain-neutral metadata sets

described in the previous subsection. Both IEEE LOM and Dublin Core

provide the creation of application profiles. Application profile has been

defined as "an assemblage of metadata elements selected from one or more

metadata schemas and combined in a compound schema" (Duval et al., 2002).

<dublinCore>

 <title>Eclipse environment screenshot</title>

 <author type='teacher'>John Smith</author>

 <subject scheme='gmgpc'>Web programming</subject>

 <objectType>image</objectType>

 <form scheme='IMT'>image/jpeg</form>

 <identifier type='URN'>

 rs.ac.uns.ftn.kzi.wp/peo

 </identifier>

</dublinCore>

40

In case of IEEE LOM, application profiles consist of subsets of the basic LOM

elements compound with the best practices and recommendations for the

usage of the elements. By limiting the whole model to a specific subset, only

elements relevant in a particular domain will be used. Various application

profiles for IEEE LOM have been developed so far.

CanCore is a subset of LOM designed to promote better adoption of IEEE

LOM by focusing on the most important elements only to facilitate the

indexing of learning objects (Friesen, 2005). Among 76 elements that IEEE

LOM originally contains, CanCore recommends usage of 39 elements only.

Within CanCore MetaData Initiative, the set of best practices and

recommendations for the elements usage is identified. UK LOM Core

(Campbell, 2007) is another application profile for IEEE LOM which is

designed to optimize LOM for UK educational system. It contains guidelines

how to use LOM elements in the context of British education. The whole set

of elements is classified into three groups that indicates is an element

mandatory, optional or optional-recommended, respectively. Also, there is

ANZ-LOM (Education Services Australia, 2011) as LOM application profiles

for Australian education. It specifies region-specific vocabularies that should

be used in Australian educational resources for the values of the LOM

elements. Similarly, the application profiles for other countries, such as

France, Netherlands and Greece, have been developed so far.

Obviously, such an approach with creating subsets of the existing metadata

model does not introduce any additional information. Such information can be

included in IEEE LOM by extending it. For example The Learning Federation

Schools Online Curriculum Content Initiative (2002) have presented a new

conceptual scheme based on IEEE LOM. The schema extends LOM by

including new elements, as well as incorporating elements from other popular

specifications such as Dublin Core.

With regard to Dublin Core, it allows creating application profiles which

represent arbitrary data models that are added as an extension to the basic

Dublin Core metadata model.

Coyle and Baker (2009) explain that Dublin Core application profile should

specify:

41

1. Functional Requirements - the purpose of introducing the application

profile

2. Domain Model – concepts and relationships between them that are

described with this additional metadata set

3. Description Set Profile and Usage Guidelines – specification of

metadata elements, as well as rules for their use

4. Syntax Guidelines and Data Formats – the syntax binding for

representing information stored within the model

The process of creation of a new Dublin Core application profile is

systematized in September 2007 at the International Conference on Dublin

Core and Metadata Applications in Singapore, resulting in the Singapore

Framework for Dublin Core Application (Nilsson , Baker & Johnston, 2008).

The framework specifies the components necessary for documenting an

Application Profile. The components are shown in Figure 1.4 (Coyle

and Baker, 2009).

Figure 1.4. Singapore Framework for Dublin Core Application Profiles (Coyle and Baker,

2009)

mailto:mini@nada.kth.se
mailto:Pete.Johnston@eduserv.org.uk
mailto:kcoyle@kcoyle.net
mailto:tbaker@tbaker.de
mailto:kcoyle@kcoyle.net
mailto:tbaker@tbaker.de

42

We can notice that the above mentioned four components of an Application

Profile are represented in the framework. The first step while creating an

Application Profile is defining the functions that the profile should support.

Also, in this phase, the functions that are out of the scope of the profile should

be identified. The domain model is an entity-relationship model built on

previously defined requirements. It should be created using the existing

models developed within the community of that domain. The domain model

is then converted to the exact elements of the application profiles. The

elements are defined in accordance with the above described DCMI Abstract

Model. The element values should be chosen from the vocabularies that are

established in the domain. If the Application Profile requires binding to some

specific syntax, which is different from the already supported syntax bindings

for the basic Dublin Core model, the application-specific bindings can be

specified as the last step. Additionally, usage guidelines can describe how to

use the properties from Application Profile for representing resources from the

domain.

1.2.2.2. ACM Computing Classification System

ACM Computing Classification System (Association for Computer

Machinery, 2012) is used to classify content in the field of computer science

as a poly-hierarchical ontology that can be utilized in semantic web

applications. The classification has been designed in order to facilitate the

search for related literature, ACM’s Digital Library and other online resources.

The first version of the classification appeared in 1964. Since then, the

classification has gone through multiple revisions. The last one, made in 2012,

use a new poly-hierarchical ontology appropriate to be used by semantic web

applications. The old letter-and-number coding system is no longer being used

from this version.

The classification describes content using (maximum) five levels of

hierarchically organized categories. The full list of categories is publicly

available at (Association for Computer Machinery, 2012). The categories

reflect the state of the art of the computer science domain. The top level

categories are General and reference, Hardware, Computer systems

organization, Networks, Software and its engineering, Theory of computation,

Mathematics of computing, Information systems, Security and privacy,

Human-centered computing, Computing methodologies, Applied computing,

43

Social and professional topics, and Proper nouns: People, technologies and

companies.

Table 1.3 presents an example of an educational resource described by the

ACM classification.

Name An Introduction to the OWL Web Ontology

Language

URI www.cse.lehigh.edu/~heflin/IntroToOWL.pdf

ACM level 1 Information systems

ACM level 2 World wide web

ACM level 3 Web data description languages

ACM level 4 Semantic web description languages

ACM level 5 Web Ontology Language (OWL)

Table 1.3. Educational resources classified by ACM Computing Classification System

1.2.2.3. Mathematics Subject Classification

Mathematics Subject Classification MSC (Narayan, 2010) is an

alphanumerical classification scheme which is based on the two major

mathematical reviewing databases, Mathematical Reviews (MRDB) and

Zentralblatt MATH (ZMATH). The classification includes all the branches of

both pure and applied mathematics, i.e.: probability and statistics, numerical

analysis and computing, mathematical physics and economics, systems theory

and control, information and communication theory. (De Robbio, Maguolo

and Marini, 2002).

44

After its first version in 1940, MSC has undergone many corrections and

additions. The main objective of this classification of items in the

mathematical domain is to help users finding the items of potential interest to

them from anywhere that makes use of this classification scheme.

The MSC structure consists of three levels. Not all levels are mandatory. An

MSC record can be two, three or five digits long, depending on how many

levels of the classification scheme are used. The classification has been

designed so that the items from the MRDB and ZMATH databases were coded

by alpha-numerical values. Each item was mapped to one primary

classification representing its principal contribution. If an item contributed to

different areas, the most important contribution is chosen.

First level identifies the main mathematics area that a subject belongs to. The

categories in this level represent five main mathematical areas encoded by two

digit numbers, as shown in Figure 1.5 (zbMATH, 2010).

45

Figure 1.5. First-level categories of Mathematics Subject Classification (Zbmath.org, 2017)

These five main areas are:

46

1. General/foundations (starts from 00)

2. Discrete mathematics/algebra (starts from 05),

3. Analysis (starts from 26),

4. Geometry and topology (starts from 51)

5. Applied mathematics (starts from 60)

Second level categories further classify the categories from the first level. The

categories of the second level are encoded using a single letter from the Latin

alphabet or a special second level code. The second level code is given in a

form of “-xx”, where xx represents two digits.

An example of representing second level categories for the Group theory and

generalizations top-level category is shown in Table 1.4.

Code Title

20-00 General reference works

20-01 Instructional exposition

20-02 Research exposition

20-03 Historical

20Bxx Permutation groups

20Cxx Representation theory of groups

20Dxx Abstract finite groups

Table 1.4. An example of the MSC second level categories

https://zbmath.org/classification/?q=cc:20-00
https://zbmath.org/classification/?q=cc:20-01
https://zbmath.org/classification/?q=cc:20-02
https://zbmath.org/classification/?q=cc:20-03
https://zbmath.org/classification/?q=cc:20B
https://zbmath.org/classification/?q=cc:20C
https://zbmath.org/classification/?q=cc:20C

47

Third level contains the most specific categories, usually corresponding to a

specific research area. Table 1.5 illustrates the third-level categories for the

second-level category Representation theory of groups.

Code Title

20C34 Representations of sporadic groups

20C35 Applications of group representations to physics

20C40 Computational methods

20C99 None of the above, but in this section

Table 1.5. An example of the MSC third level categories

1.3. Repositories of educational resources

In this subsection we give a brief overview of different software systems that

provide availability and management of educational resources. Numerous

systems for this purpose, commonly named as learning object repositories,

have been developed so far. These systems are mostly implemented as public

internet repositories which store educational resources and/or metadata about

them.

MIT OpenCourseWare (OpenCourseWare, 2001) is such a repository which

allows free download of learning material used in courses from Massachusetts

Institute of Technology. MIT was a pioneer in the job of publishing all the

university courses online. Its initiative influenced other similar projects from

the universities all across the globe.

Similarly, Carnegie Mellon University within its project Open Learning

Initiative (OLI) (Oli.cmu.edu, 2017) provides open access to the learning

material from the electronic courses taught at this university. The material

cannot be downloaded, but it is accessible online within the web application

of OLI University.

48

The Open University within its project OpenLearn (OpenLearn, 2017), it has

developed a repository with more than 1000 courses from this university.

Besides courses learning material which can be accessed on the project

website, a user can download the complete course in different formats.

A large number of institutions have a local repository which provides public

access to their courses. OpenCourseWare (OpenCourseWare, 2001) gathers

such local repositories into a single global repository. This repository currently

offers courses from 79 institutions on 26 languages. The repository does not

actually store course material, but rather contains a collection of links to

external resources stored within various online repositories.

Besides previously mentioned repositories related to formal educational

institutions, there are also independent repositories.

MERLOT (Merlot.org, 1997) is a free and open online community that gathers

educational institutions, teachers and students within the field of higher

education. It is independent of any particular educational institution. They are

focused on promoting the community for sharing learning material and

experiences. The community has been developed a large number of

educational resources. The resources are evaluated by the community

members. With regard to the format of educational resources, there are no any

specific constraints.

Curriki (Curriki, 2017) is another independence repository. It is focused on the

primary and secondary education. The main goal of the project is to provide

equal educational opportunities beside the geographic location through

allowing public access to the high quality learning material. The material can

be published as text, images, audio or video files.

OpenStax (Cnx.org, 1999) is another popular repository of educational

resources. The repository is intended for all kind of courses regardless of the

age level or the domain. The learning content is represented using textual and

multimedia formats. Also, the complete courses can be downloaded as a

textual document or an archive file.

Another form of providing learning material to a wide audience, especially

popular in recent years are Massive Open Online Courses (MOOC). MOOCs

replicate classical educational settings in the online environment, meaning that

49

besides learning material they support scheduled lectures, assessments, as well

as communication and collaboration among participants. In that regard,

MOOCs tend to be much more than just repositories of learning content.

Instead, they are trying to cover all the educational activities, such as

evaluation, collaboration etc.

Some popular MOOC repositories nowadays are edX (edX Inc, 2012),

Coursera (Coursera Inc, 2017). Udacity (Udacity Inc., 2011) and Udemy

(Udemy Inc., 2010).

1.4. Model-driven engineering

The software architecture proposed in this research relies on the techniques of

the model-driven engineering (Kleppe, Warmer and Bast, 2003). In short, this

technique relies on the development of domain-models which describe system

data and behaviour at different abstraction levels (Brambilla, Cabot and

Wimmer, 2012).

1.4.1. The concepts of the model-driven approach

This approach to software engineering is commonly named the Model-driven

approach (MDA). MDA is “a way to organize and manage system

architectures; it is supported by automated tools and services for both defining

the models and facilitating model types” (Brown, 2004).

The MDA supports different types of application and platforms by convert

platform independent model to platform specific model. Figure 1.6 shows the

basic principles of the model-driven engineering.

50

Figure 1.6.Model-driven architecture (Bizonova, 2007)

This approach to software development uses source domain models as a basis

for automatic generation of target models. The source model describes system

structure and behaviour at different abstraction levels (Brambilla, Cabot and

Wimmer, 2012). As shown in the figure 1.6 (Bizonova, 2007), the process of

developing an application using the model-driven approach starts with

developing a platform-independent model (PIM), which is usually called the

source model. The source model is considered as platform-independent since

it is focused on representing the domain knowledge and does not deal with the

application implementation details. A system may be defined as a platform-

independent model through a Domain Specific Language. For example, Poole

(2001) noted that the platform-independent models are initially expressed in a

platform-independent modelling language, such as UML.

The PIM may then be translated to one or more platform-specific models

(PSMs) for the actual implementation, using different Domain Specific

Languages, or a General Purpose Language like Java, C#, Python, etc. The

translations between the PIM and PSMs are normally performed using

automated tools, like model transformation tools (McKay, 2017). Hence, the

source model, as an abstract representation of the system, serves as the basis

for the programmatic generation of the final software application. The final

software application represents the target model which is obtained by

51

transforming the source model using a set of transformation rules. The target

model is platform-specific and contains the source code of the software

product.

On this way, instead of being focused on algorithms and programming, the

developer creates an application by designing a source model that represents

the domain knowledge. After the definition of the transformation rules, the

target model which represents the final software application can be

automatically generated. Such programmatic generation can increase the

productivity, as well as provide system portability, since based on the same

domain model, different platform-specific target models can be generated.

Also, separating the representation of the domain knowledge from the

implementation details facilitates the involvement of domain experts in the

software design phase.

Some important principles of MDA have been remarked in a recent study by

Brown (2004):

1. Expressed models must be introduced in a well-defined notation for

enterprise-scale solutions

2. A system must rely on a set of models which will be transformed into

other models

3. To facilitate meaningful integration and transformation among models,

a formal underpinning to describe models in a set of metamodels is

required. Goede and Irizarry (2008) stated that “By describing these

models through a set of meta- models, transformation amongst models

is facilitated, ultimately resulting in code generation”.

In general, there are three different types of source models asserted in previous

study by (Goede and Irizarry, 2008):

1. The model contains the business specifications

2. the model that represents the high level details of the platform

3. The model includes technical details of the target platform.

52

The MDA approach introduces a conceptual framework and standards to

express models, model relationships, and model-to-model transformations.

Various standards are providing the foundation for MDA. Friesen (2003)

enumerates some of them Unified Modeling Language (UML), followed by

related standards which are (Meta-Object Facility (MOF), XML Metadata

Interchange (XMI), MOF Query/Views/Transformation (QVT) and Model to

text transformation language (MOFM2T)).

With regard to the abstract nature of a source model and the implementation

details contained in a target model, three main ideas are highlighted by Brown

(2004):

 Model classification – the source models can less or more explicitly

represent the aspects of the target platforms. This can be the criteria for

the classification of different source models. Some models include

information on constraints that must be followed with regard to the

target platform (such as hardware requirements, multilanguage

supports, etc.), while other models can stay focused on the domain-

models with leaving the implementation details of the target platform

out of the scope

 Platform independence – the “platform” can be quite ambiguous term

and can be considered in different ways when setting the “platform

independence” as a development goal. Platform can be the complete

final software application, but also the software environment where the

application runs. In the second case, the operating system or virtual

machine environment, such as Java Virtual Machine or .NET Common

Language Runtime, are considered a platform.

 Model transformation and refinement – the model transformation is the

most important part of the model-driven approach. The benefits that

MDA can bring to the software development strongly relates to the

definition of transformation rules between source and target models.

By following the best practices and conventions in designing a source

model, as well as choosing a widely accepted formalism for

representing this type of model, the transformation can be done in more

straightforward way. Karakostas and Zorgios (2008) gives an example

of expressing source models in UML and implementations in J2EE.

53

The transformation between these two models can be done by “well-

understood UML-to-J2EE transformation patterns that can be

consistently applied, validated, and automated”.

A modeling paradigm is effective if its models make sense from the point of

view of a user who has already been familiar with the domain, and also with

implementing systems. The models are developed through extensive

communication among product managers, designers, developers and users of

the application domain. As the models approach completion, they enable the

development of software and systems. Since the developers realized that the

modelling process is important to the success of every enterprise-scale

solution, via the transformation process from model to model and from model

to code, MDA guarantees numbers of advantages.

Alhir (2003) explains that “MDA applies platform-independent models and

platform-specific models to sustain and leverage investments in requirements,

technologies, and the lifecycle that bridges the gap between them as they

independently change. Such an approach generally leads to long-term

flexibility of implementations, integration, maintenance, testing and

simulation as well as portability, interoperability and reusability.”

Poole (2001) indicated that “The MDA has significant implications for the

disciplines of Metamodeling and Adaptive Object Models (AOMs).

Metamodeling is the primary activity in the specification, or modelling, of

metadata. Interoperability in heterogeneous environments is ultimately

achieved via shared metadata and the overall strategy for sharing and

understanding metadata consists of the automated development, publishing,

management, and interpretation of models”.

Bizonova and Ranc (2007) asserted the benefits that developers can get by

using MDA:

 increasing flexibility by separating model design decisions from

decisions related to the platform implementation. On this way, the

further changes in the model design are facilitated

 the communication with domain experts and end-users is improved

since it is gathered around the abstract source models which hides the

implementation details that they are not familiar with

54

 MDA promotes using standard specifications languages so that the

final software platform can be generated in a programmatic way

Moreover, Goede and Irizarry (2008) enumerate another benefits for

developers and business leaders when using MDA:

 MDA reduces the development costs, as well as the time needed for

new applications

 The systems are better adapted for different platforms, since different

platform-specific models that fits the needs of a particular platform can

be developed

 The existing systems can be modified more efficiently by introducing

changes into the source model which are then programmatically

propagated to the target model

 MDA enables development of industry specific applications that

reflect the requirements of a particular domain. These requirements

are represented within the source model

 MDA enables all the participants in the software development process

to use languages and concepts they are familiar with. Each participant

is involved in the specific development phase depending on his/her

role in the team. E.g. the domain experts will be involved in designing

the source model by using a notation easily recognized by domain

experts. Such an approach improves the communication and

integration within the team.

Some extra benefits of using MDA are noted by Brown and Conallen (2005),

namely:

 MDA promotes use of best practices, design patterns and commonly

accepted architectural designs

 MDA makes the development more predictable, since it is based on

iterative source-to-target transformation cycles

55

1.4.2. Model-driven approach in practice

With regard to the model-driven engineering techniques used in the

application development process, it has been widely used so far. Fowler and

Parsons (2011) gives an overview of Domain Specific Languages (DSL).

DSLs formally describes concepts from a particular application domain. In the

model-driven approach, DSL usually serves as a source model in generating a

final software solution. DSLs enable specifying different application features,

such as data model, dynamic behaviour, custom operations, usage constraints,

etc. Consequently, a DSL can have a complex structure which can be handled

by experienced programmers only.

For that reason, some researches tried to get process of designing domain

model closer to domain experts. This can be done by abstracting application

technical details from them through representing domain model visually.

Different solutions in using diagrams when working with DSLs can be found

by (Cook et al., 2007; Dejanovic et al., 2010; Nguyen, Qafmolla, and Richta,

2014).

Another solution is using application mockups (wireframes) for representing

application model and features (Rivero et al., 2014). Given that on this way

the domain model is represented through a graphical interface prototype,

domain specialists with no technical knowledge are involved in the model

design phase more easily. In this approach, the application mockups must be

given in the format appropriate for further processing. Researches presented

by (Buchmann, 2012; Coyete et al., 2007; Coyete and Vanderdonckt, 2005;

Plimmer and Apperley, 2004) deals with converting hand-drawn mockups into

format that represent them unambiguously.

Besides the formal method for representing domain knowledge, it serves as a

basis for generating a final application. Different code generators has been

developed so far. Recently, a popular code tool for code generation is Yeoman

(Yeoman, 2017). It facilitates the process of creating a new application by

automatically setting up file structure, build process, application dependencies

etc. Yeoman is neutral with regard to the technology used in a final application.

Rather, different code generators that support generating application in

particular technologies can be used on top of Yeoman.

56

The Yeoman generators can be classified in two groups, depending on whether

a generator deals with domain-specific application data. Generators from the

first group do not take domain-specific data as input, but rather they extend

basic Yeoman features to generate the project structure which is more

appropriate for a particular technology. The advantage of this type of

generators is that they are usually simple for use and require just a single string

as input, since they do not need domain model for code generation. Still, the

generated application is not runnable, since it lacks domain data. An examples

of this type of Yeoman generator is Angular generator (Yeoman, 2017).

The second group of generators receive domain model as input. Based on the

domain model, the fully functional application can be generated. The

generator produces code that works with domain data, as well as with some

general application features, such as security and logging.

JHipster (Jhipster, 2013) is a very popular generator of this type. The

disadvantage of this approach to generating software application is that an

input point is application data model. This means that the visual behaviour of

the application is not specified in the model. Such an approach usually leads

to generic and uncustomized user forms. Also, as explained above, domain

specialists are involved more easily if they can design application mockups,

instead of designing the data model directly.

Generators that work with the Yeoman tool lacks customization during the

code generation. The application code that will be generated is mostly

predefined which means that all the generated applications will look the same.

Generic engines are designed to provide more flexible solution enabling

programmers to customize how the final application will behave (Cerny,

2013). This is especially important in the enterprise systems that must answer

to strict demands with regard to the application performance, as well as user

interface. Using generic engines facilitates the adoption of agile software

development techniques. The need for constant changes in the application

design, makes static and inflexible code generators inappropriate.

1.5. Research motivation and goals

In general, software systems for managing educational resources face two

challenges. At first place, they should support some general metadata set to

57

allow management of educational resources that belong to different domains.

On the other hand, it is necessary to describe parts of resources’ semantics

which are domain-specific. It can be quite difficult to implement a software

application which contains predefined metadata sets for various domains.

Even if such application with various initially supported metadata sets would

be implemented, still there is a problem with further adding of new metadata

sets. With statically defined metadata sets, an application would not be

appropriate for modifications of existing metadata sets as well as for

describing the semantics of educational resources in an entirely new domain.

The goal of this research is to enable dynamic customization of metadata sets

that a software application for the management of educational resources

supports. The idea of the research is revolving around allowing users to define

metadata sets on their own. In this way, a user can customize the application

for describing educational resources semantics in his/her domain. Since

users are mostly unskilled for developing an application for managing

educational resources according to their models, our goal is to provide an

executable platform which would generate the final software application

programmatically. Such solution ensures that users will be able to manage

educational resources using the semantics from the specific domain with no

need to develop or order a new software application. The executable platform

would then provide a dynamic adaptation of metadata sets to the required

domain.

In accordance with the above mentioned, we formulated the hypothesis of our

research: In order to provide the management of learning objects which are

described by non-predefined domain-specific metadata sets, it is necessary to

create a system which can be easily adapted to manage learning objects in the

specific domain. It is possible to fulfill such requirement by implementing a

support for adding different domain-specific metadata models dynamically.

To achieve the research goal, we use the model-driven approach. As explained,

this approach enables generating target data model based on formally defined

source models. With regard to the implementing model-driven approach in the

management of educational resources metadata, the source model is a domain

model of the specific metadata set, while the target model is the

programmatically generated application for managing educational resources

according to the specified metadata set. The result of this research is an

58

executable platform for generating software application that provides

management of educational resources described by customizable metadata

sets. The platform is an extension of Kroki prototyping tool (Kroki team,

2018b) which has been built on the principles of model-driven engineering.

The rest of the text is organized as follows. The next chapter introduces the

Kroki tool which was a basis for implementing the model-driven approach in

this research. We present the architecture and main features of Kroki.

Chapter three is the main part of this text. It represents our platform for

managing educational resources. We present the created models of educational

resources, as well as the generated software application that provides the

management of educational resources in conformance with the created

models.

Chapter four is the case study. It presents an experiment we conducted in order

to verify the characteristics of the proposed software platform.

Concluding remarks will be given in the last chapter of the dissertation. We

will analyse pros and cons of the proposed solution. Finally, we will present

possible improvements of the solution, as well as general guidelines for future

work within this research.

59

2. Kroki tool

As a basis for implementing a model-driven approach in the management of

educational resources metadata, we decided to use Kroki software application

(Kroki team, 2018b), which is described in this section.

Kroki is an open source executable platform for generating prototypes of

software applications based on domain models. Its source code is available on

(Kroki team, 2018a). It is a prototyping tool which enables the cooperation of

different roles that participate in the development of business information

systems. The main idea behind Kroki is involving end-users in early phases of

the software development process. Such an approach should ensure better

communication with end-users in the requirement analysis phase, resulting in

less changes in later phases. The end-users are involved by enabling

requirements elicitation based on executable prototypes, using the means

familiar to the end users - drawing user interface (UI) mockups. On this way,

an application prototype is available to a user during the requirement analysis

phase which increases the comprehension what the final application will look

like.

Using mockups in the early development stages is not a novel approach by

itself. There are different techniques to manage the Software requirement such

as UML models, task analysis, and prototyping for fulfilling the needs of users

and their environments. Technological solutions allow the creation of

mockups. With a specific tool it is very easy to create mockups tools (Tiexeira

et al., 2014) to sketch the user interface of a final application. Filipović et al.

(2017) have explained that the mockups are then manually or semi-

automatically transformed to UI elements of the software application which is

developed. In contrast to that approach, mockups created by Kroki represent

the View component of the final application, meaning that sketching of

mockups creates the application user interface directly. In that context, Kroki

mockups have a twofold aim. Besides being used for the requirements

elicitation, Kroki mockups have important part in the design and

implementation phases as well given that they are basis for the automatic

generation of the final application.

60

2.1. Architecture

The components of the Kroki architecture are presented in Figure 2.1

(Filipović et al., 2017).

Figure 2.1. Kroki tool components (Filipović et al., 2017)

The architecture has been designed with taking development agility and reuse

as two main goals. The chosen model-driven approach ensures agility by

providing programmatic generation of a final software application. One can

get a fully-functional application with no need to develop it. Still, it is

necessary to design the application model. In order to save up user’s time,

Kroki provides a convenient graphical interface which enables making model

in an efficient way, even for the unskilled users. In addition, the model artifacts

can be reused across different models to reduce development time. Finally,

Kroki has a built-in support for configuring authentication and authorization

in the generated application, which is one of the common features needed in

any business application. By providing this feature in a flexible and

configurable way, Kroki saves the time needed for its manual implementation

from the scratch.

The ability of exporting and importing application models ensures that the

model created in Kroki can be reused in other similar applications, as well as

that the Kroki application model can be created on the basis of an imported

model which is created by another software tool.

61

Given that the Kroki tool is an executable platform for designing application

models as well as generating final applications based on these models, it

consists of two main components that are responsible for prototype

specification and execution, respectively.

The central part of the prototype specification component is the representation

of application mockups. The mockups represent the model of a business

information system. With regard to the formal representation of Kroki

mockups, Kroki uses EUIS (Enterprise User Interface Specification) DSL

(Domain Specific Language) for specifying user interfaces (UIs) of enterprise

applications at a high-level of abstraction (Perišić et al, 2011). The elements

supported by EUIS DSL are specified by its meta-model (EUIS DSL meta-

model component in the Figure 2.1.).

EUIS DSL has three concrete syntaxes, namely:

 mockup-based graphical syntax – represented by the Mockup editor

component

 UML-based graphical syntax – represented by the Lightweight UML

editor component, and

 textual syntax – represented by the Command Windows component

By supporting different formats for the application model, Kroki enables users

to design the model with respect to their personal backgrounds and

preferences.

Kroki’s mockup editor provides graphical syntax for specifying application

elements. It allows users to visually arrange application panels by specifying

data contained on the panels, as well as their presentation layout. This kind of

syntax is primarily intended for users without the background in information

technologies, but can also be used by software specialists to make their work

more efficient. Within the mockup editor, users manipulate graphical

components, whereby each component corresponds to a particular element

from the EUIS DSL meta-model.

Besides sketching mockups of the application forms, the model of a business

information system can be specified by using Kroki’s lightweight UML editor

62

which enables users to create application form. It can be executed by using

Kroki’s desktop or web engine (Kaplar et al., 2015). The exact graphical

notation is similar to the one used for UML class diagrams, enabling users to

define elements of a business information system and establish relations

among them. This kind of syntax is primarily intended for IT specialists with

strong modeling experience.

The third syntax provided by Kroki for specifying application model is the

textual syntax supported within Command Window component. This

component is a shell for textual commands that perform actions on EUIS DSL

model. This syntax formalism is reserved for the most skilled users who are

familiar with using command shells in getting more efficient.

More details on the features of the mockup editor, lightweight UML editor and

command window, a reader can find in the next subsection.

Besides the syntax used for designing an application model, the final result of

the model design phase is an instance of the EUIS DSL model, which can be

further used for the programmatic generation of the business information

system which graphical interface and data model are in conformance with the

designed EUIS DSL model. The mockup editor, UML editor and command

window are just different views on the same underlying EUIS DSL model.

This means that changes made through any of the mentioned components are

reflected to the underlying model. Consequently, all the changes introduced

through one of the components are immediately reflected to other two

components. Such automatic synchronization ensures that different users can

cooperate on the same model by analyzing and editing model in the component

they prefer.

The intended purpose of a designed EUIS DSL model is to be used by the

Kroki’s prototype execution component as an input model for the

programmatic generation of a business information system. Before we present

the details on the prototype generation and execution, it should be mentioned

that the created EUIS DSL model can be exported to a common format.

Namely, we support exporting the model to the XMI format which represents

the Eclipse UML2 (Filipović et al., 2017), it used by Eclipse Modeling

Framework (EMF) via Extensible Markup Language (XML) to exchange

metadata information (Boldt and Steinberg, 2006).

63

Exporting in such commonly used format provides the usage of designed

EUIS DSL model in a different context from generating a prototype of

business information system in Kroki. Similarly, Kroki supports importing

Eclipse UML2 model. This feature transforms input XMI model into EUIS

DSL model, which servers as a starting point for developing a business

information system using Kroki.

The prototype execution component relies on a previously designed EUIS DSL

model. More precisely, the data contained in this model are input parameters

for the set of different generators. The generators programmatically create

various files that represent different aspects of the business information

system, i.e. DB scheme represents the system database model, EJB describe

in-memory data model, XML UI spec contains information on the graphical

interface of the system, etc.

The files created by the generators are stored within the Application repository

component. Those are configuration files which are used by application

engines in the process of the generation of a business information system. With

regard to the supported engines, the first one provides generation of desktop

application, while the second one creates a web application. The engines parse

configuration data stored within the Application repository and use Code

exporter component to generate the program code of a business information

system. Depending on the engine, the code for the desktop or web application

is generated. Different programming languages can be supported by the Code

exporter component. Currently, there are exporters for Java and Python

programming languages. Besides the application program code for desktop or

web application, the exporter generates SQL code for creating relational

database schema of the application. The architecture supports various external

database management systems (DBMS) which are connected to the generated

application using corresponding drivers. In addition, if the external DBMS is

not specified, the internal embedded DBMS is supported. After the application

code is generated, Kroki executes it, resulting in the running prototype of a

business information system.

As mentioned, Kroki enables configuration of the user access rights in the

generated application. This is done by the Administration subsystem

component, which is implemented using role-based access control (RBAC)

methods, this subsystem enables registering application users as well as

64

mapping them to the specific roles in the application (Kaplar et al, 2015).

Further, for each role a specific set of allowed actions can be defined. The

whole process is done just by configuring application with no need to

implement the access control manually. The configuration is done using a

graphical interface which speeds up configuration and make it available to

users with less technical knowledge.

2.2. Features

This subsection presents the main features of the Kroki tool. Figure 2.2

presents the main window of the Kroki tool.

Figure 2.2. Kroki – main window

The window contains five sections, labeled with the corresponding numbers

in the figure.

Section 1 is a toolbar with the buttons performing different actions:

 Create, open and save the project

 Undo and redo

 Display current model in the UML Kroki editor

65

 Display administration panel for controlling access rights

 Generate and launch web application based on the current model

 Generate and launch standalone application based on the current model

Section 2 represents the project explorer. It is a hierarchical outline of projects

in the workspace. Each project contains multiple files which are also shown in

this section. Actions from the toolbar or context menu refer to the selected

element in the project explorer.

Section 3 shows the mockup editor for editing information and layout of the

particular model element.

Section 4 contains a panel that consists of two tabs. The first tab presents the

Command window that allows communication with the Kroki tool using

textual commands. The second one is Message log tab which displays log

messages about the progress of actions in the tool.

Section 5 is a tool palette for the mockup editor. It displays the elements that

can be added to the panel presented in the mockup editor.

As explained, Kroki represents the model of a business information system

using EUIS DSL. Instead of representing entities of an information system,

which is a common approach in other meta-models, EUIS DSL represents the

graphical components of an information system, such as fields, panels, etc.

Since each graphical component specifies data contained within it, the EUIS

DSL model simultaneously represent both data model and the model of

application graphical interface.

2.2.1. Mockup editor

Mockup editor is a primary option for representing EUIS DSL model

elements. It enables user to define graphical components of the application,

data presented on them, as well as visual layout of the data presentation.

The basic graphical component that Kroki recognized is the standard panel. A

Kroki project contains a set of standard panels, whereby each panel can be

edited using the mockup editor. The mockup editor is shown in Figure 2.3.

66

Figure 2.3. The mockup editor

The standard panel in the Kroki tool looks similar to the corresponding

window or web page in the generated application (it will be displayed as a

window in the stand-alone application, while in the web application its content

is presented in a form of a web page). The tool bar on the top of the panel does

not have a function in the design-time. It is rather present to give user a more

accurate impression on the final panel look. The central part of the panel is

reserved for input fields. The fields are added to the panel using the palette

shown on the right-hand side of Figure 2.2. Each field represents a single data

item that will be stored for the corresponding entity. In terms of the

information system data model, a standard panel corresponds to entity in the

system, while a field in the panel refers to an entity attribute. Hence, the

mockup editor actually presents a GUI component that will be used for editing

data of a particular entity in the generated application.

Different field types are supported, namely text box, text area, combo box and

check box. Text box field is the most commonly used field and it provides

entering a single line of text. Text area is intended for a longer text that spread

across multiple lines. These two fields allow entering free text. However,

sometimes is necessary to constrain input data on a limited set of possible

values. For this purpose, combo box field is used. Finally, if the field stores

the logical value (true or false), the check box field is used.

The mockup editor consists of mockup drawing area, UI component palette,

and property editor panels used for setting the properties of the panel fields.

The property editor is divided into two tabs: the first contains basic settings,

which can be adjusted by non-programmers; the second contains advanced

67

settings, intended for advanced users and developers. Unless the advanced

properties are set, defaults are used, so that prototype execution is always

possible.

For each field, numerous properties can be set. Field properties are displayed

in a separate panel shown in Figure 2.4.

Figure 2.4. Field attributes

The properties can be categorized in three groups (each showed on a separate

tab in the panel):

1.Basic options

 Label – the caption displayed next to the field

 Visible – is the field visible in the generated application

 Background/Foreground/Font color – the colors used when the field is

displayed

2.Advanced options

 Data type – data type that will be used for the storage. Possible values

are String, Integer, Long, Big Decimal, Date, and Email

 Display format –additional customization of the field value displaying

(e.g. date format)

68

 Mandatory – is it allowed for the field to be blank

 Disabled – is the field read-only. If the field is disabled, it will be

displayed, but the user could not enter any data

3.Persistent options (for specifying details on the field data storage)

 Label to code – how the field label corresponds to the name used in

program code for the field. If checked, the code name will equal the

label

 Column name – name of the database column that stores data from the

field

 Persistent type – database data type for the storage of the field value.

Possible types are char, varchar, text, integer, number, and decimal

 Limit - database column size for the field

 Precision – precision of the database column (used for the fields of

type decimal)

2.2.2. UML editor

As mentioned, the mockup editor is just one of the possible options for

specifying underlying application model. The second option is using the Kroki

lightweight UML editor. This editor provides modeling application entities

and their attributes using graphical UML-like notation. More precisely, it

models panels and fields that should be presented in a business information

system. In addition, it allows establishing relations among panels. Figure 2.5

shows the Kroki UML editor.

69

Figure 2.5. Kroki UML editor

The UML editor consists of six sections.

Section 1 is a toolbar with the buttons used mainly for navigation and

undo/redo mechanisms.

Section 2 is the already described package explorer for displaying workspace

content.

Section 3 is the property editor for the field selected in the diagram.

Section 4 is a main section that represents the canvas of the UML-like diagram

of application elements. It displays the elements, their fields as well as links

among elements.

Section 5 is a mini map of the canvas shown in section 4. Its purpose is

presenting a big picture of the whole canvas, as well as enabling quick

navigation to different canvas parts.

Section 6 is the tool palette that enables different actions on the diagram. The

actions include adding elements to the diagram, selecting the elements, and

creating relationships among them.

Elements on the diagram can be connected using the association links. The

association between diagram elements specifies that data presented in these

elements in the generated information systems are related. For example, if an

70

information system stores data on states and their cities, these two groups of

data will be presented on separate standard panels. Still, these data are related,

given that a city belongs to a particular state. In the generated application, it

will be possible to display the state which the selected city belongs to. This is

the Kroki feature named zoom form. In addition, it is possible to follow the

opposite direction of the relationship between states and cities. For the specific

state, a user can display all the cities located in it. Kroki names this feature

next form. An association between two panels in the Kroki UML editor is

shown in Figure 2.6.

Figure 2.6. Association between standard panels in the Kroki UML editor

Two important properties of an association link are labeled in the figure. The

label 1 marks the cardinality of the relationship. We can notice that there can

be many cities located in some state (it is 1:N relationship). The second label

marks the stereotype used for the relationship between these two standard

panels. In this example the stereotype is zoom, meaning that a user can display

the details on the state of the particular city.

As explained, the changes introduced into the model in the particular Kroki

editor will be reflected immediately to other editors. Hence, the zoom form

association between states and cities added within the UML editor will be

immediately presented in the Kroki mockup editor. This type of association

will be shown in the mockup editor as a link to the panel City within the panel

State. This is illustrated in Figure 2.7.

71

Figure 2.7. Association between standard panels in the Kroki mockup editor

Previously presented association between standard panels will present data on

separate panels with a link for navigation between them. In addition, Kroki

supports presenting related data within a single panel. The panel will present

the parent entity as well as the child entities related to this parent entity. Instead

of using the Standard panel stereotype for a diagram element, this method

requires setting ParentChild as the element stereotype. The panels that should

form parent-child hierarchy should be connected with the ParentChild panel

using association links. Figure 2.8 presents this kind of relationship in the

UML editor.

Figure 2.8. Parent-child association in the Kroki UML editor

Company

<<Standard Panel>>

-

-

-

-

number

name

address

active

: TextField

: TextField

: TextField

: CheckBox

Employee

<<Standard Panel>>

-

-

-

id

firstName

lastName

: TextField

: TextField

: TextField

CompanyEmployee

<<Parent Child>>

<<hierarchy level = 1>>

1..1

1..1

<<zoom>>

*

Employee

1..1

Company

<<hierarchy level = 2>>

1..1

1..1

72

The Parent Child panel presented in Figure 2.8 will be presented in the

mockup editor as a composite panel that contains both standard panels that

forms the parent-child association. Figure 2.9 presents this Parent Child panel

in the mockup editor.

Figure 2.9. Parent Child panel in the Kroki mockup editor

2.2.3. Command window

Command window is the third way how the underlying EUIS DSL application

model can be designed in Kroki. As shown in Figure 2.2, command window

is presented on a separate tab below the Kroki mockup editor. Command

window allows editing EUIS DSL application model using textual commands.

Three supported commands are:

1. make project – creates a new project in Kroki

2. make package – creates a new package in a project

3. make std-panel – creates a new standard panel

Each command receives input parameters that additionally describe the

command. An example of a command for creating new standard panel is

presented.

make std-panel "Workers" in "Resources/Human resources"

{textfield-First name, textfield-Last name, textarea-

Address, checkbox-Married}

73

The presented example creates a new standard panel named Workers within

the package Resources/Human resources. The panel will contain 4 fields, i.e.

First name, Last name, Address, and Married. First two fields are text boxes.

The third one is the text area, while the last one is the check box.

2.2.4. Administration subsystem

This subsection presents the support for authorization and authentication in

the Kroki tool. As mentioned, it is based on RBAC. According to RBAC

model, each user can take specific roles in the application. For the specified

roles, different permissions for executing actions on application resources can

be set.

An application generated from a Kroki application model has a built-in

support for setting access rights (Kaplar et al., 2015). The access rights are set

using the graphical interface within the administration subsystem. As

mentioned, the permissions are set on the application resources. Within the

generation process, the list of all application resources (forms, reports, etc.) is

generated. This list can be seen on a separate window in the application

subsystem. This window is shown in Figure 2.10.

Figure 2.10. The list of the resources in the Kroki administration subsystem

74

For the listed resources, specific permissions can be set. The permissions are

set using the form shown in Figure 2.11.

Figure 2.11. Setting permissions in the Kroki administration subsystem

In conformance to RBAC model, permission specifies which operation can be

executed on a specific resource. In the presented example, we define

permission for adding new cities in the application.

Specific permission is assigned to a set of user roles. User roles allows

grouping of users. Figure 2.12 presents the form for administrating user roles

in the administration subsystem.

75

Figure 2.12. Administering user roles in the Kroki administration subsystem

The application menus can be customized in conformance with user’s role. By

this, each user will be provided with different set of actions, depending on

his/her role. The menu customization is also done using GUI forms within the

administration subsystem. These forms are shown in Figure 2.13.

76

Figure 2.13. Customization of menus depending on the user roles

2.3. Generated application

 As mentioned, based on the application model created within Kroki editors,

Kroki can generate a software application for managing entities represented in

the model. It supports generating both stand-alone and web applications. Since

we are focused on the management of educational resources in online digital

repositories, we are going to present the features of a web application

generated using the Kroki tool.

The generated application provides the management of all entities contained

in the model. Although the entities can contain various information and bring

77

different semantic, the generated application manages all types of entities in a

uniform way. The basic component of user interface for managing any type of

entity is the standard panel. Standard panel for managing entity Organization

is shown in Figure 2.14.

Figure 2.14. Standard panel of a generated application (View mode)

The standard panel has been designed to display data and all available

operations so the user can choose a data item and invoke an operation on it

without memorizing commands. Standard operations common to all entities

are represented by buttons/icons at the top of the form. Operations common to

all entities include search (query by form), display, addition, update, and

removal. The standard panel has two different views. View mode presents a

list of all entities in the form of a table (Figure 2.14). A new entity can be

added to the list by switching the panel to Add mode. Add mode displays input

fields for a single entity previously selected in the table presented in a view

panel mode. Figure 2.15 presents the standard panel in the Add mode. Besides

for adding new entities, add mode is used for editing data of existing entities.

Figure 2.15. Standard panel of a generated application (Add mode)

78

Besides standard operations on the entities, the standard panel also provides a

set of specific operations represented by links/buttons on the right-hand side

of the panel.

Specific operations include complex data processing procedures associated

with the given entity (transactions), invocation of related (next) screen forms,

and invocation of reports (Milosavljevic et al., 2011).

Related forms are inferred from association links between entities defined

within Kroki UML model. Standard panel provides invocation of next forms.

The next form present entities which are related to the selected entity through

a 1:N association link. In other words, those are the entities that have the

relational database foreign key which references the selected entity. The

opposite direction of the association link is named zoom form. A zoom form

displays details on an entity that another entity points to. Figure 2.16 presents

a next and zoom form in the generated application.

Figure 2.16. Next and zoom forms in the generated application

79

3. Executable platform for the management of
educational resources metadata

In this research, we use Kroki as a basis for the development of the platform

for management of educational resources. The platform is presented in the

paper (Alhaag et al., 2018). We have extended Kroki to be used for modeling

different metadata sets for describing such resources. Based on the model, one

can get an executable, three-tiered application for administrating educational

resources which semantics is described by different metadata sets.

Since Kroki supports generating a prototype of a software application based

on different domain models, we decided to modify Kroki so that it can be used

for designing educational resources metadata models. Kroki itself provides

generating a prototype of an information system based on the previously

created application model. Such a prototype can be used to improve

communication with a client during the requirements analysis phase. We have

modified Kroki to generate a software application for managing educational

resources and their metadata, based on the different metadata models. Our

platform provides further adding of new metadata models which extend the

semantics of the already recorded educational resources. The functionalities

which are added to the already generated software application, as well as

previously defined semantics using initial metadata models will not be

affected by adding new metadata models. In this way, we have provided an

extendable application with dynamic metadata sets which, at the same time,

preserves the current features and models used in the application.

3.1. The platform architecture

An overview of the proposed platform is presented in Figure 3.1.

80

Figure 3.1. Platform overview

The first step in creating a new software application for managing educational

resources using our platform is designing a model of educational resources

and their metadata. It is done using the graphical tools described in the

81

previous section. We mentioned that our approach relies on the model-driven

engineering techniques which imply generating the target model based on a

source model. In this case, the source model is the model of educational

resources and its metadata designed within the Kroki tool. The target model is

the implementation of the final software application for the management of

educational resources metadata.

Based on the designed metadata models and their visual representation, the

proposed platform can generate the final software application. The platform

supports both generating desktop and web application. Since we want to

provide public access to our application for managing educational resources,

we are focused on generating the web application.

The platform will generate a complete three-tier Java web application. The

architecture of the generated application is illustrated in Figure 3.2

Figure 3.2. The architecture of the final application

The generated application has the client-server architecture with Apache

Tomcat (The Apache Software Foundation, 1999) used as a web server. The

data storage on the server side is implemented using a relational database.

Underlying database management system (DBMS) is configurable enabling

support for any DBMS which has appropriate JDBC driver implemented. The

82

server side is implemented using Java Enterprise Edition (Java EE) (Oracle)

technologies. In particular, the in-memory data are represented using

Enterprise Java Beans (EJB). The data are synchronized between memory and

database semi automatically using the JPA specification (Oracle). As the

concrete implementation of this specification, we use Hibernate library (Red

Hat, 2017). The server-side code is designed in conformance with the Restlet

framework (Restlet, 2017). This framework enables communication with the

client side using REST web services (Fielding, 2000). Restlet is a framework

for creating REST-compliant web services API in the Java web application.

The Representational State Transfer (REST) software architecture models a

system as a set of resources, where the predefined set of operations can be

performed on each resource. The resource represents data or functionalities

identified by a uniform resource identifier (URI). The resource is separated

from the concrete format used to represent it, meaning that different formats

can be used to represent the same resource. The most commonly used

operations on REST resources are create, read, update and delete, which

provide adding, retrieval, modification and removal of the entity, separately.

The REST architecture is in software engineering commonly used for web

services. A web service is a software system designed to support interoperable

communication between heterogeneous software components by using the

HTTP protocol, the service receives the request, processes it, and returns a

response. Lately, the most commonly used solution for implementing web

services is RESTful which is based on the REST architecture. RESTful

services (Tyagi, 2006) use the HTTP protocol for network communication

between software components. It is a stateless protocol which is in

conformance with the stateless design of REST communication. The standard

REST operations are provided using the corresponding HTTP methods (POST,

GET, PUT, DELETE ...). The resources can be transferred through the HTTP

protocol in different formats, mostly XML, JSON or HTML. The Restlet

framework provides Java classes for implementing RESTful web services.

The framework has been designed in conformance with the classic REST

architecture providing the classes for each REST concept, such as resource,

representation, component, etc.

With regard to the client side, the client application is the web browser. The

commonly used browsers are supported. The business logic executed on the

client side is implemented using the JavaScript programming language, while

the visual representation of the web pages relies on HTML and CSS

83

technologies. The client and server communicate over the HTTP protocol by

exchanging data in the JSON and HTML format.

3.2. Model transformation

At the process of getting the final software application, there are two main

approaches. The first approach is to generate the complete source code of the

final application. The main focus of this approach is saving developer hours

by programmatically creating the code that would have to be implemented

manually otherwise. The second one relies on using generic engines which

generate application components on the fly. Such an approach is mainly aimed

at designing generic solution that is more flexible and can be reused for

different applications. The software platform proposed in this research uses

the second approach.

The implementation has been done by using aspect-oriented programming.

This programming paradigm helps to modularize program code by using

aspects. Aspects are separate application components that can be externally

applied to different parts of the application. The aspects usually implement

functionalities that affect multiple parts of an application. By using aspects,

we avoid to implement the same functionalities multiple times. Instead, an

application code is enhanced with aspect, which externally adds specific

functionality into the application code. An example on using aspects is a

support for security or logging in an application. Such supporting

functionalities are needed in most application components and it would be

complicated if all the components should explicitly take a care on them.

The classic object-oriented approach on implementing reusable code

components is placing the code within functions that are available in different

application parts. The function requires to be explicitly called resulting in the

application code whose main logic is interwoven with the support for the

additional functionalities, such as security. Another classic object-oriented

technique is to use inheritance. The common functionalities needed within

different application components can be centralized within a base class. This

can lead to a complicated object hierarchy since the same base class should

probably be used across the whole application.

84

Aspect-oriented approach can provide the same level of reusability in a cleaner

way. Instead of being explicitly part of the main application code, aspects are

incorporated within that code in a declarative way. Such a way does not require

modification of the class to which we are applying the additional feature.

Rather, the supporting features are moved to aspects leaving the main

application code much cleaner.

With regard to using aspects in our solution, aspect-oriented programming has

been used for the transformation of the source model to the target web

application. More precisely, it has been used by our generic engine to capture

run-time points of interests within the application and apply the model-specific

features to the generic application code (Filipovic et al., 2015). In the rest of

this subsection we present more details on this topic.

The first step in the transformation process of the source model within our

platform is to create a generic enterprise engine that provides general features

that each enterprise information system should support. The features are later

adapted to be in conformant with the previously designed source model of the

application. For example, the generic engine provides the general functionality

of the standard panel, which is then adapted to manage the model-specific

data. The adaptation is done on the fly meaning that the engine does not

generate the final application source code. The engine adapts the generic

application using the data stored within the application repository. The

repository stores configuration files that contain information on application

source model (e.g. created panels, fields, associations, etc.). The repository

files are programmatically generated within the process of creation of the

target web application.

The repository structure is shown in Figure 3.3.

85

Figure 3.3. Application repository structure(Filipovic et al., 2015)

The repository structure contains two main parts. The static part of the

repository stores files that are model-independent. These files are the same for

each generated application and they are not subject of adaptation. This

includes the implementation of the core engine functionalities as well as look-

and-feel artifacts such as web pages layout, icons, images, etc.

There are three main subfolders within the static folder. The props folder

contains property files with global application settings. Model folder stores

XML files that configures generic application engine. In general, the whole

configuration defined within the application repository mostly relies on XML

files due to their machine readability. The model files mostly relate to the

mapping of programming language types to the GUI elements of the web page.

Folder gui holds data on the application graphical interface. There are separate

subfolders for the desktop and web application. For the web application,

HTML fragments that represent GUI components are stored. Also, the folder

contains the HTML files that represent the application web pages. Given that

this part of the engine is generic, only the templates of the web pages are

stored. The final web pages are created by combining these HTML templates

with data stored in the source application model. In addition, CSS files that

specify the application design can be found in this folder. The data common

86

for the both web and desktop applications are contained within the common

folder. Currently, those are only the application icons.

The generated part of the repository stores programmatically created files.

These files are model-specific meaning that they hold information stored in

the source model of the application. These are XML files that describe

application model. The same information, but in the different format are

already stored within the model created using the Kroki tool. Still, instead of

directly reading Kroki files, we decided to create the XML files as an

intermediate step. The reason is that our intention is to provide an independent

application engine that does not rely on the specific tool used for the model

specification.

This part of the repository has a similar structure as the one used for statically

created files. Just like the folder of the same name in the static part, the props

folder stores properties data that configures the application. In this case, the

data are related to the particular source model. The db_config folder stores the

configuration file that specifies the details on the database connection. It is the

XML file used by the Hibernate library (Filipovic et al., 2015) which is in our

application used for the communication with a database.

The most important programmatically generated files are those stored in the

model folder. These files holds information on the components created within

the source model.

The subdirectory ejb contains the specifications of the EJB beans used in our

application for describing entities from the source model. The description is

given as XML files. There is a separate file for each entity. The file specifies

the entity attributes. Different fields are specified for an attribute, such as

name, type, length, etc.

The panel subdirectory contains XML files that describe GUI panels in the

generated web application. Each panel contains a mapping to a particular

entity defined within the ejb folder. The panel will present data from the

entities which it is mapped to.

User rights for the generated application will be stored within the users folder.

Java enumerations used by the application code are listed in the enumerations-

generated.xml file. The file xml-mapping.xml specifies the mapping between

87

the names of EJB classes and their corresponding XML files from the ejb

folder. The specification of menus in the generated application is given in the

menu.xml file. By default, there will be a menu item for each entity. The menu

item directs a user to the standard panel presenting the corresponding entities.

The data stored in the application repository are used for configuring the web

engine that generates the web application. The architecture of the engine is

presented in Figure 3.4.

Figure 3.4. The architecture of the web engine (Filipovic et al., 2015)

The core of the engine, shown in the upper part of the figure, is used for

generating both web and desktop applications. In the lower part of the figure,

the components which are specific to the web engine are presented. The

architecture sets core functionalities loosely coupled with a concrete GUI

interface. This implies that only the view layer depends on the interface type.

The core package contains the main application class. This class is responsible

for moderating all the engine actions. The data managed through the

generation process are stored within the Cache class. The first step in the

generation process is parsing the configuration files stored within the

application repository. The parsers are implemented within the xml_readers

package. We can notice that there are separate parsers for different repository

88

components. The parsers create the instances of the classes defined within the

model package. The classes represent the elements from the application model

described in the previous section. There are three types of panels for presenting

application data, i.e. standard panel, parent-child panel and many-to-many

panel. The panels are defined using the previously described mockup editor.

The data shown on the panels are represented by the entities which are

instances of the EntityBean class. It should be noted that not all model data are

loaded by the parsers. Rather, only the mapping data are loaded by the parsers

initially, while the actual model data is loaded on demand.

The resources package contains components responsible for presenting web

content to the user. As explained, the web engine uses the Restlet framework.

The engine generates the Resource Restlet components responsible for the

RESTful communication between a web page and the back-end application.

The HomeResource resource is responsible for handling user login and

presenting the application main page. The content on the main page is

provided by the IndexResource resource. The actions on the main page are

handled by the ViewResource class. By communicating with the PanelReader

class, it provides presenting application panels as the web pages. The

PanelReader itself loads only the panel layout and standard controls. For

displaying the panel data, the PanelReader component must call the

EntityReader class which is associated with the corresponding EntityBean

instance. By combining the data retrieved by the PanelReader and

EntityReader components, the ViewResource component returns a web page

that should be presented. More precisely, a Freemarker HTML template is

returned. The template is later combined with the data stored in the database

to get the final web page that presents the exact data that the generated

application manages (e.g. the list of educational resources). On the presented

data, the standard Create, Update and Delete operations are supported by the

AddResource, ModifyResource and DeleteResource classes, respectively.

As mentioned, the default behavior provided by the engine can be adapted by

aspects. The Restlet resource provides the method prepareContent that can be

used for injecting additional aspect code. Using the dataModel resource

attribute an arbitrary data can be passed to the HTML page. An aspect can add

its specific data into this attribute. The whole process of generating the web

application and applying custom aspects is presented in Figure 3.5.

89

Figure 3.5. The process of generating the web application (Filipovic et al., 2015)

3.3. Model of educational resources metadata

This subsection presents created model of educational resources metadata. The

model is created using the tools presented in Section 2. The next subsection

describes the web application for the management of educational resources

metadata which manages resources in accordance with the model presented in

this section. Given that the proposed platform provides dynamic extension of

supported metadata sets, the application for the management of educational

resources is not limited to the modeled metadata sets.

Due to its size, we are going to present the model in multiple parts. The first

part of the model is shown in Figure 3.6.

90

Figure 3.6. The model of educational resources metadata (part 1)

The model presents standard panels that will be displayed to users in the final

application. As we can see, we organize educational resources into courses.

Each educational resource can be described using different metadata sets. The

presented part of the model contains ACM and MSC metadata sets. These

metadata sets are modeled in accordance with their characteristics presented

in Section 1. The combo boxes are chosen as graphical components for

displaying metadata fields, since the value set for fields is predefined.

In addition to the presented ACM and MSC metadata models, we defined the

application model for managing metadata according to the IEEE LOM model.

As mentioned, the metadata fields from this scheme are organized into nine

categories. Our model supports information from these categories. Figure 3.7

presents a part of the model for representing data from the categories

educational, general and rights.

91

Figure 3.7. The model of educational resources metadata (part 2)

As we can see, data from each category will be presented on a separate

standard panel. The fields on the panels correspond to the metadata elements

from these three categories in the IEEE LOM metadata schema (see Section

1). The elements that have predefined values are presented using ComboBox

panel fields. A separate panel named LearningObjectMetadataSchema

connects all panels that present IEEE LOM data. Just like ACM and MSC

panels, this panel is connected with the LearningObject panel, which allows

user to open the panel for editing IEEE LOM data when displaying data on the

specific educational resource.

The Figure 3.8 presents a part of the model that specifies IEEE LOM category

technical.

92

Figure 3.8. The model of educational resources metadata (part 3)

The category technical specifies technical characteristics of a learning object.

The characteristics will be displayed in the application within the Technical

standard panel. As specified by IEEE LOM, the category technical also

specifies the requirements that must be fulfilled for using a learning object.

The requirements are in our model defined within a separate standard panel. It

should be noted that the IEEE LOM model allows specifying a composite

requirement by grouping of multiple requirements using the OrComposite

element. A composite requirement is fulfilled if at least one of the containing

requirements is satisfied, meaning that the requirements form the OR logical

relation. This is in contrast with adding multiple requirements without

grouping, where the AND relation will be formed between them requiring that

all the requirements must be fulfilled in order to use the learning object. Our

model currently does not support such relations between standard panels to

present the IEEE LOM OrComposite element. Hence, we only support

defining multiple requirements using the AND logical operator.

Figure 3.9 presents life cycle and annotation categories in our model.

93

Figure 3.9. The model of educational resources metadata (part 4)

The information related to the life cycle of a learning object will be managed

on the LifeCycle standard panel. The entities that contributed to the learning

object within its life cycle are listed on the Contribute standard panel. The

additional comments that will be recorded for a learning object will be

displayed on the Annotation standard panel.

IEEE LOM enables storing additional information regarding the metadata

record itself. This category is named meta-metadata and does not describe

learning object, but the metadata used for describing it. The support for this

category in our model is shown in Figure 3.10.

94

Figure 3.10. The model of educational resources metadata (part 5)

The meta-metadata category is presented by the corresponding standard panel.

The only field presented on this panel stores information on the metadata

schema used for describing learning the object. Similar to the lifeCycle

element, a user can manage information on the entities that contributed to

describing learning object with metadata. This information is displayed within

the Contribute standard panel. The metadata record that describes the learning

object is identified with information contained on the Identifier panel.

The relations among educational resources can be stored in accordance with

the IEEE LOM metadata scheme using the part of our model presented in

Figure 3.11.

95

Figure 3.11. The model of educational resources metadata (part 6)

We can notice that the relation is formed with another learning object managed

by our application. The Relation standard panel will have zoom link to the

learning object. Using this link a user will select the related learning object.

Different kinds of relations are supported by IEEE LOM. The kind of a relation

is defined by the Kind field in the Relation standard panel.

With regard to the classification category from IEEE LOM model, its purpose

is to classify learning object according to the specific taxonomy. IEEE LOM

provides defining custom taxonomies. Given that our platform already

provides creating custom metadata models that can be used for the

classification of learning objects, we did not add support for this IEEE LOM

category in the presented model. The IEEE LOM classification elements are

less expressive than our application model. Hence, instead of following IEEE

LOM model, it is more appropriate to create custom classifications by adding

arbitrary entities in our model, just as we did with the ACM and MSC

classifications (see Figure 3.6).

It should be noted that our platform still does not have a full support for

displaying 1:1 relation between two entities. One way to present such relation

in the application is to display data from both entities within the same standard

panel. Still, there is a lack of support for presenting data on two separate

panels. Dividing data into separated panels can be achieved by establishing

the zoom association between two standard panels, but such association

represents 1:N relation between entities. This means that the user will be

96

allowed to add more than one related entity, although the relation is defined as

1:1. Also, the standard panel will display a list of entities, but the list will

always contain a single row.

A better support for 1:1 relations would improve the management of IEEE

LOM metadata elements in the application. The IEEE LOM metadata model

describes each learning object by 9 main categories of characteristics, where

some of the categories are designed to appear only once in the object’s

description. Namely, those are categories general, lifecycle, technical and

rights. These categories will be handled in the application in the same way like

other categories that can be presented multiple times for the learning object. It

means that the user will e.g. get a list of the categories general, although there

should be only one such category for a learning object.

As described, besides the UML editor, the application model can be designed

using the mockup editor. The model of the Mathematics Subject Classification

displayed in the mockup editor is shown in Figure 3.12.

Figure 3.12. MSC model in the mockup editor

We can notice that the panel displays fields defined for the MSC entity in the

UML editor (see Figure 3.6). In addition, there is the Learning object field. It

is a zoom field that represents zoom association between MSC entity and

97

learning object. Since that MSC fields describe metadata related to the specific

learning object, the object can be displayed using this zoom field.

3.4. Web application for the management of
educational resources metadata

Using the application model presented in the previous subsection, the final

web application for the management of educational resources metadata is

generated. As explained, we organize educational resources into courses.

Figure 3.13 presents the standard panel for displaying courses.

Figure 3.13. List of courses in the generated application

For each course, its educational resources can be displayed using the link on

the right side of the panel.

Figure 3.14 shows the view mode of the standard panel which displays a list

of the recorded educational resources for the General mathematics course.

98

Figure 3.14. List of educational resources in the generated application

The panel presents the list of the educational resources in the general

mathematics course. For each resource, its main data are presented in the table.

Additionally, the resources can be described using different metadata sets. The

defined metadata sets are presented in the list of the links in the upper right

corner of the panel.

Given that an educational resource references its MSC metadata entity in

Kroki model (see Figure 3.6), one of the links the generated application

contains is a link from the educational resource to the window which displays

its metadata according to MSC. The link is presented in the upper right corner

in Figure 3.14. The window that displays MSC metadata and provides its

editing is presented in Figure 3.15.

Figure 3.15. Editing MSC metadata in the generated application

1. The panel displays metadata fields in accordance with the model

of MSC classification shown in Figure 3.6. We can notice the

corresponding field for each level from the MSC classification.

Additionally, the field Learning object displays the educational

resource that is described by this metadata. Using the zoom button

99

(labeled with ...), a user can choose an appropriate learning object

when specifying metadata. Click on the button will open a standard

panel that presents the list of all learning objects.

100

101

4. Verification

The previous section presented how educational resources can be managed

within our platform using various metadata sets. In order to verify our solution,

we performed an experiment where independent participants evaluated the

proposed software platform by performing different tasks within the platform.

This chapter presents these two verification methods.

4.1. Experiment

In addition to the previously described internal case study, we have performed

an experiment aimed to evaluate characteristics of the proposed platform.

4.1.1. Experiment goal

The experiment goal was to validate application features related to the model

creation and application generation. We have evaluated characteristics

specified by ISO/IEC 25022:2016 standard (ISO/IEC JTC 1, 2012), i.e.

effectiveness, efficiency, satisfaction, usability, ease of use, clarity and

attractiveness. In addition we have evaluated user’s general impression of the

application.

4.1.2. Data Collection Instruments

Data collection instruments are chosen in conformance with the ISO/IEC

25022:2016 standard. The characteristics effectiveness and efficiency are

measured based on the results of a task given to the experiment participants

and the time taken for the task completion. Other 5 characteristics are

evaluated using a subjective questionnaire created according to the Common

Industry Format for Usability Test Reports (CIF Questionnaire) (National

Institute of Standards and Technology, 1999). This questionnaire contains 5

questions with 7-point Likert scale answers, where each question evaluates

one of the characteristics.

With regard to general impressions, they are measured using a standard

PSSUQ questionnaire (Lewis, 1995). The questionnaire contains 16 questions

with 7-point Likert scale answers. The questions relate to user satisfaction,

system usability, quality of information and quality of user interface.

102

In addition, the participants could leave a free comment about their

impressions of the application.

4.1.3. Participants

We have mentioned that the proposed platform should allow users to modify

model of educational resources metadata with no need to program support for

this new model manually. Still, users must design the new model, which

includes defining entities and forming relations between them. This implies

that users must have some skills necessary for modeling, like knowing

abstraction, association and some graphical modeling notation. For this

reason, we set specific preconditions for participants in the experiment. The

participants were required to be digitally literate with some experience in

using information systems and developing data model in such systems. In

addition, they had to know the computer science domain since the experiment

task referred to the classification of educational resources in that domain. For

all these reasons, we chose 16 students from the third year of professional

studies of Software and information technologies from Faculty of Technical

Sciences at University of Novi Sad to be the participants in our experiment.

4.1.4. Experiment procedure

The experiment is conducted in a computer laboratory at Faculty of Technical

Sciences. Each participant got a separate computer with our Kroki-based

executable platform preinstalled. These students have already used this

laboratory during their studies, so they were familiar with the software

environment. On this way we tried to minimize the effects of the software and

hardware environment on the experiment results.

Within the Kroki platform, the participants got already created model of the

application for managing educational resources in Kroki. The model contained

the entity Course which had a collection of Learning resource entities. In the

given model, the learning resource semantics was described by two metadata

sets – IEEE LOM and MSC. Both metadata sets were represented in the model

with the appropriate entities and their attributes. As well, we used Kroki to

generate the application based on the given model. This application was

installed on the computers in the laboratory and the application was initially

filled with data describing 10 educational resources from the mathematics

103

field. In addition, we entered metadata for these resources according to IEEE

LOM and MSC specification, respectively.

The main task given to the participants consisted of two subtasks. The first

subtask was extending the given data model so that it supports describing

educational resources using metadata from ACM classification scheme too.

As their second subtask, they were asked to generate application in Kroki

using the extended data model from the first subtask. In the generated

application, they had to record another 5 educational resources from computer

science field and to describe them using metadata set that conforms to ACM

classification scheme.

In the beginning of the experiment, the participants were given the

Background questionnaire to evaluate their profile and previous knowledge.

On this way, we verified that chosen students satisfy the preconditions set for

the participation in this experiment. The questionnaire consisted of 7 questions

with answers that use 7-point Likert scale. The questions referred to their

previous experience with computers and information systems, as well as the

knowledge of the computer science domain, modeling and the purpose of

metadata in describing educational resources.

After the Background questionnaire, we organized an oral presentation on

using Kroki platform. As well, we explained the general concepts of ACM

classification. Together with this oral presentation, the participants were given

an electronic version of Kroki documentation and the ACM specification

document. These two documents were available to the participants during the

whole experiment.

Then, the participants started working on the main experiment task. The time

for the task was unlimited, but we still recorded the start and time, since this

parameter was used in calculating the platform efficiency.

When the participants finished the main task, they were asked to fill in the CIF

and PSSUQ questionnaires in order to give feedback on using our platform.

104

4.1.5. Experiment results

The results of the background questionnaire are shown in Table 4.1. For each

question we show per cent of the participants who gave specific answer and

calculated average answer.

In accordance with the target group, we can see from the results that most of

the participants have considerable experience with the topics that are

preconditions for the participation in the experiment. Before the experiment,

the participants were not familiar with the ACM classification. We assumed

this, so we prepared ACM specification document to be available for the

participants during the experiment.

The effectiveness and efficiency of the platform were evaluated through the

above described main task. The task consisted of two subtasks, where each

task maximum was 50 points. The points scored on the tasks are presented in

Table 4.2.

In general, the participants mastered both subtasks well, while the second

subtask appears to be slightly more challenging. This may indicate that

usability of the generated final application, which is used to complete subtask

2, is not as high as for Kroki tool which served for completing subtask 1. This

was expected since Kroki is a fully manually developed tool, while most parts

of the final application are programmatically generated. Also, depending on

the model complexity, the generated application will contain various panels

and visual controls, so that it is inherently more complicated to use.

105

Question

Percent of participants
Avg

answer
Very low

1

2

3

4

5

6
Very

high

7

How would you rate your

skills in using computer? 0% 0% 0% 6.3% 0% 50% 43.8% 6.31

How would you rate your

skills in using information

systems?
0% 0% 6.3% 12.5% 31.3% 25% 25% 5.50

How would you rate your

knowledge of the computer

science domain? 0% 6.3% 0% 6.3% 50% 25% 12.5% 5.25

How would you rate your

skills in general modeling

of problems and systems? 0% 6.3% 0% 25% 50% 12.5% 6.3% 4.81

How would you rate your

experience in the e-learning

domain? 0% 6.3% 0% 25% 62.5% 0% 6.3% 4.69

106

How would you rate your

knowledge of the role of

metadata in describing

educational resources? 0% 6.3% 0% 37.5% 37.5% 12.5% 6.3% 4.69

How would you rate your

knowledge of ACM

Computing Classification

System?
25% 12.5% 25% 25% 6.3% 6.3% 0% 2.94

Table 4.1 The results of the background questionnaire

107

Task Average score Standard Deviation

Subtask 1 47.85 1.41

Subtask 2 44.46 10.51

Main task total 92.31 11.61

Table 4.2. The results of the experiment main task

In accordance with the ISO/IEC 25022:2016, we measured efficiency as a

ratio of the test score and the time spent on the test. In order to evaluate

obtained efficiency, we defined a reference efficiency based upon estimated

time for the expert who has a prior experience in using Kroki. This predicted

time was 30 minutes. Setting the reference test score at 100% points gives us

the reference efficiency of 3.33. Table 4.3 shows the results for the efficiency

characteristic.

Reference

efficiency (RE)
Average efficency

(AE)
Standard

deviation
Efficency ratio

(AE/RE)

3.33 2.41 0.57 72.23%

Table 4.3. Task efficiency results

Although the achieved efficiency is less than the referent one, it is still at the

satisfactory level. The reason for lower efficiency can be found in the fact that

the participants used our application first time on the experiment. In addition,

both Kroki and the generated application have some shortcomings that are

discussed later and which we will try to correct in the further research. We

assume that these problems also caused the obtained efficiency.

As explained, other platform characteristics are measured using the subjective

CIF questionnaire. The questionnaire results are shown in Table 4.4.

In general, all the characteristics are rated with relatively high average points.

The platform attractiveness was rated with the lowest average points, which is

expected for the application that was developed mostly programmatically.

108

Question

Percent of participants

Avg answer Very

low

1

2

3

4

5

6

Very

high

7

Satisfaction 6.3% 0% 0% 6.3% 18.8% 56.3% 12.5% 5.50

Usefulness 6.3% 0% 0% 0% 31.3% 37.5% 25% 5.63

Ease of use 0% 6.3% 0% 6.3% 31.3% 31.3% 25% 5.56

Clarity 6.3% 0% 0% 6.3% 6.3% 56.3% 25% 5.75

Attractiveness 0% 6.3% 12.5% 0% 25% 31.3% 25% 5.38

Table 4.4. The results of the CIF questionnaire

109

General impressions on the platform are evaluated using PSSUQ

questionnaire. The questionnaire has 16 questions where each question can be

related to some of the four general system characteristics, i.e. overall

satisfaction, system usefulness, quality of information, and interface quality.

The result for each characteristic is calculated as the average response for the

corresponding group of questions.

The results are calculated according to the following scheme:

 all 16 questions refer to overall satisfaction characteristic

 the questions from 1 to 6 evaluate the characteristic system

usefulness,

 the questions from 7 to 12 relate to the characteristic quality of

information,

 the questions from 13 to 16 measure interface quality

characteristic.

Table 4.5 presents the question-level results of the PSSUQ questionnaire,

while Table 4.6 presents summed results with average responses for each

characteristic.

It should be noticed that in the PSSUQ questionnaire the answer “Strongly

agree” is marked with number 1, while number 7 indicates the answer

“Strongly disagree”. This is opposite from the previously presented CIF and

Background questionnaires where the “Strongly agree” answer was graded

with number 7.

Similar to the results measured by the CIF questionnaire, the participants

answered that they are generally satisfied with the platform. Just like with the

CIF questionnaire, the programmatically produced user interface of the

generated application got slightly lower grades.

Besides questionnaires, the participants were free to enter comments on using

platform. 10 participants take advantage of this option. Generally, the

comments expressed a positive impression on our system with few remarks

that should be discussed. The remarks mostly relate to the quality of user

110

interface. Some users state that platform features would be more exploitable

with the improved visual controls. Further, even 6 participants noted that they

had problems with entering values into the combo box component. After the

test we found a bug in this component. Besides the bug, the component was

functional, still taking some time from the participant to make it work. This

postponed the task completion causing lower efficiency and affecting general

impressions on user interface.

111

Question

Percent of participants

Avg answer
Very high

1

2

3

4

5

6
Very low

7

1. Overall, I am satisfied with how

easy it is to use this system 37.5% 37.5% 6.3% 12.5% 6.3% 0% 0% 2.15

2. It was simple to use this system 50% 25% 6.3% 18.8% 0% 0% 0% 1.92

3. I was able to complete the tasks and

scenarios quickly using this system 37.5% 31.3% 18.8% 6.3% 6.3% 0% 0% 2.15

4. I felt comfortable using this system
37.5% 18.8% 18.8% 6.3% 6.3% 12.5% 0% 2.62

5. It was easy to learn to use this

system 68.8% 12.5% 18.8% 0% 0% 0% 0% 1.46

6. I believe I could become productive

quickly using this system 50% 18.8% 25% 6.3% 0% 0% 0% 1.85

7. The system gave error messages

that clearly told me how to fix

problems
31.3% 43.8% 0% 6.3% 0% 6.3% 6.3% 2.42

112

Question

Percent of participants

Avg answer
Very high

1

2

3

4

5

6
Very low

7

8. Whenever I made a mistake using

the system, I could recover easily and

quickly 31.3% 50% 0% 12.5% 0% 6.3% 0% 2.15

9. The information (such as on-line

help, on-screen messages, and other

documentation) provided with this

system was clear
50% 31.3% 12.5% 0% 0% 0% 0% 1.58

10. It was easy to find the information

I needed 50% 37.5% 6.3% 0% 6.3% 0% 0% 1.77

11. The information was effective in

helping me complete the tasks and

scenarios 43.8% 37.5% 12.5% 0% 0% 6.3% 0% 1.92

12. The organization of information

on the system screens was clear 56.3% 37.5% 0% 0% 0% 0% 0% 1.42

113

Question

Percent of participants

Avg answer
Very high

1

2

3

4

5

6
Very low

7

13. The interface of this system was

pleasant 50% 37.5% 12.5% 0% 0% 0% 0% 1.62

14. I liked using the interface of this

system 37.5% 37.5% 25% 0% 0% 0% 0% 1.85

15. This system has all the functions

and capabilities I expect it to have 25% 50% 25% 0% 0% 0% 0% 2.00

16. Overall, I am satisfied with this

system 37.5% 50% 12.5% 0% 0% 0% 0% 1.77

Table 4.5. The results of the PSSUQ questionnaire

114

Characteristics PSSUQ Score

Overall satisfaction 1.92

System usefulness 2.03

Information quality 1.88

Interface quality 1.81

Table 4.6. The results for the system characteristics based on PSSUQ questionnaire

115

5. Conclusion

This thesis is focused on the topic of the management of metadata on

educational resources. The thesis analyses current techniques of representation

and storage of such data.

The educational resources are commonly described using metadata. The thesis

presents two types of these data. The first type refer to the metadata that are

domain-neutral meaning that it represents general information that any

educational resource contains, beside the domain that its content belongs to.

IEEE LOM and Dublin Core metadata sets are described, as two most widely

recognized metadata sets of this type. Handling an educational resource can

be improved if its description, in addition to general information, contains

some domain-specific information too. For example, there can be taxonomy

for classifying educational content in the specific domain. Domain-specific

metadata can describe the place in the taxonomy where an educational

resource fits in. As the examples of such domain-specific metadata, we

presented widely adopted taxonomies for the computer science and

mathematics field.

The educational resources are commonly managed by digital repositories. We

have identified the problem of supporting different metadata sets in such

repositories. The number of possible metadata sets is to large making it

impossible to statically predefine them. Instead, we propose a solution for the

dynamic specification of metadata models.

We propose a solution on this problem using the techniques of the model-

driven engineering. The basic idea of the research was to dynamically provide

support for managing educational resources according to new metadata sets

just by designing the models for these sets.

With regard to the general implication of the proposed solution, it presents a

novel approach on managing educational resources. The current trend in

software applications for the management of educational resources is

implementing applications to support predefined metadata set that describes

resources. In the modern digital world, diverse educational resources can be

stored in centralized repositories which allow users to access a wide set of

resources within a single application. Still, such an approach opens a problem

of searching such diverse content. For that reason, different metadata sets

should be developed to describe resources from different domains. It is

difficult to initially embed all the necessary domain-specific metadata sets in

116

the software application, due to large number of possible sets. For the

development of each domain-specific metadata set domain experts are needed

who are difficult to assemble in a centralized way during the development of

the software application. Instead, the approach presented in this paper suggests

that domain experts could customize the initial metadata set for their specific

domain after the application is developed. Such an approach ensures that the

metadata set is adjustable to the need of a specific user. In this way, a user can

model an appropriate metadata set during the usage of the application.

A practical implication of the proposed solution is that a single generic

software application can be used for managing educational resources in

various institutions. Each institution can additionally customize the initial

metadata set to meet the specific domain. For example, when managing

educational resources within some technical university, software

administrators can adapt a metadata set to contain elements and vocabulary

related to the domain of technical sciences.

The main result of the research is a platform which programmatically

generates an application for managing metadata of educational resources. The

platform allows dynamic modification of the underlying metadata model. The

platform contains a special purpose tool for designing model of metadata

which serves as a basis for further generation of the final application for

managing educational resources. Such an approach ensures that the

application is not limited to any predefined metadata set. A user can create its

own model of metadata that is relevant in the particular domain. The

programmatic generation of the final application will provide him/her

recording educational resources which are described using the created

metadata model with no need to modify application source code manually.

The solution is implemented using the concepts of the model-driven approach.

In the terms of this approach, the metadata models represent a source model

that is then programmatically transformed to a target model. The target model

is the web application for the management of metadata of educational

resources. Besides metadata models, the source model specifies the

functionalities and visual appearance of the generated web application.

The proposed platform has been verified using the experiment where 16

students of software engineering evaluated the platform characteristics. They

were asked to add new metadata model, generate the application based on this

model and describe educational resources using the metadata fields contained

in the newly created model.

117

Although the experiment proved the general usefulness of the platform, there

is still dilemma how much a user must be skilled in modelling to use the

platform. Further research should explore the possibility of training domain

experts with no technical knowledge to use the platform and define new

metadata model in their domain.

With regard to the platform current maturity, the experiment showed high level

of satisfaction among users. Still, it is already evident that graphical interface

must be improved. We are aware that the interface shortcomings are tightly

related to the chosen approach. The fact that the final web application is

programmatically generated implies generic and template-based graphical

interface for each web page. In the current version of the application, the only

way to customize the application is to manually implement specific support

either by modifying application source code or applying Java aspects. Our goal

in the future work on this project will be allowing users to specify more

sophisticated visual characteristics of the application using a special purpose

graphical editor which will reduce the need of adding source code for the

interface customization.

Another important direction of the future work is migrating Kroki from the

stand-alone application to cloud-based online service. The main idea is to

provide online tool where users can design their own metadata models. Among

many metadata models, each user could choose a specific personal view on

metadata which includes only metadata that are of interest for the specific

scenario. Finally, we are planning to provide the feature of storing and

downloading educational resources themselves instead of recording metadata

only as supported in the current version.

118

119

References

Advanced Distributed Learning (2015) SCORM [online] Available at:

http://www.adlnet.org [Accessed 30 Mar. 2017].

Agostinho, S., Bennett, S., Lockyer, L. & Harper, B. (2004) Developing a

learning object metadata application profile based on LOM suitable for

Australian higher education context. Australasian Journal of Educational

Technology, 20 (2), 191-208..

Alhaag, A. A., Savić, G., Milosavljević, G., Segedinac, M. T., Filipović, M.

(2018) Executable platform for managing customizable metadata of

educational resources, The Electronic Library, In press.

Alhir, S. (2003) Understanding the Model Driven Architecture (MDA).

[online] Available at: http://www.methodsandtools.com/ archive

/archive.php?id=5 [Accessed 1 Jun 2017].

Ariadne (2017), ARIADNE program. [online] Available at

http://www.ariadne-eu.org.

Association for Computing Machinery (2018) How to Use the 1998

Computing Classification System. [online] Available at:

http://www.acm.org/about-acm/class/how-to-use [Accessed 12 Feb. 2018].

Association for Computing Machinery. (2012) Computing Classification

System - 2012 Revision. [online] Available at:

http://dl.acm.org/ft_gateway.cfm?id=2371137&ftid=1290921&dwn=1

[accessed 4 March 2017].

Education Services Australia. (2011) ANZ-LOM Metadata Application

Profile. [online] Available at: http://www.ndlrn.edu.au/verve/_resources/anz-

lom_1_02_file.pdf [Accessed 1 Jun. 2017].

Barker, P. (2005) What is IEEE Learning Object Metadata / IMS Learning

Resource Metadata? [online] Available at: http://publications.cetis.org.uk/wp-

content/uploads/2011/02/WhatIs IEEELOM.pdf [Accessed 17 Mar. 2017].

Bizonova, Z. (2007) Model-driven LMS Platform Integration. Journal of

Information, Control and Management Systems. 5(1), 3-12.

120

Bizonova, Z. & Ranc, D. (2007) Courseware Material Reuse via Model-driven

LMS Platform Integration. Journal of E-learning and distance learning,

University of Cyprus. 150-158.

Boyle, T. (2003) Design Principles for Authoring Dynamic, Reusable

Learning. Australasian Journal of Educational Technology, Vol 19 (1). 46 –

58. doi: https://doi.org/10.14742/ajet.1690

Brambilla, M., Cabot, J. & Wimmer, M. (2012) Model-Driven Software

Engineering in Practice, Synthesis Lectures on Software Engineering, vol. 1.

doi: https://doi.org/10.2200/S00441ED1V 01Y201208SWE001

Brown, A. (2004). An introduction to Model Driven Architecture Part I: MDA

and today's systems. IBM Developer Works, RationalEdge. [online] Available

at: https://www.ibm.com/developerworks/ rational/library/3100-pdf.pdf

[Accessed 24 Apr. 2017].

Brown, A. & Conallen, J. (2005) An introduction to model-driven

architecture. IBM Developer Works, RationalEdge. [online] Available at:

https://www.ibm.com/developerworks/rational/library/may05/

brown/brown.html [Accessed 11 Jul. 2017].

Buchmann, T. (2012) Towards tool support for agile modeling: sketching

equals modeling. XM '12 Proceedings of the 2012 Extreme Modeling

Workshop, Innsbruck, Austria. 9 – 14. doi: 10.1145/2467307.2467310

Campbell, L. (2007) Instalment on “Learning Object Metadata”. - Digital

Curation Centre. [online] Available at:

https://www.era.lib.ed.ac.uk/bitstream/handle/1842/3334/Campbell%20learn

ing-object-metadata.pdf?sequence=1 [Accessed 11 Jun. 2017].

Cebeci, Z. & Erdogan, Y. (2005) Tree View Editing Learning Object Metadata.

Interdisciplinary Journal of Knowledge and Learning Objects 1(1), 100-108.

Cerny, T., Cemus, K., Donahoo, M. & Song, E. (2013) Aspect-driven, data-

reflective and context-aware user interfaces design. ACM SIGAPP Applied

Computing Review, 13(4), 53-66.

Laverde, A., Cifuentes, Y. & Rodriguez, H. (2007) Toward an instructional

design model based on learning objects. Educational Technology Research

and Development. 55(6), 671-681.

https://www.ibm.com/developerworks/rational/library/may05/

121

OpenStax CNX. (1999) Discover learning materials in an Open Space.

[online] Available at: https://cnx.org [Accessed 10 Oct. 2017].

Cohen, E. & Nycz, M. (2006) Learning Objects and E-Learning: an Informing

Science Perspective. Interdisciplinary Journal of Knowledge and Learning

Objects 2(1). Informing Science Institute. ISSN 1552-2237.

Cook, S., Jones, G., Kent, S. & Wills, A.C. (2007) Domain-specific

development with Visual Studio DSL tools. Upper Saddle River, NJ: Addison-

Wesley.

Coursera Inc. (2017) Coursera. [online] Available at:

https://www.coursera.org/ [Accessed 12 May. 2017].

Coyle, K. & Baker, T. (2009) Guidelines for Dublin Core Application Profiles

(Working Draft). [online] Available at:

http://dublincore.org/documents/profile-guidelines/ [Accessed 14 Aug. 2017].

Coyette, A., Schimke, S., Vanderdonckt, J. & Vielhauer, C. (2007) Trainable

Sketch Recognizer for Graphical User Interface Design. Berlin Heidelberg:

Human-Computer Interaction-INTERACT. 124-135.

Coyette, A., & Vanderdonckt, J. (2005) A Sketching Tool for Designing

Anyuser, Anyplatform, Anywhere User Interfaces. In Proceedings of Human-

Computer Interaction-INTERACT. Berlin Heidelberg. 550-564.

Currier, S. (2008) Metadata for Learning Resources: An Update on Standards

Activity for 2008. [online] Available at:

http://www.ariadne.ac.uk/issue55/currier [Accessed 4 Oct. 2017].

Curriki. (2017) Curriki - a community for teaching or studying: Create, share,

and explore high quality K-12 content. [online] Available at:

http://www.curriki.org/ [Accessed 12 Mar. 2017].

Dahl, O. & Nygaard, K. (1966) SIMULA an ALGOL-Based Simulation

Languag. Communications off the ACM. 9(9), 671-678.

De Robbio, A., Maguolo, D. & Marini, A. (2003) Mathematics Subject

Classification and Related Schemes in the OAI Framework. 100-111.

122

Dejanovic, I., Tumbas, M., Milosavljevic, G. & Perisic, B. (2010) Comparison

of Textual and Visual Notations of DOMMLite Domain-Specific Language.

ADBIS (local proceedings) 131-136.

The Institute of Electrical and Electronics. (2002) Draft Standard for Learning

Object Metadata. [online] Available at:

https://biblio.educa.ch/sites/default/files/20130328/lom_1484_12_1_v1_final

_draft_0.pdf [Accessed 11 Jun. 2017].

Downes, S. (2004) Learning objects, Resources for learning worldwide, In:

Online Education Using Learning Objects, 2nd edition, ed. Mc Greal, R. 20-

30. London: Routledge.

Duval, E. & Hodgins, W. (2003) A LOM Research Agenda. [online] Available

at: http://www2003.org/cdrom/papers/alternate/P659/p659-duval.html.html

[Accessed 12 Apr. 2017].

Duval, E., Hodgins, W., Sutton, S. & Weibel, S. (2002). Metadata Principles

and Practicalities. D-Lib Magazine, 8(4).

EdX. (2012) edX. [online] Available at: https://www.edx.org/ [Accessed 21

Oct. 2017].

Narayan, P. (2010) Mathematics Genealogy Networks. [online] Available at:

http://docplayer.net/57552146-Mathematics-genealogy-networks.html

[Accessed 23 Nov. 2017].

Red Hat (2018), Hibernate. [online] available at:

http://hibernate.org/orm/releases / [Accessed 22 Oct. 2017].

Filipovic, M., Kaplar, S., Vaderna, R., Ivković, Ž., Milosavljević, G.,

Dejanović, I. (2015) Aspect-Oriented Engines for Kroki Models Execution.

ICIST 2015 Proceedings Vol. 2. Kopaonik, Serbia. 502-507

Filipovic, M., Vaderna, R., Ivković, Ž, Kaplar, S., Vuković, Ž., Dejanovic, I.,

Milosavljević, G. & Ivanovic, D. (2017) Application of Kroki Mockup Tool

to Implementation of Executable CERIF Specification. Procedia Computer

Science 106(1), Elsevier. 245-252.

Fowler, M. & Parsons, R. (2011) Domain-specific languages. Reading, MA:

Addison-Wesley.

123

Friesen, N. (2004) Three Objections to Learning Objects and E-learning

Standards. In: Online Education Using Learning Objects, ed. Rory McGreal,

59-70. London: Routledge.

Friesen, N. (2005). CanCore in Canada and Around the World. The

International Review of Research in Open and Distributed Learning 6(1).

Goede, K. & Irizarry, J. (2008) Understanding tool requirements for Model

Driven Architecture. [online] Available at:

http://www.omg.org/mda/mda_files/Understanding_MDA_Tool_Requireme

nts2.pdf [Accessed 28 Sep. 2017].

IEEE Learning Technology Standards Committee (LTSC) (2001) Draft

Standard for Learning Object Metadata.

IEEE Xplore. (2002) IEEE 1484.12.1-2002 Standard for Learning Object

Metadata. [online] Available at:

http://ieeexplore.ieee.org/servlet/opac?punumber=8032[Accessed 2 Mar.

2017].

IMS Global Learning Consortium. (2002) IMS Reusable Definition of

Competency or Educational Objective v1 - Best Practice and Implementation.

[online] Available at:

https://www.imsglobal.org/competencies/rdceov1p0/imsrdceo_bestv1p0.html

[Accessed 24 Sep. 2017].

IMS Global Learning Consortium. (2003) IMS Learning Design Best Practice

and Implementation. [online] Available at:

https://www.imsglobal.org/learningdesign/ldv1p0/imsld_bestv1p0.html

[Accessed 14 Nov. 2017].

IMS Global Learning Consortium. (2006) IMS Meta-data Best Practice Guide

for IEEE 1484.12.1-2002 Standard for Learning Object. [online] Available at:

https://www.imsglobal.org/metadata/ mdv1p3/imsmd_bestv1p3.html

[Accessed 12 May. 2017].

IMS Global Learning Consortium. (2001) IMS Learning Resource Meta-Data

Best Practice and Implementation Guide [online] Available at:

http://www.imsglobal.org/metadata/imsmdv1p2p1/imsmd_bestv1p 2p1.html

[Accessed 10 Jun. 2017].

124

IMS Global Learning Consortium. (2004) IMS Content Packaging Best

Practice and Implementation Guide. [online] Available at:

http://www.imsglobal.org/content/packaging/cpv1p1p4/imscp_bestv1p1p4.ht

ml [Accessed 14 Jun. 2017].

A. Ip, A. Young, I. Morrison (2002) Learning Objects - Whose are they?

Proceedings of the 15th Annual Conference of the National Advisory

Committee on Computing Qualifications ISBN 0-473-08747-2. 315-320.

JHipster. (2013). JHipster project. [online] Available at:

http://www.jhipster.tech/ [Accessed 23 Jul. 2017].

Fielding, R. T. (2000). Architectural Styles and the Design of Network-based

Software Architectures. PhD dissertation, University of California, Irvine.

Jovanovic, D., Zizovic, M. & Milosevic, D. (2012) ILOMPEL: Information

and metadata modeling for personalized e-learning. Scientific Research and

Essays Vol. 7(11), 1212-1229.

Kaplar, S., Filipovic, M., Milosavljevic, G. & Sladic, G. (2015) Kroki

Administration Subsystem Based on RBAC Standard and Aspects. In

proceedings of ICIST 2015 Conference, Kopaonik, Serbia. 61-66

Karakostas, B. & Zorgios, Y. (2008). Engineering Service Oriented Systems:

A Model Driven Approach 1st Edition. IGI Global, ISBN: 978-1599049687.

Kleppe, A., Warmer, J. & Bast, W. (2003) The Model Driven Architecture :

Practice and Promise. Addison Wesley.

Kroki team (2018a) Kroki source code. [online] Available at:

https://github.com/KROKIteam/KROKI-mockup-tool [accessed 3. Mar.

2017)

Kroki team (2018b) Kroki MDE tool - A rapid prototyping tool for

participatory development of business applications. [online] Available at:

www.kroki-mde.net [accessed 3 Mar. 2017].

L'Allier, J. J. (1997) Frame of Reference: NETg's Map to the Products, Their

Structure and Core Beliefs. [online] Available at:

http://web.archive.org/web/20020615192443/www.netg.com/research/whitep

apers/frameref.asp [accessed 30 Mar. 2017].

125

Lama, J. (2001) Conceptual Model of reusable Object-based e-Learning.

Lewis, J. R. (1995) IBM Computer Usability Satisfaction Questionnaires:

Psychometric Evaluation and Instructions for Use. International Journal of

Human-Computer Interaction. 7(1), 57-78.

SREB-SCORE (2007), Learning Object Metadata SREB-SCORE Initiative.

[online] Available at: http://txlor.utsa.edu/docs/SREB_

learning_object_metadata.pdf [Accessed 13 Oct. 2017].

Littlejohn, A. & Buckingham, S. (2003) Reusing Online Resources: A

Sustainable Approach to E-Learning. Kogan Page: London. ISBN: 0 7494

3950 5

MERLOT. (1997) MERLOT. [online] Available at:

https://www.merlot.org/merlot/index.htm [Accessed 11 Aug. 2017].

Milosavljevic, G., Ivanovic, D., Surla, D. & Milosavljevic, B. (2011)

Automated construction of the user interface for a CERIF-compliant research

management system. The Electronic Library 29 (5), 565-588.

Nguyen, V., Qafmolla, X. & Richta, K. (2014) Domain Specific Language

Approach on Model-driven Development of Web Services. Acta Polytechnica

Hungarica. 11(8), 121-138.

National Institute of Standards and Technology. (2001) Common Industry

Format for Usability Test Reports [online] Available at:

http://www.idemployee.id.tue.nl/g.w.m.rauterberg/lecturenotes/common-

industry-format.pdf [Accessed 24 Jun. 2017].

Nilsson, M., Baker, T. & Johnston, P. (2008) DCMI: The Singapore

Framework for Dublin Core Application Profiles. [online] Available at:

http://dublincore.org/documents/singapore-framework/ [Accessed 11 Apr.

2017].

Nilsson, M., Palmler, M. & Brase, J. (2003) The LOM RDF binding -

principles and implementation. The 3rd annual ARIADNE conference

Proceedings of the 3rd annual ARIADNE conference, Katholieke Universiteit

Leuven, Belgium. ISSN 1403-0721.

Carnegie Mellon University. (2017) Open Learning Initiative. [online]

Available at: http://oli.cmu.edu/ [Accessed 12 Oct. 2017].

126

Massachusetts Institute of Technology. (2001) MIT OpenCourseWare.

[online] Available at: https://ocw.mit.edu/index.htm [Accessed 22 Oct. 2017].

The Open University. (1999) OpenLearn. [online] Available at:

http://www.open.edu/openlearn/ [Accessed 15 Oct. 2017].

Pawlak, R., Seinturier, L. & Retaille, J. (2005) Foundations of AOP for J2EE

Development. Apress. ISBN: 978-1-59059-507-7. doi: 10.1007/978-1-4302-

0063-5

Paunovic, V. & Domazet, D. (2013) Set of Metadata Established for

Application in Learning Materials Developed for BMU. The Fourth

International Conference on e-Learning, 143-148.

Perisic, B., Milosavljevic, G., Dejanovic, I. & Milosavljevic, B. (2011) UML

profile for specifying user interfaces of business applications. Computer

Science and Information Systems 8(2), 405-426.

Plimmer, B., Apperley, M. (2004) INTERACTING with sketched interface

designs: an evaluation study. In CHI '04 Extended Abstracts on Human Factors

in Computing Systems (CHI EA '04). ACM, New York, NY, USA, 1337-1340.

DOI: https://doi.org/10.1145/985921. 986058

Polsani, P. (2005) Use and Abuse of Reusable Learning Objects. Journal of

Digital Information. 3(4), 10 p.

Poole, J. (2001) Model-Driven Architecture: Vision, Standards And Emerging

Technologies. n In ECOOP 2001, Workshop on Metamodeling and Adaptive

Object Models .

Powell, A., Nilsson, M., Naeve, A., Johnston, P. & Baker, T. (2007) DCMI:

DCMI Abstract Model. [online] Available at:

http://dublincore.org/documents/abstract-model/ [Accessed 14 Oct. 2017].

Restlet. (2017). Restlet Framework | Overview. [online] Available at:

https://restlet.com/open-source/ [Accessed 24 Nov. 2017].

Riley, J. (2017) Understanding Metadata: What is Metadata, and What is it

For? Baltimore. ISBN: 978-1-937522-72-8.

Rivero, J., Grigera, J., Rossi, G., Robles Luna, E., Montero, F. & Gaedke, M.

(2014) Mockup-Driven Development: Providing agile support for Model-

127

Driven Web Engineering. Information and Software Technology 56(6). doi:

10.1016/j.infsof.2014.01.011

Ros, M. (2005) Sequencing of Contents of Learning Objects. Revista de

Educación a Distancia, núm. 13, diciembre, 2005, pp. 1-14

Roy, D., Sarkar, S. and Ghose, S. (2010) A comparative study of learning

object metadata, learning material repositories, metadata annotation & an

automatic metadata annotation tool. In: Advances in Semantic Computing,

103-126.

Savić G., Segedinac M., Konjović Z. (2013) The Semantic Annotation of

Digital Learning Content Using Competence-based Knowledge Space Theory.

Transactions on Internet Research (ISSN: 1820-4503), Vol 9 (1), pp. 39 – 44

Savić, G., Segedinac, M., Konjović, Z. (2012), „Automatic Generation of E-

Courses Based on Explicit Representation of Instructional Design“, Computer

Science and Information Systems, Vol. 9, No. 2, pp. 839 – 869.

Stuempel, H., Salokhe, G., Aubert, A., Keizer, J., Nadeau, A., Katz, S. &

Rudgard, S. (2007.) Metadata Application Profile for Agricultural Learning

Resources. In Metadata and Semantics Research (MTSR) Conference, Corfu

(Greece), 11-12 October 2007.

The Apache Software Foundation. (1999) Apache Tomcat. [online] Available

at: http://tomcat.apache.org/ [Accessed 19Oct. 2017].

Todorova, M. & Petrova, V. (2003). Learning objects. International

Conference on Computer Systems and Technologies – CompSysTech’2003.

Tyagi, S. (2006). RESTful Web Services. Oracle Technology Network [online]

Available at: http://www.oracle.com/technetwork/articles/

javase/index137171.html [Accessed 14 Oct. 2017].

Udacity Inc. (2011) Udacity [online] Available at: https://www.udacity.com

[Accessed 15 Oct. 2017].

Udemy Inc. (2010) Udemy [online] Available at: https://www.udemy.com

[Accessed 15 Oct. 2017].

Boldt, N. & Steinberg, D. (2006) Introduction to the Eclipse Modeling

Framework. EclipseCon 2006 [online] Available at:

128

https://www.eclipse.org/modeling/emf/docs/presentations/EclipseCon/Eclips

eCon2006_EMF_Intro.pdf [Accessed 14 Oct. 2017].

Weibel, S. & Koch, T. (2000). The Dublin Core Metadata Initiative. D-Lib

Magazine, 6(12).

Wiley, D. (2002) The Reusability Paradox. [online] Available at:

http://opencontent.org/docs/paradox.html [Accessed 14 Oct. 2017].

Yeoman (2017) Yeoman - the web's scaffolding tool for modern webapps.

[online] Available at: http://yeoman.io/ [Accessed 23 Oct. 2017].

zbMATH. (2010). Mathematics Subject Classification – MSC2010. [online]

Available at: https://zbmath.org/classification/ [Accessed 12 Oct. 2017].

129

Ključna dokumentacijska informacija

Redni broj,
RBR:

Identifikacioni broj,

IBR:

Tip dokumentacije,

TD:

Monografska publikacija

Tip zapisa,

TZ:

Tekstualni štampani dokument

Vrsta rada,

VR:

Doktorska disertacija

Autor,

AU:

Amel Abdyssalam Alhaag

Mentor,

MN:

dr Goran Savić, redovni profesor,

Fakultet tehničkih nauka, Novi Sad

Naslov rada,

NR:

Model-Driven Software Architecture for

the Management of Educational

Resources Metadata

Jezik publikacije,

JP:

engleski

Jezik izvoda,

JI:

srpski

Zemlja publikovanja,

ZP:

Srbija

Uže geografsko područje,

UGP:

Vojvodina

Godina,

GO:

2018.

Izdavač,

IZ:

Autorski reprint

130

Mesto i adresa,

MA:

Novi Sad, Fakultet tehničkih nauka, Trg

Dositeja Obradovića 6

Fizički opisa rada,

FO:

(broj poglavlja/strana/lit. citata/

tabela/slika/grafika/priloga)

5/138/102/11/37/0/0

Naučna oblast,

NO:

Primenjene računarske nauke i

informatika

Naučna disciplina,

ND:

Elektronsko učenje

Predmetna odrednica/Ključne reči,

PO:

elektronska nastava, upravljanje

obrazovnim resursima, metapodaci,

izvršiva platforma, pristup vođen

modelom

UDK broj,

UDK:

Čuva se,

ČU:

Biblioteka Fakulteta tehničkih nauka,

Trg Dositeja Obradovića 6, Novi Sad

Važna napomena,

VN:

Nema

131

Izvod,

IZ:
Cilj – Cilj disertacije je da se omogući

dinamičko prilagođavanje metapodataka

koji opisuju obrazovne resurse u

digitalnim repozitorijumima.

Metodologija - Postoji potreba da se u

digitalnim repozitorijumima obrazovni

resursi opišu putem skupa metapodataka

koji je specifičan za određenog korisnika

ili domen. Obzirom da korisnici ne mogu

samostalno da ručno vrše izmenu

softverske aplikacije, pristup predložen u

ovoj disertaciji se zasniva na tehnikama

modelom vođenog razvoja softvera, koji

treba da omogući prilagođavanje

softverske aplikacije programski, bez

potrebe za razvojem ili naručivanjem

nove aplikacije. Da bi se predloženo

rešenje verifikovalo, sproveden je

eksperiment koji evaluira njegove

karakteristike.

Rezultati - U disertaciji je predložena

softverska platforma za upravljanje

obrazovnim resursima opisanim

dinamički proširivim skupom

metapodataka. Platforma omogućuje

kreiranje modela podataka koji se

programski transformišu u veb aplikaciju

za upravljanje obrazovnim resursima. Na

ovaj način, korisnik može da kreira

sopstveni model metapodataka koji je

odgovarajući u određenom domenu.

Ograničenja istraživanja/implikacije –

Rešenje verifikovano od strane

korisnicima sa određenim tehničkim

znanjem. Potrebno je istražiti prikladnost

platforme za domenske eksperte sa

ograničenim tehničkim znanjem, koji

treba da definišu nove skupove

metapodataka u svom domenu.

Praktične implikacije – Rešenje se

može koristiti u digitalnim

repozitorijuma koji skladište raznolike

obrazovne resurse. Svaki resurs može biti

opisan koristeći metapodatke iz domena

kojem resurs pripada.

Originalnost/vrednost - Digitalni

repozitorijumi standardno opisuju

132

obrazovne resurse koristeći neki

generalni skup metapodataka, koji je više

fokusiran na fizičke karakteristike

resursa, umesto na njihovo značenje.

Predloženo rešenje uvodi proizvoljnu

domenski-zavisnu semantiku u opis

resursa, čime se unapređuje njihovo

dobavljanje.

133

Datum prihvatanja teme,

DP:

31.05.2017.

Datum odbrane,

DO:

Članovi komisije,

KO:

Predsednik: dr Milan Segedinac, docent, Fakultet

tehničkih nauka, Novi Sad

Član: dr Gordana Milosavljević, vanredni

profesor, Fakultet tehničkih nauka, Novi

Sad

Član: dr Dušica Rodić, docent, Prirodno-

matematički fakultet, Novi Sad

Član: dr Vlado Simeunović, redovni profesor,

Pedagoški fakultet, Bijeljina

Član, mentor: dr Goran Savić, docent, Fakultet

tehničkih nauka, Novi Sad

134

Key words documentation

Accession number,
ANO:

Identification number,

INO:

Document type,

DT:

Monograph publication

Type of record,

TR:

Textual printed material

Content code,

CC:

PhD thesis

Author,

AU:

Amel Abdyssalam Alhaag

Mentor,

MN:

Goran Savić, PhD, assistant professor,

Faculty of Technical Sciences, Novi

Sad

Title,

TI:

Model-Driven Software Architecture

for the Management of Educational

Resources Metadata

Language of text,

LT:

English

Language of abstract,

LA:

Serbian

Country of publication,

CP:

Serbia

Locality of publication,

LP:

Vojvodina

Publication year,

PY:

2018.

Publisher,

PB:

Author reprint

135

Publication place,

PL:

Faculty of Technical Sciences, Trg

Dositeja Obradovića 6, Novi Sad,

Serbia

Physical description,

PD:

(chapters/pages/ref./

tables/pictures/graphs/appendixes)

5/138/102/11/37/0/0

Scientific field,

SF:

Applied computer science and

informatics

Scientific discipline,

SD:

E-learning

Subject/Key words,

SX:

e-learning, educational resources,

metadata, executable platform, model-

driven approach

UC:

Holding data,

HD:

Library of Faculty of Technical

Sciences, Trg Dositeja Obradovića 6,

Novi Sad, Serbia

Note,

N:

None

136

Abstract,

AB:

Purpose – The purpose of the research

is to enable dynamic customization of

metadata that describe educational

resources in digital repositories.

Design/methodology/approach –

Users need to describe educational

resources in digital repositories

according to the user-specific metadata

set. Since users are mostly unskilled to

customize the software application

manually, our approach relies on the

techniques of the model-driven software

engineering, which should allow

customization of the software

application programmatically with no

need to develop or order a new software

application. In order to verify the

proposed solution, we conducted an

experiment which evaluated its

characteristics.

Findings – A software platform for

managing educational resources

described by dynamically extendable

metadata is proposed. The platform

enables creating data models which are

programmatically transformed to the

web application for the management of

educational resources. In this way a user

can create their own model of metadata

that is relevant in a particular domain.

Research limitations / implications –

The solution has been verified by users

with technical knowledge. We should

still explore the appropriateness of the

platform for domain experts with little

technical knowledge who would define

new metadata in their domain.

Practical implications – The solution

can be used for digital repositories that

store diverse educational resources.

Each resource could be described using

metadata that relates to the domain the

resource belongs to.

Originality/value – Digital repositories

standardly describe educational

137

resources using some general metadata,

which are more focused on the physical

characteristics of resources rather than

their semantics. The proposed solution

introduces custom domain-specific

semantics into the resources’

description, which improves their

retrieval.

138

Accepted by te Scientific Board on,

ASB:

31.05.2017.

Defended on,

DE:

Defended board,

DB:

President: Milan Segedinac, PhD, assistant

professor, Faculty of Sciences, Novi

Sad

Member: Gordana Milosavljević Segedinac,

PhD, associate professor, Faculty of

Sciences, Novi Sad

Member: Dušica Rodić, PhD, assistant professor,

Faculty of Sciences, Novi Sad

Member: Vlado Simeunović, PhD, full professor,

Faculty of Pedagogy, Bijeljina

Member, mentor: Goran Savić, PhD, assistant professor,

Faculty of Technical Sciences, Novi

Sad

139

