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Abstract

The first class of problem we study deals with geometric matchings.
Given a set of points in the plane, we study perfect matchings of
those points by straight line segments so that the segments do
not cross. Bottleneck matching is such a matching that minimizes
the length of the longest segment. We are interested in finding a
bottleneck matching of points in convex position.

In the monochromatic case, where any two points are allowed to be
matched, we give an O(n2)-time algorithm for finding a bottleneck
matching, improving upon previously best known algorithm of
O(n3) time complexity.

We also study a bichromatic version of this problem, where each
point is colored either red or blue, and only points of different color
can be matched. We develop a range of tools, for dealing with
bichromatic non-crossing matchings of points in convex position.
Combining that set of tools with a geometric analysis enable us to
solve the problem of finding a bottleneck matching in O(n2) time.
We also design an O(n)-time algorithm for the case where the given
points lie on a circle. Previously best known results were O(n3) for
points in convex position, and O(n log n) for points on a circle.

The second class of problems we study deals with dilation of geomet-
ric networks. Given a polygon representing a network, and a point
p in the same plane, we aim to extend the network by inserting a
line segment, called a feed-link, which connects p to the boundary
of the polygon. Once a feed link is fixed, the geometric dilation
of some point q on the boundary is the ratio between the length
of the shortest path from p to q through the extended network,
and their Euclidean distance. The utility of a feed-link is inversely
proportional to the maximal dilation over all boundary points.

We give a linear time algorithm for computing the feed-link with
the minimum overall dilation, thus improving upon the previously
known algorithm of complexity that is roughly O(n log n).





Izvod (in Serbian)

Prva klasa problema koju proučavamo tiče se geometrijskih mečinga.
Za dat skup tačaka u ravni, posmatramo savršene mečinge tih tačaka
spajajući ih dužima koje se ne smeju seću. Bottleneck mečing je
takav mečing koji minimizuje dužinu najduže duži. Naš cilj je da
nad̄emo bottleneck mečing tačaka u konveksnom položaju.

Za monohromatski slučaj, u kom je dozvoljeno upariti svaki par
tačaka, dajemo algoritam vremenske složenosti O(n2) za nalaženje
bottleneck mečinga. Ovo je bolje od prethodno najbolji poznatog
algoritam, čija je složenost O(n3).

Takod̄e proučavamo bihromatsku verziju ovog problema, u kojoj
je svaka tačka obojena ili u crveno ili u plavo, i dozvoljeno je upar-
iti samo tačke različite boje. Razvijamo niz alata za rad sa bihro-
matskim nepresecajućim mečinzima tačaka u konveksnom položaju.
Kombinovanje ovih alata sa geometrijskom analizom omogućava
nam da rešimo problem nalaženja bottleneck mečinga u O(n2) vre-
menu. Takod̄e, konstruišemo algoritam vremenske složenosti O(n)
za slučaj kada sve date tačke leže na krugu. Prethodno najbolji
poznati algoritmi su imali složenosti O(n3) za tačke u konveksnom
položaju i O(n log n) za tačke na krugu.

Druga klasa problema koju proučavamo tiče se dilacije u geometri-
jskim mrežama. Za datu mrežu u obliku poligona, i tačku p u
istoj ravni, želimo proširiti mrežu dodavanjem duži zvane feed-link
koja povezuje p sa obodom poligona. Kada je feed-link fiksiran,
definišemo geometrijsku dilaciju neke tačke q na obodu kao odnos
izmed̄u dužine najkraćeg puta od p do q kroz proširenu mrežu i
njihovog Euklidskog rastojanja. Korisnost feed-linka je obrnuto
proporcionalna najvećoj dilaciji od svih tačaka na obodu poligona.

Konstruišemo algoritam linearne vremenske složenosti koji nalazi
feed-link sa najmanom sveukupnom dilacijom. Ovim postižemo
bolji rezultat od prethodno najboljeg poznatog algoritma složenosti
približno O(n log n).





Zahvalnice (in Serbian)

Bitna etapa mog života konačno je privedena kraju. Razne stvari i
dešavanja su taj moj put ka zvanju doktora nauka učinili vrednijim
od samog postignuća. Ali od najveće vrednosti uvek će mi biti ljudi
koji su bili deo svega toga. Neki od njih su pomogli direktno, a neki
“samo” tako što su bili tu da sa njima delim i sreću i tugu.

Kako svega ovog ne bi bilo da nije mog mentora, a slobodan sam
reći i druga, Miloša, njemu dugujem ogromnu zahvalnost. Imao
sam tu privilegiju da u toku našeg poznanstva, starog već više od
jedne decenije, od njega naučim nebrojeno mnogo korisnih stvari,
od kojih neke čak imaju veze i sa naukom. Cenim tvoju toleranciju
i odlično izlaženje na kraj sa mojim specifičnostima, i zahvalan
sam ti za sve vreme koje si mi posvetio, bilo kroz saradnju ili kroz
druženje.

Energiju potrošenu napornim radom nadoknad̄ivali su mi moji
drugari, Sova, Tigar, Nikola, Rajkoni, Nemanja, Trka i Let (po
redosledu pojavljivanja). Bez obzira na to što oni i nisu bogzna
koliko uticali na moj put ka ostvarivanju akademskih ciljeva, uvek
su bili uz mene, kako na ovom tako i na svakom drugom mom putu.
U stizanju na cilj leži samo deo zadovoljstva, a prava sreća je u
putovanju i onome što je uz put. Delići života provedeni sa vama
su mi najdragoceniji u njemu.

Iskreno i neizmerno sam zahvalan i svojoj Danici, koja već dugo
nalazi razumevanje za moje mane i nestašluke. Mnoge trenutke koji
bi bez tebe bili sasvim obični načinila si lepim, a u teškim trenucima
bila si mi najveća podrška.

Od svih, ipak, najviše su za mene učinili moji roditelji, i njima
dugujem najveću zahvalnost zbog bezuslovne ljubavi koju su mi
pružili. Jedino zbog njihovog nesebičnog odricanja sam uvek imao
mogućnost da sam sebi biram put. Ako je neko zaslužan za moja
postignuća, to su oni, i zato njima posvećujem ovaj svoj mali životni
uspeh.





Introduction

The time complexity of a computational problem is the smallest
time complexity among all possible algorithms that can solve that
problem. Time complexity is one of key instruments for under-
standing the inherent difficulty of an individual problem. Excluding
the problems for which a linear time solution is known, the exact
value of time complexity is known only for a very narrow variety of
computational problems, almost none of which can be described
as “natural”. Similarly, non-trivial lower bounds on problem time
complexity very rarely can be determined exactly. If we know some
useful lower bounds, they almost surely come with a restriction to
some specific computational models. The well-known lower bound
of O(n log n) for comparison sorts is one example. On the other
hand, all that is needed to give an upper bound on time complexity
is to construct an algorithm that solves the problem in question.
With respect to this, constructing better algorithms yields better
upper bounds for problem complexity. As such, the design of ef-
ficient algorithms is a discipline of great theoretical importance,
apart from the obvious practical importance of being able to solve
a problem quickly.

The field of discrete geometry studies geometric structures and
properties which are inherently combinatorial in their nature. Com-
putational geometry is a narrower field, researching algorithmic
problems on discrete geometric structures. A good introduction
into these fields can be found in [38], [26] and [27]. The studied
structures are embedded in metric spaces – most often it is either
a Euclidean space of two or more dimensions, or L1 metric or its
generalization, fixed orientation metric. Geometric structures that
are used can be as simple as a set of points, or more complex such as
geometric graphs – graphs whose vertices and edges can be various
geometric objects adhering to problem specific constraints.

The goal of this thesis is to determine new upper bounds for time
complexity of some computational geometry problems by designing
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efficient algorithms that solve those problems.

One of the computational geometry problem clases which will be
studied here is a class of geometric matching problems. These
problems deal with partitioning different geometric objects in pairs
under specified constraints, in order to optimize the certain measure
of that pairing. In the most fundamental setting, the objects in ques-
tion are points in the Euclidean plane, which can be matched using
straight line segments, and the goal is to optimize some function
on the lengths of segments. The most commonly used constraint is
that no two segments can intersect, that is, the matching should be
crossing-free. For example, we can ask to match the points from the
given set of points in the plane by straight line segments, so that
the total length of all segments is minimized.

Matching problems studied in this thesis are concerned with the
so-called bottleneck measure, which represents the length of the
longest line segment in the matching. The corresponding optimiza-
tion problem is to find a matching with the bottleneck measure as
small as possible. Any such matching is called bottleneck matching.
It is known that the problem of finding bottleneck non-crossing
matching of the point set in the plane is NP-complete problem,
hence the current research on that topic is directed toward finding
approximation algorithms for the general case and efficient exact
algorithms for solving some special cases of the problem.

Additional variations on the geometric matching problems that
will be of interest here are bichromatic (or bipartite) matchings.
In such matchings, the objects to be matched are partitioned into
two sets, and there is a requirement that no two matched objects
can belong to the same set. Like the monochromatic version, the
problem of finding bichromatic bottleneck non-crossing matching
is NP-complete, so our focus will be on finding efficient solutions to
certain special cases.

Another class of computational geometry problems which be studied
in this thesis is a class of problems related to dilation and spanning
factors of geometric networks. A geometric network, or just network,
is a geometric graph embedded in a metric space M , whose vertices
are points and edges are straight line segments between them. For
two given points p and q lying on the edges or coinciding with
the vertices of the network G, we define their network distance
to be the length of the shortest curve connecting p and q which is
fully contained in G. Dilation between p and q is the ratio between
their network distance and their distance in the metric M . Dilation
of the whole network G is the maximum dilation over all pair of
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points in that network, points on edges included. If we calculate
the maximum only over pairs of points corresponding to vertices
of the network, then this maximum value is called the spanning
factor of the network G. Intuitively, dilation and spanning factor are
measures of how good an approximation is G for complete graph
over the metric space, and complete graph over the set of vertices
of G, respectively.

The central problem concerning dilation and spanning factor of net-
works is their computation in different metrics for general networks
and for special network types, such as paths, trees and polygons. An-
other important direction of research on this topic is about network
modifications under given constraints in order to minimize or max-
imize dilation or the spanning factor. These modifications include
adding or removing additional vertices or edges to the network.
In this thesis, we will study a problem of extending a polygonal
network with an aditional vertex.

Thesis summary

The following is a short overview of the presented results, with the
references to their location in the thesis.

These results are joint work with Miloš Stojaković, and can be
found in articles published in journals, conference proceedings and
preprints [43, 44, 40, 41, 42].

Part I

The first part of a thesis deals with bottleneck non-crossing match-
ings of points in convex position. We design several algorithms for
related problems, both in monochromatic and bichromatic case.

Chapter 1

In this chapter our goal is to design an efficient algorithm for the
monochromatic version of the problem.

In Section 1.2 we show that there is always a bottleneck match-
ing having a certain structure that we will be able to exploit. In
Section 1.3.1 we define restricted subproblems and show how to
efficiently solve all of them. Then, in Section 1.3.2 we use the
observed structure to split the problem into subproblems. Doing so
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naively does not give us the wanted time complexity, so we find a
way to reduce the search space, thus finally achieving O(n2)-time
complexity.

The results presented in this chapter are published in the journal
of Computational Geometry: Theory and Applications [43], and
the conference proceedings of the 32nd European Workshop on
Computational Geometry (EuroCG’16) [41].

Chapter 2

In this chapter we consider bichromatic version of the problem.
To be able to relate bichromatic and monochromatic versions, we
develop a theory of orbits.

In Section 2.3 we define structures called orbits and derive numer-
ous properties that hold for them. We observe the relationships
between orbits, which enables us to define the orbit graph and to
show some of its properties, also noting that the developed theory
can be of independent interest when studying bichromatic non-
crossing matchings.

In Section 2.4 we apply this theory of orbits to the ideas used for
the monochromatic version of the problem. The result is an O(n2)-
time algorithm for finding a bichromatic bottleneck non-crossing
matching of points in convex position.

In Section 2.5 we consider the variation of the previous problem
where all the points lie on a circle. Geometry of a circle provides us
with certain insights about bottleneck matchings, and we employ
the properties of orbits and orbit graph once again, but in a differ-
ent manner, to construct an O(n)-time algorithm that solves this
problem.

The results presented in this chapter are published in the conference
proceedings of the 34th European Workshop on Computational
Geometry (EuroCG’18) [42], and can be found in the preprint [44].

Part II

The second part of the thesis deals with dilations of geometric
networks. For a given polygonal network P and a point p not on
P, we want to extend the network by connecting p to a point on P
using a single straight line segment called feed-link. The goal is to
do this in such a way to minimize the maximum dilation from p to
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any other point on P.

Chapter 3

In Section 3.2 we split the problem into two symmetrical compo-
nents, the left and the right dilation. Our further analysis will be
performed only on one of them.

In Section 3.3 we give a different view on the problem, using the
plot of the distance function from p to the points on P. We introduce
a key object, the lever, which is a line segment defined on the plot,
having the slope inversely proportional to the left dilation.

In Section 3.4 we use a sweep algorithm simulating the lever move-
ment on the plot, which is equivalent to the movement of a con-
nection point around P. We do this once for the left dilation and
once for the right dilation, and then in Section 3.5 we show how to
merge our findings from those two sweeps in order to obtain the
solution that achieves the minimum dilation.

The results presented in this chapter are published in the journal of
Computational Geometry: Theory and Applications [40].





Part I

Bottleneck matchings
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Background and related work

Geometric matchings are widely researched. In the most general
setting, various planar objects are matched, see [11, 12, 37], or
various planar objects can be used as edges in matchings, see [1,
29, 17, 15, 19]. Several papers, see [8, 9, 10], deal with matching
points by straight line segments.

Most commonly, crossings in the geometric matchings are not al-
lowed. There is always a non-crossing matching of points with
non-crossing segments, and moreover it is straightforward to prove
that a matching minimizing the total sum of lengths of its segments
has to be non-crossing.

Variations on these problem are plentiful. We are mostly interested
in non-crossing matchings of points by straight line segments in
such a way that the length of the longest segment is minimized.
Such matchings are called bottleneck matchings.

The monochromatic variants of matching problems have no restric-
tions on which points can be matched, as long as other possible
constraints are satisfied (such as no crossings constraint). In the
bichromatic (sometimes also called bipartite) versions of matching
problems, points are partitioned into two sets (each colored with
its own color), and only points of different colors are allowed to be
matched.

Monochromatic case. In [23], Chang, Tang and Lee gave an
O(n2)-time algorithm for computing a bottleneck matching of a
point set, but allowing crossings. This result was extended by Efrat
and Katz in [33] to higher-dimensional Euclidean spaces.

The problem of computing bottleneck monochromatic non-crossing
matching of a point set is shown to be NP-complete by Abu-Affash,
Carmi, Katz and Trablesi in [5]. They also proved that it does not
allow a PTAS, gave a 2

p
10 factor approximation algorithm, and

showed that the case where all points are in convex position can
be solved exactly in O(n3) time. We improved this result in [43] by
constructing O(n2)-time algorithm.

In [4], Abu-Affash, biniaz, Carmi, Maheshwari and Smid presented
an algorithm for computing a bottleneck monochromatic non-
crossing matching of size at least n/5 in O(n log2 n) time. They
extended the same approach to provide an O(n log n)-time approxi-
mation algorithm which computes a plane matching of size at least
2n/5 whose edges have length at most

p
2+
p

3 times the length
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of the longest edge in a non-crossing bottleneck matching.

The so called containment problems are closely related to the prob-
lems of explicitly finding these matchings. In containment problems
we want to find a geometric graphs that has a matching with certain
properties as a subgraph. For example, in [29] Dillencourt proved
that a perfect matching is contained in the Delaunay triangulation
of the point set. In [35], Kaiser, Saumell and Cleemput proved
that 10-Gabriel graph (10-GG) contains a bottleneck Hamiltonian
cycle of P, which implies that there is a perfect matching in 10-GG.
On the other hand, they showed that there might be no bottleneck
Hamiltonian cycle in 5-GG.

Even when we tighten the constraints on allowed matchings, it
is still true that some interesting geometric graphs have them as
subgraphs. Chang, Tang and Lee in [23] showed that bottleneck
mathing of a point set is contained in 16-relative neighborhood
graph (16-RNG), and thus in 16-GG. Biniaz, Maheshwari, Smid
improved this in [17] and [18] by showing that 9-GG contains
perfect bottleneck matching, but it is possible that there is no such
matching in 8-GG.

Bichromatic case. The problem of finding a bottleneck bichro-
matic non-crossing matching was proved to be NP-complete by
Carlson, Armbruster, Bellam and Saladi in [22]. But for the version
where crossings are allowed, Efrat, Itai and Katz showed in [32]
that a bottleneck matching between two point sets can be found in
O(n3/2 log n) time.

Biniaz, Maheshwari and Smid in [20] studied special cases of bot-
tleneck bichromatic non-crossing matchings. They showed that the
case where all points are in convex position can be solved in O(n3)
time, utilizing an algorithm similar to the one for monochromatic
case presented in [5]. They also considered the case where the
points of one color lie on a line and all points of the other color are
on the same side of that line, providing an O(n4) algorithm to solve
it. The same results for these special cases are independently ob-
tained in [22]. An even more restricted problem is studied in [20],
a case where all points lie on a circle, for which an O(n log n)-time
algorithm is given.

A variant of the bichromatic case is the so-called bicolored (or
multicolored, when there are arbitrary many colors) case, where
only the points of the same color are allowed to be matched. Abu-
Affash, Bhore and Carmi in [2] examined bicolored matchings that
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minimize the number of crossings between edges matching different
color sets. They presented an algorithm to compute a bottleneck
matching of points in convex position among all matchings that
have no crossings of this kind.

Apart from matchings, there is an interest in finding a bottleneck
instances of other structures, such as Steiner trees. In [16], Biniaz,
Maheshwari and Smid constructed an O(n log n) algorithm for com-
puting the bottleneck full Steiner tree in monochromatic setting,
and later Abu-Affash, Bhore, Carmi and Chakraborty in [3], pre-
sented an O(n log n)-time algorithm for computing the bottleneck
full Steiner tree in bichromatic setting.





Chapter 1

Monochromatic bottleneck
matchings
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1.1 Introduction

1.1.1 Problem statement

Let P be a set of n points in the plane, where n is an even number.
Let M be a perfect matching of points in P, using n/2 straight
line segments to match the points, that is, each point in P is an
endpoint of exactly one line segment. We forbid line segments to
cross. Denote the length of a longest line segment in M with bn(M),
which we also call the value of M . We aim to find a matching thatvalue of matching

minimizes bn(M). Any such matching is called bottleneck matchingbottleneck matching

of P.

1.1.2 Our results

In what follows we consider the case where all points of P are in
convex position, i.e. they are the vertices of a convex polygon P ,
and they are monochromatic, i.e. any two points from P can be
matched. As we are going to deal with matchings without crossings,
from now on, the word matching is used to refer only to pairings
that are crossing-free.

Let us label the points v0, v1, . . . , vn−1 in positive (counterclockwise)
direction. To simplify the notation, we will often use only the indices
when referring to the vertices. We write {i, . . . , j} to represent the
sequence i, i+1, i+2, . . . , j−1, j, where all operations are calculated
modulo n; note that i is not necessarily less than j, and {i, . . . , j} is
not the same as { j, . . . , i}. We say that (i, j) is a feasible pair if therefeasible pair

exists a matching containing (i, j), which in this case simply means
that {i, . . . , j} is of even size.

The problem of finding a bottleneck matching of points in convex po-
sition can be solved in polynomial time using dynamic programming
algorithm, as presented in [5]. Similar algorithm for bichromatic
case is presented in [20] and [22]. The algorithm is fairly straight-
forward, and we are going to describe it briefly in the following
subsection.

In this thesis, we present a faster algorithm for finding a bottleneck
matching for monochromatic points in convex position, with only
O(n2) time complexity. En route, we prove a series of results that
give insights in the properties and structure of bottleneck matchings.
This result is published in [43].
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1.1.3 A simple solution

To familiarize the reader with the problem, we present a simple but
less efficient solution to it. This solution is given in [5].

The subproblems we consider are the tasks of optimally matching
only the points in {i, . . . , j}, where i, j ∈ {0, . . . , n−1} and j−i is odd.
Each matching M on {i, . . . , j}matches i with some k ∈ {i+1, . . . , j},
where (i, k) is feasible. Segment (i, k) divides M in two parts, a
matching on {i + 1, . . . , k− 1} and a matching on {k+ 1, . . . , j}. If
we solve those two parts optimally, we can combine them into an
optimal matching of {i, . . . , j} that contains (i, k). We go through
all the possibilities for k and take the best matching obtained in
this way, yielding an optimal matching of points in {i, . . . , j}. If
we denote the value of this optimal matching by bi, j, we get the
following recursive formula,

bi, j = min
k=i+1,i+3,..., j



















|vi v j| if j − i = 1

max{|vi vk|, bk+1, j} if k− i = 1

max{|vi vk|, bi+1,k−1} if k = j

max{|vi vk|, bi+1,k−1, bk+1, j} otherwise.

This formula is then used to to fill in the dynamic programming
table. There are O(n2) entries, and to calculate each we need
O(n) time. Therefore, the described algorithm finds a bottleneck
matching for monochromatic points in convex position in O(n3)
time.

1.2 Structure of bottleneck matching

Our goal is to show the existence of a bottleneck matching that has
a certain structure, which we then utilize to develop an efficient
algorithm for finding such a matching. We do so by proving a
sequence of lemmas, with each lemma imposing an increasingly
stronger condition on the structure.

Let us split all point pairs into the two categories. Pairs consisting of
two neighboring vertices of P are called edges, and all other pairs edges

are called diagonals. Each matching is, thus, comprised of edges diagonals

and diagonals.

On several occasions it will be useful to discern between the two
possible orientations of a diagonal. Although in most cases we do
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not worry about the order of i and j in the pair (i, j), we will add
the qualifier “oriented" whenever the distinction between (i, j) and
( j, i) is important.

Figure 1. Turning angle.

The turning angle of {i, . . . , j}, denoted by τ(i, j), is the angle byturning angle

which the vector −−−→vi vi+1 should be rotated in positive direction to
align with the vector −−−→v j−1v j , see Figure 1.

Lemma 1. There is a bottleneck matching M of P such that all
diagonals (i, j) ∈ M have τ(i, j)> π/2.

Proof.Figure 2.
(a) M ′, matching before the

transformation.
(b) M ∗, matching after the

transformation.

(a) (b)

Suppose there is no such matching. Let M ′ be a bottleneck
matching with the least number of diagonals. By assumption,
there is a diagonal (i, j) ∈ M ′ such that τ(i, j) ≤ π/2, see
Figure 2(a). If we replace all pairs from M ′ lying in {i, . . . , j}
with edges (i, i+1), (i+2, i+3), . . . , ( j−1, j), we obtain a new
matching M∗, see Figure 2(b). The diameter of {i, . . . , j}, i.e.
the longest distance between any pair of points from {i, . . . , j},
is achieved by the pair (i, j), so bm(M∗)≤ bm(M ′). Since M ′

is a bottleneck matching, bm(M∗) = bm(M ′), meaning that
M∗ is a bottleneck matching as well. Diagonal (i, j) belongs
to M ′, but does not belong to M∗, so the new matching, M∗,
has at least one diagonal less than M ′, which contradicts the
assumption. �

Let us consider the division of the interior of the polygon P into
regions obtained by cutting it along diagonals of the given match-
ing M . Each region created by this division is bounded by some
diagonals of M and by the boundary of P . If there are exactly k
diagonals bounding a region, we say the region is k-bounded. Anyk-bounded region

maximal sequence of diagonals connected by 2-bounded regions is
called a cascade, see Figure 3 for an example.cascade

Figure 3. Diagonals inside
each shaded area make a
single cascade. There are

three cascades with only one
diagonal, one cascade with

two diagonals, and one
cascade with three diagonals.
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Lemma 2. There is a bottleneck matching having at most three
cascades.

Proof. Let M be a matching provided by Lemma 1, with all
diagonals having their turning angles greater than π/2. There
cannot be a region bounded by 4 or more diagonals of M ,
since if it existed, the total turning angle would be greater
than 2π. Hence, M only has regions with at most 3 bounding
diagonals. Suppose there are two or more 3-bounded regions.
We look at arbitrary two of them. There are two diagonals
bounding the first region and two diagonals bounding the
second region such that these four diagonals are in cyclical
formation, meaning that each diagonal among them has other
three on the same side. Applying the same argument once
again we see that this situation is impossible because it yields
turning angle greater than 2π. We conclude that there can be
at most one 3-bounded region. �

The case of a bottleneck matching having exactly three cascades is

Figure 4. Configuration of
points for which the only
bottleneck matching has
exactly three cascades.

possible, as shown in Figure 4.

It is not possible for a matching to have exactly two cascades. If
there were exactly two cascades, there would be a region defined
by diagonals from both of these cascades. If that region is bounded
by exactly one diagonal from each cascade, it would then be 2-
bounded and, by definition of cascade, we would have a single
cascade. Otherwise, if that region is bounded by more than one
diagonal from one of the two cascades, it would then be at least
3-bounded and, by definition of cascade, no two of its diagonals
would belong to the same cascade, and hence we would have more
than two cascades.

So, from Lemma 2 we know that there is a bottleneck matching
which either has at most one cascade and no 3-bounded regions, or
it has a single 3-bounded region and exactly three cascades. In the
following section we define a set of simpler problems that will be
used to find an optimal solution in both of these cases.
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1.3 Finding bottleneck matchings

1.3.1 Matchings with at most one cascade

When talking about matchings with minimal value under certain
constraints, we will refer to these matchings as optimal.optimal matching

For j − i odd, let MAT C H I N G(i, j) be the problem of finding an
optimal matching Mi, j of points {i, . . . , j}, so that Mi, j has at most
one cascade, and the segment (i, j) belongs to a region bounded by
at most one diagonal from Mi, j different from (i, j).

If j − i = 1, then the solution to MAT C H I N G(i, j) is exactly the
edge (i, j). If j − i > 2, we consider the following cases. If there
is a solution to MAT C H I N G(i, j) that contains the pair (i, j), then
Mi, j can be constructed by taking (i, j) together with Mi+1, j−1. If
not, then at least one of the edges (i, i + 1) and ( j − 1, j) must be a
part of Mi, j (as otherwise points i and j would be endpoints of two
different diagonals from Mi, j , neither of which is (i, j)), which is not
allowed (by the requirement that the region containing (i, j) has at
most one other bounding diagonal). If (i, i + 1) ∈ Mi, j, then Mi, j
can be constructed from Mi+2, j and the edge (i, i + 1). Similarly,
if ( j − 1, j) ∈ Mi, j, then we can get Mi, j as Mi, j−2 plus the edge
( j − 1, j).

Since these problems have optimal substructure, we can apply
dynamic programming to solve them. If bn(Mi, j) is saved into
S[i, j], the following recurrent formula can be used to calculate the
solution to MAT C H I N G(i, j) for all feasible pairs (i, j),

S[i, j] =min







max{S[i + 1, j − 1], |vi v j|} (1.1a)

max{S[i + 2, j], |vi vi+1|} (1.1b)

max{S[i, j − 2], |v j−1v j|}. (1.1c)

Initially, we set S[i, i] = 0, for all i, and then we fill values in S in
order of increasing j − i, so that all subproblems are already solved
when needed.

Beside the value of a solution to MAT C H I N G(i, j), it is going to be
useful to determine if pair (i, j) is necessary for constructing Mi, j,
i.e. we want to know if all the solutions to MAT C H I N G(i, j) contain
(i, j). If that is true then we call such an oriented pair necessary. Thisnecessary pair

can be easily incorporated into the calculation of S[i, j]. Namely, if
case (1.1a) is the only one achieving minimum among cases (1.1a),
(1.1b) and (1.1c), we set necessar y(i, j) to >, otherwise we set it
to ⊥. Note that necessar y(i, j) does not imply necessar y( j, i).
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We have O(n2) subproblems, each of which takes O(1) time to be
calculated. Hence, all calculations together require O(n2) time and
the same amount of space. To find the optimum for matchings with
at most one cascade, we just find the minimum of all S[i+1, i], and
take any Mi+1,i that achieves it. This step takes only linear time.

Note that we calculated only the values of solutions to all subprob-
lems. If an actual matching is needed, it can be easily reconstructed
in linear time from the data in S.

1.3.2 Matchings with three cascades

As we concluded earlier, there is a bottleneck matching of P having
either at most one cascade, or exactly three cascades. An optimal
matching with at most one cascade can be found easily from calcu-
lated solutions to subproblems, as shown in the previous section.
Next, we focus on finding an optimal matching among all matchings
with exactly three cascades, denoted by 3-cascade matchings in the 3-cascade matchings

following text.

Any three distinct points i, j and k with j ∈ {i + 1, . . . , k − 1},
where (i, j), ( j + 1, k) and (k+ 1, i − 1) are feasible pairs, can be
used to construct a 3-cascade matching by simply taking a union
of Mi, j, M j+1,k and Mk+1,i−1. These three feasible pairs are not
necessarily diagonals in the combined matching, since they might
not be necessary pairs in their respective 1-cascade matchings. To
find the optimal matching we could run through all possible triplets
(i, j, k) and see which one minimizes max{S[i, j], S[ j + 1, k], S[k+
1, i−1]}. However, that requires O(n3) time, and thus is not suitable,
since our goal is to design a faster algorithm. Our approach is to
show that instead of looking at all (i, j) pairs, it is enough to select
(i, j) from a set of linear size, which would reduce the search space
to quadratic number of possibilities, so the search would take only
O(n2) time.

In a 3-cascade matching, by inner diagonals we denote three ori- inner diagonals

ented diagonals bounding the single 3-bounded region from their
left side. More precisely, an oriented diagonal (i, j) is an inner
diagonal if it defines the boundary of the 3-bounded region and
that region lies on the opposite side of the diagonal from points in
{i + 1, . . . , j − 1}. So, if an oriented pair (i, j) is an inner diagonal,
then the oriented pair ( j, i) is not.
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Lemma 3. If there is no bottleneck matching with at most one
cascade, then there is a bottleneck 3-cascade matching whose every
inner diagonal is necessary.

Proof. Take any 3-cascade bottleneck matching M . If it has an
inner diagonal (i, j) that is not necessary, then (by definition)
there is a solution to MAT C H I N G(i, j) that does not contain
the pair (i, j) and has at most one cascade. We use that solution
to replace all pairs from M that are inside {i, . . . , j}, and thus
obtain a new 3-cascade matching that does not contain the
pair (i, j). Since M was optimal and there was at most one
cascade inside {i, . . . , j}, replaced pairs were also a solution to
MAT C H I N G(i, j), so the new matching must have the same
value as the original matching. And since there is no bottleneck
matching with at most one cascade, the new matching must
be a bottleneck 3-cascade matching as well. We repeat this
process until all inner diagonals are necessary. The process has
to terminate because the 3-bounded region is getting larger
with each replacement. �

We say that oriented diagonal (i, j) is a candidate diagonal, ifcandidate diagonal

necessar y(i, j) and τ(i, j)≤ 2π/3.

Lemma 4. If there is no bottleneck matching with at most one
cascade, then there is a 3-cascade bottleneck matching M, such
that at least one inner diagonal of M is a candidate diagonal.

Proof. Lemma 3 provides us with a 3-cascade matching M
whose every inner diagonal is necessary. At least one of the 3
inner diagonals of M has turning angle at most 2π/3, hence
it is a candidate diagonal. Otherwise, the total turning angle
would be greater than 2π, which is impossible. �

Let us now look at a candidate diagonal (i, j), and examine the

Figure 5. Points vi+1, . . . , v j−1

all lie inside either Π− or Π+.

position of points {i + 1, . . . , j − 1} relative to it. We construct
the circular arc h on the right side of the directed line vi v j, from
which the line segment vi v j subtends an angle of π/3, see Figure 5.
We denote the midpoint of h with A. Points vi, A and v j form
an equilateral triangle, hence we are able to construct the arc a−

between A and vi with the center in v j, and the arc a+ between
A and v j with the center in vi. These arcs define three areas: Π−,
bounded by h and a−, Π+, bounded by h and a+, and Π0, bounded
by a−, a+ and the line segment vi v j , all depicted in Figure 5.
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Lemma 5. If (i, j) is a candidate diagonal, then points
vi+1, . . . , v j−1 either all belong to Π− or all belong to Π+.

Proof. Let T be the point of intersection of lines vi vi+1 and
v j v j−1, see Figure 5. Since τ(i, j) ≤ 2π/3, the point T lies
in the area bounded by the line segment vi v j and the arc h.
Because of convexity, all points in {i, . . . , j} must lie inside
the triangle 4vi T v j, so there cannot be two points from {i +
1, . . . , j−1} such that one is on the right of the directed line viA
and the other is on the left of the directed line v jA. This as well
means that eitherΠ− orΠ+ is empty. Without loss of generality,
let us assume that there are no points from {i + 1, . . . , j − 1}
in Π−.

It remains to be proved that none of the points in {i+1, . . . , j−
1} lies in Π0. Suppose the opposite, that there is such a point
in Π0. Let k be the first index in the sequence {i, . . . , j} such
that vk ∈ Π+. Since (i, j) is a feasible pair, {i, . . . , j} is of even
size, implying that the parity of the number of points in Π+ is
the same as the parity of the number of points in Π0. (If there
are points on a+, we assign them to either region.)

Figure 6. Matching points in
{i, . . . , j}, the even case.

If the number of points in Π+, as well as in Π0, is odd (not
counting points vi and v j), see Figure 6, we make a matching
using pairs (i, i + 1), (i + 2, i + 3), . . . , ( j − 1, j). In the case
the number is even, see Figure 7, we make a matching using
pairs (i, i + 1), (i + 2, i + 3), . . . , (k − 3, k − 2), pair (k − 1, j),
and pairs (k, k+ 1), (k+ 2, k+ 3), . . . , ( j − 2, j − 1).

Figure 7. Matching points in
{i, . . . , j}, the odd case.

For each matched pair in any of these two cases, points of the
pair either both belong to Π0, or they both belong to the area
bounded by a+ and the line segment Av j . Both of these areas
have diameter |vi v j|, so all matched pairs have distance not
larger than |vi v j|. So, in each of the cases we constructed a
matching Mi, j of all points in {i, . . . , j} which does not contain
(i, j), with bn(Mi, j) ≤ |vi v j|. The matching also satisfies the
condition for subproblem MAT C H I N G(i, j), i.e. it has at most
one cascade, and the pair (i, j) belongs to a region bounded
by at most one diagonal from Mi, j different from (i, j) (which
can only be the diagonal (vk−1v j) in the second case). Conse-
quently, (i, j) cannot be a necessary diagonal, and, thereby, it
can not be a candidate diagonal, leading to a contradiction
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with the assumption that there is a point from {i+1, . . . , j−1}
in Π0. �

With Π−(i, j) and Π+(i, j) we respectively denote areas Π− and Π+

corresponding to a candidate diagonal (i, j).

Two possibilities for a candidate diagonal (i, j) provided by Lemma 5
bring forth a concept of polarity. If points {i + 1, . . . , j − 1} lie inpolarity

Π−(i, j) we say that candidate diagonal (i, j) has negative polaritynegative polarity

and has i as its pole. Otherwise, if these points lie in Π+(i, j), wepole

say that (i, j) has positive polarity and pole in j.positive polarity

Lemma 6. No two candidate diagonals of the same polarity can
have the same point as a pole.

Proof.

Figure 8. Two candidate
diagonals of equal polarity

having the same pole.

Let us suppose the contrary, that is, that there are two
candidate diagonals of the same polarity with the same point
as a pole. Assume, without loss of generality, that (i, k) and
( j, k) are two such candidate diagonals, both with positive
polarity, each having its pole in k. Without loss of generality,
we also assume that j ∈ {i + 1, . . . , k− 1}, see Figure 8.

Area Π+(i, k) lies inside the angle with vertex vk and sides at
angles of π/3 and 2π/3 with line vkvi . Similarly, Π+( j, k) lies
inside the angle with vertex vk and sides at angles of π/3 and
2π/3 with line vkv j .

Since ( j, k) is a diagonal, there is l ∈ { j+1, . . . , k−1}. Points v j
and vl lie in Π+(i, k) and Π+( j, k), respectively, meaning that
π/3 ≤ ∠vi vkv j ,∠v j vkvl ≤ 2π/3, implying 2π/3 ≤ ∠vi vkv j +
∠v j vkvl = ∠vi vkvl ≤ 4π/3. This means that vl does not belong
to Π+(i, j). However, that is not possible, because l ∈ {i +
1, . . . , j − 1} as well, so we have a contradiction. �

As a simple corollary of Lemma 6, we get that there is at most linear
number of candidate diagonals.

Lemma 7. There are O(n) candidate diagonals.

Proof. Among all candidate diagonals of the same polarity no
two can have a pole in the same point of P. Therefore, there
are at most n candidate diagonals of the same polarity, and,
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consequently, at most 2n candidate diagonals in total. �

Finally, we combine our findings from Lemma 4 and Lemma 7, as de-
scribed in the beginning of Section 1.3.2, to construct Algorithm 1.

Algorithm 1 Bottleneck Matching

Calculate S[i, j] and necessar y(i, j) for all feasible (i, j) pairs,
as described in Section 1.3.1.
best ←min{S[i + 1, i] : i ∈ {0, . . . , n− 1}}
for all feasible (i, j) do

if necessar y(i, j) and τ(i, j)≤ 2π/3 then
for k ∈ { j + 1, . . . , i − 1} such that ( j + 1, k) is feasible do

best ←min{best,max{S[i, j], S[ j + 1, k], S[k+ 1, i −
1]}}

Theorem 8. Algorithm 1 finds the value of bottleneck matching
in O(n2) time.

Proof. The first step, calculating S[i, j] and necessar y(i, j)
for all (i, j) pairs, is done in O(n2) time, as described in Sec-
tion 1.3.1. The second step finds the minimal value of all
matchings with at most one cascade in O(n) time.

The rest of the algorithm finds the minimal value of all 3-
cascade matchings. Lemma 4 tells us that there is a bottleneck
matching among 3-cascade matchings with one inner diagonal
being a candidate diagonal, so the algorithm searches through
all such matchings. We first fix the candidate diagonal (i, j)
and then enter the inner for-loop, where we search for an
optimal 3-cascade matching having (i, j) as an inner diagonal.
Although the outer for-loop is executed O(n2) times, Lemma 7
guarantees that the if-block is entered only O(n) times. The
inner for-loop splits { j+1, . . . , i−1} in two parts, { j+1, . . . , k}
and {k + 1, . . . , i − 1}, which together with {i, . . . , j} make
three parts, each to be matched with at most one cascade. We
already know the values of optimal solutions for these three
subproblems, so we combine them and check if we get a better
overall value. At the end, the minimum value of all examined
matchings is contained in best, and that has to be the value
of a bottleneck matching, since we surely examined at least
one bottleneck matching. �



24

Algorithm 1 gives only the value of a bottleneck matching, however,
it is easy to reconstruct an actual bottleneck matching by recon-
structing matchings for subproblems that led to the minimum value.
This reconstruction can be done in linear time.



Chapter 2

Bichromatic bottleneck
matchings
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2.1 Introduction

2.1.1 Problem statement

Let R and B be sets of n red and n blue points in the plane, respec-
tively, with P = R∪ B. Let M be a perfect matching between points
from R and B, using n straight line segments to match the points,
that is, each point is an endpoint of exactly one line segment, and
each line segment has one red and one blue endpoint. We forbid
line segments to cross. Denote the length of a longest line segment
in M with bn(M), which we also call the value of M . We aim tovalue, bn

find a matching under given constraints that minimizes bn(M). Any
such matching is called a bottleneck matching of P.bottleneck matching

2.1.2 Our results

We develop tools which enable us to solve the problem of finding a
bottleneck bichromatic non-crossing matching of points in convex
position in O(n2) time, improving upon previously best-known
algorithm of O(n3)-time complexity, given in [20] and [22]. Also,
combining the same toolset with a geometric analysis we design
an optimal O(n) algorithm for the same problem in case when the
points lie on a circle, where previously best-known algorithm has
O(n log n)-time complexity. The manuscript containing our results
can be found in [44].

In order to efficiently deal with bichromatic non-crossing matchings
on convex point sets, we introduce a structure that we refer to
as orbits, which turn out to capture well some of the structural
properties of such matchings. Namely, the points naturally partition
into sets, i.e. orbits, in such a way that two differently colored points
can be connected by a segment in a non-crossing perfect matching
if and only if they belong to the same orbit.

There is a number of additional properties of orbits that we can
put to good use, and once we combine them with the ideas used
to efficiently solve the monochromatic case in [43], we are able
to construct efficient algorithms in the bichromatic version of the
problem, both for the convex case and for the case where all points
lie on a circle. We note that the theory behind orbits may be of
independent interest when tackling related problems.

The exposition of these results is organized as follows. In Section 2.3
we formally define orbits and derive numerous properties that hold
for them. We note the existance of a structured relationship between
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orbits. This leads us to the definition of orbit graphs for which we
also show certain properties. In Section 2.4 we make use of the
theory developed around orbits to construct an efficient algorithm
for finding a bottleneck matching of points in convex position. In
Section 2.5 we again use properties of orbits and orbit graph to
optimally solve the problem of finding a bottleneck matching for
points on a circle.

2.2 Preliminaries

As we deal with perfect matchings without crossings, from now on,
when we talk about matchings, it is understood that we refer to
matchings that are both perfect and crossing-free.

Also, we assume that the given points in P are in convex position,
i.e. they are the vertices of a convex polygon P . Let us label the
points of P by v0, v1, . . . , v2n−1 in positive (counterclockwise) direc-
tion. To simplify the notation, we will often use only indices when
referring to points. We write {i, . . . , j} to represent the sequence
i, i + 1, i + 2, . . . , j − 1, j. All operations are calculated modulo 2n.
Note that i is not necessarily less than j, and that {i, . . . , j} is not
the same as { j, . . . , i}.

Definition 9. A set of points is balanced if it contains the same balanced, blue-heavy, red-heavy

number of red and blue points. If the set has more red points than
blue, we say that it is red-heavy, and if there are more blue points
than red, we call it blue-heavy.

As we already mentioned, we assume that P consists of n red and
n blue points, i.e. it is balanced.

The following lemma gives us a simple but important tool that
ensures the existence of a matching on a point set.

Lemma 10. Every balanced set of points can be matched.

Proof. We denote the set of points by Q, and let v ∈Q. W.l.o.g.,
assume v is red. We scan all other points by angle around
v, starting from one neighbor of v on the convex hull and
ending in the other. We keep track of the difference between
the number of blue and red points encountered so far. At the
beginning, this difference is 0, and at the end it is 1, since there
is one more blue point in Q\{v}. As the difference changes by
one at each point, it must go from 0 to 1 at some blue point
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u. We match v with u, and we split the point set into two
balanced parts, one on each side of the line uv, continuing
this process recursively for both parts, until we match all the
points. �

Definition 11. We say that (i, j) is a feasible pair if there exists afeasible pair

matching containing (i, j).

We will make good use of the following characterization of feasible
pairs.

Lemma 12. A pair (i, j) is feasible if and only if i and j have
different colors and {i, . . . , j} is balanced.

Proof. If (i, j) is feasible, then i and j have different colors.
Also, there is a matching that contains the pair (i, j), and at
the same time the set {i + 1, . . . , j − 1}, containing all points
on one side of the line i j, is matched. Then {i + 1, . . . , j − 1}
must be balanced, so {i, . . . , j} is balanced as well.

On the other hand, if i and j are of different colors and
{i, . . . , j} is balanced, then both {i + 1, . . . , j − 1} and { j +
1, . . . , i − 1} are also balanced. Thus we can match i with j,
and Lemma 10 ensures that each of the sets {i + 1, . . . , j − 1}
and { j + 1, . . . , i − 1} can be matched. Clearly, the obtained
matching remains crossing free. �

The statement of Lemma 12 is quite simple, and we will apply it on
many occasions. To avoid its numerous mentions that could make
some of our proofs unnecessarily cumbersome, from now on we
will use it without explicitly stating it.

2.3 Orbits and their properties

Definition 13. By o(i) we denote the first point starting from i infunctions o and o−1

the positive direction such that (i, o(i)) is feasible. By o−1(i) we
denote the first point starting from i in the negative direction such
that (o−1(i), i) is feasible.

As we assume that the given point set is balanced, Lemma 10 guar-
antees that both o and o−1 are well-defined. Let us also point out
that the chosen notation is appropriate, as we will later show, as a
part of Property 16, that o−1 is the inverse function of o.
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Property 14. If a set {i, . . . , j} is such that the number of points
in {i, . . . , j} of the same color as i is not larger than the number
of points of the other color, then o(i) ∈ {i + 1, . . . , j}.

If a set {i, . . . , j} is such that the number of points in {i, . . . , j} of
the same color as j is not larger than the number of points of the
other color, then o−1( j) ∈ {i, . . . , j − 1}.

Proof. W.l.o.g. assume that i is red. We observe the difference
between the number of red points and the number blue points
in {i, . . . , k}, as k goes from i to j. In the beginning, when
k = i, this difference is 1, and at the end, when k = j the
difference is at most 0. In each step this difference changes
by 1, so the first time this difference is 0, the point k must
be blue. This is the first time the set {i, . . . , k} is balanced, so
o(i) = k ∈ {i + 1, . . . , j}.

The second part of the property is proven in an analogous
manner. �

A straightforward consequence of Property 14 follows.

Property 15. If {i, . . . , j} is balanced, then o(i) ∈ {i + 1, . . . , j}
and o−1( j) ∈ {i, . . . , j − 1}.

Proof. Since {i, . . . , j} is balanced, conditions from Prop-
erty 14 hold both for i and j, and hence, o(i) ∈ {i + 1, . . . , j}
and o−1( j) ∈ {i, . . . , j − 1}. �

The next property establishes the connection of o and o−1 which
has already been informally suggested by the notation.

Property 16. Function o is a bijection, and o−1 is its inverse
function.

Proof. To show that the function o is bijective and o−1 is its
inverse, it is enough to prove that, for all i, we have o(o−1(i)) =
i and o−1(o(i)) = i.

Let j = o(i) and k = o−1( j). Suppose that i 6= k. By definition
of o, the set {i, . . . , j} is balanced, so by Property 15 we have
that k ∈ {i, . . . , j − 1}. On the other hand, by definition of
o−1, the set {k, . . . , j} is also balanced, so {i, . . . , k− 1} must
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be balanced as well. But this means, again by Property 15,
that o(i) ∈ {i + 1, . . . , k− 1}, which is a contradiction. Hence,
o−1(o(i)) = i. The claim that o(o−1(i)) = i is proven analo-
gously. �

Now we are ready to define orbits.

Definition 17. An orbit of i, denoted by O (i), is defined by O (i) :=orbit

{ok(i) : k ∈ Z}. By O (P) we denote the set of all orbits of a convex
point set P, that is O (P) := {O (i) : i ∈ P}.

An example of a balanced 2-colored convex point set along with its

Figure 9. Orbits – an example.

set of orbits can be found in Figure 9. Note that from the definition
of orbits it is clear that for each j ∈ O (i) we have O ( j) = O (i), and
therefore the set of all orbits, O (P), is a partition of the set of all
points.

The number of orbits can be anything from 1, when colors alternate,
as in Figure 10(a), to n/2, when points in each color group are
consecutive, as in Figure 10(b).

Figure 10.
(a) One orbit of size 2n.

(b) n orbits of size 2.

(a) (b)

Next, we prove a number of properties of orbits.

The first property provides a simple characterization of a feasible
pair via orbits, which is essential for our further application of orbits.

Property 18. Points i and j form a feasible pair if and only if
they have different colors and O (i) = O ( j).

Proof. First, suppose that i and j have different colors and
belong to the same orbit. Then j = os(i), where s is odd
(as i and j have different colors). For each r ∈ {0, . . . , s −
1}, the pair (or(i), or+1(i)) is feasible so {or(i), . . . , or+1(i)}
is balanced. This, together with the fact that the sequence
o0(i), o1(i), ..., os(i) alternates between red and blue points,
implies that {i, . . . , j} is balanced as well, that is, the pair (i, j)
is feasible.
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Figure 11. Illustrating the
proof of Property 18

Next, let (i, j) be a feasible pair, where, say, i is red and j is blue.
Suppose for a contradiction that i and j belong to different
orbits. Let r be such that j ∈ {or(i) + 1, . . . , or+1(i)− 1}, see
Figure 11. W.l.o.g. suppose that or(i) is blue (the other case
is symmetrical with respect to the direction around P). Both
(i, or(i)) and (i, j) are feasible pairs, from which it follows that
{or(i) + 1, . . . , j} is balanced. The points or(i) and j are of
the same color, so {or(i), . . . , j−1} is also balanced. However,
Property 15 implies that or+1(i) = o(or(i)) ∈ {or(i)+1, . . . , j−
1}, which is a contradiction with the choice of r. �

The following property discusses the way a feasible pair divides an
orbit, whether it belongs to it or not.

Property 19. A feasible pair divides points of any orbit into two
balanced parts.

Proof. Let (i, j) be a feasible pair and letA be an orbit. By
Property 18 points can be matched only within their orbit,
so if {i, . . . , j} ∩A is not balanced, then it is not possible to
complete a matching containing (i, j) which is a contradiction
with (i, j) being feasible. �

Informally speaking, the following property ensures that by repeat-
edly applying function o, we follow the points of an orbit as they
appear on P , thus visiting all the points of the orbit in a single turn
around the polygon.

Property 20. No point of an orbit O (i) lies between i and o(i),
that is, {i, . . . , o(i)} ∩ O (i) = {i, o(i)}.

Proof. Suppose there is a point j ∈ O (i) such that j ∈
{i, . . . , o(i)} \ {i, o(i)}. The colors of i and o(i) are different,
so the color of j is either different from i or from o(i).

If i and j have different colors, knowing that they belong to
the same orbit, by Property 18 the pair (i, j) is feasible, which
is a contradiction with o(i) being the first point from i in the
positive direction such that (i, o(i)) is feasible.

The other case, when o(i) and j have different colors, is treated
analogously. �
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The following two properties are simple consequences of the previ-
ous statement.

Property 21. Any two neighboring points in an orbit have dif-
ferent colors.

Proof. From Property 20 we have that if i and j are neigh-
boring points on an orbit, then either j = o(i) or i = o( j). By
the definition of the function o, this means that i and j have
different colors. �

Property 22. Every orbit is balanced.

Proof. This follows directly from Property 21. �

Next, we discuss a structural property of two different orbits.

Property 23. Let i and j be points from two different orbits such
that there are no other points from their orbits between them, that
is, {i, . . . , j} ∩ O (i) = i and {i, . . . , j} ∩ O ( j) = j. Then, i and j
have the same color.

Proof. Suppose for a contradiction that i and j have different
colors, say, i is blue and j is red. Since they are not from
the same orbit, by Property 18 the pair (i, j) is not feasible.
Thus, {i, . . . , j} is not balanced, so it is either red-heavy or
blue-heavy.

If it is red-heavy, then by Property 14 we have o(i) ∈ {i +
1, . . . , j}, which is a contradiction with {i, . . . , j} ∩ O (i) = i.

If {i, . . . , j} is blue-heavy, then, again by Property 14, we have
that o−1( j) ∈ {i, . . . , j − 1}, which is a contradiction with
{i, . . . , j} ∩ O ( j) = j. �

Moving on to the algorithmic part of the story, we show that we
can efficiently compute all the orbits, or more precisely – all the
values of the function o.
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Lemma 24. The function o(i), for all i, can be computed in O(n)
time.

Proof. The goal is to find o(i) for each i ∈ {0, . . . , 2n − 1}.
We start by showing how to find i0 such that for every j ∈
{0, . . . , 2n− 1}, we have that {i0, . . . , j} is either balanced or
red-heavy.

We define zi to be the number of red points minus the num-
ber of blue points in {0, . . . , i − 1}. All these values can be
calculated in O(n) time, since zi = zi−1 ± 1, where we take
the plus sign if the point i − 1 is red, and the minus sign if it
is blue. If for i0 we take i for which zi is minimum, breaking
ties arbitrarily, it is straightforward to check that the above
condition is satisfied.

Now, to calculate the function o in all the red points, we run
the following algorithm.

Find i0 as described.
Create new empty stack S .
for i ∈ {i0, . . . , i0 − 1} do

if i ∈ R then
S .Push(i)

else
j←S .Pop()
o( j)← i

The way i0 is chosen guarantees that for every j ∈ {0, . . . , 2n−
1}, the number of blue points in the set {i0, . . . , j} is at most
the number of red points in the same set, i.e. the set is either
balanced or red-heavy. This ensures that the stack will never
be empty when Pop operation is called. When o( j) is assigned,
the point j is the last on the stack because each red point
that came after j is popped when its blue pair is encountered,
meaning that { j, . . . , i} is balanced. Moreover, this is the first
time such a situation happens, so the assignment o( j) = i is
correct.

By running this algorithm we calculated the function o in all
red points. To calculate it in blue points as well, we run an
analogous algorithm where the color roles are swapped.

All the parts of this process run in O(n) time, so the function o
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and, thereby, all orbits, are calculated in O(n) time as well. �

We define two categories of feasible pairs according to the relative
position within their orbit.

Definition 25. We call a feasible pair (i, j) an edge if and only ifedge, diagonal

i = o( j) or j = o(i); otherwise, it is called a diagonal.

In other words, pairs consisting of two neighboring vertices of
an orbit are called edges, and all other feasible pairs are called
diagonals. Note that edges are not necessarily neighboring vertices
in P.

Property 26. If (i, j) is an edge such that |{i, . . . , j}|> 2, then
the pair (i + 1, j − 1) is feasible.

Proof. The pair (i, j) is feasible, so {i, . . . , j} is balanced. Points
i and i + 1 have the same color, otherwise (i, i + 1) would be
an edge, and similarly, points j and j − 1 have the same color.
Hence, points i + 1 and j − 1 have different colors, which,
together with the fact that {i+1, . . . , j−1} is balanced as well,
implies that the pair (i + 1, j − 1) is feasible. �

Property 27. If {i, . . . , j} is balanced, then points in {i, . . . , j}
can be matched using edges only.

Proof. We prove this by induction on the size of {i, . . . , j}. The
statement obviously hold for the base case, where j = i + 1,
since (i, i + 1) itself must be an edge.

Let us assume that the statement is true for all balanced se-
quences of points of size less than r, and let |{i, . . . , j}| = r.
Property 15 implies that o(i) ∈ {i, . . . , j}. We construct a
matching on {i, . . . , j} by taking the edge (i, o(i)) together with
edge-only matchings on {i+1, . . . , o(i)−1} and {o(i)+1, . . . , j},
which are provided by the induction hypothesis. �

When speaking about edges, we consider them to be ordered pairs
of points, so that the edge (i, o(i)) is considered to be directed from i
to o(i). We say that points {i, . . . , o(i)}\{i, o(i)} lie on the right side
of the edge (i, o(i)), and points {o(i), . . . , i} \ {i, o(i)} lie on its left
side. Directionality of edges and coloring of points together bring
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forth the two possible types of edges, as the following definition
states.

Definition 28. We say that (i, o(i)) is a red-blue edge if i ∈ R, and red-blue edge, blue-red edge

blue-red edge if i ∈ B.

Note that sometimes an orbit comprises only two points, in case
when o(o(i)) = i; we think of it as if it has two edges, (i, o(i)) and
(o(i), i), one being red-blue and the other being blue-red.

Property 29. Two edges of the same type (both red-blue, or both
blue-red) from different orbits do not cross.

Proof. Let (i, o(i)) and ( j, o( j)) be two edges of the same
type, and O (i) 6= O ( j). Suppose, for a contradiction, that
these edges cross, then we either have j ∈ {i, . . . , o(i)} or
i ∈ { j, . . . , o( j)}.

W.l.o.g. we can assume that j ∈ {i, . . . , o(i)}. Then, there
are no points from O (i)∪O ( j) in { j, . . . , o(i)} \ { j, o(i)}, and
Property 23 implies that points o(i) and j have the same color.
However, this is a contradiction with the assumption that
(i, o(i)) and ( j, o( j)) are of the same type. �

Property 30. For every two orbits A ,B ∈ O (P), A 6= B ,
either all points ofB are on the right side of red-blue edges ofA ,
or all points ofB are on the right side of blue-red edges ofA .

Proof.

Figure 12. Illustrating the
proof of Property 30

Suppose for a contradiction that there are two points
fromB , one on the right side of a red-blue edge ofA , and the
other on the right side of a blue-red edge ofA , see Figure 12.
Let i and j be two such points with no other points fromB in
{i, . . . , j} (we can always find such a pair, since each point of
B is either behind a red-blue edge, or behind a blue-red edge
ofA ). Then, (i, j) is an edge ofB which crosses both a red-
blue edge and a blue-red edge ofA , which is a contradiction
with Property 29. �

The following property tells us about how the orbits are mutually
synchronized.
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Property 31. Let A ,B ∈ O (P). There are no points of B on
the right side of red-blue edges of A if and only if there are no
points ofA on the right side of blue-red edges ofB .

Proof.

Figure 13. Illustrating the
proof of Property 31

IfA =B this is trivially true.

Let there be no points ofB on the right side of red-blue edges
ofA . Suppose for a contradiction that there is a blue-red edge
(i, j) of B such that there are points of A on its right side,
see Figure 13. Let k be the first point fromA in {i, . . . , j}. It
must be red, otherwise point i ofB would be on the right side
of the red-blue edge (o−1(k), k) ofA . But now, i ∈B is blue
and k ∈ A is red, and no points of A ∪B are in {i, . . . , k}
other than i and k, which is a contradiction with Property 23.

The other direction is proven analogously. �

Definition 32. The relation � on the set of all orbits, O (P), isrelation �
defined by settingA �B if and only if there are no points ofB
on the right sides of red-blue edges ofA (which, by Property 31,
is equivalent to no points ofA being on the right sides of blue-red
edges ofB).

Property 33. The relation � on O (P) is a total order.

Proof. For eachA ,B ∈ O (P), the following holds.

Totality.A �B orB �A .

IfA =B this is trivially true. SupposeA �B does not hold.
Because of Property 30, no points ofB are on the right side
of blue-red edges of A , so B �A , by the definition of the
relation �.

Antisymmetry. IfA �B andB �A , thenA =B .

FromA �B we know that no points ofA are on the right
side of blue-red edges ofB . But, sinceB �A , there are no
points ofA on the right side of red-blue edges ofB , either.
This is only possible ifA =B .

Transitivity. IfA �B andB �C , thenA �C .

IfA �B then all red-blue edges ofA must lie on the right
side of red-blue edges of B , because no red-blue edges of
A can cross a red-blue edge of B (Property 29) and there
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are no points ofA on the right side of blue-red edges ofB .
However, since B � C , there are no points of C right of
red-blue edges ofB , so no point of C can be on the right side
of some red-blue edge ofA . Hence,A �C . �

Property 34. LetA andB ,A �B , be two consecutive orbits
in the total order of orbits, that is, there is no L different from
A and B , such that A � L � B . If i and j are two points,
one fromA and the other fromB such that there are no points
from A or B in {i, . . . , j} other than i and j, then i and j are
two consecutive points on P .

The inverse also holds, for any two consecutive points i and i + 1
in P which belong to different orbits, orbits O (i) and O (i+1) are
two consecutive orbits in the total order of orbits.

Note that Property 21 and Property 23 ensure that two consecutive
points in P belong to different orbits if and only if they have the
same color.

Proof. (of Property 34)

Figure 14. Illustrating the
proof of Property 34

Assume that i ∈A and j ∈B are two
points such thatA ∩{i, . . . , j}= {i} andB ∩{i, . . . , j}= { j},
see Figure 14. (The case when i ∈ B and j ∈ A is proven
analogously.)

Points i and j must have the same color, by Property 23. Since
j is on the right side of the edge (i, o(i)) and A � B , that
edge must be blue-red, so both i and j are blue.

Suppose that there is an orbitL with points in {i+1, . . . , j−1}.
But then, those points are on the right side of the blue-red edge
(i, o(i)) and on the right side of the red-blue edge (o−1( j), j),
that is,A �L and L �B , a contradiction.

To show the inverse statement, assume that points i and i + 1
belong to different orbits. W.l.o.g., assume O (i) � O (i + 1).
If there is an orbit L different from both O (i) and O (i + 1),
such that O (i)�L � O (i + 1), then i would lie on the right
side of red-blue edges of L , and no points of O (i + 1) would
lie on the right side of red-blue edges of L . But, this is not
possible since position of points i and i + 1 must be the same
relative to any edge containing neither i nor i + 1. �
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2.3.1 Orbit graphs

Definition 35. Orbit graph G (P) is a directed graph whose vertexOrbit graph

set is the set of all orbits, O (P), and there is an arc from an orbit
A to an orbitB if and only ifA andB cross andA �B .

Property 36. LetA ,B ,C ∈ O (P). If both (A ,B) and (A ,C )
are arcs of G (P), or both (B ,A ) and (C ,A ) are arcs of G (P),
then either(B ,C ) or (C ,B) is an arc of G (P) as well.

Proof.

Figure 15. Illustrating the
proof of Property 36

Assume that in G (P) there is an arc betweenA and
B , an arc betweenA and C , but no arc betweenB and C .
By definition,A crosses bothB and C , andB and C do not
cross, as illustrated in Figure 15. Then, there is an edge (i, j)
of B such that the whole C lies on its right side, and there
is an edge (k, l) of C such that the wholeB lies on its right
side.

From Property 23 we know that points i and l must be of the
same color. Therefore, edges (i, j) and (k, l) are of different
types. OrbitA crosses bothB and C , so it must cross both
(i, j) and (k, l). IfA �B then (i, j) must be red-blue, since
there are points of A on the right side of (i, j), and thus
(k, l) must be blue-red. But there are also points ofA on the
right side of (k, l), so C �A . Analogously, IfB �A , then
A �C .

Hence, if both A � B and A � C or both B � A and
C �A , thenB and C must cross. �

Property 37. Each weakly connected component of G (P) con-
tains a unique Hamiltonian path.

Proof. Assume there is a weakly connected component of
G (P) without a Hamiltonian path. Let L =L0,L1, . . . ,Lm be
the longest path in that component.

Firstly, let us suppose that there is an orbitA /∈ L and an arc
fromA to Li, for some i. Let i0 be the smallest such index.
It must be that i0 > 0, otherwise the pathA ,L0,L1, . . . ,Lm
would be longer than L. From Property 36 it follows that there
is an arc betweenA and Li0−1, but it cannot be from Li0−1
toA because of the way we chose i0. Therefore, there is an
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arc (Li0−1,A ), and the path L0, . . .Li0−1,A ,Li0 , . . .Lm is
longer than L, which is a contradiction.

If there is no such i, meaning that there is no arc going from
an orbit not in L to an orbit in L, then, since the component
is weakly connected, there must be an arc going from an orbit
in L to an orbit not in L. We can now apply the exact same
reasoning to the graph obtained by reversing all arcs of that
component and choosing the same longest path, only reversed,
to again arrive to a contradiction.

Finally, since the graph G (P) is a subgraph of a total order
graph, there is at most one Hamiltonian path in a weakly
connected component. �

Lemma 38. The total order of orbits, and the Hamiltonian paths
for all weakly connected components of the orbit graph can be
found in O(n) time in total.

Proof. Our goal here is to compute succ(A ) and succG(A )
for each orbitA , defined as the successor ofA in the total
order of orbits, and the successor ofA in the corresponding
Hamiltonian path, respectively. (Undefined values of these
functions mean that there is no successor in the respective
sequence.) Having these two functions calculated, it is then
easy to reconstruct the total order and the Hamiltonian paths.
We start by computing the orbits in O(n) time, as described in
Lemma 24.

From Property 34 it is obvious that for every two consecutive
orbits in the total order, there are at least two consecutive
points on P, one from each of those orbits. We scan through
all consecutive pairs of points on P. Let i and i + 1 be two
consecutive points. If they have different color, then they
belong to the same orbit and we do nothing in this case. If
their color is the same, they belong to different orbits, and from
Property 34 we know that those two orbits are consecutive in
the total order. If the color of the points is blue then there is
a point i + 1 from O (i + 1) on the right side of blue-red edge
(i, o(i)) from O (i), so we conclude that O (i)≤ O (i + 1), and
we set succ(i) = i + 1. In the other case, when the points are
red, we set succ(i+1) = i. It is only left to check whether these
two orbits cross. If they cross anywhere, then edges (i, o(i))
and (o−1(i + 1), i + 1) must cross each other (otherwise, the
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whole O (i + 1) would lie on the right side of (i, o(i))), so it
is enough to check only for this pair of edges whether they
cross. If they do cross, we do the same with the function
succG, we either set succG(i) = i + 1 if the points are blue, or
succG(i + 1) = i if they are red. If they do not cross, we do
not do anything.

Constructing the corresponding sequences of orbits is done by
first finding the orbits which are not successor of any other
orbit and then by just following the corresponding successor
function.

The whole process takes O(n) time in total. �

2.4 Finding bottleneck matchings

In order to solve the problem of finding a bottleneck bichromatic
matching of points in convex position, we will make use of the
theory that we developed for orbits and the orbit graph, combining
it with the approach we used in [43] to tackle the monochromatic
case.

For the special configuration where colors alternate, i.e. two points
are colored the same if and only if the parity of their indices is the
same, we note that every pair (i, j) where i and j are of different
parity is feasible. This is also the case with the monochromatic
version of the same problem, so since the set of pairs that is allowed
to be matched is the same in both cases, the bichromatic problem is
in a way a generalization of the monochromatic problem – to solve
the monochromatic problem it is enough to color the points in an
alternating fashion, and then apply the algorithm which solves the
bichromatic problem.

We already said that edges are considered to be oriented. As far
as arbitrary pairs are concerned, in most cases we do not need to
worry about the order of i and j in the pair (i, j). Nevertheless,
for the situations where this distinction between (i, j) and ( j, i) is
important, we will add qualifier oriented and speak about orientedoriented pairs and diagonals

pairs or oriented diagonals.

Definition 39.

Figure 16. Turning angle.

The turning angle of {i, . . . , j}, denoted by τ(i, j),turning angle, τ

is the angle by which the vector −−−→vi vi+1 should be rotated in positive
direction to align with the vector −−−→v j−1v j , see Figure 16.
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Lemma 40. There is a bottleneck matching M of P such that all
diagonals (i, j) ∈ M have τ(i, j)> π/2.

Proof. Figure 17.
(a) Matching before the
transformation.
(b) Matching after the
transformation.

(a) (b)

Let us suppose that there is no such matching. Let M ′ be
a bottleneck matching with the least number of diagonals.
By the assumption, there is a diagonal (i, j) ∈ M ′ such that
τ(i, j)≤ π/2, see Figure 17(a). By Property 27 we can replace
all pairs from M ′ lying in {i, . . . , j}, including the diagonal
(i, j), with the matching containing only edges, and by doing
so we obtain a new matching M∗, see Figure 17(b).

The longest distance between any pair of points from {i, . . . , j}
is achieved by the pair (i, j), hence bm(M∗)≤ bm(M ′). Since
M ′ is a bottleneck matching, M∗ is a bottleneck matching
as well, and M∗ has at least one diagonal less than M ′, a
contradiction. �

Next, we consider the division of the interior of the polygon P into
regions obtained by cutting it along all diagonals (but not edges)
from the given matching M . Each region created by this division
is bounded by some diagonals of M and by the boundary of the
polygon P .

Definition 41.

Figure 18. Matching consisting
of edges (dashed lines) and
diagonals (solid lines). Orbits
are denoted by gray shading.
There are three cascades in
this example: one consist of
the three diagonals in the
upper part, one consist of the
two diagonals in the lower left,
and one consist of the single
diagonal in the lower right.

Regions bounded by exactly k diagonals are called cascade, k-bounded region

k-bounded regions. Any maximal sequence of diagonals connected
by 2-bounded regions is called a cascade (see Figure 18 for an
example).

Lemma 42. There is a bottleneck matching having at most three
cascades.
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Proof. Let M be a matching provided by Lemma 40, with
turning angles of all diagonals greater than π/2. There cannot
be a region bounded by four or more diagonals of M , since
if it existed, the total turning angle would be greater than
2π. Hence, M only has regions with at most three bounding
diagonals. Suppose there are two or more 3-bounded regions.
We look at arbitrary two of them. There are two diagonals
bounding the first region and two diagonals bounding the
second region such that these four diagonals are in cyclical
formation, meaning that each diagonal among them has other
three on the same side. Applying the same argument once
again we see that this situation is impossible because it yields
turning angle greater than 2π. From this we conclude that
there can be at most one 3-bounded region. �

It is not possible for a matching to have exactly two cascades. If
there were exactly two cascades, there would be a region defined
by diagonals from both cascades. If that region were bounded by
exactly one diagonal from each cascade, it would then be 2-bounded
and, by definition of cascade, those two diagonals would belong
to the same cascade. Otherwise, if that region were bounded by
more than one diagonal from one of the two cascades, it would
then be at least 3-bounded and, by definition of cascade, no two
of its diagonals would belong to the same cascade, and hence we
would have more than two cascades.

So, from Lemma 42 we know that there is a bottleneck matching
which either has at most one cascade and no 3-bounded regions, or
it has a single 3-bounded region and exactly three cascades. In the
following section we define a set of more elementary problems that
will be used to find an optimal solution in both of these cases.

2.4.1 Matchings with at most one cascade

When talking about matchings with minimal value under certain
constraints, we will refer to these matchings as optimal.

Definition 43. For i and j such that {i, . . . , j} is balanced, letMAT C H I N G0, M0

MAT C H I N G0(i, j) be the problem of finding an optimal matching
M0

i, j of points in {i, . . . , j} using edges only.

Definition 44. For i and j such that {i, . . . , j} is balanced, letMAT C H I N G1, M1

MAT C H I N G1(i, j) be the problem of finding an optimal matching
M1

i, j of points in {i, . . . , j}, so that M1
i, j has at most one cascade,

and the segment (i, j) belongs to a region bounded by at most one
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diagonal from M1
i, j different from (i, j).

When {i, . . . , j} is balanced, Property 27 ensures that solutions for
MAT C H I N G0(i, j) and MAT C H I N G1(i, j) exist, so M0

i, j and M1
i, j are

well defined.

Let i and j be such so that {i, . . . , j} is balanced. First, let us analyze
how MAT C H I N G0(i, j) can be reduced to smaller subproblems. The
point i can be matched either with o(i) or with o−1(i). The first
option is always possible because Property 15 states that o(i) ∈
{i, . . . , j}, but the second one is possible only if o−1(i) ∈ {i, . . . , j}
(it is also possible that o(i) = o−1(i), but no special analysis is
needed for that). In the first case, M0(i, j) is constructed as the
union of (i, o(i)), and optimal edge-only matchings for point sets {i+
1, . . . , o(i)−1}, if |{i, . . . , o(i)}|> 2, and {o(i)+1, . . . , j}, if o(i) 6= j,
since both sets are balanced. The second case is similar, M0(i, j)
is constructed as the union of (o−1(i), i), and optimal edge-only
matchings for point sets {i+1, . . . , o−1(i)−1}, if |{i, . . . , o−1(i)}|> 2,
and {o−1(i) + 1, . . . , j}, if o−1(i) 6= j, since both of these sets are
balanced.

Next, we show how to reduce MAT C H I N G1(i, j) to smaller sub-
problems. If i and j have different colors, then (i, j) is a feasible
pair, and it is possible that M1

i, j includes this pair. In that case,

M1
i, j is obtained by taking (i, j) together with M1(i + 1, j − 1), if
{i, . . . , j} > 2, since {i+1, . . . , j−1} is balanced. Now, assume that
i is not matched to j (no matter whether (i, j) is feasible or not).
Let k and l be the points in {i, . . . , j} which are matched to i and j
in the matching M1

i, j, respectively. By the requirement, (i, k) and
(l, j) cannot both be diagonals, otherwise (i, j) would belong to
the region bounded by more than one diagonal from M1

i, j . If (i, k)
is an edge, then, depending on the position of the diagonals that
belong to the single cascade of M1

i, j , the matching is constructed by

taking (i, k) together either with M0
i+1,k−1, if |{i, . . . , k}| > 2, and

M1
k+1, j, if k 6= j, or with M1

i+1,k−1, if |{i, . . . , k}| > 2, and M0
k+1, j,

if k 6= j. Similarly, if (l, j) is an edge, then M1
i, j is constructed by

taking (l, j) together either with M0
l+1, j−1, if |{l, . . . , j}| > 2, and

M1
i,l−1, if i 6= l, or with M1

l+1, j−1, if |{l, . . . , j}| > 2, and M0
i,l−1, if

i 6= l. All the mentioned matchings exist because their respective
underlying point sets are balanced.

As these problems have optimal substructure, we can apply dynamic
programming to solve them. If bn(M0

i, j) and bn(M1
i, j) are saved into

S0(i, j) and S1(i, j), respectively, the following recurrent formulas
can be used to calculate the solutions to MAT C H I N G0(i, j) and
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MAT C H I N G1(i, j) for all pairs (i, j) such that {i, . . . , j} is balanced.

S0(i, j) =min


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|vi vo(i)|
if i + 1 6= o(i) : S1(i + 1, o(i)− 1)
if o(i) 6= j : S0(o(i) + 1, j)

max
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|vo−1( j)v j|
if o−1( j) + 1 6= j : S0(o−1( j) + 1, j − 1)
if o−1( j) 6= i : S1(i, o−1( j)− 1)

max











|vo−1( j)v j|
if o−1( j) + 1 6= j : S1(o−1( j) + 1, j − 1)
if o−1( j) 6= i : S0(i, o−1( j)− 1)

if (i, j) is feasible:

max

¨

|vi v j|
if i + 1 6= j : S1(i + 1, j − 1)

We fill values of S0 and S1 in order of increasing j − i, so that all
subproblems are already solved when needed.

Beside the value of a solution MAT C H I N G1(i, j), it is going to be
useful to determine if pair (i, j) is necessary for constructing M1

i, j .

Definition 45. We call an oriented pair (i, j) necessary if it is con-necessary pair

tained in every solution to MAT C H I N G1(i, j).

Obviously, a pair can be necessary only if it is feasible. Comput-
ing whether (i, j) is a necessary pair can be easily incorporated
into the calculation of S1(i, j). Namely the pair (i, j) is necessary,
if (i, j) is an edge, or the equation for S1(i, j) achieves the mini-
mum only in the last case (when (i, j) is feasible). If this is true,
we set necessar y(i, j) to >, otherwise we set it to ⊥. Note that
necessar y(i, j) does not imply necessar y( j, i).
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We have O(n2) subproblems in total, each of which takes O(1) time
to be calculated. Hence, all calculations together require O(n2)
time and the same amount of space.

Note that we calculated only the values of solutions to all subprob-
lems. If an actual matching is needed, it can be easily reconstructed
from the data in S in linear time per subproblem.

We note that every matching with at most one cascade has a feasible
pair (k, k+ 1) such that the segment (k, k+ 1) belongs to a region
bounded by at most one diagonal from that matching. Indeed, if
there are no diagonals in the matching, any pair (k, k+ 1) where
k and k + 1 have different colors satisfies the condition. If there
is a cascade, we take one of the two endmost diagonals of the
cascade, let it be (i, j), so that there are no other diagonals from M
in {i, . . . , j}. Since {i, . . . , j} is balanced, there are two neighboring
points k, k+1 ∈ {i, . . . , j}with different colors, and the pair (k, k+1)
is the one we are looking for.

Now, an optimal matching with at most one cascade can be found
easily from calculated solutions to subproblems by finding the min-
imum of all S1(k + 1, k) for all feasible pairs (k, k + 1) and re-
constructing M1

k+1,k for k that achieved the minimum. The last
(reconstruction) step takes only linear time.

2.4.2 Matchings with three cascades

As we already concluded, there is a bottleneck matching of P having
either at most one cascade, or exactly three cascades. An optimal
matching with at most one cascade can be found easily from calcu-
lated solutions to subproblems, as shown in the previous section.
We now focus on finding an optimal matching among all matchings
with exactly three cascades, denoted by 3-cascade matchings in the
following text.

Any three distinct points i, j and k with j ∈ {i+1, . . . , k−1}, where
(i, j), ( j + 1, k) and (k+ 1, i − 1) are feasible pairs, can be used to
construct a 3-cascade matching by simply taking a union of M1

i, j,

M1
j+1,k and M1

k+1,i−1. (Note that these three feasible pairs do not
necessarily belong to the combined matching, since they might not
be necessary pairs in their respective 1-cascade matchings.)

To find the optimal matching we could run through all possible
triplets (i, j, k) such that (i, j), ( j+1, k) and (k+1, i−1) are feasible
pairs, and see which one minimizes max{S1[i, j], S1[ j+1, k], S1[k+
1, i−1]}. However, this requires O(n3) time, and thus is not suitable,
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since our goal is to design a faster algorithm. Our approach is to
show that instead of looking at all (i, j) pairs, it is enough to select
(i, j) from a set of linear size, which would reduce the search space
to quadratic number of possibilities, so the search would take only
O(n2) time.

Candidate pairs and polarity

Definition 46. In 3-cascade matching, we call the three diagonalsinner diagonals, inner region,
inner pairs at the inner ends of the three cascades the inner diagonals. We take

the largest region by area, such that it is bounded, but not crossed
by matched pairs, and such that each two of the three cascades are
separated by that region, and we call this region the inner region.
Matched pairs defining the boundary of the inner region are called
the inner pairs.

For an example, see Figure 19.

Figure 19.

edges: dashed lines,
diagonals: solid lines,
cascades:
{(11,18), (14, 17)}
{(22,27), (23,26)}
{(30,9), (1,6), (2,5)}

inner diagonals:
(11, 18)
(22, 27)
(30, 9),

inner pairs:
(10, 19)
(20, 21)
(22, 27)
(28, 29)
(30, 9).

Since the inner region separates the cascades, there must be at least
3 inner pairs.

Lemma 47. If there is no bottleneck matching with at most one
cascade, then there is a bottleneck 3-cascade matching whose every
inner pair is necessary.
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Proof. Take any 3-cascade bottleneck matching M . If it has an
inner pair (i, j) that is not necessary, then (by definition) there
is a solution to MAT C H I N G1(i, j) that does not contain the
pair (i, j) and has at most one cascade. We use that solution
to replace all pairs from M that are inside {i, . . . , j}, and thus
obtain a new 3-cascade matching that does not contain the
pair (i, j). Since M was optimal and there was at most one
cascade inside {i, . . . , j}, pairs that were replaced are also a
solution to MAT C H I N G1(i, j), so the new matching must have
the same value as the original matching. And since there is
no bottleneck matching with at most one cascade, the new
matching must be a bottleneck 3-cascade matching as well.
We repeat this process until all inner pairs are necessary. The
process has to terminate because the inner region is getting
larger with each replacement. �

Definition 48. An oriented pair (i, j) is a candidate pair, if it is a candidate pair, candidate
diagonalnecessary pair and τ(i, j)≤ 2π/3. If a candidate pair is a diagonal,

it is called a candidate diagonal.

Lemma 49. If there is no bottleneck matching with at most one
cascade, then there is a 3-cascade bottleneck matching M, such
that at least one inner pair of M is a candidate pair.

Proof. Lemma 47 provides us with a 3-cascade matching M
whose every inner pair is necessary. There are at least three
inner pairs of M , so at least one of them has turning angle
at most 2π/3. Otherwise, the total turning angle would be
greater than 2π, which is not possible. Such an inner pair is a
candidate pair. �

Let us now take a look at an arbitrary candidate diagonal (i, j), and

Figure 20. Geometric regions
used for locating points
vi+1, . . . , v j−1.

examine the position of points {i, . . . , j} ∩ O (i) relative to it. To do
that, we locate points vi and v j and then define several geometric
regions relative to their position, inspired by the geometric structure
used in [43] to tackle the monochromatic version of the problem.

Firstly, we construct the circular arc h on the right side of the directed
line vi v j, from which the line segment vi v j subtends an angle of
π/3, see Figure 20. We denote the midpoint of h with A. Points
vi, A and v j form an equilateral triangle, hence we can construct
the arc a− between A and vi with the center in v j, and the arc a+

between A and v j with the center in vi. These arcs define three
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areas: Π−, bounded by h and a−, Π+, bounded by h and a+, and
Π0, bounded by a−, a+ and the line segment vi v j, all depicted in
Figure 20.

The following lemma is crucial in our analysis of bichromatic bot-
tleneck matchings. Even though in statement it is similar to [43,
Lemma 5], which was developed to tackle monochromatic bottle-
neck matchings, the proof we show here is much more involved,
capturing the specifics of the bichromatic version of the problem
and making use of the theory we developed around orbits.

Lemma 50. For every candidate diagonal (i, j), the points from
{i, . . . , j} ∩ O (i) other than i and j lie either all in Π− or all in
Π+.

Proof. W.l.o.g. let us assume that point i is red. Since (i, j) is
a diagonal, there are more than two points in {i, . . . , j}∩O (i).
Let T be the point of intersection of lines vi vi+1 and v j v j−1,
see Figure 20. Since τ(i, j) ≤ 2π/3, the point T lies in the
area bounded by the line segment vi v j and the arc h. Because
of convexity, all points in {i, . . . , j} must lie inside the triangle
4vi T v j, so there cannot be two points from {i, . . . , j} such
that one is on the right side of the directed line viA and the
other is on the left side of the directed line v jA. This implies
that either Π− or Π+ is empty.

Figure 21. Regions Π+ and ∆+.
Each of the regions has the

diameter |vi v j |.

W.l.o.g., let us assume that there are no points from {i, . . . , j}
on the right side of the directed line viA. By ∆+ we denote
the area bounded by a+ and line segments vi v j and viA, see
Figure 21, so all points in {i, . . . , j} lie in Π+ ∪∆+. It is im-
portant to note that both Π+ and ∆+ have the diameter |vi v j|,
that is, no two points both inside Π+ or both inside ∆+ are at
a distance of more than |vi v j|.

To complete the proof, we need to prove that no points of
{i, . . . , j} ∩ O (i) other than i and j lie in ∆+, so for a contra-
diction we suppose the opposite, that there is at least one such
point in ∆+.

We denote the set of points inΠ+ (including j) with U . If there
are points on a+, we consider them to belong to U . The pair
(i, j) is a feasible pair, so, by Property 19, the number of points
from any orbit inside {i, . . . , j} is even, implying that the parity
of |U∩O (i)| is the same as the parity of |({i, . . . , j}\U)∩O (i)|.
We will analyze two cases depending on the parity of the
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number of points in U ∩O (i).

Case 1. There is an even number of points in U ∩O (i), and
thus also in ({i, . . . , j} \ U)∩O (i).

Let M be an optimal matching of points in {i, . . . , j}. The pair
(i, j) is a candidate pair, and thus necessary, so it is contained
in every optimal matching of points in {i, . . . , j}, including
M , and hence bn(M) ≥ |vi v j|. To complete the proof in this
case, we will construct another optimal matching M ′ that does
not contain the pair (i, j), by joining two newly constructed
matchings, M ′out and M ′in, thus arriving to a contradiction with
the assumption that the pair (i, j) is a candidate pair.

Figure 22. M ′
in and M ′

out ; only
points from O (i) are depicted
as points.

We obtain the matching M ′out by arbitrarily matching the
set {l, . . . , o(l)}, for each red-blue edge (l, o(l)) of O (i) in
{i, . . . , j}, as illustrated in Figure 22 (note that in the figure
only points from O (i) are depicted as points). More formally,
M ′out is a union of matchings of sets {o2k(i), . . . , o2k+1(i)}, for
each k ∈ {0, 1, . . . , (s− 1)/2}, where s is the smallest positive
integer such that os(i) = j (by Property 19 and Lemma 10, all
these matchings exists). Since |U∩O (i)| is even, points of each
pair in M ′out are either both in U or both in {i, . . . , j} \ U , that
is, they are either both in Π+ or both in ∆+, so the distance
of each pair is at most |vi v j|, implying bn(M ′out)≤ |vi v j|.

The rest of the points in {i, . . . , j} are all on the right side of
blue-red edges of O (i), and by Property 30 the points they
are paired up with in M are also on the right side of blue-red
edges of O (i). Therefore, all those pairs are unobstructed by
the segments in M ′out , and we can simply define M ′in to be the
restriction of M to the set of those points from {i, . . . , j} that
are on the right side of blue-red edges of O (i).

All points in {i, . . . , j} are covered by M ′ = M ′out ∪ M ′in,
and we have that bn(M ′) = max{bn(M ′in), bn(M ′out)} ≤
max{bn(M), |vi v j|} = bn(M). Since M is optimal, the equality
holds and M ′ is optimal too. So we constructed an optimal
matching M ′ on {i, . . . , j} that does not contain the pair (i, j),
and such a matching cannot exist, a contradiction.

Case 2. There is an odd number of points in U ∩O (i), and
thus also in ({i, . . . , j} \ U)∩O (i).
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Figure 23. U , V and W ; only
points from O (i) are depicted

as points.

Let k be the last point from the sequence {i, . . . , j}∩O (i) that
lies in ∆+, see Figure 23. Note that k must have the same
color as i. We define V := {k, . . . , j}\U and W := {i, . . . , k−1}
(we earlier assumed that there is at least one point from O (i)
other than i in ∆+, so k 6= i).

By M we denote an optimal matching of points in {i, . . . , j}
that minimizes the number of matched pairs between U and
W . The pair (i, j) is a candidate pair, so it is a necessary pair,
that is, every optimal matching of points in {i, . . . , j} contains
(i, j), meaning that there is at least one matched pair between
U and W in M . Let a be the last point in {i, . . . , k−1}matched
to a point in U , and b be the point from U it is matched to, i.e.
(a, b) ∈ M .

Figure 24. Even number of
points in {i, . . . , a} ∩ O (a)

If there is an even number of points in {i, . . . , a} ∩ O (a), then
the numbers of red and blue points in that set are equal, so at
least one of those points (which has a different color from a)
must be matched to a point in U as well. Let that point be e
and let its pair in U be f , see Figure 24.

We can now modify the matching by replacing (a, b), (e, f ),
and all the matched pairs between them with a matching of
points in {e, . . . , a}, and a matching of points in {b, . . . , f },
which is possible by Property 19 and Lemma 10. Each newly
matched pair has both its endpoints in the same set, either
U or W , so its distance is at most |vi v j|, meaning that this
newly constructed matching is optimal as well. This, however,
reduces the number of matched pairs between U and W while
keeping the matching optimal, which is in contradiction with
the choice of M , so there must be at odd number of points in
{i, . . . , a} ∩ O (a).

Figure 25. Odd number of
points in {i, . . . , a} ∩ O (a)

As the number of points from O (i) in V ∪W is odd, and the
only point in V from O (i) is k, there is an even number of
points from O (i) in W . Since i and k are from the same orbit,
there is an even number of points from any particular orbit
in W (as can be seen by applying Property 19 to each pair
of consecutive points of O (i) inside W ). As there is an odd
number of points in {i, . . . , a}∩O (a), there is an even number
of points in {a, . . . , k− 1} ∩O (a), so at least one of them with
a color different from a is matched with a point outside of W .
Let c be the first such point in {a, . . . , k − 1}, see Figure 25.
The way we chose a implies that c cannot be matched to a
point in U , so it must be matched to some point d in V .
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Let us denote the set {a, . . . , c} \ {a, c} by Y . The choice of
a guarantees that no point in Y is matched to a point in U .
Points a and c belong to the same orbit, so by Property 19
there is an even number of points from any particular orbit
in Y . Hence, if there is a point g1 in Y matched to a point
h1 in V , then there must be another matched pair (g2, h2)
from the same orbit such that g2 ∈ Y , h2 ∈ V , and g1 and g2
have different colors. We modify the matching by replacing
(g1, h1), (g2, h2) and all the matched pairs between them with
a matching Mg of points in {g1, . . . , g2}, and a matching Mh
of points in {h1, . . . , h2}. This is again possible by Property 19
and Lemma 10. Matchings Mg and Mh are fully contained
in W and V , respectively, so no matched pair of theirs is at a
distance greater than |vi v j|, and the newly obtained matching
is optimal as well. By iteratively applying this modification
we can eliminate all matched pairs between Y and V , so that
finally there is no matched pairs going out from Y , meaning
no matched pair crosses either (a, c) or (b, d).

We are now free to “swap” the matched pairs between points
a, b, c, and d, by replacing (a, b) and (c, d) with (a, c) and
(b, d), because no other matched pair can possibly cross the
newly formed pairs. We need to show that this swap does
not increase the value of the matching. The pair (a, c) cannot
increase the matching value because a and c are both in W ,
so their distance is at most |vi v j|. To show that the pair (b, d)
also does not increase the value of the matching, we consider
two cases based on the position of the point d.

Figure 26. d lies in 4vi Z v j

Let Z be the midpoint of the line segment viA. Let us denote
the region (Π+∪∆+)\4vi Z v j by Υ . No two points in Υ are at
a distance greater than |vi v j|. The point b lies in Υ . If the point
d lies in Υ as well, then |bd| ≤ |vi v j|. Otherwise, d lies in
4vi Z v j, see Figure 26, and ∠ad b > ∠vidv j > ∠vi Z v j = π/2
(the first inequality holds because the points are in convex
position). The angle ∠ad b is hence obtuse, and therefore
|bd|< |ab|. But the pair (a, b) belongs to the original match-
ing M , so the newly matched pair (b, d) also does not increase
the value of the matching.

By making modifications to the matching M we constructed a
new matching M ′ with the value not greater than the value of
M . Since M is optimal, these values are actually equal, and
the matching M ′ is also optimal. However, the pair (a, b) is
contained in M , but not in M ′, and we did not introduce new
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matched pairs between U and W , so there is a strictly smaller
number of matched pairs between U and W in M ′ than in M ,
which is a contradiction with the choice of M .

The analysis of both Case 1 and Case 2 ended with a contra-
diction, which completes the proof of the lemma. �

With Π−(i, j) and Π+(i, j) we respectively denote areas Π− and Π+

corresponding to an ordered pair (i, j). For candidate diagonals,
the existance of the two possibilities given by Lemma 50 induces a
concept of polarity.

Definition 51. Let an oriented pair (i, j) be a candidate diagonal.polarity, pole

If all points from {i, . . . , j} ∩ O (i) other then i and j lie in Π−(i, j),
we say that candidate diagonal (i, j) has negative polarity and has
i as its pole. Otherwise, if these points lie in Π+(i, j), we say that
(i, j) has positive polarity and the pole in j.

Lemma 52. No two candidate diagonals of the same polarity
can have the same point as a pole.

Proof.

Figure 27. Two candidate
diagonals of equal polarity
cannot have the same pole.

Let us suppose the contrary, that is, that there are two
candidate diagonals of the same polarity with the same point
as a pole. Assume, w.l.o.g., that (i, k) and ( j, k) are two such
candidate diagonals, i 6= j, both with positive polarity, each
having its pole in k. Since both (i, k) and ( j, k) are feasible
pairs, i, j and k belong to the same orbit. W.l.o.g., we also
assume that the order of points in the positive direction is i –
j – k, that is j ∈ ({i, . . . , k} ∩ O (k)) \ {i, k}, see Figure 27.

Area Π+(i, k) lies inside the angle with vertex vk and sides at
angles of π/3 and 2π/3 with line vkvi . Similarly, Π+( j, k) lies
inside the angle with vertex vk and sides at angles of π/3 and
2π/3 with line vkv j .

Since ( j, k) is a diagonal, there is l ∈ ({ j, . . . , k}∩O (k))\{ j, k}.
Points v j and vl lie in Π+(i, k) and Π+( j, k), respectively,
meaning that π/3 ≤ ∠vi vkv j ,∠v j vkvl ≤ 2π/3, implying
2π/3 ≤ ∠vi vkv j + ∠v j vkvl = ∠vi vkvl ≤ 4π/3. This means
that vl does not lie in the region Π+(i, k). However, that can-
not be the case, since l ∈ ({i, . . . , k}∩O (k)) \ {i, k} as well, so
we have a contradiction. �

As a simple corollary of Lemma 52, we get that there is at most
linear number of candidate pairs.
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Lemma 53. There are O(n) candidate pairs.

Proof. Lemma 52 ensures that there are only two candidate
diagonals with poles in the same point, one having positive and
one having negative polarity. Therefore, there are at most n
candidate diagonals of the same polarity, and, consequently, at
most 2n candidate diagonals in total. The only other possible
candidate pairs are edges, and there are exactly n edges, so
there can be at most 3n candidate pairs. �

Finally, we combine our findings from Lemma 49 and Lemma 53,
as described in the beginning of Section 2.4.2, to construct Algo-
rithm 2.

Algorithm 2 Bottleneck Matching

Compute orbits.
Calculate S1[i, j] and necessar y(i, j), for all i and j such that
{i, . . . , j} is balanced, as described in Section 2.4.1.
best ←min{S1[k+1, k] : k ∈ {0, . . . , 2n−1}, (k+1, k) is feasible}
for all feasible (i, j) do

if necessar y(i, j) and τ(i, j)≤ 2π/3 then
for all k ∈ { j + 1, . . . , i − 1} such that ( j + 1, k) is feasible

do
best ← min{best, max{S1(i, j), S1( j + 1, k), S1(k +

1, i − 1)}}

Theorem 54. Algorithm 2 finds the value of bottleneck matching
in O(n2) time.

Proof. The first step, computing orbits, can be done in O(n)
time, as described in the proof of Lemma 24. The second step,
calculating S1(i, j) and necessar y(i, j), for all (i, j) pairs, is
done in O(n2) time, as described in Section 2.4.1. The third
step finds the minimal value of all matchings with at most one
cascade in O(n) time.

The rest of the algorithm finds the minimal value of all 3-
cascade matchings. Lemma 49 tells us that there is a bottleneck
matching among 3-cascade matchings such that one inner pair
of that matching is a candidate pair, so the algorithm searches
through all such matchings. We first fix the candidate pair
(i, j) and then enter the inner for-loop, where we search for
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an optimal 3-cascade matching having (i, j) as an inner pair.
Although the outer for-loop is executed O(n2) times, Lemma 53
guarantees that the if-block is entered only O(n) times. The
inner for-loop splits { j+1, . . . , i−1} in two parts, { j+1, . . . , k}
and {k + 1, . . . , i − 1}, which together with {i, . . . , j} make
three parts, each to be matched with at most one cascade. We
already know the values of optimal solutions for these three
subproblems, so we combine them and check if we get a better
overall value. At the end, the minimum value of all examined
matchings is contained in best, and that has to be the value
of a bottleneck matching, since we surely examined at least
one bottleneck matching. �

Algorithm 2 gives only the value of a bottleneck matching, however,
it is easy to reconstruct an actual bottleneck matching by recon-
structing matchings for subproblems that led to the minimum value.
This reconstruction can be done in linear time.

2.5 Points on a circle

It this section we consider the case where all points lie on a circle.
Obviously, the algorithm for the convex case can be applied here,
but utilizing the geometry of a circle we can do better.

Employing the properties of orbits that we developed, we construct
an O(n) time algorithm for the problem of finding a bottleneck
matching.

We will make use of the following lemma.

Lemma 55. [20] If all the points of P lie on the circle, then there
is a bottleneck matching in which each point i is connected either
to o(i) or o−1(i).

Proof.

Figure 28. Illustrating the
proof of Lemma 55

Let M be a bottleneck matching. If M does not contain
a diagonal, then the statement of the lemma holds. Assume
there is a diagonal (i, j) in M , see Figure 28. This diagonal
cuts the circle into two parts. W.l.o.g., assume that the smaller
part is on the right side of (i, j).

Since (i, j) is a diagonal, o(i) ∈ {i, . . . , j} and sets {i, . . . , o(i)}
and {o(i) + 1, . . . , j} are both balanced. We construct a new
matching by making a matching inside both of these sets, and
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copying matched pairs from M with endpoints in { j+1, . . . , i−
1}. The bottleneck value of this new matching is at most the
bottleneck value of the original matching, since all matched
pairs in {i, . . . , j} are at a distance smaller than the length of
the diagonal (i, j).

We can repeat this process until there are no more diagonals,
obtaining the matching consisting only of edges. �

This statement implies that there is a bottleneck matching M E that
can be constructed by taking alternating edges from each orbit,
i.e. from each orbit we take either all red-blue or all blue-red edges.
To find a bottleneck matching we can search only through such
matchings, and to reduce the number of possibilities even more,
we use properties of the orbit graph.

Theorem 56. A bottleneck matching for points on a circle can
be found in O(n) time.

Proof. From Property 37 we know that for an arbitrary weakly
connected component of the orbit graph there is a Hamiltonian
path L0,L1, . . . ,Lm−1. For each k ∈ {0, . . . , m− 2} there is
an arc from Lk to Lk+1, and those two orbits intersect each
other. SinceLk ≤Lk+1, the only edges fromLk that intersect
Lk+1 are blue-red edges, and only edges fromLk+1 that inter-
sect Lk are red-blue edges. Hence, M E cannot have blue-red
edges from Lk and red-blue edges from Lk+1. This further
implies that there is l ∈ {0,1, . . . , m} such that L0, . . . ,Ll−1
all contribute to M E with red-blue edges andLl , . . . ,Lm−1 all
contribute to M E with blue-red edges. Let Ml be the matching
constructed by taking red-blue edges from L0, . . . ,Ll−1, and
blue-red edges from Ll , . . . ,Lm−1.

For each l, the value of Ml can be obtained as max{RBl , BRl},
where RBl is the length of the longest red-blue edge in
L0, . . . ,Ll−1, and BRl is the length of the longest blue-red
edge in Ll , . . . ,Lm−1. The computation of sequences RB and
BR can be done in O(n) total time, since RBl is maximum
of RBl−1 and the longest red-blue edge in Ll−1, and BRl is
maximum of BRl+1 and the longest blue-red edge in Ll . After
we compute these sequences, we compute the value of Ml for
each l, and take the one with the minimum value, which must
correspond to a bottleneck matching.
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We first compute orbits and Hamiltonian paths in O(n) time
(Lemma 24 and 38). Next, we compute the longest red-blue
and blue-red edge in each orbit, which we then use to compute
RBl , BRl , Ml , and finally M E , as we just described. Each step
in this process takes at most O(n) time, so the total running
time for this algorithm is O(n) as well. �



Part II

Network dilations and feed-links
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Background and related work

As defined in the introduction of the thesis, the dilation between
two points on the geometric network is the ratio between their
network distance and their metric distance. Dilation of the whole
network is the maximum of dilations over all pairs of points on the
network, including the points on network edges. Spanning factor
of the network is the maximum of dilations over pairs of points
corresponding to network vertices.

Several results can be found in the literature analyzing the dilation
and the spanning factor of a given network. The problem of com-
puting the spanning factor is first introduced by Narasimhan and
Smid in [39] as a dual problem to construction of t-spanners. They
present efficient algorithms for computing the approximate value
of spanning factor for different network types in Euclidean space.

Research that followed were predominantly on the topic of com-
puting the dilation and spanning factors of different network types.
Ebbers-Baumann at al. in [31] give an approximate algorithm for
computing the dilation of planar polygonal chains. Later, Agar-
wal at al. in [6] give O(n log n)-time exact algorithm for planar
polygonal, and show how to apply the same algorithm to trees
and cycles with an additional O(log n) factor. In the same article
they consider three-dimensional Euclidean space, for which they
give subquadratic algorithms for all considered problems. In [45],
Wulff-Nilsen presents nondeterministic algorithm for computing
the dilation of a planar network with the expected running time of
O(n3/2 log3 n).

Some methods for computing the dilation and spanning factor for
rectilinear paths in L1 metric, as well as in fixed orientation metric,
are presented by Wulff-Nilsen at al. in [47]

For a result on how to construct a network with a small dilation
containing given points, we refer the reader to the work of Ebbers-
Baumann, Grüne and Klein in [30].

Apart from the problems concerning computation of exact or approx-
imate values, there is a plentiful research on problems of minimizing
or maximizing dilation and spanning factor. These problems include
extending the network in Euclidean spaces of arbitrary dimensions
by addition of a new edge between two existing vertices, such that
the resulting network has spanning factor as low as possible. In [34]
Farshi, Giannopoulos and Gudmundsson give some approximate
algorithms for this problem, and in [46] Wullf-Nilsen solves this
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problem with an exact algorithm of O(n3 log n) time complexity.

Here, we are especially interested in extending a network with a
new vertex. This problem is motivated by applications where we
often encounter networks as models to real world structures, such
as road or subway networks. It happens in geographical information
systems that the locations of settlements are provided, but the data
describing roads is only partial (e.g., only the location of larger roads
are known, while smaller roads are missing from the database).
However, in order to perform various network analysis a network
needs to be connected, i.e. every settlement needs to lie on a road,
which motivates us to find a way to extend the network so that the
disconnected nodes become attached.

Depending on the requirements, there are many ways to connect
a new node to an existing network. Probably the most straightfor-
ward one is to simply snap the location to the closest point on the
network. This may be unsuitable as the node location is modified.
Also, it can happen that two points geometrically close to each other
are snapped to parts of network that are far away, which may be
undesirable. Another approach is to link all new nodes inside a
network face to the feed-node which is then connected to the net-
work. Alternatively, each new node can be individually attached
to the network using a feed-link. This approach was taken, e.g., by
Dahlgren and Harrie in [24, 25], where the new location is simply
connected to the nearest existing location by a feed-link.

In an attempt to reduce unnecessary detours, Aronov et al. in [14]
introduced a more sophisticated way of choosing where on the
existing network to attach the new feed-link, using the dilation
as the measure of feed-link quality. They presented an algorithm
to compute the feed-link achieving minimal dilation with a run-
ning time of O(λ7(n) log n), where n is the number of vertices on
the boundary of the face, and λ7(n) is the maximum length of a
Davenport-Schinzel sequence of order 7 on n symbols, a slightly
superlinear function. We consider this same setting and make an
improvement by presenting an O(n) time algorithm.

Similar criterion for choosing the feed-link is recently considered by
Bose at al. in [21]. They solve the problem of finding the minimum
eccentricity feed-link, which minimizes the largest network distanceminimum eccentricity

from the new point to any point on the network.

The inverse problem, that is, removing elements from the existing
network, is considered in [7] by Ahn, Farshi, Knauer, Smid and
Wang. For a polygonal cycle in the plane they designed a nondeter-
ministic algorithm which in O(n log3 n) expected time finds an edge
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whose removal gives a network of the smallest possible dilation.
They also give a deterministic algorithm of O(n log n) time complex-
ity for finding an edge whose removal results in a network with the
largest possible dilation. For the last problem in the case when the
polygon is convex, they constructed a linear time algorithm.

Klein and Kutz in [36] considered the problem of obtaining a net-
work with minimum spanning factor by removing all but a specified
number of edges from a given geometric graph. They proved that
this problem is NP-hard, no matter whether edge crossings are
forbidden or not.





Chapter 3

Optimal feed-link
placement
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3.1 Introduction

3.1.1 Problem statement

For our purposes, a network P is an embedding of a connected
graph into two-dimensional Euclidean space. Given two points p
and q (on edges or vertices) of P, their network distance is defined asnetwork distance

the length of the shortest curve contained in P connecting p and q.
We define the dilation (sometimes also called the detour, or slightlydilation

less formally the crow flight conversion coefficient) as the ratio of
the network distance between points p and q, and their Euclidean
(crow flight) distance. The geometric dilation of the network P is
the maximum detour taken over all pairs of points on the network.

Given a network P and a point p not on P, we want to extend the
network by adding a single line segment, called feed-link, connectingfeed-link

p with a point on P. Note that a feed-link may have more than
one point in the intersection with P, but we do not regard these
points as connection points. An optimal feed-link is the one that
minimizes the maximum dilation from the point p to a point on P.

We solve the problem of finding an optimal feed-link in polygonal
networks by constructing an algorithm which runs in linear time in
the size of the polygon.

3.1.2 Our results

In this thesis, we give a linear time algorithm which finds the optimal
feed-link – the one that minimizes the maximal dilation to the points
on the boundary of the polygon. Although the initial problem
statement given in [14] assumes that p lies inside the polygon and
the polygon is simple, all of our calculations work out exactly the
same for an arbitrary point p in the plane and arbitrary polygons,
possibly self-intersecting, and hence, our results hold also in that
more general setting.

Our algorithm is based on the idea that finding the maximum dila-
tion can be reduced to finding the minimum slope of a certain line
defined on the plot of the distance function from p to the boundary
of P. This idea is then employed to construct a sweep algorithm
over the points on the boundary. This result is published in [40].

The exposition of this result is organized as follows. In Section 3.2
we introduce the notation and give a formal definition of the prob-
lem. Then we split the problem into two symmetrical components,
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the left and the right dilation, so that we could perform our further
analysis only on one of them. An alternative view of the problem
is given in Section 3.3 by plotting the distance function from p to
points on the boundary of P, and mapping feed-links to levers –
line segments defined on the plot, with slope inversely proportional
to the left dilation of a feed-link. In Section 3.4 we design a sweep
algorithm which simulates moving of the lever, and outputs a se-
quence describing different states the lever passes through while
moving. Finally, the sweep algorithm is run once for the left and
once for the right dilation, and the two produced outputs are then
combined to obtain the solution for the original problem. This
merging process is described in Section 3.5.

3.2 Preliminaries

A polygon, which is not necessarily simple, is given as a list of its
vertices v0, v1, . . . , vn−1. We denote the boundary of that polygon by
P. We are also given a point p, not necessarily inside the polygon. A
feed-link is a line segment pq, connecting p with some point q ∈ P. feed-link

Definition 57.

Figure 29. The concept of
dilation.

For any two points q, r ∈ P, the dilation of r via q dilation of r via q

is defined as

δq(r) =
|pq|+ dist(q, r)

|pr|
,

where dist(q, r) is the length of the shortest route between q and
r over the polygon’s boundary, and |ab| is the Euclidean distance
between points a and b, see Figure 29.

Definition 58. For a point q ∈ P, the dilation via q is defined as dilation via q

δ̃q =max
r∈P

δq(r).

The problem of finding the optimal feed-link is to find q such that
δ̃q is minimized.

Given two points q, r ∈ P, P[q, r] is the portion of P obtained by
going from q to r around the polygon in the positive (counterclock-
wise) direction, including the points q and r. Let µ(q, r) be the µ(q, r)

length of P[q, r], and µ(P) the perimeter of P. µ(P)

For the given q ∈ P, let q′ be the point on P such that its network
distance from q is exactly the half of the perimeter, that is, µ(q, q′) =
µ(q′, q) = µ(P)/2, see Figure 30. By P+[q] we denote P[q, q′], and
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by P−[q] we denote P[q′, q]. Obviously, P+[q] ∪ P−[q] = P and
P+[q]∩ P−[q] = {q, q′}.

Figure 30. The left and the
right portion of P observed

from the point q.

Definition 59. For given points q ∈ P and r ∈ P+[q], the leftleft and right dilation

dilation of r via q is defined as

δ+q (r) =
|pq|+µ(q, r)
|pr|

.

On the other hand, for r ∈ P−[q], the right dilation of r via q is
defined as

δ−q (r) =
|pq|+µ(r, q)
|pr|

.

When measuring dist(q, r), the shortest path from q to r over P
must lie entirely either in P+[q] or P−[q]. This allows us to express
the dilation of r via q using the left and the right dilation of r via q

δq(r) =

¨

δ+q (r), if r ∈ P+[q]

δ−q (r), if r ∈ P−[q]
.

Definition 60. Given point q ∈ P, the left dilation via q is definedleft and right dilation via q

as δ̃+q = maxr∈P+[q]δ
+
q (r), and the right dilation via q as δ̃−q =

maxr∈P−[q]δ
−
q (r).

Finally, the dilation via q can be expressed as

δ̃q =max(δ̃+q , δ̃−q ) =max
r∈P

δq(r). (3.1)

In the following two sections we will be concerned only with the left
dilation, as the problem of finding the right dilation is, by definition,
analogous. In Section 3.5 we will show how to combine our findings
about the left and the right dilation to provide the answer to the
original question. To simplify the notation, we omit the superscript
+ in Section 3.3 and Section 3.4, assuming that we deal with the
left dilation.

3.3 Another view of the problem

Let us once again state the setting of our problem. Given a polygon
boundary P and a point p, we want to compute the minimum
dilation. In the previous section we saw how the dilation can be
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expressed in terms of the left and the right dilation. In this section,
we are going to look at the distance function from p to the points on
P, and observe how this function relates to the left dilation. These
observations will enable us to work only with the distance function,
instead of working with the polygon itself.

Figure 31. Parametrization of
P.

First, we parametrize points on P by defining P(t), t ∈ R, to be the P(t)

point on P for which µ(v0, P(t))≡ t (mod µ(P)), see Figure 31.

The distance of a point to the points on a straight line is known to
be a hyperbolic function. The plot of the distance function h(t) := h(t)

|pP(t)| is an infinite sequence of hyperbola segments joined at their
endpoints, where (kn+ r)-th hyperbola segment corresponds to the
r-th side of P, for r ∈ {0, 1, . . . , n− 1} and k ∈ Z, see Figure 32.

Figure 32. Plot of h(t).

For each i = kn + r, the hyperbola hi is of the form hi(t) =
q

(t −mi)2 + d2
i , for some values mi and di, so that mkn+r =

mr + kµ(P), dkn+r = dr , and dr is the distance between p and
the line containing the r-th side of P. The left endpoint of the i-th
hyperbola segment is Ei := (ei , h(ei)), where ei = kµ(P) + µ(vr), Ei , ei

and the right endpoint is at (ei+1, h(ei+1)). We will consider that
each hyperbola segment contains its left endpoint, but not the right
endpoint. By H(t) we denote the point on the plot of h correspond- H(t)

ing to the parameter t, so H(t) := (t, h(t)). The plot is, obviously,
periodic, with the period of µ(P), that is, H(t) = H(t + kµ(P)). We
denote the i-th hyperbola segment withHi .

Figure 33. Relation between
the dilation and the slope.

Let o(t) = t − h(t), and O(t) = (o(t), 0), see Figure 33. We also o(t), O(t), oi(t), Oi(t)

define oi(t) = t − hi(t), and Oi(t) = (oi(t), 0). Given points q ∈ P
and r ∈ P+[q], we have their corresponding parameters tq and
tr , such that tq ≤ tr ≤ tq + µ(P)/2. The slope of the line passing slope, s(tq, t r)
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through the points O(tq) and H(tr) is

s(tq, tr) := slope
�

`(O(tq), H(tr))
�

=
h(tr)

tr − tq + h(tq)

=
|pP(tr)|

µ(P(tq), P(tr)) + |pP(tq)|

=
1

δ+P(tq)
(P(tr))

,

(3.2)

hence the slope between O(tq) and H(tr) is equal to the inverse of
the left dilation of r via q.

Definition 61. We define s̃(tq) to be the lowest slope from O(tq)s̃(tq)

to H(tr) among all tr ∈ [tq, tq +µ(P)/2].

From the previous observation it follows that this slope equals the
inverse of the left dilation via q,

s̃(tq) := min
tr∈[tq ,tq+µ(P)/2]

s(tq, tr)

= min
tr∈[tq ,tq+µ(P)/2]

1
δ+P(tq)

(P(tr))

=
1

maxr∈P+[q]δ+q (r)

=
1

δ̃+q
.

(3.3)

Obviously, s̃(t) ∈ (0,1] because it is strictly positive and s̃(t) ≤
s(t, t) = 1. This enables us to estimate the dilation by looking at
the slope of the line we just defined.

Lemma 62. For any two distinct values of t1 and t2,

|h(t2)− h(t1)| ≤ |t2 − t1|.

Proof. From the triangle inequality we have |h(t2)− h(t1)| ≤
|P(t1)P(t2)|, and from the parametrization by distance along
P it follows that |P(t1)P(t2)| ≤ |t2 − t1|. These inequalities
readily imply the statement of the lemma. �

So far, s̃(tq) was defined as the minimum only among the slopes
s(tq, tr) where tr belongs to the interval [tq, tq+µ(P)/2]. However,
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from Lemma 62 follows that s(tq, tr) cannot be less than 1 when tr ∈
[o(tq), tq], and s̃(tq) is at most 1, so this interval can be extended,
and we have

s̃(tq) = min
tr∈[o(tq),tq+µ(P)/2]

s(tq, tr).

This extension of the interval enables us to define the lever and to
construct the following sliding lever algorithm without having to
worry about certain unwanted cases.

3.4 Sliding lever algorithm

In this section we define the lever, the central object of our analysis,
as well as the possible states that the lever can have. We want to
simulate the movement of the lever, so we analyze all the events
that lead to state changes. That allows us to construct a sweep
algorithm; however, the most straightforward algorithm will not
run in linear time. To fix that we design an additional algorithm to
precompute the set of the so-called retargeting positions, which we
use for certain helper events (jump destination change events).

3.4.1 Lever

For a fixed t, consider the line segment having the slope s̃(t), with
one endpoint at O(t) and the other at (t +µ(P)/2, s̃(t)(µ(P)/2+
h(t))), see Figure 34. Let us call that line segment the lever for
t. Note that the lever only touches the plot, never intersecting it lever for t

properly.

Figure 34. Lever.

Let C(t) be the leftmost point in which the lever for t touches
the plot, and let c(t) be such that H(c(t)) = C(t). Then c(t) ∈
[o(t), t+µ(P)/2] and it is the lowest value in this interval for which
s̃(t) = s(t, c(t)). Coming back to the original setup, this means that
the left dilation via P(t) reaches its maximum for P(c(t)).

We now continuously decrease parameter t and observe what is
happening with the updated lever. The following monotonicity
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lemma states that when t is decreasing o(t) and c(t) are decreasing
as well, which means that decreasing t corresponds to “dragging"
the lever in the leftward direction.

Lemma 63. For t1 < t2 we have o(t1) ≤ o(t2) and c(t1) ≤
c(t2).

Proof. Suppose t1 < t2. Using Lemma 62 we get

h(t2)− h(t1)≤ t2 − t1,

t1 − h(t1)≤ t2 − h(t2),

o(t1)≤ o(t2).

To show that c(t1)≤ c(t2), assume the opposite, that c(t1)>
c(t2). Then, t1 < t2 < c(t2) < c(t1) ≤ t1 + µ(P)/2, and
c(t1) ∈ [t2, t2 +µ(P)/2].

Figure 35. A situations leading
to a contradiction (the

depicted points cannot be in
this arrangement, resulting in

invalid pictures)

For a contradiction, suppose first that line segments O(t1)C(t1)
and O(t2)C(t2) do not intersect, see Figure 35. Since
o(t1) ≤ o(t2), the segment O(t2)C(t2) lies completely un-
der O(t1)C(t1), and because O(t2)C(t2) touches the plot in
C(t2), the plot must intersect O(t1)C(t1) in some point left of
C(t2) and, hence, left of C(t1). That is a contradiction since
C(t1) is the leftmost point where the lever for t1 intersects
the plot.

Figure 36. A situations leading
to a contradiction (the

depicted points cannot be in
this arrangement, resulting in

invalid pictures)

If line segments O(t1)C(t1) and O(t2)C(t2) do intersect, see
Figure 36, then C(t1) lies under the line O(t2)C(t2), and we
we have

s(t2, c(t1))< s(t2, c(t2)) = min
t∈[t2,t2+µ(P)/2]

s(t2, t)≤ s(t2, c(t1)),

which again is a contradiction. This concludes the proof of
the lemma. �

3.4.2 States

In order to be able to simulate the continuous leftward motion of
the lever, we transform it to an iteration over a discrete sequence
of states. We define different lever states depending on how the
lever is positioned relative to the sequence of hyperbola segments.

When t ∈ [ei , ei+1) and c(t) ∈ [e j , e j+1), we say that the lever for t
is in the phase 〈i, j〉. The phase in which the lever is, together withphase
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the manner in which the lever touches the plot define the state of
the lever. There are three possible ways for the lever to touch the state of the lever

plot, denoted by K (arc tangency), Y (endpoint sliding), and V
(wedge touching).

• State 〈i, j〉K : c(t)< t +µ(P)/2 and the lever is the tangent State 〈i, j〉K

toH j .

When t is decreasing, the lever is sliding to the left along h j
maintaining tangency, thus continuously decreasing its slope.

Figure 37. State 〈i, j〉K

• State 〈i, j〉Y : c(t) = t +µ(P)/2. State 〈i, j〉Y

Point C(t) is the right endpoint of the lever. It is the only
point where the lever touches the plot. When t is decreasing,
the lever is moving to the left while keeping its right endpoint
on h j .

Figure 38. State 〈i, j〉Y

• State 〈i, j〉V : c(t) < t + µ(P)/2 and the lever is passing State 〈i, j〉V

through the point H(e j), the endpoint between hyperbola
segmentsH j−1 andH j .

This situation occurs only if m j−1 > m j . The two neighboring
hyperbola segments then form a “wedge" pointing down-
wards, and when t is decreasing the lever is sliding to the
left while maintaining contact with the tip of the wedge, thus
continuously decreasing its slope.

Figure 39. State 〈i, j〉V
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3.4.3 Jumping and retargeting

In the process of decreasing t and dragging the left endpoint of
the lever towards left, various events can take place. We will first
devote some attention to the most challenging kind of events, which
we call jumping events. These are events in which C(t) abruptlyjumping events

changes its position by switching to a different hyperbola segment.
In order to efficiently find state transition events that include jumps,
we always need to know to which hyperbola segment we can jump
from the current position. There is always at most one such target
hyperbola segment, and we will show how to keep track of it.

Figure 40. Jump destination
for x . jump(x) = i

Consider some point H(x) on the plot. Let jump(x), the jump
destination for x , be the index of the hyperbola segment whichjump(x), jump destination for

x contains the rightmost point H(w) on the plot such that w< x and
the ray from H(x) through H(w) only touches the plot, but does not
intersect it properly, see Figure 40. That is, jump(x) is the index of
the lowest visible hyperbola segment when looking from the point
H(x) to the left. If there is no such w, because hyperbola segments
on the left are obscured by the segment containing H(x), then we
set jump(x) to be the index of the hyperbola segment containing
H(x).

Consider only the values of x at which jump(x) changes value. We
call such values retargeting positions, and points H(x) retargetingretargeting positions

points. There are two types of retargeting points. Retargeting pointsretargeting points

of the first type are the points on Hk in which jump destination
changes from i to j, where i < j < k, see Figure 41.Retargeting

Figure 41. Retargeting point of
the first type.

points of the second type are the points onHk in which jump desti-
nation changes from k to j, where j < k, see Figure 42.

Figure 42. Retargeting point of
the second type.

We construct an algorithm for finding all retargeting points. It is
similar to finding lower convex chain in Andrew’s monotone chain
convex hull algorithm [13]. Our algorithm, however, runs in linear
time because the sequence of hyperbola segments is already sorted.
Before we give the algorithm, we describe the process and the
supporting structure in more detail.

Given a set A of hyperbola segments, we take a look at the convex
hull of their union and divide its boundary into the upper and lower
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part (i.e., the part lying above the segments, and the one below
the segments). We are interested only in those hyperbola segments
from A that have a nonempty intersection with the lower part of the
convex hull boundary, having in mind that each hyperbola segment
contains its left endpoint, but not the right one. Let us call the
sequence of all such hyperbola segments, ordered from left to right,
the convex support for A, see Figure 43.We say that three hyperbola convex support

Figure 43. Convex support for
all shown hyperbola segments
is marked with solid lines.

segments from the plot of h are in convex position if no line segment
connecting a point from the left and a point from the right hyperbola
segment passes completely below the middle hyperbola segment.
Note that any three hyperbola segments of any convex support are
in convex position.

Let j0 be the index of a hyperbola segment that contains one of
the global minima of h. Starting from {H j0−1,H j0}, we process
segments from left to right and maintain the convex support for
the set {H j0−1,H j0 , . . . ,Hk}, where k is the index of the segment
being processed.

We use a stack to represent the convex support (only the indices of
hyperbola segments are stored). Suppose the stack already contains
the convex support for {H j0−1,H j0 , . . . ,Hk−1}, and we want to add
a new segmentHk. We need to make changes to the stack so that
it now represents the convex support for the new, extended, set
{H j0−1,H j0 , . . . ,Hk}. To achieve this, we pop segments from the
stack until the last two segments still in the stack, together withHk,
are in convex position. (Note that H j0 will never be popped this
way, as it contains a global minimum.) Finally, in the case where
Hk belongs to the convex support of {H j0−1,H j0 , . . . ,Hk}, we push
it on the stack. (The intersection ofHk with the lower part of the
convex hull is possibly empty since Hk does not contain its right
endpoint.)

Let cl(X ) denote the closure of a point set X , so cl(Hi) =Hi∪{Ei+1}, cl(X )

and let us consider the line l touching both cl(Hi) and cl(H j), i < j,
from below. If such a line is not unique, which can possibly happen
only when j = i+1, we take l to be the line with the smallest slope
(that is, the line tangent to cl(Hi) in Ei+1). We call the line l the
common tangent ofHi andH j. It can be computed in a constant common tangent

time, and in the following algorithm it is obtained as the return
value of the function TA N G E N T(i, j).

Note that if Z is a point with larger first coordinate than the point
l ∩ cl(H j) (i.e., Z is to the right of l ∩ cl(H j)) and below the plot,
then the point Z sees Hi lower than H j if Z is below l, and H j
lower thanHi if Z is above l. We will use this fact in the analysis
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of the algorithm.

Now we are ready to construct Algorithm 3, which shows how do
we get retargeting points as intersections of hyperbola segments and
common tangents of successive segments from the convex support.

Algorithm 3 Retargeting Points

Input: Description of a sequence of hyperbola segments.
Output: Retar get ingPoints – the sequence of all retargeting

points.
Retar get ingPoints← [ ]
PU S H( j0 − 1)
PU S H( j0)
for k← j0 + 1 to j0 + n do

loop
i← Second-to-top element of the stack
j← Top element of the stack
l1← TA N G E N T(i, j)
if l1 ∩Hk 6= ; then

Let g be the leftmost point of l1 ∩Hk.
Append g to Retar get ingPoints.
Set jump destination of g to j.
PO P()

else
l2← TA N G E N T( j, k)
if l2 ∩Hk 6= ; then

Let g be the only point of l2 ∩Hk.
Append g to Retar get ingPoints.
Set jump destination of g to j.
PU S H(k)

break loop

Theorem 64. Algorithm 3 finds all retargeting positions, or-
dered from left to right, together with jump destinations of those
positions, in O(n) time.

Proof. To show the correctness of this algorithm, we first
observe that each reported point must be a retargeting point
since the jump destination changes at it.

Indeed, points reported in the outer “if" branch lie on the
common tangent of two successive hyperbola segments Hi
andH j from the convex support, andHk is the first segment to
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be intersected by that tangent. The point of the intersection is
the boundary between the region ofHk from whichHi is the
lowest segment when looking to the left and the region ofHk
for which such lowest segment isH j , as shown in Figure 41.
Thus, a point g reported in this branch has the property that
points onHk just left and just right of the point g haveH j and
Hi as their jump destinations, respectively, so it is a retargeting
point of the first type.

The inner “if" branch occurs when the segmentHk is appended
to the convex support, in which case there is a point on Hk
acting as a boundary between the region of Hk from which
no other segment is visible (when looking to the left), and the
region ofHk from whichH j is visible, and such point lies on
the common tangent of H j and Hk, as shown in Figure 42.
Therefore, the point g reported in this branch has the property
that points onHk just left and just right of the point g have
H j andHk as their jump destinations, respectively, so it is a
retargeting point of the second type.

Next, let us make sure that no retargeting points were omitted
by this algorithm. Consider a retargeting point g lying onHk.

If g is retargeting point of the first type, it must lie on
TA N G E N T(i, j) for some i < j < k (Figure 41). Note that
there can be no Hr with r < k such that it reaches below
TA N G E N T(i, j); otherwise r would be a jumping destination
for g. That implies that both Hi and H j are the part of the
lower convex hull of the segments left from Hk, which fur-
ther means thatHi andH j are two consecutive elements of
the convex support for the set {H j0−1,H j0 , . . . ,Hk−1}. Since
TA N G E N T(i, j) intersectsHk, the same must be true for any
pair of consecutive segments Hi′ and H j′ from the convex
support, with i < i′ < j′ < k. Otherwise, there would be three
segments from the convex support not in convex position. The
algorithm starts from the last two segments in the convex sup-
port and repeats moving to the previous pair as long as there
is an intersection of the pair’s common tangent withHk. That
guarantees g will be found and reported as the retargeting
point in the outer “if” branch.

The second case, when g is retargeting point of the second
type, is treated similarly. In this case g lies on TA N G E N T( j, k)
for some j < k Figure 42. There can be noHr with r < k such
that it reaches below TA N G E N T( j, k); otherwise r would be a
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jumping destination for g. That implies thatH j is a part of the
lower convex hull of the segments left fromHk, which further
means that H j is an element of the convex support for the
set {H j0−1,H j0 , . . . ,Hk−1}. Since TA N G E N T( j, k) touchesHk
from below, the common tangent of each pair of consecutive
segmentsHi′ andH j′ , with j ≤ i′ < j′ < k, from the convex
support must intersectHk. Otherwise, there would be three
segments from the convex support not in convex position. For
the same reason the common tangent ofH j and the segment
immediately before it in the convex support cannot intersect
Hk. The algorithm starts from the last two segments in the
convex support and repeats moving to the previous pair as long
as there is an intersection of the pair’s common tangent with
Hk. Finally, the algorithm reaches the rightmost pair of two
consecutive segments from convex support whose common
tangent does not intersectHk. The right segment from that
pair is exactlyH j. In that moment the point g is found and
reported as retargeting point in the inner “if” branch.

The running time of algorithm is O(n), since each index
k ∈ { j0 + 1, . . . , j0 + n} is pushed on the stack and popped
from the stack at most once, and output of TA N G E N T() and
intersections can be computed in a constant time. The number
of retargeting points reported is, therefore, also O(n).

Retargeting points reported by the algorithm come in sorted
order, from left to right, which is explained by following obser-
vations. Retargeting points reported in a single iteration of the
outer for-loop belong to the same hyperbola segment, and seg-
ments come in left-to-right order. Retargeting points reported
on the same hyperbola segment are also in the same order:
inside the inner loop, Hk is consecutively intersected with
lines such that each line is of lower slope than previous and
lies beneath it underHk. Hence, each subsequent intersection
point lies to the right of the previous one.

This algorithm finds only retargeting points from a single
period of the plotted function, but all other retargeting points
can be obtained by simply translating these horizontally by
the integral number of periods µ(P). �

3.4.4 Events

In the process of decreasing t and dragging the left endpoint of
the lever towards left, the lever state changes at certain moments.
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We call such events state transition events. It is crucial for us to state transition events

be able to efficiently calculate where these events can occur. If
the current lever position, tc, and the current state are known,
the following event can be determined by maintaining the set of
conceivable future events of which at least one must be realized,
and proceeding to the one that is the first to take place, i.e., the
one with the largest t not larger than tc . To do that, we must know
how to calculate the value of t for each event.

We list all types of events that can happen while moving the lever
leftwards, and for each we show how to calculate the value of t, the
lever position at which the event occurs. We will give a polynomial
equation describing each event type, which will be solved either for
t or for oi(t). Once we have oi(t), it is easy to obtain t, as

t =
oi(t)2 − d2

i −m2
i

2(oi(t)−mi)
. (3.4)

In the process of determining t, we will repeatedly encounter fixed
degree polynomial equations. Solving them can be assumed to be
a constant time operation, see [28].

We will frequently use the following two utility functions, c j(o) and
s j(o).

For o < m j, let c j(o) be such that H(c j(o)) := (c j(o), h(c j(o))) is c j(o)

the contact point of the hyperbola h j and its tangent through the
point (o, 0). Given o, the value c j(o) can be calculated by solving
the equation h′j(c j(o)) = h j(c j(o))/(c j(o)− o), which results in

c j(o) =
d2

j +m2
j −m jo

m j − o
. (3.5)

Function s j(o) is defined as the slope of the tangent to the hyperbola s j(o)

h j through the point (o, 0), that is, the line through points (o, 0)
and H(c j(o)),

s j(o) =
h j(c j(o))

c j(o)− o
= 1/

√

√

√

�

m j − o

d j

�2

+ 1. (3.6)

These functions are used when we know that the lever for t is a
tangent to some hyperbola segment H j. Then we know that the
lever touchesH j at the point with coordinate c j(o(t)), and that its
slope equals s j(o(t)).

Let us first consider jump destination change event, a type of event jump destination change event
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which is not a state transition event. Nevertheless, it is still necessary
to react to events of this kind in order to update a parameter needed
for calculating events that do change state. As we decrease t, we
keep track of jump destination for position c(t) in variable jm :=
jump(c(t)).

Jump destination change event

Jump destination jm changes whenever C(t) passes over some retar-
geting point. At that moment it is necessary to recalculate all future
events involving jumps, since jm is used for their calculation. Let
z be the next retargeting position, i.e., the rightmost one that lies
to the left of c(tc), where tc is current lever position. Depending
on the lever state, we calculate the event position in one of the
following ways.

• The current state is 〈i, j〉V

The jump destination change event cannot occur before leav-
ing this state since C(t) stands still at the “wedge tip", so it
cannot pass over any retargeting point.

• The current state is 〈i, j〉K

Here the lever is tangent toH j , so this event can only happen
if z > m j . Otherwise, the lever would have nonpositive slope
when touching the plot at H(z). The equation describing this
event is

c j(oi(t)) = z,

and it solves to

oi(t) =
d2

j − zm j +m2
j

m j − z
.

• The current state is 〈i, j〉Y

The right endpoint of the lever slides overH j and will coincide
with H(z) at

t = z −µ(P)/2.

Note that jm is not used in the description of the lever state, so, as
already noted, jump destination change event does not change the
current state.

All the other events that need to be considered are state transition
events.
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State transition events

In the following list we give all possible types of state transition
events, and we show how to calculate corresponding t value for
each of them. To make this enumeration easier to follow, we group
event types in four groups, depending on the resulting phase of the
event: 〈i, j〉, 〈i − 1, j〉, 〈i, j − 1〉 and 〈i, jm〉.

Event types leading to 〈i, j〉 phase:

• 〈i, j〉Y → 〈i, j〉K and 〈i, j〉K → 〈i, j〉Y 〈i, j〉Y → 〈i, j〉K and
〈i, j〉K → 〈i, j〉Y

In this event the lever changes from being a tangent toH j to
touchingH j with its right endpoint, or the other way round.
The corresponding equation for this event is

c j(oi(t)) = t +µ(P)/2,

which can be transformed into a cubic equation in t.

Since there can be at most three real solutions to that equation,
it is possible that this event takes place at most three times
for some fixed i and j. On each occurrence of the event, the
lever switches between being a tangent and touching the plot
with its right endpoint.

• 〈i, j〉K → 〈i, j〉V 〈i, j〉K → 〈i, j〉V

This event happens when the point in which the lever is touch-
ingH j reaches e j . Here, the lever is tangent toH j , and since
it must have a positive slope, this will only happen if e j > m j .
The equation for the event is

c j(oi(t)) = e j ,

which solves to

oi(t) =
d2

j − e jm j +m2
j

m j − e j
.

Event types leading to 〈i − 1, j〉 phase:

• 〈i, j〉x → 〈i − 1, j〉x , where x ∈ {Y ,K ,V } 〈i, j〉x → 〈i − 1, j〉x

This is the event when the interval to which t belongs changes
from [ei , ei+1) to [ei−1, ei), so this event happens at ei ,

t = ei .
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Event types leading to 〈i, j − 1〉 phase:

• 〈i, j〉Y → 〈i, j − 1〉Y〈i, j〉Y → 〈i, j − 1〉Y

Here, the right endpoint of the lever slides continuously from
one hyperbola segment to another,

t = e j −µ(P)/2.

• 〈i, j〉V → 〈i, j − 1〉Y〈i, j〉V → 〈i, j − 1〉Y

This event happens when the lever stops touching the tip
of the wedge and starts to slide its right endpoint over the
hyperbola segment on the left of the wedge,

t = e j −µ(P)/2.

• 〈i, j〉V → 〈i, j − 1〉K〈i, j〉V → 〈i, j − 1〉K

This event happens when the lever stops touching the tip of
the wedge and becomes a tangent of the hyperbola segment
on the left of the wedge. This can only happen if e j > m j−1,

c j−1(oi(t)) = e j ,

which solves to

oi(t) =
d2

j−1 − e jm j−1 +m2
j−1

m j−1 − e j
.

Event types leading to 〈i, jm〉 phase:

• 〈i, j〉Y → 〈i, jm〉K〈i, j〉Y → 〈i, jm〉K

This event happens when the lever state changes from having
an endpoint on H j to being a tangent to H jm . The corre-
sponding equation is

s jm(oi(t)) =
h j(t +µ(P)/2)

hi(t) +µ(P)/2
,

which further transforms into a polynomial equation in t.

The line through oi(t) with the slope s jm(oi(t)) touches the
hyperbola h jm , but we need to be sure that it actually touches
the segmentH jm of that hyperbola. It may as well be the case
thatH jm is not wide enough to have a common point with the
line. More precisely, the first coordinate, u, of the touching
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point between the line and h jm must belong to the interval
[e jm , e jm+1). To get that coordinate, we solve the equation

h′jm(u) = s jm(oi(t)).

Having in mind that oi(t) < m jm < u must hold, we get a
single solution

u= m jm +
d2

jm

m jm − oi(t)
.

If u /∈ [e jm , e jm+1), we do not consider this event.

Checking if the line through oi(t) with the slope s jm(oi(t))
actually touches the hyperbola segmentH jm will also be used
in the calculation for the following event types, where we
will refer to it by the name collision check. collision check

• 〈i, j〉K → 〈i, jm〉K 〈i, j〉K → 〈i, jm〉K

This event happens when the lever becomes a tangent to two
hyperbola segments,H j andH jm simultaneously. It can only
happen ifH jm is lower thanH j , i.e., d jm < d j ,

s jm(oi(t)) = s j(oi(t)).

Since oi(t)< m jm and oi(t)< m j , the only solution is

oi(t) =
d jm jm − d jm m j

d j − d jm

.

Here we need to apply the collision check described earlier to
see if the common tangent actually touchesH jm . If the check
fails, we do not consider this event.

• 〈i, j〉V → 〈i, jm〉K 〈i, j〉V → 〈i, jm〉K

This event happens when the lever stops touching the tip of
the wedge and becomes a tangent of the hyperbola segment
H jm ,

s jm(oi(t)) =
h j(e j)

e j − oi(t)
.

This can only happen if h j(e j) > d jm . From that we get a
quadratic equation in oi(t). The two solutions correspond
to the two tangents to h jm from the point (e j , h(e j)), so we
consider only the smaller solution, which corresponds to the



82

left tangent. Once again we perform the collision check to see
if the tangent actually touchesH jm , otherwise we disregard
this event.

• 〈i, j〉Y → 〈i, jm〉V〈i, j〉Y → 〈i, jm〉V

The event when the lever state changes from having an end-
point onH j to touching the wedge betweenH jm−1

andH jm
is described by

h jm(e jm)

e jm − oi(t)
=

h j(t +µ(P)/2)

hi(t) +µ(P)/2
,

which again transforms into a polynomial equation in t.

• 〈i, j〉K → 〈i, jm〉V〈i, j〉K → 〈i, jm〉V

The event in which the lever touches the wedge tip at e jm
while being a tangent to h j is represented by the following
equation,

h jm(e jm)

e jm − oi(t)
= s j(oi(t)).

This can only happen if h jm(e jm)< d j . It can be transformed
into a quadratic equation in oi(t). The two solutions corre-
spond to the two tangents to h j from the point (e jm , h(e jm)).
The smaller of the two solutions is where this event happens.

• 〈i, j〉V → 〈i, jm〉V〈i, j〉V → 〈i, jm〉V

This event happens when the lever touches two wedges, at
points E jm and E j simultaneously. This condition can be writ-
ten as

h j(e j)

e j − oi(t)
=

h jm(e jm)

e jm − oi(t)
,

which is a linear equation in oi(t).

3.4.5 Sequence of realized states

We want to efficiently find the sequence of states through which the
lever will pass on its leftward journey, together with the positions
where these state changes happen. Let the obtained sequence be
p1,S1, p2,S2, p3, . . . , pr ,Sr , where p1 ≤ p2 ≤ . . . ≤ pr . Each state
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Sk occurs when the lever position is exactly between pk and pk+1,
where pr+1 = p1 + µ(P). We call this sequence the sequence of
realized states. sequence of realized states

To calculate the sequence of realized states, we will start from a
specific lever position that has a known state. Let plow be any of plow

the values for which h attains its global minimum, and letH j0 be
the hyperbola segment above it. The algorithm starts with the lever
in the position tc = t0 = plow − µ(P)/2. This lever has its right
endpoint on the plot at the point H(plow), which means that its
state is 〈i0, j0〉Y , where i0 is the index of the hyperbola segment
over t0. We note that plow must also be a retargeting position, so
we also know our initial jump destination.

The algorithm then iterates with the following operations in its
main loop. It first calculates all possible events that could happen
while in the current state. Among those events let E be the one
with the largest t that is not larger than tc . It is the event that must
occur next. The algorithm sets tc to t, and it either updates jump
destination if E is a jump destination change event, or switches to
the new state if the event is a state transition event. In the latter
case, the position t and the new state are added to the sequence
of realized states. These operations are repeated until one full
period of the plot is swept, ending with tc = t0 −µ(P) in the state
〈i0 − n, j0 − n〉Y . The procedure described is given in Algorithm 4.

Theorem 65. SL I D I N G LE V E R AL G O R I T H M finds the se-
quence of realized states in O(n) time. The length of the produced
sequence is O(n).

Proof. During the execution of the algorithm we must en-
counter all realized states, since states can change only at
events and by always choosing the first following possible
event to happen, we eventually consider all realized events.
Realized states are encountered in order, since tc is never
increasing.

While choosing the following event we did not consider the
possibility that there can be several events with the same min-
imal t. However, if that happens we can choose an arbitrary
one to be the next event. This choice can influence the output
sequence only by including or excluding some states of the
length zero. Importantly, such zero-length states are irrelevant
for further considerations, and no other state in the output of
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Algorithm 4 Sliding Lever Algorithm

Input: Description of a sequence of hyperbola segments.
Output: The sequence of realized states.

Find plow and j0.
t0← plow −µ(P)/2
Find i0.
Run R E TA R G E T I N G P O I N T S to find retargeting points and their
jump destinations.
tc ← t0
i← i0
j← j0
jm← jump destination of plow
Set the current state to 〈i0, j0〉Y .
Add t0 and 〈i0, j0〉Y to the output sequence.
while tc > t0 −µ(P) do

Calculate all the events for the current state. Ignore jumping
events if j = jm.

Let E be the first event to happen (the one with the largest t
not larger than tc).

tc ← t of the event E.
if E is jump destination change event then

Update jm.
else

Set the current state to the destination state of E.
Add t and the current state to the output sequence.
if E is a jumping event then

jm← j

the algorithm is influenced by this choice.

Each event is either a jump destination change event or a state
transition event. From Theorem 64 we have that there are
O(n) jump destination change events, and now we will show
that there are O(n) state transition events as well.

Each state transition event transitioning from some 〈i, j〉 state
decreases either i, or j or both. The only exception are the
events 〈i, j〉K → 〈i, j〉Y and 〈i, j〉Y → 〈i, j〉K , however those
events can happen at most three times in total for the same i
and j. Note that jm ≤ j, but when jm = j, we do not consider
events involving jm. Variables i and j start with values i0 and
j0, and, after the loop finishes, they are decreased to i0 − n
and j0 − n. Hence, no more than O(n) state transition events
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occurred, implying the linear length of the sequence of realized
states.

Calculation of each state transition event takes a constant
time, at each iteration a constant number of potential events
is considered, and loop is iterated O(n) times. To find the
next jump destination change event, we move through the
sorted list of retargeting positions until we encounter the first
retargeting position not greater than tc. The total time for
calculating jump destination change events, over all iterations,
is linear. Therefore, the running time of the whole algorithm
is also linear. �

3.5 Merging the two dilations

In this section we will show how to use output of the sliding lever
algorithm to give an answer to our original question. The algorithm
is run once for the left and once the right dilation, and the obtained
sequences of realized states are merged into a single sequence.
Finally, we will explain how to find the overall minimum dilation
and the optimal feed-link by iterating through the merged sequence.

Knowing the sequence of realized states is sufficient to determine
the exact lever slope at any position. Remember, the lever slope at
position t is the inverse of the left dilation via P(t), as shown in
(3.3). But, to know the dilation via some point we need both the
left and the right dilations via that point (3.1).

Our sliding lever algorithm was initially designed only for the left
dilation, but an analogous algorithm can obviously be designed for
the right dilation (or, we can perform the exact same algorithm for
the left dilation on the mirror image of the polygon P, and then
transform obtained results appropriately). This implies the concept
of the right dilation lever for t (as opposed to the left dilation lever,
or just the lever, as we have been calling it until now), which has
negative slope and touches the plot on the left side of t. We will
use + and − in superscript denoting relation with the left and the
right dilation, respectively.

Let p+1 ,S +1 , p+2 ,S +2 , . . . , p+r+ ,S +r+ and p−1 ,S −1 , p−2 ,S −2 , . . . , p−r− ,S −r−
be the sequences of realized states for the left and the right dilation,
respectively, where both sequences p+ and p− are in nondecreasing
order. For simplicity, let us call them the left and the right sequence, left sequence

right sequencerespectively. States for right dilation are described by 〈i, j〉 notation
as well, with the meaning analogous to the meaning of the notation
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for the left dilation states. We say that the (right dilation) lever for
t is in the phase 〈i, j〉, whenHi is the hyperbola segment above t,
and the (right dilation) lever touches the hyperbola segmentH j .

We now merge the two obtained sequences by overlapping them
into a new sequence p1,S1, p2,S2, p3, . . . , pr ,Sr . In the merged
sequence, p1 ≤ p2 ≤ . . .≤ pr is the sorted union of {p+1 , p+2 , . . . , p+r+}
and {p−1 , p−2 , . . . , p−r−}. States in the merged sequence are pairs
consisting of one state from the left sequence and one state from the
right sequence. Each state Sk = (S +k+ ,S −k−) in the merged sequence
is such that S +k+ and S −k− are states covering the interval between
pk and pk+1 in the left and in the right sequence, respectively.

By Theorem 65, both r+ and r− are O(n), so the length of the
merged sequence is also linear in n. Because the left and the right
sequences are sorted, the merged sequence can be computed in
O(n) time.

For each state Sk = (S +k+ ,S −k−) there is a single expression for
computing the lever slope as a function of t, when pk ≤ t ≤ pk+1,
both for the left and the right dilation. To find the minimal dilation
while in that state, we want to find t which maximizes the minimum
of the two slopes for the left and the right lever. This observation
readily follows from (3.1) and (3.3), so

min
pk≤t≤pk+1

δ̃P(t) =
1

maxpk≤t≤pk+1
min{s̃+(t), s̃−(t)}

, (3.7)

where s̃+(t) is the slope for the left dilation lever for t, and s̃−(t) is
the slope for the right dilation lever for t.

This means that to get the final value of the optimal dilation we
essentially need to compute the minimum of the upper envelope of
two functions, which is a standard procedure that can be done effi-
ciently. In the following, we take a closer look at the computations
needed to complete this step in our setting.

For all possible combinations of the left and the right state types in
a combined state, we show how to find the maximum of the lower
envelope of the slope functions s̃+(t) and s̃−(t) by analyzing the
shape of those functions. The following lemmas help us describe
them.

Let us assume that the corresponding state to which t belongs
is S = (S +,S −), and let s+〈i, j〉K (t) be a function which maps t

to the slope of a lever, assuming that the lever is in 〈i, j〉K state.
Analogously we define s+〈i, j〉V (t), s+〈i, j〉Y (t), s−〈i, j〉K (t), s−〈i, j〉V (t) and
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s−〈i, j〉Y (t).

Lemma 66. If S + is a 〈i, j〉K state, then s̃+(t) is a monotoni-
cally nondecreasing function.

Proof. If S + is an 〈i, j〉K state, then, from equation (3.6), we
have

s̃+(t) = s+〈i, j〉K (t) = s j(oi(t)) =
h j(c j(oi(t)))

c j(oi(t))− oi(t)

= 1/

√

√

√

�

m j − oi(t)

d j

�2

+ 1.

We see that the function s j is monotonically increasing for
parameter values less than m j . In the specified state, oi(t)<
m j holds, and since o(t) is monotonically nondecreasing
(Lemma 63), it means that s̃+(t), being the composition of s j
and o(t), is monotonically nondecreasing as well. �

Lemma 67. IfS + is a 〈i, j〉V state, then s̃+(t) is a monotonically
nondecreasing function.

Proof. If S + is an 〈i, j〉V state, then we have

s̃+(t) = s+〈i, j〉V (t) =
h j(e j)

e j − oi(t)
.

We see that s̃+(t) is monotonically increasing in terms of oi(t)
when oi(t)< e j , which holds in the specified state. Since o(t)
is monotonically nondecreasing (Lemma 63), it means that
s̃+(t) is monotonically nondecreasing in terms of t as well. �

Similar observations hold for the right dilation analogues: s̃−(t) is
monotonically nonincreasing if S −(t) is 〈i, j〉K or 〈i, j〉V state.

Lemma 68. If S − is a 〈i, j〉Y state then s̃+(t)≤ s̃−(t).
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Proof. From equation (3.3), using the fact that h j(t) =
h j+n(t +µ(P)) holds because of the periodicity, we have

s̃−(t) =
h j(t −µ(P)/2)
hi(t) +µ(P)/2

=
h j+n(t +µ(P)/2)

hi(t) +µ(P)/2
= s(t, t +µ(P)/2)

≥ min
tr∈[t,t+µ(P)/2]

s(t, tr)

= s̃+(t).

�

Analogously, if S + is a 〈i, j〉Y state then s̃−(t)≤ s̃+(t).

For equation (3.7) we need to calculate
maxpk≤t≤pk+1

min{s̃+(t), s̃−(t)}. This calculation depends on
the types of the states S + and S − in the specified interval. We
analyze nine possible type combinations.

• If S + is 〈i, j+〉Y state and S − is 〈i, j−〉Y state:

Using Lemma 68 we get s̃+(t) = s̃−(t), so

max
pk≤t≤pk+1

min{s̃+(t), s̃−(t)}= max
pk≤t≤pk+1

s+〈i, j+〉Y (t).

The maximum is achieved either at interval ends or at a local
maxima, if one exists, which is found by solving a polynomial
equation.

• If S + is 〈i, j+〉K state and S − is 〈i, j−〉Y state:

Using Lemma 68 and Lemma 66 we get

max
pk≤t≤pk+1

min{s̃+(t), s̃−(t)}= max
pk≤t≤pk+1

s+〈i, j+〉K (t) = s+〈i, j+〉K (pk+1).

• If S + is 〈i, j+〉K state and S − is 〈i, j−〉K state:

From Lemma 66 we know that s+〈i, j+〉K (t) is monotonically

nondecreasing, and s−〈i, j−〉K (t) is monotonically nonincreasing.
The highest point of the lower envelope of these functions on
[pk, pk+1] is thus located either at one end of the interval, or
at the point of the intersection of the two functions, which
can be found by solving a polynomial equation.
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The other six combinations of state types are not listed, but each of
them is resolved in a manner very similar to the one of the above
three combinations. Cases with 〈·, ·〉V states are resolved analo-
gously to the cases having 〈·, ·〉K states instead by using Lemma 67
in place of Lemma 66, and the remaining cases are analogous to
the cases having “pluses” and “minuses” swapped.

Finally, by taking the smallest of all dilation minima from [pk, pk+1]
intervals for k ∈ {1, 2, . . . r}we obtain the overall minimum dilation,

δ = min
k∈{1,2,...,r}

min
pk≤t≤pk+1

δ̃P(t).

While going through calculated interval minima we maintain the
value of t for which the minimum is achieved, so we also get the
point on P which is the endpoint of the optimal feed-link.

3.6 Conclusion and further work

The problem we considered asked for the optimal extension of a
polygonal network by connecting a specified point to the rest of the
network via a feed-link. We gave a linear time algorithm for solving
this problem, thus improving upon the previously best known result
of Aronov et al. presented in [14].

On the way to solution, we performed several steps. First, we
divided the concept of dilation into the left and the right dilation, so
that the two can be analyzed separately. Then we transformed them
into the problem which considers the plot of the distance function
and lever slopes, an gave an algorithm for event based simulation of
the lever movement. The output of the algorithm is the description
of the changes in the lever slope presented as a sequence of states,
each of which can be expressed analytically. Finally, we explained
how those state sequences for the left and the right dilation can be
merged and how the optimal feed-link can be found from it.

We note that the method we used for solving the original problem
can be easily adapted to work with any network shaped as an open
polygonal chain.

Aronov et al. in [14] discuss polygons with obstacles. They show
how polygonal obstacles with total number of vertices equal to
b induce a partition of the polygon boundary of the size O(nb),
and how that partition can be computed in O(nb + b log b) time.
Each segment of the partition has a distance function to p similar
to function hi(t), the only difference being an additive constant.
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In our setting, this makes the hyperbola segments in the plot to
shift upward by that constant, which means that the problem with
obstacles can also be handled by our approach. This variation
would require a more elaborate case study from Section 3.4.4. The
equations in respective cases would also change, but they would
still remain polynomial and thus efficiently solvable. We will not
pursue the details here.

A natural way to generalize the problem is to assume that the poly-
gon edges are not line segments, but curves (second order curves,
for example). The abstraction behind our method can be applied
in this case provided that there is an efficient way to determine the
event times and to find optimal values in the merged sequence.

Another obvious generalization is asking for a set of k > 1 feed-
links that minimize the dilation. Aronov et al. in [14] give an
approximate algorithm for computing such a set. However, finding
an efficient algorithm that solves this problem exactly is still open.
One could try to apply our approach here, but we do not see that
this can be done in a straightforward fashion.

It would also be interesting to see whether a similar method can be
applied to a network which is not necessarily polygonal, i.e., to a
network whose vertices can have degree greater than two.







Prošireni izvod (in
Serbian)
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Monohromatski bottleneck mečinzi

Neka je P skup od n tačaka u ravni, gde je n paran broj. Neka je M
savršeni mečing tačaka u P koji se dobija povezivanjem tačaka ko-
risteći n/2 duži koje se ne presecaju. Najdužu duž u M označavamo
sa bn(M), i tu vrednost nazivamo vrednost mečinga mečinga M .vrednost

Naš cilj je pronaći mečing za koji je bn(M) minimalno. Svaki takav
mečing se naziva bottleneck mečing skupa tačaka P.bottleneck mečing

Rezultati

U onome što sledi posmatramo slučaj gde su sve tačke iz P u konvek-
snom položaju, to jest, predstavljaju temena konveksnog poligona
P . Tačke su monohromatske, što znači da svake dve mogu biti
uparene u mečingu. Obzirom na to da ćemo raditi isključivo sa
mečinzima bez presecanja, ubuduće kada koristimo pojam mečing
mislićemo isključivo na mečinge u kojima se duži ne seku.

Označimo tačke iz P sa v0, v1, . . . , vn−1, u pozitivnom smeru (smer
suprotan kazaljki na satu). Radi jednostavnosti notacije, često
ćemo pisati samo indekse kada govorimo o tačkama. Sa {i, . . . , j}
ćemo označavati niz i, i + 1, i + 2, . . . , j − 1, j, gde se sve operacije
računaju po modulu n. Primetimo da i nije obavezno manje od j,
i da {i, . . . , j} nije isto što i { j, . . . , i}. Kažemo da je (i, j) dopustiv
par ako postoji mečing koji sadrži (i, j), što u monohromatskomdopustiv par

slučaju jednostavno znači da je {i, . . . , j} parne veličine.

Problem nalaženja bottleneck mečinga tačaka u konveksnom
položaju može biti rešen u polinomijalnom vremenu koristeći di-
namičko programiranje, kao što je prezentovano u [5].

U ovoj tezi prezentujemo brži algoritam za nalaženje bottleneck
mečinga za monohramatski skup tačaka u konveksnom položaju,
sa vremenskom složenošću od svega O(n2). Da bismo konstruisali
taj algoritam, dokazujemo niz rezultata koji daju uvid u osobine i
strukturu bottleneck mečinga. Ovaj rezultat je objavljen u [43].

Struktura bottleneck mečinga

Podelimo sve parove tačaka u dve kategorije. Parovi koji se sastoje
od dve susedne tačke se nazivaju ivice, dok se svi drugi parovi nazi-ivice

vaju dijagonale. Svaki mečing se, stoga, sastoji od ivica i dijagonala.dijagonale

Slika 44. Ugao skretanja.

Ugao skretanja niza {i, . . . , j}, u oznaci τ(i, j), predstavlja ugao zaUgao skretanja
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koji je potrebno rotirati vektor −−−→vi vi+1 u pozitivnom smeru da bi se
poklopio sa vektorom −−−→v j−1v j , videti Sliku 44.

Lema 69. Postoji bottleneck mečing M skupa P u kome za sve
dijagonale (i, j) ∈ M važi τ(i, j)> π/2.

Posmatrajmo podelu unutrašnjosti poligona P na regione koji se
dobijaju tako što poligon presečemo dijagonalima datog mečinga
M . Svaki region dobijen ovom podelom je ograničen nekim dijago-
nalama mečinga M i obodom poligona P . Ako tačno k dijagonala
ograničavaju region, kažemo da je taj region k-ogranǐcen. Svaki
maksimalni niz dijagonala povezan 2-ograničenim regionima se
naziva kaskada, kaskada

Slika 45. Dijagonale unutar
svake osenčene oblasti čine
jednu kaskadu. Postoje tri
kaskade sa jednom
dijagonalom, jedna kaskada sa
dve dijagonale, i jedna
kaskada sa tri dijagonale.

Lema 70. Postoji bottleneck mečing koji ima najviše tri kaskade.

Slika 46. Konfiguracija tačaka
za koju jedini bottlenech
mečing ima tačno tri kaskade.

Slučaj bottleneck mečinga koji ima tačno tri kaskade je moguć, kao
što je prikazano na slici 46. Lako se vidi da mečing ne može imati
tačno dve kaskade.

Nalaženje bottleneck mečinga

Mečinzi sa najviše jednom kaskadom

Kada govorimo o mečinzima sa minimalnom vrednošću pod nekim
ograničenjima, nazivaćemo ih optimalni mečinzi. optimalni mečinzi

Za neparno j − i, neka je MAT C H I N G(i, j) problem nalaženja opti-
malnog mečinga Mi, j tačaka {i, . . . , j}, takvog da Mi, j ima najviše
jednu kaskadu, pri čemu duž (i, j) pripada regionu ograničenom
najviše jednom dijagonalom iz Mi, j različitom od (i, j).

Ovi problemi imaju optimalnu podstrukturu, pa možemo primeniti
dinamičko programiranje da ih rešimo. Rešenje problema bn(Mi, j)
izražavamo rekurentnom formulom i čuvamo ga u S[i, j].

Ukupno imamo O(n2) potproblema od kojih svaki zahteva O(1)
vreme za izračunavanje. Stoga izračunavanje svih potproblema
zajedno zahteva O(n2) vremena i istu tu količinu memorije. Opti-
malni mečing sa samo jednom kaskadom se nalazi tražeći minimum
med̄u svim S[i + 1, i]i i uzimajući Mi+1,i za koji se taj minimum
postiže. Ovaj korak zahteva samo linearno vreme.
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Biće korisno utvrditi i da li je par (i, j) neophodan za konstruisanje
Mi, j, odnosno da li sva rešenja za MAT C H I N G(i, j) sadrže (i, j).
Ako to važi, onda takav orijentisan par (i, j) zovemo neophodan par.neophodan par

Računanje vrednosti potproblema se lako proširuje tako da se dobiju
i svi neophodni parovi, ne menjajući složenost celog postupka.

Mečinzi sa tri kaskade

Tri različite tačke i, j i k, takve da je j ∈ {i + 1, . . . , k − 1}, gde
su (i, j), ( j + 1, k) i (k + 1, i − 1) dopustivi parovi, mogu da se
iskoriste za konstruisanje mečinga sa tri kaskade uzimajući uniju
Mi, j , M j+1,k i Mk+1,i−1. Nalaženje optimalnog mečinga bi se moglo
izvesti prolaskom kroz sve trojke (i, j, k) i uočavanjem one koje
minimizira max{S[i, j], S[ j + 1, k], S[k+ 1, i − 1]}. Med̄utim, ovo
zahteva O(n3) vreme. Pokazaćemo da je umesto da posmatramo
sve (i, j) dovoljno da biramo (i, j) iz skupa linearne veličine, što
rezultuje pretragom koja uzima svega O(n2) vreme.

U mečingu sa tri kaskade sa unutrašnjim dijagonalama označavamounutrašnje dijagonale

tri orijentisane dijagonale koje sa svoje leve strane ograničavaju
jedinstveni 3-ograničeni region.

Lema 71. Ako ne postoji bottleneck mečing sa najviše jednom
kaskadom, tada postoji bottleneck mečing sa tri kaskade čija je
svaka unutrašnja dijagonala neophodna.

Orijentisanu dijagonalu (i, j) nazivamo kandidat dijagonalom, akokandidat dijagonala

je neophodan(i, j) i τ(i, j)≤ 2π/3.

Lema 72. Ako ne postoji bottleneck mečing sa najviše jednom
kaskadom, tada postoji bottleneck mečing sa tri kaskade čija je
bar jedna unutrašnja dijagonala kandidat dijagonala.

Sledeći zaključak je u vezi sa pozicijama tačaka {i + 1, . . . , j − 1} u

Slika 47. Sve tačke
vi+1, . . . , v j−1 leže ili unutar Π−

ili unutar Π+.

odnosu na kandidat dijagonalu (i, j). Konstruišemo kružni luk h
sa desne strane usmerene linije vi v j, sa koga se ta linija vidi pod
uglom π/3, videti Sliku 47. Sredinu h označimo sa A. Tačke vi , A i
v j čine jednakostraničan trougao, pa možemo konstruisati luk a−

izmed̄u A i vi sa centrom u v j, i luk a+ izmed̄u A i v j sa centrom
u vi. Ovi lukovi definišu tri oblasti: Π−, ograničenu sa h i a−, Π+,
ograničenu sa h i a+, i Π0, ograničenu sa a−, a+ i duži vi v j , sve kao
što je prikazano na slici 47.
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Lema 73. Ako je (i, j) kandidat dijagonala, tada tačke
vi+1, . . . , v j−1 ili sve pripadaju Π− ili sve pripadaju Π+.

Sa Π−(i, j) i Π+(i, j) respektivno označavamo oblasti Π− and Π+

koje odgovaraju kandidat dijagonali (i, j).

Ako tačkes {i + 1, . . . , j − 1} leže u Π−(i, j), kažemo da kandidat
dijagonala (i, j) ima negativnu polarnost i tačku i za svoj pol. U negativna polarnost

polsuprotnom, ako ove tačke leže u in Π+(i, j), kažemo da (i, j) ima
pozitivnu polarnost i tačku j za svoj pol. pozitivna polarnost

Lema 74. Nijedne dve kandidat dijagonale iste polarnosti ne
mogu imati istu tačku za svoj pol.

Jednostavna posledica Leme 74 je da postoji najivše linearan broj
kandidat dijagonala.

Lema 75. Postoji O(n) kandidat dijagonala.

Konačno, kombinujući Lemu 72 i Lemu 75 možemo konstruisati
Algorithm 5.

Algorithm 5 Bottleneck Mečing

Izračunati S[i, j] i neophodan(i, j) za sve dopustive parove (i, j).
na jbol ji←min{S[i + 1, i] : i ∈ {0, . . . , n− 1}}
for sve dopustive parove (i, j) do

if neophodan(i, j) i τ(i, j)≤ 2π/3 then
for k ∈ { j+1, . . . , i−1} takvo da je ( j+1, k) dopustiv par

do
na jbol ji ← min{best, max{S[i, j], S[ j + 1, k], S[k +

1, i − 1]}}

Teorema 76. Algoritam 5 nalazi vrednost bottleneck mečinga u
O(n2) vremenu.
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Bihromatski bottleneck mečinzi

Za razliku od monohromatske verzije, ovde nam tačke dolaze iz
dva skupa i nije dozvoljeno uparivati tačke unutar istog skupa.
Preciznije, neka su R i B skupovi od n crvenih i n plavih tačaka
u ravni, respektivno, i P = R ∪ B. Neka je M savršeni bipartitni
mečing izmed̄u skupova R i B, koristeći duži za spajanje tačaka
tako da se ni jedne dve duži ne seku. Naš cilj je da nad̄emo mečing
koji pod datim ograničenjima minimizira bn(M), tj. bihromatski
bottleneck mečing.

Rezultati

U cilju jednostavnijeg rada sa bihromatskim nepresecajućim mečinz-
ima konveksnog skupa tačaka, uvodimo strukturu koju nazivamo
orbita, za koju se ispostavlja da dobro predstavlja neke struktu-
ralne osobine ovakvih mečinga. Dolazimo do brojnih osobina orbita
koje, u kombinaciji sa idejama za monohromatske mečinge, nam
omogućavaju da efikasno rešimo bihromatske probleme.

Konstruišemo algoritam koji rešava problem bihromatskog nep-
resecajućeg mečinga tačaka u konveksnom položaju u O(n2) vre-
menu, poboljšavajući prethodno najbolji poznati algoritam O(n3)
vremenske složenosti, predstavljen u [20] i [22]. Takod̄e, koristeći
ovaj skup alata, dajemo optimalan O(n) algoritam za slučaj kada
tačke leže na krugu, za koji prethodno najbolji poznati algoritam
ima O(n log n)-vremensku složenost

Orbite i njihove osobine

Definicija 77. Skup tačaka je balansiran ako sadrži isti broj crvenihbalansiran, plavo-težak,
crveno-težak i plavih tačaka. Ako skup ima više crvenih tačaka nego plavih,

kažemo da je crveno-težak, a ako ima više plavih nego crvenih,
kažemo da je plavo-težak.

Lema 78. Nad svakim balansiranim skupom tačaka može biti
konstruisan mečing.

Lema 79. Par (i, j) je dopustiv ako i samo ako su i i j razlǐcite
boje i {i, . . . , j} je balansiran.

Definicija 80. Sa o(i) označavamo prvu tačku počevši od i u poz-Funkcije o i o−1
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itivnom smeru za koju važi da je (i, o(i)) dopustiv par. Sa o−1(i)
označavamo prvu tačku počevši od i u negativnom smeru za koju
važi da je (o−1(i), i) dopustiv par.

Osobina 81. Funkcija o je bijekcija, i o−1 je njena inverzna
funkcija.

Definicija 82. Orbitu od i, u oznaci O (i), definišemo sa O (i) := orbita

{ok(i) : k ∈ Z}. Sa O (P) označavamo skup svih orbita konveksnog
skupa tačaka P, to jest O (P) := {O (i) : i ∈ P}.

Primer balansiranog bihromatskog konveksnog skupa tačaka za-

Slika 48. Orbite – primer.

jedno sa svojim skupom orbita se može videti na Slici 48. Prime-
timo da je iz definicije orbita jasno da za svako j ∈ O (i) imamo
O ( j) = O (i), i samim tim skup svih orbita, O (P), je particija skupa
svih tačaka.

Dalje, dokazujemo niz osobina orbita.

Osobina 83. Tačke i i j čine dopustiv par ako i samo ako imaju
razlǐcite boje i O (i) = O ( j).

Osobina 84. Dopustivi par deli tačke svake orbite na dva bal-
ansirana dela.

Neformalno govoreći, sledeća osobina nam garantuje da uzastop-
nom primenom funkcije o pratimo tačke orbite u redosledu u kom
se pojavljuju naP , čime posećujemo sve tačke orbite u tačno jednom
obilasku oko poligona.

Osobina 85. Ni jedna tačka orbite O (i) ne leži izmed̄u i i o(i),
to jest, {i, . . . , o(i)} ∩ O (i) = {i, o(i)}.

Osobina 86. Svake dve susedne tačke orbite imaju razlǐcite boje.

Osobina 87. Svaka orbita je balansirana.

Dalje razmatramo strukturalne osobine dve različite orbite.
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Osobina 88. Neka su i i j tačke iz dve razlǐcite orbite takve da
se nijedna druga tačka iz njihovih orbita ne nalazi izmed̄u njih, to
jest, {i, . . . , j} ∩O (i) = i i {i, . . . , j} ∩O ( j) = j. Tada, i i j imaju
istu boju.

Prelazeći na algoritamsku stranu priče, pokazujemo da možemo
efikasno odredit sve orbite, odnosno preciznije – sve vrednosti
funkcije o.

Lema 89. Funkcija o(i), za svako i, može biti izračunata u O(n)
vremenu.

Definišemo dve kategorije dopustivih parova prema njihovoj rela-
tivnoj poziciji u orbiti.

Definicija 90. Dopustivi par (i, j) je ivica ako i samo ako i = o( j)ivica, dijagonala

ili j = o(i); u suprotnom taj par nazivamo diagonal.

Osobina 91. Ako je {i, . . . , j} balansirani skup, tada tačke u
{i, . . . , j} mogu biti uparene koristeći samo ivice.

Kada pričamo o ivicama, smatramo ih za ured̄ene parove tačaka,
tako da je ivica (i, o(i)) usmerena od i ka o(i). Kažemo da su
tačke {i, . . . , o(i)} \ {i, o(i)} sa desne strane ivice (i, o(i)), a tačke
{o(i), . . . , i} \ {i, o(i)} sa njene leve strane. Usmerenost ivica i obo-
jenost tačaka zajedno definišu dva moguća tipova ivica.

Definicija 92. Kažebo ia je (i, o(i)) crveno-plava ivica ako i ∈ R,crveno-plave ivice, plavo-crvene
ivice odnosno plavo-crvena ivica ako i ∈ B.

Osobina 93. Dve grane istog tipa (obe crveno-plave, ili obe
plavo-crvene) iz razlǐcitih orbita se ne ne seku.

Osobina 94. Za svake dve orbiteA ,B ∈ O (P),A 6=B , ili su
sve tačke izB sa desne strane crveno-plavih ivica izA , ili su sve
tačke izB sa desne strane plavo crvenih ivica izA .

Sledeća osobina nam govori o uzajamnoj sinhronizovanosti orbita.
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Osobina 95. Neka A ,B ∈ O (P). Ni jedna tačka iz B se ne
nalazi sa desne strane crveno-plave ivice izA ako i samo ako ni
jedna tačka izA se ne nalazi sa desne strane plavo-crvene ivice
izB .

Definicija 96. Relacija � na skupu svih orbita, O (P), se definiše relacija �
sa A � B ako i samo ako nema tačaka iz B sa desne strane
crveno-plavih ivica izA (što je, prema Osobini 95, ekvivalentno sa
nepostojanjem tačaka izA sa desne strane plavo-crvenih ivica iz
B).

Osobina 97. Relacija � na O (P) je totalni poredak.

Graf orbita

Definicija 98. Graf orbita G (P) je usmereni graf čiji skup čvorova Graf orbita

je skup svih orbita, O (P), a postoji usmerena grana od orbiteA do
orbiteB ako i samo ako seA iB seku i važiA �B .

Osobina 99. Svaka slabo povezana komponenta grafa orbita
G (P) sadrži jedinstven Hamiltonov put.

Lema 100. Totalni poredak orbita i Hamiltonovi putevi za sve
slabo povezane komponente grafa orbita mogu biti nad̄eni u ukup-
nom O(n) vremenu.

Nalaženje bottleneck mečinga

Pristup rešavanju problema bihromatskog bottleneck mečinga je
sličan pristupu koji smo koristili za monohromatsku verziju prob-
lema. Tvrd̄enja data u monohromatskom kontekstu važe i ovde,
ali koristeći definicije ivica i dijagonala u obliku koji smo dali za
bihromatski problem. Dokazi za tvrd̄enja u bihromatskoj verziji
problema se značajno oslanjaju na izvedene osobine orbita i grafa
orbita.
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Optimalno postavljanje feed-linka

Neka su u ravni dati poligon listom svojih temena v0, v1, . . . , vn−1
i tačka p. Obod poligona označimo sa P. Duž pq koja spaja p sa
nekom tačkom iz P nazivamo feed-link.feed-link

Definicija 101.

Slika 49. Koncept dilacije.

Za svake dve tačke q, r ∈ P, dilacija tačke r prekoDilacija tačke r preko q

q se definiše kao

δq(r) =
|pq|+ dist(q, r)

|pr|
,

gde je dist(q, r) dužina najkraće putanje izmed̄u q i r preko oboda
poligona, a |ab| je Euklidsko rastojanje izmed̄u tačaka a i b, videti
Sliku 49.

Definicija 102. Za tačku q ∈ P, dilacija preko q se definiše kaoDilacija preko q

δ̃q =max
r∈P

δq(r).

Problem postavljanja optimalnog feed-linka predstavlja odred̄ivanje
tačke q za koju je δ̃q minimizirano.

Rezultati

Za problem optimalnog postavljanja feed-linka dajemo algoritam
linearne vremenske složenosti. Prethodno najbolji poznat algori-
tam za ovaj problem je predstavljen u [14]. Njegova vremenska
složenost je O(λ7(n) log n), gde je λ7(n) funkcija koja raste nešto
brže od linearne.

Leva i desna dilacija

Za dve date tačke q, r ∈ P, P[q, r] je deo P koji se dobija kada se
od q ide ka r oko poligona u pozitivnom smeru, uključujući tačke q
i r. Neka je µ(q, r) dužina od P[q, r], a µ(P) obim od P.µ(q, r)

µ(P)

Slika 50. Levi i desni deo P
posmatrani u odnosu na tačku

q.

Za dato q ∈ P, neka je q′ tačka na P za koju je njeno mrežno
rastojanje od tačno polovina obima, to jest, µ(q, q′) = µ(q′, q) =
µ(P)/2, videti Sliku 50. Sa P+[q] označavamo P[q, q′], a sa P−[q]
označavamo P[q′, q]. Očigledno, P+[q] ∪ P−[q] = P i P+[q] ∩
P−[q] = {q, q′}.

Definicija 103. Za datu tačku q ∈ P i r ∈ P+[q], leva dilacija tačkeLeva i desna dilacija
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r preko q se definiše kao

δ+q (r) =
|pq|+µ(q, r)
|pr|

.

Sa druge strane, za r ∈ P−[q], desna dilacija tačke r preko q se
definiše kao

δ−q (r) =
|pq|+µ(r, q)
|pr|

.

Najkraća putanja od q do r leži ili cela u P+[q] ili cela u P−[q]. Ovo
nam omogućava da izrazimo dilaciju tačke r preko q koristeći levu
i desnu dilaciju tačke r preko q.

δq(r) =

¨

δ+q (r), if r ∈ P+[q]

δ−q (r), if r ∈ P−[q]
.

Definicija 104. Za datu tačku q ∈ P, leva dilacija preko q se definiše Leva i desna dilacija preko q

kao δ̃+q = maxr∈P+[q]δ
+
q (r), a desna dilacija preko q kao δ̃−q =

maxr∈P−[q]δ
−
q (r).

Sada možemo izraziti dilaciju preko q.

δ̃q =max(δ̃+q , δ̃−q ) =max
r∈P

δq(r). (1.8)

Dalje ćemo posmatrati samo levu dilaciju, obzirom na to da je
problem nalaženja desne dilacije analogan. Radi pojednostavljenja
notacije, u narednom delu izostavljamo natpis +, i smatramo da
radimo sa levom dilacijom.

Drugačiji pogled na problem

Slika 51. Parametrizacija
poligona P.

Najpre parametrizujemo tačke na P definišući P(t), t ∈ R, kao P(t)

tačku na P za koju je µ(v0, P(t))≡ t (mod µ(P)), videti Sliku 51.

Slika 52. Grafik funkcije h(t).

Rastojanje tačke od tačaka na pravi je hiperbolična funkcija. Grafik
funkcije udaljenosti h(t) := |pP(t)| je beskonačan niz hiperboličnih h(t)
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segmenata spojenih u svojim krajnjim tačkama, gde segment (kn+r)
odgovara r-toj stranici poligona P, za r ∈ {0,1, . . . , n− 1} i k ∈ Z,
videti Sliku 52.

Za svako i = kn+ r, hiperbola hi je oblika hi(t) =
q

(t −mi)2 + d2
i ,

za neke vrednosti mi i di , pa mkn+r = mr + kµ(P), dkn+r = dr , i dr
je udaljenost izmed̄u p i prave koja sadrži r-tu stranicu poligona P.
Leva krajnja tačka i-tog hiperboličnog segmenta je Ei := (ei , h(ei)),Ei , ei

gde ei = kµ(P) +µ(vr), a desni kraj je u (ei+1, h(ei+1)). Smatramo
da svaki hiperbolični segment sadrži svoju levu krajnju tačku, ali
ne i desnu. Sa H(t) Označavamo tačku na grafiku funkcije h kojaH(t)

odgovara parametru t, dakle H(t) := (t, h(t)). Grafik je periodičan
sa periodom µ(P), to jest, H(t) = H(t+kµ(P)). SaHi označavamo
i-ti hiperbolični segment.

Slika 53. Relacija izmed̄u
dilacije i nagiba.

Neka je o(t) = t − h(t), i O(t) = (o(t), 0), videti Sliku 53. Takod̄eo(t), O(t), oi(t), Oi(t)

definišemo oi(t) = t − hi(t), i Oi(t) = (oi(t), 0). Za date tačke
q ∈ P i r ∈ P+[q], imamo njihove odgovarajuće parametre tq i tr ,
takve da tq ≤ tr ≤ tq +µ(P)/2. Nlope prave koja prolazi kroz tačkeslope, s(tq, t r)

O(tq) i H(tr) je

s(tq, tr) := slope
�

`(O(tq), H(tr))
�

=
h(tr)

tr − tq + h(tq)

=
|pP(tr)|

µ(P(tq), P(tr)) + |pP(tq)|

=
1

δ+P(tq)
(P(tr))

,

(1.9)

pa je stoga nagib od O(tq) do H(tr) jednak inverzu leve dilacije
tačke r preko q.

Definicija 105. Definišemo s̃(tq) kao najmanji nagib od O(tq) dos̃(tq)

H(tr) kada tr ∈ [tq, tq +µ(P)/2].

Iz prethodnog razmatranja sledi da je ovaj nagib jednak inverzu
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leve dilacije preko q,

s̃(tq) := min
tr∈[tq ,tq+µ(P)/2]

s(tq, tr)

= min
tr∈[tq ,tq+µ(P)/2]

1
δ+P(tq)

(P(tr))

=
1

maxr∈P+[q]δ+q (r)

=
1

δ̃+q
.

(1.10)

Očigledno, s̃(t) ∈ (0, 1] jer je strogo pozitivno i s̃(t)≤ s(t, t) = 1.

Lema 106. Za svake dve razlǐcite vrednosti t1 i t2,

|h(t2)− h(t1)| ≤ |t2 − t1|.

Do sada, s̃(tq) je bilo definisano kao minimum med̄u nagibima
s(tq, tr) gde tr pripada intervalu [tq, tq + µ(P)/2]. Med̄utim, iz
Leme 106 sledi da s(tq, tr) ne može biti manje od 1 kada tr ∈
[o(tq), tq], a s̃(tq) je najviše 1, pa ovaj interval nad kojim tražimo
minimum može biti proširen i dobijamo

s̃(tq) = min
tr∈[o(tq),tq+µ(P)/2]

s(tq, tr).

Ovo proširenje intervala nam omogućava da definišemo polugu

Algoritam klizeće poluge

Poluga

Za fiksirano t, posmatrajmo duž sa nagibom s̃(t), sa jednom krajn-
jom tačkom u O(t), a drugom u (t +µ(P)/2, s̃(t)(µ(P)/2+ h(t))),
vidi Sliku 54. Nazovimo tu duž poluga za t. poluga za t

Slika 54. Poluga.
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Neka je C(t) najlevlja tačka u kojoj poluga za t dodiruje grafik,
i neka je c(t) takvo da je H(c(t)) = C(t). Tada c(t) ∈ [o(t), t +
µ(P)/2] i to je najmanja vrednost u ovom intervalu za koju je
s̃(t) = s(t, c(t)). U originalnoj postavci problema ovo znači da leva
dilacija preko P(t) dostiže svoj maksimum za P(c(t)).

Ideja algoritma klizeće poluge je da kontinualno smanjujemo param-
etar t i posmatramo šta se dešava sa polugom za t. Sledeća lema
nam govori o tome da smanjivanje parametra t odgovara “klizanju”
poluge ulevo.

Lema 107. Za t1 < t2 važi o(t1)≤ o(t2) i c(t1)≤ c(t2).

Stanja poluge

Na kontinualno kretanje poluge u levo možemo gledati kao iteraciju
kroz diskretan niz stanja. Definišemo ralzičita stanja u zavisnosti
od položaja poluge u odnosu na niz hiperboličnih segmenata.

Kada t ∈ [ei , ei+1) i c(t) ∈ [e j , e j+1), kažemo da je poluga za t u
fazi 〈i, j〉. Faza i način na koji poluga dodiruje grafik zajedno činefaza

stanje poluge. Postoje tri moguća načina da poluga dodiruje grafik.stanje poluge

• Stanje 〈i, j〉K : c(t)< t +µ(P)/2 i poluga je tangenta naH j .Stanje 〈i, j〉K

Slika 55. Stanje 〈i, j〉K

Kada se t smanjuje, poluga klizi ulevo ostajući tangenta na
h j . Nagib se smanjuje.

• Stanje 〈i, j〉Y : c(t) = t +µ(P)/2.Stanje 〈i, j〉Y

Slika 56. Stanje 〈i, j〉Y

Tačka C(t) je desni kraj poluge. To je jedina tačka gde
poluga dodiruje grafik. Kada se t smanjuje, poluga klizi
ulevo, održavajući svoju desnu krajnju tačku na h j .
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• Stanje 〈i, j〉V : c(t)< t +µ(P)/2 i poluga prolazi kroz tačku Stanje 〈i, j〉V

H(e j), koja je zajednička krajnja tačka hiperboličnih segme-
nataH j−1 iH j .

Slika 57. Stanje 〈i, j〉V

Ova situacija se dešava samo ako je m j−1 > m j. Kada se t
smanjuje, poluga klizi ulevo održavajući kontakt sa tom za-
jedničkom tačkom izmed̄u dva hiperbolična segmenta, stoga
se nagib smanjuje.

Skokovi

Prilikom smanjivanja t i klizanja poluge ulevo, dešavaju se skokovi, skok

dogad̄aji u kojima C(t) diskontinualno menja svoju poziciju pre-
bacujući se na drugi hiperbolični segment. U svakom trenutku
nam je neophodno da znamo na koji hiperbolični segment poluga
može skočiti iz trenutne pozicije. Uvek postoji najviše jedan takav
potencijalni segment.

Slika 58. Doskok za x .
jump(x) = i

Posmatrajmo neku tačku H(x) na grafiku. Neka je jump(x), doskok
za x indeks hiperboličnog segmenta koji sadrži najdešnju tačku jump(x), doskok za x

H(w) sa grafika za koju je w < x i poluprava iz H(x) kroz H(w)
samo dodiruje grafik, videti Sliku 58. To jest, jump(x) je indeks
najnižeg vidljivog hiperboličnog segmenta kada se iz tačke H(x)
gleda na levo. Ako ne postoji takvo w, jer je su segmenti sa leve
strane zaklonjeni segmentom koji sadrži H(x), postavljamo jump(x)
na indeks segmenta koji sadrži H(x).

Posmatrajmo vrednosti x u kojima se jump(x) menja. Takve
vrednosti nazivamo pozicije promene doskoka, a tačke H(x) tačke pozicije promene doskoka

promene doskoka. Postoje dve vrste tačaka promene doskoka. Tačke tačke promene doskoka

promene doskoka prvog tipa su tačke na Hk u kojima se doskok
menja sa i na j, gde je i < j < k, videti Sliku 59. Tačke promene

Slika 59. Tačke promene
doskoka prvog tipa.
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doskoka drugog tipa su tačke naHk u kojima se doskok menja sa k
na j, gde je j < k, videti Sliku 60.

Slika 60. Tačke promene
doskoka drugog tipa.

Teorema 108. Moguće je odrediti sve tačke promene doskoka
ured̄ene s leva na desno, zajedno sa doskocima svih tih tačaka u
O(n) vremenu.

Dogad̄aji

Tokom procesa smanjivanja vrednosti t, stanje poluge se menja u
odred̄enim momentima. Te dogad̄aje nazivamo dogad̄aji promene
stanja. Ako je poznata trenutna pozicija poluge, tc i trenutno stanje,dogad̄aji promene stanja

sledeći dogad̄aj se može odrediti održavanjem skupa svih potenci-
jalnih budućih dogad̄aja i uzimanjem onog dogad̄aja iz tog skupa
koji ima najveće t ne veće od tc .

Postoji više različitih tipova dogad̄aja koji se mogu dogoditi prilikom
pomeranja poluge ulevo. Za svaki umemo izračunati položaj poluge
t u kome se taj dogad̄aj dešava. To radimo tako što postavljamo i
rešavamo polinomnu jednačinu koja opisuje taj tip dogad̄aja.

Dogad̄aji promene doskoka

Ovi dogad̄aji se dešavaju kad god C(t) pred̄e preko neke tačke
promene doskoka. U tom momentu potrebno je ponovo izračunati
sve buduće dogad̄aje koje uključuju skokove. Način na koji se
računaju zavisi od tipa trenutnog stanja poluge.

Dogad̄aji promene stanja

Dajemo pregled svih mogućih tipova dogad̄aja promene stanja. Za
svaki umemo da izračunamo odgovarojuću t vrednost.

• Tipovi dogad̄aja koji vode u 〈i, j〉 oblik stanja:

〈i, j〉Y → 〈i, j〉K , 〈i, j〉K → 〈i, j〉Y , 〈i, j〉K → 〈i, j〉V

• Tipovi dogad̄aja koji vode u 〈i − 1, j〉 oblik stanja:

〈i, j〉x → 〈i − 1, j〉x , gde x ∈ {Y ,K ,V }

• Tipovi dogad̄aja koji vode u 〈i, j − 1〉 oblik stanja:

〈i, j〉Y → 〈i, j−1〉Y , 〈i, j〉V → 〈i, j−1〉Y , 〈i, j〉V → 〈i, j−1〉K



109

• Tipovi dogad̄aja koji vode u 〈i, jm〉 oblik stanja:

〈i, j〉Y → 〈i, jm〉K , 〈i, j〉K → 〈i, jm〉K , 〈i, j〉V → 〈i, jm〉K ,
〈i, j〉Y → 〈i, jm〉V , 〈i, j〉K → 〈i, jm〉V , 〈i, j〉V → 〈i, jm〉V

Niz realizovanih stanja

Želimo da efikasno nad̄emo niz stanja kroz koje poluga prolazi na
svom putovanju ulevo, zajedna sa pozicijama u kojima se premene
stanja dešavaju Neka je dobijeni niz p1,S1, p2,S2, p3, . . . , pr ,Sr ,
gde je p1 ≤ p2 ≤ . . . ≤ pr . Svako stanje Sk se dešava kada je
pozicija poluge tačno izmed̄u pk i pk+1, gde je pr+1 = p1 + µ(P).
Ovaj niz nazivamo niz realizovanih stanja. niz realizovanih stanja

Teorema 109. Možemo odrediti niz realizovanih stanja u O(n)
vremenu. Dužina dobijenog niza je O(n).

Spajanje leve i desne dilacije

Vraćamo se na originalni problem gde dilacija predstavlja kombi-
naciju leve i desne dilacije. Algoritam za dobijanje niza realizovanih
stanja pokrećemo jednom za levu i jednom za desnu dilaciju, i po-
tom ta dva niza spajamo u jedan. Ovo spajanje je moguće izvršiti u
linearnom vremenu.

Poznavanje ovog spojenog niza realizovanog stanja je dovoljno da
se u svakoj poziciji t odredi nagib leve i desne poluge, a samim tim
i leva i desna dilacija, odnosno njihov maksimum, dilacija preko
P(t).

Za svako kombinovano stanje u spojenom nizu u konstantnom
vremenu umemo da odredimo minimum, a kako kombinovanih
stanja ima samo linearno mnogo, to je ukupno vreme potrebna do
se odredi dilacija jednako O(n).
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Marko Savić je rod̄en 1982. godine u Novom Sadu, gde je završio
osnovnu i srednju školu. Za vreme školovanja postigao je brojne
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Prirodno–matematički fakultet, Univerzitet u Novom
Sadu
Mentor: dr Miloš Stojaković, redovni profesor,
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