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IZVOD

U ovoj tezi uopštavamo dobro poznate veze izmed̄u operatora zatvaranja,
sistema zatvaranja i potpunih mreža. Uvodimo posebnu vrstu parcijalnog
operatora zatvaranja, koji nazivamo oštar parcijalni operator zatvaranja,
i pokazujemo da svaki oštar parcijalni operator zatvaranja jedinstveno ko-
respondira parcijalnom sistemu zatvaranja. Dalje uvodimo posebnu vrstu
parcijalnog sistema zatvaranja, nazvan glavni parcijalni sistem zatvara-
nja, a zatim dokazujemo teoremu reprezentacije za posete u odnosu na
uvedene parcijalne operatore zatvaranja i parcijalne sisteme zatvaranja.

Dalje, s obzirom na dobro poznatu vezu izmed̄u matroida i geometrij-
skih mreža, a budući da se pojam matroida može na prirodan način
uopštiti na parcijalne matroide (definǐsući ih preko parcijalnih operatora
zatvaranja umesto preko operatora zatvaranja), definǐsemo geometrijske
ured̄ene skupove i pokazujemo da su povezani sa parcijalnim matroidima
na isti način kao što su povezani i matroidi i geometrijske mreže. Osim
toga, definǐsemo polumodularne ured̄ene skupove i pokazujemo da su
oni zaista uopštenje polumodularnih mreža i da ista veza postoji izmed̄u
polumodularnih i geometrijskih poseta kao što imamo izmed̄u polumodu-
larnih i geometrijskih mreža.

Konačno, konstatujemo da definisani pojmovi mogu biti primenjeni
na implikacione sisteme, koji imaju veliku primenu u realnom svetu,
posebno u analizi velikih podataka.

5



6 IZVOD



ABSTRACT

In this thesis we generalize the well-known connections between closure
operators, closure systems and complete lattices. We introduce a special
kind of a partial closure operator, named sharp partial closure operator,
and show that each sharp partial closure operator uniquely corresponds
to a partial closure system. We further introduce a special kind of a
partial closure system, called principal partial closure system, and then
prove the representation theorem for ordered sets with respect to the
introduced partial closure operators and partial closure systems.

Further, motivated by a well-known connection between matroids and
geometric lattices, given that the notion of matroids can be naturally
generalized to partial matroids (by defining them with respect to a partial
closure operator instead of with respect to a closure operator), we define
geometric poset, and show that there is a same kind of connection between
partial matroids and geometric posets as there is between matroids and
geometric lattices. Furthermore, we then define semimodular poset, and
show that it is indeed a generalization of semimodular lattices, and that
there is a same kind of connection between semimodular and geometric
posets as there is between semimodular and geometric lattices.

Finally, we note that the defined notions can be applied to implica-
tional systems, that have many applications in real world, particularly in
big data analysis.
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PREFACE

This thesis belongs to the scope of the order theory and treats general-
izations of closure operators and systems of sets connected with them.
Historically speaking, this area has been studied since the middle of the
20th century. Along with introduction of particular types of orders, with
study of lattices as ordered sets (R. Dedekind, R. Dilworth, G. Birkhoff,
O. Ore, E. H. Moore and others), structures satisfying some given condi-
tions and ordered by the set inclusion were also considered. Probably the
most well-known of them are Moore’s families or closure systems, which
are collections of subsets of a given set closed under intersection. They
are among the most important examples of complete lattices, which are
getting more and more importance in modern algebra.

Closure systems correspond to special closure operators (defined on
power set). As lattices and other ordered sets were becoming more and
more significant, finding their place in different branches of mathemat-
ics and applied disciplines such as, for example, computer science, there
emerged a need to study closure operators and closure systems satisfy-
ing some additional axioms, that is, having some special properties. A
significant class of such structures are, for example, geometric lattices,
which correspond to matroids as collections of sets.

Further investigation of structures ordered by the set inclusion con-
sidered structures closed not under intersection but under something else.

9



10 PREFACE

Such are, for example, centralized systems, which were studied in par-
ticular by M. Erné. In recent times, more attention is paid to complete
ordered sets (CPOs), for which an interest emerged in the domain the-
ory, information systems and in computer science in general (D. S. Scott,
G. Markowski and others).

Closure operators and closure systems, as well as their connection with
complete lattices, is a very popular research topic, which can be seen by
numerous books and articles on this topic (some of which are [3, 8, 9, 18]).
Collections of sets ordered by the set inclusion that are not lattices were
gaining importance as they were arising in various branches of math-
ematics (order theory, combinatorial geometry, computer science). The
corresponding (partial) closure operators were not introduced at the same
time; their research has begun in more recent times. In [11, 12], there is a
survey of closure systems on finite sets, their properties and properties of
the corresponding lattices. In [8], there is analyzed a lattice of a particu-
lar kind of completion of a finite ordered set. Completion of ordered sets
is also the subject of the paper [32]. A detailed research of closure systems
and similar ordered sets has been conducted by M. Erné (for example,
[21, 23]). In [28], there is studied a lattice of all Dedekind-MacNeille com-
pletions of ordered sets with fixed sup-irreducible elements. The number
of closure systems on sets of a given cardinality is studied in [34], and in
[35] the lattice of such systems is described.

In contrast to this, there are very little results on partial closure op-
erators in the literature; practically all the existing results are implicit,
that is, a byproduct of results on the corresponding collections of sets.
In [48] a definition of partial closure operators is given that is a special
case of the definition we use in this thesis (there they are defined only
on lower sets in lattices; we hereby define them on arbitrary sets). This
thesis can be considered as a continuation, or actually an extension of
[53], which was the basis of it.

The work in this thesis is organized as follows.
In Chapter 1 we present necessary definitions and well known results

that the research is built on. Section 1.5 here presents an original work.
Chapter 2 presents fully original work. The most of it is included in

the paper [50]. Here we introduce a special type of partial closure opera-
tors, called sharp, which uniquely correspond to partial closure systems.
Further, we introduce principal partial closure operators, motivated by
systems of principal ideals on a poset. We further state and prove the
representation theorem of posets with respect to sharp partial closure
operators. In the last part, we analyze exact domains of partial closure
operators and sharp partial closure operators, and give a necessary and
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sufficient condition for a collection of sets to be an exact domain.
In the first two sections of Chapter 3 we recall the definitions of ge-

ometric lattices and matroids, alternative definitions of them, and we
give a connection between them. The other three sections of this chapter
present an original work, mostly included in the paper [51]. In Section
3.3 we generalize the notion of geometric lattices to geometric posets and
in Section 3.4 we generalize matroids to partial matroids. We show that
geometric posets and partial matroids are connected in the same way as
geometric lattices and matroids. In the last section of this chapter we
introduce semimodularity for posets in such a way that the relationship
between semimodular lattices and geometric lattices is fully preserved in
these generalizations for posets.

Chapter 4 contains some applications of closure operators in implica-
tions systems. Section 4.2 here is an original work; using partial closure
operators, we generalize unit implicational systems to partial unit impli-
cational systems.

I would like to express my gratitude toward some persons without
whom this thesis would not come into existence. First of all, I thank
my parents for their unconditional support and for always being there
for me. Further, I thank my supervisor, Prof. Branimir Šešelja, and the
members of the Defend board: Prof. Andreja Tepavčević, Prof. Petar
Marković, Prof. Miloš Kurilić and Prof. Jovanka Pantović. Thankfully to
many useful comments of them, this thesis obtained the form in which it
is now.

I am very grateful to my friends and colleagues, they helped me with
going through the difficulties that came on the way to finishing this thesis,
that I could not get through all by myself; the most of all, Bojan Bašić,
who believed in me, encouraged me and who made sure I do not give up.

Novi Sad, March 2018 Anna Slivková
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CHAPTER

1

INTRODUCTION

In this chapter we introduce basic definitions and necessary theorems.
Everything but Section 1.5, is well-known, and Section 1.5 presents orig-
inal work.

1.1 Partially ordered sets

An ordered set is the pair (P,6), where 6 is a binary relation on a
nonempty set P which is reflexive, antisymmetric and transitive. Another
name for (P,6) is a partially ordered set, or poset in short. We write
only P instead of (P,6) when the meaning is clear.

We say that x is covered by y (or y covers x) if and only if x < y
and ¬(∃z)(x < z < y); in that case we write x ≺ y. If x ≺ y or x = y,
then we write x 4 y.

A subset T of P is called a chain (resp. an antichain) if every two
different elements of T are comparable (resp. incomparable).

An element a ∈ P is:
– the least (resp. the greatest), if for all x ∈ P we have a 6 x (resp.

x 6 a); such elements are unique in a poset (if they exist) and usually
are denoted by 0 and 1 respectively;

13



14 CHAPTER 1. INTRODUCTION

– minimal (resp. maximal), if for all x ∈ P , x 6 a (resp. a 6 x)
implies x = a.

For p ∈ P , we call the set

↓p = {x ∈ P | x 6 p}

the principal ideal generated by the element p.
If P is a poset and Q ⊆ P , then the set of all lower bounds of the set

Q, denoted by Qd, is defined by

Qd = {a ∈ P | a 6 b, for all b ∈ Q},

and the set of all upper bounds of the set Q, denoted by Qg, is defined
by

Qg = {a ∈ P | b 6 a, for all b ∈ Q}.

A subset D of P is directed if every finite subset of D has an upper
bound in D. A poset (P,6) is called complete if it has the least element
and if every directed subset D of P has the supremum. The complete
partially ordered set is usually abbreviated by CPO.

An element a of a CPO P is called compact if for every directed
subset D of P with a 6

W
D, there exists d ∈ D such that a 6 d.

Let (P,6) be a poset and C the set of its compact elements. Then
we say that P is algebraic if it is complete and for every x ∈ P the set
↓x ∩ C is directed and x =

W
(↓x ∩ C).

A poset (L,6) in which every pair of elements has the supremum
(infimum) is called a upper semilattice or join-semilattice (lower
semilattice or meet-semilattice). A poset (L,6) in which every pair
of elements has the supremum and the infimum is called a lattice. A
poset in which every subset has the supremum and the infimum is called
a complete lattice.

It is well known that the so-called Duality Principle holds for posets,
lattices and complete lattices, that is, if (P,6) is a poset/lattice/complete
lattice, then its dual (P,>) is also a poset/lattice/complete lattice.

Remark 1.1. Notice that the Duality Principle does not hold for CPOs:
a poset ({a, b, c},6), where a 6 b and a 6 c, while b and c are uncompa-
rable, is CPO, but its dual poset is not CPO, since it does not have the
least element.

Another well known property of lattices is the following theorem.

Theorem 1.2. A poset (P,6) in which every subset has infimum (supre-
mum) is a complete lattice.
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Proof. Since every subset has infimum, for (P,6) to be a complete lattice,
it remains to show that every subset has the supremum.

First we show that P has the greatest element. Since ∅d = P and
since every subset of P has infimum, ∅ also has it, and therefore there
exists the greatest element in P ; denote it by 1, and

V
∅ = 1. On the

other hand, P has infimum, and hence there exists the least element;
denote it by 0.

Now, let A ⊆ P . Then the set Ag contains 1, so it is not empty. Let
us show that

W
A =

V
Ag. Since

V
Ag exists, if we denote a =

V
Ag,

then, because each x ∈ A is less than or equal to all the elements in Ag,
we have a 6 x. On the other hand, if for some p ∈ P we have x 6 p for
all x ∈ A, then p ∈ Ag, hence a 6 p, therefore we have a =

W
A. �

An element a of a complete lattice L is compact if the following
holds: whenever a 6

W
A for any subset A of L, it follows that there

exists a finite subset B of A such that a 6
W
B. Since a lattice is a

special poset, it is natural to ask whether compact elements in a lattice
have any connection with compact elements in a poset. In fact, it can be
shown that if a CPO is a lattice, then compact elements in that poset
are exactly the compact elements in that lattice.

A lattice is compactly generated if each of its elements is a supre-
mum of compact elements. A lattice is algebraic if it is complete and
compactly generated.

Theorem 1.3. Let (L,6) be a poset. Then every condition follows from
the previous one:

1. L is an algebraic lattice,

2. L is a complete lattice,

3. L is a CPO.

Theorem 1.4. Let (L,6) be a poset. Then every condition follows from
the previous one:

1. L is an algebraic lattice,

2. L is an algebraic poset,

3. L is a CPO.

Relations between these types of posets are illustrated in Figure 1.
The rest of implications do not hold, which is shown by the following
three examples.
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Example 1. A poset (N,6) is not a CPO. A poset ([0, 1] ,6) is a com-
plete lattice, but it is not an algebraic poset since the only compact
element is 0. The last example is (Σ,v), where Σ is the set of all words
(finite and infinite) over the alphabet {0, 1} and v is a partial order on
Σ defined by u v v if and only if u is a prefix of v. This is clearly not
a complete lattice since it does not have the greatest element. On the
other hand, (Σ,v) is an algebraic poset: there exists the least element
(the empty word), a subset of Σ is directed if and only if it is a chain,
and every chain has the supremum in Σ, and therefore (Σ,v) is CPO;
finally, compact elements are finite words and this implies all the neces-
sary conditions to for (Σ,v) to be an algebraic poset. �

Figure 1.

Now we show a few statements that will be useful later.

Theorem 1.5 (Iwamura’s Lemma [37]). A poset is a CPO if and only
if its every chain has the supremum.

Proof. One direction is trivial, so let us assume that in a poset (P,6) ev-
ery chain has the supremum. First we show that P has the least element.
Since every chain has the supremum, the empty chain has it too; denote
0 =

W
∅. Since ∅g = P , thus the supremum 0 of ∅ is the least element of

∅g = P .
Let now C = {cξ | ξ < α} be a directed subset of P and denote with

A the set of all suprema of subsets of the set C, when supremum exists.
Of course, A is directed and C ⊆ A. We shall also fix one well-ordering
of the set A, which shall be needed later in the proof.

Using transfinite induction on |B| we shall show: every subset B of
the directed set A has an upper bound in A. In particular, we get that
A has the supremum.

If B is finite, the statement holds. Assume that for all B ⊆ A such
that |B| < κ, we have that there exists an upper bound of B in the set A.
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We need to show that the same holds for subsets of set A of cardinality
κ. Let B = {bξ | ξ < κ}. We define the following sequences of sets:

B0 := {b0} and for every η < κ,

B′η :=
[
ξ<η

Bξ and Bη := B′η ∪ {bη, gB′
η∪{bη}},

where gX denotes the upper bound of the set X in the set A that is the
smallest (with respect to the fixed well-ordering of the set A) among all
such upper bounds. All these bounds indeed exist: by construction of
these sets we have |Bξ| 6 |ξ|, so |B′η ∪ {bη}| = |B′η| = |Bη| 6 |η|2 + 2 =
|η| (there is actually another argument by transfinite induction involved
here) and η < κ (if η is finite, then the last argument does not hold,
but nevertheless again |B′η ∪ {bη}| < ℵ0 6 κ), and thus the inductive
assumption holds, that is, every B′η ∪{bη} has an upper bound in the set
A.

Therefore, the collection {Bη | η < κ} is a chain of directed sets.
Every set in this chain has an upper bound which is in it, hence it has the
supremum. These suprema {

W
Bη | η < κ} also make chain of elements

of the set A. By the assumption that every chain has the supremum,
we get that

W
η<κ (

W
Bη) is an upper bound of the set B. This upper

bound is in the set A. Indeed, all the elements of the set A can be
written as supremum of elements from C, hence

W
η<κ (

W
Bη) can also be

represented as supremum of elements from C, and therefore by definition
of the set A this supremum is in A.

Therefore, the supremum of the set A exists, it is in A and it is the
supremum of set C, which follows from the fact that every element of the
set A is a supremum of some subset of C. This completes the proof. �

Theorem 1.6. If (F ,⊆) is a collection of subsets of a set ordered by
the set inclusion, then F is closed for unions of chains if and only if it is
closed for unions of directed collections.

Proof. Since every chain is a directed set, one direction of the statement
holds.

For the other direction, let us assume that G = {Xi | i = 1, 2, . . . } is
a directed subcollection of the collection F (we prove only the countable
case, general case can be done by transfinite induction). We have to show
that

S
G ∈ F .

First we define H = {Yi | i = 1, 2, . . . } in the following way: Y1 := X1

and for all i = 2, 3, . . . let Yi be an upper bound of sets Yi−1 and Xi from
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the collection G. Such an upper bound always exists, since G is a directed
collection and Yi ⊆ Yi+1 for all i = 1, 2, . . . . Therefore, {Yi | i = 1, 2, . . . }
is a chain in G, so we have

S
H ∈ F , and because of the definition of H

we have
S
H =

S
G; the proof is thus completed. �

1.2 Closure systems

A closure system (also called Moore’s family, after E. H. Moore, who
introduced it in 1910) F on a nonempty set S is a collection of subsets
of S that is closed under arbitrary set intersections. A closure system is
algebraic (or algebraic Moore’s family) if it is closed under unions
of directed subcollections.

Theorem 1.7. A closure system ordered by the set inclusion is a com-
plete lattice.

Proof. If a closure system F on A is ordered by the set inclusion, The-
orem 1.2 gives that it is a complete lattice. Indeed: since infimum in a
poset ordered this way is the set intersection, then every nonempty sub-
family of F has the infimum, while infimum of the empty family is the
whole set A. �

A collection F of subsets of a nonempty set S is called a partial
closure system on S (also known in the literature as a centralized
system or point closure system; see, e. g., [23, 21]) if it fulfills the
following conditions:

Ps1:
S
F = S,

Ps2: for every x ∈ S we have
T
{X ∈ F | x ∈ X} ∈ F .

We say that the set
T
{X ∈ F | x ∈ X} is a centralized intersection

for x ∈ S.

Theorem 1.8. Every partially ordered set (P,6) is isomorphic to a
partial closure system on P , ordered by the set inclusion.

Proof. Let (P,6) be a poset and let

F(P ) := {↓p | p ∈ P}.

We shall show that F(P ) is a partial closure system and, ordered by the
set inclusion, it is isomorphic with P .
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It is obvious that Ps1 holds. In order to show that Ps2 holds, we
shall show that, for every x ∈ P , the intersection of all the principal
ideals on P that contain x is exactly the principal ideal on P generated
by x. Principal ideal ↓x is in the collection {↓p ∈ F(P ) | x ∈ ↓p}, since
x ∈ ↓x; therefore

T
{↓p ∈ F(P ) | x ∈ ↓p} ⊆ ↓x. On the other hand, since

x ∈ ↓p for every ↓p from the observed collection, then all the elements
y ∈ P such that y 6 x are also in ↓p by the definition of principal ideal,
and thus we have ↓x ⊆

T
{↓p ∈ F(P ) | x ∈ ↓p}. �

Partial closure system F on a nonempty set S is complete if it fulfills:

Ps3: Every chain in F has the supremum.

Theorem 1.9. Every complete partial closure system is a CPO. Con-
versely, for every CPO there exists a complete partial closure system
isomorphic with it.

Proof. If F is a complete partial closure system, then by Theorem 1.5 it
is a CPO, since it is a poset closed for suprema of chains.

On the other hand, assume that (P,6) is a CPO and F(P ) = {↓p | p ∈
P}. Obviously, (P,6) is isomorphic with (F(P ),⊆) (by Theorem 1.8).
Let us show that every chain in F(P ) has supremum. Let {↓xi | i ∈ I}
be a chain in F(P ). Then {xi | i ∈ I} is a chain in P and its supremum
is
W
i∈I xi, since

_
{↓xi | i ∈ I} = ↓

 _
i∈I

xi

!
∈ F(P ).

Therefore, Ps3 holds and the proof is complete. �

Let F be a partial closure system on a set S which fulfills the next
two conditions:

Ps′3: F is closed for unions of chains;

Ps′4: for every X ∈ F , the family

{Y ⊆ X | Y is compact element of (F ,⊆)}

is directed in (F ,⊆).

Then F is called an algebraic partial closure system on S.
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Theorem 1.10. An algebraic partial closure system ordered by the set
inclusion is an algebraic poset. Conversely, for every algebraic poset there
exists an isomorphic algebraic partial closure system ordered by the set
inclusion.

Proof. Let F be an algebraic partial closure system on S. Then, by
Theorem 1.9, F ordered by the set inclusion is a CPO. We shall show
that this CPO is an algebraic poset, too. Let K ⊆ F be the set of all
compact elements of F and let X ∈ F be chosen arbitrarily. We need
to prove that ↓X ∩ K is a directed collection and that X =

W
(↓X ∩ K),

where ↓X = {Y ∈ F | Y ⊆ X}. Note that ↓X ∩K is actually a collection
from the condition Ps′4, and from there it follows that this collection is
directed.

There exists
W

(↓X ∩ K). Indeed, since ↓X ∩ K is directed and by
Theorem 1.6 and condition Ps′3 we have

S
(↓X ∩ K) ∈ F , we conclude

that this union is also the supremum, and it belongs to the collection F .
It is obvious that

W
(↓X ∩ K) ⊆ X. Let us show that the other

inclusion holds, too. It is sufficient to show that for every x ∈ X there
exists a compact subset Zx of the set X that contains the element x.
Let x ∈ X and Zx =

T
{Y ∈ F | x ∈ Y } (by Ps2, this set is in F).

Obviously, Zx ⊆ X, hence it will be sufficient to show that the set Zx is
compact. Let D be a directed subcollection of the collection F for which
Zx ⊆

W
D. By Ps′3 and Theorem 1.6, we have

W
D =

S
D. Now from

x ∈ Zx ⊆
W
D =

S
D it follows that there exists D ∈ D such that x ∈ D.

From here, by definition of the set Zx, it follows that Zx ⊆ D ∈ D, which
was to be proved.

Let now (P,6) be an algebraic poset and let K be the set of its
compact elements. We define F = {↓p ∩K | p ∈ P} and let a mapping
f : P → F be defined by f(p) = ↓p ∩ K. We shall prove that f is an
isomorphism between (P,6) and (F ,⊆). First, f is obviously surjective.
Second, if p1 6 p2, it follows that ↓p1 ∩K ⊆ ↓p2 ∩K, and conversely, if
↓p1∩K ⊆ ↓p2∩K, then we have

W
(↓p1∩K) 6

W
(↓p2∩K), which together

with the fact that P is compactly generated gives p1 6 p2, therefore f is
an isomorphism.

Finally, we shall prove that (F ,⊆) is an algebraic partial closure sys-
tem on the set K. The condition Ps1 is trivial. Further, for every x ∈ K
we have\

{X ∈ F | x ∈ X} =
\
{↓p ∩K | p > x} = ↓x ∩K ∈ F ,

so the condition Ps2 is fulfilled. We now check Ps′3. Let {xi ∩K | i ∈ I}
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be a chain in F . We prove that

[
{↓xi ∩K | i ∈ I} = ↓

 _
i∈I

xi

!
∩K.

First, let x be an element of the union on the left-hand side. Then for
an i ∈ I we have x 6 xi and x ∈ K, and it follows x ∈ ↓

�W
i∈I xi

�
∩K.

Therefore, one inclusion holds. Now, let x 6
W
i∈I xi and x ∈ K. Since

{xi | i ∈ I} is a chain in P and therefore a directed subset, and since x
is a compact element, it follows that x 6 xi for some i ∈ I. Therefore, x
is in the union on the left-hand side. Hence, Ps′3 holds too. At last, the
condition Ps′4 holds since (P,6) is an algebraic poset and since (P,6)
and (F ,⊆) are isomorphic. This completes the proof. �

1.3 Closure operators

A closure operator on a nonempty set A is a unary operation X 7→ X
on the power set P (A), which for all X,Y ⊆ A satisfies the following
conditions:

C1: X ⊆ X;

C2: X ⊆ Y implies X ⊆ Y ;

C3: X = X.

If X ⊆ A and X = X, then X is a closed set and X is the closure of
the set X. The family of closed sets F is the range of a closure operator.

Theorem 1.11. The range of a closure operator on A is a closure system
on the same set.

Proof. Let F be the range of a given closure operator. By C1 we have A ∈
F , so it remains to show that F is closed for intersections of subcollections
of sets. Let {Xi | i ∈ I} ⊆ F . Then for all i ∈ I we have

T
{Xi | i ∈ I} ⊆

Xi, so by C2 it follows\
{Xi | i ∈ I} ⊆ Xi = Xi,

and hence we have \
{Xi | i ∈ I} ⊆

\
{Xi | i ∈ I}.
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The other inclusion holds by C1, therefore we have\
{Xi | i ∈ I} =

\
{Xi | i ∈ I},

so the intersection is the closed set. �

Theorem 1.12. If F is a closure system on a set A, then the map
X 7→ X from P(A) to P(A), such that X is mapped to the intersection
of all the elements of F that contain X, is a closure operator on the set
A.

Proof. Let F be a closure system and the map · : P(A)→ P(A) defined
by:

X =
\
{Y | Y ∈ F and X ⊆ Y }.

First, this function is well defined, because X ⊆ A, so A is in the
collection on the right-hand side, hence the intersection exists.

Let x ∈ X. Then x ∈ Y for all Y such that X ⊆ Y . Then also
x ∈

T
{Y | Y ∈ F and X ⊆ Y }, so we have the condition C1.

Now we shall show that C2 holds. Let X1 ⊆ X2. Then

{Y | Y ∈ F and X2 ⊆ Y } ⊆ {Y | Y ∈ F and X1 ⊆ Y },

which implies

X1 =
\
{Y | Y ∈ F and X1 ⊆ Y } ⊆

\
{Y | Y ∈ F and X2 ⊆ Y } = X2.

By C1, we have X ⊆ X, and by applying C2 to this inclusion we ob-
tain X ⊆ X. Since X ∈ F , then X ∈ {Y | Y ∈ F and X ⊆ Y }, and since
X =

T
{Y | Y ∈ F and X ⊆ Y }, the reverse inclusion holds. Therefore,

C3 also holds and the proof is complete. �

This correspondence among closure systems and corresponding ope-
rators is unique.

Theorem 1.13. If F is the lattice of closed sets of some closure operator,
then for each family {Xi | i ∈ I} ⊆ F we have_

{Xi | i ∈ I} =
[
{Xi | i ∈ I}.
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Proof. Since for all i ∈ I we have Xi ⊆
S
{Xi | i ∈ I}, by C2 we get

Xi = Xi ⊆
[
{Xi | i ∈ I},

and also _
{Xi | i ∈ I} ⊆

[
{Xi | i ∈ I}.

Conversely, since[
{Xi | i ∈ I} ⊆

_
{Xi | i ∈ I},

using C2 we get[
{Xi | i ∈ I} ⊆

_
{Xi | i ∈ I} =

_
{Xi | i ∈ I},

which completes the proof. �

Theorem 1.14. For every complete lattice L there exist a set and a
closure operator on it such that L is isomorphic to the range of that
closure operator.

Proof. Let (L,6) be a complete lattice. We define the following closure
operator on the set L:

X = {x ∈ L | x 6
_
X},

where X ⊆ L.
Let us show that this is indeed a closure operator. It is obvious that

C1 and C2 hold, so we prove that C3 holds.
Let a ∈ X. Therefore, a ∈ L and a 6

W
X =

W
{x ∈ L | x 6

W
X} =W

X, so we have X ⊆ X, while the other inclusion holds by C1.
Let now (F ,⊆) be the lattice where F is the range of the defined

closure operator and the map i : L → F is defined by i(x) := ↓x. For
every x, i(x) is a closed set, and since x is the supremum of this set,
we have that this map is well defined. By definition, i is surjective. By
definition of a principal ideal we have

x 6 y if and only if ↓x ⊆ ↓y,

so i is injective and both i and i−1 preserve the order. �

A closure operator X 7→ X on a set A is algebraic if it fulfills the
following:
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C4: for all X ⊆ A we have X =
S
{Y | Y ⊆ X and Y is finite}.

Theorem 1.15. Let F be a closure system on a set A. Then the family F
is a range of an algebraic closure operator if and only if F is an algebraic
closure system.

Proof. Let X 7→ X be an algebraic closure operator and let F be its
range. Further, let G = {Yi | i ∈ I} be a directed family of elements of
F , that is, for every finite subfamily of G there exists a set from G which
contains (as a subset) every set from the considered subfamily. We shall
prove that the union of all sets from G is a closed set; in other words, if
we denote G =

S
G, we shall prove G = G. By C4 we have

G =
[
{Y | Y ⊆ G and Y is finite}.

By C1 we have G ⊆ G. Now let x ∈ G. Then for some finite subset
U of G we have x ∈ U . Since U is a finite subset of G =

S
G, it follows

that U ⊆
S
G1 for some finite G1 ⊆ G. By the fact that G is directed we

have that there exists H ∈ G such that
S
G1 ⊆ H, that is, U ⊆ H ∈ G.

This implies U ⊆ H = H, and therefore x ∈
S
G = G, therefore G ⊆ G

and G = G. Hence, F is algebraic closure system.
For the other direction, let F be an algebraic closure system on the

set A and X ⊆ A. We define X =
T
{Y ∈ F | X ⊆ Y }. This is a closure

operator by the proof of Theorem 1.12. We prove that this operator is
algebraic. Let x ∈ X. Then

x ∈ {x} ⊆ {x} ⊆
[
{Y | Y ⊆ X and Y is finite},

so we have
X ⊆

[
{Y | Y ⊆ X and Y is finite}.

On the other hand, the set {Y | Y ⊆ X and Y is finite} is directed since
it contains an upper bound for every finite subfamily {Y1, . . . , Yn}: this
bound is

Sn
i=1 Yi, since

Sn
i=1 Yi is finite subset of X.

It follows from C2 that[
{Y | Y ⊆ X and Y is finite} ⊆ X.

By the fact that {Y | Y ⊆ X and Y is finite} is directed and that F is
an algebraic closure system, we have that

S
{Y | Y ⊆ X and Y is finite}

is a closed set, and therefore

X ⊆
[
{Y | Y ⊆ X and Y is finite} =

[
{Y | Y ⊆ X and Y is finite}.
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Finally,
X =

[
{Y | Y ⊆ X and Y is finite},

so the condition C4 holds, therefore this operator is algebraic. �

Theorem 1.16. Let F be an algebraic closure system on a set A, X 7→ X
a closure operator on A such that F is its range, and B ∈ F . Then B is
compact in the lattice (F ,⊆) if and only if B = Y for some finite subset
Y of the set A.

Proof. Let B ⊆ A be a compact element of the lattice (F ,⊆). Since
B ∈ F , and F is an algebraic closure system on A, we have that B is a
closed subset of A. By (C4) we have

B = B =
[
{Y | Y ⊆ B and Y is finite} =

[
{Y | Y ⊆ B and Y is finite}.

By Proposition 1.13 we have B =
W
{Y | Y ⊆ B and Y is finite}, and

since B is a compact element, it follows that there exists a natural number
m such that B = Y1 ∨ Y2 ∨ . . . Ym, where all Yi are finite. If we denote
Y = Y1∪Y2∪· · ·∪Ym, then Y is a finite subset of A and we have B = Y .

For the other direction, assume that for some Y ⊆ A such that |Y | =
n, n ∈ N, we have B = Y . We prove that B is a compact element in the
lattice (F ,⊆).

Let B ⊆
W
{Xi | i ∈ I}. By Proposition 1.13 and the condition C4,

we have_
{Xi | i ∈ I} =

[
{Xi | i ∈ I} =

[
{Z | Z ⊆

[
Xi and Z is finite}.

Therefore, for every yj ∈ Y there exists a finite set Yj ⊆
S
{Xi | i ∈ I}

such that yj ∈ Yj . Since Yj is finite, we have Yj ⊆ Xj1 ∪ Xj2 ∪ · · · ∪
Xjkj

for finitely many elements of family {Xi | i ∈ I}. It follows yj ∈
Xj1 ∪Xj2 ∪ · · · ∪Xjkj

, that is,

Y ⊆
n[
j=1

Xj1 ∪Xj2 ∪ · · · ∪Xjkj
⊆

n[
j=1

Xj1 ∪Xj2 ∪ · · · ∪Xjkj
.

Hence, we have

B = Y ⊆
n[
j=1

Xj1 ∪Xj2 ∪ · · · ∪Xjkj
=

n[
j=1

Xj1 ∪Xj2 ∪ · · · ∪Xjkj
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=
n_
j=1

(Xj1 ∨Xj2 ∨ · · · ∨Xjkj
),

so B is compact in (F ,⊆). �

Theorem 1.17. A lattice (F ,⊆), where F is the range of an algebraic
closure operator on A, is algebraic.

Proof. From Theorems 1.11 and 1.7 we know that (F ,⊆) is a complete
lattice. To show that it is algebraic, we need to prove that each of its
elements is equal to supremum of some compact elements. Let X ∈ F ,
that is, X ⊆ A and X = X. Then by C4 we have

X =
[
{Y | Y ⊆ X and Y is finite},

and by Theorem 1.16 we see that X is union of some compact elements.
Since X is closed, by Proposition 1.13 we have that it is also the supre-
mum of these compact elements, which completes the proof. �

Theorem 1.18. Every algebraic lattice (L,6) is isomorphic to the lattice
(F ,⊆), where F is the range of some algebraic closure operator.

Proof. Let K be the set of all compact elements of an algebraic lattice
L. We define the map from P(K) to P(K) such that X 7→ X, where

X = {k ∈ K | k 6
_
X}.

We prove that this map is an algebraic closure operator on the set K.
The condition C1 holds, because if x ∈ X ⊆ K, then x is compact

and x 6
W
X, hence x ∈ X.

Let X ⊆ Y . Then we have
W
X 6

W
Y , which implies X ⊆ Y , so C2

also holds.
Now we show X ⊆ X. Let x ∈ X. Therefore, x ∈ K and x 6W
X. We have

W
X =

W
X: the inequality (>) follows from C1, and the

inequality (6) follows from the fact that for all k ∈ X we have k 6
W
X.

Therefore, we have x 6
W
X, and then x ∈ X. Hence, C3 holds.

Let now x ∈ X. Then x 6
W
Y for some finite Y ⊆ X, since x is

a compact element. Also we have x ∈ Y , by definition of closure, so we
have

X ⊆
[
{Y | Y ⊆ X and Y is finite}.
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The other inclusion is obvious, so it follows that this map is an algebraic
closure operator.

Finally, we define a map ϕ from the lattice L into P(K) such that
ϕ : x 7→ {k ∈ K | k 6 x}. The image of x is a closed set, since
x =

W
{k ∈ K | k 6 x}. Hence, this function maps L into the complete

lattice of closed sets in K. If X ⊆ K is a closed set, then X = X = {k ∈
K | k 6

W
X}, so ϕ(

W
X) = X and hence the function ϕ is surjective.

Finally, x 6 y is equivalent to ↓x ∩ K ⊆ ↓y ∩ K, which is the same as
ϕ(x) ⊆ ϕ(y); therefore, the function ϕ is an isomorphism, so the proof is
complete. �

1.4 Partial closure operators

For a nonempty set S, let C : P(S)→ P(S) be a partial mapping satis-
fying:

Pc1: If C(X) is defined, then X ⊆ C(X).

Pc2: If C(X) and C(Y ) are defined, then X ⊆ Y implies C(X) ⊆ C(Y ).

Pc3: If C(X) is defined, then C(C(X)) is also defined and C(C(X)) =
C(X).

Pc4: C({x}) is defined for every x ∈ S.

As defined in [53], a partial mapping C fulfilling properties Pc1–Pc4
is a partial closure operator on S. Note that partial closure operators
are a generalization of closure operators.

As usual, if X ⊆ S and C(X) = X, then we call X a closed set. The
family of closed sets FC is called the range of a partial closure operator
C. The exact domain of a partial closure operator C on S is denoted
by Dom(C):

Dom(C) := {X | X ⊆ S and C(X) is defined}.

Let C be a partial closure operator on S. If C(X) is defined, then it
is straightforward to check that

C(X) =
\
{Y ∈ FC | X ⊆ Y } (1.1)

(note that the same property also holds for closure operators).
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Theorem 1.19. The range of a partial closure operator on a set S is a
partial closure system.

Conversely, for every partial closure system F on S, there is a partial
closure operator on S such that its range is F .

Proof. Let C be a partial closure operator on a set S. The range FC =
{X | X = C(X)} is nonempty, since S is nonempty set, so by Pc4 and
Pc3, we have C(C({x})) = C({x}).

The condition Ps1 holds since every element of the set S belongs to
a closed set, that is, x ∈ {x} ⊆ C({x}) = C(C({x})), hence

S
FC = S.

Let x ∈ S and Fx = {X ∈ FC | x ∈ X}. If X ∈ Fx, then we have
C(X) = X and x ∈ X. Therefore, {x} ⊆ X and C({x}) ⊆ C(X) =
X, and thus we have C({x}) ⊆

T
Fx. Since C({x}) ∈ Fx, it follows

C({x}) =
T
Fx. For that reason we have

T
Fx ∈ F , hence Ps2 holds,

too.
Conversely, let F be a partial closure system on S. We define a partial

closure operator C : P(S)→ P(S) as follows:

C(X) :=
\
{Y ∈ F | X ⊆ Y }

if the intersection on the right-hand side is in F ; otherwise C(X) is not
defined.

If, for some X ⊆ S, the closure C(X) is defined, then it is easy to
see that C has properties Pc1–Pc3. The property Pc4 holds because, for
x ∈ S, C({x}) is defined by Ps2. �

Theorem 1.20. Let F be a partial closure system and C a partial closure
operator on S whose range is F . Let

ÒF := {S} ∪ {X ⊆ S | X =
\
G, for G ⊆ F}.

Then ÒF is a closure system and for the corresponding closure operator ÒC
we have ÒC(X) = C(X) whenever C(X) is defined.

Proof. The family ÒF is a closure system since, by its definition, the set
S belongs to it; further, it is closed for intersection, since\

{
\
Fi | i ∈ I} =

\
(
[
{Fi | i ∈ I}).

By Theorem 1.12, for X ⊆ S we have

ÒC(X) =
\
{Y ∈ ÒF | X ⊆ Y }.
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Let C(X) be defined. Since F ⊆ ÒF , we have\
{Y ∈ ÒF | X ⊆ Y } ⊆\{Y ∈ F | X ⊆ Y },

hence ÒC(X) ⊆ C(X).
For the other direction, we need C(X) ⊆ ÒC(X), that is

C(X) ⊆
\
{Y ∈ ÒF | X ⊆ Y }.

Let Y ∈ ÒF be such that X ⊆ Y . We know that for all Y ∈ ÒF there exists
a subfamily ÜF of F such that Y =

T ÜF . Therefore, for all F ∈ ÜF we
have X ⊆ Y ⊆ F , hence C(X) ⊆ C(F ) = F , which implies

C(X) ⊆
\ ÜF = Y.

This gives ÒC(X) = C(X), which completes the proof. �

A partial closure operator C on a set S is complete if it satisfies the
following condition:

Pc5: if {Xi | i ∈ I} is a chain and C(Xi) is defined for all i ∈ I, then
C(
S
i∈I Xi) is defined, too.

Theorem 1.21. The range of a complete partial closure operator is a
complete partial closure system.

Conversely, a partial closure operator whose range is a complete par-
tial closure system is complete.

Proof. Let C be a complete partial closure operator on S, and let {Xi |
i ∈ I} be a chain of sets from the range of the operator C. The range is the
partial closure system by Theorem 1.19. By Pc5, C(

S
i∈I Xi) exists and

equals the supremum we need. Therefore, the range of C is a complete
partial closure system.

Conversely, assume that F is a complete partial closure system on S
and that C is a partial closure operator defined by

C(X) :=
\
{Y ∈ F | X ⊆ Y }.

We will prove that Pc5 holds for C.
Let {Xi | i ∈ I} be a chain of subsets that have defined closure. By

the condition Pc2, {C(Xi) | i ∈ I} is also a chain of sets. Further, by
Ps3 we have

W
{C(Xi) | i ∈ I} ∈ F , therefore

C(
_
{C(Xi) | i ∈ I}) =

_
{C(Xi) | i ∈ I}.
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Let ÒC be the map defined in Theorem 1.20. Then for i ∈ I, Xi ⊆S
{Xi | i ∈ I} implies ÒC(Xi) ⊆ ÒC(

S
{Xi | i ∈ I}). By Theorem 1.20 we

have _
{C(Xi) | i ∈ I} =

_
{ÒC(Xi) | i ∈ I} (1.2)

and also _
{ÒC(Xi) | i ∈ I} ⊆ ÒC(

[
{Xi | i ∈ I}). (1.3)

We have ÒC(
[
{Xi | i ∈ I}) =

\
{Y ∈ ÒF |[Xi ⊆ Y }. (1.4)

Since Xi ⊆ C(Xi) for all i ∈ I, we have[
{Xi | i ∈ I} ⊆

_
{C(Xi) | i ∈ I}.

By Ps3, the supremum on the right-hand side is in F , and F ⊆ ÒF ,
which means that this is one of the sets Y in (1.4), and hence

ÒC(
[
{Xi | i ∈ I}) ⊆

_
{C(Xi) | i ∈ I}. (1.5)

Therefore, by (1.2), (1.3) and (1.5) we obtain

ÒC(
[
{Xi | i ∈ I}) =

_
{C(Xi) | i ∈ I}.

Since
W
{C(Xi) | i ∈ I} ∈ F , it follows that ÒC(

S
{Xi | i ∈ I}) ∈ F , hence

ÒC(
[
{Xi | i ∈ I}) = C(

[
{Xi | i ∈ I}).

Therefore, we have shown that C(
S
{Xi | i ∈ I}) is defined, that is, Pc5

holds. �

The next corollary follows directly from Theorem 1.9 and Theorem
1.21.

Corollary 1.22. The range of a complete partial closure operator or-
dered by the set inclusion is a CPO, and vice versa, every CPO is iso-
morphic to the range of a complete partial closure operator.

A complete partial closure operator C on a set S is algebraic if it
fulfills:

Pc6: if C(X) is defined, then the set

{C(Y ) | Y ⊆ X, C(Y ) is defined and Y is finite} (1.6)
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is directed and

C(X) =
[
{C(Y ) | Y ⊆ X, C(Y ) is defined and Y is finite}.

(1.7)

Theorem 1.23. If C is an algebraic partial closure operator, then its
range is closed for unions of chains.

Proof. Let C be an algebraic partial closure operator on a set S and let
{Xi | i ∈ I} be a chain of sets from the range of C. By Pc5, C(

S
Xi)

exists, and if we denote
S
{Xi | i ∈ I} by Z, then by Pc6 we have

C(Z) =
[
{C(Y ) | Y ⊆ Z, C(Y ) is defined and Y is finite}.

We prove that C(Z) = Z. The inclusion Z ⊆ C(Z) is trivial. On
the other hand, let x ∈ C(Z). Then for some finite subset Y of the set
Z we have x ∈ C(Y ). Since Y is finite, it follows that Y ⊆

S
i∈J Xi,

where J ⊆ I is finite. Since {Xi | i ∈ I} is a chain, there exists k ∈ I
such that Y ⊆ Xk, so we have x ∈ C(Y ) ⊆ C(Xk) = Xk, and hence
x ∈

S
i∈I Xi = Z. Therefore, C(Z) = Z. �

Theorem 1.24. The range of an algebraic closure operator ordered by
the set inclusion is an algebraic poset.

Proof. Let C be an algebraic partial closure operator on a set S and let F
be the range of C. Then, by Corollary 1.22, F is a CPO, and by Theorem
1.23 and Theorem 1.6, this poset is closed for unions of directed families.
We need to prove that compact elements in F are exactly those sets Z
for which there exists finite Y such that Z = C(Y ).

First assume that Z ∈ F and Z = C(Y ) for a finite set Y . Let
G be a directed collection from F such that Z ⊆

S
G. Now we have

Y ⊆ C(Y ) ⊆
S
G. Since Y is finite, there exists a finite subcollection

G1 ⊆ G such that Y ⊆
S
G1. Since G is directed, we have that there

exists a set T ∈ G such that
S
G1 ⊆ T , and hence Y ⊆ T . This implies

that C(Y ) ⊆ C(T ) = T and Z is a compact element in F .
Now assume that Z ∈ F is compact. By Pc6, the collection

{C(Y ) | Y ⊆ Z, C(Y ) is defined and Y is finite}

is directed and

Z = C(Z) =
[
{C(Y ) | Y ⊆ Z, C(Y ) is defined and Y is finite}.
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Because of the fact that Z is compact and below (or equal to) a union
of a directed set, it follows that Z is below some member of that union,
that is, there exists a finite set Y such that C(Y ) = Z.

Therefore, by Pc6, F is an algebraic poset. �

Theorem 1.25. For every algebraic poset S there exists an algebraic
partial closure operator whose range is isomorphic with the poset S.

Proof. Let S be an algebraic poset and K the set of all compact elements
in P . We define a partial closure operator by: if X is a directed subset
of K, then

C(X) := ↓(
_
X) ∩K,

otherwise C(X) is not defined.
Let x ∈ X ⊆ K. It is obvious that x 6

W
X, so we have x ∈

↓(
W
X) ∩K, hence Pc1 holds.

Now, let X and Y be directed subsets of K such that X ⊆ Y , and
let x ∈ C(X). It follows that x ∈ K and x 6

W
X 6

W
Y , hence

C(X) ⊆ C(Y ), therefore Pc2 holds.
To prove Pc3, let X be a directed subset of K. By Pc1 we have

C(X) ⊆ C(C(X)). If x ∈ C(C(X)), then x ∈ K i x 6
W
C(X) =W

(↓(
W
X) ∩ K) 6

W
(↓(
W
X)) =

W
X, hence C(C(X)) ⊆ C(X), and

therefore C(C(X)) = C(X).
The condition Pc4 holds, because for every x ∈ K the singleton {x}

is directed, therefore C({x}) is defined.
Let {Xi | i ∈ I} be a chain of directed sets. Then

S
Xi is directed, too,

and since C is defined for every element of the chain (they are directed),
we have that C(

S
Xi) is also defined, hence Pc5 holds.

Now let X be a directed subset of K. To show Pc6, we first show that

Y = {C(Y ) | Y ⊆ X, C(Y ) is defined and Y is finite}

is a directed family of sets. Let C(Y1) and C(Y2) be in this family. Then
Y1 and Y2 are finite directed sets of compact elements. Denote by y1

and y2 suprema of these two sets, respectively. Since Yi is finite, yi is
compact for i = 1, 2. Therefore, since X is directed and yi 6

W
X,

there exists xi ∈ X such that yi 6 xi, for i = 1, 2. Further, there exists
x ∈ X such that x1, x2 6 x. Now, for i = 1, 2 we have ↓yi 6 ↓x, so
C(Yi) ⊆ ↓x ∩K = C({x}). That means that Y is directed family.

Second, obviously we have

C(X) ⊇
[
{C(Y ) | Y ⊆ X, C(Y ) is defined and Y is finite},
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so let x ∈ C(X) and x is a compact element in S. Then x ∈ K and
x 6

W
X, and since X is directed, there exists d ∈ X such that x 6 d.

Now it follows that x ∈ C({d}). Hence we have the reverse inclusion too;
therefore, Pc6 holds.

At last, define a map f : S → FC by

f(a) := ↓a ∩K.

The map f is surjective, since for every set X ∈ FC we have X =
↓(
W
X) ∩ K, and therefore f(

W
X) = X. Lastly, let a1 6 a2, then

↓a1 ∩ K ⊆ ↓a2 ∩ K. Conversely, if ↓a1 ∩ K ⊆ ↓a2 ∩ K, then we haveW
(↓a1 ∩K) 6

W
(↓a2 ∩K), and since S is compactly generated, we have

a1 6 a2. Therefore, f is an isomorphism between S and the range of C. �

1.5 Generating closure operators from par-
tial closure operators

In this section we show how to extend a partial closure operator to a clo-
sure operator (that is, how to define closure of sets with undefined closure
in such a way that the resulting operator is a closure operator). This is
always possible, and, in general, such a closure operator is not uniquely
determined. However, we shall show that, among all such closure oper-
ators that correspond to a given partial closure operator C on a set S,
there are two, say C	 and C⊕, that can be considered the “smallest” and
the “largest” one, in the following sense: if K is any closure operator on
S such that K(X) = C(X) whenever C(X) is defined, then for each X
we have C	(X) ⊆ K(X) ⊆ C⊕(X).

Let C be a partial closure operator on a set S. We first define C⊕ :
P(S)→ P(S) in the following way:

C⊕(X) =
\
{C(X ′) | X ′ ⊇ X and C(X ′) is defined}.

(Note: if the family at the right-hand side is empty, then, since everything
is considered on the set S, we then have C⊕(X) =

T
∅ = S.)

Theorem 1.26. For a partial closure operator C on a set S, the operator
C⊕ is a closure operator on S, and C⊕(X) = C(X) for each X such that
C(X) is defined.

Proof. We first show that C⊕ is a closure operator.
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C1: Follows directly by definition.

C2: Let X ⊆ Y . The family at the right-hand side for C⊕(Y ) is clearly
a subfamily of the family at the left-hand side for C⊕(X); therefore,
C⊕(X) ⊆ C⊕(Y ).

C3: Let X be given. In order to prove C⊕(C⊕(X)) = C⊕(X), it is
enough to show that, if X ′ ⊇ X and C(X ′) is defined, then C(X ′) ⊇
C⊕(X) (the equality C⊕(C⊕(X)) = C⊕(X) then follows by the
definition of C⊕, since the corresponding right-hand sides families
are equal). However, if X ′ is such a set, then C⊕(X) ⊆ C(X ′)
immediately follows by the definition of C⊕(X). This completes
the argument.

Finally, we note that, if C(X) is defined, then for each X ′, X ′ ⊇ X,
such that C(X ′) is defined, we have C(X ′) ⊇ C(X). Therefore, C⊕(X) =
C(X), which completes the proof. �

We now show the “maximality” of C⊕.

Theorem 1.27. Let C be a partial closure operator on a set S, and let
K be any closure operator on S such that K(X) = C(X) whenever C(X)
is defined. Then for each X we have K(X) ⊆ C⊕(X).

Proof. For each X ′ such that X ′ ⊇ X and C(X ′) is defined, we have
K(X) ⊆ K(X ′) = C(X ′); therefore, since K(X) is a subset of each such
C(X ′), we have K(X) ⊆ C⊕(X). �

We now turn to the announced “smallest” closure operator. If C is a
partial closure operator on a set S, we first define D′C : P(S)→ P(S) in
the following way:

D′C(X) :=
[
{C(X ′) | X ′ ⊆ X and C(X ′) is defined}.

Now, let
D

(0)
C (X) := X,

and, for an ordinal α,

D
(α+1)
C (X) := D′C(D(α)

C (X));

D
(α)
C (X) :=

[
ξ<α

D
(ξ)
C (X), if α is a limit ordinal.
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Finally, we define
C	(X) :=

[
α∈ON

D
(α)
C (X).

Note, since, clearly, D(α)
C (X) is always a subset of S, we have that C	(X)

is indeed a set (not a proper class), in fact, a subset of S.

Theorem 1.28. For a partial closure operator C on a set S, the operator
C	 is a closure operator on S, and C	(X) = C(X) for each X such that
C(X) is defined.

Proof. We first show that C	 is a closure operator.

C1: Let a set X, X ⊆ S, be given. For any x ∈ X, by Pc4 we have
that C({x}) is defined, and by Pc1 we have x ∈ C({x}). Therefore,
x ∈ C({x}) ⊆ D′C(X) ⊆ C	(X). This proves X ⊆ C	(X).

C2: Let X ⊆ Y . Then clearly D′C(X) ⊆ D′C(Y ), which implies that for
all α we have D(α)

C (X) ⊆ D(α)
C (Y ), and therefore C	(X) ⊆ C	(Y ).

C3: Let X be given. Note that, since X ⊆ D′C(X), we have D(α)
C (X) ⊆

D
(β)
C (X) whenever α < β. Also, if D(α)

C (X) = D
(α+1)
C (X) for some

α, then D
(α)
C (X) = D

(β)
C (X) whenever α < β.

Since each D(α)
C (X) is a subset of S, we conclude that there can be

at most |S| different sets among {D(α)
C (X) : α ∈ ON}. Altogether,

we conclude that there is an ordinal α such that C	(X) = D
(α)
C (X);

in fact, we may say C	(X) = D
(|S|+)
C (X) (where ·+ denotes the

successor cardinal). Now we have

D′(C	(X))=D′(D(|S|+)
C (X))=D(|S|++1)

C (X)=D(|S|+)
C (X)=C	(X).

From this we obtain C	(C	(X)) = C	(X), which was to be
proved.

Finally, we note that, if C(X) is defined, then for each X ′, X ′ ⊆ X,
such that C(X ′) is defined, we have C(X ′) ⊆ C(X). Therefore, D′C(X) =
C(X), which implies C	(X) = C(X). This completes the proof. �

We now show the “minimality” of C	(X).

Theorem 1.29. Let C be a partial closure operator on a set S, and let
K be any closure operator on S such that K(X) = C(X) whenever C(X)
is defined. Then for each X we have C	(X) ⊆ K(X).
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Proof. We shall prove the following: if X ⊆ K(Y ), then D′C(X) ⊆ K(Y ).
This is enough to finish the proof: indeed, in that case we clearly have
D

(α)
C (X) ⊆ K(Y ) for each α (by repeatedly applying the same claim),

and thus C	(X) ⊆ K(Y ); the proof then follows by taking X = Y .
Therefore, let us prove the claim. Let X ⊆ K(Y ). For any X ′ ⊆ X

such that C(X ′) is defined we have C(X ′) = K(X ′). Therefore, since
X ′ ⊆ X ⊆ K(Y ), we have K(X ′) ⊆ K(K(Y )) = K(Y ), that is,
C(X ′) ⊆ K(Y ). From this we obtain D′C(X) ⊆ K(Y ), which was to
be proved. �

1.6 Summary

Figure 2.

Connections between posets, closure systems and closure operators
established in this section are shown in diagram in Figure 2.



CHAPTER

2

POSETS AND PARTIAL
CLOSURE OPERATORS

A closure system is a complete lattice under inclusion, and as a converse,
the collection of principal ideals of a lattice is a closure system, which
is, when equipped by inclusion, order isomorphic with the lattice itself.
Still, the closure system of principal ideals is not the only closure system
isomorphic to a given lattice.

Our aim in this section is to establish a particular relationship among
collections of sets, operators and posets. This relationship should be ana-
logous (as much as possible) to the one among closure operators, closure
systems and complete lattices. Still, our present approach brings some
new requirements, which enable essential improvements of the mentioned
relationship.

This chapter presents fully original work, mostly from the paper [50].

37
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2.1 Sharpness

We say that a partial closure operator C on S is sharp, if it satisfies the
condition:

Pc7: Let B ⊆ S. If
T
{X ∈ FC | B ⊆ X} ∈ FC , then C(B) is defined

and
C(B) =

\
{X ∈ FC | B ⊆ X}. (sharpness) (2.1)

We also say that a partial operator on S, fulfilling properties Pc1–Pc4,
Pc7 is an SPCO on S.

Remark 2.1. In Pc7 if C is monotone then (2.1) folows given that C(B)
is defined.

Notice that if in Pc7 there does not exist a set X ∈ FC such that B ⊆
X, then straightforwardly C(B) is not defined (because of B ⊆ C(B)).

Observe also that a closure operator C on S (i.e., an operator which is
a function) trivially fulfils condition Pc7, which reduces to the condition
(1.1).

Remark 2.2. By (1.1) the converse implication in the condition Pc7 is
always valid.

We note that the condition Pc7 can not be derived from the conditions
Pc1–Pc4, as shown by the following example.

Example 2. Let C be a partial mapping defined on {a, b, c} with

C :
�
{a} {b} {c} {a, b, c}
{a} {b} {a, b, c} {a, b, c}

�
.

It is straightforward to check that C satisfies conditions Pc1–Pc4, but
the property Pc7 does not hold because C({a, b}) is not defined. �

From the same example, it follows that Pc7 can neither be derived
from the above conditions, to which Pc5 and Pc6 are added.

Further, neither of the conditions Pc5 and Pc6 can be derived from
Pc1–Pc4 and Pc7, as shown by the following example.

Example 3. Let C be a partial mapping defined on N by

C(X) =
§
X, if X is a finite subset of N;
E1, if X is an infinite subset of E1;
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where E is the set of all even natural numbers and E1 = E ∪{1}. This is
a sharp partial closure operator, but it is not complete. Indeed, consider
the family {Xi | i ∈ N}, where Xi = {1, 2, . . . , i}. This family is a chain
and C(Xi) is defined for every i ∈ N, but C(

S
i∈N Xi) = C(N) is not

defined.
The constructed example does not satisfy Pc6 either. Indeed, C(E) =

E1, but there does not exist a finite subset of even numbers that contains
1, hence we cannot represent C(E) as the union of closures of all finite
subsets of E. �

The following is a refinement of a theorem from [53].

Theorem 2.3. The range of a partial closure operator on a set S is a
partial closure system.

Conversely, for every partial closure system F on S, there is a unique
sharp partial closure operator on S such that its range is F .

Proof. The first part of this theorem is in Theorem 1.19, so we prove only
the other direction. Let F be a partial closure system on a set S. We
define the partial mapping C : P(S)→ P(S) as follows:

C(X) :=
\
{Y ∈ F | X ⊆ Y }

if the intersection on the right-hand side is in F , otherwise C(X) is not
defined.

This partial mapping C is defined in the same way as in proof of
Theorem 1.19, so we know that it is partial closure operator. Now we
show that C is sharp, i.e., that also Pc7 holds. Let B ⊆ S and assume
that \

{X ∈ FC | B ⊆ X} ∈ FC .

Then, by the definition of C, this partial operator fulfills Pc7 and the
range of C is F . It remains to show that the SPCO defined in this
way is the unique partial mapping with the range F satisfying properties
Pc1–Pc4 and Pc7. Assume that there exists another partial mapping
K : P(S)→ P(S) satisfying mentioned conditions and that the range of
K is also F . Since FC = FK = F , by Pc7 and Remarks 2.1 and 2.2 we
get that C(X) is defined, and then equals

T
{Y ∈ F | X ⊆ Y }, if and

only if this set is in F , and the same holds for K(X). Therefore C(X) is
defined if and only if K(X) is defined, and in that case C(X) = K(X),
which was to be proved. �
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Example 4. Let Cs be a partial mapping defined on {a, b, c} with

Cs :
�
{a} {b} {c} {a, b} {a, c} {b, c} {a, b, c}
{a} {b} {a, b, c} {a, b, c} {a, b, c} {a, b, c} {a, b, c}

�
.

This partial mapping is an SPCO on the set {a, b, c}. Note that the range
FCs here is equal to the range FC of the partial closure operator from
Example 2. This implies that there is no 1-1 correspondence between par-
tial closure operators and partial closure systems. However, as proven in
Theorem 2.3, there is a bijective correspondence between SPCO’s and
partial closure systems. �

By the above, it is clear that for a given partial closure system F on
S, there is a collection of partial closure operators on S whose range is
F , among which, by Theorem 2.3, precisely one is sharp. In addition,
the latter is maximal in the following sense.

Proposition 2.4. Let F be a partial closure system on S. The sharp
partial closure operator has the greatest exact domain among all partial
closure operators whose range is F . In addition, if D is a partial closure
operator and C the sharp closure operator with the same domain, then
C(A) = D(A), for all A ⊆ S for which D is defined.

Proof. Let D be an arbitrary partial closure operator whose range is F ,
and let C be the sharp one with the same range F . Now, if A ⊆ S and
D(A) is defined, i.e., A ∈ Dom(D), then C(D(A)) = D(A), since the
ranges of C and D coincide by assumption.

We have that

D(A) =
\
{X ∈ F | A ⊆ X} ∈ F .

By the Pc7, it directly follows that C(A) is defined and C(A) =T
{X ∈ F | A ⊆ X}. Hence, C(A) = D(A). �

The sharp partial closure operator is a natural generalization of the
closure operator, as follows.

Theorem 2.5. If the range F of a sharp partial closure operator C on
a set S forms a complete lattice with respect to set inclusion, then C is
a function. Conversely, if C is a closure operator on S, then it is sharp.

Proof. Let X ⊆ S. We have X ⊆
S
{C({x}) | x ∈ X}, and since the

range F is a complete lattice, the supremum of the collection {C({x}) |
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x ∈ X} exists and contains its union, which implies that
W
{C({x}) | x ∈

X} ∈ F . If X ⊆ Y for a set Y such that Y ⊆ F , then
W
{C({x}) | x ∈

X} ⊆ Y . Indeed, for every x ∈ X, C({x}) ⊆ Y . Hence,
T
{Y ∈ F | X ⊆

Y } =
W
{C({x}) | x ∈ X}. By Pc7 we have that C(X) is defined, so C

is a function and C(X) =
W
{C({x}) | x ∈ X}.

Suppose now that C is a closure operator. Then its range forms a
complete lattice with respect to a set inclusion (this is consequence of
Corollary 1.7). Let B ⊆ S. The closure C(B) is defined because C is a
function, and it satisfies Pc7 by Theorem 1.11. �

As shown in paper [53], a completion of a partial closure system to
a closure system is equivalent to Dedekind MacNeille completion. Here
we present a completion of any nonempty collection of subsets of S to
a partial closure system. Clearly, by adding all singletons of S, we get
a partial closure system, but then the existing centralized intersections
may not be preserved. Therefore, we introduce another completion, as
follows.

For an arbitrary nonempty collection F of subsets of a set S, we define
an extension ÒF ⊆ P(S) as follows:

ÒF := F ∪ {
\
x∈Y

Y ∈ F | x ∈ S}.

Example 5. Let
S = {a, b, c, d, e, f, g} and
F = {{b}, {c}, {e}, {a, b, c}, {b, c, d, e, f}, {e, f, g}}.
Then ÒF = F ∪ {{e, f}}. �

The following is a straightforward consequence of the definition of ÒF .

Proposition 2.6. For an arbitrary nonempty collection F of a set S,
the extension ÒF is a partial closure system on S which preserves all
intersections and centralized intersections existing in F .

Recall that the collection of all principal ideals of a complete lattice L
is a closure system which is, when ordered by inclusion, order isomorphic
with L under the mapping i(x) = ↓x, x ∈ L. In addition, this closure
system consists of closed sets under the corresponding closure operator.

However, it is clear that not every closure system is a collection of all
principal ideals of a complete lattice L.

The analogous statement is true for posets and related partial closure
operators and partial closure systems.
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In the following we introduce a special type of partial closure systems
which are isomorphic to collections of all principal ideals in posets.

We say that a partial closure system F on a nonempty set S is prin-
cipal if

Ps5: ∅ /∈ F and for every X ∈ F we have���X \[{Y ∈ F | Y ( X}
��� = 1. (2.2)

Our main motivation for the above definition, as already mentioned, are
principal ideals in a poset.

Proposition 2.7. Let (S,6) be a poset. Then the family {↓x | x ∈ S}
of principal ideals is a principal partial closure system.

Proof. It is easy to see that F = {↓x | x ∈ S} is a partial closure
system and that ∅ /∈ F . Let us show that for every ↓x ∈ F we have
|↓x \

S
{↓y ∈ F | ↓y ( ↓x}| = 1.

Obviously, x ∈ ↓x \
S
{↓y ∈ F | ↓y ( ↓x}. Suppose that there is

element an z 6= x such that z ∈ ↓x \
S
{↓y ∈ F | ↓y ( ↓x}. It follows

that z < x, therefore ↓z ∈ {↓y ∈ F | ↓y ( ↓x}, which is a contradiction
with z /∈

S
{↓y ∈ F | ↓y ( ↓x}. �

Let F be a principal partial closure system on a set S. In order to
prove the opposite connection of principal partial closure systems and
principal ideals in a poset, we introduce a mapping:

G : F → S defined by

G(X) = x, where x ∈ X \
[
{Y ∈ F | Y ( X}. (2.3)

The mapping is well defined by the definition of the principal partial
closure system.

Proposition 2.8. If F is a principal partial closure system on a set S
then the mapping G : F → S defined by (2.3) is a bijection.

Proof. First, let X1, X2 ∈ F such that G(X1) = G(X2). Therefore,
there exists x ∈ S such that {x} = X1 \

S
{Y ∈ F | Y ( X1} =

X2 \
S
{Y ∈ F | Y ( X2}. Since F is a partial closure operator, a set

T =
T
{Z ∈ F | x ∈ Z} is in F . Hence, T ⊆ X1 ∩X2. Since x ∈ T , we

have that T /∈ {Y ∈ F | Y ( X1}. By T ⊆ X1 ∩X2 ⊆ X1, it follows that
T = X1. Similarly, we have T = X2 and then X1 = X2, which implies
that the mapping G is injective.

Now, let x ∈ S and denote Xx =
T
{X ∈ F | x ∈ X}. Since F

is a partial closure system, we have Xx ∈ F , and we shall show that
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G(Xx) = x. We have x ∈ Xx and x /∈
S
{Y ∈ F | Y ( Xx} because Xx

is the smallest set (with respect to set inclusion) in F that contains x.
Since |Xx \

S
{Y ∈ F | Y ( Xx}| = 1, it follows that {x} = Xx \

S
{Y ∈

F | Y ( Xx}. Hence G is also a surjective mapping. �

Using the introduced bijection G, an order on S can be naturally
induced by the set inclusion in a principal partial closure system F on S,
as follows: for all x, y ∈ S,

x 6 y if and only if G−1(x) ⊆ G−1(y). (2.4)

It is straightforward to check that 6 is an order on S. Therefore, as a
consequence of Proposition 2.8, we get the following.

Corollary 2.9. Let F be a principal partial closure system on a set S,
and 6 the order on S, defined by (2.4). Then, the function G defined
by (2.3) is an order isomorphism from (F ,⊆) to (S,6). In addition, the
collection of principal ideals in (S,6) is F .

Proof. The function G is a bijection by Proposition 2.8, which is, by the
definition of 6 on S, compatible with the corresponding orders. In other
words, if X,Y ∈ F , we have that X ⊆ Y if and only if G(X) 6 G(Y ). To
prove that subsets in F are principal ideals, for x ∈ S, we use the deno-
tation from Proposition 2.8, G−1(x) = Xx. We will prove that ↓x = Xx.
If y 6 x, then G−1(y) ⊆ G−1(x) and since y ∈ G−1(y), we have that
y ∈ G−1(x). On the other hand, suppose that y ∈ Xx. Then, Xy ⊆ Xx

and hence, y 6 x. Since G is a bijection, all the elements from F are in
the form Xx for x ∈ X, so all of them coincides with the principal ideals
of (S,6). �

We can also start from a poset, and via principal ideals we get a
partial closure system, which induces the starting order, as follows.

Corollary 2.10. Let (S,6) be a poset and F a partial closure system
consisting of its principal ideals. Then, the order on S defined by (2.4)
coincides with 6 .

Proof. By Proposition 2.7, principal ideals make a principal partial clo-
sure system. The function G defined by (2.3) associates to every principal
ideal its generator, and by (2.4), inclusion among principal ideals induces
the existing order 6 from the poset. �

Finally, we introduce a partial closure operator which corresponds to
a principal partial closure system.
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A partial closure operator C on S is principal if it satisfies

Pc8: If X = C(X), then there exists unique x ∈ X such that

x /∈
S
{Y ∈ FC | Y ( X}.

It is easy to see that the axioms Pc7 and Pc8 are independent.
A connection among these notions can be explained as follows.
The range of a principal partial closure operator is a principal partial

closure system and the sharp partial closure operator obtained from a
principal partial closure system, as defined in Theorem 2.3, is principal.

Obviously, the empty set can not be closed under a principal partial
closure operator. As an additional property, we prove that the range of
a principal partial closure operator consists of closures of singletons.

Proposition 2.11. Let C be a principal partial closure operator on S.
If X ∈ FC , then there exists x ∈ X such that C({x}) = X.

Proof. If X is a closed set, then by Pc8 there exists a unique x ∈ X such
that x /∈

S
{Y ∈ FC | Y ( X}. From x ∈ C({x}) ⊆ C(X) = X it follows

that C({x}) = X. �

The following is a Representation theorem of posets by SPCO’s and
by the corresponding partial closure systems.

Theorem 2.12. Let (S,6) be a poset. The partial mapping C on P(S)
defined by

C(X) = ↓(
_
X), if there exists

_
X,

otherwise not defined, is a principal SPCO. The corresponding partial
closure system is principal and it is isomorphic with S.

Proof. It is straightforward to check that C is a partial closure operator.
In order to prove that it is sharp, suppose that B ⊆ S and that\

{X ∈ FC | B ⊆ X} ∈ FC .

Then, there is a set Z ⊆ S, such that
T
{X ∈ FC | B ⊆ X} = ↓(

W
Z).

Consequently, for every b ∈ B, b ≤
W
Z. Suppose there is another upper

bound of B, say x. Then B ⊆ ↓x and C(↓x) = ↓x. Hence, ↓(
W
Z) ⊆ ↓x

and
W
Z 6 x. Therefore, C(B) = ↓(

W
Z) = C(Z).

It is easy to see that C is principal by the definition.
Closed elements are principal ideals of S, hence the corresponding

partial closure system is isomorphic with S. �
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2.2 Partial closure domains

So far we have analyzed a lot ranges of (partial) closure operators, but
not much has been said about exact domains of partial closure operators
(that is, collections of sets whose closure is defined). In this section, given
a set S, we aim to characterize subsets of P(S) that can be exact domains
of partial closure operators on S. It turns out that this question is fairly
trivial when no limit is imposed on a type of considered partial closure
operators, but if we consider only sharp partial closure operators, there
is a nontrivial and (arguably) quite elegant characterization.

For a collection B of subsets of a nonempty set S, consider the fol-
lowing condition:

B1: for every x ∈ S we have {x} ∈ B.

Theorem 2.13. For a partial closure operator C on a set S, the collection
Dom(C) fulfills the condition B1.

Conversely, if B is any collection of subsets of S that fulfills the con-
dition B1, then there exists a partial closure operator C on S such that
Dom(C) = B.

Proof. If C is a partial closure operator, then B1 holds for Dom(C)
directly by Pc4.

Conversely, if B is a collection of subsets of S that fulfills the condition
B1, we may define C : P(S) → P(S) by C(X) = X whenever X ∈ B,
and C(X) is undefined otherwise. It is clear that C is indeed a partial
closure operator on S. �

Let us now consider the following condition:

B2: for every X ⊆ S, we have:

if
\
{B ∈ B | X ⊆ B} ∈ B, then X ∈ B.

It turns out that condition B1 and B2 together precisely characterize
exact domains of sharp partial closure operators. In other words, we have
the following theorem.

Theorem 2.14. For a sharp partial closure operator C on a set S, the
collection Dom(C) fulfills the conditions B1 and B2.

Conversely, if B is any collection of subsets of S that fulfills the con-
ditions B1 and B2, then there exists a sharp partial closure operator C
on S such that Dom(C) = B.
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Proof. Let C be a sharp partial closure operator on S and let B =
Dom(C). We need to show that B satisfies B1 and B2.

B1: Since C({x}) is defined for every x ∈ S, the condition B1 holds.

B2: Let X ⊆ S and
T
{B ∈ B | X ⊆ B} ∈ B. To show that X ∈ B, we

need to show that C(X) is defined.

Denote
M =

\
{B ∈ B | X ⊆ B}.

By the assumption, we have M ∈ B, and thus C(M) is defined. We
shall show that

C(M) =
\
{F ∈ FC | X ⊆ F}.

(⊆) : If X ⊆ F ∈ FC , then F ∈ B, so M ⊆ F and hence C(M) ⊆
C(F ) = F . Therefore, C(M) ⊆

T
{F ∈ FC | X ⊆ F}.

(⊇) : Since X ⊆ M ⊆ C(M) and C(M) ∈ FC , we have C(M) ∈
{F ∈ FC | X ⊆ F}. This immediately gives C(M) ⊇

T
{F ∈ FC |

X ⊆ F}.
The shown equality gives

T
{F ∈ FC | X ⊆ F} ∈ FC . Now, since

C is sharp, by Pc7 we get that C(X) is defined and C(X) =
T
{F ∈

FC | X ⊆ F}; therefore, X ∈ B.

We have thus shown that Dom(C) indeed satisfies both B1 and B2.
Conversely, if B is a collection of subsets of S that fulfills the con-

ditions B1 and B2, we may define C : P(S) → P(S) by C(X) = X
whenever X ∈ B, and C(X) is undefined otherwise. It is clear that C is
indeed a partial closure operator on S. We need to show that it is sharp.
Assume that X ⊆ S and

T
{F ∈ FC | X ⊆ F} ∈ FC . Since, by the

definition of C, we have FC = B, the previous relation is equivalent toT
{F ∈ B | X ⊆ F} ∈ B. By B2 we get X ∈ B, which implies that C(X)

is defined and in fact C(X) =
T
{F ∈ FC | X ⊆ F}. This completes the

proof. �

2.3 Summary

To sum up, we have bijective correspondences among:

• posets
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• principal sharp partial closure operators

• principal partial closure systems.

Indeed, correspondences are witnessed by Theorem 2.12; they are bijec-
tive by Theorem 2.3, Propositions 2.7, 2.8 and Corollaries 2.9, 2.10.

In particular, if we deal with posets which are complete lattices, then
the bijective correspondence already exists among closure systems and
closure operators. As mentioned, every closure operator fulfils the sharp-
ness property. Still, to every lattice there correspond more closure op-
erators and systems. If the closure operators and systems are principal,
then we get bijective correspondences as for posets.
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CHAPTER

3

P -MATROIDS, GEOMETRIC
AND SEMIMODULAR

POSETS

We generalize the notion of matroids to the notion of partial matroids, by
replacing the closure operator from the definition of matroid by partial
closure operators in the natural way. We also generalize the notion of
geometric lattices to the notion of geometric posets. Then we show that,
as with matroids and geometric lattices, there is a correspondence of
the same kind between partial matroids and geometric posets. At the
end, we generalize the notion of semimodular lattices to the notion of
semimodular posets in such a way that, as in the case of lattices, a poset
is geometric if and only if it is atomistic and semimodular. Sections
3.1 and 3.2 have an introductory character, and the next three sections
present original work, mostly included in the paper [51].

49
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3.1 Geometric lattices

A lattice L is (upper) semimodular if, for all x, y ∈ L,

x ∧ y ≺ x implies y ≺ x ∨ y. (3.1)

A lattice L is lower semimodular if, for all x, y ∈ L,

y ≺ x ∨ y implies x ∧ y ≺ x. (3.2)

Theorem 3.1. A lattice L is semimodular if and only if for all x, y, z ∈ L
we have:

x ≺ y implies x ∨ z 4 y ∨ z. (3.3)

Proof. (⇒): Let (3.1) be true and let x ≺ y, where x, y ∈ L. If for
arbitrary z ∈ L we have z 6 x or y 6 x ∨ z, then it is obvious that
x ∨ z 4 y ∨ z. Now assume that z 
 x and y 
 x ∨ z. We have
x 6 (x∨ z)∧ y < y, and since y covers x, we have (x∨ z)∧ y = x. Hence
(x ∨ z) ∧ y ≺ y. Now it follows from (3.1) that x ∨ z ≺ x ∨ z ∨ y = y ∨ z.

(⇐): Now let (3.3) be true and x ∧ y ≺ x. Then (x ∧ y) ∨ y 4 x ∨ y,
that is, y 4 x ∨ y. If we have y = x ∨ y, then x 6 y, but that is in
contradiction with x∧ y ≺ x. Therefore, we have y ≺ x∨ y, so condition
(3.1) holds. �

Theorem 3.2. Let a lattice L be such that all its chains between two
arbitrary elements are finite. Then L is semimodular if and only if:

x ∧ y ≺ x and x ∧ y ≺ y imply x ≺ x ∨ y and y ≺ x ∨ y. (3.4)

Proof. It is obvious that (3.1) implies (3.4). Therefore, we assume that
(3.4) holds and let x∧ y ≺ x. We observe a maximal chain between x∧ y
and y: x ∧ y = z0 ≺ z1 · · · ≺ zn = y. Since x ∧ y = x ∧ z1, we have
x ∧ z1 ≺ x and x ∧ z1 ≺ z1, hence by (3.4) we have x ≺ x ∨ z1 and
z1 ≺ x ∨ z1. In the same way we have that for all i ∈ {1, 2, . . . , n} holds
zi ≺ x ∨ zi. Note here that zi+1 6= x ∨ zi, as otherwise we would have
x 6 x ∨ zi = zi+1 6 zn = y, a contradiction with x ∧ y < x. So from
zi ≺ zi+1 we have (x ∨ zi) ∧ zi+1 ≺ x ∨ zi and (x ∨ zi) ∧ zi+1 ≺ zi+1.
By (3.4) and (x ∨ zi) ∨ zi+1 = x ∨ zi+1, we get that x ∨ zi ≺ x ∨ zi+1

and zi+1 ≺ x ∨ zi+1. In particular, for zn = y we have y ≺ x ∨ y, hence
semimodularity holds. �

The length of a finite chain is the number of elements in chain minus
1. The length of a poset (and thus also a lattice) is the length of its largest
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chain, if such a number exists, and then we say that the considered poset
is of finite length.

The height of an element x of a poset is the length of the longest
descending chain (if it exists) which starts at x; we denote it by h(x).

Theorem 3.3. Given a semimodular lattice L, if all maximal chains
between two elements are finite, then all of them have the same length.

Proof. By induction on the greatest length n of maximal chains between
two arbitrary elements x and y of a lattice L we prove that all the maximal
chains between these two elements are of the same length.

Let n = 1. Then x ≺ y and there exists only one chain between x i
y, so the statement holds.

Assume that for all m < n we have: if m is the greatest length of
a maximal chain between arbitrary x and y, then all maximal chains
between x and y are of length m. Now, let the length of one maximal
chain be equal to n. Denote that chain by: x = x1 ≺ x2 ≺ · · · ≺ xn+1 =
y.

Now, let x = y1 ≺ y2 ≺ · · · ≺ ym+1 = y be another chain between
x and y, of length m. If x2 = y2, then one maximal chain between x2

and y has length n−1, so by the inductive hypothesis all maximal chains
between x2 and y have the same length, so n = m. Let now x2 6= y2. In
this case, we observe the following maximal chain between x2 ∨ y2 and
y: x2 ∨ y2 = z1 ≺ z2 ≺ · · · ≺ zk+1 = y. Since x = x2 ∧ y2, x ≺ x2

and x ≺ y2, by (3.4) we have x2 ≺ x2 ∨ y2 and y2 ≺ x2 ∨ y2. Therefore,
x2 ≺ z1 ≺ z2 ≺ · · · ≺ zk+1 = y is a maximal chain between x2 and y
of length k + 1, while x2 ≺ x3 ≺ · · · ≺ xn+1 = y is a maximal chain of
length n − 1 between the same elements, hence k + 1 = n − 1. In the
same way we get k + 1 = m− 1, so n = m. �

From the theorem above we directly have the following corollary.

Corollary 3.4. If in a semimodular lattice L there exists a finite maximal
chain, then every maximal chain in the lattice L has the same length and
any such lattice contains the least element and the greatest element.

We now give one more characterization of semimodular lattices of
finite length by heights of elements.

Theorem 3.5. A lattice L of finite length is semimodular if and only if
for all x, y ∈ L we have

h(x ∧ y) + h(x ∨ y) 6 h(x) + h(y). (3.5)
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Proof. (⇒): If L is a semimodular lattice of finite length, then by The-
orem 3.2 the length of a maximal chain between x ∧ y and x: x ∧ y =
x1 ≺ x2 ≺ · · · ≺ xn = x, equals h(x) − h(x ∧ y) (since there exists the
least element, from which each of these maximal chains begins). Now by
(3.3) we have y = (x ∧ y) ∨ y = x1 ∨ y 4 x2 ∨ y 4 · · · 4 xn ∨ y = x ∨ y,
so different elements in this chain constitute a chain of maximal length
between y and x ∨ y, hence h(x ∨ y) − h(y) 6 h(x) − h(x ∧ y), which is
(3.5).

(⇐): Let (3.5) be true and let x∧y ≺ x. We have h(x) = h(x∧y)+1,
which implies h(x∧y)+h(x∨y) 6 h(x∧y)+1+h(y), so h(x∨y) 6 h(y)+1.
From h(x ∨ y) > h(y) it follows that h(x ∨ y) is equal to either h(y) or
h(y) + 1. The former is not possible, because it implies x∧y = x. There-
fore, the latter is true, which implies y ≺ x ∨ y. �

Figure 3

The elements of lattice that cover the least element are called atoms.
A lattice is atomistic if every element different from the least one is
supremum of a set of atoms.

A lattice that is semimodular, atomistic and which has only finite
chains is called geometric.
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It is clear that every geometric lattice is of finite length (by Corollary
3.4).

In Figure 3, the first row shows diagrams of all geometric lattices with
at most 3 atoms. In the second row we show an example of a geometric
lattice with 4 atoms and an example with 5 atoms.

Theorem 3.6. Let L be a semimodular lattice of finite length. Then, if
a ∈ L is an atom and x ∈ L is an arbitrary element, then either a 6 x or
x ≺ x ∨ a.

Proof. Let a be an atom of a lattice L and x ∈ L. Assume that a 
 x.
Then we have x ∧ a = 0, so by (3.5) it follows h(x ∨ a) 6 h(x) + h(a) =
h(x) + 1. From a 
 x also follows h(x) 6= h(x∨ a), so we have h(x∨ a) =
h(x) + 1, that is, x ≺ x ∨ a. �

This theorem helps us to deduce two more characterizations of geo-
metric lattices of finite length, which we give hereby.

Theorem 3.7. A lattice L of finite length is geometric if and only if for
all x, y ∈ L we have

x ≺ y if and only if there exists an atom a such that a 
 x and y = x ∨ a.
(3.6)

Proof. (⇒): Let L be a geometric lattice and let x, y ∈ L be such that
x ≺ y. Since L is atomistic and x < y, there exists an atom a which is
below y but not below x. Then we have x < x∨a 6 y, and since y covers
x, we conclude x ∨ a = y. On the other hand, if a is an atom which is
not below x and such that y = x ∨ a, then x ∧ a = 0, that is, x ∧ a ≺ a,
therefore by semimodularity we have x ≺ x ∨ a = y.

(⇐): Assume that L is a lattice of finite length such that (3.6). We
prove that the condition (3.3) holds, which is, by Theorem 3.1, equivalent
with semimodularity. Let x ≺ y. Then by (3.6) there exists an atom a
for which we have x∧a = 0 and x∨a = y. Now, if for any element z ∈ L
we have a 6 x ∨ z, then y ∨ z = a ∨ x ∨ z = x ∨ z. If a 
 x ∨ z, then,
since x ∨ z ∨ a = y ∨ z, by (3.6) we have x ∨ z ≺ y ∨ z.

It remains to show that L is atomistic. Let x be any element of the
lattice L different from the least one. We prove that x is a supremum
of atoms, using induction on height h(x) = n. If h(x) = 1, then x is an
atom. Assume that every element whose height is smaller than n is a
supremum of atoms. Let h(x) = n. Then there exists y that is covered
by x; therefore, y is a supremum of atoms, and hence by (3.6) it follows
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that x is a supremum of atoms, too. Therefore, L is a geometric lattice. �

Theorem 3.8. A lattice L of finite length is geometric if and only if it
is atomistic and for every two atoms a and b and x ∈ L we have:

from a < x ∨ b and a 
 x it follows b < x ∨ a. (3.7)

(The condition (3.7) is called the law of exchange for geometric lat-
tices.)

Proof. Let L be a geometric lattice. Then, by definition, L is atomistic,
so we need to show only that (3.7) holds. Let a and b be two different
atoms (the case a = b is trivial) and x an arbitrary element from L such
that a < x∨b and a 
 x. Since a 
 x, by Theorem 3.7 we have x ≺ x∨a.
The element x can not be the least element, because then we would have
a < b, which is in contradiction with the fact that a and b are atoms.
Therefore, we have two cases: b 6 x and x ≺ x∨b, again by Theorem 3.7.
In the first case we have b < x∨ a immediately. In the second case, since
x is covered by x∨a and x∨ b, and since a < x∨ b, we have x∨a 6 x∨ b.
Then it follows x∨a = x∨ b, so b 6 x∨a. Finally, the inequality is strict
since b = x∨a would imply that an atom is strictly greater than another
atom, which is impossible.

Conversely, let a lattice L be atomistic, of finite length and L fulfills
the condition (3.7). We show that it fulfills the condition (3.6), and then
by Theorem 3.7 we have that L is geometric. Let x ≺ y. Since L is atom-
istic, there exists an atom a below y which is not below x (otherwise x
should be equal to y). Then we have x < x ∨ a 6 y, so since y covers x,
we have x∨ a = y. On the other hand, let a be an atom such that a 
 x.
Of course, we have x 6 x ∨ a. If x = x ∨ a, it follows that a is below x;
hence x < x ∨ a. Assume that there exists y such that x < y < x ∨ a.
Since L is atomistic, there exists an atom b such that b 6 y and b 
 x, so
we have b < x ∨ a, and by (3.7) it follows a < x ∨ b, hence x ∨ a 6 x ∨ b.
Now from x ∨ b 6 y < x ∨ a we get a contradiction; therefore, x ≺ x ∨ a.
The proof is complete. �

3.2 Matroids

A set A with a closure operator · : P(A) → P(A), denoted by M(A), is
called matroid on A if for all X ⊆ A and for all x, y ∈ A we have

M1 : x /∈ X and x ∈ X ∪ {y} imply y ∈ X ∪ {x}; (exchange axiom)
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M2 : there exists a finite Y such that Y ⊆ X and Y = X. (finite basis)

A matroid M(A) is simple (or combinatorial geometry or just
geometry) if:

M3 : ∅ = ∅, and for all x ∈ A we have {x} = {x}.

Closed subsets of a matroid are often called flats or subspaces of
M(A). We denote the range of M(A) by LM (A), and call it the lattice
of flats of a matroid M(A).

Theorem 3.9. For every two elements U and V of the lattice of flats
LM (A) of a matroid M(A) we have:

U ≺ V if and only if V = U ∪ {v} for some v /∈ U .

Proof. If U ≺ V and v ∈ V \ U , then, since U < U ∪ {v} 6 V , we have
U ∪ {v} = V . On the other hand, let v /∈ U be such that V = U ∪ {v}.
Further, let Z be such that U < Z 6 V . Then there exists an element
z ∈ Z \ U ; hence, z ∈ Z ⊆ V = U ∪ {v}, and therefore by M1 we have
v ∈ U ∪ {z} ⊆ Z. It follows that V ⊆ Z, so V = Z; hence, U ≺ V . �

Theorem 3.10. The lattice of flats of a simple matriod is geometric.
Conversely, if L is a geometric lattice and A the set of all atoms of the

lattice L, then the map ·, defined on P(A) by X = {a ∈ A | a 6
W
X},

is a closure operator which induces a simple matroid M(A) on A whose
lattice of flats LM (A) is isomorphic to L.

Proof. Let M(A) be a simple matroid and LM (A) its lattice of flats.
Let X,Y ∈ LM (A) be such that X ∩ Y ≺ X. Then by Theorem 3.9
there exists x ∈ X \ Y such that (X ∩ Y ) ∪ {x} = X. Also, we have
X ∨ Y = X ∪ Y = (X ∩ Y ) ∪ {x} ∪ Y = {x} ∪ Y , since x /∈ Y and
X ∩ Y ⊆ Y . Because {x} ∪ Y covers Y , it follows that Y ≺ X ∨ Y ;
therefore LM (A) is semimodular.

The lattice LM (A) is atomistic. Indeed, since M(A) is a simple ma-
troid, for all x ∈ A we have {x} = {x}, so singletons are atoms, and since
for a nonempty X ∈ LM (A) we have

X = X =
[
{{x} | x ∈ X} =

[¦
{x} | x ∈ X

©
=
_
{{x} | x ∈ X} ,

it follows that X is a supremum of atoms.
In this part of the proof, it remains to show that LM (A) does not

have infinite chains. As every infinite chain (clearly) contains a countable
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increasing or decreasing subchain, we shall distinguish these two cases.
We first consider an increasing chain X1 ( X2 ( . . . in the lattice LM (A).
By M2 there exists a finite subset Y of the set

S
n∈N Xn such that Y =S

n∈N Xn. Since Y ⊆
S
n∈N Xn and Y is finite, there exists an element

of the chain, call it Xk, such that Y ⊆ Xk. Now we have that Y ⊆
Xk ⊆

S
n∈N Xn, hence Xk =

S
n∈N Xn. Of course, since {Xn | n ∈ N}

is a chain of closed sets, every set in this chain that contains Xk has
to be equal with Xk, so the chain can not be infinite. Now, let X1 )
X2 ) . . . be an infinite descending chain. Denote X = {xn | n ∈ N},
where xn ∈ Xn \ Xn+1, and Yn = {xn, xn+1, . . . }, for n ∈ N. Notice
that, since Yn+1 ⊆ Xn+1 = Xn+1, we have xn /∈ Yn+1. Let xk ∈ X.
Assume that there exists some i such that xk ∈ Yi \ {xk}, and let i be
the largest natural number that fulfills this. (The largest among them
exists since the inequality i < k holds, because for all j > 1 we have
xk /∈ Xk+j = Xk+j ⊇ Yk+j = Yk+j \ {xk}.) By maximality of i we have
xk /∈ Yi+1 \ {xk} = (Yi \ {xk}) \ {xi}. Now by the exchange axiom we
have xi ∈ Yi \ {xi} = Yi+1 ⊆ Xi+1, which gives a contradiction. Hence,
for all xk we have xk /∈ Yi \ {xk} when i ∈ N. Since Y1 = X, it follows
that for k ∈ N we have xk /∈ X \ {xk}. On the other hand, by M2 there
exists a finite Z ⊆ X such that Z = X, and by choosing any xk ∈ X \ Z
we get X \ {xk} = X 3 xk, which is a contradiction.

Conversely, let L be a geometric lattice and A the set of all atoms
of L. It easy to see that the map defined by X = {a ∈ A | a 6

W
X} is

a closure operator. We also have that a set is closed if and only if the
considered set is the set of all atoms below some element of the lattice
L. First we show that M1 holds. Let x /∈ X and x ∈ X ∪ {y}. It follows
that x 


W
X and x < y ∨

W
X. By Theorem 3.8 we have y < x ∨

W
X,

hence y ∈ X ∪ {x}.
Let K be a closed set, that is, K = {a ∈ A | a 6 x} for some x ∈ L.

Assume that there does not exist a finite subset H of the set K such
that

W
H =

W
K. Then we can construct an infinite chain of atoms that

belong to K in the following way: a1 < a1 ∨ a2 < a1 ∨ a2 ∨ a3 < . . . .
This gives a contradiction with the fact that a geometric lattice is of
finite length; therefore, we have M2 also. By the definition of a closure
operator C it is easy to see that ∅ and {a} are closed, hence M(A) is a
simple matroid.

At last, a map f : L → LM (A) defined by f(x) = {a ∈ A | a 6 x} is
bijective; this follows from the fact that L is atomistic (injectivity) and
the fact that the set of atoms is closed if and only if the considered set
is the set of all atoms below some element of the lattice (surjectivity).
Also, we have that x 6 y is equivalent to ↓x ∩ A ⊆ ↓y ∩ A and this is
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f(x) ⊆ f(y), and therefore L and LM (A) are isomorphic. �

The previous theorem does not hold only for simple matroids; it holds
for all finite matroids, since for every finite matroid there exists a corre-
sponding simple matroid.

Theorem 3.11. For every finite matroid there exists a simple matroid
such that their lattices of flats are isomorphic.

Proof. Let M(A) be a finite matroid on a set A with the closure operator
X 7→ X. Let A1 be the set of all atoms in the lattice of flats LM (A). For
clarity, we write x instead {x}.We define a new closure operator X 7→ ÜX
on the set A1 in the following way:

ÜX :=
n
a ∈ A1 | a ∈

[
X
o
. (3.8)

We claim that A1 with the closure operator e· is a simple matroid and
that the lattices of flats LM (A) and LM (A1) are isomorphic.

During the proof we shall need the following claim: for an arbitrary
set X ⊆ A, if we denote Y = {a ∈ A1 | a ∈ X}, then we have

S
Y = X.

The inclusion (⊆) is clear (a ∈ X implies a ⊆ X, so
S
Y ⊆ X, and

we conclude
S
Y ⊆ X), so we are left to show the inclusion (⊇). It is

sufficient to show X ⊆
S
Y , since it implies X ⊆

S
Y . Let x ∈ X. If we

have x = ∅, the claim is clear. Otherwise, let a be any atom such that
a ⊆ x. Since a /∈ ∅ (otherwise we have a = ∅) and a ∈ {x} = ∅ ∪ {x}, by
M1 we have x ∈ ∅ ∪ {a} = {a} = a; hence, x ∈

S
Y ⊆

S
Y , which proves

the claim.
We prove that e· is a closure operator on A1. Let a ∈ X. Then

a ∈
S
X ⊆

S
X, so we have X ⊆ ÜX. If X ⊆ Y , then

S
X ⊆

S
Y and

hence ÜX ⊆ ÜY . Since ÜX =
¦
a ∈ A1 | a ∈

S
X
©

, by the claim from the

previous paragraph we have
S ÜX =

S
X =

S
X and therefore ffX = ÜX.

So the conditions C1, C2 and C3 are fulfilled. Now we prove that M1,
M2 and M3 hold.

M1: Let a /∈ ÜX and a ∈âX ∪ {b}. Then a /∈
S
X and

a ∈
[

(X ∪ {b}) =
[
X ∪ b =

[
X ∪ {b},

so, since the operator ·, satisfies the condition M1, we have

b ∈
[
X ∪ {a} =

[
X ∪ a =

[
(X ∪ {a}),
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that is, b ∈âX ∪ {a}. Therefore, the operator e· satisfies M1.
M2: The set A1 is finite, since A is finite. Therefore the property M2

holds.
M3: First we prove e∅ = ∅. Notice that a ∈

S
∅ = ∅ implies a = ∅,

but then a /∈ A1; therefore, e∅ = ∅. Now, since C1 holds, in order to
prove {a} = g{a} we need to show that g{a} ⊆ {a}. If b ∈ g{a}, then
b ∈

S
{a} = a, and it follows b ⊆ a, hence b = a (since a and b are

atoms), that is, b ∈ {a}. Therefore, M(A1) is simple matroid.
It remains to prove that the lattices LM (A) and LM (A1) are isomor-

phic. We define a map ϕ : LM (A)→ LM (A1) as follows:

ϕ(B) := {a ∈ A1 | a ∈ B}.

First we show that all sets on the right-hand side are closed with respect
to the operator e·. By (3.8), it is enough to show that every element
a ∈ A1 such that a ∈

S
ϕ(B) has to be in ϕ(B); but, because of the

definition of the set ϕ(B), we obviously have
S
ϕ(B) ⊆ B, and thenS

ϕ(B) ⊆ B = B, that is, a ∈ B, and a ∈ ϕ(B) follows.
The map ϕ is injective. Indeed, by the definition of ϕ and the

claim proved above, we have
S
ϕ(B) = B. Hence, from the assump-

tion ϕ(B1) = ϕ(B2) it follows B1 = B1 = B2 = B2, so ϕ is injective.
Now, we show that ϕ is surjective. Let B1 ∈ LM (A1) be arbitrary.

We have

ϕ
�[

B1

�
=
§
a ∈ A1 | a ∈

[
B1

ª
= fB1 = B1,

and it is obvious that
S
B1 ∈ LM (A), so ϕ is surjective and therefore

bijective.
At last, in order to show that ϕ is an isomorphism, it is enough to

show the equalities ϕ(B∩C) = ϕ(B)∩ϕ(C) and ϕ(B ∪ C) = åϕ(B) ∪ ϕ(C).
The first one is easy:

ϕ(B ∩ C) = {a ∈ A1 | a ∈ B ∩ C}

= {a ∈ A1 | a ∈ B} ∩ {a ∈ A1 | a ∈ C} = ϕ(B) ∩ ϕ(C).

The second one also holds: indeed, notice that[
(ϕ(B) ∪ ϕ(C)) =

[
ϕ(B) ∪

[
ϕ(C)

=
[
ϕ(B) ∪

[
ϕ(C) = B ∪ C = B ∪ C,
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and directly by definitions of the operator e· and the map ϕ it follows

åϕ(B) ∪ ϕ(C) = ϕ(B ∪ C).

This completes the proof. �

3.2.1 Alternative definitions of matroids

Matroids occur in different branches of mathematics and they have a
few different but equivalent definitions. They are usually assumed to be
finite, so in this section we work with only finite sets.

The first definition is inspired by linearly independent vectors and
their properties.

• (I-definition) A matroid (E, I) is a finite set E with a nonempty
family I of subsets of E, called independent sets, with the follow-
ing properties:

I1: Every subset of an independent set is independent.

I2: If X1 and X2 are independent sets, and |X1| < |X2| then for
some x ∈ X2 \X1, the set X1 ∪ {x} is independent.

Theorem 3.12. In the previous definition condition I2 can be replaced
by

I ′2: If S ⊆ E, then the maximal independent subsets of S are all equal
in size.

Proof. Let E be a finite set and I a nonempty family of subsets of E
such that I1 and I2 hold. If X1 and X2 are maximal independent subsets
of a set S, S ⊆ E, and if they do not have the same cardinality, say
|X1| < |X2|, then by I2 there exists x ∈ X2 \ X1 such that the set
X1 ∪ {x} is independent. Also we have |X1| < |X1 ∪ {x}|, and thus X1

is not a maximal independent set, a contradiction.
Now assume that (E, I) fulfills I1 and I ′2. If X1, X2 ∈ I and |X1| <

|X2|, then X1 ∪X2 contains a maximal independent subset Y such that
X1 ⊆ Y . There exists an element x ∈ Y ∩X2, since Y ∩X2 = ∅ would
imply that |Y | < |X2|, which contradicts I ′2. Now we have X1∪{x} ⊆ Y ,
and by I1 the set X1 ∪ {x} is independent. �

In the graph theory, we arrive to the same definition: E is an edge
set of a finite (undirected) graph G, and the independent subsets of E
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are acyclic sets of edges (we say that a set of edges of a graph is acyclic
if the induced subgraph contains no cycles).

We get the next definition of matroid from the previous one, but using
the notion of rank. For a set S ⊆ E, a rank of the set S, denoted by
r(S), is a cardinality of a maximal independent subset of the set S; we
can define rank this way because of I ′2. (Notice that this definition of rank
is the same as the definition of rank in the graph theory: the number of
vertices minus the number of connected components. Indeed, this last
value is precisely the number of edges of any maximal subforest of a given
graph: if the graph is connected, then the claim follows since in each tree
the number of edges is precisely the number of vertices minus 1, while
if G is not connected, then the claim follows because the same holds in
each of its connected components.)

Theorem 3.13. For a matroid (E, I), the mapping r : P(E) → Z de-
fined as above satisfies:

R1: For every S ⊆ E we have 0 6 r(S) 6 |S|.

R2: If S ⊆ T , then r(S) 6 r(T ).

R3: For all S, T ⊆ E we have r(S) + r(T ) > r(S ∪ T ) + r(S ∩ T ).

Proof. It is clear that the cardinality of a subset of the set S is between
0 and |S|, therefore R1 holds. It is also clear that the property R2 holds.
To show R3, let S, T ⊆ E and let K be a maximal independent subset
of S ∩ T . Since K is an independent subset of S ∪ T , there exists a
maximal independent set M such that K ⊆ M ⊆ S ∪ T . It follows that
|M | = r(S ∪ T ), |K| = r(S ∩ T ), r(S) > |M ∩ S| and r(T ) > |M ∩ T |.
Also M ∩ S ∩ T = K. Indeed, K ⊆M ∩ S ∩ T , by I1 and M ∈ I the set
M ∩S∩T is independent subset of S∩T , therefore, since K is a maximal
independent subset of S ∩ T , these two sets coincide. Hence we have

r(S)+r(T ) > |M∩S|+|M∩T | = |M |+|M∩S∩T | = r(S∪T )+r(S∩T ).

�

So we have the next definition of a matroid.

• (R-definition) A matroid (E, r) is a finite set E with the function
r : P(E)→ Z fulfilling the properties R1, R2 and R3.

Another definition is also inspired by the graph theory. Notice that
circuits in a graph are minimal sets of edges which are independent (in
the sense of axioms I1 and I2). A generalization of this leads us to the
next definition.
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• (S-definition) A matroid (E, C) is a finite set E together with a set
C of nonempty subsets of the set E, which we call circuits, and
which have the following properties:

S1: No circuit is contained in any other circuit.

S2: If X1 and X2 are two distinct circuits and x ∈ X1 ∩X2, then
(X1 ∪X2) \ {x} contains some other circuit.

The next definition is inspired by definition of a basis of a vector space
in linear algebra.

• (B-definition) A matroid (E,B) is a finite set E with nonempty
family of its subsets B, named bases, with the following properties:

B1: No basis is contained in any other basis.

B2: If X1 i X2 are different bases, then for every x ∈ X1 \X2 there
exists some y ∈ X2 \X1 such that (X1 \ {x}) ∪ {y} is a basis.

It can be noticed that, since bases are defined on a finite set, all bases
have the same cardinality.

Theorem 3.14. For a matroid (E, r) byR-definition there exists a family
B ⊆ P(E) that satisfies B1 and B2.

Proof. Let E be a finite set, the function r : P(E) → Z satisfies R1, R2

and R3 and let

B = {S ⊆ E | |S| = r(S) = r(E)}.

If some set X1 is contained in another set X2 and |X1| = r(E) = |X2|,
they must be equal. Hence B1 holds.

Now, let X1, X2 ∈ B and x ∈ X1 \ X2. We have |X1| = r(X1) =
r(E) = r(X2) = |X2| and r(X1\{x}) 6 r(E)−1. Moreover, r(X1\{x}) =
r(E)− 1, because if r(X1 \ {x}) < r(E)− 1, then

r(E)= r(E)− 1 + 1 > r(X1 \ {x}) + r({x})

> r((X1 \ {x}) ∪ {x}) + r((X1 \ {x}) ∩ {x})

= r(X1) + r(∅) = r(E),

and that is a contradiction.
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Denote X2 \X1 = {y1, y2, . . . , yk} and consider r(X1 \ {x}), r((X1 \
{x})∪{y1}), r((X1 \ {x})∪{y1, y2}), . . . , r((X1 \ {x})∪{y1, y2, . . . , yk}).
This is a nondecreasing sequence of integers whose first element is r(E)−1
and the last element is r(E) (since r(E) > r((X1\{x})∪{y1, y2, . . . , yk}) >
r(X2) = r(E)). Therefore, there exists j ∈ {1, 2, . . . , k} such that r((X1\
{x})∪{y1, y2, . . . , yj−1}) = r(E)−1 and r((X1\{x})∪{y1, y2, . . . , yj}) =
r(E), and thus we have

r((X1 \ {x}) ∪ {y1, y2, . . . , yj−1}) + r((X1 \ {x}) ∪ {yj})

> r((X1 \ {x}) ∪ {y1, y2, . . . , yj}) + r(X1 \ {x}),

which is equivalent with

r(E)− 1 + r((X1 \ {x}) ∪ {yj}) > r(E) + r(E)− 1.

This implies r((X1 \{x})∪{yj}) = r(E). Of course, |(X1 \{x})∪{yj}| =
|X1| = r(E), hence (X1 \ {x}) ∪ {yj} ∈ B and B2 holds. �

Theorem 3.15. For a matroid (E,B) by B-definition there exists a
family I ⊆ P(E) which satisfies I1 and I ′2.

Proof. Let E be a finite set and B a nonempty family such that B1 and
B2 hold. We show that I = {I ⊆ B | B ∈ B} satisfies I1 and I2. First,
if X ⊆ Y and Y ∈ I, then clearly X ∈ I.

Second, let S ⊆ E and let X1 and X2 be two maximal independent
subsets of S. We need to show that |X1| = |X2|. Since X1, X2 ∈ I and
they are maximal, it follows that X1, X2 ∈ B. Since all bases have the
same cardinality, the proof is completed. �

For the next theorem, we need to define nullity of a set. For a set
S ⊆ E, the nullity of S, denoted by n(S), equals the difference between
the cardinality and the rank of the set S, that is, n(S) = |S| − r(S).

Theorem 3.16. For a matroid (E, I) (by I-definiton), the nullity func-
tion satisfies the following properties:

N1: For every S ⊆ E we have 0 6 n(S) 6 |S|.

N2: If S ⊆ T , then n(S) 6 n(T ).

N3: For all S, T ⊆ E we have n(S) + n(T ) 6 n(S ∪ T ) + n(S ∩ T ).
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Proof. Since Theorem 3.13 holds, the first property is trivial. To prove
the second, note that for any S ⊆ T the following holds:

r(T )= r(T ) + r(∅) = r((T \ S) ∪ S) + r((T \ S) ∩ S)

6 r(T \ S) + r(S) 6 |T \ S|+ r(S)

= |T | − |S|+ r(S).

This implies
|S| − r(S) 6 |T | − r(T ).

The last property follows from R3 and the fact that |S|+ |T | = |S ∪T |+
|S ∩ T |. �

Theorem 3.17. Let (E, I) be a matroid by I-definition. Then there
exists the family C ⊆ P(E) that satisfies the conditions S1 and S2.

Proof. For (E, I) we define the set of circuits C as the set of all minimal
subsets of E which are not independent. It is clear that S1 holds.

Before we prove that S2 also holds, we will show that n(X) = 1 for
every X ∈ C. Every circuit has at least one element since empty set is
independent in every matroid. Hence, there exists x ∈ X. The set X is
not independent and the set X \{x} is independent, therefore r(X) < |X|
and r(X \ {x}) = |X| − 1. Now by R2 we have |X| − 1 = r(X \ {x}) 6
r(X) < |X|. This implies that r(X) = |X| − 1, that is, n(X) = 1.

Now let X1, X2 ∈ C, X1 6= X2 and x ∈ X1 ∩X2. By S1, X1 ∩X2 is
a proper subset of both circuits and hence it is independent. Therefore,
by N3 we have

n(X1) + n(X2) 6 n(X1 ∪X2) + n(X1 ∩X2),

and this is equivalent to 1 + 1 6 n(X1 ∪X2) + 0, that is, n(X1 ∪X2) > 2.
Further, we have

n(X1 ∪X2)= |X1 ∪X2| − r(X1 ∪X2)

6 |(X1 ∪X2) \ {x}|+ 1− r((X1 ∪X2) \ {x})

= n((X1 ∪X2) \ {x}) + 1.
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Hence, n((X1 ∪X2) \ {x}) > 1, therefore (X1 ∪X2) \ {x} is not indepen-
dent and thus it contains a circuit. �

Theorem 3.18. Let (E, C) be a matroid by S-definition. Then there
exists a family I ⊆ P(E) that satisfies the conditions I1 and I2.

Proof. Let (E, C) be a matroid by S-definition. We define

I := {X ⊆ E | (∀Y ⊆ X)(Y /∈ C)}.

By the definition of I, it is easy to see that it satisfies the condition
I1. To prove I2, let X1, X2 ∈ I and |X1| < |X2|. Assume that for all
x ∈ X2 \ X1 we have X1 ∪ {x} /∈ I. Therefore, there exists a subset
of X1 ∪ X2 of greater cardinality than X1, that is, that belongs to I.
We choose such a subset X3 for which |X1 \ X3| is minimal. The set
X1 \ X3 is nonempty; indeed, the opposite would imply X1 ⊆ X3, and
now because of |X1| < |X3| (the cardinality of X3 is greater than or equal
to |X2|) and the assumption we would have X3 /∈ I, which contradicts
X3 ∈ I. Therefore, we can choose an element a ∈ X1\X3. Now we define
Xb := (X3∪{a})\{b}, for every b ∈ X3\X1. Then we have Xb ⊆ X1∪X2

and |X1 \Xb| = |X1 \ ((X3 ∪{a}) \ {b})| = |X1 \ (X3 ∪{a})| < |X1 \X3|.
Hence, Xb /∈ I (because of the minimality of |X1 \ X3|), and therefore
there exists Cb ∈ C such that Cb ⊆ Xb. It is clear that b /∈ Cb. Moreover,
a ∈ Cb, since otherwise Cb ⊆ X3, what contradicts X3 ∈ I.

Let now c be an element of X3 \ X1. If Cc ∩ (X3 \ X1) = ∅, then
we have Cc ⊆ ((X1 ∩X3) ∪ {a}) \ {c} ⊆ X1, contradicting the fact that
X1 ∈ I. Hence, there is an element d ∈ Cc ∩ (X3 \ X1). Therefore,
a ∈ Cc ∩Cd, and by S2 we have that (Cc ∪Cd) \ {a} has a subset C ∈ C.
Since Cc, Cd ⊆ X3 ∪ {a}, it follows C ⊆ X3; this contradicts X3 ∈ I.
Therefore, I3 holds. �

Let us now see how these definitions are connected with the definition
of matroid which we use in other sections. We find it convenient to name
it C-definition.

Theorem 3.19. Let M(E) be a finite matroid by C-definition. Then
there exists a family B ⊆ P(E) which satisfies B1 and B2.

Proof. Let E be a nonempty finite set with a closure operator · satisfying
M1 and M2. We define

B := {B ⊆ E | B is minimal such that B = E}.
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The property B1 holds because of minimality of sets in B. Let X,Y ∈
B and x ∈ X \ Y . Then we have that X and Y are minimal with the
property X = Y = E. We have Y \ X \ {x} 6= ∅; otherwise it follows
Y ⊆ X \ {x}, therefore E = Y ⊆ X \ {x}, and this contradicts the
minimality of X. Therefore, there exists y ∈ Y such that y /∈ X \ {x}.
If y ∈ X, then y ∈ X \ {x} (since y = x implies x ∈ Y ) and hence
y ∈ X \ {x}. Since this gives a contradiction, we have y ∈ Y \X. Now,
in order to show B2, we need to prove (X \ {x}) ∪ {y} ∈ B, that is:
(X \ {x}) ∪ {y} is minimal fulfilling (X \ {x}) ∪ {y} = E.

First, since y /∈ X \ {x} and y ∈ E = X = (X \ {x}) ∪ {x}, by M1

it follows that x ∈ (X \ {x}) ∪ {y}. Therefore, X ⊆ (X \ {x}) ∪ {y}, so
E = X ⊆ (X \ {x}) ∪ {y} = (X \ {x}) ∪ {y}, that is, (X \ {x}) ∪ {y} =
E.

Second, X \ {x} ( E holds because of minimality of X, so let x′ ∈
X \ {x} and assume that (X \ {x, x′}) ∪ {y} = E. Then we have x′ ∈
(X \ {x, x′}) ∪ {y}. Also, x′ /∈ X \ {x, x′} (otherwise we have E =
X = (X \ {x, x′}) ∪ {x, x′} ⊆ X \ {x, x′} ∪ {x, x′} = X \ {x, x′} ∪ {x} ⊆
X \ {x, x′} ∪ {x} = X \ {x′} = X \ {x′}; a contradiction with minimal-
ity of X). Therefore, by M1 it follows that y ∈ X \ {x}. Finally,

E = (X \ {x}) ∪ {y} ⊆ X \ {x} ∪ {y} = X \ {x} = X \ {x},

which again contradicts the minimality of X. This makes the proof com-
plete. �

Theorem 3.20. Let (E, I) be a matroid by I-definition. Then for all
X ⊆ E and x /∈ X we have:

there exists a maximal independent X ′ ⊆ X such that X ′ ∪ {x} /∈ I

if and only if

for all maximal independent W ⊆ X we have W ∪ {x} /∈ I.

Proof. The second direction is trivial, so we prove only the first. Let
X ⊆ E, x /∈ X, and let there be a maximal independent X ′ ⊆ X such
that X ′ ∪ {x} /∈ I. We claim that W ∪ {x} /∈ I for all maximal indepen-
dent W ⊆ X. By I ′2 we have |W | = |X ′|. If W ∪ {x} ∈ I, then we have
that W ∪ {x} and X ′ are maximal independent subsets of X ′ ∪ {x} (X ′

is maximal independent since X ′ ∪ {x} /∈ I), but these two sets do not
have the same cardinality, hence we have a contradiction with I ′2. �
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The previous Theorem is very useful for proving the following Theo-
rem.

Theorem 3.21. Let (E, I) be a matroid by I-definition. Then there
exists a closure operator · on E which satisfies the conditions M1 and
M2.

Proof. Let (E, I) be a matroid by I-definition. We define a mapping
· : P(E)→ P(E) by

X := X ∪ {x ∈ E |there exists a maximal independent
X ′ ⊆ X such that X ′ ∪ {x} /∈ I}.

By the definition of the mapping · we have that C1 holds. To prove
C2, let X ⊆ Y and x ∈ X, that is x ∈ X or there exists a maximal
independent X ′ ⊆ X such that X ′ ∪ {x} /∈ I. We need to show that
x ∈ Y . If x ∈ X, then x ∈ Y ⊆ Y . So assume that X ′ ∪ {x} /∈ I.
Denote by Y ′ a maximal independent subset of Y such that X ′ ⊆ Y ′.
If Y ′ ∪ {x} ∈ I, then by I1 we would have X ′ ∪ {x} ∈ I, therefore
Y ′ ∪ {x} /∈ I, hence x ∈ Y .

Now, we prove that X ⊆ X. Together with the already proved C1,
this implies C3. Let x ∈ X, that is, x ∈ X or W∪{x} /∈ I, for all maximal
independent subsets W ⊆ X (by Lemma 3.20). The first case is trivial,
so assume that the second case holds. Let X ′ be a maximal independent
subset of X and let W be a maximal independent subset of X such that
X ′ ⊆ W . If there exists w ∈ W \ X ′, then by the maximality of X ′

we deduce w /∈ X. Since X ′ is a maximal independent subset of X and
w ∈ X, we have X ′∪{w} /∈ I, but this contradicts I1 and X ′∪{w} ⊆W .
Therefore, W = X ′. Hence, X ′ ∪ {x} = W ∪ {x} /∈ I, so x ∈ X.

The property M2 trivially holds since we work with finite sets, so it
remains to show that M1 holds. Let x /∈ X (that is, x /∈ X and for all
maximal independent X ′ ⊆ X we have X ′ ∪ {x} ∈ I) and x ∈ X ∪ {y}
(that is, x ∈ X ∪ {y} or Z ∪ {x} /∈ I for all maximal independent
Z ⊆ X ∪{y}). If x ∈ X ∪{y}, then we have x = y, so M1 trivially holds,
hence it remains to see if the claim is true for the latter assumption. We
need to show that y ∈ X ∪ {x}. If y ∈ X ∪{x}, then the necessary prop-
erty follows by the definition of ·. So we assume that y /∈ X ∪ {x} and
show that there exists a maximal independent W ⊆ X ∪ {x} such that
W∪{y} /∈ I. Let Y be a maximal independent subset of X∪{y} such that
Y ∪ {x} /∈ I (such Y exists since x ∈ X ∪ {y}, x /∈ X and y /∈ X ∪ {x}).
Because of x /∈ X, we have y ∈ Y . Denote W = (Y \ {y}) ∪ {x}. First,
we have W ∪ {y} /∈ I. Second, W ∈ I, since (Y \ {y}) ∪ {x} /∈ I implies
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x ∈ X (because Y \ {y} is a maximal independent subset of X). And
third, since Y \ {y} is a maximal independent subset of X, we have that
(Y \ {y}) ∪ {x} is maximal independent subset of X ∪ {x}. This makes
the proof complete. �

All connections between mentioned different definitions of matroids
are shown in Figure 4. We can conclude that for finite sets they all result
in the same structure.

Figure 4.

3.3 Geometric posets

Our definition of a geometric poset is based on the condition from the
Theorem 3.8, in fact, it generalizes that condition in a natural way.

We first prove some properties of partial matroids and geometric
posets, and then show that, as with matroids and geometric lattices,
there is a correspondence of the same kind between partial matroids and
geometric posets.

All the sets considered until the end of the chapter are finite.
Let a poset (P,6) be given. If P has the least element, we say that

atoms of P are elements that cover the least element (this is the same
definition as for atoms in lattices); if P does not have the least element,
we define atoms of P to be all minimal elements of P . The set of all
atoms is denoted by AP or simply A (if P is clear from the context). We
say that a poset is atomistic if every element different from the least is
the supremum of a set of atoms.

We now define a geometric poset.
We say that a poset (P,6) is geometric if and only if P is atomistic

and for every x ∈ P and atoms a and b we have:

if x ∨ b exists, a < x ∨ b, and a 
 x, then x ∨ a exists and b < x ∨ a.
(3.9)
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The following theorem gives another, equivalent definition of a geo-
metric poset.

Theorem 3.22. A poset (P,6) is geometric if and only if P is atomistic
and

for x, y ∈ P, if x 
 y and there is a ∈ AP such that
y ∨ a exists and x 6 y ∨ a, then x ∨ y exists and y ≺ x ∨ y.

(3.10)

In order to prove Theorem 3.22, we need the following lemma, which
can be checked straightforwardly.

Lemma 3.23. Let P be a poset satisfying the property (3.10). Then the
following holds:

if x ∨ a exists for some element x and for an atom a such that a 
 x,
then x ≺ x ∨ a.

Proof of Theorem 3.22. Let (P,6) be a geometric poset, x, y ∈ P , a ∈ AP ,
such that x 
 y, y∨a exists and x 6 y∨a. Since P is atomistic, because
of x 
 y we get that there exists b ∈ AP such that b 6 x and b 
 y.
Further, we have b < y ∨ a; therefore, by (3.9) it follows that y ∨ b exists
and a < y ∨ b, and hence y ∨ a 6 y ∨ b. We also have y ∨ b 6 y ∨ a (since
b < y ∨ a), and therefore y ∨ a = y ∨ b. Note that for any upper bound z
of x and y we have y∨ b 6 z (because of b 6 x 6 z and y 6 z); therefore,
y ∨ b is a supremum of x and y. It remains to show y ≺ y ∨ b. Suppose
otherwise: there exists t such that y < t < y ∨ b. We can choose c ∈ AP
such that c 6 t and c 
 y, and now again by (3.9) we get b < y ∨ c and
hence y ∨ b 6 y ∨ c 6 t, which is impossible.

Now, let (P,6) be an atomistic poset which satisfies (3.10). Also, let
x ∈ P , a, b ∈ AP , a 
 x, x∨ b exists and a < x∨ b. Since (3.10) holds, it
follows that x ∨ a exists and x ≺ x ∨ a. We need to show that b < x ∨ a.
We know x ∨ a 6 x ∨ b. If b 6 x, then a < x ∨ b = x, which contradicts
a 
 x; therefore, we conclude b 
 x. By Lemma 3.23 we get x ≺ x ∨ b.
Consequently, since x∨ a and x∨ b are comparable and both cover x, we
get x ∨ a = x ∨ b. Hence, b < x ∨ a, which completes the proof. �

Now, we prove some useful lemmas.

Lemma 3.24. Let (P,6) be a poset and a, b, x ∈ P such that all the
suprema b ∨ x, x ∨ a and (b ∨ x) ∨ a are defined. Then b ∨ (x ∨ a) is also
defined and (b ∨ x) ∨ a = b ∨ (x ∨ a) = sup{b, x, a}.

Proof. Let b∨x, x∨a and (b∨x)∨a be defined and let y be an arbitrary
upper bound for b and x ∨ a. Therefore, b, x, a 6 y, and hence b ∨ x 6 y
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and also (b∨x)∨a 6 y. Since b, x∨a 6 (b∨x)∨a, it follows that (b∨x)∨a
is the least upper bound for b and x∨a, that is, (b∨x)∨a = b∨(x∨a). �

Lemma 3.25. In every geometric poset, if x ∨ a is defined for some
element x and atom a such that a 
 x, then x ≺ x ∨ a.

Proof. Let (P,6) be a poset and A its set of atoms, x ∈ P , a ∈ A, a 
 x
and x ∨ a is defined. Obviously, x < x ∨ a. Suppose that there exists y
that x < y < x ∨ a. Since P is atomistic, there exists b ∈ A such that
b 6 y and b 
 x. Now by (3.9) we have that x∨b is defined and a < x∨b.
Further, a ∨ x ∨ b = x ∨ b, and hence a ∨ x 6 x ∨ b. On the other hand,
x, b 6 y, and since x ∨ b is defined, it follows x ∨ b 6 y < a ∨ x 6 x ∨ b, a
contradiction. The proof is complete. �

3.4 Partial matroids

We define a partial matroid (or shorter p-matroid) as the pair (E,C),
where E is a nonempty set and C a sharp partial closure operator on E,
satisfying the following conditions:

(M) if C(X) and C(X ∪ {x}) are defined, then the relations y /∈ C(X)
and y ∈ C(X ∪ {x}) imply that C(X ∪ {y}) is defined and x ∈
C(X ∪ {y});

(P ) C({x}) = {x} for every x ∈ E.

The following two theorems show that there is a direct generaliza-
tion of the correspondence between geometric lattices and matroids to a
correspondence between geometric posets and partial matroids.

Theorem 3.26. The range of a p-matroid with respect to set inclusion
is a geometric poset.

Proof. Let (E,C) be a p-matroid and F its range. By (P ), atoms of the
poset (F ,⊆) are exactly all singletons {x}, where x ∈ E. Therefore, F is
atomistic because every closed set X is equal to union of all one-element
subsets of X.

Now we show that (3.9) also holds. Let x, y ∈ E and X ∈ F be such
that X∨{x} is defined (and therefore C(X∪{x}) = X∨{x}), y ∈ X∨{x}
and y /∈ X. Then by (M) we have C(X ∪ {y}) defined, which implies
that X ∨ {y} is defined and x ∈ C(X ∪ {y}). �



70 CHAPTER 3. P -MATROIDS, GEOM. AND SEMIMOD. POSETS

For the converse, we need the following lemma.

Lemma 3.27. Let P be an atomistic poset with a set of atoms A. If
{pi, | i ∈ I} ⊆ P and

T
i∈I(↓pi ∩ A) = ↓q ∩ A for some q ∈ P , then

q =
V
{pi | i ∈ I}.

Proof. First, q is a lower bound of the family {pi, | i ∈ I}, since for every
i, ↓q ∩A ⊆ ↓pi ∩A, hence q 6 pi. If r 6 pi, then ↓r∩A ⊆

T
i∈I(↓pi ∩A),

and therefore ↓r∩A ⊆ ↓q∩A, implying r 6 q. So, q is the greatest lower
bound of the family. �

Theorem 3.28. For every geometric poset (P,6) there exists a p-matroid
whose range is isomorphic with (P,6).

Proof. Let (P,6) be a geometric poset and A its set of atoms. We define
partial mapping C : P(A)→ P(A) as follows:

C(X) := {a ∈ A | a 6
_
X}, (3.11)

if
W
X exists, and otherwise C(X) is not defined. It is easy to check

that C is a partial closure operator. In addition, it is sharp, we prove
that Pc7 holds. A subset X of P is closed if and only if X is equal
to the set of all atoms below some element of P : X = C(X) if and
only if X = ↓p ∩ A, for some p ∈ P (one direction follows from the
definition of C and another from the fact that P is atomistic). Therefore,
for B ⊆ A, suppose

T
{X ∈ FC | B ⊆ X} ∈ FC , in other words,T

i∈I{↓pi ∩A | B ⊆ ↓pi ∩A} ∈ FC . By Lemma 3.27,\
i∈I
{↓pi ∩A | B ⊆ ↓pi ∩A} = ↓

^
i∈I

pi ∩A.

Obviously,
V
i∈I pi is the smallest upper bound for B, hence

V
i∈I pi =W

B and by (3.11) C(B) ∈ FC , proving that Pc7 holds.
Now we show that (M) holds. Let C(X) and C(X ∪ {x}) be defined,

y /∈ C(X) and y ∈ C(X ∪ {x}). Hence,
W
X and x ∨

W
X exist, y 
W

X and y < x ∨
W
X. Then by (3.9) we get that y ∨

W
X exists and

x < y ∨
W
X, which gives x ∈ C(X ∪ {y}). By definition of the partial

operator C, it is easy to see that all the sets {x} where x ∈ A are closed,
and therefore (A,C) is a p-matroid.

At last, the function f : P → FC defined by f(x) = {a ∈ A | a 6 x}
is a bijection. Indeed, the injectivity follows since P is atomistic, while
the surjectivity is implied by the fact that a set of atoms is closed if and
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only if it is the set of all atoms below an element of the poset P . By the
definition, f is compatible with the order in both directions, therefore P
and FC are isomorphic. �

Here we present a few examples of geometric posets and partial ma-
troids. Easy examples of geometric posets are, of course, geometric lat-
tices, as well as geometric lattices with its smallest and/or largest element

Figure 5.

removed. A less trivial example, which we denote by (G4,3,6), is given
in Figure 5 left. Figure 5 right shows the range of the corresponding
p-matroid (E,C), where E = {a, b, c, d} and

C :
�
{a} {b} {c} {d} {a, b, c} {a, b, d} {a, c, d} {b, c, d}
{a} {b} {c} {d} {a, b, c} {a, b, d} {a, c, d} {b, c, d}

�
.

Figure 6.

This poset can be generalized to (Gn,k,6) in the following way: we start
with n minimal elements (atoms) and add suprema of all subsets of atoms
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of cardinality k. For k = 1, 2 we get a lattice with its smallest and largest
elements removed, for k = n we get the lattice Mn without the smallest
element, while for k ∈ {3, 4, . . . , n− 1} we get some less trivial examples.

There are also some examples of geometric posets not of the form
Gn,k. In Figure 6 we present two of them (for brevity, we here write xy
instead of x ∨ y).

3.5 Semimodular posets

Recall that a finite lattice is geometric if and only if it is atomistic and
semimodular. In this section we aim to generalize the notion of semi-
modularity to posets in such a way that the same equivalence holds also
for posets.

The following definition, though not very natural-looking, achieves
that goal.

• A poset (P,6) which has the least element is semimodular if for
every x, y ∈ P the following holds:

if x ∧ y ≺ x, then
y ≺ x ∨ y or (P is not a join-semilattice and

there is no atom a such that x 6 y ∨ a).
(3.12)

In the above definition, x∧y ≺ x means ”x∧y exists and x∧y ≺ x”,
and similar for the other occurrences.

• A poset (P,6) which does not have the least element is semimod-
ular if the poset (P0,6) is semimodular, where (P0,6) is the poset
obtained by adding the least element to the poset (P,6).

A generalization of semimodularity to posets appeared in Birkhoff’s
book [7] (the definition is by Ore [41]). A poset P is (upper) semimodular
if it satisfies: if a 6= b and both a and b cover c, then there exists d ∈
P which covers both a and b. This notion is mostly accepted in the
literature; see also the book [10].

Example 6. In Figure 7 left we show a poset which is semimodular by
our definition but not semimodular by Ore’s definition. Indeed, abc and
ad both cover b, but there does not exist an element which covers both abc
and ad. On the other hand, note that this poset is not a join-semilattice,
since the set {a, b} does not have supremum. In order to show that this
poset is semimodular by our definition, we consider a few cases in which
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the implication x ∧ y ≺ x ⇒ y ≺ x ∨ y is not true. Therefore, for these
cases we need to show that

x ∧ y ≺ x⇒ (there does not exist an atom s such that x 6 y ∨ s).
(3.13)

• a∧ b ≺ a: There does not exist an atom s such that b∨ s is defined.

• b ∧ a ≺ b: We have that a ∨ s is defined only for s = d, but b 
 ad.

• abc∧ad ≺ abc: If s is an atom, we have ad∨s ∈ {ad, abd, acd}, and
neither of these elements is comparable with abc.

Therefore, in these cases (3.13) is fulfilled. The remaining cases are analo-
gous to some of the observed cases or they fulfill x∧y ≺ x⇒ y ≺ x∨y. �

Figure 7.

Example 7. In Figure 7 right we show a poset which is not semimodular
by our definition of semimodularity: we have that b ∧ c ≺ b, but b ∨ c is
not defined and for the atom a we have b 6 abc = c ∨ a.

On the other hand, this poset is semimodular by Ore’s definition. If
a and b from the definition are two atoms of the given poset, then there
always exists an element that covers both of these atoms (that would be
one of the coatoms). If a and b from the definition are coatoms, then 1
covers them both. These are all the relevant cases. �
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So neither Ore’s definition of semimodularity implies our definition,
neither our definiton implies Ore’s definition, as shown by Examples 6 and
7. We can notice that both these examples are atomistic and therefore
neither implications hold for atomistic posets either.

Still, if a poset is a lattice, both definitions are equivalent with the
classical notion of lattice semimodularity. The following proposition
(whose proof is easy) shows that semimodularity for posets is indeed
a generalization of semimodularity for lattices.

Proposition 3.29. Let (L,6) be a lattice. Then L is semimodular as a
lattice if and only if it is semimodular as a poset.

Finally, the following two theorems are the main point of this section
and they support our definition of semimodularity of posets.

Theorem 3.30. Every atomistic and semimodular poset is geometric.

Proof. Let (P,6) be a semimodular and atomistic poset and A its set of
atoms. Without loss of generality, suppose that P has the least element
0. Let a, b ∈ A, x ∈ P , a 
 x, and let x ∨ b exist and a < x ∨ b.

First we show that x∨ a exists. If not, then by semimodularity, since
we have a∧x = 0 ≺ a, it follows that there does not exist an atom c such
that x ∨ c exists and a 6 x ∨ c, which is impossible since a < x ∨ b by
assumption.

Hence, x ∨ a exist. Suppose now that b < x ∨ a does not hold.
Obviously, it is impossible that b = x ∨ a. Therefore, b 
 x ∨ a. Now,
since (b ∨ x) ∨ a exists (because a < x ∨ b) by Lemma 3.24 we have that
b ∨ (x ∨ a) exists and (b ∨ x) ∨ a = b ∨ (x ∨ a). Hence by semimodularity
and the fact that b ∨ (x ∨ a) exists and b ∧ (x ∨ a) = 0 ≺ b, we get

x ∨ a ≺ b ∨ (x ∨ a). (3.14)

Let us now show b 
 x. Otherwise, from b 6 x and the assumption
a < x∨ b it would follow a < x, which contradicts the assumption a 
 x.
Therefore, b 
 x. Now by semimodularity and the fact that x ∨ b exists
and b ∧ x = 0 ≺ b, we get x ≺ x ∨ b. From a < x ∨ b and Lemma 3.24 it
follows that x ∨ b = a ∨ (x ∨ b) = (a ∨ x) ∨ b, which leads to

x ≺ b ∨ (x ∨ a). (3.15)

Taken together, (3.14) and (3.15) give x = x ∨ a, that is, a 6 x, but this
contradicts the assumption a 
 x. This completes the proof. �

Theorem 3.31. Every geometric poset is semimodular.
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Proof. Let (P,6) be a geometric poset and let A be its set of atoms.
Clearly, if P is a join-semilattice, then it is semimodular also as a poset.

Suppose that P is not a join-semilattice.
Let x, y ∈ P be such that x ∧ y exists and x ∧ y ≺ x. Clearly, x 
 y.
Suppose that x ∨ y does not exist and that there is an atom a such

that y ∨ a exists and x 6 y ∨ a. Since x 
 y and P is atomistic, there
exists an atom b such that b 6 x and b 
 y. Now by b 6 x 6 y ∨ a and
(3.9), y ∨ b exists and a < y ∨ b, implying y ∨ a 6 y ∨ b. On the other
hand, we get y ∨ b 6 y ∨ a and together with the previous conclusion we
obtain y∨a = y∨ b. Let now u be any upper bound of elements x and y.
From b 6 x 6 u we get b∨ y 6 u, that is, a∨ y 6 u. It follows that y ∨ a
is the least upper bound for x and y, which contradicts the assumption
that x ∨ y does not exist.

Further, let x ∨ y exists and let y ≺ x ∨ y be false, i.e., there exist
u such that y < u < x ∨ y. If x has an upper bound of the form y ∨ a
for some a ∈ A, then we also have x ∨ y 6 y ∨ a. Since y < u and P is
atomistic, there exists an atom c such that c 6 u and c 
 y. Further,
we have c 6 u < x ∨ y 6 y ∨ a and by (3.9) we get a < y ∨ c, there-
fore y ∨ a 6 y ∨ c; on the other hand we get y ∨ c 6 u 6 y ∨ a, which,
together with the previous inequality, gives y ∨ c = y ∨ a, but then also
u = y∨a, which contradicts u < x∨y 6 y∨a. This contradiction implies
that there does not exist a ∈ A such that y∨a is defined and x 6 y∨a. �

The previous two theorems directly imply the following corollary.

Corollary 3.32. A poset is geometric if and only if it is atomistic and
semimodular.
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CHAPTER

4

APPLICATIONS

Closure operators have a wide scope of applications in different branches
of science. Among them we concentrate on analyzing large amount of
data. Namely, in science such as medicine, ecology and economy there
are large data sets of objects and their characteristics, attributes. For
example, objects can be patients, rivers, consumers and their attributes:
symptoms, pollutions, products. Every patient has a set of detected
symptoms, every river is polluted by certain chemical contaminants, each
consumer has a list of products he buys. The problem is to draw con-
clusions about connections between characteristics, for example, to find
which symptoms are manifesting together or which group of products im-
ply buying a new one. One of approaches is via implications, which are
subject of research of formal concept analysis. They also arise in many
different areas such as data analysis, data-mining, knowledge structures,
relational databases. These implications represent rules that say “an ob-
ject with attributes from the set X have attribute x”. It is hard to write
down all implications that hold in one set of data, but we may choose
some of them (called basis) that can be used to generate all the others.
Closure operators are used in this part of problem.

In this chapter we assume that all the considered sets are finite.

77
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Section 4.2 here is an original work.

4.1 Concepts, implications and bases

Data are often recorded in tables with rows and columns, where one of
them contains objects and the other one attributes. These tables can be
represented as formal contexts.

A formal context K = (G,M, I) consists of two sets, G and M , and
a relation I between G and M . The elements of G are called objects
and the elements of M are called attributes of the context. If an object
g ∈ G has an attribute m ∈M , we write (g,m) ∈ I. We call this relation
the incidence relation of the context.

The set of attributes common to the objects of a set A ⊆ G is denoted
by A′, that is,

A′ = {m ∈M | (g,m) ∈ I for all g ∈ A}.

Similarly, the set of objects which have all attributes in a set B ⊆M is

B′ = {g ∈ G | (g,m) ∈ I for all m ∈ B}.

A formal concept of the context (G,M, I) is a pair (A,B) such that
A ⊆ G, B ⊆ M , A′ = B and A = B′. The set A is called the extent
and B the intent of concept (A,B). The set of all concepts of a context
(G,M, I) is denoted by B(G,M, I).

Theorem 4.1. For a context (G,M, I) and A,A1, A2 ⊆ G, B,B1, B2 ⊆
M , we have:

1. A1 ⊆ A2 implies A′2 ⊆ A′1, B1 ⊆ B2 implies B′2 ⊆ B′1;

2. A ⊆ A′′, B ⊆ B′′;

3. A′ = A′′′, B′ = B′′′;

4. A ⊆ B′ ⇔ B ⊆ A′ ⇔ A×B ⊆ I.

Proof. 1. If m ∈ A′2, then (g,m) ∈ I for all g ∈ A2. Therefore,
(g,m) ∈ I for all g ∈ A1, since A1 ⊆ A2. Hence, m ∈ A′1.

2. If g ∈ A, then (g,m) ∈ I for all m ∈ A′, therefore g ∈ A′′.

3. By 2. we have A′ ⊆ A′′′, and because of A ⊆ A′′ and 1. it follows
A′′′ ⊆ A′.
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4. This holds by definition.
�

The previous theorem gives us the following corollary.

Corollary 4.2. For a context (G,M, I), the operator ′′ is a closure op-
erator on both sets G and M .

For every set A ⊆ G, (A′′, A′) is a concept and A′′ is the smallest
extent containing A. This means that A ⊆ G is an extent if and only if
A = A′′. The same holds for intents.

On the set B(G,M, I) we define an order 6: (A1, B1) 6 (A2, B2) if
and only if A1 ⊆ A2 (if and only if B2 ⊆ B1). This way we get a lattice
and, because of that, we call B(G,M, I) a concept lattice of the context
(G,M, I).

Theorem 4.3. The concept lattice B(G,M, I) is a complete lattice in
which infimum and supremum are given by:

^
k∈K

(Ak, Bk) =

 \
k∈K

Ak,

 [
k∈K

Bk

!′′!
,

_
k∈K

(Ak, Bk) =

  [
k∈K

Ak

!′′
,
\
k∈K

Bk

!
.

Proof. First we prove that intersection of intents is again an intent, that
is, for Bk ⊆M , k ∈ K, we have [

k∈K
Bk

!′
=
\
k∈K

B′k.

Indeed,

g ∈
�S

k∈K Bk
�′
⇔ (g,m) ∈ I for all m ∈

S
k∈K Bk

⇔ (g,m) ∈ I for all m ∈ Bk for all k ∈ K

⇔ g ∈ B′k for all k ∈ K

⇔ g ∈
T
k∈K B

′
k.
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The same holds for extents. Now, since for all k ∈ K we have Ak = B′k,
by the equality above we have�T

k∈K Ak,
�S

k∈K Bk
�′′�

=
�T

k∈K B
′
k,
�S

k∈K Bk
�′′�

=
��S

k∈K Bk
�′
,
�S

k∈K Bk
�′′�

.

Therefore, this is a concept. It is indeed the infimum, because the extent
of this concept is the intersection of extents (Ak, Bk), k ∈ K. The second
part of the theorem is analogous. �

An implication X → Y is an ordered pair (X,Y ) of subsets of M .
Hence the set of implications is a binary relation on P(M); we call it an
implicational system (or set of functional dependencies). When the
set Y in implication X → Y is a singleton, then we write X → y; this
type of implications are called unit implications. So the set of unit
implications, unit implicational system (UIS), is a relation between
P(M) and M .

A subset T ⊆M respects an implication X → Y if X * T or Y ⊆ T .
T respects a set Σ of implications if T respects every implication in Σ.
X → Y holds in a context (G,M, I) if every object intent of the context
respects X → Y . We also say that X is a premise of Y , or that X → Y
is an implication of the context (G,M, I).

It is easy to see that the following theorem is true.

Theorem 4.4. An implication X → Y holds in (G,M, I) if and only if
Y ⊆ X ′′. Then it holds in the set of all intents as well.

An implication X → Y follows from a set of implications Σ if every
subset of attributes respecting Σ also respects X → Y . A set of implica-
tions Σ is closed (full implicational system, entail relation, full family of
functional dependencies, relational databases scheme) if each implication
following from Σ is already in Σ.

For an implicational system Σ = {X1 → Y1, X2 → Y2, . . . , Xm →
Ym}, we define the size s(Σ) of Σ by

s(Σ) =
mX
i=1

(|Xi|+ |Yi|).

We can always replace an implicational system by a unit implicational
system: an implication X → Y can be replaced by the set of unit implica-
tions {X → y | y ∈ Y }. That is why we shall work with unit implications
only.
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The set X in implication X → y is called the premise, and y is called
the conclusion. A subset A ⊆ M respects the implication X → y if
X ⊆ A implies y ∈ A. If Σ is a set of implications, A ⊆M is Σ-closed if
A respects all implications in Σ (in other words: all Σ-implications). By
FΣ we denote the set of all Σ-closed sets. It is easy to see that FΣ forms
a closure system on M . The corresponding closure operator is denoted
by CFΣ .

To a system Σ we can also associate a closure operator CΣ: for X ⊆M
let

πΣ(X) = X ∪
[
{b ∈M | A ⊆ X and A→ b ∈ Σ}

and

πnΣ(X) = πn−1
Σ (X) ∪

[
{b ∈M | A ⊆ πn−1

Σ (X) and A→ b ∈ Σ};

then
CΣ(X) = πΣ(X) ∪ π2

Σ(X) ∪ π3
Σ(X) ∪ . . .

SinceM is finite, there is n ∈ N such that πnΣ(X) = πn+1
Σ (X), so CΣ(X) =

πnΣ(X). In fact, we have more: CΣ = CFΣ .
If we start with a closure operator C on a set M , then closed sets

coincide with the Σ-closed set of the following UIS:

ΣC = {X → y | y ∈M , X ⊆M and y ∈ C(X)}.

This unit implicational system satisfies the following properties:

F1: X ⊆M and x ∈ X imply X → x;

F2: for each y ∈M and all X,Y ⊆M ,

X → y and (∀x ∈ X)(Y → x) imply Y → y.

Every UIS that satisfies properties F1 and F2 is called full. The full
UISs are in one-to-one correspondence with closure operators.

Every UIS Σ is contained in full UIS, namely ΣC where C = CΣ, and
this is the smallest full UIS that contains Σ. We can also generate the
smallest full UIS that contains Σ by recursively applying the rules F1 and
F2. Then we call Σ the generating system of ΣC . For UISs Σ1 and Σ2

we say that they are equivalent if they generate the same full UIS.
An UIS Σ is minimal or non-redundant if Σ \ {X → y} is not

equivalent to Σ for all X → y ∈ Σ. It is also called basis. If for all UISs
Σ′ equivalent to Σ we have |Σ| 6 |Σ′|, then Σ is a minimum basis. If for
all UISs Σ′ equivalent to Σ we have s(Σ) 6 s(Σ′), then Σ is optimal. If
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for every X ⊆M holds CΣ(X) = πΣ(X), then Σ is direct or iteration-
free. An UIS is called proper if it does not contain trivial implications,
that is, implications of the form X → x where x ∈ X. From every UIS
we can get an equivalent proper UIS by deleting all proper implications
and that is why in the following sections we assume that every UIS is
replaced by equivalent proper UIS.

There are several types of generating systems for UISs. We mention
a few of them.

An UIS Σdo is direct-optimal if it is direct and if s(Σdo) 6 s(Σ) for
every direct UIS Σ equivalent to Σdo.

In [6] it is proved that this kind of UIS is unique and that it can be
obtained from every equivalent UIS.

The left-minimal basis Σlm is:

Σlm = {X → y | y ∈ C(X) \X and for every Y ( X, y /∈ C(Y )}.

This kind of basis is the restriction of the full UIS to implications where
the premise is of minimal cardinality.

Theorem 4.5. Let C be a closure operator on a set M . Then the direct-
optimal and left-minimal basis coincide.

Proof. We prove Σdo = Σlm. Since there is unique direct-optimal basis,
we show that Σlm is direct-optimal. For Σlm to be direct, for any X ⊆M
it has to be C(X) = X ∪

S
{b ∈ M | (∃A)(A ⊆ X and A→ b ∈ Σlm)}.

This is true, because for every b ∈ C(X)\X we can always choose minimal
(with respect to the set inclusion) subset A of X such that b ∈ C(A), so
we have A→ b ∈ Σlm.

It remains to show that Σlm is direct-optimal. It is sufficient to prove
that for arbitrary UIS Σ equivalent to Σlm, if A → x ∈ Σlm, then A →
x ∈ Σ. Suppose the opposite. Let A → x ∈ Σlm. If there exists B ( A
such that B → x ∈ Σ, then B → x ∈ ΣC , but this is in contradiction with
the fact that A → x ∈ Σlm. Hence, for all B ( A we have B → x /∈ Σ.
Now it follows

x /∈ A ∪ {b ∈M | there exists B ⊆ A such that B → b ∈ Σ} = πΣ(A).

This gives a contradiction with the fact that Σ is direct. �

The previous theorem is shown in [5] and more, this type of basis
coincide with another three definitions of basis. Thus, these bases are
called canonical direct basis and denoted by Σcd.
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In order to define one more type of basis of implicational system, we
need some additional definitions and properties.

A closure operator C on a set A is reduced if it fulfills:

C5: C({i}) = C({j}) implies i = j, for all i, j ∈ A.

Given a closure operator C on a set A, there always exists a reduced
closure operator Cr such that their ranges are isomorphic. Cr can be
constructed in the following way. We define an equivalence relation ≈ on
the set A by x ≈ y if and only if C({x}) = C({y}). Then we define a
closure operator Cr as the restriction of the closure operator C on the
set of representatives of all ≈-classes. Thus, from here onward we shall
consider reduced closure operators.

If C is a closure operator on a set A, we define a relation � between
subsets of A as follows: X � Y if and only if for every x ∈ X there exists
y ∈ Y such that x ∈ C({y}). We write X ∼� Y if X � Y and Y � X.

It is easy to see that ∼� is an equivalence relation. The equivalence
classes of this relation which contain X will be denoted by [X]. We
make the following observations: X ⊆ Y implies X � Y ; if Y ∈ [X],
then C(X) = C(Y ). Natural order on ∼�-classes is 6C defined by:
[X] 6C [Y ] if and only if X � Y .

Theorem 4.6. If C is a reduced closure operator on A, then each equiv-
alence class [X] has unique minimal element with respect to the set in-
clusion.

Proof. Let there be two minimal elements X1 and X2 in the class [X]
and let x ∈ X1 \ X2. Since X1 ∼� X2, we have X1 � X2 � X1,
so there exist x1 ∈ X1 and x2 ∈ X2 such that x ∈ C({x2}) and x2 ∈
C({x1}). We have x ∈ C({x}) ⊆ C({x2}) ⊆ C({x1}). If x = x1, then
C({x}) ⊆ C({x2}) ⊆ C({x}); since C is reduced, we have x = x2. This
is impossible, since x /∈ X2. Therefore, x 6= x1. Since x ∈ C({x1}), then
X1 � X1 \ {x}. On the other hand, X1 \ {x} ( X1, so X1 \ {x} � X1,
hence X1 \{x} ∈ [X]. This implies that X1 can not be minimal in [X]. �

Now we define a relation between elements of A and subsets of A.
We say that X ⊆ A is a cover of x ∈ A if x ∈ C(X) \

S
x′∈X C({x′}),

and we write x C X. We call Y ⊆ A a minimal cover of an element
x ∈ A if x C Y and for every other cover Z of x, Z � Y implies Y ⊆ Z.
Therefore, by Theorem 4.6, Y is a minimal cover of x if it is minimal in
the class [Y ] with respect to the set inclusion.
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Theorem 4.7. Let C be a reduced closure operator on a set A, X ⊆ A
and x ∈ A. If x C X, then there exists Y ⊆ A such that x C Y , Y � X
and Y is minimal cover of x.

Proof. Denote Px = {[X] | x C X}. Since Px is a subset of the set of
all ∼�-equivalence classes, it is ordered by 6C . If Px is not empty, we
choose a minimal element [Y ] below [X] with respect to 6C . By Theo-
rem 4.6, the class [Y ] has unique minimal element with respect to the set
inclusion; denote it by Y . Then Y � X and x C Y . Let now Z be an
arbitrary cover of x such that Z � Y . We prove Y ⊆ Z. From Z � Y it
follows that [Z] 6C [Y ]. Since [Y ] is minimal in Px, we have [Y ] = [Z].
Therefore, Y ⊆ Z, because Y is minimal in [Y ]. �

Finally, we define one more type of basis.
Let C be a reduced closure operator on a set A. D-basis ΣD is union

of the following two sets of implications:

1. {y → x | x ∈ C({y}) \ {y} and y ∈ A};

2. {X → x | X is minimal cover of x}.

The first part is usually called the binary part.

Theorem 4.8. ΣD generates ΣC .

Proof. We prove that for every x ∈ A and X ⊆ A such that x ∈ C(X)\X,
the implication X → x follows from implications in ΣD. (We do not
consider the case x ∈ X, since we work only with proper UISs.)

If there exists x1 ∈ X such that x1 6= x and x ∈ C({x1}), then X → x
follows from x1 → x, which is in ΣD. Hence, assume that x /∈ C({x1})
for all x1 ∈ X. Then x C X. By Theorem 4.7, there exists Y � X such
that x C Y and Y is a minimal cover of x. Then Y → x ∈ ΣD and also
x ∈ C(Y ). Since Y � X, we have that for every y ∈ Y \X there exists
z ∈ X such that y ∈ C({z}). Thus, z → y ∈ ΣD and y ∈ C({z}). Finally,
we get the implication X → x as a consequence of {z → y | y ∈ Y } and
Y → x. This completes the proof. �

D-basis is comparable with canonical direct basis. It is easy to check
that the following theorem holds.

Theorem 4.9. If C is a reduced closure operator on A, then D-basis is
a subset of the canonical direct basis, that is ΣD ⊆ Σcd.
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4.2 Generalization to partial unit implica-
tional systems

We give one generalization of unit implicational system. A full partial
unit implicational system Σ on a set M fulfills the following proper-
ties:

PF1: if there exists y such that X → y, then for all x ∈ X we have
X → x;

PF2: for each y ∈M and all X,Y ⊆M ,

X → y and (∀x ∈ X)(Y → x) imply Y → y;

PF3: if for X ⊆ M there exists z ∈ M such that X → z, then there
exists x ∈M such that {y ∈M | X → y} → x;

PF4: x→ x, for all x ∈M .

There is a correspondence between full partial UIS and partial closure
operators.

Theorem 4.10. Every full partial UIS on a set M defines a partial
closure operator on the same set.

Proof. Let Σ be a full partial UIS on a set M . For X ⊆M we define

C(X) := {y ∈M | X → y},

if there exists y ∈ M such that X → y, otherwise C(X) is not defined.
Then C is a partial closure operator on M .

PC1 : Assume that C(X) is defined. Then there exists some y ∈ M
such that X → y, so by PF1 we have that X → x for all x ∈ X, that is,
X ⊆ C(X).

PC2 : Let X ⊆ Y and C(X), C(Y ) be defined. If z ∈ C(X), then
X → z. Since X ⊆ Y , by PF1 we have Y → x for all x ∈ X. Now by
PF2 we have that Y → z, therefore z ∈ C(Y ).

PC3 : Let C(X) be defined. Hence for some z ∈ M we have X → z.
By PF3, there exists x ∈ M such that C(X) → x. Therefore C(C(X))
is defined; by PC1 we have X ⊆ C(X) and by PC2 we have C(X) ⊆
C(C(X)). On the other hand, let w ∈ C(C(X)). Then C(X) → w and
since for all y ∈ C(X) we have X → y, by PF2 it follows that X → w.
Therefore, w ∈ C(X), and thus C(C(X)) ⊆ C(X).

PC4 : This property follows directly from PF4. �
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Theorem 4.11. If C is a partial closure operator on a set M , then

ΣC := {X → y | y ∈M , X ⊆M , C(X) is defined and y ∈ C(X)}

is the full partial UIS on M .

Proof. We prove that ΣC fulfills properties PF1–PF4.
PF1 : Let X → y. Then we have that C(X) is defined and y ∈ C(X),

therefore for all x ∈ C(X) we have X → x.
PF2 : Let y ∈ M and X,Y ⊆ M be such that X → y and (∀x ∈

X)(Y → x). Then we have that C(X) and C(Y ) are defined, y ∈ C(X)
and x ∈ C(Y ), for all x ∈ X. Hence, X ⊆ C(Y ), so C(X) ⊆ C(C(Y )) =
C(Y ), and then y ∈ C(Y ), what implies Y → y.

PF3 : Let X ⊆M be such that there exists z ∈M such that X → z.
Therefore, C(X) is defined and z ∈ C(X). We also have that C(X) =
{y ∈ M | X → y}. Since z ∈ C(X) = C(C(X)), it follows that C(X)→
z, that is, {y ∈M | X → y} → z.

PF4 : Since C({x}) is defined for all x ∈ M and x ∈ C({x}), then
x→ x ∈ ΣC . �



CHAPTER

5

CONCLUSION

This thesis provides an insight into connections between closure oper-
ators, closure systems and complete lattices. These connections have
been studied a lot, while their generalizations are very rarely considered.
That is why this thesis extends the current state of knowledge about con-
nections between partial closure operators, partial closure systems and
ordered sets. The connections are made stronger than they have been
until now. By adding and analyzing new axioms, we obtain better re-
sults than known ones on relationships between collections of sets, closure
operators and ordered sets. In order to achieve unique correspondence
between partial closure systems and partial closure operators, we intro-
duce a special kind of closure operator: sharp partial closure operator.
This is a partial operator on a power set that fulfills axioms analogous
to the closure axioms, plus a few additional ones. We have shown the
uniqueness of such a partial operator that corresponds to a given partial
closure system. We further introduce partial closure systems which cor-
respond to principal ideals in ordered set. Also, we state and prove the
representation theorem for ordered sets with respect to the introduced
partial closure operators and partial closure systems.

We pay a special attention to collections of sets related to finite ge-
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ometries, such as matroids. They are objects that have a large number
of mutually equivalent definitions, in different branches of mathematics.
The main result of this thesis is generalization of axioms and establishing
connection between those objects and ordered sets. After the transition
from closure operators to partial closure operators, we introduce a gener-
alization of matroids: p-matroids, as well as a generalization of geometric
lattices: geometric ordered sets. These generalizations emerge from the
relations between geometric lattices and matroids. We then research and
define an analogue to the notion of semimodularity for ordered sets that
are not lattices.

Relations between closure systems, closure operators and complete
lattices are in the foundations of the theory of ordered sets and the lattice
theory. Closure systems and closure operators are among the basic tools
used in research of ordered sets, topology, universal algebra, logic etc.
All this leads to the conclusion that generalizations of these notions,
considered in this thesis, have a very high potential of being applied
in different branches of mathematics. In this thesis we have shown an
example of how they can be applied on implicational systems, which is
used a lot in big data analysis. We hope that this is one of the applications
of partial operators than can be greatly developed, and this is one of
directions we plan to work on in the future.



PROŠIRENI IZVOD

1 Uvod

1.1 Parcijalno ured̄eni skupovi

Ured̄eni skup je ured̄en par (P,6), gde je 6 binarna relacija na nepra-
znom skupu P koja je refleksivna, antisimetrična i tranzitivna. Strukturu
(P,6) zovemo i parcijalno ured̄en skup ili poset (od enlgeskog naziva
partially ordered set). Kada je jasno sa kojim posetom radimo, često
pǐsemo samo P umesto (P,6).

Kažemo da je x pokriveno sa y (ili y pokriva x) ako i samo ako
x < y i ¬(∃z)(x < z < y), i pǐsemo x ≺ y. Ako važi x ≺ y ili x = y, onda
pǐsemo x � y.

Podskup T skupa P nazivamo lanac (resp. antilanac), ako su svaka
dva različita elementa skupa T uporediva (resp. neuporediva).

Element a ∈ P je:
– najmanji (resp. najveći), ako za sve x ∈ P važi a 6 x (resp.

x 6 a); ovi elementi su jedinstveni u ured̄enom skupu (ukoliko postoje) i
obično ih označavamo sa 0 i 1, respektivno;

– minimalni (resp. maksimalni), ako za sve x ∈ P , x 6 a (resp.
a 6 x) implicira x = a.

89
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Ako p ∈ P , onda skup

↓p = {x ∈ P | x 6 p}

nazivamo glavni ideal generisan elementom p.
Ako je P ured̄eni skup i Q ⊆ P , onda skup svih donjih ograničenja

skupa Q, u oznaci Qd, definǐsemo sa

Qd = {a ∈ P | a 6 b, za sve b ∈ Q},

a skup svih gornjih ograničenja skupa Q, u oznaci Qg, sa

Qg = {a ∈ P | b 6 a, za sve b ∈ Q}.

Podskup D skupa P je usmeren ako svaki konačan podskup skupa
D ima gornje ograničenje u skupu D. Ured̄eni skup (P,6) nazivamo
potpun ako ima najmanji element 0 i ako svaki njegov usmeren podskup
D ima supremum. Umesto celog naziva obično koristimo skrećenicu CPO
(od engl. complete partial ordered set).

Element a potpuno ured̄enog skupa P je kompaktan ako za svaki
njegov usmeren podskup D takav da a 6

W
D postoji d ∈ D da a 6 d.

Neka je (P,6) poset i C skup njegovih kompaktnih elemenata. Tada
za P kažemo da je algebarski ako je CPO i ako je za svako x ∈ P skup
↓x ∩ C usmeren, i važi x =

W
(↓x ∩ C).

Ured̄eni skup (L,6) u kojem svaki par elemenata ima supremum
(resp. infimum) se naziva ∨-polumreža (resp. ∧-polumreža). Ured̄eni
skup (L,6) u kojem svaki par elemenata ima supremum i infimum nazi-
vamo mreža. Ured̄eni skup u kojem svaki podskup ima supremum i
infimum nazivamo potpuna mreža.

Dobro je poznato da za ured̄ene skupova i mreže važi princip dual-
nosti, tj. ako je (P,6) ured̄en skup/mreža/potpuna mreža, onda je njegov
dual (P,>) takod̄e ured̄en skup/mreža/potpuna mreža.

Još jedna poznata osobina mrežaje sledeća teorema.

Teorema 1.2. Ured̄eni skup (P,6) u kojem svaki podskup ima infimum
(supremum) je potpuna mreža.

Element a mreže L je kompaktan ako važi sledeće: iz a 6
W
A za

svaki podskup A skupa L, sledi da postoji konačan podskup B skupa A
takav da a 6

W
B. Kako je mreža ured̄en skup, prirodno je zapitati se da

li se kompaktni elementi mreže i kompaktni elementi mreže kao poseta
poklapaju. Odgovor na ovo pitanje je potvrdan.

Mreža je kompaktno generisana ako je svaki njen element supre-
mum kompaktnih elemenata. Algebarska mreža je potpuna i kompak-
tno generisana.
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Teorema 1.3. Neka je L ured̄en skup. Tada svaki od sledećih uslova
povlači naredni:

1. L je algebarska mreža,

2. L je potpuna mreža,

3. L je potpun ured̄eni skup.

Teorema 1.4. Neka je L ured̄en skup. Tada svaki od sledećih uslova
povlači naredni:

1. L je algebarska mreža,

2. L je algebarski ured̄en skup,

3. L je potpun ured̄eni skup.

Veze koje važe izmed̄u ovih ured̄enih skupova prikazane su na slici 1
(strana 16).

Sada navodimo nekoliko tvrd̄enja koja su korisna kasnije.

Teorema 1.5 (Iwamurina lema). Ured̄eni skup je CPO ako i samo
ako svaki njegov lanac ima supremum.

Teorema 1.6. Ako je (F ,⊆) familija podskupova nekog skupa ured̄ena
inkluzijom, onda je F zatvorena za unije lanaca ako i samo ako je zatvo-
rena za unije usmerenih familija.

1.2 Sistemi zatvaranja

Familija F podskupova nepraznog skupa A koja je zatvorena za presek i
sadrži ceo skup A se naziva sistem zatvaranja (ili Murova familija).
Za sistem zatvaranja kažemo da je algebarski (ili algebarska Murova
familija) ako sadrži uniju svake svoje usmerene potfamilije.

Teorema 1.7. Sistem zatvaranja ured̄en inkluzijom je potpuna mreža.

Familija F podkupova nepraznog skupa S se naziva parcijalni si-
stem zatvaranja na S (u literaturi se još koristi naziv centralizovan
sistem ili tačkasti sistem zatvaranja, npr. [23, 21]) ako zadovoljava
sledeće uslove:

Ps1:
S
F = S,

Ps2: za svako x ∈ S važi
T
{X ∈ F | x ∈ X} ∈ F .

Kažemo da je skup
T
{X ∈ F | x ∈ X} centralizovan presek za x ∈ S.
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Teorema 1.8. Svaki ured̄en skup (P,6) je izomorfan nekom parcijalnom
sistemu zatvaranja na P ured̄enom inkluzijom.

Parcijalni sistem zatvaranja F na nepraznom skupu S je potpun ako
ispunjava:

Ps3: svaki lanac u F ima supremum.

Teorema 1.9. Svaki potpun parcijalni sistem zatvaranja je CPO. Obra-
tno, za svaki CPO postoji njemu izomorfan potpun parcijalni sistem za-
tvaranja.

Neka je F parcijalni sistem zatvaranja na skupu S koji ispunjava
sledeća dva uslova:

Ps′3: F je zatvoren za unije lanaca;

Ps′4: za svako X ∈ F , kolekcija

{Y ⊆ X | Y je kompaktan element u (F ,⊆)}

je usmerena u (F ,⊆).

Tada F nazivamo algebarski parcijalni sistem zatvaranja na S.

Teorema 1.10. Algebarski parcijalni sistem zatvaranja je algebarski
ured̄eni skup u odnosu na inkluziju i obratno, za svaki algebarski ured̄eni
skup postoji njemu izomorfan algebarski parcijalni sistem zatvaranja ure-
d̄en inkluzijom.

1.3 Operatori zatvaranja

Operator zatvaranja na nepraznom skupu A je unarna operacija X 7→
X na partitivnom skupu P (A), koja za sve X,Y ⊆ A ispunjava sledeće
uslove:

C1: X ⊆ X;

C2: X ⊆ Y implicira X ⊆ Y ;

C3: X = X.

Ako X ⊆ A i X = X, onda je X zatvoren skup i X je zatvorenje
skupa X. Familija zatvorenih skupova F je opseg operatora zatvaranja.

Teorema 1.11. Opseg operatora zatvaranja na skupu A jeste sistem
zatvaranja na istom skupu.
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Teorema 1.12. Ako je F sistem zatvaranja na skupu A, onda je presli-
kavanje X 7→ X iz P(A) u P(A), takvo da se X preslikava u presek svih
elemenata F koji sadrže X, operator zatvaranja na skupu A.

Korespondencija izmed̄u sistema zatvaranja i odgovarajućih operatora
zatvaranja je jedinstvena.

Teorema 1.13. U mreži F zatvorenih skupova nekog operatora zatva-
ranja važi: {Xi | i ∈ I} ⊆ F povlači_

{Xi | i ∈ I} =
[
{Xi | i ∈ I}.

Teorema 1.14. Za svaku potpunu mrežu L postoji skup i operator za-
tvaranja na njemu takav da je L izomorfna opsegu ovog operatora zatva-
ranja.

Operator zatvaranja X 7→ X na skupu A je algebarski ako ispunjava
sledeće:

C4: za sve X ⊆ A važi X =
S
{Y | Y ⊆ X i Y je konačan}.

Teorema 1.15. Neka je F sistem zatvaranja na A. Tada je kolekcija F
opseg algebarskog operatora zatvaranja ako i samo ako je F algebarski
sistem zatvaranja.

Teorema 1.16. Neka je F algebarski sistem zatvaranja na skupu A,
X 7→ X operator zatvaranja na A takav da je F njegov opseg i B ∈ F .
Tada je B kompaktan u mreži (F ,⊆) ako i samo ako B = Y za neki
konačan podskup Y skupa A.

Teorema 1.17. Mreža (F ,⊆), gde je F opseg algebarskog operatora
zatvaranja na A, jeste algebarska.

Teorema 1.18. Svaka algebarska mreža (L,6) je izomorfna mreži
(F ,⊆), gde je F opseg nekog algebarskog operatora zatvaranja.

1.4 Parcijalni operatori zatvaranja

Neka je za neprazan skup S parcijalno preslikavanje C : P(S) → P(S)
takvo da važe sledeći uslovi:

Pc1: Ako je C(X) definisano, onda X ⊆ C(X).

Pc2: Ako su C(X) i C(Y ) definisani, onda X ⊆ Y implicira C(X) ⊆
C(Y ).
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Pc3: Ako je C(X) definisano, onda je C(C(X)) takod̄e definisano i važi
C(C(X)) = C(X).

Pc4: C({x}) je definisano za sve x ∈ S.

Kako je definisano u [53], parcijalno preslikavanje C koje ispunjava
uslove Pc1–Pc4 nazivamo parcijalni operator zatvaranja na S.

Kao i kod operatora zatvaranja, ako je X ⊆ S i C(X) = X, onda X
nazivamo zatvoren skup. Familiju zatvorenih skupova FC u odnosu na
parcijalni operator C nazivamo opseg parcijalnog operatora zatvaranja
C. Strogi domen parcijalnog operatora C na skupu S označavamo sa
Dom(C):

Dom(C) := {X | X ⊆ S i C(X) je definisano}.

Neka je C parcijalni operator zatvaranja na S. Ako je C(X) defi-
nisano, onda se lako proverava da, ekvivalentno istoj osobini operatora
zatvaranja (koji nije parcijalan),

C(X) =
\
{Y ∈ FC | X ⊆ Y }. (5.1)

Takod̄e, lako se vidi da parcijalni operator jeste uopštenje operatora
zatvaranja.

Teorema 1.19. Opseg parcijalnog operatora zatvaranja na skupu S jeste
parcijalni sistem zatvaranja.

Obratno, za svaki parcijalni sistem zatvaranja F na skupu S postoji
parcijalni operator na skupu S takav da je njegov opseg upravo F .

Teorema 1.20. Neka je F parcijalni sistem zatvaranja i C parcijalni
operator zatvaranja na S takav da je F njegov opseg. Neka je dalje

ÒF := {S} ∪ {X ⊆ S | X =
\
G, za G ⊆ F}.

Tada je ÒF sistem zatvaranja i za odgovarajući operator zatvaranja ÒC važiÒC(X) = C(X), kada je C(X) definisano.

Parcijalni operator zatvaranja C na skupu S je potpun, ako zadovo-
ljava sledeći uslov:

Pc5: ako je {Xi | i ∈ I} lanac i C(Xi) je definisano za sve i ∈ I, onda je
C(
S
i∈I Xi) takod̄e definisano.
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Teorema 1.21. Opseg potpunog parcijalnog operatora zatvaranja jeste
potpun parcijalni sistem zatvaranja.

Obratno, parcijalni operator zatvaranja, čiji je opseg potpun parcijalni
sistem zatvaranja, jeste potpun.

Sledeća posledica direktno sledi iz teorema 1.9 i 1.21.

Posledica 1.22. Opseg potpunog parcijalnog operatora zatvaranja ure-
d̄en inkluzijom je CPO, i obratno, svaki CPO je izomorfan opsegu nekog
potpunog parcijalnog operatora zatvaranja.

Potpun parcijalni operator zatvaranja C na skupu S je algebarski
ako ispunjava sledeće:

Pc6: ako je C(X) definisano, onda je skup

{C(Y ) | Y ⊆ X, C(Y ) je definisano i Y je konačan} (5.2)

usmeren i

C(X) =
[
{C(Y ) | Y ⊆ X, C(Y ) je definisano i Y je konačan}.

(5.3)

Teorema 1.23. Ako je C algebarski parcijalni operator zatvaranja, onda
je njegov opseg zatvoren za unije lanaca.

Teorema 1.24. Opseg algebarskog operatora zatvaranja ured̄en inklu-
zijom jeste algebarski ured̄en skup.

Teorema 1.25. Za svaki algebarski poset S postoji algebarski parcijalni
operator zatvaranja takav da je njegov opseg izomorfan sa posetom S.

1.5 Generisanje operatora zatvaranja parcijalnim ope-
ratorima zatvaranja

U ovom delu pokazujemo kako proširiti parcijalni operator zatvaranja
do operatora zatvaranja (to jest, kako definisati zatvorenje skupova sa
nedefinisanim zatvorenjem na takav način da dobijeni operator bude ope-
rator zatvaranja). Ovo je uvek moguće i u opštem slučaju takav operator
nije jedinstveno odred̄en. Med̄utim, mi ćemo pokazati da, od svih op-
eratora zatvaranja koji proširuju dati parcijalni operator zatvaranja C
na skupu S, postoje dva, označimo ih sa C	 i C⊕, koje možemo sma-
trati ,,najmanjim“ i ,,najvećim“, u sledećem smislu: ako je K proizvoljan
operator zatvaranja na S takav da K(X) = C(X) kad god je C(X) defin-
isano, onda za sve X važi C	(X) ⊆ K(X) ⊆ C⊕(X).
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Neka je C parcijalni operator zatvaranja na skupu S. Najpre definǐse-
mo C⊕ : P(S)→ P(S) na sledeći način:

C⊕ =
\
{C(X ′) | X ′ ⊇ X i C(X ′) je definisano}.

(Primetimo, ako je familija sa desne strane jednakosti prazna, onda do-
bijamo C⊕(X) =

T
∅ = S.)

Teorema 1.26. Za parcijalni operator zatvaranja C na skupu S, ope-
rator C⊕ je operator zatvaranja na S i važi C⊕(X) = C(X) za sve X za
koje je C(X) definisano.

Sledeća teorema nam daje ,,maksimalnost“ operatora C⊕.

Teorema 1.27. Neka je C parcijalni operator zatvaranja na skupu S i
K proizvoljan operator zatvaranja na S takav da K(X) = C(X), kad
god je C(X) definisano. Tada za sve X ⊆ S važi K(X) ⊆ C⊕(X).

Vratimo se najavljenom ,,najmanjem“ operatoru. Ako je C parcijalni
operator zatvaranja na skupu S, najpre definǐsemo D′C : P(S) → P(S)
na sledeći način:

D′C(X) :=
[
{C(X ′) | X ′ ⊆ X i C(X ′) je definisano}.

Sada, neka
D

(0)
C (X) := X,

i, za svaki ordinal α,

D
(α+1)
C (X) := D′C(D(α)

C (X));

D
(α)
C (X) :=

[
ξ<α

D
(ξ)
C (X), ako je α granični ordinal.

Konačno, definǐsimo

C	(X) :=
[

α∈ON

D
(α)
C (X).

Primetimo, pošto, naravno, D(α)
C (X) je uvek podskup skupa S, imamo

da C	(X) jeste skup (a ne prava klasa), koji je pritom podskup skupa
S.

Teorema 1.28. Za parcijalni operator zatvaranja C na skupu S, ope-
rator C	 je operator zatvaranja na S i važi C	(X) = C(X) za sve X za
koje je C(X) definisano.
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Sada sledi ,,minimalnost“ operatora C	.

Teorema 1.29. Neka je C parcijalni operator zatvaranja na skupu S i
K proizvoljan operator zatvaranja na S takav da K(X) = C(X) kad god
je C(X) definisano. Tada za sve X ⊆ S važi C	(X) ⊆ K(X).

2 Poseti i parcijalni operatori zatvaranja

Sistem zatvaranja ured̄en inkluzijom je potpuna mreža i obrnuto, kolek-
cija glavnih ideala mreže je sistem zatvaranja, koji je, ured̄en inkluzijom,
izomorfan sa datom mrežom. Ipak, sistem zatvaranja glavnih ideala nije
jedini sistem zatvaranja koji je izomorfan datoj mreži.

Naš cilj u ovom delu rada jeste uspostaviti posebnu vezu med̄u fami-
lijama skupova, parcijalnih operatora i ured̄enih skupova. Ova veza je
analogna (koliko je to moguće) onoj izmed̄u operatora zatvaranja, sistema
zatvaranja i potpunih mreža.

2.1 Oštri parcijalni operatori zatvaranja

Za parcijalni operator zatvaranja C na skupu S kažemo da je oštar ako
ispunjava sledeći uslov:

Pc7: Neka B ⊆ S. Ako je
T
{X ∈ FC | B ⊆ X} ∈ FC , onda je C(B)

definisano i
C(B) =

\
{X ∈ FC | B ⊆ X}. (5.4)

Za parcijalni operator na skupu S koji ispunjava uslove Pc1–Pc4 i Pc7
korisitmo i skraćenicu SPCO na S koja potiče od engleskog naziva sharp
partial closure operator.

Sledi profinjenje teoreme iz [53].

Teorema 2.3. Opseg parcijalnog operatora zatvaranja na skupu S je
parcijalni sistem zatvaranja.

Obratno, za svaki parcijalni sistem zatvaranja F na S postoji jedin-
stveni oštar parcijalni operator zatvaranja na S takav da je F njegov
opseg.

Zbog prethodno pokazanog, jasno je da za dati parcijalni sistem za-
tvaranja F na S, postoji kolekcija parcijalnih operatora zatvaranja na S
čiji je opseg F , med̄u kojima je, prema teoremi 2.3, samo jedan oštar.
Dodatno, pomenuti operator je i maksimalan u sledećem smislu.
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Propozicija 2.4. Neka je F parcijalni sistem zatvaranja na skupu S.
Oštar parcijalni operator zatvaranja ima najveći strogi domen med̄u svim
parcijalnim operatorima zatvaranja čiji je opseg F . Dodatno, ako je D
parcijalni operator zatvaranja i C oštar parcijalni operator zatvaranja sa
istim strogim domenom, onda C(A) = D(A), za sve A ⊆ S za koje je D
definisano.

Oštar parcijalni operator zatvaranja je prirodno uopštenje operatora
zatvaranja, kao što sledi.

Teorema 2.5. Ako opseg F oštrog parcijalnog operatora zatvaranja C
na skupu S čini potpunu mrežu u odnosu na inkluziju, onda je C funkcija.

Obratno, ako je C operator zatvaranja na S, onda je oštar.

Svaku nepraznu familiju podskupova skupa S možemo dopuniti tako
da dobijemo parcijalni sistem zatvaranja. Jasno, dodavanjem svih singl-
tona elemenata iz S dobijamo parcijalni sistem zatvaranja, no tim doda-
vanjem se može desiti da nećemo očuvati centralizovane preseke. Stoga,
uvodimo sledeće proširenje.

Za proizvoljnu familiju F podskupova skupa S proširenje ÒF ⊆ P(S)
definǐsemo na sledeći način:

ÒF := F ∪ {
\
x∈Y

Y ∈ F | x ∈ S}.

Sledeća propozicija je direktna posledica definicije ÒF .

Propozicija 2.6. Za proizvoljnu nepraznu kolekciju F podskupova sku-
pa S, proširenje ÒF jeste parcijalni sistem zatvaranja na S koji očuvava
sve preseke i centralizovane preseke koje postoje u F .

U nastavku navodimo specijalan tip parcijalnog sistema zatvaranja
koji je izomorfan kolekciji svih glavnih ideala u posetu.

Kažemo da je parcijalni sitem zatvaranja F na nepraznom skupu S
glavni ako

Ps5: ∅ /∈ F i za sve X ∈ F važi���X \[{Y ∈ F | Y ( X}
��� = 1. (5.5)

Motivacija za gornju definiciju jesu glavni ideali u ured̄enom skupu.

Propozicija 2.7. Neka je (S,6) ured̄en skup. Tada je familija {↓x | x ∈
S} glavni parcijalni sistem zatvaranja.
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Neka je F glavni parcijalni sistem zatvaranja na skupu S. Da bismo
pokazali obrnutu vezu izmed̄u glavnih parcijalnih sistema zatvaranja i
glavnih ideala u ured̄enom skupu, uvodimo sledeće preslikavanje:

G : F → S definisano sa

G(X) = x, gde x ∈ X \
[
{Y ∈ F | Y ( X}. (5.6)

Ovo preslikavanje je dobro definisano zbog definicije glavnog parci-
jalnog sistema zatvaranja.

Propozicija 2.8. Ako je F glavni parcijalni sistem zatvaranja na skupu
S, onda je preslikavanje G : F → S definisano sa (5.6) bijekcija.

Na S se može prirodno indukovati poredak, koristeći uvedenu bijekciju
G i glavni parcijalni sitem zatvaranja F na S, na sledeći način: za sve
x, y ∈ S,

x 6 y ako i samo ako G−1(x) ⊆ G−1(y). (5.7)

Direktno se proverava da je 6 poredak na S. Dakle, kao posedicu
propozicije 2.8, dobijamo sledeće tvrd̄enje.

Posledica 2.9. Neka je F glavni parcijalni sistem zatvaranja na skupu S
i 6 poredak na S, definisan sa (5.7). Tada funkcija G definisana sa (2.3)
jeste izomorfizam iz (F ,⊆) u (S,6). Još vǐse, kolekcija glavnih ideala u
(S,6) jeste F .

Takod̄e, možemo krenuti od ured̄enog skupa i preko glavnih ideala
doći do parcijalnog sitema zatvaranja, koji indukuje polazni poredak.

Posledica 2.10. Neka je (S,6) ured̄en skup i F parcijalni sistem zatva-
ranja kojeg čine glavni ideali datog ured̄enog skupa. Tada, poredak na S
definsan sa (5.7) se poklapa sa 6 .

Konačno, uvodimo parcijalni operator zatvaranja koji odgovara gla-
vnom parcijalnom sistemu zatvaranja.

Parcijalni operator zatvaranja C na S je glavni ako ispunjava sledeći
uslov

Pc8: Ako X = C(X), tada postoji jedinstveno x ∈ X takvo da

x /∈
S
{Y ∈ FC | Y ( X}.

Jednostavno se pokazuje da su uslovi Pc7 i Pc8 nezavisni.
Veza izmed̄u ovih pojmova može biti objašnjena na sledeći način.
Opseg glavnog operatora zatvaranja je glavni parcijalni sistem zatva-

ranja i oštar parcijalni operator zatvaranja koji odgovara glavnom parci-
jalnom sistemu zatvaranja kako je definisan u teoremi 2.3 jeste glavni.
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Očigledno, prazan skup ne može biti zatvoren u odnosu na glavni
parcijalni operator zatvaranja. Dodatno, imamo da se opseg glavnog
parcijalnog operatora zatvaranja sastoji od zatvorenja singltona.

Propozicija 2.11. Neka je C glavni parcijalni operator zatvaranja na
skupu S. Ako X ∈ FC , onda postoji x ∈ X takvo da C({x}) = X.

Naredna teorema je teorema reprezentacije ured̄enih skupova preko
oštrih parcijalnih operatora zatvaranja i odgovarajućih parcijalnih siste-
ma zatvaranja.

Teorema 2.12. Neka je (S,6) ured̄en skup. Parcijalno preslikavanje
C : P(S)→P(S) definisano sa

C(X) = ↓(
_
X), ako postoji

_
X,

inače nije definisano, jeste glavni SPCO. Odgovarajući parcijalni sistem
zatvaranja je glavni i izomorfan je sa S.

2.2 Parcijalni domeni zatvaranja

Dosad smo analizirali opsege različitih (parcijalnih) operatora zatvaranja,
ali o strogim domenim parcijalnih operatora nije mnogo rečeno. U ovom
delu cilj je okarakterisati podfamilije familije P(S), za dati skup S, koje
mogu biti strogi domen nekog parcijalnog operatora zatvaranja na S.

Za famliju B podskupova nepraznog skupa S razmotrimo sledeći uslov:

B1: za svako x ∈ S važi {x} ∈ B.

Teorema 2.13. Za parcijalni operator zatvaranja C na skupu S kolekcija
Dom(C) ispunjava uslov B1.

Obratno, ako je B proizvoljna kolekcija podskupova skupa S koja
ispunjava uslov B1, onda postoji parcijalni operator zatvaranja na skupu
S, takav da Dom(C) = B.

Dalje, uvedimo sledeći uslov:

B2: za svako X ⊆ S važi:

ako
\
{B ∈ B | X ⊆ B} ∈ B, onda X ∈ B.

Teorema 2.14. Za oštar parcijalni operator zatvaranja C na skupu S,
kolekcija Dom(C) ispunjava uslova B1 i B2.

Obratno, ako je B proizvoljna kolekcija podskupova skupa S koja
ispunjava uslove B1 i B2, onda postoji oštar parcijalni operator zat-
varanja na skupu S takav da Dom(C) = B.
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3 p-matroidi, geometrijski i polumodularni
poseti

U ovom delu rada uopštavamo pojam matroida na pojam parcijalnih ma-
troida tako što operatore zatvaranja iz definicije matroida menjamo parci-
jalnim operatorima zatvaranja. Takod̄e uopštavamo pojam geometrijskih
mreža na pojam geometrijskih ured̄enih skupova. Zatim pokazujemo da,
kao i kod matroida i geometrijskih mreža, postoji korespondencija istog
tipa med̄u parcijalnim matroidima i geometrijskim ured̄enim skupovima.
Na kraju još uopštavamo pojam polumodularnih mreža na pojam polu-
modularnih ured̄enih skupova na takav način da, kao i u slučaju mreža,
ured̄en skup jeste geometrijski tada i samo tada kad je atomarno generi-
san i polumodularan.

3.1 Geometrijske mreže

Mreža L je polumodularna (nagore) ako za sve x, y ∈ L

iz x ∧ y ≺ x sledi y ≺ x ∨ y, (5.8)

dok je polumodularna nadole ako za sve x, y ∈ L važi

iz y ≺ x ∨ y sledi x ∧ y ≺ x. (5.9)

Teorema 3.1. Mreža L je polumodularna ako i samo ako za sve x, y, z ∈
L važi:

iz x ≺ y sledi x ∨ z � y ∨ z. (5.10)

Teorema 3.2. Neka je mreža L takva da su svi njeni lanci izmed̄u dva
proizvoljna elementa konačni. Tada je L polumodularna ako i samo ako
važi:

iz x ∧ y ≺ x i x ∧ y ≺ y sledi x ≺ x ∨ y i y ≺ x ∨ y. (5.11)

Dužina konačnog lanca se definǐse kao broj elemenata u lancu uma-
njen za jedan a dužina ured̄enog skupa (pa i mreže) kao najveći broj med̄u
dužinama njegovih lanaca (ukoliko takav broj postoji) i tada kažemo da
je konačne dužine.

Teorema 3.3. Ako su u polumodularnoj mreži L svi maksimalni lanci
izmed̄u dva elementa konačni, onda su oni iste dužine.

Kao posledicu prethodnog tvrd̄enja dobijamo sledeće.
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Posledica 3.4. Ako u polumodularnoj mreži L postoji konačan maksi-
malan lanac, onda su svi maksimalni lanci u mreži L iste dužine.

Elemente mreže koji pokrivaju najmanji elemenat nazivamo atomi.
Mreža je atomarno generisana ako se u njoj svaki elemenat različit od
najmanjeg može predstaviti kao supremum atoma.

Mreža koja je polumodularna, atomarno generisana i čiji su svi lanci
konačni se naziva geometrijska.

Jasno je da je svaka geometrijska mreža konačne dužine (zbog tvrd̄enja
3.4). Na slici 3 (strana 52) u prvom redu su prikazani dijagrami svih
geometrijskih mreža sa najvǐse 3 atoma a u drugom redu je jedan primer
geometrijske mreže sa četiri i jedan primer sa pet atoma.

Teorema 3.6. Neka je L polumodularna mreža konačne dužine. Tada,
ako je a ∈ L atom i x ∈ L proizvoljan element, onda važi ili a 6 x ili
x ≺ x ∨ a.

Ovo tvrd̄enje nam pomaže da izvedemo još neke karakterizacije geo-
metrijskih mreža, koje navodimo u nastavku.

Teorema 3.7. Mreža L konačne dužine je geometrijska ako i samo ako
za sve x, y ∈ L važi

x ≺ y ako i samo ako postoji atom a takav da a 
 x i y = x ∨ a.
(5.12)

Teorema 3.8. Mreža konačne dužine L je geometrijska ako i samo ako
je atomarno generisana i za proizvoljne atome a i b i element x važi:

iz a < x ∨ b i a 
 x sledi b < x ∨ a. (5.13)

(Uslov (5.13) se naziva i zakon zamene za geometrijske mreže.)

3.2 Matroidi

Skup A sa operatorom zatvaranja · : P(A) → P(A), u oznaci M(A),
nazivamo matroid na A ako za sve X ⊆ A i za sve x, y ∈ A važi

M1 : iz x /∈ X i x ∈ X ∪ {y} sledi y ∈ X ∪ {x}; (aksiom zamene)

M2 : postoji konačan Y tako da je Y ⊆ X i Y = X. (aksiom konačne
baze)

Matroid je prost (ili kombinatorna geometrija ili samo geome-
trija) ako važi još i:
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M3 : ∅ = ∅ i za sve x ∈ A je {x} = {x}.

Zatvorene skupove matroida nazivamo potprostori a opseg označa-
vamo sa LM (A) i nazivamo ga mreža potprostora matroida M(A).

Teorema 3.9. Za proizvoljne elemente U i V mreže potprostora LM (A)
matroida M(A) na skupu A važi:

U ≺ V ako i samo ako V = U ∪ {v}, za neko v /∈ U .

Teorema 3.10. Mreža potprostora prostog matroida je geometrijska.
Obratno, ako je L geometrijska mreža i A skup svih njenih atoma,

onda je preslikavanje ·, definisano na P(A) sa X = {a ∈ A | a 6
W
X},

operator zatvaranja u odnosu na koji je A prost matroid, a njegova mreža
potprostora LM (A) je izomorfna sa L.

Prethodna teorema ne važi samo za proste matroide već i za sve
konačne matroide, s obzirom na to da svakom konačnom matroidu odgo-
vara prost matroid.

Teorema 3.11. Za svaki konačan matroid postoji prost matroid takav
da su odgovarajuće mreže potprostora izomorfne.

Matroidi se javljaju u različitim oblastima matematike i imaju neko-
liko, ekvivalentnih, definicija. Obično se definǐsu kao konačni, te ćemo u
ovom delu raditi samo sa konačnim skupovima.

Prva definicija je inspirisana linearno nezavisnim vektorima i njihovim
osobinama.

• (I-definicija) Matroid (E, I) je konačan skup E sa nepraznom fami-
lijom I podskupova skupa E, koje nazivamo nezavisni skupovi,
sa sledećim osobinama:

I1: Svaki podskup nezavisnog skupa je nezavisan.

I2: Ako su X1 i X2 nezavisni skupovi i |X1| < |X2|, onda je za
neko x ∈ X2 \X1 skup X1 ∪ {x} nezavisan.

U prethodnoj definiciji uslov I2 može biti zamenjen uslovom

I ′2: Ako je S ⊆ E, onda svi maksimalni nezavisni podskupovi skupa S
imaju isti broj elemenata.

U teoriji grafova se dolazi do iste definicije: E je skup grana konačnog
(neusmerenog) grafa i nezavisni podkupovi skupa E su aciklični skupovi
grana (za skup grana kažemo da je acikličan ako indukovan graf ne sadrži
konture).
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Sledeću definiciju matroida dobijamo od prethodne, ali koristeći defi-
niciju ranga. Za skup S ⊆ E rang skupa S, u oznaci r(S), jeste kardinal-
nost maksimalnog nezavisnog podskupa skupa S; rang možemo definisati
na ovakav način zbog I ′2.

Dakle, imamo sledeću definiciju matroida.

• (R-definicija) Matroid (E, r) je konačan skup E sa funkcijom r :
P(E)→ Z koja zadovoljava uslove:

R1: Za svaki S ⊆ E važi 0 6 r(S) 6 |S|.

R2: Ako je S ⊆ T , onda r(S) 6 r(T ).

R3: Za sve S, T ⊆ E važi r(S) + r(T ) > r(S ∪ T ) + r(S ∩ T ).

Još jedna definicija je inspirisana teorijom grafova. Primetimo da
su konture u grafu minimalni skupovi grana koji su nezavisni (u smislu
aksioma I1 i I2). Uopštenjem ovoga dobijamo sledeću definiciju.

• (S-definicija) Matroid (E, C) je konačan skup E sa familijom C
nepraznih podskupova skupa E, koje zovemo ciklusi, i koji imaju
sledeće osobine:

S1: Nijedan podskup ciklusa nije ciklus.

S2: Ako dva razližita ciklusa X1 i X2 sadrže x, onda (X1∪X2)\{x}
sadrži ciklus.

Dalje, navodimo definiciju matroida inspirisanu pojmom baze vek-
torskog prostora u linearnoj algebri.

• (B-definicija) Matroid je konačan skup E sa nepraznom familijom
njegovih podskupova B, koje nazivamo baze, sa narednim osobi-
nama:

B1: Nijedna baza nije sadržana u drugoj bazi.

B2: Ako su X1 i X2 baze, onda za svako x ∈ X1 \X2 postoji neko
y ∈ X2 \X1 takvo da je (X1 \ {x}) ∪ {y} baza.

Sve veze izmed̄u pomenutih definicija matroida i definicije matroida
koju koristimo u ostalim odeljcima rada, koju ćemo sada radi pregle-
dnosti nazvati C-definicija, prikazane su na slici 4 (strana 67). Možemo
zaključiti da sve one daju istu strukturu.
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3.3 Geometrijski ured̄eni skupovi

Naša definicija geometrijskog ured̄enog skupa se zasniva na teoremi 3.8.
Zapravo, ona je prirodno uopštenje uslova te teoreme.

Najpre pokazujemo neke osobine parcijalnih matroida i geometrijskih
poseta, a zatim pokazujemo da, kao i kod matroida i geometrijskih mreža,
postoji korespondencija istog tipa med̄u parcijalnim matroidima i geo-
metrijskim ured̄enim skupovima.

Svi skupovi koje razmatramo odavde do kraja glave su konačni.
Neka je dat ured̄eni skup (P,6). Ako P ima najmanji element, ele-

mente koji pokrivaju najmanji nazivamo atomi (ovo je isto kao definicija
atoma u mreži); ako P nema najmanji element, onda su atomi svi mini-
malni elementi u P . Skup svih atoma označavamo sa AP ili samo A (uko-
liko je jasno iz konteksta iz kojeg ured̄enog skupa su atomi). Kažemo da
je ured̄eni skup atomarno generisan ako je svaki njegov element različit
od najmanjeg supremum nekog skupa atoma.

Sada definǐsemo geometrijski ured̄eni skup.
Ured̄eni skup (P,6) nazivamo geometrijski ako i samo ako je P

atomarno generisan i ako za sve atome a i b i svako x ∈ P važi:

ako je x ∨ b definisano, a < x ∨ b i a 
 x, onda x ∨ a postoji i b < x ∨ a.
(5.14)

Sledeća teorema daje još jednu, ekvivalentnu definiciju geometrijskog
poseta.

Teorema 3.22. Ured̄eni skup (P,6) je geometrijski ako i samo ako je
atomarno generisan i za sve x, y ∈ P takve da x 
 y, važi:

ako postoji a ∈ AP takvo da je y ∨ a definisano i x 6 y ∨ a, (5.15)

onda x ∨ y postoji i y ≺ x ∨ y.

3.4 Parcijalni matroidi

Parcijalni matroid (ili skraćeno p-matroid) definǐsemo kao ured̄eni par
(E,C), gde je E neprazan skup a C oštar parcijalni operator zatvaranja
na E koji ispunjava sledeće uslove:

(M) ako su C(X) i C(X ∪ {x}) definisani, onda y /∈ C(X) i y ∈ C(X ∪
{x}) povlači da je C(X ∪ {y}) definisano i x ∈ C(X ∪ {y});

(P ) C({x}) = {x}, za sve x ∈ E.
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Naredne dve teoreme pokazuju da postoji direktno uopštenje kore-
spondencije izmed̄u geometrijskih mreža i matroida na korespondenciju
izmed̄u geometrijskih poseta i parcijalnih matroida.

Teorema 3.26. Opseg p-matroida u odnosu na inkluziju je geometrijski
ured̄en skup.

Teorema 3.28. Za svaki geometrijski ured̄en skup (P,6) postoji p-
matroid čiji je opseg izomorfan sa (P,6).

3.5 Polumodularni ured̄eni skupovi

Podsetimo se da je konačna mreža geometrijska ako i samo ako je ato-
marno generisana i polumodularna. U ovom odeljku cilj nam je da
uopštimo pojam polumodularnosti na ured̄ene skupove na takav način
da ista ekvivalencija važi i za posete.

Naredna definicija, iako izgleda pomalo neprirodno, postiže taj cilj.

• Ured̄eni skup (P,6) koji ima najmanji element je polumodularan
ako za sve x, y ∈ P važi sledeće:

ako x ∧ y ≺ x, onda
y ≺ x ∨ y ili (P nije ∨-polumreža i

ne postoji atom a takav da x 6 y ∨ a).
(5.16)

• Ured̄eni skup (P,6) koji nema najmanji element je polumodu-
laran ako je ured̄eni skup (P0,6) polumodularan, gde je (P0,6)
ured̄eni skup dobijen dodavanjem najmanjeg elementa ured̄enom
skupu (P,6).

Polumodularnost za ured̄ene skupove je uopštenje polumodularnosti
za mreže, to jest, mreža je polumodularna kao mreža ako i samo ako je
polumodularna kao ured̄eni skup.

Naredne dve teoreme su suština ovog odeljka.

Teorema 3.30. Svaki atomarno generisan i polumodularan ured̄eni skup
je geometrijski.

Teorema 3.31. Svaki geometrijski ured̄eni skup je polumodularan.

Direktna posledica prethodne dve teoreme je sledeće tvrd̄enje.

Posledica 3.32. Ured̄eni skup je geometrijski ako i samo ako je ato-
marno generisan i polumodularan.
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4 Primene

Operatori zatvaranja imaju široku primenu u nauci. Mi ćemo se kon-
centrisati na analiziranje velikih količina podataka. Ovde se iz podataka
o objektima sa puno osobina izvlače povezanosti njihovih karakteristika.
Jedan pristup ovom problemu jeste preko implikacija, koje su predmet
izučavanja formalne koncept analize. One se takod̄e pojavljuju i mnogim
drugim oblastima kao što su analiza podatka, data-mining, relacione baze
podataka. Ove implikacije predstavljaju pravila koja govore ,,objekat sa
atributima iz skupa X ima atribut x“. Teško je zapisati sve implikacije
koje važe na jednom skupu podataka, ali ako možemo naći neku vrstu
baze ovih implikacija, onda ih možemo sve generisati pomoću te baze.
Operatori zatvaranja se koriste u ovom delu problema.

S obzirom da je većina rezultata u ovoj glavi dokazana za konačne
skupove, smatraćemo da radimo samo sa konačnim skupovima.

4.1 Koncepti, implikacije i baze

Formalni kontekst K = (G,M, I) se sastoji od dva skupa G i M i
relacije I izmed̄u G i M . Elemente skupa G nazivamo objekti a elemente
skupa M atributi konteksta. Ako element konteksta g ∈ G ima osobinu
m ∈ M , onda to zapisujemo kao (g,m) ∈ I. Ovu relaciju nazivamo
relacija incidencije konteksta.

Skup atributa zajedničkih za sve objekte skupa A ⊆ G zapisujemo
kao A′, to jest

A′ = {m ∈M | (g,m) ∈ I za sve g ∈ A}.

Slično, skup objekata koji imaju sve atribute u skupu B ⊆M jeste

B′ = {g ∈ G | (g,m) ∈ I za sve m ∈ B}.

Formalni koncept konteksta (G,M, I) je ured̄eni par (A,B) takav
da A ⊆ G, B ⊆ M , A′ = B i A = B′. Skup S nazivamo ekstent
a B intent koncepta (A,B). Skup svih koncepata konteksta (G,M, I)
označavamo B(G,M, I).

Teorema 4.1. Za koncept (G,M, I) i A,A1, A2 ⊆ G, B,B1, B2 ⊆ M
važi:

1. iz A1 ⊆ A2 sledi A′2 ⊆ A′1, iz B1 ⊆ B2 sledi B′2 ⊆ B′1;

2. A ⊆ A′′, B ⊆ B′′;
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3. A′ = A′′′, B′ = B′′′;

4. A ⊆ B′ ⇔ B ⊆ A′ ⇔ A×B ⊆ I.

Prethodna teorema daje nam sledeću posledicu.

Posledica 4.2. Ako je (G,M, I) kontekst, onda je operator ′′ operator
zatvaranja na oba skupa G i M .

Za svaki skup A ⊆ G, (A′′, A′) jeste koncept a A′′ je najmanji ekstent
koji sadrži A. Ovo znači da je A ⊆ G ekstent ako i samo ako A = A′′.
Isto važi i za intente.

Na skupu B(G,M, I) se definǐse poredak 6: (A1, B1) 6 (A2, B2) ako
i samo ako A1 ⊆ A2 (ako i samo ako B2 ⊆ B1). Na ovakav način se
dobija mreža i zato B(G,M, I) nazivamo mreža koncepata konteksta
(G,M, I).

Teorema 4.3. Mreža koncepata B(G,M, I) jeste kompletna mreža u
kojoj su infimum i supremum definisani sa:

^
k∈K

(Ak, Bk) =

 \
k∈K

Ak,

 [
k∈K

Bk

!′′!
,

_
k∈K

(Ak, Bk) =

  [
k∈K

Ak

!′′
,
\
k∈K

Bk

!
.

Implikacija X → Y je ured̄eni par (X,Y ) podskupova skupa M .
Stoga, skup implikacija jeste binarna relacija na P(M); zovemo ga im-
plikacioni sistem. Kada je skup Y u implikaciji X → Y singlton, onda
pǐsemo X → y, ova vrsta implikacije se naziva unitarna implikaci-
ja. Stoga je skup unitarnih implikacija, unitarni implikacioni sistem
(UIS), relacija izmed̄u P(M) i M .

Implikacija X → Y važi na skupu T ⊆M ako je X * T ili Y ⊆ T .
Skup implikacija Σ važi na skupu T ako svaka implikacija iz Σ važi
na T . X → Y važi u kontekstu (G,M, I) ako važi u svakom intentu
datog konteksta. Takod̄e kažemo da je X premisa od Y ili da je X → Y
implikacija konteksta (G,M, I).

Lako se vidi da važi sledeća teorema.

Teorema 4.4. Implikacija X → Y važi u (G,M, I) ako i samo ako
Y ⊆ X ′′. Tada takod̄e važi u svim intentima.
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Implikacija X → Y sledi iz skupa implikacija Σ ako važi u svakom
podskupu atributa na kojem važi i Σ. Skup implikacija Σ je zatvoren
(potpun implikacioni sistem) ako je svaka implikacija koja sledi iz Σ
takod̄e u Σ.

Za implikacioni sistem Σ = {X1 → Y1, X2 → Y2, . . . , Xm → Ym}
definǐsemo veličinu s(Σ) kao

s(Σ) =
mX
i=1

(|Xi|+ |Yi|).

Implikacioni sistem možemo uvek zameniti unitarnim implikacionim
sistemom. Implikacija X → Y može biti zamenjena skupom unitarnih
implikacija {X → y | y ∈ Y }. Zbog toga u nastavku radimo sa unitarnim
implikacijama.

Implikacija X → y važi na podskupu A ⊆ M ako X ⊆ A implicira
y ∈ A. Ako je Σ skup implikacija, A ⊆ M je Σ-zatvoren kada sve
implikacije iz Σ (to jest Σ-implikacije) važe na A. Skup svih Σ-zatvorenih
skupova označavamo sa FΣ. Lako se vidi da FΣ čini sistem zatvaranja
na skupu M . Odgovarajući operator zatvaranja označavamo sa CFΣ .

Sistemu Σ možemo pridružiti operator CΣ: za X ⊆M neka

πΣ(X) = X ∪
[
{b ∈M | A ⊆ X i A→ b ∈ Σ}

i
πnΣ(X) = πn−1

Σ (X) ∪
[
{b ∈M | A ⊆ πn−1

Σ (X) i A→ b ∈ Σ};

tada
CΣ(X) = πΣ(X) ∪ π2

Σ(X) ∪ π3
Σ(X) ∪ . . .

Kako je M konačan, postoji n ∈ N takvo da πnΣ(X) = πn+1
Σ (X), stoga

imamo CΣ(X) = πnΣ(X). Važi još vǐse: CΣ = CFΣ .
Ako krenemo od operatora zatvaranja C na skupu M , onda se zatvo-

reni skupovi poklapaju sa Σ-zatvorenim skupovima sledećeg UIS:

ΣC = {X → y | y ∈M , X ⊆M i y ∈ C(X)}.

Ovaj unitarni implikacioni sistem ispunjava sledeća svojstva:

F1: iz X ⊆M i x ∈ X sledi X → x;

F2: za svako y ∈M i sve X,Y ⊆M

iz X → y i (∀x ∈ X)(Y → x) sledi Y → y.
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Svaki UIS koji zadovoljava osobine F1 i F2 nazivamo potpun. Pot-
puni unitarni implikacioni sistemi su u jedan-na-jedan korespondenciji sa
operatorima zatvaranja.

Svaki UIS Σ je sadržan u nekom potpunom UIS. To je UIS ΣC , gde
C = CΣ i ovo je najmanji potpun UIS koji sadrži Σ. Drugi način za
generisanje najmanjeg potpunog UIS koji sadrži Σ jeste rekurzivna pri-
mena pravila F1 i F2. Tada Σ nazivamo generǐsući sistem za ΣC . Za
unitarne implikacione sisteme Σ1 i Σ2 kažemo da su ekvivalentni, ako
generǐsu isti potpun UIS.

UIS Σ je minimalan ili neredundantan ako Σ\{X → y} nije ekvi-
valentno sa Σ, za sve X → y ∈ Σ. Nazivamo ga baza. Ako za sve Σ′

ekvivalentne sa Σ važi |Σ| 6 |Σ′|, onda je Σ minimalna baza. Ako za
svako UIS Σ′ koje je ekvivalentno sa Σ važi s(Σ) 6 s(Σ′), onda je Σ op-
timalno. Ako za sve X ⊆M važi CΣ(X) = πΣ(X), onda Σ je direktna.
UIS nazivamo pravi ako ne sadrži trivijalne implikacije; to su implikacije
X → x gde x ∈ X. Od svakog UIS možemo dobiti ekvivalentan UIS
tako što izostavimo trivijalne implikacije. Zbog toga u nastavku ćemo
podrazumevati da radimo sa pravim unitarnim implikacionim sistemima.

Postoje vǐse vrsta generǐsućih sitema za unitarne implikacione sisteme.
Mi ćemo pomenuti samo nekoliko vrsta.

UIS Σdo je direktno-optimalan ako je direktan i ako s(Σdo) 6 s(Σ),
za svaki direktan UIS Σ koji je ekvivalentan sa Σdo.

Može se pokazati da je ovakav sistem jedinstven i da se za svaki UIS
može odrediti ekvivalentan direktno-optimalan UIS.

Levo-minimalna baza Σlm je:

Σlm = {X → y | y ∈ C(X) \X i za sve Y ( X, y /∈ C(Y )}.

Ova vrsta baze jeste restrikcija potpunog implikacionog sistema na im-
plikacije čije su premise minimalne kardinalnosti.

Teorema 4.5. Neka je C operator zatvaranja na skupu M . Tada se
direktno-optimalna i levo-minimalna baza poklapaju.

Stoga, ovakvu vrstu baze nazivamo kanonička direktna baza i
označavamo je sa Σcd.

4.2 Uopštenje na parcijalne unitarne implikacione si-
steme

Ovde dajemo uopštenje unitarnih implikacionih sistema. Potpun par-
cijalni unitarni implikacioni sistem Σ na skupu M ispunjava sledeće
uslove:
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PF1: ako postoji y takvo da X → y, onda za sve x ∈ X važi X → x;

PF2: za svako y ∈M i sve X,Y ⊆M

X → y i (∀x ∈ X)(Y → x) povlači Y → y;

PF3: ako za X ⊆M postoji z ∈M takvo da X → z, onda postoji x ∈M
takvo da {y ∈M | X → y} → x;

PF4: x→ x, za sve x ∈M .

Postoji korespondencija izmed̄u potpunih parcijalnih UIS i parcijalnih
operatora zatvaranja.

Teorema 4.6. Svaki potpun parcijalni UIS na skupu M definǐse parci-
jalni operator zatvaranja na istom skupu.

Teorema 4.7. Ako je C parcijalni operator zatvaranja na M , onda

ΣC := {X → y | y ∈M , X ⊆M , C(X) je deinisano i y ∈ C(X)}

jeste potpun parcijalni UIS na M .

5 Zaključak

Ova teza daje uvid u veze izmed̄u operatora zatvaranja, sistema zat-
varanja i potpunih mreža. Ove veze su izučavane puno, dok su njihova
uopštenja retko razmatrana. Zato ova teza proširuje znanje o vezama
izmed̄u parcijalnih operatora zatvaranja, parcijalnih sistema zatvaranja
i ured̄enih skupova. Povezanost je pojačana u odnosu na to kako je bilo
dosad. Dodavanjem i analiziranjem novih aksioma stečeni su bolji rezul-
tati od onih poznatih koji povezuju kolekcije skupova, operatore zatva-
ranja i ured̄ene skupove. U cilju postizanja jedinstvene korespondencije
izmed̄u parcijalnih sistema zatvaranja i parcijalnih operatora zatvaranja
uveli smo novi tip parcijalnog operatora zatvaranja: oštar parcijalni ope-
rator zatvaranja. Ovo je parcijalni operator zatvaranja na partitivnom
skupu koji ispunjava aksiome analogne aksiomama zatvaranja zajedno
sa nekoliko dodatnih aksioma. Pokazali smo jedinstvenost takvog par-
cijalnog operatora koji odgovara datom parcijalnom sistemu zatvaranja.
Dalje uvodimo parcijalni sistem zatvaranja, koji odgovara glavnim idea-
lima u ured̄enom skupu. Takod̄e smo formulisali i dokazali teoremu
reprezentacije za ured̄ene skupove u odnosu na uvedene parcijalne ope-
ratore zatvaranja i parcijalne sisteme zatvaranja.
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Posebna pažnja je posvećena kolekcijama skupova povezanih sa kona-
čnim geometrijama, kao što su matroidi. To su objekti sa velikim bro-
jem med̄usobno ekvivalentnih definicija, iz različitih oblasti matematike.
Glavni rezultat ove teze jeste uopštenje njihovih aksioma i uspostavljanje
veza izmed̄u ovih objekata i ured̄enih skupova. Posle prelaska sa opera-
tora zatvaranja na parcijalne operatore zatvaranja, uvedeli smo uopštenje
matroida: p-matroide, kao i uopštenje geometrijskih mreža: geometrijski
ured̄ene skupove. Ova uopštenja potiču od odnosa izmed̄u matroida i
geometrijskih mreža. Dalje smo istraživali i definisali analogon pojma
polumodularnosti za ured̄ene skupove koji nisu mreže.

Odnosi izmed̄u sistema zatvaranja, operatora zatvaranja i potpunih
mreža su u osnovama teorije ured̄enih skupova i teorije mreža. Sistemi
zatvaranja i operatori zatvaranja su med̄u osnovnim alatima koji se ko-
riste u istraživanjima u ured̄enim skupovima, topologiji, univerzalnoj al-
gebri, logici, i tako dalje. Sve ovo vodi do zaključka da uopštenja ovih
pojmova, koja su razmatrana u ovoj tezi, imaju veliki potencijal primene
u različitim oblastima matematike. U ovoj tezi smo prikazali primer kako
mogu biti primenjena na implikacionim sistemima, koji se u velikom meri
koriste u analizi velikih podataka. Nadamo se da ova primena parcijalnih
operatora može biti znatno razvijena, i ovo je jedan od pravaca u kojem
planiramo da nastavimo da radimo.
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cijalne jednačine, Elementarna matematika 1; za studente informatike
Teorijski osnovi informatike 1, Elementi matematičke logike, Osnovi al-
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Čuva se: Biblioteka Departmana za

matematiku i informatiku,
Novi Sad

ČU
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Član: Dr Petar Marković, redovni profesor Pri-
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