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Ovaj doktorat posvećujem mom ocu Miroslavu.
I dedicate this doctoral dissertation to my father Miroslav.

i



Acknowledgments

Firstly, I would like to express my sincere gratitude to my advisors Dr. Christine
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Dissertation title: Dual-arm robotic manipulation inspired by human skills

Abstract: Man’s desire to shape the world to fit his ideas (or vision) has led to major
technological achievements. Many machines have been inspired by biological systems
and processes observed in nature. The greatest challenge for the research engineer is to
develop a human-like mechanical system that has the skills of a human being. The shape
of the human body has largely inspired the mechanical structure of humanoid robots.
Current efforts of researchers in humanoid robotics and cognitive sciences are aimed at
translating models of human behavior to humanoid robots. Modeling of human move-
ment has been extensively studied and explored in the literature, to design and control a
humanoid robot inspired by human movement in daily human activities. Various scien-
tific disciplines analyze human movement in different ways. There are many techniques
and strategies for imitating and analyzing human motions, such as the motion imitation
process, imitation learning, and optimization approaches.

The objectives of this thesis are to:

– improve the conversion process for the imitation of human upper-body movement
by a humanoid, for a task with and/or without contact between hands and equip-
ment;

– define an objective function optimized by human movement, in order to transfer
human skills to humanoid robots; and

– execute humanoid robot motion similar to human motion, by minimizing the same
criteria.

Since the human model is complex and has many degrees of freedom, the goal is to
imitate human motion and transfer human skills to a humanoid robot with fewer degrees of
freedom. To this end, a kinematic model of the robot ROMEO was used as the kinematic
model of a human body. The motions of a human being that uses both arms to perform
a task, including contact with the environment, are analyzed in the thesis. This type of
motion has not been sufficiently explored in the literature.

A conversion process for the imitation of human motion by a humanoid robot is pro-
posed in the first part of the thesis. This conversion process enhances existing techniques
and was developed to imitate human motion and have a humanoid robot perform a task
with and/or without contact between hands and equipment. The proposed conversion
process takes into account the situation of marker frames and the position of joints and
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ensures more precise imitation than previously proposed methods. Precise imitation of
hand motion in Cartesian space is essential for the task where the hands come into con-
tact with the environment. The conversion process is based on the analytical expression
of the kinematic model and is able to define the motion generated by the robot in real
time. The results were tested on the robot ROMEO, which performed complex dual-arm
manipulation tasks.

The second part of the thesis analyzes strategies for the generation of human motion.
Based on the assumption that human movement is optimal, the aim was to define an un-
known objective function, minimized during the manipulation tasks. Consequently, the
inverse optimal control approach was used. The objective function is written as a weighted
sum of well-known basic criterion functions of process optimization in robotics, such as
the minimization of kinetic energy, minimization of joint velocity, improved manipula-
bility, and minimization of deviations from the ergonomic position of the human. The
optimal combination of criteria, which best represented the recorded human motion, was
sought. For that purpose, the motion resulting from the minimization of the weighted
criteria was compared to the motion recorded during human manipulations. A genetic
algorithm suitable for solving global optimization problems was used in the task. Several
manipulation tasks were analyzed and several people performed the same tasks. The ob-
jective was to study how the optimized criteria vary depending on the tasks and the people.
The optimized criteria are shown to vary and be contingent upon the type of motion and
the amplitude of the shoulder, elbow and wrist movement. The effect of the characteris-
tics of the human body and the environment (involved equipment) on the achievement of
motions was also examined.

This study produced optimized criteria, which could be used to generate motion of
the humanoid robot inspired by human motion. In order to generate the same motion as
that of a human, the humanoid robot can minimize the same criteria using the inverse
kinematics algorithm. Experimental tests were conducted for the opening/closing drawer
task. It was noted that adaptation of the motion was necessary, to take into account the
size of the robot and its working space. This thesis aims to better integrate robots in
human environments. In addition, the proposed algorithm is applicable in rehabilitation
medicine.

The analysis of human motions made it possible to establish rules that, based on ob-
served joint motions, define the minimized criteria. This approach is followed in the third
and final part of the thesis, where a fuzzy logic algorithm is proposed and tested for the
transfer of human skills to humanoid robots. The fuzzy algorithm estimates the weights
of the criteria defined in the objective function, according to the human motion recorded
in the joint space. The fuzzy logic algorithm should be able to generate an objective
function for each type of dual-arm human motion, regardless of whether it had previously
been analyzed or not. An inverse kinematic model, adapted to minimize criteria, can be
used to generate humanoid robot motion.
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Naslov teze: Dvoručna manipulacija inspirisana ljudskim veštinama

Rezime: Čovekova želja da stvori svet po svojoj zamisli (ili viziji) dovela je do razvoja
velikih tehničkih dostignuća. Inspiracije za stvaranje brojnih mašina istraživači su pron-
ašli posmatranjem bioloških sistema i procesa u prirodi. Najveći izazov za istraživača je
razvoj mehaničkog sistema nalik čoveku koji ima karakteristike ljudskog bića. Mehanička
struktura ljudskog tela u velikoj meri je mapirana u model humanoidnih robota. Sadašnji
napori istraživača u oblasti humanoidne robotike i kognitivnih nauke su da transformišu
modele ljudskog ponašanja i procesa u model humanoidnih robota. Modeliranje ljud-
skog pokreta široko je proučavano i istraživano u literaturi sa ciljem da se dizajnira
humanoidni robot i definiše njegovo upravljanje inspirisano karakteristikama ljudskog
pokreta u svakodnevnim ljudskim aktivnostima. Razne discipline nauke analiziraju ljud-
sko kretanje na različite načine. Postoje brojne tehnike i strategije koje imitiraju i anal-
iziraju ljudsko kretanje, kao što su imitacioni proces, učenje iz imitacije i optimizacioni
pristupi.

Cilj ove teze je:

– da unapredi konverzione procese za imitaciju pokreta gornjeg dela tela čoveka sa
humanoidnim robotom za zadatke sa ili bez kontakata izmed̄u ruku i opreme;

– da definiše objektivnu funkciju koja predstavlja optimizirano ljudsko kretanje sa
ciljem prenošenja ljudskih veština na humanoidne robote; i

– da humanoidni robot izvršava pokret na isti način kao čovek minimiziranjen istih
kriterijuma

S obzirom da je model čoveka kompleksan i obuhvata mnogo stepeni slobode, naš cilj je
da se ljudski pokret i veštine kretanja prenesu na kretanje humanoidnog robota sa manje
stepeni slobode. U tu svrhu, kinematski model robota ROMEO je korišćen za predstavl-
janje kinematskog model ljudskog tela. Pokreti dvoručne manipulacije koji uključuju
kontakt sa okruženjem su predmet istraživanja u tezi. Ova vrsta kretanja nije dovoljno
istražena u literaturi.

U prvom delu teze predložen je konverzioni proces za imitaciju ljudskog kretanja sa
humanoidnim robotom. Ovaj konverzioni proces poboljšava postojeće tehnike i razvi-
jen je za imitaciju ljudskog kretanja sa humanoidnim robotom za izvod̄enje zadataka sa
ili/i bez kontakta izmed̄u ruku i opreme. Predstavljeni konverzioni proces uzima u obzir
poziciju i orijentaciju markera i poziciju zglobova i pruža precizniju imitaciju ljudskih
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pokreta od prethodno predloženih metoda. Precizna imitacija kretanja ruku u Kartezijan-
skom prostoru je od suštinskog značaja za zadatak gde ruke dolaze u dodir sa opremom.
Konverzioni proces je zasnovan na analitičkoj predstavi kinematskog modela čoveka i
generiše očekivano kretanje robota u realnom vremenu. Dobijeni rezultati našeg kon-
verzionog procesa su testirani na robotu ROMEO kroz obavljanje kompleksnih zadataka
dvoručne manipulacije.

Drugi deo teze analizira strategije generisanja ljudskih pokreta. Na osnovu pret-
postavke da je ljudski pokret optimalan, cilj je definisati nepoznatu objektivnu funkciju,
koja je minimizirana tokom zadatka manipulacije. Shodno tome, inverzan optimalni
pristup upravljanja je korišćen. Objektivna funkcija je napisana kao ponderisana suma
poznatih osnovnih kriterijumskih funkcija u robotici, kao što je minimizacija kinetičke
energije, minimizacija brzine zglobova, povećanje manipulabilnosti i minimizacija raz-
like izmed̄u trenutne i ergonomične pozicije čoveka. Optimalna kombinacija kriterijuma,
koja najbolje predstavljaju snimljeno ljudsko kretanje je predmet istraživanja. Kretanje
koje je dobijeno minimiziranjem ponderisanih kriterijuma upored̄ivano je sa snimljenim
ljudskim kretanjem tokom manipulacija. Genetski algoritam, pogodan za rešavanje glob-
alnih problema optimizacije, je korišćen u tu svrhu. Analizirano je nekoliko manipu-
lacionih zadataka izvršenih od strane više ljudi. Cilj je proučiti kako se optimizacioni
kriterijumi razlikuju u zavisnosti od zadataka i ljudi. Pokazano je da optimizacioni kriter-
ijumi variraju u zavisnosti od vrste kretanja i amplitude pokreta ramena, laktova i zgloba.
Ispitivan je i efekat karakteristika ljudskog tela i životne sredine (uključujući i opremu)
na ostvarljivost pokreta.

Ovo istraživanje definiše optimizacione kriterijume koji mogu biti korišćeni za gener-
isanje pokreta humanoidnog robota inspirisanog kretanjem čoveka. Da bi generisao isti
pokret kao čovečiji, humanoidni robot može minimizirati iste kriterijume koristeći al-
goritam inverzne kinematike. Eksperimentalni testovi su urad̄eni za zadatak “otvaranje/
zatvaranje fioke”. Primećeno je da je prilagod̄avanje kretanja neophodno, uzimajući u
obzir veličinu robota i njegovog radnog prostora. Ova teza ima za cilj da bolje integriše
robote u ljudskom okruženju. Pored toga, predloženi algoritam može naći primenu u
medicinskoj rehabilitaciji.

Analiza ljudskih pokreta u prostoru unutrašnjih koordinata omogućila je predstavl-
janje pravila koja definišu minimizirane kriterijume. Ovaj pristup je predstavljen u trećem
i završnom delu teze, gde je predložen i ispitivan algoritam fazi logike za prenos ljudskih
veština na humanoidne robote. Algoritam fazi logike estimira težinske koeficijente kri-
terijuma definisanih u objektivnoj funkciji, u skladu sa ljudskim kretanjem zabeleženim
u prostoru unutrašnjih koordinata. Algoritam fazi logičke je u mogućnosti da generiše
objektivnu funkciju za svaki tip pokreta dvoručne manipulacije, bez obzira da li je ranije
analiziran ili ne. Inverzni kinematski model, prilagod̄en za minimiziranje kriterijuma,
može se koristiti za generisanje istih pokreta na humanoidnom robotu.

Ključne reči: veštine ljudskog kretanja, inverzni optimalni algoritam upravljanja, algori-
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Titre de la thèse: Manipulation robotique à deux mains inspirée des aptitudes humaines

Résumé: Le désir de l’homme de créer un monde à son idée (ou image) a conduit
au développement de grandes réalisations techniques. De nombreuses machines sont
inspirées des systèmes et des processus biologiques observés dans la nature. Le plus
grand défi pour le chercheur est de mettre au point un système mécanique, ressemblant
à l’homme, et qui présente les aptitudes d’un être humain. La forme du corps humain a
largement inspirée la structure mécanique des robots humanoïdes. Les efforts actuels des
chercheurs dans le domaine de la robotique humanoïde et des sciences cognitives visent à
transposer les modèles du comportement humain vers les robots humanoïdes. La modéli-
sation du mouvement humain a été largement étudiée et explorée dans la littérature dans
le but de concevoir et de contrôler un robot humanoïde inspiré par le mouvement humain
dans les activités humaines quotidiennes. Les différentes disciplines scientifiques analy-
sent le mouvement humain de différentes manières. Il existe de nombreuses techniques et
stratégies pour imiter et analyser le mouvement humain, comme le processus d’imitation
du mouvement, l’apprentissage par imitation et les approches d’optimisation.

Le but de cette thèse est :

– d’améliorer le processus de conversion pour l’imitation du mouvement humain du
haut du corps par un humanoïde, pour une tâche avec ou/et sans contact entre les
mains et l’équipement.

– de définir la fonction objective optimisée par un mouvement humain dans le but de
transférer les habiletés humaines aux robots humanoïdes.

– de faire exécuter au robot humanoïde des mouvements similaires au mouvement
humain, c’est à dire minimisant les mêmes critères.

Comme le modèle humain est complexe et comporte de nombreux degrés de liberté,
l’objectif est de faire imiter un mouvement et de transférer les habiletés humaines à un
robot humanoïde avec moins de degrés de liberté. A cette fin, le modèle cinématique du
robot ROMEO est utilisé comme modèle cinématique du l’humain. Des mouvements d’un
humain utilisant ses deux bras pour une tache incluant le contact avec l’environnement
sont analysées ici. Ce type de mouvement a été peu étudié dans la littérature.

Dans la première partie de la thèse, un processus de conversion pour l’imitation du
mouvement humain par un robot humanoïde est proposé. Ce processus de conversion
améliore les techniques existantes et est développé dans le but de permettre l’imitation

viii



du mouvement humain avec un robot humanoïde pour effectuer une tâche avec ou/et sans
contact entre les mains et l’équipement. Notre processus de conversion tient compte de
la situation de marqueurs et de la position des articulations et fournit une imitation plus
précise que les méthodes proposées précédemment. L’imitation précise du mouvement
des mains dans l’espace cartésien est essentielle pour la tâche où les mains entrent en
contact avec l’environnement. Notre processus de conversion est basé sur l’expression
analytique d’un modèle cinématique et peut permettre de définir le mouvement à générer
par le robot en temps réel. Les résultats obtenus de notre processus de conversion ont été
testés sur le robot ROMEO lors de l’exécution de manipulations à deux bras.

La deuxième partie de la thèse vise à analyser les stratégies de génération du mou-
vement par l’homme. En partant de l’hypothèse que le mouvement humain est opti-
mal, on cherche à définir la fonction-objectif inconnue minimisée pendant les manipu-
lations. L’approche du contrôle optimal inverse est utilisée. Nous écrivons la fonction-
objectif recherchée comme une somme pondérée de fonctions de base bien connues dans
l’optimisation des processus en robotique, telles que la minimisation de l’énergie ciné-
tique, la minimisation de la vitesse articulaire, l’augmentation de la manipulabilité et la
minimisation des écarts par rapport à la position ergonomique de l’homme. Puis nous
cherchons la combinaison optimale de critères pour représenter au mieux le mouvement
humain enregistré. Pour ceci nous comparons le mouvement résultant de la minimisa-
tion du critère pondéré, et le mouvement enregistré lors de manipulations humaines. Un
algorithme génétique, qui convient pour résoudre les problèmes d’optimisation globale,
est utilisé dans cette tâche. Plusieurs tâches sont considérées, et plusieurs personnes exé-
cutent les mêmes tâches. Notre objectif étant d’étudier comment varient les critères op-
timisés en fonction des tâches et des personnes. Nous montrons que selon le type de
mouvement obtenus et l’amplitude des mouvements d’épaule, de coude et de poignet, les
critères optimisés varient. L’effet sur les caractéristiques corporelles des humains et les
caractéristiques de l’environnement (équipement impliqué) pour réaliser des mouvements
sont également analysés.

Cette étude nous permet d’obtenir pour une tâche, le critère optimisé et ensuite ce
critère peut être utilisé pour générer des mouvements du robot humanoïde inspiré des
mouvements humains car minimisant le même critère, en s’appuyant sur un modèle ciné-
matique inverse. Des tests expérimentaux ont été mené pour une tache d’ouverture de
tiroir. On peut noter que des adaptations peuvent être nécessaires pour tenir compte de
la taille du robot et des limites de son espace de travail. Cette étude a pour objectif une
meilleure intégration des robots dans les environnements humains. De plus, notre algo-
rithme peut trouver des applications en médecine de réadaptation.

Cette analyse des mouvements humains nous a permis de définir des règles qui à partir
des mouvements articulaires observés nous permettant de connaître le critère minimisé.
Celles-ci ont été utilisée dans la troisième et dernière parties de la thèse, dans laquelle
un algorithme de logique floue est proposé comme la voie universelle pour le transfert de
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l’habilité des humains vers les robots humanoïdes. L’algorithme permet, pour un mouve-
ment humain enregistré dans l’espace articulaire, d’estimer les poids définissant le critère
optimisé. Cet algorithme est capable de générer des fonctions-objectif pour chaque type
de mouvement humain à deux bras, qu’ils aient été analysés ou non. Un modèle cinéma-
tique inverse adapté au critère à minimiser peut alors être utilisé pour générer les mouve-
ments du robot humanoïde.

Mots clés: habileté humaine, commande optimal inverse, cinématique inverse, imitation
de mouvements humains, robots humanoïdes.
Domaine scientifique: Génie électrique et informatique
Espace de recherche: Robotique et systèmes de contrôle
UDC nombre: 621.3
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1
Introduction

In recent years, the development of humanoid robotics has been oriented towards the
integration of robots in human environments and helping the human in his daily activities.
Accordingly, the tendency through generations is that humanoid robots increasingly take
on the physical characteristics as well as the behavioral models of the human. Thanks
to the development of biomechanics, medicine, physiology, robotics and neurophysiol-
ogy, scientists have made a significant contribution to the modeling of the human body.
However, humanoid robots still are far from having human characteristics. The human
has around 206 bones connected to different types of elastic joints, so human motion is
achieved with about 640 skeletal muscles. On the other hand, the humanoid robot has
a rigid series of kinematic chains with rigid joints equipped with a limited number of
sensors.

In order to increase the acceptability of humanoid robots in human environments, hu-
manoid robots must have "closely" human motion and/or inspired human skills. Since
the humanoid robot has the redundant structures as a human, it is able to imitate human
motion. Imitation of human motion can be achieved by a motion imitation process (Do,
Azad, Asfour, & Dillmann, 2008) or the imitation learning process. The imitation learn-
ing process aims to analyze the characteristics of human motion based on data obtained
by recording human motions. On the other hand, the motion imitation process is based
on imitation of the human motions without any analysis of the human motions charac-
teristics. The research in this thesis is based on both approaches of the human motion
imitation.

Looking at the state of the art in the field of human motion imitation, we can see that
the "Programming by Demonstration" is the most commonly used method for transfer of
human motion into the motion of humanoids (Calinon & Billard, 2004, 2007; Calinon,
Guenter, & Billard, 2005). The imitation of the human motion can also be solved using
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optimization algorithms on the dynamic and kinematic level. Imitation of the upper body
human motion using the dynamic equations and data obtained by motion capture system
is analyzed in (Ott, Lee, & Nakamura, 2008; Suleiman, Yoshida, Kanehiro, Laumond, &
Monin, 2008). The human motion imitation problem is solved on the kinematic level in
(Ude et al., 2004, 2000). A method for transforming the recorded 3D position of markers
into the trajectory of joints is proposed. The human body is modeled as a scaled model
of the humanoids. Optimization techniques such as "B-spline wavelets" and "large-scale
optimization" are used to generate the motion of joints. Those algorithms are not able
to achieve the imitation of the human motion in the real time. Our objective will be
to propose a imitation algorithm that is able to provide human motion imitation in the
real time. Whatever imitation process is used, verification of the results of the imitation
algorithm on a humanoid robot requires taking into account the properties of the robots
such as limiting joint, robot working space...

The process of studying the characteristics of human motion is linked to the process
of the imitation of the human motion. Trajectories of human motion obtained by imitation
algorithm are used to analyze the characteristics of human motion. During the motion, the
human uses probably an optimal solution for the motion generation, trying to minimize
the criterion function which is unknown to us. Therefore, for the analysis of the charac-
teristics of motion, the inverse optimization approaches can be used to find the criterion
used. Unfortunately, the apparent criterion function that the human minimizes during the
motion may depend on the manner in which the motion is analyzed. In the field of biome-
chanics, criteria function that is most commonly used for the analysis of human motion is
minimization of muscle effort (Khatib et al., 2009). In the field of robotics, minimization
the moment in the joints is the most used criterion function (Zheng & Yamane, 2013).
During our research, we analyzed the influence of the individual criterion function on
the human motion imitation (Tomić, Vassallo, Chevallereau, Rodić, & Potkonjak, 2016).
Criteria functions are defined in the kinematic level, such as minimization of kinetic en-
ergy, minimization of joint velocity, maximization of manipulability and minimization of
deviations from the ergonomic position of the human.

Looking at the ways in which human performs tasks, it is a logical understanding that
human uses a combination of criteria functions instead of just one criterion. In the works
(Mombaur, Laumond, & Yoshida, 2008; Mombaur, Truong, & Laumond, 2010) imitation
of the human motion is presented as an optimization problem with the objective func-
tion that adjusts the weighted sum of criterion function: minimization of the total time,
minimization of components of acceleration during motion, minimization of errors in ori-
entation and direction during the motion to the goal. The main goal of their research is to
find the optimum combination of weight factors that would be able to describe any human
motion. In the paper (A. G. Billard, Calinon, & Guenter, 2006) the optimization algorithm
based on inverse kinematics pseudo inverse is extended and minimization of deviations
from the desired position of the hand and wrist were taken as criteria functions. In the
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presented optimization algorithms, criterion function is defined in task space. Analysis of
the characteristics of human motion in joint space is presented in (J. Yang et al., 2004).
The combination of criterion function such as minimization displacement of the joints,
minimization changes of potential energy and minimization discomfort is defined in the
optimization algorithm. For each criterion function a weight factor is proposed which
takes into account the influence of each joint on achieving motions.

The research objectives of the thesis will be organized into three connected parts:
generation of the conversion process for imitation of recorded human motions in real
time by humanoid robots; development of optimization algorithms for analysis of the
characteristics of human motion in order to transfer the human motion skills into the
motion of the humanoid; and development of the algorithm for detection of human motion
skills based on artificial intelligence algorithms. In this study, dual-arm manipulation
tasks will be analyzed that are less analyzed in literature. Each task consists of two phases:
the phase of motion that involves contact between hands and equipment and the phase
of the motion without contact. The dual-arm manipulation tasks will be classified as
translational and rotational motions, with an additional classification defined according
to the relative position between the arms, proposed in the papers (Krüger, Schreck, &
Surdilovic, 2011; Zöllner, Asfour, & Dillmann, 2004). Each of the motion will be carried
out by healthy subjects and recorded with the help of ART motion capture system.

In the first part of the research, the algorithms for conversion of human motion to the
motion of the humanoids will be defined. The human to humanoid motion conversion is
divided into two phases. In the first phase, we used the information given by the motion
capture system and analytically defined the imitation algorithm to acquire the desired
motion of the humanoid in the task and joint spaces. The algorithm is based on the
markers positioned on a scaled model of the humanoid (Virtual Markers) that follow the
motion of the markers (Real Markers) placed on the human. The intermediate use of a
scaled model of the humanoid presented by Ude et al. (Ude et al., 2004) permits adapting
size of the robot to the size of the human that has achieved the task and thus able to record
coherent joint and Cartesian motions. Since the task of our imitation algorithm is to
generate the motion where hands and the environment are in contact, a precise imitation
of the hands’ motions is important. Our imitation algorithm incorporates not only the
marker motions but also the joint motions measurements obtained via Advanced Realtime
Tracking Human (ART Human) software, provided by the ART capture motion system,
in order to increase the robot imitation accuracy. Instead of using twists, in our kinematic
model, the modified Denavit and Hartenberg (DH) convention is used to simplify the
modeling process (Khalil & Kleinfinger, 1986). The imitation algorithm is based on the
kinematic structure of the humanoid and can be used in real time. In the second phase
of the conversion, the motion imitation of the scaled robot model is used to generate a
human-like motion on the ROMEO robot with its real size (1.40m height) in the same
environments. Depending on whether a contact with the environment does or does not
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exist during the phase of the motion studied, the strategy is different. During the phase in
contact with the environment, the hand motions are defined to achieve the contact and the
robot hand motions must be the same as those of the human. During the phase without
contact, the priority is given to the motion that appears visually close to the human motion
and is based on similar joint motions of the humanoid robot with respect to the human.
Hand motions can be modified since they are not constrained by equipment. In particular,
it can be very useful to deal with hand motions that can be unreachable for the robot due
to the difference in segments lengths and/or joint limits. Conversion from the human to
humanoid motion is analyzed for a complex task that consists of both types of the motion.
A transition strategy between the motion with and without contact is introduced. Since
our task is the motion imitation with a contact between hand and equipment, the technique
proposed by Ude is unable to generate these types of motions for the robot. The advantage
of the proposed conversion algorithm, over existing algorithms, is precise imitation of the
position and orientation of the human hand motions which is necessary to perform the
task. The results of the conversion algorithm are tested on the ROMEO within the same
environment as those of human.

In the second part of the thesis, we explore human motion skills in the dual-arm ma-
nipulation tasks using the inverse optimal control approaches. Since human motion is
optimal, we assume that humans try to minimize unknown objective function during the
manipulation of tasks. Accordingly, human motion can be analyzed using optimization
approaches with the objective function. Unlike some other studies where criteria func-
tions are defined in the task space (Mombaur et al., 2008, 2010), we have decided to
observe human motion characteristics based on the criteria functions in the joint space.
More precisely, the basic criteria functions defined in the joint space (minimization of the
kinetic energy, minimization of joint velocities, minimization of the distance between the
current position and ergonomic configuration of humans while keeping the arm away from
the singularity (maximization manipulability)) which are well known in the optimization
process in robotics are taken into the analysis. We combine all these criteria in order to
define the combination of criteria which best describes human motion. The optimization
process is represented at the kinematic level due to the simplicity of the approach and the
fact that humanoid robots are often controlled in position, while the torque information is
not directly controlled (especially in the case of multiple contacts with the environment
as in the present study). The results obtained from the optimization process are confirmed
with our a priori knowledge about the activation of the upper body joints during the task.
The effects of the actors’ body characteristics and the characteristics of the environment
on the choice of criteria functions are additionally analyzed. The objective function min-
imized by the inverse optimization approach is used in the inverse kinematics algorithm
to transfer human motion skills to humanoid robots. The recorded human motion and
the motion of the humanoid robot ROMEO (obtained with the same strategy used by the
human) for the dual-arm manipulation tasks are assessed visually and quantitatively.
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In the third part of the thesis, the fuzzy logic is defined as an approach for detection
of human motion strategy. Based on the knowledge about human motion obtained in
the previous chapter, this algorithm is able to define a combination of criterion functions
for an inverse optimization algorithm for any recorded human movement. The obtained
results can be used for describing the characteristics of the dual-arm human motion and
its generation of the humanoid robot.

1.1 Contribution

According to the state of the art in the field of human motion imitation and imitation
learning processes, we have additionally explored:

– Imitation of the upper body human motion by the humanoid, where the motion
consists of the phases without contact with the environment and/or phases with
contact with the environment and a transition strategy between these two types of
motion. The publication that have come out of this work is (Tomić, Chevallereau,
Potkonjak, Jovanović, & Rodić, 2018).

– An analytical imitation algorithm based on the Jacobian matrix (instead of the stan-
dard optimization algorithm presented in our previous research (Tomić et al., 2016))
which is capable of real time extraction of the Cartesian motions and joint motions
that can be used by the humanoid. Paper related to these contributions include
(Tomić, Chevallereau, et al., 2018).

– The criteria functions, defined in the joint space, which are able to describe the
motion performed by a healthy human. Topic related publications include:(Tomić
et al., 2016) and (Tomić, Jovanović, Chevallereau, Potkonjak, & Rodić, 2018)

– The human motion as an optimization process analyzed with the combination of ba-
sic criteria functions using the inverse optimal control approach (Tomić, Jovanović,
et al., 2018).

– The influence of the human body size and the characteristics of the environment on
the human motion strategy for performing the task.

– The generation of a good imitation of the analyzed human motion with a redundant
humanoid robot using the generated human motion strategy obtained by the inverse
optimal control approach. Paper related to these contributions include (Tomić, Jo-
vanović, et al., 2018)

1.2 Organization of the thesis

The thesis is organized into six chapters, summarized as follows:

Chapter 2 presents some of the most recent developments in the analysis of dual-arm
manipulations. Detailed overview in the fields of human motion imitation and the analysis
of human motion strategy is given.

5



Chapter 3 presents a novel conversion process for imitation of the human dual-arm
manipulation tasks with a humanoid robot.The dual-arm manipulation tasks consist of
the motion with and without contact between hands and equipment. These types of mo-
tions are chosen for the analysis in this thesis since they are less studied in literatures.The
conversion process consists of an imitation algorithm and an algorithm for generation of
human like motion on the humanoid. The conversion from the human to the humanoid
motion is analyzed for complex dual-arm tasks that consists of the motion with and with-
out contact between hands and equipment. A transition strategy between motion with and
without contact is introduced.

Chapter 4 proposes a new approach in analysis of human motion skills in dual-arm
manipulation tasks. Human motion is analyzed using a combination of well-known cri-
teria functions defined in the joint space: minimization of kinetic energy, minimization
of joint velocities, and minimization of the distance between the current and ergonomic
positions, and maximization manipulability, which are well known in the optimization
process in robotics. The effects of the actors’ body characteristics and the characteris-
tics of the environment on the choice of criteria functions are additionally analyzed. The
objective function minimized by the inverse optimization approach is used in the inverse
kinematics algorithm to transfer human motion skills to humanoid robot ROMEO.

Chapter 5 presents new approach for detection of human motion strategies based on
artificial intelligence algorithm. The fuzzy logic algorithm is formulated in order to find
the combination of criteria functions which describe new dual-arm motions in the optimal
way. The inference rules are defined according to the knowledge about dual-arm human
motion analyzed in Chapter 4.

Chapter 6 presents concluding remarks and perspectives for future works.

6



2
State of the art

2.1 Humanoid robots as replica of the human

At the beginning of our research, we ask the basic question: Why do people want
to develop humanoid robots? This idea is the result of human’s aspirations to make the
world according to his imagination. Based to that, humans want to make a machine, such
as a robot. This robot would be able to do tasks that we do not want to do and could be
our partners in enjoyable communication. To sum up, humans desire to have a replica of
himself who would be able to carry out his wishes and orders.

The idea of how the robot should look like arose at the beginning of the twentieth-
century. Karel Capek’s play, Rossum’s Universal Robots, provided the first concrete
vision of how a robot should look: “it should look like a human being”. In that time,
science fiction stories took this as inspiration and have created sophisticated superhuman
machines. However, research has not been able to create a robot close to the product of
such human imaginations that are depicted in these science fiction stories. This dream is
hampered by many obstacles, including ethical, religious, and psychological concerns,
but especially by technological limitations. Nevertheless, it seems that dreams about
machine-like humans are becoming a reality.

The development of humanoid robots is based on the following requests. First, hu-
manoid robots should be able to work in environments suitable for humans, as well as be
able to use tools that are for humans. Second, humanoid robots should have a human-
like shape. Consequently, it is more logical to make a robot with human characteristics
rather than to modify the human environment and tools according to robotic characteris-
tic. Moreover, a human-like shape of the robot would be more enjoyable for human to
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robot interaction. For example, humanoid robot HRP-1 was able to execute tasks in an
industrial plant, such as going down stairs and ramps. HRP-1S was able to drive an indus-
trial vehicle, teleguided by a human operator, while the robot HRP-2 was able to perform
a traditional Japanese dance. All of these requirements have been gradually realized dur-
ing decades of development in humanoid robotics. In fact, the goal of 2010 in humanoid
robotics was to make it possible for humanoids to walk, pass obstacles, and manipulate
objects with both hands. In 2015, the goal was to develop an autonomous humanoid robot
who could have variable dimensional perception, such as being able to recognize object’s
shape, position, or orientation, all through the use of a dexterous hand that can manipulate
various kinds of objects. By 2020, the dream is to have a robot that can work coopera-
tively with humans within a human environment and that has the intelligence to make
decisions and perform actions as a human.

The challenge in the development of human-like robots is strongly linked with the
level of the state of technology today. Construction of robotic parts comparable to the
human skeleton, muscular actuators, neural system senses, etc. is clearly a challenging
feat to overcome. In the following, we will present a general overview of the tendency
for scientists to make machine, humanoid robots like a human. The first humanoid robots
WABOT-1 was developed at Waseda University in 1973. WABOT-1 was able to recognize
objects by vision with a camera, understand spoken language and to speak with artificial
voice, manipulate objects with two hands, and to walk on biped legs. The same team
extended its research and in 1984 developed WABOT-2, which was also able to play piano
(Koganezawa, Takanishi, and Sugano (1991)). The epoch of the humanoids continues
with the development of the Honda humanoids P2 in 1996. P2, which is 180 cm by height
and 210 kg by weight, is the first humanoid robot that can stably walk with a battery
and computer connected to its body. The next upgrade to the humanoid P2 is reflected
through the robot P3 (160 cm height and 130 kg weight) in 1997, and ASIMO (120 cm
height and 43 kg weight) in 2000. The latest ASIMO from 2011 can run at 9 km/min, run
backward, hop on one leg. . . As can be noted, a gap of 20 years has been made between
the development of the robots WABOT and the Honda robots series. The reason for this
is the level of technical development at that time. The first robots had a structure that was
not rigid enough and has heavy gears with large backlash. In contrast, Honda humanoid
robots use casted mechanical link with high rigidity and light weight. Honda developed
the harmonic drives which have no backlash with high torque capacity. Compared with the
first humanoid robot which did not have necessary sensors, the Honda humanoid robots
have accelerometers, gyroscopes, and force/torque sensors. After Honda P2, the most
advanced humanoid robots have compatible configurations with those of Honda humanoid
robots. In 2002, the University of Tokyo developed humanoid robot HRP-1 which was
able to execute the tasks in a mockup of an industrial plant. This includes stairs, ramps
and pits. They continued the development of the humanoids series HRP and in the next
robot HRP-2 they implemented algorithms for imitation of the human motion, such as
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the example of the Japanese dance (Kaneko, Kanehiro, and Kajita (2004)). Still, HRP-2
robot has limitations in its manipulation ability and practical working environment, such
as a construction site. To address these limitations, a new humanoid robot HRP-3 (1.60
m height, 68 kg weight, and 42 total DoF) was developed in 2007 by Kawada Industries
Inc and AIST with better manipulation ability and hardware designed to be dust proof
and splash proof in consideration of various environments (Kaneko, Harada, Kanehiro,
Miyamori, and Akachi (2008)). In 2009 the tendency on the imitation of the human body
and the human motion came back and AIST developed the Cybernetic human HRP-4C.
Robot is designed to have body dimensions close to an average Japanese young female.
The purpose of the robot has been made for the entertainment industry. HRP-4C is able to
realize the human like walk with toe supporting period. Since 2009 the robot HRP-4C has
been modified and its current specifications are 1.60m height, 46kg weight and total 44
DoF (Kaneko et al. (2009)). In 2010, AIST made HRP-4 (1.51 m height and 39kg weight)
robot which is lightweight and slim body compared to the former platform. Some of these
robots are shown in Fig. 2.1.

Figure 2.1: Examples of humanoid robots (part 1).

The last 10 years has been a fruitful period for the development of humanoid robotics
also in other countries. Technische Universiat of Munchen developed robot LOLA in
2009 (Lohmeier, Buschmann, and Ulbrich (2009)); Korea Advanced Institute of Science
and Technology in the same year developed robot HUBO2 (Cho, Park, and Oh (2009));
Italian Institute of Technology, the University of Genoa developed robot iCub in 2008
(Metta, Sandini, Vernon, Natale, and Nori (2008)); Virginia Polytechnic Institute and
State University developed robot CHARLI in 2009-2010 (Lahr and Hong (2008)); robot
Romeo was developed by Aldebaran in 2013 (Aldebaran (2013)); German Aerospace
Center (DLR) developed robot TORO in 2013 (Englsberger et al. (2014)). In 2012 Boston
Dynamics developed humanoid robot PETMAN, which is powered by hydraulic actuators
and can perform squats while turning, sidesteps with its arms raised overhead, as well as
natural human-like walking of up to 4.8 km/h (Nelson et al. (2012)). An upgrade of the
PETMAN robot is the Atlas (1.75 m height and 150kg weight and 28 DoF) robot produced
in 2013 by the same company (BostonDynamics (2013)). Atlas has four hydraulically-
actuated limbs, two vision systems – a laser range finder and stereo cameras, fine motor
skill capabilities at the hands, and is constructed of aluminum and titanium. Atlas can
navigate through rough terrain, climb independently using its arms and legs, withstand
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being hit by projectiles, and balance on one leg. In 2015, NASA announced that they are
currently producing the most expensive robot under the name Valkyrie (IEEEspectrum
(2016)). Valkyrie will be able to perform the most common tasks that astronauts perform
in space. The NASA researcher team will focus on validating relevant space tasks that
will involve both manipulation and locomotion. Some of these robots can be seen in Fig.
2.2.

Figure 2.2: Examples of humanoid robots (part 2).

In this moment, we should not forget about autonomous humanoid robots, such as
the robots Justin introduced in 2009 by DLR (Wimböck, Nenchev, Albu-Schäffer, and
Hirzinger (2009)), Robonaut introduced in 2011 by the Dextrous Robotics Laboratory at
NASA (Bluethmann et al. (2003)), and Pepper introduced in 2014 by Aldebaran which
all have wheels instead of legs.

2.1.1 Kinematic model of the human vs humanoid

According to the need of human to create a faithful copy of himself, the analysis of
human body characteristics represents the first step in creating humanoid robots. Similar
to a machine, the human body was viewed as a system of levers (skeletal bones and joints),
pulleys (tendons around bones), and movement actuators (muscles). Using the knowledge
from different fields of the science, especially from medicine and biomechanics, we can
obtain a simple or complex model of the human body.

At the beginning of the research of the human body, scientists used geometry to sim-
plify the shape of body segments. Spherical and cylindrical objects, from which the mass
and inertial parameters could be mathematically derived, are represented in models of the
human limbs. One of these models was devised by Hanavan (Pearsall & Reid, 1994) who
defined 15 segments of the human body and the mathematical equations for calculating
mass, position vector of the center of mass, as well as the inertial matrix of them (see Fig
2.3 a). The trunk was divided into three segments: upper, middle, and lower trunk. The
hand was defined as an ellipsoid of revolution, while the foot was defined as an elliptical
solid with the base being circular. The thigh was defined as an elliptical solid with the top
being circular. A total of 41 anthropometric parameters are needed for this model. This
approach was significant because it permitted the body segment parameters of living per-
sons to be approximated, and it reinforced the mechanical interpretation of the body. With
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Figure 2.3: a) Hanavan model; b) The arm’s axes of rotations (Zanchettin et al. (2011));
c) kinematic model of the shoulder and shoulder girdle.

the development of these techniques, researchers have been able to obtain a more complex
model. For this purpose, many systems have been developed to capture human movement
and the estimation of human skeletal parameters. Kohler et al. (Koehler, Pruzinec, Feld-
mann, & Wörner, 2008) proposed an approach for automatically estimating the skeleton
of individual subjects and for transforming them into a human body model by preserving
its relative configuration. They reconstruct the human motion of the different subjects
from a set of 3D marker data, captured with a Vicon system, using a method known as
interior-reflective Newton optimization. Kirk et al. (Kirk, O’Brien, & Forsyth, 2005)
proposed an automatic method for estimation of skeletal parameters, which determines
the length of each segment in the skeleton and reconstruct of the segment’s orientation
over time. The skeleton representation of the human body is very useful in the computer
animation and the visualization of the human motion.

The skeletal model of the human body is not enough for modeling nor detailed analy-
ses of human motion, especially if the task is to transfer the human motion to a humanoid.
Thus, the kinematic model of the human body should be defined. The kinematic model of
the human body is characterized by joints and segments which form five kinematic chains
connected to each other. The bones or the set of the several bones connected to each other
(for example, the ulna and the radius) represent segment of the kinematic model. The
segments are connected by joints which define mutual rotation between them. The coor-
dinate systems and axes of rotation for the ankle, hip, spine, shoulder, elbow, wrist, and
hand joints are analyzed in detail by Wu et al. (Wu et al., 2002, 2005). Their approach
of analysis for characterizing the joints and segments is taken as a recommendation for
standardization in the reporting of kinematic data of the human body. In the same way,
the anthropometric data for describing the kinematics of the human hand is given by
(Buchholz, Armstrong, & Goldstein, 1992).

From a biomechanical point of view, the human upper body mechanism, particularly
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the shoulder joints and spine, are the most complex part of the human body. The most
common upper limb model integrates the thorax, the upper-arm, the forearm and the hand
as rigid body segments. These segments are connected by the shoulder, the elbow, and the
wrist, modeled as hinge or spherical joints (Naaim, 2016)(see Fig.2.3.b). The shoulder
joint is usually modeled as a spherical joint. Additional features of the shoulder girdle
must be considered if we want to achieve the functionality that it has. According to this,
the shoulder girdle can be modeled as an equivalent mechanism: Lenarcic and Umek
(Lenarcic & Umek, 1994) used a simple universal joint; Yang (J. Yang, Abdel-Malek, &
Nebel, 2003) used 2 prismatic joints; Klopcar and Lenarcic (Klopčar & Lenarčič, 2006)
proposed a more complex model where a universal joint was coupled with a prismatic
joint; Lenarcic and Stanistic (Lenarcic & Stanisic, 2003) were replaced the universal joint
by a spherical joint (see Fig. 2.3.c). All these models allow for a simple representation of
the phenomenon occurring in the shoulder girdle. However, they still do not allow for a
precise understanding of the different bones in kinematics. They were mainly used as a
simplification for musculoskeletal model of the humanoid robot or for ergonomic studies.
The elbow is a hinge joint made up of the humerus, ulna, and radius. The unique posi-
tioning and interaction of the bones in the joint allows for a small amount of rotation. It is
common to model the elbow as a 1DOF revolute joint. The forearm model is usually mod-
eled as a one segment without considering the two forearm bones (i.e., the ulna and the
radius). The simplified associated pronosupination movement between them is modeled
as a supplementary DoF at the elbow or the wrist joint (Schmidt, Disselhorst-Klug, Silny,
& Rau, 1999). The wrist is usually modeled as two revolute joints intersecting at one
point if the pronosupination movement between ulna and radius is supplementary DoF at
the elbow, or like the spherical joint (Peiper, 1968). The characteristics of the spine and
torso is well analyzed by Monheit et al. (Monheit & Badler, 1990). According to them,
the kinematic model of the torso consists of 17 segments (vertebrae) and 18 joints, where
each joint has three degrees of rotation. They also gave calculation of the spine’s joint
weights and joint position.

Apart from a simplified model of the human body presented above, some research put
more effort in creating detailed anatomical model. For example, Lee et al. (S. H. Lee,
2008) developed a biomimetic, musculoskeletal model which consists of 75 bones and
165 DOF, including each vertebral bone and most ribs. They incorporate 846 muscles,
which are modeled as piecewise line segment simplified Hill-type force actuators (see Fig.
2.4.b). The volumetric human body model incorporates detailed skin geometry, as well as
the active muscle tissues, passive soft tissues, and skeletal substructure. They introduced
spline joints as a novel technique for more accurately modeling skeletal joints. Nakamura
et al. (Nakamura, Yamane, Fujita, & Suzuki, 2005) constructed a detailed human muscu-
loskeleton model. They appied simplification and grouped about 200 bones into 53 rigid
links which they connected with 323 DoF. They used 366,56,91, and 34 wires to model
the muscles, tendons, ligaments, and cartilages. For their muscuoloskeletal model, the
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forward dynamics algorithm is used to simulate the whole-body motion from the even
wire tensions of the muscles. Vasavada et al. (Vasavada, Li, & Delp, 1998) constructed
a 3D human neck muscle model and measured the moment-generating capacity of each
muscle. They visualized human neck motion in their work, but the movement is generated
kinematically, with no dynamics.

Figure 2.4: a) Santos, a Complete Virtual Human by (J. Yang et al., 2004) ; b) Skeleton
model with 75 bones and 846 muscle model by (S. H. Lee, 2008).

The complex kinematic model of the human body is often used in the animation of the
virtual human, such as 3DSSPP, AnyBody, Jack, and Santos (see Fig.2.4.a) (Ma, 2009;
J. Yang et al., 2004). The advantage of computer animation is the possibility of simul-
taneous modeling of the muscles, joints, skin and segments of the human body. It can
also estimate a large set of human body parameters. On the other hand, for modeling
humanoids, the kinematic model of human must be simplified while basic characteristics
of the human body should be contained. Standard humanoid robots mimic the human
form, but the mechanisms used in such robots are very different from those in humans.
Typically these robots are designed according to the same engineering techniques that are
used in industrial robots, as is shown by the characteristics of their bodies: they are heavy
and stiff and use precise and powerful motors to control joints with easily identifiable
axes of rotation. This contrasts heavily with the human body, which is relatively light
and compliant, and has a noisy and redundant actuation system controlling some complex
joints (e.g. the shoulder). Current humanoids have different kinematic model depending
on the purpose for which they are used. A simplified kinematic representation of each
human arm and leg which is able to obtain faithful the motion like a human involves at
least 6 DoFs per limbs. Table 2.1 provides an overview of the kinematics model of the
humanoid robots which is able to obtain the basic human motion functionalities.

A desire to make humanoid robot that mimics as closely as possible the mechanical
structures of the human body motivated researchers to make anthropomimetric muscu-
loskeletal upper body robot ECCE (Marques et al., 2010). The skeleton of ECCE consists
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Table 2.1: The kinematic model of the humanoid robots with human motion functionali-
ties

ROBOT Arm Leg Hand Head Torso Face

WABOT-2 7 per arm 4 per leg 14 per hand - - -
ASIMO 6 per arm 6 per leg 1 per hand 2 - -
HRP-3 7 per arm 6 per leg 6 per hand 2 2 -
HRP-4C 6 per arm 6 per leg 2 per hand 3 3 8
HUBO2 6 per arm 6 per leg 5 per hand 3 1 -
TORO 6 per arm 6 per leg - 2 1 -
Valkyrie 7 per arm 5 per leg 15 per hand 3 3 -
ROMEO 7 per arm 6 per leg 1 per hand 4 1 -
Justin 7 per arm - 12 per hand - 3 -
Robonaut 7 per arm - 12 per hand 2 7 -

of a set of rigid limb structures modeled on the corresponding human bones, which are
connected by the appropriate joints, or simplifications of them. It consists of an upper
torso built on top of a spine-like structure. The two shoulders of the robot are structurally
different. The left shoulder has an anatomically correct joint structure with a scapula car-
rying a ball-and-socket joint for the humerus, and a clavicle jointed to the sternum; the
right shoulder is a classically engineered joint of three orthogonal 1 DoF joints fixed to
the trunk. The torso is held vertically by means of a chain of four vertebrae-like elements
separated by compliant disks which allow the robot to bend in the 2 planes. The neck is
similar to the spine, with three rather elongated vertebral elements allowing bending in
the sagittal and coronal planes. An additional 2 DoF joints are used to rotate the head
around 2 axes. The neck-head kinematic chain is held together by several longitudinally
arranged shock cord segments.

The latest trends in the modeling of the human skeleton in humanoid robotics are
based on the use of the caprolactone polymer that has similar characteristics as bones.
This material is suitable for manual processing and making complex parts such as the
vertebra and pelvis. In the future, development of modeling human skeletal will be based
on new techniques such as a 3D printer. In terms of imitation of muscle and tendon ac-
tivation, electric drives equipped with gearboxes as active elements are used for a long
time. The geared drives are then connected in a series of inelastic thread, with an op-
tional elastic element that functions as a muscle tendon. The human sensing system is the
easiest to replicate at the current level of technology. With the development of cameras,
microphones, and tactile sensors etc. we are able to realize the connection between the
humanoid and the environment in the same way a human does. The main issue here is how
to organize data from multiple sources. Even more so, the question is how to use these
pieces of information. This question represents a control problem, which involves the
human brain, but in the case of the humanoid, a central processing unit. In the future, the
goal will be to increase the speed of processing data. In the end, it should be emphasized
that the biggest challenge is the analysis of human intelligence. In the field of machine
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learning, the way in which humans make a decision is analyzed and artificial intelligence
algorithms are defined (for example, genetic algorithms, neural networks, fuzzy logic,
etc). The result obtained for the artificial intelligence algorithm is used in the many fields
of science and it has many applications in robotics. However, one of the problems using
this algorithm is the capacity of the robot’s processors and the small basis of analyzed
human behaviors that we have so far.

2.2 Human motions as inspiration for the research

To begin, let’s define human motion: A human movement is a coordinated gesticu-
lation resulting from simultaneous muscle contractions generated by an electric nervous
signal. The human motion may be voluntary, or a reflex, and is always motivated by a
goal.

Interest in human motions goes back very far in human history, and is motivated by
human curiosity (Klette & Tee, 2008). In the antique period, motion patterns of humans
were usually studied in close relation to motion patterns of animals. Aristotle defined
locomotion as “the parts which are useful to animals for movement in place”. His text
“On the Parts of Animals” is the first known document on biomechanics. It already con-
tains very detailed observations about the motion patterns of humans when involved in
some particular activity. In the period of the renaissance, Leonardo Da Vinci gave the
detailed models of the human anatomy, which contain quite detailed studies about kine-
matics tree (today, kinematic chains), and human motion. He gave a conclusion about
muscular movement, the position of the center of mass during movement, and observing
and analyzing movements with the “naked eye”. It is certainly impressive to see the level
of detail in modeling human shape and motion for the “man going upstairs” tasks, given
by da Vinci centuries ago. The scientist Giovanni Alfonso Borelli is also often called
“the father of biomechanics”. He applied the analytical and geometrical methods, de-
veloped by Galileo Galilei into the biological research of the human body. He defined
that bones serve as levers and that muscles works according to mathematical principles.
These principles became a basic principle for modeling human motion. In addition, he
mathematically described the movement of blood, comparing it to a hydraulics system.
He also defined the force in the muscles necessary for achieving movements. He also
explained the conditions under which muscle fatigue occurs. Between Borelli and the
latter half of the 19th century, there seems to not be many more important contributions
to the study of human motion. This period was reserved for the development of the laws
of motion proposed by Isaac Newton, analytical geometry and geometrical algebra by
Rene Descartes, and investigating the myograph by Helmholtz. The 19th century was the
period of producing moving pictures. A major contribution was the works of the We-
ber brothers. They calculated the subsequent phases of human walking using differential
equations and visualized them by drawing perspective projections. They first studied the
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path of the center of mass during movement. During the 19th and 20th centuries, Etienne-
Jules Marey made chronophotographic gun, which was able to record several phases of
motion in the same photo. Eadweard Muybridge, became known as the pioneer in motion
capturing. He invented the zoopraxiscope, a device for projecting a recorded series of
images of rotating glass disks in rapid succession to give the impression of motion. Muy-
bridge’s motion studies (based on multiple images) includes walking downstairs, boxing,
children walking, and so forth. In the next decades, the development of the biomechanics
became a worldwide discipline of science. The electromyography was developed for the
purpose of measuring the electrical activity of muscles. Today, techniques for recording
human movement progress rapidly because of technological developments and the needs
of the military, entertainment industry, sports, medical applications, computer vision, and
robotics. The research of the human gait is widely supported by marker based motion
tracking systems. The camera systems used are fast and able to record the motion of the
markers in real time. Computer vision already helped to produce the 3D model of the
human body (avatar). Increasing the performances of the cameras, the restrictions of the
marker-based system are passed and the marker-less motion capture system is developed.
Parallel with recording of the markers, human movement can be characterized through the
other parameters, depending on which areas are investigating human movements. All pa-
rameters for analysis of human motion are classified as kinematics quantities (information
of the position, acceleration, velocity of the marker placed to the human body), dynamics
quantities (ground reaction forces, muscle activities. . . ), control parameters (EMG and
EEG), and energy quantities (ECG, Oxygen consumption. . . ).

The human motions analysis has been shown to be essential in many different types of
applications. In medicine, the methods of visual observation are most commonly used for
the interpretation of biomechanical parameters of human movements. However, this type
of motion estimation can be very unreliable because it can only give a general impression
of the human movements. Combining advanced technology measurement and biome-
chanical modeling, human gait can be described in quantitative and dynamic conditions of
the body and limbs movement. Clinical trials and scientific studies have been conducted in
order to achieve a better understanding of human movement. They seek to develop effec-
tive methods to understand how neuromuscular defects can affect movement, providing a
scientific basis for treatment. Some relevant scientific work can be found in (Audu, To,
Kobetic, & Triolo, 2010; Yavorskii, Sologubov, & Nemkova, 2003). In sport, the biome-
chanical analysis of human movement is used as an effective technique for improving the
performance of athletes, comparing techniques between professional athletes who car-
ries out the same movement, as a tool for risk assessment (see (Gittoes & Irwin, 2012))
since the lack of appropriate technical guidelines often leads to problems with the mus-
cles and joints, for analyses of the influence of gender, age, and physical condition of the
human performing the motion (Fukuchi & Duarte, 2008), and for simulation the dynamic
and kinematic characteristics of the athlete’s motion in the virtual world (Syamsuddin &
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Kwon, 2011). . . Monitoring a variety of body signals, such as EMG signals, reduction
of tetanic force, low frequency fatigue, and endurance time (Gini, Belluco, Mutti, Riv-
ela, & Scannella, 2015; Vøllestad, 1997), are taken for application in the rehabilitation
of the human body. In the car and design industry, the analysis of human characteris-
tics takes place in modeling the ergonomic safe environment. Recognition gestures and
pose parameters of the human are often used from gaming and entertainment (Höysniemi,
Hämäläinen, Turkki, & Rouvi, 2005), sign language recognition (Chia, Licari, Guelfi, &
Reid, 2013), movement assessment, senior home monitoring, device remote control, and
human-robot interaction (Fong, Nourbakhsh, & Dautenhahn, 2003; Goodrich & Schultz,
2007; Trigueiros, Ribeiro, & Reis, 2013). . . In robotics, the recorded information from
motion capture sensors about human motion are used for analysis of the characteristics of
human motion and then transfered to the motion of the humanoid.

2.2.1 Algorithm for the human motion imitation

Once a human observes a task being carried out for the first time, he/she is usually
capable of immediately performing the same action. In robotics, this process is more
complex and is referred to as the motion imitation process (Do et al., 2008). The motion
imitation process is based on the imitation of human movements which are pre-recorded
using the motion capture system.

According to the data obtained by recording the motions of a human, the imitation
process can be defined in the Cartesian space and/or joint space (A. Billard, Epars, Cali-
non, Schaal, & Cheng, 2004). In the Cartesian space, the motions of the hands, head, and
feet are recorded and a geometric inverse model of the humanoid can be used to achieve
the task. In the joint space, the objective is to enable the robot to replicate the joint mo-
tions of the human, following the human configuration. This last objective is classically
used for the imitation process and allows human-like behavior especially in presence of
a redundant robot. The difference in body size between a human and a humanoid has an
effect on the Cartesian motion of the hands, head, and feet. For the imitation of the dual
arm human motion, which requires the robot to interact with the environment using its
hands and has human-like behavior of the motion, the imitation process must include the
imitation process of the human motion into the joint and Cartesian spaces.

The algorithms for imitation of the human motion can be defined on the kinematic or
dynamic level. In (D. Lee, Ott, & Nakamura, 2010; Ott et al., 2008), the robot imitated
the human motions using dynamic equations. Based on the measurements of marker po-
sitions, they define a Cartesian control approach for the real-time imitation of the human
upper body motion. Virtual springs connect the measured marker positions and the cor-
responding points on the humanoid robot. Since difficulties arise in the motion imitation
process by humanoid robots, (such as the joints velocity and the torque limits) Suleiman et
al. (Suleiman et al., 2008) also used dynamic equations to formulate a recursive optimiza-
tion algorithm for imitating human motion. This permits the imitation of the upper body
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of human motion within humanoid robot physical capabilities (joint, velocities, torques).

The problem of human motion imitation is solved on the kinematic level by Ude et al
(Ude et al., 2004, 2000). They proposed a method to transform the recorded 3D position
of the markers into high dimensional trajectories of the humanoid robot joints based on
twist representation. The human body is modeled as a scaled model of the humanoid
robot. They establish relationships between the motion of the robots joints and the mo-
tion of the markers using B-spline wavelets and large-scale optimization techniques. The
method is applied off-line on the humanoid robot called DB. Gärtner et al. (Gärtner et al.,
2010) presented an imitation algorithm which is able to map the recorded motion of the
human to the motion of the robot based on the motion of the real marker by the virtual
markers. The vitrual markers are defined as fixed and pre-labeled points onto the sur-
face of the voluminous anthropomorphic model. Their algorithm consists of two major
constrained large-scale nonlinear optimization transfers. In the first step, they transferred
a pre-captured motion of the markers to the motion of the intermediate model, Master
Motor Map (MMM), using the sequential quadratic programing approach. The second
optimization transfer is based on transformation motion of the MMM model to the mo-
tion of the ARMAR-III humanoid. The measure of the similarity between the motion
of the humanoid and the generated movement of the MMM model is used as the crite-
rion of the Levenberg-Marquardt approach. The humanoid motion which imitated the
pre-captured human motion is obtained. Ayusawa et al. (Ayusawa, Ikegami, & Naka-
mura, 2014; Ayusawa, Morisawa, & Yoshida, 2015) proposed a gradient computation
based Newton-Euler method for simultaneous identification of geometric parameters of
a human skeletal model. They also retargeted the human motion into the motion of the
humanoid using the information about the recorded position of markers. The evaluation
function for human motion reproduction represents the difference between the measured
position of the marker at the time and the position of the marker attached on the human
model which is function of the joint angles and the dimension of the segments. In or-
der to define the geometric parameters as segment lengths and the position of markers
with respect to the robot segments, they introduced translation joints which values are
time-invariant through all time of the motion.

Imitation of recorded movements in the most cases does not represent a one-to-one
mapping of human movement to robot movement. The number of degrees of freedom,
range of joint motions, and achievable joint velocities of today’s humanoid robots are
far more limited than those of the average human subject. Regarding this, Pollard in his
papers presented an imitation algorithm that includes all of these robot’s limitations and
performs quality imitation (Pollard, Hodgins, Riley, & Atkeson, 2002; Safonova, Pollard,
& Hodgins, 2003).

To sum up, the imitation process is shown as a very good and very fast method for
teaching robots new motion skills without any analysis of the characteristics of the human
motion. The benefits of the imitation process are realization of a natural interaction be-
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tween human and robot, providing help to the elderly and the disabled in their everyday
life, motivating children during physical therapy (Borovac, Gnjatović, Savić, Raković,
& Nikolić, 2016), and helping humans in low-level industrial tasks by replacing them in
unsafe environments (Yokoyama et al., 2003). The new trends in the imitation process
are based on the more precise and on-line imitation of all types of the human motions,
especially in tasks where motion is constrained by the equipment and environment.

2.2.2 Algorithm for description of human motions

With the aim of creating a robot with anatomical attributes close to a human being, the
analysis of the characteristics of human motion becomes an important topic of research
in the field of humanoid robotics. In order to increase a humanoid’s acceptance into our
human environment, researchers have been trying to create the motion of the humanoid
as close as possible to human motion or inspired by human skill. Today, there are a lot
of techniques for analyzing human motion, such as imitation learning and optimization
approaches.

Imitation learning is based on the determination of characteristics of demonstrated
motions in the task and the joint space. Looking at the state of the art on the imitation
of the human motion, we can see that the Programing by Demonstration (PbD) is a core
topic of research in this field. The PbD is based on encodes of motion demonstrated mul-
tiple times in either the joint space, the task space, or the torque space. Dimensionality
reduction techniques (for example Principal Component Analysis and Independent Com-
ponent Analysis (Calinon & Billard, 2005)) is the main tool used in the PbD. Encoding
and regenerating human actions has usually been done using classical machine learning
techniques, such as Hidden Markov Model (HMM) and Principal Component analysis
(Asfour, Azad, Gyarfas, & Dillmann, 2008; Calinon & Billard, 2004, 2007; Calinon et
al., 2005; Takano, Imagawa, & Nakamura, 2011; Tso & Liu, 1996). As an alternative
to HMM and interpolation techniques, Calinon et al. (Calinon & Billard, 2007, 2008;
Calinon, Guenter, & Billard, 2007) used the Gaussian Mixture Model (GMM) to encode
a set of trajectories, and the Gaussian Mixture Regression (GMR) to retrieve a smooth
generalized version of these trajectories and associated variabilities. Ude et al. (Ude,
1993) used spline smoothing techniques to deal with the uncertainty contained in several
motion demonstrations performed in a joint space or in a task space.

In addition to the imitation learning approach, the characteristics of human motion
can be analyzed using optimization approaches since the processes in humans and nature
are as optimal as that of human motion (Alexander, 1984). Before starting the execution
of any task, humans naturally come up with the simplest and most efficient ways in which
motion can be performed. Therefore, we can say that humans, in order to create motions,
are always trying to minimize some criteria that are unknown to us. The human body is
a high redundant system and many different solutions exist for performing the same task.
The choices of the solutions are not only influenced by biomechanical characteristics of a
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human (age, gender, physical condition, restrictions on motion due to injury), but also by
the strategy that a human employs when carrying out a given motion. Based on the anal-
ysis of human motions in different areas of science, we can extract some of the criteria
that are often used in optimization algorithms in robotics, such as manipulability, magni-
tude and accuracy of the velocity and force, joint limit avoidance, joint torques and torque
change, kinetics energy, muscle effort, and jerk (Chevallereau & Khalil, 1988; Chiaverini,
Oriolo, & Walker, 2008; Pamanes & Zeghloul, 1991; Zeghloul & Pamanes-Garcia, 1993).
The choice of the criterion function depends on the way in which the human motion is
analyzed. Hence, analysis of human movement can be made on a kinematic or dynamic
level. In our paper (see (Tomić et al., 2016)), we analyzed the influence of each kinematic
criterion, including minimization of kinetic energy and velocity, minimization of devia-
tions from the ergonomic position, and quality of imitation of the recorded human motion
with and without contact. We used the Inverse Kinematic (IK) algorithm and included
the criterion function using the null space of Jacobian. On the other hand, other authors
based their research on human motion characterization in the dynamic level, analyzing
how the dynamical criterion function describs human motion. Khatib et al (Khatib et al.,
2009) defined new muscular effort minimization criterion to define optimal human pos-
tures using musculoskeletal dynamics. Their research is more based on the biomechanics
of human motion. They implemented the basic concept of joint actuation on the control
algorithm for the robot. Zheng et al. (Zheng & Yamane, 2013) presented the optimal cri-
terion in order to imitate given reference motions of the human. They solved optimization
problems which minimize the joint torques and associated contact forces. They consid-
ered contact between feet and floor, while contact between hands and equipment was not
taken into account. Hollerbach and Suh (Hollerbach & Suh, 1987) presented the general
inverse method into dynamics for minimizing the torque at the joints. They chose the
joint acceleration null-space vector to minimize the joint torque in a least squares sense
when the least square is weighted by allowable torque range.

Looking at the way in which humans perform a task, it is reasonable to think that the
human used a combination of the different criteria functions instead of a single criterion
function, which is presented in the papers above. Park et al. (I.-W. Park, Hong, Lee, &
Kim, 2012) and Albrecht et al. (Albrecht et al., 2011) used dynamical parameters (such as
the minimization joint’s jerk and the minimization of changing the torque. . . ) and made
the combination of criteria functions in order to analyze human motions. For analysis of
human locomotion trajectory, Mombaur et al. (Mombaur et al., 2008, 2010) defined the
imitation of the human locomotion as an optimization problem. An objective function
was defined as a weighted sum of the basic criterion function such as minimization of
total time, the integrated squares of the three acceleration components, and the integrated
squared difference of body orientation angle and direction towards the goal. The aim of
their research was to produce a universal combination of the weighted coefficients for the
optimization algorithm that satisfies the imitation of any type of human locomotion. Bil-
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lard et al. (A. G. Billard et al., 2006) extended the pseudo-inverse optimization method for
solving inverse kinematics in order to determine the optimal imitation strategy that best
satisfies the constraints of a given task. They defined the objective function as a weighted
sum of the basic criteria functions defined in the Cartesian and joint spaces. Their opti-
mization algorithm minimizes the difference between the current and the desired position
of the joints and the 3D Cartesian position of hands. They compute the trajectory of robot
joints that imitates human motions. The constraints of the robot’s body are taken into
account. Unlike some previous studies, our research is based on the analysis of human
motion using the inverse optimal control approach with criteria functions defined in the
joint space. Given that the human body is a highly redundant system, there are different
solutions for performing the same motion in the task space. Likewise, using the joint
space, Yang et al. (J. Yang et al., 2004) analyzed human motion by combining basic func-
tions such as joint displacement minimization, potential energy change, and discomfort
basic functions. All of these are done in a multi-objective optimization algorithm in or-
der to predict a static posture for the human. The virtual human Santos has been used to
evaluate different performance measures and to test the applicability of their optimization
algorithm for posture prediction. In each basic function, they propose a weight factor for
each joint that is taken into account and defines the importance of particular joints for car-
rying out a given task. They applied this optimization algorithm for each basic function
separately and then compared it with the results obtained for multi-objective optimization.

2.3 Humans strategies for performing tasks

The strategy used by the human during the movement is based on the experience
gained. Throughout repeating the same task several times, humans find a way to do a
task with minimum effort and in the most comfortable way. A large group of healthy
people perform the same task in almost the same way (Lardy, Beurier, & Wang, 2012).
The difficulties in motor skills force humans to change their motion strategy and adapt it.
In the same way, the motion strategy can be different due to changes in the environment
in which the movement is performed. In that context, this chapter describes the basic
characteristics of human movement, such as the distribution of motion through the joints
and ergonomic analysis. The analysis of the influence of environment on the changes in
motion strategy is also given.

2.3.1 Motion distribution through the arm joints

Distribution of motion is connected to properties of biological systems and the type
of arm motion performed. The task performed by a human is largely determined by mus-
cle activation. In humans, the high-inertia arm joints (shoulder and elbow) provide the
smooth global motion, while the low-inertia hand joints (wrists) perform fast and precise
local motions. The motion priority of the joints during a task is well explained in sev-
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eral papers. In his paper, Potkonjak et al. (Potkonjak, Popović, Lazarević, & Sinanović,
1998) analyzed motion distribution through arm joints. According to their research on
a “Handwriting” task, humans control their proximal joints while the movement of the
distal joints follows them. Based on the biomechanical research, Liu et al. (Liu, Hertz-
mann, & Popović, 2005) analyzed the habits of humans for using some muscles more
than others during motion. Using the nonlinear optimization algorithm, they minimized
the energy objective functions, which compute the total amount of torque due to muscle
forces, and calculated the activity of each muscle during the motion observed. Yang et
al. (J. Yang et al., 2004) explains the difference of joint activation via their optimization
algorithm by adding different scalar weight factors to each joint. This approach is used
in our optimization algorithm via the weight matrix associated with the minimization of
kinetic energies or minimization of joint velocity. The weight matrix is introduced to
stress the importance of the particular joints that tend to be more active than others during
the tasks. For the case of the minimization of kinetic energy, the inertial matrix is used
as a weight matrix. The bigger motion priority is given to the joints with bigger inertia
(trunk, shoulders, elbows). On the other hand, the minimization joint velocities criterion
consists of a weight matrix, which in this case is an identity matrix and thus gives the
same importance of motion to all joints during the task. According to these analyses it
is expected that in the tasks where the shoulder or elbow move more, the minimization
kinetic energy criterion function is dominant. However, when the task does not require
the big motion of the shoulder and elbow, the minimization of the joint velocity criterion
is dominant. We do an analysis of these assumptions in our research.

2.3.2 Ergonomy configuration of the human body

The introduction of comfort level is based on the motion control mechanism of the
human body. In general, with the own feedback control mechanism, humans always keep
their joints at a high comfort level; that is to say, humans tend to operate within a comfort
region. Human bodies are loaded with sensors that feedback information to the central
nervous system, regarding our internal state and the environment around us. In general,
this information is utilized to affect ongoing control strategies and to suggest a role for
feedback. The characteristics of human motion are largely conditioned by the equipment
used during the task. If the task does not require interaction with the equipment, a hu-
man will choose the most comfortable way to perform the task as explained in (Tomić
et al., 2016). In other cases, humans will adjust their motion to carry out a task and de-
crease discomfort as much as possible. At any moment of the human motion, when the
force or torque exerted by a muscle group at a joint is close to its maximum torque, a
human can feel the discomfort although he/she does not exactly know the value of the
torque he/she exerts. The analysis of human comfort while performing a task is widely
explored in ergonomics, biomechanics, and robotics. Yang et al. (F. Yang, Ding, Yang,
& Yuan, 2005) proposed an algorithm based on the combination of inverse kinematics,
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inverse dynamics, and biomechanical information for increasing the comfort level during
motion. They calculated the discomfort level of each joint as a ratio between torques
exerted by the joint (calculated using the inverse dynamic) and the maximum torque that
can be produced by the joint (which is obtained from the ergonomics data). Discomfort
minimization is the criterion that they minimized inside the inverse kinematic algorithm.
Ma et al. (Ma, Chablat, Bennis, Zhang, & Guillaume, 2010) combined the conventional
posture analysis techniques (proposed in ergonomic analysis) and the fatigue index in the
muscles to calculate comfort during manual handling operations. Yang et al. (J. Yang et
al., 2004) proposed a discomfort index as an objective way to estimate the most comfort-
able position of the human body during a task. They defined the ergonomic configuration
of the joints, for which the values of the joints are in the middle of their ranges, as the
most comfortable position for the human. In our research, we analyzed the level of hu-
man comfort during the motion analysis. We defined the criterion in our optimization
algorithm as the minimized difference between the current configuration of joints and the
ergonomic configuration proposed by Yang et al. (J. Yang et al., 2004).

2.3.3 Feasibility measure of the task

The characteristics of the body and the type of the motion greatly affects the fea-
sibility of the task. The ability of the robot to move its end-effectors in any direction
is presented via the manipulability index (Angeles & Gosselin, 1991; Yoshikawa, 1984,
1985). The manipulability index is defined as a ratio between norm of the motion in the
joint space and Cartesian space. The feasibility of the task is additionally explained with
the manipulability ellipsoid (Kurazume & Hasegawa, 2006). The axes of the manipula-
bility ellipsoid give the capacity of motion in an appropriate direction. The direction of
the minor axis represents the direction of developing speed with worse capacity while
the direction of the major axis gives the motion in that direction more feasibility. The
feasibility of the hands motion for the dual-arm manipulation tasks performed by a robot
is extensively analyzed in various pieces of literature. Lee et al. (S. Lee, 1989) defined
dual-arm manipulability as the measure of geometrical similarity between the desired ma-
nipulability ellipsoid and the dual-arm manipulability ellipsoid. Dual-arm manipulability
is represented by the volume of intersection between the two manipulability ellipsoids
from individual arms. The desired manipulability ellipsoid is defined along the Carte-
sian position trajectory based upon the velocity and force requirements for a given task.
Vahrenkamp et al. (Vahrenkamp, Asfour, Metta, Sandini, & Dillmann, 2012) presented
an approach for analyzing the workspace capabilities of the robot using reachability in-
formation. They extended classical measurements, which are mostly based on analyzing
the manipulability ellipsoid, in order to consider constraints coming from joint limita-
tions, workspace obstacles, or self-distance. A large set of predefined grasps for a given
object is filtered in order to select the reachable subset for which the inverse kinematics
problem has to be solved. In analyses of human motion, the manipulability index de-
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scribes the quality measure between human configuration and the singular configuration.
A joint configuration of the human body close to a singularity is characterized by a small
value of manipulability. Conversely, the ergonomic configuration of the human body is
characterized by large manipulability because the human is able to perform the motion in
any direction in the joint and Cartesian spaces. Following the same principle, we analyze
the characteristics of the human motion defining one of the criteria in our optimization
algorithm which maximized the index of manipulability.
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3
Human to humanoid motion conversion
for dual–arm manipulation tasks

The objective of this chapter is to present a conversion process for imitation of human
dual arm motion with a humanoid robot. The conversion from human to humanoid mo-
tion is represented in four steps: the first step corresponds to the analysis and record of
the human motion; in the second a kinematic model of the humanoid with human size is
defined; the third step uses the imitation algorithm to obtain motion in joint and Cartesian
spaces for the humanoid; the fourth step concerns the generation the motions (with and
without contact) of the robot ROMEO using the results obtained from the imitation algo-
rithm. The overview of the conversion from human to humanoid motion is given in Fig.
3.1. Each of the conversion step is analyzed in detail below.

3.1 Dual-arm manipulation

Human motion can be defined as a needed action which humans apply in order to
acquire the task. Humans use one arm or both arms for manipulation, depending on the
characteristics of the task and equipment. In comparison with one arm manipulation, dual
arm manipulation is a very complex operation which humans learn while growing up. The
better way for a good understanding of dual-arm motion characteristics is to represent it
as a set of elementary motions.

The classification of bimanual tasks has been given by Zöllner et al. (Zöllner et al.,
2004). They developed a segmentation algorithm for each type of two hand actions.
They classified elementary motions into uncoordinated and coordinated groups, with the
coordinated groups either being symmetric or asymmetric. The other classifications of
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Figure 3.1: Overview of the conversion from human to humanoid motions.

coordinated dual-arm motion were given by Krüger et al. (Krüger et al., 2011). The clas-
sification of motion is done according to the characteristics of the motion in the task space.
According to them, the coordinated motion can be subdivided into goal-coordinated and
pure bimanual motions. Goal-oriented motions are the most complicated manual activ-
ities where hands manipulate different objects in order to achieve the task. Arms are in
contact with equipment but interaction between arms does not exist. In bimanual mo-
tions, both hands are manipulating with the same object, creating a close kinematic chain.
The cooperation between arms and interaction with equipment are required for the task.
The bimanual motion can be subdivided symmetrically or asymmetrically, congruent or
non-congruent. On Fig. 3.2, classification of simple dual-arm motions based to on the
classification above is given. In the symmetric motion, both arms do the same transla-
tion/rotation motion in the same direction with the aim to achieve the task with tools (see
Fig. 3.2 motions 4, 5, 6). In asymmetric motion, the direction of translation/rotation is
different (see Fig. 3.2 motions 7, 8, 9). According to this, movements can be divided into
translational and rotational movements (e.g. the in the Fig. 3.2 motion 1 is defined as a
rotation around vertical axis while motion 2 is defined as rotation around horizontal axis).
For one arm support motion, one arm is used to hold the equipment while the other hand
performs the task (see Fig. 3.2 motions 10, 11, 12).

Each motion, inside of the same group of motions, has different characteristics which
are related to the different fashion of a human performing the task. Various constraints
have influence on the way in which the task will be performed. All constraints may be
divided into:
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Figure 3.2: Classification of dual-arm coordinates motions.
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1. Constrains dictated by the characteristics of the equipment

2. Control constraints for achieving a task

3. Uncontrolled constraints

On the example of the “Opening/closing a drawer” motion, the position and orien-
tation of hands are fixed and dictated by the equipment (the fingers of both hands are
placed inside the drawer with the palms down). In order to perform the “Opening/closing
a drawer” motion, only horizontal translation of hands is allowed, which represents the
control constraint. The uncontrolled constraints are related with the characteristics of the
human (size of body segments, joint angle range. . . ) and cannot be controlled. All of
these constraints have influence on the group of the muscles which are activated during
the task. The characteristics of human motion are more evident in motion that is more
limited. It is expected that there is a predefined way humans perform a task when the
human motion is constrained by equipment characteristics and control constraints. In our
research we analyze the characteristics of the motions that are more limited by constraints.
We do this with the aim to obtain the pure characteristics of the motions.

In order to define the characteristics of human motion for elementary dual arm tasks,
we analyzed seven dual arm motions from the recorded motions in Fig. 3.2. We have
chosen the different types of the motions according to the classification above and the
axis of the rotation/translation. Motions are classified as rotational motions ( “Rotation
of the steering wheel”, “Rotation of the valves”,” Rotation of the canoe paddles”) and
translational motions (“Cutting food with the knife”, “Inflating a mattress using a pump”,
“Grating the food”, “Opening/closing a drawer”). These motions are grouped as:

– task oriented motions- “Rotation of the valves” (Fig. 3.2 motion 1) and “Rotation
of the canoe paddles” (Fig. 3.2 motion 3)

– symmetric motions- “Inflating a mattress using a pump” (Fig. 3.2 motion 4) and
“Opening/closing the drawer” (Fig. 3.2 motion 5)

– asymmetric motions- “Rotation of steering wheel” (Fig. 3.2 motion 7)
– one arm support motions- “Cutting food with the knife” (Fig. 3.2 motion 12) and

“Grating the food” (Fig. 3.2 motion 11)

We have chosen these motions because they are more limited with the characteristics
of the equipment. We believe that the characteristics of these motions will be more evident
compared to other motions.

Each recorded task consists of a dual-arm motion that is repeated five times. Before
recording, all actors practiced each motion for approximately 5 minutes. Each actor car-
ried out the required motions under the same conditions and using the same equipment.
Thirteen male and six female individuals (with age 32±11 years; and with the height
1.7±0.1 cm) participated in the experiments. Each recorded task consists of three phases:
The Initial Configuration Phase (ICP), The Transition and Grasping Phase (TGP) and The
Periodic Motion Phase (PMP). Tasks start with the ICP where the actor stands/sits in the
center of the working space and maintains the Initial configuration for one second. The
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initial configuration consists of both arms being fully extended in front of the actor with
the palms facing towards the floor. The motion speed is equal to zero during the ICP. Once
the actor has assumed the required position, he will start the second and third phases of
the motion. In TGP the actor moves the arms in order to grasp the equipment. The way in
which the actor will grasp the equipment is up to him/her. The grasping is constrained by
the characteristics of the equipment. In PMP the actor performs dual-arm motions. The
PMP is considered as the most important of the three phases because it is the only phase
that undergoes any form of analysis.

Task 1. Consider the task of “Rotation of the valves” (see Fig. 3.2 motion 1). The
“Rotation of the valves” is a goal-oriented rotational motion around the vertical axis. The
task presents the simultaneous unwinding of two valves that are positioned vertically at
the same height (1.15m). The valves are placed in front of the actor parallel to the actor’s
sagittal axis on either side. In order to turn the valves, the actor rotates the handles in the
horizontal plane around the vertical axis of the valves. The distance between the vertical
axes of the valves is 0.32m. The radius of the valves is 0.1m. The actor stands during the
task.

Actor starts motion from the initial position. At the transition phases of the motion,
palms are placed perpendicularly to the room’s floor and he/she grasps the handles verti-
cally placed on the valves. The height of hands is determined by the characteristics of the
valves. During the PMP phase both arms work independently while performing this task.
Arms rotate the valve’s handles five times continuously during the motion.

Task 2. Consider the task of “Opening/closing a drawer” (see Fig. 3.2 motion 5). The
“Opening/closing a drawer” task represents a symmetric horizontal-translation motion.
The table (height of 0.75m) with a drawer (height of 0.3m) is placed in front of the actor
at a distance that is comfortable for the actor to perform the task. The actor should open
the drawer with both hands simultaneously. The actor stands during the task.

Actor starts motion from the initial position. At the transition phase of the motion
the actor puts their hands inside of the drawer. The orientation of their hands is fixed
and prescribed by the equipment (the fingers of both hands are placed inside the drawer
with the palms down). In the PMP phase, the motion of the hands is constrained by the
equipment and only horizontal translation of the hands is allowed.

Task 3. Consider the task of “Rotation of the canoe paddles” (see Fig. 3.2 motion 3).
The “Rotation of the canoe paddles” task represents a goal-coordinated rotational motion
around one horizontal axis. The handles are connected to the U–shaped platform which
is fixed on the horizontal table. The design of this prop simulates paddling a canoe. The
actor rotates the handles in the vertical planes around the horizontal axis. The actor stands
during the task.

Actor starts motion from the initial position. At the transition phase the actor grasps
the handles. Palms of the hands are kept parallel to the room floor. The relative position
between the arms is constant and determined by the characteristics of the equipment. In
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the PMP phase the actor rotates the handles with both hands simultaneously around the
common horizontal axis.

Task 4. Consider the task of “Rotation of steering wheel” (see Fig. 3.2 motion 7).
The “Rotation of a steering wheel” task is an asymmetric dual-arm rotational motion. The
Logitech steering wheel is used for simulation of driving a car task. The wheel is fixed
on the horizontal table and tilted relative to it at an angle of 30 degrees. The diameter of
the steering wheel is 0.14m. The actor is sitting while they carry out the tasks and the
steering wheel is placed in front of him/her.

The actor starts the motion with his/her hands extended horizontally as in the initial
configuration. The PMP phase starts when the arms are symmetrically placed on the
wheel. The hands are able to rotate the steering wheel in both directions (in the experi-
ments the motion was ±90 degrees starting from the grasped position of the hands). The
motion of the hands is circular in accordance with the form of a steering wheel. During
the motion, the relative position between both hands is unchangeable.

Task 5. Consider the task of “Inflating a mattress using a pump” (see Fig. 3.2 motion
4). The “Inflating a mattress using a pump” task is a symmetric dual-arm translation
motion. The actors are sitting while they carry out the tasks with hands horizontally
placed as in initial position. The hands grasp the pump’s handle horizontally and their
relative position does not change during the motion. The motion is obtained when the
actor pulls up and down the pump’s handle.

Task 6. Consider the task of “Cutting with a knife” (see Fig. 3.2 motion 12). The
“Cutting with a knife” task is a one-arm support translation motion. The right/left hand
does the translational motion in order to perform the task. The left/right (opposite) hand
is used as a support hand and holding a box that does not move. The motion of the
hand which performs the task is not strongly defined by the type of equipment used. The
hand which performs a task can rotate around the handle of the knife. The amplitudes of
the hand motions are limited by the size of the knife. During the PMP phase the actor
simulates the cutting motion. The actor stands during the task.

Task 7. Consider the task of “Grating of food” (see Fig. 3.2 motion 11). The “Grating
of food” task is also one-arm support translation motion. The right/left hand does the
translational motion slipping the ball over the grater’s surface. The opposite hand holds
the grater so that it does not move. The orientation of the hand which performs the task
is restricted and the palm should be in line with the plane surface of the grater. The
trajectory of the hand which performs the task is connected with the angle between the
grater and the table surface, which is not predefined. The actor used the grater in a way
they considered most comfortable. The motion’s amplitudes of the hand which performs
the task are limited by the size of the grater. The actor stands during the task. During the
PMP phase the actor simulated the grating motion.
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3.1.1 Segmentation of the human motion in the motion primitives

Since recorded human motion is represented as a complex motion with several actions,
it can be segmented to the sequence of predefined actions (motion primitives). These mo-
tion primitives are the elementary actions of motion which accomplish a complete goal-
directed behavior (A. Billard, Calinon, Dillmann, & Schaal, 2008; Nakazawa, Nakaoka,
Ikeuchi, & Yokoi, 2002). The segmentation of the recording motion in motion primitives
is done using different techniques, such as Dynamic Time Warping, k-means (Albrecht
et al., 2011), and on-line segmentation presented by Kulic ((Kulic & Nakamura, 2008;
Kulić, Ott, Lee, Ishikawa, & Nakamura, 2012; Kulic, Takano, & Nakamura, 2008, 2009).
The motion primitives of the signal can be analyzed in the joint space by looking at spe-
cific points of the joint trajectories. Encoded human motion from the motion primitives
can be obtained by different algorithms such as the hierarchical Bayesian models (Rueck-
ert, Mundo, Paraschos, Peters, & Neumann, 2015) and statistical HMM algorithm (Kulić,
Takano, & Nakamura, 2008; Kulic et al., 2009; D. Lee & Nakamura, 2014). In their re-
search, Kulic and Nakamure (Kulić et al., 2012) gave a detailed review of techniques for
segmentation of human motion to motion primitives and an analysis of the characteristics
of motion.

3.1.2 Our approach-phases of motion and normalized circle motion

The periodic motion phases consist of a five time repetition of a dual-arm motion
primitive. In order to reach the starting and ending point of one primitive motion, we paid
attention to the samples in which the minimum values of the joint velocity are detected
and hands are currently stopped. One execution of a primitive motion is represented as
a part of the joint trajectories between the samples of two minimum values, which are
repeated during the motion. We normalized temporarily each primitive motion in order
to have the common phase for performing the same motion for all actors. The primitive
motion is used for analysis on the characteristics of the motions invariants.

3.1.3 Conclusion

This chapter presents the dual-arm manipulation tasks which can be used for the analy-
sis of human motion behavior. According to the state of the art in the field of the dual-arm
manipulation, the different types of dual-arm motion are considered for analysis. We as-
sume that the more constrained tasks will give us more precise analysis of human motion.
Thus, we have chosen seven dual-arm motions which will be analyzed in the Cartesian
space in this chapter. Since our task is to define human motion behaviors, we should
analyze human motion in the Cartesian and joint spaces. In addition to the analysis pre-
sented in this chapter, in the next chapters we represent human motion in the joint space,
analyzing the activation of each upper body joints. This knowledge will help us to define
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the strategies that humans use during dual-arm motions, as well as to obtain the control
algorithm for a robot to imitate human motion.

3.2 Motion capture systems and recording human mo-
tions

The understanding and modeling of the human motion is based on observation. Mo-
tion observation evolves with the evolution of the available technologies. Some of the first
systems of recording human motion are presented in section 2.2. Today, there are a lot of
techniques for recording and analyzing human motions such as inertial, optical, magnetic,
acoustic or mechanical systems. The type of motion capture system used depends on the
volume of measurements taken, the required resolution, the characteristics of the motion
recorded and the environment in which the motion is performed. Acoustic (Vlasic et al.,
2007), inertial (Miller, Jenkins, Kallmann, & Mataric, 2004) and magnetic (Aloui, Villien,
& Lesecq, 2015) motion capture systems, are able to record outdoor and indoor human
motions. Optical and mechanical motion capture systems require predefined position of
the cameras and sensors. The sensors can be place on actor for recording human motion
or on the robots for making as feedback information for control low. The most commonly
used technique for recording human movement is marker based and marker-less motion
capture systems. In order to increase accuracy and obtained online imitation of the hu-
man motion Do et al. (Do et al., 2008) used a combination of the marker-based Vicon
and stereo-based marker less motion capture systems. Compare with other technics, the
marker based techniques does not accumulated errors during the recording, provide better
accuracy and resolution, have bigger volume of measurements and there are not sensitive
to the electromagnetic fields and externals noises. Some of the disadvantages of this type
of marker based system are bigger actor’s preparation times, inability to direct setting of
markers on the human skeleton for better acquisition of data, inflexibility in motion cap-
ture location, off-line processing of the data. Comparative analyses of different motion
capture systems are given in references (Ceseracciu, Sawacha, & Cobelli, 2014; Zhou &
Hu, 2008).

Recorded data from motion capture system should be future process. The motion cap-
ture systems have the functionalities to analyses and processes data from sensors. The
primary functionalities of motion capture processing are initialization, tracking, poses es-
timation and recognition. In accordance with the aforementioned, Moeslund and Granum
(Moeslund & Granum, 2001) gave a comprehensive review of relevant works in a field of
motion capture system.
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3.2.1 ART motion capture system

Our research is based on analysis of the human motion in Cartesian and joint spaces.
Since the all characteristics of the human motions cannot be obtain with one motion cap-
ture system we choice the motion capture system which is suitable to record the human
motion with big precision and which will give us enough information to estimate human
motion. Advanced Realtime Tracking (ART) motion capture system produced by ART
Company is used for the purpose of our research.

The ART system consists of a hybrid suit of 17 sets of markers relative to the feet,
shins, thighs, shoulders, upper-arms, forearms, hands, head, hip, back and torso (see Fig.
3.1 step 1). A set of 8 infra-red (IR) cameras is used for recording the motion of the
markers. Motion capture hardware is supported with DTrack and ART Human software
for tracking and reproducing the motion of the actor in a virtual environment. The DTrack
software acquires the 2D information of each IR camera and provides the transformation
matrices relative to the different marker frames attached to the body parts with respect
to the global reference frame. The positions of the joint frames are estimated using the
intersections of the marker frames defined with respect to the reference frame. Joint
orientations are given with respect to unknown local frames and cannot be used. Referent
frame is defined during the room calibration process and connected on the surface of the
floor. ART Human uses the information provided by DTrack and estimates location of the
human joint frames (ARTCompany, 2018). The flowchart diagram of the work motion
capture system is given in Fig. 3.1. step 1. The sampling frequency for the acquisition
data is set to 100Hz.

The motion capture system is able to recognize and find correspondences between the
segments of the actor body in consecutive frames, and give a graphical representation of
the actor (avatar) within a virtual environment (see Fig. 3.1. step 1). The kinematic model
of the avatar realistically represents the human body and includes 60 DoFs (20 joints with
3DoFs per joint). Avatar body segments are modeled as three-dimensional ellipsoids and
have dimension of the human body segments estimated by ART Human software. Since
the kinematic model of the humanoid, which is used in the imitation process, has less DoF
than the avatar and has only few rotational joints, the motions of the avatar cannot be used
directly and reduced model that enables human to humanoid motion replication has to be
adopted.

3.3 Kinematic model of the humanoid as a human model

The information obtained from the motion capture system is used to define the char-
acteristics of the human body and his motions. There exist numerous human motion
capture systems that produce output in terms of different model of avatars that are stored
in different formats making it more difficult to exchange avatar modules in an overall in-
frastructure for humanoid robots. The avatar model can be directly used in the conversion
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Figure 3.3: a) Kinematic model of Master Motor Map (Azad et al., 2007); b) Kinematic
model of the robot ROMEO.
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process if it is near the kinematic model of the robot. Since the avatar model can have
more or less DoFs compared to the model of the robot, the intermediate model of the
human body should be defined. To overcome the deficiencies mentioned above in papers
(Azad et al., 2007; Terlemez et al., 2014) are proposed an intermediate kinematic model,
which they call the Master Motor Map (MMM) (see Fig. 3.3 a). Their strategy is to de-
fine the maximum number of DoF that might be used by any visualization, recognition,
or reproduction module, but not more than that. The MMM model consists of the 52
DoFs. The MMM model allows the simplification to the model of the humanoid robot
or on the simplified model of the human. The intermediate model can be scaled in terms
of body weight and height. Since the effort is very high to create a model for each sub-
ject individually, we also define the intermediate model. According to the characteristics
of the humanoid robot presented in the subsection 2.1.1 and Table 2.1, we have chosen
kinematic model of the robot ROMEO to represent the intermediate model of the human
body.

3.3.1 Robot ROMEO

Figure 3.4: Scaling process: a) extended kinematic model of robot ROMEO in a ba-
sic configuration; b) Intermediate model - scaled extended kinematic model of the robot
ROMEO to the dimensions of the human in the initial configuration with markers and
marker frames.

The humanoid robot ROMEO has been developed by Aldebaran Robotics (see Fig.
2.1.). Romeo is a 1.4 meters-tall and 36kg weight humanoid robot, designed to explore
and further research into assisting elderly people and those who are losing their autonomy.
Taller than the Pepper and Nao robots, ROMEO really has been designed with assisting
people in their daily lives in mind, and would in the long term be able to carry out actions
such as opening a door or picking up objects from a table. Fitted with two cameras in its
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eyebrows allowing it to measure distances. ROMEO is equipped with four computers to
manage its sight, hearing, movements and artificial intelligence. The characteristics of the
actuators implemented into the robot are given in the appendix A. ROMEO incorporates
a mass of innovations required for its future role as a personal assistant. Robot ROMEO
has 37 DoFs including, 7 DoFs per arm, 6 DoFs per leg, 2 DoFs for each eye, 1 DoF
for each foot, 2 DoFs for the neck, 2 DoFs for the head and 1 DoF for the backbone.
The spinal column, design, battery and solidity are improved in the second version of
the robot. The upper body model of the robot ROMEO is used for the purposes of our
research. We additionally include 6 DoFs in the trunk, which are not included in the
kinematic model of the ROMEO, and emulate the leg and spine motions (3 prismatic and
3 rotation joints (see Fig. 3.4 a)). The modified Denavit and Hartenberg (DH) convention
is used in the process of defining the kinematic model (Khalil & Kleinfinger, 1986). The
principles of the modified DH convention are explained in appendix D. In this way,
we made an intermediate model, as kinematic model of the human, which is extended
kinematic model of the robot ROMEO.

3.3.2 Scaling process

The transformation the kinematic model of the avatar to the model of the robot ROMEO
represents scaling process and in our research is given in two levels. At the first level, we
take into account the simplification of the kinematic model and reduced the kinematic
model of the avatar (60 DoFs) to the model of the robot ROMEO (37 DoFs). This kine-
matic model which has the size of the segments as the avatar model and numbers of DoFs
as kinematic model of the robot ROMEO represent intermediate model. In our research
intermediate model is called a scaled model of the robot ROMEO. The scaled model of
the robot ROMEO is used in the imitation algorithm in order to take all information about
human motion in joint and Cartesian spaces. Human motion in joint space is used for
analysis the human motion behaviors and human motion characteristics while the rep-
resentation of the human motion in Cartesian space defines the task which robot should
obtain. At the second level, the difference of the body segments between human and robot
ROMEO is taken into account and the intermediate model is transformed to the model of
the robot ROMEO. Acquired information about human motion calculated for the scaled
model of the robot ROMEO has been applied to imitate the human motion with the real
model of the robot ROMEO.

Since the kinematic model of the robot ROMEO is taken as intermediate model, size
of the robot segment should be scaled to the size of the actor limbs. For the purpose
of the scaling process the initial configuration is defined. The basic configuration of
the humanoid robot qbasic (see Fig. 3.4 a)), with the values of the all joints equal 0,
is proposed as initial configuration of the actors. In the initial configuration arms are
horizontally extended forwards with palms facing towards the floor (see Fig. 3.4 b)).
This configuration is well defined and can be easily achieved. In order to make relevant
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scaling process and transformation the kinematic model of the human to the scaled model
of the robot ROMEO, the scaled model of the robot ROMEO is defined with respect to
the global referent system.

Positions of the joint frames estimated by the motion capture system can be used to
estimate the size of the human segment required for the scaling process. The dimensions
of the human segments are calculated by taking the mean Euclidean distance between
two adjacent joints, and using several data samples taken from the recorded data, when
the actor keep the initial configuration. The dimensions of paired segments located on left
and right sides of the body are assumed to be identical and are calculated by taking the
mean value of the estimated segment dimensions on right and left side from each actor.

The frames’ position and orientation of the markers physically attached to the actor
body (Real Markers) are known and calculated by the ART Human software. In order
to attach frames of the Real Markers to the intermediate model, we must place the inter-
mediate model in the 3D position (with respect to the global referent system) and body
configuration same as the human model. The initial configuration which keeps actors at
the beginning of the motion is used for this purpose. Calculation the configuration of the
intermediate model which aligned the human initial configuration and the position of the
human body with respect to the global referent system is done by the initialization algo-
rithm which is explained in detailed in the Algorithm 1. Since the intermediate model
is posed on the initial configuration of the human, the frames of the Real Markers are
easily replicated to the intermediate model. These frames are hereinafter called as Virtual
Markers. Virtual Markers frames are defined as fixed and pre-labeled frames onto the sur-
face of the voluminous intermediate model which are set up in advance. Virtual Marker
fames are defined according to Real Marker frames at the initial configuration during the
initialization process and in the imitation algorithms will be used for matching motions
of the Real Markers frames.

3.3.3 Un-modeled kinematics of the human body

The conversion from human to humanoid motion is based on the effective kinematic
model of the humanoid robot according to his joint mobility and size. The closer is the
kinematic model of the humanoid to the model of human in size, joint limits and kinematic
model, the better can be the imitation. Since we used extended kinematic model of the
robot ROMEO as kinematic model of the human, we can expect the inconsistencies in the
motion imitation will appear. A lot of humanoid robots do not have complex structure of
the shoulder girdle as the human. The dimensions of the segments are assumed constant in
the model of the humanoid. In reality these quantity vary during the motion of the human
due to the un-modeled joints of the human and the motion of the skin. The un-modeled
joint in the shoulders are responsible for the vertical displacement of the shoulders (see
Fig. 3.5). Error will appear and a perfect imitation of the human motion with kinematic
model of the humanoid is not possible. The relative position of the Real Marker with
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Figure 3.5: The displacement of the shoulder joints and Real Markers attached to the
shoulders during the motion.

respect to the corresponding proximal frame of the actor joint and dimensions of the
segments are calculated and assumed constant in the scaled model of the ROMEO robot.
Although the markers are strongly attached to the body segments and distance between
the Real Marker and its proximal joint is not constant due to the motion of the skin. This
phenomenon is the most obvious in the case of hand and shoulder markers. An error
appears and a perfect imitation of the human motion by the scaled kinematic model of
robot ROMEO is not possible. More details about calculation frame of Virtual Markers
are given in Algorithm 1.

3.3.4 Estimation of the human body segments parameters

The essential part of the conversion framework is based on a three-dimensional whole-
body, kinematic model enriched with proper body segment properties (BSP), such as mass
distribution, segment length, moment of inertia, etc. In the following, it is shown how BSP
can be calculated in order to determine various dynamic properties of a body segment.

Many different methods exist for estimation BSP such as cadaver-based method, mass
scanning-based method and geometrical methods. Most of them are based on statistics.
Each of the method leads to different results of BSP which depend on the chosen segmen-
tation. The first Hanavan model of the human body has 15 segments which are define with
25 anthropometric parameters. In 1974 he gave the more precise model of the human body
with 16 segments but defined with 41 anthropometric parameters. The complex segmenta-
tion is done by Yeadon who represents human body with 40 solids and 95 anthropometric
parameters. Jensen (Jensen, 1978) proposed Elliptical zone method and segmented hu-
man body with elliptical disks of about 20mm width. Each of the method are not adapted
to variety of human body such as difference made between a young healthy sportsman
and an obese woman or an old person in terms of mass distribution and mass density.
For the purpose of our research we choice geometric method named modified Hanavan
method. The Hanavan model represents the human body as a set of the solids which have
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Figure 3.6: Human body segmentation according to the modified Hanavan notation.

anthropometric dimensions. An anthropomorphic, voluminous model is useful in terms
of motion synthesis, adaption, and analysis. To determine a sufficient voluminous model
from the applied anthropometric data, appropriate geometric primitives such as cylinders,
cones and spheres are used. These geometrical primitives fit the human shape well. Ac-
cording to the modified Hanavan notation the trunk was divided into the three segments
at the amphalion and xyphion level. The upper and lower trunk is represent as elliptical
cylinder while middle trunk is represents as elliptical solid. The hand is defined as an el-
lipsoid of revolution. The upper arm, forearm and shank are defined as circular cones. The
foot is defined as an elliptical solid with the base (proximal end) being circular. The thigh
is defined as an elliptical solid with the top (distal end) being circular. The human body
segmentation according to the modified Hanavan model is shown in Fig. 3.6. In total, 42
anthropometric parameters are needed for make model of the human body using these ge-
ometrical representations. Since the each body segment is geometrical represented, BSP
parameters for the human body can be calculated according to the mathematical equations
of segment mass, center of mass and moment of inertia. The list of the modified Hanavan
anthropometric body parameters, segments mass prediction equations and the description
of the geometrical shapes which represent body segment and calculation of the inertia
matrix and center of masses position are given in appendix B.

3.4 Initialization process

The aim of Initialization process is to define the initial configuration of the scaled
model of the ROMEO robot, according to the initial configuration of the actor at the
beginning of the motion, and to attach the Virtual Markers frames on the scaled model
of the ROMEO robot. Starting with the basic configuration of the robot qbasic, the joint
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positions of the scaled model of the ROMEO robot should correspond to the positions
found on the actor. The joint positions of the robot are calculated by initial configuration
algorithm taking the joint positions of the actor from ti=1 to ti=ninit time instances during
its initial configuration shown in 3.4 when the actor did not move. The orientation of
the robot hands (taken from the basic configuration of the robot), are transferred onto the
scaled model and remain unchanged. The initial configuration algorithm is represented as
a nonlinear optimization problem for the minimization of the objective function:

min
qinit



∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥



P̄ajLeftSh − PrjLeftSh(qinit)

P̄ajRightSh − PrjRightSh(qinit)

P̄ajLeftEl − PrjLeftEl(qinit)
P̄ajRightEl − PrjRightEl(qinit)
P̄ajLeftWr

− PrjLeftWr
(qinit)

P̄ajRightWr
− PrjRightWr

(qinit)

∆~erjLeftWr(qinit)

∆~erjRightWr(qinit)



∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

2
(3.1)

where P̄ajn is the mean value of the actor n ∈ {LeftSh,RightSh, LeftEl, RightEl, LeftWr,RightWr}

joint position Pajn(ti=1..ninit) in ninit time instances during the initial configuration, Prjn(qinit)

is the current position of the robot joint, ∆~erjh is the orientation error of the h ∈ {LeftWr,RightWr}

robot joint between the basic and the current configuration. The rotation matrices,Rrjh(q)

is rewritten in terms of quaternions as

Qrjh(q) =
[
Q1

rjh
(q) Q2

rjh
(q) Q3

rjh
(q) Q4

rjh
(q)
]

(3.2)

where η
rjh

= Q1
rjh

(q)., ~e
rjh

=
[
Q2

rjh
(q) Q3

rjh
(q) Q4

rjh
(q)
]T

. The transformation
process from the rotation matrix to the quaternions is in explained in appendix C in details.
The orientation error ∆~erjh(qinit) is calculated by using equation (Siciliano, Sciavicco,
Villani, & Oriolo, 2010):

∆~erjh(qinit) = ηrjh(qinit) · ~erjh (qbasic)− ηrjh (qbasic) · ~erjh (qinit)−

S(~e
rjh

(qbasic)) · ~evmrjh (qinit)
(3.3)

where S(·) is the skew-symmetric operator of the vector.

The initial guess for the optimization function is qbasic. The trunk, shoulder, elbow
and wrist joints are used in the algorithm. The neck and head joints are fixed.

The initial configuration qinit is important for the initialization the positions of the
Virtual Markers on the scale model of the ROMEO robot. The Virtual Markers are placed
on the scale model of the robot and connected with the robot joints in the initial config-
uration. The Virtual Marker frame (with transformation matrix Tvml), is attached to the
body where it is fixed and connected with the closest proximal frame attached to the joint
Trjn(qinit) via transformation matrix rjnTvml .
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The Virtual Marker with correspond proximal joint frames are paired as{
TrjLeftSh , TvmLeftUArm

}
,
{
TrjRightSh , TvmRightUArm

}
,
{
TrjLeftEl , TvmLeftFArm

}{
TrjRightEl , TvmRightFArm

}
,
{
TrjLeftWr

, TvmLeftHd
}
,
{
TrjRightWr

, TvmRightHd
} (3.4)

The Virtual Marker holds the mean values of the Real Marker transformation matrices
Trml(ti=1..ninit) in ninit time instances of the actor initial configuration. A transformation
matrix rjnTvml is calculated for each pair joint-marker and remains unchanged within the
imitation algorithm.

The initialization process is described by the Algorithm 1 following nine-step scheme:

Algorithm 1 Initialization process

1: Initialization: qbasic, ninit, Paj(ti), Trm(ti), scaling kinematic model of upper part of
the ROMEO robot

2: Scaling process: segments lengths, scaled model of upper part of robot ←
Paj(ti=1:ninit)

3: Trj(qbasic)← DirectKinematics(qbasic)
4: Prj(qbasic), Rrj(qbasic)← Trj(qbasic)
5: P̄aj ← mean(Paj(ti=1:ninit))
6: Optimization algorithm: fmincon qinit ← fmincon(objective function (see Eq. 3.1),
qbasic)

7: T̄rm ← mean(Trm(ti=1..ninit))
8: Tvm = T̄rm
9: rjnTvml = inv(Trjn(qinit))Tvml

where l ∈ {LeftUArm,RightUArm,LeftFArm,RightFArm,LeftHd,RightHd} and
n ∈ {LeftSh,RightSh, LeftEl, RightEl, LeftWr,RightWr}

3.5 Imitation algorithms as optimization approach

In this section, the numerical and analytical imitation algorithms for extraction of the
human Cartesian motions and joint motions from the data obtained with motion capture
system are introduced. Ude et al. (Ude et al., 2004, 2000) proposed an approach to the
formulation and optimization of the joint trajectories for humanoid robots. Their imitation
algorithm is based on following the 3D position of the marker physically attached on the
human body with the marker placed on the scaled robot model. The imitation algorithm
propose by Ude is developed for imitating free human motion (motion without the con-
tact). The same approach is used in our imitation algorithms. Our imitation algorithms
are upgrade of algorithm proposed by Ude for the tasks which require precise imitation
of the human motion by humanoids.

The imitation algorithms are formulated as an optimization algorithm which calculate
the generalized coordinates of the joints qimitation(ti) for the scaled model of the ROMEO
robot, for each time sample ti, with i ∈ [1 . . . N ], where N represents the number of
time samples of the recorded motion. The criterion function which should be minimize
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is given as the error between the position of the frames attached to the joint of the actor
and those of the scaled model of the ROMEO robot and the error between the position
and orientation of the frames attached to the markers of the human (Real Markers) and
Virtual Markers of the scaled ROMEO robot model. Since the precision of orientation
measurement is lower compared to that of position measurement, and orientations of the
proximal segment are implicitly taken into account via their effect on distal joint positions
and markers. The orientations of the proximal frames are not taken into account in the
criterion of minimization. Only the orientation of the distal segment is included.

The optimization criterion is:

ζ = ‖ε(ti, q)‖2 (3.5)

where

ε(ti, q) =



α
(−→
P rm(ti)−

−→
P vm(q)

)
β
(−→
P aj(ti)−

−→
P rj(q)

)
γ
(
∆~ervmLeftHd(ti, q)

)
γ
(
∆~ervmRightHd(ti, q)

)
δ
(
PajLeftHd(ti)− PrjLeftHd(q)

)
δ
(
PajRightHd(ti)− PrjRightHd(q)

)


(3.6)

and the generalized joint configuration is:

qimitation(ti) = min
q

(ζ) (3.7)

where α ,β, γ and δ are the weighted factors,
−→
P rm(ti) and

−→
P aj(ti) are vectors of the

recorded positions of the Real Markers and proximal actor joints at the time sample ti,
respectively,

−→
P vm(q) and

−→
P rj(q) are vectors of the positions of the Virtual Markers and

proximal robot joints at in the current joints configuration q:

−→
P rm(ti) =



PrmLeftUArm(ti)

PrmRightUArm(ti)

PrmLeftFArm(ti)

PrmRightFArm(ti)

PrmLeftHd(ti)

PrmRightHd(ti)


;
−→
P vm(q) =



PvmLeftUArm(q)

PvmRightUArm(q)

PvmLeftFArm(q)

PvmRightFArm(q)

PvmLeftHd(q)

PvmRightHd(q)



−→
P aj(ti) =


PajLeftSh(ti)

PajRightSh(ti)

PajLeftEl(ti)

PajRightEl(ti)

 ;
−→
P rj(q) =


PrjLeftSh(q)

PrjRightSh(q)

PrjLeftEl(q)

PrjRightEl(q)


PajLeftHd(ti) and PajRightHd(ti) are positions of the left and right actor hand joints at the
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time sample ti, respectively, PrjLeftHd(q) and PrjRightHd(q) are positions of the left and
right robot hand joints at the current joints configuration q; ∆~ervmLeftHd and ∆~ervmRightHd
are the orientation errors between the Real and Virtual Markers attached to the left and
right hands (distal markers) at the time sample ti and joint configuration q, respectively.
The orientation errors are represented in terms of quaternions. The rotation matrices,
RrmLeftHd(ti) and RvmLeftHd(q) (which express the orientations of the Real and Virtual
Markers of the left hand, respectively), can be rewritten in terms of quaternions as:

QrmLeftHd =
[
Q1

rmLeftHd
(ti) Q2

rmLeftHd
(ti) Q3

rmLeftHd
(ti) Q4

rmLeftHd
(ti)
]

QvmLeftHd =
[
Q1

vmLeftHd
(ti) Q2

vmLeftHd
(ti) Q3

vmLeftHd
(ti) Q4

vmLeftHd
(ti)
] (3.8)

respectively,where
ηrmLeftHd = Q1

rmLeftHd
(ti), ~ermLeftHd =

[
Q2

rmLeftHd
(ti) Q3

rmLeftHd
(ti) Q4

rmLeftHd
(ti)
]T

, ηvmLeftHd =

Q1
vmLeftHd

(q), and ~evmLeftHd =
[
Q2

vmLeftHd
(q) Q3

vmLeftHd
(q) Q4

vmLeftHd
(q)
]T

.
The orientation error ∆~ervm

LeftHd
is calculated by using equation (Siciliano et al.,

2010):

∆~ervmLeftHd(ti, q) = ηvmLeftHd (q) · ~ermLeftHd (ti)−

ηrm
LeftHd

(ti) · ~evmLeftHd (q)− S(~erm
LeftHd

(ti)) · ~evm
LeftHd

(q)
(3.9)

where S(·) is the skew-symmetric operator of the vector.
The orientation error of the right hand ∆~ervmRightHd is calculated in the same way.

3.5.1 Numerical approach for solving inverse optimal imitation prob-
lem

In the subsection 2.2.1 we gave the extensive review of the existing imitation algo-
rithms. Numerous algorithms are used for solving imitation problems. For example, Ude
et al. (Ude et al., 2000) proposed an approach to the formulation and optimization of the
joint trajectories for humanoid robots using B-spline wavelets. Since the imitation algo-
rithm is represented as an optimization approach, in this section we give the numerical
solution. Standard optimization toolbox solvers propose a lot of nonlinear optimization
algorithms such as trust-region approach (Moré & Sorensen, 1983), nonlinear and linear
least-squares method, quasi-Newton updating method, sequential quadratic programming
method (SQP) (Powell, 1978a, 1978b). We choose standard numerical optimization algo-
rithm SQP which is able to minimize the criterion function given with equation 3.5 on the
best way.

For the purpose of our study we defined numerical imitation algorithm using the MAT-
LAB fmincon solver with an active-set function, which is based on SQP method (Powell,
1978b). The joint configuration is found based to the search the local minimum of the cri-
terion function 3.5. In order to obtain the global minimum of the criterion function 3.5 the
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initial guess for the optimization algorithm must be well defined. The initial guess for the
imitation algorithm in the first sample is taken to be the initial configuration qinit, which
is calculated from the Initial configuration algorithm. In future samples of the imitation
algorithm, qinit is replaced with the optimal solution from the previous sample and then
used as the initial guess for the current optimization algorithm. The values of objective
function cannot be zero due to the large differences in the kinematic model between the
human and humanoid. For the case studied, the neck and head joints are kept fixed.

According to the criterion function 3.5, in our numerical imitation algorithm, the fac-
tors α ,β, γ and δ assign different priority levels with regards to following the marker
or joint positions, respectively. With the aim of reducing the effect of the skin motion
(which has a direct influence on the motion of the markers) and increasing the accuracy
of the imitation we adjusted the factors α ,β, γ and δ to give a larger priority on following
the joint position with respect to the marker. All of the arms’ Real Markers and arms’
joint positions are used in the criterion function, with the aim of improving how well the
orientation of the proximal joints are followed, since this is not handled by the criterion
function. In our numerical imitation algorithm we chose: α = 1, β = 2, γ = 10 and
δ = 20.

Our numerical imitation algorithm is the extension of the imitation algorithm proposed
by Ude et. al (Ude et al., 2000). Therefore, Ude et. al (Ude et al., 2000) imitation approach
corresponds to our numerical imitation algorithm with α = 1, β = 0, γ = 0 and δ = 0.

The obtained results from the imitation algorithms must be further processed. In order
to eliminate the effects of the noise from the motion capture system and make smoother
the joint trajectories from the imitation algorithm, we applied a Savitzky–Golay filter
which is based on the fitting successive sub-sets of adjacent data points with a low-degree
polynomial by the method of linear least squares (Orfanidis, 1995). For generation these
filters we used the sgolayfilt MATLAB function and defined the 5th order polynomial for
the sub-sets of the 31 adjust points. In this way, we obtained smoother joint trajectories
Qimitation which are further used.

Our numerical imitation algorithm is described by the Algorithm 2 following seven-
step scheme:

3.5.2 Analytical approach for solving inverse optimal imitation prob-
lem based on the Jacobian matrix

The second imitation algorithm corresponds to an optimization problem which has
an analytical solution for the value qimitation(ti) at each time sample ti, minimizing the
criterion function given by Eq. 3.5. Since the initial configuration of the robot, qinit, is
calculated in the initialization process and the initial position of the robot joint and Virtual
Markers are known, the current value qimitation(ti) can be calculated incrementally by
using qimitation(ti−1) calculated in the previous iteration qimitation(ti) = qimitation(ti−1) +
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Algorithm 2 Numerical imitation algorithm

1: Initialization:qinit, ninit, Paj(ti), Trm(ti), extended kinematic model of upper part of
the ROMEO robot

2: Scaling process: segments lengths, scaled model of upper part of robot using
Paj(ti=1:ninit)

3: Define α, β, γ, δ
4: Initialization process
5: for ti = 1 to N do
q = qinit
Trj(q) ← DirectKinematics(q);
Prj(q) ← Trj(q)
Tvm(q) = Trj(q)

rjTvm
Pvm(q), Rvm(q)← Tvm(q)
Prm(ti),Rrm(ti) ← Trm(ti)

Optimization algorithm: fmincon qimitation(ti) ← fmincon(objective function ( see
Eq. 3.5.), qinit)
qinit = qimitation(ti)

6: end for
7: Qimitation(ti)← sgolayfilt(qimitation(ti))

∆q. Therefore, the criterion function, ε(q(ti)), can be expressed as a function of ∆q:

ε(ti, q(ti)) = ε(ti, qimitation(ti−1) + ∆q) =

εα(ti, qimitation(ti−1)) + εβ(ti, qimitation(ti−1))∆q =

α
(−→
P rm(ti)−

−→
P vm(qimitation(ti−1) + ∆q)

)
β
(−→
P aj(ti)−

−→
P rj(qimitation(ti−1) + ∆q)

)
γ
(
∆~ervmLeftHd(ti, qimitation(ti−1) + ∆q)

)
γ
(
∆~ervmRightHd(ti, qimitation(ti−1) + ∆q)

)
δ
(
PajLeftHd(ti)− PrjLeftHd(qimitation(ti−1) + ∆q)

)
δ
(
PajRightHd(ti)− PrjRightHd(qimitation(ti−1) + ∆q)

)


(3.10)

where vector εα(ti, qimitation(ti−1)) can be evaluated based on equation 3.6, and matrix
εβ(ti, qimitation(ti−1)) based on its derivative. The current position of kth robot joint is
represented by relation:

Prjk(q(ti)) = Prjk(qimitation(ti−1)) + Jrjk(qimitation(ti−1))∆q (3.11)

where k ∈
{
LeftSh RightSh LeftEl RightEl

}
. Jrjk(q) represents the Jacobian matrix of

the kth proximal robot joint calculated analytically by using the software SYMORO+
(Khalil & Creusot, 1997). The current position of the lth Virtual Marker is calculated by
using the equation:

Pvml(q(ti)) = Pvml(qimitation(ti−1)) + Jvml(qimitation(ti−1))∆q. (3.12)
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Jvml(q) represents the Jacobian matrix of the lth Virtual Marker
l ∈ {LeftUArm,RightUArm,LeftFArm,RightFArm,LeftHd,RightHd} calcu-

lated by equation Jvml(q) =

[
Arjn −Arjnrjn

_

P vml

O3 Arjn

]
·

[
Arjn O3

O3 Arjn

]−1

Jrjn(q), where

Arjn is the orientation matrix of the closest proximal frame attached to the joint Trjn ,
and rjn

_

P vml is a skew-symmetric matrix defined by a component of the vector rjnPvml .
The matrix rjnPvml is part of the matrix rjnTvml . The current orientation of the Virtual
Markers on the left hand is calculated in the same way as the position QvmLeftHd(q(ti)) =

QvmLeftHd(qimitation(ti−1)) + JQvmLeftHd(4 : 7, qimitation(ti−1))∆q. JQvmLeftHd(q) is the
Jacobian matrix of the left hand Virtual Marker represented in terms of quaternion and

calculated by equation JQvmLeftHd(q) =

[
I3x3 O3x3

O4x3 Ω(q)

]
JvmLeftHd(q), where

Ω(q) =


−Q2

vmLeftHd
(q) −Q3

vmLeftHd
(q) −Q4

vmLeftHd
(q)

Q1
vmLeftHand

(q) Q4
vmLeftHand

(q) −Q3
vmLeftHd

(q)

−Q4
vmLeftHd

(q) Q1
vmLeftHd

(q) Q2
vmLeftHd

(q)

Q3
vmLeftHd

(q) −Q2
vmLeftHd

(q) Q1
vmLeftHand

(q)

 and QvmLeftHd =

[
Q1

vmLeftHd
(q) Q2

vmLeftHd
(q) Q3

vmLeftHd
(q) Q4

vmLeftHd
(q)

]T
. The current orien-

tation of the Virtual Marker on the right hand is calculated in the same way.

The analytical expression for ∆q is deduced for the optimality condition

∂ζ
∂∆q

=
∂(‖ε(ti,qimitation(ti−1)+∆q)‖2)

∂∆q
= 0 and gives:

∆q = −εβ(ti, qimitation(ti−1))+εα(ti, qimitation(ti−1)) (3.13)

where εβ(ti, qimitation(ti−1))+ represents the pseudo inverse of the matrix εβ(ti, qimitation(ti−1)).
According to the previous equations, vector εα(ti, qimitation(ti−1)) and matrix εβ(ti, qimitation(ti−1))

from equation (3.10) take the form:

εα(ti, qimitation(ti−1)) =



α
(
~Prm(ti)− ~Pvm(qimitation(ti−1)

)
β
(
~Paj(ti)− ~Prj(qimitation(ti−1)

)
γ · εRαLeftHand
γ · εRαRightHand

δ
(
PajLeftHand(ti)− PrjLeftHand(qimitation(ti−1)

)
δ
(
PajRightHand(ti)− PrjRightHand(qimitation(ti−1)

)


(3.14)
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εβ(ti, qimitation(ti−1)) =



−α · ~Jvm(qimitation(ti−1))

−β · ~Jrj(qimitation(ti−1))

γ · εR
β
LeftHand

γ · εR
β
RightHand

−δ · JrjLeftHand(qimitation(ti−1))

−δ · JrjRightHand(qimitation(ti−1))


(3.15)

where

εRαLeftHand =


ηvmLeftHand (qimitation(ti−1)) · ~ermLeftHand (ti)−
ηrmLeftHand (ti) · ~evmLeftHand (qimitation(ti−1))−
S(~ermLeftHand (ti)) · ~evmLeftHand (qimitation(ti−1))


εRαRightHand =


ηvm

RightHand
(qimitation(ti−1)) · ~ermRightHand (ti)−

ηrmRightHand (ti) · ~evmRightHand (qimitation(ti−1))−
S(~ermRightHand (ti)) · ~evmRightHand (qimitation(ti−1))



εR
β
LeftHand

=


~ermLeftHand (ti) · JQvmLeftHand(4, qimitation(ti−1))−
ηrmLeftHand (ti) · JQvmLeftHand(5 : 7, qimitation(ti−1))−
S(~erm

LeftHand
(ti)) · JQvmLeftHand(5 : 7, qimitation(ti−1))


εR
β
RightHand

=


~erm

RightHand
(ti) · JQvmRightHand(4, qimitation(ti−1))−

ηrmRightHand (ti) · JQvmRightHand(5 : 7, qimitation(ti−1))−
S(~ermRightHand (ti)) · JQvmRightHand(5 : 7, qimitation(ti−1))


~Jvm is the vector of the Jacobian matrices for all Virtual Markers and ~Jrj is a vector
of the Jacobian matrices for the all proximal robot joints. ∆q is calculated according
to equations (3.13), (3.14) and (3.15). The initial guess for the imitation algorithm at
the first sample is taken to be the initial configuration, qinit, of the scaled model of the
robot. In future samples of the imitation algorithm, the solution from the previous sample
qimitation(ti−1) is used as the initial guess for the current iteration in the optimization al-
gorithm. Values of the objective function cannot be zero due to large differences between
the kinematic model of human and humanoid.

Factors α, β, γ and δ are defined on the same way as in the numerical imitation
algorithm and take same values.

The actor motion in the Cartesian space is re-calculated using the qimitation(ti) and
direct geometric model of the scaled model of the ROMEO robot.

3.6 The simulation results of the imitation algorithms

In this section, we will analyze the results of our imitation algorithms. In order to
show the general characteristics of our imitation algorithms we tested them on the set
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of 7 different and complex dual arm tasks (explained in the chapter 3). Each task is
performed by 19 actors. Results obtained by our imitation algorithms are compared with
result obtained with numerical algorithm proposed by Ude (Ude et al., 2004, 2000).

The imitation algorithm starts when the scaled model of the ROMEO robot is set to
the actor intial configuration. The Initial configuration algorithm should perfectly match
the initial joint configuration of the scaled model of the ROMEO robot with the recorded
initial actor joint configuration. Some differences between the actors skeletal structure
and the robots structure can cause significant error in the initial configuration algorithm,
especially in the shoulder joints. Quality of the matching actor’s initial position for one
motion is represented asEPaj ,Prj , the Euclidian distance between positions of the recorded
actor joint Paj and the joint of the scaled model of the ROMEO robot Prj . In order
to present the general performance of the Initial configuration algorithm for each actor,
we calculated µ(Ej), as the mean value of Ej of jth joint for all the motions performed
by each actor. On the same way the normed hand orientation error between the basic
and the current configuration of the scaled model of the robot is calculated. The general
characteristics of Initial configuration algorithm for each actor and each joint are shown
in Fig. 3.7. According to the results obtained from each actor for all experiments, the
highest position error of the shoulder joints is around 12mm. The reason for this is the
approximated kinematic model of a human which has more DoFs in the shoulder and
spine, compared with the robot’s kinematic model. The results from the other actors show
that the average Euclidian distance between actor and scaled model of the ROMEO robot
joints are less than 2mm. The scaled model of the ROMEO robot has enough DoFs in
its hands to achieve the orientation of the hands as shown in the robot basic configuration
which confirmes results in Fig. 3.7 d).

Starting from the calculated qinit, the generalized coordinates of the scaled model of
the ROMEO robot motion are calculated using our imitation algorithms. Our imitation
algorithms are defined to give the highest priority to the hand position and orientation
following in order to ensure the task is done properly. According to the results for the
“Open/close drawer” task presented here (see Fig. 3.8, blue color), one can conclude that
the our imitation algorithms produced the same motion of the actor hands as the scaled
model of the ROMEO robot. The highest normed errors in following the actor hands tra-
jectories are around 5mm which is obtained our numerical imitation algorithm (see Fig.
3.8, blue solid line). Since the robot model has enough DoFs, the imitation algorithm
gives good performance in following hands orientations. Bigger errors in following the
shoulder and elbow joints motions (the biggest amplitude around 30mm) are the results of
simplifying the kinematic model of human by using the model of robot ROMEO. In order
to point out performances of the proposed imitation algorithms, results are compared with
the numerical algorithm proposed by Ude et al. (Ude et al., 2004, 2000) and shown in the
Fig. 3.8 red scale. Since the numerical algorithm proposed by Ude is based on following
the 3D markers positions, errors in following the joint position and orientation are bigger
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Figure 3.7: The position and orientation errors in matching actor’s initial configuration
with the scaled model of the ROMEO robot generated by our Initial configuration algo-
rithm: (a), (b) and (c) represent average position errors of the arm joints µ(Ej) for the 19
actors in millimetres; (d) represents average normed orientation errors µ (‖∆~ehand‖) of
the hand joints in quaternion.
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Figure 3.8: The orientation and position errors between the recorded and obtained motion
generated by our analytical ( blue scale, dashed line) and numerical ( blue scale, solid
line) imitation algorithms and the numerical imitation algorithm proposed by Ude (Ude
et al., 2004) (red scale): a) the normed orientation errors ∆~ervmRightHd and ∆~ervmLeftHd
of the right and left hand markers in quaternion; b) represents the normed position errors
Paj(ti)− Prj(ti) of the arm joints in meters.
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Figure 3.9: The normed position errors in following Real Marker Prm with Virtual Marker
Pvm obtained with our analytical ( blue scale, dashed line) and numerical ( blue scale,
solid line) imitation algorithms and the numerical imitation algorithm proposed by Ude
(Ude et al., 2000) (red scale) in meters.

comparing with our imitation algorithms (see Fig. 3.8). In (Ude et al., 2000), big errors
in following hand joints position and orientation will disable robot ROMEO to achieve
contact between hands and equipment and the task will not be obtained. Imitation algo-
rithm proposed by Ude is developed for imitating free human motion (motion without the
contact). On the other hand, errors in following the position of the Real Markers with Vir-
tual Markers obtained with algorithm proposed by Ude are smaller compare with results
from our imitation algorithms since hand position tracking is of the highest priority in
our algorithms (see Fig. 3.9). Although the algorithm proposed by Ude gives small error
in following 3D position of the markers, the precise following position and orientation
of hands joints is not guaranteed. The reasons are the calculation of the transformation
matrix between Real Markers and closest proximal joint which is not so precise and the
fact that this transformation matrix may be changed due to the skin motion. It can be
noticed that our imitation algorithms allow a better tracking of the hand motion compared
with algorithm proposed by Ude one and also permit a correct tracking to the pose of the
shoulder and elbow that characterize the shape of the arm, i.e. its configuration.
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The imitation algorithms are also tested on a set of different dual arms motions each
performed by 19 actors, as well. Quality of the imitation for one motion is represented
as E = µ(dPahand (ti...N ),Prhand (ti...N )), the mean value of the Euclidian distance between
positions of the recorded hands joints Pahand and the hands joints obtained with the our
imitation algorithm Prhand during all samples of the motion. In order to present the general
performance of our imitation algorithms for each actor, we calculated µ(E), and the mean
value of E for all the motions performed by each actor. The general characteristics of our
imitation algorithms for each actor expressed by µ(E) and imitation algorithm proposed
by Ude are shown in Fig. 3.10.

The results show that our imitation algorithms give average errors in following the
desired hand positions of around 3mm for most actors. For some actors, these errors are
somewhat bigger, around 5mm. The reason is a big disparity of the estimated and real
actor kinematic model (confidence in the distance between joints).

Summing up, the obtained hand trajectories generated through our imitation algo-
rithms can be used as a desired robot motion in the conversion process in the inverse
kinematic algorithm for the task with and without contact between hands and equipment.
According to the results shown in the Fig. 3.8 the numerical imitation algorithm gives
better performance in following desired position of some joints compare with analytical
imitation algorithm. This is not crucial to define a numerical algorithm as better than an-
alytical algorithm since the errors in following the position of the hands’ joints are about
the same. The additional advantage of our analytical imitation algorithm is that it can be
used to imitate the movement in real-time. That is a reason why we used the results from
our analytical algorithm in the algorithm for humanoid motion generation presented in
next section.

3.7 From the Imitation Results to the Motion of Robot
ROMEO

The motion obtained with the imitation algorithm described previously cannot be di-
rectly used by humanoid robot ROMEO, because neither size of the humanoid robot nor
joint limitations have been taken into account. If joint motion qimitation(t) is used, the
motion in Cartesian space will not be preserved, thus contact with the environment will
not be achieved. If Cartesian motion is used, human skill will not be preserved. In what
follows we will propose different strategies depending of the existence of contact with the
environment or not. A contact with environment is assumed to exist via the hands of the
robot. The case of contact with another part of the body may be considered in a similar
way. The transition strategy will also be proposed between the contact and no contact
phases.

During a motion with contact, motion of the actor hands is constrained with the char-
acteristics of the equipment. In (Jovanovic, Potkonjak, & Holland, 2014), we thoroughly
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elaborated types of contact constraints and therefore corresponding mathematical repre-
sentations. We study the case where the robot should do the task in the same environment
of the human with the same type of contact. The moment when robot hands establish
contact with the equipment is calculated using the hands positions of the scaled model of
the robot and the known position of the equipment. To that end, hands coordinates of the
scaled model of the robot and equipment coordinates are represented in the same referent
frame. For the phase of contact, the robot hands should be able to follow the same motion
in the Cartesian space as the actor hands. A necessary condition for performing the task
by the robot is that the trajectories of actor hands (for the phase of contact) are within the
workspace of the robot. The workspace of robot ROMEO is defined according to the robot
segments size and the joint limits on the ways proposed in the papers (Bagheri, Ajoudani,
Lee, Caldwell, & Tsagarakis, 2015; Wenger, 2010). If this condition is satisfied when the
robot is initially at the same place as the actor, then the motion will be achieved in this
way. Otherwise, a new initial position and orientation of the robot can be calculated in
order that the task becomes feasible. In this last case, the transformation matrix describ-
ing the displacement of the robot will be taken into account in order to modify the desired
motion of the hands of the robot accordingly.

3.7.1 The inverse kinematic algorithm as a tool for generation of hu-
man like motion

The process of imitation of the human motion requires the possibility for the robot
to perform the task like a human. Since robot ROMEO is of a redundant structure, the
same motion as that of the human hands can be obtained for different configurations of
the arms. By using the inverse kinematic algorithm, the recorded human joint motion can
be imitated by robot ROMEO. The minimized difference between the current joint trajec-
tories qrobot(t) and joint trajectories qimitation(t) obtained with imitation algorithm of the
scaled model of the robot |qrobot(t)− qimitation(t)|2 are included in the inverse kinematic
algorithm as an secondary criterion:

dqrobot(ti) = J+λdX(ti)− (I − J+J)(qrobot(ti−1)− qimitation(ti))

qrobot(ti) = qrobot(ti−1) + dqrobot(ti)
(3.16)

where J+λ is the damped least-square inverse of the Jacobian matrix J and damping fac-
tor (Wampler, 1986) λ = 0.003 which is introduced with aim of solving the problem
of discontinuity of the pseudoinverse solution at a singular configuration, J+ is pseudo-
inverse of the Jacobian matrix J of robot ROMEO calculated for the robot size, I is
Identity matrix, dX(ti) is the positional and the orientation variation between the de-
sired trajectories of the robot hands Xd

hands(ti) and the current position of the robot hands
Xc
hands(qrobot(ti−1)) calculated by the direct geometric model and using the real size of
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the robot:
dX(ti) = Xd

hands(ti)−Xc
hands(qrobot(ti−1)) (3.17)

The joint limits are included in the inverse kinematic algorithm by using the internal
clamping loop that checks and removes the joints that reach their upper or lower joint
limits qmin

robot and qmax
robot, respectively. In the case that a joint has passed through the limit,

the joint value will be clamped to the limit value. The elements of the Jacobian matrix J
and Identity matrix I related with the clamped joint will be set to zero. In this way, we
prevent the motion of the clamped joint. The inverse kinematic algorithm continues to
initiate other joints in order to reach desired values of the hands. The inverse kinematic
algorithm with the clamping loop is in detailed explained in Baerlocher et al.(Baerlocher
& Boulic, 2004).

The primary task of the inverse kinematic algorithm is to follow the desired trajecto-
ries of the hands Xd

hands(ti). If motion involved contact between hands and equipment,
the robot needed to use the same equipment and manipulate it in the same way as a hu-
man. The desired motions of the robot’s hands were defined in the imitation algorithm,
calculating the hand position and orientation using qimitation(t) and the direct geometric
model of the scaled ROMEO. However it is important to note that qimitation(t) was defined
for a scaled model of the robot and that Jacobian matrix J used here was calculated for
the real size of robot ROMEO. The qimitation(t) and Xd

hands(ti) are not consistent, thus the
secondary task will not be achieved and qrobot(t) will differ from qimitation(t).

3.7.2 Motion of robot hands without contact

A robot is not able to simultaneously follow recorded hand and joint motions since
the robot size and joint limits and those of a human are not the same. When there is no
contact with the environment, it may be preferable to follow human joint motions rather
than human Cartesian motions, in order to express human skills. However, to keep the
same control approach with and without contact with the environment, and to take into
account the joint limits, we used a slightly modified equation (3.16):

dX(ti) = Xc
hands(qimitationModif (ti))−Xc

hands(qrobot(ti−1)) (3.18)

where qimitationModif (ti) is the modified value of qimitation(t), when the value of qimitation(t)

can be outside the robot joint limits. The modification was implemented using the algo-
rithm proposed by Safonova et al. (Safonova et al., 2003).

In this manner, Xc
hands(qimitationModif (ti)) was inside the workspace of the robot and

the desired motion in the joint and Cartesian spaces was coherent and consistent with the
dimensions of the humanoid robot. The joint limits were also taken into account.
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3.7.3 The transition strategy connecting the motions without and with
contact

For a motion with or without contact of the hands with the environment, we have
proposed to use the algorithm given by equation (3.16). The difference between the two
cases is in the manner used to define the desired Cartesian motion of the hands. As a
consequence, we propose a transition strategy based on rescaling the size of the robot
to the size of the actor. The transiotion strategy starts if the relative position between
robot hands, during the motion without contact, and the object to be contacted reaches
prescribed vicinity. Here we assume the prescribed vicinity is the sphere of 0.1m radius.
During the transition strategy, the size of the robot segments in the model are linearly
modified to reach the size of the actor. The hand trajectories were calculated for the
incrementally rescaled model of the robot by using the value of qimitationModif (ti), which
corresponds to this part of the motion. The transition strategy was over when the size
of the rescaled model of the robot was the same as that of the actor and the value of
qimitationModif (ti) was the same as that corresponding to the sample when the contact
between the actor’s hands and the equipment was achieved. A connection between the
hands and the equipment was therefore made.

The desired trajectories of the robot’s hands can be processed further. In order to
smooth trajectories of the robot hands, we applied a Savitzky–Golay filter which is based
on fitting successive sub-sets of adjacent data points with a low-degree polynomial by the
method of linear least squares (Orfanidis, 1995).

3.7.4 Handling collision

This research also addressed dual-arm motions performed by actors. Any actor nat-
urally avoids collision with equipment and self-collision. Since we used data generated
by the imitation algorithm, which characterize human skills, to generate motion of the
robot it is expected that the robot, similarly to the actor, will avoid self-collision. Also,
the trajectories of the robot’s hands during the contact phase of the motion were the same
as those of a human, thus, collision with the equipment was eliminated. Collisions did not
occur in the tested motion. In other cases, collision avoidance could be included in the
generation of humanoid motion using the techniques developed in (Dariush et al., 2009;
Mühlig, Gienger, & Steil, 2012; Ruchanurucks, 2015).
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Figure 3.11: The motion "Open/close drawer" performed by the actor and robot: a) Ac-
tor during the task. Simulation model of the robot and the calculated trajectories of the
robot hands, b) in the imitation algorithm, c) in the algorithm for generation of humanoid
motion.

3.8 The simulation and experimental results of the mo-
tion of robot ROMEO

The conversion process is based on the results obtained from the imitation algorithm,
which are applied in the algorithm for generation of humanoid motion. Trajectories of the
hand motions obtained for the scaled model of the robot by using the imitation algorithm
are shown in Fig. 3.11 b). Since the size of the robot was not the same as the size of the
actor, the desired trajectories of the hands during the motion without contact were outside
the robot workspace and the robot was not able to perform the motion. Therefore, the hand
motions generated with the imitation algorithm had to be additionally modified according
to the robot’s characteristics, as proposed in our algorithm for humanoid motion. The
generated trajectories of the robot’s hands during the motion with and without contact, as
well as the transition strategy, are shown in Fig. 3.11 c).

The trajectories depicted in cyan are the motions without contact with equipment, ob-
tained as proposed in subsection 3.7.2; the trajectories in magenta represent the motions
obtained with the transition strategy when the contact between the hands and equipment
was calculated according to the algorithm proposed in subsection 3.7.3; and dark blue rep-
resents the trajectories of the actor’s hands during motion with contact. The desired trajec-
tories of the robot’s hands are based on the results of the actor’smotion from the imitation
algorithm and/or the motion of the robot’s arms imitating human motion. Therefore, the
robot’s hand motion was free of both the collisions with equipment and self-collision, like
the recorded human motion. The experimental results of the actor "Open/close drawer"
motion and the same motion performed with robot ROMEO are given in Fig. 3.12. The
robot and the actor performed the task in the same environment. The height of the robot
is less that the height of the actor.
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Consequently, the robot performed the task at the level of its chest, whereas the actor
did so at waist level. ROMEO had conventional hands with flexible fingers, which were
not actuated and the robot was required to just open and close hands. This was the reason
why the drawer was ajar at the beginning of the experiment. With a robot that has complex
hands with actuated joints, the contact between the hands and the drawer would have been
possible with the drawer closed, exactly in the same manner as the actor performed the
task.

3.9 Conclusion

The conversion process for imitation of dual arm human motion, utilizing the upper
body has been presented in this chapter. The conversion process consists of the imitation
algorithms and the algorithm for humanoid motion generation. Imitation algorithms, de-
fined for the scaled model of robot ROMEO, are based on Virtual Markers which follow
the Real Marker motions and incorporates additionally recorded joint motions. The ana-
lytical imitation algorithm is based on the analytical expression of the Jacobian matrices
and is able to define the expected motion of the scaled robot in the real time. On the other
hands, numerical algorithm is based on the well known nonlinear optimization approach
and obtains imitation of the human motion with the same performance as analytical al-
gorithm. Since the numerical algorithm used the MATLAB fmincon solver, the imitation
cannot be done in real time. Comparing to existing algorithm, our imitation algorithms
provide a better accuracy of the motion imitation in Cartesian space. Precise imitation
of hand motion in Cartesian space is essential for a task where the hands come into con-
tact with the environment. The algorithm for humanoid motion generation is based on
an inverse kinematic algorithm whose objective is to follow the desired robot hand mo-
tions and, at same time, ensure that the motion of the humanoid resembles human motion
behavior. Since our task involved motion that included phases with and without contact
between hands and equipment, we additionally defined an algorithm for the transition
between the phases. Therefore, by way of an important contribution of this work, the
proposed conversion algorithm is suitable for human motion imitation by a humanoid
for a task with and without contact, as well as complex tasks that involve both types of
motion, which other imitation algorithms are not. The results of our conversion process
were experimentally tested on the real-robot ROMEO. Ultimately, one can say that the
proposed conversion methodology can be used as a universal and robust algorithm for
human to humanoid motion conversion, regardless of the type of dual-arm motion or the
characteristics of the actor.
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4
Dual-arm manipulation inspired by
human skills

In the nature of every human being is to perform motion in the simplest way and with
minimum effort. Therefore, we can assume that humans are always minimizing some un-
known criteria in order to create motions. In this chapter we describe the ways in which
human motion skills can be mathematically represented. We began with the assumption
that human motion represents an optimization process. The aim of this research is to
define the inverse optimal control algorithm which is able to generate the same human
motion by the humanoid robot including human motion behavior. Unlike some previous
studies presented in the chapter 2, our research is based on the analysis of human mo-
tion characteristics at the kinematic level. According to this, we defined the set of the
criteria functions such as minimization of kinetic energy, velocity, minimization of devia-
tions from the ergonomic position and maximization manipulability which are suitable for
analysis of human motions. The inverse optimal control approaches are used as a mathe-
matical representation of the human motion. At the beginning of our research, we tried to
explain human motion behavior with the well-known control algorithm in robotics such as
IK algorithm. We included each of the criterion function into the IK algorithm. The abil-
ity of the IK algorithm to generate a recorded human motion with each of the criterion
function is compared. We have come to the conclusion about which criterion function
made the best imitation of the recorded human movement. Accordingly, the conclusion
about the characteristics of the human movement can be made. In order to precisely ana-
lyze the human motions, we decided to combine all of these criteria functions. We defined
the inverse optimal control algorithm which minimized the weighted combinations of the
all criteria functions. According to the values of each weighted factors we are able to de-
scribe the characteristics of the human motion behaviors and to define the strategy which
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human used during the tasks.

4.1 Mathematical representation of the human motion
behaviors using criteria functions

The criteria functions used in our algorithms are chosen on the way to represent the
characteristics of the human body (such as the muscle activation, distribution of the en-
ergy. . . ) during the motion and to explain them by mathematical equations. According
to the human motions analysis presented on section 2.3 relations between criteria func-
tions and the characteristics of the human motion which they interpret is explained on this
chapter.

4.1.1 Criterion minimization of joint velocities

This criterion function is proposed by Whitney (Whitney, 1969) in order to define the
control algorithm which is able to automatically avoid singularities position of redundant
robots. The criterion is based on minimization norm of the joint velocities ‖q̇‖2. In order
to avoid numerical difficulties and non-differentiability, the criterion function is described
with equations:

φv(q̇t) =
1

2
q̇Tt Iq̇t (4.1)

where q̇t is joint velocities vector, I is identity matrix. The inverse kinematic algorithm
based on Jacobian pseudoinverse is formulated using this criterion function.

In the analysis of the human motion behavior the criterion minimization of joint ve-
locities gives the same motion importance of all joints during the task since the identity
matrix is used as a weight matrix. It is expected that this criterion will described motions
on which all joints are equally active during the task.

4.1.2 Criterion minimization of the kinetic energy

The criterion minimization of the kinetic energy is formulated using the basic equation
of the kinetic energy and takes a form:

φen(q̇t) =
1

2
q̇Tt Aq̇t (4.2)

The criterion function is a quadratic function of joint velocities q̇t (as a criterion min-
imization velocity) where the weighted matrix is the inertia matrix of the dynamic model
of the actor. The inertial matrix is calculated based on the scaled kinematic model of
the ROMEO robot and BSP of actor, using the robotics software SYMORO (Khalil &
Creusot, 1997). The calculation of the inertia matrix gives the high inertia for joints with
big mass such as trunk, shoulder, and elbow joints. Wrist joints have significant smaller
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values of the inertia compare with other joints. In the analysis of the human motion behav-
ior the criterion minimization kinetic energy gives bigger motion priorities to the joints
with bigger inertia. It is expected that this criterion will describe motions on which trunk
or shoulders or elbows are more active during the task.

4.1.3 Criterion minimization of distance between the current posi-
tion and the ergonomic configuration of human

This criterion function is given by equation:

φergonomy(qt) =
1

2
(qt − qergonomy)TA (qt − qergonomy) (4.3)

where qergonomy is the ergonomic configuration of the human proposed by Yang et al.
(J. Yang et al., 2004). The resulting vector qergonomy is defined as:

qergonomy[i] = 0; i = 1, ..., 11

qergonomy[12] = 200, qergonomy[13] = 50, qergonomy[14] = 100, qergonomy[15] = −800

qergonomy[16] = 300, qergonomy[17] = 00, qergonomy[18] = 150, qergonomy[19] = 200

qergonomy[20] = −50, qergonomy[21] = −100, qergonomy[22] = 800, qergonomy[23] = −300

qergonomy[24] = −800, qergonomy[25] = 150

(4.4)
according to the kinematic model given in appendix D (see Fig. D.2 in appendix D).

The inertia matrix A is chosen in order to include the motion priority of each joint
(Tomić et al., 2016). The criterion φergonomy(qt) can be adapted as a function of the q̇t,
using the relation between qt and q̇t:

φergonomy(q̇t) =
1

2
(qt−∆t + ∆tq̇t − qergonomy)TA (qt−∆t + ∆tq̇t − qergonomy) (4.5)

where qt−∆t is the previous value of the joint generalized coordinates and ∆t is the incre-
ment of the time calculated according to the frequency for data acquisition.

4.1.4 Criterion maximization of the manipulability

In the field of robotics criterion manipulability is used as a measure of the ability of
the mechanism to move its end-effector. The criterion maximization of the manipulability
is given with equation:

φmanipulability(q̇t) = det(J · JT ) (4.6)

where J = J(qt). Since we define the criterion function which should be minimized, the
criterion φmanipulability(q̇t) is written in the form:

φmanipulability(q̇t) =
1

2
(q̇t − pω)T (q̇t − pω) (4.7)
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proposed by Zhang (Zhang, Li, & Zhang, 2013). The ω = ∂ det(JJT )
∂qt

is a vector of manip-
ulability gradient det(JJT ), and p ∈ R+ is a constant coefficient. The ith element of is
calculated using the equation:

ωi =
∂ det(JJT )

∂qit
= det(JJT )trace

(
(JJT )

−1

(
∂J

∂qit
JT + J

(
∂J

∂qit

)T))
(4.8)

Here, trace(·) denotes the trace of a matrix argument and qit is the ith element of the vec-
tor qt. This criterion allows that the joint motion tends toward the motion that maximizes
manipulability. The value p (p = 106) is selected to minimize the coefficient of manip-
ulability calculated with calculated with det(JJT ). In the analysis of the human motion
behavior, the manipulability criterion will describe motions which are near the singular
position of the human body. According to this, we will be able to analyze the influence of
the relative position between actor and environment during the task.

4.2 Inverse Kinematic algorithm as a tool for identifica-
tion of human motion skills

Looking the motion imitation process, the task of each arm of the scaled model of the
robot is to follow a desired position and orientation of the recorded arms’ motions. Based
on the results from the imitation algorithm and the intermediate model of the humanoid
robot we are able to formulate the control algorithm which will obtained recorded human
motion. This task can be solved using the simplest IK algorithm. The primary task of
the IK algorithm is following the desired trajectories of the end-effector (for the case of
the dual-arm manipulation that are the trajectories of the hands). As an optimization al-
gorithm, the IK algorithm can additionally include a criterion function to optimize which
can give characteristics of the human motion. The purpose of our research is to analyze
the criterion function which will be minimizing with the IK algorithm in order to trans-
fer human skills to humanoid on the best way. Since the scaled model of the ROMEO
robot has more degrees of the freedom compared with the task, the IK algorithm should
make a deal with redundancy. In robot control, the redundancy is generally solved at the
kinematic level using IK algorithm by minimization of criterion or by definition of several
tasks with different priority level (Mansard & Chaumette, 2007). The numerical approach
for solving IK algorithm of redundant robots gives one solution from the set of infinite
solutions. There are several methods for solving numerical IK problems of redundant
robots.

4.2.1 Moore-Penrose pseudoinverse algorithm

In his previous work Whitney (Whitney, 1969) proposed to use the Moore-Penrose
pseudoinverse of the no square Jacobean matrix in order to control redundant of the robot.
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The pseudoinverse has a least squares property that generates the minimum norm joint
velocities ‖q̇‖2. The IK algorithm with pseudoinverse of the Jacobean matrix can be
considered as optimal problem and derivate using the Lagrange multiplier mathematical
method. The optimal problem is given by:min

q̇

1
2
q̇T q̇

s.t. Ẋ = J(q)q̇

 (4.9)

where J(q) and q̇ the Jacobean matrix and the velocity vector of the robot end-effectors.
The theorem states that the optimal solution is obtained where the gradients of the La-
grange equation:

Λ(q̇, λ) =
1

2
q̇T q̇ + λ(−J(q)q̇ + Ẋ) (4.10)

with respect to the q̇ ∈ Rn and Lagrange multiplier λ ∈ Rn becomes all zero. Therefore
one gets:

∂Λ(q̇, λ)

∂q̇
= q̇T − λJ(q) = 0→ q̇ = J(q)TλT (4.11)

∂Λ(q̇, λ)

∂λ
= (−J(q)q̇ + Ẋ)→ Ẋ = J(q)q̇ (4.12)

According to the equations 4.11 and 4.12, the solution for the IK algorithm with pseu-
doinverse of the Jacobean matrix is given on the form:

q̇ = J(q)T (J(q)J(q)T )
−1︸ ︷︷ ︸

J+(q)

Ẋ → q̇ = J+(q)Ẋ
(4.13)

The main disadvantage of this method is that it produces discontinuity in joint velocities
near the singularities (Buss, 2004).

4.2.2 Weighted pseudoinverse algorithm

Park (J. Park, Choi, Chung, & Youm, 2001) proposed the weighted pseudoinverse
algorithm. This algorithm is based on the minimization criterion functionmin

q̇

1
2
q̇TAq̇

s.t. Ẋ = J(q)q̇

 (4.14)

where matrix A is arbitrary matrix depending on the criterion which we minimize. The
equation of the IK weighted pseudoinverse algorithm is calculated using the Lagrange
multiplier mathematical method on the same way as previous:

q̇(t) = A−1(q)JT (JA−1(q)JT )
−1
Ẋ(t) (4.15)
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If we consider A as an inertial matrix of the human body, the weighted pseudoinverse
algorithm will minimize the kinetic energy. The optimization criterion can also be the
joint limit avoidance, obstacle avoidance, mathematical singularity avoidance, dexterity,
energy minimizing and other criteria (Baillieul, 1985; Chiaverini et al., 2008; Nenchev,
Tsumaki, & Uchiyama, 2000).

4.2.3 Inverse Kinematic algorithm with optimization term

Apart from the pseudoinverse algorithms, the criterion function can be including into
the IK algorithm using the null space of Jacobian. On this way, the IK algorithm finds
a joint configuration which satisfies the end-effectors’ task and minimizes the chosen
criterion. The general solution of the IK with optimization term is given as:

q̇ = J+Ẋ + (I − J+J)Z (4.16)

where J+ is the pseudo inverse of J matrix. The second term belongs to the null space of
Jacobian matrix J and represents optimization term. This term can be used to optimize a
desired function φ(q). Taking Z = β∇φ where ∇φ is the gradient of function φ(q) with
respect to the q, permits to minimize the function φ(q) when β < 0 and to maximize φ(q)

when β > 0 (Khalil & Dombre, 2004). In this case, the equation 4.16 can be rewritten as:

q̇ = J+Ẋ + β(I − J+J)∇φ (4.17)

where:

∇φ =
[
∂φ
∂q1

. . . ∂φ
∂qn

]T
(4.18)

4.2.4 Inverse Kinematic algorithm and the criteria functions

The set of the criteria functions which can be including into the analysis of the human
motion is proposed. According to the previous derivations of the IK algorithm, the each
criterion function is included into the IK algorithm at the appropriate way.

– IK algorithm with criterion minimization of joint velocities 1
2
q̇T Iq̇ (IK with velocity

criterion). This solution is directly given by the pseudoinverse algorithm:

q̇(t) = J+Ẋ(t)

– IK algorithm with criterion minimization of the kinetic energy 1
2
q̇TAq̇ (IK with en-

ergy criterion). This solution is obtained using weighed pseudo inverse algorithm:

q̇(t) = A−1(q)JT (JA−1(q)JT )
−1
Ẋ(t)

– IK algorithm with criterion minimization of the weighted distance between current
and the ergonomic configuration 1

2
(qt − qergonomy)TA (qt − qergonomy) (IK with er-
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gonomic criterion). This solution is obtained using weighed pseudo inverse algo-
rithm and optimization term:

q̇(t) = J+
A Ẋ − (∆t)−1 (I − J+

AJ
)

(q(t−∆t)− qergonomy)

where J+
A = A−1(q)JT (JA−1(q)JT )

−1.
– IK algorithm with criterion maximization of the manipulability det(J ·JT ) (IK with

manipulability criterion). This solution is obtained using the optimization term:

q̇ = J+Ẋ + β(I − J+J)
∂(det(J · JT ))

∂q

4.2.5 Results

In this chapter the general characteristics of IK algorithms with different criterion,
previously defined, for the generation the human like motion are analyzed. The each IK
algorithm is tested on the set of the seven dual arm motion performed by 15 actors. The
PMP phase of the each motion is analyzed since it is the only phase that undergoes any
form of analysis.

In order to calculate the measure of similarity of generated motion by IK algorithm
and desired motion, an integral error between the desired and obtained position of two
shoulders and two elbows joints in Cartesian space is calculated using the trapezoidal nu-
merical integration. A small value of the integral error indicates a good match between
the desired and the obtained motions. The values of the integral error per sample calcu-
lated according to the results of each IK algorithm for different experiments in the case of
each actor are given on the Fig. 4.1.

At the Fig. 4.1 we can see that the IK algorithm with ergonomic criterion gives the
worst imitation of the human motion (the biggest value of the integral error). The reason
may be the activation of each joint during movement. Since defined motions are far from
the ergonomic configuration of a human the IK algorithm with ergonomic criterion is not
able to generate human like motion.

On the other side, the IK algorithm with energy criterion or velocity criterion gives
good performance in generation of the human like motion for the most of the tasks. Ac-
cording to the results we can note that the IK algorithm with velocity criterion gives the
best imitation for tasks which require activation of shoulder and elbow joints, such as
“Cutting with knife” (see Fig. 4.1 b)) and “Opening/closing a drawer” (see Fig. 4.1 d)).
The IK algorithm with energy criterion gives the smaller value of the integral error in the
case when the motion of one joint is dominant during the task, such as elbow joint in the
task “Grating of food” (see Fig. 4.1 e)) or shoulder joints in the task “Inflating mattress
using a pump” (see Fig. 4.1 c)). Exceptions to this rule can be observed at each of these
movements. The same movement can be done in different ways, depending on the char-
acteristics of the actors and the relative distance between the actor and the equipment.
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The actor height determines which of the joints are active during the movement in many
cases. Therefore, it is expected that different IK algorithms can be used for better imitate
of the same motion with different actors.

Figure 4.1: The integral errors per sample calculated according to the results of each IK
algorithm for different experiments in the case of all actors.
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The relative distance between the actor and the equipment can be responsible for the
generation the motion near singular configuration which can be detected with the help
of IK with manipulability criterion. In the “Rotation of the valves” (see Fig. 4.1 f))
and “Rotation of the canoe paddles” (see Fig. 4.1 g)) tasks, this IK algorithm imitates the
human motion on the best way for the actor who is not well positioned to perform the task.
If the actors are well posed to perform the task IK algorithm with velocity criterion or IK
algorithm with energy criterion will give the best imitation of these motions depending
of which joints are active. The same conclusion can be used for the any type of the
motion. The defined IK algorithms can be used for generation the motion with robot
ROMEO. Since the robot ROMEO and the actor have the different body characteristics,
such as the size of the segments, the trajectories of the human hands should be inside
of the robot ROMEO workspace. Therefore, the “Opening/closing a drawer” motion is
selected to analyze the results since the trajectories of the human hands are in the robot
ROMEO workspace. In the Fig. 4.2 we are shown the robot ROMEO pose at the middle
of the motion generated by Gazebo simulator. According to the results on the Fig. 4.2
we can see that the motion pose obtained by IK algorithm with velocity criterion (see
Fig. 4.2 a)) and IK algorithm with manipulability criterion (see Fig. 4.1 b)) are the
similar. This conclusion is logical and is associated with results illustrated in Fig.4.1 d).
Both algorithms generate the same motion with the same values of the integral errors in
the most of the cases. On the other hands, the robot motion pose generated by the IK
algorithm with energy criterion is different. The elbow positions in the Fig. 4.2 c) are
more different compare with in the Figs. 4.2 a) and b). The robot performs the motion
using the elbow joints. At the end, in the Fig. 4.2 d) the robot motion pose obtained
by the IK algorithm with ergonomic criterion is presented. The motion obtained with
this algorithm is quite different than other motions since the algorithm tries to keep robot
configuration near human ergonomic configuration. The motion generated on this way is
far from the human like motion which is proven with the big values of the integral error
(see Fig. 4.1 d)). The trajectories of the left arm joint velocities obtained for the case of
the one human and the robot with different IK algorithm are presented in the Fig. 4.3. The
results presented in the Fig. 4.3 show that the IK algorithm with velocity criterion and
IK algorithm with manipulability criterion generate the same joint motions which are the
more human-like motion compare with other IK algorithms. The difference in the robot
ROMEO pose shown in the Fig. 4.2 is confirmed with the joint velocities trajectories
shown in the Fig. 4.3.

4.2.6 Conclusion

In this section we analyzed the performance of the IK algorithm with different crite-
rion function in the imitation of the human motion. According to the results we can say
that each of the motion is connected with the some IK algorithm which imitates them on
the best way. The activation of the joints can define which IK algorithm does imitation
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of the human motion in the best way. The human characteristics and the relative position
between actor and equipment also take influence in choice of the IK algorithm. Hence,
the motion near singularity or ergonomic motion can be detected by these IK algorithms.

In the next step we are mention that the each human motion can be perfectly imitated
by the scaled model of the robot if the best combination of criteria functions is selected.
Those, we combine these 4 criteria functions into inverse optimal control algorithm using
the weight coefficients for each criterion. We are expected that the motion which is more
similar with human motion will be obtained. Also we expected that we will obtain com-
bination of the criteria functions for each task which will be universal for that type of the
motions.

4.3 The inverse optimal control algorithm

At the previous chapter we analyzed abilities of the IK algorithm to generate the
recorded human motion using different criterion function. We mention that the batter
imitation can be obtained if we include more criteria functions into the objective function
which will be minimized. Our assumption is that the inverse optimal control algorithm
with the appropriate combination of the criteria functions will be able to generate the
same motion as a human.

Unlike some previous studies, our research is based on the analysis of human mo-
tion using the inverse optimal control approach with criteria functions defined in the joint
space. The objective function of the inverse optimal control algorithm is defined as a
weighted combination of the criteria functions given in section 4.1. Each criterion func-
tion is multiplied with weight coefficient which defines its influence into the inverse opti-
mal control algorithm. We seek the combination of the values of the weight coefficients
that generates the humanoid motion that is closest to the recorded human motion. This
weight will define the criterion optimized by human behavior. Compare with previous
studies, we calculate the values of weight coefficients separately for the different types of
the dual-arm motions. On this way we are able to make relation between characteristics
of the human motion in the joint space and the criterion function which describe them.

Our objective is to find an objective function that optimized by human produces the
motion recorded experimentally. Since the studied motion involves at least partially con-
tact with the environment, the criterion is optimized with the constraint that human hands
follow a given motion defined by the task. We consider an optimal control problem of the
form:

min Φ(qt, q̇t)

s.t. Ẋ = J(q)q̇t
(4.19)

where J(q) is the Jacobian matrix of the scaled model of the robot ROMEO that maps
joint motion to hand motion, t is a time sample, qt, q̇t ∈ <n are joint position and velocities
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as a function of t, respectively, Ẋ velocity vector of the actor’s hands obtained by the
imitation algorithm and the Φ(·) is the objective function that should be minimized. For
the objective function Φ(·) we make the assumption that it is expressed as a weighted sum
of the n basic criterion function φi(·) with the corresponding weight factor ki ∈ <+ :

Φ(qt, q̇t, k) =
n∑
i=1

kiφi(qt, q̇t) (4.20)

Consequently, the task of determining the best objective function Φ(·) is reduced to
determining the best weight factors kenergy, kvelocity, kergonomy and kmanipulability 1 .

The final equation for objective function Φ(q̇t) which includes basic criteria functions
analyzed in section 4.1 and with weight coefficients is:

Φ(q̇t) = kenergy
1

2
q̇Tt Aq̇t + kvelocity

1

2
q̇Tt Iq̇t+

kergonomy
1

2
(qt−∆t + ∆tq̇t − qergonomy)TA (qt−∆t + ∆tq̇t − qergonomy) +

kmanipulability
1

2
(q̇t − pω)T (q̇t − pω)

(4.21)

where kenergy, kvelocity, kergonomy, kmanipulability are the weight factors which correspond
to criteria minimization of kinetic energy, minimization of joint velocities, minimization
of the distance between the current position and the ergonomic configuration of human
and maximization of manipulability, respectively. The weights represent the contribution
in percentage of each criterion to the optimal function (kenergy + kvelocity + kergonomy +

kmanipulability = 1).

The optimal problem is solved under the constraint Ẋ = J(q)q̇t given in the equation
4.19 that describes the task to be achieved by the human hand with or without contact with
the environment. The task can be integrated in the optimal problem using the Lagrange
multiplier mathematical method with selected set of optimization criteria and constraints:

Λ(q̇t, λ) = Φ(q̇t) + λ(−J(q)q̇t + Ẋ) (4.22)

The theorem states that the optimal solution is obtained where the gradient of the equa-
tion 4.22 with respect to the q̇t and Lagrange multiplier λ ∈ <n becomes all zero. There-
fore, the joint velocity for the criterion defined by kenergy, kvelocity, kergonomy, kmanipulability
is:

1. k1 = kenergy, k2 = kvelocity, k3 = kergonomy, k4 = kmanipulability . This notation is used to be
explicit and easy to read.
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q̇t = K



J(q)T
(
J(q)KJ(q)T

)−1

Ẋ+

kergonomy∆tJ(q)T
(
J(q)KJ(q)T

)−1

J(q)KAT (qt−∆t − qergonomy)−

kmanipulabilitypJ(q)T
(
J(q)KJ(q)T

)−1

J(q)Kω−

kergonomy∆tA
T (qt−∆t − qergonomy) + kmanipulabilitypω


(4.23)

where K =
(
kenergyA

T + kvelocityI + kergonomy∆t
2AT + kmanipulabilityI

)−1.

4.3.1 Genetic algorithm for calculation of the weight coefficients

The observed dual arm model is a redundant system and enables performing the same
task differently. By using varied combinations of weight coefficients, we are able to gen-
erate different types of motion in the joint space within the same task of the hands in
Cartesian space. In such context, it is necessary to define the fitness function, which
represents a measure of similarity of generated motion by our inverse optimal control
algorithm and the desired movement. Since wrist position error is eliminated by introduc-
ing the constraint in the optimization function 4.22, the fitness function F (·) is calculated
as an integral of the error between the desired and obtained positions of shoulders and
elbows in Cartesian space using the trapezoidal numerical integration:

F (C) =

tend∫
0

E(t)dt ≈ tend
2N

N∑
n=1

(E(tn, C)− E(tn+1, C))

E(t, C) =
∥∥∥~P d

j (t)− ~P o
j (t, C)

∥∥∥
(4.24)

where C = {kenergy, kvelocity, kergonomy, kmanipulability} is a combination of the weight
coefficients, tend is the motion duration, N is the number of samples during the motion,
E(t, C) is the square norm of the error between the vectors of the desired value of the arm
joints obtained via the imitation process ~P d

j (ti) =
[
P d
RightSh(ti) P d

LeftSh(ti) P d
RightEl(ti) P d

LeftEl(ti)
]

and the position of the arm joints calculated by 4.23 for the C combination of the weight
coefficients P o

j (ti, C)=
[
P o
RightSh(ti, C) P o

LeftSh(ti, C) P o
RightEl(ti, C) P o

LeftEl(ti, C)
]
. A small

value of the fitness function indicates a good match between the desired and the obtained
motions.

Since the fitness function admits many local minimum, the algorithm based on the
gradient calculation would not always give global solution. This is why a genetic algo-
rithm, suitable for such context, has been used (Goldberg & Holland, 1988). A set of 40
individuals defined the population, where each individual is a combination of the weight
coefficients. A uniform distribution is used to generate the initial population. The im-
posed condition for stopping the genetic algorithm is that the change of the best value of
the fitness function F (·) is not greater than 10−6 for the previous 50 generations.
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Task Rotation
of the
valves

Rotation
of the
canoe
paddles

Rotation
of a
steering
wheel

Inflating
a
mattress
using a
pump

Cutting
with a
knife

Grating
of food

Opening
/closing
a
drawer

Fitness[m] 0.0466 0.0413 0.0127 0.0096 0.0043 0.0029 0.0206

Table 4.1: The average values of the fitness function in one time sample of all actors for
the all tasks.

The convergence rate of a genetic algorithm depends on the initial population. The
properties of genetic algorithm, such as mutations, may bring individuals out of the local
minimum and move towards the global one. This accelerated the convergence of the
genetic algorithm towards optimal solutions.

4.3.2 Human motion strategy as a result of the inverse optimal con-
trol algorithm

In this section, the characteristics of the human motion strategy will be analyzed using
two approaches: the results of the inverse optimal control algorithm and the characteris-
tics of the motion define in the joint space. A qualitative motion evaluation in joint space
will give the influence of the each joint on generation the motion. On the other hands,
the inverse optimal control algorithm will defined the influence of the each basic criterion
function in generation the human motion. In this chapter we will try to make connection
between results of the human motion obtained in joint space and using inverse optimal
control algorithm. The final part of this section will provide a general conclusion on mo-
tion characteristics and association with basic criteria functions. For the purpose of our
research the PMP of the each task is analyzed in order to obtain the pure characteristics
of each motion. The each motion is test on the sets of 15 actors which perform motion on
the same virtual environment using the same equipment. Since the characteristics of the
human motion (criterion optimized) are obtained by imitating the recorded human mo-
tion using our inverse optimal control algorithm and the criteria functions, the quality of
imitation is defined through the value of the fitness function (see the equation 4.24). The
fitness function, calculated for the best combination of the weight coefficients, represents
the minimum deviation between the obtained and recorded motion. According to the
results of the genetic algorithm, the best combination of the basic criteria functions with
same value of the fitness function is obtained if more than 80% individuals in a generation
converge to the same solution. The average values of the fitness function are calculated
per sample for all actors. Table 4.1 presents the fitness function for all experiments.

The fitness function given in Table 4.1 represents integral sum of the errors between
the achieved and the recorded positions of all observed joints (right elbow, right shoulder,
left elbow, and left shoulder). Therefore, the average error in the following motion of each
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Figure 4.4: a) “Opening/closing drawer” task b) Resulting weight factors defining the
objective function - criterion minimization of joint velocity prevail c) Joint motions -
shoulder and elbow motions dominate.

joint per sample in “Opening/closing a drawer” task is about 0.0052m, since the fitness
function sums displacement of four joints - two elbows and two shoulders. Hence, the
conclusion is that each recorded human motion can be reproduced with great accuracy by
the appropriate combination of criteria functions.

In comparison with the results obtained by the IK algorithms and presented on the
Fig. 4.1 we can say that the inverse optimal control algorithm with combination of the
criteria functions generates the motion which is more human-like motion. Hence, the
conclusion is that each recorded human motion can be reproduced with great accuracy by
the appropriate combination of criteria functions.

4.3.3 “Opening/closing a drawer”

In this subsection, the characteristics of the “Opening/closing a drawer” task is pre-
sented. The “Opening/closing a drawer” task represents a symmetric horizontal-translation
motion (see Fig. 4.4(a)). The motion is constrained by the equipment and only horizontal
translation of hands is allowed. The orientation of hands is fixed and prescribed by the
equipment (the fingers of both hands are placed inside the drawer with the palms down).
The height of hands is determined by the characteristics of the drawer.

Upon observing the trajectories of hand motion for the task, recorded by the motion
capture system, it is obvious that the motions of all actors for the given task are close,
mainly because it is highly conditioned by the characteristics of the equipment. The anal-
ysis of motion in joint space is performed using the results from the imitation algorithm,
which give us trajectories of each DoF. The results show that during this motion the shoul-
der (Shoulder Pitch and Shoulder Yaw) and elbow joints move more than other joints (see
Fig. 4.4(c)). Furthermore, the motion of the elbow yaw joints is larger than motion of
shoulder joints. The trajectories of the joints given in Fig. 4.4(c) represent the mean val-
ues obtained for all actors during the same motion. We also noticed that the size of an
actor affects the motion of arm joints during the task because the position of the equip-
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ment was fixed and was not determined by the size of the actor. In the case when the actor
is taller, the actor’s arms are bended down. On the other hand, smaller actors did not bend
down their arms and had to rely more on their elbows and trunk joints to perform the task.

The combination of the weight coefficients obtained by the genetic algorithm while
solving the inverse optimal problem for the task “Opening/closing a drawer” are given
in Fig. 4.4(b). The results of the genetic algorithm, obtained for all actors in the same
motion, are depicted in three-dimensional graph where horizontal axes shows number
of the actor and particular criterion, while vertical axis show the impact of particular
criterion per each actor. For descriptive and consistent illustration impact of each criterion
is highlighted in same color:

– green- maximization of manipulability criterion
– magenta- ergonomy criterion (minimization of distance between the current and

ergonomic configuration criterion).
– red- minimization of joint velocity criterion
– blue- minimization of kinetic energy criterion

The results show that 9 out of 15 actors use the velocity minimization criterion with
the value kvelocity takes values near 1. Since the shoulder and elbow joints have far greater
motion than other joints, the velocity minimization criterion is dominant for such type
of motion. The criterion of manipulability is dominant in the case of 6 actors when an
actor has some restrictions on motion caused by its dimensions and/ or distance from the
drawer (indicated in green color in Fig. 4.4(b)). Some problems appear when an actor is
not well positioned for performing the task. Since the “Opening/closing a drawer” task
is horizontal-translation motion the distance between actor and equipment has influence
on the way on which motion will be performed. If the actor is far from the drawer,
he/she will keep the arms straight and try to perform the task. This arm configuration
is near singularities and reduces the possibilities of arm manipulation. The actor tries to
move hands away from the singularity and maximizes manipulability. The problem of
manipulation also appears in the case when the actor is near the drawer. That is why the
actor moves all joints more in order to increase manipulability and perform the task.

Eventually, one can conclude that for “Opening/closing a drawer” task human mo-
tion is planned so to minimize joint velocities and maximize manipulability, while their
relative ratio depends on actor and equipment characteristics.

4.3.4 “Rotation of the valves”

In this subsection, the characteristics of the task “Rotation of the valves” will be pre-
sented. The “Rotation of the valves” is a goal-oriented rotational motion around the ver-
tical axis (see Fig. 4.5(a)). Both arms work independently while performing this task.
Palms are placed perpendicularly to the room floor and grasp the handles vertically placed
on the valves. The height of hands is determined by the characteristics of the valves.

According to the analysis of the motion in the joint space, it is obvious that some com-
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Figure 4.5: a) “Rotation of the valves” task b) Resulting weight factors defining the objec-
tive function - criterion maximization of manipulability prevail c) Joint motions - shoulder
and elbow motions dominate.

mon characteristics could be observed for “Rotation of the valves” and “Opening/closing
a drawer” tasks. The results obtained into the joint space (see Fig. 4.5(c)) show that
during these motions the shoulder (Shoulder Pitch and Shoulder Yaw) and elbow joints
move more than other joints. Those, it is also expected that minimization of joint velocity
criterion is dominant for the “Rotation of the valves” motion.

Although one can intuitively expect that minimization of joint velocity dominates due
to intensive joint movements, obtained results could be well justified and explained. The
combination of the weight coefficients obtained by the genetic algorithm shows that for
this motion the criterion maximization manipulability is dominant in the case of the 9
actors, the minimization of joint velocity criterion is dominant in the case of the 4 ac-
tors, and the minimization of distance between the current position and the ergonomic
configuration in the case of 2 actors (see Fig. 4.5(b)). The criterion maximization of ma-
nipulability is dominant when the position between actor and equipment or actor current
pose are not suitable for performing the motion in a common way. The actor is forced to
take a certain pose in order to accomplish the task easier. In the example of “Rotation of
the valves” motion several cases appear:

– the actor is tall and far from the equipment- the actor bends the trunk (increase
amplitude of the Trunk Pitch joint) and perform the task moving shoulder and elbow
joints

– the actor is small (or tall) and near the equipment- the actor keeps trunk vertically
and moves shoulder and elbow joints more in order to perform the task

Since the actor is far or near equipment these body poses require additional move-
ments to avoid singularities.

Human tendency to perform the task in the most comfortable manner is evident in
the case of the 2 actors, for whom ergonomy criterion prevails. The comparison between
average configuration of the actor through the motion and the comfortable configuration
shows that in the case of the 2 actors these configurations are similar.
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Figure 4.6: a) “Rotation of a steering wheel” task b) Resulting weight factors defining
the objective function - criterion minimization of kinetic energy prevail c) Joint motions -
shoulder and wrist motions dominate.

According to the results we can conclude that in the “Rotation of the valves” motion
the position between actor and equipment, and actor characteristics have strong influence
on criterion contribution. In a line with analysis of the motion in the joint space, it is
evident that the minimization of joint velocity criterion describes this motion best if the
actor is well posed with the respect to the equipment and he/she is of medium height.
In the cases when these conditions are not satisfied the criteria minimization of distance
between the current and ergonomic configuration and maximization of manipulability are
dominant.

4.3.5 “Rotation of a steering wheel” and “Inflating a mattress using
a pump”

The “Rotation of a steering wheel” task is an asymmetric dual-arm rotational motion
(see Fig. 4.6(a)). The motion of the hands is circular in accordance with the form of a
steering wheel. The rotation starts from the initial position where the arms are symmetri-
cally placed on the wheel. The hands are able to rotate the steering wheel (diameter 0.3m)
in both directions (in the experiments the motion was±90 degrees starting from the initial
position). During the motion, the relative position between both hands is unchangeable.
The “Inflating a mattress using a pump” task a symmetric dual-arm translation motion
(see Fig. 4.7(a)). The hands grasp the equipment horizontally and their relative position
does not change during the motion. In both motions, the actors are sitting while they carry
out the tasks.

During the “Rotation of a steering wheel” task, the hands have a large motion in
the Cartesian space and the task requires greater activation of shoulder and wrist joints
compared to the motion of other joints (see Fig. 4.6(c)). The wrist joints (Wrist Pitch
and Wrist Roll) are active during the motion because the actors should change the hand
orientation with respect to the referent coordinate system in order to perform the motion.
As for this motion, the actors use their hands only and sit comfortable while using the

78



Figure 4.7: a) “Inflating a mattress using a pump” task b) Resulting weight factors defin-
ing the objective function - criterion minimization of kinetic energy prevail c) Joint mo-
tions - elbow and wrist motions dominate .

equipment. The trunk motion is limited.

The results show that the criterion of kinetic energy minimization is dominant for this
type of the motion (see in the Fig. 4.6(b)). The influence of the inertia is evident in these
results. The criterion of kinetic energy minimization is dominant in the case of the 8
actors since the motion of the joints with big effective inertia is greater compared with
other joints. The motion of the wrist joint does not have big influence on choice of the
criteria functions because its inertia is significantly smaller compared with the inertia of
the other joints.

During the “Rotation of a steering wheel” motion, the actor’s body position is near the
human ergonomic position. This is evident in results whereas in the case of 5 actors the
criterion of kinetic energy minimization shares its domination with ergonomy criterion
(values of the weight coefficients are near 0.5). Two of the actors adapted the position of
joints in order to decrease the motion of shoulders. In this case, the velocity minimization
criterion is dominant, which is also supported by the results of our inverse optimal control
algorithm.

The angle of rotation of a steering wheel is not limited and it happened that some
actors made a bigger angle of rotation compared to others. This fact confirms that the
choice of criterion function is related to the activation of joints during the motion.

In the case of “Inflating a mattress using a pump” task, elbows are the most active
joints compared with other joints and the criterion of kinetic energy minimization is dom-
inant in the case of 9 actors as confirmed by the results presented in Fig. 4.7(b). The
pump produces great resistance during the motion of the handle and additional effort was
needed to perform the task. Beside the elbow, 2 actors used shoulder more intensively to
perform the task and the criterion of the velocity minimization is dominant in their cases.
As well, the motions of some actors passed through the human ergonomic configuration
and the criterion which minimizes of distance between the current and the ergonomic con-
figuration is dominant in 2 cases. The criterion of manipulability appeared as dominant in
the case of 2 actors when the actors kept the arm straight and carried out the task moving
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Figure 4.8: a) “Cutting with a knife” task b) Resulting weight factors defining the objec-
tive function - criterion minimization of joint velocity prevail c) Joint motions - shoulder
and elbow motions dominate .

the trunk.

Conclusion is that “Rotation of a steering wheel” and “Inflating a mattress using a
pump” point out minimization of kinetic energy as a dominant criterion because the mo-
tion of a particular joints, especially the shoulder joint (for “Rotation of a steering wheel”)
and the elbow joints (for “Inflating a mattress using a pump”), which have big effective
inertia move more than other joints.

4.3.6 “Cutting with a knife” and “Grating of food”

In this sections we analyzed “Cutting with a knife” and “Grating of food” together in
order to compare same type of the motion. During the motion, the left hand is used as a
hand support while the right hand performs the task.

The “Cutting with a knife” task is one-arm support translation motion (see Fig. 4.8(a)).
The right hand does the translational motion in order to perform the task. The motion of
the right hand is not strongly defined by the type of the equipment used. The right hand
can rotate around the handle of the knife. The amplitudes of the right hand’s motion are
limited by the size of the knife.

The “Grating of food” task is also one-arm support translation motion (see Fig. 4.9(a)).
The orientation of the right hand is restricted and the palm should be in line with the plane
surface of the grater. The trajectory of the right hand is related to the angle between the
grater and the table surface, which is not predefined. Actors used grater in a way they
considered the most comfortable. The right hand’s motion is limited by the size of the
grater.

The “Cutting with a knife” task is performed by the activation of the shoulder (Shoul-
der Pitch and Shoulder Yaw) and the elbow joints during the motion. The criterion of
velocity minimization gives the same priorities to motions of these joints. The weight
coefficient kvelocity takes values near 1 in the case of 10 actors.

The influence of the relative positions between actors and equipment and actor char-
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Figure 4.9: a) “Grating of food” task b) Resulting weight factors defining the objective
function - criterion minimization of kinetic energy prevail c) Joint motions - elbow mo-
tions dominate .

acteristics are showed up in this motion. The criterion of maximization manipulability is
dominant in 2 cases when the actor is small and near the equipment and in the case when
the actor is tall and far from the equipment. Therefore, the same motion planning pattern
from the “Rotation of the valves” tasks appeared in these motions. Since the actors were
free to perform the task on the most comfortable way for them, in the cases of the 2 ac-
tors the ergonomy criterion is dominant. For these actors, further analysis showed that
the average position of the actors’ right hands joints during the motion is near the human
ergonomic configuration.

In the “Grating of food” task, the motion of the elbow joint is dominant compared to
other joints, which is shown in Fig. 4.9(c). The criterion of kinetic energy minimization
is dominant in this motion, which is supported by greater values of the weight coefficient
kenergy in the case of 10 actors. This results is expected since the motion of the elbow
joint is greater than the movements of others joints (such as the case of the “Inflating a
mattress using a pump” task too). The other criteria are dominant in the particular cases
(the criterion of maximization manipulability is dominant in 1 case while criterion of min-
imization of distance between the current and the ergonomic configuration is dominant in
4 cases). Since the “Grating of food” and “Cutting with a knife” tasks are the one arm
support motions the same conclusion for these exceptions stands.

4.3.7 “Rotation of the canoe paddles”

The “Rotation of the canoe paddles” task represents a goal-coordinated rotational mo-
tion around one horizontal axis (see Fig. 4.10(a)). The relative position between the arms
is constant and determined by the characteristics of the equipment. Palms of the hands
are kept parallel to the room floor. According to the motion analysis for each joint, we
can see that for this task the shoulder (Shoulder Pitch) and elbow joints have the biggest
motion amplitude.

This motion requires motion of many joints to perform the rotational hand motion
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Figure 4.10: a) “Rotation of the canoe paddles” task b) Resulting weight factors defining
the objective function - criterion minimization of joint velocity prevail although all other
criteria is present depending of the actors characteristic c) Joint motions - shoulder and
elbow motions dominate.

in the sagital plane at the same distance independent of the actor in frontal plane. Con-
sequently domination of different criteria depends a lot of actors body characteristics.
Intensive joint motions lead to domination of velocity minimization criterion in the case
of 5 actors. On the other hand, the other criteria also describe this motion. The criterion
of maximization manipulability appeared as a dominate in the case of the 3 actors, the
criterion of minimization of kinetic energy is dominant in the case of the 3 actors, the cri-
terion the minimization of distance between the current and the ergonomic configuration
is dominant in the case of 2 actor while the combination of all criteria is evident in the
cases of the 2 actors. It is very difficult to conclude which of the criterion function repre-
sented this motion best but, the relative position between actor and equipment as well as
the human characteristics definitively has significant influence to the criteria which will
be selected.

4.3.8 Discussion

The results reveal that the amplitude of each particular joint and a combination of
joint activations during the motion influences domination of the corresponding criterion
function. In the case where the joints with big effective inertia are moved more compared
to other joints, the human body needs more effort and energy to perform the motion. Thus
minimization of kinetic energy criterion dominates and the value of the weight coefficient
kenergy is the largest compared to the values of other weight coefficients. In the tasks
where the motions of all joints are with small amplitudes, the human does not waste a lot
of energy during the task and consequently minimization of velocity criterion is dominant
while the weight coefficient kvelocity has the biggest value.

The influence of inertia matrices is well presented in the task “Rotation of a steering
wheel”. The motion is obtained by moving the shoulder and wrist joints and the mini-
mization of velocity criterion could be expected to be dominant because the amplitude of
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the motion of both joints for performing the task is similar. However, this is not the case
because the effective inertia of the wrist joint is negligible compared to the inertia of the
shoulder and the criterion of kinetic energy minimization is dominant. We can conclude
that the choice of the criterion function and the motion strategy are highly related to the
type of motion.

Moreover, the environmental characteristics, such as the size of the human body and
the distance between the human and the environment also affect the choice of criteria.
Accordingly, it is expected that the same motion in the task space, performed by several
people, can show different characteristics in the joint space. The criterion of manipula-
bility appears as dominant for each task where the positions of the hands are close to a
singular position or when joint motions are near the joint limits. The actor should adapt
his/her motion in order to perform the task. The criterion of maximization of manipu-
lability is the most expressed in the task “Rotation of the valves”. The fact that human
performs a task in the comfortable (ergonomic) manner is proven in the cases of the sev-
eral motions. The ergonomy criterion (minimization of the distance between the current
and the ergonomic configuration) dominates in majority of motions where average joint
positions are near the human ergonomic configuration. The influence of this criterion is
evident for the task “Rotation of a steering wheel” since the equipment size and position
are defined to be comfortable for the human. To sum up, a human will use a specific
strategy (combination of the criteria functions) to perform the same task in different envi-
ronment provided that he/she is positioned well while performing the task. In some tasks,
the choice of the criterion will be additionally defined by the characteristics of the actor.

The results obtained by the genetic algorithm show that the best imitation of the hu-
man motion (minimal value of the fitness function) is not obtained in the case when only
the dominant criterion is included in the inverse kinematics algorithm but weighted com-
bination of the criteria functions. The influence of each criterion separately and the com-
bination of the criteria in the inverse kinematics algorithm without using the weight coef-
ficients were earlier presented in our paper (Tomić, Chevallereau, et al., 2018). The best
imitation is obtained with the combination of all criteria functions with different values of
the weight coefficients. However, changes in the value of some weight coefficients, even
those are not dominant, can greatly affect the quality of imitation and increase the value
of the fitness function.

4.4 Human like dual-arm motion of the robot ROMEO

In the previous section we defined the optimization algorithm for characterization of
human motion. The algorithm is based on the inverse optimal control approach and crite-
ria functions, which are able to describe human-like motions. The obtained results from
the inverse optimal control algorithm are included in the inverse kinematics algorithm
given by the equation 4.23.
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Task/criteria functions Rotation
of the
valves

Rotation
of the
canoe
paddles

Rotation
of a
steer-
ing
wheel

Inflating
a mat-
tress
using a
pump

Cutting
with a
knife

Grating
of food

Opening
/clos-
ing a
drawer

kenergy 0 0.2862 0.4448 0.7987 0 0.4384 0
kvelocity 0.3916 0.2223 0.0683 0.1942 1 0.0942 0.9989
kergonomy 0 0.2833 0.4869 0 0 0.4673 0.0007
kmanipulability 0.6084 0.2082 0 0.0070 0 0.0001 0.0003

Table 4.2: The generalized combination of criteria functions calculated for each experi-
ment.

The following paragraphs show that our inverses kinematics approach with the optimal
combination of the criteria functions is able to generate the human-like motions for the
real humanoid robot ROMEO. The experimental validation is presented in this section.

The kinematic structure of robot hands is similar to a human and allows the robot to
faithfully imitate all human motions. Furthermore, the distribution of segments masses
of the robot ROMEO coincides with the human and it can be expected that the criteria
functions which describe the motions of human arms will be the same for the motion of the
robot. An additional condition that occurs is that the motion of the robot must be defined
according to the characteristics of the robot (the length of segments and restrictions in the
joints). In order to obtain human-like dual-arm manipulation task performed by the robot,
the original motion of human hands should still be evident in the robot motion, although
it has been modified according to the characteristics of the robot.

The knowledge on the weights of each criterion for the task will help us to define the
generalized combination of criteria functions for each motion, which will eliminate the
exceptions based on the position between the actor and the equipment and the charac-
teristics of the actor. We additionally defined the genetic algorithm which calculates the
combination of weight coefficients and minimizes the sum of the fitness function of all
actors while performing the same task. The results are presented in Table 4.2.
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Inverse kinematics algorithm proposed by equation 4.23 with a calculated combina-
tion of the weight coefficients will produce the human-like motion of the robot ROMEO.
Fig. 4.11 shows the snapshots of the motion in “Opening/closing a drawer” task performed
by the actor and the robot ROMEO. The motion of the robot shown in the Fig. 4.11(b)
is obtained by our inverse kinematics algorithm with the generalized combination of
the weight coefficients (presented in Table 4.2) while the motion of the robot shown
in the Fig. 4.11(c) is obtained for the combination of the weight coefficients kenergy =

1, kvelocity = kmanipulability = kergonomy = 0. The joint limits are included in the inverse
kinematics algorithm using the approach explained in detail in Baerlocher and Boulic
(2004). The motion of the robot hands is free of the collision with the equipment. The
self-collision is avoided since the robot imitates the recorded human motion which is out
of the self-collision. Images show that the motion of the robot obtained for the generalized
combination of the weight coefficient tends to be more similar to the actor motion, com-
pared to the motion of the robot obtained with the criterion minimization of the kinetic
energy.

The robot motion generated with the generalized combination of the weight coeffi-
cient produced motions in shoulder and elbow joints, as can be seen in the Fig. 4.11(b).
The obtained motion of the robot is similar to the actor motion (see Fig. 4.11(a))) and
fully resembles the human motion. On the other side, the robot motion obtained by min-
imization of the kinetic energy is characterized by a large movement of the elbow joints
while the motion of shoulders is insignificant. The robot performs the task by moving the
elbows to the side, away from the trunk. Moreover, we can see that upper arm in scenario
(b) is aligned with vertical axis as it is case with the actor’s motion while in scenario (c)
it is not the case. Therefore, the obtained motion in (c) is not like the actor’s motion.
These results are confirmed by the similarity measure. The similarity measure between
the recorded actor’s motion (expressed as the motion of the scaled model of the robot
ROMEO using imitation process q̇imitation) and the obtained motion of the robot ROMEO
using the inverse kinematics algorithm and weight coefficients q̇ROBOT ) is calculated as a
sum squared error over all joints velocities.

S =
N∑
n=1

(q̇imitation(tn)− q̇ROBOT (tn))2 (4.25)

The similarity measure of the robot’s motion obtained for the generalized combina-
tion of the weight coefficient is 0.0269 while the similarity measure for the robot motion
obtained by minimization of kinetic energy criterion is 0.0762. The conclusion is that in-
verse kinematics algorithm given by 4.23 with the combination of the weight coefficients,
obtained from our inverse optimal control algorithm, can generate the same human-like
motion with a humanoid robot with the kinematic structure close to or resembling that of
the human body.
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4.5 Conclusion

The present study presents the inverse optimal control algorithm as the optimization
tool for the analysis of the characteristics of the basic dual arm human motion using
the combination of the basic criteria functions. The study is performed on the set of
seven basic human motions performed by 15 actors. The obtained results provide general
conclusions on human motion, as follows:

– The characteristics of dual-arm motions performed by a healthy human are directly
connected with the activation of the particular arm joints and a combination of joint
activations since these humans try to do motions in the way they consider most
comfortable (optimal).

– The criterion of kinetic energy minimization is a dominant criterion for the tasks
that require greater mobility of the shoulder, elbow or trunk joints (the joints with
bigger values of the inertial matrix) but not wrist joint.

– Tasks that are not characterized by a large motion of the joints or evenly activation
of the joints have a dominant criterion of minimization of velocity.

– In tasks where the human performs motion near the singular configuration or near
his joint limits, the criterion of manipulability minimization is dominant.

– In each of the analyzed motions which pass near human ergonomic configuration
the criterion minimization of the distance between the current and the ergonomic
configuration is dominant since humans will perform the motion on the most com-
fortable way if it is according to the characteristics of the task.

– The optimal function (using weights of basic criterion function) exists. Changes in
the value of some weight coefficients even those which are not dominant, signifi-
cantly affect the quality of the imitation and increase the value of fitness function.

– The strategy of performing the same motion by different actors is the same, but may
change due to the influence of the environment and human body characteristics.

– Our inverse kinematics algorithm with the optimal combination of criteria func-
tions, (calculated by the inverse optimal control algorithm for each motion sepa-
rately) is able to generate the same motion with a redundant humanoid robot with
the kinematic characteristics close to or resembling those of humans.

The results of the research can be applied to several areas. The characteristics of the
basic motion of healthy people acquired in this work can be used for the analysis of
human motion with the disability in motor skills. Furthermore, our inverse kinematics
algorithm can be used for generation of a complex motion, which represents a set of the
analyzed basic motions, changing the combination of the weight coefficients from one
basic motion to another. Implementation of the explored characteristics of human motion
on the humanoid robot will enable the most natural cooperation between humanoids and
humans, help the elderly persons in their everyday life, and allow better integration of
humanoid robots into the human environment.
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Our future research should be directed towards enlarging the set of the analyzed basic
human motions and inclusion of basic criterion functions which consider dynamics. The
soft computing methods, such as fuzzy logic, will be implemented to calculate the charac-
teristics of new human motion (the weights), which will be used in the inverse kinematic
model to generate human-like humanoid motion.
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5
Fuzzy logic algorithms for the analysis
of human motion behaviors

The aim of the research in this chapter is to link the presented conclusions about
the characteristics of human motion behavior and define the method for their analysis
using the artificial intelligence algorithms. Considering that in the previous research we
analyzed the characteristics of the basic dual-arm manipulation motions, in this chapter
we will define the fuzzy logic algorithm based on acquired knowledge. The obtained
conclusions from the movement analysis in the previous chapter will be used as expert
knowledge to define the fuzzy rules. Our fuzzy logic algorithm should represent a tool for
defining the characteristic of human movements (i.e. a combination of criterion functions)
for movements that have not been previously analyzed. Therefore, in this chapter we
will present the general characteristics of the fuzzy logic and the fuzzy system and its
implementation for the analysis of human movements. Evaluation of the resulting fuzzy
system will be performed on different manipulation movement that has not been analyzed
previously.

5.1 Fuzzy logic and fuzzy logic system

The Fuzzy sets and fuzzy logic were developed as a means for representing, ma-
nipulating, and utilizing uncertain information and to provide a framework for handling
uncertainties and imprecision in real-world applications. Fuzzy logic (FL) is based on
the way the brain deals with inexact information. Fuzzy system is structured numerical
estimators which is suitable for solving many problems and achieving some degree of
machine intelligence.
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Figure 5.1: Basic configuration of fuzzy logic system.

A classical (crisp) set is a collection of distinct objects. It is defined in such a way as to
dichotomize the elements of a given universe into two groups: members and nonmembers.
A fuzzy set, on the other hand, introduces vagueness by eliminating the sharp boundary
that divides members from nonmembers in the group. Thus, the transition between full
membership and non membership is gradual rather than abrupt. A fuzzy set A in the
universe of discourse U can be defined as a set of ordered pairs:

A = {(x, µA (x)) |x ∈ U} (5.1)

where µA (x) is the grade of membership of x in A. In a one universe, a different number
of phases sets with its grade of membership function can be defined. The membership
functions may be linear, triangular or trapezoidal, or may have Gaussian or sinusoidal
forms.

The typical architecture of a fuzzy logic decision system is shown in Fig. 5.1, which
is comprised of four principal components: a fuzzifier, a fuzzy rule base, an inference
engine (decision-making logic), and a defuzzifier. The fuzzifier has the effect of trans-
forming measured data into suitable linguistic values using fuzzication approach. The
fuzzification approach is widely applicable because it greatly simplifies the creation of
the fuzzy rules. The fuzzy rule base stores the empirical knowledge of the operation of
the process of the domain experts. The inference engine is the kernel of a fuzzy logic deci-
sion system, and it has the capability of simulating human decision making by performing
approximate reasoning to achieve a desired control strategy. The defuzzifier is utilized to
yield a nonfuzzy decision or control action from an inferred fuzzy control action by the
inference engine.

Example:

Let define input x and output variables of the fuzzy systems as:

x =
{(
xi, Ui,

{
A1
xi
, A2

xi
, . . . , Akixi

}
,
{
µ1
xi
, µ2

xi
, . . . , µkixi

})
|i=1,2,...,n

}
z =

{(
zi, Vi,

{
B1
zi
, B2

zi
, . . . , Bki

zi

}
,
{
µ1
zi
, µ2

zi
, . . . , µkizi

})
|i=1,2,...,n

} (5.2)

where U = U1 × U2 × ...Un and V = V1 × V2 × ...Vn represents fuzzy input and output
spaces, A(xi) =

{
A1
xi
, A2

xi
, . . . , Akixi

}
and B(zi) =

{
B1
zi
, B2

zi
, . . . , Bki

zi

}
are the term sets

(set of names of linguistic variables of xi and zi) with membership function µkixi and µkizi ,
respectively. The membership function as well as term sets of the fuzzy system are chosen
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base of our subjective impressions of the process.

In the first step, a fuzzifier performs the function of fuzzification where the set of input
variables are mapped into the fuzzy sets. The specific value xi is mapped to the fuzzy set
A1
xi

with the membership function µ1
xi

and to the fuzzy set A2
xi

with the membership
function µ2

xi
, and so on.

With the completion of the fuzzification of the input parameters, the fuzzy rules can
be defined. For second step, it is necessary to collect all the expert knowledge about the
system in order to make a more efficient system of reasoning. The fuzzy rules are defined
by the IF-THEN relations that delineate the relations between input and output variables.
In generally, fuzzy system is a system with multiple inputs and multiple or one outputs.
In this example we will present a typical layout for the fuzzy rules of the system with
multiple inputs and one output. The one fuzzy rule is defined as:

Ri : if x1 is Aix1 and x2 is Aix2 then z is Bi, i = 1, 2, . . . , n

where x and z are linguistic variables which represents the input and output state
variables, respectively, and Aixj and Bi are their linguistic values in the universes U and
V , respectively. The linguistic term are characterized by fuzzy membership functions
µAix1 (xi) and µBi(z), respectively. Each Ri can be viewed as a fuzzy implication Aix1 ×
Aix2 ...×A

i
xn → Bi with µAix1×Aix2 ...×Aixn→Bi(x, z) = µAix1 (x1)∗µAix2 (x2)∗ ...∗µAixn (xn)∗

µBi(z). The most used operator for “*” is called Mamdani operator which is represents
as µAix1×Aix2 ...×Aixn→Bi(x, z) = µAix1 (x1) ∧ µAix2 (x2) ∧ ... ∧ µAixn (xn) ∧ µBi(z), where ∧
denotes a conjunction of intersection operator.

The fuzzy inference engine employs fuzzy rules from the fuzzy rule base, to determine
a mapping from the fuzzy sets in the input space U to the fuzzy sets in the output space
V . Let Ax be an arbitrary fuzzy set in U , and then each rule Ri determines a fuzzy set
Ax ◦Ri in V based on the sup-star composition (C.-C. Lee, 1990):

µAx◦Ri(z) = sup
x∈U

[
µAx(x) ∗ µAix1×Aix2 ...×Aixn→Bi(x, z)

]
=

sup
x∈U

[
µAx(x) ∗ µAix1 (x1) ∗ µAix2 (x2) ∗ ... ∗ µAixn (xn) ∗ µBi(z)

] (5.3)

The defuzzifier performs a mapping from the fuzzy sets Ax ◦ Ri in V to a crisp point
in z ∈ V . This mapping may be chosen as weighted average centroid defuzzifier (Wang
& Mendel, 1992):

z =

N∑
i=1

ωiµAx◦Ri(ωi)

N∑
i=1

µAx◦Ri(ωi)

(5.4)

where ωi is the point in V at which µBi(z) achieves its maximum value (usually we
assume that µBi(ωi) = 1).
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5.2 Fuzzy system as the tool for modeling human motion
strategy

Designing of each fuzzy system goes through several basic steps:

1. Defining the input and output variables

2. Selecting the fuzzy sets over the input and output universes, as well as selecting the
membership functions these sets

3. Specifies the type of fuzzy rules

4. Specifies the method of the combination the fuzzy rules

5. Choosing defuzzification mode

Fulfilling the first two steps largely depend on the type of process, the universe of
variables, and its exploitation in the process. The choice of fuzzy sets over the universe
should be a compromise between the possibility of a detailed analysis of the variables and
the computational complexity.

Fuzzy system gives the possibility of choosing a different membership functions. De-
pending on the type of process, the different membership functions can affect the quality
differently on the decision-making. The choice of a criterion is quite subjective. There-
fore, at the very beginning, it is recommended to define a set of 3 simplest fuzzy sets that
encompass the whole universe. In order to get a more detailed and better analysis of the
given process, the form of membership functions can be modified, and new membership
functions can be added (Klir & Yuan, 1995).

The linguistic statements of the fuzzy rules are the heart of the fuzzy system and
should give the essential characteristics of the analyzed process. The fuzzy rules usually
come from two sources: human experts and training data.

In the next subsection we define the fuzzy system for analysis human motion strategy
following the previous definition of the fuzzy systems and the method of it design.

5.2.1 Human motion parameters as a fuzzy inputs and output vari-
ables

In this subsection we used the fuzzy logic system to analyze the characteristics of the
human movement of dual-arm manipulation inspired by the idea to present the process of
human deduction using the artificial intelligence algorithms based on human reasoning.
The deciding process of the weight coefficients values, presented in the previous chapter,
was transmitted in the fuzzy logic system, emulating the thinking and perceptions of the
human brain. Based on a detailed analysis of the movement presented in chapter 4 and
chapter 2, the domination of a criterion function has been determined by the activity of the
joints, the characteristic of the human body and the position of the human relative to the
equipment. Therefore, input parameters are chosen so that maximize decision-making
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influence, reduce the complexity of the system, and facilitate the decision-making pro-
cess and definition of the membership functions. If we take the assumption that during
the motion actors are well posed with respect to the equipment and they perform motions
on the most comfortable way for them, we will be able to analyze pure motions with-
out taking into account position of the human relative to the equipment. At this stage of
our research, we decided to simplify our analysis and took into account the cases where
criteria minimization of the kinetic energy (energy criterion), minimization of joint veloc-
ities (velocity criterion), and minimization distance between current and the ergonomic
configuration (ergonomy criterion) are dominant. We wanted to avoid cases in which the
actors modified their motions due to the additional influence of an environment that is
not related to the limitations defined by the movement itself. According to the analysis
presented in chapter 4, the next variables represent the set of the fuzzy input parameters:

– average value of the shoulder, elbow, and trunk joints velocity (vShoulderPitch,
vShoulderYaw, vShoulderRoll, vElbowYaw, and vTrunckPitch) are defined as input
variables which are used to describe the energy and velocity criteria.

– average distance between the human ergonomic and current configuration of the
arm joints (ergonomyShoulderPitch, ergonomyShoulderYaw and ergonomyElbowYaw)
joints in Cartesian space are defined as a input variable which are used to describe
the ergonomy criterion.

The average value of the fuzzy inputs are normalized in the range from 0 to 1 in
order to make the easer comparison of the input variable values. Average joint velocities
are normalized according to the values of the joint velocities, where the values 0 or 1
correspond to the joints which average velocity is minimal or maximal, respectively, with
respect to the rest of the actor joints. The difference between current and ergonomic
Cartesian position of the shoulder pitch, shoulder yaw and elbow yaw joints are normed
in the range from 0 to 1. The value 0 corresponds to the joint position which is same
as ergonomic configuration while value 1 corresponds to the joint position far from the
ergonomic configuration.

According to the results obtained with inverse optimal control algorithm, the values of
the weighted coefficients are usually near 0 or 1 and the fuzzy output variables are mostly
defined by linguistic values ExtraSmall or ExtraBig (see Fig. 5.3).

Our fuzzy system for human motion analysis has 4 output variables which correspond
to the one weight coefficient: Kenergy, Kvelocity, Kergonomy. Each output variable is
in the range from 0 to 1. The output variables of the fuzzy system are defined in the
relative form. The sum of these four coefficients is equal 1 how is defined in chapter 4.
As a reference set of output variables for defining the fuzzy system we used the results
obtained by inverse optimal control algorithm (referred to chapter 4).

Fuzzy inputs and outputs are represented as a combination of linguistic values: extra
small, small, medium, big and extra big. Linguistic variables of the fuzzy inputs vShoul-

derPitch, vShoulderYaw, vShoulderRoll, vElbowYaw, and vTrunckPitch have Gaussian

93



Figure 5.2: The linguistic variables and membership functions of the fuzzy input: a)
vShoulderPitch; b) ergonomyShoulderYaw; and c) vTrunckPitch.

Figure 5.3: The linguistic variables and membership functions of the fuzzy output Ken-
ergy.
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shape of the membership function, while linguistic variables of the fuzzy inputs ergono-

myShoulderPitch, ergonomyShoulderYaw and ergonomyElbowYaw have Z-shaped mem-
bership function. The parameters of Gaussian and Z-shaped membership functions de-
pend of the linguistic variables and the type of the fuzzy input which represent. During
the initialization process of the fuzzy algorithm, the membership function parameters are
tuned by hands, while for final calculation of these parameters fmincon optimization func-
tion is used. The way on which the fuzzy universes and linguistic variables are defined
are directly connected with the expert experience about the process:

– The universes of fuzzy inputs vShoulderPitch, vShoulderYaw, vShoulderRoll, and
vElbowYaw are defined with linguistic values: ExtraSmall, Medium, ExtraBig.

– The universe of fuzzy input vTrunckPitch is defined with linguistic variables: Ex-

traSmall and ExtraBig.
– The universes of fuzzy inputs ergonomyShoulderPitch, ergonomyShoulderYaw, er-

gonomyElbowYaw are defined with linguistic variables: ExtraSmall and Small.
– The universe of each fuzzy output Kenergy, Kvelocity, Kmanipulability, Kergonomy

consists of 5 linguistic variables: ExtraSmall, Small, Medium, Big, ExtraBig.
Linguistic variables and their membership functions for some fuzzy inputs and outputs

are shown in Figs. 5.2 and 5.3.

5.2.2 Human motion strategy presented through the fuzzy rules

Our fuzzy system represents a system with multiple inputs and multiple outputs. Ac-
cording to knowledge obtained through analyzes of the human motion behavior (we can
say that is expert knowledge) we are able to represent it in the form of the fuzzy rules. In
fact, the relation that exists between activation of the joints and characteristics of actors
and equipment, from the one side, and the domination of the criterion function, from the
other side, allowed us to write IF-THEN relations.

The fuzzy rules which describe the energy or velocity criterion as dominant include
the joint velocities as fuzzy inputs. Fuzzy inputs (vShoulderPitch and vShoulderYaw and
vShoulderRoll) or vElbowYaw which have big membership value of the linguistic vari-
ables Big or ExtraBig define fuzzy output Kenergy (big membership value of the linguistic
variables Big or ExtraBig). The IF-THEN fuzzy rules which describe the criterion mini-
mization of kinetic energy are presented in Table 5.1.

The fuzzy rules which describe the velocity criterion include arm joints with big value
of the inertia as the fuzzy inputs. Therefore, in the cases where fuzzy inputs (vShoulder-

Pitch or vShoulderYaw or vShoulderRoll), and vElbowYaw have big membership value of
linguistic variables Big or ExtraBig, the fuzzy output Kvelocity has big membership value
of the linguistic variables big or extra big. The IF-THEN fuzzy rules which describe the
criterion minimization of velocity as dominant are present in Table 5.2.
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The fuzzy rules which describe ergonomy criterion as dominant is based on analysis
the difference between current and ergonomic position of the shoulder and elbow joints.

These fuzzy inputs of our fuzzy rules are ergonomyShoulderPitch, ergonomyShoul-

derYaw, ergonomyElbowYaw. The analysis presented in chapter 4 shows that the value
of these fuzzy inputs are close to 0. Therefore, these fuzzy inputs are described with lin-
guistic variables (ExtraSmall and Small) in order to increase precision of making decision
with our fuzzy system. In the fuzzy rules which define the ergonomy criterion as dom-
inant, the fuzzy output Kergonomy is describe with linguistic variables big and extra big.
The IF-THEN fuzzy rules which describe the ergonomy criterion as dominant are present
in Table 5.3.

Since in some cases the domination of criteria was not strictly defined and more cri-
teria could take the ExtraBig values like in the case of rule shown in Table 5.4.

The all described fuzzy rules are combined using the Mamdani operator. The combi-
nation of the several fuzzy rules can obtain the fuzzy output which is not in correlation
with our human motion behavior analysis. Consequently, additional relationships should
be defined. During our analysis of the human motion behavior we concluded that the hu-
man perform the motion on the way suitable for them if they are well posed with respect
to the equipment. On the other hands, the human modify their motion and the criterion
of maximization manipulability will be dominant. According to this, we defined the hi-
erarchy in combining fuzzy rules. The fuzzy rules which defined the ergonomy criterion
have priority 0.7 while the fuzzy rules which describe energy and velocity criteria have
the same priority 0.1 because they represent relations between activation of the joints in
the task.

5.3 Optimization algorithm vs. fuzzy algorithm

The quality of the results obtained by the fuzzy algorithm on the test set is quantified
in this subsection. The fuzzy rules are made on the way to take into account the character-
istics of the human motion in the joint space according to recorded and analyzed actors’
motions during the all tasks. The general characteristics of each motion are included in the
fuzzy rules. Therefore, it is expected that the results obtained by fuzzy algorithm deviate
from results obtained by optimization in exceptional cases which is analyzed in chapter 4.
The results obtained by fuzzy logic system are presented for each tasks separately.

5.3.1 “Grating of food” task

The analysis of this task proposed that the energy criterion is dominant in the most of
cases. The analysis in the joint space shows that actors usually used elbow joints in order
to perform the task. Accordingly, the vElbowYaw has the big value and is defined with
the linguistic variable Big.
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Figure 5.4: "Grating of food" task: Fuzzy inputs, fuzzy rule and fuzzy outputs.

Figure 5.5: "Grating of food" task: Comparative analysis of weight coefficients obtained
by optimization and fuzzy algorithms.

98



Fi
gu

re
5.

6:
"G

ra
tin

g
of

fo
od

"
ta

sk
:F

uz
zy

ru
le

s,
lin

gu
is

tic
va

ri
ab

le
s

an
d

m
em

be
rs

hi
p

fu
nc

tio
ns

.

99



The relation between fuzzy inputs, fuzzy rules and fuzzy outputs for the one case (ac-
tor No. 10 in Fig. 5.5) is given in Fig. 5.4. The value of the fuzzy input vElbowYaw is
equal 1 and is mapped to linguistic variables Big. Vaules of fuzzy inputs vShoulderPitch

and vShoulderYaw are less then 0.1 and are mapped to linguistic variables ExtraSmall.
The vaule of fuzzy input vShoulderRoll is above 0.46 and is mapped to linguistic vari-
ables Medium. Fuzzy inputs ergonomyShoulderYaw and ergonomyElbowYaw have val-
ues 0.09384 and 0.1856, respectivaly, and are mapped to linguistic variables ExtraSmall.
Fuzzy input ergonomyShoulderPitch has value 0.6392 and is mapped to linguistic vari-
ables Small. The values of the fuzzy inputs, linguistic variables and the falues of the mem-
bersip function are presented in Fig. 5.6. The linguistic variables which describe fuzzy
inputs are represented with yellow color. The all fuzzy inputs except ergonomyShoulder-

Pitch have membership function equal 1 or 1. The fuzzy rules which is satisfied with
these values of the fuzzy inputs are 1 and 8 (see Table 5.1). For this fuzzy rules the fuzzy
output Kenergy is defined with the linguistic variable ExtraBig and takes value equal 0.95,
while the other fuzzy outputs are defined with the linguistic variable ExtraSmall and take
small values.

The analysis of results obtained by fuzzy algorithm shows that:

– Fuzzy algorithm confirm result obtained by optimization algorithm in cases:Nos. 3,
5, 6, 7, 9, 10, 12, and 13;

– Fuzzy algorithm increase influence of dominant criterion in cases: Nos. 1 and 4;
– Fuzzy algorithm decrease influence of dominant criterion (criterion is still domi-

nant) in cases:Nos. 2 and 14
– Fuzzy algorithm gives different results from the optimization algorithm in cases:

Nos. 8 and 11.

In the 85% of the cases fuzzy and optimization algorithms determined the same cri-
terion as a dominant (see Fig. 5.5). In the cases Nos. 2, 8 and 14 criteria shares its
domination. The case No. 15 where domination of the manipulability criterion is re-
placed with energy criterion, according to the characteristics of the task in the joint space.
The analysis of the fitness functions (see Fig. 5.7) shows that change the impact of criteria
Kenergy and Kvelocity has drastical influence on the fitness function values (see cases Nos.
1, 2 and 4). It is expected since those actors performed motions using the shoulder, elbow
and trunk joints. In the case No. 1 the trunk joint was most active. In the case No. 2
the motion is performed using the elbow and shoulder joint (elbow joint is more active)
and the fuzzy results share domination between energy and velocity criteria. Motions
obtained in the cases Nos. 8 and 14 have same characteristics in joint space. The fuzzy
algorithm shared domination between energy and ergonomy criteria since just elbow joint
is active and the motion is near ergonomy configuration. In these cases fitness functions
are differ.
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Figure 5.7: "Grating of food" task: Comparative analysis of fitness functions obtained by
optimization and fuzzy algorithms.

5.3.2 “Rotation of a steering wheel” task

According to the results obtained by optimization algorithm the energy criterion is
dominant or shared its domination with ergonomy criterion in this task. The analysis of
the actors’ motions in the joint space shows that shoulders are the most active during
this task. Since task is characterized with the motion near ergonomy configuration, the
values of the fuzzy inputs ergonomyShoulderPitch or ergonomyShoulderYaw or ergono-

myElbowYaw is near 0 and is defined with linguistic variable Small or ExtraSmall. The
results obtained by optimization and fuzzy algorithms are presented in Fig. 5.8. The
analysis of the results obtained by fuzzy algorithm shows that:

– Fuzzy algorithm confirm result obtained by optimization algorithm in cases:Nos. 4,
5, 7, 9, and 11;

– Fuzzy algorithm increase influence of dominant criterion in cases: Nos. 12, 13, 14
and 15;

– Fuzzy algorithm gives different results from the optimization algorithm in cases:
Nos. 1, 2, 3, 6, 8 and 10.

The results show that the same criterion function is dominant in the 60% of the cases.
In cases Nos. 1 and 2 the fuzzy algorithm chosen the ergonomy criterion as dominant
while an energy criterion can be. The reason is priority factors which is bigger for the
fuzzy rules which define ergonomy criterion. Since the fuzzy and optimization algorithm
used the different approaches to obtained results the inconsistency in results between two
algorithms can occur such as in the cases Nos. 1, 2, 3, 6, 8 and 10. The fuzzy algorithm
applies the general characteristics of the human motions analyzed in the joint space while
the optimization algorithm searches for the minimal value of the fitness function. Change
of criteria dominations take influence on the fitness function values. The results presented
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Figure 5.8: "Rotation of a steering wheel" task: Comparative analysis of weight coeffi-
cients obtained by optimization and fuzzy algorithms.

Figure 5.9: "Rotation of a steering wheel" task: Comparative analysis of fitness functions
obtained by optimization and fuzzy algorithms.

on the Fig. 5.9 shows that in the cases Nos. 1, 2, 3, 6, 8, and 10 (fuzzy algorithm gave
different results from the optimization algorithm) the fitness function is increased. Also,
in the cases where the dominant criterion increase their impact (Nos. 12, 13, 14 and 15),
the fitness function increased.
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5.3.3 “Rotation of the canoe paddles” task

The analysis of this motion in chapter 4 did not propose any criterion as a dominant.
The activation of the joints during the motion is associated with an actor who performs the
motion, not with the motion itself. The analysis of the results obtained by fuzzy algorithm

Figure 5.10: "Rotation of the canoe paddles" task: Comparative analysis of weight coef-
ficients obtained by optimization and fuzzy algorithms.

shows that:

– Fuzzy algorithm confirm result obtained by optimization algorithm in cases:Nos. 2,
5, 6, 7, 9, 10 and 12;

– Fuzzy algorithm increase influence of dominant criterion in cases: Nos. 11 and 8;
– Fuzzy algorithm gives different results from the optimization algorithm in cases:

Nos. 1, 3, and 4.

The comparison of results of the optimization algorithm and the fuzzy algorithm (see Fig.
5.10) defines that the same criterion function is dominant in the 75% of the cases. In
the cases where the manipulability criterion is dominant the fuzzy algorithm provided the
velocity criterion as a dominant since the shoulder and elbow were the most active during
the task.

The comparative analysis of the fitness functions presented in Fig. 5.11 shows that in
the cases of the Nos. 1, 3, and 4 the values of the fitness function increases since values
of weighted coefficients are different. We can also note that the decrease of the value of
the dominant criterion affect to the values of the fitness function and decrease it, which is
evident in the case No. 12.
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Figure 5.11: "Rotation of the canoe paddles" task: Comparative analysis of fitness func-
tions obtained by optimization and fuzzy algorithms.

5.3.4 “Rotation of the valves” task

The previous analysis of this task proposed that the velocity criterion is dominant in
the cases when the actors’ position were suitable for performing the motion in a common
way (in the case of the 8 actors). During the execution of the task the big motions of
shoulders and elbows are evident (Big and Medium values of the fuzzy input variables
vShoulderPitch, vShoulderYaw, vShoulderRoll, and vElbowYaw). The analysis of the re-
sults obtained by fuzzy algorithm shows that

– Fuzzy algorithm confirm result obtained by optimization algorithm in cases:Nos. 2,
3,4, and 6;

– Fuzzy algorithm increase influence of dominant criterion in cases: Nos. 5 and 7;
– Fuzzy algorithm gives different results from the optimization algorithm in case: No.

1.

According to the results shown in Fig. 5.12, in the 85% fuzzy and optimization al-
gorithms proposed the same criterion as a dominant. In cases Nos. 5 and 7 the fuzzy
algorithm increased the impact of the dominant criterion. The domination of the manip-
ulability criterion (obtained by optimization algorithm) is replaced by domination of the
velocity criterion, since this task is characterized with the big motions of shoulders and
elbows. The analysis of the fitness function values (see Fig. 5.13 ) shows that the fit-
ness functions are not drastically different. In the cases Nos.1 and 6 the fuzzy algorithm
decrease influence of the dominant criterion and the value of the fitness function signifi-
cantly increased. On the other side, the increased influence of the dominant criterion (case
Nos. 5 and 7) is do not have big influence on the value of fitness functions.
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Figure 5.12: "Rotation of the valves" task: Comparative analysis of weight coefficients
obtained by optimization and fuzzy algorithms.

Figure 5.13: "Rotation of the valves" task: Comparative analysis of fitness functions
obtained by optimization and fuzzy algorithms.

5.3.5 “Opening/closing drawer” task

The analysis of this task in chapter 4 shows that the shoulders and elbows are the
most active during the task and the velocity criterion is dominant. The fuzzy inputs
vShoulderPitch, vShoulderYaw, is defined with linguistic values Big or Medium while the
vElbowYaw with Big. Looking at results obtained by fuzzy algorithm in Fig.5.14 we can
see that:

– Fuzzy algorithm confirm result obtained by optimization algorithm in cases:Nos. 1,
3, 5, 6, and 8;
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Figure 5.14: "Opening/closing drawer" task: Comparative analysis of weight coefficients
obtained by optimization and fuzzy algorithms.

Figure 5.15: "Opening/closing drawer" task: Comparative analysis of fitness functions
obtained by optimization and fuzzy algorithms.

– Fuzzy algorithm increase influence of dominant criterion in case: No. 7;
– Fuzzy algorithm decrease influence of dominant criterion (criterion is still domi-

nant) in cases:Nos. 2 and 4
– Fuzzy algorithm gives different results from the optimization algorithm in case: No.

9.

In the 88% of the cases fuzzy and optimization algorithms determined the same criterion
as a dominant. In the 5 cases the fuzzy and optimization algorithms obtained the same
results, while in the 3 cases the results are slightly different, but the same criterion is
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dominant. Since the velocity criterion is dominant in the most of the cases, the fuzzy
logic system defined it as a dominated even when manipulability is dominant since this
criterion is not considered with the fuzzy algorithm. The result presented in the Fig. 5.15
shows that fuzzy logic and optimization algorithms obtained motion with very similar
value of the fitness functions. In the case No. 9 where the criteria function is different
the fitness functions are near which means that the combination of the criteria functions
obtained by fuzzy algorithm is able to imitate motion with the same accuracy.

5.3.6 “Inflating a mattress using a pump” task

The analysis of results in chapter 4 shown that during this task the elbow joint is
the most active and the energy criterion as a dominant in the most of the cases. Results
obtained by fuzzy algorithm given in Fig. 5.16 shows that:

– Fuzzy algorithm confirm result obtained by optimization algorithm in cases:Nos. 1,
2, 4, 5, 6, 7, 8, 9,11 and 13;

– Fuzzy algorithm decrease influence of dominant criterion (criterion is still domi-
nant) in case:No. 10

– Fuzzy algorithm gives different results from the optimization algorithm in cases:
Nos. 3 and 12.

Figure 5.16: "Inflating a mattress using a pump" task: Comparative analysis of weight
coefficients obtained by optimization and fuzzy algorithms.

In the 85% of the cases fuzzy and optimization algorithms determined the same criterion
as a dominant. Since in this task the motion of the elbow joint is the biggest, the fuzzy
and optimization algorithm gave the impact of the Kenergy near the 1. In the cases Nos.
10 and 11, the shoulders are moved during the task and the both algorithm are proposed
the velocity criterion as a dominant.
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Figure 5.17: "Inflating a mattress using a pump" task: Comparative analysis of fitness
functions obtained by optimization and fuzzy algorithms.

The comparison of fitness functions obtained by fuzzy and optimization algorithms
is proposed in the Fig. 5.17. In the cases Nos. 6, 8 and 9 the influence of the velocity
criterion is lost and fitness functions obtained by fuzzy algorithm increased their values.
We can conclude that the small influence of the velocity criterion (small motions of the
other joints) is also characteristics of this task. In the case No. 12, the domination of the
criterion is changed and the fitness function is increased.

5.3.7 “Cutting with a knife” task

The analysis of results obtained by optimization algorithm and the activation of the
joint during the task shows that in this task shoulder and elbow are the most active and
the velocity criterion is dominant. Results obtained by fuzzy algorithm shows that:

– Fuzzy algorithm confirm result obtained by optimization algorithm in cases:Nos. 5,
8, 9, 12 and 13;

– Fuzzy algorithm decrease influence of dominant criterion (criterion is still domi-
nant) in cases:Nos. 6, 7, and 10

– Fuzzy algorithm gives different results from the optimization algorithm in cases:
Nos. 1, 2, 3, 4, and 11.

In the 61% of the cases fuzzy and optimization algorithms determined the same criterion
as a dominant, while in the 38% the fuzzy algorithm gave the same result as optimization
algorithm (see Fig. 5.18). According to the comparative analysis of the fitness functions
given in Fig. 5.19 it is evident that the values of the fitness functions is sensitive on the
small changes of the weight coefficients which is evident in the cases Nos. 5, 7, 12 and
13. In other cases, the change of the dominant criterion significantly influences the value
of the fitness function in cases Nos.2, 3, 4 and 11.
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Figure 5.18: "Cutting with a knife" task: Comparative analysis of weight coefficients
obtained by optimization and fuzzy algorithms.

Figure 5.19: "Cutting with a knife" task: Comparative analysis of fitness functions ob-
tained by optimization and fuzzy algorithms.

5.4 Implementation fuzzy algorithm for a new motion

In this subsection we implemented our fuzzy algorithm for detection values of weight
coefficients in task which is not previous analyzed. In Fig. 5.20 (a) is shown testing task
“Turning a hand drill” which is one-arm support rotation motion. The task is performed
by 6 actors on the way which was comfortable for them. The “Turning a hand drill” task
is characterized by the motion of the shoulder and elbow joints. The elbow yaw joints
were most active during tasks, while shoulder joints has medium activity. During the task
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the actors’ right hand configuration was near human ergonomy configuration. The results
obtained by optimization algorithm showed the ergonomy criterion was dominant in 5
cases while in the one case energy criterion was dominated.

Figure 5.20: a) "Turning a hand drill" test task, b) Comparative analysis of weight coeffi-
cients obtained by optimization and fuzzy algorithms.

In order to analyze universality of our fuzzy algorithm we applied our fuzzy algorithm
on “Turning a hand drill” task and calculated values of the weight coefficients. The com-
parative analysis of the results obtained by optimization and fuzzy algorithm for these
tasks is shown in Fig. 5.20 (b). The results presented in the Fig. 5.20 (b) show that the
fuzzy algorithm provides the same criterion as a dominant in the 50% cases. In these
cases the ergonomy criterion is dominant. The value of the fuzzy input ergonomyShoul-

derPitch or ergonomyShoulderYaw or ergonomyElbowYaw is near 0 and the priority factor
of the fuzzy rules which defines ergonomy criterion is higher than other rules. In the other
cases the velocity criterion was dominant or shared impact with energy criterion since the
shoulder and elbow moved during the task.

5.5 Conclusion

In this section we proposed fuzzy logic system as a way evaluate the criterion opti-
mized by human during its motion. The main parameters which explained human motion
presented in chapter 4, such as velocity of the actor’s joints and the relative position be-
tween actor’s and ergonomy configurations were used as the fuzzy input variables. Since
the task of our research was to calculate the optimal combination of the weight coeffi-
cients, these parameters represented fuzzy output. The general conclusion about human
motion behavior defined in chapter 4 were used for making fuzzy rules. The parameters of
the fuzzy algorithm, such as linguistic variables and membership functions, were adjusted
according to the values of actor joint velocities and positions calculate for all analyzed
tasks in chapter 4. Performance of the fuzzy algorithm was shown through comparative
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analysis of the results obtained by fuzzy and optimization algorithms. The results shows
that in the tasks “Rotation of the valves”, “Grating of food”, “Opening/closing drawer”,
and “Inflating a mattress using a pump” fuzzy and optimization algorithms provided in
about 85% of the cases the same criterion as a dominant. In the tasks “Rotation of a steer-
ing wheel “, “Rotation of the canoe paddles”, and “Cutting with a knife” the same criterion
was dominant between 60% and 75% of the cases. The “Turning a hand drill” task was
a test motion which had not been previously analyzed. The results obtained by fuzzy and
optimization algorithms showed the same criterion as a dominant in 50% of cases. There
are several reasons why the results obtained by fuzzy algorithm and optimization algo-
rithm are different. Fuzzy algorithm did not include all human motion behavior which
was appeared in the tested motion. Another reason was setting the parameters of the
membership functions. The values of the fuzzy inputs which were between two linguistic
variables gave the small value of the membership functions for both linguistic variables
and the defined fuzzy rule had small influence on the final results. Because of that the
value of the weight coefficients obtained by fuzzy algorithm and optimization algorithm
were different. Based on the results we can say that the fuzzy algorithm can be used
for prediction of the criterion minimized, for a type a motion that has been previously
studied. The new test motion “Turning a hand drill” showed that fuzzy algorithm did not
covered all characteristics of the human motion behavior and in this form cannot be used
as universal logic for representation human motion. In the future, the characteristics of
other dual-arm manipulation motions should be included in the process of the fuzzy algo-
rithm setting. The set of the fuzzy inputs and fuzzy rules should be increased in order to
take into account the new human motion behaviors. At the end, more powerful artificial
intelligence algorithm can be proposed for analysis human motion behavior.
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6
Conclusion

The aim of this thesis is to propose a new approach for generating dual arm robot
manipulation inspired by human motion skills. In the thesis, we analyses all steps of the
human to the humanoid motion conversion. First, we have chosen to analyze the dual arm
manipulation since they are not sufficiently explored in the literature. We have recorded
12 different dual arm motions which are classified according to the characteristics of the
motion in the task space (goal-coordinated, symmetric, asymmetric and one arm support)
and the axis of the rotation/translation. For the purpose of the research in this thesis we
have chosen the 7 recorded dual arm manipulation tasks:

– rotational motions (“Rotation of the steering wheel”, “Rotation of the valves”,”
Rotation of the canoe paddles”)

– translational motions (“Cutting food with the knife”, “Inflating a mattress using a
pump”, “Grating the food”, “Opening/closing a drawer”).

We have chosen these motions because they are more limited with the characteristics of
the equipment. The characteristics of these motions are more evident compared to the
other motions and give us more precise analysis of the human motion. Since our task is
to define human motion behaviors, we have analyzed these motions in the Cartesian and
joint spaces.

Second, we defined the conversion process for imitation of dual arm human motion,
utilizing the upper body. The conversion process consists of the imitation algorithm and
the algorithm for humanoid motion generation. The imitation algorithm is based on the
Virtual Markers which follow the Real Markers motions and incorporates additionally
recorded joint motions. The imitation algorithm uses data about human motion acquired
by a motion capture system (Cartesian position of the Real Markers and Cartesian posi-
tion and orientation of the human joints) and the scaled model of robot ROMEO as the
human kinematic model. The imitation algorithm used an the analytical expression based
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on the Jacobian matrix. In comparison to existing algorithms, our imitation algorithm
provides a better accuracy of the motion imitation in the Cartesian space and enable real
time imitation of the human motion by humanoid robot. The results from the imitation
algorithm is the recorded human motion represents in the joint space for the studied hu-
manoid robot. These results are further used in the conversion process. The algorithm
for humanoid motion generation is based on the inverse kinematics algorithm. This al-
gorithm generates humanoid motion by following the recorded human hand motions in
Cartesian space and, at the same time, resemble human motion behavior to the motion
of the humanoid using the human motion represented in the joint space. Since our task
consists of the motion phases with and without contact, we additionally have defined an
algorithm for the transition between such phases. Therefore, as the important contribu-
tion of this work, the proposed conversion algorithm is suitable for the human motion
imitation with humanoid for the task with and without contact, as well as the complex
tasks which consists both types of the motions which is not the case of the other imitation
algorithms. The algorithm for humanoid motion generation generates the robot motion
for phases with and without contact and enable the robot to obtain contact between hands
and equipment in a transition phase. The results obtained from our conversion process
are experimentally tested on the real ROMEO robot. The ROMEO robot performs tasks
in the same way as a human.

Third, we have investigated the inverse optimal control algorithm as the optimization
tool for the analysis of the characteristics of the basic dual arm human motion. At the
beginning of our research, we explained human motion behavior using IK algorithm and
the basic criterion functions such as minimization of kinetic energy, minimization of joint
velocities, minimization of the distance between the current and ergonomic positions,
and maximization of manipulability. We included each of the criterion function into the
IK algorithm. We have come to the conclusion about which criterion function does the
best imitation of the recorded human movement. Accordingly, the conclusion about the
characteristics of the human movement is made. In order to precisely analyze the human
motions we decided to combine all of these criterion functions. We defined the inverse
optimal control algorithm which minimized the weighted combinations of the four criteria
functions. According to the values of each weight coefficient, calculated using genetic
algorithm, we are able to describe the characteristics of the human motion behaviors and
to define the strategy which human used during the tasks. We are able to make some
conclusions about human motion characteristics and strategy of generation the motion:

– the characteristics of dual-arm motions performed by a healthy human are directly
connected with the activation of the particular arm joints and a combination of joint
activations. The criterion of kinetic energy minimization is a dominant criterion for
the tasks that require greater mobility of the joints with big inertia. The criterion
of minimization of velocity is dominant in the tasks that are not characterized by a
large motion of the joints
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– the dual arm motions on which hands perform task near their joint limits or near
singularity configuration is defined with the maximization of manipulability as a
dominant criterion

– since the humans try to do motions in the way they consider most comfortable,
in each of the analyzed motions which pass near human ergonomic configuration
the criterion minimization of the distance between the current and the ergonomic
configuration is dominant

– the optimal combination of criterion functions most often generates the best imita-
tion of the human motion and is able to describe the strategy of generating a human
movement in more detail.

Since in our research the each task is performed by 15 actors, we compared the same
motion performed by different actors. The conclusion is that the strategy of performing
the same motion by different actors is the same, but may change due to the influence
of the environment and human body characteristics. At the end, our inverse kinematics
algorithm is able to generate the human-like motions with a redundant humanoid robot
with the kinematic characteristics close to or resembling those of humans. The inverse
kinematics algorithm with different combination of weight coefficients will produce the
different robot’s motion in joint space for the same motion of the robot’s hands in the
task space. Our inverse kinematics algorithm with a generalized combination of weight
coefficients (calculated for each task separately) will produce the robot’s motions which
are closest to recorded human motions.

Finally, we presented fuzzy logic system as a way for finding the criterion minimized
by human motion. The results obtained by analysis 7 different dual-arm motion each
performed by 15 actors is used as expert knowledge for making fuzzy logic rules. Since
the task of our research is to calculate the optimal combination of the weighted coeffi-
cients, our fuzzy system calculates them as fuzzy output variables using the velocities
of shoulder, elbow and trunk joints, and distance between current and ergonomy human
configurations as fuzzy input variables. In order to evaluate the performance of our fuzzy
system, we tested it on the dual-arm task which was not anaysed before. The results
show that fuzzy logic system gives the combination of weight coefficients for the new
task which is in correlation with the our analysis of the human motion behavior.

The results of the research can be applied to several areas. The characteristics of the
basic motion of healthy people acquired in this thesis can be used for the analysis of
human motion with the disability in motor skills. Furthermore, our inverse kinematics
algorithm can be used for generation of a complex motion, which represents a set of the
analyzed basic motions, changing the combination of the weight coefficients from one
basic motion to another. Implementation of the explored characteristics of human motion
on the humanoid robot will enable the most natural cooperation between humanoids and
humans, help the elderly persons in their everyday life, and allow better integration of
humanoid robots into the human environment. Our future research should be directed
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towards enlarging the set of the analyzed basic human motions and inclusion of basic
criterion functions which consider dynamics. The different leaning techniques, as neurols
netweork or deep learning can be used to calculate the characteristics of human motion.
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to humanoid motion conversion for dual arm manipulation tasks. Robotica.
5, 83
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A
ROMEO robot motor information

Table A.1: The information of robot ROMEO motors

Joint name Motor Reduction Robot Inertia [gcm2]

NeckYaw RE25_339156 150.2680 13.9
NeckPitch RE25_339156 143.2200 13.9
HeadPitch RE-max24_222055 130.8480 4.11
HeadRoll RE-max24_222055 201.3050 4.11
ShoulderPitch RE25_339156 135.5800 13.9
ShoulderYaw RE25_339156 85.6300 13.9
ElbowRoll RE25_339156 85.6300 13.9
ElbowYaw RE25_339156 85.2400 13.9
WristRoll
WristYaw RE25_339156 50.6100 13.9
WristPitch RE25_339156 36.2500 13.9

BaseX
BaseY
BaseZ
BaseYaw Joints are underactuated
BaseRoll
BasePitch
TrunkYaw
TrunkYaw
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B
Hanavan model of the human body

B.1 Modified Hanavan parameters

Table B.1: Anthropometric parameters used in the Modified Hanavan model

No Parameter No Parameter
1 Length, Hand 21 Circumference, Toe
2 Length, Wrist to Knuckle 22 Circumference, Ankle
3 Length, Forearm 23 Circumference, Shank
4 Length, Upperarm 24 Circumference, Knee
5 Length, Elbow to Acromion 25 Circumference, Upper Thigh
6 Length, Foot 26 Circumference, Head
7 Length, Shank 27 Circumference, Chest
8 Length, Thigh 28 Circumference, Xyphion Level
9 Length, Head 29 Circumference, Omphalion Level
10 Length, Upper Trunk 30 Circumference, Buttock
11 Length, Xyphion to Acromion Level 31 Width, Hand
12 Length, Middle Trunk 32 Width, Wrist
13 Length, Lower Trunk 33 Width, Foot
14 Circumference, Fist 34 Width, Toe
15 Circumference, Wrist 35 Depth, Hip
16 Circumference, Forearm 36 Width, Chest
17 Circumference, Elbow 37 Width, Xyphion Level
18 Circumference, Axillary Arm 38 Width, Omphalion Level
19 Circumference, Foot 38 Width, Coxae

20 Circumference, Ball of Foot 40
Length, Xyphion Level to
Chin/Neck Intersection

41 Length, Hip to Chin/Neck Intersection = P12 + P13 + P40
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Table B.2: Mass prediction equations

Segment Prediction Equation
Hand m = 0.038*P15 + 0.080*P32 - 0.660
Forearm m = 0.081*M + 0.052*P16 - 1.650
Upperarm m = 0.007*M + 0.092*P18 + 0.050*P5 -3.101
Foot m = 0.003*M + 0.048*P22 + 0.027*P6 - 0.869
Shank m = 0.135*P23 - 1.318
Thigh m = 0.074*M + 0.138*P25 - 4.641
Head m = 0.104*P26 + 0.015*M - 2.189
Trunk mWT= 0.349*M + 0.423*P41 + 0.229*P27 - 35.460
M= whole-body mass Pi =anthropometric parameters shown in Table B.1

The whole trunk mass mWT is calculated from the prediction equation while those of
the individual segments are calculated based on the volumes and the density factors (0.92
for the upper trunk and 1.01 for both middle and lower trunks) of the trunk segments:

sf =
mWT

0.92 · VUT + 1.01 · (VMT + VLT )
(B.1)

mUT = 0.92 · VUT · sf (B.2)

mMT = 1.01 · VMT · sf (B.3)

mLT = 1.01 · VLT · sf (B.4)

(B.5)

where UT,MT,LT = upper, middle and lower trunk, respectively, m = mass, V = vol-
ume, and sf = scaling factor.
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B.2 Geometrical shape

Elliptical solid (ES):

CoM position = LA2
ab

A1
ab

IXX = 1
4
mA4

abbb

A1
ab +mL2A3

ab

A1
ab −m

(
LA2

ab

A1
ab

)2

IY Y = 1
4
mA4

aaab

A1
ab +mL2A3

ab

A1
ab −m

(
LA2

ab

A1
ab

)2

IZZ = 1
4
mA4

aaab+A4
abbb

A1
ab

Notations:

A1
ab =

B1
ab

3
+
B2

ab

2
+B3

ab

A2
ab =

B1
ab

4
+
B2

ab

5
+
B3

ab

2

A3
ab =

B1
ab

5
+
B2

ab

4
+
B3

ab

3

A4
abcd =

B4
abcd

5
+
B5

abcd

4
+
B6

abcd

3
+
B7

abcd

2
+B8

abcd

(B.6)

B1
ab = (a1 − a0)(b1 − b0)

B2
ab = a0(b1 − b0) + b0(a1 − a0)

B3
ab = a0b0

B4
abcd = (a1 − a0)(b1 − b0)(c1 − c0)(d1 − d0)

B5
abcd = a0(b1 − b0)(c1 − c0)(d1 − d0) + b0(a1 − a0)(c1 − c0)(d1 − d0)

+ c0(b1 − b0)(a1 − a0)(d1 − d0) + d0(a1 − a0)(b1 − b0)(c1 − c0)

B6
abcd = a0b0(c1 − c0)(d1 − d0) + a0c0(b1 − b0)(d1 − d0) + a0d0(b1 − b0)(c1 − c0)

+ b0c0(a1 − a0)(d1 − d0) + b0d0(a1 − a0)(c1 − c0) + c0d0(a1 − a0)(b1 − b0)

B7
abcd = b0c0d0(a1 − a0) + a0c0d0(b1 − b0) + a0b0d0(c1 − c0) + a0b0c0(d1 − d0)

B8
abcd = a0b0c0d0

(B.7)
A4

abbb, B4
abbb, B5

abbb, B6
abbb, B7

abbb, B8
abbb are calculated for the equations for

A4
abcd, B4

abcd, B5
abcd, B6

abcd, B7
abcd, B8

abcd, respectively, where c = b and d = b.
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On the same wayA4
aaab, B4

aaab, B5
aaab, B6

aaab, B7
aaab, B8

aaab are calculated for the equa-
tions for
A4

abcd, B4
abcd, B5

abcd, B6
abcd, B7

abcd, B8
abcd , respectively, where b = a, c = a and d = b.

Semi ellipsoid (SE)

CoM position = 3
8
c

IXX = 1
5
m
[
(b2 + c2)−

(
3
8
c
)2
]

IY Y = 1
5
m
[
(a2 + c2)−

(
3
8
c
)2
]

IZZ = 1
5
m(a2 + b2)

The values a, b, c are equal a = a0, b = b0, c = c0 and are taken from the Table B.3.
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C
Quaternions

The unit quaternion is representation of Euler parameters which used four parameters
to expresses the orientation. The quaternion is useful tools for calculation the orientation
with avoiding the singularity. The calculation of quaternion from the cosine transforma-
tion matrix and algebraic properties of quaternion are proposed in (Khalil & Dombre,
2004) and (Siciliano et al., 2010).

Quaternions describe the orientation by a rotation of an angle θ (0 ≤ θ ≤ π) above

an axis of unit vector u =
[
ux uy uz

]T
(Khalil & Dombre, 2004). The quaternion is

defined as:

Q1 = cos(
θ

2
)

Q2 = ux sin(
θ

2
)

Q3 = uy sin(
θ

2
)

Q4 = uz sin(
θ

2
)

(C.1)

The condition which must be obtained is:

Q2
1 +Q2

2 +Q2
3 +Q2

4 = 1 (C.2)

The angle θ and unit vector u are calculate using the angle/axis representation of
rotation matrix. If the R is rotation matrix represent as:

R =

sx nx ax

sy ny ay

sz nz az

 (C.3)
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Then the
cos(θ) =

1

2
(sx + ny + az − 1)

sin(θ) =
1

2

√
(nz − ay)2 + (ax − sz)2 + (sy − nx)2

(C.4)

From the equations (C.4) it is easy to calculate angle θ as:

θ = a tan 2(sin(θ), cos(θ)) (C.5)

with 0 ≤ θ ≤ π

ux, uy, uz are calculated using equation:

ux = (nz − ay)/(2 sin(θ))

uy = (ax − sz)/(2 sin(θ))

uz = (sy − nx)/(2 sin(θ))

(C.6)

if sin(θ) 6= 0

When sin(θ) is small, the element ux, uy, uz cannot be determined with good accuracy
by this equation. In a case wherecos(θ) < 0, we obtain ux, uy, uz more accurately using
the equation:

ux = sign(nz − ay)/
√

(sx − cos(θ))/(1− cos(θ))

uy = sign(ax − sz)/
√

(ny − cos(θ))/(1− cos(θ))

uz = sign(sy − nx)/
√

(az − cos(θ))/(1− cos(θ))

(C.7)

The same quaternion with different sing of all elements gives same transformation
matrix.
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D
Modified DH parameters of the
ROMEO robot

Figure D.1: The transformations described by the modified DH parameters between two
joints. First a rotation α is performed around the x axis, followed by a translation a along
the x axis; then, a rotation θ is done around the z axis, followed by a translation d along
the z (Adorno, 2011).

The DH-method (Hartenberg & Denavit, 1955)provides a matrix notation and ap-
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proach for relating the position of a point in one coordinate system to another coordinate
system, by using a unique transformation matrix. Such an approach is useful with kine-
matic systems in which a series of components are connected by joints. A local coordinate
system and a local transformation matrix are associated with each joint, describing its
configuration with respect to the previous joint and coordinate system. Multiple transfor-
mation matrices can be combined to determine the position of any point on the kinematic
system with respect to any local coordinate system or with respect to a global coordinate
system, based on all of the joint displacements.

Typically, a serial robot is modeled by using the DH convention (Khalil & Dombre,
2007; Spong, Hutchinson, & Vidyasagar, 2006) or modified DH convention (Khalil &
Dombre, 2007). Both methods use four parameters to describe the pose of the joint with
respect to the previous one in the kinematic chain. The modified DH conversion is used
for the purpose of our studies.

In order to define the relationship between the location of joints, we assign a frame Tj
attached to each joint j, such that:

– The zj axis is along the axis of joint j.
– The xj axis is aligned with the common normal between zj and zj+1. If zj and zj+1.

Are parallel or collinear, the choice of xjis not unique. The intersection of xj and
zj defined the origin Oj . In the case of the intersecting joints axes, the origin is at
the point of intersection of the joint axes.

– The yj axis is formed by the right-hand rule to complete the coordinate system
(xj, yj, zj) .

The transformation matrix from frame Tj−1 to frame Tj is expressed as a function of
the following parameters:

– αj: the angle between zj−1 and zj about xj−1

– aj : the distance between zj−1 and zj along xj−1

– θj: the angle between xj−1 and xj about zj
– dj: the distance between xj−1 and xj along zj
In Fig. 1 is shown the transformations described by the modified DH parameters

between two joints. The variable of joint j , defining the relative orientation or position
between joints j − 1 and j , is either θj or dj depending on whether the joint is revaluated
or prismatic, respectively. It is defined by the relation: qj = σ̄jθj + σjdj With:

– σj = 0 if joint is revolute
– σj = 1 if joint is prismatic
– σ̄j = σj − 1

The transformation matrix j−1Tj is obtained as:

j−1Tj = rot(x, αj)trans(x, aj)rot(z, θj)trans(z, dj) (D.1)

The humanoid robot is a tree structured robot. Thus, a tree structure has as many main
branches as the number of terminal joints. The humanoid robots usually have 5 terminal
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Figure D.2: Kinematic model of for the extended upper body model of the robot ROMEO.
3 translation and 3 rotation joints into the trunk are included in order to estimate motions
of legs.
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joints (2 feet, 2 hands an head). In the case of the upper body humanoid robot, which
is used in our research, kinematic model has 3 terminal joints (2 hands and head) and 3
branches (see Fig. D.2.). Since to the same segments is connected more than one joint
the 2 cases are considered for computing the transformation matrix iTj , which defines the
location of the frame j relative to antecedent frame i = ant(j) :

1. If xi is along the common normal between zi and zj the transformation matrix iTj is
same as the transformation matrix between two consecutive frames of serial struc-
ture. It is obtained as a function of the four geometrical parameters (αj, aj, θj, dj).

2. If xi is not along the common normal between zi and zj then the transformation
matrix iTj must be defined using six geometrical parameters. To obtain the six pa-
rameters defining frame j relative to frame i, we defined uj as the common normal
between zi and zj . The transformation from frame j to frame i can be obtained as a
function of the six geometric parameters (γj, bj, αj, aj, θj, dj) where:
– γj is the angle between xi and uj about zi
– bi is the distance between xi and uj along zi

The transformation matrix iTj is obtained as:

j−1Tj = rot(z, γj)trans(z, bj)rot(x, αj)trans(x, aj)rot(z, θj)trans(z, dj) (D.2)

We set σj = 2 to define a frame j with constant position and orientation with respect
to their antecedent frame ant(j).The parameter µ gives information about joint activation.
If the joint j is activated then µj = 1otherwise µj = 0.

The modified DH parameter for the extended upper body model of the robot ROMEO
is given in Table D.1.
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Table D.1: Modified DH parameters for the extended upper body model of the robot
ROMEO

j ant µ σ γ b α a θ d
1 0 1 1 0 0 0 0 0 q1

2 1 1 1 0 0 −π/2 0 −π/2 q2

3 2 1 1 0 0 −π/2 0 −π/2 q3

4 3 1 0 0 0 −π/2 0 q4 0
5 4 1 0 0 0 π/2 0 π/2 + q5 0
6 5 1 0 0 0 π/2 0 π/2 + q5 0
7 6 1 0 0 0 π/2 0 q7 0
8 7 1 0 0 0 0 0 q8 L1+L2

9 8 1 0 0 0 −π/2 0 −π/2 + q9 0
10 9 1 0 0 0 0 L3 q10 0
11 10 1 0 0 0 −π/2 0 q11 0
12 7 1 0 0 L1 −π/2 L5 q12 L4/2
13 12 1 0 0 0 π/2 0 π/2 + q13 0
14 13 1 0 0 0 π/2 0 q14 L6

15 14 1 0 0 0 −π/2 0 q15 0
16 15 1 0 0 0 π/2 0 q16 L7

17 16 1 0 0 0 −π/2 0 −π/2 + q17 0
18 17 1 0 0 0 −π/2 0 q18 0
19 7 1 0 0 L1 −π/2 L5 q19 -L4/2
20 19 1 0 0 0 π/2 0 π/2 + q20 0
21 20 1 0 0 0 π/2 0 q21 L6

22 21 1 0 0 0 −π/2 0 q22 0
23 22 1 0 0 0 π/2 0 q23 L7

24 23 1 0 0 0 −π/2 0 −π/2 + q24 0
25 24 1 0 0 0 −π/2 0 q25 0
26 25 0 2 0 0 π/2 L8 0 -L9

27 18 0 2 0 0 π/2 L8 0 -L9

143



Author’s biography 

 

Marija Tomić was born on 14.07.1987. in Užice. Elementary and high school was finished 

in Užice. School of Electrical Engineering in Belgrade was enrolled in 2006 at the 

Department Signals and Systems. She graduated in 2010 with an average score of 9:02 

with the thesis „Modelling, control and simulation of mobile robot platform with a robotic 

arm LYNXMOTION AL5A“. Master's study was enrolled in 2010 at the School of 

Electrical Engineering in Belgrade in the same department and finished in 2011 with an 

average score of 10. The topic of master's thesis was „Modeling and managing coordinated 

two handed manipulation of the service robot anthropomorphic structures“. 

PhD studies, she enrolled in 2011/2012 academic year at the School of Electrical 

Engineering in Belgrade, module Control systems and signal processing. The following 

year she won a French government scholarship for doctoral studies in France and her PhD 

studies continue as а bilateral doctoral program between the School of Electrical 

Engineering in Belgrade and the „Ecole Centrale de Nantes“ in Nantes, France. During her 

PhD studies at the School of Electrical Engineering, Marija passed ten exams with an 

average score of 10:00 and listened to several courses in the field of robotics at the „Ecole 

Centrale de Nantes“ which is a precondition of the application of the PhD thesis. 

Marija Tomić has acquired knowledge in the field of the robotics through professional 

practices during her primary and master studies: professional practice in „Manipal Institute 

of Technology“, India in 2010 (for a period of three months) and an internship in the 

Institute „Mihajlo Pupin“, Robotics Lab, Belgrade in 2010 (for a period of one year). After 

the successful completion of her  professional practice, Marija Tomić has been employed 

at the Institute „Mihajlo Pupin“, Robotics Lab, in 2012 where she works until now at the 

position of Research Assistant. Within the framework of bilateral doctoral studies Marija 

Tomić spent eighteen months, in the period of three years, in Institute LS2N, Faculty 

“Ecole Centrale de Nantes”, Team Robotics, as a PhD student. In the same period, she 

followed master classes program in the field of robotics, “EMARO+“ at the Faculty “Ecole 

Centrale de Nantes”.  

Field of scientific research of candidate includes imitation of human motions using high 

redundancy humanoid robots. She is author over 17 papers in scientific journals and at 

national and international conferences. 








	these-utf8
	Autor biography
	Marija Tomic dodatak doktoratu



