Show simple item record

Aplication of soft computing techniques in traffic noise prediction

dc.contributor.advisorŠumarac-Pavlović, Dragana
dc.contributor.otherMijić, Miomir
dc.contributor.otherŠoškić, Zlatan
dc.contributor.otherĐurović, Željko
dc.contributor.otherĆertić, jelena
dc.creatorTomić, Jelena Z.
dc.date.accessioned2018-04-23T09:30:19Z
dc.date.available2018-04-23T09:30:19Z
dc.date.issued2018-02-14
dc.identifier.urihttp://eteze.bg.ac.rs/application/showtheses?thesesId=5710
dc.identifier.urihttps://fedorabg.bg.ac.rs/fedora/get/o:17464/bdef:Content/download
dc.identifier.urihttp://vbs.rs/scripts/cobiss?command=DISPLAY&base=70036&RID=49961231
dc.identifier.urihttp://nardus.mpn.gov.rs/123456789/9385
dc.description.abstractIntenzivan tehnolški i industrijski razvoj, iako doprinosi napretku civilizacije, ostavlja negativne posledice na čovekovu životnu i radnu sredinu. Pored zagađ enja vazduha, zemlji²ta i vode, razvoj industrijskih i saobraćajnih kapaciteta prouzrokuje pove¢anje komunalne buke koja može ugroziti psihozičko zdravlje, a posledično i kvalitet života, kao i produktivnost stanovništva. Rezultati strateškog mapiranja buke na teritoriji Evropske unije nedvosmisleno pokazuju da drumski saobra¢aj predstavlja dominantni izvor buke u urbanim sredinama. U literaturi su denisani različiti modeli za predvi đanje nivoa buke drumskog saobra¢aja čija primena omogućava procenu ugroženosti stanovništva saobraćajnom bukom i planiranje odgovaraju¢ih mera za zaštitu životne sredine od povišenih nivoa zvuka. Primenom postojećih modela dobijaju se vrednosti koje značajno odstupaju od eksperimentalnih rezultata merenja nivoa buke na teritoriji Republike Srbije, što ukazuje na potrebu za razvojem novog modela za procenu ekvivalentnog nivoa buke drumskog saobraćaja. U okviru ove disertacije, na osnovu analize sastava saobraćaja, definisane su značajne kategorije motornih vozila koje karakteriše različiti uticaj na ekvivalentni nivo buke. Na osnovu eksperimentalnih podataka za svaku od denisanih kategorija vozila, primenom soft computing tehnika, odre đen je prosečan nivo buke, čime je omogu¢eno predviđ anje ekvivalentnog nivoa saobra¢ajne buke u okruženju sa zanemarljivom reeksijom zvuka, a na osnovu informacija o protoku i strukturi saobra¢aja. Razmatrana je primena optimizacionih metoda zasnovanih na inteligenciji roja i evolucionim algoritmima u uspostavljanju analitičke veze izme u nivoa saobra¢ajne buke i parametara saobra¢ajnog toka. Kako bi se omogućila prognoza buke u okruženju sa izraženim uticajem reeksije, denisani su i odgovaraju¢i korekcioni faktori kojima se uzima u obzir uticaj okruženja, kao i određ enih karakteristika saobra¢ajnice, na nivo buke na mestu prijema. Pored razvijenog matematičkog modela, kreirana je i vešta£ka neuralna mreža za predvi anje ekvivalentnog A-ponderisanog nivoa buke oko drumskih saobraćajnica. Validacija razvijenog matematičkog modela i kreirane neuralne mreže izvržena je statističkom analizom odstupanja izračunatih od izmerenih nivoa buke, kao i korelacionom analizom ovih nivoa. Postupcima statističke i korelacione analize utvr eno je dobro slaganje merenih i proračunatih vrednosti. Uporedna analiza rezultata dobijenih primenom predloženih modela, kao i nekih od najčešće koriš¢ćenih modela za prognozu buke drumskog saobraćaja, pokazala je da primena novoformiranih modela omogu¢ava tačnija predvi đanja ekvivalentnog nivoa saobraćajne buke...sr
dc.description.abstractAlthough technological and industrial development contributes to the progress of civilization, it has negative inuences on human's living and working environment. In addition to air, soil and water pollution, the development of industrial and transport capacities causes increase in levels of communal noise which has negative impact on the psycho-physical health and productivity of the population. The results of strategic noise mapping in the European Union clearly indicate that road trac represents dominant noise source in urban areas. Many authors in available literature dened dierent models for road trac noise prediction, whose application enables noise mapping and noise protection planning. However, noise levels predicted by existing models deviate signicantly from the experimental results of noise level measuring in the territory of Republic of Serbia, which indicates the need for development of a new model for equivalent noise level estimation. Within the framework of this dissertation, signicant categories of motor vehicles are dened based on the analysis of trac structure and its inuence on the equivalent noise level. On the basis of experimental data, for each of dened categories, the average noise level is estimated by application of soft computing techniques. Optimization methods based on swarm intelligence and evolutionary algorithms were used for establishing an analytic relationship between trac noise level and trac ow parameters. In order to enable prediction of noise level at an arbitrary distance from the road in an environment with signicant sound reection, correction due to sound reection and distance correction are dened. In addition to the developed mathematical model, an arti- cial neural network for prediction of equivalent A-weighted level of road trac noise has been designed. The validation of developed mathematical model and created neural network was performed by statistical analysis of the deviations between predicted and measured noise levels, as well as the correlation analysis of these levels. Results of statistical and correlation analysis show good agreement between measured and calculated values. A comparative analysis of the results obtained by proposed models and some of frequently used models for road trac noise prediction has shown that the application of proposed models enables more precise prediction of trac noise levels...en
dc.formatapplication/pdf
dc.languagesr
dc.publisherУниверзитет у Београду, Електротехнички факултетsr
dc.relationinfo:eu-repo/grantAgreement/MESTD/Technological Development (TD or TR)/37020/RS//
dc.rightsAutorstvo-Nekomercijalno-Bez prerade 3.0 Srbija (CC BY-NC-ND 3.0)
dc.sourceУниверзитет у Београдуsr
dc.subjectbuka drumskog saobra¢aja, predvi anje nivoa buke, mapiranje buke, soft computing tehnike, optimizacija rojem £estica, genetski algoritam, ve²ta£ke neuralne mreºesr
dc.subjectroad trac noise, noise prediction, noise mapping, soft computing techniques, particle swarm optimization, genetic algorithm, articial neural networken
dc.titlePrimena soft computing tehnika za predviđanje nivoa buke drumskog saobraćajasr
dc.title.alternativeAplication of soft computing techniques in traffic noise predictionen
dc.typePhD thesis
dcterms.abstractШумарац-Павловић, Драгана; Ћертић, јелена; Ђуровић, Жељко; Шошкић, Златан; Мијић, Миомир; Томић, Јелена З.; Примена софт цомпутинг техника за предвиђање нивоа буке друмског саобраћаја; Примена софт цомпутинг техника за предвиђање нивоа буке друмског саобраћаја;


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record