Show simple item record

Algorithms for convergence improvement to large load flow simulation models.

dc.contributor.advisorRajaković, Nikola
dc.contributor.otherŠkokljev, Ivan
dc.contributor.otherSarić, Andrija
dc.contributor.otherTošić, Dejan
dc.contributor.otherStefanov, Predrag
dc.creatorJanković, Stanko P.
dc.date.accessioned2016-08-06T09:50:53Z
dc.date.available2016-08-06T09:50:53Z
dc.date.issued2016-02-17
dc.identifier.urihttp://eteze.bg.ac.rs/application/showtheses?thesesId=3533
dc.identifier.urihttps://fedorabg.bg.ac.rs/fedora/get/o:12243/bdef:Content/download
dc.identifier.urihttp://vbs.rs/scripts/cobiss?command=DISPLAY&base=70036&RID=48133903
dc.identifier.urihttp://nardus.mpn.gov.rs/123456789/6152
dc.description.abstractЕлектроенергетски системи / Power Systems
dc.description.abstractПрорачун токова снага је најчешће употребљивана анализа у оперативном планирању рада електроенергетског система. Обновљиви извори су узроковали да оператор мора да ради анализе токова снага и/или анализе ситурности што је брже могуће у циљу предикције следећег корака у регулацији електроенергетског система. LU декомпозиција Јакобијан матрице траје најдуже током Newton-Raphson итеративне методе. Време трајања прорачуна појављује се као критичан проблем када се прорачун токова снага изводи на моделима великог електроенергетског системема. У овом случају, LU декомпозиција Jacobian матрице не би требало да се изводи у итерацијама у којима стопа конвергенције није нарушена али се изводи у итерацијама у којима је стопа конвергенције испод специфицираног нивоа. Другим речима, у дисертацији су модификовани Newton-Raphson метод, који елиминише понављање LU декомпозиције Jacobian матрице и генерички Newton-Raphson метод комбиновани у зависности од стопе конвергенције. Дисертација представља примену предложене комбиноване Newton-Raphson методе која је базирана на контроли стопe конвергенције. Изведено је поређење комбиновановане, Shamanskii, опште и модификоване Newton-Raphson методе узимајући у обзир време трајања прорачуна и број захтеваних итерација да би се постигла конвергенција у прорачуну на моделима различитих димензија. Мале или нулте импедансе водова често узрокују дивергенцију или погрешну конвергенцију у прорачуну токова снага. Импеданса спојних поља је скоро увек једнака нултој вредности, док је импеданса водова који повезују генераторске јединице са високонапонским сабирницама у суседним постројењима обично веома мала. Дисертација има за циљ да представи приступ у коме сe чворови повезани малим или нултим импедансама спајају у један чвор а затим се решава систем нелинеарних једначина за прорачун токова снаге без ових водова. Након успешног решења нелинеарног система једначина у прорачуну токова снаге израчунавају се токови снаге кроз мале или нулте импедансе помоћу система линеарних једначина. Главна предност решавања система линеарних једначина у поређењу са решавањем система нелинеарних једначина је та што се линеарни систем решава у једном кораку без итеративне процедуре. У дисертацији је приказан приступ прорачуна система линераних једначина које представљају активне и реактивне токове снага кроз водове са истoм ефективном вредности напона и угла на оба краја водаsr
dc.description.abstractLoad flow is the most used calculations in power system operation planning. Renewable resources have caused that system operator has to do power flow analysis and/or contingency analysis as fast as possible in order to predict next step in power system control. LU Decomposition of Jacobian matrix remains the most computationally expensive task during Newton–Raphson iterative method. Computational time appears to be critical issue when load flow calculation is performed on large power system load flow models. In this case, Jacobian matrix LU decomposition should not be performed in iterations in which convergence rate is not violated but performed in iterations in which convergence rate drop below specified level. In other words, modified Newton–Raphson Method which eliminates the repeated Jacobian matrix LU decomposition and generic Newton–Raphson method are combined depending on convergence rate in Dissertation. The Dissertation presents application of proposed combined Newton–Raphson method which is based on convergence rate control. Comparison of combined, Shamanskii, generic, and modified Newton–Raphson methods is carried out taking into consideration computational time and number of iterations required to achieve convergence of load flow models of various dimensions.Small or zero impedance lines are frequent cause of power flow calculation divergence or invalid convergence. Impedances of bus couplers are almost equal to zero while impedances of lines which connect generators high voltage busbars to neighboring substations are usually very small. This Dissertation presents an approach by which buses connected by small or zero impedance lines are merged into single bus and nonlinear system of power flow equations is solved without these lines. After solution of nonlinear systems of power flow equations is found, power flows through small or zero impedance lines are solved as system of linear equations. The main advantage of solving system of linear equations comparing to solving system of nonlinear equations is that linear system is solved in one step without iterative procedure. The approach of solving the system of linear equations representing active and reactive power flows through lines with the same voltages and angles at their terminals is presented in the Dissertationen
dc.formatapplication/pdf
dc.languagesr
dc.publisherУниверзитет у Београду, Електротехнички факултетsr
dc.rightsAutorstvo-Nekomercijalno-Deliti pod istim uslovima 3.0 Srbija (CC BY-NC-SA 3.0)
dc.sourceУниверзитет у Београдуsr
dc.subjectкомбиновани Newton-Raphson методen
dc.subjectстопа конвергенцијеen
dc.subjectJacobian матрицаen
dc.subjectLU декомпозицијаen
dc.subjectкратки водen
dc.subjectвод мале импедансеen
dc.subjectвод нулте импедансеen
dc.subjectconvergence rateen
dc.subjectJacobian matrixen
dc.subjectLU decompositionen
dc.subjectshort lineen
dc.subjectsmall impedance lineen
dc.subjectzero impedance lineen
dc.subjectcombined Newton-Raphson methoden
dc.titleАлгоритми за унапређење конвергенције у прорачуну токова снага на великим симулационим моделимаsr
dc.titleAlgorithms for convergence improvement to large load flow simulation models.en
dc.typeThesis
dcterms.abstractРајаковић, Никола; Шкокљев, Иван; Сарић, Aндрија; Тошић, Дејан; Стефанов, Предраг; Јанковић, Станко П.; Algoritmi za unapređenje konvergencije u proračunu tokova snaga na velikim simulacionim modelima;


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record