Show simple item record

Radiation resistance of nonvolatile resistive memories

dc.contributor.advisorVujisić, Miloš
dc.contributor.otherOsmokrović, Predrag
dc.contributor.otherVasić Milovanović, Aleksandra
dc.contributor.otherStanković, Koviljka
dc.contributor.otherIričanin, Bratislav
dc.creatorKnežević, Ivan
dc.date.accessioned2016-07-16T13:00:12Z
dc.date.available2016-07-16T13:00:12Z
dc.date.available2020-07-03T08:34:19Z
dc.date.issued2013-11-06
dc.identifier.urihttps://nardus.mpn.gov.rs/handle/123456789/5829
dc.identifier.urihttp://eteze.bg.ac.rs/application/showtheses?thesesId=3280
dc.identifier.urihttps://fedorabg.bg.ac.rs/fedora/get/o:11703/bdef:Content/download
dc.identifier.urihttp://vbs.rs/scripts/cobiss?command=DISPLAY&base=70036&RID=45330703
dc.description.abstractU disertaciji se ispituje uticaj različitih tipova radioaktivnog zračenja na osobine i način funkcionisanja rezistivnih postojanih memorija. Aktuelnost navedene problematike se ogleda u tome što smanjenje dimenjzija i sve veći stepen integracije ovih komponenti dovodi do mnogih primena koje podrazumevaju njihovu izloženost radijaciji. Numerički eksperimentalno je ispitivan uticaj protonskog i jonskih snopova (alfa čestice, joni Fe, C, Ne, N) na četiri vrste ćelija rezistivne postojane memorije, čiji su aktivni regioni bazirani na: TiO2, ZrO2, HfO2 i SrTiO3. Pokazano je da zračenje generiše različite vrste oštećenja i defekata u materijalu memorijske ćelije koji mogu da promene električne i mehaničke osobine materijala. Pošto je nejonizujući gubitak teških jona veći od gubitaka protna i alfa čestica istih energija, teški joni imaju veći uticaj na memorijsku ćeliju. Zbog dimenzija memorijskih ćelija koje su u nano skali, ispitivane ćelije rezistivnih postojanih memorija na bazi oksida su imune na protone i jone sa energijama u MeV skali. U primarnom aktivnom regionu memorijske ćelije zbog prisustva vakancija kiseonika indukovanih radijacijom dolazi do pada otpornosti, što uzrokuje promenu smera rotacije i-v krive memorijske ćelije. Dalji pad otpornosti vodi do većih deformacija duple petlje. Prisustvo intersticijalnih atoma izmeštenih radijacijom može takođe da redukuje pokretljivost vakancija kiseonika takođe menjajući smer rotacije histerezisne i-v krive. Ako izmešteni joni kiseonika dođu u kontakt sa elektrodom, može se formirati gas O2 što uzrokuje trajni prekid rada memorijske ćelije. Do pogrešnog očitavanja može doći ako se memorijska ćelija koristi kao prekidač, jer visoko rezistivno stanje, karakterisano smanjenim regionom siromašnim kiseonikom, može biti perturbovano izlaganjem radijaciji. Određena je apsorbovana doza u ispitivanim materijalima. Dobijene vrednosti su za dva reda veličine bile veća prilikom interakcije teških jona (Fe), nego u slučaju kada je upadni snop bio sačinjen od lakših čestica (protoni, alfa čestice, joni C). Radi poređenja oštećenja generisanih različitim upadnim česticama sa individualnim energetskim spektrom definisan je faktor tvrdoće, koji može ukazati na stepen radijacione otpornosti materijala za dati snop zračenja određene energije. Dobijeni rezultati su od praktičnog značaja zbog sve veće primene rezistivnih postojanih memorija u mnogim oblastima privrede, nauke i tehnike.sr
dc.description.abstractIn this dissertation, an examination is carried analysing the influence of different types of radiation on the features and the functionality of non-volatile resistive memories. The widely discussed aspects of this problem are ones seen in the reduction of dimensions and in the higher degree of integration of memories, therefore leading to various applications that result in the exposition of these memories to radiation. Numerical experiments have been conducted in order to research the influence of proton and ion beams (alpha particles, Fe, C, Ne, and N ions) on four types of non-volatile resistive memory cells, based on: TiO2, ZrO2, HfO2 and SrTiO3. It is shown that radiation generates different types of hazards and defects in the materials of the previously mentioned memory cells, which can lead to the change within the electrical and mechanical features of the structure. Since the non-ionising losses of heavy ions are greater than the losses of protons and alpha particles of the same energies, heavy ions have greater impact on memory cells. Due to the dimensions of memory cells, which are in nano-scale, the examined cells of non-volatile resistive memories are immune to protons and ions with energies in MeV scale. Moreover, the existence of oxygen vacancies induced by radiation in the primary active region of the memory cell leads to the reduction of resistance that further results in the change of the direction of rotation in the i-v curve of the memory cell. Further reduction of resistance results in a greater degree of deformations of the double loop. The presence of interstitial atoms displaced by radiation can also reduce mobility of oxygen vacancies as well as the change of the direction of rotation in the i-v hysteresis curve. O2 gas is formed due to the reaction of the displaced oxygen ions with an electrode resulting in permanent disruption of cell’s running. An error in cell reading is most likely to take place if the memory cell is used as a switch. This is due the perturbation of the high resistive state, characterised by the reduced poor-oxygen region, after the exposure to radiation. The absorbed dose within this material is then calculated. The obtained values are higher for two orders of magnitude in the case of heavy ion interaction (Fe) than in the case of light particle beam interaction (protons, alpha particles and C ions). In order to compare displacement generated by different incident particles with individual energy spectra, it is vital to define the hardness factor that can point out the degree of radiation resistance of the material for the actual beam of radiation of a specific energy. All the obtained results are of practical means because of the widely spread usage of non-volatile resistive memories in diverse disciplines in terms of industry, science and technique.en
dc.formatapplication/pdf
dc.languagesr
dc.publisherУниверзитет у Београду, Електротехнички факултетsr
dc.rightsopenAccessen
dc.sourceУниверзитет у Београдуsr
dc.subjectradijacijasr
dc.subjectradiationen
dc.subjectjonizujuće zračenjesr
dc.subjectjonski snopsr
dc.subjectinterakcija zračenja sa materijalomsr
dc.subjecttransport jona kroz materijusr
dc.subjectpostojane memorijesr
dc.subjectrezistivne memorije sa proizvoljnim pristupomsr
dc.subjectMonte Karlo simulacijasr
dc.subjectionizing radiationen
dc.subjection beamen
dc.subjectinteraction of radiation with matteren
dc.subjecttransport of ions in matteren
dc.subjectnonvolatile memoriesen
dc.subjectresistive random access memoriesen
dc.subjectMonte Carlo simulationen
dc.titleRadijaciona otpornost rezistivnih postojanih memorijasr
dc.titleRadiation resistance of nonvolatile resistive memoriesen
dc.typedoctoralThesisen
dc.rights.licenseARR
dcterms.abstractВујисић, Милош; Иричанин, Братислав; Васић Миловановић, Aлександра; Осмокровић, Предраг; Станковић, Ковиљка; Кнежевић, Иван; Радијациона отпорност резистивних постојаних меморија; Радијациона отпорност резистивних постојаних меморија;
dc.identifier.fulltexthttps://nardus.mpn.gov.rs/bitstream/id/5292/Disertacija3835.pdf
dc.identifier.fulltexthttp://nardus.mpn.gov.rs/bitstream/id/5292/Disertacija3835.pdf
dc.identifier.rcubhttps://hdl.handle.net/21.15107/rcub_nardus_5829


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record