НаРДуС - Национални Репозиторијум Дисертација у Србији
    • Српски
    • Српски (Serbia)
    • English
  • Српски 
    • Српски
    • Srpski
    • English
  • Пријава
Преглед дисертације 
  •   НаРДуС - почетна
  • Универзитет у Новом Саду
  • Факултет техничких наука
  • Преглед дисертације
  •   НаРДуС - почетна
  • Универзитет у Новом Саду
  • Факултет техничких наука
  • Преглед дисертације
JavaScript is disabled for your browser. Some features of this site may not work without it.

Реконфигурабилне архитектуре за хардверску акцелерацију предиктивних модела машинског учења

Rekonfigurabilne arhitekture za hardversku akceleraciju prediktivnih modela mašinskog učenja;
Reconfigurable Architectures for Hardware Acceleration of Machine Learning Classifiers

Thumbnail
Отварање
Disertacija.pdf (10.36Mb)
IzvestajKomisije.pdf (191.3Kb)
Докторанд:

Врањковић Вук

Факултет:
Универзитет у Новом Саду, Факултет техничких наука
Датум одбране дисертације:
02-07-2015
Ментор:

Novak Ladislav

Чланови комисије:

Struharik Rastislav

Teodorović Predrag

Mezei Ivan

Tokić Teufik

Novak Ladislav

Метаподаци
Приказ свих података о дисертацији
Пројекти:
  • Иновативне електронске компоненте и системи базирани на неорганским и органским технологијама уграђени у робе и производе широке потрошње (MPNTR-TR 32016)

Остали линкови:

http://www.cris.uns.ac.rs/DownloadFileServlet/Disertacija144421097027721.pdf?controlNumber=(BISIS)94819&fileName=144421097027721.pdf&id=4400&source=NaRDuS&language=sr

http://www.cris.uns.ac.rs/record.jsf?recordId=94819&source=NaRDuS&language=sr

http://www.cris.uns.ac.rs/DownloadFileServlet/IzvestajKomisije142978519260373.pdf?controlNumber=(BISIS)94819&fileName=142978519260373.pdf&id=3600&source=NaRDuS&language=sr

http://nardus.mpn.gov.rs/123456789/1855

Сажетак:

У овој дисертацији представљене су универзалне реконфигурабилне архитектуре грубог степена гранулације за хардверску имплементацију DT (decision trees), ANN (artificial neural networks) и SVM (support vector machines) предиктивних модела као и хомогених и хетерогених ансамбала. Коришћењем ових архитектура реализоване су две врсте DT модела, две врсте ANN модела, две врсте SVM модела и седам врста ансамбала на FPGA (field programmable gate arrays) чипу. Експерименти, засновани на скуповима из стандардне UCI базе скупова за машинско учење, показују да FPGA имплементација омогућава значајно убрзање (од 1 до 6 редова величине) просечног времена потребног за предикцију, у поређењу са софтверским решењима.
 
U ovoj disertaciji predstavljene su univerzalne rekonfigurabilne arhitekture grubog stepena granulacije za hardversku implementaciju DT (decision trees), ANN (artificial neural networks) i SVM (support vector machines) prediktivnih modela kao i homogenih i heterogenih ansambala. Korišćenjem ovih arhitektura realizovane su dve vrste DT modela, dve vrste ANN modela, dve vrste SVM modela i sedam vrsta ansambala na FPGA (field programmable gate arrays) čipu. Eksperimenti, zasnovani na skupovima iz standardne UCI baze skupova za mašinsko učenje, pokazuju da FPGA implementacija omogućava značajno ubrzanje (od 1 do 6 redova veličine) prosečnog vremena potrebnog za predikciju, u poređenju sa softverskim rešenjima.
 
This thesis proposes universal coarse-grained reconfigurable computing architectures for hardware implementation of decision trees (DTs), artificial neural networks (ANNs), support vector machines (SVMs), and homogeneous and heterogeneous ensemble classifiers (HHESs). Using these universal architectures, two versions of DTs, two versions of SVMs, two versions of ANNs, and seven versions of HHESs machine learning classifiers, have been implemented in field programmable gate arrays (FPGA). Experimental results, based on datasets of standard UCI machine learning repository database, show that FPGA implementation provides significant improvement (1–6 orders of magnitude) in the average instance classification time, in comparison with software implementations.

Кључне речи:

Стабла одлука, SVM, вештачке неуронске мреже, хардверска акцелерација, ансамбли класификатора, реконфигурабилни хардвер; Stabla odluka, SVM, veštačke neuronske mreže, hardverska akceleracija, ansambli klasifikatora, rekonfigurabilni hardver; Decision trees, support vector machines, artificial neural networks, hardwareacceleration, ensemble classifiers, reconfgurable hardware

О НаРДуС порталу | Пошаљите запажања
 

 

Преглед

Све дисертацијеУниверзитети и факултетиДокторандиМенториЧланови комисијаНасловиФакултетДокторандиМенториЧланови комисијаНаслови

Мој налог

Пријава

О НаРДуС порталу | Пошаљите запажања