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Naslov: 

Detekcija i izolacija otkaza u separatoru pare termo-energetskih postrojenja 

 

Sažetak: 

Nedozvoljena devijacija najmanje jednog karakterističnog parametra ili osobine nekog 

sistema od njegovog uobičajnog ponašanja se može proglasiti greškom, odnosno 

otkazom u sistemu. Otkazi smanjuju efikasnost sistema, kvalitet proizvoda i ponekad 

mogu dovesti do potpunog zaustavljanja procesa, odnosno pada sistema. Ovakve pojave 

ne uzrokuju samo ekonomske gubitke već u nekim slučajevima mogu dovesti i do 

ljudskih žrtava. Rana detekcija otkaza može biti način sprečavanja ili smanjenja ranije 

pomenutih gubitaka. Stoga su monitoring sistema i detekcija otkaza postali esencijalni 

deo modernih sistema upravljanja. Kontrolni uređaji koji se u novije vreme eksploatišu 

da bi se unapredile performanse industrijskih procesa uključuju sofisticirane tehnike 

projektovanja digitalnih sistema i kompleksni hardver (ulazno-izlazni senzori, aktuatori, 

komponente i procesorske jedinice). 

Da bi se smanjila verovatnoća pojavljivanja otkaza na ovoj opremi potrebno je 

projektovati sistem za automatsko nadgledanje procesa koji bi se koristio za što je 

moguće raniju detekciju i izolaciju otkaza. U poslednje tri decenije, problem detekcije i 

izolacije otkaza u dinamičkim procesima je privukao veliku pažnju stručne javnosti i 

razvijen je čitav spektar pristupa koji se baziraju na modelima sistema. Za projektovanje 

sistema za robusnu detekciju i dijagnozu otkaza je značajno poraslo interesovanje jer se 

korišćenjem istih mogu smanjiti gubici u proizvodnji, sprečiti kvarovi na opremi i 

povećati sigurnost osoblja. Pouzdan sistem je sistem koji ima sposobnost za: 

1. Što raniju detekciju otkaza 

2. Tačnu dijagnozu istih 

3. Što brži povratak sistema u nominalni režim rada 

U ovoj disertaciji je predložen novi pristup detekciji i identifikaciji otkaza u 

generatorima pare u okviru termo-energetskih postrojenja. Realni sistem, na kome su 

vršena merenja i predložen sistem za detekciju i izolaciju otkaza, je TEKO B1 blok 



 

termoelektrane Kostolac u Srbiji, čija je nominalna snaga 330 MW. Za takvu prirodu 

procesa i dostupne podatke, implementirani sistem za detekciju i izolaciju otkaza 

predstavlja kombinaciju dva poznata pristupa, jedan koji se bazira na modelima procesa 

i drugi koji se bazira na merenjima. Analizirana su tri moguća tipa otkaza, u senzorima 

nivoa vode, protoka vode i protoka pare. Prvi korak u predloženom algoritmu je 

identifikacija procesa. Merenje nivoa vode u separatoru su izvršena pod ekstremno 

visokim pritiscima pare uz nestacionarni dotok vode i ispuštanje pare. Stoga su dostupni 

podaci o nivou vode veoma nepouzdani, a prisutan je i sporadični, ali veoma jak, šum 

merenja. 

Kao posledica toga, standardne procedure za identifikaciju sistema nisu mogle da daju 

zadovoljavajuće rezultate i u ovoj tezi je predložena alternativa koja predstavlja robusnu 

estimaciju parametara sistema. U sledećem koraku je izvršeno statističko testiranje 

hipoteza pri čemu se ne koriste vektori merenja već se vektori parametara sistema 

izvode na osnovu procedure robusne identifikacije. Rezultati pokazuju izuzetnu 

efikasnost u detekciji i izolaciji otkaza jednog od moguća tri tipa otkaza koji su 

analizirani. 

Pristup detekciji otkaza koji je predložen u ovoj tezi, u poređenju sa rešenjima 

dostupnim u literaturi, je specifičan u sledećem: 

1. Zasnovan je na linearnom modelu procesa sa odgovarajućim brojem ulaza i 

izlaza koji se identifikuje u zatvorenoj sprezi. 

2. Predložena tehnika identifikacije je robusna po svojoj prirodi što je veoma važno 

u slučajevima kada je prisutan sporadičan jako izražen šum merenja. 

3. Otkazi nisu detektovani na osnovu reziduala u merenjima, što je uobičajeni 

pristup u literaturi, već na osnovu parametara identifikovanog modela. 

4. Predloženi metod za detekciju i izolaciju otkaza je kombinacija tehnika na bazi 

modela i na bazi merenja tako da je moguće napraviti kompromis između 

verovatnoće pojavljivanja lažnog alarma i vremenskog kašnjenja u detekciji 

otkaza. 

5. Predloženi metod je primenjen na realnom sistemu separatora u termoelektrani i 

pokazao se kao veoma efikasan. 
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Title: 

Fault detection and isolation in thermal power plant steam separator 

 

Abstract: 

An un-permitted deviation of at least one characteristic property or parameter of a 

system from standard condition is referred as a fault.  Faults result in reduced efficiency 

of the system, reduced quality of the product, and sometimes complete breakdown of 

the process. This not only causes economic losses but may also result in fatalities. An 

early detection of faults can assist to avert these losses. Therefore, fault detection and 

process monitoring is becoming an essential part of modern control systems. The 

control devices which are nowadays exploited to improve the overall performance of 

industrial processes involve both sophisticated digital system design techniques and 

complex hardware (input-output sensors, actuators, components and processing units). 

In such a way, the probability of failure occurrence on such equipment may result 

significant and an automatic supervision control should be used to detect and isolate 

anomalous working conditions as early as possible. Since the last three decades, the 

problem of fault detection and isolation in dynamic processes has received great 

attention and a wide variety of model-based approaches has been proposed and 

developed. A robust fault detection and diagnosis (FDD) system design has attained 

increased attention for reducing production loss, avoiding equipment damage, and 

increasing human safety. A more dependable system is a system that has the ability to: 

         1. Detect faults as fast as possible. 

         2. Diagnose them accurately. 

         3. Recover the system to the nominal performance as much as possible.  

This thesis presents a fault detection and identification approach for steam generators at 

thermal power plants. The real system in which the measurements were made and the 

FDI algorithm implemented is located at the TEKO B1 Unit of the Kostolac Thermal 

Power Plant in Serbia, whose nominal power output is 330MW. Given the nature of the 

process and available data, the implemented FDI algorithm is a trade-off of sorts 

between the model-based and the data-driven approach. Three possible types of faults 



 

are analyzed, of water level, water flow and steam flow sensors. The first step of the 

proposed algorithm is to identify the process. water level measurements in a separator 

are conducted under extremely high steam pressures, accompanied by constant unsteady 

water inflow and steam drain. therefore, available water level data are high unreliable 

and there is a sporadic of high-intensity measurement noise. 

 As a consequence, standard process identification procedures have been shown not to 

yield satisfactory results and the thesis proposes a robust alternative to parameter 

estimation. The next step included statistical testing of the hypotheses, not using the 

measured data vector but the parameter vector derived from a robust identification 

procedure. The results demonstrated exceptional detection and isolation efficiency of 

one of the three possible and most frequent faults which were analyzed. 

The approach to sensor fault detection proposed in this work, compared to the solutions 

reported in the literature, is specific in the following respects: 

     1. It is based on a linear model of the process, with the corresponding number of 

inputs and outputs, identified in a closed loop. 

     2. The proposed identification technique is robust by its very nature, which is very 

important in the case of systems where sporadic high-intensity measurement noise is 

present. 

     3. Faults are not detected based on measurement residuals, which is the usual 

approach in the literature, but based on the parameter vectors of the identified model. 

     4. The proposed fault detection and isolation method is a combination of model-

based techniques and the data-driven approach, such that a simple trade-off is possible 

between the probability of false alarm and the fault detection time delay;  

     5. The proposed method was applied in a real steam separator at a thermal power 

plant and demonstrated as highly efficient. 
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1.1 Background  

Ever since the first stone tool was invented man has always been concerned about 

the condition of the machines he uses. For the major part of the human history the only 

way to learn about the malfunctions and their locations was by the five human senses 

for example touching to feel heat or vibration, smelling for fumes from overeating etc. 

With the passage of time the machines have been developing and modern control 

systems becoming more and more complex, usually including large number of 

components such as (sensors, actuators, computers, etc). However, the importance of 

product quality, safety and reliability is increasing in the industrial processes. In any 

industrial process, it is essential that maintenance is provided to ensure that the 

equipment runs safely, reliably and normally. 

Properly maintained industrial plants have significant benefits, such as higher 

productivity, equipment which has a longer lifespan and, as a consequence, lower 

production costs. An effective and efficient maintenance plan requires that information 

concerning the condition of the equipment can be accessed on a timely basis. In the 

early 19th century, maintenance was only carried out following a failure as there was a 

lack of means to understand the status of machinery. Since that time, routine 

maintenance has been performed in order to find and fix problems before a fault occurs. 

However, time period based maintenance inspection is still not sufficient, particularly 

for incipient faults. With the development of electronic technology, a low-cost, on-line 

condition monitoring system has become realistic for industrial applications. Predictive 

maintenance is, therefore, achievable via deliberated fault detection and diagnosis 

(FDD) algorithms. 

Fault detection and diagnostic (FDD) systems have a variety of potential uses, including 

monitoring the performance of the equipment over time, alerting users of the presence 

of a fault, improving the quality of service by identifying the cause of faulty operation, 

or even changing the operation of the equipment to reduce the effect of the fault. The 

functionality of these FDD systems can thereby greatly improve the performance of 

industrial process and assist the service technician in expeditiously fixing and 

maintaining equipment. So for any application, the benefits of FDD can be divided into 

two general categories: improved safety and reduced cost to operate. 
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Interest in the theoretical and experimental development of FDD methods in general is 

growing, due to the dependence of society on systems of increasing complexity. These 

systems can be found nearly everywhere in the more recently, from power plants to 

airplanes to consumer electronics. 

The traditional attitude of the designer, that the system will function reliably for a long 

period of time if the design is “good enough”, is slowly giving into the realization that 

many systems will be operated in conditions unforeseen by the designer, and that the 

cost of faults in such systems can sometimes be greater than the system itself. The 

implementation of FDD and condition monitoring systems is vital in such 

circumstances, to ensure that the system will continue to function well in the face of 

considerable operative uncertainty. 

1.2  Objectives 

The idea of parameter estimation approach fault detection is to generate estimations 

of parameters within a dynamic system, and compared with the parameters of the 

reference model to generate a symptom, called the residual, which carries the 

information of faults. In ideal situations, when there are no modeling uncertainties, 

disturbances, and noise, the estimations will completely match with the measurements 

in fault-free case and the residual will be zero. Any deviation of residual from zero will 

give an indication of faults. However, the presence of modeling uncertainties, 

disturbances, and noise is inevitable. 

Therefore, the aim is to design adaptive recursive M-robust FDD such that the affect of 

modeling uncertainties, disturbances, and noise on the residual is reduced while the 

affect of faults is considerably increased. Now, instead of setting deviation of residual 

from zero as indicator of faults, a threshold which cares for the effect of modeling 

uncertainties, disturbances, and noise should be selected and if the residual exceeds the 

selected threshold, it gives an indication of the presence of faults. The selection of 

threshold plays a very important role in the performance of a fault detection system, if it 

is selected too low, some of modeling uncertainties, disturbances, and noise will cause 

the residual to cross the threshold and appear as faults, this is definitely not desired. 

Conversely, if the threshold is selected too high, some of the faults will not enable the 

residual to cross the threshold, and hence will remain undetected.  
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To design fault detection and isolation approach for separators in thermal power plant, 

the objectives with this thesis work are  

• Design a robust version of recursive identification of linear dynamic discrete-

time systems in the presence of non-Gaussian impulsive noise within a measurement 

sequence, shown to be rather insensitive to outliers. 

• Classify the parameter vectors of the identified model. To do this step, 

dimension reduction of initial parameter vectors into two-dimensional space Based on 

Scattering Matrices is performed and a suitable choice of classifier selection is chosen 

and designed (the Neyman-Pearson type). 

• The Choice of the Neyman-Pearson type gives chance to plot the relation 

between time delay of the transition of the reduced vector from the nominal mode 

class to the steam fault class with µ . This figure showing that a trade-off between the 

probability of false alarm 0ε and the time delay between fault occurrence and 

detection. 

1.3  Thesis structure  

The work, completed to achieve the above objectives, is presented in this thesis, and 

the structure is outlined as follows: 

Chapter 1: Introduction to the study. The background and objectives of the project are 

presented.  

Chapter 2: Overview of Fault Detection and Diagnosis Techniques 

This chapter introduces the terminology used in the field of fault detection and 

diagnosis. Types of faults are described in detail. An overview is provided of fault 

detection and diagnosis methodology. Model-free fault detection methods are presented; 

physical redundancy, special sensors, limit checking, spectrum analysis and logical 

reasoning are reviewed. Model-based fault detection methods are also presented. The 

three main methods of model based residual generation are: parameter estimation, parity 

relation and observer-based approaches are discussed. Fault diagnosis methods are 

explained briefly. Finally, robustness in fault detection system is illustrated. 
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Chapter 3: Pattern Recognition Methods and Their Application in FDD. 

The definition of pattern recognition is reviewed. Bayesian classification methods are 

introduced; the bayes decision rule for minimum error, the bayes decision rule for 

minimum cost, The neyman - pearson test, minimax criterion and Sequential hypothesis 

testing are analyzed, and simulation program for every method illustrate application of 

these methods fault detection and diagnosis. 

Parametric classifier methods are presented; Firstly, linear discriminant function 

methods, two methods of linear discriminant function are analyzed, Optimum design 

procedures and we describe two procedures (Fisher’s linear discriminant and Optimum 

design for normal distributions) and other desired outputs and search techniques. Next 

Quadratic classifier design is analyzed. Also simulation program for every method 

illustrate application of these methods fault detection and diagnosis. 

Non Parametric Density Estimation is illustrated; two methods of Non Parametric 

Density Estimation are also analyzed, histogram method and kernel density estimation 

method and simulation program for every method illustrate estimation of density 

function. Feature selection methods are discussed, the discrete karhunen-Loeve 

expansion and scatter Matrices and separability criteria for feature selection are 

described. Simulation program for every method show the three dimensions reduce to 

two dimensions. 

Chapter 4: Description of Thermal Power Plants 

Fuel and furnace section is discussed; coal conveyor, stoker and pulverizer are 

explained. Boiler section is described, classification of boilers, superheater, reheater, 

economizer, condenser and air path are presented. Steam turbine  section is reviewed, 

classification of steam turbine, casings, nozzles, rotors, bearings, shaft packing glands, 

seam turbine performance and steam turbine generators are illustrated.  stack gas path 

and cleanup is described, air preheater, ash disposal     and smoke and dust removal are 

explained. Cooling towers are presented. 
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Chapter 5: One Approach to Steam-separator Fault Detection and Isolation in 

Thermal Power Plants 

 Some basic concepts is presented, system identification, An outlier, maximum 

likelihood estimation, adaptive control, robustness in fault detection system and 

Quantile-Quantile (QQ)-plot technique are overviewed. 

Robust adaptive parameter identification is proposed, formulation of the problem, 

recursive M-robust parameter estimation, review of the QQ-plot technique, new 

adaptive M-robust recursive algorithm, algorithm description and details of the 

algorithm steps are explored and simulated. 

Description of the Case Study (Steam Separator) and Identification Procedure is shown,  

overview, system description and data acquisition and process modeling and model 

validation are described.  

 Fault detection based on parametric process identification parameters is performed. 

Dimension reduction based on the discrete karhunen-loeve expansion and scattering 

matrices and separability criteria are analyzed. Also, Classifier selection and design is 

performed. Finally, Statistical change detection and isolation is demonstrated.  

Chapter 6: Conclusions of this study and discussion of further work.  
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2.1 Introduction 

For the improvement of reliability, safety and efficiency advanced methods of 

supervision, fault-detection and fault diagnosis become increasingly important for many 

technical processes. This holds especially for safety related to power plants and 

chemical plants. FDD plays a vital role to provide information on faults/failures in the 

system and to enable appropriate reconfiguration to take place. Therefore the main 

function of FDD is to detect a fault or failure and to find its location so that corrective 

action can be made to eliminate or minimize the effect on the overall system 

performance. Initial FDD applications in chemical and industrial plants used threshold 

testing to check system data. Using this method, a fault can be detected when a 

measured value crosses a given threshold. This classical limit-value-based method is 

simple and reliable; however, it only responds to a relatively large change to a feature, 

therefore a detailed fault diagnosis becomes impossible [1]. 

The classical approaches are limit or trend checking of some measurable output 

variables based on hardware or physical redundancy methods which use multiple 

sensors, actuators, components to measure and control a particular variable. Typically, a 

voting technique is applied to the hardware redundant system to decide if a fault has 

occurred and its location among all the redundant system components. The major 

problems encountered with hardware redundancy are the extra equipment and 

maintenance cost, as well as the additional space required to accommodate the 

equipment. With increasing system complexity and requirements for reliability, a 

quantitative model of a practical system was required and many investigations were 

therefore made using analytical approaches or functional redundancy. 

 In the analytical redundancy scheme, the resulting difference generated from the 

comparison of different variables is called a residual or symptom signal. In brief the 

residual should be zero when the system is in normal operation and should be different 

from zero when a fault has occurred. This property of the residual is used to determine 

whether or not faults have occurred. The idea was to generate signals that represent 

inconsistencies between normal and faulty system operation. Based on analytical model, 

the algorithms, such as observers, parity equations and parameter estimation, were 

designed for inconsistency signal generation (also known as residuals generation). 
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These model-based FDD methods have been widely implemented in many industrial 

fields, such as nuclear power plants, railway vehicles, jet engines, power plants and 

chemical plants [2].  

2.2  Overview 

2.2.1 System   

System is a collection of objects arranged in an ordered form to serve some 

purpose. Everything not belonging to the system is part of the environment.  

One may characterize the system by input-output (cause and effect) relations. What 

constitutes a system depends on the point of view of the observer. The system may be, 

for example, an amplifier consisting of electronic components, or a control loop 

including that amplifier as one of its parts, or a chemical processing unit having many 

such loops, or a plant consisting of a number of units or a number of plants operating 

together as a system in the environment of a global economy [3]. 

2.2.2 Process 

A process is a processing plant that serves to manufacture homogeneous material or 

energy products. Industries that use such processing plants are called process industries. 

The common process industries are oil, chemicals, electrical power, glass, mining, 

metals, drugs, and food. From a control point of view, different kinds of variables in a 

process interact and produce observable variables. 

 The observable variables of interest to us are usually called outputs. The process is also 

affected by external variables. External variables that can be manipulated by us are 

inputs of the process. Other external variables are called disturbances. Then, a process is 

said to be dynamic when the current output value depends not only on the current 

external stimuli but also on their earlier values [3]. 

2.2.3 Model 

A model is a representation of the essential aspects of a system (process) which 

presents knowledge of that system (process) in a usable form. 

There are many types of models. People are most familiar with mental models which do 

not involve any mathematical formalization. To drive a car, for example, the driver has 
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a mental model about the relationship between the turning of the steering wheel and the 

turning of the car direction, and between the accelerator and the acceleration of the car.  

  For manual control of an industrial process, the process operator needs the knowledge 

about how the process outputs will respond to various control actions. Sometimes it is 

appropriate to describe the properties of a system by means of tables or plots. Such 

descriptions are called graphical models. Bode plots, step responses and impulse 

responses of linear systems are of this type. 

For the application of modern systems and control theory, it is necessary to use 

mathematical models that describe the relationships among the system variables in 

terms of difference or differential equations. In fact, the use of mathematical models is 

not limited to the control community; a major part of the engineering field deals with 

the use of mathematical models for simulations and designs [3].  

2.3 Terminology 

Before moving further it is advisable to exactly define the terms related to fault 

detection which will be used again and again in this work.  

The definitions of terms commonly used in the fault detection and diagnosis field.  

These definitions are based on information obtained from the SAFEPROCESS 

Technical Committee is considered ''on-going ''in the sense that new definitions and 

updates are being made. 

2.3.1 States and Signals 

• Fault: A non-permitted deviation of at least one characteristic property or 

parameter of the system from acceptable/usual/standard condition.[4] 

• Failure: a permanent interruption of a system’s ability to perform a 

required function under specified operating conditions.[5] 

• False Alarm: is an indication of a fault, when in actuality a fault has not 

occurred [6]. 

• Malfunction: An intermittent irregularity in the fulfillment of a system's 

desired function.[3] 
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• Error: A deviation between a measured or computed value of an output 

variable and its true or theoretically correct one.[3] 

• Disturbance: An unknown and uncontrolled input acting on a system. 

• Missed Detection: when there is not indication of a fault, through a fault 

has occurred.[6] 

• Residual: A fault indicator, based on a deviation between measurements 

and model based computations.[6] 

2.3.2 Functions 

• Fault Detection: determination of faults present in a system and time of 

detection. 

• Fault Isolation: determination of kind, location and time of detection of 

a fault. It follows fault detection. 

• Fault Identification: determination of size and time-variant behavior of 

a fault. It follows fault isolation. 

• Fault Diagnosis: determination of kind, size, location and time of a fault. 

It follows fault detection and includes fault isolation and identification. 

• Monitoring: A continuous real-time task of determining the conditions 

of a physical system, by recording information, recognizing and 

indication anomalies in the behavior. 

• Supervision: Monitoring physical and taking appropriate actions to 

maintain the operation in the case of fault [5]. 

• Residual Computation: residual value is computed from the known 

variable. 

• Residual Evaluation: the residual is evaluated in order to detect, isolate 

and identify faults. 

• Protection: Means by which a potentially dangerous behavior of the 

system is suppressed if possible, or means by which the consequences of 

a dangerous behavior are avoided. 
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2.3.3 System Properties 

• Reliability: ability of a system to perform a required function under 

stated conditions, within a given scope, during a given period of time. 

• Safety: ability of a system to not cause danger to persons or equipment 

or the environment. 

• Availability: probability that a system or equipment will operate 

satisfactorily and effectively at any point in time [4]. 

• Dependability: A system that has a high reliability in terms of high 

availability and where the consequences of a fault are limited to the 

system it self, i.e. Local faults do not developed into failure at plant level 

[7]. 

2.3.4 Types Of Faults 

The types of faults depend basically on their location within the system, the number of 

components that can be affected and their temporal evolution. Taking into account the 

effects of the faults, so the classification of faults are based on 

2.3.4.1 Location In The Physical System  

Depending on whether the fault is located in the sensor, actuator or in one of the 

components, we have the sensor fault, actuator fault or the component fault 

respectively. 

• Sensor Faults: in closed loop systems, the measurements obtained by sensors 

are used to generate the control inputs and any fault in sensors can cause 

operating points that are far from the optimal ones. This results in degradation in 

the performance of the system. It is therefore, very important to detect these 

faults. Typical examples of sensor faults are: bias, drift, performance 

degradation (or loss of accuracy) and calibration error as illustrated in figure 2.1. 

Solid lines show the actual values whereas the dotted lines show the measured 

values [7].  
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Figure 2.1: Graphical depiction of different kinds of sensor faults. 

(a) Bias, (b) Drift, (c) Loss of accuracy, (d) Calibration error 

• Actuator Faults: actuators are needed to transform control signals into proper 

actuation signals such as torques and forces to drive the system.Actuator 

Faults represent partial or complete loss of control action. Total actuator fault 

can occur, for instance, as a result of a breakage, cut or burned wiring. This is an 

example of a completely lost actuator (stuck actuator). Partially failed actuator 

produces only a part of the normal (i.e., under nominal operating condition) 

actuation. It can result from, e.g., hydraulic or pneumatic leakage, increased 

resistance or fall in the supply voltage [9]. 

• Component Faults: these are the faults which appear in the components of 

plant. Components faults alter the physical parameters of the plant which, in 



 14 

turn, results in change of its dynamical properties. The common reason for these 

faults is usually wear and tear, aging of components etc. some examples of 

components faults are leakages in tanks, breakages or cracks in gearbox system, 

change in friction due to lubricant deterioration etc. components faults may 

result instability of the process, therefore, it is extremely important to detect 

these faults [8].   

2.3.4.2 Mathematical Properties 

Depending on whether the faults are additive faults (those which correspond to 

sensor and actuator faults) or multiplicative faults (those which correspond to 

components faults): 

• Additive Process Faults. These are unknown inputs acting on the plant, which 

are normally zero and which, when present, cause change in the plant outputs 

independent of the known inputs, such faults best describe plant leaks, loads, 

etc 

• Multiplicative Process Faults. These are changes (abrupt or gradual) in some             

plant parameters. They cause changes in the plant outputs which depend also on 

the magnitude of the known inputs. Such faults best describe the deterioration 

of plant equipment, such as surface contamination, clogging, or the partial or 

total loss of power [10]. 

2.3.4.3 The Time Dependency of Faults 

Faults can also be categorized according to whether these have developed slowly in 

the system (incipient faults), arisen suddenly like a step change (abrupt faults) or 

occurred in discrete intervals (intermittent faults) 

• Abrupt Faults: These are faults that appear abruptly in a time instant. For 

example in a power supply break down [6]. Abrupt faults have more severe 

effects and may result in damage of equipments. 

• Incipient Faults: these are faults that increase gradually changes from the 

nominal values to the faulty values [6]. Incipient faults grow slowly and result 

in degradation of equipments. 
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• Intermittent Faults:  If the faults term change from the nominal value to the 

faulty value and returns to the nominal value after a short period of time then it 

is called intermittent fault [11]. 

Abrupt, Incipient and Intermittent faults are shown in figure 2.2. 

Figure 2.2: Time- dependency of faults: (a) abrupt; (b) incipient; (c) intermittent 

The detection performance of the diagnostic technique is characterized by a number of 

important and quantifiable benchmarks namely  

• Fault Sensitivity: The ability to detect faults of reasonably small size. 

• Reaction Speed: The ability of the technique to detect faults with reasonably 

small delay after their arrival. 

• Robustness: The ability of the technique to operate in the presence of noise, 

disturbances and modeling errors, with few false alarms. 

Isolation performance is the ability of the diagnostic system to distinguish faults 

depends on the physical properties of the plant, on the size of faults, noise disturbances 

and model errors, and on the design of the algorithm. The tasks to be performed in the 

fault detection and diagnosis can be shown by the following diagram figure 2.3 [11]. 

 

Figure 2.3: The fault and Isolation Task 
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2.3.5 Approaches to Fault Detection and Diagnosis 

The methodology used in fault detection and diagnosis is clearly dependent on 

the process and the kind of available information [6]. The methods of fault detection 

and diagnosis may be classified into two major groups: first group which do not utilize 

the mathematical model of the plant (the model-free techniques) and the next which do 

(the model-based methods). They are described in the following sections. 

2.4 Model-Free Fault Detection Methods  

This fault detection and isolation method does not use the mathematical model of 

the plant range from physical redundancy and special sensors through limit-checking 

and spectrum analysis to logical reasoning. Some of the prominent model-free methods 

are as follows: 

2.4.1 Physical Redundancy 

 In this approach, multiple sensors are installed to measure the same physical 

quantity. Any serious discrepancy between the measurements indicates a sensor fault. 

One of the drawbacks of the physical redundancy method is that it leads to extra 

hardware costs and extra weights. 

2.4.2 Special Sensors 

 Sometimes special sensors may be installed explicitly for detection and diagnosis. 

These may be limit sensors (measuring e.g., temperature or pressure), other special 

sensors may measure some fault-indicating physical quantity, such as sound, vibration, 

elongation, etc [10]. 

2.4.3 Limit Checking 

 The most simple and frequently used method for fault detection is the limit 

checking of a directly measured variable )(tY  . The measured variables of a process are 

monitored and checked if the measured variable exceeds the limit of threshold, it gives 

indication of fault. Limit checking of absolute values of the measurements and the limit 

checking of derivative (trend) of the measurements are the two most simple and widely 

used approaches for fault detection [5]. 
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2.4.3.1 Limit Checking of Absolute Values 

  Generally, two limit values called thresholds are present a maximal value maxY  

and minimal value minY . A normal state is when   

  FaultNoYtYY ⇒<< maxmin )(                                                                   (2.1) 

This means that the process is in normal situation if the monitored variable stays within 

a certain tolerance zone exceeding of one of the thresholds then indicates a fault 

somewhere in the process as shown in figure 2.4.     

FaultyYtyorYtY ⇒>< maxmin )()(                                                                 (2.2) 

maxY
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1

1

0
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Figure 2.4: Limit Checking of Absolute Values 

The thresholds are mostly selected based on experience and represent a compromise. 

If selected too narrow some fluctuations and disturbances will cause an alarm of fault 

and if selected too wide, some of the small magnitude faults may not be detected. 
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Therefore a trade-off between too narrow and too wide threshold exists [5]. 

2.4.3.2 Limit Checking of Trend 

A further simple possibility is to calculate the first derivative  
dt

tdY
Y

)(.

=  , the 

trend of the monitored variable and to check if  

                              max

..

min

.

)( YtYY <<                                                                    (2.3) 

FaultyYtYorYtY ⇒>< max

..

min

..

)()(                                                         (2.4) 

If relatively small thresholds are selected, an alarm can be obtained earlier than for limit 

checking of the absolute value as shown in figure 2.5 [12]. 
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Figure 2.5: Limit checking of trend 

The advantage of Limit checking approach is simple, reliable and can be easily 

implemented for steady-state situations. However, the drawback is that faults can be 
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detected only when these grow large enough to cross the limit. This may cause more 

damage to the process as compared to that if it was detected earlier and suitable 

remedies had been taken [7]. 

2.4.4 Spectrum Analysis  

Analysis of the spectrum of the measured plant variables may also be used for 

detection and isolation. Most plant variables also exhibit a typical frequency spectrum 

under normal operating conditions. Any deviation from this is an indication of the 

abnormality. Some type of faults may also have their own characteristic signature in the 

spectrum, facilitating fault isolation [10]. 

2.4.5 Logic Reasoning  

Logical reasoning techniques form a broad class which is complementary to the 

methods outlined above, in that they are aimed at evaluating the symptoms obtained by 

the detection hardware or software. The system may process the information presented 

by the detection hardware/software or may interact with a human operator inquiring 

from him about the particular symptoms and guiding him through the entire logical 

process [10]. 

2.5   Model-Based Fault Detection Methods 

Model-based approaches to fault detection in dynamic systems have been received 

much attention over the last decades, both in research context and in the domain of 

application studies on real plants. The aim of model-based fault diagnosis is to generate 

information about faults which have occurred in target systems using actual 

measurements. The model-based method is referred to as an analytical redundancy, 

which is low-cost compared to hardware redundancy in some safety-critical 

applications, provided that a model can precisely simulate the behavior of a real system. 

Typically, the target system is considered as a continuous-variable dynamic system, 

which has an inputU and an outputY , the detection methods generate residuals r , 

parameter estimates
∧

Θ , which are called features.  

Consistency checking in analytical redundancy is normally achieved through a 

comparison between measured signals with estimated values. The estimation is 

generated by a mathematical model of the considered plant. The comparison is done 
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using the residual quantities which are computed as differences between the measured 

signals and the corresponding signals generated by the mathematical model. In theory, 

the residuals must be either zero in a fault free case, to indicate that no fault occurs, or 

non-zero in the case of a fault. However, in practice, deviations normally exist with 

different magnitudes. A threshold is, therefore, required for sensitivity adjustment. The 

value at which a threshold is set determines whether the FDD system has enough 

sensitivity to detect a fault or not. The balance is a trade-off between detection accuracy 

and false alarm. 

 

Figure 2.6: General scheme of process modal-based fault-detection and diagnosis 

Figure 2.6 shows a general scheme of model-based fault detection and diagnosis. In this 

figure, the whole system consists of actuators, the target system and sensors, where the 

faults can be grouped as actuator faults, system faults or sensor faults. Disturbance 

(noise) is added on the sensor output. Both input and output are physical measurements, 

which are compared with the prediction from the system behavior model for residual 

generation. The residual generator aims to produce a set of inconsistencies to indicate 
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whether a fault is present. Normal behavior information is used as an input to the system 

behavior model to detect any change in system features and to produce symptoms to aid 

further diagnosis [1].  

Analytical redundancy makes use of a mathematical model of the system under 

investigation and it is therefore often referred to as the model based approach to fault 

diagnosis. Basically, an intact FDD system includes three stages (procedures) with 

different functions: system modeling, residual generation and residual evaluation. 

• System Modeling 

A precise mathematical model is required to predict system performance. For 

most systems, precise mathematical models are often very difficult to obtain. The 

robustness of the FDD scheme is often achieved by designing algorithms where the 

effects of model uncertainties and unmodeled dynamic disturbances on residuals are 

minimized and sensitivity to faults is maximized. 

• Residual Generation 

First this block generates residual signals using available inputs and outputs 

from the monitored system. Its output should be normally zero or close to zero 

under no fault condition. The procedure used to compute residuals is called residual 

generation. Such a procedure is used to extract fault symptoms from the system, 

with the fault symptom represented by the residual signal. Most of the contribution 

in the field of model based FDD focuses on the residual generation problem, since 

the residual evaluation (decision making) becomes relatively easy if residuals are 

well designed [9]. 

• Residual Evaluation (Decision Making) 

 This block examines symptoms for the likelihood of faults and a decision rule is 

then applied to determine if any faults have occurred. The residual evaluation block 

may perform a simple threshold test (geometrical methods) on the instantaneous 

values of the residuals. On the other hand, it may consist of statistical methods e.g. 

generalized likelihood ratio testing or sequential probability ratio testing. 

The advantage of model-based fault detection and diagnosis are 
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• Higher FDD performance can be obtained, for example, more types of faults can 

be detected and the detection time is shorter. 

• FDD can be performed over a large operating range. 

• FDI can be performed passively without disturbing the operation of the process. 

• High diagnosis performance can be obtained in spite of presence of disturbances. 

• Reliance on hardware redundancy can be reduced, which means that the cost and 

weight can be reduced 

The disadvantage of model-based FDD is, quite naturally, the need for a reliable model 

and possibly a more complex design procedure. So the accuracy of the model is usually 

the major limiting factor of the performance of a model based FDD system [7]. The 

generation of residual (i.e. symptoms) is the main issue in model-based fault diagnosis. 

A variety of methods are available in the literature for residual generation and the 

following sections present some of the most common popular analytical redundancy 

residual generation techniques: 

• Parameter estimation 

• Parity relation 

• Observer-Based Approaches [8].    

2.5.1 Parameter Estimation 

In most practical cases, the process parameters are not known at all, or they are not 

known exactly enough. Therefore, they can be determined by means of parameter 

estimation methods, by measuring input and output signals, )(zu and )(zy , if the basic 

structure of the model is known. This approach is based on the assumption that the 

faults are reflected in the physical system parameters and the basic idea is that the 

parameters of the actual process are estimated on-line using well-known parameter 

estimations methods [13].  

The results are thus compared with the parameters of the reference model, obtained 

initially under fault free assumptions. Any discrepancy can indicate that a fault may 

have occurred.  Now we explain two methods of least square (LS) parameter 
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Estimation, The nonrecursive (Off-Line) Parameter Estimation Equation Methods and 

Recursive (On-Line) Parameter Estimation Equation Methods [7]. 

2.5.1.1 The Nonrecursive (Off-Line) Parameter Estimation       

  It is assumed that the process can be described by the linear, dynamic, time-

invariant, discrete-time system, which can be represented by a difference equation with 

constant parameters: 

)()(........)1()(........)1()( 11 kemkubkubnkyakyaky mn +−−+−=−++−+  
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Where )(ky  is the sequences of system output, )(ku  is measurable input and )(ie is 

stochastic input, or noise, respectively, while the constants nia
i

,...,1, =  and 

mjb
j

,...1, =  represent system parameters. 

From figure 2.7, equation (2.5) can be rewritten in the following polynomial form: 
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Are the so-called characteristics and control polynomials, respectively. Equation (2.7) 

can also be rewritten in linear regression form as 

)()()( zezzy T +Θ=ψ                                                                                                   (2.8) 

Where  
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                                                                                            (2.9) 

 
Represents vector of constant system parameters and  

)](,),........1(),(..,),........1([)( mkukunkykykT −−−−−−=ψ                                (2.10) 
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Represents a vector of input and output measurable samples and the equation error 

(residual)  )(ke  is introduced as 

Θ−= )()()( kkyke Tψ                                                                                                 (2.11) 

Eq. (2.11) can be written compactly as 

ΨΘ−= YE                                                                                                                (2.12) 
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And 
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Figure 2.7: Modal Structure for Equation Error Methods 

For the minimization of the error vector )(ie , the least-square method can be applied. 

To this end, define the following cost function [11]. 
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If Eq. (2.12) is substituted in equation (2.15), we obtain 

)()( ΨΘ−ΨΘ−== YYEJ T                                                                                     (2.16) 

Hence 
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Where the following formula was used 
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If we set 
Θ∂

∂J  equal zero, we obtain 

ΨΘΨ=Ψ
TT

Y                                                                                                           (2.18) 

Relation (2.15) is known as the canonical equation and has a solution when the matrix 

ΨΨ T  is invertible, in which case we have 

YTT ΨΨΨ=Θ −
∧

1][                                                                                                      (2.19)      

Equation (2.19) represents nonrecursive (Off-Line) Parameter Estimation Equation of 

the Least Squares (LS) Method [11]. 

2.5.1.2 Recursive (On-Line) Parameter Estimation                     

In many practical cases, it is necessary that parameter estimation takes place 

concurrently with the system’s operation. This parameter estimation problem is called 

on-line identification and its methodology usually leads to a recursive procedure for 

every new measurement (or data entry). For this reason, it is also called recursive least-

squares estimate (RLS) or recursive identification. The proposed recursive algorithm is 

given by the following theorem. 

Suppose that )(kΘ  is the estimate of the parameters of the nth order system equation 

(2.5) for k data entries. Then, the estimate of the parameter vector )1( +Θ k for k+1 data 

entries, with ,....)3,2,1( =k   is given by the expression 
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     (2.20)                               

The correcting vector is given by 

)1()1()( ++= kkPk ψγ = )()1(]1)1()()1([ 1 kPkkkPk TT ++++ − ψψψ                       (2.21) 

And the matrix )1( +kP is calculated from the recursive formula 

)()]1()([)1( kPkkIkP T +−=+ ψγ                                                                             (2.22) 

With initial conditions   

0)()( =Θ= kandIkP α                                                                                         (2.23) 

With α  large )1000,...,100( =α  

2.5.2 Parity Relation  

A straightforward way to detect process faults by parity equations is to compare the 

parity (consistency) of the analytical models with the actual outputs (measurements 

from sensors) of a real system. In theory, the result of parity equations (residuals) is 

zero under fault-free conditions, where an accurate and robust system model is a must 

[1]. The difference of signals between the actual output and the analytical model are 

expressed by residuals. Therefore residuals describe discrepancies between the process 

and the model and check for consistency, the design of the residuals can be made with 

transfer functions or in state-space formulation. 

2.5.2.1 Parity Equations with Transfer Functions 

In the form of a transfer function model, the process is described by transfer 

function of discrete system as  
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zG

p

p ==                                                                                               (2.24) 

 And the process model described by 
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It worth noting that the model parameter and structure of the monitored process have to 

be known a priori 

)()()( zGzGzG mmp ∆+=                                                                                           (2.26) 

Where  )(zGm∆  describes model errors.  

The residuals can be formulated by the output error or the polynomial error, similar to 

parameter estimation methods.  

• For the output error residual )(zr is  

)()()()()()(
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                                            (2.27) 

The methodology here described is depicted in Figure 2.8. 
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Figure 2.8: Scheme for Output Error via Parity Equation Method 

The residual is zero for ideal matching of process and model, no additive faults )(zf u  , 

)(zf y and no noise. Usually, it shows deviations depending on the model 

error )(zGm∆ and noise n  and the input signalu . Another possibility to generate 
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• A polynomial error or equation error is as shown in Figure 2.9. 
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Figure 2.9: Scheme for Equation Error via Parity Equation Method 
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Equation (2.27), (2.28) represent parity equations, '
r  and r called primary residuals. 

2.5.2.2 Parity Equations with State Space Models 

        The parity equations with state space models for discrete time will be deriving in 

this part.  According to Figure 2.10, the basic process equations for discrete time are 

)()()()()1( kLfkVvkBukAxkx +++=+                                                                   (2.29) 

)()()()( kMfkNnkCxky ++=                                                                                   (2.30) 

Where )(kv  and )(kn  are measurable disturbance signals. )(kf are additive faults 

which may be composed of additive faults )(kf
l

 on the input and )(kf m  on the 

output. To simplify the notations, the state-space model without faults and disturbances 

is used 

)()()1( kBukAxkx +=+                                                                                             (2.31) 

)()( kCxky =                                                                                                   (2.32) 
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By introducing equation (2.31), equation (2.32) yields  

)()()1( kCBukCAxky +=+                                                                            (2.33) 

And for the thq  sample  

)1(...............)()()( 1 −++++=+ − qkCBukBCBuCAkxCAqky qq                             (2.34) 

Here redundant equations are generated for different time instants. Now, the equations 

are summarized and lead to 

)()()( qkQUkTxqkY ++=+                                                                         (2.35) 

Or time shifted by q  backwards 
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Figure2.10 Residual generation with parity equation in discrete time a state-space model 

)()()( kQUqkTxkY +−=                                                                                           (2.36) 

With the vectors 
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And the matrices 
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In order to remove the non-measurable states )( qkx − and to obtain a parity vector 

useful for FDD, equation (2.36) is multiplied byW , such that 

0=WT                                                                                                                        (2.39) 

This leads to residuals generated at time, k, can be written as 

)()()( kWQUkWYkr −=                                                                                            (2.40) 

Where )(kY  the measurement of system outputs and W is a vector for residual 

generating manipulation. A well designed residual generation vector is selected to 

achieve a specific structured residual response to faults and to decouple from unknown 

disturbances and model uncertainties. 

2.5.3 Observer-Based Approaches   

As state observers use output error between a measured process output and an 

adjustable model output, they are a further alternative for model-based fault detection. It 

is assumed, as in the case of parity equation approaches, that the structure and the 

parameters of the model are precisely known. 

Several approaches have been proposed for fault detection which is based on the 

classical Luenberger state observer, kalman filter and so-called output observer. The 

output error is therefore used as a residual [12]. In order to obtain the structure of a 
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Luenberger state observer approach, the discrete time, time-invariant, linear dynamic 

model for the process under consideration in a state-space form is considered [15]. 

)()(

)()()1(

kCxky
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+=+
                                                                                            (2.41) 

Where )(ku  is the input vector, )(kx  is the state vector and )(ky  is the output vector 

and assume that all matrices A, B and C of the system are known, a state observer is 

used to reconstruct the un measurable state variable based on measured inputs and 

outputs 
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The observer scheme described by previous equation is depicted in Figure 2.11. 
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Figure 2.11: Process and state observer 

For the state estimation error )(kex , it follows that 

)()()1()1()1(
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                                                        (2.43) 

The state error )(kex vanishes asymptotically 
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If the observer is stable this can be achieved by proper design of the observer feedback 

matrix H. Let the process be influenced by disturbance and faults as depicted in Figure 

2.12. 
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Figure 2.12: MIMO process with faults and noises 

It is described by the following system 
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m

l

++=

+++=+
                                                             (2.45) 

Where )(kv  and )(kw represent the non-measurable disturbance vector at the input and 

at the output respectively, )(kf l  and )(kf m are input and output additive faults vector 

and 1L and 2L , are fault entry matrices. For the state estimation error, under assumption 

that disturbance are neglected, the following equation hold 

)()()()()1( 21 tfHLtfLkeHCAke mlxx −+−=+                                                           (2.46) 

When the disturbance are neglected, the output becomes 
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)()()( 2 kfLkCxky m+=                                                                                              (2.47) 

Also the output error (residual) becomes 
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                              (2.48) 

If faults appear as changes in the parameter matrices BA ∆∆ ,  or C∆ , the process 

behavior becomes  

)()()(

)()()()()1(

kxCCky

kuBBkxAAkx

∆+=

∆++∆+=+
                                                                     (2.49) 

And the state )(kex  and the output error without disturbances 

)()()()()()1( kBukxCHAkeHCAke xx ∆+∆−∆+−=+                                             (2.50) 

)()()()( kCxkCekrke x ∆+==                                                                                 (2.51) 

The changes BA ∆∆ ,  and C∆ are multiplicative faults [12]. 

2.6.   Fault Diagnosis Methods 

The task of fault diagnosis consists of the determination of the type of fault with as 

many details as possible such as the fault size, location and time of detection. The 

diagnostic procedure is based on the observed analytical and heuristic symptoms and the 

heuristic knowledge of the process, as shown in figure 2.6. Symptoms are unusual 

changes of the features from its normal values. In fault free case the symptoms are zero.  

The analytical symptoms in the model-based fault detection are the residuals.  

The relationship between the symptom and the faults may be unknown. Therefore, 

classification and inference methods are used for fault diagnosis [7]. Next chapter will 

describe classification or pattern recognition methods for fault diagnosis application.  
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CHAPTER THREE 
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3.1. Pattern Recognition Definition 

Pattern recognition is the scientific discipline whose goal is the classification of 

objects into a number of categories or classes. Depending on the application, these 

objects can be images or signal waveforms or any type of measurements that need to be 

classified. We will refer to these objects using the generic term patterns. 

Pattern recognition has a long history, but before the 1960s it was mostly the output of 

theoretical research in the area of statistics. As with everything else, the advent of 

computers increased the demand for practical applications of pattern recognition, which 

in turn set new demands for further theoretical developments. As our society evolves 

from the industrial to its postindustrial phase, automation in industrial production and 

the need for information handling and retrieval are becoming increasingly important. 

This trend has pushed pattern recognition to the high edge of today's engineering 

applications and research. Pattern recognition is an integral part in most machine 

intelligence systems built for decision making [16]. 

Applications of pattern recognition systems and techniques are numerous and cover a 

broad scope of activities. We enumerate only a few examples referring to several 

professional activities: 

Agriculture: 

Crop analysis and Soil evaluation 

Astronomy: 

Analysis of telescopic images and automated spectroscopy 

Biology: 

Automated cytology, Properties of chromosomes and Genetic studies 

Civil administration: 

Traffic analysis and control and Assessment of urban growth 

Economy: 

Stocks exchange forecast and Analysis of entrepreneurial performance 
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Engineering: 

Fault detection in manufactured products, Character recognition, and Speech 

recognition, Automatic navigation system and Pollution analysis 

Geology: 

Classification of rocks, Estimation of mining resources, Analysis of geo-resources using 

satellite images and Seismic analysis 

Medicine: 

Analysis of electrocardiograms, Analysis of electroencephalograms and Analysis of 

medical images 

Military: 

Analysis of aerial photography and Detection and classification of radar and sonar 

signals, Automatic target recognition 

Security: 

Identification of fingerprints and Surveillance and alarm systems 

As can be inferred from the above examples the patterns to be analyzed and recognized 

can be signals (e.g. ectrcocardiographic signals), images (e.g. aerial photos) or plain 

tables of values (e.g. stock exchange rates) [17]. 

3.2. Bayesian Classification 

Bayesian decision theory is a fundamental statistical approach to the problem of 

pattern classification. This approach is based on quantifying the tradeoffs between 

various classification decisions using probability and the costs that accompany such 

decisions. It makes the assumption that the decision problem is posed in probabilistic 

terms, and that all of the specific probability distributions of the patterns in each class 

are known [18]. 

3.2.1. The Bayes Decision Rule for Minimum Error 

The pattern classification system assigns an observation to class i  with the 

maximum discriminant function value  
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Where )(Xg j  is the discriminant function for class j  given observation vector X , the 

statistics of the data in each class can provide analytical measures to determine the 

optimal discriminant functions in terms of minimizing the error rate, the average 

probability of error [19]. 

With iω  the error rate can be minimized by using the discriminant function 

)()( XqXg ii =                                                                                                             (3.2) 

Where )(Xq i is a posteriori probability of 
i

ω  given X  

Equation (3.1) becomes 
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Equation (3.3) indicates that, if the probability of iω  given X  is larger than the 

probability of jω , X  is classified to iω , and vice versa. In the sequel, we assume that 

the a priori probabilities iP  are known also the other statistical quantities the class-

conditional probability density functions )(Xpi  are known [1]. 

Then the a posteriori probability calculated using bayes theorem, as 

)(

)(
)(

Xp

XpP
Xq ii

i =                                                                                                         (3.4) 

where )(Xp is the mixture density function. 

If we will focus on the two-class case 21 ,ωω are the two classes in which our patterns 

belong and X  be an observation vector. 

The decision rule of equation (3.3) can be expressed 
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                                                                                   (3.5) 

This is known as Bayes’ rule for minimum error. [9] 
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The function )(Xl is called the likelihood ratio and we call 
1

2
P

P the threshold value of 

the likelihood ratio for the decision. Figure 3.1 and Figure 3.2 give a simple illustration 

for a two-class discrimination problem. Class 1ω is normally distributed with zero mean 

and unit variance )1,0()(1 XNXp = . Class 2ω  is a normal mixture (a weighted sum of 

normal densities) )2,1(*4.0)1,1(*6.0)(2 −+= XNXNXp . 

 Figure 3.1 plots PiXpi *)(  ,2,1=i and the priors are taken to be 5.0,5.0 21 == PP . 

Figure 3.2 plots the likelihood ratio )(Xl and the threshold
1

2
P

P
. We see from this 

figure that the decision rule equation (3.3) leads to a disjoint region for class 2ω  [20]. 
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Figure 3.1: pi(X)*Pi, for classes 1, 2 
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 Figure 3.2: Likelihood function 

When we write the minus-log likelihood ratio rather than writing the likelihood ratio 

itself, the decision rule of equation (3.6) becomes 
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Equations (3.3), (3.6), (3.7) are called the Bayes test for minimum error. 

In special case when )(Xpi are normal with expected vectors iM and covariance 

matrices Σ . The decision rule of equation (3.7) becomes 
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In general, the decision rule of equation (3.7) or any other decision rule, does not lead to 

perfect classification. In order to evaluate the performance of a decision rule, we must 

calculate the probability of error ε=)(errorp  that is the probability that a sample is 

assigned to the wrong class. The conditional error given )(, XrX  due to the decision 

rule of equation (3.3) is either )(1 Xq or )(2 Xq whichever smaller. That is, 
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)](),(min[)( 21 XqXqXr =                                                                                            (3.9) 

The total error is computed by }{ )(XrE  . 
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∫∫ +=
1 222 11 )()(

LL
dXXpPdXXpPε                                                                           (3.11) 

And expressed as 

2211 εεε PP +=                                                                                                             (3.12) 

Where
i

ε , the probability of misclassifying patterns from class iω and this is given by 

∫∫ ==
1 222 11 )()(

LL
dXXpanddXXp εε                                                                 (3.13) 

Then the total error which is called the bayes error, is  

22111 222 11 )()( εεε PPdXXpPdXXpP
LL

+=+= ∫∫                                                       (3.14) 

In equation (3.14), we distinguish two types of errors: The first type error means 

decision that the sample is coming from the second class, and it actually belongs to the 

first one and analogously to that, the second type error means a decision that the sample 

belongs to the first class and it actually belongs to the second one. The total error is a 

weighted sum of these errors. The computation of the bayes error is a very complex 

problem except in some special cases. This is due to the fact that ε  is obtained by 

integrating high-dimensional density functions in complex regions as seen in equation 

(3.12). Therefore, it is sometimes more convenient to integrate the density function of 

)(Xhh =  of equation (3.5), which is one-dimensional 
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where )( ih hp ω  is the conditional density of h  for iω . 
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To demonstrate the use of bayes decision rule for minimum error test in FDD, we 

suppose two-dimensional samples from two Gaussian classes are generated and the 

statistics of the classes are 
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Then, the decision boundary is given by a quadratic form equation (3.8). 

The result is presented in Figure 3.3.It illustrates the decision boundary that separate 

two classes: the first class represents the regular regime of work; the second class 

represents a non-regular regime of work (which may mean the presence of failures or 

disturbances, which considerably change the work point of the entire system). 

-8 -6 -4 -2 0 2 4 6
-6

-4

-2

0

2

4

6

8

 

 Figure 3.3: Decision boundaries for normal distribution 

3.2.2. The Bayes Decision Rule for Minimum Cost 

 In the previous section, the decision rule selected the class for which the a 

posteriori probability )(Xq i was the greatest. This minimized the probability of making 

an error. We now consider a somewhat different rule that minimizes an expected loss or 

cost. This is a very important concept since in many applications the costs associated 

with misclassification depend upon the true class of the pattern and the class to which it 

is assigned. For example in a medical diagnosis problem, the misclassification of a 
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cancer patient to normal may have a more damaging effect than the misclassification of 

a normal patient to cancer [20]. 

We make this concept more formal by introducing a loss that is a measure of the cost of 

making the decision
ij

C  that a pattern X  belongs to class 
i

ω  when the true class is
j

ω . 

jiij XwhenXpatternadecidingoftC ωω ∈∈= cos                              (3.17) 

In practice, it may be very difficult to assign or decide costs. In many situations, costs 

are a combination of several different factors measured in different units – money, time, 

quality of life. As a consequence, they may be the subjective opinion of an expert.  

For the above two classes, the conditional cost or conditional risk of deciding a pattern 

X  belong to class 
i

ω is defined as 
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The decision rule and the resulting conditional cost given )(, XrX  are 

221

121

)()(

)()(

ω

ω

∈⇒>

∈⇒<

XXrXr

XXrXr
                                                                                           (3.20) 
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The total cost of this decision is 
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The boundary which minimizes r  of equation (3.22) can be found as follows. 
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First, rewrite equation (3.22) as a function of 1L alone. This is done by 

replacing ∫ 1
)(

L
i dXXp  with, ∫−

1
)(1

L i
dXXp since 1L and 2L  do not overlap and cover 

the entire domain. Thus, 
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−+−++= ∫                      (3.23) 

Now our problem becomes one of choosing 1L such that r is minimized. Suppose, for a 

given value of X , that the integrand of equation (3.23) is negative. Then we can 

decrease r  by assigning X to 1L . 

 Thus the minimum cost decision rule is to assign to 1L  those sX
,  and only those 

sX
, for which the integrand of equation (3.23) is negative. This decision rule can be 

stated by the following inequality: 
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By applying the bayes theorem equation (3.4) to the equation (3.24), the bayes decision 

rule for minimum cost is expressed as [20]. 
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                                                                          (3.25) 

This decision rule is called the Bayes test for- minimum cost. 

Equation (3.25) is equal to equation (3.6) for the special selection of the cost functions 

11212212 CCCC −=−                                                                                                  (3.26) 

This is called a symmetrical cost function. 

   3.2.3. The Neyman - Pearson Test 

 An alternative to the Bayes decision rules for a two-class problem is the 

Neyman– Pearson test. In a two-class problem there are two possible types of error that 

may be made in the decision process. We may classify a pattern of class 1ω  as 
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belonging to class 2ω or a pattern from class 2ω  as belonging to class 1ω . Let the 

probability of these two errors be 1ε  (error probability of class 1) and 2ε (error 

probability of class 2) respectively as given in equation (3.13) [20]. 

The Neyman–Pearson decision rule is to minimize the error 1ε  subject to 2ε being equal 

to a constant, say 0ε . If class 1ω is termed the positive class and class 2ω the negative 

class, then 1ε  is referred to as the false negative rate, the proportion of positive samples 

incorrectly assigned to the negative class; 2ε  is the false positive rate, the proportion of 

negative samples classed as positive. An example of the use of the Neyman–Pearson 

decision rule is in radar detection where the problem is to detect a signal in the presence 

of noise. There are two types of error that may occur; one is to mistake noise for a 

signal present. This is called a false alarm. The second type of error occurs when a 

signal is actually present but the decision is made that only noise is present. This is a 

missed detection. If 1ω denotes the signal class and 2ω denotes the noise then 2ε  is the 

probability of false alarm and 1ε  is the probability of missed detection. In many radar 

applications, a threshold is set to give a fixed probability of false alarm and therefore the 

Neyman–Pearson decision rule is the one usually used [21].  

To determine this decision rule, we must find the minimum of 

)( 021 εεµε −+=r                                                                                                     (3.27) 

where µ  is a Lagrange multiplier and 0ε  is the specified false alarm rate. Inserting 1ε  

and 2ε  of equation (3.13) into equation (3.27) 
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This will be minimized if we choose 1L  such that the integrand is negative, i.e. 

112 ,0)()( ωµ ∈<− XthenXpXpif                                                                    (3.29) 

Or, in terms of the likelihood ratio, 
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Thus the decision rule depends only on the within-class distributions and ignores the a 

priori probabilities. 

The threshold µ  is chosen so that the following equation  

01 22 )( εε == ∫L dXXp                                                                                                (3.31) 

Or, use the density function of )(Xh of equation (3.15) 
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However, in general µ cannot be determined analytically and requires numerical 

calculation.  We conclude that Neuman-Pearson test proceeds from the assumption that 

the error of one type is incomparably more serious with significant consequences and 

therefore its probability is minimized 1ε , while the probability of the error of the second, 

less important type, is adopted as a constant 2ε . In order to analyze the applicability of 

The Neyman - Pearson Test, two-dimensional samples from two classes with the 

following probabilities functions are generated. 
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Then, the relation between µ  and 2ε is given by equation (3.31) and the statistics or 

parameters of the classes are 
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The result is presented in Figure 3.4. It illustrate the relation between different values of 

µ  the corresponding a constant errors 2ε  equation (3.32). 
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Figure 3.4: The Neyman-Pearson Test 

3.2.4. Minimax criterion 

 The Bayes decision rules rely on knowledge of both the within-class 

distributions and the prior class probabilities. Therefore, in order to design a decision 

rule which minimizes the error, we need to know the values of 
i

P  beforehand. After the 

design is completed, the decision rule stays optimum only if the SP
i

,
 stay the same. 

Unfortunately in practice, SP
i

,
vary after the decision rule is fixed [21].  

We want to design the classifier when we do not know the prior Probabilities. A 

reasonable approach is then to design our classifier so that the worst overall risk for any 

value of the priors is as small as possible. That is, minimize the maximum possible 

overall risk [18]. In order to understand this, we shall limit our discussion below to the 

two-class problem, and then write our overall risk equation (3.21) in terms of 

conditional risks: 

)](),(min[)( 21 XrXrXr =                                                                                           (3.36) 
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First, let us express the cost of equation (3.23) in terms of 1P . Since ,121 =+ PP  2P  is 

uniquely determined by 1P . Inserting 12 1 PP −=  into equation (3.23) and replacing 

∫ 1 1 )(
L

dXXp by ∫−
2 1 )(1

L
dXXp .  

The total cost (the risk) of this decision is 

∫∫∫ −−−+−+−+=

121
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LLL

dXXpCCdXXpCCCCPdXXpCCCr   (3.37) 

To explain equation (3.36), we suppose two-dimensional samples from two classes are 

generated and the statistics of the classes are 
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In Figure 3.5, the curved line represents an example of the Bayes cost is plotted 

against 1P  where 1L  and 2L  are selected optimally for each 1P  (red curve). If 1L  and 2L  

are fixed for 28.01 =P , for example, and if 1P  varies later unexpectedly, then r changes 

according to equation (3.37), as a linear function of 1P  which passing through the 

curved line at the point when 28.01 =P (blue line), as shown in Figure 3.5 The 

maximum such error will occur at an extreme value of the prior, here at 11 =P  (blue 

line). In order to prevent this deterioration of performance, we choose 1L  and 2L to 

make the coefficient of 1P  Zero in equation (3.37) regardless of the predicted value 

for 1P . Then, the straight line becomes the tangent at the point 6722.1=C  where the 

Bayes cost curve is maximum. Then, to minimize the maximum of such error, we 

should design our decision boundary for the maximum point of Bayes cost 

(here 6722.1 ), and thus the error will not change as a function of 1P  (green line). This 

decision rule is called the minimax rest. 

Thus, in the minimax test, the boundary is designed to satisfy 

0)()()()()(
12

22212111212211 =−−−+− ∫∫
LL

dXXpCCdXXpCCCC                                (3.39) 

And also the risk is independent of 1P  and from equation (3.37), the minimax risk is 
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Figure 3.5: Bayes cost vs. P1 

3.2.5. Sequential Hypothesis Testing 

       For the usual statistical tests the sample size is fixed before the data are taken, but 

for a sequential test the total sample size depends on the data and is thus a random 

variable. We are interested in sequential tests because they are economical in the sense 

that we may reach a decision earlier via a sequential test than via a fixed sample size 

test [22]. 

The sequential testing of hypotheses has the following mechanism of decision making. 

As the new sample comes, the algorithm adopts one of the following three decisions: 

the gathered samples either belong to the first class, or the gathered samples belong to 

the second class, or no decision can be made, and it is therefore necessary to wait for the 

next sample. This mechanism is executed so that the upper and lower thresholds of 

decision making are computed in advance, and the discrimination function is calculated 

with every new sample. If the function is under the lower threshold the first decision is 

made, if it is above the upper threshold, the second decision is made, and if neither is 

the case, the next sample is awaited [19]. 

The following subsection explain The Wald Sequential Test 
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• The Wald Sequential Test 

Suppose nXX ,...,1 are independent and identically distributed random 

vectors observed sequentially using the joint density functions of these n  vectors, 

),...,( 1 ni XXp )2,1( =i  the minus-log likelihood ratio becomes  
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Instead of fixing n , we may terminate the observations when s  of equation (3.39) 

reaches a certain threshold value a and b  . That is 
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Where ns , is used instead of s  to indicate the number of observations, a  and b  are 

thresholds to determine  1ω  and 2ω  respectively. This decision rule is called the Wald 

sequential test [18]. The parameters a  and b are computed according to the desired 

classification errors of the first and second class: 
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Therefore, 

111 )1(}{ εεω basE +−=                                                                                              (3.46) 
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Introducing the mean values: 
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In order to analyze the applicability of the Wald sequential test two-dimensional 

samples from two classes are generated. The statistics of the classes are the following: 
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The following figure illustrate the efficiency of the Wald sequential test may be 

measured through the curve that shows the influence of desired classification errors to 

the needed number of observations. 
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Figure 3.6: Required number of samples dependence on desired classification error 
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3.3. Parametric Classifier 

Our major concern in Bayes likelihood ratio test was to design classifiers based 

on probability density or probability functions. In most applications, we must estimate 

these density functions using a finite number of sample observation vectors. However, 

they may be very complex or require a large number of samples to give accurate results 

[18].  

Even if we can obtain the densities, the likelihood ratio test may be difficult to 

implement; time and storage requirements for the classification process may be 

excessive. Therefore, we are often led to consider a simpler procedure for designing a 

pattern classifier irrespective of the underlying distributions describing the training data. 

The most common choices are linear and quadratic and the major advantages of these 

procedures are their simplicity and computational attractiveness [16]. 

3.3.1. Linear discriminant function 

Discrimination is a separation procedure that tries to find a discriminant function 

whose numerical values are such that the observations from several classes are 

separated as much as possible. An allocation procedure that uses a discrimination 

function as a well-defined rule in order to optimally assign a new observation to the 

labelled classes is called classification. It is evident that only good discrimination leads 

to good classification [23].  

Let us once more focus on the two-class case and consider the family of discriminant 

functions that are linear combinations of the components of T
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This is called a linear discriminant function, T

nvvvV ],...,,[ 21= is known as the 

weight vector and 0v as the threshold. Our design work is to find the optimum 

coefficients of the weight vector and the threshold value for given distributions under 

various criteria. 
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3.3.1.1. Optimum Design Procedure 

 Equation (3.52) indicates that an n-dimensional vector X  is projected onto a 

vectorV , and that the variable, XVy T=  in the projected one dimensional h-space is 

classified to either 1ω or 2ω , depending on whether 0vy −< or 0vy −> . 

 Figure 3.7 shows an example in which distributions are projected onto two vectors, V  

and '
V . From Figure 3.7, we notice the error on V  is smaller than that on '

V . Therefore, 

the optimum design procedure for a linear classifier is to select V  and 0v  which give 

the smallest error in the projected h-space.  

When X  is normally distributed, )(Xh of equation (3.52) is also normal. Therefore, the 

error in the h-space is determined by })({ ii XhE ωη = and })({2
ii XhVar ωσ =  which are 

functions of V and 0v  [21]. Thus, The expected values and variances of )(Xh are 
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Figure 3.7: An example of linear mapping 
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Let ),,,( 2
2

2
121 σσηηf be any criterion to be minimized or maximized for determining the 

optimum V  and 0v . The derivative of f with respect to V  and 0v  give two equations 

and their solution forV , gives the optimum V  
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I. Fisher’s linear discriminant 

Fisher's linear discriminant is very popular among users of discriminant analysis. 

Some of the reasons for this are its simplicity and unnecessary of strict assumptions. For 

two classes of observations, the Fisher criterion is given by 
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This criterion measures the difference of two means normalized by the averaged 

variance. The derivates of f  with respect to 2
1σ  and 2

2σ  is substitute into equation 

(3.56) gives the value of 5.0=s , and from equation (3.53) the optimum V  is 

)(]5.05.0[ 12
1

21 MMV −Σ+Σ= −                                                                                 (3.58) 

)(Xh  With V of equation (4.58) is called the Fisher discriminant function and Fisher 

linear classifier, respectively. The Fisher criterion does not depend on 0v because the 

subtraction of 2η  from 1η eliminates 0v , from equation (4.53).  Figure 3.8 shows the 

Fisher discriminant function that separate two classes and the parameters are  
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Figure 3.8: Fisher Discriminant function 

II. Optimum Design for Normal Distributions 

 When the distributions of )(Xh  are normal, we can find V and 0v  which 

minimize the Bayes error in the h-space. The Bayes error in the h-space is expressed as 

a function of iη  and 2
iσ  as 
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The derivative of ε  with respect to 2
121 ,, σηη  and 2

2σ  give four equations and their 

solutions for 0v  must be selected to make the two density functions of )(Xh  equal 

at 0)( =Xh . 
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Then the result is  
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Where s  stays between 0  and 1 because 01 <η and 02 >η . Thus, if we can find 

V and 0v , which satisfy equation (4.51).and equation (4.63), these V and 0v , minimize 

the error of equation (4.60). Unfortunately, since iη  and 2
iσ  are functions of V and 0v , 

the explicit solution of these equations has not been found. Thus, we must use an 

iterative procedure to find the solution. Before discussing the iterative process, we need 

to develop one more equation to compute 0v  from s  andV . This is done by substituting 

1η  and 2η  of equation (4.53).into equation (4.62).and by solving equation (4.62).for 0v . 

The result is 
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The iterative operation is carried out by changing the parameter s with an increment 

of s∆ . First, calculate V  for given s  and using the V  obtained to compute 2
iσ by 

equation (4.54), 0v  by equation (4.64), and iη  by equation (4.53) in that sequence, after 

that calculate ε  by equation (4.60). Then change s  from 0  to1. s Which minimizes ε  

can be found from ε  vs. s  plot. The advantage of this process is that we have only one 

parameter s  to adjust. Figure 3.9 shows the minimum value of the error and the values 

of  V  and 0v  that verify it. The statistics of the classes are 
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Figure 3.9: s vs Error 
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3.3.1.2. Other Desired Outputs and Search Techniques 

It is recommended to design the classifier in pattern recognition is by using 

samples near the decision boundary because samples far from the decision boundary are 

less important to the design. However, if we fix the desired output )(Xγ and try to 

minimize the mean-square error between the actual outputs )(Xh and )(Xγ , 

)(Xh contribute more to the mean-square error when it is large. This has long been 

recognized as a disadvantage of a mean-square error approach in pattern recognition. 

The following steps demonstrate the modification which reduces this effect. We can 

write the linear discriminant function equation (3.53) as 
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We can be designated to 

]...[ 10 n

T
vvvW =                                                                                              (3.68) 

11 ]...1[ ω∈−−−= XxxZ
T

n                                                                           (3.69) 

21 ]...1[ ω∈= XxxZ
T

n                                                                                   (3.70) 

So, the discriminant function is written as 



 57 

∑
=

>==
n

i

ii

T
zwZWXh

0

0)(                                                                                          (3.71) 

Where 0z  is either 1+ or 1− depends on which class it is belong.  

So, to design new classifier, we have to generate a new set of vectors sZ
,  and to 

calculate T
W that satisfy equation (3.71). 

We concentrate our discussion on the two-class case 21 ,ωω , if we have n  samples for 

each class. 

Then  
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First, we select the desired output )(Xγ and substituting it into equation (3.71) as 
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Next, we assume 
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After that  
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The last step 
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The following figure is an example of other desired outputs and search techniques for 

two classes, the decision boundary that separate two classes and the parameters of the 

classes are 
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Figure 3.10: Other Desired Outputs and Search Techniques 
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3.3.2 Quadratic Classifier Design 

When the distributions of X are normal for both 1ω , 2ω  .then bayes discriminant 

function becomes the quadratic equation as equation (3.8). However, to design a 

quadratic classifier, we must estimate iM  and iΣ and inserting these estimates into 

equation (3.8). To avoid this disadvantage we use Quadratic Classifier Design [16]. 

The general quadratic classifier may be expressed as 
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Where VQ, and 0v  are a matrix, vector, and scalar, respectively. 

To interpret equation (3.81), we will limit our discussion on the two-class case 21,ωω . 
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When we deal with class one equation (3.82) becomes  
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Where 111 q=α , 2
11 xy =  , )( 12212 qq +=α , 212 xxy =  ,  223 q=α  and 2
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Then 
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To change 0)( >Xh  , equation (3.86) becomes 



 60 

0)( 0 >−−= vZWXh
T  

So 

[ ] [ ] 01)( 121321213210 >=−−−−−−= QKxxyyyvvvXh
TT

ααα      (3.87) 

For class two is the same steps 
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Then 

][ 21 QQQ =                                                                                                               (3.89) 

To calculate K , first we select the desired outputγ . 

γ=== KQQKXh TT)(                                                                                             (3.90) 

Next, we assume UQT =  

γγ TT UKUUUK =⇒= )(                                                                                         (3.91) 

Finally 
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Figure 3.11 an example of Quadratic Classifier Design for two classes  
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Figure 3.11: Quadratic Classifier Design 
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3.4. Non Parametric Density Estimation 

 Applying statistical pattern recognition techniques often requires an estimation 

of probability density functions of data samples. If the distribution of the data is known 

to follow a certain form with a few parameters, such as that of the Gaussian distribution, 

then the probability density can be easily evaluated using the estimated parameters of 

the distribution function. However, it is not always possible to assume a density 

function in a parametric form without causing significant error.  In this case, a non-

parametric approach must be taken by employing density estimation techniques [24]. 

There are many methods that have been used for statistical density estimation and the 

common methods are the histogram, the Kernel Density estimate and the k-nearest 

neighbor-density estimate. 

3.4.1. Histogram Method 

The histogram method is perhaps the oldest and the simplest method of density 

estimation. It is the classical method by which a probability density is constructed from 

a set of samples, also histogram is easy to create and are computationally feasible [25]. 

 To construct a histogram one needs to select a starting point 0x and the bin width b  

and we define the bins of the histogram to be the intervals  

niihxhix ,....,2,1],,)1([ 00 =+−+ .  

The histogram is then defined by  

b
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n
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1
)( =                            (3.93) 

More generally one can also use bins of different widths, in which case 
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n
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1
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The following figure is an example of histogram. 
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Figure 3.12: The Histogram Method 

The discontinuity is the most drawback of histogram. It causes extreme difficulty if 

derivatives of the estimate are required, so the cause of using alternative methods is 

quite strong [23]. 

3.4.2. Kernel Density Estimation Method 

 The histogram is the picture of a density estimator that spreads the probability 

mass of each sample item uniformly throughout the interval (i.e. bin) it is observed in. 

Note that the observations are in no way expected to be uniformly spread out within any 

particular interval, so the mass is not spread equally around the observation unless it 

happens to fall exactly in the center of the interval [27]. 

In this section, we focus on the kernel density estimator that more fairly spreads out the 

probability mass of each observation, not arbitrarily in a fixed interval, but smoothly 

around the observation, typically in a symmetric way. 

The kernel estimator is given by 
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Where the function )(xK is called a kernel and smoothing function nh  is a positive 

sequence of bandwidths analogous to the bin width in a histogram.  

The kernel function must satisfy the condition that 

∫ =1)( dxxK                                                                                                                (3.96) 

Usually, the kernel is a symmetric probability density function, and the kernel function 

is often chosen in such a way that it has mathematically tractable properties, such as 

continuity or differentiability. Some examples include the Gaussian kernel function, the 

epanechnikov kernel function, or triweight kernel function [28]. 

The illustration of this procedure is shown in Figure 3.13 
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Figure 3.13: Kernel Density Estimation 
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CHAPTER FOUR  

DESCRIPTION OF THERMAL POWER PLANTS 
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4.1. Introduction 

The course of thermal power plants is concerned with the transformation of 

primary energy in fossil or fuel into electrical energy. The availability of electrical 

energy is a measure of national standard of living in any country. The electricity has 

been the most preferred form of energy in most countries [29]. A power plant may be 

defined as a machine or assembly of equipment that generates and delivers a flow of 

mechanical or electrical energy. The main equipment for the generation of electric 

power is generator. When coupling it to a prime mover runs the generator, the electricity 

is generated. The type of prime move determines the type of power plants.  

The major power plants are Steam Power Plant, Diesel Power Plant, Gas Turbine Power 

Plant and Nuclear Power Plants. These power plants are called thermal power plant, 

because these convert heat into electric energy [30]. The thermal power plants are built 

usually in the vicinity of water sources needed to provide steam where the gas or crude 

oil or coal, are used as fuel for that.  In thermal power plants, steam, internal 

combustion engines or gas turbines are the common prime movers of electric 

generators. Steam is an important medium of producing mechanical energy.  

Steam has the advantage that it can be raised from water which is available in 

abundance. It does not react much with the materials of the equipment of power plant 

and is stable at the temperature required in the plant. Steam is used to drive steam 

engines, steam turbines etc. Steam power plant is most suitable where coal is available 

in abundance. Also it has the desirable characteristic such as higher efficiency, lower 

cost, ability to burn coal especially of high ash content, and inferior coals, reduced 

environmental impact in terms of air pollution, reduced water requirement and higher 

reliability and availability. 

A steam power plant must have following equipments. 

• Fuel and furnace section. To bring the fuel from the storage and burn it in 

furnace. 

• Boiler and steam section. Heat generated in the furnace is utilized to convert 

water into steam. 

• Turbine generator  section to uses the heat energy of steam and performs work. 
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• Stack gas path and cleanup. 

4.2. Fuel and Furnace Section 

This is the part of the plant, where the fuel is arrived to boiler furnace. This 

component consists of Coal conveyor, Stoker and Pulverizer.  

4.2.1. Coal Conveyor 

 With this coal is transported from coal storage place in power plant to the place near 

the boiler.  There are many types of conveyors and the most commonly used are 

• Belt Conveyor 

 Figure 4.1 shows a belt conveyor. It consists of an endless belt. Moving over a pair 

of end drums (rollers).At some distance a supporting roller is provided at the center. 

The belt is made, up of rubber or canvas. Belt conveyor is suitable for the transfer of 

coal over long distances. It is used in medium and large power plants. Belt conveyor 

has the advantage that it the initial cost of the system is not high and power 

consumption is also low. Average speed of belt conveyors varies between 200-300 

r.p.m.  

 

Figure 4.1: Belt conveyor 

• Screw Conveyor 

 It consists of an endless helicoids screw fitted to a shaft as shown in Figure 

4.2.The screw while rotating in a trough transfers the coal from feeding end to the 

discharge end. This system is suitable, where coal is to be transferred over shorter 
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distance and space limitations exist. The initial cost of the system is low. It suffers 

from the drawbacks that the power consumption is high. Rotation of screw varies 

between 75-125 r.p.m. 

 

Figure 4.2: Screw Conveyor 

• Bucket Elevator 

 It consists of buckets fixed to a chain as shown in Figure 4.3.The chain moves 

over two wheels. The coal is carried by the buckets from bottom and discharged at the 

top. 

 

 

 

 

Figure 4.3: Bucket elevator 
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4.2.2 Stoker 

  The coal which is brought near by boiler has to put in boiler furnace for 

combustion. Stokers are mechanical devices located in the furnace and are designed to 

feed solid fuel onto a grate where the fuel burns as primary air is introduced, with over-

fire air also being introduced for enhancing the process of combustion. Stokers are also 

designed to remove ash residues that remain after combustion.  

They are used on large boilers, giving high heat release rates and employed for handling 

a variety of solid fuels such as coal, wood, bark, rice hulls and municipal waste [32]. 

Stokers essentially consist of: 

a. Fuel feed system. 

b. A moving or stationary grate assembly for supporting the burning fuel and admitting 

the majority of combustion air. 

c. An over-fire air system for completing the combustion process and to reduce 

emissions such as NOx. 

d. An ash-discharge system 

Generally, two types of stokers systems are available 

i. Overfeed stokers where the fuel is supplied from above the grate and air supply is 

done from below. 

ii. Underfeed stokers where both the fuel and air supply are from under the grate. 

i. Overfeed Stokers 

Overfeed stokers are further classified into two types according to the method of 

feeding coal to the furnace and by the type of grate [33].  

• Chain-grate or traveling-grate stoker 

• Spreader stoker 

• Chain-Grate or Traveling-Grate Stoker  

Coal is fed onto one end of a moving steel chain grate. As grate moves along the 

length of the furnace, the coal burns before dropping off at the end as ash. The coal-

feed hopper runs along the entire coal-feed end of the furnace as shown in Figure 4.4. 
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 A coal grate is used to control the rate at which coal is fed into the furnace, and to 

control the thickness of the coal bed and speed of the grate. Coal must be uniform in 

size, as large lumps will not burn out completely by the time they reach the end of the 

grate. As the bed thickness decreases from coal feed end to rear end, different 

amounts of air are required- more quantity at coal-feed end and less at rear end [34]. 

 

Figure 4.4: Chain -grate stoker 

• Spreader Stoker 

In this type, the fuel is spread uniformly over the grate as it is thrown into the 

furnace and combustion air enters from below. The fuel fines burn in suspension as 

they fall against the upward moving air flow. The heavier fuel gets burned on the 

grate and ash is removed from the discharge end.  

Spreader stokers are the most common among the stokers in use presently and have 

the capacity to handle a wide variety of solid fuels. Spreader stokers consist of a 

variable feeding device a mechanism for throwing the fuel into the furnace and grates 

with suitable opening to admit air. Coal falls on the grate and combustion is 

completed as it slowly moves through the furnace.  

The ash falls into the pit when the grates pass over the sprocket. Spreader stoker is 

shown in Figure 4.5 [32]. 
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Figure 4.5: Spreader Stoker 

ii. Underfeed Stokers 

The underfeed stoker as shown in Figure 4.6 is generally used for house heating 

furnaces and boilers. This type of stoker is one in which the fuel is fed upward from 

underneath the furnace or boiler. The action of a screw or worm carries the fuel back 

through a retort from which it passes upward as the fuel above is being consumed. 

 The ash is generally deposited on dead plates on either side of the retort, from which 

it can be removed. Underfeed stokers can be designed for use with either anthracite or 

bituminous coal, but the individual pieces of coal should be uniform in size and no 

larger than 1 inch in diameter. It is desirable to treat the coal with oil in order to 

eliminate dust [35]. 
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Figure 4.6: Underfeed Stoker 

4.2.3. Pulverizer 

 Coal is pulverized (powdered) to increase its surface exposure thus permitting 

rapid combustion. Efficient use of coal depends greatly on the combustion process 

employed. For large scale generation of energy the efficient method of burning coal is 

confined still to pulverized coal combustion. The pulverized coal is obtained by 

grinding the raw coal in pulverising mills.   

The essential functions of pulverising mills are as follows: Drying of the coal,     

grinding and separation of particles of the desired size. Proper drying of raw coal 

which may contain moisture is necessary for effective grinding. The various 

pulverising mills used are as follows [36]: 

I. Ball and Tube Mill 

 Ball tube mills are rotating horizontal cylinders containing steel or special alloy 

balls. Coal intermingled with the balls is crushed by the impact and grinding action of 

the balls as the mill rotates.  Hot air flowing through the ball mill carries coal particles 

to classifiers situated at both ends of the mill as shown in Figure 4.7. Large particles 

rejected in the classifiers are returned to the grinding zone for further size reduction. 

Small particles passing through the classifier exit the mill through piping leading to 

burners in direct fired systems and to cyclone collectors in indirect fired (storage bin) 

systems. 
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Figure 4.7: Ball and Tube Mill 

II. Ring and Ball Mill 

  Ball-ring mills are technical appliances designed for grinding (pulverising) raw 

materials, such as: hard coal, limestone, lime, etc. Ball-ring mills are applied in 

thermal power plants, energy industry, cement and lime processing, chemical works 

etc.  This type consists of two rings separated by a series of large balls. The lower ring 

rotates, while the upper ring presses down on the balls via a set of spring and adjuster 

assemblies. Coal is introduced into the center or side of the pulverizer (depending on 

the design) and is ground as the lower ring rotates causing the balls to orbit between 

the upper and lower rings. The coal is carried out of the mill by the flow of air moving 

through it. The size of the coal particles released from the grinding section of the mill 

is determined by a classifier separator [33]. 

Ball-ring mills, thanks to their construction, are highly reliable machines with top 

operational qualities. Reduction of maintenance downtime makes it possible to reach 

an availability rate from 90 to 95%. The construction of ball-ring mills makes them 

resistant to hard inclusions that can occur in ground materials, so the machines are 

suitable for grinding hardest and most abrasive materials. Figure 4.8 illustrates Ring 

and Ball Mill [37]. 
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Figure 4.8: Ring and Ball Mill 

4.3. Boiler and Steam  Section  

Boiler is an apparatus to produce steam. Thermal energy released by combustion 

of fuel is transferred to water, which vaporizes and gets converted into steam at the 

desired temperature and pressure. The steam produced is used for producing mechanical 

work in steam turbine. 

A boiler should fulfill the following requirements 

i. Safety. The boiler should be safe under operating conditions. 

ii. Accessibility. The various parts of the boiler should be accessible for repair and 

maintenance. 

iii. Capacity. The boiler should be capable of supplying steam according to the 

requirements. 

iv. Efficiency. To permit efficient operation, the boiler should be able to absorb a 

maximum amount of heat produced due to burning of fuel in the furnace. 

v. It should be simple in construction and its maintenance cost should be low. 

vi. Its initial cost should be low. 
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vii. The boiler should have no joints exposed to flames. 

The performance of a boiler may be measured in terms of its evaporative capacity also 

called power of a boiler. It is defined as the amount of water evaporated or steam 

produced in kg per hour [30]. 

4.3.1. Classification of Boilers 

Most conventional steam boilers are classed as either fire-tube or water tube types. 

I. Fire-Tube Boilers 

  Fire tube boilers are the most common heat generators used for production of 

hot water and steam. They have a round combustion chamber (also called the furnace) 

where combustion of fossil fuels takes place and tubes (also called fire- or smoke 

tubes). Behind the heat transfer wall is the boiler water that is heated up by energy 

released from combustion. In a steam boiler, the water turns to steam above the water 

line in the boiler and fills the steam space located at the top of the boiler in a 

cylindrically shaped drum, where it leaves through the steam valve. 

 A safety valve is set to allow escape of steam at pressures above normal operating 

pressure; this device is necessary on all boilers, because continued addition of heat to 

water in a closed vessel without means of steam escape result in a rise in pressure and 

ultimately in explosion of the boiler. Gases, products of combustion, leave the boiler 

after giving up heat to boiler internal walls from where the heat is transferred to the 

water. The furnace is filled with flame and gases, and tubes are filled with gases, 

giving the boiler the name - fire-tube.  Fire-tube boilers have the advantage of being 

easy to install and operate. They are widely used in small installations to heat 

buildings and to provide power for factory processes. Figure 4.9 represent Fire-tube 

boilers. 
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Figure 4.9: Fire-tube boiler 

Various advantages of fire tube boilers are as follows. 

o Low cost 

� Fluctuations of steam demand can be met easily 

• It is compact in size. 

II. Water-Tube Boilers 

 In these boilers water is inside the tubes and hot gases are outside the tubes. 

They consist of drums and tubes. They may contain any number of drums .The most 

common Water-tube generators are two-drum generators that feed water enters the 

boiler to one drum (here it is drum below the boiler).This water circulates through the 

tubes connected external to drums. A hot gas which surrounds these tubes will convert 

the water in tubes in to steam [38]. 

 This steam is passed through tubes and collected at the top of the drum since it is of 

light weight. So the drum store steam and water (upper drum).The entire steam is 

collected in one drum and it is taken out from there. As the movement of water in the 

water tubes is high, so rate of heat transfer also becomes high resulting in greater 

efficiency. Most modern water boiler tube designs are within the capacity range 
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4,500–120,000 kg/hour of steam, at very high pressures [39]. Figure 4.10 is a diagram 

of Water Tube Boiler 

 

Figure 4.10: Water-tube boiler 

Water tube boilers have various advantages as follows. 

o Heating surface is large. Therefore steam can be generated easily. 

� Large heating surface can be obtained by use of large number of tubes. 

• Because of high movement of water in the tubes the rate of heat transfer becomes 

large resulting into a greater efficiency 

• Merits and Demerits of Water tube boilers Over Fire Tube boilers Merits 

i. Generation of steam is much quicker due to small ratio of water content to steam 

content. This also helps in reaching the steaming temperature in short time. 

ii. Its evaporative capacity is considerably larger and the steam pressure range is also 

high-200 bar. 

iii. Heating surfaces are more effective as the hot gases travel at right angles to the 

direction of water flow. 

iv. The combustion efficiency is higher because complete combustion of fuel is 

possible as the combustion space is much larger. 
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v. The thermal stresses in the boiler parts are less as different parts of the boiler 

remain at uniform temperature due to quick circulation of water. 

vi. The boiler can be easily transported and erected as its different parts can be 

separated. 

vii. Damage due to the bursting of water tube is less serious. Therefore, water tube 

boilers are sometimes called safety boilers. 

viii. All parts of the water tube boilers are easily accessible for cleaning, inspecting 

and repairing. 

viiii. The water tube boiler's furnace area can be easily altered to meet the fuel 

requirements. 

Demerits: 

i. It is less suitable for impure and sedimentary water, as a small deposit of scale may 

cause the overheating and bursting of tube. Therefore, use of pure feed water is 

essential. 

ii. They require careful attention. The maintenance costs are higher. 

iii. Failure in feed water supply even for short period is liable to make the boiler over-

heated [36]. 

• A Good Boiler Must Possess The Following Qualities: 

i. The boiler should be capable to generate steam at the required pressure and quantity 

as quickly as possible with minimum fuel consumption. 

ii. The initial cost, installation cost and the maintenance cost should be as low as 

possible. 

iii. The boiler should be light in weight, and should occupy small floor area. 

iv. All the parts of the boiler should be easily approachable for cleaning and 

inspection. 

v. The boiler should have a minimum of joints to avoid leaks which may occur due to 

expansion and contraction. 
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vi. The water and flue gas velocities should be high for high heat transfer rates with 

minimum pressure drop through the system. 

vii. The boiler should conform to the safety regulations as laid down in the Boiler Act. 

4.3.2. Superheater 

  The superheater is situated at the hottest part of the boiler. It is employed to raise 

the steam temperature above the saturation temperature by absorbing heat from fuel 

gases as shown in Figure 4.11. The maximum temperature to which steam can be 

heated will depend upon the metallurgy and economy in initial cost and maintenance 

cost of the superheater.  The superheating of steam makes it possible to recover more 

energy from steam which improves the cycle efficiency of the plant. 

 It also eliminates the formation of water vapor during conveying of steam in pipelines 

and during its early flow through the turbine blades. From the superheater, the steam 

is led to high-pressure turbine [40]. Non-superheated steam is called saturated 

steam or wet steam. Superheaters were applied to steam locomotives in quantity from 

the early 20th century, to most steam vehicles, and to stationary steam engines 

including power stations [41]. 

 

Figure 4.11: Super heater 

4.3.3. Reheater   

Power plant furnaces may have a reheater section containing tubes heated by hot 

flue gases outside the tubes. Exhaust steam from the high pressure turbine is rerouted 
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to go inside the reheater tubes to pickup more energy to go drive intermediate or lower 

pressure turbines [42]. 

4.3.4. Economizer 

A boiler economizer is a heat exchanger device that captures the "lost or waste 

heat" from the boiler's hot stack gas. The economizer typically transfers this waste 

heat to the boiler's feed-water or return water circuit, but it can also be used to heat 

domestic water or other process fluids. Capturing this normally lost heat reduces the 

overall fuel requirements for the boiler. Less fuel equates to money saved as well as 

fewer emissions - since the boiler now operates at a higher efficiency.  This is possible 

because the boiler feed-water or return water is pre-heated by the economizer 

therefore the boilers main heating circuit does not need to provide as much heat to 

produce a given output quantity of steam or hot water.  

Again fuel savings are the result. Boiler economizers improve a boiler's efficiency by 

extracting heat from the flue gases discharged. Each economizer is specifically 

designed to match our client’s boiler characteristics in order to maximize efficiency 

and the use of boiler room space. Because Systems Equipment Corporation Boiler 

Economizers are manufactured from stainless steel the usual corrosion problems 

encountered by our competitions designs are eliminated [43]. Figure 4.12 represent a 

boiler economizer 

 

Figure 4.12: Economizer 
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4.3.5. Condenser 

 Steam after rotating steam turbine comes to condenser. Condenser refers here to 

the shell and tube heat exchanger (or surface condenser) installed at the outlet of every 

steam turbine in Thermal power stations of utility companies generally. These 

condensers are heat exchangers which convert steam from its gaseous to its liquid 

state, also known as phase transition. 

The purpose is to condense the outlet (or exhaust) steam from steam turbine to obtain 

maximum efficiency and also to get the condensed steam in the form of pure water, 

otherwise known as condensate, back to steam generator or (boiler) as boiler feed 

water. Condensers are classified as Jet condensers or contact condensers and Surface 

condensers. 

I. Jet Condensers 

  In Jet condensers the steam to be condensed mixes with the cooling water and 

the temperature of the condensate and the cooling water is same when leaving the 

condenser.  Types of jet condensers are 

••••  Parallel-Flow Type of Jet Condensers 

 The exhaust steam and cooling water find their entry at the top of the condenser 

and then flow downwards and condensate and water are finally collected at the 

bottom, as shown in Figure 4.13 [36]. 

 

Figure 4.13: Parallel-Flow Type of Jet Condensers 
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••••     High level or Barometric Condenser 

 Figure 4.14 shows a high-level jet condenser. It is also called barometric 

condenser. In this type the condenser shell is placed at a height of 10.33 m (barometric 

height) above the hot well and thus the necessity of providing an extraction pump can 

be obviated [44]. 

 

Figure 4.14: High level or Barometric Condenser 

••••  Ejector Condenser 

  Figure 4.15 shows an ejector condenser. In this condenser cold water is 

discharged under a head of about 5 to 6 m through a series of hollow truncated cones. 

The steam and air enter the condenser through a non-return valve. Mixing with water 

condenses steam. Due to this decreased pressure exhaust steam along with associated 

air is drawn through the truncated cones and finally lead to diverging cone. Cooling 

water and air is discharged into the hot well [36]. 
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Figure 4.15: Ejector Condenser 

II. Surface Condensers. 

   Here, there is no direct contact between the steam to be condensed and the 

circulating cooling water. There is a wall interposed between them through heat must 

be convectively transferred. The temperature of the condensate may be higher than the 

temperature of the cooling water at outlet and the condensate is recovered as feed 

water to the boiler. Both the cooling water and the condensate are separately with 

drawn. Because of this advantage surface condensers are used in thermal power 

plants. Final output of condenser is water at low temperature is passed to high 

pressure feed water heater; it is heated and again passed as feed water to the boiler. 

Since we are passing water at high temperature as feed water the temperature inside 

the boiler does not decrease and boiler efficiency also maintained [33]. 

  The surface condensers may be classified as follows: 

•••• Down-Flow Type 

 The cooling water enters the shell at the lower half section and after traveling 

through the upper half section comes out through the outlet. The exhaust steam 

entering shell from the top flows down over the tubes and gets condensed and is 

finally removed by an extraction pump as shown in Figure 4.16 [44]. 
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Figure 4.16: Down-Flow Type 

•••• Central Flow Condenser 

 In this type of condenser, the suction pipe of the air extraction pump is located 

in the centre of the tubes which results in radial flow of the steam. The better contact 

between the outer surface of the tubes and steam is ensured. Figure 4.17 illustrates 

central flow condenser 

 

Figure 4.17: Central Flow Condenser 

••••   Evaporation Condenser 

 In this condenser, steam to be condensed is passed through a series of tubes and 

the cooling waterfalls over these tubes in the form of spray and it usually has one or 
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more fans. A steam of air flows over the tubes to increase evaporation of cooling 

water, which further increases the condensation of steam. Figure 4.18 represents 

Evaporation condenser [36]. 

 

Figure 4.18: Evaporation condenser 

4.3.6. Air Path 

 External fans are provided to give sufficient air for combustion. The forced 

draft fan takes air from the atmosphere and, first warming it in the air preheater for 

better combustion, injects it via the air nozzles on the furnace wall. The induced draft 

fan assists the FD fan by drawing out combustible gases from the furnace, maintaining 

a slightly negative pressure in the furnace to avoid backfiring through any opening 

[42]. 

4.4. Steam Turbine  Section  

 A steam turbine is a mechanical device whose purpose is to convert thermal (or 

heat) energy into work.  The steam turbine uses thermal energy from steam under 

pressure and converts it into rotary motion, or mechanical work.  

The original version of the steam turbine was the steam engine. The steam turbine is 

highly thermodynamically efficient, meaning that it acts at a high level of performance 

without losing much energy in the process, and has a low power-to-weight ratio. This is 

a ratio of actual performance used to compare devices across their respective weights. 
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These qualities make the steam turbine ideal for power stations. Its thermo dynamical 

efficiency comes from the fact that it has multiple stages for steam expansion. Steam 

turbines come in a variety of sizes, from small 0.75 kW units that are used in pumps and 

compressors, to 1.5 million kW units that are used to generated electricity.  

Energy from steam is converted into mechanical work via expansion. Expansion occurs 

through a series of nozzles (or fixed blades) and moving blades within the turbine. The 

nozzles are arranged with the circular turbine casing that is specifically designed to 

withstand steam pressure. 

4.4.1. Classification of Steam Turbine  

 The design of turbine blades is based on two fundamental principles: impulse 

turbine and reaction turbine. 

I.Impulse Turbine 

 If the flow of steam through the nozzles and moving blades of a turbine takes 

place in such a manner that the steam is expanded only in nozzles and pressure at the 

outlet sides of the blades is equal to that at inlet side; such a turbine is termed as 

impulse turbine because it works on the principle of impulse. In other words, in 

impulse turbine, the drop in pressure of steam takes place only in nozzles and not in 

moving blades. This is obtained by making the blade passage of constant cross- 

section area. As a result, the velocity of the steam decreases when it exits the blades, 

but the pressure remains constant. Therefore, energy is transferred by the change in 

velocity of the steam and not by pressure [36]. Figure 4.19 illustrates Impulse turbine 

      

Figure 4.19: Impulse turbine 
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II.Reaction Turbine 

 The reaction turbine principle depends on the blade diverting the flow of steam 

and gaining kinetic energy in the process. Reaction turbines have a different blade 

cross section than impulse turbines. The reaction blades act like the wings of a plane, 

while the impulse blades act like an engine piston, just like the wing of an airplane, 

the kinetic energy is converted to power by decreasing the steam's velocity and 

lowering pressure. When the steam enters the blade and travels across it, there is a 

decrease in pressure on the upper surface and an increase in pressure on the lower 

surface. As a result, the force that drives the turbine is a reaction force [45]. Figure 

4.20 shows Reaction turbine 

  

Figure 4.20: Reaction turbine 

The next figure illustrate the difference between Impulse Turbine and Reaction 

Turbine with regard to steam flow 

 

Figure 4.21: the difference between Impulse Turbine and Reaction Turbine 
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Other than the operating and controlling equipment, similarity exists in both the 

impulse and reaction turbines. These include casings, nozzles, rotors, bearings, and 

shaft glands. 

4.4.2. Casings 

The materials used to construct turbines will vary somewhat depending on the 

steam and power conditions for which the turbine is designed. Turbine casings shows 

in Figure 4.22 are made of cast carbon steel for non superheated steam applications. 

Superheated applications use casings made of carbon molybdenum steel [46].  

 

Figure 4.22: Casing 

4.4.3. Nozzles 

The primary function of the nozzles is to convert the thermal energy of steam 

into kinetic energy. The secondary function of the nozzles is to direct the steam 

against the blades [47]. Figure 4.23 illustrates Nozzles 

 

Figure 4.23: Nozzles 
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4.4.4. Rotors  

Rotors as shown in Figure 4.24 (forged wheels and shaft) are manufactured from 

steel alloys. The primary purpose of a turbine rotor is to carry the moving blades that 

convert the steam’s kinetic energy to rotating mechanical energy [46]. 

 

Figure 4.24: Rotors 

4.4.5. Bearings   

The rotor of every turbine must be positioned radially and axially by bearings. 

Radial bearings carry and support the weight of the rotor and maintain the correct 

radial clearance between the rotor and casing [46]. Figure 4.25 shows sliding surface 

bearing. 

 

Figure 4.25: sliding surface bearing 
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4.4.6. Shaft Packing Glands   

Shaft packing glands prevent the leaking of steam out of or air into the turbine 

casing where the turbine rotor shaft extends through the turbine casing. Labyrinth and 

carbon rings are two types of packing [47]. They are used either separately or in 

combination. Figure 4.26 illustrates Carbon packing gland. 

   

Figure 4.26: Carbon packing gland 

Figure 4.27 illustrates overall construction of steam turbine 

 

Figure 4.27: steam turbine 

4.4.7. Steam Turbine Performance 

Turbine performance can be expressed by the following factors: 

i. The steam flow process through the unit-expansion line or condition curve. 

ii. The steam flow rate through the unit. 
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iii. Thermal efficiency. 

iv. Losses such as exhaust, mechanical, generator, radiation etc. 

Mechanical losses include bearing losses, oil pump losses and generator bearing 

losses. Generator losses include will electrical and mechanical losses. Exhaust losses 

include the kinetic energy of the steam as it leaves the last stage and the pressure drop 

from the exit of last stage to the condenser stage.  For successful operation of a steam 

turbine it is desirable to supply steam at constant pressure and temperature. Steam 

pressure can be easily regulated by means of safety valve fitted on the boiler.  The 

steam temperature may try to fluctuate because of the following reasons: 

i. Variation in heat produced due to varying amounts of fuel burnt according to 

changing loads. 

ii. Fluctuation in quantity of excess air. 

iii. Variation in moisture content and temperature of air entering the furnace. 

iv. Variation in temperature of feed water. 

v. The varying condition of cleanliness of heat absorbing surface [38]. 

4.4.8. Steam Turbine Generators    

 The Turbine is connected to a Generator and a generator is an alternator is an 

electromechanical device that converts the mechanical shaft energy it receives from 

the turbine into electrical energy. Steam turbine driven a.c. synchronous generators 

(alternators) are of two or four pole designs. These are three phase measuring 

machines offering economic, advantages in generation and transmission. 

Generator losses appearing as heat must be constantly removed to avoid damaging the 

windings. Large generators have cylindrical rotors with minimum of heat dissipation 

surface and so they have forced ventilation to remove the heat. Large generators 

generally use an enclosed system with air or hydrogen coolant. Figure 4.28 represents 

turbine generator section [30]. 
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Figure 4.28: Turbine Generator  

4.5. Stack Gas Path and Cleanup  

4.5.1. Air Preheater 

  The remaining heat of flue gases is utilized by air preheater. It is a device used 

in steam boilers to transfer heat from the flue gases to the combustion air before the 

air enters the furnace and it is kept at a place near by where the air enters in to the 

boiler. The purpose of the air preheater is to recover the heat from the flue gas from 

the boiler to improve boiler efficiency by burning warm air which increases 

combustion efficiency, and reducing useful heat lost from the flue.  

As a consequence, the gases are also sent to the chimney or stack at a lower 

temperature, allowing simplified design of the ducting and stack [33]. 

4.5.2. Ash Disposal 

 A large quantity of ash is, produced in steam power plants using coal. Ash 

produced in about 10 to 20% of the total coal burnt in the furnace. Handling of ash is a 

problem because ash coming out of the furnace is too hot, it is dusty and irritating to 

handle and is accompanied by some poisonous gases. It is desirable to quench the ash 

before handling due to following reasons: 

1. Quenching reduces the temperature of ash. 

2. It reduces the corrosive action of ash. 

3. Quenching reduces the dust accompanying the ash. 
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Handling of ash includes its removal from the furnace, loading on the conveyors and 

delivered to the fill from where it can be disposed off. 

The handling equipment should perform the following functions: 

1. Capital investment, operating and maintenance charges of the equipment should be 

low. 

2. It should be able to handle large quantities of ash. 

3. Clinkers, soot, dust etc. create troubles; the equipment should be able to handle 

them smoothly. 

4. The equipment used should remove the ash from the furnace, load it to the 

conveying system to deliver the ash to a dumping site or storage and finally it should 

have means to dispose of the stored ash. 

5. The equipment should be corrosion and wear resistant [36]. 

4.5.3. Smoke and Dust Removal 

 In coal fed furnaces the products of combustion contain particles of solid matter 

floating in suspension. This may be smoke or dust. The production of smoke indicates 

that combustion conditions are faulty and amount of smoke produced can be reduced 

by improving the furnace design. The size of dust particles is designated in microns (1 

µ = 0.001 mm). Dust particles are mainly ash particles called fly ash intermixed with 

some quantity of carbon ash material called cinders.  Gas borne particles larger than 

1µ in diameter are called dust and when such particles become greater in size than 

100p they are called cinders. Smoke is produced due to the incomplete combustion of 

fuels, smoke particles are less than 10p in size. 

The disposal smoke to the atmosphere is not desirable due to the following reasons: 

1. A smoky atmosphere is less healthful than smoke free air. 

2. Smoke is produced due to incomplete combustion of coal. This will create a big 

economic loss due to loss of heating value of coal. 

3. In a smoky atmosphere lower standards of cleanliness are prevalent. Buildings, 

clothings, furniture etc. becomes dirty due to smoke. Smoke corrodes the metals and 

darkens the paints. 
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To avoid smoke nuisance the coal should be completely burnt in the furnace. The 

presence of dense smoke indicates poor furnace conditions and a loss in efficiency and 

capacity of a boiler plant. A small amount of smoke leaving chimney shows good 

furnace conditions whereas smokeless chimney does not necessarily mean a better 

efficiency in the boiler room. To avoid the atmospheric pollution the fly ash must be 

removed from the gaseous products of combustion before they leaves the chimney. 

The removal of dust and cinders from the flue gas is usually effected by commercial 

dust collectors which are installed between the boiler outlet and chimney usually in 

the chimney side of air preheater [38]. 

4.6. Cooling Towers 

The condensate (water) formed in the condenser after condensation is initially at 

high temperature. This hot water is passed to cooling towers. A cooling tower is a heat 

removal system used to remove heat from the condensate (water). Cooling towers allow 

the water to be cooled and then returned for use in recirculation through the system. 

This saves enormous amounts of money, time and energy. 

There are two ways in which cooling towers work to remove heat, evaporation or the 

use of air. Temperature measurements taken during each of these cooling processes are 

called the wet-bulb air temperature and the dry-bulb air temperature. The dry-bulb air 

temperature is used when heat is removed by exposing the water to air. The wet-bulb 

temperature is used when heat is removed by the process of evaporation. 

I. Cooling With Air 

 Water needing to be cooled is pumped to the top of the tower and then directed 

to flow down a designated path where the water forms into droplets. These droplets 

are met by a current of air that is blowing upward and past the water. The water is 

cooled by the air as it passes. It then collects at the bottom of the cooling tower 

structure where it is returned to the production process. Some air-cooled towers use 

large fans at the top of the structure to draw the air up [48]. 

II. Cooling With Evaporation 

  It allows a small portion of the water being cooled to evaporate into a moving 

air stream to provide significant cooling to the rest of that water stream. The heat 
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from the water stream transferred to the air stream raises the air's temperature and its 

relative humidity to 100%, and this air is discharged to the atmosphere [45].  Figure 

4.29 illustrates cooling tower 

 

Figure 4.29: Cooling Towers 

In the end, we can say in thermal power plants, mechanical power is produced by 

transforming thermal energy from combustion of a fuel, into rotational energy. The 

most common source of combustible fuel is fossil fuel: coil, oil and natural gases. The 

fuel is burned in boilers where the heat is used to convert water into steam. The steam 

drives turbines that drive power generators [49].A layout of a thermal power plant that 

uses coal as fuel can be seen in Figure 4.30 

 

Figure 4.30: Thermal Power Plant That Uses Coal As Fuel 
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5.1 Introduction 

5.1.1 System Identification 

A fundamental concept in science and technology is that of mathematical modeling. 

A mathematical model is a very useful of describing the knowledge we have about a 

process or system. The determination of a mathematical model of a process or system is 

known as system identification. In control systems, a mathematical model of a process 

or system is in most cases necessary for the design of the controller. The model is also 

necessary for the design of adaptive and robust control systems. A process or a system 

may be described by several models and one must be able to choose the suitable type of 

model for each specific application. 

Mathematical models may be distinguished as parametric and nonparametric models. 

Parametric models obviously involve parameters: for example, the coefficients of 

differential or difference equations, of state equations, and of transfer functions. 

Nonparametric models do not involve parameters and are usually graphical 

representations, such as the Nyquist or Bode diagrams of a transfer function or impulse 

response function. If we deal with the problem of determining mathematical models of 

linear, discrete time-invariant, single-input–single-output (siso) dynamic systems, 

described by difference equations and An interesting feature is the determination of a 

recursive algorithm, which allows the estimation of the vector parameter θ  for 

1+N measurements, based on the following formula: 

)]()1()[()()()1( 1 NNyNNNN
T

N θϕγθθθθ +−+=∆+=+ +                                      (5.1) 

Where )(Nγ and )1( +Nϕ   are known vector quantities and 1+Ny is the 

1+N measurement of the output y of the system. [14]. 

5.1.2 An outlier 

An outlier is defined as a point that lies very far from the mean of the corresponding 

random variable. This distance is measured with respect to a given threshold. Points 

with values very different from the mean value produce large errors during training and 

may have disastrous effects.  
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If the number of outliers is very small, they are usually discarded. However, if this is 

not the case and they are the result of a distribution with long tails, then the designer 

may have to adopt cost functions that are not very sensitive in the presence of outliers 

[35]. 

5.1.3 Maximum Likelihood Estimation 

When the type of the distribution is known, the exact distribution (or density) function 

still depends on some parameters. The simplest examples of such parameters are the 

mean and the standard deviation of the distribution. Somewhat more complicated but 

basically the same is the situation when the random variable is the output of a dynamic 

system; now its distribution depends on the system parameters. Thus the probability 

density function may be written as )( θxf X , whereθ , a scalar or a vector represents the 

parameter(s) of the distribution which are assumed to be known. 

Often some of the parameters are not known; then observations of the random variable, 

together with the knowledge of the type of the distribution (and its other parameters) 

may be used to obtain an estimate for the unknown parameters [1]. 

Let nxx ,,.........1 be random samples drawn from pdf )( θxp .We form the joint pdf 

)( θXp , where },,.........{ 1 nxxX = is the set of the samples. Assuming statistical 

independence between the different samples we have 

)(),,.........()()(
1

1 θθθθ k

n

k
n xpxxpXpL

=
Π=≡=                                                            (5.2) 

This is a function of θ  and it is also known as the likelihood function of θ  with respect 

to X . For likelihood function )(θL , whereθ  is an unknown parameter [43]. Let eθ be a 

value of the parameter such that )()( θθ LL e ≥ for all possible values ofθ . 

 Then, eθ  is called a maximum likelihood estimate (MLE) forθ , that means the 

parameter estimates are thus obtained by maximizing the likelihood function under the 

given observations that is [37]. 

)(maxarg)( θθ Lx =
∧

                                                                                                     (5.3) 
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Technically, the estimates are sought by computing the partial derivatives of the 

likelihood function and equating it with zero 

]0/)([)( =∂∂=
∧

θθθ
θ

Lsolx                                                                                             (5.4) 

With the additional requirement that the second derivative of the likelihood function, at 

the solution, has to be negative 

0/)([ 22
<∂∂ ∧

=θθ
θθL                                                                                                     (5.5) 

5.1.4 Adaptive control 

In common sense, "to adapt" means to change a behavior or characteristic to conform to 

new and unknown circumstances. In the sense of control theory and engineering, an 

adaptive controller is an "intelligent" controller that can modify its behavior in response 

to the variations in the dynamics of the process and the character of the disturbances.  

As defined in and simply put, an adaptive control system is a system which adjusts 

automatically on-line the parameters of its controller, so as to maintain a satisfactory 

level of performance when the parameters of the system under control are unknown 

and/or time varying [35]. Adaptive control schemes have been applied in the paper 

industries, rolling mills, power plants, chemical reactors, cement mills, autopilots for 

aircrafts, and ships, etc. 

The use of adaptive controllers may lead to improvement of product quality, increase in 

production rates, fault detection, and energy saving [38].  There are different types of 

adaptive control schemes namely least squares estimation, dynamic inversion with 

neural networks, and model reference adaptive control. In This chapter we will use 

recursive least square estimation in our simulation that we described this method in 

section (2.5). 

5.1.5 Robustness in Fault Detection System 

Usually, the parameters of the system vary with time, and the characteristics of the 

disturbances and noises are unknown so that they can not be modeled accurately. Since 

an accurate mathematical model of a physical process is not always available, there is 

often a mismatch between the actual process and its mathematical model, even if no 
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fault in the process occurs. This constitutes a source of false alarm, which can corrupt 

the performance of the fault detection and diagnosis system. The effect of modeling 

uncertainties, disturbances, and noise is therefore the most crucial point in the model 

based FDD concept, and the solution to these problems is the key for its practical 

applicability. To overcome these difficulties, FDD system has to be made robust to such 

modeling errors and disturbances.  

In the context of automatic control, the term robustness is used to describe the 

insensitivity or invariance of the performance of control systems with respect to 

disturbances, model-plant mismatches or parameter variations, but in contrast to 

automatic control systems, they must not be robust to actual faults. On the contrary, 

while generating robustness to disturbances, the designer must maintain or even 

enhance the sensitivity of fault diagnosis schemes to faults [29]. An FDD system, which 

is designed to provide both sensitivity to faults and robustness to modeling errors and 

disturbances, is called a robust FDD scheme. During the last decades, much FDD 

research has focused on robust fault diagnosis of uncertain systems. Adaptive threshold 

can be used to increase the robustness to modeling uncertainties.  

5.1.6 Quantile-Quantile (QQ)-plot technique 

The quantile-quantile (Q-Q) plot is a graphical technique for examines whether or not a 

sample nxx ,,.........1  has come from a distribution with a given distribution function 

)(xF [10]. The following steps create a Quantile-Quantile-plot (Q-Q-plot) 

1. Rank your data in ascending order: )()1( ,,......... nxx  

2. for each data point nixi ,.....,2,1; =  compute iρ . Where  

nirni ii /)5.0()1/()1( −=≈−−=ρ                                                                               (5.6) 

3. For each iρ find the distribution quantile  

)()( 11
iii rFFy

−−
≈= ρ                                                                                                  (5.7) 

( ) ( ) ( ) ( ) ( )1 1 ; 1 / 1 0.5 / ; 1,2,...,i i i i iy F F r i n r i n i nρ ρ− −
= ≈ = − − ≈ = − =  

4. Plot the distribution quantile iy  against the sample quantiles 
i

x  (Q-Q plot) [56]. 
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5.  If ii yx =  for all i we get a straight line indicating that the observations have the 

same distribution function that supposes )(⋅F . 

5.2 Robust Adaptive Parameter Identification  

5.2.1 Formulation of the Problem 

Let us observe an abstract, linear, dynamic, time-invariant, discrete-time system, 

which can be represented by a difference equation with constant parameters: 

)()()()(
1 1

ikiubkiyaiy
n

k

m

k

kk ξ+−+−−= ∑ ∑
= =

                                                                (5.8) 

Where 111 )(,)(,)( RiRiuRiy ∈∈∈ ξ  are the sequences of system output, measurable 

input and stochastic input, or noise, respectively, while the constants niai ..,,.........1, =  

and mjb j ..,,.........1, = represent system parameters. If a backward shift operator is 

introduced as )()( kiyiyq k −=− , equation (5.8) can be written in the following 

polynomial form: 

)()()()()( 11 iiuqBiyqA ξ+= −−                                                                                      (5.9) 

Where 
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1

1

1 )(,1)(                                                                  (5.10) 

Are the so-called characteristics and control polynomials, respectively. Equation (5.8) 

can also be written in a linear regression form:  

)()()( iiZiy T ξ+Θ=                                                                                               (5.11) 

Where the regression vector 

)](),...,1(),(),...,1([)( miuiuniyiyiZ T −−−−−−=                                                      (5.12) 

Represents a vector of input and output measurable samples, and [ ]1 1
T

n ma a b bΘ = � �  

represents vector of constant system parameters. The problem of recursive system 

identification described by equation (5.9) is actually the problem of estimation of 

unknown parameters included in the vector Θ  in real time, based on system input and 
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output signal measurements. Formulation of the identification problem then reduces to 

the minimization of empirical average losses [62]: 

)),((
1

)(
1

Θ=Θ ∑
=

iv
k

J
k

i

k ρ                                                                                          (5.13) 

Where )/()(),( Θ−=Θ
∧∧

iyiyiv  is the output prediction error or measurement residual, 

with )/( Θ
∧

iy  being a forecasting model, while (.)ρ  is a loss function. 

Taking into account equation (5.8) or equation (5.11), the mean-square optimal 

forecasting model, minimizing the criterion )},({ 2 ΘivE , is given by [52]: 

Θ=+−=Θ −−
∧

)()()()()](1[)/( 11 iZiuqBiyqAiy T                                                  (5.14) 

In the maximum likelihood scheme (ML), the loss function in equation (5.13) is chosen 

as 

)(ln)( ⋅−=⋅ pρ                                                                                                             (5.15) 

where )(⋅p  is the noise probability density function (pdf) [63] .For the Gaussian noise, 

)(⋅p  is the quadratic function, and the resulting algorithm minimizing equation (5.13) is 

the standard linear LS approach. However, the ML method is very sensitive to 

deviations of the real noise pdf from the assumed one, and in the presence of impulsive 

noise or outliers, it ceases to work [65]. Thus, one should modify the algorithm to make 

it more robust. Huber’s ρ -function (ML loss function) uses for robust estimation 
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ρ                                                              (5.16) 

where 2σ is the noise variance. More precisely, this pdf represents the worst-case pdf, 

minimizing the maximum asymptotic estimation error variance, within the class of ε-

contaminated normal pdf’s [55]: 

}10),(),0()1()({ 2 ≤≤⋅+⋅−=⋅= εεσε hNppPs                                                     (5.17) 
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Where ),0( 2σ⋅N  denotes the zero-mean normal pdf with the variance 2σ , while )(⋅h  is 

a zero-mean symmetric pdf with the variance 22
0 σσ >> . Thus, the robust loss function 

in equation (5.196) is the ML function corresponding to the worst-case pdf within the 

pre-specified pdf’s class equation (5.17), where the tuning constant k depends on the 

contamination indexε , i.e., )(εkk =  [53] .This type of statistical robustness is known 

in the literature as min-max robustness over a family of distributions. Unfortunately, the 

highly-technical character of min-max robustness makes it relatively inaccessible to 

applied workers. Thus, in practice, one has to design an estimation procedure having a 

readily-apparent resistance property of insensitivity to outliers, along with desirable 

efficient robustness.  

5.2.2 Recursive M-robust parameter estimation 

Starting from the discussion in the preceding section, a particular M-estimator 

minimizes the sum of the weighted residuals equation (5.13), where the robust ρ -

function is defined in equation (5.16). The tuning parameter k  in equation (5.16) has to 

be chosen so as to provide the desired efficiency at the nominal Gaussian observation 

model. On the other hand, the derivative of the ρ -function in equation (5.16), the so-

called influence function [66] 


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
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−==Ψ
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' ,,maxmin)()(

σσσ
ρ

kkx
xx                                                              (5.18) 

If recursive minimization of the criterion in equation (5.16) is performed, it is simple to 

arrive at a recursive identification procedure of the form [53]. 

0)0()));1(,(()()()1()( Θ=Θ−ΘΨΓ+−Θ=Θ iiviZiii                                                  (5.19) 

Θ−=Θ )()(),( iZiyiv T                                                                                      (5.20) 
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−Γ−Γ
−−Γ=Γ

−
                                                 (5.21) 

Where 2γ  is a finite positive constant, and I is an identity matrix. Thus, the recursive M-

robust algorithms are defined by equations (5.18), (5.19)-(5.21) where )0(Θ  and )0(Γ  
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are the initial guesses. The LS procedure, minimizing the quadratic performance index 

is a suitable algorithm for generating the initial parameter estimates )0(Θ . 

In particular, for the zero-mean normal noise )(iξ with the 

variance 2σ , ),0(~)( 2σξ Np  the ML loss function 22 2/)( σρ xx = yielding the 

influence function 2' /)]([ln)( σxxpx =−=Ψ  and 2/1 σ=w .  

Application of the recursive M-robust scheme equations (5.18), (5.19)-(5.21) requires 

the noise variance 2σ  and the tuning constant k  in equation (5.18) to be known.  

As mentioned before, the parameter k  represents a constant which should be selected 

with the aim of reaching the desired efficiency of the algorithm in the case of the 

nominal normal noise model in equation (5.17). In addition, since the value of noise 

variance 2σ  is generally unknown, it is essential to somehow estimate it. 

There are many methods to estimate noise variance and find influence function.  A 

popular, simple and frequently method used form of the robust variance estimate is the 

median of the absolute median deviations [57], [58], 

6745.0/)}{{ ymedianymediand −=                                                                          (5.22) 

The divisor 0.6745 is used because then σ≈d  if the sample size is large enough and if 

the sample actually arises from the normal pdf. The particular scheme of selecting d in 

equation (5.22) suggests appropriate values of the tuning constant k  in equation (5.18). 

Namely, since σ≈d , k  is usually taken to be a value close to 1.5 and this procedure is 

known as the 1.5-Huber M-robust estimator. Another method is to estimate the 

unknown noise parameters in equation (5.17) using the measurement residuals and the 

QQ-plot method combined with data classification based on robustified residuals 

winsorization. The derived results are then used to design an adaptive M-robust 

influence function instead of equation (5.18).  

Finally, we suggest the system parameter estimation problem to be solved robustly 

using the recursive M-robust algorithm equations (5.19)-(5.21). First, we provide a brief 

review of the QQ-plot method in Section (5.4), and then we apply this method in 

Section (5.5) to the posed adaptive M-robust parameter estimation problem. 
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5.2.3 Review of the QQ-plot Technique 

Let us consider the case of random samples }{ iz   from a distribution )(zF  

having the corresponding probability density function (pdf) )(zf . By ranking the 

samples niz i ,...,1},{ = , we obtain the non-decreasing sequence nizi ,...,1},{ =  such 

that ji yy ≤   for ji < . The probability that some observation y  will have the rank i  in 

the ordered sequence }{ iy  follows directly from the Bernoulli experiment [83], [85], 

ini
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yiP
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= ))(1)((

1

1
)/( 1                                                                          (5.23) 

In this way, the conditional expectation yim /  and the conditional variance 2
/ yiσ   of the 

random variable i  (assuming the observation y), are given by [61]. 

)()1(1}/{/ yFnyiEm yi −+==                                                                          (5.24) 

))(1)(()1(}/(}/{ 222
/ yFyFnyiEyiEyi −−=−=σ                                                      (5.25) 

A plot of the ordered data iy  versus the quantity ))1/()1(()( 11
−−=

−−
niFF iρ  is called 

the QQ plot.  

Also we can write  

ninirnirFFy iiiii ,...,2,1;/)5.0()1/()1();()( 11
=−=≈−−=≈=

−− ρρ                       (5.26) 

Where )(1 ⋅−F  is the inverse of the distribution function )(⋅F , It should be noted that the 

values of rank scores ir   and iρ  are close to each other. However, it is more convenient 

to use ir , since it assigns the finite values )(1
irF

−  to the first and the last sample, 1y  

and
n

y , respectively, in the case of a commonly used Gaussian, Cauchy or Laplace 

distribution )(⋅F . Thus, if the QQ-plot in Equation (5.26) is fairly linear, then it 

indicates that the observations have the same distribution function, )(⋅F  even in the 

tails. Moreover, if the observations iy  are in a strict sense white noise (i.e., they are 

independent and identically distributed (i.i.d.) with the distribution function, )(⋅F  the 

relation equation (5.26) can be expressed in linear regression form 
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iini rmrFmy
~

1 )( σσ +=+=
−                                                                                      (5.27) 

Here, )(⋅nF  is the standard normal distribution generating centralized and normalized 

random variables σ/)(
~

myr ii −=  with a zero-mean and unit variance, while }{yEm =   

and }.){( 22 myE −=σ  

A typical noise record }{ iy , corresponding to the standard Gaussian distribution )(⋅nF , 

with a zero-mean and unit variance, is displayed in Figure (5.1(a)), while Figure (5.1(b)) 

shows the QQ-plot of these normal data. 
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                                 a)                                                                       b)    

Figure 5.1: QQ-Plot of normal data: a) Normal data; b) Normal QQ-Plot 

Starting from equation (5.27) one can estimate the unknown parameters m   andσ , using 

LS algorithm [57-62]. 
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Where the n×2   matrix TΣ  and 1×n  vector Y are defined by 

]...[;
...

1...11
21~~

2

~

1

n

T

n

T
yyyY

rrr
=














=Σ                                                                         (5.29) 

Furthermore, it can be shown that the mean-value estimator, 
∧

m  in equation (5.28), is 

consistent (i.e., that it is unbiased and improves as the number of observations 

increases) [72]. 
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Unfortunately, the noise pdf in equation (5.17) deviates from the assumed Gaussian 

model, being characterized by heavier tails, due to the contamination pdf )(⋅h . As 

mentioned before, the heavy-tailed aspect of the noise is associated with large glint 

spikes, called outliers. A typical heavy-tailed noise record is given in Figure 5.2(a), 

while Figure 5.2(b) shows the normal QQ-plot of this record, based on the standard 

normal distribution, )(⋅nF , in Equation (5.24). 
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                                   a)                                                                   b) 

Figure 5.2: Normal QQ-Plot of contaminated normal data: a) contaminated Gaussian 

data; b) normal QQ-plot. 

Figure 5.2 indicates that the data are non-Gaussian, while the normal QQ-plot shape 

shows that the real data distribution has Gaussian-like middles and heavier tails, as in 

equation (5.17). The outliers generated by the heavy tails of the underlying distribution 

have a considerable influence on the conventional linear LS estimates of the form 

equation (5.28), which are quite non-robust [63]. Thus, there is considerable hope that 

the performance of the estimates equations (5.28), (5.29) can be improved by 

robustifying the QQ-plot procedure in some way. 

5.2.4 A New Adaptive M-robust Recursive Algorithm 

Starting from the M-robust approach in section (5.3), we propose how to apply the 

classical QQ-plot technique from section (5.4), combined with data clustering based on 

a robustified winsorization approach, in order to estimate the unknown noise statistical 

parameters, ε , 2
0σ  and 2σ  in equation (5.17). Then we use these results to design an 

adaptive suboptimal M-robust influence function, instead of the min-max influence 

function in equation (5.17). Finally, the system parameter identification problem 
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equation (5.13) is solved robustly, using the recursive M-robust approach in equations 

(5.19)-(5.21). In order to clarify the presentation, we divided this section in the 

following three subsections. 

• Motivations 

As mentioned above, the ε - contaminated distribution family equation (5.17) is 

extremely important for the field of robust estimation, since it models a number of 

different applications in which there is the sporadic phenomenon of high-intensity 

irregular measurements called outliers [68-71]. Moreover, in this situation, it is 

appropriate for the contaminant )(⋅h  in equation (5.17) to adopt the Gaussian pdf of 

zero mean and variance 2
0σ , which is considerably higher than the nominal one. 

Accordingly, the class of measurement noise pdf’s in equation (5.17) reduces to  

),0(),0()1( 2
0

2 σεσε NNp +−=                                                                          (5.30) 

Which is described with three unknown parameters: contamination degree or intensity 

]1,0[∈ε nominal variance of regular measurement noise, 2σ and outlier variance, 

22
0 σσ >> . The optimal influence function ')]ln([)( p−=⋅Ψ  is determined from the real 

noise pdf in equation (5.30) with known statistical parameters 2,σε  and 2
0σ . 

Thus noise pdf is susceptible to the statistical parameters as well as the optimal 

influence function. In order to illustrate the importance of the statistical parameters 

2,σε and 2
0σ  in the noise model equation (5.30) to the selection of the influence 

function, let us look at Figure 5.3, representing the optimal influence function 

')]ln([)( p−=⋅Ψ based on the ML approach.  
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Figure5.3:  ML influence functions for different statistical parameter values 2,σε  and 

2
0σ  in the noise model Equation (5.30): a) for different nominal variance values 2σ , 
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b) For different contamination intensity valuesε  
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c) For different outlier variance values 2
0σ . 

The following conclusions can be drawn on the basis of the obtained results. Each of the 

given ML functions has a shape with three distinct regions. The first region is the zone 

of low, positive or negative, values of arguments, in which the influence function is 

almost ideally linear. The variance of the nominal normal model 2σ  is exclusively 

responsible for the slope of this linear segment.  

The third region is in charge of the presence of outliers in the structure equation (5.30) 

of measurement noise, and it is also linear, but within the range of intensive residuals of 

huge, positive or negative, values. Moreover, it is evident that the slope of the linear 

segment in this region is a consequence of the outlier variance 2
0σ . Finally, there is 

another region, the transitional zone between the first and the third region, which mostly 

depends on the intensity of contamination, ε  and the variance of the nominal model, 

2σ  while it is quite insensitive to the variance of outliers, 2
0σ . This is a domain in 

which both regular measurements and bad measurements may occur with almost equal 

probability. 
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Keeping this in mind, it becomes clear that some estimation of parameters 2,σε and 2
0σ   

can be valuable in the right choice of a sub-optimal ML-type influence function, which 

would ultimately yield a more efficient estimator equations (5.19)-(5.21) of system 

parameters. A suitable theoretical scope for the estimation of these parameters is the 

QQ-plot approach, as shown in the previous section. 

• Algorithm Description 

Starting from the previous discussion, a complete adaptive robustified parameter 

identification procedure consists of the following steps:  

1. Data clustering using the QQ-plot together with the robust winsorization approach. 

2. LS estimation of unknown statistical parameters of classified regular and irregular 

observations, generated by the Gaussian mixture pdf in equation (5.30). 

3. Estimation of the contamination degree ε  in equation (5.30). 

4. Calculations of the suboptimal M-robust influence function )(⋅Ψ in the parameter 

estimation procedure equations (5.219)-(5.21). 

5. System parameter estimation using the recursive M-robust approach.  

Each of these steps will be described below in more details in the following subsection.  

• Details of the Algorithm Steps 

As denoted in the previous subsection, the proposed algorithm consists of the 

following five steps.  

Step 1: Data Clustering Using a QQ-plot of Robustly Winsorized Data 

The goal of this step is to classify the data within the sliding window (frame) of the 

n  last samples within two classes corresponding to regular data and outliers, 

respectively.  

Let the hypothetic curves jjs α=  and jjs β=   divide the QQ-plot plain into two data 

subsets: the residuals
j

s , that satisfy the regularity condition,  

njs jjj ,...,1, =<< βα                                                                                      (5.31) 
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Belong to the class of regular data points, while the residuals,
j

s  satisfying the 

irregularity conditions, 

jjs α<  jj sor <β , nj ,...,2,1=                                                                            (5.32) 

Belong to the class of bad data points or outliers. This situation is depicted in 

Figure 5.4. However, this procedure corresponds to the nonlinear transformation of 

ordered residuals 
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Figure 5.4: Data classification using a normal QQ-plot of the residual sequence 

generated by the ε -contaminated normal pdf in equation (5.30) with 05.0=ε . 

The nonlinear transformation of data based on equation (5.36) with jjs β−=  is known 

in the literature as winsorization [76]. To choose parameters{ } ,,...,2,1,, niii =βα these 

parameters have to satisfy two requirements  

1.  To maximize the probability of a correct decision that the regular data will be 

classified as valid.  
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2. To minimize the probability of a wrong decision where bad data will be detected as 

valid. 

 In addition, the statistical parameters of regular and irregular samples are not known at 

this time. The final disadvantage can be overdetermined using residual centralization 

and normalization:  

)(/}){( jjjj sstdsEss −⇐                                                                                      (5.34) 

Where )(⋅std  is the standard deviation and }{⋅E  denotes the mathematical expectation. 

Here iα  and iβ can be selected so that the probability mass in the regular region 

),( ii βα  is equal to a pre-specified limit p , which determines the desired efficiency 

under the nominal Gaussian model in equation (5.34). In this way, iα  and iβ  have to 

satisfy the relation 

( )/ ( / ) ( / )
j

j
j j j j

f s j ds F j F j p
β

α
β α= − =∫                                                   (5.35) 

Where ( )/
j

f s j  is the conditional pdf of the residual 
j

s  given its rank, j, in the ordered 

centralized and normalized sequence { }, 1, 2,...,
j

s j n=
 

equation (5.34).This pdf is 

expressed by the Bayesian formula [73],[75]. 
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Where ( )n
f ⋅  and ( )n

F ⋅  are zero-mean standard normal pdf and probability distribution 

functions, with unit variance, respectively, while ( ) 1/P j n= . Figure 5.5 depicts the a 

posteriori pdf’s, ( )/ , 1,...,f s j j n= , in equation (5.38)for the window size 25n = , 

While Figure 5.6 shows the corresponding conditional expectations /s j
m and the 

conditional variances 2
/s j

σ  respectively.  
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Figure 5.5: Conditional pdf ( )/f y i  of the random observation i  assuming its ith
 rank 

in the ordered sequence ( )1,2,..., 25i = . 
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                          a)                                                                b) 

Figure 5.6: Conditional expectations: a) conditional mean; and b) conditional variance. 

Obviously, although the a priori pdf, ( )f s  is zero-mean and symmetric, the a posteriori 

pdf’s, ( )/f s j , have no such properties, except for the rank ( )1 / 2j n= + .  

The choice of parameter p in equation (5.35) is very important, since too-large p  

increases the probability of false alarm (i.e., the probability that the outlier will be 
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detected as a regular observation), while too-small p  increases the probability of false 

detection (i.e., the probability that a valid observation will be detected as a bad one). 

Based on equation (5.35), one may conclude that the parameter p  controls the trade-off 

between the degree of robustness and performance degradation under a nominal normal 

distribution. Regarding the structure of the noise distribution in equation (5.30), the 

value of p  is related to the contamination degree, ε  where the smaller the value of ε , 

the greater value of p  , and vice versa. However, ε is not known in advance and one 

has to adopt p , a priori. A reasonable choice is to select p  from the interval [0.9-0.99]. 

In general, equation (5.35) does not define two parameters uniquely, so we need an 

additional criterion. Similarly, as in detection theory, the natural requirement is to 

minimize the probability of false alarm (i.e., the probability of classifying the outliers as 

valid observations, if it has rank j  in the ordered sequence, , 1,...,js j n=  in equation 

(5.34) which is given by: 

( )
j

j

j

err o j jP f s j ds
β

α
= ∫                                                                                                  (5.37) 

Where ( )o j
f s j  is the conditional pdf of outliers, with that in mind, and since the 

variance of the outlier is rather large, the integral in equation (5.37) can be 

approximated by the mean-value theorem from mathematical analysis [88], yielding:  

( ) .j

err j j
P constβ α≈ − ×                                                                                      (5.38) 

Thus, the condition of minimizing the probability of wrong classification reduces to the 

minimization of distance ( ),
j j j j

D D α β β α= = − . In other words, we suggest that the 

solution to equation (5.35) be found under the constraint that the distance D is minimal. 

In this way, the most probable observations (i.e., the observations which are not 

outliers), will propagate untruncated through the nonlinearity equation (5.33). Thus 

taking into account equation (5.35) and definition of D, the posed problem reduces to 

the minimization task:  

( ) ( ) ( )( )1arg min ; / /
j j j

J J F p F j j
β

β β β β β−= = − − +                          (5.39) 

( )( )1 / / ; 1, 2,...,j jF p F j j j nα β−
= − + =                                                              (5.40) 
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Where ( )/F j⋅  and ( )1 /F j
−

⋅  are the conditional distribution and its inverse function, 

respectively. The minimization problem equation (5.39) is nonlinear and iterative 

methods are required to solve it. The outputs of the classification procedures equations 

(5.31), (5.32), (5.39) and (5.40) are subsets: the subset of regular observations 

, 1,...,r

j rs j n=  and the subset of bad data or outliers , 1,...o

j os j n= . 

Step 2: Estimation of Statistical Parameters of Regular and Bad Data Samples  

Since the residual samples are classified into two classes, representing regular and bad 

data points, one can estimate the statistical parameters, mean value and variance, for 

each of these classes from observations, using the nonrecursive LS method equation 

(5.28), equation (5.29). This procedure is presented in Figure 5.7. 
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Figure 5.7: Data classification and QQ-plot representation of the classes 

Where the resulting QQ-plot corresponding to mixed data in Figures 5.2 and Figures 5.4 

is divided into two linear normal QQ-plots, representing the classes of regular and 

irregular data points respectively, it should be noted that this step needs the original 

non-normalized data to be used. Thus, by applying the LS algorithm equations (5.28), 

(5.29) on the observations within the classes, one obtains: 
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           (5.42) 

Here ( )1
i n ir F r

−
=� , ( )0.5 /ir i n= − 1,2,...,i n=  where i  is the rank of the observation 

within the pre-specified data frame of size n , while ( )nF ⋅  is the standard normal 
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distribution. Moreover, , 1,...,r

i r
s i n=  denotes the ordered observations within the first 

class of regular data, while , 1,...,o

i o
s i n=  represents the ordered data within the second 

class of bad data or outliers.  

Step 3:  Estimation of Contamination Degree 

The estimation of the contamination degree or intensity ε  in equation (5.30) is 

given by [73]  

ˆ ;o
o r

n
n n n

n
ε = = +

               
                                                                                      (5.43) 

Where r
n   the number of regular observations within the first class and o

n  is the 

number of outliers within the second class. However, the quality of this estimate may be 

poor, due to the residual samples near the limiting lines 
j

α  and 
j

β  that is, 

or
j j j j

s sα β≈ ≈ , can be classified incorrectly with high probability. Therefore, we 

suggest the following iterative procedure for estimating the parameterε , which 

originated from the ML-based classification [74]. 

( ) ( ) ( )
1

1
ˆ

n
l l

j

j

q s
n

ε
=

= ∑                                                                                                  (5.44) 

( ) ( )
( ) ( )

( )( ) ( ) ( ) ( )
1

ˆ
; 0,1, 2,...; 1, 2,...,

ˆ1

l

o jl

j l l

r j o j

f s
q s l j n

f s f s

ε

ε ε

+
= = =

− +

 

             (5.45) 

Where ( )r
f ⋅  is the normal pdf with mean ˆ

r
m  and variance 2ˆ

r
σ , while ( )o

f ⋅  is also a 

normal pdf but with the mean value ˆ
o

m  and variance 2ˆ
o

σ . The counter l  represents the 

iteration. The procedure will be repeated until the relative difference between the new 

and the preceding estimate is relatively small (usually 310− ). The required statistical 

parameters are generated in Step 2. The estimate equation (5.43) can be used as the 

initial guess ( )0
ε̂ .  

Step 4: Calculation of the Suboptimal M-robust Influence Function 

The estimated noise parameters ˆ
o

σ , ˆ
r

σ and ε̂  allow for the estimation of the 

Gaussian mixture pdf in equation (5.30) 
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( ) ( ) ( ) ( )2 2ˆ ˆˆ ˆ ˆ ˆ ˆ1 , ,
r r o o

p N m N mε σ ε σ⋅ = − ⋅ + ⋅                                                              (5.46) 

And consequently, the design of the suboptimal ML influence function becomes:  

( ) ( )( )
'ˆ ˆln p Ψ ⋅ = − ⋅                      

                                                                         (5.47) 

Step 5: Estimation of System Parameters 

The suboptimal M-robust influence function from Step 4 is now applied to estimate 

system parameters robustly using the recursive M-robust algorithm equations (5.19)-

(5.21).The structure of the complete algorithm is given by a flow chart Figure 5.8. 
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Figure 5.8: Flow chart of adaptive M-robust parameter identification scheme (ARA 

algorithm) 
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5.3 Description of the Case Study (Steam Separator) and Identification Procedure 

5.3.1 Overview 

This chapter presents a fault detection and identification approach for steam generators 

at thermal power plants. The real system in which the measurements were made and the 

FDI algorithm implemented is located at the TEKO B1 Unit of the Kostolac Thermal 

Power Plant in Serbia, whose nominal power output is 320 MW.  

Given the nature of the process and available data, the implemented FDI algorithm is a 

trade-off of sorts between the model-based and the data-driven approach. The first step 

involved the identification of the process. In view of the nature of water level 

measurements in a separator and the fact that such measurements are conducted under 

extremely high steam pressures, accompanied by constant unsteady water inflow and 

steam drain, available water level data are highly unreliable and there is a sporadic 

presence of high-intensity measurement noise [75]. As a consequence, standard process 

identification procedures have been shown not to yield satisfactory results and this 

chapter therefore proposes a robust alternative to parameter estimation. 

 The next step included statistical testing of the hypotheses, not using the measured data 

vector but the parameter vector derived from a robust identification procedure. The 

results demonstrated exceptional detection and isolation efficiency of one of the three 

possible and most frequent faults which were analyzed. 

5.3.2 System Description and Data Acquisition 

Thermal power plants are the largest generators of electricity in Serbia, contributing 

more than 65% to the overall power supply. As such, their operational efficiency and 

stability needs to be maximized. Special emphasis is placed on reliable long-term 

operation in terms of negotiated delivery commitments, operation per design criteria for 

energy efficiency, and longevity of the facility.  

 It is, therefore, extremely important to monitor vital subsystems and their individual 

components, such that early detection of any change in characteristics, or faults, will 

prevent accidents, down time, and substantial financial loss. The chapter addresses 

steam drums in thermal power plant boilers [76]. A boiler is a unit in which the 

chemical energy of fossil fuel is converted into heat energy of steam as described in 
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chapter four.  The steam separator is cylindrical, 24m high, with a diameter of 0:9 m. 

One of the requirements of the process is that the water level in the steam separator be 

maintained at a height of 8 m.  

This requirement is fulfilled by the system operating in a closed loop, where a cascaded 

PID regulator, based on a fault signal (difference between the required and the measured 

water level) generates a control signal for feedwater pump discharge. Given the high 

rate of discharge of the feedwater pumps in the nominal mode (up to 350 kg=s) and the 

small cross-sectional area of the steam separator, the water level is a highly dynamic 

physical quantity such that operators do not allow even short-term open loop operation. 

In other words, all the signals were acquired and the system identified in a closed loop.  

Figure 5.9 shows that regardless of control, the water level clearly fluctuates relative to 

the required reference level. These fluctuations are the consequence of multiple causes. 

The first cause is the variable heat load of the boiler, as a result of the varying caloric 

value of the coal. The second reason for the noticeable water level fluctuations relative 

to the reference level is the pronounced nonlinearity of the dead zone type, including 

hysteresis in the behavior of the feedwater pumps. Ultimately, large-variance 

measurement noise is apparent in Figure 5.9. 

 Noise originates from sudden evaporation and the appearance of large steam bubbles 

inside the vessel, which rapidly separate of the surface and create a pressure 

disturbance. As a result, the surface of the water is itself highly dynamic. However, 

regardless of the fact that these causes reduce separator water level control performance, 

the water level fluctuations inside the drum are a result of discrete actuator position 

changes. Thereby, they are the reason for variable water flow from the pumps, ensuring 

the persistent excitation needed for efficient process identification. 
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Figure 5.9: Measured (blue) and estimated (red) water levels, fault-free mode over a 

period of four hours. 

In this subsystem, the most important measurements are those of feedwater flow and of 

steam flow at the steam drum outlet, as well as of water levels. These three physical 

quantities are measured indirectly, via corresponding differential pressures. Water flow 

and steam flow are measured by pressure transmitters (SIEMENS SITRANS 

PDSIII7MF4533) whose measurement range is 0 − 500mbar, with an accuracy of 

0:075% and they are located on the apertures.  

The water level in the steam separator is measured by differential pressure gauges of the 

SIEMENS SITRANS PDSIII7MF4433 type, whose measurement range is 0−1570mbar 

and the accuracy is the same as above. Sensor failure due to ageing is rather frequent 

but this must not affect operational stability. Such situations can be prevented by timely 

replacement, provided that any change in characteristics is detected on time. 

 The most frequent faults of this subsystem are erroneous water level or flow 

measurements where the error is multiplicative (i.e., the measurement is scaled). Such 

faults are the hardest to detect and are virtually undetectable by simple methods which 

only check limits. These occurrences are often a result of sensor design, or of physical 

alterations of the Venturi tube apertures. The faults examined in this research are those 

of the water level sensor, steam flow sensor and feedwater flow sensor.  
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These faults were selected based on experience, because they are the most frequent 

faults in a steam separation system. At the thermal power plant where the tests were 

conducted, the steam separator water level was determined indirectly, by measuring the 

pressure at the bottom of the separator, while the fresh steam flow and feedwater flow 

sensors were based on the principle of determining the flow rate by measuring the 

pressure difference at the measuring aperture.  In view of the conditions in which these 

sensors operate (e.g. high pressures, sedimentation of substances and erosion of 

material), they need to be calibrated relatively frequently. 

 Periodic calibration is rather complex and extremely costly, particularly of the steam 

flow sensor, and it requires the production process to be shut down. Therefore, 

calibration is generally not undertakenas often as necessary. On the other hand, contrary 

to some other sensors which upon failure generate a frozen value or limit values from 

the range, these sensor faults are not readily apparent. Namely, these sensors errors of 

the multiplicative type occur as a result of measurement performance degradation. Such 

errors are the most difficult to discern because they are not characterized by abrupt 

changes in the measurement error and that is why the research results reported in this 

paper are deemed to be of significance for industrial applications. 

5.3.3 Process Modeling and Model Validation 

The analyzed industrial plant of steam separator is highly complex, the processes which 

take place are non-linear, the water steam boundary is not clear because the drum 

contains a mixture of water and steam in a diphasic state, and the steam quality and 

steam pressure affect the water level.However, given the ultimate goal (an efficient 

method for fault detection and isolation), we attempted to plausibly  describe the 

process using a simple linear model with two inputs and one output, and to apply the 

model to detect and isolate sensor faults. 

Given that the water level in the steam drum depends on the water flow to the drum and 

the steam flow from the drum and since an integrating effect is inherent in the process, 

the following discrete separator model in the form of discrete transfer functions is 

proposed 

)(
)(

)(
)(

)(

)(
)( 21 Zf

zA

zB
zf

zA

zB
zY OUTIN +=∆                                                                       (5.48) 
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In equation (5.8) z  is the complex variable of the Z-transformation, Y∆  is the steam-

drum water level increment, INf is the water flow to the steam drum, and OUTf is the 

steam flow at the outlet, while the corresponding model polynomials are defined as 

n

iniii

n

n

zbzbzbzB

zazazazA

−−−

−−−

+++=

++++=

...)(

...1)(
2

2
1

1

2
2

1
1                                                                           (5.49) 

where n  is the model order and 2,1=i . 

Let us consider a linear, time-varible, discrete-time system, which can be represented by 
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Where )}(),({ 21 iuiu  are the system inputs sequence, )(iy is the system output sequence, 

)(iξ is the noise. 

Equation (5.50) can be written as equation (5.11). 

Where the regression vector is defined as 

)]()...1()()...1()()...1([)( 2211 niuiuniuiuniyiyiZ T −−−−−−−−=  

and the unknown parameters vector is ].........[ 2211111 nnn

T
bbbbaa=Θ .                                        

To identify the process, the robust recursive identification method defined by relations 

equations (5.18)-(22) was used [79], [80]. Robustness is ensured by the introduction of 

an influence function of the Huber type Equation (5.18), and parameter k affects robust 

estimation efficiency and its value is generally taken to be 42.1=k , resulting in 95% 

efficiency. The measurement noise variance 2σ  is generally unknown, so that its ad hoc 

robust estimate, based on a series of most recent measurements
i

y , is expressed in 

equation (5.22) [84-86]. 

 Since the measurement noise variance estimation procedure defined by equation (5.22) 

is implemented periodically in a measurement window of suitable length, such an 

identification approach is adaptive and can successfully monitor the time-varying 

properties of the process. Identification takes place in real time, based on data from the 

closed-loop process. Special attention was devoted to the selection of the model order n 
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in equation (5.49) .The Akaike criterion [16], [21] was used to select the appropriate 

model order n:  
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Where N  is the number of samples, and  nd 3=  is the number of model parameters.  

The measurement data used for this analysis were collected over a period of 24 hours 

during which there were no faults, and the entire identification procedure was repeated 

for different values of the model order 9,...,1=n . Figure 5.10 shows how the AIC  

criterion function varied for each of the chosen model orders n [87]. 

From figure 5.10, the minimal model order which adequately describes the system 

is 3=n . A higher model order n would result in higher model accuracy, but the number 

of model parameters d would increase.  
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Figure5.10: Akaike criterion vs. model order n. 

After adopting the adequate model order, the proposed robust procedure was applied 

and Figure5.9 shows estimated and measured water levels in a fault-free scenario, over 

a period of 4 hours. The signal sampling period is 1 s. The estimated steam-drum water 

level closely follows the measured water level and thus validates the proposed 

procedure and the adopted model. It follows that the parameters of the process were 

successfully identified, such that it was possible to describe the condition of the system 



 124 

based on parameter movement. Figure5.11 shows a comparative analysis of the 

proposed adaptive robust algorithm (ARA) and the conventional recursive least-squares 

algorithm (rLS), using the movement of model (1) parameters over time. The 

contribution of robust estimation is apparent in the graphics, in that the occurrence of 

pulse noise does not have a significant disturbing effect like it does in the conventional 

recursive least-squares method. A common technique was used to validate the model; it 

is based on analysis of the autocorrelation function of the measurement residuals and 

the cross-correlation function between the input signals and residuals. Figure5.12 

contains the respective plots which show that the normalized plot of the auto-correlation 

function is very similar to the Dirac function, with extremely low values (less than 0.07) 

for non-zero arguments. The normalized cross-correlation function (normalized with 

respect to the corresponding standard deviations) also features extremely low intensities 

for all time arguments Figure5.13. 

 

Figure5.11: Movement of estimated parameters in the nominal mode: proposed method 

(blue) and conventional recursive least-squares method (red). 
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Figure 5.12: Autocorrelation function of the measurement residuals 
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Figure 5.13: The normalized cross-correlation function of the input signals and 

measurement residuals 

Figure 5.14 shows the movement of estimated parameters under the scenario where the 

steam-drum water level sensor is faulty and there is an error of the multiplicative type 

(i.e., the measurement shows only a certain percentage of the real value). The fault 

occurs in the middle of the interval shown. This type of fault is the hardest to detect 

given that measurements are within the permissible signal range [87].  

The control system acts on the basis of a bad measurement and there is a higher 

probability that the actual water level might drop below the set limit. Based on the 

movement of the parameters of the identified system, of which there are nine, it is 

difficult to decide exactly when the fault occurred through analysis of a single 

parameter. Instead, a dimension reduction method needs to be applied, to ultimately 

detect the fault. The details of these procedures are discussed in the next section 
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Figure 5.14: Movement of estimated system parameters when feedwater flow 

measurement fails at t=30000s 

5.4 Fault Detection Based On Parametric Process Identification Parameters 

The previous section contains a detailed description of the system and its most 

significant potential faults. First the proposed robust adaptive identification of the 

system was conducted for each of these faults, as well as for the nominal operating 

mode of the system, and then, using this identification, system model parameters were 

estimated for each of the scenarios. Since the adopted system model is of the third 

order, the number of derived parameters is nine. Given that a data classification method 

was used for fault detection, special attention needs to be paid to the parameters which 

are representative in terms of apparent post-fault behavioral changes. It is easy to tell 

that not all parameters are equally informative, so dimension reduction, from nine to 

two parameters ),( 21 YY and classifier selection and design are proposed. 
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5.4.1 Dimension Reduction 

In pattern classification, dimension reduction is often unavoidable. Namely, it is not 

uncommon for a process to be described by a large number of parameters, where not all 

parameters are of equal informative value, such that it is possible to describe the 

behavior of the process well enough using a smaller set of parameters. Numerous 

dimension reduction techniques have been developed, which largely seek out suitable 

transformation matrices mnA × , where n  is the initial vector dimension, and m is the 

desired dimension )( nm < that will allow for appropriate projection 

11 ××× = n

T

mnm XAY                                                                                                            (5.52) 

Of the initial measurement vectors X (in the present case this is the parameter vector of 

the identified model) onto reduced-dimension vectorsY  , which need not have a 

physical meaning in the general case. Therefore, the major task now is summarized as 

follows. Given a number of features, how can one select the most important of them so 

as to reduce their number and at the same time retain as much as possible of their class 

discriminatory information? The procedure is known as feature selection or reduction 

[28]. There are many types dimension reduction methods, The Discrete Karhunen-

Loeve Expansion and scattering matrices were selected and described and used the data 

to choose which the best for the work. 

I. The Discrete Karhunen-Loeve Expansion 

Let X be an n-dimensional random vector. Then, X  can be represented without 

error by the summation of n linearly independent vectors as 

∑
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Where 

]...[ 1 nφφ=Φ                                                                                                       (5.54) 

And 

]...[ 1 nyyY =                                                                                                       (5.55) 
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The matrix Φ is deterministic and is made up of n linearly independent column vectors. 

Thus, 

0≠Φ  

We may assume that the columns of Φ  form an orthonormal set, that is, 
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We may call iφ  the ith feature or feature vector, and iy the ith component of the sample 

in the feature (or mapped) space. 

Suppose that we choose only )( nm < of iφ and that we still want, at least, to approximate 

X  well. We can do this by replacing those components ofY , which we do not 

calculate, with preselected constants and form the following approximation 
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The resulting representation error is 
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Note that both X  and X∆  are random vectors. We will use the mean-square magnitude 

of X∆  as a criterion to measure the effectiveness of the subset of m features. We have 
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The optimum choice for ib , is obtained by minimizing )(
2

m
−

ε with respect to ib , as 

follows: 
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Solving (5.60) for ib , 
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Now, the mean-square error can be written as 
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We shall show that the optimum choice for the Si

,
φ is those which satisfy 

iiiX φλφ =Σ                                                                                                                  (5.63) 

That is, the eigenvectors of XΣ .Thus, inserting equation (5.63) into equation (5.62), and 

the minimum mean-square error becomes 
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The expansion of a random vector in the eigenvectors of the covariance matrix is called 

the discrete version of the Karhunen-Loeve (K-L) expansion. 

In the context of pattern recognition, the coefficients nyy ,...,1 in the expansion are 

viewed as feature values representing the observed vector X in the feature space. The 

feature space has several attractive properties which we can list [21]. 

1. The effectiveness of each feature, in terms of representing X , is determined by its 

corresponding eigenvalue. If a feature, say iφ , is deleted, the mean-square error 

increases by iλ . Therefore, the feature with the smallest eigenvalue should be deleted 

first, and so on. If the eigenvalues are indexed as 0.........21 ≥≥≥≥ nλλλ  (Ascending 

Order), the features should be ordered in the same manner. 

 The feature values are mutually uncorrelated, that is, the covariance matrix of Y  is 

diagonal. This follows since 
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2. The set of m eigenvectors of XΣ . Which correspond to the m largest eigenvalues, 

minimizes )(
2

m
−

ε over all choices of m orthonormal basis vectors. 
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And transformation matrix is 

mnm *1 ]...[ φφ=Α                                                                                                  (5.67) 

Then, reduced-dimension vectors are  

1**1* n

T

mnm XY Α=                                                                                                            (5.68) 

The fault detection and isolation method presented above was applied in the previously 

described steam separator system. Relevant signals (water level, water flow and steam 

flow) were recorded over long time intervals to identify the system in all four operating 

modes (nominal mode and three sensor fault modes).  

For each of these modes, the identification procedure was repeated for N=500 different 

measurement sequences such that each of the four classes is represented by N=500 nine-

dimensional parameter vectors. K-L expansion is used to reduce dimensions, from the 

initial dimensions n=9 to the reduced dimensions m=2.As a result, the following, figure 

5.15 represents two-dimensional (2D) space.  
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Figure 5.15: dimension reduction based on K-L expansion 

The purpose of this result is whether there are separation between nominal mode and 

three sensor fault mode. The figure shows that are no separation between nominal mode 

and three sensor fault mode (they are interfere with each other). The conclusion is that, 

this method is not valid of this work. The next is scattering matrices method. 

II. Scattering Matrices and Separability Criteria 

We should aim to select features leading to large between-class distance and 

small within-class variance in the feature vector space. This means that features should 

take distant values in the different classes and closely located values in the same class. 

In discriminant analysis of statistics, within-class, between-class, and mixture scatter 

matrices are used to formulate criteria of class separability. 

 A within-class scatter matrix shows the scatter of samples around their respective class 

expected vectors, and is expressed by 
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Where iP  the a priori probability of class
i

ω , that is
N

n
P i

i ≅ , where in  is the number of 

samples in class iω , out of a total of N samples [28]. 

On the other hand, a between-class scatter matrix is the scatter of the expected vectors 

around the mixture mean as 

∑
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Where 0M represents the expected vector of the mixture distribution and is given by 
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The mixture scatter matrix is the covariance matrix of all samples regardless of their 

class assignments, and is defined by 
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The covariance matrix of X  equal 

bwmwX
SSSS

11 −−
≈=Σ                                                                                                (5.73) 

We apply the same properties as in the Karhunen-Loeve (K-L) expansion to get 

transformation matrix Α   and reduced-dimension vectors 1*mY  [88].    

The following figure shows the current mode represented by a point in two-dimensional 

(2D) space Y1-Y2 for (nominal mode and three sensor fault modes) by using Scattering 

Matrices method. 
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Figure 5.16: Two dimensional representation of the healthy/faulty operating mode 

From the figure, we got that, dimension reduction from the initial dimensions n = 9 to 

the reduced dimensions m = 2 parameters and the separations between nominal mode 

and three sensor fault modes are obvious. From this result, we conclude that this method 

is the appropriate method for our work.  

The next step of the proposed approach is the selection and design of classifiers, which 

the vector of reduced dimension Y  will assign to one of four classes. Class 0H  will 

denote the nominal operating mode, 1H  the water-level sensor fault mode, 2H  the 

water flow meter fault mode, and 3H the steam flow meter fault mode. 

5.4.2 Classifier Selection and Design 

Pattern classification (recognition) methods are widely used for fault detection 

and isolation. The statistical pattern recognition theory offers a wide spectrum of 

possible solutions which may be grouped into classifiers based on hypotheses testing as 

described in chapter three. Each of these approaches has its advantages and shortfalls. 

 Given the nature of the problem addressed in this work where one fault is often more 

important than another. Namely, it is especially important to detect a fault upon 

occurrence and not to classify a data sample belonging to a fault mode as a data sample 

of the nominal mode (the classification of a nominal-mode data as a fault-mode data has 
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less serious consequences). So if we select the first Pattern classification method (the 

Bayes decision rule for minimum error) in chapter three, here this classifier is designed 

to minimize the probability of error (the Bayes error 2211 εεε PP += ). 1ε  The probability 

of error of the first type, concerns the probability that a sample which belongs to the 

first class will be assigned to the second class, and vice-versa for the probability of error 

of the second type 2ε , so this pattern classification method Inappropriate of this 

situation. 

Then, the best Pattern classification method is appropriated of this situation is the 

Neyman-Pearson test. The Neyman-Pearson test requires that the probability of a false 

alarm is set at a given value 02 εε = , minimizing the likelihood of misclassification as 

described in chapter three (section 3.2.3). In practical applications, this threshold is 

selected by generating a graphic of )(00 µεε = , from which, given that 0ε  is a 

monotonously increasing function of parameter µ , a corresponding value of this 

parameter can easily be estimated for the desired error probability 2ε  [89].  

5.5 Statistical Change Detection and Isolation 

Scattering matrices method was used to reduce dimensions, from the initial dimensions 

n=9 to the reduced dimensions m=2. As a result, the current mode can be represented 

by a point in two-dimensional (2D) space Y1-Y2. Given that the original form of the 

Neyman-Pearson (NP) classifier was defined for two classes, and since our case 

involves four operating modes, three independent classifiers were designed to 

discriminate, in parallel, between the nominal mode and each of the fault modes. 

 As previously stated, when such a decision-making method is applied, more emphasis 

is placed on the probability of error of the first type (i.e. the probability of 

misclassification). Consequently, the probability of error of the second type 2ε  is 

specified as constant and, under such conditions, the probability of error of the first type 

is minimized. To design an NP classifier, probability density functions of the derived 

classes need to be estimated. For each of the classes, Gaussian distribution was assumed 

for dimension reduction and the mean vector and covariance matrix were estimated 

accordingly. This yielded a probability density function for each of the classes, keeping 

in mind the expression for the 2D Gaussian distribution written as 
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Three Neyman-Pearson classifiers were designed, which distinguish the nominal mode 

from each of the three fault modes [99]. Thanks to class statistics, in terms of their 

mutual positions in the Y1-Y2 plane, it is apparent that in this specific case the 

probability of error of the first and second type is equal to zero (i.e. that the classifiers 

separate classes with no misclassified data points). 

 Figure 5.17 shows 2D points for 2000 different modes generated by the dimension 

reduction procedure (500 for each of the classes), together with the designed classifiers 

for four different probabilities }20,15,10,5{[%]0 ∈ε .  
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Figure 5.17: Neyman-Pearson Classifier 

Figure 5.17 may be misinterpreted as showing that the selection of parameter 0ε  is not 

of key importance and that ideal classifiers, which classify with a zero error probability, 

are derived for a wide range of these values. However, analyses of transient states, 

immediately following a fault, show that a point in 2D space Y1-Y2 gradually moves 

from the nominal mode cluster to a fault mode cluster, and then the selection of the 

value of 0ε , or the position of the classification line, has a direct impact on classifier 
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delay in fault detection. To illustrate this phenomenon, Figure 5.18 shows the transition 

of the reduced vector from the nominal mode class to the steam flow meter fault class. 

The same figure also depicts the classification lines of the NP classifiers, which indicate 

that a lower probability of false alarm results in a larger time delay.  

0 1 2 3 4 5 6 7 8 9

-4

-2

0

2

4

Y(1)

Y
(2

)

10-4

10-5

 

 Figure 5.18: Parameter movement when there is a fault of the third type 

For classifier design purposes, it is extremely important to interview the operator of the 

process to find out what an acceptable fault detection time delay would be. Delays 

which are too long do not leave enough time for the operator to react and prevent 

malfunction or even considerable damage to the plant. In the considered case, the 

physical quantities (such as the water level in the steam separator) are highly dynamic 

and the operator needs to respond quickly.  

For example, at maximum feedwater pump loads, the water level could rise from the 

minimal 0m to the maximal 24m in some 80 seconds. As such, the 15s fault detection 

delay is acceptable for this type of process. Figure 5.20, which depicts a steam flow 

sensor fault, shows that this time delay results in the probability of false alarm of 0.94%, 

based on which the appropriate threshold in test, equation (3.30) can be calculated. The 

implementation of this approach in a real system showed that the mean time between 

two false alarms of more than 4.5 hours was considerably longer than the theoretical 

time. 
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Figure 5.19:  Required decision-making time vs. parameter µ  

This fault detection and isolation approach, implemented in a real steam separation 

system at the TEKO B1 Unit of the Kostolac Thermal Power Plant, significantly 

increased the availability and safety of the entire system and extended the average time 

of trouble-free operation, given that failure of the water-and-steam circuit is one of the 

most frequent causes of downtime. 
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The FDI system is important topic in the modern control system design. During the last 

three decades, excessive work has been exerted in the field of FDI system. A robust FDI 

system is necessary to increase the overall system dependability [100]. A more 

dependable system is the system that has the ability to prevent faults from developing 

into failures at a subsystem or plant level.Designing Robust Adaptive Parameter 

Identification of steam separator parameters and fault detection based on these 

parameters are the main aspects of this work. 

The first part of the thesis, Chapter 2 has been devoted to introduce some indispensable 

concepts inherent the model based FDI.  The concepts of structural fault detectability, 

isolability and identifiability were reviewed to describe the structural property of a 

system from the FDI point of view. Furthermore, approaches to fault detection and 

diagnosis for model-free fault detection methods and model-based fault detection 

methods have been discussed. The main methods for residual generation and fault 

detection have been described with particular attention to parameter estimation. 

Chapter 3 provides an overview of pattern recognition definition. Bayesian 

classification has been discussed; particular attention has been given to the Neyman - 

Pearson test that the error of one type is incomparably more serious with significant 

consequences and therefore its probability is minimize 1ε , while the probability of the 

error of the second, less important type, is adopted as a constant 2ε .  

 In order to be useful for FDI purpose, in this chapter focus on parametric classifier that 

design classifiers do not based on probability density or probability functions. The 

chapter gives an explanation of some methods used for statistical density estimation. 

The common methods are the histogram, the Kernel Density estimate and the k-nearest 

neighbor-density estimate. 

In Chapter 4, Fuel and Furnace Section of thermal power plant were presented, 

including coal conveyor, stoker and pulverizer. The second section is boiler and steam  

section, involving classification of boilers, superheater, reheater, economizer, condenser 

and air path. The next section is steam turbine  section, by means of the steam turbine  

part the thermal energy from steam under pressure is converted into rotary motion, or 

mechanical work. Also stack gas path and cleanup and cooling towers have been 

described. 
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In Chapter 5, some definitions that used in the chapter were described. This chapter 

presents fault detection and isolation approach specifically designed for steam drums at 

the TEKO B1 Unit of the Kostolac Thermal power plant in Serbia, whose nominal 

power output, is 320MW.  

Summarizing the conclusions if is possible to list the relevant contributions of the 

thesis: 

1. Robust version of recursive identification was designed, which was proven to be 

rather insensitive to the presence of outliers. 

2. The parameter vectors of the identified model were classified. In this step, the 

dimension of the initial parameter vector is reduced to 2D space, allowing the operating 

mode of the plant to be represented as a planar point at any given time. Three possible 

fault modes are analyzed in addition to the nominal mode, resulting in four separable 

clusters in 2D space. 

3. The selection and design of classifiers was carried out. A suitable selection is the 

Neyman-Pearson hypotheses test, demonstrating the need for a trade-off between the 

probability of false alarm and the time delay between fault occurrence and detection.  

Design a robust version of recursive identification has been presented in this thesis. 

However, it would be interesting to carry out the identification of the process using 

robust parity equation in the future work. 
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