Александар Н. Арсенијевић

ЗНАЧАЈ ЕКСПРЕСИЈЕ ГАЛЕКТИНА-3 У ПАТОГЕНЕЗИ ПРИМАРНОГ БИЛИЈАРНОГ ХОЛАНГИТИСА КОД МИШЕВА

ДОКТОРСКА ДИСЕРТАЦИЈА

Ментор: проф. др Марија Миловановић

КРАГУЈЕВАЦ 2017
Добро које добијаш од људи је појединацно, насупрот злу које је увек опште.
Често то Добро не можеш да узвратиш, али оно не сме остати сахрањено у теби.
Обавезан си да то Добро неокрњено сачуваш и поклониш ономе коме и кад буде тробало.
То је зато, јер се доброта тешко умножава-форцпсом, а зло лако и брзо-партеногенезом.
Велико Добро у току израде ове дисертације примио сам од:
Проф. др Марије Миловановић, мој пожртвованог и племенитог ментора,
Проф. др емеритуса Миодрага Лукића, супервизора овог као и других наших истраживања,
асс. др Јелене Миловановић и асс. др Бојане Стојановић мојих пријатеља и лабораторијских сапатника.

Посвећујем оцу.
Садржај
1. УВОД ... 7

1.1 ... Примарни билијарни холангитис 7

1.1.1 Клиничке одлике примарног билијарног холангитиса ... 8
1.1.2 Дијагностички серумски параметри .. 10
1.1.3 Хистопатолошки налаз .. 10
1.1.4 Епидемиологија ... 10
1.1.5 Етиологија РВС-а ... 11
 1.1.5.1 Генски фактори .. 11
1.1.6 Билијарне епителне ћелије .. 13
1.1.7 Имунски одговор у примарном билијарном холангитису .. 15
1.1.8 Иницијација примарног билијарног холангитиса ... 16
1.1.9 Анимални модели РВС ... 18
 1.1.9.1 Генски модификовани мишеви ... 18
 1.1.9.2 РВС индукиран имунизацијом ксенобиотицима .. 21
 1.1.9.3 Модел РВС индукиран инфекцијом бактеријом Novosphingobium aromaticivorans ... 21

1.2 Структура и класификација галектинских молекула ... 24

1.2.1 Експресија и функција галектина .. 25
1.2.2 Структура галектина-3 .. 27
1.2.3 Улога галектина-3 у контроли биолошких процеса ... 28
 1.2.3.1 Улога Gal-3 у регулацији ћелијског раста ... 29
 1.2.3.2 Регулација апоптозе .. 30
 1.2.3.3 Регулација ћелијског циклуса ... 30
 1.2.3.4 Улога и значај галектина-3 у регулацији инфламацијског и имунског одговора 31
 1.2.3.5 Улога Gal-3 у атхезији и хемотакси .. 31
 1.2.3.6 Утицај Gal-3 на функције ћелија имунског система ... 32
1.2.4 Експресија галектина-3 у јетри ... 33

2. ЦИЉ РАДА .. 34

3. МАТЕРИЈАЛ И МЕТОДЕ ... 36

3.1. Лабораторијске животиње .. 36
 3.1.1. Поступак добијања C57BL/6 мишеви са циљаном делецијом гена за галектин-3 36

3.2. Индуција примарног билијарног холангитиса и детекција аутоантитела 38
3.3. Апликација Gal-3INH .. 39
3.4. Хистолошка анализа ткива јетре ... 39
 3.4.1. Бојење хематоксилином и еозином .. 40
 3.4.2. Бојење хистолошких препарата на фиброзу (Sirius Red) 40
3.5. Процена хистолошког скора ... 41
3.6. Одређивање концентрације ензима јетре у серуму .. 41
3.7. Одређивање концентрација цитокина у серуму .. 41
3.8. Изолација мононуклеарних ћелија јетре и проточна цитометрија 43
3.9. Изолација мононуклеара слезине .. 43
3.10. Проточна цитометрија .. 44
 3.10.1. Обележавање ћелијских мембранских маркера 44
 3.10.2. Интрацелуларно бојење цитокина ... 45
 3.10.2.1 Стимулација ћелија .. 46
 3.10.2.2. Бојење површинских антигена .. 46
 3.10.2.3. Фиксација ћелија и пермеабилизација ћелијске мембране 46
 3.10.2.4. Бојење интрацелуларних цитокина ... 46
3.11. Имунохистохемија мишијих узорака јетре ... 47
3.12. Изолација НК ћелија позитивном селекцијом помоћу магнетних куглица 48
3.13. Издвајање дендритских ћелија помоћу магнетних куглица 49
3.14. Продукција цитокина и експресија маркера активације након in vitro стимулације .. 49
3.15. Изолација холангиоцита и тестови апоптозе .. 50
3.16. Анализа експресија гена у ткиву јетре методом квантитативне ланчане реакције полимеразе у реалном времену .. 50
 3.16.1. Изолација РНК из ткива јетре миша ... 50
 3.16.2. Реверзна транскрипција ... 51
 3.16.3. Квантификација експресије гена .. 51
3.17. Детекција галектина у хуманом серуму и хистолошким пресецима јетре. 52
3.18. Статистичка анализа ... 52
4. РЕЗУЛТАТИ ... 54
4.1. Концентрација Gal-3 у серуму и његова експресија у холангиоцитима су повећане код оболелих од PBC ... 54
4.2. Gal-3 дефицијентни мишеви развијају тежу форму примарног билијарног холангитиса индукованог ксенобиотиком .. 55
 4.2.1 Хистолошке параметри .. 55
4.2.2 Серумски параметри .. 60

4.3. Дефицијенција Gal-3 је удружила са знатно блажом формом примарног билијарног холангилиса индукуваног инфекцијом бактеријом Novosphingobium aromaticivorans ... 61
 4.3.1 Хистолошки параметри ... 61
 4.3.2 Серумски параметри .. 65

4.4. Инфлукс инфламацијских CD8+ лимфоцита у јетру је већи код оболелих Gal-3 KO мишева имунизованих ксенобиотиком .. 69
 4.4.1 Субпопулације мононуклеарних ћелија ... 70

4.5. У јетрама оболелих Gal-3 KO мишева имунизованих ксенобиотиком доминирају проинфламацијске дендритске ћелије ... 71

4.6. Индукција РВС ксенобиотиком повећава експресију Gal-3 у холангицитима... 74

4.7. Тежи облик РВС индукуваног ксенобиотиком код Gal-3 KO мишева је удружен се већом фреквенцијом апоптозе холангицита ... 75

4.8. Веће оштећење билијарних каналића код Gal-3 KO мишева имунизованих ксенобиотиком повезано је са појачаним Th1 имунским одговором у јетри................. 77

4.9. Појачан системски Th17 имунски одговор код Gal-3 KO мишева имунизованих ксенобиотиком је удружен са већим оштећењем билијарних каналића и већом фиброзом јетре... 81
 4.9.1. У серуму Gal-3 KO мишева имунизованих ксенобиотиком је присутна већа концентрација профибротских цитокина ... 81
 4.9.2. Gal-3 дефицијентни мишеви имунизовани ксенобиотиком развијају значајнију фиброзу јетре... 81

4.10. Одсуство галектина 3 значајно смањује проценат дендритских и NK ћелија и редукује проценат T лимфоцита који продукују IL-17 у јетри мишева инфицираних бактеријом Novosphingobium aromaticivorans ... 85

4.11. Галектин 3 модулише одговор дендритских а и у NK ћелија на Novosphingobium aromaticivorans ... 89
 4.11.1. Дендритске ћелије јетре и слезина Gal-3 дефицијентних мишева три дана након инфекције бактеријом Novosphingobium aromaticivorans имају изражену инфламацијску фенотип у поређењу са WT мишевима ... 91
 4.11.2. Већи проценат дендритских ћелија изолованих из слезина Gal-3 дефицијентних мишева по in vitro стимулацији бактеријом Novosphingobium aromaticivorans експримира маркере активације, проинфламацијске цитокине и компоненту инфламазома у поређењу са WT мишевима... 93

4.12. Инхибитор галектина-3 значајно смањује оштећење билијарних канала изазвано инфекцијом бактеријом Novosphingobium aromaticivorans ... 99
4.12.1. Примена Gal-3 INH значајно смањује заступљеност и проценат активираних CD8+ лимфоцита у инфилтратима јетре мишева инфицираних бактеријом Novosphingobium aromaticivorans .. 105

4.12.2. Примена Gal-3 INH значајно смањује заступљеност инфламацијских лимфоцита у инфилтратима јетре мишева инфицираних бактеријом Novosphingobium aromaticivorans 106

4.12.3. Примена Gal-3 INH значајно смањује заступљеност NK ћелија у инфилтратима јетре мишева инфицираних бактеријом Novosphingobium aromaticivorans .. 108

4.12.4. Примена Gal-3 INH значајно смањује проценат активираних и цитолитичких NK ћелија у јетри мишева инфицираних бактеријом Novosphingobium aromaticivorans 108

4.12.5. Примена Gal-3 INH и делеција гена за галектина 3 значајно смањују проценат IFN-γ+ a повећавају проценат IL-10+ NK ћелија у јетри мишева са РВС-ом индукуваним инфекцијом бактеријом Novosphingobium aromaticivorans 112

4.12.6. Одуство галектина 3 и примена Gal-3 INH значајно смањују проценат активираних дендритских ћелија које презентују антигене Т лимфоцитима и NKТ ћелијама у јетри мишева инфицираних бактеријом Novosphingobium aromaticivorans 114

4.12.7. Одуство галектина 3 значајно смањује проценат проинфламацијских дендритских ћелија у јетри мишева са РВС-ом индукуваним инфекцијом бактеријом Novosphingobium aromaticivorans .. 116

5. ДИСКУСИЈА ... 119

5.1. Холангиоцити оболелих од примарног билијарног холангитиса експримирају Gal-3 .. 120

5.2. Gal-3 дефицијентни мишеви развивају тежу форму примарног билијарног холангитиса индукуваног ксенобиотиком .. 121

5.3. Тежи облик болести, индукуване ксенобиотиком, код Gal-3 KO мишева је узрочен се већом фреквенцијом апоптозе холангиоцита .. 122

5.4. Gal-3 дефицијентни мишеви имунизовани ксенобиотиком развивају изражену фибrozу јетре .. 125

5.5. Дефицијенција Gal-3, као и примена инхибитора Gal-3 код WT мишева, је узрочена са знатно ближом формом примарног билијарног холангитиса индукуваног бактеријом Novosphingobium aromaticivorans ... 126

5.6. Дефицијенција Gal-3, као и примена инхибитора Gal-3 код WT мишева, је узрочена са значајно мањом фреквенцијом Th17 и Th17 лимфоцита у јетрама C57BL/6 мишева инфицираних бактеријом Novosphingobium aromaticivorans 129

5.7. Дефицијенција Gal-3, као и примена инхибитора Gal-3 код WT мишева, је узрочена са значајно слабијом активацијом дендритских ћелија код C57BL/6 мишева инфицираних бактеријом Novosphingobium aromaticivorans .. 130

5.8. Дефицијенција Gal-3, као и примена инхибитора Gal-3 код WT мишева, значајно смањују активацију инфламазома код C57BL/6 мишева инфицираних бактеријом Novosphingobium aromaticivorans ... 134
6. ЗАКЉУЧЦИ...137
7. РЕФЕРЕНЦЕ ..140
8. ПРИЛОГ ..168
8.1 КЉУЧНА ДОКУМЕНТАЦИЈСКА ИНФОРМАТИКА......................... 168
8.2 KEY WORDS DOCUMENTATION ... 171
8.3 Лични подаци .. 174
8.3.1 Подаци о објављеним радовима: ... 175
8.4 ИНДЕТИФИКАЦИОНА СТРАНИЦА ДОКТОРСКЕ ДИСЕРТАЦИЈЕ........... 177
1. УВОД

Главни циљ овог истраживања је испитивање улоге и значаја галектина-3 у патогенези првобилијарног холангитиса изазваног на два различитих начина: ксенобиотиком, 2-октаноничном киселином коњугованом са серумским албумином говеда (2 octanoic acid conjugated with bovine serum albumin; 2OA-BSA) и бактеријом Novosphingobium aromaticivorans (NA). Зато у уводном делу постоје и детаљна објашњења структуре, експресије и биолошких ефеката галектина-3 и његове улоге у регулацији имунског одговора.

1.1 Примарни билијарни холангитис

Примарни билијарни холангитис (енг. Primary Biliary Cholangitis; PBC) је орган-специфично аутоимунско, холестатско обољење у чијој је основи хронични несупуративни деструктивни интрахепатични холангитис са деструкцијом малих интрахепатичних жучних канала која води у фиброзу и следствену билијарну цирозу. Болест су први описали Addison и Gull 1851. године (1, 2) а потом и Hanot 1876. године (2, 3). Донедавно је била позната под називом примарна билијарна цироза (од енг. Primary Biliary Cirrhosis; PBC), а 2015. године договорена је промена имена болести у примарни билијарни холангитис, тако да је скраћеница остала иста (2). PBC има подмукли асимптоматски почетак са дугим периодом латенције пре појаве типичних симптома. Главне карактеристике болести су прогресивна деструкција малих и средњих билијарних канала, која за резултат има хроничну холестазу, портну инфламацију и фиброзу која се неретко завршава инсуфицијенцијом и цирозом јетре са свим пратећим компликацијама (4, 5). Етиопатогенеза болести је и поред нагомиланих експерименталних података остала великим делом непозната. Иако се патогенеза делимично може објаснити аутоимунским механизмахама усмерених на неколико кључних аутоантигена и њихових епитопа сами механизми деструкције малих жучних канала и даље остају недовољно разјашњени.

Дијагноза се заснива на класичном тријасу: клинички и лабораторијски знаци холестазе, присуство антимитохондријских антитела (AMA) у серуму и хистопатолошки налаз асиметричне деструкције интралобуларних жучних каналића. Ова аутоантитела су
специфична за епитоп E2 различитих субјединица комплекса дехидрогеназе (DC), лоциран на унутрашњој мембрани митохондрија, и то: 2-oxo-acid (2OADC-E2), пируват (PDC-E2), рачвасти ланац 2-oxo-acid (BCOADC-E2) и 2-oxo-glutarat (OGDC-E2) (6). Ипак се PDC-E2 смatra имунодоминантним аутоантигеном (7; 8), јер је показано да је губитак имунске толеранције на овај митохондријски аутоантиген иницијални догађај у настанку РВС-а, као и да не постоји значајан доказ за ширење епитопа што ову орган-специфичну аутоимунску болест разликује од већине других аутоимунских болести (9).

1.1.1 Клиничке одлике примарног билијарног холангитиса

Клиничка слика и природна историја РВС-а значајно варирају од асимптоматских и споро прогресивних до симптоматских и брзо развијајућих форми болести. Болест је чешћа код жена, код којих се дијагностикује углавном у петој и шестој деценији. Инциденца асимптоматских облика болести је у порасту, што је вероватно последица повећане свести о РВС и широко распрострањених рутинских биохемијских тестова за функције јетре. Многи асимптоматски пацијенти ће развити симптоматску болест јетре у року од пет година након постављања дијагнозе, иако трећина њих може бити без симптома дуги низ година (10).

Симптоми који најчешће прате РВС су замор и пруритус, а физички знаци могу укључити хиперпигментацију кожи, хепатоспленомегалију и ретко ксантелазме. Иако није специфичан симптом, замор је најчешћа клиничка манифестација РВС-а и присутан је код скоро 80% пацијената (11, 12). Механизам развоја замора код ове болести остаје непознат упркос многим претпоставкама који укључују аутономну дисфункцију (13), оштећење мишића (14), прекомерну дневну сомноленцију (15), промене у кортикалној ексцитабилности (16), поремећеној хомеостази мангана у ЦНС-у (17). Умор код оболелих од примарног билијарног холангитиса одликује се прекомерном дневном сомноленијом и погоршава квалитет живота. Упркос не тако константној корелацији између умора и степена оштећења јетре, умор се може повезати са смањеним генералним преживљавањем (18, 19).

Пруритус, симптом повезан са дуготрајном холестазом, је најтипичнија жалба пацијената и обично претходи иктерусу. Употреба урсодеоксихолине киселине значајно је смањила учесталост овог симптома иако механизам овог ефекта није сасвим јасан. Пруритус се
погоршава ноћу, ако је особа у контакту са вуном, или у топлијим крајевима. Постоје два могућа објашњења за појаву пруритуса у примарном билијарном холангитису: ретенција серумске билијарне киселине због хроничне холестазе или/и појачано ослобађање ендогених опиоида. Лечење пруритуса може бити изазовно, употреба холесирамина (4 g два до три пута дневно) ублажава пруритус. У случају слабог одговора на резине, користи се рифампицин како би се постигло брзо олакшање пруритуса, при чему дуготрајну употребу овог лека ипак треба избегавати. У третману пруритуса користе се и антагонисти опиоида као што је натлтрексон (50 mg/дневно). Недавно је препоручена и употреба сертралина (20, 21).

Врло чест налаз код оболелих од РВС је и смањење густине костију које може попримити одлике остеопеније (33%), а ретко и остеопорозе (11%) (22).

Портна хипертензија је често присутна код оболелих од РВС и не мора увек да имплицира појаву цирозе јетре. Више од половине пацијената без терапије развија портну хипертензију у року од четири године. Превенција и третман портне хипертензије узроковане РВС-ом, не разликује се од третмана код осталих хроничних обољења јетре.

Хиперлипидемија, са повећаним концентрацијама и холестерола и триглицерида у серуму, је присутна код 85% пацијената. Интересантно је да упркос свему ове промене липидног профила серума нису праћене очекиваним пропорцијалним повећањем инциденце атеросклерозе и кардиоваскуларних обољења, а и нема корелације са стадијумом основне болести. Лечење билијарном киселином смањује липиде у крви непознатим механизимима. Коморбидитет је важна одлика РВС. Многи поремећаји, тачније други аутоимунски синдроми, повезани су са примарним билијарним холангитисом: Сјогренов синдром, Рејноов феномен, аутоимунски тиреоидитис, склеродерма, системски лупус еритематодес, док је преваленција реуматоидног артритиса иста као и у незахваћеној популацији (23).

Као и у цирозама јетре других етиологија, њен крајни стадијум може да буде подлога за развој хепатоцелуларног карцинома, а важно је напоменути да РВС није повезан са холангиокарциномом (CCA) или карциномоми дојке.
1.1.2 Дијагностички серумски параметри

Биохемијски холеостатски образац показује повећану концентрацију алкалне фосфатазе што није повезано са повећањем аминотранфераза. Концентрација IgM у серуму је повећана али не корелира са концентрацијама АМА нити осталих антитела у серуму (24). Када се развије цироза, биохемијске промене исте су као и у другим цирозама.

1.1.3 Хистопатолошки налаз

РВС се, према класификацији Лудвига (25) и Шојера (26), хистолошки може поделити у четири стадијума. Стадијум 1 означен је као портни хепатитис; стадијум 2 као перипортни хепатитис, стадијум 3 као септална фиброза или бриџинг некроза и стадијум 4 као цироза. У иницијалној фази патолошки процес захваћа мале интерлобуларне жучне каналиће и одликује се едемом и дегенерацијом епитела каналића која полако прелази у ћелијску смрт која је главна одлика раног РВС-а (27). У овој фази постоји изражена инфильтрација мононуклеарним ћелијама (узглавном макрофаги и еозинофили) портних простора око захваћених каналића. Понекад могу да се детектују и грануломи или агрегати епителоидних ћелија у портним просторима или унутар лобулуса. Грануломи нису карактеристични само за ову фазу већ се могу детектовати у било ком стадијуму болести. Уочавају се хиперплазија Купферових ћелија и синусоиди лимфоцитима. На прогресију болести указује перипортни хепатитис. У још каснијим стадијумима болести нестају оштећени каналићи, а ћелијско ткиво се замењује фиброзним да би се на концу развила цироза. Почев од раних стадијума болести у хепатоцитима се детектује огромна количина акумулираног бакра (28).

1.1.4 Епидемиологија

Подаци о инциденци и преваленци примарног билијарног холангитиса пасивно се сакупљају и не дају релевантне податке који се могу екстраполират на целокупне популације нити се њима могу објаснити регионалне разлике. Ипак, постојећи подаци указују да је инциденца РВС у сталном порасту. Обично се наводи да је болест учесталија
у северним крајевима северне популопте у поређењу са појавом болести у јужним топлијим крајевима (29-30). Просторне и географске разлике у преваленци РВС су описане у неколико студија, са груписањем оболелих у ограниченим подручјима (32-34). Ове разлике нису могле да се објасне демографским или географским факторима, али се претпоставља да је последица присува већег броја оболелих на одређеном подручју последица деловања неког неидентификованог фактора околне (35). За већину аутоимунских болести карактеристична је већа учесталост обољевања у женској популацији али за примарни билијарни холангитис овај однос посебно је упечатљив јер жене у односу на мушкарце обољевају десет пута чешће (36).

1.1.5 Етиологија РВС-а

Каузална етиологија РВС-а као и разлог губитака толеранције на доминантне епипотпе су још увек непознати, као и код других инфламацијских потенцијално аутоимунских болести. Наравно да се, као и у другим аутоимунским болестима, разматра: допринос генске предиспозиције (37) и фактора средине (38, 39). Преовлађује мишљење да фактори окружења (ксенобиотици и/или микроорганизми) код предиспонираних особа модификују аутоантиген и тако олакшавају прекид толеранције (40).

1.1.5.1 Генски фактори

Епидемиолошке студије указују да се РВС чешће јавља у одређеним породицама па је тако релативни ризик за настанак РВС-а у породицама у којима има оболелих 10,5х што је врло слично са ризиком у осталим аутоимунским болестима (41), односно уколико особа има рођака оболелог од РВС у првој линији сродства то је независни ризик за обољевање, а odds ratio износи 6.8-10.7 (42). Код моноцитних близанаца стопа конкордантности за РВС износи 0,63 што је највећа стопа међу свим аутоимунским болестима (43). Сви ови налази указују на јаку генску предиспозицију за развој РВС. Описана је удржена одржених HLA хаплотипова (DRB1*08:01-DQA1*04:01-DQB1*04:02 DRB1*04:04-DQB1*03:02) и већег ризика за развој РВС, али и протективни утицај других хаплотипова (DRB1*11:01-DQA1*05:01-DQB1*03:01 и DRB1*15:01-DQA1*01:02-DQB1*0602) (44). Описан је и
предиспонирајући утицај варијанти гена чији продукти конторлишу имунске и то гена за IRF5, IL-12RB2, IL-12A.

1.1.5.2 Фактори околне

Појава веће учесталости РВС-а у одређеним географским подручјима указује на утицај до сада још увек непознатог фактора околне који утиче на патогенезу РВС-а.

Инфекцијом и механизмах антигенске мимикрије могу се објаснити утицаји фактора околне на настанак РВС. Могући преклапајући епитоп микобактерија је hsp65 јер има исти мотив као и антиген PDC-E2 (45). Идентичан мотив, на који се продукују IgG3 антитела код оболелих од РВС, је идентификован и у бактерији Lactobacillus delbrueckii (46). Међутим као највероватнији микроорганизам који доприноси развоју РВС услед молекулске мимикрије означена је интестинална коменсална протеобактерија присутна у хуманом фецесу Novosphingobium aromaticivorans (47, 48). N. aromaticivorans садржи два протеина, који су високо хомологи са имунодоминантним епитопом PDC-E2. Такође је показано је да postoји унакрсна реакција између AMA из серума оболелих од PBC и E. coli, али је 1000 пута јача кросреактивност показана између PDC-E2 и бактерије која метаболише ксенобиотик- Novosphingobium aromaticivorans (49). Значајан податак је и да мишеви инфицирани овом бактеријом развијају лезије налик РВС (50).

Пошто јетра има кључну улогу у метаболизму токсина, хепатоцити и билијарне епителне ћелије (енг. Billiar Ephitelial Cells, BECs) су континуирано изложени хемијским нуспроизводима. Подаци о повезаности РВС и честе употребе лакова за нокте подржавају теорију о улози ксенобиотика у настанку болести. Ксенобиотик 2-октаноична киселина користи се као адитив у храни, хепатоцити и билијарне епителне ћелије (енг. Billiar Ephitelial Cells, BECs) су континуирано изложени хемијским нуспроизводима. Подаци о повезаности РВС и честе употребе лакова за нокте подржавају теорију о улози ксенобиотика у настанку болести. Ксенобиотик 2-октаноична киселина користи се као адитив у храни, а саставни је део козметичких препарата нарочито лакова за нокте. In vitro и in vivo анализе указују на потенцијалну улогу 2-октаноичне кисeline у настанку РВС-а мада реакциност 2-октаноичнеКиселина са AMA и са липоичном киселином није показана (51). NOD и C57BL/6 мишеви имунизовани 2-октаноичном киселином коњугованом са албумином говеђег серума развијају хистолошке одлике аутоимунског холангитиса (портни инфилтрати у којима доминирају CD8+ лимфоцити и развој гранулума у јетри) са повећаним концентрацијама AMA (52-55). Овај модел пружа убедљиве доказе да су ксенобиотици узрочно повезани са настаком РВС.
1.1.6 Билијарне епителне ћелије

Најинтересантније питање у вези са етиопатогенезом РВС-а је постојање специфичног имунског одговора усмереног само на епител малих интрахепатичних билијарних канала, а не и на истородне холангиоците већих канала нити на било које друге ћелије, иако све ћелије имају митохондрије и у њима присутне аутоантигенске комплексе. Мали канали обложени су билијарним епителним ћелијама (холангиоцитима) које иницијално бивају погођене и деструиране специфичним имунским одговором у којем учествују и CD4+ и CD8+ Т лимфоцити (56; 57). Ова селективна деструкција указује на јединствене имунопатолошке карактеристике ове болести. Познато је да холангиоцити нису само пасивни посматрачи у примарној билијарној цирози, већ могу да повећају експресију адхезионих молекула као и продукцију TNF-α, IFN-γ и IL-1, после стимулације проинфламацијским цитокинима (58). Кроз варијабилну експресију адхезионих молекула и проинфламацијских цитокина, холангиоцити могу да модулишу интензитет и локализацију запаљењског процеса. Не мање важно је и да холангиоцити имају својства професионалних антиген презентујућих ћелија, јер током инфламације експримирају молекуле II класе МНС као и костимулаторне
молекуле CD80 и CD86 што им омогућује да интерреагују са T лимфоцитима и тако допринесу настанку инфламације и оштећењу биљарних канала током иницијације и прогресије болести (59).

Холангиоцити малих биљарних канала су много вулнерабилнији него епителне ћелије већих канала. За разлику од холангиоцита већих канала у епителним ћелијама каналића, у одговору на оштећење, изостаје синтеза протеина TTF3 (енг. Trefoil Factor Family, TTF). Овај молекул припада породици TTF, коју чине мали протеини резистентни на протеазе, и одговоран је за повећање високозитета заштитног слоја слузи (60).

Нови подаци указују да је током PBC-a вулнерабилност холангиоцита на перфоринско-гранзимску и Fas/FasL иницијацију апоптозе најдоговорнија за дуктопенију. Поред тога недавно је показано и да су интактне биљарне епителне ћелије способне за фагоцитозу апоптотски усмерених биљарних епителних ћелија што обезбеђује нове ендогене изворе аутоантигене. Ове чињенице наводе на претпоставку да је ткивно специфично оштећење PBC-a узроковано бар делимично специфичном осетљивошћу холангиоцита биљарних каналића на апоптозу као и да фагоцитовање апоптотских телашаца од стране интактних BECs амплификају реакцију. Ова јединствена карактеристика апоптозе холангиоцита делимично осветљава њихову могућу улогу у имунопатогенези PBC-a јер је могуће да неоантигени који су потекли из фагоцитованих апоптотских холангиоцита активирају лимфоците (61). Наиме, апоптозом холангиоцита се не уништава главни аутоантиген митохондрија PDC-E2 већ остаје интактан и доступан имунском систему (62; 63). Стално излагање PDC-E2 пристиглог од холангиоцита, а на површини незахваћених холангиоцита је последица и неуспешног ковалентног везивања PDC-E2 за глутатион током апоптозе у овим ћелијама. Друго важно запажање које се односи на улогу апоптотских холангиоцита у патогенези PBC-a је интензивна продукција проинфламацијских цитокина у макрофагима код особа оболелих од PBC-a који су инкубирани са апоптотским телима из холангиоцита у присуству AMA (64). Битно је да се напомене да су холангиоцити који су коришћени у експериментима узети од два нормална донора, што указује да не постоји фенотип биљарних епителних ћелија специфичан за PBC и то може да буде објашњење за навраћање PBC-a после трансплантације (65).
Имунохистохемијско бојење билијарних канала моноклонским антителима која су усмерена на митохондријске аутоантигени су показала интензивну експресију PDC-E2 на апикаланој (луменској) површини ћелија малих билијарних канала (66; 67). Холангиоцити, као у осталом и ћелије других епитела, имају улогу у транспорту IgA у лумен билијарног дуктуса. IgA специфична за PDC-E2 улазе у холангиоците преко полиимуноглобулинског рецептора и формирају комплекс са PDC-E2, што може да допринесе излагању PDC-E2 на апикалној површини билијарних епителних ћелија. Такође, током трансцитозе кроз ћелије које експримирају полиимуноглобулински рецептор, димерични IgA може да иницира активацију каспаза (68). Ниво анти-PDC-E2 IgA антитела у серуму оболелих од PBC је у директној корелацији са нивоом активације каспаза (68).

1.1.7 Имунски одговор у примарном билијарном холангиитису

Механизми билијарне деструкције нису до краја истражени, али специфичност патолошких промена у малим билијарним дуктусима, присуство инфилтрације у портним просторима и експресија молекула II класе MHC на холангиоцитима указује на интензиван имунски одговор који усмерен на холангиоците. Ови налази указују да је деструкција билијарних ћелија посредована аутореактивним Т лимфоцитима који инфилтришу ткиво јетре (57). CD4+ и CD8+ T лимфоцити могу да се детектују у портном простору особа оболелих од PBC-a (69-71). Осим повећане концентрације аутоантитела специфичних за PDC-E2 у серуму региструје се 100 до 150 пута већи број CD4+ T и 10 пута већи број CD8+ T лимфоцита специфичних за антиген у јетри и хилусним лимфним чворовима, него у циркулацији оболелих од РВС-a (72). Две значајне субпопулације CD4+T лимфоцита имају улогу у патогенези РВС-a, а то су Th17 и Treg ћелије (73). Значајно мањи ниво CD4+CD25^{high} лимфоцита је детектован у периферној крви оболелих од PBC и члановима њихове породице, такође FoxP3+ Treg ћелије могу да се детектују у лимфоидним инфилтратима у портном простору (74). Th17 ћелије имају проинфламацијску улогу у PBC-u, повећана фреквенца IL-17-позитивних лимфоцита је показана у оштећењу јетре код особа оболелих од PBC-a као и код IL-2Rα/- мишева који спонтано развијају холангиитис (75).

У јетри оболелих од PBC-a постоји грануломатозна инфламација удруженапа повећаном продукцијом поликлонских IgM. Културе хуманих холангиоцита експримирају TLR, па је
могућа стимулација ових рецептора липополисахаридом и липотеихоичном киселином које су присутне у билијарном тракту. У овако стимулисаном холангиоцитима се активира NF-κB, па холангиоцити на овај начин учествују директно у оштећењу билијарног тракта (76). У одговору на стимулацију TLR холангиоцити продукују проинфламацијске цитокине IL-6 и TNF-α и хемокине IL-8 и CX3CL1. CX3CL1 је хемоатрактант за ћелије које експримирају CX3CR1, а код оболелих од PBC у портном простору и унутар билијарних епитела оштећених билијарних каналова могу да се нађу CD8+ и CD4+ Т лимфоцити који експримирају CX3CR1 (77). У патогенезу PBC су укључене и NKT ћелије. Код оболелих од PBC-a регистрован је повећан број NKT ћелија које препознају антитеже у склопу CD1d молекула, а број ових ћелија је већи у Јетри него у периферној крви. Повећан број NKT ћелија које препознају антитеже у склопу CD1d молекула је показан у Јетри dnTGF-βRII мишева који развијају холангиитиса (78).

1.1.8 Иницијација примарног билијарног холангиитиса

Како би се разумели сложени патогенетски механизми у настанку PBC важно је да поменим две чињенице које су критичне за развој болести. Прво, главни аутоантиген је компонента унутрашње митохондријске мембране и да би ћелије имунског система оствариле контакт са епитопима треба да превазиђу три различите мембране (Схема 2).
Одговор на ово питање је делимично у јединственој карактеристици апоптозе билијарних епителних ћелија и задржавању имунски активних антигена унутар апоптотских телаца. Иницијални догађај код генетски предиспонираних особа још увек није јасан. Друго, РВС иницијално захвата ћелије интрахепатичних билијарних дуктуса, док је антиген дистрибуиран у многим ткивима укључујући екстрахепатичке билијарне дуктусе. До сада предложени патогенетски модели указују да је кључни догађај прекид толеранције Т ћелија на епитопе PDC-E2. Продукција антитела специфичних за PDC-E2 није довољна за оштећење билијарних каналића као што се раније мислило (79). Први корак у патогенези болести је губитак аутотолеранције, вероватно услед молекулске мимикрије (80). Према овој теорији бактеријска или инфекција ретровирусима, вероватно покреће и усмерава имунски одговор тако да као последица ове активације настаје апоптоза епителних ћелија. Ендотоксин и други молекулски образци бактерија су снажни активатори имунског одговора. Ови продукти бактерија се нормално елиминишу преко жучи (81). Липид А се дефосфорилише и инактивира алкалну фосфатазу жучи (82). Липид А је имуногени састојак LPS-a Грам негативних бактерија, и други PAMPs се акумулирају у хепатоцитима и билијарном епителу што доприноси инфламацији малих билијарних канала (83-86). Особе оболеле од РВС-a испољавају јак имунски одговор на LPS (87, 88). Осим бактеријских антигена, истраживана је и улога вируса као покретачких агенаса у РВС-u. Вирусне честице су описане унутар билијарних епителних ћелија код болелених од РВС-a, а у серуму ових особа су детектована антитела која су усмерена на ретровирус (89, 90). Генетски материјал хуманог β ретровируса је идентификован у лимфним чворовима оболелених од РВС-a (91). У прилог поменутој хипотези говори појава РВС-a међу особама које су мигрирале из подручја са ниском преваленцом РВС-a у подручје са високом преваленцом РВС-a, као и случајеви РВС-a међу особама које нису у сродству а живе у истој кући. Даље, код пацијената леченih такролимусом поновно јављање РВС-a се десило раније и у тежој форми у поређењу са леченима циклоспоринима (92-94). Како било, улога ретровируса у етиологији настанка РВС је још увек дискутабилна (95). У складу са моделом молекулске мимикрије, Џонс је описао альтернативни патогенетски модел где су иницијални окидачи вируси или бактеријски епитопи који су хомологи са PDC (96). Т лимфоцити специфични за сопствени PDC-E2 избегавају негативну селекцију у тимусу због ниског афинитета њихових T ћелијских рецептора. Овај претпостављени модел подразумева да стање
активације антиген презентујућих ћелија промењеном ефикасношћу антигенске презентације може да промовише прекид толеранције (97). Као што је поменуто раније, у патофизиологији PBC-а су укључене и друге ћелије урођене имуности. Уобичајени налаз у РВС-у су грануломи, повећан ниво поликлонских IgM, хиперосетљивост на CpG олигодексинуклеотиде и повећан број NK ћелија што је све повезано са урођеним имунским одговором. Бактеријски и вирусни епитопи индукују урођен имунски одговор кроз везивање за TLR које експримирају хумани холангиоцити што је показано у културама ових ћелија (97-100). Ови налази указују да је активација урођене имуности обавезна у било ком моделу PBC-а. Други налаз повезује старење и скраћење теломера као јединствену карактеристику оштећења холангиоцитиа у РВС-у. Значајно скраћење теломера у погођеним холангиоцитима у поређењу са нормалним холангиоцитима у обе групе (оболелих од РВС-а и контролне групе) указује на ћелијско старење. Ове промене нису у супротности са хипотезом о ретровирусима јер вируси могу директно да оштете ДНК код подложних особа (101).

1.1.9 Анимални модели PBC

Описано је неколико животињских модела за PBC, а сви се могу поделити у три групе: спонтани развој PBC-like болести код генски модификованих мишева; имунизација мишева ксенобиотиком; индукција РВС-а бактеријама.

1.1.9.1 Генски модификовани мишеви

Трансфер лимфоцита периферне крви особа оболелих од РВС у SCID мишеве за последицу има настанак лимфоцитних инфилтрата око малих билијарних канала и продукцију анти-PDC-E2 (102).

Конгени NOD.c3c4 мишеви добијени заменом гена осетљивости на дијабетес на хромозомима 3 и 4 са генима резистенције на дијабетес из B6 и B10 мишева (103) развивају аутоимунски холангитис са појавом AMA у серуму у 50% до 60% случајева. Цистична дилатација погођених билијарних канала, која карактерише овај холангитис, се не региструје код оболелих од РВС; када дилатација узнапредује, билијарни епител NOD.c3c4
мишева је подложен ексфолијацији што омогућује инфильтрацију неутрофил и не личи на хистолошке одлике болести код људи.

dnTGF-βRII мишеви дизајнирани тако да појачано експримирају доминантно негативну форму рецептора II за TGF-β под контролом CD4 промотора. Одсуство TGF-β сигнализације узрокује различите имунске аномалије укључујући колитис. dnTGF-βRII мишеви развијају типичне серолошке и хистолошке карактеристике примарног билијарног холангитиса који се развија код људи (104), што указује на значајну улогу сигналног пута TGF-β у патогенези PBC. Продукција AMA и хистолошке типичне лезије за PBC (лимфоцититна инфильтрација, деструкција интерлобуларних билијарних дуктуса, формирање гранулома у портном простору). У портним инфилтратима су застућени В лимфоцити, плазмацитоидне дендритске и NK ћелије, макрофаги као и CD4+ и CD8+ T лимфоцити.

Код IL-2Rα−/− мишева (105), сигнали са рецептора за IL-2 значајни за контролу судбине зрелих Т лимфоцита, су функционално блокирани и ови мишеви развијају запаљену болест. У серуму свих IL-2Rα−/− мишева су присутна анти-PDC-E2 антитела, у портном простору постоји изражена лимфоцититна инфильтрација, а интерлобуларни билијарни дуктуси су оштећени. У портним инфилтратима су највише застућени CD8+ T лимфоцити, а детектију се и CD4+ T и В лимфоцити. Формирање гранулома је редак догађај. У серуму ових мишева повећана је концентрација инфламацијских цитокина попут TNF-α, IFN-γ, IL-12p40, и IL-6. Коришћењем модела који је добијен укрштањем IL-2Rα−/− мишева са CD4 KO и CD8 KO мишевима је показано да CD8+ T лимфоцити учествују у патогенези PBC код IL-2Rα−/− мишева (106).

Перутави мишеви имају мутацију гена који кодира транскрипциони фактор Foxp3 неопходан за настанак регулаторних Т лимфоцита, па ови мишеви имају дефицијентног функцију ових лимфоцита. Показано је да 100% ових мишева садржи AMA у серуму (107). Поред тога, јачина лимфоцититне инфильтрације као и спонтани развој опструкције билијарних каналића слични су променама које се виђају код људи оболелих од PBC-a. У перипортним просторима се акумулирају CD4+ T лимфоцити, а цитотоксички CD8+ T лимфоцити се накупишу око жучних канала. У серуму су повећане концентрације AMA (IgG, IgA и IgM) и проинфламацијских цитокина (TNF-α, IFN-γ, IL-6, IL-12p40, IL-18, IL-10, IL-23). Мана овог модела је кратак животни век мишева- само 3-4 недеље.
Схема 3 и 4. Кључни догађаји у патогенези примарног билијарног холангитиса
1.1.9.2 РВС индукован имунизацијом ксенобиотицима

E2 субјединице ензима имају заједничку структуру која садржи један N-терминални каталитички домен са два везујућа места за ковалентно везивање кофактора липоичне киселине. Ови липоил везујући домени су главни епитопи које препознајуAMA (9) што указује на есенцијалну улогу липоичне киселине у етиологији РВС. Имунска реакцијност AMА је усмерена на конформационе епитопе који су осетљиви на хемијску модификацију што указује да аутотолеранција може да се ослаби модификацијом липоичног домена PDC-E2 ксенобиотицима. Показано је да се модификовани липоични домени PDC-E2 специфично везују антитела присутна у серумима оболелих од РВС (51, 108, 109). Ова опонашајућа једињења се користе у процесу добијања најразличитијих производа: парфема, кармина, појачивача укуса (108). Студије на животињама су указале да животиње које су имунизоване ксенобиотицима изабраним тако да интерреагују са AMА, продукују AMА и развијају оштећење јетре слично оном у РВС (110; 111). Показано је да и B6 и NOD.1101 (NOD.B6 Idd10 Idd18r2) мишеви имунизовани 2-октаноичном киселином (2-OA) јер су повећани концентрације AMА, TNF-α и IFNγ у серуму, већ четврте недеље после имунизације, грануломе, порту инфламацију и холангитис развијају 12-те недеље, а однос CD4/CD8 у јетри ових мишева је мањи у поређењу са контролним мишевима (52).

Овај модел добро илуструје рани стадијум РВС, а промене перзистирају што га чини атрактивним моделом за испитивање различитих аспеката РВС.

1.1.9.3 Модел РВС индукованог инфекцијом бактеријом Novosphingobium aromaticivorans

Анимални модел примарног билијарног холангитиса изазван бактеријском инфекцијом је описан 2008. године. Показана је болест која веома личи на РВС, а изазвана је инфекцијом C57BL/6, NOD, SJL мишева бактеријом Novosphingobium aromaticivorans. Novosphingobium aromaticivorans је Грам негативна бактерија која припада фамилији Sphingomonadaceae (112). Ова екстрациоларна бактерија је убиквитарна, спада у коменсала који насељују
слузницу дигестивног тракта. Њелијски зид ове бактерије нема LPS, али садржи α-аномерни гликосфинголипиде (α-галактуронилцерамиде [aGalACer]) (113).

Бактерија поседује молекуле који искazuју хомологију са PDC-E2. Инфекција мишева бактеријом N. aromaticivorans индукује продукцију IgG анти PDC-E2 и развој лезија јетре које подсећају на PBC код људи. Болест може да се пренесе са једног миша на другог само трансфером CD4⁺ и CD8⁺ T. Оболели од PBC имају антитела специфична за PDC-E2 бактерије N. aromaticivorans и имају већи број NKT ћелија као и експресију CD1d молекула на ћелијама урођене имуности (49).

Инваријатне NKT ћелије (iNKT) се налазе у маргиналној зони слезине и обављају процес надзора у синосOIDима јетре пошто патогени из крви улазе у периферне лимфне органе. Овде, iNKT ћелије реагују са гликолипидним антигенима попут aGalACer који су презентовани у склопу CD1d молекула и тако започиње урођене и стечени имунски одговор. Јединствени семи-инваријантни T ћелијски рецептор iNKT ћелија препознаје α-аномерне главне групе у склопу молекулског обрасца гликолипида микроорганизама, попут aGalACer од Sphingomonas spp. и a-galactosyldiacylglycerol-a Borreliae burgdorferi и функционишу као рецептори за молекулске обрасце препознавања. Пошто их активишу молекулски обрасци микроорганизама iNKT ћелије се сврставају у лимфоцитне урођене имуности. По активацији ове ћелије брзо луше ефекторске цитокине и хемокине које активирају остале ћелије урођеног и стеченог имунског одговора (114).

N. aromaticivorans, налик бактеријама из исте фамилије, производи aGalACer, који покреће иницијални урођени имунски одговор који карактерише активација iNKT ћелија. Активиране iNKT ћелије потом потенцирају одговор T и В лимфоцита, што кулминира покретањем продукције антитела која су усмерена на бактеријске PDC-E2 која касније унакрсно реагују са хомологим ензимом митохондрија. У експериментима са мишевима који су имунизовани овалбумином, а iNKT ћелије су стимулисане a-галактозилцерамидом [aGalCer], који је близак aGalACer-u, показано је да iNKT ћелије могу да помогну В лимфоцитима тако да касније плазмоцити продукују антиген специфична антитела (115). Још увек није у потпуности разјашњено да ли помоћ подразумева директну iNKT-V интеракцију или индиректно, утицај iNKT на конвенционалне Т-В интеракције. Резултати једне студије указују да iNKT ћелије могу да помогну у процесу промене изотипа антитела што захтева iNKT-B ћелијску интеракцију, која подразумева представљање aGalACer у
склону CD1d молекула на истом B лимфоциту који ће и да одговори на ензим микроорганизама. Такође је показано да инфекција бактеријом N. aromaticivorans активира конвенционалне пептид реактивне T лимфоците на iNKT ћелијски зависан начин. Међутим ови конвенционални T лимфоцити остају активирани и по елиминацији већине бактерија и могу да изазову болест након трансфера у здраве животиње, без додатне инфекције или активације iNKT ћелија.

Стога, рана iNKT ћелијски зависна цитокинска олуја која је покренута контактром са N. aromaticivorans-ом је централни догађај у прекиду имунске толеранције који води у развој примарног билијарног холангиитиса. Ови налази указују на постојање везе између урођеног имунског одговора који покрећу микроорганизни и хроничног одговора T и B лимфоцита који је усмерен на мале жучне канале у PBC. Механизам којим активација iNKT ћелија покреће конвенционални T ћелијски одговор на аутоантигене није још увек добро дефинисан. Бројне студије су показале да iNKT ћелије које је активирао aGalCer трансактивирају CD4+Т ћелије и CD8+Т ћелије (115). Ова трансактивација захтева реципрочну активацију дендритских ћелија и iNKT ћелија (116).

Критичну улогу у иницијалној активацији и прајмовању аутоантиген специфичних конвенционалних T ћелија имају поред IL-12 којег продукују активирани дендритске ћелије и костимулатори попут CD40L-CD40 интеракција између дендритских ћелија и аутореактивних T лимфоцита, као и IFN-γ који секретују активирани iNKT ћелије (117). В лимфоцити такође представљају MHC-рестриховане антитезе T лимфоцитима. Међутим ова интеракција често изазива нереактивност T лимфоцита. Зато се сматра да је могуће да конвенционална интеракција T-B лимфоцита у присуству активираних iNKT ћелија може да изазове активацију аутореактивних T ћелија (5). Још увек није разјашњено са сигурношћу који је од ових догађаја у оптицују у примарном билијарном холангиитису. Налаз да трансфер активираних аутореактивних T ћелија такође подстиче продукцију аутоантитела специфичних за PDC-E2 указује да конвенционалне T-B ћелијске интеракције могу да имају улогу у овој болести.

И даље је отворено неколико питања која су од фундаменталног и клиничког значаја за разумевање PBC. Прво питање је који лимфни орган има критичну улогу у активацији iNKT ћелија када је у питању N. aromaticivorans? Пошто инфекција бактеријом N. aromaticivorans узрокује хипертрофију јетре и спленомегалију (50) а CD1d експресија је појачана у јетри
оболелих од РВС, закључено је да целе бактерије или продукти бактерија могу да активирају iNKT на свим овим местима. Друго и уједно најважније питање је како активирани iNKT ћелије олакшавају прекид толеранције T и В лимфоцита?

1.2 Структура и класификација галектинских молекула

Протеинску фамилију галектина данас чини 15 чланова карактеристичних по доменима којима везују галактозу. Ови молекули распрострањени је у великом броју различитих ћелијских типова налазе се како у многим интрацелуларним одељцима тако и на ћелијској мембрани али се и секретују у екстрацелуларни простор. Први пут описани 1970-их година, као лектини који везују галактозид (118), ови молекули су названи “галаптини” и лектини типа S (119), јер је описано неколико молекула за које је заједничко да садрже неупарене цистеине у домену којим препознају угљене хидрате (енгл. Carbohydrate recognition domains, CRDs) и мањак остатака важних за очување интегритета везујућег места (120, 121). Данашње име добили су 1994 године, а од тада креће и права експлозија информација о галектинима у патолошким стањима, нарочито у инфламацији, фибрози и туморима. Галектини су изоловани из бројних врста од кичмењака до сунђера што указује на њихову важност у основним функцијама ћелија (122). Галектини су активни учињачи свих процеса имунског одговора, од задржавања пре-В лимфоцита у развојним нишама строме костне сржи (123), регулисања јачине сигнализације T лимфоцитног рецептора током селекције у тимусу (124), регулисања миграције неутрофила, моноцита и дендритских ћелија кроз ендотел и екстраћелијски матрикс (125) (126), контроле секреције цитокина и сигнализације рецептора (127), помагања или блокирања препознавања патогена и причвршћивања за ћелије домаћина (128), до активације или инхибиције ћелијске смрти T и В лимфоцита (129, 130). Све ове функције, за све типове ћелија, у свим облицима окружења, указују на завидну физиолошку улогу ове молекулске фамилије (131).

У природи постоји 15 различитих молекула галектина, до сада познатих човеку (означени су бројевима од 1 до 15), карактеришу их две кључне особине: способност да се везују за аминолактозне јединице гликана и конзервирана структура CRD-a. У састав ових домена улази око 130 аминокиселинских остатака (132, 133), а кристалографија је показала
присуство високо конзервираних сендвич навоја, које образују две дугачке антипаралелно постављене β набране плоче. Ова β-сендвич структура прави чеп за који се везују гликан (134-137).

Чланови фамилије подељени су у три типа (Схема 5) (138):

Прототипски (галектини 1, 2, 5, 7, 10, 11, 13, 14 и 15): нековалентно повезани хомодимери који садрже два домена за препознавање угљених хидрата

Тандемско поновљени (галектини 4, 6, 8, 9 и 12): поседују два различита домена за препознавање угљених хидрата спојених кратким пептидом

Химерски (само галектин-3): поседује само један нелектински домен за препознавање угљених хидрата богат пролином, глицином и тирозином и лоциран на N-терминусу, (131) (139)

ТРИ СТРУКТУРНА ТИПА ГАЛЕКТИНА

Схема 5. Структурни типови галектина

1.2.1 Експресија и функција галектина

Неки галектини експримирани су у свим типовима ћелија и ткива док су други присутни само у појединим органима или ћелијама, при чему сваки члан фамилије галектина има јединствени образац дистрибуције. Тако су на пример галектин 1 и 3 експримирани
убиквитарно, док је експресија других чланова галектинске фамилије углавном ограничена на одређено ткиво, па је тако галектин 2 експримиран само у дигестивном епителу (140), а галектин 7 у епидермису (141).

Галектини се синтетишу на слободним рибозомима у цитоплазми (142, 143). Синтетисани галектини могу остати у цитоплазми и учествовати у протеинским интеракцијама регулишући унутарчелијске догађаје (144). Па тако галектин 12 везујући се за липидне капљице у адипоцитима регулише липолизу и осетљивост на инсулин (145, 146), а галектин-3 спречава ослобађање цитохрома C из митохондрија и тако инхибише апоптозу (147) али може везати и цитоплазматски β-катенин и регулисати Wnt сигнализацију (148), док цитоплазматски галектин 8 (рецептор опасности) циља оштећене лизозоме и ендозоме и регулише аутофагију (149). Галектини су присутни и у већини ћелија у којима се унутарчелијска догађаји (150).

Галектини су присутни и у различитим ћелијским одељцима: једро, цитоплазма, ћелијска мембрана док су солубилни облици галектина присутни и у ткивним течностима (151). Основна одлика свих галектина је постојање афинитета према галактози, а неки галектини су специфични и за различите олигосахариде који садрже галактозу (152, 153). Приликом везивања галектина за олигосахаридне остатке молекула галектина које се везује за њих, додатно може промену у смислу прилагођавања структура олигосахарида (152, 154). Галектини могу да прекидују разне комплексне структуре угљених хидрата насталих процесом елонгације. Галектини најчешће повезују два гликопротеина, али некада и велики број молекула чиме настају мултивалентни гликоконјугати у форми решетке (151).

Везивањем галектина за трансмембранске протеине и њиховим унакрсним повезивањем, галектини утичу на започињање читаве каскаде сигналиставиња у различитим процесима као што су пролиферација и диференцијација. Молекули галектина се могу наћи у форми хомо- и хетеро-димера, а поменуто повезивања молекула се остварује преко гликана. Овако повезани, молекули галектина су битни у процесу одржавања хомеостазе имунског система (133, 139). Функција екстралупуларних галектина је директно зависна од ензима гликозилтрансферазе (155) који се активира у различитим фазама диференцијације и активације ћелије (156). Услед појачане активности гликозилтрансферазе, повећава се експресија гликоконјугата на ћелијској мембрана за које
се потом веже галектин (150). Функција интрацелуларних галектина не зависи од повезивања са угљеним хидратима. Наиме, интрацелуларни галектини се директно вежу за различите протеинске лиганде и регулишу сигналне путеве који су важни у бројним ћелијским процесима (155). Показано је и да галектини везивањем за гликане на површинама хелмината омогућавају ефекторске функције ћелија урођене имуности (157). Гликани са N-акетилактоаминским и полилактоаминским ланцима [(Galβ1, 4GlcNAc)n] (као што су ламинин, фибронектин, мембрански протеини лизозома и муцини) имају повећан афинитет за галектине људи, птица и амфибија (158-162). Зависно од расположивости лиганада који су погодни за галектине, и биолошка функција одређених галектина може да варира од места до места. Експресија галектина се мења у процесу ембриогенезе, диференцијације жељија, као и у различитим како физиолошким тако и патолошким условима (163). Зна се да пилећи галектини остварују учешће у процесу фузије миобласта, док галектин-1 и галектин-3 глодара имају улогу у развоју нотохорде и мишићног ткива, као и у централног нервног система (164-167). На важност галектина указује и њихово учешће у регулацији урођене и стечене имуности (168-170).

1.2.2 Структура галектина-3

Gal-3 има јединствени химерски тип структуре и састоји се од три различита структурна домена: кратког NH2 терминалног домена (енгл. N-terminal domain, ND) који се састоји од 12 аминокиселина, садржи серин који подлеже фосфорилацији и тако учествује у регулацији спровођења сигнала; понављајућа секвенца која је слична колагену и која

Лиганди за Gal-3 су молекули који садрже поли-N-ацетиллактозаминске секвенце које са Gal-3 остварују интеракције високог афинитета (188, 189). Лиганди за Gal-3 који се налазе екстрацелуларно (на површини ћелије и у екстрацелуларном матриксу) су: фибронектин, интегрини, ламинин, витронектин, еластин и Mac-2 везујући протеин (177, 188, 190), а интрацелуларни лиганди галектина 3 су (налазе се у цитоплазми и једру): Bcl-2, K-Ras и annexin VII (190).

1.2.3 Улога галектина-3 у контроли биолошких процеса

Gal-3 је присутан у бројним ћелијама као и екстрацелуларно, а ниво експресије Gal-3 зависи од ембрионалног порекла ткива. Експримирају га готово све ћелије имунског система, али и епителне и ендолелне ћелије (190, 191). У ћелији је Gal-3 детектован у једру,
цитоплазми, митохондријама, а присутан је и на површини ћелије где се налази везан за глукопротеине. Једарни Gal-3 игра улогу у регулацији обраде примарног транскрипта РНК (192), док екстрацелуларни Gal-3 учењу у и међуцелуларној интеракцији као и интеракцији ћелије са екстрацелуларним матриксом (193, 138). Укључен је у бројне биолошке функције ћелије укључујући ћелијску атхезију, миграцију, преживљавање ћелија и тако учењу у инфламацијском и имунском одговору и у канцерогенези (139). На дистрибуцију Gal-3 утичу тип, статус пролиферације и малигна трансформација ћелије (194-198).

Gal-3 не садржи класичну сигналну секвенцу тако да се не секретује из ћелије класичним путем (199, 200). Иако није познат тачан начин настанка секреције Gal-3 показано је да може да оствари директну интеракцију са липидима мембране и да спонтано прође кроз липидни двослој липозома у било ком правцу, а да тај процес није енергетски зависан (201). Претходно је поменута улога N терминуса галектина 3 у секрецији, али су описани и егзозоми који садрже Gal-3 који омогућавају доспевање овог молекула у екстрацелуларни простор (202).

1.2.3.1 Улога Gal-3 у регулацији ћелијског раста

Екстрацелуларни Gal-3 стимулише раст фибробласта (203), мезангијалних ћелија (204) и неурона добијених из дорзалних ганглија (205). Такође in vitro Gal-3 стимулише формирање капиларних цеви од ендотелних ћелија хуманих умбиликалних вена и антигенезу in vivo (206). Интрацелуларни Gal-3 позитивно утиче на раст бројних ћелија: Jurkat Т лимфоцита (186), ћелија хуманог карцинома дојке (207, 208), пролиферацију T лимфоцита индукувану митогенима (209) и контакт независни раст ћелија хуманог папиларног карцинома тироидизе (210). Gal-3 може да буде и негативни регулатор ћелијског раста. Егзогени Gal-3 инхибира раста Madin-Darby ћелија бубрега пса (MDCK), али овај ефекат изостаје на мутантној ћелијској линији у којој је поремећена синтеза гликана услед чега недостају површински лиганди за Gal-3 (211). Gal-3 такође инхибира пролиферацију ћелије костне сржи стимулисаних рекомбинантним GM-CSF-ом (212), успорава пролиферацију ћелијске линије карцинома простате LNCaP in vitro и успорава раст тумора код nude мишева (213). Показано је да Gal-3 интерреагује са транскрипционим фактором тироидизе TTF-1 и тако га активира.
(214). На сличан начин везивањем Gal-3 за протеин K-Ras активирају се Raf-1/MEK/ERK киназе што подстиче пролиферацију ћелија (215). Gal-3 такође стабилизује везивање транскрипционих фактора CREB и Sp1 за промотерски регион гена за циклин D1 и тиме појачава његову експресију (216), а везујући се за β-catenin модулише сигнални пут Wnt (217).

1.2.3.2 Регулација апоптозе

Коришћењем метода трансфекције и утишавања експресије гена, показано је Gal-3 испољава антиапоптоски ефекат у бројним ћелијама (129, 218). Механизам антиапоптотске улоге Gal-3 није у потпуности јасан. Gal-3 се нагомилава у митохондријама ћелија изложених апоптоским стимулусима и сматра се да ту остварује своју улогу (147). Нагомилавање Gal-3 у митохондријама зависи од synexin-а па се претпоставља се да су расположивост и функционалност овог протеина важан ограничавајући фактор за антиапоптоску активност галектина-3 (147). С обзиром да садржи део хомологан антиапоптоском протеину Bcl-2 са којим in vitro остварује интеракцију (186) могуће је да је ова интеракција у митохондријама кључна за антиапоптски ефекат галектина-3. Да би остварио антиапоптоску функцију неопходна је фосфорилација галектина-3 (219), а како је показано да галектин-3 транслокацијом пролази перинуклеарну мембрану (147) могуће је да је укључен у интрацелуларне механизме контроле апоптозе. Важно је напomenuti da екстрацелуларни Gal-3 подстиче апоптозу (190).

Важну улогу Gal-3 игра и у процесу фагоцитозе и уклањања апоптотских тела у макрофагима in vivo (220) што указује на улогу овог молекула у имунским процесима ремоделовања ткива у којима апоптоза игра важну улогу.

1.2.3.3 Регулација ћелијског циклуса

Експресија галектина-3 зависи од ћелијског циклуса и усходно је регулисана у ћелијама које пролиферишу, првенствено у једру (194). Gal-3 модулише ћелијски циклус регулацијом транскрипције гена (216). Ћелије којима је индукована прекомерна експресија галектина-3 трансфекцијом, одговарају на губитак ћелијске атхезије уласком у G1 фазу ћелијског
циклуса без ћелијске смрти (221). Овај ефекат је повезан са нисходном регулацијом нивоа циклина Е и циклина А (киназе које су повезане са овим циклинима се активије крајем G1 и у S фази ћелијског циклуса) под утицајем галектина-3. Показано је да галектин-3 усходно регулише нивое инхибиторних протеина (p21 и p27) за ове циклине. Штавише, ретинобластом (Rb) протеин постаје хипофосфорилисан када ћелије које прекомерно експримију галектин-3 изгубе контакт са околнином. Ове ћелије не могу да уђу у S фазу, пошто је Rb у хиперфосфорилованом стању у S, G2 и у већем делу M фазе. Слично, експресија галектина-3 у BT549 ћелијама мења одговор на регулаторе ћелијског циклуса, као што је генистеин. Генистеин индукује експресију p21 у BT549 ћелијама које експримију галектин-3, али не у контролним BT549 ћелијама (216), односно генистеин ефикасно индукује апоптозу без видљивог прекида ћелијског циклуса у BT549 ћелијама, док се у BT549 ћелијама којима је трансфекцијом индукована експресија галектина-3 уочава само застој ћелијског циклуса у G2/M фази без индукције апоптозе (216).

1.2.3.4 Улога и значај галектина-3 у регулацији инфламацијског и имунског одговора

Последњих десетак година је интензивном проучавана регулаторна улога галектина-3 у контроли имунских процеса и инфламације (222). Gal-3 регулише кључне процесе у имунском/инфламацијском имунском одговору: формирање имунске синапасе, организацију и репарацију ткива, апоптозу, активацију и миграцију ћелија.

1.2.3.5 Улога Gal-3 у атхезији и хемотакси

Екстрацелуларни Gal-3 је присутан на површини ћелије (везан за глукоконјугате ћелијске мембране) или у телесним течностима (у солубилном облику) (223-229). Gal-3 се везује за α1β1 интегрин (220) и тако утиче на ћелијску атхезију. Рекомбинантни галектин-3 промовише атхезију хуманих неутрофила за ламинин (230) и ендотелне ћелије (231). Везујући се за угљено-хидратне молекуле на ћелијама или екстрацелуларном матриксу Gal-3 има улогу моста између ћелије и екстрацелуларног матрикса, та интеракција активира ћелију што за резултат има појачану атхезију (190). Такође Gal-3 модулише експресију интегрина, стимулише ендоцитозу β1 интегrina (232, 233). Укључен је и у атхезију
лимфоцита који експримирају L селектин и дендритских ћелија (234). Показано је in vitro да рекомбинантни Gal-3 инхибира интеракцију тимоцита са микроокружењем и тако подстиче ослобађање тимоцита од ћелија дадиља тимуса и излазак тимоцита из тимуса на периферију (235).

Gal-3 делује и као хемотактички молекул, стимулише миграцију моноцитна, макрофага и алвеоларних макрофага in vitro и in vivo и подстиче њихову миграцију кроз ендотел (181). Ову функцију галектин-3 остварује везивањем за N и C домене рецептора који је удружен за G протеином, што је праћено инфлуксом јона калцијума у ћелију међутим, специфичан рецепт о одговоран за описане ефекте још увек није откривен.

1.2.3.6 Утицај Gal-3 на функције ћелија имунског система

Gal-3 је експримиран у многим ћелијама имунског система. Експримиран је конститутивно у моноцитима, макрофагима, дендритских ћелијама, мастоцитима, неутрофилима, еозинофилима, док га Т и В лимфоцити експримирају тек након активације (236), мада конститутивну експресију Gal-3 показују регулаторни Т лимфоцити и CD4⁺ меморијски Т лимфоцити (237). Gal-3 утиче на диференцијацију и пролиферацију различитих ћелија имунског система. Индукује апоптозу у Т лимфоцитима и неутрофил, активира различите ћелије лимфогеног и мијелоогеног порекла: мастоците, неутрофиле, моноците и Т лимфоците што резултује ослобађањем медијатора запаљења, супероксидних анјона и цитокина (150, 238). Галектин-3 супримира мијелоидне ћелије инхибицијом продукције IL-5 у хуманим еозинофилима (239), а интеракцијом са TCR комплексом Т лимфоцита негативно регулише трансдукцију сигнала са TCR-а (240). Gal-3 у лимфном ткиву регулише организацију ниша B220⁺ и CD138⁺ ћелија (241) и инхибира диференцијацију у плазмоците in vitro (242) и in vivo у костној сржи, мезентеричним лимфним чворовима и слезини (241) (243). Поред тога Gal-3 има антипротототску улогу у неоплазмама В лимфоцита (244) и одржавању анергије В лимфоцита (245). Перитонелне макрофаги Gal-3 дефицијентних мишева су у поређењу са макрофагима wild-type мишева осетљивији на апоптозу индукуовану помоћу липополисахарида и IFN-γ. Галектин-3 подстиче фагоцитозу која је стимуласана активацијом Fсγ рецептора (246), као и одговор мастоцита на стимулацију Fсε рецептора (247). Такође, Gal-3 активира фагоците и појачава им фагоцитну и микробицидну
способност, делујући и као рецептор и опсонин који препознаје молекулске обрасце оштећених ћелија (DAMP) и микроорганизама (PAMP) (248-252). Експресија галектина-3 у дендритским ћелијама утиче на поларизацију имунског одговора (253-257). Коришћење Gal-3 дефицијентних мишева је омогућило детаљније проучавање имуномодулаторних ефеката галектина-3. Одсуство Gal-3 појачава и Th1 али и Th2 имунски одговор у зависности од експерименталног модела (258). Прецизнни механизми којима Gal-3 утиче на развој и прогресију аутоимунских болести нису разјашњени, али је јасно да у регулацији аутоимунског процеса може да испољи двојаку улогу.

1.2.4 Експресија галектина-3 у јетри

Експресија Gal-3 у хепатоцитима и холангиоцитима здравих јетри је немерљива (259). Међутим, у различитим инфламацијским и малигним болестима јетре се значајно повећава његова експресија у хепатоцитима (260-263). Такође, показана је значајна експресија галектина-3 у 93% узорака холангиокарцинома, при чему је експресија интензивнија у боље диферентованим туморима (259, 264). Инхибиција експресије галектина-3 у једру подстиче апоптозу и сензитивност на хемотерапију малигних ћелија холангиокарцинома (261). Скорије је показана и повећана експресија Gal-3 је у у макрофагима јетре оболелих од РВС (265)
2. ЦИЉ РАДА

Основни циљ овог истраживања је да се испита улога галектина-3 у патогенези примарног билијарног холангитиса и то у два експериментална модела:
❖ РВС изазваном имунизацијом ксенобиотиком
❖ РВС изазваном бактеријом Novosphingobium aromaticivorans

У складу са основним циљем постављени су следећи конкретни задаци:

• Утврдити утицај галектина-3 на развој РВС, а на основу хистолошког скора, биохемијских и серолошкх параметара, у два различито експериментална модела болести индукуване: било имунизацијом C57BL/6 мишева ксенобиотиком, 2OA-BSA; било инфекцијом C57BL/6 мишева бактеријом Novosphingobium aromaticivorans.
• Испитати утицај галектина-3 на састав мононуклеарних инфильтрата као и фенотипске карактеристике лимфоцита у ткиву јетре мишева имунизованих ксенобиотиком.
• Испитати утицај галектина-3 на цитокински профил у моделу РВС индукуваног ксенобиотиком.
• Испитати експресију галектина-3 у холангиоцитима мишева са РВС индукуваним ксенобиотиком.
• Испитати утицај галектина-3 на осетљивост холангиоцита на проапототске стимулузе.
• Анализирати утицај галектина-3 на процентуалну заступљеност и фенотипске карактеристике дендритских, NK и NKT ћелија у инфильтратима јетре мишева којима је болест изазвана бактеријском инфекцијом.
• Анализирати утицај галектина-3 на процентуалну заступљеност и фенотипске карактеристике лимфоцита у инфильтратима јетре мишева којима је болест изазвана бактеријском инфекцијом.
• Испитати утицај галектина-3 на стимулацију дендритских и NK ћелија бактеријом in vitro
• Испитати утицај галекина-3 на експресију компоненти инфламазома у мијелоидним ћелијама јетре и слезине након индукције РВС бактеријом.
• Испитати да ли примена Gal-3 инхибитора може да ублажи испољавање болести у моделу РВС изазваном бактеријском инфекцијом.
3. МАТЕРИЈАЛ И МЕТОДЕ

3.1. Лабораторијске животиње

Ова студија изведена је на женкама чистог соја С57BL/6 мишева (engl. Wild Type, WT) и на женкама истог соја мишева који имају циљану делецију гена за галектин-3 (Gal-3 knock-out [KO] или Gal-3/- C57BL/6), старим 8 недеља. Gal-3 KO мишеви набављени су из одгајалишта за мишеве универзитета Калифорније захваљујући проф. др Hsu-у (Daniel K. Hsu, Department of Dermatology, University of California, Davis, School of Medicine, Sacramento, California, USA). Сви мишеви који су коришћени су одгајани у виваријуму Центра за молекулску медицину и истраживања матичних ћелија, Факултета медицинских наука, Универзитета у Крагујевцу. Све процедуре које су рађене на мишевима одобрила је Етичка комисија за заштиту добробити огледних животиња Факултета медицинских наука, Универзитета у Крагујевцу и спроведене су у сагласности са свим међународним смерницама о третирању лабораторијских животиња.

3.1.1. Поступак добијања C57BL/6 мишева са циљаном делецијом гена за галектин-3

Методологија стварања knock-out мишева се заснива на замени само једног дела или комплетног циљаног (нормалног) гена нефункционалним (мутираним) геном помоћу хомологе рекомбинације (266). У току хомологе рекомбинације дешава се замена гена између пара хомологих секвенци два молекула ДНК које имају сличне или идентичне нуклеотиде (267). Оваквом заменом оригиналног гена неактивним геном се елиминише или "искључује" функција постојећег гена (266).

Следећи корак у технологији добијања knock-out мишева је селекција оних ћелија у којима се одиграла хомолога рекомбинација. Пре трансфекције у ембрионалне матичне ћелије, фрагмент ДНК са мутираним геном (или фрагмент ДНК са "искљученим" геном) најпре се угради у циљани вектор који садржи и два додатна гена којим се контролише рекомбинација: ген за резистенцију на неомицин (Neo ген) и ген за вирусну тимидин киназу
Познато је да се Neo ген увек уграђује у геном ћелије, док се TK ген губи само у оној ситуацији када се десила хомолога рекомбинација. Овај вектор убацује се у културу ћелија чији медијум садржи неомицин, као и ganciklovir или FIAU (енгл. 1-(29-deoxy-29-fluoro-1- β-D-arabinofuranosyl)-5-iodo-uracil) који се под утицајем тимидин киназе метаболишту у токсични продукт. Уколико је жељени клонирани ген насумице интегрисан у ћелију, оваква ћелија биће резистентна на неомицин, али ће бити уништена помоћу ganciklovir-а или FIAU. Међутим, оне ћелије у којима се одиграо хомолог рекомбинација биће резистентне и на неомицин и на ganciklovir или FIAU (268, 269). Показано је да нишви ген за галектин -3 садржи шест егзона, при чему егзон 2 и кодирају амино-терминус молекула галектина-3, док егзони од 4 до 6 кодирају карбокси-терминус са доменом којим препознаје угљенохидрате (270). У лабораторији проф. др Hsu-а у циљу добијања Gal-3 -/- мишева направљен је прекид гена за галектин-3 на нивоу ембрионалних матичних ћелија (271). При томе је коришћен вектор који је конструкисан тако да садржи фрагмент клонираних ДНК за галектин-3, а стратегија за добијање Gal-3 -/- мишева се заснивала на прекиду оног генског региона који кодира домен за препознавање угљенохидрата. Другим речима, кратак сегмент (од 0.5 кило база) кога чине интрон-4 и егзон-5 је замењен геном за резистенцију на неомицин. Сегмент од егзона-4 до егзона-5 нишвијег гена за галектин-3 је уграђен у рMC1Neo Poly(A) вектор (Stratagene, La Jolla, CA) и то на горњем крају у близини промотера за тимидин киназу-Neo касете. Други сегмент од егзона-5 до егзона-6 је уграђен низводно од Neo касете, док је у вектору сегмент на споју интрона-4 и егзона-5 прекинут Neo геном. Циљани вектор је уграђен у нишвије матичне ћелије, D3, а затим су трансфектоване ћелије селектоване уз помоћ G418, док је хомолога рекомбинација у G418-резистентним ћелијама детектована помоћу две технике: PCR (енгл. Polimerase Chain Reaction) коришћењем прајмера специфичних за Neo ген, као и Southern- блот хибридизација. Скринингом 894 клонова ембрионалних матичних ћелија идентификована су само два клона 4A2 и 9A4 у којима је детектована хомолога рекомбинација помоћу пробе 4 (271).

Један клон ембрионалних матичних ћелија у коме се одиграли хомолога рекомбинација је најпре пропагиран а онда су овакве ћелије убизгане у 3,5 дана старе бластоцисте C57BL/6 мишева, а затим су овакве бластоцисте имплантиране у лажно гравидне CD1 женке (сурогат мајке). На тај начин су прво добијени химерични мишеви, а затим укриштањем химеричних
мужјака са C57BL/6 женкама најпре су добијени хетерозиготни knock-out мишеви (Gal-3 +/- мишеви). Инбредним укрштањем овакних хетерозиготних мишева након девет генерација добијени су хомозиготни knock-out мишеви који су генски дефицијентни у експресији молекула галектин-3 (Gal-3/-/- мишеви) (271).

Код Gal-3 +/- мишева добијених на овакав начин изоловани су различити органи (надбубрежна жлезда, мозак, срце, јетра, плућа, лимфни чворови, слезина, тимус...) у којима хистолошком анализом нису уочене било какве промене. Такође није детектована разлика у броју ћелија крви између Gal- -/- i Gal-3+/+ мишева. Уз то, анализиране су и субпопулације лимфоцита у тимусу, слезини и лимфним чворовима, и показано је да је укупан број лимфоцита као и однос CD4+/CD8+ ћелија приближно исти и код Gal-3 -/- и код Gal-3 +/- мишева (271).

3.2. Индукуција примарног билијарног холангитиса и детекција аутоантитела

Примарна билијарна цироза изазвана је имунизацијом ксенобиотиком (2-октиноичном киселином конјугованом са серумским албумином говеда) набављеним захваљујући проф. др Gershwin-y (Eric M. Gershwin, Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, School of Medicine, California, USA). Женке мишева C57BL/6 WT и C57BL/6 Gal-3 KO (n=10 у свакој групи), старих 8 недеља, имунизоване су микстуром конјугата 2-октиноичне киселине и серумског албумина говеда 2OA-BSA 100µg/25µl интраперитонеално у комплетном Freund-овом адјувансу (CFA, Sigma-Aldrich, St. Louis, MO) који садржи 10 mg/ml Микобактеријума туберкулозе соја H37Ra и након тога на сваке 2 недеље даване су понављане дозе микстуре 2OA-BSA сада у некомплетном Freund-овом адјувансу (IFA, Sigma-Aldrich) (272). Као контроле коришћени су нетретирани мишеви.

У моделу болести који се индукује бактеријском инфекцијом женке C57BL/6 WT и C57BL/6 Gal-3 KO мишева, старе 8 недеља, су интравенски примале 5*10^7 PFU (Plaque-Forming Unit) бактерије Novosphingobium aromaticivorans нултог и 15. дана експеримента.
Крв за анализе је сакупљана из фацијалне вене друге, четврте и 8 недеље након почетне имунизације/инфекције. Антитела на митохондријални аутоантиген PDC-E2 детектована су ELISA теством како би се утврдило присуство и концентрација антитела усмерених на PDC-E2 у серуму. Коришћене су ELISA плоче са 96 бунара, у сваки од њих сипано је 10μg/ml чистог рекомбинантног PDC-E2 у 100µl карбонантног пуфера (pH 9.6), и остављено преко ноћи на 4°C, потом опрано са TBS-T (Tris-Buffered Saline Tween-20) и блокирано са 5% обраним млеком у TBS-у на 30 минута. У сваки бунар додато је 100µl дилуираних серума (1:250) и инкубирано 2 сата на собној температури. Након прања додавана је HRP (horseradish peroxidase) коњугована са анти-мишијим имуноглобулинима (A+M+G)(H+L) (1:3000)(Invitrogen ZyMax™). Плоче су инкубиране један сат на собној температури и поново пране, а развијач боје са 100µl супстрата TMB пероксидазе (BD Biosciences, San Jose, CA) додаван је у сваки бунар. Оптичка густина (OD) читана је на 450nm уређајем Zenith multimode detector 3100. Претходно калибриране позитивни и негативни стандарди укључени су у сваки тест.

3.3. Апликација Gal-3INH

Gal-3INH је, у складу са упутством, најпре растворен у 40% ди-метил сулфоксиду (енгл. Dimethyl sulfoxide, DMSO) чиме је направљен шток 4mM. DMSO је претходно дилуиран у NaCl-у. Пре апликовања у експерименталне животиње, шток смо NaCl-ом дилуирали 4 пута чиме смо добили 1mM шток. Појединачна доза коју смо користили у експериментима је била 300μg Gal-3INH (односно 462μL из 1mM штока). Gal-3+/+ мишеве су груписани случајним узорковањем у две групе и једна група мишева је примала интраперитонелно 300μg Gal-3INH од првог дана експеримента, три пута недељно, у трајању од четири недеље.

3.4. Хистолошка анализа ткива јетре

Мишеви су жртвовани 8 недеља после имунизације ксенобиотиком и четири, 8 и 24 недеље после инфекције бактеријом, а за хистопатолошку анализу коришћена су ткива јетре калупљена у формалину. За процену инфламацијске инфилтрације коришћени су исечци
бојени техником хематоксили-еозин, а за процену фиброзе јетре коришћено је бојење техником *Sirius red*. Након жртвовања животиња исечци ткива јетре фиксирани су 4% параформалдехидом на собној температури два дана и након тога уграђени у парафин. Блокови парафина донесени су на собну температуру где су сечени на ротирајућем микротому (*Leica RM2135*). 24 серијска 4-µm пресека потапана су у воду на 40°C, а потом стављени на стаклене микроскопске плочице.

3.4.1. Бојење хематоксилином и еозином

Парафински исечци претходно загрејани у термостату на +56°C у трајању од 45 минута су потапани у ксилол, а затим је урађен поступак рехидратације ткива испирањем у опадајућим концентрацијама стил алкохола: два пута по 5 минута у апсолутном алкохолу, потом 5 минута у 96% алкохолу, 5 минута у 90% алкохолу, 5 минута у 70% алкохолу и на крају 5 минута у дестилованој води. Након серије испирања препарати су бојени *Mayer*-овим хематоксилином (*Sigma Aldrich, St. Louis, MO, USA*) 10 минута, а затим су испрани дестилованом а потом и текућом водом 5 минута. Након бојења препарата еозином (*Sigma Aldrich, St. Louis, MO, USA*) у трајању од два минута, урађен је поступак дехидратације и просветљивања препарата. За процес дехидратације су коришћене растуће концентрације алкохола и то: 5 минута у 70% алкохолу, затим 5 минута у 90% алкохолу, 5 минута у 96% алкохолу и на крају 2 пута по 5 минута у апсолутном алкохолу. Након дехидратације препарати су просветљени потапањем један минут у мешавини ксилола и апсолутног алкохола у односу 1:1, а потом два пута по један минут само у ксилолу. На крају је на ткивне исечке нанет канада балзам (*Centrohem, Србија*) и прекривени су покровним стаклима. Слике хистолошких препарата добијене су на светлосном микроскопу (*Olympus BX51*) са дигиталним фотоапаратом.

3.4.2. Бојење хистолошких препарата на фиброзу (*Sirius Red*)

Третирани и рехидрирани исечци бојени су један сат са засићеним пикринским киселинама које садрже 0,1% *Sirius Red F3BA* (*Sigma-Aldrich, St. Louis*). Радни раствор *Sirius red* за бојењедобијен је мешањем 0,5 g боје *Sirius red* (*Direct Red 80, Sigma Aldrich*) и 500ml
засићеног раствора пикричне киселине (Picric acid Solution, Sigma Aldrich). Исечци су испирани два пута по 5 минута у 0,005% воденом раствору глацијалне сирћетне киселине (Centrohem, 51 Србија), а онда дехидрирани у 100% етанолу три пута, а онда просветњени 5 минута у ксилолу. На крају је на ткивне исечке нанет канада балзам (Centrohem, Србија) и прекривени су покровним стаклима. Квантификација фибризе у мишијим исечцима јетре обојених Sirius Red-ом на увеличању од 10 пута у 10 поља одређивана је коришћењем софтвера ImageJ (NIHh, Bethesda, MD).

3.5. Процена хистолошког скора

За сваки исечак су оцењивани следећи параметри: перипортна инфламација, инфилтрација билијарних канала без оштећења, инфилтрација са оштећењем билијарних канала и супкаспуларни инфилтрати. Сви поменуте патолошке промене су на основу хистолошке слике индексирани са: 0-нема; 1-блага; 2-умерена; 3-јака; 4-веома јака патологија. Хистолошки скор I је израчунат као средња вредност сваког оцењеног индекса. Такође су анализирани и грануломи и фибриза и бодовани на следећи начин: 0-нема; 1-блага; 2-умерена; 3-јака. Хистолошки скор II је израчунат као средња вредност последња два параметра. Хистолошка анализа и бодовање добијени су слепом методом.

3.6. Одређивање концентрације ензима јетре у серуму

Мишеви експерименталних и контролних група су жртвовани цервикалном транслокацијом и узета им је крв из трбушне аорте која је центрифугирана 15 минута на 1200 обртаја. Затим је серум (V=150 μL) издвојен за сваког појединачног миша ради одређивања концентрације трансаминаза: аспартат трансаминазе (AST) и аланин трансаминазе (ALT). Концентрације трансаминаза су измерене коришћењем специфичних колориметријских китова: mouse AST ELISA кита и mouse ALT ELISA кита (Elabscience).

3.7. Одређивање концентрација цитокина у серуму
Концентрације цитокина (IL-6, IL-13, IL-17 и IL-23, IL-17 и IFN-γ) у серумима мишева одређиване су комерцијалним ELISA китовима специфичним за мишије цитокине (Mouse IL-6 DuoSet ELISA Development kit; Mouse IL-13 DuoSet ELISA Development kit; Mouse IL-17 DuoSet ELISA Development kit, Mouse IFN-γ DuoSet ELISA).

Стандарди су пре употребе растворени у PBS-у (pH 7.2), тако да почетне концентрације буду 2000pg/ml за IL-13 и IFN-γ; 1000pg/ml за IL-6 и IL-17. Од оваквих штокова направљена су растућа серијска разблажења у 8 тачака у комерцијалном растварачу, према упутству производача.

100μl радне концентрације везујућег антитела (енгл. Capture Antibody) сипано је у бунарчиће микротитар плоча (енгл. microtiter plate- MTP) са 96 бунарчића са равним дном (Sarstedt). Плоче су прелепљене адхезивном фолијом (енгл. ELISA Plate Sealers) и остављене преко ноћи на собној температури, након чега су бунарчићи испрани пуфером за испирање (енгл. Wash Buffer) у аутоматској машини за испирање MTP-a. Затим је у све бунарчиће додат блокирајући пуфер (Block Buffer, 1% BSA у PBS-у) финалног волумена 300μl и MTP су остављене минимум један сат на собној температури, а потом испране пуфером за испирање. Сви узорци су претходно разблажени 10 пута у дејонизованој води.

Разблажени узорци и припремљени стандарди су сипани у MTP, прекривени адхезивном фолијом и остављени два сата на собној температури. Након инкубације и испирања MTP, у све бунарчиће је додавано 100μl радне концентрације антитела за детекцију (енгл. Detection Antibody), плоче су обложене адхезивном фолијом и поново остављене два сата на собној температури. Плоче су потом испране па је у бунарчиће сипано 100μl радне концентрације Streptavidin-HRP (енгл. Streptavidin horseradish peroxidase). Инкубација на собној температури и без директног излагања светлости прекинута је након 20 минута, испирањем MTP-a. У бунарчиће је сипано 100μl раствора супстрата (енгл. Substrate Solution: Color reagent A + Color reagent B, 1:1). Двадесет минута касније, додато је 50μl стоп раствора (енгл. Stop Solution: 2N H₂SO₄) и очитана је оптичка густина на таласној дужини 450nm, на Microplate reader-y (Zenyth 3100 Multi-Mode-Detektor, Anthos, Austria).

Све измерене вредности су умањене за вредности апсорбансе слепе пробе (дејонизована вода). На основу измерених вредности стандарда направљена је стандардна крива, а помоћу ње су израчунате вредности за сваки појединачан узорак. Сви узорци су мерени у трипликату.
3.8. Изолација мононуклеарних ћелија јетре и проточна цитометрија

Сви мишеви којима су изоловане мононуклеарне ћелије из јетре су жртвовани цервикалном дислокацијом. За изолацију мононуклеара из јетре коришћен је метод механичке разградње јетре. Након одстрањивања јетре уклоњена је жучна кеса, а јетра подвргнута перфузији апликовањем 7 mL PBS-a кроз порту вену. Јетра је потом уситњена маказицама и нежно здробљена кроз челичну мрежу (отвора од 200μm) коришћењем „полуге” шприца а затим је суспензија пртиснута и кроз ћелијско сито (cell strainer BD Pharmingen, USA). Добијени садржај је ресуспендован у 50ml медијума RPMI-1640 (који садржи GlutaMax 1,25mM, HEPES и 10% FCS) и центрифугован на 60g један минут на собној температури, без наглог заустављања центрифуге (енгл. off break setting). Супернатант (45ml), који је садржао интрахепатичне ћелије, је пребациован у нову епрувету и центрифугован на 480g 8 минута на собној температури, са активираном опцијом наглог кочења (енгл. high break setting). Добијени талог је ресуспендован у 10ml 37.5% Percoll-a у медијуму HBSS који је садржао 100U јединица хепарина/ml и онда центрифугован на 850g 30 минута на собној температури, без наглог заустављања центрифуге. Овако добијени талог ресуспендован је у 5ml пуфера за лизирање еритроцита (енгл. Er Lysing buffer). Ћелије су потом инкубиране у 5ml lysing раствора у трајању од 5 минута, на леду (на +4˚C). Након истека инкубације, додавано је 5ml RPMI-1640 са 10% FBS-ом чиме је заустављено даље лизирање. Ћелије су затим центрифуговане на 480 g у трајању од 8 минута на 8˚C, са активираном опцијом наглог кочења. Коначно, добијени талог ресуспендован је у 1ml PBS који садржи 1% FCS односно 0,1% NaN3 (тзв пуфер за анализу проточном цитометријом, енгл. FACS buffer) или у 1ml комплетног RPMI-1640 медијума (који садржи GlutaMax 1,25mM, HEPES i 10% FCS).

3.9. Изолација мононуклеара слезине

Појединачне слезине изоловане из мишева су пребачене у епрувете од 50ml које су садржале медијум (RPMI-1640; PAA Laboratories GmbH са додатком 10% FBS-a) са додатком DNA-зе (Sigma-Aldrich St. Louis, MO United States) 120IU/ml. Накнре је клином шприца пртиснута слезина кроз ћелијско сито (cell strainer, BD Pharmingen, USA) у епрувету од 50ml уз
додавање 5ml медијума (RPMI-1640 (PAA Laboratories GmbH) са додатком 10%-ог FBS-a). Овако раздвојене појединачне ћелије су центрифугиране 5 минута на 1500rpm. Супернатант је одлисен, а на ћелијски талог је додато 5 ml lysing раствора. У циљу лизирања еритроцита инкубација ћелија у lysing раствору је трајала 5 минута, такође на леду. Додавањем 5ml RPMI-1640 (10% FBS) заустављено је даље лизирање. Затим су ћелије центрифугиране, супернатант је одлисен а талог ресуспендован у 8ml RPMI-1640 (10% FBS). Да би се избегла контаминација спленоцита хистиоцитима слезине, ћелије се још једном пропуштају кроз ћелијско сито. Добијена суспензија појединачних спленоцита користи се у даљим испитивањима (за стимулацију бактеријама). Након изолације, приликом бројања ћелија одређивана је и њихова вијабилност помоћу trypan-blue-a под светлосним микроскопом и у експерименталном раду су коришћене само суспензије ћелија са вијабилношћу већом од 90%.

3.10. Проточна цитометрија

3.10.1. Обележавање ћелијских мембранских маркера.

У идентификацији мембранских маркера за фенотипизацију и одређивање функционалног фенотипа субпопулација мононуклеарних ћелија лимфног изолованих из јетре примењена су анти-мишја моноклонска антитела специфична за циљане маркере обележена различитим флуоресцентним бојама. На 5×10⁵ ћелија ресуспендованих у 50μl пуфера за бојење (енгл. Staining Buffer; BD) додавана је одговарајућа количина моноклонских антитела примарно обележених различитим флуоресцентним бојама у одређеним комбинацијама. Испитиване мононуклеране суспензије су такође инкубирани и са одговарајућим изотипским контролама.

Сва антитела за површинско бојење, као и изотипске контроле, коришћена су у таквим концентрацијама да њихова финална разблажења у суспензији буду 1:100. Затим је талог ћелија са антителима краткотрајно вортексован и онда инкубиран у мраку на температури од +4°C у трајању 20 минута. По истеку инкубације, ћелије су "опране" додавањем 1,5ml
хладног пуфера за бојење (енгл. *Staining Buffer, BD*) и центрифуговањем 5 минута на 400g. Потом је супренатант одливен, а талог ћелија ресуспендован у 350µl пуфера за бојење. Непосредно након процедури бојења ћелије су анализирани на проточном цитометру *FACSCalibur* (BD). Уколико у даљем тексту није другачије назначено, за цитометријску анализу коришћен је регион (енгл. *Gate*) мононуклеарних ћелија у FSC/SSC плоту. Регистровано је најмање 20.000 догађаја у свакој цитометријској анализи. Подаци су анализирани помоћу софтвера FlowJo.

3.10.2. Интрацелуларно бојење цитокина

Бојење интрацелуларних цитокина спровођено је по BD *Cytofix/Cytoperm™* методи. Како би се детектовале ћелије које продукују цитокине, према подацима из литературе, за стимулацију ћелија се користе различите *in vitro* методе (276; 277; 278; 279; 280; 281; 282; 283; 284; 285), које се углавном своде на употребу различитих поликлонских активатора као што су: конканавалин A (Con-A), фитохемаглутинин, стафилококни ентеротоксин β, липополисахарид (LPS), моноклонска антитела специфична за комплекс TCR/CD3 (са или без антитела на костимулаторне рецепторе, као што је CD28) и естри форбола са калцијум јонофором (енгл. *phorbol esters plus calcium ionophore*). У овом истраживању ћелије су стимулисане форбол миристат ацетатом (енгл. *Phorbol 12-myristate 13-acetate, PMA; Sigma*) и јономицином (енгл. *Ionomycin; Sigma*), који покрећу активност протеин киназе C (енгл. *Protein kinase C, PKC*) и инфлукс јона калцијума у ћелију, што индукује експресију цитокина у ћелији претходно активираној физиолошким стимуласима (286). Трајање инкубације од 4 до 6 часова је оптимално за већину цитокина, јер је дужа инкубација удружен а са појавом цитотоксичних ефеката поменутих активатора. У току *in vitro* стимулације ћелија користе се инхибитори интрацелуларног транспорта протеина, BD *GolgyStop™* (садржи моненсин) и BD *GolgyPlug™* (садржи брефелдин А). Блокирање интрацелуларног транспорта поменутих инхибиторима резултира акумулацијом већине цитокина у ендоплазматском ретикулуму или Голдијевом комплексу, па је тако повећана могућност детекције ћелија које продукују цитокине. Моненсин и брефелдин А имају дозно и временски зависан цитотоксични ефекат, па излагање ћелија овим агенсима мора бити ограничено, инкубације дуже од 12 часова су токсичне за ћелије.
3.10.2.1 Стимулација ћелија.

Суспензија појединачних мононуклера изолованих из јетре (1x10^6/ml) припремљена у комплетном медијуму (RPMI 1640) је стимулисана инкубацијом на 37°C (5%CO2) у присуству PMA (Sigma; 50ng/ml) и јонофора (Ionomycin, Sigma; 500ng/ml). У суспензију је додаван и BD GolgyStop™ (0,7μl/ml) који блокира секрецију цитокина и повећава њихову интрацелуларну акумулацију. После 4 сата инкубације ћелије су опране и ресуспендоване у комплетном медијуму, а потом пребачене у пластичне епрувете (FALCON round-bottom test tubes, BD) за имунофлуоресцентно бојење.

Даље процедуре су обављане на +4°C.

3.10.2.2. Бојење површинских антигена.

Епитопи површинских маркера могу да се оштете фиксацијом и пермеабилизацијом, па се површинско бојење обавља пре фиксације ћелија. Тако је на 1×10^6 мононуклеара ресуспендованих у 50μl пуфера за бојење (енгл. Staining Buffer; BD) додавана одговарајућа количина примарно конјугованих моноклонских антитела специфичних за површинске антигене. Ћелије су такође инкубиране и са одговарајућим изотипским контролама. Сва антитела за површинско бојење коришћена су у таквим концентрацијама да њихова финала разблажења, у суспензији ћелија буду 1:100. Ћелије су инкубиране 30 минута на +4°C, у мраку.

3.10.2.3. Фиксација ћелија и пермеабилизација ћелијске мембране.

Након инкубације са примарно конјугованим антителима за површинске антигене, мононуклеари су опрани два пута у пуфера за бојење (1ml/епрувети; 300G). Ћелијски талог је ресуспендован у 250μl Cytofix/CytoPerm™ раствора (BD Pharmingen) и инкубиран 20 минута на +4°C. Затим су ћелије опране два пута у Perm/Wash™ пуфера (BD Pharmingen; 1ml/епрувети; 300G).

3.10.2.4. Бојење интрацелуларних цитокина.

Ђелијски талог је ресуспендован у 50μl Perm/Wash™ пуфера и додата су примарно конјугована моноклонска антитела специфична за цитокине. Сва антитела коришћена су у
таквим концентрацијама да њихова финална разблажења буду 1:100. Ћелије су инкубиране 30 минута на +4°C, у мраку. Након инкубације, ћелије су опране у Perm/Wash™ пуферу (1ml/сепрувети; 300G). Ћелијски талог је ресуспендован у 350μl пуфера за бојење и анализиран на проточном цитометру. Уколико у даљем тексту није другачије назначено, за цитометријску анализу коришћен је регион (енгл. Gate) мононуклеарних ћелија у FSC/SSC плоту. Регистровано је најмање 20.000 догађаја у свакој цитометријској анализи. Подаци су анализирани помоћу FlowJo (Tree Star) софтера.

3.11. Имунохистохемија мишијих узорака јетре

Имунихистохемијско бојење парафинских исечака јетре урађено је коришћењем зечијег специфичног конјугата (Expose Rb-Specific HRP/DAB Detection IHC Kit; Abcam) и специфичног мишијег конјугата (Expose Ms-Specific HRP/DAB Detection IHC Kit; Abcam) за бојење цитокератина 7 (CK-7) и Gal-3. Депарафинизовани парафински исечци ткива јетре дебљине 5μm након рехидратације ткива, су најпре кувани 21 минут у 10mM Na-цитрату, а након хлађења интензивно испрани три пута у PBS-у. На ткивне исечке је потом додато 2-3 капи Hydrogen Peroxide Block-a са циљем да се инактивишу ендогене пероксидазе и након инкубације 10 минута на собној температури, препарати су два пута опрани у PBS-у. Затим је на препарате додато 2-3 капи Protein Block-a који је после 10 минута инкубације испран једном у PBS-у. На ткивне исечке су потом додато 150μl примарног антитела, зечијег анти-мишијег Gal-3 (Abcam) и мишијег анти-мишијег CK-7 (Abcam). Сва примарна антитела су растворена у PBS-у са 1% BSA. Након једносатне инкубације са примарним антителима у влажној комори на собној температури, препарати су опрани три пута по 5 минута у PBS-у, ткивни исечци су инкубирани 30 минута на собној температури у присуству биотинизираног секундарног антитела. Након инкубације, препарати су опрани три пута по 5 минута у PBS-у и на ткивне исечке је апликована Streptavidin Peroxidase-a. Након 10 минута инкубације са пероксидазом на собној температури исечци су испрани три пута по 5 минута у PBS-у и на њих је апликовано је 2-3 капи DAB реагенса претходно добијеног додавањем 20μl DAB Chromagen-a у 1ml DAB супстрат пуфера. Након развијања боје
препарати су испрани три пута у дестилованој води и обојени хематоксилином по Маяг-у два минута, а затим интензивно опрани текућом водом. Обојени исечци су покривени воденим медијумом за покривање и покровном љусницом. Хистолошки пресеци јетре визуелизовани су и фотографисани је дигиталном камером на светлосном микроскопу (Olympus BX5).

3.12. Изолација NK ћелија позитивном селекцијом помоћу магнетних куглица

NK ћелије су издвојени из јетре позитивном селекцијом коришћењем кита Dynal® Mouse CD49b isolating kit (Invitrogen). 10⁷ претходно изолованих ћелија из јетре ресуспендовано је у 500µl пуфера 1 [PBS (без Ca²⁺ и Mg²⁺) w/0.1% BSA и 2mM EDTA (pH 7.4)]. Затим је додато 25µl FlowComp™ Mouse CD49b антитела (Invitrogen). По истеку инкубације (15 минута на 2-8˚C) уследило је прање ћелија у пуферу 1 (2ml/епрувети; 350 G). Пелет је ресуспендован у 500µl пуфера 1 на шта је додато 75µl претходно опраних магнетних куглица m49b Dynabeads (Invitrogen). Након инкубације (15 минута на 2-4˚C уз повремено мешање) ћелије су ресуспендоване у 6ml пуфера, а епрувета са ћелијама постављена је у магнетно поље (Invitrogen) у трајању од два минута. Потом је одливен супернатант, а епрувета извађена из магнетног поља. На ћелије остала у епрувети (позитивно селектоване NK ћелије) додат је 1ml пуфера FlowComp™ Release buffer (Invitrogen). Након инкубације (30 минута на 20-25˚C уз повремено мешање) епрувета са ћелијама постављена је у магнетно поље у трајању од два минута, а затим је супернатант са слободним ћелијама (без магнетних куглица) пребачен у нову епрувету. Овако добијене ћелије су опрane у комплетном медијуму (4ml/епрувети; 300 G), ресуспендоване у 500µl истог медијума, а затим је одређен њихов број и вијабилност. Добијене NK ћелије су даље коришћене као ефекторске ћелије у МТТ тесту цитотоксичности.

Прање магнетних куглица подразумева да се жељени волумен куглица помеша ana partes са пуфером 1, а епрувета са ресуспендованим куглицама остави се у снажном магнету (Invitrogen) један минут. После одливане супернатанта, епрувета се уклања из магнетног поља а пелет ресуспендује у почетном (жељеном) волумену пуфера 1.
3.13. Издвајање дendirитских ћелија помоћу магнетних куглица

Дendirитске ћелије су издвајане из мононуклеарних ћелијских суспензија слезине методом обогаћивања уз помоћ кита Dynabeads® Mouse DC Enrichment Kit (Invitrogen), тако што је 1x10^7 претходно изолованих ћелија ресусепндовано у 100μl пуфера 1 [PBS (без Ca^{2+} и Mg^{2+}) w/0.1% BSA и 2mM EDTA (pH 7.4)]. Овако припремљене ћелије су инкубиране (20 минута на 2-8°C) у 20μl FBS-a са 20μl Antibody Mix-a (Invitrogen) који садржи различита антитела специфична за T лимфоците, mIgM+ B лимфоците, NK ћелије, еритроците и већину гранулоцита. По истеку инкубације ћелије су пране у пуферу 1 (2ml по епрувети; 300G) а талог је ресусепндован у 800μl пуфера 1 и у суспензије је додавано по 200μl претходно опраних магнетних куглица Mouse Depletion Dynabeads (Invitrogen). Прање магнетних куглица подразумева да се жељени количине куглица помеша ana partes са пуфером 1, а епрувета са ресусепндованим куглицама остави у снажном магнетном пољу (Invitrogen) 1 минут. После одливања супернатанта, епрувета се уклања из магнетног поља а талог ресусепндује у почетном (жељеном) волумену пуфера 1. Ћелије су затим инкубиране 15 минута на 18-25°C уз повремено мешање, а затим ресусепндоване у 6ml пуфера и епрувета са ћелијама постављена у магнетно поље (Invitrogen) у трајању од два минута. Тако су у супернатantu остале само негативно селектоване дendirитске ћелије, већином CD11c+, које су потом пране (4ml/епрувети; 300G), ресусепндоване у 500μl комплетног медијума. На крају је одређен број и вијабилност оваквих ћелија, које су даље коришћене за функционално испитивање.

3.14. Продукција цитокина и експресија маркера активације након in vitro стимулације

Дendirитске ћелије изоловане описаном методом магнетне сепарације, из сваког миша појединачно, су ресусепндоване у комплетном медијуму до густине 10^6/ml, а NK ћелије изоловане из јетри два миша су ресусепндоване до густине 10^5/ml и по 100μl суспензије је сипано у микротитар плоче са равним дном (100000 дendirитских, односно 10000 NK ћелија по бунарчету). Тако припремљене ћелије су стимулисane TLR4 агонистом
(липополисахарид, LPS) финалној концентрацији 1μg/ml и посебно бактеријом Novosphingobium aromaticivorans у односу 1:10 ресуспендованом у комплетном медијуму у трајању од 24 сата. Сваки узорак је рађен у трипликату. По истеку инкубације плоче су центрифугиране 5 минута на 400G и супернатант и издвојене ћелије које су анализирани на проточном цитометру. Одређиван је процент ћелија које експримирају маркере активације и про- и анти- инфламацијске цитокине.

3.15. Изолација холангиоцита и тестови апоптозе

Како би изоловали интрахепатичне холангиоците, потребна је перфузија јетре у два корака. Јетра је након тога изолована, а хепатоцити су селективно уклоњени благим притиском кроз инцизију јетре. Холангиоцити су затим суспендовани у DMEM медијуму са додатком 10% FBS, 5% NuSerum IV (BD), 0.5mg/ml insulin-transferrin-sodium selenite (Gibco), 1 mmol/l аскорбинске киселине 2-фосфата, 10К7 М дексаметазона (Sigma-Aldrich Corp.), 10 ng/ml EGF (R&D, Minneapolis, MN, USA), 10ng/ml HGF (R&D, Minneapolis, MN, USA). Након 10 дана ћелије су изложене јономицину 1μg/ml 22 сата и проценат апоптотских ћелија одређиван је проточном цитометријом користећи анексин (Annexin V FITC Detection Kit[BD Pharmingen, San Jose, CA, USA]).

3.16. Анализа експресија гена у ткиву јетре методом квантитативне ланчане реакције полимеразе у реалном времену

3.16.1. Изолација РНК из ткива јетре миша

Изолација укупне РНК из ткива јетре миша урађена је употребом тризол реагенса. Део изолованог ткива јетре миша (100mg) је најпре исецкан маказицама, а потом потпуно механички хомогенизован у 1ml тризола (TRI Reagent® Solution, Applied Biosystems, Foster city, CA, USA) помоћу ручног хомогенизатора. Хомогенат је потом пребачен у нове епрувете величине 1,5ml (Eppendorf, Hamburg, Germany) инкубиран 5 минута на собној температури, а потом центрифугиран 10 минута на 12000 гром на +4°C. У следећем кораку
на супернатант је додато 100μl бромхлорпропана (1-Bromo-3-chloropropane, BCP, Sigma Aldrich), узорци су вортексовани, инкубирани 15 минута на собној температури и центрифугирани 20 минута на 12000гпм на +4°C. Након центрифугирања је горњи провидни слој у којем се налази РНК пребачен у нове епрувете у које је додато 500μl расхлађеног изопропил алкохола чиме је РНК преципитирана. Узорци су благо промешани, инкубирани 15 минута на собној температури и потом центрифугирани 8 минута на 12000гпм на +4°C. Талог из епрувета је оправ два пута са по 1 ml расхлађеног 70% етил алкохола и потом сушен 2 до 5 минута на собној температури. Талог је потом растворен у води која не садржи нуклеазе (Nuclease free water, Applied Biosystems). Концентрација и пречишћеност RNA одређена је спектрофотометријски мерењем абсорбанце на 260/280 nm коришћењем апарата Eppendorf® Biophotometer (Eppendorf, Hamburg, Germany).

3.16.2. Реверзна транскрипција

Процес реверзне транскрипције урађен је коришћењем кита High Capacity cDNA Reverse Transcription Kit (Applied Biosystems, Foster City, California, USA), према упутству произвођача. У епрувете које су садржали РНК додат је мастер микс, садржај је лагано промешан и инкубиран 10 минута на 25°C, затим 120 минута на 37°C, потом је реакција заустављена грејањем 5 минута на 85°C и узорци су потом охлађени на +4°C (Mastercycler® ep realplex, Eppendorf, Hamburg, Germany). Овако добијена cDNA коришћена је за квантификацију експрессије гена.

3.16.3. Квантификација експрессије гена

Методом квантитативне ланчане реакције полимеразе (engl. Polymerase Chain Reaction, PCR) у реалном времену (Quantitative Real Time-PCR, qRT-PCR) мерена је експрессија одређених гена од интереса. Реакција qRT-PCR је урађена у Mastercycler® ep realplex апарату (Eppendorf, Hamburg, Germany) у 96-коморним плочама (Twin.tec. real time PCR plates 96, Eppendorf). Волумен од 20μl реакције обично смешено по комори, садржао је: 2μl узорка cDNA, 10μl мастер микса (Power SYBR Green PCR Master Mix(2x), Applied Biosystems), 2μl смеше парова прајмера за ген од интереса („forward“ и „reverse“) и 6μl воде која не садржи нуклеазе. Коришћени су комерцијално доступни прајмери за NLRP3 и ASC (R&D Systems,
Миннеаполис, МН). Прајмери за β актин (sens 5’-TCCTTCTGGGTATGG-3’ и antisens 5’-ACGCAGCTCAGTAACAG-3’) су дизајнирани користећи Primer Express® software v2.0. Плоче су потом прелепљене оптичком адхезивном фолијом (Masterclear real-time PCR Film, Eppendorf), центрифутиране 1 минут на 3000 гпм и смештене у qRT-PCR апарат (Mastercycler® ep realplex). Температурни профил реакције qRT-PCR апарат био је: 4 минута 57 на 95°C, затим 50 циклуса у трајању од по 15 секунди на 95°C и по минут на 62°C. Есеј је рађен у дупликату за сваки узорак. Просечне Ct вредности контролних трипликата (актин) су одузете од просечних Ct вредности трипликата гена од интереса и на тај начин је добијен ΔCt, док је релативна експресија гена изражена као 2- ΔCt. Резултати су приказани као релативни у односу на контролу, која је арбитрарно подешена на 1.

3.17. Детекција галектина у хуманом серуму и хистолошким пресецима јетре.

Концентрације Gal-3 у серуму пацијената са РВС-ом (n=11) и здравих контрола (n=11) одређене су користећи хумани Gal-3 Quantikine ELISA kit (R&D).

Узорци биопсије хумане јетре добијени су са одељења за патологију, универзитета у Крагујевцу. Колекција узорака бојена је мишијим антихуманим Gal-3 антителима (Abcam, Cambridge, UK) и мишијим специфичним конјугатом (Expose Ms-Specific HRP/DAB Detection IHC Kit; Abcam), како је раније описано.

3.18. Статистичка анализа

Подаци су анализирани коришћењем статистичког програма SPSS верзија 20. Пре статистичке обраде података, прво је испитивана правилност расподеле добијених вредности (величина узорка одређује врсту теста који се користи). Уколико су вредности имале правилну расподелу коришћен је параметарски Student-ов t тест и ANOVA тестом где је било потребно, док је у случају неправилне расподеле коришћен непараметарски Mann-Whitney-ев тест. Резултати експеримената су изражени као средња вредност ± стандардна.
грешка (SE). За статистички значајну разлику у добијеним вредностима између група сматра се када је $p<0.05$, док је статистички веома значајна разлика када је $p<0.001$.
4. РЕЗУЛТАТИ

4.1. Концентрација Gal-3 у серуму и његова експресија у холангиоцитима су повећане код оболелих од РВС

Gal-3 модулише бројне ћелијске функције и показано је да има различите, често потпуно супротне улоге у патогенези многих хроничних инфламацијских болести и тумора (273-277). Познато је да епителне ћелије интрахепатичних билијарних канала конститутивно искazuju низак ниво експресије Gal-3, а да се експресија овог молекула у холангиоцитима значајно повећава код оболелих од холангиокарцинома (269, 278). До сада није испитвана улога овог молекула у патогенези примарног билијарног холангитиса.

Да би се испитала евентуална улога Gal-3 у настанку и развоју РВС најпре је анализирана експресија овог молекула у узорцима ткива јетре као и његова концентрација у серуму оболелих и показано је да је средња вредност концентрације Gal-3 у серуму 11 оболелих у различитим хистолошким стадијумима болести статистички значајно већа (p<0.05) у поређењу са средњом вредношћу концентрације у серуму здравих особа сличне страсти и пола (Графикон 1). Имунохистохемијска бојења исечака јетре су указала на значајну експресију Gal-3 у цитоплазми и једру холангиоцита оболелих од РВС (Слика 1а). У узорцима ткива јетре оболелих од хепатитиса (изазваних вирусима B и C) се, такође, ушава повећана експрссија Gal-3 и то и у једру и у цитоплазми холангиоцита и хепатоцита, али и у екстрацелуларном простору као и око запаљенских инфилтрата (Слика 1b и c). Са друге стране, Gal-3 се не детектује у једрима холангиоцита (постоји блага цитоплазматска експресија) оболелих од склерозирајућег холангитиса (Слика 1d).
Грађен 1. У серуму оболелих од РВС је повећана концентрација Gal-3. Концентрација Gal-3 у серуму оболелих од РВС је одређена ELISA методом. Анализирани су серуми 11 оболелих, без обзира хистолошки стадијум болести, а за контроле су узети серуми здравих особа. Статистичка значајност разлике је одређена Student-овим t тестом. *p < 0.05.

4.2. Гал-3 дефицијентни мишеви развијају тежу форму примарног билијарног холангитиса индукованог ксенобиотиком

Пошто је утврђена појачана експресија Gal-3 у хепатоцитима и холангиоцитима и већа концентрација овог молекула у серуму оболелих од РВС у даљем раду испитивана је улога Gal-3 у патогенези болести и то коришћењем C57BL/6 мишева са делецијом гена за Gal-3 којима је болест индукована имунизацијом ксенобиотиком 2ОА-BSA. Као контролне животиње коришћени су wild type мишеви соја C57BL/6. Током развоја болести праћени су параметри болести у серуму, а на жртвовању мишева одређивани су и хистолошки параметри инфламације.

4.2.1 Хистолошки параметри

Осам недеља након имунизације ксенобиотиком животиње су жртвоване, а у исечцима ткива јетре анализирани су хистолошки параметри инфламације: инфилтрација
перипортних простора, инфилтрација зида билијарних каналића са и без прекида континуитета епитела, субкапсуларна и инфилтрација паренхима- скор I и параметри оштећења (формирање гранулома и инципијентна фиброза)- скор II.

Слика 1. Упоредни приказ имунохистохемијски регистроване експресије Gal-3 у исечцима ткива четири различита обољења јетре: a) PBC; b) вирусни хепатитис B; c) вирусни хепатитис C; d) склерозирајући холангитис. Црне стрелице означавају експресију Gal-3 у холангиоцитима, а црвене стрелице показују холангиоцитиме без експресије Gal-3 у склерозирајућим билијарним каналима.

Осам недеља по имунизацији ксенибиотиком, свих 10 тестирих Gal-3 KO мишева развило је грануломе, а 9 од 10 је развило фиброзу јетре. За разлику од њих само у 5 од 10 WT мишева мишева третираних ксенобиотиком су детектовани грануломи, а код 4 од 10 фиброза (Графикон 2Б). У исечцима јетри WT мишева запажају се само ограничени перидуктални инфилтрати (Скика 2:a-c), док се код Gal-3 KO мишева региструју јасно
учњиво већи и целуарнији инфламацијски фокуси, и то не само око билијарних канала, који су често облитерисали, (Слика 2: c,f) већ и у паренхиму (Слика 2: d-f).

Скор II који указује на оштећење ткива (формирање гранулома и фиброза) је статистички значајно већи у јетрама Gal-3 KO у поређењу са јетрама WT мишева (p<0.05; Графикон 2А).

Графикон 2. Gal-3 дефицијентни мишеви развијају израженија оштећења билијарних каналића након индуције РВС ксенобиотиком. Ткиво јетре C57BL/6 WT и C57BL/6 Gal-3/- мишева је изоловано 56 дана после имунизације ксенобиотиком, а исечци дебљине 5µm су обојени хематоксилинм и еозином. А) Приказан је хистолошки скор I (инфилтрација и оштећење билијарних каналића без оштећења) и скор II (фиброза јетре и формирање гранулома) као средња вредност ± SЕ) једног експеримента са 9 мишева у свакој групи. Статистичка значајност разлике је одређена Student-овим t тестом. Б) Приказан је број мишева са позитивним параметрома инфламације у свакој од група. *p<0.05.
Слика 2. Хистологија јетре WT (а-с) и Gal-3 KO (d-f) мишева 56 дана по имунизацији ксенобиотиком као и нетретираних WT (g и h) и Gal-3 KO (i и j) мишева. Црне стрелице показују перидукталне мононуклеарне инфилтрате, црвене инфилтрацију паренхима, љубичасте инципијентне грануломе, жуте оштећења билијарних канала, зелене каналиће без инфилтрације у нетретираним мишевима.

Јасно се уочава да су сви параметри инфламације и оштећења израженији у јетрама Gal-3 KO мишева имунизованих ксенобиотиком (Слика 2 и Графикон 2), међутим разлике за параметре скора I између WT и KO мишева не досежу ниво статистичке значајности (Графикон 2А).
Графикон 3. У серуму Gal-3 дефицијентних мишева је детектован значајно већи ниво IgA антитела специфичних за PDC-E2. Серумски нивои анти PDC-E2 антитела пре, 4, 6 и 8 недеља после имунизације ксенобиотиком одређени ELISA методом приказани као средња вредност +SE за укупно 9 мишева по групи. Статистичка значајност разлике је одређена Student-овим t тестом; *p<0.05.
4.2.2 Серумски параметри

Будући да је златни стандард у дијагностичкој РВС појава антитела специфичних за антиген PDC-E2, ELISA тестом је одређивано присуство класа А, G и М ових антитела у серумима WT и Gal-3 KO мишева и то у четвртој, шестој и осмој недеље по имунизацији. Утврђено је значајно повећање концентрација ових антитела класе А, М и G у серуму обе групе мишева у поређењу са нетритираним мишевима (Графикон 3). Нема значајне разлике у нивоу анти-PDC-E2 IgM и IgG између WT и Gal-3 KO мишева, али је концентрација анти-PDC-E2 IgA значајно већа у серумима Gal-3 KO мишева (p<0.05) у односу на групу WT мишева и то од четврте недеље по имунизацији (Графикон 3).

Графикон 4. Однос AST/ALT је већи у серуму Gal-3 дефицијентних мишева. Серумске концентрације ензима је тренутно колориметријском методом 4, 6 и 8 недеља после имунизације ксенобиотиком, а приказан је однос AST/ALT за укупно 9 мишева по групи.

Од шесте недеље након имунизације у серумима Gal-3 KO бележи се повећан индекс AST/ALT (Графикон 4). Иако разлика између група није статистички значајна, већ индекс у групи Gal-3 KO мишева може да укаже на веће оштећење првенствено хепатоцота у одсуству Gal-3.
4.3. Дефицијенција Gal-3 је удуђена са знатно блажом формом примарног билијарног холангитиса индукованог инфекцијом бактеријом *Novosphingobium aromaticivorans*

Како су резултати истраживања утицаја галектина 3 на развој РВС у моделу индукованом ксенобиотиком супротни резултатима претходних студија које су испитивали улогу галектина 3 у патогенези аутоимунских болести желели смо да испитамо утицај овог молекула у патогенези и коришћењем другог модела за индукцију болести. РВС који се код мишева индукује инфекцијом бактеријом *Novosphingobium aromaticivorans*, која се детектује код људи, највећу резистентност моћи да овај модел има више сличности са природним настанком, током и развојем болести код људи у поређењу са болешћу која се мишевима индукује имунизацијом ксенобиотиком у адјувансу. Бактерија садржи конзервирану антиген PDC-E2 антигену и активира специфичне аутореактивне Т лимфоците (279) (280) (281). Ћелијски зид Novosphingobium aromaticivorans-a не садржи липополисахарид, него су главне компоненте зида α-глукуронозил- и α-галактурнозил-церамиди (113) (282) који активирају NKT ћелије. NKT ћелије препознају ове гликолипиде приказане у склопу CD1d молекула на дендритским ћелијама (283). Активиране NKT ћелије су кључне ћелије у које имунности које играју улогу у покушају елиминације бактерија, а цитокини и хемокини које ослађују ове и дендритске ћелије доприносе активацији PDC-E2 специфичних лимфоцита.

C57BL/6 “wild type” и Gal-3 дефицијентним мишевима је интравенски апликована бактерија *Novosphingobium aromaticivorans* два пута у размаку од две недеље. Мишеви су жртвовани 8 недеља после прве дозе бактерија и анализирани су хистолошки и серумски параметри болести.

4.3.1 Хистолошки параметри

Хистолошки параметри који указују на инфламацију у ткиву јетре (инфилтрација перипортних простора, инфилтрација зида билијарних каналића са и без прекида континуитета епитела, суб kapsularна и инфилтрација паренхима) приказани кроз скор I су статистички значајно израженији (p<0.001) у групи WT мишева у поређењу са Gal-3 KO
мишевима (Графикон 5А). Слично и параметри оштећења ткива (формирање гранулома и инципијентна фиброза) приказани кроз скор II су статистички значајно (р<0.05) већи у групи WT мишева (Графикон 5А).

Ни у једном исечку јетре Gal-3 KO мишева није детектовано оштећење билијарних каналића док је код 6 од 8 WT мишева регистрована инфилтрација билијарних каналића праћена прекидом континуитета епитела (Графикон 5Б, Слика 3). Фиброза је детектована у јетри једног од 8 Gal-3 KO мишева за разлику од WT мишева код којих је у 6 од 8 анализираних мишева запажена фиброза. Формирање гранулома и субкаспуларна инфилтрација није забележена ни у једној групи мишева (Графикон 5Б, Слика 3).
A

Скор I

<table>
<thead>
<tr>
<th></th>
<th>NA</th>
<th>нетретиранi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Скор I</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

B

Број мишева

<table>
<thead>
<tr>
<th></th>
<th>WT</th>
<th>KO</th>
</tr>
</thead>
<tbody>
<tr>
<td>перипортна инфилтрација</td>
<td></td>
<td></td>
</tr>
<tr>
<td>инфилтрација билијарних каналића без оштећења</td>
<td></td>
<td></td>
</tr>
<tr>
<td>инфилтрација билијарних каналића са оштећењем</td>
<td></td>
<td></td>
</tr>
<tr>
<td>инфилтрација паренхима</td>
<td></td>
<td></td>
</tr>
<tr>
<td>субкапсуларна инфилтрација</td>
<td></td>
<td></td>
</tr>
<tr>
<td>грануломи</td>
<td></td>
<td></td>
</tr>
<tr>
<td>фиброза</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Графикон 5. Оштећење билијарних каналића након индукције РВС бактеријом је значајно мање у групи Gal-3 дефицијентних мишева. Ткиво јетре C57BL/6 WT и C57BL/6 Gal-3/- мишева је изоловано 56 дана после инфекције бактеријом NA, а исечци дебљине 5 µm су обојени техником хематоксилин-еозин. А) Приказан је хистолошки скор I (инфилтрација и оштећење билијарних каналића) и скор II (фиброза јетре и формирање гранулума) као средња вредност + SE једног експеримента са 8 мишева у свакој групи. Б) Приказан је број мишева са позитивним параметрима инфламације у свакој групи. В) Приказане су вредности хистолошког скора за сваког миша појединачно за испитиване хистолошке параметре. Статистичка значајност разлике је одређена Student-овим t тестом. *p<0.05, **p<0.001.
Хистолошки скор за сваки од испитиваних хистолошких параметара оштећења јетре је статистички значајно већи (р<0.001) у групи WT мишева у поређењу са Gal-3 KO мишевима (Графикон 5В).

Слика 3. Хистологија јетре WT (а-б) и Gal-3 KO (г-ђ) мишева 56 дана по инфекцији бактеријом Novosphingobium aromaticivorans. Црне стрелице показују инфилтрације у паренхиму, жуте периукутуларне инфилтрате, црвене плаве облитерације билијарних канала, плаве каналиће без инфилтрације.

4.3.2 Серумски параметри

У серумима обе групе испитиваних мишева се од четврте недеље по инфекцији повећава ниво анти-PDC-E2 IgМ и IgG, овај пораст траје до осме недеље, а пада у 24-ој недељи али је и даље већи у поређењу са нивоом код здравих мишева. Нема статистички значајне разлике у нивоу анти-PDC-E2 IgМ и IgG између WT и Gal-3 KO мишева ни у једном времену испитивања (Графикон 6). Ниво анти-PDC-E2 IgА у серуму WT мишева четири недеље после инфекције бактеријом је статистички значајно (р<0.005) већи у поређењу са групом Gal-3 KO мишева (Графикон 6). Од осме недеље по инфекцији међу групама нема разлике у нивоу анти-PDC-E2 IgА у серуму.
Мерена је и концентрација ензима који указују на оштећење јетре у серуму WT и Gal-3 KO мишева пре инфекције па четврте, 8. и 24. недеље после инфекције бактеријом.
Novosphingobium aromaticivorans. Концентрације AST и ALT у серумима WT мишева статистички значајно расту четврте и 8. недеље после инфекције, док се 24. недеље после инфекције враћају на концентрације забележене код здравих мишева (Графикон 7). У серумима Gal-3 KO мишева није регистровано повећање концентрација AST и ALT четврте и 8. недеље после инфекције, а средња вредност концентрације ових ензима у код ових мишева је, у овим мерним тачкама, статистички значајно мања него у серумима WT мишева (Графикон 7).

Из свега је сасвим јасно да Gal-3 дефицијентни мишеви развијају значајно слабији примарни билијарни холангитис индукуван инфекцијом бактеријом Novosphingobium aromaticivorans.
Графикон 6. У серумима WT мишева је четврте недеље након инфекције бактеријом детектована значајно већа концентрација IgA антитела специфичних за PDC-E2. Серумске концентрације анти PDC-E2 антитела пре, четврте, 6. и 24. недеља после инфекције бактеријом одређени ELISA методом и приказане као средња вредност за 5 мишева по групи. Статистичка значајност разлике је одређена Student-овим t тестом; **p<0.005.
Графикон 7. Концентрација AST и ALT је већа у серуму инфицираних WT мишева. Серумске концентрације ензима јетре су мерене колориметријском методом пре инфекције као и четврте, 8. и 24. недеље после инфекције бактеријом. Приказана је средња вредност (+SD) концентрације AST и ALT за укупно 5 мишева по групи. Статистичка значајност разлике је одређена Student-овим t тестом; *p<0.05, **p<0.005.

Анализа хистолошких и серумских параметара примарног билијарног холангитиса је показала да су ефекти делекције гена за Gal-3 на развој РВС у два различита начина индукције болести супротни. Делекција гена за Gal-3 је повезана са тежом формом РВС у моделу индукованом имунизацијом ксенобиотиком, док у моделу иззваном инфекцијом бактеријом Novosphingobium aromaticivorans има протективни ефекат. Како би се утврдила
улога Gal-3 у развоју РВС даље су испитиване карактеристике болести у оба експериментална модела.

4.4. Инфлукс инфламцијских CD8+ лимфоцита у јетру је већи код оболелих Gal-3 KO мишева имузинованих ксенобиотиком

Претходни резултати, који су указали на значајано повећање инфилтрата у јетрама Gal-3 дефицијентних мишева имузинованих ксенобиотиком, потврђени су и анализом укупног броја мононуклеарних ћелија изолованих из јетри. На графикону 8 који приказује укупан број мононуклеарних ћелија изолованих из ткива јетре јасно се уочава да код Gal-3 дефицијентних мишева број изолованих ћелија статистички значајно већи (р<0.05) у поређењу са бројем ћелија изолованих из јетри WT мишева.

Графикон 8. Већи број мононуклеарних ћелија је изолован из јетри Gal-3 дефицијентних мишева имузинованих ксенобиотиком. Јетре C57BL/6 WT и C57BL/6 Gal-3 KO мишева су изоловане 56. дана после имузинације ксенобиотиком. Свакој јетри је утврђена маса пре него што је подељена на половине. Из једне половине су изоловане мононуклеарне ћелије. Укупан број мононуклеарних ћелија по јетри је израчунат на основу формуле за пропорцију узимајући у обзир масу јетре и њене половине. Приказана је средња вредност броја изолованих мононуклеарних ћелија по групи +SE из једног експеримента са 9 мишева у свакој групи. Статистичка значајност разлике је одређена Student-овим t тестом, *p<0.05, **p<0.005.
4.4.1 Субпопулације мононуклеарних ћелија

Даљом анализом је испитан целуларни састав инфилтрата јетре мишева имунизованих ксенобиотиком. Процентуална заступљеност испитиваних ћелијских популација CD4+ и CD8+ T лимфоцита, CD11c+ дендритских ћелија, CD19+ B лимфоцита и F4/80+ макрофага се не разликује значајно међу групама имунизованих мишева (Слика 3). Разлике у процентима испитиваних популација нема ни између група имунизованих и нетретираних мишева.

![Diagram](image)

Слика 4. Нема разлике у саставу инфилтрата јетре WT и Gal3 дефицијентних мишева. Мононуклеарне ћелије су изоловане из јетре 56. дана после имунизације ксенобиотиком и након инкубације са анти-
-CD4-
-CD8-
-CD19-
-F4/80-
-TCR-
-CD11c антителима анализиране проточном цитометријом. А) Приказан је репрезентативни pseudocolor dot plotови за популације CD4+ и CD8+ T лимфоцита. Б) Средња вредност ±SE процената CD4+ CD8+ CD19+F4/80+ и CD11c+ ћелија по групи, укупно 9 мишева по групи. Статистичка значајност разлике је одређена Student-овим t тестом.
Како је укупни број мононуклеарних ћелија изолованих из јетре имунизованих Gal-3 KO мишева већи него број издвојених ћелија из јетри имунизованих WT мишевима и укупни број испитиваних популација је већи у групи мишева који испољавају јачу болест. Међутим, како је проценат CD4+ Т лимфоцита већи у групи WT мишевима (табела у оквиру слике 2) међу групама имунизованих мишева нема статистички значајне разлике у броју ових ћелија. Број CD8+ Т лимфоцита је статистички значајно већи у јетрама Gal-3 KO мишева у поређењу са WT мишевима (p<0.005; Графикон 9).

Графикон 9. Јетре имунизованих Gal-3 KO мишева садрже већи број CD8+ лимфоцита. Мононуклеарне ћелије су изоловане из јетре 56. дана после имунизације ксенобиотиком. Апсолутни бројеви CD4+ и CD8+ T лимфоцита су израчунати као средња вредност броја испитиваних ћелија по групи. Приказана је средња вредност броја ћелија ±SD репрезентативног експеримента са укупно 9 мишева у свакој групи. Статистичка значајност разлике је одређена Student-овим t и Kruskal–Wallis тестом *p<0.05, **p<0.005.

4.5. У јетрама оболелих Gal-3 KO мишева имунизованих ксенобиотиком доминирају проинфламацијске дендритске ћелије

Иако нема разлике у процентуалној заступљености дендритских ћелија у јетрама како имунизованих тако и нетретиране мишева апсолутни број дендритских ћелија је највећи у групи имунизованих Gal-3 KO мишева и статистички је значајно већи (p<0.05) у поређењу са бројем ових ћелија у групи имунизованих WT мишева (Графикон 10). Такође, апсолутни
број активираних дендритских ћелија, CD11c⁺CD86⁺ и CD11c⁺MHCII⁺ је статистички значајно већи (p<0.05) у јетрама имунизованих Gal-3 KO мишева у поређењу са групом WT мишева (Графикон 10).

Графикон 10. У јетрама оболелих Gal-3 KO мишева је присутан већи број активираних дендритских ћелија. Монокукулярне ћелије су изоловане из јетре 56. дана после имунизације ксенобиотиком и анализиране проточном цитометријом. Приказане су средње вредности +SE броја CD11c⁺, активираних денритских ћелија CD11c⁺CD86⁺ и CD11c⁺MHC II⁺ по групи са укупно 9 мишева по свакој групи. Статистичка значајност разлике је одређена Student-овим t и Kruskal–Wallis тестом *(p<0.05).

Експресија маркера активације молекула II класе MHC и CD86 у популацији CD11c⁺ дендритских ћелија је већа у групи оболелих Gal-3 KO мишева у поређењу са групом оболелих WT мишева (Слика 4).
Слика 5 CD11c+ дендритске ћелије у јетрама имунизованих Gal-3 KO мишева имају већу експресију маркера активације. Мононуклеарне ћелије су изоловане из јетре Gal-3 KO и WT мишева 56. дана после имунизације ксенобиотиком и анализирани су проточном цитометријом. Изабрана је популација CD11c+ ћелија у оквиру које је кроз MFI анализирана експресија CD86 и молекула II класе MHC. Приказани су репрезентативни хистограми.

Инфламацијска природа дендритских ћелија је потврђена анализом експресије проинфламацијских цитокина. Проценат CD11c+ ћелија које експримирају TNFα је већи међу мононуклеарним ћелијама изолованим из јетре Gal-3 KO мишева у поређењу са групом WT мишева (Слика 5), али без статистичке значајности док је укупан број таквих инфламацијских дендритских ћелија статистички значајно већи у групи Gal-3 KO мишева у поређењу са WT групом мишева (Графикон 11; p<0.05).

Слика 6. Нема разлике у процену инфламацијских дендритских ћелија у инфилтратима јетрама WT и Gal-3 дефицијентних мишева. Мононуклеарне ћелије су изоловане из јетре 56. дана после имунизације ксенобиотиком и анализирани су проточном цитометријом. Приказани су репрезентативни pseudocolor dot plot-ови CD11c+TNF-α+ ћелија.
Графикон 11. У јетрама оболелих Gal-3 KO мишева је присутан већи број инфламацијских дендритских ћелија.
Мононуклеарне ћелије су изоловане из јетре 56. дана после имунизације ксенобиотиком и анализиране проточном цитометријом. Приказане су средње вредности +SE броја инфламацијских дендритских ћелија, CD11c+TNF-α, по групи од укупно 9 мишева по свакој групи. Статистичка значајност разлике је одређена Student-овим t тестом *р<0.05.

4.6. Индукција РВС ксенобиотиком повећава експресију Gal-3 у холангиоцитима

Како је анализа експресије Gal-3 у ткиву јетре указала да тип и степен патолошких промена у јетри може да корелира са експресијом Gal-3 у холангиоцитима испитана је експресија Gal-3 у ткиву јетре мишева имунизованих ксенобиотиком. Експресија Gal-3 није детектована у јетрама нетретираних- контролних WT и Gal-3 KO мишева, али је значајно повећање експресије Gal-3 детектована у холангиоцитима као и инфламацијским инфилтратима јетре WT мишева имунизованих са 2OA-BSA (Слика 5). У јетрама имунизованих Gal-3 KO није детектована експресија Gal-3.
Слика 7. Репрезентативни примери експресије Gal-3 у јетрама имунизованих и здравих мишева. Gal-3 је експримиран у холангиоцитима и инфламацијским инфилтратима у јетрама WT мишева имунизованих 2-OA-BSA (а-с; црвени и црни стрелци) као и у гранулозима (д; зелена стрелица). Експресија Gal-3 није детектована у холангиоцитима, инфилтратима (е-г; жуте стрелци) и гранулозима (h, зелене стрелци) 2OA-BSA имунизованих Gal-3 KO и обе групе нетретираних мишева.

4.7. Тежи облик РВС индукованог ксенобиотиком код Gal-3 KO мишева је удрожен се већом фреквенцом апоптозе холангиоцита

Познато је да Gal-3, експримиран у епителним ћелијама, има антиапоптотске ефекте (151). Како је уочено да се у холангиоцитима WT мишева након индукције РВС ксенобиотиком, повећава експресија Gal-3, а да у холангиоцитима оболелих Gal-3 KO мишева који по свим параметрима имају тежу болест, нема Gal-3 у епителним билијарним каналићима, даља анализа се односила на испитивање апоптозе холангиоцита у Gal-3 KO и WT мишевима. Проценат апоптотских, TUNEL позитивних холангиоцита, у исечцима јетре Gal-3 KO
мишева 56. дана после имунизације ксенобиотиком је статистички значајно већи (р<0.05) у поређењу са процентом апоптотских холангиоцита у групи WT мишева (Графикон 12). На Слици 10 се уочава мноштво TUNEL позитивних холангиоцита унутар билијарног каналића на исечку јетре имунизованог Gal-3 KO миша, док је у исечцима јетре имунизованих WT мишева TUNEL позитивно само један до два холангиоцита унутар једног билијарног каналића.

Графикон 12. Проценат апоптотичних холангиоцита је статистички значајно већи у групи Gal-3 KO мишева имунизованих ксенобиотиком. Исечци јетре имунизованих мишева обе групе су 56. дана после имунизације обојени TUNEL методом, проценат апоптотичних холангиоцита је приказан као средња вредност +SE за укупно 9 мишева по групи. Статистичка значајност разлике је одређена Student-овим t тестом *р<0.05.
Слика 8. Репрезентативни примери TUNEL позитивних холангиоцита у јетри имунизованих мишева. Стрелице указују на апоптотичне холангиоците.

Како би се потврдила појачана апоптоза холангиоцита Gal-3 KO мишева изоловани су холангиоцити нетретираних WT и Gal-3 KO мишева и изложени in vitro апоптотском стимулусу (јономицин) након чега је мерен проценат апоптотских ћелија проточном цитометријом. Већи проценат апоптотских (Annexin V+) холангиоцита након 22 сата in vitro изложености јономицину је детектован међу ћелијама добијеним из Gal-3 KO мишева у поређењу WT групом мишева (Слика 11).

Слика 9. Репрезентативни дот плотови апоптотичних холангиоцита изолованих из нетретираних WT и Gal-3 KO мишева овојени Annexin-ом V и пропидијум јодидом након излагању јономицину.

4.8. Веће оштећење билијарних каналића код Gal-3 KO мишева имунизованих ксенобиотиком повезано је са појачаним Th1 имунским одговором у јетри

Развој PBC зависи од инфламацијских лимфоцита који инфилтришу јетру. Зато је у мононуклеарним ћелијама које инфилтришу јетру оболелих животиња анализирана експресија цитокина који имају улогу у патогенези PBC. Проточном цитометријом је 56. дана након имунизације ксенобиотиком анализирана заступљеност CD4+ и CD8+ лимфоцита који експримирају проинфламацијске цитокине IL-17 и IFN-γ.
Међу мононуклеарним ћелијама изолованим из јетре обе групе мишева имунизованих ксенобиотиком нема разлике у проценту CD4+ и CD8+ лимфоцита који садрже Th1 и Th17 цитокине (Слика 12).
Апсолутни број CD4+ и CD8+ лимфоцита који садрже IFN-γ је статистички значајно већи (p<0.05) у групи Gal3 KO мишева имунизованих ксенобиотиком у поређењу са WT групом имунизованих мишева (Графикон 13). Нема статистички значајне разлике у апсолутном броју ни CD4+ ни CD8+ лимфоцита који садрже IL-17 изолованих из јетри Gal3 KO и WT мишева имунизованих ксенобиотиком (Графикон 13).
Слика 10. Репрезентативни дот плотови CD4+ и CD8+ лимфоцита који садрже Th1 и Th17 цитокине.
Графикон 13. У јетрама Gal-3 KO мишеа, након индукције РВС ксенобиотиком, је више лимфоциста који садрже IFN-γ. Мононуклеарне ћелије су изоловане из јетри 56. дана после имунизације ксенобиотиком и анализиране проточном цитометријом. Приказане су средње вредности +SE броја CD4+ и CD8+ ћелија које садрже проинфламацијске цитокине IL-17 и IFN-γ, по групи, са укупно 9 мишеа по свакој групи. Статистичка значајност разлике је одређена Student-овим t *p<0.05.
4.9. Појачан системски Th17 имунски одговор код Gal-3 KO мишева имунизованих ксенобиотиком је удружен са већим оштећењем билијарних каналића и већом фиброзом јетре

4.9.1. У серуму Gal-3 KO мишева имунизованих ксенобиотиком је присутна већа концентрација профибротских цитокина

У серуму и WT и Gal-3 KO мишева је 56. дана након имунизације ксенобиотиком присутна статистички значајно већа концентрација IL-6, IL-17 и IL-13 у поређењу са обе групе неимунизованих мишева (Графикон 14). Концентрација IFN-γ у серуму имунизованих WT мишева је статистички значајно већа у поређењу са концентрацијом овог цитокина у серуму нетретираних WT мишева, али статистички значајне разлике у концентрацији IFN-γ у серуму нема између имунизованих и нетретираних Gal-3 KO мишева. Нема статистички значајне разлике у концентрацијама IFN-γ и IL-6 у серуму између ксенобиотиком имунизованих Gal-3 KO и WT мишева, али имунизовани Gal-3 KO мишеви у серуму имају значајно већу (p< 0.05) концентрацију профибротских цитокина IL-13 и IL-17 (Графикон 14).

4.9.2. Gal-3 дефицијентни мишеви имунизовани ксенобиотиком развијају значајнију фиброзу јетре

Слика 12 илуструје имунохистохемијску експресију цитокератина 7. Уочава се мања експресија цитокератина 7 у исечцима јетре Gal-3 дефицијентних мишева имунизованих ксенобиотиком што указује на израженије оштећење ових ћелија. Како оштећење ткива јетре прати фиброза испитано је да ли је веће оштећење ткива јетре у групи имунизованих Gal-3 дефицијентних праћено и израженијом фиброзом. Исечци јетре имунизованих мишева су обојени техником Sirius red и анализиран је процент ткива јетре захваћен фиброзним процесом. На графикону 15 се види да је статистички значајно већи (p<0.005)
проценат ткива јетре захваћеним фиброзом у групи имунизованих Gal-3 дефицијентних мишева, што је илустровано сликом 13.

Графикон 14. Делеција Gal-3 је повезана са повећаном концентрацијом профибротских цитокина IL-13 и IL-17 у серуму мишева са РВС индукуваним ксенобиотиком. Концентрација IL-13, IL-6, IL-17 и IFN-γ у серуму мишева је одређена ELISA методом 56. дана после имунизације ксенобиотиком. Приказане су вредности концентрације цитокина у серуму за сваког миша појединачно. Статистичка значајност разлике је одређена Student-овим t *p<0.05.
Слика 11. Репрезентативни примери експресије цитокератина 7 у јетри имунизованих мишева.

Графикон 15. Проценат ткива јетре захваћен фиброзом је већи у групи Gal-3 дефицијентних имунизованих мишева. Приказана је средња вредност +SE процента ткива захваћеног фиброзом израчунат анализом исечака јетре обојеног техником Sirius red у Image J. Статистичка значајност разлике је одређена Student-овим t **p<0.005.
Слика 12. Репрезентативни примери исечака је тре имунизованих мишева обојених техником Sirius red.
4.10. Одсуство галектина 3 значајно смањује проценат дендритских и NK ћелија и редукује проценат T лимфоцита који продукују IL-17 у јетри мишева инфицираних бактеријом *Novosphingobium aromaticivorans*

Како је показано да је дефицијенција галектина 3 удржена са значајном редукцијом оштећења библијарних канала и ткива јетре даље су детаљније испитане карактеристике болести коју развијају мишеви инфицирани бактеријом *Novosphingobium aromaticivorans* (NA). Проточном цитометријом је анализиран састав инфилтрата у ткиву јетре 8 недеља после NA инфекције. Забележене су значајне разлике у проценату дендритских и NK ћелија у резултату инфилтратима између WT и галектин-3 дефицијентних мишева, које нису забележене међу групама мишева имунизованих ксенобиотиком. Иако постоје значајне разлике у проценату дендритских и NK ћелија у резултату инфилтратима између WT и галектин-3 дефицијентних мишева, које нису забележене у групама мишева имунизованих ксенобиотиком, међу њима нема разлике у саставу инфилтрата јетре, постоји само већи апсолутни број појединих ћелијских популација.

У инфилтратима јетре галектин-3 дефицијентних мишева 8 недеља после NA инфекције присутан је значајно мањи проценат NK и дендритских (CD11c+) ћелија (Графикон 16) у поређењу са групом WT. Мађу групама нема разлике у проценату NKT ћелија и CD3+CD4+ и CD3+CD8+ T лимфоцита и CD19+ B лимфоцита.

Даљом анализом фенотипа дендритских ћелија показано је да је дефицијенција галектина 3 удружен са значајно мањим процентом активираних дендритских ћелија у јетри мишева инфицираних бактеријом (Графикон 17). Међу групама нема разлике у проценату дендритских ћелија које продукују IL-12 (графикон није приказан).
Графикон 16. У јетрама инфицираних Gal-3 KO мишева присутан је мањи процент дендритских и НКТ ћелија. Мононуклеарне ћелије су изоловане из јетре 8 недеља дана после инфекције бактеријом и анализиране проточном цитометријом. Приказане су средње вредности +SE процента испитиваних ћелија по групи са укупно 8 мишева по свакој групи. Статистичка значајност разлике је одређена Student-овим t тестом *р<0.05 ***р<0.001.
Графикон 17. Одсуство галектина 3 је удржено са мањиим процентом активираних CD40+ дендритских ћелија у јетри мишева инфицираних бактеријом. Мононуклеарне ћелије су изоловане из јетре 8 недеља дана после инфекције бактеријом и анализирани проточном цитометријом. Приказане су средње вредности ±SE процента испитиваних ћелија по групи са укупно 8 мишева по свакој групи. Статистичка значајност разлике је одређена Student-овим t тестом *р<0.05 ***р<0.001.

Иако нема разлике у процентима CD3+CD4+ и CD3+CD8+ Т лимфоцита у јетрама галектин 3 дефицијентних и WT мишева инфицираних бактеријом анализа фенотипа ових ћелија је указала на постојање разлика.

Проценат и CD4+ и CD8+ Т лимфоцита који садрже IL-17 је статистички значајно мањи у групи галектин 3 дефицијентних мишева у поређењу са групом WT мишева инфицираних бактеријом (Графикон 18). Међу испитиваним групама нема разлике у проценту Т лимфоцита који продукују IFN-γ. У јетри галектин 3 дефицијентних мишева инфицираних бактеријом нема пораста процента инфламацијских лимфоцита у поређењу са групом нетретираних мишева (Графикон 18).
Графикон 18. Одсуство галектина 3 је удружено са мањим процентом инфламацијских, IL-17+, CD4+ и CD8+ лимфоцита у јетри мишева инфицираних бактеријом. Мононуклеарне ћелије су изоловане из јетре 8 недеља дана после инфекције бактеријом и анализиране проточном цитометријом. Приказане су средње вредности +SE процента испитиваних ћелија по групи са укупно 8 мишева по свакој групи. Статистичка значајност разлике је одређена Studentовим t тестом *p<0.05 **p<0.005.
4.11. Галектин 3 модулише одговор дендритских а не NK ћелија на *Novosphingobium aromaticivorans*

До сада је показано да одсуство галектина 3 чини C57BL/6 мишеве готово резистентним на индукцију РВС бактеријом Узимајући у обзир ову чињеницу као и уочене разлике у заступљености ћелија урођене имуности у јетри и NK ћелија три дана након инфекције бактеријом *Novosphingobium aromaticivorans*. С обзиром да се испитује веома рана фаза имунског одговора на бактерију и да се бактерија апликује интраперитонеално и да је још увек није јасно да ли се имунски одговор који покреће развој РВС дешава у јетри или слезини анализиране су наведене популације у јетри и слезини WT и Gal-3 дефицијентних мишева.

Три дана после инфекције бактеријом нема разлике у проценту NK ћелија у јетри и слезини, али је проценат дендритских CD11c+ ћелија статистички значајно већи (р<0.05) и у јетри и у слезини у групи инфицираних WT мишева у поређењу са групом Gal-3 дефицијентних мишева (графикон 19).

Даљом анализом фенотипа NK ћелија (CD49b+CD3-) рано по инфекцији бактеријом уочено је да поред тога што нема разлике у заступљености ових ћелија у јетри и слезини WT и Gal-3 дефицијентних мишева, међу групама нема разлике ни у заступљености NK ћелија које експримирају маркерети цитотоксичности (перфорин гранзим В), проинфламацијске цитокине (IFN-γ, IL-17), маркерети активације (NKG2D, KLRG1) (подаци нису приказани).
Графикон 19. Три дана по инфекцији бактеријом проценат дендритских ћелија у јетри и слезини WT мишева је значајно већи у поређењу са Gal-3 дефицијентним мишевима. Монокукуларне ћелије су изоловане из јетре и слезине три дана после инфекције бактеријом и анализиране проточном цитометријом. Приказане су средње вредности ± SD процента испитиваних ћелија по групи са укупно 6 мишева по групи. Статистичка значајност разлике је одређена Student-овим t тестом *р<0.05.
4.11.1. Дендритске ћелије јетре и слезине Gal-3 дефицијентних мишева три дана након инфекције бактеријом Novosphingobium aromaticivorans имају израженији инфламацијски фенотип у поређењу са WT мишевима

У слезини WT мишева је три дана по инфекцији бактеријом Novosphingobium aromaticivorans забележен значајно већи процент активираних дендритских ћелија, које екпримирају CD86 (p<0.05) и MHC II (p<0.001) (Графикон 20). Такође у слезини инфицираних WT мишева у поређењу са Gal-3 дефицијентним мишевима је присутан и значајно већи процент дендритских ћелија које екпримирају проинфламацијски цитокин IL-12, а међу групама нема разлике у проценту IL-1+ CD11c+ ћелија (Графикон 20).

Графикон 20. Слезине Gal-3 дефицијентних мишева три дана после инфекције бактеријом садрже значајно већи процент активираних и IL-12+ дендритских ћелија. Мононуклеарне ћелије су изоловане из јетре и слезине три дана после инфекције бактеријом и анализиране проточном цитометријом. Приказане су средње вредности ± SD процента испитиваних ћелија по групи са укупно 6 мишева по групи. Статистичка значајност разлике је одређена Student-овим t тестом *p<0.05 ***p<0.001

Јетре инфицираних WT мишева садрже у поређењу са инфицираним Gal-3 дефицијентним мишевима значајно већи процентат (p<0.05) дендритских ћелија које екпримирају маркер
активације CD86 и проинфламацијски цитокин IL-1 (Графикон 31). Међу инфицираним Gal-3 дефицијентним и WT мишевима у јетри нема разлике у проценту дендритских ћелија које експримирају MHC II и проинфламацијски цитокин IL-12 (Графикон 21).

Графикон 21. Јетре WT мишева три дана следећо инфекције бактеријом садрже значајно већи проценат CD86+ и IL-12+ дендритских ћелија. Мононуклеарне ћелије су изоловане из јетре и слезине три дана следећо инфекције бактеријом и анализирани проточном цитометријом. Приказане су средње вредности ± SD процената експримираних ћелија по групи са укупно 6 мишева у групи. Статистичка значајност разлике је одређена Studentовим t тестом *р<0.05.

Како је у те испитиваним групама инфицираних мишева уочена значајна разлика у проценту IL-1 у јетри, а и познато је да Gal-3 активира инфаламазом даље је проточном цитометријом међу мононуклеарним ћелијама изолованих из јетре и слезине анализиран проценат дендритских CD11c и мијелоидних CD11b ћелија које садрже NLRP3.

Како се уочава на графикону 22 проценат и дендритских CD11c+ и мијелоидних CD11b+ ћелија које садрже NLRP3 је статистички значајно већи у групи WT мишева садрже у поређењу са инфицираним Gal-3 дефицијентним мишевима. У оба органа се уочава да, ако се упореде популатије ћелија које експримирају NLRP3, овај молекул више експримирају дендритске CD11c+ ћелија него CD11b+ ћелије. Такође много већи проценти NLRP3+ и
CD11c+ и CD11b+ ћелија су присутни у јетри у поређењу са слезином. У групи Gal-3 дефицијентних мишева три дана након инфекције бактеријом уопште и нема пораста заступљености ћелија које експримирају NLRP3, ни у јетри ни у слезини (Графикон 22).

Слезина

![Графикон 22. Инфекција бактеријом значајно повећава проценат мијелоидних и дендритских ћелија WT мишева које експримирају NLRP3. Мононуклеарне ћелије су изоловане из јетре и слезине три дана после инфекције бактеријом и анализиране проточном цитометријом. Приказане су средње вредности ± SD процента испитиваних ћелија по групи са укупно 6 мишева по групи. Статистичка значајност разлике је одређена Student-овим t тестом *p<0.05 **p<0.005 ***p<0.001](image)

4.11.2. Већи проценат дендритских ћелија изолованих из слезина Gal-3 дефицијентних мишева по in vitro стимулацији бактеријом Novosphingobium aromaticivorans експримира маркере активације, проинфламацијске цитокине и компоненту инфламазома у поређењу са WT мишевима

Досадашњи резултати указују да је одсуство галектина 3 у раној фази развоја болести, три дана после инфекције, првенствено утиче на функционални фенотип дендритских ћелија и
јетре и слезине. Раније приказани резултати указују да је у каснијим фазама болести значајано повећање процента активираних инфламацијских NK ћелија у јетрама Gal-3 дефицијентних мишева у поређењу са WT мишевима.

Како би утврдили директни ефекат бактерија на ћелије урођене имуности изоловане су NK ћелије из јетри нетретираних WT и Gal-3 дефицијентних мишева и дендритске ћелије из слезина истих мишева и in vitro третиране липополисахаридом и живом бактеријом Novosphingobium aromaticivorans 24 сата. Након in vitro стимулације проточном цитометријом је испитивана експресија маркера активације и цитокина у поменутим ћелијама.

Графикон 23. Галектин 3 не утиче на експресију активационих маркера на NK ћелијама након in vitro излагања бактеријама. NK ћелије су изоловане из јетри нетретираних животиња магнетном сепарацијом и in vitro излагању LPS-у (1µg/ml) и бактерији (однос 1:5) 24 сата и анализиране проточно м цитометријом. Приказане су средње вредности + SD процент третираних ћелија које експримирају KLRG1 и NKG2D, 6 мишева по групи. Статистичка значајност разлике је одређена Student-овим t тестом *р<0.05.

Нема разлике у проценту NK ћелија изолованих из јетри WT и Gal-3 дефицијентних мишева које експримирају маркере активације NKG2D и KLRG1, ни без стимулације, ни након стимулације ни липополисахаридом ни бактеријом (Графикон 23).
Као што се види на графikonu 24 нема разлике ни у проценту ћелија изолованих из јетри WT и Gal-3 дефицијентних мишева које екпримирају пронињфламацијске цитокине IFN-γ и IL-17, ни на стимулацију липополисахаридом ни бактеријом.
Графикон 24. Галектин 3 не утиче на продукцију инфламацијских цитокина у NK ћелијама након in vitro излагања бактеријама. NK ћелије су изоловане из јетри нетретираних животиња магнетном сепарацијом и in vitro излагане LPS-у (1µg/ml) и бактерији (однос 1:5) 24 сата и анализиране проточном цитометријом. Приказане су средње вредности + SD проценат третираних ћелија које експримирају IFN-γ и IL-17, 6 мишева по групи. Статистичка значајност разлике је одређена Student-овим t тестом *р<0.05.

Дендритске ћелије изоловане из WT мишева су на in vitro стимулацију липополисахаридом одговориле значајним (р<0.05) повећањем експресије маркера активације CD86 и MHC ІІ, а у одговору на стимулацију бактеријом значајно је повећана (р<0.05) експресија само CD86 молекула (Графикон 25). Нема разлике у експресији наведених маркера активације међу нетретираним (медијум) дендритским ћелијама изолованим из слезини WT и Gal-3 дефицијентних мишева.
Графикон 25. Одсуство галектина 3 смањује експресију CD86 молекула након in vitro излагања дендритских ћелија бактеријама. Дендритске ћелије су изоловане из слезина нетретираних животиња магнетном сепарацијом и in vitro излагање LPS-у (1µg/ml) и бактерији (односе 1:5) 24 сата и анализирани проточном цитометријом. Приказане су средње вредности ± SD проценат третираних ћелија које експримирају CD86 и MHC II, 6 мишева по групи. Статистичка значајност разлике је одређена Student-овим t тестом *р<0.05.

Такође, дендритске ћелије WT мишева су на in vitro стимулацију бактеријом одговориле значајно већом (р<0.005) интрацелуларном експресијом цитокина IL-12 и IL-4 (р<0.05) у поређењу са дендритским ћелијама Gal-3 дефицијентних мишева (Графикон 26). Међу групама нема разлике у проценту дендритских ћелија које експримирају цитокине TNF-α и IL-10 након стимулације бактеријом. Значајно већи процент (р<0.05) дендритских ћелија које експримирају галектин 3 је на стимулацију липополисахаридом одговорно продукции IL-12 и IL-10 (Графикон 26).
Графикон 26. Одсуство галектина 3 смањује продукцију IL-12 и IL-4 након in vitro излагања дендритских ћелија бактеријама. Дендритске ћелије су изоловане из слезина нетретираних животиња магнетном сепарацијом и in vitro излагане LPS-u (1µg/ml) и бактеријама (однос 1:5) 24 сата и анализиране проточном цитометријом. Приказане су средње вредности + SD проценат третираних ћелија које експримирају цитокине IL-12, IL-4, TNF-α и IL-10; 6 мишева по групи. Статистичка значајност разлике је одређена Student-овим t тестом *p<0.05, **p<0.005.

Значајан налаз је и статистички значајно (p<0.005) повећање процента дендритских ћелија изолованих из WT мишева које на in vitro стимулацију бактеријом експримирају NLRP3 (Графикон 27). Такође је већи проценат WT дендритских ћелија стимулисаних LPS-ом у поређењу са ћелијама Gal-3 дефициентних мишева експримирао NLRP3, али без статистичке значајности.
Графикон 27. Одсуство галектина 3 смањује експресију NLRP3 након in vitro излагања дендритских ћелија бактеријама. Дендритске ћелије су изоловане из слезина нетретираних животиња магнетном сепарацијом и in vitro излагање LPS-у (1µg/ml) и бактерији (однос 1:5) 24 сата и анализиране проточном цитометријом. Приказане су средње вредности + SD проценат третираних ћелија које експримирају NLRP3; 6 мишева по групи. Статистичка значајност разлике је одређена Student-овим t тестом *р<0.05, **р<0.005.
4.12. Инхибитор галектина-3 значајно смањује оштећење билијарних канала изазвано инфекцијом бактеријом *Novosphingobium aromaticivorans*

Након што је показано да делеција Gal-3 гена значајно смањује оштећење билијарних канала јетре мишева са РВС индукованим инфекцијом бактеријом *Novosphingobium aromaticivorans*, а да је то мање оштећење праћено и мањим присуством дендритских и NK ћелија и инфламацијских T лимфоцита који продукују IL-17 у јетри, наредним експериментима је испитано да ли превентивна примена инхибитора галектина-3 (Gal-3INH) такође може да редукује оштећење билијарних канала код WT мишева.

 Како би се испито утицај Gal-3INH на ток РВС након инфекције бактеријом уведена је група WT мишева који су недељно примали 300μg овог инхибитора интраперитонеално почев од првог дана инфекције, а у току прве 4 недеље, Хистолошки и серумски параметри болести као и састав инфилтратата са фенотипским карактерикама ћелија присутних и инфилтратима праћени су у групи мишева која прима инхибитор и упоређивани са групама инфицираних WT и Gal-3 KO.

Графикон 28. Инхибитор галектина 3 значајно смањује оштећење билијарних каналића четири недеље после инфекције бактеријом. Ткви јеутре C57BL/6 WT и C57BL/6 Gal-3- мишева је екстерирано 28 дана после инфекције бактеријом NA, а исечци дебљине 5 µm су обојени техником хематоксилин-еозин. Приказане су вредности хистолошког скора за сваког миша појединачно за испитиване хистолошке параметре. Статистичка значајност разлике је одређена Student-овим t тестом. ***p<0.001.
Слика 13. Хистологија јетре WT (а-г), WT+Gal-3 INH (д-ж) и Gal-3 KO (и-ј) мишева 28 дана по инфекцији бактеријом Novosphingobium aromaticivorans. Црне стрелице показују инфилтрације у паренхиму, жуте перидуктularне инфилтрате, црвене облитерације билијарних канала, зелене организоване инфилтрате у паренхиму, љубичасте некротично оштећење паренхима, наранџасте периваскуларне инфилтрате, плаве каналие без инфилтрације.
Слика 14. Хистологија јетре WT (а-д), WT+Gal-3 INH (е-ђ) и Gal-3 KO (е-ж) мишева 24 недеље по инфекцији бактеријом Novosphingobium aromaticivorans. Црне стрелице показују инфилтрације у паренхиму, жуте периохлазарне инфилтрате, црвене облитерације билијарних канала, зелене грануломе у паренхиму, плаве каналице без инфилтрације.
Детекцијом анти PDC-E2 антитела у серуму WT, WT+Gal-3 INH и Gal-3 KO мишева четири недеље после инфекције бактеријом је уочено да примена инхибитора галектина 3 значајно смањује (p<0.005) количину анти PDC-E2 антитела класе А у серуму у поређењу са WT групом мишева (Графикон 20). Нема стистички значајне разлике у нивоу анти PDC-E2 антитела класе А у серуму WT+Gal-3 INH и Gal-3 KO мишева. Међу групama нема разлика у нивоу анти PDC-E2 антитела класе М и G (Графикон 28).

Графикон 28. У серумима WT мишева третираних инхибитором Gal-3 су, 4 недеље након инфекције бактеријом, детектована значајно мање концентрације антитела класе А специфичних за PDC-E2. Серумске концентрације анти
PDC-E2 антитела, 4 недеље после инфекције бактеријом, одређене ELISA методом приказане су као средња вредност за 5 мишева по групи. Статистичка значајност разлике је одређена Student-овим t тестом; **p<0.005.

Даља анализа биохемијских параметара у серуму је указала на значајно смањење оштећења јетре у групи мишева третираних инхибитором галектина-3 у поређењу са нетретираним WT мишевима инфицираних бактеријом.
Графикон 29. Концентрација AST и ALT је значајно мања у серуму инфицираних мишева третираних инхибитором галектина-3. Серумске концентрације ензима јетре су мерене 4 недеље после инфекције бактеријом колориметријском методом. Приказана је средња вредност (+SD) концентрације AST и ALT за укупно 5 мишева по групи. Статистичка значајност разлике је одређена Student-овим t тестом; *p<0.05, **p<0.005.

Као што се види на графikonу 29 концентрација AST и ALT је статистички значајно мања у серуму инфицираних мишева третираних инхибитором галектина-3 у поређењу са нетретираним инфицираним мишевима четири недеље после инфекције. И осме недеља после инфекције концентрација оба ензима је и даље мања у серуму мишева третираних инхибитором галектина-3 у поређењу са групом нетретираних WT мишева али је статистички значајна само за ALT (Графикон 29).

4.12.1. Примена Gal-3 INH значајно смањује заступљеност и проценат активираних CD8+ лимфоцита у инфилтратима јетре мишева инфицираних бактеријом Novosphingobium aromaticivorans

Како је показано да примена инхибитора галектина-3 значајно смањује како ошећење билијарних канала тако и серумске параматре болести индуковане бактеријском инфекцијом у даљем току је испитано да ли примена инхибитора утиче на заступљеност и фенотип T лимфоцита у инфилтратима јетре.

Није показана разлика у процентима CD4+ и CD8+ лимфоцита у јетрама мишева третираних инхибитором галектина-3 и нетретираних животиња као и у поређењу са остале две групе инфицираних мишева (WT Gal-3 и KO) како четврте тако и 8. недеље после инфекције бактеријом (Графикон 30). Међутим, даља анализа је показала да је проценат активираних CD8+CD69+ лимфоцита статистички значајно мањи (р<0.05) у јетри мишева третираних инхибитором галектина-3 у поређењу са процентом ових ћелија у групи нетретираних WT мишева 8. недеље после инфекције бактеријом (Графикон 30). Исти ефекат има и делеција гена за Gal-3, ови мишеви имају статистички значајно мањи проценат CD8+CD69+ лимфоцита у поређењу са WT мишевима и четврте (p<0.005) и 8. недеље (p<0.05) после инфекције бактеријом.
Графикон 30. Третирање мишева инфицираних бактеријом инхибитором галектина-3 значајно смањује процент активираних CD8+ лимфоцита у јетри. Мононуклеарне ћелије су изоловане из јетре четри и 8 недеља после инфекције бактеријом и анализиране проточном цитометријом. Приказане су средње вредности +SE процента испитиваних ћелија по групи са укупно 8 мишева по свакој групи. Статистичка значајност разлике је одређена Student-овим t тестом *р<0.05 **р<0.005

4.12.2. Примена Gal-3 INH значајно смањују заступљеност инфламацијских лимфоцита у инфильтратима јетре мишева инфицираних бактеријом

Novosphingobium aromaticivorans

Како у патогенези РВС участвују Т лимфоцити који продукују T1 и T17 тип цитокина даље је анализиран утицај примене инхибитора галектина-3 на присуство проинфламацијских IL-17+ и IFN-γ+ CD4+ и CD8+ лимфоцита у јетри све три групе мишева. Показано је значајно (р<0.05) смањење процента CD4+ и CD8+ лимфоцита који продукују IL-17 и CD4+ лимфоцита који продукују IFN-γ у јетри мишева третираних инхибитором галектина-3 у
пoređењу са процентом ових ћелија у јетри нетретираних WT мишева, четири недеље после инфекције бактеријом (Графикон 31). Сличне разлике су забележене и међу групама WT и Gal-3 дефицијентних мишева четири недеље после инфекције.

Графикон 31. Третирање мишева инфицираних бактеријом инхибитором галектина-3 значајно смањује процент инфламацијских IL-17+ лимфоцита у јетри. Мононуклеарне ћелије су изоловане из јетре четири и 8 недеља после инфекције бактеријом и анализиране проточном цитометријом. Приказане су средње вредности +SE процента испитаних ћелија по групи са укупно 8 мишева по свакој групи. Статистичка значајност разлике је одређена Student-овим t тестом *р<0.05 **р<0.005

Осам недеља после инфекције процент инфламацијских лимфоцита је и даље мањи у групи мишева третираних инхибитором у поређењу са групом нетретираних WT али не достиже статистичку значајност. Проценат инфламацијских CD4+ и CD8+IL-17+ лимфоцита је 8 недеља после инфекције мањи у групи Gal-3 дефицијентних мишева у поређењу са групом WT мишева.
4.12.3. Примена Gal-3 INH значајно смањује заступљеност NK ћелија у инфилтратима јетре мишева инфицираних бактеријом *Novosphingobium aromaticivorans*

Како је раније показано да је слабије изражен РВС у групи Gal-3 дефицијентних мишева праћен статистички значајно мањим процентом NK ћелија даље је испитан утицај примене инхббитора галектина-3 на присуство ових ћелија у јетри. Као што се види на Графику 32 и примена инхббитора галектина-3 као и делеција гена за галектин-3 значајно смањују процент NK ћелија у јетри и четири и 8 недеља после инфекције бактеријом.

Графикон 32. Третирање мишева инфицираних бактеријом инхибитором галектина-3 значајно смањује процент NK ћелија у јетри. Мононуклеарне ћелије су изоловане из јетре четри и 8 недеља после инфекције бактеријом и анализирани проточном цитометријом. Приказане су средње вредности ± SE процента испитиваних ћелија по групи са укупно 8 мишева по свакој групи. Статистичка значајност разлике је одређена Student-овим t тестом *р<0.05 **р<0.005.

Проценат NKT ћелија је статистички значајно мањи у групи Gal-3 дефицијентних мишева у поређењу са групом WT мишева само четврте недеље после бактеријске инфекције (Графикон 32).

4.12.4. Примена Gal-3 INH значајно смањује процент активираних и цитолитичких NK ћелија у јетри мишева инфицираних бактеријом *Novosphingobium aromaticivorans*
Даља анализа фенотипа NK и NKT ћелија у јетрама WT, Gal-3 дефицијентних и мишева третираних инхибитором галектина-3, чеврте и 8. недеље после инфекције бактеријом је указала да одсуство галектина-3 више утиче на фенотип NK него фенотип NKT ћелија. Иако је присуство NKT ћелија неопходно за развој РВС након инфекције бактеријом Novosphingobium aromaticivorans није уочено да галектин-3, иако утиче на тежину саме болести, мења заступљеност као ни фенотип ових ћелија у јетри. Примена инхибитора галектина-3 као и делеција гена за Gal-3 у јетри значајно смањује проценат NK ћелија које експримирају маркер активације KLRG1 и четврте и 8. недеље после инфекције бактеријом (Графикон 33). Проценат NK ћелија које експримирају маркер активације CD69 је статистички значајно мањи само у јетри Gal-3 дефицијентних мишева у поређењу са групом WT мишева и то само четврте недеље после инфекције. Иако је проценат NKT ћелија које експримирају маркере активације KLRG1 и CD69 већи у јетри WT мишева у поређењу са групама Gal-3 дефицијентних и мишева третираних инхибитором галектина-3 те разлике нису статистички значајне осим за проценат CD69+ NKT ћелија и то само 8. недеље после инфекције бактеријом (Графикон 33).

Одсуство галектина-3 такође смањује проценат NK ћелија које експримирају маркере цитотоксичности FASL и перфорин. Проценат NK ћелија које експримирају FASL и перфорин је статистички значајно мањи у јетри како мишева третираних инхибитором галектина-3 тако и мишева са делецијом гена за Gal-3 у поређењу са WT мишевима четврте недеље после инфекције бактеријом (Графикон 34). Значајно мањи (р<0.05) проценат FASL+ NK ћелија се 8. недеље после инфекције бактеријом одржава само у групи Gal-3 дефицијентних мишева у поређењу са групом WT мишева.
Графикон 33. Третирање мишева инфицираних бактеријом инхибитором галектина-3 значајно смажује процент активираних НК ћелија у јетри. Мононуклеарне ћелије су изоловане из јетре четврте и 8. недеље после инфекције бактеријом и анализиране проточном цитометријом. Приказане су средње вредности ±SE процента испитиваних ћелија по групи са укупно 8 мишева по свакој групи. Статистичка значајност разлике је одређена Student-овим t тестом \(*p<0.05 \)
\(**p<0.005 \).

Галектин 3 углавном не утиче на цитолитичке карактеристике NKT ћелија у јетри мишева са РВС индукованим инфекцијом бактеријом Novosphingobium aromaticivorans.
Графикон 34. Третирање мишева инфицираних бактеријом инхибитором галектина-3 значајно смањује проценат цитолитичких NK ћелија у јетри. Мононуклеарне ћелије су изоловане из јетре четврте и 8. недеље после инфекције бактеријом и анализиране проточном цитометријом. Приказане су средње вредности ±SE процента испитиваних ћелија по групи са укупно 8 мишева по свакој групи. Статистичка значајност разлике је одређена Student-овим t тестом *p<0.05 **p<0.005

Резултати су приказане у графицима: NK FASL⁺ (%), NK Т FASL⁺ (%), NK гранзим В⁺ (%), NK Т гранзим В⁺ (%), NK перфорин⁺ (%), NKT FASL⁺ (%), NKT гранзим В⁺ (%), NKT перфорин⁺ (%).

Врсте инхибитора:
- WT
- Gal-3 KO
- WT Gal-3 INH
4.12.5. Примена Gal-3 INH и делеција гена за галектин 3 значајно смањују проценат IFN-γ+ а повећавају проценат IL-10+ NK ћелија у јетри мишева са РВС-ом индукованим инфекцијом бактеријом *Novosphingobium aromaticivorans*

Обзиром да NK и NKT ћелије продукцијом различитих цитокина модулишу имунски одговор и утичу на активацију аутореактивних T лимфоцита и да су главне промене у фенотипу ових ћелија забележене четврте недеље после инфекције, даље је испитан утицај галектина-3 на заступљеност инфламацијских IFN-γ+ и IL-17+ и антиинфекцијских IL-10+ NK и NKT ћелија у јетрама мишева инфицираних бактеријом *Novosphingobium aromaticivorans*, четврте недеље после инфекције.

Као што се види на Графикону 26 проценат IFN-γ+ NK ћелија је статистички значајно мањи како у групи мишева третираних инхибитором галектина-3 (p<0.005) тако и мишева са делецијом гена за Gal-3 (p<0.001) у поређењу са нетретираним WT мишевима инфицираним бактеријом. Обрнуто, статистички значајно већи проценат антиинфекцијских IL-10+ NK ћелија је забележен у јетри мишева третираних инхибитором галектина-3 и мишева са делецијом гена за Gal-3 у поређењу са процентом ових ћелија у јетри нетретираних WT мишева инфицираних бактеријом. Слично досадашњим резултатима, међу испитиваним групама мишева није забележена значајна разлика у проценту инфламацијских и антиинфекцијских NKT ћелија. Детектован је само већи проценат IFN-γ+ NKT ћелија у групи инфицираних WT мишева у поређењу са групом Gal-3 дефицијентних мишева (Графикон 35).
Графикон 35. Трећи живот мишева инфекцираних бактеријом инхибитором галектина-3 значајно смањује проценат инфламацијских а повећава проценат регулаторних NK ћелија. Мононуклеарне ћелије су изоловане из јетре четврте и 8. недеље после инфекције бактеријом и анализиране проточном цитометријом. Приказан су средње вредности +SE процената испитаних ћелија по групи са укупно 8 мишева по свакој групи. Статистичка значајност разлике је одређена Student-овим t тестом *р<0.05 **р<0.005
4.12.6. Одуство галектина 3 и примена Gal-3 INH значајно смањују процент активираних дендритских ћелија које презентују антигене T лимфоцитима и NKT ћелијама у јетри мишева инфцираних бактеријом *Novosphingobium aromaticivorans*

Ћелије које презентују антигене имају централну улогу у препознавању молекулских образаца патогена и приказивању бактеријских антигена T лимфоцитима и NKT ћелијама. Од адекватне активације антиген презентујућих ћелија зависи и стимулација NKT ћелија које су неопходне за започињање аутоимунског прцеса у моделу РВС изазваном инфекцијом бактеријом док је стимулација T лимфоцита кључни за одржавање аутоимунског процеса. Даљом анализом је испитан утицај галектина 3 на заступљеност и функционалне карактеристике дендритских ћелија. Анализирани су популације CD11c+ дендритских ћелија, као и популације CD11c+CD11b+ које се означавају као инфламацијске дендритске ћелије које на инфламацијске стимулусе долазе у циљна ткива из периферне крви, а такође и популација CD11c+CD1d+ дендритских ћелија које приказују антигене у склопу CD1d молекула и важне су за активацију NKT ћелија.

Примена инхибитора галектина-3 као и делеција гена за галектин-3 утичу на статистички значајно смањење процента CD11c+ (р<0.005; р<0.001), CD11c+CD11b+ (р<0.005; р<0.001) и CD11c+CD1d+ (р<0.005; р<0.001) дендритских ћелија четири недеље након инфекције бактеријом (Графикон 27). Осам недеља после инфекције бактеријом одржава се статистички значајно (р<0.005; р<0.05) смањен процент CD11c+ ћелија у обе групе мишева са дефицијенцијом галектина 3 (Графикон 36).

Проценат активираних CD11c+CD86+ ћелија је статистички значајно мањи у јетри галектин 3 дефицијентних мишева у поређењу са групом WT мишева и 4 (р<0.005) и 8 (р<0.05) недеља после инфекције, а проценат ових ћелија у јетри мишева третираних инхибитором галектина-3 је статистички значајно мањи у поређењу са групом WT мишева (р<0.005) четири недеље после инфекције (Графикон 36).
Графикон 36. Третирање инхибитором галектина мишева инфицираних бактеријом значајно смањује проценат CD11c+, CD11c+CD11b+ и CD11c+CD1d+ дендритских ћелија као и проценат ових ћелија које експримирају маркер активације CD86. Мононуклеарне ћелије су изоловане из јетре четири и 8 недеља дана после инфекције бактеријом и анализиране проточном цитометријом. Приказана су средње вредности ± SE процента испитаних ћелија по групи са укупно 8 мишева по свакој групи. Статистичка значајност разлике је одређена Student-овим t тестом *p<0.05 **p<0.005
Проценат активираних CD11c+CD11b+CD86+ (p<0.05, p<0.005) и CD11c+CD1d+CD86+ (p<0.001) ћелија је статистички значајно мањи у јетри мишева третираних инхибитором галектина-3 као и јетри галектин-3 дефицијентних мишева у поређењу са групом WT мишева четири недеље после инфекције бактеријом (Графикон 36).

4.12.7. Одуство галектина 3 значајно смањује проценат проинфламацијских дендритских ћелија у јетри мишева са РВС-ом индукованом инфекцијом бактеријом Novosphingobium aromaticivorans

Смањење процента дендритских ћелија у јетри мишева третираних инхибитором галектина 3 као и галектин 3 дефицијентних мишева у поређењу са WT мишевима праћено је и смањењем процента инфламацијских CD11c+, CD11c+CD11b+ и CD11c+CD1d+ ћелија. Четири недеље после инфекције бактеријом проценат наведенх популација дендритских ћелија које експримирају проинфламацијске цитокине IL-12, TNF-α и IL-6 је статистички значајно мањи у јетри мишева третираних инхибитором галектина 3 и галектин 3 дефицијентних мишева у поређењу са групом WT мишева (Графикон 37).
Графикон 37. Третирање инхибитором галектина мишева инфицираних бактеријом значајно смањује проценат инфламационих CD11c+, CD11c+CD11b+ и CD11cCD1d+ дендритских ћелија. Мононуклеарне ћелије су изоловане из јетре 4 и 8 недеља дана после инфекције бактеријом и анализиране проточном цитометријом. Приказане су средње вредности ± SE процента испитиваних ћелија по групи са укупно 8 мишева по свакој групи. Статистичка значајност разлике је одређена Student-овим т тестом *p<0.05 **p<0.005
Значајнија активација инфламазома уочена у мијелоидном ћелијама WT мишева, три дана после инфекције бактеријом, потврђена је и анализом експресије гена за NLRP3 у ткиву јетре инфицираних мишева и то 15 недеља након прве дозе бактерија. Статистички значајно већа (p<0.001) експресија гена за NLRP3 (и до четири пута већа) је уочена у ткиву јетре WT мишева у поређењу са групом Gal-3 дефицијентних мишева (Графикон 38). Такође статистички је значајно већа (p<0.05) експресија гена за NLRP3 у ткиву јетре WT мишева у поређењу са групом мишева третираних прве четири недеље након прве дозе бактерија, инхибитором галектина 3. Слични резултати су добијени и анализом експресије друге компоненте инфламазома ASC. Скоро три пута већа експресија гена за ASC је уочена у ткиву јетре WT мишева у поређењу са групом Gal-3 дефицијентних мишева. Такође статистички значајно мања (p<0.05) експресија ASC је уочена у ткиву јетре мишева третираних инхибитором галектина 3 у поређењу са групом WT мишева (Графикон 38).

Графикон 38. Инфекција бактеријом значајно експресију NLRP3 и ASC у ткиву јетре. РНК је изолована из ткива јетре 15 недеља после прве дозе бактерија и real time PCR методом је одређен ниво релативне експресије mRNA за NLRP3 и ASC у односу на β-актин. Приказане су средње вредности ± SD нивоа mRNA, 4 миша по групи. Статистичка значајност разлике је одређена Student-овим t тестом *p<0.05 ***p<0.001
5. ДИСКУСИЈА

До данас објављена истраживања јасно су указала на потпуно супротне улоге Gal-3 у патогенези различитих хроничних инфламацијских болести. Тако је показано да делеција гена за Gal-3 ублажава неколико аутоимунских болести у чијој патогенези главну улогу играју Т лимфоцити: дијабетес, експериментални аутоимунски енцефаломијелитис (273) и инфламацијским болестима, као што су акутно оштећење јетре Т лимфоцитима и NKT ћелијама (276) и акутни колитис. Такође постоје докази да у моделу дијабетеса индукованог дијетом са високим садржајем масти (274) и стеатози јетре (284) Gal-3 остварује потпуно супротни ефекат, делује протективно.

Различити, а често и супротни, ефекти Gal-3 могу да буду резултат регулације домinantног имунопатогенетског механизма у различитим моделима болести, па тако Gal-3 модулише развој хроничних болести које у основи имају имунске механизме на најмање два нивоа: први подразумева модулацију функције ћелија имунског система, а други контролу различитих процеса у ћелијама одређеног ткива које је захваћено болешћу, а које не припадају имунском систему.

Утицај галектина-3 на патогенезу примарног билијарног холангитиса до сада није испитиван, а резултати ове студије јасно показују да Gal-3 може да има потпуно супротне ефekte на ток болести у два разлишита модела па изгледа сасвим документовано да утицај галектина-3 на развој и ток болести зависи од домinantног механизма индуције болести.

У моделу примарног билијарног холангитиса индукованог имунизацијом C57BL/6 мишева ксенобиотиком у адијувансу Gal-3 има протективни ефекат, убалажавајући болест вероватно тако што штити холангиоците од апоптозе чиме смањује доступност аутоантигена и тако ограничава аутоимунски процес. Супротно, у моделу ове болести изазване бактеријом Novosphingobium aromaticivorans одсуство галектина-3 готово да чини мишеве резистентним на развој РВС највероватније због неадекватне активације дендритских ћелија бактеријом у одсуству галектина-3, услед чега изостаје и активација свих осталих ћелија (NKT и NK ћелија, T лимфоцити) које учествују у развоју оштећења билијарних канала.
5.1. Холангиоцити оболелих од примарног билијарног холангитиса експримирају Gal-3

Раније објављене студије указују да је у здаривом хуманим јетрама експресија Gal-3 у хепатоцитима и холангиоцитима немерљива (259). Међутим, експресија Gal-3 је у различитим патолошким стањима постaje евидентна па је тако показана експресија галектина-3 у 93% узорака холангиокарцинома, при чему је експресија интензивнија у боље диферентованим туморима (259, 264). Интракапиларни холангиокарцином се често јавља у подручјима дуготрајне инфламације и фиброзе билијарних канале па је могуће да је и холангитис узрокован са повећаном експресијом Gal-3. Резултати наше студије су по први пут указали на значајну експресију галектина-3 у холангиоцитима оболелих од примарног билијарног холангитиса (Слика 1). Међутим експресија галектина-3 је забележена и у холангиоцитима оболелих од вирусних хепатитиса, а није детектована у билијарним епителијалним ћелијама оболелих од хроничног склерозирајућег холангитиса (Слика 1) (285). Резултати наше студије су сагласни са новијим податком о повећаној експресији галектина-3 у ткиву јетре оболелих од РВС (265), мада у овој студији није испитана експресија галектина-3 у холангиоцитима. Могуће је да је повећане експресије Gal-3 у холангиоцитима компензаторни механизам који штити ове ћелије од апопотозе изазване различитим стимулусима у РВС али и другим инфламацијским стањима, као што су вирусни хепатитиси (286). У прилог овој хипотези иде налаз одсуства експресије Gal-3 у холангиоцитима у каснијим стадијумима РВС које карактерише изражена фиброза и прогресивно оштећење билијарних канале. Међутим, галектин-3 експримирају и ћелије имунског система и овај молекул различито утиче на њихову функцију зависно од врсте ћелија и патолошког стања односно стадијума болести. Ефекат галектина 3 на ћелије урођене имунности је углавном проинфламацијски јер овај молекул: појачава хемотаксу и екстравазацију неутрофиле и ослобађање проинфламацијског цитокина IL-8 (287), модулише дегранулацију и преживљавање неутрофила, њихову интеракцију са ламинином и фибронектином и тако појачава атхезију леукоцита за ендотел (230), подстиче хемотаксу моноцитама (288) и интеракцију ових ћелија са екстрацелуларним матриксом (289), повећава фагоцитну способност макрофага (246) и појачава респираторни просак у неутрофилима и макрофагима (290-292).
У складу са овим подацима као и скоријим налазом повећане експресије галектина-3 у макрофагима јетре оболелих од РВС (265) могуће је да овај лектин делујући на ћелије урођене имуности игра и проинфламацијску улогу у патогенези РВС. Како би детаљније испитали која је улога галектина-3 у патогенези РВС испитан је ток експерименталних модела болести код Gal-3 дефицијентних мишева.

5.2. Gal-3 дефицијентни мишеви развијају тежу форму примарног билијарног холангитиса индукованог ксенобиотиком

Експериментални налази ове студије указују да делеција гена за Gal-3 убрзava и погоршава примарни билијарни холангитис индукован имунизацијом ксенобиотиком. C57BL/6 мишеви са делецијом гена за Gal-3 развијају знатно јачу болест у поређењу са мишевима који имају функционални ген за Gal-3. Код мишева којима недостаје ген за Gal-3 запажени су значајно израженији мононуклеарни инфилтрати у јетри у којима доминирају CD8+ Т лимфоцити, већа оштећења билијарних канала, јача фиброза јетре, веће концентрације анти-PDC-E2 IgA у серуму и већи AST/ALT индекс у серуму.

Значајније оштећење билијарних канала код људи оболелих од примарног билијарног холангитиса директно корелира са заступљеношћу CD8+ T лимфоцита у инфилтратима у ткиву јетре (293). Веће присуство CD8+ T лимфоцита у инфилтратима билијарног тракта је забележена и код IL-2Rα−/− мишева који спонтано развијају РВС, као и код мишева имунизованих ксенобиотиком-2OA-BSA (74) (294). Цитотоксички лимфоцити специфични за PDC-E2 играју главну улогу патогенези РВС и очигледно директно оштећују ткиво односно директно лизирају холангиоците (295). У том смислу запањан је и налаз да пасивни трансфер CD8+ T лимфоцита, изолованих из dnTGFβRII мишева, индукује развој аутоимунског холангитиса (са израженом инфламацијом око билијарних канала, њиховом деструкцијом и формирањем гранулома у портном простору) код Rag-1−/− мишева, док трансфер CD4+ T лимфоцита уопште није праћен развојем РВС-like промена у јетри (296). Дефицијенција хемокинског рецептора CXCR3 појачава аутоимунски холангитис који развијају dnTGFβRII мишеви и то појачавањем функције патогених CD8+ T лимфоцита (297). Поменути резултати су у складу са результатима овде приказане студије која јасно
документује да је већи број CD8+ Т лимфоцита у ткиву јетре Gal-3 дефицијентних мишева повезан са тежим обликом PBC, већим оштећење јетре и повећаним индексом AST/ALT (264, 298).

Иако је документовано да су CD8+ Т лимфоцити главни егзекутори у оштећењу холангиоцита студије спроведене како на узорцима хуманог порекла тако и у експерименталним моделима PBC указују да централну улогу у патогенези ове болести играју Th1 лимфоцити за чију је диференцијацију неопходно присуство IL-12. Тако су две независне студије генома показале да су одређене варијанте гена за IL-12A и IL-12RB2 удружене са појавом PBC (299, 300). Такође уколико се dnTGFbRII мишевима који спонтано развијају болест (која веома личи на PBC) уклони ген који кодира p40 субјединицу цитокина IL-12 они развијају значајно мању инфламацију билијарних канала са смањењем концентрација проинфламацијских цитокина у јетри (301). Спонтани развој болести код мишева који континуирано појачано експримирају IFN-γ указује на кључну улогу овог цитокина у раним фазама развоја PBC (302). Показано је да стална експресија подстиче експресију MHC II у хепатоцитима и холангиоцитима што доприноси иницијалном оштећењу ових ћелија (302). У складу са наведеним налазима је и резултат овде приказане студије који указује да је теже форма холангитиса код Gal-3 дефицијентних мишева узрокована веома већим бројом и CD4+ и CD8+ Т лимфоцита који експримирају IFN-γ (графикон 9).

5.3. Тежи облик болести, индуковане ксенобиотиком, код Gal-3 KO мишева је узрокован статичком фраквеноцом апоптозе холангиоцита

Измерене концентрације анти-PDC-E2 антитела у серуму мишева имунизованих ксенобиотиком сагласне су са резултатима претходно објављених студија (298). Тако је у серуму мишева имунизованих ксенобиотиком уочен јераст концентрација свих мерених класа антитела специфичних за PDC-E2 (IgG, IgM и IgA), при чему нема статистички значајне разлике у концентрацијама IgM и IgG између WT и Gal-3 дефицијентних мишева док је концентрација IgA специфичног за PDC-E2 статистички значајно већи у серуму Gal-3 дефицијентних мишева. Анти-PDC-E2 антитела класе A се детектују у жучи, саливи, урину и серуму оболелих (303). Као кључни налаз за доказивање болести наводи се
присуство IgG специфичних за PDC-E2 (304). Концентрације анти-PDC-E2 IgA у серуму Gal-3 дефицијентних миšева, имунизованих ксенобиотиком, корелирају са већим оштетењем билијарних епителних ћелија. Овај налаз је значајан јер је раније показано да анти PDC-E2 антитела класе А трансцитозом пролазе кроз холангиоците и да том приликом активирају каспазе и индукују апоптозу билијарних епителних ћелија (68). Активност каспаза директно корелира са концентрацијом анти-PDC-E2 антитела класе А у серуму обололелих од РВС (68). У складу са овим резултатима је и налаз овде приказане студије који јасно документује да су повећане концентрације анти-PDC-E2 антитела класе А у серуму Gal-3 дефицијентних миšева имунизованих ксенобиотиком удружен са значајно већом апоптозом холангиоцита.

Узимајући у обзир претходно наведену корелацију између концентрације анти-PDC-E2 антитела класе А у серуму и апоптозе холангиоцита испитане су евентуалне разлике у проценту апоптотичних холангиоцита између WT и Gal-3 дефицијентних миšева. Већа концентрација анти-PDC-E2 антитела класе А у серуму Gal-3 дефицијентних миšева је у корелацији са појачаном апоптозом холангиоцита код ових миšева (Графикон 12, Слика 8). Gal-3 је експримиран у епителним ћелијама слузнице желуца, колона и простате али и у ћелијама имунског система као што су моноцити и макрофаги (305, 306). Експресија галектина-3 се повећава у епителним ћелијама и ћелијама имунског система у различитим инфламацијским стањима. У овој студији је показано да је Gal-3 експримиран у холангиоцитима оболелих од примарног билијарног холангитиса (Слика 1). Поред тога показано је да у холангиоцитима здравих миšева скоро да нема Gal-3 (Слика 7), а експресија овог молекула расте у холангиоцитима миšева имунизованих ксенобиотиком, што указује на постојање везе између експресије Gal-3 и инфламације у ткиву јетре миšева. Делеција гена за Gal-3 чини ћелије хуманог колоректалног карцинома и холангиокарцинома осетљивим на апоптозу (148, 307, 308) док прекомерна експресија галектина-3 штити од апоптотске смрти (309). Судећи по претходно наведеним налазима експресија Gal-3 у јетри животиња имунизованих ксенобиотиком може да има протективну улогу, штитећи холангиоците од апоптозе.

Могуће објашњење је и да је експресија Gal-3 у холангиоцитима у примарном билијарном холангитису компензаторни механизам којим се билијарне епителне ћелије штите од апоптозе коју у овој болести индукују различити стимулуси. У прилог овој хипотези иде и
налаз слабе или потпуног одсуства експресије Gal-3 у холангиоцитима у каснијим фазама
примарног билијарног холангитиса људи које карактерише прогресивно оштећење
билијарних канала и изражена фиброза (Слика 1).
У складу са овде приказаним резултатима могуће је да појачана апоптоза холангиоцита,
регистрована код имунизованих Gal-3 дефицијентних мишева, олакшава ослобађање
аутоантигена и индукује јачу активацију дендритских ћелија са значајним инфлуксом
инфламацијских лимфоцита што за последицу има веће оштећење билијарних канала и
израженију форму болести и фиброзу јетре. Према томе, израженија апоптоза холангиоцита
може да буде последица одсуства галектина Gal-3. Значајно већи проценат апоптотичних
билијарних епителних ћелија након излагања проапоптотским стимулусима in vitro
dетектован је у холангиоцитима потекли из јетре здравих Gal-3 дефицијентних мишева
y поређењу са истим ћелијама изолованим из здраве јетре WT што потврђује
антиапоптотску улогу галектина Gal-3 у овим ћелијама.
Апоптоза холангиоцита је веома значајан догађај у патогенези РВС (310, 311) јер током овог
процеса антиген PDC-E2 остаје интактан са очуваним епитопима, а његова експресија на
апикалној (луминалној) површини билијарних каналића је потврђена имунохистохемијски
бојењем специфичним анти-PDC-E2 моноклонским антителима (312-314). Интактни PDC-
E2 се детектује и у апоптотским телашцима потекли из умирућих холангиоцита што га
чини доступним анти-митохондријским антителима (61). Дакле може да се претпостави да
појачана апоптоза холангиоцита Gal-3 дефицијентних мишева узрокује појачано
ослобађање аутоантигена и последичну стимулацију имунског одговора што на концу
појачава болест.
Појачана апоптоза холангиоцита регистрована код Gal-3 дефицијентних мишева може да
dопринесе тежини болести и на други начин и то појачаном стимулацијом ћелија урођене
имуности. Макрофаги добијени из линије моноцита оболелих од примарног билијарног
холангитиса инкубирани са апоптотским телашцима која потичу од холангиоцита, а у
присуству AMA продукују значајну количину инфламацијских цитокина (310). Описано је
da Gal-3 може да игра улогу класичног „eat me“ сигнала на апоптотским телашцима и да на
tај начин стимулише фагоцитозу апоптотичних ћелија и ћелијског дебрија (315). Галектин-
3 стимулише макрофаге на уклањање апоптотичних неуторифила чиме утиче на резолуцију
inфламације (316). Узимајући у обзир ове налазе могуће је закључити да је код Gal-3
дефицијентних мишева поремећено уклањање апоптотичних холангиоцита који експримирају интактни аутоантиген PDC-E2 услед чега постоји већа доступност аутоантигена који стимулише специфичне лимфоците што доприноси појачању инфламације и оштећењу билијарних каналића.

У нашој студији је показано да дендритске ћелије присутне у јетрама Gal-3 дефицијентних мишева, имунизованих ксенобиотиком, имају израженији инфламацијски фенотип (Графикон 11, Слика 6), што није у складу са претходно наведеним подацима да апоптотска тела пореклом холангиоцита у присуству специфичних аутоантитела стимулишу макрофаге да продукују проинфламацијске цитокине (310) који би онда вероватно подстицали развој инфламацијског фенотипа и дендритских ћелија. Међутим галектин-3 на дендритским ћелијама такође модулише функцију самих дендритских ћелија. Gal-3 дефицијентне дендритске ћелије продукују мање антиинфламацијског цитокина IL-10 и подстичу проинфламацијске цитокине IFN-γ у алогеним T лимфоцитима (317). Новија студија показује да in vitro стимулација дендритских ћелија изолованих из Gal-3 дефицијентних мишева липополисахаридом повећава продукцију проинфламацијских цитокина IL-1, IL-12, IL-6 али и антиинфламацијског IL-10 (318). У складу са наведеним налазима могуће је да дендритске ћелије Gal-3 дефицијентних мишева у одговору на стимулацију TLR агонистима, присутним у адјувансу који се додаје приликом имунизације ксенобиотиком, развијају снажнији инфламацијски фенотип и тако доприносе активацији специфичних лимфоцита и појачању инфламације и оштећења билијарних канала.

5.4. Gal-3 дефицијентни мишеви имунизовани ксенобиотиком развијају израженију фиброзу јетре

Дисбалан између апоптотске смрти холангиоцита и пролиферације преосталих ћелија одређује ток болести, јер појачано уништавање ћелија води у прогресију болести са значајним губитком билијарних канала и фиброзом јетре. У одмаклим стадијумима РВС холангиоцитите губе способност да пролиферишу и домнири апоптотска смрт ових ћелија. Апоптоза подстиче фиброгенезу активацијом стелатних ћелија јетре (енг. Hepatic Stellate Cells, HSCs) (314, 319). У јетрама Gal-3 дефицијентних мишева имунизованих ксенобиотиком уочава се израженија фиброза. Gal-3 активира различите профибротске
факторе укључујући фактор раста фибробласта и TGF-β и стимулише продукцију колагена у различитим болестим (222). Али овде приказани, а очигледно супротни резултати могу да се објасне значајно израженијом апоптозом холангиоцита у јетрама Gal-3 дефицијентних мишева што снажније активира HSCs и за последицу има израженију фиброзу која јасно корелира са већим концентрацијама профибротских цитокина IL-13 и IL-17 у серуму (320) (321).

Налаз већег укупног број IFN-γ+ CD4+ и CD8+ лимфоцита у јетрама Gal-3 дефицијентних мишева, имунизованих ксенобиотиком, је у сагласности са претходним студијама које су показале да имунизација IFN-γ дефицијентних мишева, са2OA-BSA у адјувансу, не узрокује инфламацију у јетри (322). Такође, већи број IFN-γ+ CD4+ и CD8+ лимфоцита у јетрама Gal-3 дефицијентних мишева је у повезан са израженијим инфламацијским фенотипом дендритских ћелија у јетри ових мишева. Показана израженија инфламација, фиброза и оштећење билијарних канала у јетри Gal-3 дефицијентних мишева имунизованих ксенобиотиком указује на протективну улогу галектина-3 у аутоимунском холангитису индукованом ксенобиотиком. Међутим детаљније проучавање имунопатогенезе у PBC захтева и разматрање више фактора, узимањем у обзир да више етиолошких фактора може утићи на развој болести као и на вишезначност имунског одговора у различитим фазама болести (323-325).

5.5. Дефицијенција Gal-3, као и примена инхибитора Gal-3 код WT мишева, је удружена са знатно блажом формом примарног билијарног холангитиса индукованог бактеријом Novosphingobium aromaticivorans

Novosphingobium aromaticivorans је убиквитарна α-протеобактерија која садржи конзервирани епитоп PDC E2 и може да се детектује на слузницама у дигестивном тракту људи (49, 326, 327). Novosphingobium aromaticivorans метаболише ксенобиотике (328, 329) и тако интерферира са ентерохепатичним кружењем жучних киселина и метаблизmom хормона. Наведене karakterистике бактерије и метаболичке интеракције које остварује доприносе прекиду ауто толеранције у ткиву јетре.
Инфекција осетљивих сојева мишева бактеријом *Novosphingobium aromaticivorans* (5x10^7 cfu) у две дозе (нулте и друге недеље) индукује продукцију антитела специфичних за PDC E2 и активацију аутореактивних T лимфоцита који учествују у развоју хроничне инфламације у јетри која веома подсећа на промене које се виђају у јетри оболелих од РВС. Иако се сврстава у Грам негативне бактерије *Novosphingobium aromaticivorans* не садржи липополисахарид. У ћелијском зиду ових бактерија су присутни гликосфинголипиди (као што је глукуронилцерамид) који активирају NKT ћелије које препознају овакве антигене у склопу CD1d молекула (113). Овако активиране NKT ћелије продукују цитокине и хемокине које омогућавају активацију и диференцијацију помагачких T лимфоцита (283, 330). NKT ћелије као и ћелије које експримирају CD1d молекул су прве ћелије у којима антигени пролично NKT ћелије према митогену активирају CD1d молекул према синусоидалним ендотелним ћелијама и обављају функцију надзора овог васкуларног простора (331, 332). Присуство ових ћелија као и експресија CD1d у јетри се значајно повећава код оболелих од РВС (333-335).

Како аутоимунски холангитис који се код мишева развива након инфекције бактеријом *Novosphingobium aromaticivorans*, за разлику од болести индукуване ксенобиотиком, има више сличности са природним настаником, током и развојем болести код људи користили смо и овај модел за испитивање улоге Gal-3 у патогенези РВС. Експериментални налази овде приказаног истраживања указују да Gal-3 у овом моделу болести има супротне ефекте у поређењу са описаним ефектима у моделу РВС који се изазива ксенобиотиком. Мишеви са делецијом гена за Gal-3, а којима је болест изазвана бактеријом, готово да не развијају инфилтрате у јетри, имају значајно мање вредности AST/ALT индекса и мање вредности анти- PDC-E2 IgA у сееруму, и мањи број активираних дендритских, инфламацијских NK и NKT и Th17 и Tc17 ћелија у јетри у поређењу са C57BL/6 мишевима који имају функционални ген за Gal-3. Једном речју галектин-3 дефицијентни мишеви, у одговору на инфекцију бактеријом *Novosphingobium aromaticivorans*, развијају много блажу болест него мишеви који поседују овај ген. Овеј налаз указује на потпуно другачију улогу галектина-3 у два различита модела болести.

Кључни елементи за дијагностику РВС, као што су снажна инфильтрација малих жучних путева и формирање гранулома, су детектовани у јетрама инфицираних C57BL/6 WT
мишева а приказани овом студијом, описани у и модели болести изазваном на исти начин у NOD 1101 који миша. За разлику од налаза поменуте студије на NOD 1101, у овде приказаним истраживањима регистрован је и развој фиброзе у жетри инфицираних C57BL/6 WT мишева, а ова разлика је вероватно последица сојних разлика. Фиброза је реакција ткива на екстравазацију жучних соли услед деструкције билијарних каналића, а сматра се да је за развој фиброзе неопходно присуство Th2 цитокина. Продукција Th2 цитокина је значајно супримирана код NOD мишева (336) док C57BL/6 WT мишеви, иако слабије него BALB/c мишеви, ипак продукују Th2 цитокине (337). Овде приказани резултати такође указују на развој и Th2 имунског одговора код инфицираних C57BL/6 WT мишева, па тако дендритске ћелије ових мишева у одговору на in vitro стимулацију бактеријом продукују IL-4 (Графикон 24), што може да објасни појаву фиброзе. Остале лезије које развијају инфицирани NOD 1101 мишеви, а које више одговарају аутоимунском хепатитису (венулитис, инфилтрати у паренхиму и експанзија плазмоцита) (338) се такође уочавају у жетрама инфицираних C57BL/6 WT мишева (Слике 13 и 14). Међутим, у жетрама Gal-3 дефицијентних мишева скоро да се и не уочавају хистолошки параметри оштећења, осим благе инфилтрације билијарних каналића без оштећења епитеља, и то не код свих мишева из групе (Графикон 5, Слика 3). У жетрама C57BL/6 WT мишева третираних инхибитором галектина-3, у прве четири недеље након инфекције, такође се не уочавају перипортни и перибилијарни инфилтрати ни након четири након 24 недеље од прве дозе бактерија (Графикон 28, Слике 13 и 14). Уместо тога у жетрама ових мишева се, четири недеље након примене инхибитора, уочавају дифузни инфилтрати у паренхиму и тракаста поља некрозе хепатоцита (Слика 13), а након 24 недеље остају само мања поља инфилтрације у паренхиму (Слика 14). У складу са наведеним налазима су и нешто веће вредности ензима јетре (AST и ALT) у серумима инфицираних мишева третираних инхибитором галектина-3 у поређењу са групом Gal-3 дефицијентних мишева (Графикон 29).
5.6. Дефицијенција Gal-3, као и примена инхибитора Gal-3 код WT мишева, је удружен са значајно мањом фреквенцијом Th17 и Tc17 лимфоцита у јетрама C57BL/6 мишева инфицираних бактеријом Novosphingobium aromaticivorans

Иако се РВС описује као болест у чијој патогенези доминантну улогу играју Th1 лимфоцити постоје подаци који указују и на значајну улогу Th17 лимфоцита у иницијацији и прогресији болести. Описана је значајна акумулација Th17 лимфоцита у јетри оболелих од РВС, као и већа експресија хемокина CCL20 који вероватно учествује у привлачењу ових ћелија у јетру (339). У другој студији је описано значајно присуство IL23+ и IL-17+ мононуклеарних ћелија у портним просторима јетре у одмах стадијумима РВС као и позитивна корелација између концентрације οf IL-23 и IL-17 у серуму оболелих од РВС са концентрацијом глутамил трансферазе у серуму (340). Документован је и значајан пораст броја IL-17+ лимфоцита у инфилтратима јетре оболелих од РВС у поређењу са процентом ових ћелија у инфилтратима присутним у другим болестима јетре као и у јетрама здравих особа (75). Налаз IL-17+ лимфоцита у јетри карактеристика је каснијих фаза развоја РВС, што указује на значај конверзије Th1 у Th17 имунски одговор за прогресију болести (341). Тakoђe је у јетрама IL-2Rα дефицијентних мишева, који спонтано развијају болест сличну РВС људи, описано присуство агрегата IL-17 позитивних лимфоцита у портним просторима, као и већа фреквенција оваквих Λ cellulii у јетру у односу на периферију (75). У истој студији је показано да CD4+ T лимфоцити из јетре здравих C57BL/6J мишева секретују веће количине IL-17 у поређењу са CD4+ T лимфоцитима из слезине истих мишева што указује на склоност лимфоцита да у микроокружењу јетре продукују IL-17. Поред тога кокултура CD4+ T лимфоцита изолованих из слезине C57BL/6J мишева и непаренхимских ћелија јетре је повећала 10 пута продукцију IL-17 у T лимфоцитима у поређењу са ћелијама које су гајене без додатка ћелија издвојених из јетре. Овај налаз указује да микроокружење јетре барем код C57BL/6J мишева подстиче развој Th17 имунског одговора у аутоимунским и инфламацијским болестима јетре.

У складу са наведеним подацима су и резултати ове приказане студије који јасно документују да је број Th17 и Tc17 лимфоцита у јетрама C57BL/6 мишева инфицираних
бактеријом већа од броја Th1 и Tc1 лимфоцита у јетрама истих мишева (Графикон 18). У јетрама Gal-3 дефицијентних мишева као и WT мишева третираних инхибитором галектина-3, а у скалду са хистолошким и серумским параметрима болести, значајно је мањи и процент Th17, Tc1 и Tc17 ћелија (Графикон 31). Штавише, у јетрама инфицираних Gal-3 дефицијентних и WT мишева третираних инхибитором галектина-3 није уочено повећање проценат Tc1 и Tc17 у односу на проценте у јетрама нетретираних мишева уз незнатно повећање процента Th1 и Th17 лимфоцита (Графикон 31). Узимајући у обзир ове резултате и резултат претходно наведене студије (75) може да се закључи да у развоју аутоимунског процеса изазваног инфекцијом C57BL/6 мишева бактеријом Novosphingobium aromaticivorans кључну улогу играју CD4+ и CD8+ лимфоцити који продукују IL-17.

5.7. Дефицијенција Gal-3, као и примена инхибитора Gal-3 код WT мишева, је удружен са значајно слабијом активацијом дендритских ћелија код C57BL/6 мишева инфицираних бактеријом Novosphingobium aromaticivorans

Галектин-3, везивањем за рецепторе на ћелијама, остварује бројне улоге у физиолошким и патолошким процесима. Ендогени рецептори за галектин-3 су веома различите форме гликосфинголипида које могу да имају различите угљено хидратне компоненте (342). Галектини остварују директну интеракцију и са гликанима присутним на површини бактеријских ћелија. Поред тога бактеријска инфекција модулише експресију галектина на ћелијама домаћина који онда регулише функције леукоцита и модулише инфламацијски одговор. Доказано је да Грам позитивне бактерије (Streptococcus pneumoniae) као и Грам негативне бактерије (Klebsiella pneumoniae, Neisseria meningitidis, Neisseria gonorrhoeae, Haemophilus influenzae, Pseudomonas aeruginosa) на површини искazuju угљенохидратне компоненте које се везују за галектин (343-346). Галектин-3 се двојако везује за липополисахариде: C терминус CRD домена се везује за остаке лактозе LPS-a Klebsiellae pneumoniae, a N терминусом који не садржи угљене хидрате се везује за липид A LPS-a Salmonellae entericae subspecies enterica (343). Интрацелуларни галектин-3 остварује интеракције са гликолипидима и фосфатидилисинозитол манозидима, Mycobacterium
tuberculosis који се акумулирају на мембрани фагозома који садрже микобактерије у току инфекције овим бактеријама (347). Такође галектин-3 везује бочне ланце О антигена бактерије Helicobacter pylori, која изазива гастритис. Адхезија ове бактерије за епител желуца утиче на повећање експресије галектина-3 у епителним ћелијама (348) што указује да галектин-3 утиче на одговор домаћина на инфекцију и то тако што промовише регрутовање фагоцита на место инфекције и подстиче инфламацијски одговор. Галектин-3 подстиче и екстравазацију и регрутовање неутрофила у току инфекције бактеријом Streptococcus pneumoniae и тако ублажава пнеумонију изазвану овом бактеријом (349). У мишјем моделу инфекције плућа Streptococcus-ом pneumoniae је такође показано да галектин-3 делује хемоатрактантно на неутрофиле што може да помогне уклањању бактерија али и већем оштећењу плућа (350). Показано је да галектин-3 штити од развоја ендотоксиничног шока изазваног LPS-ом који потиче из Salmonellae, али парадоксално повећава преживљавање самих бактерија (351). Сумировано ові подаци указују да галектин-3 може да се везе за глукоконјугате бактерија и тиме, или олакши, или инхибира улазак патогена у ћелије домаћина. Такође везивање галектина-3 за глукоконјугате бактерија може и да подстиче али и да инхибира урођени и стечени имунски одговор домаћина.

Нема података о могућој интеракцији галектина-3 и молекула присутних у склопу ћелијског зида или површинских молекула бактерије Novosphingobium aromaticivorans. Међутим на основу претходно наведених података о интеракцији галектина-3 и глукоконјугата различитих бактерија, као и на основу података да галектин-3 остварује интеракцију са гликосфинголипидима на хуманим ћелијама, а имајући у виду да је главна компонента ћелијског зида Novosphingobium aromaticivorans-а управо гликосфинголипд веома је вероватно да и ова бактерија остварује директне kontakte са хуманим ћелијама посредством галектина-3.

Познато је да у патогенези РВС који развијају мишеви након инфекције бактеријом Novosphingobium aromaticivorans кључну улогу играју NKT ћелије које цитокинима које продукују стимулишу настанак инфламацијских аутореактивних лимфоцита (50). Међутим како NKT ћелије углавном препознају гликосфинголипиде приказане у склопу молекула CD1d исказаног на дендритским ћелијама анализирани су карактеристике и NKT и дендритских ћелија у инфицираним мишевима у присуству и одсуству галектина-3.
Иако је уочено смањење процента NKT ћелија у јетрама Gal-3 дефицијентних мишева четири недеље након бактеријске инфекције (Графикон 32) између испитиваних група нису уочене значајне разлике у фенотипу ових ћелија, осим већег процента CD69+ и FASL+ NKT ћелија у јетри WT мишева (Графикони 33 и 34).

Анализа фенотипа дендритских ћелија у јетри и слезини три дана после инфекције бактеријом показала је значајно мањи проценат активираних и IL-12+ дендритских ћелија у слезини Gal-3 дефицијентних мишева у поређењу са WT мишевима (Графикон 20) док је у јетри Gal-3 дефицијентних мишева присутан значајно мањи проценат IL-1+ дендритских ћелија (Графикон 21). Поред тога у фази развијене болести у јетрама Gal-3 дефицијентних мишева као и WT мишева третиран их инхибитором галектина-3, детектован је значајно мањи проценат активираних CD86+ и инфламацијских (IL-6+ TNF-α+ и IL-12+) мијелоидних CD11c+CD11b+ као и CD11c+CD1d+ дендритских ћелија које приказују липидне антитеже NKT ћелијама (Графикони 36 и 37).

Наведени резултати су супротни резултатима добијеним у моделу болести индукуване ксенобиотиком али су сагласни резултатима претходно наведене студије која указује да Gal-3 дефицијентне дендритске ћелије продукују мање антиинфламацијског цитокина IL-10 и тако подштичу продукцију IFN-γ у алогеним T лимфоцитима (317), као и налазом да блокада експресије Gal-3 коришћењем siRNA мења проинфламацијски фенотип и учинак дендритских ћелија добијених из моноцита (352). Блокада експресије Gal-3 у дендритским ћелијама повећава продукцију IL-12 p35 и IL-10, а смањује IL-23 p19, IL-6, IL-1β што за последицу има неадекватан развој Th17 лимфоцита (352). Налаз ове студије је у сагласности са овде приказаним налазом значајног смањења процента IL-1+ дендритских ћелија у јетри Gal-3 дефицијентних мишева, без разлике у проценту IL-12+ дендритских ћелија што може да објасни смањење броја Th17 и Tc17 лимфоцита у јетри у одсуству галектина-3. Атенуација инфламацијског фенотипа дендритских ћелија у одсуству галектина-3 је у сагласности са резултатима других студија у којима је проучавана улога овог молекула у патогенези различитих инфламацијских болести јетре (279, 284) и акутног колитиса (277). Такође овде приказани резултати показују да in vitro бактеријска стимулација дендритских ћелија изолованих из здравих WT мишева значајно повећава проценат активираних CD86+ и инфламацијских IL-12+ дендритских ћелија (Графикони 25 и 26), а да истоветна
стимулација дендритских ћелија изолованих из Gal-3 дефицијентних мишева скоро да и не мења фенотип ових ћелија.

Претходно наведени резултати указују да Gal-3 дефицијентни мишеви скоро да и не развијају РВС након инфекције бактеријом највероватније због немогућности дендритских ћелија да се адекватно активирају бактеријом у одсуству галектина-3 услед чега изостаје адекватна активација и NKT ћелија и аутореактивних Т лимфоцита па се и не развија хронична билиарна инфламација. Овај закључак је у складу са резултатима претходних студија у којима је показано да Gal-3 повећава капацитет дендритских ћелија да подстакну ефекторску улогу NKT ћелија и оштећење јетре у моделу хепатитиса изазваном α-галактозил церамидом (278).

Показано је да присуство галектина-3 на NK ћелијама не утиче на активацију и фенотип ових ћелија након in vitro стимулације бактеријама али и да је стимулација ових ћелија бактеријом врло слаба (Графикони 23 и 24). Такође међу испитиваним групама, три дана након инфекције, непостоје разлике у проценту инфламацијских и цитотоксичких NK ћелија. Међутим од четврте недеље по инфекцији у јетрама WT мишева присутни су значајно већи проценти активираних, инфламацијских и цитотоксичких NK ћелија (Графикони 34, 35, 36). Овај резултат је супротан до сада публикованим резултатима о утицају галектина-3 на функцију NK ћелија у којима је показано да галектин-3 супримира антитуморску цитотоксичку активност ових ћелија (353, 354). Међутим, наши резултати такође указују да NK ћелије вероватно нису укључене у рани имунски одговор на Novosphingobium aromaticivorans и могуће је да је инфламацијски фенотип ових ћелија у фази испољене болести последица активације NK ћелије инфламацијским дендритским ћелијама код WT мишева. Могуће је да инфламацијске дендритске ћелије WT мишева, активираним бактеријом, продукцијом цитокина активирају NK ћелије које онда продукују IFN-γ који повратно делује на дендритске ћелије чиме се успоставља позитивна повратна спrega којом се знатно појачава инфламацијски одговор (355), а да код Gal-3 дефицијентних мишева ова интеракција изостаје јер нема адекватне активације дендритских ћелија што је разлог појаве регулаторног фенотипа NK ћелија у јетри Gal-3 дефицијентних и мишева третираних инхибитором галектина-3 (Графикон 35). Познато је да се NK ћелије активирају у току развоја РВС и доприносе мултистепеној патогенези болести, деплекција ових ћелија.

133
знатно смањује продукцију аутоантитела као и продукцију инфламацијских цитокина Т лимфоцита (356).

5.8. Дефицијенција Gal-3, као и примена инхибитора Gal-3 код WT мишева, значајно смањују активацију инфламазома код C57BL/6 мишева инфицираних бактеријом Novosphingobium aromaticivorans

Познато је да активација инфламазома у макрофагима јетре игра значајну улогу у патогенези различитих болести овог органа, доприносећи оштећењу јетре, инфламацији и фибрози (357, 358). NLRP3 се везује за адапторски протеин ASC и формира се инфламазом који цепа прокаспазу 1 до активне форме каспазе 1 која учествују у ослобађању активне форме проинфламацијског цитокина IL-1β (359). Транстени мишеви који конституттивно експримирају активну форму NLRP3 испољавају узречену пироптозу хепатоцита, инфламацију и фиброзу (358) док деплеција NLRP3 штити мишеве од развоја оштећења јетре. Резултати недавно публиковане студије указују да је галектин-3 неопходан за адекватну активацију инфламазома (360). У складу са овим налазом су и резултати овде приказана студије који јасно документују значајно већи процент дендритских CD11c+ и мијелоидних CD11b+ ћелија које експримирају компоненту инфламазома NLRP3 у популацији мононуклеарних ћелија изолованих из јетре и слезине WT мишева три дана након бактеријске инфекције у поређењу са групом Gal-3 дефицијентних мишева (Графикон 22). Значајно је напоменути да је већи процент ћелије које експримирају NLRP3 детектован међу мононуклеарним ћелијама јетре у поређењу са ћелијама изолованим из слезине. Такође стимулација дендритских ћелија изолованих из Gal-3 дефицијентних мишева бактеријом и липополисахаридом in vitro не утиче на експресију NLRP3 у овим ћелијама, док истоветна стимулација дендритских ћелија WT мишева повећава процент ћелија које експримирају NLRP3+ (Графикон 27). У складу са наведеним резултатима су и налази недавано публиковане студије у којој је показано да dnTGF-βRII који спонтано развијају болест, која личи на РВС људи, развијају значајно мању инфламацију и фиброзу јетре уколико им се уклони и ген који кодира Gal-3 што се објашњава неадекватном
стимулацијом инфламазома који има важну улогу у патогенези овог модела РВС и доприноси активацији Th17 лимфоцита (361).

Активација инфламазома је важна у патогенези метаболичких и инфламацијских болести жетре које покрећу понављајући слаби стимулуси (алкохолна болест жетре, неалкохолни сеаствохепатитис или хронични вирусни хепатитис). Инфламација које се разија у овим болестима зависи од инфламазома који интегрише мултипле слабе сигнале, активира се и покреће инфламацију. Са друге стране у болестима које покрећу јаки стимулуси имунског система као што су аутоимунски хепатитис, или хепатитис индукован парациетамолом активација инфламазома не игра никакву улогу. Овакве стимулусе детектују рецептори на ћелијама урощене имуности који покрећу другачије сигналне путеве који опет за резултат имају инфламацију (362).

Како је Novosphingobium aromaticivorans бактерија са атипичним ћелијским зидом који садржи гликосфинголипиде као и еукариотске ћелије и која, иако се детектује на слузници дигестивног тракта, углавном не изазива инфламацију нити оштећење ткива (49, 326, 327) сасвим је могуће да се код мишева инфламацијски одговор на ову бактерију и активација дендритских ћелија покреће стимулацијом инфламазома (интеграцијом слабих сигнала) што омогућава даљу активацију ћелија имунског система и развој холангитиса. Изразито слабија болест код Gal-3 дефицијентних мишева говори у прилог ове претпоставке с обзиром да галектин-3 подстиче активацију инфламазома. Са друге стране у моделу РВС индукованом имунизацијом ксенобиотиком у адјутансу који садржи стимулаторе TLR искључује се утицај активације инфламазома на стимулацију урощеног имунског одговора. Утицај галектина-3 на продукцију инфламацијских цитокина у дендритским ћелијама након снажне стимулације TLR агонистима нема толики значај као што има у активацији инфламазома. Дендритске ћелије и WT и Gal-3 дефицијентних мишева се адекватно активирају након имунизације, односно вероватно се покреће врло сличан иницијални имунски одговор, па експресија галектина-3 у овом моделу има већи утицај на ток болести. У одсуству галектина-3 холангиоцити су подложнији апоптози коју покреће имунски одговор, тиме се ослобађа више аутоантигена који повратно делује на додатну активацију аутореактивних лимфоцита што повратно појачава имунски одговор и појачава оштећење жетре.
Схема 6. Приказује кључну улогу галектина-3 у два различито индукована модела примарног билијарног холангитиса.
6. ЗАКЉУЧЦИ

Дефицијенција галектина-3 погоршава РВС ако је болест изазвана имунизацијом ксенобиотиком у адјувансу. На овај начин изазвану болест карактеришу:

- израженија апоптоза холангиоцита што повећава количину доступног аутоантигена
- већи инфлукс инфламацијских Т лимфоцита и дендритских ћелија, без промена у релативном односу појединих популација имунских ћелија као и инфламацијских лимфоцита и дендритских ћелија.

Ако се болест изазива инфекцијом Novosphingobium aromaticivorans-ом недостатак галектина-3 као и примена инхибитора галектина-3 значајно редукују оштећења билијарних канала. Етиопатогенеза овако индукуване болести има много више сличности са РВС-ом код људи у поређењу са РВС који се индукује применом ксенобиотика у великој количини адјувана. Редуковано оштећење билијарних канала у одсуству галектина-3 у овом моделу болести је праћено значајно слабијом активацијом дендритских ћелија, вероватно због доминантне улоге инфламазома у стимулацији имунског одговора бактеријом што за последицу има слабију активацију NK ћелија као и слабији развој инфламацијских T лимфоцита који одржавају аутоимунски процес.

Евентуална будућа примена инхибитора галектина-3 у терапији РВС морала би се заснивати на прецизној целуларној и молекулској процени основних патогенетских механизама инфламације у сваком појединачном случају. Уколико би се прецизно утврдило да се болест превасходно одвија слично модели бактеријске инфекције могло би се очекивати да примена инхибитора ублажи болест. Али у случају да оболели имају инфекцију која изазива системски инфламацијски одговор, евентуална примена инхибитора би могла да погорша стање због удруженог ефекта јаче активације ћелија утрођене имуности цитокинима који се продукују у току системског инфламацијског одговора и могуће есплађања аутоантигена из холангиоцита.
Закључци су проистекли из следећих експерименталних резултата:

1. Одсуство галектина-3 појачава оштећење билијарних канала у модели РВС изазваном имунизацијом ксенобиотиком, судећи према вредностима хистолошког скора и серумских параметара.

2. Одсуство галектина-3 у РВС индукованом имунизацијом ксенобиотиком појачава системски Th17 имунски одговор и фиброзу јетре.

3. Одсуство галектина-3 у РВС индукованом имунизацијом ксенобиотиком је удружено, са већим бројем CD8+Т лимфоцита као и инфламацијских CD4+ и CD8+Т лимфоцита који садрже IFN-γ у мононуклеарним инфилтратима јетре.

4. Тежи облик РВС индукованог имунизацијом ксенобиотиком који се развија код Gal-3 дефицијентних мишева је управо масивније апоптозе холангиоцита будући да су ове ћелије Gal-3 дефицијентних мишева осетљивије на апоптотске стимулусе in vitro.

5. Одсуство галектина-3 у модели РВС индукованом имунизацијом ксенобиотиком је повезано са повећањем броја активираних (CD86+ и MHC II+) и инфламацијских (TNF-α+) дендритских ћелија.

6. Одсуство галектина-3 значајно смањује оштећење билијарних канала у модели РВС изазваном инфекцијом бактеријом Novosphingobium aromaticivorans.

7. Одсуство галектина-3 у модели РВС индукованом бактеријском инфекцијом је праћено смањењем застуљености Th17 и Tc17 лимфоцита у јетри.

8. Мање оштећење билијарних канала код Gal-3 KO мишева инфицираних бактеријом Novosphingobium aromaticivorans повезано је са смањењем процента NK ћелија, мањим процентом активираних, цитолитичких и проинфламацијских NK ћелија, као и повећањем антиинфламацијских NK ћелија у јетри у ефекторској фази болести.

9. Мање оштећење билијарних канала у јетри Gal-3 KO мишева инфицираних бактеријом Novosphingobium aromaticivorans је повезано са смањењем експресијом компоненте инфламазома у мијелоидним ћелијама што резултује неадекватним развојем инфламацијских дендритских ћелија.

10. Превентивна примена Gal-3 инхибитора значајно смањује оштећење билијарних канала у РВС изазваном бактеријском инфекцијом.
11. Превентивна примена Gal-3 инхибитора значајно смањује заступљеност Th17 и Tc17 лимфоцита, инфламацијских NK, NKT и дендритских ћелија и цитолитичких NK, NKT ћелија у РВС изазваном бактеријском инфекцијом.

12. Превентивна примена Gal-3 инхибитора значајно смањује експресију NLRP3 компоненте инфламозома у ткиву јетре.
7. РЕФЕРЕНЦЕ

164

337. Zhang BB1, Yan C1, Fang F1, Du Y1, Ma R1, Li XY1, Yu Q1, Meng D2, Tang RX1, Zheng KY1. Increased hepatic Th2 and Treg subsets are associated with biliary fibrosis in different strains of mice caused by Clonorchis sinensis. PLoS One. 2017; 12(2):e0171005.

8. ПРИЛОГ

8.1 КЉУЧНА ДОКУМЕНТАЦИЈСКА ИНФОРМАТИКА

УНИВЕРЗИТЕТ У КРАГУЈЕВЦУ
МЕДИЦИНСКИ ФАКУЛТЕТ У КРАГУЈЕВЦУ

Редни број: РБ
Идентификациони број: ИБР
Тип документације: Монографска публикација
Тип записа: Текстуални штампани материјал
Врста рада: Докторска дисертација
Аутор: Александар Н. Арсенијевић
Ментор/коментор: Проф. др Марија Миловановић
Наслов рада: Значај експресије галектина-3 у патогенези примарног билијарног холангитиса код мишеева
Језик публикације: Српски
Језик извода: Српски/енглески
ЈИ

Земља публиковања: Србија
ЗП

Уже географско подручје: Србија
УГП

Година: 2017
ГО

Издавач: Ауторски репринт
ИЗ

Место и адреса: 34000 Крагујевац, Србија, Светозара Марковића 69
МС

Физичи опис рада: Дисертација има 179 странице, садржи 8 поглавља, 38 графикона, 14 слика, 6 схема, 362 референце
ФО

Научна област: Медицина

Научна дисциплина: Имунологија
ДИ

Предметна одредница/ кључне речи РВС, Gal-3, NA, C57BL/6 мишеви, апоптоза, ВЕCs
ПО

УДК

Чува се: У библиотеци факултета медицинских наука у Крагујевцу, 34000
ЧУ

Важна напомена:
МН

Чува се: У библиотеци факултета медицинских наука у Крагујевцу, 34000
ЧУ

Важна напомена:
МН
Извод:
ИД
Утицај галектина-3 на патогенезу примарног билијарног холангитиса до сада није испитиван, а резултати ове студије јасно показују да Gal-3 може да има потпуно супротне ефекте на ток болести у два разлишита модела па изгледа сасвим документовано да утицај галектина-3 на развој и ток болести зависи од доминантног механизма индукције болести. У моделу примарног билијарног холангитиса индукованог имунизацијом C57BL/6 мишка ксенобиотиком у адјувансу Gal-3 има протективни ефекат, убалажавајући болест вероватно тако што штити холангиоците од апоптозе чиме смањује доступност аутоантигена и тако ограничава аутоимунски процес. Супротно, у моделу ове болести изазване бактеријом Novosphingobium aromaticivorans одсуство галектина-3 готово да чини мишеве резистентним на развој РВС највероватније због неадекватне активације дендритских ћелија бактеријом у одсуству галектина-3, услед чега изостаје и активација свих осталих ћелија (NKT и NK ћелија, T лимфоцита) које учествују у развоју оштећења билијарних канала.

Датум прихватања теме од стране ННВ: 05.04.2017
ДП
Датум одбране:
ДО

Чланови комисије:
КО
Проф. др Миодраг Лукић, професор емеритус Универзитета у Крагујевцу за ужу научну област Микробиологија и имунологија, председник комисије
Проф. др Данило Војводић, ванредни професор Медицинског факултета ВМА Универзитета одбране у Београду за ужу научну област Клиничка имунологија, члан комисије
Проф. др Владислав Воларевић, ванредни професор Факултета медицинских наука, Универзитета у Крагујевцу за ужу научну област Микробиологија и имунологија, члан комисије

8.2 KEY WORDS DOCUMENTATION

UNIVERSITY OF KRAGUJEVAC
FACULTY OF MEDICINE KRAGUJEVAC

Accession number: ANO

Identification number: INO

Documentation type: Monographic publication

Type of record: Textual printed material

Contents code: PhD thesis

Author: Aleksandar N. Arsenijević

Menthor/co-mentor
Prof. dr Marija Milovanović

Title:
The significance of the expression of galectin-3 in the pathogenesis of primary biliary cholangitis in mice

Language of text: Serbian
<table>
<thead>
<tr>
<th>LT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Language of abstract:</td>
</tr>
<tr>
<td>Serbian/English</td>
</tr>
<tr>
<td>Country of publication:</td>
</tr>
<tr>
<td>Serbia</td>
</tr>
<tr>
<td>Locality of publication:</td>
</tr>
<tr>
<td>Serbia</td>
</tr>
<tr>
<td>Publication year:</td>
</tr>
<tr>
<td>2017</td>
</tr>
<tr>
<td>Publisher:</td>
</tr>
<tr>
<td>Author reprint</td>
</tr>
<tr>
<td>Publication place:</td>
</tr>
<tr>
<td>34000 Kragujevac, Serbia, Svetozara Markovića 69</td>
</tr>
</tbody>
</table>

Physical description

Thesis has 179 pages, has 8 chapters, 38 charts, 14 pictures, 6 schemes, 362 references
Abstract:

The impact of galectin-3 in the pathogenesis of primary biliary cholangitis has not been studied, and the results of this study clearly show that Gal-3 can have completely opposite effects on the course of the disease in two different induction models looks quite documented that the effect of galectin-3 in the development and course of the disease depends on the prevalent mechanism for the induction of the disease.

In the model of primary of biliary cholangitis induced by immunizing C57BL/6 mice with xenobiotics in adjuvant, Gal-3 has a protective effect, mitigating disease probably by protecting from apoptosis holangiocite thus reducing the availability of autoantigens, thus limiting the autoimmune process. Contrary, in the model of this disease caused by bacteria *Novosphingobium aromaticivorans* absence of galectin-3 almost makes the mice resistant to the development of PBC most likely due to inadequate activation of dendritic cells by the bacteria in the absence of galectin-3, and subsequent reduced activation of other cells (NKT and NK cells, T lymphocytes) that participate in the development of biliary duct damage.
Thesis defended board

(Degree/name/surname/title/faculty)

DB

Prof. dr Miodrag Lukić, Professor Emeritus of the University of Kragujevac for the scientific field of Microbiology and Immunology, President of the Commission

Prof. dr Danilo Vojvodić, Associate Professor of Medicine, University of Defense Military Medical Academy in Belgrade for the scientific field of Clinical Immunology, committee member

Prof. dr Vladislav Volarević, Associate Professor at the Faculty of Medical Sciences, University of Kragujevac for the scientific field of Microbiology and Immunology, committee member

8.3 Лични подаци

Учесник је:

• Републичког пројекта Министарства просвете, науке и технологског развоја:
 1. ОН 175069 „Молекулске детерминанте урођене имуности у аутоимунским болестима и канцерогенези“

• Макро пројекта Факултета медицинских наука Универзитета у Крагујевцу:
 1. МП 01-14 „Галектин 3, IL-33R и инфекције у имунопатогенези инфламаторних болести“
 2. МП 02-14 „Испитивање цитотоксичног дејства биоактивних супстаници и имуномодулација тумора“
8.3.1 Подаци о објављеним радовима:

8.4 ИНДЕТИФИКАЦИОНА СТРАНИЦА ДОКТОРСКЕ ДИСЕРТАЦИЈЕ

<table>
<thead>
<tr>
<th>I Аутор</th>
</tr>
</thead>
<tbody>
<tr>
<td>Име и презиме: Александар Арсенијевић</td>
</tr>
<tr>
<td>Датум и место рођења: 30.11.1986. Крагујевац</td>
</tr>
<tr>
<td>Садашње запослење: Асистент за ужу научну област Основи онкологије</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>II Докторска дисертација</th>
</tr>
</thead>
<tbody>
<tr>
<td>Наслов: ЗНАЧАЈ ЕКСПРЕСИЈЕ ГАЛЕКТИНА-3 У ПАТОГЕНЕЗИ ПРИМАРНОГ БИЛИЈАРНОГ ХОЛАНГИТИСА КОД МИШЕВА</td>
</tr>
<tr>
<td>Број страница:</td>
</tr>
<tr>
<td>Број слика: 58</td>
</tr>
<tr>
<td>Број библиографских података: 362</td>
</tr>
<tr>
<td>Установа и место где је рад израђен: Факултет медицинских наука, Универзитет у Крагујевцу</td>
</tr>
<tr>
<td>Научна област (УДК): Медицина</td>
</tr>
<tr>
<td>Ментор: Проф. др Марија Миловановић</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>III Оцена и одбрана</th>
</tr>
</thead>
<tbody>
<tr>
<td>Датум пријаве теме: 05.11.2015</td>
</tr>
<tr>
<td>Број одлуке и датум прихватања докторске дисертације: IV-03-374/24; 05.04.2017.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Комисија за оцену подобности теме и кандидата:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Проф. др Миодраг Лукић, проф. емеритус, Универзитета у Крагујевцу за ужу научну област Микробиологија и имунологија</td>
</tr>
<tr>
<td>Проф. др Данило Војводић, ванредни професор Медицинског факултета ВМА, Универзитета одбране у Београду за ужу научну област Клиничка имунологија</td>
</tr>
<tr>
<td>Доц. др Гордана Радосављевић, доцент Факултета медицинских наука, Универзитета у Крагујевцу за ужу научну област Микробиологија и имунологија</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Комисија за оцену подобности теме и кандидата:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Проф. др Миодраг Лукић, проф. емеритус, Универзитета у Крагујевцу за ужу научну област Микробиологија и имунологија</td>
</tr>
<tr>
<td>Проф. др Данило Војводић, ванредни професор Медицинског факултета ВМА, Универзитета одбране у Београду за ужу научну област Клиничка имунологија</td>
</tr>
<tr>
<td>Доц. др Гордана Радосављевић, доцент Факултета медицинских наука, Универзитета у Крагујевцу за ужу научну област Микробиологија и имунологија</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Комисија за оцену докторске дисертације:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Проф. др Миодраг Лукић, проф. емеритус, Универзитета у Крагујевцу за ужу научну област Микробиологија и имунологија</td>
</tr>
<tr>
<td>Проф. др Данило Војводић, ванредни професор Медицинског факултета ВМА, Универзитета одбране у Београду за ужу научну област Клиничка имунологија</td>
</tr>
</tbody>
</table>
Проф. др Владислав Воларевић, ванредни професор Факултета медицинских наука, Универзитета у Крагујевцу за ужу научну области Микробиологија и имунологија

Комисија за одбрану докторске дисертације:
Проф. др Миодраг Лукић, проф. емеритус, Универзитета у Крагујевцу за ужу научну област Микробиологија и имунологија
Проф. др Данило Војводић, ванредни професор Медицинског факултета ВМА, Универзитета одбране у Београду за ужу научну област Клиничка имунологија
Проф. др Владислав Воларевић, ванредни професор Факултета медицинских наука, Универзитета у Крагујевцу за ужу научну област Микробиологија и имунологија

Датум одбране дисертације:
ИЗЈАВА АУТОРА О ОРИГИНАЛНОСТИ ДОКТОРСКЕ ДИСЕРТАЦИЈЕ

Ја, Александар Арсенијевић, изјављујем да докторска дисертација под насловом:

ЗНАЧАЈ ЕКСПРЕСИЈЕ ГАЛЕКТИНА-3 У ПАТОГЕНЕЗИ ПРИМАРНОГ БИЛИЈАРНОГ ХОЛАНГИТИСА КОД МИШЕВА

која је одбрањена на Факултету медицинских наука Универзитета у Крагујевцу представља оригинално ауторско дело настало као резултат сопственог истраживачког рада.

Овом Изjavом такође потврђујем:

• да сам једини аутор наведене докторске дисертације,
• да у наведеној докторској дисертацији нисам извршио/ла повреду ауторског нити другог права интелектуалне својине других лица,
• да умножени примерак докторске дисертације у штампаној и електронској форми у чијем се прилогу налази ова Изjava садржи докторску дисертацију истоветну одбрањеној докторској дисертацији.

У Крагујевцу, 2017 године,

Александар Арсенијевић
потпис аутора
ИЗЈАВА АУТОРА О ИСКОРИШЋАВАЊУ ДОКТОРСКЕ ДИСЕРТАЦИЈЕ

Ја, Александар Арсенијевић,

dозвољавам

Универзитетској библиотеци у Крагујевцу да начини два трајна умножена примерка у електронској форми докторске дисертације под насловом:

ЗНАЧАЈ ЕКСПРЕСИЈЕ ГАЛЕКТИНА-3 У ПАТОГЕНЕЗИ ПРИМАРНОГ БИЛИЈАРНОГ ХОЛАНГИТИСА КОД МИШЕВА

која је одбрана на _Факултету медицинских наука_ Универзитета у Крагујевцу, и то у целини, као и да по један примерак тако умножене докторске дисертације учини трајно доступним јавности путем дигиталног репозиторијума Универзитета у Крагујевцу и централног репозиторијума надлежног министарства, тако да припадници јавности могу начинити трајне умножене примерке у електронској форми наведене докторске дисертације путем преузимања.

Овом Изјавом такође

дозвољавам
припадницима јавности да тако доступну докторску дисертацију користе под условима утврђеним једном од следећих Creative Commons лиценци:

1) Ауторство
2) Ауторство - делити под истим условима
3) Ауторство - без прерада
4) Ауторство - некомерцијално
5) Ауторство - некомерцијално - делити под истим условима
6) Ауторство - некомерцијално - без прерада

У Крагујевцу, 2017 године,

Александр Арсенијевић
потпис аутора
Молимо ауторе који су изабрали да дозволе припадницима јавности да тако доступну докторску дисертацију користе под условима утврђеним једном од Creative Commons лиценци да заокруже једну од понуђених лиценци. Детаљан садржај наведених лиценци доступан је на: http://creativecommons.org.rs/