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Абстракт

У овоj дисертациjи, представљени су нови алгоритми за формирање стабала одлуке
неинкременталном методом, као и разне могућности за њихову имплементациjу.
Прво jе дат опис новог EFTI (Evolutionary Full Tree Induction) алгоритма,
дизаjнираног тако да омогући имплементациjу са што мање хардверских ресурса,
као и да производи што мања стабла одлуке, а без утицаjа на њихову тачност.
Ово пружа могућност да се EFTI алгоритам користи у ембедед системима, где jе
оптимална употреба ресурса од велике важности. Имплементациjа EFTI алгоритма
за PC платформу je онда поређена са PC имплементациjама неколико других
постоjећих алгоритама за формирање стабала одлуке у погледу тачности и величине
произведених стабала. Експерименти показуjу да jе предложени EFTI алгоритам у
могућности да произведе драстично мања стабла без губитка тачности, у односу
на top-down инкременталне алгоритме. Са друге стране, у поређењу са другим
неинкременталним алгоритмима за формирање стабала одлуке, EFTI jе успевао
да произведе знатно тачниjа стабла, сличне величине, за краће време. Након
тога, истраживана jе могућност хардверске акцелерациjе овог алгоритма на основу
резултата његовог профаjлинга и разматрања његове временске комплексности. На
основу анализе, предложен jе EFTIP (Evolutionary Full Tree Induction co-Processor)
његова архитектура jе представљена. Даље у дисертациjи, дата jе хардвер-софтвер
имплементациjа EFTI алгоритма на основу EFTIP ко-процесора коjи jе конструисан
да обавља наjинтензивниjу фазу процеса формирања стабла неинкременталном
методом, фазу прорачуна тачности стабла одлуке. Наjзад, у експерименталноj
секциjи ће се говорити о предности система коjи користи EFTIP ко-процесор,
у погледу брзине формирања стабла одлуке. Затим, дат jе опис алгоритма за
формирање ансамбала стабала одлуке EEFTI (Ensembles Evolutionary Full Tree
Induction). Након тога, дати су резултати експеримента у коjем су поређене тачности
коjе пружаjу ансамбли формирани уз помоћ EEFTI алгоритма и поjединачна стабла
одлуке формирана уз помоћ EFTI алгоритма. Резултати показуjу да jе EEFTI
алгоритам у могућности да произведе ансамбле коjи су тачниjи од поjединачних
стабала одлуке. Слично као и за EFTI алгоритам, разматрана jе хардвер-софтвер
архитектура EEFTI алгоритма, предложен jе EEFTIP ко-процесор за његову
хардверску акцелерациjу и дати су резултати експеримената коjи приказуjу предност
ове архитектуре у погледу брзине формирања ансамбала стабала одлуке.

Uvod

Машинско учење jе грана истраживачке области вештачке интелигенциjе. Она се
бави развоjем алгоритама коjи ҡучеә извлачећи обрасце из улазних података и као
своj излаз даjу системе конструисане да праве предикциjе над новим подацима.
Jедна од главних снага система машинског учења jе моћ генерализациjе, коjа им
омогућава да остваре добре резултате на новим, до сада невиђеним подацима, након
што су претходно били изложени скупу података за тренирање.

Разни системи машинског учења су до сада предложени у литератури, укључуjући:
стабла одлуке (DT од енг. decision trees), неуронске мреже (ANN од енг. ҡartiҥcial



Hardware Acceleration of Nonincremental Algorithms for the Induction of Decision Trees and Decision Tree Ensembles ii

neural networksә) и ҡsupport vectorә машине (SVM). Ови системи се посебно широко
примењуjу у области вађења података (енг. ҡdata miningә), са DT, ANN и SVM-овима
као наjпопуларниjима.

Процес учења, тзв. индукциjа система машинског учења, може бити како надгледан
тако и ненадгледан. Надгледано учење подразумева да jе уз сваки улазни податак из
тренинг скупа дат и жељени одзив система на таj податак. Са друге стране, у случаjу
када се алгоритму за индукциjу пружи само тренинг скуп података без жељеног
одзива, реч jе о ненадгледаном учењу. У том случаjу, алгоритам за индукциjу мора
сам да откриjе структуру и обрасце у скупу улазних података, што само по себи
може бити и циљ решавања неког проблема. Улазни подаци коjи се користе за учење
се обично састоjе од скупа инстанци проблема коjи се решава системом машинског
учења и назива се тренинг скуп. Животни век система машинског учења обично
има две фазе: тренинг фазу (такође познату као индукциjу или обучавање) и фазу
коришћења. Конструкциjа система се врши у тренинг фази уз помоћ тренинг скупа,
док се у фази коришћења индуковани систем суочава са новим, до сада невиђеним
инстанцама и покушава да да што бољи одзив, користећи знање извучено из тренинг
скупа.

Стабла одлуке

Системи машинског учења могу решавати разне проблеме, као што су
класификациjа, регресиjа, кластерисање, итд. За решавање проблема
класификациjе, за коjи се често користе стабла одлуке, потребно jе распоредити
улазне инстанце проблема у неки дискретни скуп класа. Инстанце проблема се
наjчешће моделуjу вектором атрибута А, на основу коjих се врши класификациjа.
Процес класификациjе уз помоћ стабла одлуке се може представити диjаграмом коjи
има структуру стабла, као што се види на слици испод. Оваj диаграм представља
ток близак току људског размишљања, те га jе лако разумети, што чини стабла
одлуке популарним избором за решавања проблема класификациjе. Стабла одлуке
имаjу и броjне друге предности у односу на остале системе машинског учења,
између осталог: висок степен имуности на шум, могућност класификациjе инстанци
са редудантним или атрибутима коjи недостаjу, могућност класификовања инстанци
како са категоричким, тако и са нумеричким атрибутима итд.

Теоретски, стабла одлуке могу бити различитог степена, али се наjчешће користе
бинарна стабла, односно стабла у коjима сваки чвор има по два потомка. Слика
приказуjе процес класификациjе на бинарном стаблу одлуке. Стабло се састоjи од
4 чвора означених круговима нумерисаним од 1 до 4. Стабло такође има 5 листова
означених квадратима, при чему jе сваком листу додељена jедна од класа проблема
(C1 до C5 у овом примеру). Класификациjа се врши тако што се пусти да се инстанца
креће кроз стабло, почевши од корена (нумерисаног броjем 1), све док не стигне до
неког од листова. У зависности од листа у коме инстанца заврши своj пут кроз
стабло, њоj се придружуjе класа додељена том листу.

Сваком чвору стабла одлуке придружен jе по jедан тест (T1 до T4 у овом примеру),
коjи на основу атрибута инстанце одлучуjе кроз коjи потомак ће се наставити пут
кроз стабло. У случаjу бинарних стабала, од тестова се очекуjе бинарни одговор.
Коначна путања инстанце кроз стабло ће зависити од резултата тестова у сваком

ii
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1
T1(x)

2 3
T2(x) T3(x)

T F

4-C1 5-C2

T F

6 7-C3

T6(x)

T F

8-C4 9-C5

T F

Слика 1: Процес класификациjе на бинарном стаблу одлуке.

чвору стабла на коjи инстанца наиђе у току свог пута. Пуштаjући jедну по jедну
инстанцу тренинг скупа, може се добити његова потпуна класификациjа.

Сваки проблем чиjа се класификациjа решава помоћу стабала одлуке, дефинисан
jе скупом своjих инстанци. При дефинисању проблема, потребно jе изабрати коjи
атрибути ће чинити вектор атрибута (x) инстанци и jеднозначно представљати
инстанце проблема. Скуп свих могућих вектора атрибута представља NA -
димензионални простор атрибута, где jе NA броj атрибута коjима су инстанце
описане и уjедно и величина вектора x. У контексту простора атрибута, сваки тест
бинарног стабла одлуке дели оваj простор на два региона, чинећи да jе сваком чвору
и листу стабла асоциран jедан под-регион простора. Сваки чвор стабла на основу
свог теста дели себи асоцирани под-регион на два и додељуjе сваки од њих по jедном
свом потомку. Коначан резултат овог процеса jе jасна партициjа простора атрибута
на дисjунктне регионе асоциране класама проблема.

На основу карактеристика функциjа коjима су имплементирани тестови, стабла
одлуке се могу поделити на: ортогонална, неортогонална и нелинеарна. Своjе
називе, ови типови стабала одлука су добили на основу изгледа површи коjом њихови
тестови деле простор атрибута. Тако ортогонална стабла одлуке деле простор
ортогоналним хиперравнима, неортогонална - неортогоналним хиперравнима, а
нелинеарна - нелинеарних хиперповршима.

У овоj дисертациjи, фокус jе на неортогоналним стаблима одлуке jер се жељена
тачност на тренинг скупу са њима може постићи са драстично мање чворова у
односу на ортогонална стабла. За сличну тачност на тренинг скупу, неортогонална
стабла често имаjу бољу тачност на новим инстанцама проблема. Такође,
величина стабала одлуке jе значаjна у хардверскоj имплементациjи, jер захтева
мањи броj ресурса. Што се тиче нелинеарних стабала одлуке, она су знатно
сложениjа од неортогоналних, па и од ортогоналних, а немаjу већу тачност
класификациjе. Код неортогоналних стабала одлуке, тестови у чворовима
генеришу неортогоналне хиперравни коjима деле простор атрибута. Неортогонална
хиперраван jе jеднозначно одређена следећом jедначином:

w · x =

NA
︁

i=1

wi · xi < θ, (1)

iii
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где w представља вектор коефициjената теста а θ (такође званог праг, или енг.
threshold) моделуjе афини део теста.

Индукциjа стабала одлуке

Начелно, стабла одлуке се могу индуковати на два начина: инкрементално (чвор
по чвор) или глобално индукуjући цело стабло одjедном. Већина алгоритама за
индукциjу неортогоналних стабала одлуке користе неку врсту хеуристике у процесу
оптимизациjе индукованог стабла, коjа jе често неки тип еволутивног алгоритма
(ЕА), jер jе проналажење оптималног стабла одлуке NP-тежак алгоритамски
проблем.

Инкрементални приступ гради стабло одлуке почевши од корена и додаjући му
итеративно jедан по jедан чвор. Ово jе ҡgreedyә приступ, у коме се параметри теста
придруженог чвору, тj. вредности вектора коефициjената w и вредност прага θ,
оптимизуjу на основу информациjа о перформансама индукованог стабла, доступних
у моменту креирања тренутног чвора, тj. на основу ҡлокалнихә информациjа. Након
што jе чвор додат у стабло и алгоритам наставља да креира друге чворове, ситуациjа
се променила и доступне су нове информациjе, али оне неће бити искоришћене
за додатну оптимизациjу чворова коjи су већ додати у стабло, те се каже да jе
оптимизациони процес остао заробљен у локалном оптимуму. Алгоритам обично
оптимизуjе параметре теста у процесу максимизациjе неке циљне функциjе коjа мери
квалитет поделе инстанци из тренинг скупа коjе у процесу класификациjе успеваjу
да стигну до чвора коме jе придружен тест. Овом поделом се добиjаjу два подскупа
инстанци, од коjих се сваки прослеђуjе на обраду по jедном потомку чвора. За сваки
од ова два подскупа се даље проверава да ли се састоjе од инстанци коjе припадаjу
различитим класама или jе пак подскуп ҡчистә, у смислу да садржи инстанце само
jедне класе. У случаjу да jе подскуп чист, као потомак се додаjе лист и њему се
асоцира класа инстанци из подскупа. У супротном, процес индукциjе стабла се
наставља итеративно и као потомак се додаjе нови чвор у циљу даље деобе подскупа
инстанци на чисте подскупове. Предност инкременталног приступа jе брзина, али
индукована стабла су субоптимална по величини и касниjим класификационим
резултатима на новим инстанцама.

Други приступ за креирање стабала одлуке jе индукциjа целог стабла одjедном,
односно, неинкрементални приступ. Овде се у свакоj итерациjи алгоритма
манипулише целим стаблом, тако да су увек на располагању комплетне (глобалне)
информациjе о перформансама индукованог стабла одлуке. У процесу индукциjе,
према неком алгоритму, чворови се додаjу или бришу и параметри њихових
тестова се мењаjу у циљу оптимизациjе стабла. Пошто се оптимизациjа врши
на основу глобалних информациjа о перформансама, оваj поступак начелно
производи компактниjа, а често и тачниjа стабла одлуке у односу на инкременталне
алгоритме. Са друге стране, ови алгоритми имаjу већу временску комплексност од
инкременталних, што резултуjе у дужим временима потребним за индукциjу.

Као што jе речено, проналажење оптималног стабла одлуке jе NP тежак
проблем, али чак и ако се користи инкрементални приступ индукциjи, када jе
реч о неортогоналним стаблима одлуке, налажење оптималног положаjа jедне
неортогоналне хиперравни jе NP-тежак алгоритамски проблем. Из овог разлога,
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већина алгоритама за индукциjу неортогоналних стабала одлуке користе неку врсту
хеуристике у процесу оптимизациjе, коjа jе често нека врста еволутивног алгоритма
(ЕА). Слика приказуjе таксономиjу еволутивних алгоритама за индукциjу стабала
одлуке.

Evolutionary
 DT

Full DT Components

Classification Regression Hyperplanes Pruning Other

Axis-
 Parallel

Oblique
Regression

 DT
Model

 DT

Слика 2: Таксономиjа еволутивних алгоритама за индукциjу стабала одлуке.

У овоj дисертациjи, предлаже се нови алгоритам за индукциjу неортогоналних
стабала одлуке неинкременталном методом на бази ЕА - EFTI алгоритма. Оваj
алгоритам jе осмишљен имаjући у виду ембедед системе, где не постоjи обиље
ресурса, као што су мемориjа и процесорско време. Другим речима, EFTI
алгоритам jе осмишљен да може да се имплементира са што мање ресурса и на
таj начин омогући његова што лакша интеграциjа у ембедед системе. Због своjе
мање временске комплексности, инкрементални алгоритми тренутно доминираjу у
истраживачком пољу индукциjе стабала одлуке. Из овог разлога, при дизаjну EFTI
алгоритма вођено jе рачуна о томе да се омогући његова што лакша паралелна
имплементациjа и самим тим омогући развоj ефикасног хардверског акцелератора
коjи би драстично скратио време потребно за индукциjу, те учинио да оваj приступ
такође добиjе на атрактивности. Са друге стране, експериментално jе показано
да EFTI алгоритам производи компактниjа стабла одлуке од инкременталних
алгоритама, а без утицаjа на њихову тачност. Индукциjа компактниjих стабала jе
интересантна са два апекта: компактниjа стабла изискуjу мање хардверских ресурса
за чување и манипулациjу; компактниjа стабла су преферирана према принципу
Окамове оштрице, jер представљаjу jедноставниjи модел система.

Алгоритми за индукциjу стабала одлуке базирани на ЕА често користе популациjу
jединки, што ниjе згодно за хардверску акцелерациjу jер захтева значаjне хардверске
ресурсе. Из овог разлога jе EFTI алгоритам дизаjниран да користи само jедну
jединку за индукциjу. Аутору ниjе познат ни jедан постоjећи алгоритам из научне
литературе коjи испуњава оваj услов.
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Алгоритми за формирање стабaла у хардверу неинкременталном

методом

Фаза индукциjе, у случаjу да се користи неинкрементални алгоритам за формирање
стабла одлуке, може траjати сатима или чак данима за практичне проблеме. Ако би
се фаза индукциjе успела убрзати, могуће би било користити веће тренинг скупове,
што би било од посебног значаjа у апликациjама ҡвађења податакаә. Даље, бржи
тренинг стабала одлуке би омогућио краће дизаjн циклусе и отворио могућност
индукциjе стабала одлуке у реалном времену за примене коjе захтеваjу тако брзо
прилагођавање, као што су ҡweb miningә, биоинформатика, машински вид, ҡtext
miningә итд.

Проблему акцелерациjе фазе индукциjе се може приступити на два начина:

• Развоjем нових алгоритамских оквира или нових софтверских алата, при чему
jе оваj поступак доминантан у литератури.

• Развоjем нових хардверских архитектура, оптимизованих за убрзано
извршавање постоjећих алгоритама за индукциjу.

У овоj дисертациjи предложена jе хардверска архитектура, названа EFTIP, коjа се
може користити за акцелерациjу како EFTI алгоритма, тако и других алгоритама
за индукциjу стабала одлуке неинкременталном методом. На плану хардверске
акцелерациjе стабала одлука, већина научних радова се фокусира на убрзавање
већ индукованих стабала, док jе хардверска акцелерациjа индукциjе стабала одлуке
слабо присутна. Колико jе познато аутору, постоjе само два рада на тему хардверске
акцелерациjе алгоритама за индукциjу стабала одлуке, али оба користе ҡgreedyә,
ҡtop-downә, инкрементални приступ. Колико jе аутору познато, не постоjи ни jедан
рад на тему хардверске акцелерациjе алгоритама за неинкременталну индукциjу
стабала одлуке.

Алгоритми за формирање ансамбала

Да би се унапредиле перформансе класификатора, предложено jе коришћење
ансамбала система за класификациjу уместо jедног класификатора. Ансамбл
класификатора комбинуjе предикциjе неколико индивидуалних класификатора у
циљу добиjања бољих перформанси. Тренирање ансамбала захтева индукциjу
скупа поjединачних класификатора, углавном стабала одлуке или ANN-ова, чиjе
предикциjе се онда комбинуjу у фази коришћења ансамбла у процесу класификациjе
нових инстанци. Иако jедноставна, ова идеjа се показала као веома ефективна,
производећи системе коjи су прецизниjи од поjединачног класификатора.

Приликом индукциjе ансамбла класификатора, потребно jе решити два проблема:

• Како обезбедити разноврсност чланова ансамбла, тj. разноврсност њихових
предикциjа

• Коjу процедуру употребити за комбиновање поjединачних предикциjа сваког
класификатора, тако да се поjача утицаj добрих одлука а потисне утицаj
лоших.
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Међу наjпопуларниjим методама коjе обезбеђуjу разноврсност чланова ансамбла
су Браjманов ҡbaggingә алгоритам, Шапиров ҡboostingә алгоритам, AdaBoost,
Волпертов ҡstacked generalizationә алгоритам, пондерисано већинско гласање и
ҡbehavior knowledge spacesә.

Главна предност ансамбала класификатора у односу на поjединачне класификаторе
jе већа тачност предикциjа и већа робустност на шум. Са друге стране, у односу
на поjединачне класификаторе, потребне су велике количине мемориjе да би се
сместиле дефинициjе чланова ансамбла, а велика рачунарска моћ да би се израчунао
одговор ансамбла, што све води ка дужим и у погледу ресурса захтевниjим фазама
индукциjе. Ово jе стога што се ансамбли обично састоjе од 30 и више поjединачних
класификатора, те ако би желели исте перформансе класификациjе што се тиче
брзине као у случаjу поjединачних класификатора, било би потребно 30+ пута више
мемориjе и рачунарске моћи.

У овоj дисертациjи, предложен jе EEFTI алгоритам - нови еволутивни алгоритам
за индукциjу ансамбала неортогоналних стабала одлуке неинкременталном методом
коjи захтева само jедну jединку по члану ансамбла, на бази EFTI алгоритма. Исти
аргументи у вези погодности за хардверску акцелерациjу наведени у вези EFTI
алгоритма, важе и за алгоритам за индукциjу ансамбала EEFTI. Додатна мотивациjа
за развоj EEFTI алгоритма jе чињеница да ансамбли имаjу боље перформансе од
поjединачних класификатора, као што jе већ речено.

Алгоритми за формирање ансамбала у хардверу

Као што jе већ речено у претходноj секциjи, алгоритми за формирање ансамбала
имаjу драстично веће потребе за ресурсима у односу на алгоритме за индукциjу
поjединачних класификатора. Jош jедном, хардверска акцелерациjа ансамбала
класификатора пружа начин да се омогући да траjање индукциjе ансамбала
буде упоредиво са траjањем индукциjе поjединачног класификатора, те се у овоj
дисертациjи предлаже хардверска архитектура за акцелерациjу EEFTI алгоритма,
названа EEFTIP.

Што се тиче хардверске акцелерациjе ансамбала система за класификациjу, према
знању аутора, већина се предложених решења бави хардверском имплементациjом
ансамбала класификатора коjи су претходно формирани у софтверу. Аутору jе
познат само jедан рад у коме jе предложена архитектура за хардверску еволуциjу
хомогених ансамбала класификатора базираних на стаблима одлуке, али у овом раду
се чланови ансамбла индукуjу инкрементално ҡgreedyә алгоритмом.

EFTI

У овом одељку кратко jе описан еволутивни алгоритам за индукциjу неортогоналних
стабала одлуке неинкременталном методом - EFTI. Основна структура EFTI
алгоритма, коjу деле многи еволутивни алгоритми, дата jе псеудо-кодом испод.
Као улаз, EFTI алгоритам добиjа тренинг скуп инстанци (променљива train_set
у псеудо-коду) коjи у себи садржи информациjу коjоj класи припада коjа инстанца.
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Као резултат, EFTI алгоритам треба да формира што оптималниjе стабло одлуке по
питању тачности класификациjе и величине стабла.

Алгоритам 1: Структура EFTI алгоритма

def efti(train_set, max_iter):
dt = initialize(train_set)
fitness_eval(dt, train_set)

for iter in range(max_iter):
dt_mut = mutate(dt)
fitness_eval(dt_mut, train_set)

dt = select(dt, dt_mut)

return dt

На самом почетку индукциjе, генерише се стабло од jедног чвора и инициjализуjе
његов тест - променљива dt у псеудо-коду. Инициjализациjа теста се врши на
насумичан начин, али jе ипак вођена структуром тренинг сета у циљу поспешења
конвергенциjе еволутивног алгоритма. Приступа за насумичну инициjализациjу
теста коришћен у EFTI алгоритму jе базиран на насумично изабраном диполу. Као
што jе приказано на слици испод, поступак се састоjи из постављања хиперравни у
простору атрибута Hij(w, θ), нормално на дуж коjа спаjа две насумично изабране
инстанце x

i и x
j коjе припадаjу различитим класама (приказане црвеним звездама

и зеленим квадратима на слици), на раздаљини дефинисаноj насумично изабраним
параметром δ. Основна претпоставка jе да су инстанце у оквиру исте класе на неки
начин груписане у простору атрибута, те се овим поступком повећава шанса да
ће иако насумична инициjализациjа теста довести ипак до корисне деобе простора
атрибута између ове две класе.

Hij(w, θ) = w

︃

x1

x2

︃

− θ,

w = (xi
− x

j),

θ = δw · x
i + (1− δ)w · x

j

(2)

Након формирања инициjалног теста, функциjа ҥtness_eval() рачуна почетни
фитнес новонастале jединке. Функциjа за рачунање фитнеса узима у обзир
параметре jединке коjи су интересантни за оптимизациони процес, комбинуjе их
на основу тежина коjу сваки параметар носи (додељених од стране корисника у
виду конфигурациjе алгоритма) и враћа jединствен броj коjи представља фитнес
jединке. Параметри стабла од наjвећег интереса за фазу коришћења су свакако
његова тачност и величина, те су ова два параметра и коришћена у имплементациjи
EFTI алгоритма у овоj дисертациjи.

Остатак алгоритма покушава да итеративно унапреди фитнес jединке пролазећи у
свакоj итерациjи кроз следеће кораке:

• Мутациjа - функциjа mutate() на насумичан начин мења jединку у нади да
ће новонастала jединка (променљива dt_mut) напредовати у погледу фитнеса.
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x1

x2

xi xj

Hij(w, θ)

δ 1− δ

Слика 3: Инициjализациjа теста базирана на насумично изабраном диполу.
Hij(w, θ) jе хиперраван коjа одговара тесту, w jе вектор коефициjената, а θ

праг теста.

Могу се вршити две врсте мутациjа: мутациjа вектора коефициjената тестова
у чворовима или одузимање/додавање новог чвора у стабло.

• Евалуациjа фитнеса - функциjа ҥtness_eval() на већ поменут начин
прорачунава фитнес мутиране jединке

• Селекциjа - функциjа select(), у коjоj се проверава да ли jе остварен напредак
у погледу фитнеса, у чиjем случаjу се мутирана jединка прихвата за тренутно
наjбољу. У супротном, да би се омогућило еволутивном алгоритму да напусти
локалне оптимуме (и на таj начин има шансу да пронађе глобални оптимум)
ипак се даjе шанса, обично мала, jединки са нижим фитнесом да буде
прихваћена. Другим речима, неке jединке са нижим фитнесом ће насумично
бити прихваћене, а остале одбачене.

Након жељеног броjа итерациjа (улазни параметар max_iter), EFTI алгоритам се
завршава и враћа тренутно наjбољу jединку коjу jе пронашао.

Копроцесор за еволутивну индукциjу целих стабала одлуке - EFTIP

Временски далеко наjкомплексниjи део EFTI алгоритма jе рачунање фитнеса
jединке, зато што jе у ту сврху потребно извршити класификациjу целог тренинг
скупа. Да би се извршила класификациjа, потребно jе сваку инстанцу пропустити
кроз стабло, при чему jе потребно урадити онолико тестова колико jе и чворова
на путу кроз стабло. У наjгорем случаjу код лоше балансираног стабла, оваj броj
може бити jеднак укупном броjу чворова у стаблу. Сваки тест се даље састоjи
од прорачуна суме производа над свим атрибутима, те jе комплексност рачунања
фитнеса из тог разлога:

T (fitness_eval) = O(NI · n ·NA) (3)

, где jе NI броj инстанци у тренинг сету, NA броj атрибута и n броj чворова у стаблу.

ix
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Анализа временске комплексности алгоритма, као и профаjлирање на конкретним
примерима, показуjу да jе наjзахтевниjи део EFTI алгоритма управо прорачун
фитнеса. У том светлу, у циљу хардверске акцелерациjе EFTI алгоритма предложен
jе HW/SW кодизаjн приступ, у коjем jе наjзахтевниjи део функциjе за рачунање
фитнеса - рачунање тачности класификациjе - имплементиран као хардверски
копроцесор - EFTIP, а остатак EFTI алгоритма остављен у софтверу да се извршава
на централноj процесорскоj jединици (CPU од енг. Central Processing Unit). Додатна
предност овакве архитектуре jе у томе што се EFTIP копроцесор може користити
и за акцелерациjу разних других алгоритама за индукциjу стабала одлуке базиране
на ЕА, акцелерираjући класификациjу тренинг скупа и прорачун тачности стабла,
корак коjи jе увек присутан приликом рачунања фитнеса.

Класификациjа инстанце се врши тако што инстанца почевши од корена пролази
кроз стабло одлуке ниво по ниво наниже, где jе њен тачан пут одређен исходима
тестова у чворовима. За сваку инстанцу врши се само jедан тест по нивоу стабла.
Независно од исхода теста, инстанца увек бива прослеђена на jедан ниво испод
тренутног. Из ових разлога, алгоритам класификациjе уз помоћ стабла одлуке jе
згодан за проточну обраду са по jедном фазом проточне обраде за сваки ниво стабла.
На основу ове анализе предложена jе структура EFTIP копроцесора дата на слици
испод.
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Слика 4: Структура EFTIP копроцесора и његова интеграциjа са CPU.

EFTIP копроцесор jе предвиђен за повезивање са CPU-ом преко AXI4 AMBA
магистрале, коjа jе стандардна на ARM архитектурама. Копроцесор пружа следећи
интерфеjс према софтверу:

• Спуштање тренинг скупа на копроцесор

x
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• Спуштање описа стабла одлуке на копроцесор, како његове структуре, тако и
коефициjената свих тестова

• Контрола процеса прорачуна тачности

• Ишчитавање резултата

Главне компоненте EFTIP копроцесора, приказане су на слици изнад:

• Classiҥer (Класификатор) - Извршава класификациjу сваке инстанце тренинг
скупа на стаблу одлуке. Оваj процес jе имплементиран у виду проточне обраде
коришћењем одређеног броjа NTE модула (од енг. Node Test Evaluator), од
коjих сваки израчунава тестове за по jедан ниво стабла одлуке. Параметар DM

представља дубину проточне обраде и самим тим максималну дубину стабла
коjе се може индуковати. На свом излазу, за сваку инстанцу тренинг скупа,
Класификатор даjе броj класе у коjу jе инстанца класификована.

• Training Set Memory (Мемориjа за Тренинг Скуп) - Мемориjа у коjоj се чуваjу
све инстанце тренинг скупа и шаљу Класификатору на класификациjу.

• DT Memory Array (Низ DT Мемориjа) - Низ мемориjа у коме се складиште
описи стабла одлуке, састоjи се од модула L1 до LD . Свака фаза проточне
обраде у Класификатору захтева сопствену мемориjу у коjоj се чуваjу описи
свих чворова на нивоу стабла за коjи jе дата фаза задужена.

• Accuracy Calculator (Калкулатор Тачности) - На основу класификациjа коjе
Класификатор даjе на свом излазу, Калкулатор Тачности рачуна тачност
стабла одлуке на тренинг скупу.

• Control Unit (Контролна jединица) - Представља мост између спољашњег
AXI4 интерфеjса и унутрашњих протокола. Такође координира целокупним
процесом прорачуна тачности.

Еволутивни алгоритам за индукциjу ансамбала целих неортогоналних

стабала одлуке - EEFTI

EEFTI jе алгоритам, предложен у овоj дисертациjи, за индукциjу ансамбала стабала
одлуке, базиран на EFTI алгоритму. Да би EEFTI алгоритам могао да индукуjе
чланове ансамбла у паралели, згодно jе користити ҡBaggingә алгоритам за индукциjу
ансамбала. Оваj алгоритам предвиђа поделу тренинг скупа на по jедан подскуп
за сваког члана ансамбла коjи се индукуjе. Сваки од подскупова се онда користи
за индукциjу искључиво свог одговараjућег члана ансамбла. Начелно постоjе два
начина за формирање подскупова:

• насумично одабирање без понављања - формирани подскупови се не преклапаjу
и величине су NIS = NI

ne
, и

• насумично одабирање са понављањем - формирани подскупови су величине
NIS ≤ NI ,

, где jе NIS величина подскупова, NI величина тренинг скупа, а ne броj подскупова,
тj. чланова ансамбла.
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Сваки поjединачни члан ансамбла се даље индукуjе на основу додељеног подскупа
тренинг сета уз помоћ алгоритма сличног EFTI - jу. Псеудо-код EEFTI алгоритма
jе приказан испод. EEFTI прво дели тренинг скуп на подскупове уз помоћ функциjе
divide_train_set() и чува их у низу task_par, док променљива res чува низ коjи
окупља индуковане чланове ансамбла. Након тога, по jедан EFTI процес се креира
за сваког члана ансамбла, референце на њих се смештаjу у низ tasks и покреће се
њихов рад. Након што су сви EFTI процеси завршили са радом, EEFTI алгоритам jе
завршен и низ индукованих стабала се враћа као резултат. У оваквоj конфигурациjи,
EFTI процеси су потпуно независни и могу се извршавати у паралели без потребе
за међусобном комуникациjом.

Алгоритам 2: Структура EEFTI алгоритма

def eefti(train_set, ensemble_size):
train_par = divide_train_set(train_set, ensemble_size)

res = []
tasks = []
for i in range(ensemble_size):

r = {}
t = create_task(efti, train_par[i], r)
res.append(r)
tasks.append(t)

while(not all_finished(tasks)):
pass

return res

Копроцесор за еволутивну индукциjу ансамбала целих стабала одлуке -

EEFTIP

Пошто jе временски наjзахтевниjи део EFTI алгоритма прорачун тачности стабала
одлуке, оваj задатак односи наjвише времена и код EEFTI алгоритма. Из овог
разлога, предложен jе EEFTIP копроцесор коjи се састоjи од низа EFTIP модула
да би омогућио индукциjу чланова ансамбла у паралели. Предложена архитектура
EEFTIP копроцесора и његова веза са CPU-ом приказана jе на слици испод.

Pošto je vremenski najzahtveniji deo EFTI algoritma proračun tačnosti stabala odluke,
ovaj zadatak odnosi najvǐse vremena i kod EEFTI algoritma. Iz ovog razloga, predložen
je EEFTIP koprocesor koji se sastoji od niza EFTIP modula da bi omogućio indukciju
članova ansambla u paraleli. Predložena arhitektura EEFTIP koprocesora i njegova veza
sa CPU-om prikazana je na slici ispod.

EEFTIP копроцесор се повезуjе са CPU-ом такође преко AXI4 AMBA магистрале,
и пружа интерфеjс ка сваком од поjединачних EFTIP модула, од EFTIP1 до
EFTIPSM , где jе сваки од њих предвиђен да рачуна тачност за по jедног члана
ансамбла. Параметар Sm представља укупан броj EFTIP модула у EEFTIP
копроцесору и самим тим максимални броj чланова ансамбла коjе копроцесор може

xii
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Слика 5: Структура EEFTIP копроцесора и његова интеграциjа са CPU-om.

да индукуjе у паралели. Такође, EEFTIP поседуjе IRQ Status (од енг. ҡInterrupt
ReQuest Statusә) модул, коjи окупља статусне сигнале свих EFTIP компоненти,
омогућава кориснику да их ишчита све заjедно и генерише комбиновани сигнал
прекида сваки пут када неки од EFTIP модула заврши прорачун тачности.

Што се тиче софтверске стране, EFTI процеси се могу извршавати у паралели, тако
што се сваком од њих ексклузивно додели по jедан EFTIP модул на коришћење.
Сваки од EFTI процеса након мутациjе своjе jединке, исту шаље додељеном EFTIP
модулу на прорачун тачности. EFTI процес тада враћа програмску контролу
оперативном систему, чекаjући на прекидни сигнал од стране EEFTIP копроцесора
да jе прорачун тачности за његову jединку завршен и да резултати могу бити
ишчитани. У међувремену, процесорско време се додељуjе другим EFTI процесима,
коjи га користе на идентичан начин.

xiii
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1 Abstract

In this dissertation, new algorithms for the full decision tree (DT) induction are presented, and

various possibilities for their implementation are explored. First, the description is given for the

novel EFTI (Evolutionary Full Tree Induction) algorithm, which was designed in such a way

that its implementations can utilize as little hardware resources as possible for the DT induction,

as well as to induce as small decision trees as possible, without sacrificing the classification

accuracy. This enables the EFTI algorithm to be utilized in embedded applications, where

the optimal resource utilization is of paramount importance. The implementation of the EFTI

algorithm for the PC platform is then compared with the PC implementations of the several

other existing DT induction algorithms in terms of size and accuracy of the induced DTs

and the DT inference times. The experiments show that the proposed EFTI algorithm is

able to infer much smaller DTs on average, without the significant loss in accuracy, when

compared to the top-down incremental DT inducers. On the other hand, when compared to

other full tree induction algorithms, it was able to produce more accurate DTs, with similar

sizes, in shorter times. Next, the possibility of the hardware acceleration of the EFTI algorithm

is explored and the results of the algorithm profiling are discussed. Based on the profiling

results, the hardware co-processor EFTIP (Evolutionary Full Tree Induction co-Processor) is

proposed and its architecture is described. Then, the hardware-software (HW/SW) co-design

implementation of the EFTI algorithm is given, relying on the EFTIP co-processor to perform

the most computationally intensive part of the evolutionary DT induction, namely the DT

accuracy evaluation. Finally, the benefits of using the EFTIP co-processor, in terms of the

DT induction speed, are discussed in the experimental section, where several EFTI algorithm

implementations have been compared on the execution times. Next, the algorithm for the

induction of the DT ensembles, named EEFTI (Ensembles Evolutionary Full Tree Induction)

is described. First, the benefits of building an ensemble of DTs is discussed using the results of

experiments comparing the accuracy of the DT ensembles with the accuracy of the single DTs.

Again, the hardware-software (HW/SW) co-design implementation of the EEFTI algorithm is

described and the results of the experiments comparing the execution speeds of the different

EEFTI algorithm implementations are given.
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2 Introduction

The research on decision trees is a part of a brother field called machine learning, which in turn

is a branch of the artificial intelligence. The machine learning techniques are useful for solving

problems when:

• There exists a lot of input data on the problem, but no algorithm (or no efficient one) to

produce the output based on the input data is known.

• Either the problem changes with time, or some of its characteristics are not known at the

design time, hence an adaptable solution is needed, when the new circumstances arise.

Because of the ever increasing penetration of the machine learning systems into the embedded

world, and its even greater potential for in the future, the presented induction algorithms have

been tailored for implementation in the embedded systems, in that they use less resources for

the operation than the existing solutions. One way of reducing the resource consumption is

to induce and thus operate on smaller decision trees. Furthermore, the smaller decision trees

also represent a more succinct solution to the problem, which is always preferred in science

(Occam’s razor [1]). Hence, the main motivation for this dissertation was to develop the

decision tree induction algorithms that:

1. induce smaller DTs than the existing solutions without the loss of accuracy,

2. can be efficiently used in embedded applications, and

3. are easily parallelizable and hence can be efficiently accelerated in hardware

For big datasets, which are common in practice, the presented decision tree induction

algorithms are very time consuming. Hence, the hardware accelerators for EFTI and EEFTI

algorithms are also proposed, namely EFTIP and EEFTIP co-processors, that significantly

reduce their times of execution. Furthermore, the implementations of the proposed induction

algorithms that utilize these hardware accelerators are also described.

2.1 Machine learning

Our ever-improving capabilities in collecting the data from the world and constant increase in

processing power available to us, have significantly changed our approaches to problem solving

in recent decades. Science has also taken advantage of the computers’ ability to store massive

amounts of data. Ever since it became possible to sequence proteins and the DNA molecule

some time after that, immense datasets started emerging from the scientific research in the field

of biology, which was followed shortly by other sciences as well. Ever-increasing number and

power of telescopes used in astronomy produce larger and larger pools of raw data, with Hubble

for an example generating about 140 Gb of raw data each week. Equally, medical science large

datasets arise from storing the outcomes of medical tests. The Human Connectome Project

aims at mapping the human connectome of a large number of adults and has generated around

2 terabytes of data at the time of writing, and CERN data center processes about 1 petabyte of

data each day.

The size and complexity of these datasets mean that humans are unable to extract useful

information therefrom, without the help of sophisticated and efficient algorithms. However,
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there is a scientific field, called the machine learning, that studies the systems that can make

use of the abundance of the available data and computational power to solve problems. The

machine learning [2][3] is a branch of artificial intelligence that studies algorithms and systems

that improve their performance with experience, i.e. that can “learn” from the data. In other

words, machine learning is about making computers modify or adapt their actions (whether

these actions are making predictions, or controlling a robot) so that these actions get more

accurate, where accuracy is measured by how well the chosen actions reflect the desired ones.

Of particular interest are, of course, the problems that haven’t been satisfactorily solved using

other methods.

For an example, one of the challenges to whose solution the machine learning contributed

greatly is the problem of self-driving vehicles. There are many aspects of automated driving

which are best solved by some type of machine learning system. First of all, the vehicle must

be made aware of its surroundings in three dimensions, usually by having multiple cameras that

continuously provide the vehicle with images of the space around it. The final goal of this task

is to recognize the objects of interest for driving: road lines to follow, pedestrians and other

obstacles to avoid, road signs to acknowledge, etc. The object recognition is usually performed

in two steps [4][5]:

• clustering of the image pixels that probably belong to the same object into so called

regions of interest (ROI) (also called image segmentation), and

• classification of ROIs into classes of known objects

Second of all, based on the surroundings and the driving directions given by the vehicle user,

the vehicle needs to devise and maintain a driving strategy, i.e. to determine control signals

to vehicle actuators (the steering wheel, gas and break pedals, etc.) in order to, among others,

maximize the driving speed within the current speed limit, minimize the risk of collision, etc.

These three tasks: the pixel clustering, the ROI classification and driving strategy development

are usually solved using machine learning systems that are all induced (built) using different

learning strategies, which will be discussed below.

The Figure 2.1 shows an overview of how machine learning is used to address a given task as

described in [2]. A task has a goal of solving a certain problem of interest regarding the objects

of the problem domain, which are in turn defined in terms of its attributes (also called features).

The choice of attributes defines a ‘language’ in which all the objects in the problem domain

get their relevant aspects described. Once a suitable attribute representation is selected, the

machine learning system will not be concerned with the domain objects themselves, but only

operate on their attribute representations. Domain objects are usually represented in the form

of an attribute vector, also called an instance (since it acts as a problem instance for the machine

learning system), which lists the values of all object attributes. Hence, the goal is to obtain an

appropriate mapping for a task, called a model, from attributes to the desired outputs, which

in turn correspond to the outputs of the problem that is being solved by the machine learning

system. Obtaining such a model from training data is what constitutes a learning problem.

Machine learning systems can be constructed using supervised learning, unsupervised learning

or any combination of the two techniques [2][3]. Supervised learning implies providing the

desired responses to the instances of the training set to construct the system, while unsupervised

learning implies constructing the system based on the instances only. When the supervised

learning is used, the lifetime of a machine learning system usually comprises two distinct

phases:
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Figure 2.1: An overview of how machine learning is used to solve problems in a certain

domain, by constructing the model via process of learning on the training set.

• the training phase (induction or learning), during which the learning problem is solved

and the model is developed, and

• the deployment phase, during which the model is used to process new data

For an example, the classification of ROIs for self-driving vehicles is usually performed by the

machine learning systems, induced by the method of supervised learning. During the training

phase, a training set is used to build the system, which comprises input data instances and the

desired system responses to them. Once constructed, the system is ready to be used, where

new, previously unseen data, will arrive and the system must provide the responses using the

knowledge extracted from the training set.

When using unsupervised learning, the correct responses to the input data are not provided,

instead the algorithm tries to identify similarities between the inputs, so that instances that have

something in common solicit similar outputs. The statistical approach to unsupervised learning

is known as density estimation. The clustering of image pixels to obtain ROIs for self-driving

vehicles is an example of machine learning system that uses unsupervised learning. The system

is never trained with the examples on how to map pixel groups to ROIs (since there are too many

possible correct mappings), but has to apprehend it on its own, based on the attributes the pixels

in a group share.

Reinforcement learning is somewhere between supervised and unsupervised learning. The

learning algorithm gets told when the answer is wrong, but without the advice on how to

correct it. It has to explore and try out different possibilities until it discovers how to get

the answer right. Reinforcement learning is sometime called learning with a critic, because of

the monitor that scores the answer, but does not suggest improvements. Developing the right

driving strategies for self-driving vehicles is usually performed by the machine learning system

that was trained using the reinforcement learning procedure. To provide for learning purposes

the right combination of the positions of the steering wheel, acceleration and breaking pedals,

etc. in each time instant, with dynamic circumstances, would be an impossible task to perform.

Hence, in order to develop correct driving strategies, the machine learning system can be let to

drive the vehicle and be given positive or negative feedback during the process based on some

general parameters, for an example: the driving speed or the distance it holds from the objects
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around.

One of the main features of machine learning systems is the power of generalization, allowing

them to perform well on new, unseen data instances, after having experienced a learning

procedure. It is of special interest to maintain the power of generalization of the system being

trained by the supervised learning method. A machine learning problem may have multiple

solutions, i.e. multiple models can perform equally well on the training set. If care is not

taken, it is possible for the induced machine learning system to perform excellently on the

training set, but fail when used on new data. This phenomenon is called overfitting, in that

the induced model learned too many features of the training set that are not shared by other

problem instances, i.e. the model was made to overly fit the training set. Good performance

on the training data is only a means to an end, not a goal in itself, since it is the performance

on the new data that should be maximized. By maximizing the induced model’s power of the

generalization, it is in the same time made to better deal with noise, which represents small

inaccuracies in the data that are inherent in measuring any real world process. The model must

not take the instance attribute values too literally, but should expect that each of them has some

noise superimposed.

The machine learning systems can perform various tasks, such as classification, regression,

clustering, etc. The classification implies categorizing problem instances in some number

of discrete classes. Sometimes it is more natural to abandon the notion of discrete classes

altogether and instead predict a real number, i.e. perform the task which is called regression.

The task of grouping data without prior information on the groups is called clustering, which

usually uses models induced by the method of unsupervised learning. A typical clustering

algorithm works by assessing the similarity between instances (the things we’re trying to

cluster, e.g., connected pixels) and putting similar instances in the same cluster and ‘dissimilar’

instances in different clusters. There are many other patterns that can be learned from the data

in an unsupervised way. Association rules are a kind of pattern that are popular in marketing

applications, and the result of such learned patterns can often be found on online shopping web

sites.

In the open literature, a range of machine learning systems have been introduced, including

decision trees (DTs) [6][7], support vector machines (SVMs) [8] and artificial neural networks

(ANNs) [9].

2.2 Decision Trees

Widely used machine learning model for classification tasks is a DT classifier. The

classification process by the DT can be depicted in a flowchart-like tree structure given in

the Figure 2.2. Due to their comprehensible nature, which resembles the process of human

reasoning, DTs have been widely used to represent classification models. Among other

machine learning algorithms DTs have several advantages, such as the robustness to noise,

the ability to deal with redundant or missing attributes, the ability to handle both numerical and

categorical data and the facility of understanding the computation process.

In theory, DTs can have an arbitrary branching factor (n-ary DTs), but the binary DTs (with

the branching factor of 2), i.e. the DTs with only two children per node, are used most often

for being easiest to implement and manipulate. Furthermore, a tree with an arbitrary branching

factor can always be represented by a functionally equivalent binary DT [10]. The Figure 2.2
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Figure 2.2: The classification process by the binary DT.

shows the process of classification by a binary DT. The DT in the figure consists of 4 nodes

represented by circles numbered 1, 2, 3 and 6. The DT also has 5 leaves represented by squares

numbered 4, 5, 7, 8 and 9, where each of the leaves has a class assigned to it (C1 through C5

in this example). The classification is performed by letting instances traverse the tree, starting

from the root (enumerated as 1), until they reache one of the leaves. The instance is then

classified into the class assigned to the leaf in which it finished the traversal.

Each of the DT nodes is assigned a test: T1, T2, T3 and T6 in this example. In each node the

instance visits during its traversal through the DT, the node test is used to determine through

which of the node’s children will the traversal continue, based on the instance’s attribute values.

In case of a binary DT, the node test decision is likewise binary. If the test evaluates to True

(T), the DT traversal is continued via the left child, otherwise if it evaluates to False (F), it is

continued via the right child. The final path of the instance through the DT depends on the test

results in all the nodes the instance encounters during the traversal.

Each machine learning problem needs to have a domain defined, which is in turn given as the

set of all domain objects. First, the set of attributes is chosen to uniquely represent the domain

objects in form of the attribute vector - x. Also, the domain of each attribute needs to be

defined, where there are usually two choices:

• the domain can be a finite set of unordered values, in which case the attribute is called

categorical, or

• the domain can be a subset of the set of the real numbers, in which case the attribute is

called numerical.

The set of all possible attribute vectors forms the NA - dimensional attribute space, where NA is

the number of attributes that are used to describe the domain object, i.e. the size of the attribute

vector x. In the context of the attribute space, each binary DT node test splits the space into

two regions, one containing all the instances for which the test produced the result True and

the other containing the rest of the instances, for which the test evaluated to False. Each

DT node can be thus assigned a sub-region of the attribute space, that in turn contains all the

instances that pass through that node during their traversal of the DT. Hence, each node splits

the region assigned to it by into two sub-regions and assigns each of them to one of its children.

This process of attribute space partitioning starts from the DT root, which is assigned whole

attribute space (every instance needs to visit the root node), and continues downwards to the DT
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leaves. The final result of this process is a clear partition of the attribute space into a number

of disjoint regions, each associated with one leaf node. Each of these regions in the partition

can thus be assigned the associated leaf’s class, meaning that all the instances contained in the

region will be classified into that class.

Based on the characteristics of the functions implementing the node tests, the DTs can be

categorized into: orthogonal (also univariate), oblique (also multivariate) and nonlinear. The

names of the categories were derived from the shape of the hypersurface defined by their tests.

Hence, the orthogonal DTs divide the attribute space using the hyperplanes orthogonal to some

attribute axis, the oblique DTs using oblique hyperplanes, and nonlinear DTs using nonlinear

hyperplanes.

This thesis focuses on the oblique binary classification DTs. The tests performed by an oblique

DT in each node are afine and have the following form:

w · x =

NA︁

i=1

wi · xi < θ, (1)

where w represents the coefficient vector and θ (called the threshold) models the afine part of

the test.

Next, an example describing the classification process by oblique DTs will be given. The

Figure 2.3 shows a dataset named, yinyang that will be used for this example, plotted in its

attribute space. The dataset instances are conveniently described using only two attributes x1

and x2, so that they can be represented in 2-D attribute space. The dataset comprises instances

belonging to one of the two classes: C1 and C2. Each instance is represented in the figure by

either a red star (if it belongs to the class C1) or a blue square (if it belongs to the class C2),

with its position defined by the values of its attributes.

An example of the oblique binary DT that can be used to accurately classify the instances of the

yinyang dataset, is shown in the Figure 2.4. Since this is an oblique DT, each of its node tests

follows a form defined by the equation (1). Each DT leaf has one of two classes of the yinyang

dataset assigned to it. The classification is performed by letting each instance of the yinyang

dataset traverse the DT, starting from the root node, in order to be assigned a class. During

the traversal, tests are evaluated at each of the DT nodes along the instance path. Based on the

results of the node test conditions (True or False), the DT traversal is continued accordingly

until a leaf is reached, when the instance is classified into the class assigned to that leaf. One

possible traversal path is shown in the Figure 2.4, where the instance got classified into the

class C1 after the traversal.

As it was already discussed, a different way of looking at the classification process by the DT is

by examining what happens in the attribute space. The structure of the attribute space regions

is defined by the DT node tests, resulting in one region assigned to each node and each leaf of

the DT as shown in the Figure 2.5. The dashed lines in the figure represent the 1-D hyperplanes

(lines in this case) generated by the node tests that partition the attribute space. The regions

of the final partition are the ones assigned to the DT leaves, and each of them is marked with

the ID of its corresponding leaf and the class assigned to that leaf. The regions assigned to the

non-leaf nodes can be easily obtained from the figure plot and the DT structure from the Figure

2.4, by noticing that the node’s region equals the union of its children regions. Working from

the bottom up recursively, regions for all DT nodes can be obtained by combining the regions

assigned to their descendents.
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Figure 2.3: The yinyang dataset used for the demonstration of the classification process

by oblique DTs. Instances of the dataset are described using two attributes x1 and x2,

and can belong to one of the two classes C1, represented by the red star symbols, and

C2, represented by the blue square symbols.

1
w1 · x < θ1

2 3
w2 · x < θ2 w3 · x < θ3

T F

4-C1 5
w5 · x < θ5

T F

6-C2 7
w7 · x < θ7

T F

8-C1 9-C2

T F

10-C1 11-C2

T F

Figure 2.4: Oblique binary DT that could be used to classify the instances of the yinyang

dataset ploted in the Figure 2.3. The red curvy line shows the traversal path for one

possible instance. This example traversal path can be visually presented via series of

dataset attribute space regions, as ploted in the Figure 2.6.

17



Hardware Acceleration of Nonincremental Algorithms for the Induction of Decision Trees and Decision Tree Ensembles 18

4-C1

8-C1

9-C2 10-C1
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w1 · x− θ1 =0

w2 · x− θ2 =0

w3 · x− θ3 =0

w5 · x− θ5 =0

w7 · x− θ7 =0

Figure 2.5: The attribute space partition of the yinyang dataset from the Figure 2.3

generated by the DT from the Figure 2.4. The dashed lines on the figure represent

the hyperplanes generated by the node’s tests that partition the attribute space into the

regions, each corresponding to a leaf of the DT. Each of the attribute space regions is

marked with the ID of its corresponding leaf and the class assigned to the leaf.
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(a) Region of the attribute space assigned to the

node 2 of the DT from the Figure 2.4.
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(b) Region of the attribute space assigned to the

node 5 of the DT from the Figure 2.4.
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(c) Region of the attribute space assigned to the

node 8 of the DT from the Figure 2.4.

Figure 2.6: The figure shows the attribute space regions assigned to the nodes and leafs

an example instance visits during its traversal along the line shown in the Figure 2.4.
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In order to find out in which region the instance resides, and thus to which class it belongs,

we need to let the instance traverse the DT. The Figure 2.6 shows this process for the example

traversal path shown in the Figure 2.4. At the begining of the classification, when the instance

starts at the root, all the regions are valid candidates. After the root node test is evaluated, the

location of the instance can be narrowed down to the regions either to the left or to the right of

the hyperplane w1 · x− θ = 0, generated by the root node test. For this example instance, the

root node test evaluated to True, the instance continues to the node 2, and the location of the

instance is narrowed down to the region assigned to the node 2 and shown in the Figure 2.6a.

Then, the test of the node 2 is evaluated for the instance, and it turns out to be False, hence

the instance continues to the node 5 and the number of possible regions is reduced again to the

ones marked in the Figure 2.6b, i.e. to the part of the attribute space assigned to the node 5.

Finally, the node 5 test is evaluated to True, the instance hits the leaf node 8 and it is finally

located in the region marked in the Figure 2.6c and assigned the C1 class.

2.3 Decision tree induction

In the field of machine learning, as is with most other scientific disciplines, simpler models

are preferred over the more complex ones as stated in the principle of Occam’s razor [1].

The same principle, but in terms of the information theory, was proposed in [11] under the

name Minimum Description Length (MDL). In essence, it says that the shortest description

of something, i.e. the most compressed one, is the best description. The preference for

simplicity in the scientific method is based on the falsifiability criterion. For each accepted

model of a phenomenon, there is an extremely large number of possible alternatives with an

increasing level of complexity, because aspects in which the model fails to correctly describe

the phenomenon can always be masked with ad hoc hypotheses to prevent the model from

being falsified. Therefore, simpler theories are preferable to more complex ones because they

are more testable. Hence, there is an obvious benefit for having the algorithm that induces

smaller DTs, since smaller DT corresponds to a simpler description of a phenomenon being

modeled by it.

Second, with growth and advancements in the field of electronics, wireless communications,

networking, cognitive and affective computing and robotics, embedded devices have penetrated

deeper into our daily lives. In order for them to seamlessly integrate with our dynamic daily

routine, for execution of any non-trivial task, they need to employ some sort of machine

learning procedure. Hence, the EFTI algorithm, proposed in this thesis, was designed with

its implementation for the embedded systems in mind. In other words, the EFTI algorithm was

designed to require as little hardware resources for implementation as possible in order for it

to be easily integrated into an embedded system. Furthermore, it is shown in this thesis that it

induces smaller DTs, without the loss of accuracy, then the other existing induction algorithms,

which then require less resources to be operated on and are thus more suitable for the embedded

applications.

The DT induction phase can be very computationally demanding and can last for hours or even

days for practical problems, especially when run on the less powerful, embedded processors.

By accelerating the EFTI algorithm in hardware, the machine learning systems could be trained

faster, allowing for shorter design cycles, or could process larger amounts of data, which is

of particular interest if the DTs are used in the data mining applications [12]. This might

also allow the DT learning systems to be rebuilt in real-time, for the applications that require
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such rapid adaptation, such as: machine vision [13][14][15][16], bioinformatics [17][18],

web mining [19][20], text mining [21][22], etc. Hence, the EFTI algorithm was designed

to be parallel in nature and thus be easily accelerated by an application specific co-processor.

Furthermore, some of the world leading semiconductor chip makers offer the solutions which

consist of a CPU integrated with an FPGA, like Xilinx with its Zynq series and Intel with its new

generation Xeon chips. The hardware accelerated implementation of the EFTI algorithm can be

readily implemented on these devices, with the hardware for the EFTI algorithm acceleration

built for the integrated FPGA.

2.3.1 General approaches to DT induction

Finding the smallest DT consistent with the training set is an NP-hard problem [23], hence,

in general it is solved using some kind of heuristic. The DT is said to be consistent with the

training set if and only if it classifies all the training set instances in the same way as defined in

the training set. There are two general approaches to DT induction using supervised learning:

incremental (node-by-node, also known as Top-Down Induction of Decision Trees, or TDIDT)

and nonincremental (or full tree) induction.

The incremental approach uses greedy top-down recursive partitioning strategy of the training

set for the tree growth. The algorithm starts with an empty DT and continues by forming

the root node test and adding it to the DT. In the attribute space, the root node test splits the

training set in two partitions, one that will be used to form the root’s left child subtree, and

the other the right child subtree. In other words, the root node is assigned the whole training

set, which is partitioned in two by the root node test and each partition is assigned to one of

the root’s two children. The node test coefficients are optimized in the process of maximizing

some cost function measuring the quality of the split. Iteratively, the nodes are added to the DT,

whose tests further divide the training set partitions assigned to them. If the node is assigned

a partition of the training set where all instances belong to the same class (the partition is

clean), no further division is needed and the node becomes a leaf with that class assigned to

it. Otherwise, the process of partitioning is continued until only clean partitions remain. In

this stage, the induced DT is considered overfitted, i.e it performs flawlessly on the training

set, but badly on the instances outside the training set. The common approach for increasing

the performance of the overfitted DT on new instances is prunning, which strips some subtrees

from the DT according to some algorithm.

The incremental approach is considered greedy in the sense that the node test coefficients

(coefficient vector w and threshold value θ) are optimized by examining only the part of

the training set assigned to the current node, i.e. based on the “local” information. The

information on how the training set partitions are handled in other subtrees of the DT (subtrees

not containing the node currently being inserted into the DT) are not used to help optimize the

test coefficients. Furthermore, by the time the node has been added to the DT and the algorithm

continued creating other nodes, the situation has changed and the new information is available,

but it will not be used to further optimize the test of the node already added to the DT. This

means that only some local optimum of the induced DT can be achieved.

Incremental algorithms use a simpler heuristic and are computationally less demanding than

the full DT inducers. However, the algorithms that optimize the DT as a whole, using complete

information during the optimization process, generally lead to more compact and possibly more

accurate DTs when compared with incremental approaches. Furthermore, the DTs can be
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induced both using only axis-parallel node tests or using oblique node tests. The advantage

of using only axis-parallel tests is in reduced complexity, as the task of finding the optimal

axis-parallel split of the training set is polynomial in terms of NA and NI . More precisely,

the optimization process needs to explore only NA · NI distinct possible axis-parallel splits

[23]. On the other hand, in order to find the optimal oblique split, total of 2NA ·
︀

NI

NA

︀

possible

hyperplanes need to be considered [23], making it an NP-hard problem. On the other hand,

the DTs induced with oblique tests often have much smaller number of nodes than the ones

with axis-parallel tests. Hence, in order to fulfill its goal of inducing smaller DTs than existing

solutions, the EFTI algorithm needs to implement oblique DT induction.

Various algorithms for incremental DT induction have been proposed in the open literature.

The ID3 algorithm proposed in [24] was designed to operate mainly on categorical attributes.

In the DT created by the ID3 algorithm, each node test operates on a single attribute only. The

number of outcomes the test can produce equals the number of different values the attribute

can take, and the attribute space will be split into the same number of regions by the test. In

order to choose which attribute should be used for the test in a node, the information gain (IG),

given by the equation (2), is calculated for all possible attributes. The information gain is a

difference between the information entropy of the attribute space region assigned to the node,

and the combined entropies of the regions produced by the node test split.

IG(Ai, S) = H(S)−
︁

t∈T

p(t)H(t), (2)

where H(S) is information entropy of the region assigned to the node, T is the partition in

subregions generated by the node test based on the attribute Ai, p(t) is the proportion of the

number of elements in subregion t to the number of elements in the region assigned to the

node S and H(t) is the information entropy of the subregion t. The attribute whose test

would produce the largest IG is selected to form the node test. As an improvement to ID3,

the C4.5 algorithm was published in [25]. C4.5 introduced the possibility to handle continuous

attributes, to handle instances whose attributes are missing and introduced the prunning step

after the DT has been created.

The Classification and Regression Tree (CART) algorithm was introduced in [26], that unlike

ID3 induces binary DTs. Similar to ID3, only the value of a single attribute is tested in each

node test, hence CART produces axis-parallel binary splits. When searching for the best test

for a node, CART evaluates every possible way in which attribute domain could be split in

two, hence the attribute domains need to be discrete and finite. Various measures could be

used for selecting the best split: Gini index, Twoing, information entropy, etc., which can

all be plugged in to the equation (2) instead of the information entropy H to get a numerical

estimate for the efficiency of the split. An extension to CART that generates oblique tests has

also been proposed in [26] by the name CART with linear combinations or CART-LC. The

OC1 algorithm was proposed in [23], which improves upon the CART-LC algorithm. While

considering the best split for a DT node, OC1 first searches for the best axis-parallel test for

the node. OC1 then tries to produce an oblique test that will outperform it, and if that fails,

the algorithm defaults to the axis-parallel test. Furthermore, unlike CART-LC that is fully

deterministic, OC1 incorporates the ideas from simulated annealing algorithm, which address

the issue of escaping local optima and enable OC1 to produce different DTs from a single

training set. Various extensions to OC1 algorithm based on evolutionary algorithms were

introduced in [27], namely: OC1-ES (OC1 extension using evolution strategies), OC1-GA

(OC1 extension using genetic algorithms) and OC1-SA (OC1 extension using simulated
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annealing). These extensions were specifically employed in the process of searching for the

best oblique split. The authors of so called C4.45 and C4.55 algorithms claim in [28] to have

acheived performance superior to C4.5 algorithm with respect to both accuracy and size, by

using various optimizational techniques to improve upon original C4.5 algorithm.

The Univariate Margin Tree (UMT) algorithm given in [29], borrows the ideas from linear

SVMs for the way it tries to find the optimal split for a node. Fisher’s decision tree algorithm

for incremental oblique DT induction, proposed in [30], implements yet a different strategy

for obtaining the split using Fisher’s linear discriminant, and reported obtaining smaller DTs,

with shorter induction time without the loss in accuracy when compared to C4.5. A bottom-up

induction approach was explored in [31], resulting in the Bottom-Up Oblique Decision-Tree

Induction Framework (BUTIF). This algorithm operates by clustering the instances based on

their classes and position in the attribute space, and asssigning those clusters to the leaf nodes

prior to creating the trunk of the DT. Starting from the formed leaves, the BUTIF algorithm

generates the DT by merging the existing subtrees until finally the root is formed. In [32],

authors employed the HereBoy evolutionary algorithm to optimize the positions of the node

test hyperplanes.

The alternative to the incremental DT induction is the full DT induction. In this approach a

complete DT is manipulated during the inference process. Acording to some algorithm, the

tree nodes are added or removed, and their associated tests are modified. Considerable number

of full DT inference algorithms has been also proposed. A genetic algorithm operating on full

DTs as individuals, called GaTree, was introduced in [33]. Another algorithm based on genetic

algorithms, called GALE and proposed in [34], attempted to extract additional parallelism from

the induction process by employing ideas from the field of cellular automata and the Pittsburgh

approach [35]. In [36], genetic programming was employed to create a nested structure of

IF-THEN-ELSE statements that is homologous to a DT. Finally, the ant colony optimization

technique was used for the algorithms introduced in [37][38].

2.3.2 Evolutionary oblique full DT induction

Since the process of finding the optimal oblique DT is a hard algorithmic problem, most of

the oblique DT induction algorithms use some kind of heuristic for the optimization process,

which is often some sort of evolutionary algorithm (EA). The Figure 2.7 shows the taxonomy

of EAs for the DT induction as presented in [39].

The evolutionary algorithms for inducing DTs by global optimization (the full DT induction)

are usually some kinds of Genetic Algorithms [33][34][40], which in turn operate on

a population of candidate solutions. The typical populations used by these algorithms

contain tens or even hundreds of individuals. In order to save on needed resources for the

implementation, the EFTI algorithm operates only on a single candidate solution and single

result of its mutation, which classifies it in the class of (1+1)-ES (Evolutionary Strategy).

Hence, the proposed algorithm requires one or even two orders of magnitude less hardware

resources for the implementation then the existing evolutionary algorithms. Furthermore,

stohastic algorithms such as EFTI, that do not use populations of candidate solutions and thus

do not employ recombination, can also be classified in the class of Stochastic Hill Climbing

algorithms [41]. Furthermore, the EFTI algorithm utilizes the simple technique of adaptive

random search for mutations, which can be implemented efficiently both regarding the time

needed for execution and hardware resources needed (having embedded systems as target in
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Figure 2.7: The taxonomy of evolutionary algorithms for DT induction as presented in

[39].

mind). As far as author is aware, EFTI is the first full DT building algorithm that operates on

a single-individual population. However, it also proved to provide smaller DTs with similar or

better classification accuracy than other well-known DT inference algorithms, both incremental

and full DT [42].

2.4 Hardware aided decision tree induction

In order to accelerate the DT induction phase, two general approaches can be used. The

first approach focuses on developing new algorithmic frameworks or new software tools, and

is the dominant way of meeting this requirement [43][44]. The second approach focuses

on the hardware acceleration of machine learning algorithms, by developing new hardware

architectures optimized for accelerating the selected machine learning systems.

The hardware acceleration of the machine learning algorithms receives a significant attention

in the scientific community. A wide range of solutions have been suggested in the open

literature for various predictive models. The author is aware of the work that has been done

on accelerating SVMs and ANNs, where hardware architectures for the acceleration of both

learning phase and the execution have been proposed. The architectures for the hardware

acceleration of SVM learning algorithms have been proposed in [45], while the architectures

for the acceleration of previously created SVMs have been proposed in [46][47][48][49]. The

research in the hardware acceleration of ANNs has been particularly intensive. Numerous

hardware architectures for the acceleration of already learned ANNs have been proposed

[50][51][52]. Also, a large number of hardware architectures capable of implementing ANN

learning algorithms in hardware have been proposed [53][54][55]. However, in the field of

hardware acceleration of the DTs, the majority of the papers focus on the acceleration of already

created DTs [56][57][58]. Hardware acceleration of DT induction phase is scarcely covered.

The author is currently aware of only two papers on the topic of hardware acceleration of the

DT induction algorithms [59][60]. However, both of these results focus on accelerating greedy

top-down DT induction approaches. In [59] the incremental DT induction algorithm, where EA

is used to calculate the optimal coefficient vector one node at a time, is completely accelerated

in hardware. In [60] a HW/SW approach was used to accelerate the computationally most
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demanding part of the well known CART incremental DT induction algorithm.

In this thesis, a co-processor called EFTIP (Evolutionary Full Tree Induction co-Processor)

that can be used for the acceleration of the EFTI algorithm is proposed. As mentioned earlier,

full DT induction algorithms typically build better DTs (smaller and more accurate) when

compared to the incremental DT induction algorithms. However, full DT induction algorithms

are more computationally demanding, requiring much more time to build a DT. This is one

of the reasons why incremental DT induction algorithms are currently dominating the DT

field. Developing a hardware accelerator for full DT induction algorithm should significantly

decrease the DT inference time, and therefore make it more attractive. As far as the author

is aware, this is the first hardware accelerator in open literature concerned with the hardware

acceleration of full DT induction algorithm. Being that the EAs are iterative by nature and

extensively perform simple computations on the data, the EFTI algorithm should benefit from

the hardware acceleration, as would any other DT induction algorithm based on the EAs.

Proposed EFTIP co-processor is designed to accelerate only the most computationally intensive

part of the EFTI algorithm, leaving the remaining parts of the algorithm in software. It is

shown later in the thesis, that the most critical part of the EFTI algorithm is the training set

classification step from the fitness evaluation phase. EFTIP was designed to accelerate this step

in hardware. Another advantage of this HW/SW co-design approach is that the proposed EFTIP

co-processor can be used with a wide variety of other EA-based DT induction algorithms

[39][36][40][34][33] to accelerate the training set classification step that is always present

during the fitness evaluation phase.

2.5 Induction of decision tree ensembles

The ensemble classifier systems can be used to further improve the classification performance

[61]. The ensemble classifier combines predictions from several individual classifiers in order

to obtain a classifier that outperforms every one of them. The ensemble learning requires

creation of a set of individually trained classifiers, typically DTs or ANNs, whose predictions

are then combined during the process of classification of previously unseen instances. Although

simple, this idea has proved to be effective, producing systems that are more accurate than a

single classifier.

In the process of creation of ensemble classifiers, two problems have to be solved: ensuring

the diversity of ensemble members and devising a procedure for combining individual member

predictions in order to amplify correct decisions and suppress the wrong ones. Some of the

most popular methods for ensuring ensemble’s diversity are Breiman’s bagging [62], Shapire’s

boosting [62], AdaBoost [62], Wolpert’s stacked generalization [63], and mixture of experts

[64]. Most commonly used combination rules include: majority voting, weighted majority

voting and behavior knowledge spaces [65].

The main advantages of an ensemble over single classifier systems are the higher accuracy

and greater robustness. However, large amounts of memory are needed to store the ensemble

classifier and high computing power is required to calculate the ensemble’s output, when

compared with the single classifier solutions, leading to much longer ensemble inference and

instance classification times. This is because ensemble classifiers typically combine 30 or

more individual classifiers [62] so, if we want to get the same performance as with the single

classifier system, 30+ times more memory and computing power would be required. Once

more, hardware acceleration of ensemble classifier offers a way of achieving this goal.
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In this thesis, a DT ensemble evolutionary induction algorithm EEFTI (Ensembles

Evolutionary Full Tree Induction), based on the EFTI algorithm and the Bootstrap Aggregation

(also known as Bagging). The Bagging algorithm was chosen since it makes the induction of

the individual ensemble members completely decoupled from each other, making EEFTI very

well suited for the parallelization and hence hardware acceleration.

2.6 Hardware aided induction of decision tree ensembles

Concerning the hardware acceleration of ensemble classifier systems, according to my best

knowledge, most of the proposed solutions are related to the hardware implementation of

ensemble classifiers that were previously inferred in the software. Most of the proposed

solutions are concerned with the hardware acceleration of homogeneous ensemble classifiers

[66][67][68][69][70]. As far as the author is aware, there is only one proposed solution to

the hardware implementation of heterogeneous ensemble classifiers [71]. Please notice, that

all these solutions are only capable of implementing ensemble classifiers systems that were

previously inferred in software, running on some general purpose processor. Author is aware of

only one paper [59], that proposes an architecture for the hardware evolution of homogeneous

ensemble classifier systems based on the DTs. This solution uses the DT inference algorithm

that incrementally creates DTs that are members of the ensemble classifier system.

Regarding the hardware implementation the main concern is the number of required hardware

resources, mainly memory, necessary to implement a DT ensemble classifier. Smaller DTs

are preferred because they require less hardware resources for the implementation and lead to

ensembles with smaller hardware footprint. Therefore, algorithms for DT ensemble classifier

induction that generate small, but still accurate, DTs are of great interest when the hardware

implementation of DT ensemble classifiers is considered. This requirement puts the full DT

induction algorithms and the proposed EFTI algorithm into the focus. As discussed earlier,

the EFTI algorithm provides smaller DTs with similar or better classification accuracy than

the other well-known DT inference algorithms, but is also more computationally demanding

than the incremental inducers. Hence the EEFTI algorithm could merit greatly from the

hardware acceleration to shorten the induction times, making it more attractive. In this

thesis, the EEFTIP co-processor is proposed to accelerate parts of the EEFTI that are most

computationally intensive, with the remaining parts of the algorithm running on the CPU. The

EEFTIP co-processor architecture benefits also from the fact that the EFTI algorithm evolves

the DT using only one individual, in contrast to many other algorithms based on the EA that

require populations [36][40][34][33]. The architecture can thus be simplified with hardware

resources allocated only for a single individual per ensemble member. Furthermore, by using

the HW/SW co-design approach, proposed EEFTIP co-processor can be used to accelerate DT

ensemble inducers based on the Bagging algorithm which rely on a variety of other EA-based

DT induction algorithms [39][36][40][34][33]. As far as the author is aware, the EEFTIP

co-processor is the first solution concerned with the hardware acceleration of full DT ensemble

induction algorithm based on bagging proposed in the open literature.

2.7 UCI Database Library

For the various experiments presented in the thesis, datasets from the UCI benchmark datasets

database were used [72]. The UCI database is commonly used in the machine learning

26



Hardware Acceleration of Nonincremental Algorithms for the Induction of Decision Trees and Decision Tree Ensembles 27

community to estimate and compare the performance of different machine learning algorithms.

The Table 2.1 lists the UCI datasets (and their characteristics) that were used throughout the

experiments in this thesis.

Table 2.1: List of datasets (and their characteristics) from the UCI database, that are

used in the experiments throughout this thesis

Short

Name

Dataset Name No. of

attributes

No. of

instances

No. of

classes

adult Adult 14 32561 2

ausc Australian Credit Approval 14 690 2

bank Bank Marketing 16 45211 2

bc Balance Scale 4 625 3

bch Bach Choral Harmony 16 5665 60

bcw Breast Cancer Winsconsin 9 699 2

ca Credit Approval 15 690 2

car Car Evaluation 6 1728 4

cmc Contraceptive Method Choice 9 1473 3

ctg Cardiotocography 21 2126 10

cvf Clave Vectors Firm-Teacher Model 15 10800 7

eb Tamilnadu Electricity Board Hourly Readings 4 45781 31

eye EEG Eye State 14 14980 2

ger German Credit Data 24 1000 2

gls Glass Identification Database 9 214 7

hep Hepatitis 19 155 2

hrtc Heart Disease Clevelend 13 303 5

hrts Heart Statlog 13 270 2

ion Johns Hopkins University Ionosphere 34 351 2

irs Iris Plants 4 150 3

jvow Japanese Vowels 14 4274 9

krkopt Chess (King-Rook vs. King-Pawn) 6 28056 18

letter Letter Recognition 16 20000 26

liv BUPA liver disorders 6 345 2

lym Lymphography 18 148 4

magic MAGIC Gamma Telescope 10 19020 2

msh Mushroom 22 8124 2

nurse Nursery 8 12960 5

page Page Block Classification 10 5000 5

pen Pen-Based Recognition of Handwritten Digits 16 10992 10

pid Pima Indians Diabetes 8 768 2

Continued on next page
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Table 2.1 – continued from previous page

Short

Name

Dataset Name No. of

attributes

No. of

instances

No. of

classes

psd Parkinson Speech 27 1040 2

sb Seismic Bumps 18 2584 2

seg Image Segmentation 18 2310 7

shuttle Shuttle 9 58000 7

sick Thyroid Disease 2 Class 29 3772 2

son Sonar (Mines vs. Rocks) 60 208 2

spect SPECT Heart 22 267 2

spf Steel Plates Faults 27 1941 7

thy Thyroid Disease 4 Class 29 3772 4

ttt Tic-Tac-Toe Endgame 9 958 2

veh Vehicle Silhouettes 18 846 4

vote Congressional Voting Records 16 435 2

vow Vowel Recognition 10 990 11

w21 Waveform Database Generator - 21 Attributes 21 5000 3

w40 Waveform Database Generator - 40 Attributes 40 4090 3

wfr Wall Following Robot Navigation 24 5000 4

wilt Wilt 5 4839 2

wine Wine 11 4898 7

zoo Zoo 17 101 7

2.8 The structure of the experiments used in the thesis

Similar experimental setup is used throughout this thesis whenever a quality of a certain feature

needs to be assessed for an induction algorithm or its specific implementation. Unless stated

otherwise, this procedure comprises the induction of the DTs from all datasets listed in the

Table 2.1, and measuring the inference times and the qualities of the produced DTs, such

as accuracy and size. All the results reported for the experiments in accompanying tables

and figures, are the averages of the five 5-fold cross-validations, usually given with their 95%

confidence intervals.

The cross-validation setup for assessing the induction algorithm or its implementation is

performed for each dataset selected for the experiment in the following way:

• The dataset D, is partitioned into 5 non-overlapping sets: D1, D2, ... D5, by randomly

selecting the instances from D using uniform distribution

• For the ith cross-validation run, where i ∈ (1, 5), training set is formed by using all the

instances from D except the ones from Di, train_set = D ∖ Di, and is used to induce

the DT by the current algorithm being tested

• Inferred DT is finally tested for accuracy by letting it perform the classification on the
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instances form the set Di.

This whole procedure is repeated 5 times, resulting in 25 inferred DTs for each dataset and

for each inference algorithm. For each of the DTs, the information about various features is

gathered: classification accuracy, DT size, DT depth, inference time, DT fitness, etc., for which

the average values and 95% confidence intervals are calculated.

Often, the aim of an experiment used in this thesis is to discover whether there is a statistical

difference between the performance of different algorithms, or the same algorithms with

different parameters, or the different implementations of the same algorithm. The well known

Student’s t-test is used in statistics to determine if two sets of data are significantly different

from each other. However, in the experiments throughout this thesis, there are usually more

than two sets of data compared, hence the t-test cannot be applied. Instead, for each feature

tested and dataset used, first the one-way analysis of variance (ANOVA) [73] test is applied on

collected data, with the significance level set at 0.05. When ANOVA analysis indicates that at

least one of the results is statistically different from the others, the Tukey multiple comparisons

test [74] is used to group the algorithms into groups of statistically identical results. Hence,

for each feature of interest and each dataset, a set of groups is obtained, where the algorithms

within the group have similar performance for that feature and dataset. Finally, these groups are

ranked with respect to their average performance on that feature and dataset, and each tested

algorithm is assigned a number, representing the position of its group within the ranking.

Finally, often the average of all ranking numbers for the algorithm for one feature is taken to

represent the overall performance of that algorithm on all datasets with respect to that feature.

The average rankings are then compared between the algorithms per feature, to determine the

benefits of using one over the other.
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3 EFTI algorithm

This section describes an evolutionary algorithm for oblique full DT induction using supervised

learning - EFTI. As we have seen in the introduction (Section 2.3), an algorithm that would take

advantage of the full DT induction, but limit its resource consumption to make it attractive for

the world of embedded systems is lacking in the open literature. The main motivation for

creating EFTI, was thus to develop an algorithm that:

• is suitable for the implementation on embedded systems, i.e. has low hardware resource

requirements,

• is easy parallelizable and accelerated in hardware, and

• uses nonincremental DT induction to induce smaller DTs than the existing solutions,

without the loss in DT accuracy.

Since inferring an optimal DT in terms of both size and accuracy is an NP-hard problem,

the EFTI algorithm needed to be based on some kind of heuristic. In order to minimize the

hardware resource consumption of the algorithm implementation, it was chosen to be operated

only on a single candidate solution, effectively excluding all the algorithms that operate on

populations, such as particle swarm optimization, memetic algorithms, genetic algorithms,

and some types of evolutionary algorithms. For all these reasons, it was chosen to base the

EFTI algorithm on the (1+1) Evolutionary Strategy, since on one hand it operates on a single

individual, while on the other it was supposed to be capable of managing the highly complex

problem of searching for the small, yet accurate enough DTs, by using the nature inspired

evolutionary process. The following topics will be covered in this section:

• Section 3.1 - Overview of the algorithm

• Section 3.2 - Detailed description of the algorithm

• Section 3.3 - The improvements to the basic algorithm version

• Section 3.4 - Analysis of the algorithm’s computational complexity

• Section 3.5 - Experimental section that shows the performance of the EFTI algorithm in

comparison to the performances of the existing DT induction algorithms

3.1 The algorithm overview

The Algorithm 3.1 shows the algorithmic framework for the EFTI algorithm, which is similar

for all evolutionary algorithms and comprises mutation, fitness evaluation and selection tasks,

but lacks the crossover step, since the algorithm does not employ a population of individuals.

The DT is induced from the training set - the argument train_set received by the efti()

function as shown in pseudo-code. Since the EFTI algorithm performs supervised learning,

the training set should consist of the problem instances, together with their known class

memberships. The EFTI algorithm maintains a single candidate solution, stored in the

variable dt in the pseudo-code. The evolution is started from a randomly generated (by the

initialize() function) one-node DT, consisting only of the root node, and the effort

is iteratively made to improve on it. In each iteration, the DT is slightly changed by the
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mutate() function, to obtain the mutated individual which is then stored in the dt_mut

variable. Two types of mutations are employed on the DT individual:

• Every iteration, a node test coefficient in a certain number of randomly selected nodes is

changed, and

• Every few iterations, a node is either added or removed from the DT

Algorithm 3.1: Overview of the EFTI algorithm

def efti(train_set, max_iter):

dt = initialize(train_set)

fitness_eval(dt, train_set)

for iter in range(max_iter):

dt_mut = mutate(dt)

fitness_eval(dt_mut, train_set)

dt = select(dt, dt_mut)

return dt

The fitness of the mutated individual, calculated by the fitness_eval() function

(Algorithm 3.2), is then compared with the fitness of the candidate solution within the

select() function (Algorithm ?? iterations, the EFTI algorithm tries to improve upon the DT

candidate solution, after which the algorithm exits and the fittest DT individual found during

this process is returned. Once the DT is formed in this way, it can be used to classify problem

instances outside of the training set.

In the Figures 3.1 through 3.8, one example evolutionary process performed by the EFTI

algorithm on the vene dataset is shown. The vene dataset contains instances of three different

classes: C1, marked by the red stars, C2, marked by the green squares, and C3, marked by the

blue triangles. Eight specific moments in the DT evolution where significant breakthroughs in

the fitness of the DT were made, are presented in these figures by both plotting the tree structure

and displaying the partition of the attribute space that the DT individuals at these moments

induced. The nodes are drawn in the figures using circles and the leaves using squares, and

each node and each leaf is assigned a unique ID. Each leaf node and its corresponding attribute

space region are labeled in the format i-Cj, where i equals the ID of the leaf, and j equals the

class number assigned to that leaf, hence also to the region. For each of these figures, the

following information is given:

• Iteration - the iteration number in which the DT individual was evolved

• Fitness - the fitness of the DT individual

• Size - the size of the DT individual: calculated as the number of leaves in the DT

• Accuracy - the accuracy of the DT individual on the training set: calculated as the

percentage of the instances from the training set that the DT individual classifies correctly

At the beginning of the EFTI algorithm, the initial individual is generated (Figure 3.1) to

contain only one node, since EFTI has a goal of creating DTs as small as possible. By the

iteration #13 (Figure 3.2), no new nodes were added, but the root node test was modified to
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(a) Initial one-node DT generated by the

initialize() function

2-C1

3-C3

(b) Initial attribute space partition

Figure 3.1: An example evolutionary process by the EFTI algorithm. Iteration: 000000,

Fitness: 0.6024, Size: 2, Accuracy: 0.6005

(a) No added nodes that were tried managed to

increase fitness

2-C1

3-C3

(b) Position of the split shifted to increase the

accuracy

Figure 3.2: An example evolutionary process by the EFTI algorithm. Iteration: 000013,

Fitness: 0.6287, Size: 2, Accuracy: 0.6274
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(a) Three new nodes added to increase the

accuracy

4-C1

5-C2

6-C1
8-C3

9-C2

(b) Three new splits added for finer attribute space

partition

Figure 3.3: An example evolutionary process by the EFTI algorithm. Iteration: 003599,

Fitness: 0.9138, Size: 5, Accuracy: 0.9202

(a) Since the region of leaf #6 contained almost no

individuals in the Figure 3.3b, it was removed and

the node #7 was basically moved up to replace

node #3 (Figure 3.3a), and thus removing the said

empty region.

4-C1

5-C2

6-C3

7-C2

(b) The region of the leaf #6 (Figure 3.3b)

was removed, since it was almost empty and

contributed little to accuracy. The resulting DT

is smaller, even with a slight increase in accuracy

(since the split induced by node 1 has also shifted

slightly to a better position).

Figure 3.4: An example evolutionary process by the EFTI algorithm. Iteration: 007859,

Fitness: 0.9265 Size: 4, Accuracy: 0.9297
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(a) The leaf #5 was made into a node

4-C1

8-C3

9-C2

6-C3

7-C2

(b) Small increase in accuracy was obtained by

further dividing the central region of the attribute

space, where the individuals of all three classes

overlap

Figure 3.5: An example evolutionary process by the EFTI algorithm. Iteration: 030268,

Fitness: 0.9272, Size: 5, Accuracy: 0.9331

(a) The leaf #4 was now made into a node

8-C1

9-C2
10-C3

11-C2

6-C3

7-C2

(b) Again, further division of central attribute

space region produced a small increase in

accuracy. Fitness has progressed even less,

since the addition of a new node diminished the

advantage of a small accuracy increase.

Figure 3.6: An example evolutionary process by the EFTI algorithm. Iteration: 177050,

Fitness: 0.9273, Size: 6, Accuracy: 0.9374
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(a) The leaf #8 was split into two

12-C1

13-C1 9-C2
10-C3

11-C2

6-C3

7-C2

(b) The region of leaf #8 was split, bringing no

improvement to the class separation, but with

some other shifts in the split positions, some small

accuracy gain was achieved

Figure 3.7: An example evolutionary process by the EFTI algorithm. Iteration: 279512,

Fitness: 0.9274, Size: 7, Accuracy: 0.9395

(a) Leaf #9 was removed together with the node

#4, which brought the node #8 up in the place of

the node #4. Leaves #10 and #11 were removed,

and the node #5 was reverted to leaf again.

8-C1

9-C3

5-C2

6-C3

7-C2

(b) EFTI gave up on finely partitioning the central

attribute space region, since very little gain in

accuracy could not justify the increase in the DT

size, and it managed to produce the smaller DT

without sacrificing the accuracy. The split by

the node #8 between the regions #12 and #13

in the Figure 3.7, became the split between the

regions #8 and #9 after the node #8 moved up to

replace the node #4. This, once useless split, has

now shifted to turn out very useful in separating

instances of the classes C1 and C3 and hence

contributing to the accuracy.

Figure 3.8: An example evolutionary process by the EFTI algorithm. Iteration: 415517,

Fitness: 0.9342, Size: 5, Accuracy: 0.9396

35



Hardware Acceleration of Nonincremental Algorithms for the Induction of Decision Trees and Decision Tree Ensembles 36

produce the increase in the DT accuracy from 0.6005 to 0.6274. During the further evolution,

some nodes were added which raised the accuracy of the DT. Notice how fitness started to

deviate from the accuracy when the DT grew bigger. This is because the fitness also depends

on the size of the DT to which it applies, in that it is more significantly penalized, the more

leaves the DT has. In this example, the biggest drop in the fitness caused by the DT size is in

the iteration #279512 of the DT evolution (Figure 3.7), where the DT individual comprised 7

leaves and even though the accuracy climbed to 0.9395 (classification success rate of 94%), the

fitness remained at 0.9274. In this way, the evolutionary process was forced to search for the

smaller DT solutions, in which it eventually succeeded by the iteration #415517 (Figure 3.8),

where the DT size dropped to only 5 leaves with no loss in accuracy.

3.2 Detailed description

In this section, the detailed descriptions of the individual EFTI sub-tasks are given. Although

EFTI is based on the (1+1)-ES, it comprises many additional features which are specific to the

DT induction, that need to be discussed here, like tree structure mutation procedure, fitness

calculation specifics, etc.

3.2.1 Mutation

For the sake of describing an oblique DT, two different sets of information need to be provided:

the coefficient numerical data that describe the oblique tests in the nodes, and the topological

data that describes the connections between the nodes. Accordingly, inducing an oblique DT

implies inducing the node test coefficients as well as the topological structure. Hence, as it was

already discussed in the algorithm overview, the EFTI algorithm needs to perform two types of

mutations on the DT individual:

• The node test coefficients mutation

• The DT topology mutation

During each iteration of the EFTI algorithm, a small number (α) of DT nodes’ test coefficients

is selected at random and then mutated by adding (or subtracting) to it a small random number.

Every change in the node test influences the classification, as the instances take different paths

through the DT and get classified in a different way. Finding the optimal oblique split is in

itself an NP hard problem (as already discussed in the Section 2.3.1), hence deciding which

coefficients should be mutated in order to enhance the DT accuracy is also a hard algorithmic

problem. For this reason, the coefficients to be mutated are selected randomly according to the

uniform distribution from the set of all coefficients from all DT nodes. Usually, only one to

several coefficients (dictated by the parameter α) are mutated in each iteration in order for the

classification result to change in small steps. The larger the number of coefficients mutated in

each iteration, the more the algorithm starts behaving as a random search.

Once the decision is made which coefficients are to be mutated, the amount by which to change

each of the coefficients needs to be specified. Since the algorithm cannot know in advance

the optimal order of magnitude of a coefficient value, which would in turn allow it to adjust

the size of the coefficient mutation step, the only reference it can take the advantage of is

the coefficient’s current value. Furthermore, as it will be discussed in the Section 3.2.2, the
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2-C1 3-C3

1

(a) DT before the addition of the

node in place of the leaf #2

4-C1 5-C2

2 3-C3

1

(b) DT after a node has been added

in place of the leaf #2

Figure 3.9: Example showing how a DT is mutated by adding a node to it

4-C1

8-C3 9-C2

5

2

6-C3 7-C2

3

1

(a) DT before the removal of the leaf #4,

together with its parent node #2

4-C3 5-C2

2

6-C3 7-C2

3

1

(b) DT after the leaf #4 and its parent

node #2 were removed, and the sub-tree

induced by former node #5 moved to the

position of node #2

Figure 3.10: Example showing how a DT is mutated by removing a node from it

node test coefficients are not initialized completely at random, but are calculated according to

an algorithm to provide an improvement to the overall accuracy of the DT, hence their initial

values provide a useful starting reference point in searching for their optimal values. Due

to all this, the EFTI algorithm selects the mutation step for the coefficients according to the

normal distribution centered at zero, with the standard deviation proportional to the value of

the coefficient to be mutated. However, for the coefficients with small values, the deviation

would be likewise low, and it would be hard to escape this situation via process of mutation.

Similarly, for the coefficients with large values, the deviation would be likewise high, and these

coefficients would be changed in too large increments. Hence, the EFTI algorithm saturates

the deviation for both small and large coefficient values at σmin and σmax respectively. The

saturation points σmin and σmax are fixed throughout the algorithm operation and selected by

the user. The random variable representing the mutation step for the coefficient wi, named

Xmwi is finally given by the equation:

Xmwi ∼ � (0, σ2)|σ =

⎧

⎪

⎨

⎪

⎩

σmin, wi ≤ σmin

wi, σmin <wi < σmax

σmax, σmax ≤wi

(3)

This means that the mutated value wm
i for the selected coefficient wi is obtained as wm

i =
wi +Xmwi.
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On the other hand, the topology mutations represent very large moves in the search space, so

they are performed even less often. In every iteration, there is a chance (β) that a single node

will either be added to the DT or removed from it. This change either adds an additional test

to the classification process, or removes one from it. The node is always added in place of an

existing leaf, i.e. never in place of an internal non-leaf node, as shown in the example in the

Figure 3.9. The leaf which is to be turned into a node is selected at random uniformly from

all the leaves in the DT. The test coefficients of the newly added non-leaf node are calculated

using the same initialization procedure as for the root test coefficients, which is explained in the

Section 3.2.2. On the other hand, if a node is to be removed, first a leaf is selected at random

uniformly from all the leaves in the DT. Then both the leaf and its parent are removed from

the DT, while the leaf’s sibling moves up to replace its former parent, as shown in the example

in the Figure 3.10. By adding a test, a new point is created where during the classification,

instances from different classes might separate and take different paths through the DT and

eventually be classified as different, which can in turn increase the accuracy of the DT. On the

other hand, by removing unnecessary tests the DT is made smaller, and the size of the DT is

also an important factor in the fitness calculation in the EFTI algorithm as discussed in the

Section 3.2.3.2.

There is a known result regarding (1+1)-ES algorithms called 1/5 success rule [75], stating that

the mutation step size should be adapted dynamically in order to keep the mutation success rate

close to one-fifth, meaning that approximately every fifth mutation should lead to an individual

with higher fitness. To accomplish this, the mutation step is dynamically adapted try to control

the success rate. There are at least two problems with adopting the 1/5 strategy here: first there

are two different types of mutations (coefficient and topological) with each one having its own

mutation rate, and second the success rates were measured to be closer to around 1% when the

EFTI algorithm was run on practical datasets. Although the effort was made in an attempt to

devise a dynamic adaptation strategy akin to the 1/5 success rule that would provide statistically

significant benefits to the EFTI algorithm, it was futile.

3.2.2 The DT node insertion algorithm

Each time a node is to be added to the DT, whether it is the root node for the DT initialization

or any other node in the mutation procedure, the node’s test needs to be initialized. Initializing

the test coefficients with random numbers proved to be an impediment to the evolutionary

process, since there is a rather small probability for a node test generated in this way to provide

a useful split in the attribute space, i.e. a split that divides instances of different classes.

With this, completely random, procedure, the hyperplane usually lands completely outside

the attribute space region where the instances are located, where the Figure 3.11a shows one

such hyperplane as an example. Even if the hyperplane intersects the area of the attribute

space where the instances reside, the split can still be ineffective in the way that it does not

help distinguish between instances of different classes, i.e. it does not contribute to the DT

accuracy, where the Figure 3.11b shows one such hyperplane as an example. This influences

the algorithm convergence negatively, in that it takes too many generations to relocate the

ill-positioned hyperplane to the location where it starts contributing to the accuracy of the DT

individual.

However, in order to allow for wider search space exploration, the node tests need to be

generated at random, but this process needs to be guided by the structure of the training set,
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2-C?

3-C?

(a) Hyperplane initialized to the position outside

the region where the instances reside

2-C1

3-C?

(b) Hyperplane initialized to the position where it

does not contribute to the DT accuracy

Figure 3.11: Hyperplanes cannot be initialized completely at random, since there is a

high chance of them being ineffective

to speed up the convergence of the evolutionary algorithm towards the optimal solution. One

of the approaches for the random initialization basically ensures that two randomly selected

training set instances (called a mixed dipole) take different paths during classification at the

node being initialized, and is suggested in [40]. The mixed dipole comprises two instances

from the training set that belong to different classes. As shown in the Figure 3.12, the procedure

consists of placing the hyperplane Hij(w, θ) in the attribute space, perpendicular to the line

connecting the mixed dipole (xi,xj). The hyperplane corresponds to the node test given by the

equation (1), where w is the test coefficient vector and θ is the test threshold. The attribute space

of the vene dataset, used in this example has two dimensions, one for each of the attributes

x1 and x2. The hyperplane’s exact position is finally fixed by randomly generated parameter

δ ∈ (0, 1), which determines whether the hyperplane is placed closer to x
i (for δ < 0.5), or

closer to x
j (for δ > 0.5). Mathematically, the equation for the hyperplane generated by the

method of the mixed dipole described in this paragraph is obtained in the following way:

Hij(w, θ) = w

︃

x1

x2

︃

− θ,

w = (xi − x
j),

θ = δw · xi + (1− δ)w · xj

(4)

This procedure aims to introduce a useful test into the DT, based on the assumption that the

instances of the same class are somehow grouped in the attribute space, and that the test

produced in this way will help separate the instances belonging to the classes of the dipole

instances.

3.2.3 Fitness evaluation

The DT can be optimized with respect to various parameters, where the DT accuracy and its

size are usually the most important. Hence, in order to solve this multi-objective optimizational

problem with the evolutionary approach, a fitness function needs to be defined to effectively
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x1

x2

xi xj

Hij(w, θ)

δ 1− δ

Figure 3.12: Initialization of the node test based on the randomly chosen dipole.

Hij(w, θ) is a hyperplane corresponding to the node test, w is coefficient vector, and

θ is the threshold.

collapse it to a single objective optimizational problem. This can be done in various ways, and

here one procedure, employed by the EFTI algorithm is given.

Algorithm 3.2: The pseudo-code of the fitness evaluation task, given by

fitness_eval() function.

def fitness_eval(dt, train_set):

accuracy = accuracy_calc(dt, train_set)

Nc = train_set.cls_num()

oversize = (len(dt.leaves()) - Nc)/Nc

dt.fit = accuracy*(1 - Ko*oversize*oversize)

3.2.3.1 Accuracy calculation

The main task of the optimization process performed by EFTI is to maximize the accuracy of

the DT individual on the training set. The accuracy is calculated by letting the DT individual

classify all problem instances from the training set and then by comparing the classification

results to the desired classifications, specified in the training set. The pseudo-code for this task

is given in the Algorithm 3.3 by the function accuracy_calc(), where the input parameter

dt receives the DT individual whose accuracy is to be calculated, and train_set expects

the training set.
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Algorithm 3.3: The pseudo-code of the accuracy calculation task, given by

accuracy_calc() function.

def accuracy_calc(dt, train_set):

distribution = [[0] * train_set.cls_num()

for i in range(len(dt.leaves()))]

for instance in train_set:

leaf = find_dt_leaf_for_inst(dt, instance)

distribution[leaf.id][instance.cls] += 1

hits = 0

for leaf in dt.leaves():

dominant_class_cnt = max(distribution[leaf.id])

hits += dominant_class_cnt

return hits / len(train_set)

First, the class distribution is determined by letting all instances from the training set traverse

the DT, within the find_dt_leaf_for_inst() function whose pseudo-code is given

in the Algorithm 3.4. This function determines the instance traversal path, and returns the

leaf node in which the instance finished the traversal. The traversal starts at the root node

(accessed via dt.root), and is performed in the manner depicted in the Figure 2.2, where

one possible path is given by the red curvy line. Until a leaf is reached, the node tests are

evaluated and the decisions to which child to proceed, are made based on the test outcomes.

The function dot_product(), calculates the scalar product of the node test coefficient

vector w (stored in cur_node.w attribute), and the attribute vector of the instance x (stored

in instance.x variable). The value returned, is compared with the node test threshold θ

(stored in cur_node.thr attribute).

Algorithm 3.4: The pseudo-code of the procedure for determining the end-leaf for an

instance, implemented by find_dt_leaf_for_inst() function.

def find_dt_leaf_for_inst(dt, instance):

cur_node = dt.root

while (not cur_node.is_leaf):

psum = dot_product(instance.x, cur_node.w)

if psum < cur_node.thr:

cur_node = cur_node.left

else:

cur_node = cur_node.right

return cur_node

Next step in the accuracy calculation process (the first for loop in the Algorithm 3.3) is to

calculate the class distribution matrix. The distribution matrix, shown in the Figure 3.13, has
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one row for each of the leaves in the DT, i.e. for each attribute space partition induced by the

DT. Each row in turn contains one element for each of the classes in the training set. Hence,

a row of the distribution matrix contains the statistics on how many instances of each of the

training set classes finished the traversal in the leaf corresponding to the row.

Leaf ID 1 k1, d(1,k1)

Leaf ID 2 k2, d(2,k2)

Leaf ID Nl kNl
, d(Nl,kNl

)

C1 C2 CNc

d1,1 d1,2 · · · d1,Nc

d2,1 d2,2 · · · d2,Nc

·

·

·

·

·

·

·

·

·

·

·

·

dNl,1 dNl,2 · · · dNl,Nc

Figure 3.13: The structure of the distribution matrix. From each matrix row i, the

dominant class ki and the number of instances of the dominant class d(i,ki) that finished

the traversal in the leaf with ID i are obtained.

The classes of all the instances from the training set are known and accessed via the instance

attribute instance.cls (within the accuracy_calc() function). For each instance in

the training set, based on its class and the ID of the leaf in which it finished the traversal, the

distribution matrix is updated. This leaf is obtained via the find_dt_leaf_for_inst()

function and stored into the leaf variable, and its ID is accessed via the attribute leaf.id.

The di,j element of the distribution matrix contains the number of instances of the class j (Cj)

that finished in the leaf node with the ID i after the DT traversal. After all the instances from

the training set traverse the DT, this matrix contains the distribution of classes among the leaf

nodes.

The second for loop of the accuracy_calc() function finds the dominant class for each

leaf node. The dominant class for a leaf node is the class having the largest percentage of

instances, among the ones that finished the traversal in that leaf node. Formally, the dominant

class ki of the leaf node with the ID i is:

ki|(d(i,ki) = max
j

(di,j)) (5)

The structure of the distribution matrix is displayed in the Figure 3.13. Rows correspond to the

leaves of the DT, and the columns correspond to the classes of the training set. From each row

(i) of the distribution matrix, we obtain the dominant class ki and the number of instances of

the dominant class d(i,ki) that finished the traversal in the leaf with ID i.

If we were to do a classification run with the current DT individual of the training set, the

maximum accuracy would be attained if all leaf nodes were assigned their corresponding

dominant classes. Thus, each instance which finishes in a certain leaf node, that belongs to

that node’s dominant class, is added to the number of classification hits (the hits variable of

the Algorithm 3.3), otherwise it is qualified as a missclassification. Hence,

hits =

Nl︁

i=1

d(i,ki). (6)

The accuracy of the DT is, hence, equal to the percentage of the instances

whose classifications were declared as hits, as given in the pseudo-code:

accuracy = hits/len(train_set).
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3.2.3.2 Oversize

The DT oversize is calculated as the relative difference between the number of leaves

in the DT and the total number of classes (NC) in the training set (obtained via the

train_set.cls_cnt() function). In order to be able to classify correctly all training

set instances, the DT needs to have at least one leaf for each class occurring in the training set.

Therefore, without knowing anything else about the dataset, our best guess is that the minimal

DT that could be consistent with the dataset has one leaf for each of the dataset classes. For

that reason, the oversize measure given by the equation (7), was defined in such a way to have

the DT start suffering penalties to the fitness when the number of its leaves exceeds the total

number of classes in the training set, i.e. the oversize measure is zero when Nl = Nc:

oversize =
Nl −Nc

Nc

,

fit = accuracy · (1−Ko · oversize
2)

(7)

The DT oversize negatively influences the fitness, as it can be seen from the equation (7). The

parameter Ko is used to control how much influence the DT oversize will have on the overall

fitness. In other words, it determines the shape of the collection of Pareto frontiers for the DT

individual. Each DT individual can be represented as a point in a 2-D space induced by the DT

oversize and accuracy measures. In a Pareto set all elements have the same fitness value, even

though they have different accuracy and oversize measures.

2 3 4 5 6 7 8 9 10

Nl - number of leaves
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Ko = 0

Ko = 0.02

Ko = 0.1
accuracy = 0.8
Nc = 5

Figure 3.14: The layout of Pareto frontiers for the accuracy value of 0.8, when NC

equals 5, for Ko parameter values of: 0, 0.02 and 0.1.

The Figure 3.14 shows the layout of the Pareto frontier for an example of fitness value of 0.8

and few different values of the parameter Ko, with the value of 5 selected for the parameter

NC . It can be seen that if Ko is chosen to be 0, the oversize does not influence the fitness,

which is in turn always equal to the value of the accuracy. When Ko > 0, the EFTI algorithm

will be willing to trade accuracy for the DT size. As it can be seen from the figure, when the
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parameter Ko has a large value, for an example 0.1, the big DTs are highly discouraged in that

an individual of size 5 with the accuracy of 0.8 is equally fit in the eyes of the algorithm as the

larger one with more than 10% higher accuracy, but of size 10.

As shown in the Algorithm 3.2, the dependence of the fitness on the oversize measure is

quadratic. This serves two purposes:

1. Since oversize turns negative when the DT size falls below NC , such undersized DTs

would be getting a boost in fitness if it were not for the squaring. If all classes are to be

represented in the DT, the number of leaves should at least match the number of classes,

so that it would be at least possible, for each class to have a leaf. By squaring the oversize,

the undersized DTs are discouraged in the same way the oversized are.

2. By using the quadratic dependence, the rate at which fitness decreases with the DT size

is lower when the size is closer to the NC , and gets progressively higher as the size

increases. This way, the DTs whose size is close to NC are penalized less then they

would be if the dependence of the fitness on oversize were linear.

In order to measure the influence of the oversize on the induced DTs, an experiment has been

conducted on all datasets from the Table 2.1. The DTs were induced for a number of values for

the parameter Ko, namely Ko ∈ {0, 0.001, 0.01, 0.02, 0.06, 0.1, 0.2}. The results are presented

in the Table 3.1, Table 3.2, Figure 3.15 and Figure 3.16. The Table 3.1 and the Table 3.2 list

the induced DT sizes and accuracies respectively, for all datasets and all values of the oversized

weight parameter Ko used in the experiment. In the figures, the plots are organized in pairs,

where each pair consists of the accuracy and size plots for the same five algorithms displayed in

juxtaposition. Please notice that the x-axis, corresponding to the value of the parameter Ko, is

given in logarithmic scale, as well as the y-axis of the DT size plots. Please also notice that the

ranges for the y-axis, be it for the accuracy or the size plots, vary from plot to plot and depend

on the datasets used for the induction.

The values in the Table 3.1 clearly indicate that the largest DTs are induced when the DT

oversize is ignored during the induction, Ko = 0. From there, the induced DT sizes drop

quickly when the value of Ko is increased, only to start saturating after certain Ko value, which

is different for each dataset. This is usually the place where the EFTI algorithm needs to start

inflicting serious damage to the DT accuracies, only to compress the DTs furher in size by

small factors. This trend can be also observed with accuracies in the Table 3.2. The accuracies

are, naturaly, largest when there is no size limit imposed, i.e. Ko = 0. Then, as the value

of Ko increases, the induced DTs of some of the datasets experience a significant drop in

the accuracy, where this drop is of course traded-off against a significant drop in their sizes.

These datasets, like bch, cmc, krkopt, letter, ttt, wfr, wine, etc., are the ones whose

internal complexity really demands for bigger DTs in order to describe them more precisely.

On the other hand, the induced DTs of some of the datasets, experience little or no change in

the accuracy when the Ko value increases up to a certain point. For these datasets, like ausc,

bank, bcw, irs, psd, shuttle, sick, zoo, etc., initial large DTs are indeed excessive in

size and the more succinct DT representation was successfully found by the EFTI aglorithm.

When the EFTI algorithm is used in practice, it is a design choice whether the most accurate

DTs are needed no matter their size, or we are interested in the smallest DTs at the cost of their

accuracy, or we are willing to accept certain trade-off between the DT size and its accuracy. It

is obvious from these results that there is a different behavior of the inferred DTs from different

datasets, in terms of DT accuracies and sizes, when the oversize fitness weight Ko is varied.

Hence, the actual value of the Ko parameter will depend on the domain of the problem being

solved.

44



Hardware Acceleration of Nonincremental Algorithms for the Induction of Decision Trees and Decision Tree Ensembles 45

Table 3.1: The average sizes of the DTs induced for various values of the parameter Ko

Dataset 0 0.001 0.01 0.02 0.06 0.1 0.2

adult 273.88 5.72 3.04 2.80 2.12 2.00 2.00
ausc 31.88 9.52 3.76 3.00 2.48 2.04 2.04
bank 172.08 3.44 2.12 2.00 2.00 2.00 2.00
bc 40.76 14.84 6.88 5.08 3.92 3.56 3.16
bch 877.36 814.88 283.84 192.60 133.56 109.88 92.92
bcw 9.72 5.16 2.88 2.04 2.00 2.00 2.00
ca 32.64 9.60 4.00 3.12 2.60 2.12 2.04
car 119.04 23.60 9.84 7.60 5.80 5.04 4.96
cmc 179.76 22.68 8.28 6.48 4.72 4.28 4.00
ctg 262.04 75.12 26.92 21.84 15.80 13.96 12.64
cvf 558.40 33.76 13.04 10.32 8.60 7.92 7.60
eb 1419.56 264.12 113.60 85.24 59.00 51.36 45.00
eye 131.64 8.76 4.20 3.36 2.84 2.08 2.00
ger 45.28 7.92 3.44 3.16 2.76 2.52 2.08
gls 44.00 32.92 22.24 16.12 12.32 10.68 9.60
hep 14.96 10.52 4.72 4.00 3.00 2.76 2.04
hrtc 68.12 53.84 17.12 12.44 8.20 7.52 6.36
hrts 24.16 11.76 4.64 3.84 3.00 2.68 2.00
ion 31.32 10.96 5.36 4.16 3.08 3.04 3.00
irs 8.56 4.76 5.28 4.24 3.88 3.28 3.12
jvow 519.64 83.68 32.72 25.56 17.88 15.72 13.20
krkopt 1973.12 170.96 63.84 48.36 32.96 28.96 24.72
letter 1445.68 254.44 105.88 80.84 55.32 48.40 39.80
liv 46.32 15.08 6.08 4.36 3.16 3.00 2.76
lym 21.68 15.64 11.00 8.04 5.92 5.28 5.00
magic 197.16 6.20 3.44 3.00 2.84 2.24 2.04
msh 49.00 8.88 4.72 3.96 2.92 3.00 2.32
nurse 451.76 23.60 10.04 8.60 6.88 6.32 6.08
page 53.84 12.60 7.44 6.24 5.72 5.20 5.00
pen 355.12 52.12 25.72 21.44 16.76 14.88 13.60
pid 62.48 11.48 4.72 3.48 2.84 2.28 2.08
psd 31.00 6.68 3.56 2.92 2.48 2.20 2.04
sb 17.32 3.60 2.16 2.00 2.00 2.00 2.00
seg 120.56 35.48 17.32 14.48 11.28 10.08 9.20
shuttle 62.84 11.68 8.48 7.76 7.12 7.08 7.04
sick 31.92 3.68 2.48 2.40 2.16 2.04 2.00
son 32.04 14.72 6.48 5.12 3.44 3.00 2.96
spect 19.32 11.84 4.16 3.24 2.68 2.08 2.00
spf 233.84 49.52 20.44 15.96 11.28 10.12 9.00
thy 34.80 8.72 5.00 4.48 4.00 4.00 4.00
ttt 104.00 13.96 5.32 4.12 3.00 2.96 2.20
veh 149.28 34.32 13.76 10.48 7.64 6.88 5.96
vene 15.84 9.84 5.44 4.60 3.96 3.92 3.80
vote 23.32 8.40 4.08 3.08 2.64 2.04 2.04
vow 214.12 100.16 48.00 36.64 25.08 21.64 17.96
w21 178.08 12.20 5.84 5.04 4.00 4.00 4.00
w40 227.12 15.36 6.36 5.44 4.24 4.00 3.96
wfr 350.12 28.48 11.76 9.48 6.92 5.88 5.00
wilt 8.60 3.04 2.00 2.00 2.00 2.00 2.00
wine 340.12 43.76 16.04 12.52 9.40 8.68 8.00
zoo 15.64 9.64 9.88 9.16 9.40 8.76 8.72

Table 3.2: The average accuracies of the DTs induced for various values of the

parameter Ko

Dataset 0 0.001 0.01 0.02 0.06 0.1 0.2

adult 0.85 0.83 0.82 0.82 0.82 0.83 0.82
Continued on next page
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Table 3.2 – continued from previous page

Dataset 0 0.001 0.01 0.02 0.06 0.1 0.2

ausc 0.92 0.90 0.88 0.88 0.88 0.88 0.86
bank 0.89 0.89 0.89 0.89 0.88 0.88 0.88
bc 0.97 0.95 0.93 0.92 0.91 0.92 0.89
bch 0.35 0.36 0.27 0.24 0.22 0.21 0.20
bcw 0.98 0.98 0.98 0.98 0.98 0.98 0.97
ca 0.92 0.90 0.88 0.88 0.88 0.87 0.85
car 0.93 0.91 0.86 0.85 0.84 0.82 0.82
cmc 0.70 0.61 0.57 0.57 0.55 0.55 0.51
ctg 0.87 0.83 0.79 0.77 0.75 0.74 0.74
cvf 0.81 0.78 0.76 0.76 0.76 0.76 0.75
eb 0.62 0.59 0.54 0.54 0.53 0.53 0.52
eye 0.67 0.62 0.60 0.60 0.59 0.58 0.57
ger 0.96 0.96 0.95 0.95 0.94 0.95 0.93
gls 0.89 0.89 0.84 0.82 0.80 0.78 0.77
hep 0.93 0.93 0.90 0.90 0.89 0.89 0.86
hrtc 0.86 0.85 0.75 0.72 0.70 0.69 0.68
hrts 0.92 0.91 0.88 0.88 0.87 0.87 0.84
ion 0.96 0.95 0.92 0.91 0.90 0.90 0.87
irs 0.98 0.98 0.98 0.98 0.98 0.98 0.97
jvow 0.90 0.81 0.73 0.70 0.68 0.67 0.63
krkopt 0.58 0.47 0.40 0.39 0.37 0.36 0.35
letter 0.74 0.66 0.57 0.55 0.52 0.50 0.50
liv 0.83 0.79 0.73 0.73 0.71 0.72 0.68
lym 0.95 0.95 0.93 0.92 0.90 0.89 0.86
magic 0.85 0.83 0.81 0.82 0.82 0.80 0.78
msh 1.00 0.99 0.97 0.97 0.95 0.95 0.92
nurse 0.92 0.90 0.89 0.88 0.86 0.86 0.83
page 0.97 0.96 0.96 0.95 0.95 0.95 0.94
pen 0.98 0.96 0.93 0.92 0.90 0.89 0.87
pid 0.87 0.82 0.79 0.79 0.78 0.78 0.76
psd 0.98 0.98 0.97 0.97 0.97 0.97 0.94
sb 0.94 0.94 0.93 0.93 0.93 0.93 0.93
seg 0.97 0.96 0.93 0.92 0.90 0.90 0.86
shuttle 1.00 1.00 1.00 0.99 0.99 0.99 0.99
sick 0.97 0.95 0.95 0.95 0.94 0.94 0.94
son 0.94 0.91 0.86 0.84 0.80 0.81 0.78
spect 0.91 0.90 0.87 0.87 0.87 0.87 0.85
spf 0.82 0.74 0.69 0.68 0.66 0.65 0.64
thy 0.96 0.95 0.95 0.96 0.95 0.95 0.94
ttt 0.87 0.79 0.74 0.74 0.72 0.72 0.70
veh 0.85 0.75 0.68 0.65 0.63 0.62 0.59
vene 0.95 0.95 0.94 0.93 0.93 0.93 0.91
vote 0.98 0.97 0.95 0.96 0.96 0.95 0.91
vow 0.93 0.88 0.76 0.71 0.64 0.61 0.57
w21 0.90 0.87 0.85 0.85 0.84 0.84 0.80
w40 0.90 0.84 0.82 0.81 0.80 0.80 0.75
wfr 0.88 0.80 0.75 0.73 0.70 0.69 0.68
wilt 0.95 0.95 0.95 0.95 0.95 0.95 0.95
wine 0.67 0.60 0.57 0.56 0.55 0.55 0.55
zoo 0.98 0.98 0.98 0.98 0.98 0.98 0.97

3.2.4 Selection

The selection task is responsible for deciding, in each iteration, which DT will be taken for the

candidate solution for the next iteration: either the current candidate solution, i.e. the parent

(in the evolutionary sense), or the mutated individual. The selection procedure implemented by

the Algorithm 3.5 is the most basic one, where whenever the mutated individual outperforms
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(c) DT size: bcw, irs, msh, psd, thy
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(h) DT accuracy: ion, sb, spect, thy, bc
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(j) DT accuracy: son, w21, adult, car, magic

Figure 3.15: Dependencies of the induced DT sizes and accuracies on the oversize

weight (Ko) parameter values. Datasets 1-25.
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Figure 3.16: Dependencies of the induced DT sizes and accuracies on the oversize

weight (Ko) parameter values. Datasets 25-50.
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its parent in fitness, it is always taken as the new candidate solution, and is discarded otherwise.

Hence, it can be called greedy. An improvement to this basic version of the selection procedure

will be discussed in the Section 3.3.2, in which a less fit individual is sometimes given a chance

to be selected.

Algorithm 3.5: The pseudo-code of the select() function of the EFTI algorithm, that

implements the basic individual selection procedure

def select(dt, dt_mut):

if dt_mut.fit > dt.fit:

return dt_mut

else:

return dt

3.3 Improvements to the basic EFTI algorithm

In this section several additional features that can improve either the execution time or the

quality of solutions produced by the EFTI algorithm are discussed:

• Section 3.3.1 - Make fitness dependent on the number of training set classes that are not

represented in the DT individual, i.e not assigned to any leaf.

• Section 3.3.2 - Introduce the search probability, i.e. the probability with which a less fit

individual can be selected for the candidate solution.

• Section 3.3.3 - Improve the induction times by keeping track of the classification traversal

paths, and trying to reuse them between iterations.

3.3.1 Unrepresented classes

When working with highly imbalanced datasets, the induced DT can happen to contain no

leaves to which an under-represented class has been assigned. In these cases it might be useful

to encourage the EFTI algorithm to represent all classes from the dataset within the DT. Here,

an extension to the fitness formula is given that aims at discouraging the DTs in which some

classes are not represented. The percentage of missing classes is calculated as the percentage of

the classes for which the DT does not have a leaf, to the total number of classes in the training

set (NC):

missing =
Nc −NDTc

Nc

(8)

where NDTc is the number of classes represented in the DT leaves. The fitness calculation

is then updated so that the penalties are taken for the missing classes in the DT individual:

dt.fit = accuracy*(1 - Ko*oversize*oversize)*(1 - Km*missing),

where the parameter Km is used to control how much influence the number of missing classes

will have on overall fitness.
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3.3.2 Search probability

Evolution is inherently an unpredictable process. It is akin to searching for the highest peak in

the mountain range but only being able to see one’s immediate vicinity, i.e. not being able to

peek at distant mountain tops that could guide one’s exploration (see Figure 3.17). Simplest

strategy for conquering the peak closest to one’s current location is to always choose the path

that leads upwards. This strategy is thus called the greedy hill-climbing strategy. However,

there is no guarantee that the closest peak is in the same time the highest in the mountain range

and it often is not. One example of such a peak is the peak marked by the letter A in the Figure

3.17, which is called the local maximum. It is a maximum, since all points in its neighborhood

have lower elevation, but it is only local since there is a higher peak in this search space, namely

B from the Figure 3.17. The greedy approach described above fails in finding a path from point

A to point B, since there exist no monotonically uphill path connecting A to B. In order to get

to point B the exploration has to first traverse through the regions with lower elevation, shown

by an arrow in the Figure 3.17, in order to get to the base of the hill with the summit at the point

B, from which it can start moving up again. However, it is not clear in which direction from the

point A the movement should proceed. Nothing is gained if the movement continues towards

the point C, since the predominant uphill movement will eventually bring the exploration back

to the point A, only wasting the computational time. Even worse, if the exploration step size

is large, the position might be moved to the point D, from where it could wander off in the

opposite direction from the global maximum B.

A

B

C

D

Figure 3.17: An example of the hill climbing problem and the issue of escaping the local

optimum A by a greedy strategy in order to reach point B.

In terms of the evolutional DT induction, instead of striving for higher elevation, the algorithm

is striving for a DT individual with higher fitness, and instead of walking in the mountains, the

DT individual is being mutated to move around in the search space. For practical problems,

the search spaces for the DT individuals have much higher dimensionality and are thus much

more complicated than the hill-climbing problem described above. However, the main idea

is the same, in order to visit and discover as many fitness peaks as possible (in order to find
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the highest one), the algorithm sometimes needs to pursue a less fit individual. Since it is

impossible to tell which poorer performing solution will eventually lead to an improved one,

the decision of going after a poorer solution is made at random with some probability. Here,

this probability will be called the search probability, since it allows for the evolutionary process

to search the wider neighborhood of the current solution. Without this search, the systems tend

to get stuck at local maximas.

Several approaches to providing the values for the search probability that were tried with

the EFTI algorithm in an effort to increase its performance, will now be discussed. The

results of the experiments used to infer which of the approaches offers statistically significant

improvement to the quality of solutions induced by EFTI, are discussed in the Section 3.3.2.4.

3.3.2.1 HereBoy

One approach for selecting the search probability is implemented by the HereBoy algorithm

[76], and is based on the concept used in the Simulated Annealing. The probability is given

high value in the beginning and is reduced over time, which is referred as the cooling schedule

in the Simulated Annealing literature. The idea behind the cooling schedule is to allow the

system a lot of freedom to explore the search space at the beginning when the system is in a

high state of disorder, i.e. when only poor solutions are available. Then, slowly, as the desired

structures emerge, i.e. better solutions are being found, the freedom to search is restricted so

that these structures are not destroyed. The following equation shows how HereBoy calculates

the search probability, but in terms of the DT fitness as used by the EFTI algorithm, where the

constant 1 in the equation corresponds to the maximal possible fitness:

ρ = ρ0(1− fit) (9)

There are several potential issues with using the HereBoy approach to search probability. The

Figure 3.18 shows two examples of how the fitness changes during the DT induction when the

HereBoy approach is used and when no search probability is used. Several potential issues are

pointed out on the plots, by marking the relevant moments in the DT induction when the effects

of these issues make an influence on the evolution of the DT fitness.

First, the maximum possible fitness that the DT can attain, which influences the search

probability via equation (9), is different for different datasets, and is not known in advance.

Second, sometimes during the DT evolution, there are intervals when better solutions are found

often, which is akin to standing at the slope of a hill in the hill climbing problem (for an

example at the point C in the Figure 3.17). It might be worthwhile to let evolution reach a

plateau before trying to search the less fit neighborhood. With the HereBoy approach there is

no such mechanism, and it is possible to interrupt the hill climbing any time, which manifests

itself in the drops in fitness in the middle of rapid climbing, marked with #1 in the Figure 3.18.

On the other hand, by not changing the candidate solution for a large number of iterations, the

execution time is wasted by not exploring as large portion of the search space as it was possible.

With the HereBoy approach, the search probability remains fixed when there is no change in

fitness, making possible for a large iteration intervals when no solutions are accepted, especially

if the search probability is low (for an example the current fitness is close to the maximum value

of 1). These intervals are marked with #2 in the Figure 3.18. Finally, the search probability

is equal for all mutated individuals, no matter their fitness. Sometimes, even small changes to

the node test coefficients can produce significant shifts in the way the DT classifies the training
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Figure 3.18: Plots of the fitness evolutions during first 15k iterations of the DT induction

from veh and ion datasets when the HereBoy search probability strategy is used

(green) and when no search probability is used (blue). Several potential issues with

the HereBoy search probability approach are pointed out: 1 - Poorer solution accepted

and interrupted a series of fitness advancements, 2 - No new solutions accepted for a

long time, wasting execution time, 3 - Solution with significantly less fitness accepted.

set, especially if the DT is large and the mutated node is near the root. Hence, there is a

substantial chance of accepting a significantly less fit individual with this approach, which is

akin to jumping to the point D in the search space, as shown in the Figure 3.17. These large

jumps can be seen in the Figure 3.18 marked with #3.

3.3.2.2 Metropolis

The Metropolis approach to the search probability calculation was devised for the EFTI

algorithm based on the idea of the similar method used in the Simulated Annealing called

the Metropolis criterion (or Metropolis-Hastings criterion) [77]. The adoption of Metropolis

criterion is an attempt to remedy the issue where all less fit mutated individuals have the same

probability of being accepted, no matter their fitness. Hence in the Metropolis approach,

the fitness of the mutated individual (dt_mut.fit), more precisely the relative difference

between the candidate solution fitness (dt.fit) and the mutated individual fitness, will have

its influence through the following factor:

ρ ∼ e
−

∆F
ST ,

∆ =
dt.fit− dt_mut.fit

dt.fit
,

(10)

where ST is the search temperature, which dictates how much less fit an individual can be,

and still have a chance to be accepted. This is user supplied parameter, and it is kept constant

throughout the induction. Furthermore, for at the same time to allow the algorithm to climb

the current hill uninterrupted, and to discourage long iteration intervals where no solution is

selected, a concept of stagnation duration Ds is introduced, which is defined as the number of

iterations where no improvement to fitness has been made. The search probability is then made
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proportional to the Ds to finally obtain its final form within the Metropolis approach:

ρ(Ds,∆F ) = ρ0Dse
−

∆F
ST (11)

Basically, the search probability restarts to 0 after each advancement in the fitness happens, and

increases linearly with each iteration in which no such advancement is made. Since the main

idea is not to select a less fit individual either too early or too late after the advancement in the

fitness, we are basically interested in determining how high is the probability ps, of accepting

an individual of certain fitness in an iteration interval after the advancement in fitness, as a

function of Ds:

ps(Ds) =
Ds︁

i=1

ρi

i−1︁

j=1

(1− ρj)

=
Ds︁

i=1

ρ0ie
−

∆Fi
ST

i−1︁

j=1

(1− ρ0je
−

∆Fj
ST )

(12)

It is obvious from the equation (12), that ps depends on the fitnesses of all proposed mutated

individuals in previous Ds iterations, which are in turn some random variables. Hence to

avoid elaborate mathematical procedure of obtaining the distribution for the ps in general case,

a simplified case is considered. The plots in the Figure 3.19 represent ps(Ds) functions for

various values of ∆F , ρ0 and ST , with the simplification that all ∆F i values from the (12), are

equal to ∆F . In other words, a case is considered where in all past Ds iterations, all proposed

mutated individuals had an equal fitness. This simplified version of ps(Ds) is called p′s(Ds).

It can be seen from the plots in the Figure 3.19, that all the functions have a sigmoid shape,

which is in fact what was intended. The probability of accepting the less fit solution is low in

the interval where the stagnation duration is small, then increases at certain pace (depending

on the parameters selected) as the iterations pass, until it approaches a 100% chance of being

selected. The plots show that the parameter ST influences how differently will the individuals

with different fitnesses be treated. When ST = 0.05 (Figure 3.19a and Figure 3.19b), the

curves are far apart, hence it will be much harder for the individuals with lower fitnesses to get

selected, and the algorithm will only explore individuals with fitnesses closer to the fitness of

the candidate solution. On the other hand, for higher values of the parameter ST (Figure 3.19c

and Figure 3.19d), the ps curves are tighter together and the differences between individuals

of different fitnesses are blurred. In this case, the algorithm will explore individuals from

wide fitness range. As for the parameter ρ0, the higher its value is, the sooner another less fit

individual will get selected.

The Figure 3.20 shows the way the fitness of the induced DT individual evolved when

Metropolis approach was used. It can be seen that there are significantly less big fitness drops

and that the plateaus are shorter. And indeed, this approach succeeded in helping find better

solutions in the first 15k iterations than the HereBoy approach did (Figure 3.18a and Figure

3.18b).

3.3.2.3 Multiple restarts

It was observed that sometimes, for some datasets, after the poorer solution has been selected,

the evolutionary process never succeeds in bringing the fitness back to the levels where it was
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Figure 3.19: The simplified version of the probability of accepting a less fit individual of

certain fitness in Ds iterations after the advancement in fitness. In each plot, for different

values of ST and ρ0, the p′s(Ds) function is plotted for an individuals whose fitness is

smaller than that of the current candidate solution by: 1%, 5%, 10%, 20% and 40%.
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Figure 3.20: Plots of the fitness evolutions during first 15k iterations of the DT induction

from veh and ion datasets, when the Metropolis search probability strategy is used

(green) and when no search probability is used (blue).
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before. Hence an addition to the search method has been proposed that would prevent the

evolutionary process to explore for too long with individuals with the fitness less then the

current known best fit individual. A parameter called return probability pR was introduced that

determines the probability the evolutionary process has each iteration of returning to the best

known candidate solution.

3.3.2.4 Experiments

The experimental procedure explained in the Section 2.8 was used to discover whether any of

the proposed approaches statistically influences the induced DTs’ fitnesses for the better. The

values of the parameters relevant to the search probability that were used in the experiments

are given in the Table 3.3 for all tested approaches.

Table 3.3: The values of the parameters relevant to the search probability set to the EFTI

algorithm while running the experiments for comparing different search probability approaches

Approach ρ0 ST pR

Greedy 0 – –

HereBoy 1× 10−3 – 0

Metropolis 5× 10−5 0.05 0

Metropolis with restarts 5× 10−5 0.05 1× 10−4

The results are given in the Table 3.4, where for each of the discussed approaches, the mean

value of the induced DTs fitness is given together with the 95% confidence intervals, and its

ranking based on the Tukey HSD. The fitness values shown in the results table are not the ones

used during the induction, but are calculated based on the accuracy of the induced DT on the

test set. The results in the first table column, titled Greedy, were obtained without using any

search strategy, i.e. by only ever accepting the solution with higher fitness.

Table 3.4: Average fitness values of the induced DTs using four selection strategies,

together with their 95% confidence intervals and Tukey HSD based rankings

Greedy Hereboy Metropolis
Metropolis with

restarts

Dataset Fitness Rank Fitness Rank Fitness Rank Fitness Rank

adult 0.834±0.002 2 0.837±0.001 1 0.833±0.001 2 0.835±0.001 1

ausc 0.885±0.002 3 0.891±0.002 2 0.892±0.002 1 0.896±0.002 1

bank 0.888±0.002 3 0.889±0.001 2 0.889±0.001 2 0.892±0.001 1

bc 0.924±0.006 2 0.935±0.004 1 0.933±0.002 1 0.939±0.003 1

bch 0.241±0.001 2 0.241±0.001 1 0.227±0.001 4 0.230±0.002 3

bcw 0.978±0.001 2 0.978±0.001 1 0.978±0.001 1 0.978±0.001 1

ca 0.883±0.003 3 0.888±0.002 2 0.891±0.002 1 0.892±0.002 1

car 0.865±0.005 2 0.874±0.003 1 0.855±0.002 3 0.868±0.004 1

cmc 0.571±0.007 3 0.596±0.005 2 0.599±0.004 1 0.606±0.005 1

ctg 0.761±0.006 2 0.779±0.005 1 0.776±0.005 1 0.783±0.006 1

cvf 0.767±0.004 3 0.786±0.003 1 0.780±0.002 2 0.790±0.002 1

Continued on next page

55



Hardware Acceleration of Nonincremental Algorithms for the Induction of Decision Trees and Decision Tree Ensembles 56

Table 3.4 – continued from previous page

Greedy Hereboy Metropolis
Metropolis with

restarts

Dataset Fitness Rank Fitness Rank Fitness Rank Fitness Rank

eb 0.621±0.007 3 0.635±0.007 2 0.636±0.004 2 0.649±0.006 1

eye 0.613±0.005 1 0.602±0.003 2 0.594±0.001 3 0.598±0.001 2

ger 0.942±0.009 2 0.966±0.002 1 0.968±0.001 1 0.969±0.002 1

gls 0.797±0.007 2 0.827±0.008 1 0.818±0.008 1 0.823±0.010 1

hep 0.906±0.008 2 0.915±0.005 1 0.917±0.005 1 0.923±0.006 1

hrtc 0.717±0.006 2 0.727±0.006 1 0.723±0.005 1 0.729±0.005 1

hrts 0.873±0.005 2 0.886±0.004 1 0.893±0.003 1 0.891±0.005 1

ion 0.899±0.010 2 0.937±0.004 1 0.937±0.004 1 0.937±0.005 1

irs 0.983±0.004 2 0.987±0.002 1 0.987±0.002 1 0.987±0.002 1

jvow 0.799±0.009 2 0.822±0.007 1 0.835±0.006 1 0.832±0.007 1

krkopt 0.399±0.004 2 0.413±0.006 1 0.420±0.006 1 0.412±0.006 1

letter 0.591±0.006 3 0.608±0.007 2 0.623±0.005 1 0.614±0.009 1

liv 0.760±0.005 2 0.761±0.006 1 0.762±0.004 1 0.766±0.005 1

lym 0.883±0.007 3 0.899±0.008 2 0.909±0.007 1 0.914±0.006 1

magic 0.835±0.003 2 0.838±0.001 1 0.832±0.001 2 0.839±0.001 1

msh 0.960±0.003 3 0.974±0.001 2 0.981±0.001 1 0.980±0.002 1

nurse 0.896±0.009 2 0.909±0.004 1 0.911±0.001 1 0.915±0.002 1

page 0.956±0.002 3 0.961±0.002 2 0.962±0.001 2 0.966±0.001 1

pen 0.928±0.004 3 0.938±0.003 2 0.940±0.002 1 0.943±0.003 1

pid 0.790±0.004 2 0.798±0.002 1 0.799±0.002 1 0.801±0.002 1

psd 0.991±0.005 2 0.999±0.000 1 0.998±0.000 1 0.998±0.001 1

sb 0.935±0.000 2 0.935±0.000 1 0.935±0.000 1 0.935±0.000 1

seg 0.918±0.006 3 0.932±0.003 2 0.939±0.003 1 0.941±0.003 1

shuttle 0.995±0.001 2 0.997±0.000 1 0.996±0.000 1 0.997±0.000 1

sick 0.952±0.006 2 0.956±0.007 1 0.958±0.002 1 0.962±0.003 1

son 0.844±0.011 3 0.875±0.007 2 0.894±0.006 1 0.887±0.007 1

spect 0.923±0.004 2 0.928±0.003 1 0.931±0.003 1 0.934±0.004 1

spf 0.697±0.003 3 0.708±0.004 1 0.707±0.003 2 0.714±0.004 1

thy 0.953±0.004 3 0.959±0.004 2 0.964±0.003 2 0.971±0.004 1

ttt 0.733±0.006 3 0.771±0.010 1 0.763±0.010 2 0.786±0.009 1

veh 0.664±0.010 3 0.704±0.008 2 0.724±0.008 1 0.730±0.010 1

vene 0.935±0.002 2 0.937±0.002 1 0.937±0.002 1 0.937±0.002 1

vote 0.957±0.005 2 0.968±0.003 1 0.968±0.002 1 0.972±0.002 1

vow 0.705±0.010 2 0.731±0.009 1 0.733±0.007 1 0.724±0.012 1

w21 0.859±0.004 2 0.865±0.002 1 0.859±0.001 2 0.863±0.002 1

w40 0.839±0.004 3 0.843±0.003 2 0.838±0.002 3 0.850±0.002 1

wfr 0.740±0.009 2 0.771±0.009 1 0.770±0.011 1 0.770±0.010 1

wilt 0.947±0.001 2 0.946±0.000 1 0.947±0.001 1 0.947±0.002 1

wine 0.567±0.002 2 0.570±0.002 1 0.561±0.001 3 0.567±0.002 2

zoo 0.977±0.006 2 0.981±0.005 1 0.977±0.006 1 0.981±0.005 1

rank 2.33 1.31 1.41 1.08

The results shown in the Table 3.4 clearly indicate that any approach that allows for exploring

the search space via less fit individuals, i.e. any approach that uses some kind of search

probability is superior than the greedy hill-climbing, which was ranked lowest with average

ranking of 2.33. As for the Hereboy and Metropolis approaches, for some datasets one
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generated better results and for the others the other one did. However, for vast majority of

the datasets used, the best results were obtained by using the Metropolis with multiple restarts

that yielded average ranking of 1.08, hence this technique was finally implemented into the

EFTI algorithm.

3.3.2.5 Search probability implementation in EFTI

Metropolis with multiple restarts approach was implemented for the selection procedure, since

it was shown in Section 3.3.2.4 to yield the best results among proposed solutions. A new

variable dt_best needed to be included into the efti() function to store the best solution

found so far, because when selecting less fit individuals is allowed, the current solution

candidate dt might not be in the same time the best solution overall. The new pseudo-code for

the efti() function is given in the Algorithm 3.6.

Algorithm 3.6: The pseudo-code of the efti() function of the EFTI algorithm when

using Metropolis with multiple restarts

def efti(train_set, max_iter):

dt_best = dt = initialize(train_set)

fitness_eval(dt, train_set)

for iter in range(max_iter):

dt_mut = mutate(dt)

fitness_eval(dt_mut, train_set)

dt, dt_best = select(dt, dt_mut, dt_best)

return dt_best

Within the select() function, the logic for selecting the less fit individual and returning to

the best solution need to be implemented, as shown in the Figure 3.7. When the evolution finds

a solution better then the current candidate, the selection procedure will also check if it is the

overall best, and if so, store it inside dt_best variable. On the other hand, if mutation did not

advance the fitness, the stagnation duration will be increased and the search probability will

be calculated based on it using the Metropolis criterion. A chance will be than given to the

selection procedure to terminate the search and return to the best solution overall. Otherwise,

the less fit dt_mut individual might get selected at random with the current value of search

probability.

Algorithm 3.7: The pseudo-code of the select() function of the EFTI algorithm when

using Metropolis with multiple restarts

def select(dt, dt_mut, dt_best):

if dt_mut.fit > dt.fit:

stagnation_duration = 0

dt = dt_mut

if dt_mut.fit > dt_best.fit:

dt_best = dt_mut
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else:

stagnation_duration += 1

diff = (dt.fit - dt_mut.fit)/dt.fit

search_probability = stagnation_duration * rho_0 * \

exp(-diff/S_T);

if random() < restart_probability:

stagnation_duration = 0

dt = dt_best

elif random() < search_probability:

dt = dt_mut

return dt, dt_best

3.3.3 Partial reclassification

As it was already discussed in the Section 3.2.1, the DT mutations alter only a small portion

of the DT individual in each iteration, hence only the classification of the instances on whose

traversal paths the mutated nodes happen to reside, will be affected by the mutation. Therefore

the majority of instances will travel along identical paths from iteration to iteration, meaning

that all related computations will remain the same. Recomputation is thus only necessary for the

instances whose paths contain a mutated node. Please also notice that even when the mutated

node test coefficients change, only the elements of the vector scalar product sum (given in

the equation (1)) that correspond to the mutated coefficients must be recomputed, while the

computation of all other elements can be skipped.

Therefore, the traversal paths could be memorized for the candidate DT individual in order

to avoid unnecessary recalculations of the node tests during the classification of the mutated

DT individual, for the instances whose paths do not cross the mutated nodes. Each instance

could start the DT traversal by following its memorized path from the candidate DT individual

classification, and checking whether it will encounter any of the mutated nodes while traversing

the DT. While no mutated nodes are encountered, no test recalculations need to be executed

and the instance moves through the DT as dictated by the path stored in the memory. When

the instance encounters a mutated node, its path in the mutated DT might diverge from its

memorized path. If the topological mutation produced the changes in the encountered node,

where either a new node was added in the place of a leaf (see Figure 3.9 for an example) or

the node was removed and a different one took its place (see Figure 3.10 for an example), the

sub-tree which the instance has reached has changed, and the rest of the traversal path needs

to recomputed. If the instance encounters a node with only some of its coefficients w mutated,

the dot product of the mutated node test (wmut · x), can be calculated based on the dot product

of the original node test (w · x) in the following way:

w
mut · x = w · x+

︁

i∈M

(wmut
i − wi)xi, (13)

where M is the set of indices of all the mutated coefficients in that node. Furthermore, the

mutation on the encountered node may not be strong enough to deflect the instance from its

previous path. Hence, the outcome of the mutated node test is monitored whether it will align

with the stored path, in which case the instance has not diverged and the instance can continue
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following the memorized path. Otherwise, the instance entered a new DT sub-tree and all

subsequent node tests need to be recalculated.

In the case the mutated individual is selected for the new candidate solution, the paths which

have diverged in the classification run need to be updated to the memory. One possible way

to implement this is to keep track of each deviation from the memorized paths during the

classification run for the mutated DT individual, and apply all these changes to the stored

traversal paths if the individual is selected for the new candidate solution. However, a different

method that takes advantage of the fact that usually less than 1% of the mutated individuals

get selected, proved to be more efficient with respect to both execution time and the memory

resource consumption. In this approach, the EFTI algorithm does not keep track of the

deviations from the memorized paths in each classification run of a mutated DT, which in

turn saves on memory access time and on the memory space for tracking the changes. Only

once a mutated DT has been selected for the new candidate solution, is the classification rerun

with the instructions to change the stored traversal paths in the memory where needed.

The proposed partial reclassification algorithm has an additional performance issue with the

small DT individuals. If the DT individual is only one or two levels deep, there is very

large probability that many of the instance paths will be affected by the mutation, and the

time consumption overhead of the partial reclassification exceeds its benefits. The EFTI

algorithm implements a strategy to turn the partial reclassification off when it operates with

small individuals.

Algorithm 3.8: The modified find_dt_leaf_for_inst() function that implements

the partial reclassification method

def find_dt_leaf_for_inst(dt, instance, store_paths, recalc_all):

path_diverged = recalc_all

cur_node = dt.root

while not cur_node.is_leaf:

# if the memorized path is still followed

if not path_diverged:

# have we crossed the topologicaly mutated node

if dt.is_topo_mutated(cur_node):

psum = dot_product(instance.x, cur_node.w)

path_diverged = True

# or only coefficients have mutated

elif dt.is_coeff_mutated(cur_node):

# get stored dot product and apply the changes

psum = get_stored_psum(instance, cur_node)

for i in dt.mutated_coeff_index(cur_node):

psum += (cur_node.w[i] - cur_node.w_orig[i]) \

* instance.x[i]

path_diverged = True

# else, path has diverged and no testing for crossing

# mutated nodes is needed

else:

psum = dot_product(instance.x, cur_node.w)

59



Hardware Acceleration of Nonincremental Algorithms for the Induction of Decision Trees and Decision Tree Ensembles 60

# still have not diverged, look-up the stored next node

if not path_diverged:

cur_node = get_stored_next_node(instance, cur_node)

# path has diverged and the node test needs to be performed

else:

if psum < cur_node.thr:

cur_node = cur_node.left

else:

cur_node = cur_node.right

# has the instance stayed on the path in spite mutation

if cur_node == get_stored_next_node(instance, cur_node):

path_diverged = False

# should the path be memorized

if store_paths:

store_node_to_path(instance, cur_node, psum)

return cur_node

The pseudo-code in the Algorithm 3.8 describes the implementation of the partial

reclassification method within find_dt_leaf_for_inst() function (the original

implementation is given by the Algorithm 3.4). If the partial reclassification

is turned off by EFTI algorithm (by passing the value True for the argument

recalc_all), the paths of all the training set instances will be immediately

considered to have diverged from the stored paths, and the partial classification

algorithm will not be used, making the classification procedure effectively same as

the original one. Otherwise, the classification for an instance (variable instance)

starts by following the stored path (path_diverged = recalc_all = False)

from the root node (cur_node = dt.root). The path is followed one node at

a time (cur_node = get_stored_next_node(instance, cur_node)),

in order to look out for mutated nodes along its length, by using the functions

dt.is_topo_mutated(cur_node) and dt.is_coeff_mutated(cur_node),

which signal, respectively, if the current node was mutated via topological mutation or only

its test coefficients were mutated. If it was changed by a topological mutation, the instance

is facing completely different node, hence the dot product is calculated a new. On the other

hand if the current node’s test coefficients were mutated, the dot product is reconstructed

from the stored value (retrieved via get_stored_psum(instance, cur_node)),

using the equation (13). In both cases, it is considered that the instance has diverged from

the memorized path: path_diverged = True. The rest of the node test is carried out

by comparing the dot product with the threshold to obtain the next node in the path, and if

that node corresponds to the next node in the stored path, instance can safely go back to

following it (once again path_diverged = False). Finally, in order not to update the

memorized paths in each classification run, the argument store_paths is used to signal to

find_dt_leaf_for_inst() function whether the mutated DT individual has become

the new candidate solution and the updates to the memory should take place.

In the Table 3.6 the results of an experiment are shown that tests the performance benefits
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of utilizing the partial reclassification procedure, obtained by the cross-validation procedure

explained in the Section 2.8 and the set of parameters listed in the Table 3.5. The results

show that the partial reclassification really shortens the execution time, but that the induction

speedups differ between the datasets, and depend on the size of the induced DTs, as was

expected and already discussed in this section.

Table 3.5: The parameter set used for the EFTI algorithm in the partial reclassification

comparison experiments

max_iter Ko α β ρ0 ST pR

500k 0.01 1 0.6 5× 10−5 0.05 1× 10−4

Table 3.6: The results of the experiments testing the benefits on the EFTI algorithm induction

times of using the partial reclassification procedure

Dataset Original Partial

reclassification

Dataset Original Partial

reclassification

adult 387.34± 08.90 221.53± 05.75 msh 102.89± 09.77 68.49± 04.10
ausc 4.49± 00.08 4.37± 00.21 nurse 164.04± 08.15 112.53± 02.25
bank 619.58± 07.99 311.70± 03.34 page 47.24± 03.04 36.59± 01.61
bc 3.95± 00.19 4.25± 00.11 pen 345.05± 11.57 140.94± 02.01
bch 378.48± 13.19 115.62± 01.24 pid 4.10± 00.27 4.48± 00.31
bcw 3.06± 00.02 3.35± 00.05 psd 10.08± 00.25 8.55± 00.18
ca 4.92± 00.17 4.45± 00.05 sb 15.51± 00.03 16.10± 00.31
car 16.01± 00.56 14.37± 00.40 seg 57.50± 01.75 29.58± 00.62
cmc 16.26± 00.69 11.93± 00.29 shuttle 1015.40± 60.03 841.89± 22.17
ctg 69.02± 02.47 27.36± 00.64 sick 31.03± 01.17 31.72± 01.23
cvf 177.57± 08.23 110.56± 02.76 son 4.90± 00.19 2.74± 00.16
eb 1277.34± 92.67 737.24± 09.88 spect 2.44± 00.17 1.85± 00.10
eye 94.41± 07.99 96.22± 05.96 spf 61.75± 01.89 25.95± 00.45
ger 10.04± 00.44 8.16± 00.68 thy 35.77± 04.50 28.16± 00.91
gls 3.98± 00.16 2.24± 00.07 ttt 6.31± 00.41 6.39± 00.32
hep 1.63± 00.14 1.29± 00.07 veh 17.16± 00.43 9.87± 00.18
hrtc 5.20± 00.21 2.69± 00.08 vene 1.52± 00.08 2.01± 00.05
hrts 2.22± 00.10 1.82± 00.12 vote 3.18± 00.19 2.97± 00.10
ion 6.11± 00.23 3.19± 00.16 vow 24.08± 00.63 12.32± 00.27
irs 0.90± 00.06 0.98± 00.05 w21 69.10± 01.95 47.53± 01.34
jvow 116.28± 03.74 119.40± 02.90 w40 77.83± 02.20 54.74± 01.06
krkopt 872.29± 22.69 349.76± 11.05 wfr 125.74± 06.41 62.95± 01.00
letter 970.96± 35.99 355.80± 07.50 wilt 20.72± 00.22 20.69± 00.44
liv 2.07± 00.11 2.26± 00.08 wine 75.33± 03.29 46.12± 01.26
lym 3.01± 00.13 1.77± 00.05 zoo 2.01± 00.08 1.31± 00.03
magic 117.75± 03.67 117.77± 02.44
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3.4 Complexity of the EFTI algorithm

The computational complexity of the EFTI algorithm can be calculated by following its

pseudo-code. The computational complexity is given here in the big O notation, i.e. the

worst-case complexity will be calculated. Since the individual selection is performed in

constant time it can be omitted, and the total complexity can be computed as:

T (EFTI) = max_iter · (O(mutate) +O(fitness_eval)) (14)

The number of leaves, Nl, in binary DT is always by 1 larger then the number of non-leaf

nodes. If n represents the number of non-leaf nodes in the DT, then:

Nl = n+ 1 (15)

In the worst case, the depth of the DT equals the number of non-leaf nodes, hence:

D = Nl − 1 (16)

Each iteration α coefficients are mutated, so the complexity of mutating coefficients is constant:

T (coefficient mutation) = O(1) (17)

The topology can be mutated by either adding or removing the node from the DT. When the

node is removed, only a pointer to the removed child is altered so the complexity is:

T (node removal) = O(1) (18)

When the node is added, the new set of node test coefficients needs to be calculated. hence the

complexity is:

T (node addition) = O(NA) (19)

Hence, the complexity of the whole DT Mutation task sums to:

T (mutation) = O(NA) (20)

Once the number of hits is determined, the fitness can be calculated in constant time O(1),
hence the complexity of the whole fitness_eval() function is:

T (fitness_eval) = NI ·O(find_dt_leaf_for_inst) +O(Nl ·Nc) +O(1) (21)

where NI is the number of instances in the training set and NC is the total number of classes in

the classification problem, and O(Nl · Nc) is for the dominant class calculation for each leaf.

As for the find_dt_leaf_for_inst() function, the complexity can be calculated as:

T (find_dt_leaf_for_inst) = D ·O(dot_product), (22)

and the complexity of the node test evaluation is:

T (dot_product) = O(NA) (23)
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By inserting the equation (23) into the equation (22), and then both of them into the equation

(21), we obtain the complexity for the fitness_eval() function:

T (fitness_eval) = O(NI ·D ·NA +Nl ·Nc) (24)

By inserting the equations (24), (20), (15) and (16) into the equation (14), we obtain the total

complexity of the EFTI algorithm:

T (EFTI) = max_iter · (NI ·Nl ·NA +Nl ·Nc +NA) (25)

Since NA ≪ NI · Nl · NA the mutation insignificantly influences the complexity and can be

disregarded. We finally obtain that the complexity of the EFTI algorithm is dominated by the

fitness evaluation task complexity, and sums up to:

T (EFTI) = O(max_iter · (NI ·Nl ·NA +Nl ·Nc)) (26)

3.5 Experiments

In this section, the results of the experiments are presented, that were conducted in order to

compare the EFTI algorithm to the existing solutions. The algorithms listed in the Table

3.7, available in open literature, were used for the comparison. The experimental procedure

explained in the Section 2.8 was used to compare the quality of the induced DTs, in terms of

their sizes and accuracies. For the incremental DT inference algorithms, a pruning set was

created and the induced DTs were pruned after the induction. For the algorithms: CART-LC,

OC1, OC1-AP, OC1-ES and OC1-SA, the default value of 10% randomly selected training set

instances were used to form a pruning set, and the Error-Complexity pruning algorithm was

used. For the NODT algorithm, the pruning was performed in the manner described in the

original publication [32], where a specific pruning algorithm is described and pruning set is

created by taking 30% of the training set instances selected at random.
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Table 3.7: The list of the existing algorithms used for the comparison with the proposed EFTI

algorithm

Short

Name

Name Description

CART-LC The Classification and

Regression Tree with

Linear Combinations

an incremental deterministic algorithm for

oblique DT induction. For its implementation,

the description provided in [23] was used as a

reference.

OC1 Oblique Classifier an incremental randomized algorithm for

oblique DT induction,

OC1-AP Oblique Classifier -

Axis-Parallel

the OC1 algorithm limited to inducing only

axis-parallel tests,

OC1-ES Oblique Classifier -

Evolutionary Strategy

an extension to OC1 that uses ES to optimize

the oblique hyperplanes,

OC1-SA Oblique Classifier -

Simulated Annealing

an extension to OC1 that uses simulated

annealing to optimize the oblique hyperplanes,

NODT HereBoy Decision Tree

induction

an incremental randomized algorithm for

oblique DT induction, that uses HereBoy [76]

for the hyperplane optimization process.

GaTree Genetic Algorithm decision

Tree induction

a nonincremental (full tree) DT induction

algorithm based on genetic algorithms.

GALE Genetic and Artificial Life

Environment

a nonincremental (full tree) DT induction

algorithm based on the cellular automata and

the Pittsburgh approach [35].

The software implementation of the EFTI algorithm was developed in C, using many

optimization techniques in order to maximize its performance regarding the induction speed:

• The node test coefficients are represented in fixed point and all dot product arithmetic

operations are performed on 64-bit operands only (optimized for the 64-bit CPU).

• The dot product calculation loop is unfolded for all supported NA values.

• To save on copying the DT individuals, the current candidate solution (dt) and the

mutated individual (dt_mut) are represented by a single DT in memory. Hence, the

mutations are applied directly to the candidate solution. If the mutated solution gets

rejected by the select() function, the mutations are undone, which since they are

sparse is more efficient than copying the whole DT to create a mutated individual. On

the other hand if the mutated solution is selected, no actions are needed since the mutated

solution is at the same time the candidate solution.

• Special case was introduced for traversing the DT which contains only the root node. The

find_dt_leaf_for_inst() function contains a lot of programming structures for

iterating through the DT and also for deciding whether memorized traversal paths can be

reused or not, which is all superfluous for a simple case of one node DT.
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• The maximum compiler optimization settings for speed were used.

The software implementation of the EFTI algorithm was compiled using the GCC 5.4.1

compiler, and all the experiments were executed on a PC with 64-bit, 4-core, Intel i5-2500K

CPU operating at approximately 3.5GHz, with 8GB or RAM, running Ubuntu 16.04 operating

system. GALE software, written in java, was run on OpenJDK 1.8, and GaTree, written for

Windows OS, was run using Wine 1.6.2 .

3.5.1 Dependence on the number of iterations

First, the results are presented for the set of the experiments that test the dependency of the

inferred DT quality to the number of iterations the EFTI algorithm was run. The induced DT

accuracies and sizes are shown in the Table 3.8 and Table 3.9 respectively, for different number

of iterations. The same results are also presented in series of plots in the Figure 3.21 and Figure

3.22. In these figures, the plots are organized in pairs, where each pair consists of the accuracy

and size plots for the same five algorithms displayed in juxtaposition. Please notice that the

x-axis, corresponding to the number of iterations, is given in logarithmic scale. Please also

notice that the ranges for the y-axis, be it for the accuracy or the size plots, vary from plot to

plot and depend on which datasets were used for the induction.

Table 3.8: The average fitness values for the DTs induced using different number of

iterations

Dataset 1k 2k 5k 10k 20k 50k 100k 200k 500k 1000k

adult 80.52 81.50 81.81 82.25 82.50 83.01 83.22 83.48 83.63 83.85
ausc 87.22 87.64 87.77 87.90 88.28 88.99 88.60 89.15 89.77 89.92
bank 88.30 88.34 88.32 88.33 88.42 88.57 88.55 88.74 89.25 89.38
bc 88.16 89.90 90.48 90.94 91.93 93.25 92.51 94.00 94.77 95.16
bch 7.16 7.59 9.70 15.19 21.10 22.73 25.57 26.19 24.89 25.58
bcw 97.49 97.53 97.60 97.71 97.73 97.77 97.68 97.93 97.94 97.96
ca 86.72 87.55 87.66 87.69 88.15 88.85 88.56 89.00 89.46 89.51
car 77.61 78.78 81.11 82.66 84.02 85.30 85.95 87.56 87.71 88.60
cmc 51.54 53.13 53.67 54.80 55.03 57.52 56.74 59.02 61.20 61.29
ctg 59.38 64.44 70.04 72.58 74.23 75.21 76.55 77.91 79.00 79.53
cvf 67.96 69.79 72.52 74.08 74.81 76.89 76.26 78.22 79.06 79.40
eb 14.65 19.26 32.95 41.00 48.13 53.53 59.02 63.29 65.13 65.54
eye 57.74 58.16 58.30 58.55 58.93 59.28 60.00 59.74 60.16 60.34
ger 88.50 90.21 91.88 92.28 92.84 95.70 93.99 95.62 97.08 97.40
gls 72.30 73.59 78.22 79.08 79.36 82.07 81.85 83.85 84.95 85.91
hep 87.43 88.67 89.11 89.57 89.96 91.20 91.12 92.18 93.26 93.70
hrtc 66.56 68.16 69.58 70.17 71.31 72.15 73.39 74.90 74.77 75.62
hrts 84.84 85.75 86.41 87.11 87.13 88.59 87.82 89.11 89.63 90.01
ion 87.05 88.30 88.71 90.18 90.85 93.14 92.23 93.47 94.60 95.13
irs 96.96 97.17 97.44 97.79 98.13 98.29 98.27 98.56 98.83 98.56
jvow 57.46 65.70 70.87 73.35 75.14 78.13 79.10 82.19 84.05 85.73
krkopt 26.05 29.32 33.66 36.18 37.66 39.03 40.09 41.91 42.40 42.93
letter 17.22 27.69 44.63 50.36 53.60 56.73 60.66 62.62 63.38 64.08
liv 66.43 68.77 70.26 71.88 72.65 75.97 75.39 77.01 77.86 78.59
lym 84.16 86.57 87.49 88.57 89.08 90.76 90.86 91.81 93.05 93.62
magic 80.58 80.87 80.87 81.32 82.00 82.63 83.24 83.79 84.09 84.19
msh 91.78 93.40 94.86 95.61 96.10 97.73 97.56 97.98 98.71 98.79
nurse 74.71 78.96 82.50 83.85 86.33 89.35 88.19 90.83 91.60 92.03
page 93.44 94.09 94.56 94.82 95.03 95.74 95.39 96.15 96.66 96.92
pen 78.14 84.14 87.96 89.95 91.35 92.61 93.25 94.89 95.23 95.57
pid 77.10 77.24 77.83 78.57 78.83 79.61 79.53 79.99 80.51 80.85
psd 93.25 94.48 95.68 97.00 97.42 99.32 98.36 99.41 99.80 99.84

Continued on next page
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Table 3.8 – continued from previous page

Dataset 1k 2k 5k 10k 20k 50k 100k 200k 500k 1000k

sb 93.42 93.42 93.44 93.43 93.43 93.46 93.46 93.48 93.52 93.54
seg 81.34 84.17 87.74 89.32 90.80 92.40 92.27 93.58 94.69 95.13
shuttle 97.42 97.61 98.49 98.65 98.99 99.35 99.28 99.56 99.69 99.72
sick 94.02 93.95 94.06 94.01 94.30 94.38 94.29 94.71 96.42 96.98
son 78.58 80.52 82.40 81.92 83.29 87.54 85.98 88.67 90.37 90.90
spect 89.27 90.02 90.53 91.22 91.10 92.71 92.46 92.88 93.64 94.32
spf 61.38 63.39 65.87 67.49 68.10 69.45 70.46 72.07 72.41 73.11
thy 93.05 93.70 94.04 94.58 94.78 95.44 95.12 96.01 97.10 97.54
ttt 69.61 70.10 71.33 72.05 73.10 74.79 74.13 75.80 80.15 79.20
veh 58.17 59.55 62.95 62.74 65.03 67.65 65.85 69.97 74.41 75.34
vene 92.45 92.65 92.76 93.23 93.15 93.65 93.61 93.96 94.16 94.36
vote 93.05 93.52 93.75 94.57 94.45 96.35 95.47 96.77 97.49 97.59
vow 47.24 57.76 64.78 69.22 70.46 72.26 74.36 76.28 77.29 78.21
w21 81.83 82.52 83.35 83.75 84.30 85.20 85.36 86.56 86.48 86.88
w40 76.83 78.52 79.29 79.91 80.89 82.69 82.55 84.37 85.25 85.80
wfr 62.45 65.72 68.91 71.17 72.33 74.11 74.03 76.88 78.28 79.95
wilt 94.61 94.61 94.61 94.61 94.61 94.61 94.77 94.65 94.70 94.79
wine 52.25 53.37 54.27 54.80 55.02 55.61 56.04 56.84 56.85 57.14
zoo 94.53 97.03 98.18 97.50 97.94 98.14 97.90 97.54 98.06 98.42

Table 3.9: The average sizes of the DTs induced using different number of iterations

Dataset 1k 2k 5k 10k 20k 50k 100k 200k 500k 1000k

adult 2.68 2.68 2.84 2.80 2.68 2.36 2.88 2.72 2.64 2.80
ausc 3.00 3.12 3.16 3.40 3.20 2.84 3.24 3.24 2.96 2.96
bank 2.00 2.04 2.00 2.00 2.00 2.04 2.08 2.08 2.16 2.28
bc 4.28 4.52 4.96 5.40 5.56 5.00 5.80 5.80 5.84 5.84
bch 3.28 4.20 22.04 94.40 213.76 208.56 246.04 251.40 225.00 238.56
bcw 2.12 2.28 2.12 2.32 2.32 2.12 2.28 2.48 2.40 2.36
ca 3.08 3.56 3.40 3.28 3.52 3.00 3.60 3.36 3.04 3.00
car 5.44 6.40 6.40 6.96 7.40 6.76 8.40 8.28 7.92 7.88
cmc 5.68 6.20 6.36 6.72 6.72 6.16 7.56 6.80 5.80 6.36
ctg 16.00 18.28 20.80 23.20 22.92 18.72 24.88 22.80 18.88 19.76
cvf 8.04 9.36 9.80 10.36 10.48 7.72 11.68 8.48 7.92 8.28
eb 6.72 18.20 45.28 58.56 67.32 58.84 73.48 55.92 50.28 53.48
eye 3.16 3.24 3.08 3.24 3.32 3.16 3.52 3.40 3.44 3.40
ger 3.56 3.68 3.44 3.60 3.52 2.84 3.64 3.12 2.68 2.68
gls 12.32 12.64 16.76 16.92 17.56 16.20 17.76 17.40 16.60 16.60
hep 4.04 4.16 4.16 4.32 4.40 3.96 4.40 4.24 4.00 4.00
hrtc 10.92 12.00 12.40 12.56 13.80 12.20 15.12 14.40 12.88 13.24
hrts 3.56 3.76 3.84 3.44 3.88 3.20 4.20 3.80 3.40 3.48
ion 4.76 4.80 4.96 5.00 5.24 4.04 5.08 5.12 3.88 3.84
irs 3.56 3.64 3.84 3.68 4.16 3.44 3.76 3.48 3.72 3.72
jvow 17.88 21.36 22.40 24.36 24.48 19.80 25.72 20.52 17.88 17.24
krkopt 15.48 29.00 40.24 45.68 49.08 45.20 53.84 49.80 47.80 48.96
letter 7.44 28.92 63.16 72.52 82.48 74.96 86.32 76.64 71.36 75.32
liv 3.84 4.24 4.56 4.56 4.64 4.32 5.08 4.56 4.52 4.44
lym 7.48 9.08 10.44 10.64 10.76 9.16 10.88 10.80 9.20 9.52
magic 3.04 3.12 3.00 3.00 3.08 3.00 3.04 3.00 3.00 3.00
msh 3.92 3.96 4.32 4.32 4.56 3.80 4.60 4.44 3.60 3.52
nurse 7.04 7.92 8.00 8.00 8.16 6.20 8.28 6.96 6.28 6.40
page 5.32 5.76 6.28 6.40 6.60 6.08 6.48 6.52 6.16 6.16
pen 20.04 22.64 23.00 24.08 24.08 20.24 24.00 20.60 19.48 19.56
pid 3.28 3.64 3.72 3.56 3.60 3.32 4.00 3.48 3.36 3.40
psd 2.92 3.12 2.92 2.80 2.64 2.16 2.80 2.28 2.00 2.04
sb 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00
seg 12.92 14.08 14.88 15.84 15.92 12.88 16.72 14.76 12.56 12.32
shuttle 7.48 7.64 7.56 7.48 7.64 7.48 7.92 7.68 7.24 7.48

Continued on next page
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Table 3.9 – continued from previous page

Dataset 1k 2k 5k 10k 20k 50k 100k 200k 500k 1000k

sick 2.08 2.04 2.08 2.08 2.20 2.24 2.12 2.28 2.88 3.04
son 4.92 4.88 5.32 5.84 5.72 4.68 5.84 5.68 4.64 4.60
spect 3.12 3.28 3.40 3.32 3.52 3.00 3.88 3.80 3.04 3.08
spf 12.12 13.40 15.80 16.28 17.00 14.84 18.64 16.88 15.00 16.12
thy 4.04 4.24 4.24 4.32 4.64 4.24 4.92 4.52 4.32 4.40
ttt 3.28 3.56 3.72 4.08 4.44 4.00 4.48 4.28 4.76 4.40
veh 9.48 10.36 10.80 11.28 11.48 9.52 11.80 11.20 9.32 9.36
vene 4.28 4.68 4.68 4.92 4.84 4.76 4.88 4.96 4.96 4.84
vote 3.04 3.32 3.36 3.36 3.44 3.04 3.48 3.24 3.00 3.00
vow 25.32 31.56 37.68 40.20 41.52 38.00 43.00 41.00 38.56 39.44
w21 5.28 5.24 5.44 5.60 5.32 4.52 5.28 4.52 4.32 4.08
w40 5.72 5.60 5.64 5.92 5.84 4.64 5.92 4.68 4.36 4.28
wfr 7.68 8.68 9.60 10.20 10.56 8.76 10.92 10.00 8.96 9.04
wilt 2.00 2.00 2.00 2.00 2.00 2.00 2.04 2.04 2.04 2.08
wine 8.36 8.88 10.08 11.52 11.40 9.76 12.24 11.32 10.80 11.56
zoo 10.44 10.64 10.96 11.68 10.52 8.60 10.68 9.72 7.16 7.08

It can be seen from the results that indeed the more iterations are at disposal, the more accurate

the DT solutions become. However, after a certain point, which is different for different

datasets, the EFTI algorithm is unable to improve on the solution significantly when more

iterations are given for the induction. Usually, at around 500k iterations, all advancements

in the quality of induced DT individuals have stopped for the vast majority of the datasets.

Furthermore, for some datasets like bank, bcw, ca, irs and wilt, even a 1000 iterations

were enough to find a decent solution.

3.5.2 Equitemporal comparison with the existing solutions

This section presents the results of comparison of the quality between DTs induced by the

existing algorithms from the Table 3.7, and DTs induced by the EFTI algorithm in the same

amount of time. Each subsection is devoted to comparison of the EFTI algorithm to one of the

existing solutions, which was performed by first letting the other algorithm induce the DTs in a

five 5-fold cross-validations on all datasets from the Table 2.1, while measuring the induction

times. The average induction times were then calculated for each of the dataset, and EFTI was

then let to perform same five 5-fold cross-validations but constrained per dataset to running

only the amount of time that the other algorithm needed on average for the same dataset. For

each comparison, two tables were generated: one showing the average induction times per

dataset for the algorithm EFTI is being compared to, and the other showing the comparison per

dataset between the average induced DT accuracies, sizes and fitnesses. The DT fitness used

for this comparison is not the same fitness used during the induction by the EFTI algorithm,

but is recalculated after the induction from the induced DTs’ size and the accuracy attained

on the test set using the equation (7). The backgrounds of cells in the comparison table are

colored in shades of red and blue. The better the performance regarding certain feature (either

accuracy, size or fitness), of EFTI in comparison to the other algorithm on certain dataset, the

darker shade of blue is used. On the other hand if the EFTI algorithm performed worse, the

worse its performance the darker the shade of red is used as the cell background. The average

data in both tables are supplied with their 95% confidence intervals.

The Table 3.10 shows two sets of the EFTI algorithm parameters that were used in the

experiments. The “High accuracy” set was used for the comparison with incremental
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Figure 3.21: Dependency of the induced DT sizes and accuracies on the number of

iterations the EFTI algorithm was run. Datasets 1-25.
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Figure 3.22: Dependency of the induced DTs on the number of iterations the EFTI

algorithm was run. Datasets 25-50.
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algorithms, since they tend to create larger, but more accurate DTs, and the “High compression”

set was used for the comparison with full DT induction algorithms (namely GaTree and GALE),

since they tend to create smaller, but less accurate DTs.

Table 3.10: Two sets of the parameters set to the EFTI algorithm for the comparison

experiments

Approach Ko α β ρ0 ST pR

High accuracy 0.01 1 0.6 5× 10−5 0.05 1× 10−4

High compression 0.2 1 0.6 5× 10−5 0.05 1× 10−4

3.5.2.1 CART-LC

The following section presents the results of the comparison between the CART-LC algorithm

and the EFTI algorithm with the “High accuracy” parameter set. CART-LC is the quickest

oblique induction algorithm of the ones used in the experiments, and its induction times are

shown in the Table 3.11.

Table 3.11: The average induction times of the CART-LC algorithm per dataset

Dataset Ind. Time [s] Dataset Ind. Time [s] Dataset Ind. Time [s]

adult 6.14± 0.28 hrts 0.01± 0.00 shuttle 2.92± 0.18

ausc 0.04± 0.00 ion 0.03± 0.00 sick 0.31± 0.02

bank 14.03± 0.49 irs 0.00± 0.00 son 0.02± 0.00

bc 0.01± 0.00 jvow 3.03± 0.09 spect 0.01± 0.00

bch 3.46± 0.11 krkopt 4.13± 0.14 spf 0.53± 0.02

bcw 0.01± 0.00 letter 9.10± 0.33 thy 0.27± 0.02

ca 0.04± 0.00 liv 0.01± 0.00 ttt 0.04± 0.00

car 0.04± 0.00 lym 0.01± 0.00 veh 0.08± 0.01

cmc 0.08± 0.01 magic 3.39± 0.09 vene 0.00± 0.00

ctg 0.45± 0.02 msh 0.59± 0.06 vote 0.01± 0.00

cvf 2.12± 0.09 nurse 0.36± 0.01 vow 0.10± 0.01

eb 6.94± 0.11 page 0.59± 0.04 w21 1.58± 0.07

eye 2.15± 0.10 pen 2.59± 0.13 w40 2.86± 0.08

ger 0.05± 0.01 pid 0.03± 0.00 wfr 0.99± 0.04

gls 0.01± 0.00 psd 0.00± 0.00 wilt 0.16± 0.04

hep 0.01± 0.00 sb 0.28± 0.04 wine 0.69± 0.02

hrtc 0.02± 0.00 seg 0.19± 0.01 zoo 0.00± 0.00

The results of the comparison experiments are displayed side by side in the Table 3.12. The

results show that, although the EFTI algorithm was not built for time efficiency as its primary

objective, it can still readily compete with a fast algorithm such as CART-LC. There are some

datasets, such as car, ctg, eb, eye, jvow, krkopt, letter, nurse, psd, seg, vow and
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wfr, where EFTI significantly underachieved with respect to the DT accuracy. Generally these

are the cases which require big DTs, for which the EFTI algorithm did not have time in this

scenario, or was too constrained by the oversize weight parameter Ko. For all other datasets, the

EFTI algorithm managed to either produce smaller DTs, or the DTs with increased accuracy

by paying a small price in the DT size. For the datasets like: adult, bank, cmc, magic,

page, shuttle, sick, spf, ttt, wilt, and wine. EFTI managed to compress the DTs

up to 20 times (40 in the case of wine dataset), compared to the CART-LC, with the loss in

accuracy of only few percent. For the others like ausc, bc, bch, bcw, ca, hrts, liv, pid,

w21 and w40, EFTI even succeeded in producing more accurate DTs, with their sizes being

up to 3 times smaller than the DTs induced by the CART-LC. Finally, for some datasets like:

gls, hep, hrtc, irs, lym, son, spect and zoo, EFTI created DTs that are 10-20% more

accurate, by paying small price in their size, compared to the CART-LC. There are only four

datasets, for which the EFTI algorithm fitness measure shows poorer combined performance

on both fields of accuracy and size: ger, psd, seg and thy.

Table 3.12: The results of the comparison experiments between the CART-LC algorithm

and the EFTI algorithm, displayed side by side for different induced DTs’ characteristics:

accuracy, size and fitness

Accuracy Size Fitness

Dataset CART-LC EFTI CART-LC EFTI CART-LC EFTI

adult 85.48 82.45 55.0± 17.1 2.6± 0.2 −8.66± 5.97 0.82± 0.00

ausc 84.58 87.92 4.1± 1.4 2.9± 0.1 0.81± 0.04 0.88± 0.00

bank 89.75 88.36 42.7± 22.2 2.0± 0.1 −9.03± 9.97 0.88± 0.00

bc 88.26 89.09 8.7± 2.1 4.2± 0.3 0.83± 0.04 0.89± 0.00

bch 13.25 20.19 259.3± 120.4 207.8± 7.3 0.09± 0.04 0.19± 0.00

bcw 93.23 97.55 3.0± 0.7 2.2± 0.2 0.92± 0.02 0.98± 0.00

ca 85.54 87.72 6.1± 2.3 3.2± 0.3 0.76± 0.11 0.87± 0.00

car 94.72 78.12 36.3± 3.7 5.1± 0.4 0.28± 0.14 0.78± 0.01

cmc 53.93 53.46 21.4± 14.0 5.9± 0.3 −0.29± 1.28 0.53± 0.01

ctg 81.95 70.04 52.7± 11.9 20.5± 0.8 0.60± 0.11 0.69± 0.01

cvf 76.03 73.80 35.6± 10.3 8.6± 0.5 0.54± 0.14 0.74± 0.01

eb 65.46 29.19 1818.4± 778.8 43.5± 3.0 −44.36± 28.42 0.29± 0.01

eye 83.37 58.62 545.5± 73.4 3.1± 0.2 −676.92± 178.57 0.58± 0.00

ger 95.48 91.16 2.8± 0.9 3.2± 0.3 0.94± 0.03 0.91± 0.01

gls 66.55 74.15 11.4± 2.6 14.1± 1.3 0.65± 0.04 0.73± 0.01

hep 77.29 89.19 2.5± 0.4 3.9± 0.2 0.77± 0.03 0.88± 0.01

hrtc 52.66 68.12 6.0± 2.5 12.0± 0.5 0.52± 0.03 0.67± 0.01

hrts 76.00 86.50 4.8± 2.2 3.3± 0.3 0.70± 0.08 0.86± 0.00

ion 89.71 90.20 4.3± 1.2 4.4± 0.3 0.87± 0.03 0.89± 0.01

irs 93.57 97.33 3.2± 0.2 3.5± 0.3 0.94± 0.02 0.97± 0.00

jvow 90.64 73.07 233.1± 19.7 22.1± 1.1 −4.97± 0.95 0.71± 0.01

krkopt 77.70 33.01 2964.0± 98.0 37.0± 1.4 −208.72± 14.09 0.33± 0.00

letter 83.81 49.60 905.7± 80.4 72.9± 2.4 −9.21± 1.66 0.48± 0.01

Continued on next page
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Table 3.12 – continued from previous page

Accuracy Size Fitness

Dataset CART-LC EFTI CART-LC EFTI CART-LC EFTI

liv 66.38 68.89 8.8± 3.9 4.0± 0.3 0.45± 0.18 0.68± 0.01

lym 74.61 86.22 4.2± 1.2 8.6± 0.9 0.74± 0.04 0.85± 0.01

magic 86.12 81.20 65.6± 11.2 3.0± 0.1 −9.35± 3.66 0.81± 0.00

msh 99.90 94.41 10.4± 0.7 4.3± 0.3 0.81± 0.03 0.93± 0.01

nurse 98.08 70.44 132.4± 9.5 8.2± 0.7 −5.58± 0.96 0.70± 0.02

page 96.92 94.74 18.0± 6.9 5.9± 0.2 0.80± 0.16 0.95± 0.00

pen 96.64 87.99 98.4± 10.8 22.8± 1.0 0.15± 0.18 0.87± 0.00

pid 74.27 77.57 9.1± 4.3 3.2± 0.2 0.47± 0.34 0.77± 0.00

psd 100.00 88.28 2.0± 0.0 3.3± 0.4 1.00± 0.00 0.88± 0.02

sb 93.17 93.44 3.1± 1.1 2.0± 0.0 0.91± 0.03 0.93± 0.00

seg 94.54 85.84 22.1± 4.2 13.7± 0.7 0.88± 0.02 0.85± 0.01

shuttle 99.96 96.93 25.0± 1.5 7.2± 0.3 0.93± 0.01 0.97± 0.01

sick 97.73 94.03 9.1± 2.2 2.1± 0.1 0.79± 0.12 0.94± 0.00

son 71.88 81.29 4.3± 1.4 5.0± 0.4 0.69± 0.05 0.79± 0.01

spect 82.64 90.15 3.0± 0.9 3.1± 0.3 0.82± 0.03 0.90± 0.00

spf 71.23 66.73 50.3± 17.1 14.2± 0.8 0.19± 0.37 0.66± 0.01

thy 98.85 94.32 5.4± 1.0 4.1± 0.1 0.98± 0.01 0.94± 0.00

ttt 79.36 71.29 33.8± 8.7 3.6± 0.3 −2.08± 1.24 0.71± 0.01

veh 69.20 61.96 23.0± 7.7 10.5± 0.5 0.39± 0.20 0.60± 0.01

vene 90.40 92.05 4.8± 1.7 4.5± 0.3 0.89± 0.03 0.92± 0.00

vote 93.28 92.94 2.8± 0.7 3.2± 0.2 0.93± 0.01 0.93± 0.00

vow 78.18 61.52 63.6± 7.4 35.7± 0.6 0.58± 0.04 0.58± 0.01

w21 81.30 84.34 29.4± 13.9 4.8± 0.3 −0.77± 1.44 0.84± 0.00

w40 80.66 81.57 20.1± 5.1 5.1± 0.3 0.41± 0.22 0.81± 0.00

wfr 98.09 69.32 25.3± 3.1 9.0± 0.4 0.67± 0.09 0.68± 0.01

wilt 98.01 94.61 12.7± 3.1 2.0± 0.0 0.57± 0.25 0.95± 0.00

wine 57.41 54.39 414.4± 93.3 9.5± 0.4 −25.04± 7.10 0.54± 0.00

zoo 85.31 94.46 6.0± 0.6 9.9± 0.8 0.85± 0.03 0.94± 0.01

3.5.2.2 OC1-ES

The following section presents the results of the comparison between the OC1-ES algorithm

and the EFTI algorithm with the “High accuracy” parameter set. The OC1-ES is the second

fastest algorithm among the ones used in the experiments, and needs on average (it varies

with the dataset) twice as much time for the induction as CART-LC, and its induction times

are shown in the Table 3.13. However, for some of the more complex datasets, the average

induction times were similar to the CART-LC’s (jvow, pen, w40), and some were even shorter

(bch, letter). OC1-ES was run with the default setting of 1000 iterations per node. Several

experiments were made to test whether higher iteration counts (2000, 5000, 10000 and 50000)

would increase the quality of the solutions, but no benefits were observed over the defaults.
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Table 3.13: The average induction times of the OC1-ES algorithm per dataset

Dataset Ind. Time [s] Dataset Ind. Time [s] Dataset Ind. Time [s]

adult 15.28± 0.12 hrts 0.08± 0.01 shuttle 3.50± 0.18

ausc 0.21± 0.01 ion 0.17± 0.02 sick 0.55± 0.02

bank 20.34± 0.30 irs 0.01± 0.00 son 0.04± 0.00

bc 0.09± 0.00 jvow 3.21± 0.04 spect 0.06± 0.01

bch 2.55± 0.01 krkopt 10.39± 0.06 spf 0.98± 0.03

bcw 0.07± 0.00 letter 7.06± 0.04 thy 0.35± 0.02

ca 0.21± 0.01 liv 0.11± 0.01 ttt 0.29± 0.01

car 0.20± 0.01 lym 0.05± 0.01 veh 0.35± 0.01

cmc 0.58± 0.01 magic 7.56± 0.07 vene 0.03± 0.00

ctg 1.03± 0.02 msh 0.88± 0.06 vote 0.06± 0.00

cvf 3.88± 0.05 nurse 1.43± 0.03 vow 0.33± 0.01

eb 18.24± 0.15 page 0.89± 0.02 w21 2.42± 0.04

eye 6.30± 0.07 pen 2.59± 0.06 w40 3.71± 0.09

ger 0.16± 0.01 pid 0.23± 0.01 wfr 0.86± 0.03

gls 0.07± 0.00 psd 0.00± 0.00 wilt 0.26± 0.01

hep 0.05± 0.01 sb 0.93± 0.03 wine 2.36± 0.03

hrtc 0.10± 0.01 seg 0.39± 0.01 zoo 0.02± 0.00

The results of the comparison experiments are displayed side by side in the Table 3.14. The

results show, that OC1-ES has very similar performance with respect to the DT accuracy to the

CART-LC for most of the datasets, with a tendency to induce larger DTs. On the other hand,

the EFTI algorithm managed only slightly to improve on DT accuracy, where it was given

more time. Hence, the discussion about the results from the Section 3.5.2.1, can be applied

almost verbatim to the results from the Table 3.14. The only differences stem from the fact

that OC1-ES produces even larger DTs, hence the compresion ratios of the EFTI algorithm are

even higher. This resulted in EFTI now producing smaller DTs for the datasets: ger, hep,

son and spect as opposed to the comparison results with CART-LC, while still retaining an

advantage in the accuracy, and even increasing it.

Table 3.14: The results of the comparison experiments between the OC1-ES algorihtm

and the EFTI algorithm, displayed side by side for different induced DTs’ characteristics:

accuracy, size and fitness

Accuracy Size Fitness

Dataset OC1-ES EFTI OC1-ES EFTI OC1-ES EFTI

adult 85.59 82.77 54.9± 16.4 2.4± 0.2 −8.35± 5.09 0.83± 0.00

ausc 85.59 88.56 5.2± 2.9 2.8± 0.2 0.73± 0.15 0.88± 0.00

bank 90.10 88.40 75.7± 19.8 2.0± 0.0 −16.30± 10.19 0.88± 0.00

bc 85.09 91.43 13.9± 4.0 4.8± 0.3 0.65± 0.12 0.91± 0.00

bch 14.16 17.63 379.1± 130.1 141.8±12.7 0.07± 0.06 0.17± 0.00

Continued on next page
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Table 3.14 – continued from previous page

Accuracy Size Fitness

Dataset OC1-ES EFTI OC1-ES EFTI OC1-ES EFTI

bcw 92.23 97.71 5.6± 1.9 2.2± 0.2 0.84± 0.06 0.98± 0.00

ca 85.25 88.47 8.7± 2.8 3.0± 0.1 0.67± 0.14 0.88± 0.00

car 95.21 82.79 47.3± 5.6 6.0± 0.4 −0.28± 0.29 0.83± 0.01

cmc 53.53 56.00 34.0± 18.2 6.1± 0.5 −1.06± 1.47 0.55± 0.01

ctg 82.15 72.79 59.6± 13.8 19.8± 1.0 0.53± 0.14 0.72± 0.01

cvf 72.61 74.55 219.8± 74.6 8.4± 0.4 −10.76± 7.74 0.75± 0.01

eb 65.48 41.23 2278.1±1009.6 57.6± 3.3 −73.06± 45.38 0.41± 0.01

eye 83.40 58.98 616.7± 86.3 3.2± 0.2 −874.74± 229.75 0.59± 0.00

ger 96.16 92.05 4.7± 1.3 3.0± 0.3 0.92± 0.04 0.92± 0.01

gls 64.91 78.90 12.0± 3.5 15.5± 0.8 0.63± 0.04 0.77± 0.01

hep 78.58 90.97 4.5± 1.8 4.1± 0.2 0.74± 0.06 0.90± 0.01

hrtc 52.46 70.77 11.7± 6.1 12.1± 0.2 0.48± 0.06 0.69± 0.00

hrts 78.00 88.06 7.6± 2.7 3.3± 0.2 0.64± 0.12 0.88± 0.00

ion 88.51 91.19 5.7± 2.0 4.3± 0.3 0.81± 0.07 0.90± 0.01

irs 94.28 97.55 3.6± 0.5 3.4± 0.2 0.94± 0.02 0.97± 0.00

jvow 88.10 71.88 412.6± 30.3 22.2± 1.0 −17.41± 2.45 0.70± 0.01

krkopt 76.25 35.42 3600.7± 133.2 42.8± 1.3 −303.58± 22.70 0.35± 0.00

letter 84.40 48.05 1255.4± 81.7 71.9± 1.6 −18.51± 2.28 0.47± 0.01

liv 64.99 74.46 10.2± 4.3 4.2± 0.3 0.37± 0.26 0.73± 0.01

lym 71.79 89.35 7.8± 2.7 9.2± 0.7 0.69± 0.02 0.88± 0.01

magic 85.35 81.93 97.9± 24.0 3.1± 0.1 −25.68± 19.45 0.82± 0.00

msh 99.83 94.71 19.6± 1.6 4.0± 0.3 0.19± 0.14 0.94± 0.01

nurse 97.65 80.42 231.6± 13.4 7.6± 0.5 −19.47± 2.33 0.80± 0.01

page 97.10 94.94 23.9± 6.0 5.8± 0.3 0.75± 0.14 0.95± 0.00

pen 95.84 88.04 196.8± 15.7 23.4± 0.9 −2.52± 0.55 0.86± 0.01

pid 73.30 79.34 7.0± 2.4 3.2± 0.2 0.63± 0.09 0.79± 0.00

psd 100.00 89.07 2.0± 0.0 3.0± 0.4 1.00± 0.00 0.89± 0.02

sb 93.28 93.46 4.1± 3.8 2.0± 0.0 0.73± 0.40 0.93± 0.00

seg 94.36 87.66 31.6± 5.5 14.0± 0.7 0.79± 0.06 0.87± 0.01

shuttle 99.95 97.77 24.8± 2.6 7.4± 0.2 0.93± 0.02 0.98± 0.00

sick 98.53 93.94 13.9± 2.5 2.0± 0.1 0.55± 0.17 0.94± 0.00

son 70.28 83.75 6.5± 1.9 5.2± 0.3 0.63± 0.05 0.81± 0.01

spect 86.35 91.75 5.4± 2.9 3.1± 0.1 0.75± 0.13 0.91± 0.00

spf 72.83 68.05 80.0± 19.7 15.1± 0.9 −0.38± 0.60 0.67± 0.00

thy 99.24 94.23 7.1± 1.0 4.2± 0.2 0.98± 0.01 0.94± 0.00

ttt 81.27 73.84 48.7± 10.1 3.9± 0.3 −4.82± 2.06 0.73± 0.00

veh 68.79 65.35 37.6± 12.3 10.4± 0.4 −0.20± 0.51 0.64± 0.01

vene 88.20 93.13 5.4± 1.4 4.5± 0.2 0.86± 0.02 0.93± 0.00

Continued on next page
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Table 3.14 – continued from previous page

Accuracy Size Fitness

Dataset OC1-ES EFTI OC1-ES EFTI OC1-ES EFTI

vote 94.41 94.64 3.8± 1.5 3.2± 0.2 0.91± 0.04 0.94± 0.00

vow 76.81 66.58 90.2± 7.3 37.6± 1.1 0.35± 0.06 0.63± 0.01

w21 77.54 84.59 75.0± 19.5 4.5± 0.2 −5.56± 3.27 0.84± 0.00

w40 76.87 81.86 67.0± 19.2 5.0± 0.2 −4.51± 3.02 0.81± 0.00

wfr 99.36 68.85 19.5± 1.9 9.5± 0.6 0.83± 0.04 0.67± 0.01

wilt 97.83 94.61 17.5± 3.6 2.0± 0.0 0.21± 0.40 0.95± 0.00

wine 56.82 55.15 498.0± 105.5 9.8± 0.4 −35.25± 10.47 0.55± 0.00

zoo 77.68 97.58 4.5± 0.9 10.2± 0.8 0.78± 0.07 0.97± 0.01

3.5.2.3 OC1-SA

The following section presents the results of the comparison between the OC1-SA algorithm

and the EFTI algorithm with the “High accuracy” parameter set. OC1-SA takes even more time

than OC1-ES to run, and is 10 to 20 times slower than CART-LC. Its induction times are shown

in the Table 3.15. OC1-SA was run with the default setting of 20 temperature values with 50

iterations for each of them per node. Several experiments were made to test whether different

number of temperature values (10, 20, 40 and 80) and iteration counts (25, 50 and 100) would

increase the quality of the solutions, but no benefits were observed over the defaults.

Table 3.15: The average induction times of the OC1-SA algorithm per dataset

Dataset Ind. Time [s] Dataset Ind. Time [s] Dataset Ind. Time [s]

adult 131.36± 1.44 hrts 0.41± 0.02 shuttle 30.88± 1.88

ausc 1.25± 0.05 ion 2.77± 0.25 sick 11.23± 0.54

bank 234.89± 5.59 irs 0.02± 0.00 son 1.00± 0.01

bc 0.14± 0.01 jvow 25.73± 0.36 spect 0.56± 0.05

bch 19.63± 0.13 krkopt 32.41± 0.29 spf 12.37± 0.34

bcw 0.26± 0.02 letter 69.46± 0.49 thy 6.80± 0.59

ca 1.41± 0.07 liv 0.24± 0.01 ttt 1.13± 0.04

car 0.55± 0.01 lym 0.34± 0.04 veh 2.66± 0.10

cmc 2.17± 0.04 magic 47.22± 0.65 vene 0.02± 0.00

ctg 10.89± 0.31 msh 15.61± 0.82 vote 0.40± 0.02

cvf 33.21± 0.39 nurse 7.65± 0.18 vow 1.37± 0.03

eb 40.22± 0.44 page 6.68± 0.26 w21 27.99± 0.55

eye 50.82± 0.48 pen 27.34± 0.34 w40 89.97± 1.65

ger 2.24± 0.08 pid 0.76± 0.02 wfr 14.83± 0.51

gls 0.24± 0.01 psd 0.00± 0.00 wilt 0.89± 0.03

hep 0.36± 0.04 sb 9.36± 0.36 wine 12.06± 0.10

hrtc 0.51± 0.03 seg 4.10± 0.07 zoo 0.11± 0.00
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The results of the comparison experiments are displayed side by side in the Table 3.14. The

results show, that OC1-SA produced very similar results in terms of accuracy to OC1-ES, and

tended to produce somewhat smaller DTs. Nevertheless, the conclusions for the comparison

results are almost identical to the ones discussed for OC1-ES in the Section 3.5.2.2

Table 3.16: The results of the comparison experiments between the OC1-SA algorihtm

and the EFTI algorithm, displayed side by side for different induced DTs’ characteristics:

accuracy, size and fitness

Accuracy Size Fitness

Dataset OC1-SA EFTI OC1-SA EFTI OC1-SA EFTI

adult 85.55 83.34 89.5± 30.2 2.5± 0.2 −26.34± 20.87 0.83± 0.00

ausc 85.28 89.44 4.6± 2.4 2.8± 0.2 0.77± 0.10 0.89± 0.00

bank 89.96 88.94 72.3± 23.6 2.2± 0.2 −17.25± 12.86 0.89± 0.00

bc 86.05 91.98 16.0± 4.5 4.8± 0.3 0.59± 0.15 0.92± 0.00

bch 13.88 23.09 395.4± 150.5 207.7± 1.2 0.05± 0.08 0.22± 0.00

bcw 92.44 97.77 5.8± 1.7 2.2± 0.2 0.85± 0.06 0.98± 0.00

ca 84.87 89.18 9.4± 3.9 3.0± 0.1 0.56± 0.32 0.89± 0.00

car 94.32 84.00 43.0± 4.9 6.4± 0.3 −0.04± 0.23 0.84± 0.00

cmc 52.10 58.83 35.7± 13.2 5.7± 0.3 −0.67± 0.70 0.58± 0.01

ctg 82.24 77.60 54.3± 15.5 18.8± 0.8 0.55± 0.17 0.77± 0.00

cvf 74.21 78.00 199.9± 63.5 7.6± 0.2 −8.34± 7.06 0.78± 0.00

eb 65.47 48.02 1545.2± 740.6 62.4± 3.5 −36.15± 27.60 0.48± 0.02

eye 83.52 59.67 560.4± 95.3 3.2± 0.2 −759.46± 227.15 0.59± 0.00

ger 96.32 96.51 4.9± 1.4 2.8± 0.2 0.92± 0.04 0.96± 0.00

gls 64.67 81.57 15.3± 3.5 15.7± 0.8 0.62± 0.03 0.79± 0.01

hep 77.42 92.26 3.6± 1.2 4.0± 0.1 0.75± 0.04 0.91± 0.01

hrtc 54.04 73.03 6.4± 4.0 12.3± 0.4 0.52± 0.04 0.71± 0.01

hrts 75.19 88.80 5.9± 2.8 3.2± 0.2 0.64± 0.13 0.88± 0.00

ion 88.97 94.51 4.9± 1.4 3.7± 0.3 0.85± 0.05 0.94± 0.01

irs 93.60 97.81 3.4± 0.4 3.7± 0.3 0.93± 0.02 0.98± 0.00

jvow 87.93 80.29 404.4± 31.9 18.6± 0.8 −16.72± 2.61 0.79± 0.01

krkopt 75.17 37.86 3504.4± 148.1 45.0± 1.1 −283.86± 23.75 0.37± 0.00

letter 85.08 59.04 1260.7± 79.4 73.1± 1.6 −18.79± 2.15 0.57± 0.01

liv 65.51 76.13 10.1± 4.4 4.3± 0.3 0.36± 0.26 0.75± 0.00

lym 70.43 91.11 5.1± 1.9 9.0± 0.7 0.69± 0.03 0.90± 0.01

magic 85.17 83.60 111.7± 35.1 3.0± 0.0 −39.36± 27.47 0.83± 0.00

msh 99.91 98.16 21.3± 1.4 3.7± 0.2 0.04± 0.14 0.97± 0.00

nurse 96.66 88.34 223.1± 24.6 6.6± 0.5 −18.77± 4.03 0.88± 0.01

page 96.85 95.92 22.6± 5.9 6.0± 0.2 0.77± 0.12 0.96± 0.00

pen 95.74 93.61 188.3± 14.1 19.6± 0.7 −2.19± 0.47 0.93± 0.00

pid 73.90 79.63 10.0± 5.7 3.2± 0.2 0.30± 0.52 0.79± 0.00

psd 100.00 79.58 2.0± 0.0 3.1± 0.3 1.00± 0.00 0.79± 0.02

Continued on next page
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Table 3.16 – continued from previous page

Accuracy Size Fitness

Dataset OC1-SA EFTI OC1-SA EFTI OC1-SA EFTI

sb 93.34 93.50 2.8± 1.1 2.0± 0.0 0.91± 0.03 0.93± 0.00

seg 95.35 92.56 37.9± 5.1 13.2± 0.7 0.74± 0.06 0.92± 0.01

shuttle 99.95 98.94 24.2± 2.7 7.3± 0.2 0.93± 0.02 0.99± 0.00

sick 98.28 95.60 14.8± 3.4 2.7± 0.2 0.42± 0.23 0.95± 0.00

son 70.38 89.42 6.1± 1.9 4.3± 0.4 0.64± 0.06 0.88± 0.01

spect 87.47 92.95 3.4± 1.7 3.0± 0.1 0.84± 0.07 0.93± 0.00

spf 71.94 72.15 55.6± 16.9 14.5± 0.9 0.13± 0.40 0.71± 0.00

thy 99.22 95.81 7.9± 1.0 4.3± 0.2 0.98± 0.01 0.96± 0.00

ttt 77.68 75.72 43.4± 11.1 4.0± 0.2 −4.00± 2.18 0.75± 0.01

veh 68.20 71.52 32.8± 9.3 9.6± 0.5 0.10± 0.33 0.70± 0.01

vene 89.33 92.99 4.5± 1.4 4.6± 0.2 0.88± 0.02 0.93± 0.00

vote 94.16 96.41 4.1± 1.4 3.0± 0.1 0.90± 0.03 0.96± 0.00

vow 76.63 72.00 90.8± 6.9 37.2± 1.1 0.34± 0.06 0.68± 0.01

w21 77.12 86.28 59.3± 13.8 4.2± 0.2 −2.87± 2.06 0.86± 0.00

w40 76.25 85.51 55.4± 19.6 4.3± 0.2 −3.37± 3.23 0.85± 0.00

wfr 99.35 75.88 20.3± 2.2 9.0± 0.4 0.81± 0.05 0.75± 0.01

wilt 97.86 94.60 18.1± 3.3 2.0± 0.0 0.19± 0.33 0.95± 0.00

wine 57.84 56.26 504.3± 105.5 10.3± 0.4 −36.42± 10.01 0.56± 0.00

zoo 83.10 98.10 6.0± 0.9 8.5± 0.4 0.83± 0.06 0.98± 0.01

3.5.2.4 OC1

The following section presents the results of the comparison between the OC1 algorithm and

the EFTI algorithm with the “High accuracy” parameter set. OC1 takes similar time to run as

OC1-SA does, which is 10 to 20 times slower than CART-LC. Its induction times are shown in

the Table 3.17.
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Table 3.17: The average induction times of the OC1 algorithm per dataset

Dataset Ind. Time [s] Dataset Ind. Time [s] Dataset Ind. Time [s]

adult 69.24± 1.65 hrts 0.08± 0.00 shuttle 43.84± 2.91

ausc 0.45± 0.02 ion 0.24± 0.02 sick 3.09± 0.22

bank 208.78± 123.04 irs 0.02± 0.00 son 0.09± 0.00

bc 0.16± 0.01 jvow 28.23± 0.58 spect 0.04± 0.00

bch 23.33± 0.32 krkopt 72.34± 0.55 spf 3.89± 0.17

bcw 0.14± 0.01 letter 127.33± 1.38 thy 2.07± 0.25

ca 0.47± 0.02 liv 0.12± 0.01 ttt 0.58± 0.04

car 0.71± 0.04 lym 0.03± 0.00 veh 0.81± 0.02

cmc 0.91± 0.02 magic 49.98± 1.44 vene 0.04± 0.00

ctg 3.88± 0.10 msh 7.05± 0.60 vote 0.10± 0.01

cvf 15.92± 0.42 nurse 11.80± 0.30 vow 1.06± 0.02

eb 127.43± 2.64 page 7.66± 0.45 w21 18.40± 0.54

eye 15.61± 0.26 pen 24.50± 0.40 w40 28.54± 0.68

ger 0.32± 0.03 pid 0.37± 0.02 wfr 11.70± 0.41

gls 0.08± 0.00 psd 0.00± 0.00 wilt 1.56± 0.09

hep 0.04± 0.00 sb 2.03± 0.15 wine 8.08± 0.15

hrtc 0.12± 0.01 seg 1.93± 0.07 zoo 0.01± 0.00

The results of the comparison experiments are displayed side by side in the Table 3.14. The

results show, that OC1 has very similar performance with respect to the DT accuracy to the

CART-LC, but has a tendency to induce smaller DTs. However, the EFTI algorithm had a

significant advantage over CART-LC when it comes to the induced DT size, and this remains

true when compared to OC1 as well. This means that the discussion about the results from the

Section 3.5.2.1, remains valid for the results from the Table 3.18 too. The differences between

results of comparisons with CART-LC and OC1 arise mainly because in case of comparison

with OC1, EFTI had 10 to 20 times more time for the evolution, hence average accuracies

have significantly improved for some of the datasets like: bch, car, cmc, ctg, eb, jvow,

nurse, veh, vow and wfr, while OC1 brought no significant improvement to the accuracies

over CART-LC.

Table 3.18: The results of the comparison experiments between the OC1 algorihtm and

the EFTI algorithm, displayed side by side for different induced DTs’ characteristics:

accuracy, size and fitness

Accuracy Size Fitness

Dataset OC1 EFTI OC1 EFTI OC1 EFTI

adult 85.22 83.13 33.5± 8.8 2.4± 0.2 −2.18± 1.54 0.83± 0.00

ausc 83.48 88.92 4.7± 2.0 2.8± 0.2 0.78± 0.07 0.89± 0.00

bank 89.54 88.99 17.0± 5.7 2.2± 0.2 −0.02± 0.87 0.89± 0.00

bc 91.94 92.20 8.4± 1.8 5.0± 0.3 0.87± 0.03 0.92± 0.00

Continued on next page
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Table 3.18 – continued from previous page

Accuracy Size Fitness

Dataset OC1 EFTI OC1 EFTI OC1 EFTI

bch 12.46 23.17 285.5± 142.2 206.9± 1.1 0.07± 0.06 0.22± 0.00

bcw 93.86 97.77 3.1± 0.9 2.2± 0.2 0.93± 0.02 0.98± 0.00

ca 84.14 88.87 3.2± 0.7 3.0± 0.1 0.83± 0.01 0.89± 0.00

car 93.16 84.35 27.8± 3.6 6.3± 0.4 0.56± 0.10 0.84± 0.00

cmc 53.05 57.38 25.1± 12.6 6.0± 0.3 −0.21± 0.75 0.57± 0.01

ctg 79.88 75.53 28.8± 9.0 18.8± 0.6 0.73± 0.06 0.75± 0.01

cvf 75.80 77.52 37.0± 9.5 7.9± 0.4 0.54± 0.12 0.77± 0.00

eb 65.49 56.69 1013.5± 587.5 55.3± 1.9 −19.21± 19.29 0.56± 0.01

eye 84.72 59.11 430.8± 58.2 3.1± 0.1 −429.51± 117.77 0.59± 0.00

ger 93.96 93.96 4.0± 1.4 2.8± 0.2 0.91± 0.04 0.94± 0.01

gls 62.23 78.92 9.8± 2.4 16.3± 0.6 0.61± 0.03 0.77± 0.01

hep 77.29 90.74 3.8± 1.2 3.9± 0.2 0.75± 0.04 0.90± 0.01

hrtc 52.71 70.93 7.2± 3.5 12.2± 0.4 0.51± 0.03 0.69± 0.01

hrts 79.41 88.07 2.9± 1.0 3.2± 0.2 0.78± 0.03 0.88± 0.00

ion 86.86 92.08 4.6± 1.0 4.2± 0.3 0.84± 0.02 0.91± 0.01

irs 96.16 97.81 3.0± 0.1 3.8± 0.3 0.96± 0.01 0.98± 0.00

jvow 90.86 79.19 232.9± 21.9 20.0± 1.0 −5.03± 0.95 0.78± 0.01

krkopt 71.41 39.09 2738.3± 97.4 45.9± 1.4 −163.41± 11.48 0.38± 0.00

letter 82.10 60.01 882.8± 91.1 70.0± 1.8 −8.66± 1.80 0.58± 0.01

liv 65.68 74.45 7.4± 3.5 3.9± 0.3 0.51± 0.17 0.74± 0.01

lym 77.08 87.76 3.3± 0.8 8.8± 0.7 0.77± 0.02 0.86± 0.01

magic 86.22 83.34 66.2± 23.5 3.0± 0.0 −14.64± 13.71 0.83± 0.00

msh 99.73 97.43 10.4± 1.0 3.8± 0.2 0.81± 0.04 0.97± 0.00

nurse 95.73 88.52 120.1± 17.7 6.3± 0.4 −4.79± 1.72 0.88± 0.01

page 96.85 95.93 14.6± 3.0 6.1± 0.1 0.91± 0.03 0.96± 0.00

pen 96.49 93.05 80.4± 9.4 20.7± 0.8 0.44± 0.13 0.92± 0.00

pid 73.44 79.46 9.2± 3.8 3.1± 0.1 0.50± 0.22 0.79± 0.00

psd 100.00 88.46 2.0± 0.0 2.9± 0.4 1.00± 0.00 0.88± 0.02

sb 93.32 93.49 2.2± 0.3 2.0± 0.0 0.93± 0.00 0.93± 0.00

seg 93.73 90.82 21.1± 3.9 13.8± 0.8 0.88± 0.03 0.90± 0.01

shuttle 99.94 98.97 27.9± 2.9 7.3± 0.2 0.90± 0.02 0.99± 0.00

sick 96.57 94.85 11.9± 4.1 2.4± 0.2 0.50± 0.35 0.95± 0.00

son 69.59 84.62 3.6± 1.1 4.8± 0.2 0.68± 0.03 0.83± 0.01

spect 81.75 91.36 3.5± 1.2 3.2± 0.2 0.80± 0.04 0.91± 0.00

spf 69.53 70.06 43.4± 16.9 15.0± 0.5 0.28± 0.32 0.69± 0.00

thy 98.48 95.21 4.9± 0.5 4.3± 0.2 0.98± 0.00 0.95± 0.00

ttt 75.68 75.01 20.5± 7.1 4.0± 0.2 −0.44± 0.72 0.74± 0.01

veh 69.84 67.64 28.8± 7.9 9.4± 0.4 0.28± 0.20 0.66± 0.01

Continued on next page
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Table 3.18 – continued from previous page

Accuracy Size Fitness

Dataset OC1 EFTI OC1 EFTI OC1 EFTI

vene 89.40 93.32 4.6± 1.1 4.5± 0.2 0.88± 0.02 0.93± 0.00

vote 92.29 95.60 2.7± 0.7 3.1± 0.1 0.92± 0.01 0.95± 0.00

vow 78.20 71.33 48.5± 5.9 37.3± 1.1 0.68± 0.03 0.67± 0.01

w21 81.99 85.88 17.9± 5.4 4.4± 0.2 0.46± 0.29 0.86± 0.00

w40 80.89 84.36 16.0± 3.4 4.5± 0.2 0.60± 0.11 0.84± 0.00

wfr 97.40 75.79 23.8± 3.5 9.0± 0.4 0.70± 0.09 0.75± 0.01

wilt 97.93 94.60 13.6± 4.5 2.0± 0.0 0.37± 0.58 0.95± 0.00

wine 57.17 56.06 352.6± 89.3 9.9± 0.5 −18.97± 6.32 0.56± 0.00

zoo 82.44 96.95 5.6± 0.5 10.2± 0.7 0.82± 0.04 0.97± 0.01

3.5.2.5 NODT

The following section presents the results of the comparison between the NODT algorithm and

the EFTI algorithm with the “High accuracy” parameter set. NODT was run with the default

settings:

• Number of iterations: 100000

• Search probability: 0

• Percentage of available data used as validation set: 30%,

• Percentage of mutated bits: 10%

80



Hardware Acceleration of Nonincremental Algorithms for the Induction of Decision Trees and Decision Tree Ensembles 81

Table 3.19: The average induction times of the NODT algorithm per dataset

Dataset Ind. Time [s] Dataset Ind. Time [s] Dataset Ind. Time [s]

adult 1463.34± 46.73 hrts 3.29± 0.16 shuttle 1619.40± 46.47

ausc 10.47± 0.38 ion 4.45± 0.33 sick 51.20± 2.63

bank 2291.70± 68.97 irs 0.98± 0.07 son 9.57± 0.49

bc 6.18± 0.26 jvow 99.46± 1.90 spect 1.96± 0.17

bch 1713.47± 16.41 krkopt 2260.87± 13.85 spf 87.37± 1.01

bcw 3.51± 0.25 letter 976.72± 19.54 thy 79.74± 2.55

ca 10.86± 0.52 liv 6.41± 0.27 ttt 18.70± 0.79

car 22.22± 0.70 lym 5.48± 0.22 veh 39.83± 0.74

cmc 48.81± 1.01 magic 710.17± 13.44 vene 2.84± 0.12

ctg 77.21± 1.56 msh 83.39± 4.63 vote 2.86± 0.16

cvf 331.90± 5.53 nurse 227.43± 5.02 vow 28.85± 0.46

eb 1836.99± 561.92 page 115.45± 6.33 w21 162.98± 2.05

eye 889.33± 44.35 pen 221.76± 6.02 w40 130.97± 1.69

ger 10.69± 0.69 pid 22.16± 0.36 wfr 243.89± 2.55

gls 5.44± 0.17 psd 18.03± 0.72 wilt 49.67± 2.20

hep 1.57± 0.15 sb 55.38± 1.38 wine 222.03± 2.30

hrtc 8.53± 0.26 seg 36.17± 0.69 zoo 6.44± 0.01

The results of the comparison experiments are displayed side by side in the Table 3.14. It can be

seen from the results, that only in few cases has the NODT induced significantly advantageous

DTs in terms of accuracy, like from datasets: eye, jvow, krkopt, and letter, but usually

the EFTI algorithm had better results both in terms of the accuracy and size. For other datasets,

when NODT produced slightly more accurate DTs then EFTI, it was compensated by their size

being significantly larger in comparison to the DTs induced by EFTI. And vice versa, when

NODT produced smaller DTs, their accuracy was usually worse than that of DTs induced by

EFTI. This can also be seen in the fitness column, where EFTI always had advantage over

NODT.

Table 3.20: The results of the comparison experiments between the NODT algorithm and

the EFTI algorithm, displayed side by side for different induced DTs’ characteristics:

accuracy, size and fitness

Accuracy Size Fitness

Dataset NODT EFTI NODT EFTI NODT EFTI

adult 80.44 83.63 527.4± 7.8 2.6± 0.2 −555.07± 16.67 0.83± 0.00

ausc 82.35 89.77 7.8± 0.8 3.0± 0.1 0.75± 0.02 0.90± 0.00

bank 87.36 89.25 416.6± 5.8 2.2± 0.2 −375.53± 10.71 0.89± 0.00

bc 90.02 94.77 9.4± 1.1 5.8± 0.3 0.85± 0.02 0.94± 0.00

bch 12.17 24.89 332.6± 10.3 225.0± 4.4 0.10± 0.00 0.23± 0.00

bcw 93.22 97.94 3.4± 0.7 2.4± 0.2 0.92± 0.02 0.98± 0.00

Continued on next page
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Table 3.20 – continued from previous page

Accuracy Size Fitness

Dataset NODT EFTI NODT EFTI NODT EFTI

ca 82.61 89.46 8.4± 1.5 3.0± 0.1 0.72± 0.04 0.89± 0.00

car 91.44 87.71 26.4± 1.5 7.9± 0.4 0.62± 0.04 0.87± 0.00

cmc 46.66 61.20 60.0± 2.8 5.8± 0.3 −1.24± 0.17 0.61± 0.00

ctg 74.06 79.00 43.1± 2.0 18.9± 0.9 0.66± 0.01 0.78± 0.01

cvf 76.87 79.06 142.8± 3.8 7.9± 0.3 −2.14± 0.17 0.79± 0.00

eb 65.62 65.13 2654.7± 14.3 50.3± 1.6 −46.36± 0.51 0.65± 0.01

eye 74.94 60.16 469.6± 8.9 3.4± 0.2 −409.65± 15.44 0.60± 0.00

ger 89.34 97.08 4.6± 0.7 2.7± 0.2 0.87± 0.02 0.97± 0.00

gls 60.19 84.95 8.9± 1.2 16.6± 0.4 0.60± 0.03 0.82± 0.01

hep 79.35 93.26 2.4± 0.4 4.0± 0.1 0.79± 0.03 0.92± 0.01

hrtc 54.54 74.77 10.1± 1.0 12.9± 0.4 0.54± 0.03 0.73± 0.01

hrts 78.89 89.63 3.9± 0.6 3.4± 0.2 0.78± 0.03 0.89± 0.00

ion 86.06 94.60 3.6± 0.4 3.9± 0.2 0.85± 0.02 0.94± 0.01

irs 93.60 98.83 3.5± 0.3 3.7± 0.3 0.94± 0.02 0.99± 0.00

jvow 91.03 84.05 46.9± 2.6 17.9± 0.8 0.74± 0.02 0.83± 0.01

krkopt 65.93 42.40 1241.4± 20.5 47.8± 1.0 −29.81± 0.96 0.41± 0.01

letter 83.31 63.38 363.4± 6.3 71.4± 2.2 −0.57± 0.05 0.61± 0.01

liv 65.86 77.86 11.5± 1.1 4.5± 0.2 0.50± 0.04 0.77± 0.00

lym 76.37 93.05 2.7± 0.3 9.2± 0.6 0.76± 0.02 0.91± 0.01

magic 82.25 84.09 284.9± 6.4 3.0± 0.0 −164.18± 7.42 0.84± 0.00

msh 99.82 98.71 6.2± 0.5 3.6± 0.2 0.95± 0.01 0.98± 0.00

nurse 95.65 91.60 71.6± 2.0 6.3± 0.3 −0.76± 0.10 0.92± 0.00

page 96.51 96.66 23.6± 3.1 6.2± 0.2 0.82± 0.05 0.97± 0.00

pen 96.81 95.23 44.0± 2.3 19.5± 0.7 0.85± 0.02 0.94± 0.00

pid 71.69 80.51 15.9± 1.0 3.4± 0.2 0.35± 0.05 0.80± 0.00

psd 92.90 99.80 5.9± 0.5 2.0± 0.0 0.89± 0.01 1.00± 0.00

sb 90.30 93.52 21.2± 2.2 2.0± 0.0 0.01± 0.18 0.94± 0.00

seg 94.23 94.69 18.1± 1.0 12.6± 0.5 0.92± 0.01 0.94± 0.00

shuttle 99.80 99.69 40.3± 1.6 7.2± 0.2 0.77± 0.02 1.00± 0.00

sick 96.08 96.42 11.7± 1.4 2.9± 0.1 0.71± 0.07 0.96± 0.00

son 73.94 90.37 2.7± 0.2 4.6± 0.2 0.74± 0.02 0.89± 0.01

spect 84.30 93.64 2.6± 0.4 3.0± 0.1 0.84± 0.03 0.93± 0.00

spf 68.34 72.41 46.2± 2.5 15.0± 0.7 0.47± 0.03 0.71± 0.00

thy 92.82 97.10 24.2± 2.1 4.3± 0.2 0.68± 0.05 0.97± 0.00

ttt 71.75 80.15 19.8± 1.5 4.8± 0.2 0.12± 0.09 0.79± 0.01

veh 72.48 74.41 16.7± 0.9 9.3± 0.5 0.65± 0.02 0.73± 0.01

vene 88.67 94.16 6.8± 1.1 5.0± 0.2 0.87± 0.01 0.94± 0.00

vote 87.20 97.49 3.4± 0.4 3.0± 0.0 0.87± 0.02 0.97± 0.00
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Table 3.20 – continued from previous page

Accuracy Size Fitness

Dataset NODT EFTI NODT EFTI NODT EFTI

vow 73.86 77.29 35.0± 1.7 38.6± 1.0 0.70± 0.02 0.72± 0.01

w21 82.03 86.48 45.2± 1.9 4.3± 0.2 −0.84± 0.14 0.86± 0.00

w40 80.52 85.25 33.9± 2.5 4.4± 0.2 −0.08± 0.13 0.85± 0.00

wfr 80.13 78.28 72.2± 1.6 9.0± 0.3 −1.54± 0.11 0.77± 0.01

wilt 97.09 94.70 18.2± 3.0 2.0± 0.1 0.22± 0.26 0.95± 0.00

wine 55.94 56.85 198.6± 3.9 10.8± 0.5 −3.64± 0.16 0.57± 0.00

zoo 78.72 98.06 5.4± 0.2 7.2± 0.2 0.79± 0.03 0.98± 0.00

3.5.2.6 GALE

The following section presents the results of the comparison between the GALE algorithm and

the EFTI algorithm with the “High compression” parameter set, since GALE operates on full

DTs in its induction procedure and thus tends to create smaller DTs. The induction times of

the GALE algorithm are shown in the Table 3.21, and are even higher than OC1, since GALE

operates on the population of the full DTs, which requires more computational time.

Table 3.21: The average induction times of the GALE algorithm per dataset

Dataset Ind. Time [s] Dataset Ind. Time [s] Dataset Ind. Time [s]

adult 285.20± 7.52 hrts 4.96± 0.13 shuttle 503.44± 51.77

ausc 6.32± 0.09 ion 4.88± 0.10 sick 21.08± 0.34

bank 429.16± 62.63 irs 2.36± 0.03 son 3.44± 0.06

bc 9.00± 0.09 jvow 119.04± 1.51 spect 1.96± 0.03

bch 14.76± 0.61 krkopt 216.56± 3.85 spf 16.68± 0.23

bcw 5.48± 0.07 letter 166.08± 14.33 thy 18.68± 0.11

ca 6.48± 0.16 liv 4.40± 0.08 ttt 11.40± 0.40

car 10.96± 0.31 lym 3.36± 0.06 veh 8.84± 0.13

cmc 12.60± 0.30 magic 216.12± 7.25 vene 3.32± 0.07

ctg 18.48± 0.45 msh 67.80± 0.93 vote 3.44± 0.10

cvf 114.92± 6.76 nurse 120.92± 3.41 vow 14.04± 0.36

eb 134.52± 5.17 page 41.40± 1.43 w21 48.96± 0.98

eye 156.44± 2.20 pen 164.32± 2.21 w40 48.92± 1.06

ger 7.36± 0.12 pid 7.28± 0.11 wfr 38.52± 1.33

gls 3.96± 0.17 psd 7.08± 0.10 wilt 21.60± 0.18

hep 3.16± 0.14 sb 15.36± 0.50 wine 34.16± 0.73

hrtc 5.84± 0.22 seg 22.80± 0.30 zoo 2.92± 0.04

The results of the comparison experiments are displayed side by side in the Table 3.22. The

results show that the EFTI algorithm produces more accurate DTs with all datasets used in
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experiments (except for the ttt dataset, where it produced on average 15 times smaller DTs,

with 4% loss in accuracy). In addition, for most of the datasets, it was able to produce smaller

DTs as well. In case of the datasets where DTs produced by GALE were smaller, like: bch,

cvf, eb, gls, krkopt, letter, seg and shuttle, they were also much less accurate

then the ones induced by EFTI.

Table 3.22: The results of the comparison experiments between the GALE algorithm and

the EFTI algorithm, displayed side by side for different induced DTs’ characteristics:

accuracy, size and fitness

Accuracy Size Fitness

Dataset GALE EFTI GALE EFTI GALE EFTI

adult 81.17 83.02 3.0± 0.0 2.0± 0.0 0.77± 0.00 0.83± 0.00

ausc 85.12 89.00 8.0± 0.0 2.0± 0.0 −0.68± 0.01 0.89± 0.00

bank 89.02 88.82 2.0± 0.0 2.0± 0.0 0.89± 0.00 0.89± 0.00

bc 78.64 92.81 14.0± 0.0 3.0± 0.0 −1.33± 0.03 0.93± 0.00

bch 7.21 18.55 8.0± 0.0 82.5± 1.2 0.06± 0.00 0.18± 0.00

bcw 92.35 97.80 3.0± 0.0 2.0± 0.0 0.88± 0.01 0.98± 0.00

ca 85.45 88.66 8.0± 0.0 2.0± 0.0 −0.68± 0.01 0.89± 0.00

car 73.62 84.32 3.0± 0.0 4.4± 0.2 0.73± 0.02 0.84± 0.00

cmc 52.18 59.39 4.0± 0.0 4.0± 0.0 0.51± 0.02 0.58± 0.00

ctg 53.34 77.09 11.0± 0.0 11.0± 0.2 0.53± 0.03 0.77± 0.01

cvf 62.92 78.08 2.0± 0.0 7.0± 0.0 0.57± 0.01 0.78± 0.00

eb 15.65 53.37 3.0± 0.0 33.5± 0.4 0.13± 0.01 0.53± 0.01

eye 56.68 59.57 3.0± 0.0 2.0± 0.0 0.54± 0.00 0.60± 0.00

ger 93.98 96.70 3.0± 0.0 2.0± 0.0 0.89± 0.01 0.97± 0.00

gls 60.62 78.19 5.0± 0.0 7.5± 0.2 0.60± 0.04 0.77± 0.01

hep 80.91 92.03 10.0± 0.0 2.0± 0.0 −1.78± 0.05 0.92± 0.01

hrtc 56.00 70.60 8.0± 0.0 6.0± 0.0 0.52± 0.01 0.70± 0.00

hrts 78.00 88.10 18.0± 0.0 2.0± 0.0 −9.20± 0.25 0.88± 0.00

ion 90.40 91.50 7.0± 0.0 2.0± 0.1 −0.23± 0.00 0.91± 0.01

irs 94.97 98.45 3.0± 0.0 3.0± 0.0 0.95± 0.02 0.98± 0.00

jvow 46.19 81.91 15.0± 0.0 10.6± 0.3 0.42± 0.02 0.81± 0.01

krkopt 25.03 37.71 5.0± 0.0 21.8± 0.3 0.22± 0.01 0.37± 0.01

letter 18.66 56.92 20.0± 0.0 33.4± 0.6 0.18± 0.01 0.56± 0.01

liv 60.00 73.99 5.0± 0.0 2.0± 0.0 0.33± 0.01 0.74± 0.00

lym 76.46 90.27 5.0± 0.0 4.6± 0.2 0.76± 0.03 0.90± 0.01

magic 78.29 80.18 7.0± 0.0 2.0± 0.0 −0.20± 0.00 0.80± 0.00

msh 95.08 96.83 9.0± 0.0 2.0± 0.0 −1.38± 0.01 0.97± 0.00

nurse 79.18 90.71 10.0± 0.0 5.0± 0.0 0.63± 0.01 0.91± 0.00

page 92.36 95.93 6.0± 0.0 5.0± 0.0 0.92± 0.00 0.96± 0.00

pen 62.69 92.68 28.0± 0.0 12.3± 0.2 0.22± 0.01 0.92± 0.00

pid 73.52 79.34 6.0± 0.0 2.0± 0.0 0.15± 0.00 0.79± 0.00

Continued on next page
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Table 3.22 – continued from previous page

Accuracy Size Fitness

Dataset GALE EFTI GALE EFTI GALE EFTI

psd 100.00 98.98 2.0± 0.0 2.0± 0.0 1.00± 0.00 0.99± 0.01

sb 93.34 93.51 1.0± 0.0 2.0± 0.0 0.89± 0.00 0.94± 0.00

seg 69.15 93.30 6.0± 0.0 8.0± 0.2 0.69± 0.02 0.93± 0.00

shuttle 88.08 99.56 4.0± 0.0 7.0± 0.0 0.85± 0.01 1.00± 0.00

sick 93.75 94.05 2.0± 0.0 2.0± 0.0 0.94± 0.00 0.94± 0.00

son 72.03 88.00 7.0± 0.0 2.0± 0.1 −0.18± 0.01 0.88± 0.01

spect 88.04 93.44 2.0± 0.0 2.0± 0.0 0.88± 0.01 0.93± 0.00

spf 52.88 69.51 6.0± 0.0 8.1± 0.1 0.53± 0.01 0.69± 0.00

thy 93.78 95.15 3.0± 0.0 4.0± 0.0 0.93± 0.00 0.95± 0.00

ttt 75.58 72.83 31.0± 0.0 2.0± 0.0 −31.03± 0.99 0.73± 0.00

veh 57.88 72.45 6.0± 0.0 4.9± 0.2 0.55± 0.02 0.72± 0.01

vene 90.87 92.47 5.0± 0.0 3.0± 0.0 0.83± 0.01 0.92± 0.00

vote 93.62 96.51 6.0± 0.0 2.0± 0.0 0.19± 0.00 0.97± 0.00

vow 39.09 66.37 18.0± 0.0 15.5± 0.3 0.36± 0.02 0.64± 0.01

w21 71.71 85.70 9.0± 0.0 3.8± 0.2 0.14± 0.00 0.84± 0.00

w40 68.84 83.54 18.0± 0.0 3.4± 0.2 −2.75± 0.04 0.83± 0.00

wfr 71.84 74.82 3.0± 0.0 4.9± 0.1 0.71± 0.02 0.74± 0.01

wilt 94.67 94.70 2.0± 0.0 2.0± 0.0 0.95± 0.00 0.95± 0.00

wine 49.60 56.15 7.0± 0.0 7.1± 0.1 0.50± 0.01 0.56± 0.00

zoo 85.02 97.47 7.0± 0.0 7.2± 0.2 0.85± 0.03 0.97± 0.01

3.5.2.7 GaTree

The following section presents the results of the comparison between the GaTree algorithm and

the EFTI algorithm with the “High compression” parameter set, since GaTree operates on full

DTs in its induction procedure and thus tends to create smaller DTs. The induction times of

the GaTree algorithm are shown in the Table 3.23.
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Table 3.23: The average induction times of the GaTree algorithm per dataset

Dataset Ind. Time [s] Dataset Ind. Time [s] Dataset Ind. Time [s]

adult 450.57± 126.11 hrts 0.60± 0.05 shuttle 415.02± 15.47

ausc 2.82± 0.59 ion 5.91± 0.47 sick 9.89± 0.94

bank 455.79± 49.89 irs 0.71± 0.05 son 7.03± 0.37

bc 0.91± 0.02 jvow 2047.51± 222.08 spect 0.26± 0.01

bch 14.39± 1.78 krkopt 44.00± 1.06 spf 55.52± 5.74

bcw 1.18± 0.06 letter 61.65± 2.48 thy 13.50± 0.90

ca 2.41± 0.44 liv 2.60± 0.21 ttt 1.01± 0.06

car 1.24± 0.09 lym 0.25± 0.01 veh 5.92± 0.70

cmc 2.19± 0.12 magic 3562.43± 450.99 vene 12.36± 0.79

ctg 33.36± 3.72 msh 15.39± 0.64 vote 0.39± 0.01

cvf 14.35± 0.34 nurse 13.36± 0.43 vow 86.91± 4.00

eb 7704.86±1883.51 page 78.34± 3.39 w21 387.71± 19.65

eye 389.92± 26.98 pen 56.41± 4.66 w40 382.56± 13.28

ger 3.07± 4.98 pid 9.40± 0.81 wfr 463.34± 51.23

gls 2.71± 0.66 psd 32.14± 5.47 wilt 251.65± 11.21

hep 0.78± 0.76 sb 26.99± 3.48 wine 68.14± 6.00

hrtc 0.73± 0.09 seg 63.97± 7.80 zoo 0.23± 0.01

The results of the comparison experiments are displayed side by side in the Table 3.24. The

results show that the EFTI algorithm produces more accurate DTs with all datasets used in

experiments, with almost all of them being smaller in size as well. In case of the datasets where

DTs produced by GaTree were smaller, like: bch, eb, letter, page, and thy, they were

also much less accurate then the ones induced by EFTI.

Table 3.24: The results of the comparison experiments between the GaTree algorithm

and the EFTI algorithm, displayed side by side for different induced DTs’ characteristics:

accuracy, size and fitness

Accuracy Size Fitness

Dataset GaTree EFTI GaTree EFTI GaTree EFTI

adult 79.15 82.96 9.0± 3.3 2.0± 0.0 −1.94± 2.45 0.83± 0.00

ausc 85.25 89.20 7.7± 0.8 2.0± 0.0 −0.90± 0.44 0.89± 0.00

bank 88.34 89.04 2.8± 0.2 2.0± 0.0 0.84± 0.02 0.89± 0.00

bc 71.68 92.61 14.0± 1.6 3.0± 0.0 −1.75± 0.83 0.93± 0.00

bch 6.83 19.67 18.0± 1.9 84.4± 1.1 0.06± 0.00 0.19± 0.00

bcw 93.32 97.83 10.6± 1.2 2.0± 0.0 −3.30± 1.06 0.98± 0.00

ca 84.49 88.85 7.2± 0.8 2.0± 0.0 −0.61± 0.40 0.89± 0.00

car 74.06 84.31 4.7± 1.3 4.3± 0.2 0.53± 0.16 0.84± 0.00

cmc 46.38 59.64 11.9± 1.1 4.0± 0.0 −0.51± 0.24 0.58± 0.00

Continued on next page
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Table 3.24 – continued from previous page

Accuracy Size Fitness

Dataset GaTree EFTI GaTree EFTI GaTree EFTI

ctg 29.25 77.80 12.3± 1.1 10.8± 0.2 0.28± 0.01 0.78± 0.01

cvf 59.47 78.38 13.0± 2.0 7.0± 0.0 0.38± 0.07 0.78± 0.00

eb 14.82 63.75 6.2± 6.1 33.0± 0.3 0.13± 0.05 0.64± 0.01

eye 55.73 59.49 9.9± 1.1 2.0± 0.0 −1.37± 0.50 0.59± 0.00

ger 93.40 96.76 2.8± 0.6 2.0± 0.0 0.90± 0.04 0.97± 0.00

gls 34.86 78.19 19.1± 3.6 7.3± 0.2 −0.13± 0.28 0.77± 0.01

hep 77.94 91.33 9.1± 1.7 2.0± 0.0 −1.84± 1.24 0.91± 0.01

hrtc 53.80 70.84 10.9± 1.9 6.0± 0.1 0.30± 0.13 0.70± 0.00

hrts 77.33 88.31 12.0± 1.2 2.0± 0.0 −3.81± 1.14 0.88± 0.00

ion 79.89 91.68 12.3± 1.2 2.0± 0.1 −4.13± 1.11 0.91± 0.00

irs 67.33 98.35 24.8± 2.9 3.0± 0.0 −8.61± 2.45 0.98± 0.00

jvow 17.08 82.32 12.0± 1.6 10.3± 0.2 0.15± 0.01 0.82± 0.01

krkopt 24.36 38.85 13.1± 1.9 21.8± 0.3 0.23± 0.01 0.38± 0.01

letter 10.98 59.50 17.5± 2.5 33.4± 0.6 0.11± 0.00 0.58± 0.01

liv 54.67 74.49 20.2± 1.6 2.0± 0.0 −9.28± 1.60 0.74± 0.00

lym 76.97 89.76 11.8± 1.4 4.4± 0.2 −0.07± 0.26 0.89± 0.01

magic 64.94 80.18 4.7± 0.5 2.0± 0.0 0.40± 0.09 0.80± 0.00

msh 95.74 97.04 9.4± 1.3 2.0± 0.0 −2.70± 1.57 0.97± 0.00

nurse 54.61 91.08 6.1± 1.4 5.0± 0.1 0.44± 0.06 0.91± 0.00

page 90.22 96.08 4.0± 0.4 5.0± 0.0 0.88± 0.00 0.96± 0.00

pen 25.21 92.41 12.8± 1.9 12.1± 0.3 0.22± 0.03 0.92± 0.01

pid 66.22 79.59 15.3± 1.2 2.0± 0.0 −5.83± 1.17 0.80± 0.00

psd 82.08 99.62 10.2± 2.5 2.0± 0.0 −4.32± 2.39 1.00± 0.00

sb 93.27 93.51 3.9± 0.4 2.0± 0.0 0.68± 0.07 0.94± 0.00

seg 17.72 93.61 14.5± 1.2 7.9± 0.2 0.12± 0.01 0.93± 0.00

shuttle 82.38 99.64 9.0± 0.7 7.0± 0.0 0.79± 0.02 1.00± 0.00

sick 94.07 94.21 2.9± 0.2 2.0± 0.0 0.87± 0.03 0.94± 0.00

son 54.24 88.13 29.8± 2.0 2.2± 0.2 −21.83± 2.96 0.87± 0.01

spect 79.62 93.78 2.6± 0.8 2.0± 0.0 0.47± 0.46 0.94± 0.00

spf 42.25 69.92 11.0± 1.4 8.1± 0.1 0.36± 0.04 0.70± 0.00

thy 92.36 95.96 2.9± 0.3 4.0± 0.0 0.90± 0.01 0.96± 0.00

ttt 72.92 72.78 11.5± 2.1 2.0± 0.0 −3.51± 1.69 0.73± 0.00

veh 39.22 71.48 18.7± 2.3 5.0± 0.1 −1.01± 0.40 0.71± 0.01

vene 29.87 92.20 31.6± 2.1 3.0± 0.0 −5.55± 0.97 0.92± 0.00

vote 95.40 96.74 3.3± 0.7 2.0± 0.0 0.62± 0.24 0.97± 0.00

vow 6.16 68.11 22.9± 1.6 15.7± 0.3 0.04± 0.00 0.66± 0.01

w21 33.06 85.00 17.0± 1.3 3.4± 0.2 −1.26± 0.26 0.84± 0.00

w40 33.34 83.58 17.3± 0.9 3.2± 0.2 −1.35± 0.21 0.83± 0.00
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Table 3.24 – continued from previous page

Accuracy Size Fitness

Dataset GaTree EFTI GaTree EFTI GaTree EFTI

wfr 43.24 74.61 8.2± 0.7 4.9± 0.1 0.30± 0.04 0.74± 0.01

wilt 94.55 94.62 3.4± 0.3 2.0± 0.0 0.82± 0.04 0.95± 0.00

wine 45.56 56.19 9.2± 0.7 7.0± 0.1 0.43± 0.01 0.56± 0.00

zoo 80.60 97.90 13.2± 2.0 7.2± 0.2 0.51± 0.17 0.98± 0.01

3.5.3 Group comparison of all algorithms

In this section, the results of the experiments are displayed and discussed, that compare all the

algorithms from the Table 3.7 together with the proposed EFTI algorithm in terms of induced

DT accuracies and sizes. In these experiments, the EFTI algorithm was setup using the “High

accuracy” configuration for the Table 3.10 and given 1000k iterations for the induction. The

cross-validation employed and the rankings devised in the manner described in the Section 2.8.

The results are listed in the following tables:

• Table 3.25 shows the average accuracies of the induced DTs,

• Table 3.26 shows the 95% confidence intervals for the accuracies of the induced DTs

• Table 3.27 shows the relative differences in accuracies of the DTs induced by the existing

algorithms compared to the DTs induced by the EFTI algorithm on the same dataset.

Values are given in percents, where the positive numbers show the amount by which an

existing algorithm produces more accurate DTs, relative to those induced by EFTI, and

negative numbers show the opposite.

• Table 3.28 shows the average sizes of the induced DTs,

• Table 3.29 shows the 95% confidence intervals for the sizes of the induced DTs

• Table 3.30 shows the relative differences in sizes of the DTs induced by the existing

algorithms compared to the DTs induced by the EFTI algorithm on the same dataset.

Values are given in percents, where the positive numbers show the amount by which an

existing algorithm produces larger DTs, relative to those induced by EFTI, and negative

numbers show the opposite.

• Table 3.31 shows the ranking of the algorithms based on the accuracies of the induced

DTs

• Table 3.32 shows the ranking of the algorithms based on the sizes of the induced DTs

Table 3.25: The average accuracies of the induced DTs by all algorithms from the Table

3.7 and EFTI, on all datasets from the Table 2.1 from five 5-fold cross-validation test.

OC1-AP CART-LC OC1 OC1-ES OC1-SA NODT GALE GaTree EFTI

adult 85.83 85.48 85.22 85.59 85.55 80.44 81.17 79.15 83.85
ausc 85.45 84.58 83.48 85.59 85.28 82.35 85.12 85.25 89.92
bank 90.14 89.75 89.54 90.10 89.96 87.36 89.02 88.34 89.38
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Table 3.25 – continued from previous page

OC1-AP CART-LC OC1 OC1-ES OC1-SA NODT GALE GaTree EFTI

bc 79.01 88.26 91.94 85.09 86.05 90.02 78.64 71.68 95.16
bch 14.36 13.25 12.46 14.16 13.88 12.17 7.21 6.83 25.58
bcw 91.11 93.23 93.86 92.23 92.44 93.22 92.35 93.32 97.96
ca 85.10 85.54 84.14 85.25 84.87 82.61 85.45 84.49 89.51
car 96.17 94.72 93.16 95.21 94.32 91.44 73.62 74.06 88.60
cmc 54.75 53.93 53.05 53.53 52.10 46.66 52.18 46.38 61.29
ctg 82.18 81.95 79.88 82.15 82.24 74.06 53.34 29.25 79.53
cvf 75.08 76.03 75.80 72.61 74.21 76.87 62.92 59.47 79.40
eb 65.45 65.46 65.49 65.48 65.47 65.62 15.65 14.82 65.54
eye 83.44 83.37 84.72 83.40 83.52 74.94 56.68 55.73 60.34
ger 96.06 95.48 93.96 96.16 96.32 89.34 93.98 93.40 97.40
gls 64.63 66.55 62.23 64.91 64.67 60.19 60.62 34.86 85.91
hep 78.19 77.29 77.29 78.58 77.42 79.35 80.91 77.94 93.70
hrtc 54.31 52.66 52.71 52.46 54.04 54.54 56.00 53.80 75.62
hrts 77.78 76.00 79.41 78.00 75.19 78.89 78.00 77.33 90.01
ion 88.86 89.71 86.86 88.51 88.97 86.06 90.40 79.89 95.13
irs 92.93 93.57 96.16 94.28 93.60 93.60 94.97 67.33 98.56
jvow 87.11 90.64 90.86 88.10 87.93 91.03 46.19 17.08 85.73
krkopt 80.42 77.70 71.41 76.25 75.17 65.93 25.03 24.36 42.93
letter 86.15 83.81 82.10 84.40 85.08 83.31 18.66 10.98 64.08
liv 65.04 66.38 65.68 64.99 65.51 65.86 60.00 54.67 78.59
lym 69.90 74.61 77.08 71.79 70.43 76.37 76.46 76.97 93.62
magic 85.22 86.12 86.22 85.35 85.17 82.25 78.29 64.94 84.19
msh 99.89 99.90 99.73 99.83 99.91 99.82 95.08 95.74 98.79
nurse 99.12 98.08 95.73 97.65 96.66 95.65 79.18 54.61 92.03
page 96.75 96.92 96.85 97.10 96.85 96.51 92.36 90.22 96.92
pen 95.65 96.64 96.49 95.84 95.74 96.81 62.69 25.21 95.57
pid 74.23 74.27 73.44 73.30 73.90 71.69 73.52 66.22 80.85
psd 100.00 100.00 100.00 100.00 100.00 92.90 100.00 82.08 99.84
sb 93.08 93.17 93.32 93.28 93.34 90.30 93.34 93.27 93.54
seg 95.47 94.54 93.73 94.36 95.35 94.23 69.15 17.72 95.13
shuttle 99.96 99.96 99.94 99.95 99.95 99.80 88.08 82.38 99.72
sick 98.49 97.73 96.57 98.53 98.28 96.08 93.75 94.07 96.98
son 70.55 71.88 69.59 70.28 70.38 73.94 72.03 54.24 90.90
spect 87.37 82.64 81.75 86.35 87.47 84.30 88.04 79.62 94.32
spf 73.58 71.23 69.53 72.83 71.94 68.34 52.88 42.25 73.11
thy 99.29 98.85 98.48 99.24 99.22 92.82 93.78 92.36 97.54
ttt 85.87 79.36 75.68 81.27 77.68 71.75 75.58 72.92 79.20
veh 68.01 69.20 69.84 68.79 68.20 72.48 57.88 39.22 75.34
vene 89.87 90.40 89.40 88.20 89.33 88.67 90.87 29.87 94.36
vote 93.68 93.28 92.29 94.41 94.16 87.20 93.62 95.40 97.59
vow 76.30 78.18 78.20 76.81 76.63 73.86 39.09 6.16 78.21
w21 76.99 81.30 81.99 77.54 77.12 82.03 71.71 33.06 86.88
w40 76.39 80.66 80.89 76.87 76.25 80.52 68.84 33.34 85.80
wfr 99.34 98.09 97.40 99.36 99.35 80.13 71.84 43.24 79.95
wilt 97.99 98.01 97.93 97.83 97.86 97.09 94.67 94.55 94.79
wine 56.37 57.41 57.17 56.82 57.84 55.94 49.60 45.56 57.14
zoo 85.79 85.31 82.44 77.68 83.10 78.72 85.02 80.60 98.42
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Table 3.26: The 95% confidence intervals for the accuracies of the induced DTs by

all algorithms from the Table 3.7, on all datasets from the Table 2.1 from five 5-fold

cross-validation test.

OC1-AP CART-LC OC1 OC1-ES OC1-SA NODT GALE GaTree EFTI

adult ±0.15 ±0.16 ±0.17 ±0.21 ±0.18 ±0.20 ±0.37 ±0.91 ±0.14
ausc ±1.16 ±1.01 ±1.41 ±1.03 ±1.11 ±1.37 ±1.43 ±0.57 ±0.18
bank ±0.14 ±0.14 ±0.12 ±0.11 ±0.15 ±0.10 ±0.11 ±0.12 ±0.14
bc ±1.24 ±1.64 ±1.11 ±1.55 ±1.83 ±1.02 ±1.70 ±1.13 ±0.30
bch ±0.42 ±0.46 ±0.37 ±0.43 ±0.46 ±0.34 ±0.24 ±0.24 ±0.20
bcw ±1.08 ±1.15 ±1.13 ±1.40 ±1.35 ±1.28 ±1.37 ±0.61 ±0.08
ca ±0.97 ±1.13 ±1.29 ±1.16 ±1.14 ±1.10 ±0.98 ±0.83 ±0.16
car ±0.49 ±0.59 ±0.79 ±0.64 ±0.59 ±0.87 ±1.63 ±1.50 ±0.37
cmc ±1.27 ±1.13 ±1.38 ±1.69 ±1.28 ±0.97 ±1.75 ±0.57 ±0.47
ctg ±0.76 ±0.76 ±1.01 ±0.86 ±0.79 ±0.84 ±3.21 ±0.79 ±0.43
cvf ±0.51 ±0.47 ±0.50 ±0.59 ±0.43 ±0.41 ±1.26 ±0.59 ±0.22
eb ±0.23 ±0.23 ±0.17 ±0.21 ±0.21 ±0.14 ±0.68 ±4.83 ±0.46
eye ±0.47 ±0.37 ±0.36 ±0.31 ±0.34 ±0.33 ±0.45 ±0.38 ±0.18
ger ±0.49 ±0.58 ±1.20 ±0.51 ±0.45 ±1.35 ±1.35 ±5.33 ±0.15
gls ±3.91 ±3.65 ±3.16 ±4.20 ±3.46 ±3.12 ±3.58 ±2.86 ±0.83
hep ±3.34 ±3.29 ±3.27 ±3.84 ±3.08 ±2.75 ±2.29 ±2.23 ±0.57
hrtc ±2.00 ±2.36 ±3.03 ±2.76 ±2.12 ±2.50 ±1.08 ±2.22 ±0.57
hrts ±2.15 ±2.44 ±2.04 ±2.63 ±2.11 ±2.54 ±2.13 ±0.99 ±0.41
ion ±1.49 ±1.32 ±1.91 ±1.79 ±1.34 ±2.14 ±1.77 ±1.36 ±0.31
irs ±2.04 ±1.71 ±1.38 ±1.57 ±1.98 ±1.98 ±1.69 ±3.37 ±0.36
jvow ±0.38 ±0.34 ±0.36 ±0.50 ±0.32 ±0.48 ±2.63 ±0.23 ±0.48
krkopt ±0.31 ±0.43 ±0.44 ±0.35 ±0.42 ±0.55 ±0.73 ±0.34 ±0.61
letter ±0.31 ±0.23 ±0.37 ±0.31 ±0.27 ±0.39 ±1.35 ±0.37 ±0.71
liv ±2.09 ±2.14 ±1.86 ±1.64 ±2.89 ±2.88 ±2.08 ±1.25 ±0.50
lym ±3.86 ±3.99 ±2.23 ±2.61 ±3.50 ±2.42 ±3.51 ±2.59 ±0.62
magic ±0.19 ±0.17 ±0.25 ±0.24 ±0.28 ±0.27 ±0.50 ±0.36 ±0.05
msh ±0.06 ±0.06 ±0.07 ±0.08 ±0.04 ±0.06 ±0.80 ±0.52 ±0.20
nurse ±0.10 ±0.15 ±0.31 ±0.22 ±0.28 ±0.18 ±1.82 ±0.53 ±0.14
page ±0.18 ±0.20 ±0.23 ±0.20 ±0.19 ±0.36 ±0.25 ±0.25 ±0.09
pen ±0.13 ±0.22 ±0.21 ±0.20 ±0.21 ±0.22 ±1.74 ±0.98 ±0.24
pid ±1.63 ±1.22 ±1.99 ±1.13 ±1.20 ±0.87 ±1.55 ±0.83 ±0.17
psd ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.47 ±0.00 ±3.96 ±0.07
sb ±0.35 ±0.40 ±0.35 ±0.40 ±0.48 ±0.54 ±0.10 ±0.21 ±0.02
seg ±0.46 ±0.47 ±0.66 ±0.65 ±0.55 ±0.49 ±2.41 ±0.49 ±0.27
shuttle ±0.02 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±1.32 ±0.54 ±0.01
sick ±0.27 ±0.30 ±0.25 ±0.28 ±0.41 ±0.29 ±0.04 ±0.28 ±0.27
son ±2.61 ±3.36 ±2.46 ±2.45 ±3.17 ±2.37 ±2.85 ±1.67 ±0.60
spect ±1.91 ±2.45 ±2.45 ±2.06 ±1.78 ±2.65 ±0.53 ±0.99 ±0.22
spf ±0.92 ±0.90 ±0.91 ±1.19 ±1.18 ±1.03 ±1.42 ±1.26 ±0.43
thy ±0.11 ±0.18 ±0.27 ±0.16 ±0.14 ±0.51 ±0.14 ±0.18 ±0.26
ttt ±1.43 ±1.67 ±1.67 ±1.66 ±2.21 ±1.92 ±2.41 ±1.42 ±1.06
veh ±1.44 ±1.68 ±1.66 ±1.47 ±1.93 ±1.32 ±2.49 ±1.40 ±0.83
vene ±2.19 ±1.57 ±1.61 ±1.78 ±1.79 ±1.51 ±1.18 ±0.49 ±0.16
vote ±1.31 ±1.04 ±1.26 ±1.31 ±1.10 ±1.67 ±1.00 ±0.37 ±0.24
vow ±1.17 ±1.69 ±1.57 ±1.83 ±1.42 ±1.31 ±1.66 ±0.34 ±0.77
w21 ±0.54 ±0.60 ±0.57 ±0.52 ±0.48 ±0.25 ±0.97 ±0.41 ±0.15
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Table 3.26 – continued from previous page

OC1-AP CART-LC OC1 OC1-ES OC1-SA NODT GALE GaTree EFTI

w40 ±0.51 ±0.56 ±0.57 ±0.46 ±0.48 ±0.46 ±0.98 ±0.22 ±0.26
wfr ±0.11 ±0.18 ±0.30 ±0.10 ±0.11 ±0.31 ±1.67 ±0.73 ±0.89
wilt ±0.22 ±0.23 ±0.18 ±0.19 ±0.27 ±0.33 ±0.02 ±0.19 ±0.24
wine ±0.81 ±0.86 ±0.89 ±0.87 ±0.86 ±0.77 ±0.83 ±0.31 ±0.20
zoo ±3.82 ±3.30 ±4.29 ±7.15 ±6.11 ±2.69 ±2.56 ±2.55 ±0.37

Table 3.27: The relative differences in accuracies of the DTs induced by the algorithms

from the Table 3.7, compared to the DTs induced by the EFTI algorithm on the same

dataset.

OC1-AP CART-LC OC1 OC1-ES OC1-SA NODT GALE GaTree

adult 2.37 1.95 1.63 2.08 2.04 −4.07 −3.19 −5.60
ausc −4.97 −5.94 −7.16 −4.81 −5.16 −8.42 −5.33 −5.20
bank 0.85 0.41 0.18 0.81 0.65 −2.26 −0.41 −1.17
bc −16.97 −7.25 −3.38 −10.58 −9.57 −5.40 −17.35 −24.67
bch −43.84 −48.22 −51.29 −44.64 −45.73 −52.43 −71.80 −73.29
bcw −6.99 −4.83 −4.18 −5.85 −5.64 −4.84 −5.73 −4.74
ca −4.92 −4.44 −5.99 −4.76 −5.18 −7.71 −4.53 −5.60
car 8.55 6.91 5.15 7.46 6.46 3.20 −16.90 −16.40
cmc −10.67 −12.01 −13.46 −12.66 −14.99 −23.88 −14.87 −24.33
ctg 3.32 3.04 0.43 3.29 3.40 −6.88 −32.94 −63.22
cvf −5.44 −4.25 −4.53 −8.55 −6.53 −3.18 −20.75 −25.10
eb −0.14 −0.12 −0.07 −0.10 −0.11 0.12 −76.12 −77.39
eye 38.29 38.17 40.40 38.22 38.42 24.20 −6.06 −7.63
ger −1.38 −1.97 −3.53 −1.27 −1.11 −8.28 −3.51 −4.11
gls −24.76 −22.54 −27.56 −24.44 −24.72 −29.94 −29.43 −59.42
hep −16.55 −17.52 −17.52 −16.14 −17.38 −15.31 −13.65 −16.83
hrtc −28.17 −30.36 −30.29 −30.63 −28.53 −27.87 −25.94 −28.85
hrts −13.59 −15.57 −11.78 −13.35 −16.47 −12.36 −13.35 −14.09
ion −6.60 −5.70 −8.70 −6.96 −6.48 −9.54 −4.98 −16.03
irs −5.71 −5.06 −2.44 −4.34 −5.03 −5.03 −3.64 −31.68
jvow 1.62 5.73 5.99 2.77 2.57 6.19 −46.11 −80.08
krkopt 87.31 80.98 66.33 77.61 75.08 53.57 −41.69 −43.26
letter 34.43 30.79 28.12 31.71 32.77 30.01 −70.88 −82.87
liv −17.23 −15.54 −16.42 −17.31 −16.64 −16.20 −23.65 −30.44
lym −25.34 −20.30 −17.67 −23.32 −24.78 −18.43 −18.33 −17.79
magic 1.22 2.30 2.42 1.38 1.17 −2.31 −7.00 −22.86
msh 1.11 1.12 0.94 1.05 1.13 1.04 −3.76 −3.09
nurse 7.71 6.57 4.02 6.11 5.03 3.94 −13.96 −40.66
page −0.17 −0.00 −0.08 0.18 −0.07 −0.42 −4.71 −6.92
pen 0.08 1.12 0.96 0.29 0.18 1.30 −34.40 −73.62
pid −8.20 −8.14 −9.17 −9.34 −8.60 −11.33 −9.07 −18.10
psd 0.16 0.16 0.16 0.16 0.16 −6.95 0.16 −17.79
sb −0.49 −0.39 −0.23 −0.27 −0.21 −3.46 −0.22 −0.29
seg 0.36 −0.62 −1.47 −0.81 0.23 −0.94 −27.32 −81.37
shuttle 0.24 0.23 0.22 0.23 0.23 0.08 −11.68 −17.39
sick 1.56 0.77 −0.42 1.60 1.34 −0.92 −3.32 −3.00
son −22.39 −20.93 −23.45 −22.69 −22.57 −18.66 −20.76 −40.33
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Table 3.27 – continued from previous page

OC1-AP CART-LC OC1 OC1-ES OC1-SA NODT GALE GaTree

spect −7.37 −12.38 −13.33 −8.45 −7.26 −10.63 −6.66 −15.58
spf 0.64 −2.58 −4.90 −0.39 −1.60 −6.53 −27.68 −42.22
thy 1.79 1.34 0.96 1.74 1.72 −4.84 −3.86 −5.31
ttt 8.43 0.20 −4.44 2.62 −1.92 −9.40 −4.56 −7.93
veh −9.73 −8.16 −7.31 −8.69 −9.48 −3.80 −23.18 −47.95
vene −4.76 −4.20 −5.26 −6.53 −5.33 −6.03 −3.70 −68.35
vote −4.01 −4.41 −5.44 −3.26 −3.51 −10.65 −4.07 −2.24
vow −2.44 −0.04 −0.01 −1.79 −2.03 −5.56 −50.02 −92.12
w21 −11.39 −6.42 −5.63 −10.75 −11.23 −5.58 −17.46 −61.94
w40 −10.96 −5.99 −5.72 −10.41 −11.12 −6.15 −19.76 −61.14
wfr 24.25 22.70 21.83 24.28 24.28 0.23 −10.14 −45.92
wilt 3.37 3.40 3.32 3.20 3.24 2.43 −0.13 −0.25
wine −1.34 0.48 0.07 −0.55 1.24 −2.09 −13.19 −20.26
zoo −12.83 −13.31 −16.23 −21.07 −15.56 −20.01 −13.61 −18.10

Table 3.28: The average sizes of the induced DTs by all algorithms from the Table 3.7

and EFTI, on all datasets from the Table 2.1 from five 5-fold cross-validation test.

OC1-AP CART-LC OC1 OC1-ES OC1-SA NODT GALE GaTree EFTI

adult 86.5 55.0 33.5 54.9 89.5 527.4 3.0 9.0 2.8
ausc 7.7 4.1 4.7 5.2 4.6 7.8 8.0 7.7 3.0
bank 97.8 42.7 17.0 75.7 72.3 416.6 2.0 2.8 2.3
bc 22.4 8.7 8.4 13.9 16.0 9.4 14.0 14.0 5.8
bch 403.8 259.3 285.5 379.1 395.4 332.6 8.0 18.0 238.6
bcw 10.5 3.0 3.1 5.6 5.8 3.4 3.0 10.6 2.4
ca 6.0 6.1 3.2 8.7 9.4 8.4 8.0 7.2 3.0
car 51.8 36.3 27.8 47.3 43.0 26.4 3.0 4.7 7.9
cmc 68.7 21.4 25.1 34.0 35.7 60.0 4.0 11.9 6.4
ctg 73.8 52.7 28.8 59.6 54.3 43.1 11.0 12.3 19.8
cvf 547.4 35.6 37.0 219.8 199.9 142.8 2.0 13.0 8.3
eb 1592.0 1818.4 1013.5 2278.1 1545.2 2654.7 3.0 6.2 53.5
eye 547.0 545.5 430.8 616.7 560.4 469.6 3.0 9.9 3.4
ger 5.2 2.8 4.0 4.7 4.9 4.6 3.0 2.8 2.7
gls 12.4 11.4 9.8 12.0 15.3 8.9 5.0 19.1 16.6
hep 4.8 2.5 3.8 4.5 3.6 2.4 10.0 9.1 4.0
hrtc 7.7 6.0 7.2 11.7 6.4 10.1 8.0 10.9 13.2
hrts 6.6 4.8 2.9 7.6 5.9 3.9 18.0 12.0 3.5
ion 5.5 4.3 4.6 5.7 4.9 3.6 7.0 12.3 3.8
irs 3.1 3.2 3.0 3.6 3.4 3.5 3.0 24.8 3.7
jvow 438.8 233.1 232.9 412.6 404.4 46.9 15.0 12.0 17.2
krkopt 3728.7 2964.0 2738.3 3600.7 3504.4 1241.4 5.0 13.1 49.0
letter 1354.1 905.7 882.8 1255.4 1260.7 363.4 20.0 17.5 75.3
liv 11.1 8.8 7.4 10.2 10.1 11.5 5.0 20.2 4.4
lym 5.5 4.2 3.3 7.8 5.1 2.7 5.0 11.8 9.5
magic 139.2 65.6 66.2 97.9 111.7 284.9 7.0 4.7 3.0
msh 18.6 10.4 10.4 19.6 21.3 6.2 9.0 9.4 3.5
nurse 217.1 132.4 120.1 231.6 223.1 71.6 10.0 6.1 6.4
page 27.8 18.0 14.6 23.9 22.6 23.6 6.0 4.0 6.2
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Table 3.28 – continued from previous page

OC1-AP CART-LC OC1 OC1-ES OC1-SA NODT GALE GaTree EFTI

pen 209.4 98.4 80.4 196.8 188.3 44.0 28.0 12.8 19.6
pid 10.6 9.1 9.2 7.0 10.0 15.9 6.0 15.3 3.4
psd 2.0 2.0 2.0 2.0 2.0 5.9 2.0 10.2 2.0
sb 5.7 3.1 2.2 4.1 2.8 21.2 1.0 3.9 2.0
seg 38.2 22.1 21.1 31.6 37.9 18.1 6.0 14.5 12.3
shuttle 27.1 25.0 27.9 24.8 24.2 40.3 4.0 9.0 7.5
sick 13.6 9.1 11.9 13.9 14.8 11.7 2.0 2.9 3.0
son 7.3 4.3 3.6 6.5 6.1 2.7 7.0 29.8 4.6
spect 5.2 3.0 3.5 5.4 3.4 2.6 2.0 2.6 3.1
spf 56.2 50.3 43.4 80.0 55.6 46.2 6.0 11.0 16.1
thy 7.2 5.4 4.9 7.1 7.9 24.2 3.0 2.9 4.4
ttt 56.0 33.8 20.5 48.7 43.4 19.8 31.0 11.5 4.4
veh 30.7 23.0 28.8 37.6 32.8 16.7 6.0 18.7 9.4
vene 6.0 4.8 4.6 5.4 4.5 6.8 5.0 31.6 4.8
vote 4.4 2.8 2.7 3.8 4.1 3.4 6.0 3.3 3.0
vow 94.5 63.6 48.5 90.2 90.8 35.0 18.0 22.9 39.4
w21 71.7 29.4 17.9 75.0 59.3 45.2 9.0 17.0 4.1
w40 73.1 20.1 16.0 67.0 55.4 33.9 18.0 17.3 4.3
wfr 19.9 25.3 23.8 19.5 20.3 72.2 3.0 8.2 9.0
wilt 19.3 12.7 13.6 17.5 18.1 18.2 2.0 3.4 2.1
wine 529.1 414.4 352.6 498.0 504.3 198.6 7.0 9.2 11.6
zoo 5.9 6.0 5.6 4.5 6.0 5.4 7.0 13.2 7.1

Table 3.29: The 95% confidence intervals for the sizes of the induced DTs by all

algorithms from the Table 3.7, on all datasets from the Table 2.1 from five 5-fold

cross-validation test.

OC1-AP CART-LC OC1 OC1-ES OC1-SA NODT GALE GaTree EFTI

adult ±23.9 ±17.1 ±8.8 ±16.4 ±30.2 ±7.8 ±0.0 ±3.3 ±0.2
ausc ±3.8 ±1.4 ±2.0 ±2.9 ±2.4 ±0.8 ±0.0 ±0.8 ±0.1
bank ±29.9 ±22.2 ±5.7 ±19.8 ±23.6 ±5.8 ±0.0 ±0.2 ±0.2
bc ±6.4 ±2.1 ±1.8 ±4.0 ±4.5 ±1.1 ±0.0 ±1.6 ±0.2
bch ±146.2 ±120.4 ±142.2 ±130.1 ±150.5 ±10.3 ±0.0 ±1.9 ±5.0
bcw ±3.0 ±0.7 ±0.9 ±1.9 ±1.7 ±0.7 ±0.0 ±1.2 ±0.2
ca ±2.4 ±2.3 ±0.7 ±2.8 ±3.9 ±1.5 ±0.0 ±0.8 ±0.0
car ±5.1 ±3.7 ±3.6 ±5.6 ±4.9 ±1.5 ±0.0 ±1.3 ±0.3
cmc ±35.2 ±14.0 ±12.6 ±18.2 ±13.2 ±2.8 ±0.0 ±1.1 ±0.2
ctg ±17.0 ±11.9 ±9.0 ±13.8 ±15.5 ±2.0 ±0.0 ±1.1 ±0.8
cvf ±113.7 ±10.3 ±9.5 ±74.6 ±63.5 ±3.8 ±0.0 ±2.0 ±0.3
eb ±731.7 ±778.8 ±587.5 ±1009.6 ±740.6 ±14.3 ±0.0 ±6.1 ±1.9
eye ±76.7 ±73.4 ±58.2 ±86.3 ±95.3 ±8.9 ±0.0 ±1.1 ±0.2
ger ±1.2 ±0.9 ±1.4 ±1.3 ±1.4 ±0.7 ±0.0 ±0.6 ±0.2
gls ±3.8 ±2.6 ±2.4 ±3.5 ±3.5 ±1.2 ±0.0 ±3.6 ±0.3
hep ±1.7 ±0.4 ±1.2 ±1.8 ±1.2 ±0.4 ±0.0 ±1.7 ±0.1
hrtc ±5.4 ±2.5 ±3.5 ±6.1 ±4.0 ±1.0 ±0.0 ±1.9 ±0.6
hrts ±2.3 ±2.2 ±1.0 ±2.7 ±2.8 ±0.6 ±0.0 ±1.2 ±0.2
ion ±1.9 ±1.2 ±1.0 ±2.0 ±1.4 ±0.4 ±0.0 ±1.2 ±0.2
irs ±0.2 ±0.2 ±0.1 ±0.5 ±0.4 ±0.3 ±0.0 ±2.9 ±0.4
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Table 3.29 – continued from previous page

OC1-AP CART-LC OC1 OC1-ES OC1-SA NODT GALE GaTree EFTI

jvow ±32.4 ±19.7 ±21.9 ±30.3 ±31.9 ±2.6 ±0.0 ±1.6 ±0.9
krkopt±102.1 ±98.0 ±97.4 ±133.2 ±148.1 ±20.5 ±0.0 ±1.9 ±1.2
letter ±19.8 ±80.4 ±91.1 ±81.7 ±79.4 ±6.3 ±0.0 ±2.5 ±2.2
liv ±4.7 ±3.9 ±3.5 ±4.3 ±4.4 ±1.1 ±0.0 ±1.6 ±0.2
lym ±1.8 ±1.2 ±0.8 ±2.7 ±1.9 ±0.3 ±0.0 ±1.4 ±0.6
magic ±28.7 ±11.2 ±23.5 ±24.0 ±35.1 ±6.4 ±0.0 ±0.5 ±0.0
msh ±0.8 ±0.7 ±1.0 ±1.6 ±1.4 ±0.5 ±0.0 ±1.3 ±0.2
nurse ±5.6 ±9.5 ±17.7 ±13.4 ±24.6 ±2.0 ±0.0 ±1.4 ±0.3
page ±7.9 ±6.9 ±3.0 ±6.0 ±5.9 ±3.1 ±0.0 ±0.4 ±0.2
pen ±15.7 ±10.8 ±9.4 ±15.7 ±14.1 ±2.3 ±0.0 ±1.9 ±0.6
pid ±6.0 ±4.3 ±3.8 ±2.4 ±5.7 ±1.0 ±0.0 ±1.2 ±0.2
psd ±0.0 ±0.0 ±0.0 ±0.0 ±0.0 ±0.5 ±0.0 ±2.5 ±0.1
sb ±2.9 ±1.1 ±0.3 ±3.8 ±1.1 ±2.2 ±0.0 ±0.4 ±0.0
seg ±5.2 ±4.2 ±3.9 ±5.5 ±5.1 ±1.0 ±0.0 ±1.2 ±0.6
shuttle ±2.2 ±1.5 ±2.9 ±2.6 ±2.7 ±1.6 ±0.0 ±0.7 ±0.2
sick ±2.6 ±2.2 ±4.1 ±2.5 ±3.4 ±1.4 ±0.0 ±0.2 ±0.1
son ±2.1 ±1.4 ±1.1 ±1.9 ±1.9 ±0.2 ±0.0 ±2.0 ±0.3
spect ±2.9 ±0.9 ±1.2 ±2.9 ±1.7 ±0.4 ±0.0 ±0.8 ±0.1
spf ±14.5 ±17.1 ±16.9 ±19.7 ±16.9 ±2.5 ±0.0 ±1.4 ±0.7
thy ±0.6 ±1.0 ±0.5 ±1.0 ±1.0 ±2.1 ±0.0 ±0.3 ±0.2
ttt ±10.1 ±8.7 ±7.1 ±10.1 ±11.1 ±1.5 ±0.0 ±2.1 ±0.2
veh ±8.6 ±7.7 ±7.9 ±12.3 ±9.3 ±0.9 ±0.0 ±2.3 ±0.3
vene ±1.9 ±1.7 ±1.1 ±1.4 ±1.4 ±1.1 ±0.0 ±2.1 ±0.2
vote ±1.4 ±0.7 ±0.7 ±1.5 ±1.4 ±0.4 ±0.0 ±0.7 ±0.0
vow ±6.3 ±7.4 ±5.9 ±7.3 ±6.9 ±1.7 ±0.0 ±1.6 ±1.1
w21 ±25.8 ±13.9 ±5.4 ±19.5 ±13.8 ±1.9 ±0.0 ±1.3 ±0.1
w40 ±28.9 ±5.1 ±3.4 ±19.2 ±19.6 ±2.5 ±0.0 ±0.9 ±0.2
wfr ±2.0 ±3.1 ±3.5 ±1.9 ±2.2 ±1.6 ±0.0 ±0.7 ±0.4
wilt ±4.0 ±3.1 ±4.5 ±3.6 ±3.3 ±3.0 ±0.0 ±0.3 ±0.1
wine ±109.0 ±93.3 ±89.3 ±105.5 ±105.5 ±3.9 ±0.0 ±0.7 ±0.4
zoo ±0.6 ±0.6 ±0.5 ±0.9 ±0.9 ±0.2 ±0.0 ±2.0 ±0.1

Table 3.30: The relative differences in sizes of the DTs induced by the algorithms from

the Table 3.7, compared to the DTs induced by the EFTI algorithm on the same dataset.

OC1-AP CART-LC OC1 OC1-ES OC1-SA NODT GALE GaTree

adult 2988.6 1864.3 1095.7 1860.0 3097.1 18737.1 7.1 221.4
ausc 160.8 39.2 58.1 74.3 56.8 163.5 170.3 160.8
bank 4187.7 1771.9 643.9 3221.1 3070.2 18173.7 −12.3 22.8
bc 282.9 48.6 43.8 138.4 173.3 61.0 139.7 140.4
bch 69.2 8.7 19.7 58.9 65.7 39.4 −96.6 −92.5
bcw 345.8 25.4 32.2 135.6 147.5 44.1 27.1 349.2
ca 98.7 102.7 6.7 189.3 212.0 178.7 166.7 138.7
car 557.9 360.9 252.3 500.5 446.2 234.5 −61.9 −40.1
cmc 979.9 235.8 294.3 435.2 461.6 842.8 −37.1 86.8
ctg 273.3 166.8 45.5 201.6 174.9 118.2 −44.3 −37.9
cvf 6511.6 329.5 347.3 2554.1 2314.5 1624.2 −75.8 57.5
eb 2876.9 3300.2 1795.1 4159.8 2789.4 4863.9 −94.4 −88.3
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Table 3.30 – continued from previous page

OC1-AP CART-LC OC1 OC1-ES OC1-SA NODT GALE GaTree

eye 15989.4 15943.5 12571.8 18037.6 16381.2 13710.6 −11.8 191.8
ger 92.5 6.0 50.7 74.6 82.1 71.6 11.9 4.5
gls −25.1 −31.3 −41.2 −28.0 −7.7 −46.5 −69.9 14.9
hep 19.0 −38.0 −6.0 12.0 −11.0 −40.0 150.0 127.0
hrtc −41.7 −54.7 −45.9 −11.8 −51.4 −23.9 −39.6 −17.8
hrts 90.8 37.9 −17.2 119.5 69.0 12.6 417.2 244.8
ion 42.7 12.5 18.7 47.9 27.1 −6.2 82.3 220.8
irs −16.1 −14.0 −18.3 −2.2 −9.7 −5.4 −19.4 566.7
jvow 2445.5 1252.2 1251.0 2293.0 2245.5 172.2 −13.0 −30.2
krkopt 7515.8 5954.0 5492.9 7254.3 7057.7 2435.6 −89.8 −73.3
letter 1697.8 1102.4 1072.1 1566.8 1573.8 382.5 −73.4 −76.8
liv 149.5 98.2 67.6 129.7 127.9 158.6 12.6 354.1
lym −42.0 −56.3 −65.5 −18.1 −46.2 −71.8 −47.5 24.4
magic 4540.0 2085.3 2106.7 3162.7 3624.0 9396.0 133.3 55.6
msh 428.4 196.6 196.6 458.0 505.7 75.0 155.7 167.0
nurse 3292.5 1968.8 1776.9 3518.7 3385.6 1019.4 56.2 −4.4
page 351.3 192.2 137.0 287.7 266.9 282.4 −2.6 −35.7
pen 970.6 403.3 311.0 906.1 862.6 124.9 43.1 −34.8
pid 210.6 167.1 169.4 107.1 192.9 368.2 76.5 349.4
psd −2.0 −2.0 −2.0 −2.0 −2.0 190.2 −2.0 400.0
sb 186.0 56.0 10.0 106.0 40.0 958.0 −50.0 96.0
seg 209.7 79.2 71.1 156.2 207.8 47.1 −51.3 17.5
shuttle 262.6 233.7 272.7 232.1 223.0 438.5 −46.5 20.9
sick 347.4 198.7 292.1 356.6 385.5 284.2 −34.2 −3.9
son 58.3 −7.0 −22.6 41.7 32.2 −40.9 52.2 547.8
spect 70.1 −1.3 13.0 74.0 11.7 −16.9 −35.1 −16.9
spf 248.4 212.2 169.5 396.0 244.7 186.4 −62.8 −32.0
thy 64.5 22.7 10.9 61.8 79.1 449.1 −31.8 −33.6
ttt 1171.8 667.3 366.4 1007.3 885.5 350.9 604.5 161.8
veh 227.8 145.3 208.1 302.1 250.0 78.2 −35.9 100.0
vene 23.1 0.0 −5.8 11.6 −6.6 39.7 3.3 553.7
vote 46.7 −6.7 −10.7 25.3 36.0 12.0 100.0 9.3
vow 139.6 61.2 23.0 128.8 130.1 −11.3 −54.4 −42.0
w21 1657.8 621.6 339.2 1738.2 1352.9 1007.8 120.6 315.7
w40 1608.4 369.2 272.9 1464.5 1193.5 692.5 320.6 304.7
wfr 120.4 179.6 162.8 115.9 124.3 698.7 −66.8 −8.8
wilt 828.8 509.6 553.8 742.3 771.2 775.0 −3.8 61.5
wine 4476.8 3485.1 2950.5 4207.6 4262.6 1617.6 −39.4 −20.4
zoo −16.4 −15.3 −20.3 −36.7 −15.8 −23.7 −1.1 85.9

Table 3.31: The ranking of the algorithms from the Table 3.7 and EFTI based on the

induced DT accuracies, calculated using the procedure explained in the Section 2.8.

OC1-AP CART-LC OC1 OC1-ES OC1-SA NODT GALE GaTree EFTI

adult 1 1 2 1 1 5 4 6 3
ausc 3 2 2 2 2 4 2 2 1
bank 1 2 2 1 1 6 4 5 3
bc 5 3 2 4 3 2 5 6 1
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Table 3.31 – continued from previous page

OC1-AP CART-LC OC1 OC1-ES OC1-SA NODT GALE GaTree EFTI

bch 2 3 3 2 2 4 5 5 1
bcw 3 2 2 2 2 2 2 2 1
ca 3 2 2 2 2 4 2 2 1
car 1 1 2 1 1 2 4 4 3
cmc 2 2 2 2 3 4 2 4 1
ctg 2 1 1 1 1 3 4 5 1
cvf 3 2 2 4 3 2 5 6 1
eb 2 1 1 1 1 1 3 3 1
eye 3 2 1 2 2 4 6 7 5
ger 2 1 3 1 1 4 3 2 1
gls 3 2 2 2 2 2 2 4 1
hep 3 2 2 2 2 2 2 2 1
hrtc 3 2 2 2 2 2 2 2 1
hrts 3 2 2 2 2 2 2 2 1
ion 3 2 2 2 2 3 2 4 1
irs 2 1 1 1 1 1 1 3 1
jvow 3 1 1 2 2 1 4 5 3
krkopt 1 2 5 3 4 6 8 8 7
letter 1 2 3 2 1 2 5 6 4
liv 3 2 2 2 2 2 4 5 1
lym 3 2 2 2 2 2 2 2 1
magic 3 1 1 2 2 5 6 7 4
msh 2 1 1 1 1 1 4 4 3
nurse 1 1 3 2 2 3 5 6 4
page 2 1 1 1 1 2 3 4 1
pen 2 1 1 1 1 1 3 4 1
pid 3 2 2 2 2 4 2 5 1
psd 1 1 1 1 1 2 1 3 1
sb 2 1 1 1 1 3 1 1 1
seg 1 1 1 1 1 1 2 3 1
shuttle 1 1 1 1 1 1 2 3 1
sick 2 3 4 1 1 5 6 6 4
son 3 2 2 2 2 2 2 4 1
spect 3 4 4 2 2 2 2 4 1
spf 1 1 2 1 1 2 3 4 1
thy 1 1 2 1 1 5 4 5 3
ttt 1 2 3 2 2 4 3 3 2
veh 3 2 2 2 2 1 4 5 1
vene 3 2 2 2 2 2 2 4 1
vote 3 3 3 2 2 4 2 2 1
vow 2 1 1 1 1 2 3 4 1
w21 4 2 2 3 3 2 5 6 1
w40 4 2 2 3 3 2 5 6 1
wfr 2 1 3 1 1 4 5 6 4
wilt 2 1 1 1 1 3 4 4 4
wine 2 1 1 1 1 2 3 4 1
zoo 2 2 2 2 2 2 2 2 1

rank 2.294 1.686 1.961 1.725 1.706 2.725 3.314 4.137 1.804
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Table 3.32: The ranking of the algorithms from the Table 3.7 and EFTI based on the

induced DT sizes, calculated using the procedure explained in the Section 2.8.

OC1-AP CART-LC OC1 OC1-ES OC1-SA NODT GALE GaTree EFTI

adult 3 2 1 2 2 4 1 1 1
ausc 2 1 1 1 1 2 2 2 1
bank 4 2 1 3 2 5 1 1 1
bc 3 1 1 2 2 1 2 2 1
bch 3 2 2 2 2 2 1 1 2
bcw 3 1 1 1 2 1 1 3 1
ca 2 1 1 2 2 2 2 2 1
car 5 3 2 4 3 2 1 1 1
cmc 3 1 1 1 2 2 1 1 1
ctg 3 2 1 2 2 2 1 1 1
cvf 3 1 1 2 2 2 1 1 1
eb 3 2 1 2 2 3 1 1 1
eye 3 2 2 3 3 2 1 1 1
ger 3 1 1 1 2 1 1 1 1
gls 3 2 1 2 2 1 1 4 2
hep 2 1 1 1 1 1 3 3 1
hrtc 2 1 1 1 1 1 1 1 1
hrts 2 1 1 2 1 1 4 3 1
ion 2 1 1 1 1 1 2 3 1
irs 2 1 1 1 1 1 1 3 1
jvow 4 2 2 3 3 1 1 1 1
krkopt 6 4 3 5 5 2 1 1 1
letter 5 3 3 4 4 2 1 1 1
liv 2 1 1 1 1 2 1 3 1
lym 2 1 1 2 1 1 1 3 3
magic 4 2 2 2 3 5 1 1 1
msh 4 3 3 4 5 2 3 3 1
nurse 4 3 3 4 4 2 1 1 1
page 3 2 2 2 2 2 1 1 1
pen 5 3 3 4 4 2 1 1 1
pid 2 1 1 1 1 2 1 2 1
psd 1 1 1 1 1 2 1 3 1
sb 2 1 1 1 1 3 1 1 1
seg 5 3 3 4 4 2 1 2 1
shuttle 4 3 3 3 3 5 1 2 1
sick 3 2 2 3 3 2 1 1 1
son 3 1 1 2 2 1 2 4 1
spect 2 1 1 1 1 1 1 1 1
spf 3 2 2 3 2 2 1 1 1
thy 4 2 2 3 3 5 1 1 1
ttt 4 2 2 3 3 2 2 1 1
veh 3 2 2 3 3 1 1 2 1
vene 2 1 1 1 1 1 1 3 1
vote 2 1 1 1 1 1 2 1 1
vow 6 4 3 5 5 2 1 1 2
w21 4 2 1 3 3 2 1 1 1
w40 4 1 1 3 2 2 1 1 1
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Table 3.32 – continued from previous page

OC1-AP CART-LC OC1 OC1-ES OC1-SA NODT GALE GaTree EFTI

wfr 4 5 3 3 3 6 1 2 2
wilt 3 2 2 2 2 2 1 1 1
wine 4 3 3 3 3 2 1 1 1
zoo 2 1 1 1 1 1 1 3 1

rank 3.176 1.843 1.627 2.294 2.275 2.059 1.275 1.706 1.118

The results of the experiments in this section show that the proposed EFTI algorithm is capable

of inducing the DTs of the accuracies comparable to other well known incremental algorithms

like CART-LC and OC1, but with the significant reduction in their sizes. This can be seen in the

average rankings of the algorithms based on their accuracies and sizes. In terms of accuracy,

the EFTI scored an average of 1.804, compared to 1.686 of CART-LC and 1.961 of OC1. On

the other hand, when it comes to size, EFTI had a significantly higher average rank of 1.118,

compared to 1.843 of CART-LC and 1.627 of OC1. When compared to full DT induction

algorithms GALE and GaTree, EFTI was better in terms of induced DT size and significantly

better when it came to DT accuracies.
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4 Co-processor for the DT Induction - the EFTIP

Very few theorems exist about evolutionary algorithms that can be used to guarantee some

aspect of their behavior, with probably the most famous results being the one that states that

(1+1) ES takes O(nlog(n)) iterations to find a maximum of any linear function [78]. Even

worse, the “No Free Lunch” theorem [79] implies that no optimization algorithm can have,

on average, a superior performance when applied to many different problems, which means

that usually optimization algorithms need to be specifically tuned for each problem. However,

in order to find the optimal parameter set for an EA or test the efficiency of a new algorithm

feature, for the lack of theoretical guidelines usually an experimental approach needs to be

used. In order for the experiment to have a level of statistical significance, usually multiple

runs of cross-validation technique are used.

For tuning the parameters and testing new features for the EFTI algorithm, five 5-fold

cross-validations were performed for each dataset with 500k iterations, which for the largest of

them, shuttle took almost 6 hours on a desktop PC (average induction times when partial

reclassification is used can be found in Table 3.6). In order to find an optimal parameter

set, some kind of meta-heuristic needs to be employed, where in each of its iterations such

a cross-validation test would be needed to evaluate its current candidate solution. This would

then amount to days or even weeks of processing time. Embedded CPUs are even less powerful

and would take even more time for these operations. Hence, the application of the DT induction

using EAs in a dynamically adaptable real-time embedded machine learning system would be

impractical.

In this thesis, in an attempt to address the issue of long inference times, a co-processor

called EFTIP (Evolutionary Full Tree Induction co-Processor) is proposed, that can be used

to accelerate the operation of the full DT induction algorithms, hence the EFTI algorithm too,

by an order of magnitude. The following topics will be covered in this section:

• Section 4.1 - Presentation of the results of the EFTI algorithm profiling that reveal

its most computationally intensive parts, which in turn make good candidates for the

hardware acceleration

• Section 4.2 - Overview of the existing hardware architectures for the DT classification

acceleration

• Section 4.3 - Detailed description of the EFTIP co-processor.

• Section 4.4 - Analysis of the required hardware resources and the performance of the

EFTIP co-processor

• Section 4.5 - Discussion on the software routines that need to be added to the EFTI

algorithm, in order for it to make use of the EFTIP co-processor

• Section 4.6 - Experimental section that shows the speedups that can be achieved by using

the EFTIP co-processor

4.1 Profiling Results

It is clear from the equation (26) that the fitness_eval() function is a good candidate

for the hardware acceleration, since it is the dominant contributor to the algorithm’s time
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complexity. To confirm the results obtained by the computational complexity analysis, the

software profiling was performed on the EFTI algorithm’s C implementation. The EFTI

algorithm was let to induce DTs from all datasets from the Table 2.1 in order to gather

the profiling data. The software implementation of the EFTI algorithm was compiled using

the GCC 5.4.1 compiler, run on the PC with 64-bit, 4-core, Intel i5-2500K CPU operating

at approximately 3.5GHz, with 8GB or RAM, running Ubuntu 16.04 operating system and

profiled using the GProf performance analysis tool for each of the datasets individually.

Table 4.1: Percentages of the induction time that the EFTI algorithm spent on average

in the sub-functions of the fitness evaluation task, given for each dataset.

Dataset FDLFI [%] AC [%] ENT [%] ASPC [%] Others [%]

adult 63.89 10.86 23.76 1.08 0.41
ausc 51.44 17.15 28.58 0.00 2.83
bank 75.57 6.53 16.79 0.88 0.23
bc 70.01 13.34 8.33 6.67 1.65
bch 67.92 22.59 6.84 0.86 1.79
bcw 71.44 21.43 7.14 0.00 0.01
ca 48.65 10.81 35.14 2.70 2.70
car 66.68 17.95 10.26 2.56 2.55
cmc 62.51 21.25 10.63 5.00 0.61
ctg 72.98 17.30 8.11 1.08 0.53
cvf 65.48 16.85 16.02 1.24 0.41
eb 74.25 16.01 7.46 0.62 1.66
eye 59.23 15.42 22.70 2.02 0.63
ger 69.40 2.04 28.58 0.00 0.02
gls 57.90 15.79 15.79 0.00 10.52
hep 55.56 22.23 11.11 0.00 11.10
hrtc 60.01 13.34 26.67 0.00 0.02
hrts 46.67 33.34 10.00 0.00 9.99
ion 63.64 9.09 22.73 0.00 4.54
irs 57.15 28.58 14.29 0.00 0.02
jvow 71.12 19.19 8.69 0.56 0.44
krkopt 68.80 17.49 11.79 0.70 1.22
letter 70.98 15.51 10.60 0.97 1.94
liv 78.58 0.00 17.86 0.00 3.56
lym 66.68 0.00 8.33 0.00 24.99
magic 64.70 13.07 20.13 1.46 0.64
msh 56.58 16.19 25.72 1.14 0.37
nurse 68.13 19.39 11.02 0.81 0.65
page 68.60 13.09 15.97 1.57 0.77
pen 72.02 19.41 7.41 0.72 0.44
pid 72.23 19.45 5.56 2.78 0.02
psd 63.24 13.24 19.12 0.00 4.40
sb 61.06 21.06 14.21 3.16 0.51
seg 65.11 19.27 13.02 1.04 1.56
shuttle 67.68 8.95 22.10 0.81 0.46
sick 47.73 21.03 28.98 2.27 0.01
son 0.00 9.09 90.92 0.00 0.01
spect 66.68 8.33 25.00 0.00 0.01
spf 65.42 15.04 18.05 0.00 1.49
thy 47.18 14.15 37.74 0.47 0.46
ttt 57.90 21.06 14.48 5.26 1.30
veh 57.38 19.67 21.31 0.00 1.64
vene 63.64 27.28 0.00 0.00 9.08
vote 45.01 25.00 20.00 0.00 9.99
vow 69.01 21.00 6.00 1.00 2.99
w21 53.16 20.00 25.76 0.55 0.53
w40 53.40 13.82 31.85 0.23 0.70
wfr 65.35 13.62 19.93 0.74 0.36
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Figure 4.1: The visual representation of the induction time percentages that the EFTI

algorithm spent on average in the sub-functions of the fitness evaluation task, given for

each dataset.

Table 4.1 – continued from previous page

Dataset FDLFI [%] AC [%] ENT [%] ASPC [%] Others [%]

wilt 68.19 14.77 13.07 3.98 0.01
wine 69.79 17.04 12.64 0.27 0.26
zoo 42.86 42.86 14.29 0.00 0.01

average 61.74 16.69 18.09 1.08 2.41

The results obtained by the profiling are listed in the Table 4.1 and displayed graphically

in the Figure 4.1. The results displayed in the table represent the percentage of the

induction time that the EFTI algorithm spent on average in the sub-functions of the fitness

evaluation task: FLDFI - find_dt_leaf_for_inst(), AC - accuracy_calc(), ENT

- evaluate_node_test() and ASPC - apply_single_path_change(), together

with the percentage of the time spent inside all other functions given in the column titled

“Others”. The percentages given for the individual functions represent self-time, i.e. the

execution time of the function without the execution times of its sub-functions. On the other

hand, the Figure 4.1 shows, for each dataset, the percentage of the time spent in all fitness

evaluation related functions combined.

The results presented in this subsection are consistent with the algorithm complexity analysis

performed in the Section 3.4. On average, EFTI spent 99.0% of time calculating the fitness of

the individual, hence the obvious computational bottleneck lays in the fitness evaluation task,

which undoubtedly makes it a candidate for the hardware acceleration.
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Since all other tasks (mutation, selection, initialization, etc.) take an insignificant amount of

time on average to perform, it seems that there is no need to accelerate them in hardware.

The EFTI algorithm can thus be implemented using HW/SW co-design architecture, where the

fitness evaluation task would be implemented in hardware, while the rest of the functionality

would remain in software. However, the EFTI algorithm could still benefit from moving all the

remaining tasks to hardware too, since that would lower the communication overhead between

the CPU and the custom hardware.

Nevertheless, for two reasons it was decided for the proposed EFTIP co-processor to

accelerate only the accuracy_calc() function (and all of its sub-functions) from the fitness

evaluation task, with the rest of the EFTI algorithm functionality left in software. The first

reason is that it would be much more difficult to change and experiment with the fitness

formula and the tasks of mutation, selection, initialization, etc. if they were implemented

in hardware. Second reason is that many other evolutionary algorithms for optimizing the

DT structure can then be implemented in software and make use of the hardware accelerated

fitness evaluation task, like: Genetic Algorithms (GA), Genetic Programming (GP), Simulated

Annealing (SA), etc. This fact significantly expands the potential field of use for the proposed

EFTIP co-processor core.

4.2 Existing Architectures for Hardware Acceleration of the DT

Classification

The accuracy of a DT is calculated by letting the DT classify the instances of a training set. The

results of the DT classification are then compared with the known classification of the training

set and the accuracy is calculated as a ration of the number of correct classifications to the total

number of instances in the training set. The EFTI algorithm employs a sequential approach to

performing this task, which is described in the Section 3.2.3.1.

First attempt at developing a hardware implementation of this procedure might be to implement

every DT node as a separate hardware module, and connect the modules in the form of the DT.

The hardware architecture based on this idea is proposed in [80], and shown in the Figure 4.2.

The instance that is to be classified is distributed among all hardware DT nodes, where it is

used in the node test evaluations. All the DT classes are made available on the inputs of the

Demultiplexer (Figure 4.2). Starting from the root, the node tests are evaluated sequentially

along the classification path of the instance, and based on their results the correct class for the

output of the Demultiplexer is selected.

The hardware architecture proposed in [80] has two major drawbacks, one regarding the

amount of hardware resources needed, and the other regarding the time needed to perform

the classification. First, the architecture needs one hardware module per DT node, which

in turn requires a significant amount of resources in order to be able to perform the dot

product calculation of the node test (equation (1)). Second, the time needed to perform the

classification is proportional to the depth of the DT and to the time needed to perform the node

test calculation. In other words, this architecture does not scale well with the size of the DT.

One possible way of decreasing the classification time using this architecture is to perform all

node tests in parallel. This is akin to what has been suggested in [66], where an equivalence

between decision trees and threshold networks is used to devise a hardware architecture for
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Figure 4.2: The DT classification hardware implementation using one hardware module

per DT node

decision tree classification, where all node tests are performed in parallel. Once all of the node

tests have been evaluated, their results can be combined using a boolean function in order to

determine in which node the instance finished the classification, and hence to which class it

should be classified into. This way, the time needed to perform the classification equals the

time needed to evaluate one node test, plus the time needed to evaluate the output boolean

function. Still, the issue with number of node hardware modules remains.

The architecture that remedies both resource and timing problems, and was thus adopted by

the EFTIP co-processor, is proposed in [56] and called SMPL (Single Module Per Layer).

Instead of implementing each DT node in hardware separately, this architecture requires only

one universal node per DT level, which is in turn used to evaluate the tests of all nodes from

that DT level. The fact that makes this solution possible is that the instances traverse the DT

only in one direction from top to bottom, never returning to already visited nodes.

The Figure 4.3 shows the structure of the SMPL architecture implementation for the same

example DT used in the Figure 4.2. The architecture implementation consists of three universal

nodes L1 through L3, one for each of the DT levels that contain non-leaf nodes. The instance

starts its traversal of the DT by being input to the L1 module, which implements the root DT

node in every SMPL architecture implementation. The universal node L1 evaluates the root

node test and passes the instance along with the test results to the L2 module, which is akin to

the instance continuing its traversal to the level 2 of the DT. The L2 module has the capability

of calculating the node test for all the nodes on the level 2 of the DT, in this case node #2

and #3. Based on the root node test results received from L1, the L2 module knows to which

root child the instance has been passed, and thus the appropriate level 2 node test is evaluated,

whose results, together with the instance, are in turn passed to its successor, and this process is

continued until one of the universal nodes detects that the instance has arrived to a leaf node,
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Figure 4.3: The idea behind the SMPL (Single Module Per Layer) architecture. There is

one universal hardware module (Universal nodes L1−L3) per DT level that implements

all DT nodes on the level.

i.e. it has been classified. Thereafter, the information about the class is passed onward and

following universal nodes perform no test evaluations on this instance. Finally, the last module

of the SMPL architecture outputs the class of the instance.

The SMPL is a pipelined architecture, hence the instances can be effectively classified in

parallel on all universal nodes, with the small cost of an initial pipeline latency. The node

test evaluation results calculated by an universal node, that are to be made available to the next

universal node in pipeline, are stored in the register available between every two nodes (blocks

named reg in the Figure 4.3). That way, once the node test is evaluated for an instance and

stored in the output register, the universal node is free to start processing the following instance

from the dataset, while the next universal node in pipeline utilizes the stored results from the

register.

The EFTIP co-processor classification module was decided to be based on the SMPL

architecture as it requires significantly less hardware resources for the implementation then

the architectures [80] and [66]. In order to evaluate oblique DT node tests, the addition,

multiplication and comparison operations are needed. Hence, the SMPL architecture requires

notably less adders, multipliers and comparators then architectures proposed in [80] and [66].

However, the memory resources requirements for storing the node test coefficients and leaf

classes are identical between all three given architectures.

4.3 EFTIP Detailed Description

As it was discussed in the section Section 4.1, the EFTIP is designed to accelerate the most time

consuming task of the evolutionary DT induction algorithms, which is the task of determining

the accuracy of the DT individual, which is in turn needed for the fitness evaluation of the

DT (the Algorithm 3.2). More precisely, the EFTIP co-processor calculates the number of

successful classifications, i.e. the number of classifications hits - the hits variable of the

Algorithm 3.3.
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The EFTIP co-processor is designed as an IP core and embedded to the SoC through

the interconnect interface AXI4 AMBA bus. The ARM Advanced Microcontroller Bus

Architecture (AMBA) is an open-standard, on-chip interconnect specification for the

connection and management of functional blocks in system-on-a-chip (SoC) designs. Today,

AMBA is widely used on a range of ASIC and SoC parts including the processors used in

modern portable mobile devices like smartphones. Via the AXI4 bus, the software running on

the CPU can completely control the EFTIP operation:

• Download the training set

• Download the DT description, including the structural organization and the coefficient

values for all node tests present in the DT

• Start the accuracy evaluation process

• Read-out the classification performance results
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IRQ

Figure 4.4: The EFTIP co-processor structure and integration with the host CPU

The major components of the EFTIP co-processor and their connections are depicted in the

Figure 4.4:

• Classifier (Section 4.3.1) - Performs the DT traversal for each training set instance,

i.e. implements the find_dt_leaf_for_inst() function from the Algorithm 3.4.

The classification process is pipelined using a number of Node Test Evaluator modules

(NTEs) corresponding to the universal nodes of the SMPL architecture, with each NTE

performing the DT node test calculations for one DT level. The parameter DM is the

number of pipeline stages and thus the maximum supported depth of the induced DT.

For each instance in the training set, the Classifier outputs the ID assigned to the leaf
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in which the instance finished the traversal (please refer to the accuracy_calc()

function from the Algorithm 3.3).

• Training Set Memory (Section 4.3.2) - The memory for storing all training set instances

that should be processed by the EFTIP co-processor.

• DT Memory Array (Section 4.3.3) - The array of memories used for storing the DT

description, composed of sub-modules L1 through LDM . Each Classifier pipeline stage

requires its own memory that holds the description of all nodes at the DT level it is

associated with. Each DT Memory sub-module is further divided into two parts: the CM

(Coefficient Memory - memory for the node test coefficients) and the SM (Structural

Memory - memory for the DT structural information).

• Accuracy Calculator (Section 4.3.4) - Based on the classification data received from

the Classifier, it calculates the accuracy of the DT and keeps track of which training set

classes were found to be dominant for each of the DT leaves. For each instance of the

training set, the Classifier supplies the ID of the leaf in which the instance finished the

DT traversal. Based on this information the Accuracy Calculator updates the distribution

matrix. After all the instances have been classified, it calculates the accuracy results and

forwards them to the Control Unit, where they can be read by the user.

• Control Unit (Section 4.3.5) - Acts as a bridge between the AXI4 interface and the

internal protocols. It also controls the accuracy evaluation process and generates an IRQ

(Interrupt ReQuest) when the calculation is done.

4.3.1 Classifier

The classifier module performs the classification of an arbitrary set of instances on an arbitrary

binary oblique DT. As it was already discussed in the Section 4.2, the Classifier module was

implemented by modifying the SMPL architecture described in [56]. The original architecture

from [56] was designed to perform the classification using already induced DTs, hence it was

adapted so that it could be used with the EFTI algorithm for the DT induction as well.
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Figure 4.5: The architecture of the Classifier module consisting of the NTE modules

connected in an array.

In order for the EFTIP co-processor to calculate the accuracy of a DT on a dataset, the Classifier
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needs to perform the DT traversal for each instance of the dataset, i.e. it needs to implement

the find_dt_leaf_for_inst() function from the Algorithm 3.4 in hardware. As it was

discussed in the Section 4.2, during the traversal of an instance, only one node per DT level is

visited, i.e. only one node test is performed per DT level for a single instance. Hence, a single

module that implements the evaluation of the oblique node test (equation (1)), could be used

to incorporate the test evaluations for all nodes on one DT level. Naturally, this module needs

to be programmable in that it has to support the node test evaluation with different coefficient

vectors in order to be able to evaluate tests for all nodes residing at the same DT level. However,

the programmability is needed also since the EFTIP co-processor is used for the DT induction,

hence the node test coefficients are not known in advance and can change over the course of

the induction.

The Figure 4.5 shows the Classifier module as being composed from NTE modules, each of

which is associated with one DT level, and implements the node test evaluation procedure for

all nodes on that DT level. The NTE modules correspond to the universal nodes of the SMPL

architecture. During the traversal of the DT, an instance always descends one DT level at the

time, and never returns to the levels it already visited. The NTE modules are thus connected

into a chain, where an instance is transferred from the first NTE to the last one in the chain, in

order to calculate its DT traversal path. The number of NTEs the Classifier comprises - DM ,

determines the maximum depth of the DT whose accuracy can be calculated by that hardware

instance of the EFTIP co-processor. The DM value can be specified by the user during the

design phase of the EFTIP co-processor.

Since an instance always travels down the NTE chain, one NTE at a time, there is no reason

why multiple instances could not traverse the chain simultaneously. The moment the NTE1

evaluated the node test for the first instance of the dataset and the instance was transferred to

the NTE2, the NTE1 becomes free to evaluate the node test for the next instance in the dataset.

In other words, the NTE modules can form the pipeline, with one stage per DT level, capable

of accommodating DM instances in parallel, after the initial latency during which the pipeline

is filled.

The NTE1 always processes the root DT node. However, which nodes are processed by other

stages depends on the path of the traversal for each individual instance. Hence each NTE

module needs to have access to the descriptions of all the nodes on the DT level associated

with it. Since each stage of the NTE pipeline needs to operate in parallel (in a distributed

manner), the node description data needs to be distributed as well, and thus each stage has one

sub-module of the DT Memory Array assigned to it that holds the descriptions of all the nodes

on the DT level associated with that stage. Furthermore, each DT Memory Array sub-module

is divided into two parts in order to save on some NTE hardware resources, namely CM and

SM, because the data from these two memory parts is needed at different times in the node test

evaluation, which will be discussed in more detail in the following text. Therefore, each NTE

contains interfaces, comprising the address and data buses, for accessing the CM and SM parts

of the assigned DT Memory Array sub-module: CM addr, CM data, SM addr and SM data.

When an instance is transferred from one NTE module to the next, the decision via which node

the traversal continues (made by evaluating the node test) needs to be communicated along with

it too. There are two major cases that need to be handled differently:

1. the instance continues the traversal via one of the children of the node whose test has

been evaluated by the current NTE module. In this case, the next NTE in the chain is sent
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the ID of the child (non-leaf) node to which the instance should descend.

2. the instance has already been classified, in which case the traversal is finished. However,

in order not to disturb the filled pipeline, the instance is nevertheless transferred down

the NTE chain. In this case, the next NTE in the chain is sent the ID of the leaf in which

the instances finished its traversal. Based on that, the next NTE will recognize that no

further calculations need to be performed for this instance, and that it can simply pass

leaf ID onward.

The inter-NTE interface comprises the following buses:

• Instance bus - Passes the instance to the next NTE, as the instance traverses the DT.

• Node ID bus - Passes to the next NTE either the ID of a non-leaf node, through which the

traversal is to be continued, or the ID of a leaf node into which the instance has already

been classified in some of the previous pipeline stages. The leaf and the non-leaf IDs are

distinguished by the value of the node ID’s MSB. If the value of the MSB is zero, the

node ID is a non-leaf ID, otherwise it is a leaf ID.

For each instance, received at the Classifier input, the first NTE block processes the dot product

calculation using the attributes of the received instance x and the root node coefficients w.

Based on the result, it then decides on how to proceed with the DT traversal: via the left or via

the right child. The ID of the selected child node, which can either be a leaf or a non-leaf, is

output via the Node ID Output port. If the selected child is a leaf node, the classification is done,

and the next stages will perform no further calculations, but only pass forward the ID of the leaf

into which the instance has been classified. On the other hand, if the selected child is a non-leaf

node, the next stage will continue the traversal through the selected child by calculating the

node test associated to it. The calculation of each NTE corresponds to one iteration of the

find_dt_leaf_for_inst() function loop (Algorithm 3.4), and the NTE output Node

ID corresponds to the cur_node variable, more specifically to its attribute id, which is in

turn needed for the formation of the distribution matrix in the function accuracy_calc()

of the Algorithm 3.3 (leaf.id). The node ID is output synchronously with the instance via

the Instance Output port.

All subsequent stages operate in a similar manner, except that in addition, they also receive

the calculation results from their predecessor stage. Somewhere along the NTE chain, all

instances will finish the traversal into some leaf. The information about this leaf is finally

output from the Classifier module via the Node ID Output port of the last NTE in the chain to

the Accuracy Calculator module (together with the corresponding instance description via the

Instance Output port) in order to update the distribution matrix and calculate the final number

of classification hits.

4.3.1.1 Dot Product Parallelism

To evaluate a DT node test, each NTE needs to evaluate the dot product between node test

coefficient vector w and instance attribute vector x, which is at the same time by far the most

complex operation of the NTE module. By extracting the parallelism from the dot product

operation, additional speedup could be gained. The Figure 4.6 shows which parts of the dot

product calculation can be performed in parallel on an example where NA = 7. If we are only

allowed to perform binary addition (which is usually the case when a hardware block performs
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is used for this task), the calculation could be performed in 4 steps, with all the operations

performed in a single step circled with the dashed lines in the figure. In the Step 1 all the

multiplications could be performed in parallel since there is no data dependency between them,

while in later steps the NA-ary addition is broken down into the sequence of binary addition

operations, where all of them within the same step can be executed in parallel.

Step 1

Step 2

Step 3

Step 4

w1 w2 w3 w4 w5 w6 w7x1 x2 x3 x4 x5 x6 x7· · · · · · ·+ + + + + +

+ + + + + +

+ + +

+

S1 S2 S3 S4 S5 S6 S7

S12 S34 S56 S7

S1234 S567

Figure 4.6: The dot product calculated for NA = 7, using binary multipliers and adders,

broken into 4 steps inside which the operations can be performed in parallel.

To take advantage of this dot product calculation parallelism, the NTE module is again

internally pipelined, all in order to achieve the maximal possible throughput. Each of the

steps (Figure 4.6) of the dot product calculation is mapped into one internal pipeline stage. The

number of stages needed for the dot product pipeline equals 1 for the multiplication step, plus

⌈ld(NA)⌉ for NA-ary addition to be performed via binary addition operations. There is never a

need to flush the NTE pipeline, because of the nature of the DT accuracy calculation, where the

instances enter the pipeline one by one in a predefined order, descend through the DT without

making any loops and finally get classified, at which point the NTE needs to perform no further

calculation on them, which in turn makes space for the rest of the instances to be processed.

4.3.1.2 Node Test Evaluator - NTE

The block diagram in the Figure 4.7 shows the architecture of the NTE module. When the value

received at the Node ID Input of an NTE contains a non-leaf node ID, it tells the NTE which

node’s test is to be evaluated among all the nodes at the DT level on which that NTE module

operates. The node test is performed on the dataset instance received at the Instance Input port

together (at the same time) with the node ID. Each instance carries two types of information:

the attribute vector x and the class C to which it belongs. The instance and the selected node

together make a pair of objects that all procedures in the NTE module operate on, and in the

text they are called: the current instance and the current node. Please notice that due to the

pipelining, different stages of the NTE operate in fact on different current nodes and instances.

The NTE expects the ID of a non-leaf node to equal the node’s index in the list of all non-leaf

nodes at the DT level on which the NTE operates. Hence, the non-leaf node IDs are local to,

i.e. only unique within, the DT level they are at, and the node numbering restarts from 0 for

each DT level. On the other hand, the leaf IDs need to be global, i.e. unique across the whole

DT, since they will be used to identify which leaf was the instance classified into.
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When the value received at the Node ID Input of an NTE contains a leaf node ID, this signals

the NTE that the corresponding instance has already been classified, hence the dot product

calculation is not performed (more precisely, in order to simplify the design it is still performed,

but the results are discarded). The received node ID value is simply output verbatim via the

“Node ID Output” port along with the corresponding dataset instance.
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Figure 4.7: The NTE (Node Test Evaluator) block architecture

The Classifier hence performs the operations on the current node and instance in the following

order:

1. The test coefficient vector w of the current node is fetched from the CM part of the DT

Memory Array sub-module via the Coefficient Memory Interface. The current node’s ID

is used as an index to calculate the address of the node’s coefficient vector in the CM

memory, which is communicated via the CM addr port. If the current node is a leaf, the

fetch is not performed and all zeros are loaded for the vector w, but the results of the dot

product are discarded anyway in this case.

2. The dot product between the fetched coefficient vector w and the attribute vector x of the

current instance, is calculated in several steps discussed in the Section 4.3.1.1. First the

multiplication step is performed in parallel, and then the obtained element-wise products

are summed using the adder tree.

3. The current node’s test threshold (θ) and the IDs of the current node’s both children (ChL

- the ID of the left child and ChR - the ID of the right child) are retrieved from the SM
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part of the DT Memory Array sub-module, again using the current node ID as an index

to calculate the address where this information is stored in the SM memory. Again, if the

current node is a leaf, the fetch is not performed and all zeros are loaded for θ, ChR and

ChL.

4. Finally, the decision on where to proceed with the DT traversal is made. If the current

node is a non-leaf node, the MSB of its ID has a value 0, which makes the MUX2 block

forward the output of the MUX1 to the Node ID Output port of the NTE. The output of

the MUX1 in turn depends on the result of the comparison between the dot product value

and the value of θ, and either ChL or ChR is sent to the Node ID Output. On the other

hand, if the current node is a leaf (meaning that the current instance has already been

classified), the MSB of its ID has a value 1, which makes the MUX2 block forward the

current node’s ID to the Node ID Output. Whichever the case may be, a node ID will be

output via Node ID Output port along with the current instance via Instance Output port,

and they will become the current node and the current instance for the next NTE in the

chain.

The main parameter that needs to be specified by the user during the design phase of the EFTIP

is the maximum supported number of attributes per instance - NM
A , i.e. the maximum supported

sizes of the vectors w and x. This parameter affects the size and latency of the NTE module as

it will be explained in the text that follows.

The NTE module’s main task is the dot product calculation of the vectors w and x. By using

only two input multipliers and adders, this computation is parallelized and pipelined as much

as possible as discussed in the Section 4.3.1.1. The multiplications are performed for all NM
A

coefficient and attribute pairs in parallel, while the tree of two input adders that is
︀

ld(NM
A )
︀

deep, is necessary to implement the summing operation. In order to achieve higher operating

frequency of the implemented EFTIP co-processor, the dot product calculation datapath is

broken into stages, with one stage per calculation step. Each step comprises multiplication

or addition operations that can be performed in parallel. Finally, the outputs of each of the

adder and multiplier blocks are registered to form the pipeline.

Second important parameter besides NM
A , that needs to be specified by the user during the

design phase of the EFTIP is RA - the number of bits used for the signed fixed point

representation of the elements of the vectors w and x. Hence, the elements of w and x

are considered to be in the Q0.(RA − 1) format. For an example, if 16 bits are used for

the representation of the vector elements, they are considered to be in Q0.15 format. After

the multiplication stage, the products will thus be in the Q0.(2RA − 2) signed fixed point

format. The value of the sum, output by each adder, is larger by 1 bit than the value of its

operands, hence the registers increase in size by 1 integer bit per pipeline stage. After the final

addition, the sum representation will have reached the size of: 2RA − 1 +
︀

ld(NM
A )
︀

bits in

the Q(
︀

ld(NM
A )
︀

).(2RA − 2) format. Finally, the value of the final sum, which is compared

to the threshold θ, is truncated to the Q(
︀

ld(NM
A )
︀

).(RA − 1 −
︀

ld(NM
A )
︀

) format in order to

return to the operands of RA bits in size. Consequently, the NTE expects the value of θ to be

supplied encoded in the Q(
︀

ld(NM
A )
︀

).(RA − 1 −
︀

ld(NM
A )
︀

) format. The NTE module also

supports datasets with less than NM
A number of instance attributes, NA < NM

A . In this case, the

surplus coefficients wNA+1, wNA+2, ...wNM
A

should be all set to zero, in order not to affect the

calculation of the sum.

The necessary number of bits used to encode the non-leaf node and leaf IDs - RN , can be
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calculated based on the parameter DM . Since the non-leaf node IDs are unique only across one

DT level, of which the last level can have the largest number of nodes, and the DM parameter

limits the number of levels the induced DT can have, there is a maximum of 2D
M

−1 different

non-leaf node IDs to be encoded for the selected value of the parameter DM . On the other

hand, the leaf IDs need to be globally unique, hence there needs to be one ID available for each

leaf in the DT. The possible number of leaves is also related to the parameter DM , and equals

2D
M

. Additionally, the MSB of the ID representation is reserved for differentiating between

the leaf and non-leaf node IDs, which finally means that the total number of bits for encoding

IDs should be RN ≥ DM + 1 if it is needed for the EFTIP co-processor to support complete

binary DTs of depth DM . Usually, if the DT individuals are given enough depth to grow, the

EFTI algorithm will induce DTs that are much smaller than the complete binary DT of the same

depth. Hence, depending on the dataset and other algorithm and co-processor configurations,

it might be viable to lower the value of RN .

The Figure 4.7 shows the NTE module partitioned in NP pipeline stages by the vertical dotted

lines, with each part labeled by the stage ID: Stage 1, Stage 2, ... Stage NP . The total number

of pipeline stages needed (NP ), equals the depth of the adder tree, plus the multiplication stage

and the decision stage in the end where node test results are interpreted:

NP =
︀

ld(NM
A )
︀

+ 2 (27)

Prior to the Stage 1 of the NTE, the coefficients of the vector w are fetched from the CM

memory, which seems like it requires a separate pipeline stage. However, this step was merged

with the Stage NP of the previous NTE to be performed together in a single clock cycle. This

implementation choice saved both one clock cycle per NTE on the EFTIP co-processor latency,

and on additional registers that would be needed were these tow steps implemented in two

separate pipeline stages.

The Instance Queue and the Node Queue delay lines are necessary due to the pipelining. Each

NTE performs calculations only for a single DT level, hence once the calculations is finished

the instance needs to be transferred to the next NTE module in the Classifier chain. This transfer

needs to correlate in time with the output of the node test evaluation results via the Node ID

output port. Hence, the Instance Queue has to have the length equal to NP , since it needs to

delay the output of the instance to the next NTE module for NP clock cycles, which are needed

for the calculations.

The Node Queue is necessary for preserving the current node’s ID (the signal Node ID in the

Figure 4.7). If the current node is a non-leaf node, then in the pipeline Stage NP − 1 its ID

will be used to calculate the address of the node’s structural description in the SM part of the

DT Memory Array sub-module. This description comprises three values: the ID of the left

child - ChL, the ID of the right child - ChR and the node test threshold value - θ, which are in

turn needed in the last pipeline stage, where a decision on how to continue the traversal will be

made. On the other hand if the current node is a leaf, then its ID is needed in the last pipeline

stage to be output via Node ID Output to the next NTE in the chain.

The operations in each pipeline stage depend only on the output of the previous stage, i.e. there

are no loops in the design. This allows for each pipeline stage to start processing the next

dataset instance immediately after it has finished with the current instance. The indices of the

instances and nodes inside the Instance Queue and Node Queue reflect this feature. While Stage

NP processes the instance Ii, which is currently in the node Ni, the Stage NP − 1 can process
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in parallel the next instance in the dataset, namely Ii+1, which is in the node Ni+1. Hence, the

total of NP instances are processed in different pipeline stages by a single NTE in parallel.

4.3.1.3 The Classifier Operation Example

Lets use the DT from the Figure 3.8a, whose induction from the vene dataset by the EFTI

algorithm was discussed in the Section 3.1. First, the parameters compatible with the vene

dataset need to be selected for the Classifier module. The vene training set instances are

described using two attributes, NA = 2, hence the minimum value that can be chosen for NM
A

is NM
A = NA = 2. For the sake of simplicity, in this example, NM

A will be set to this minimum

value of 2. The value of RA can be chosen freely based on the accuracy that needs to be

achieved during the dot product calculation, and here it will be set to 16, which should provide

the high enough precision to obtain the highest possible classification results. The example DT

is 3 levels deep, hence the DM parameter needs to be set to at least that value. Even though the

Classifier would provide correct results even if it contained more levels than that, for the sake

of simplicity DM will be set 3. Also, even though it would suffice to select RN = DM +1 = 4,

RN will be set to 8 to gain on the readability of the leaf IDs. Based on these selections the other

parameters can be calculated:
︀

ld(NM
A )
︀

= 1, NP = 3, w and x elements format is Q0.15, and

θ format is Q1.14. The list of all relevant parameters for the Classifier module is given in the

Table 4.2.

Table 4.2: The parameter set for configuring the EFTIP co-processor compatible with the

vene dataset.

DM NM
A RA RN

︀

ld(NM
A )
︀

NP FP format

x, w

FP format

θ

3 2 16 8 1 3 Q0.15 Q1.14

83 84

0 80

0

81 82

1

0

w = [0.603,−0.986], θ = −0.092

w = [4D2A, 81D1], θ = FA20

w = [0.516, 0.075], θ = 0.326

w = [4214, 0995], θ = 14DF

w = [0.120,−0.226], θ = −0.062

w = [0F65, E317], θ = FC00

w = [0.199, 0.296], θ = 0.270

w = [197E, 25DA], θ = 113F

Figure 4.8: The example DT used to discuss the NTE operation. θ and w are

displayed for all nodes, first in decimal format and then in the fixed point representation

immediately below.

The Figure 4.8 shows the induced DT with the values of θ and w displayed for all nodes, first
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Figure 4.9: The vene dataset with the marked instance that will be used for the

Classifier module operation demonstration. The attribute space regions are titled by

the leaf IDs that they are associated to.
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Figure 4.10: The preparation for the first pipeline stage, where the loading of the

coefficient vector for the selected node from the CM memory is performed. All the blocks

and the signal paths active in this phase are highlighted in blue.
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in decimal format and then in the fixed point representation immediately below. Next, it will

be shown how the Classifier module calculates the classification results of the example DT on

a single instance. For this example an instance marked in the Figure 4.9 will be classified.

The instance belongs to the class C2 and has the attribute vector x = [0.5929, 0.6425], which

encoded in Q0.15 becomes x = [4BE4, 523D]. As the Figure 4.5 shows, the instance is first

input to the NTE1 module’s Instance Input port. Please notice that the information about the

class to which the instance belongs is not used by the Classifier module, and will be used

only once the instance is classified and the results are transmitted to the Accuracy Calculator

module. The value of the Node ID Input on the NTE1 module is fixed to 0, i.e. the node with

ID 0 is always selected since the root node is the only possible choice for the first DT level.

Before the first pipeline stage, w needs to be loaded from memory for the selected node.

The read from the CM memory is performed asynchronously and the coefficients are lead

to their corresponding registers in order to be used in the first pipeline stage that performs the

multiplication operation. The vector x is led to the Instance Queue, and the current node ID is

led to the Node Queue. All blocks and signal paths active in this phase are highlighted in blue

in the figure Figure 4.10.

Next, in the first pipeline stage the element-wise multiplication between vectors w and x is

performed as shown in the Figure 4.11 with all active parts highlighted in blue. The current

instance and the current node ID are now stored in the first elements of the Instance and Node

queues respectively. The vector w and x element values are shown in the figure, as well as the

multiplication results which are in Q0.30 fixed point format as it was already described. Please

notice, that NTE performs signed additions and multiplications, hence the sign extension is

needed for all operands, but this is not shown in the figures. Hence, in order to obtain the

correct result for the w2 · x2 multiplication, the coefficient w2, which is negative in this case,

first needs to be sign extended to Q0.30 format: w2 = 7FFF81D1, and then only lower 31 bits

from the product are kept, while discarding the upper bits which arose from multiplying with

the sign extension:

w2 · x2 = 7FFF81D1 · 0000523D = 523CD776E0CD
Q0.30
−−−→ 5776E0CD (28)

Then in the pipeline Stage 2 (Figure 4.12), the addition of the element-wise products is

performed. Since the Classifier module was configured to support only two instance attributes

via the NM
A attribute, the addition can be performed within single pipeline stage. If a higher

value were selected for the NM
A parameter, multiple stages would be needed in order to calculate

the dot product sum. The current instance and the current node ID are now stored in the second

element of the Instance and Node queues respectively. The vector element-wise products are

shown in the figure, as well as the addition result, that is in the same time the final dot product

result, and is encoded in Q1.30 fixed point format. Again, the negative element w2 · x2 needs

to be sign extended to the format of the result: w2 · x2 = D776E0CD, after which the addition

can be performed:

w1 · x1 + w2 · x2 = 16E00768+ D776E0CD = EE56E835
Q1.14
−−−→ EE56 (29)

The dot product sum is finally converted to the format of θ, which is Q1.14 in this example, by

truncating the lower bits. Additionally, the information needed for the final decision on where

the traversal will continue is fetched from the SM memory and prepared for the last pipeline

stage. The fetched values for θ, ChL and ChR for this example are shown in the figure.
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Figure 4.11: The first pipeline stage, where the element-wise multiplication between

vectors w and x is performed. All the active parts are highlighted in blue in the figure.
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Figure 4.12: The second pipeline stage, where the final evaluation of the node test is

performed and the decision on where the traversal will continue is made. All the blocks

and the signal paths active in this stage are marked in the figure.
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Finally in the pipeline Stage 3, the dot product calculation results are compared to the value

of θ, to obtain the node test result, which in this case EE56 ≤ FA20 evaluated to true (these

are both negative values in Q1.14 and the comparator block performs the signed comparison).

Based on the comparison result, the MUX1 block forwards the ID of the left child ChL = 0
to its output, which is then passed to the port 0 of the MUX2 block. Since the current node is

not a leaf (the current instance is yet to be classified), the Node ID MSB has a value 0, which

selects the value from the MUX2 port 0 to be forwarded by the MUX2 block to its output,

which is in turn lead to the Node ID Output port. Hence, the result of the NTE1 operation in

this example is that the ChL = 0 value is output via Node ID Output port, and the DT traversal

for this instance will continue via node with ID 0 on the second DT level, which will in turn be

performed by the NTE2 module.
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1 0

true

1
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0

0 0
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MUX2
0 1

Node ID [MSB]

NTE1

Figure 4.13: The third pipeline stage, . All the blocks and the signal paths active in this

stage are highlighted in blue.

The outputs Instance Output = [4BE4, 523D], C = 2 and Node ID Output = 0, as shown in the

Figure 4.13, are then passed to the NTE2 module where the traversal of the instance continues.

The NTE2 module performs in the exact same 3 stages as the NTE1 module did, but on a

different DT node. The Figure 4.14 combines the results of the computations from all 3 NTE2

stages in one image, which in fact occur in successive cycles. This time, the value passed from

the previous NTE (the value 0 in this example), is used to select the node for the test evaluation,

among the two possible nodes on the DT level 2. As it is shown in the figure, the test evaluates

to false, and hence the traversal is to be continued via the right child. In this case, the right

child is a leaf with the ID 80, and the instance’s classification is thus determined.

Notice however, how close the dot product sum 16AA is to the θ value 14DF. This is due

to the proximity of the instance to the hyperplane separating region 80 and regions 83 and

84 in the attribute space. If the instance were positioned exactly on the hyperplane, these

two values would be identical. Anyway, the instance is passed to the next (and also the last)
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NTE module, which will recognize that no further computation is needed for the instance, and

simply pass the results to the Classifier output. The Figure 4.15 shows likewise the relevant

computation results from all 3 stages of NTE3 module in one image. Basically, the results of

the dot product calculations are disregarded (and omitted from the figure for this reason), and

the MUX2 component of the NTE module recognizes that it has received a leaf ID on its Node

ID Input port (node ID’s MSB value is 1), and simply outputs the same leaf ID value for the

instance to the Node ID Output port. Since the NTE3 is the last NTE module in the Classifier

chain, its Node ID Output port is at the same time the output of the whole Classifier module.

The Classifier thus calculated that the instance [4BE4, 523D] finishes its traversal of the DT from

the Figure 4.8 in the leaf with the ID 80. From the attribute space partition induced by the DT

shown in the Figure 4.9, it can be seen that the classification is indeed correct.
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Figure 4.14: The results of the node test evaluation on the second DT level by the NTE2

module.

However, the Classifier module operates on multiple instances of the dataset in parallel using

the pipelining technique. The Figure 4.16 shows this process by displaying only the contents of

the Instance and Node queues, which is enough to represent which instance is being processed

by which stage of which NTE. Each pipeline stage is represented by a pair of Instance and Node

queue elements which are displayed directly above one another in the figure. The Instance

Queue element of the pair shows the attribute vector and the class assigned to the instance it

contains, while the Node Queue element shows the current ID of the node this instance is at.

At the beginning, the queues are empty and the first instance I0 is received from the Training

Set Memory as shown in the Figure 4.16a. The node test evaluation computation is carried out

in the NTE1 module stage by stage, and in three clock cycles the I0 instance is transferred

to the NTE2 module, as shown in the Figure 4.16b. There, its traversal is continued via the

node with ID 0 on the DT level 1 (Figure 4.8). By this time, three more instances have been
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Figure 4.15: The results of the node test evaluation on the third DT level by the NTE3

module.

loaded from the Training Set Memory, and are in the process of the node test evaluation in three

stages of the NTE1 module. Since they all need to start from the root node, their selected node

IDs are all 0. Finally, the Figure 4.16c shows the moment in the classification where the first

instance of the dataset I0 has reached the end of the pipeline and is outputted to the Accuracy

Calculator module, along with its classification into the leaf node with the ID 83.

4.3.2 Training Set Memory

This is the memory that holds all the training set instances that should be processed by the

EFTIP co-processor. It is a two-port memory with ports of different widths and is shown in the

Figure 4.17. It is comprised of the 32-bit wide stripes, in order to be accessed by the host CPU

via the 32-bit AXI interface. Each instance description, spanning multiple stripes, comprises

the following fields:

• Array of instance attribute values: xi,1 to xi,NM
A

, each RA bits wide (parameter specified

by the user at design time),

• Instance class: Ci, which is RC bits wide (parameter specified by the user at design time)

The training set memory can be accessed via two ports:

• User Port - Read/Write port accessed by the CPU via the AXI interface, 32-bit wide.

• NTE Port - Read port for the parallel read-out of the whole instance, RA ·NM
A +RC bits

wide.

The width of the NTE Port is determined at the design phase of the EFTIP, and corresponds
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Figure 4.16: The process of pipelined operation of the Classifier module with only

the contents of the Instance and Node queues displayed, which in turn represent which

instance is being processed by which stage of which NTE.
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Figure 4.17: The Training set memory organization
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to the maximal size of the instance, i.e. the instance with the NM
A number of attributes, that

can be processed. The instance attributes are encoded using an arbitrary fixed point number

format, specified by the user. However, the same number format has to be used for all instances’

attribute encodings. The total maximum number of instances (NM
I ), i.e. the size of the Training

Set Memory, is selected by the user at the design phase of the EFTIP, and determines the

maximum possible training set size that can be stored inside the EFTIP co-processor.

4.3.3 DT Memory Array

DT Memory Array is composed of DM sub-modules used for storing the DT description,

including the structural information and the coefficient values for every node test of the DT.

Each sub-module of the DT Memory Array is a three-port memory with ports of different

widths (as shown in the Figure 4.18) and is comprised of 32-bit wide stripes in order to be

accessed by the host CPU via the 32-bit AXI interface.
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Figure 4.18: The DT memory organization

Each DT Memory Array sub-module contains a list of node descriptions as shown in the Figure

4.18, and has two parts. The CM part of the memory comprises the array of the node test

coefficients: wi,1 to wi,NM
A

, each RA bits wide. The SM part of the memory contains the

following fields:

• The node test threshold: θi, which is RA bits wide

• The ID of the left child: ChLi, which is RN bits wide

• The ID of the right child: ChRi, which is RN bits wide

An array of parameters, NM
n (l), l ∈ (1, DM), that can be specified by the user at the design

stage, is used to control the size of the individual DT Memory Array sub-modules. These

parameters impose a constraint on the maximum number of nodes that the induced DT can

have on each level. The size of each DT Memory Array sub-module is configured separately,

since the first DT level can only have one node (which is the root node). At the worst case,

possible number of nodes per DT level increases exponentially with the depth of the DT level.

However, in practice, the induced DTs are never complete binary trees, hence the increase of
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the sub-modules’ size with the corresponding DT level depth saturates quickly. To make the

addressing of the DT Memory Array sub-modules of different size easier, every sub-module is

given the address space of an identical size and it is up to the user to take care of how many DT

node descriptions are actually available in each sub-module.

Since the fields ChLi and ChRi can either contain a leaf or a non-leaf ID, and the ID’s MSB is

used to discern the ID type, with their width of RN , they can encode 2RN−1 IDs. The value of

the parameter RN is calculated at the design time so that the fields ChLi and ChRi can encode

both the the maximum number of nodes per any DT level and the maximum number of leaves

the induced DT can have, i.e.:

RN = 1 +
︀

ld(max(NM
n (1), ..., NM

n (DM), NM
l ))

︀

(30)

DT Memory Array sub-module can be accessed via three ports:

• User Port - The read/write port, accessed by the CPU via the AXI interface, 32-bit wide.

• CM Port - The read port for the parallel read-out of all node test coefficients for the

addressed node, RA ·NM
A bit wide.

• SM Port - The read port for the parallel read-out of the node structural information for

the addressed node, RA + 2 ·RN bit wide.

4.3.4 Accuracy Calculator

This module calculates the accuracy of the DT by forming the distribution matrix as described

by the Algorithm 3.3. It monitors the classifications outputted by the Classifier for each instance

in the training set, and based on its class (C) and the leaf in which it finished the traversal (Leaf

ID), the appropriate element of the distribution matrix is incremented. The Accuracy Calculator

block is shown in the Figure 4.19.

·

·

·

·

·

·

·

·

·

Leaf ID

C Incrementer
Dominant
Class Calc.

Class Distribution
Memory

LDCC1

Incrementer
Dominant
Class Calc.

Class Distribution
Memory

LDCCNM

l

Accuracy
Provider

Accuracy Calculator

dominant class1

dominant class cnt1

dominant classNM

l

dominant class cntNM

l

hits

dt classes

Figure 4.19: The Accuracy Calculator block diagram
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In order to speed up the dominant class calculation (second loop of the accuracy_calc()

function in the Algorithm 3.3), the Accuracy Calculator is implemented as an array of

calculators, called Leaf Dominant Class Calculator - LDCC, whose each element keeps track

of the distribution for the single leaf node. Hence, the dominant class calculation for a leaf (the

dominant_class and the dominant_class_cnt variables from the Algorithm 3.3) and

counting the total number of instances that finished the traversal in the leaf, can be performed in

parallel for each leaf node. In other words, each LDCC is responsible for maintaining one row

of the distribution matrix from the Figure 3.13. The parameter NM
l , which can be specified by

the user during the design phase of the EFTIP co-processor, determines the number of LDCC

blocks available in the Accuracy Calculator module, and hence imposes a constraint on the

maximum number of leaves in the induced DT. Since the width of the node ID representation,

parameter RN , also constraints the maximum number of leaves, these two parameters need to

be correlated, with at least RN =
︀

ld(NM
l )
︀

+1, with the one additional bit used to discern the

node IDs from the leaf IDs. Each LDCC comprises:

• Class Distribution Memory - For keeping track of the class distribution of the

corresponding leaf node.

• Incrementer - Updates the memory based on the Classifier output.

• Dominant Class Calculator - Finds and outputs the dominant class for the leaf and

the number of instances of the dominant class that were classified in the leaf, using the

signals dominant_classi and dominant_class_cnti respectively, where i ∈ (1, NM
l ),

as shown in the Figure 4.19.

For the leaf it is responsible for, each LDCC keeps track of how many instances of each of the

training set classes were classified in the leaf. The parameter NM
C , also specified by the user

at the EFTIP design time of the, determines the width of the Class Distribution Memory and

hence the maximum number of classes of the training set the EFTIP co-processor supports.

It then finds a class that has the largest number of instances in the leaf (the dominant class

corresponding to the dominant_class variable in Algorithm 3.3), and outputs its ID via

the dominant_class port. If the instance’s class equals the dominant class of the leaf node

it finished the traversal in, it is considered a hit, otherwise it is considered a miss. Hence,

the value output to the dominant_class_cnt port represents the number of classification hits

for the corresponding leaf node and corresponds to the dominant_class_cnt variable in

Algorithm 3.3. The total number of instances classified in the leaf is output via hits port.

When the classification of the training set is finished, the Accuracy Provider block performs

the following:

• It sums the classification hits for all leaf nodes and outputs the sum as the number of hits

for the whole DT (the hits port), which is then stored in the Classification Performance

Register of the Control Unit.

• Gathers the information about dominant classes for each of the leaves and outputs this

value via dt_classes port for storing it in Classes Register in Control Unit.

4.3.4.1 The Accuracy Calculator Operation Example

In this subsection a demonstration of the Accuracy Calculator operation is given for the vene

dataset classified by the DT from the Figure 4.8, and is shown in the Figure 4.20. The
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two instances left
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Figure 4.20: Demonstration of the Accuracy Calculator operation for the vene dataset

classified by the DT from the Figure 4.8
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classification results arrive from the Classifier module in each clock cycle for a different training

set instance and are comprised from the leaf ID and the instance class pairs, as shown in the

Classifier Output queue in the figure. The Accuracy Calculator is shown comprising the LDCC

array of which only five active LDCC modules are shown, each responsible for one of the DT

leaves 80 - 84. The remaining NM
l − 5 LDCC modules are inactive in this example since

there are only five leaves in the DT. Each LDCC is shown comprising the Class Distribution

Memory consisting of three elements, one for each of the classes (C1, C2 and C3) occurring

in the vene training set, while the remaining CM − 3 elements are inactive and not shown

in the figure. Together all LDCC modules with their Class Distribution Memories form the

distribution matrix.

Based on the ID of the leaf the instance was classified into, the appropriate LDCC is activated. It

then uses the instance class information to increment the corresponding item in the distribution

matrix row it is responsible for. In the Figure 4.20a, the first instance in the training set I0 is

shown arriving from the classifier module, prior to which the distribution matrix was empty. I0
was classified into the leaf with the ID 83 for which the LDCC3 module is responsible, and

it belongs to the class C1, represented by the first column in the distribution matrix. Hence,

the LDCC3 module increments the first element of its class distribution row as shown in the

figure. In the Figure 4.20b, the instance I2 of the class C3, which was classified into the leaf

81, activated LDCC3 module to increment the item corresponding to the class C3.

The Figure 4.20c displays the moment when the last two instances from the training set arrive,

and the distribution matrix is almost complete. Finally, in the Figure 4.20d, the complete

distribution matrix is shown and its items corresponding to the dominant classes are highlighted

in blue. The Accuracy Provider module then gathers the information from all LDCC modules

about the dominant classes and combines them to get the total number of hits and the array

of dominant classes that are sent to the Control Unit.

4.3.5 Control Unit

Control Unit provides the AXI4 interface access to the configuration and the status registers, as

well as to the DT Memory Array and the Training Set Memory by providing a unified memory

space. Furthermore it generates an IRQ signal when the accuracy calculation is finished. The

following registers are provided:

• Operation Control - Allows the user to start, stop and reset the EFTIP co-processor.

• Training Set Configuration - Allows the user to specify the relevant properties of the

training set currently used: NI - the number of instances and NC the number of classes

in the training set.

• Classification Performance Register - Informs the user when the accuracy evaluation

task is done, and enables the user to read the calculated number of the classification hits.

• Classes Registers - Stores the dominant classes associated to each of the DT leaves,

received form the Accuracy Calculator’s dt_classes port.

The accuracy calculation process is performed automatically under the management of the

Control Unit and is depicted by the diagram in the Figure 4.21. The EFTIP co-processor

remains in the Idle state until the start signal is given via the Operation Control register. By that

moment, both the Training Set Memory and the DT Memory Array should have been loaded
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Accuracy
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Instance
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Figure 4.21: The Control Unit FSM that manages the whole accuracy calculation

process of the EFTIP co-processor

with the training set instances and the desired DT description for the EFTIP co-processor to

use. The Control Unit then moves to the Enqueue state and starts issuing a sequence of read

commands to the Training Set Memory, one per clock cycle, in order to retrieve the instances

of the training set and forward them to the Classifier module. This process is continued until all

the instances have been read out of the Training Set Memory, when the Control Unit moves to

the Flush state. In this state, the Control Unit waits for the Classifier to finish the classification

of the last training set instance, after which the Accuracy Calculator is instructed to perform

the dominant class calculation and the Control Unit enters the Calculate Accuracy state. After

the Accuracy Calculator finished populating the Classification Performance Register and the

Classes Register, the Control Unit returns to the Idle state once again, ready for the new

accuracy calculation cycle.

4.4 Required Hardware Resources and Performance

The EFTIP co-processor is implemented as an IP core with many customization parameters

discussed in the previous chapters that can be configured at the design phase. These parameters,

listed in the Table 4.3, mainly impose constraints on the maximum size of the DT that can be

induced, and the maximum size of the training set that can be used. The amount of hardware

resources required to implement the EFTIP co-processor is a function of the customization

parameters and is given in the Table 4.4.
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Table 4.3: The customization parameters that can be configured at the design phase of the

EFTIP co-processor

Name Description Constraint

DM The number of NTEs in the Classifier The maximum depth of the induced DT

NM
A Determines: Training Set Memory width,

DT Memory Array sub-module width,

NTE adder tree size.

The maximum number of attributes

training set can have

RA Determines: Training Set Memory width,

DT Memory Array sub-module width,

NTE adder tree size.

Resolution of induced DT coefficients

NM
C Accuracy Calculator memory depth The maximum number of training set

and induced DT classes

RC Number of bits class encoding Parameter must be at least ld(NM
C )

NM
l Number of the LDCC elements The maximum number of leaves of the

induced DT

RN Number of bits for node ID encoding Parameter must be at least RN =
︀

ld(NM
l )
︀

+ 1

NM
I Training Set Memory depth The number of training set instances

that can be stored in the EFTIP

co-processor

NM
n (l) DT Memory Array sub-modules’ depths The maximum number of nodes per

level of the induced DT

Table 4.4: Required hardware resources for the EFTIP architecture implementation

Resource Module Quantity

RAMs Training Set Memory NM
I · (RA *NM

A +RC)

(number of bits) DT Memory Array
∑DM

i=l (N
M
n (l) · ((RA + 1) *NM

A + 2 *RN))

Accuracy Calculator NM
l ·NM

C ·
︀

log2(N
M
I )
︀

NTE DM ·NP · (RA ·NM
A +RC)+

DM ·NP ·RN

Multipliers NTE DM ·NM
A

Adders NTE DM
︀

log2(N
M
A )
︀

Incrementers Accuracy Calculator NM
l

Second, the number of clock cycles required to determine the DT accuracy will be discussed.

The Classifier has a throughput of one instance per clock cycle, hence all instances are classified

in NI cycles. However, there is an initial latency equal to the total length of the pipeline

DM · NP . Furthermore, the Accuracy Calculator needs extra time after the classification has

finished, in order to determine the dominant class which is equal to the total number of classes

in the training set NC , plus the time to sum all dominant class hits, which is equal to the number
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of active leaves Nl. Finally, the time required to calculate the DT accuracy, expressed in clock

cycles, for a given training set can be calculated as follows:

accuracy evaluation time = (NI +DM ·NP +NC +Nl) clock cycles, (31)

and is thus dependent on the training set size.

4.5 Software for the EFTIP Assisted DT Induction

With the EFTIP co-processor performing the DT accuracy evaluation task, remaining

functionality of the EFTI algorithm (Algorithm 3.1) is implemented in software. Furthermore,

the software needs to implement procedures for interfacing the EFTIP co-processor as well.

The needed changes to the main function of the EFTI algorithm can be seen in the adapted

pseudo-code of the efti() function given in the Algorithm 4.1. For the pure software

implementation, the reference to the training set is passed as an argument, and can be readily

accessed for the accuracy calculation task since it resides in the memory directly accessible to

the CPU. However the EFTIP co-processor has its own memory, the Training Set Memory, for

storing the training set instances that needs to be loaded before the induction process starts.

The EFTI algorithm performs many fitness evaluations on the same dataset during the DT

induction, hence the hw_load_train_set() function, given by the pseudo-code in the

Algorithm 4.2, is used to load the training set instances to the EFTIP co-processor only once at

the beginning of the algorithm. Once stored in the Training Set Memory, the information about

the training set instances will be reused in every iteration of the algorithm.

Algorithm 4.1: The pseudo-code of the EFTI algorithm using the EFTIP co-processor

def efti(train_set, max_iter):

hw_load_train_set(train_set, fp_format)

dt_best = dt = initialize(train_set)

hw_load_dt(dt.root)

fitness_eval(dt, train_set)

for iter in range(max_iter):

dt_mut = mutate(dt)

hw_load_dt_diff(dt_mut)

fitness_eval(dt_mut, train_set)

dt, dt_best = select(dt, dt_mut, dt_best)

if dt != dt_mut:

if dt == dt_best:

hw_load_dt(dt.root)

else:

hw_revert_dt_diff(dt_mut)
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hw_load_dt(dt_best.root)

hw_populate_classes(dt_best)

return dt_best

Algorithm 4.2: The pseudo-code of the hw_load_train_set() function that

performs the transfer of the training set to the EFTIP co-processor

def hw_load_train_set(train_set, fp_format):

for i, instance in enumerate(train_set):

pack_row = pack_instance(instance, fp_format)

for e, elem in enumerate(pack_row):

hw_write(eftip_train_mem_addr(i,e), elem)

After the initial DT individual is created, it needs to be transferred to the EFTIP co-processor in

order for its accuracy to be determined, which is performed by the hw_load_dt() function

given by the pseudo-code in the Algorithm 4.3. This is the recursive function that loads both

coefficient and structural information about the DT node and all of its descendants to the

corresponding CM and SM memory parts of the DT Memory Array of the EFTIP co-processor.

First, the pack_dt_node() function, whose implementation was omitted for brevity, packs

the node’s coefficients and structural information, in a list of 32-bit values in a way that the

organizations of the SM and CM DT memory parts dictate (Figure 4.18). As it can be seen from

the pseudo-code, the packing depends on the fixed point format (Qx.y) used for the coefficients

(the argument fp_format) and the width of the node and leaf ID representations RN (the

argument Rn). The packed information is then written to the EFTIP co-processor memories one

32-bit word at a time, at desired locations whose addresses are calculated by helper functions

eftip_dt_cm_addr() and eftip_dt_sm_addr() whose implementations are again

omitted.

Algorithm 4.3: The pseudo-code of the hw_load_dt() function that performs the

transfer of the DT individual coefficients and structural data to the EFTIP co-processor

def hw_load_dt(node):

if not node.is_leaf:

cm_pack, sm_pack = pack_dt_node(node, fp_format, Rn)

for e, elem in enumerate(cm_pack):

hw_write(eftip_dt_cm_addr(node.level, node.id, e), elem)

for e, elem in enumerate(sm_pack):

hw_write(eftip_dt_sm_addr(node.level, node.id, e), elem)

hw_load_dt(node.left)

hw_load_dt(node.right)

With both training set and the DT loaded to the co-processor, the accuracy calculation function

needs only to send the start signal (the hw_start() helper function) and wait for the results
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(the hw_get_hits() helper function), as it can be seen from the Algorithm 4.4.

Algorithm 4.4: The pseudo-code of the accuracy_calc() function adapted to use the

EFTIP co-processor

def accuracy_calc(train_set):

hw_start()

hits = 0

while hits == 0:

hits = hw_get_hits()

return hits / len(train_set)

In the end of the EFTI algorithm the induction procedure settles for the best DT individual

(variable dt_best). However, the information about the dominant classes of the DT leaves is

not retrieved from the EFTIP co-processor during each iteration to save time on data transfer

since it is not critical for the EFTI algorithm operation. Nevertheless, the induced DT returned

by the algorithm needs to have classes assigned to all of its leaves, which is performed by

the hw_populate_classes() function given by the pseudo-code in the Algorithm 4.5.

This function invokes one last accuracy calculation on the best DT individual, which will in

turn populate the Classes Register of the Control Unit with the dominant classes for all the

DT leaves. This information can then be read by the software, at the address calculated by

the eftip_cu_cls_addr() helper function in the pseudo-code, and assigned to the DT

software data structure.

Algorithm 4.5: The pseudo-code of the hw_populate_classes() function adapted

to use the EFTIP co-processor

def hw_populate_classes(dt):

hw_start()

hits = 0

while hits == 0:

hits = hw_get_hits()

for leaf in dt.leaves():

leaf.cls = hw_read(eftip_cu_cls_addr(leaf.id))

4.6 Experiments

In this section, the results of the experiments designed to estimate the DT induction speedup of

the HW/SW implementation of the EFTI algorithm using the EFTIP co-processor over its pure

software implementation are discussed.
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4.6.1 Required Hardware Resources for the EFTIP Co-Processor Used in

Experiments

The customization parameters of the EFTIP co-processor, whose descriptions are given in the

Table 4.3, have been set for the experiments to support all training sets from the Table 2.1, and

their values are listed in the Table 4.5.

Table 4.5: The values of customization parameters of the EFTIP co-processor instance used in

the DT induction speedup experiments

Parameter Value

DT Max. depth (DM ) 13

Max. attributes num. (NM
A ) 64

Attribute encoding resolution (RA) 16

Class encoding resolution (RC) 8

Class encoding resolution (RN ) 9

Max. training set classes (CM ) 64

Max. number of leaves (NM
l ) 256

Max. number of training set instances (NM
I ) 46000

Max. number of nodes per level (NM
n (l)) [1, 2, 4, 8, 16, 16, 16, 32, 32, 32, 64, 64, 64]

The EFTIP co-processor has been modeled in the VHDL hardware description language and

implemented using the Xilinx Vivado Design Suite 2014.4 software for logic synthesis and

implementation, with the default synthesis and P&R options. From the implementation report

files, the device utilization data has been analyzed and the information about the number of

used slices, BRAMs and DSP blocks has been extracted, and is presented in the Table 4.6. The

maximum operating frequency of 133 MHz of the system clock frequency for the implemented

EFTIP co-processor was attained.

Table 4.6: FPGA resources required to implement the EFTIP co-processor for the DT induction

with selected UCI datasets

FPGA Device Slices BRAMs DSPs

XC7Z100 24418 (32%) 755 (100%) 832 (43%)

XC7K410 21156 (32%) 760 (96%) 832 (58%)

XC7VX690 20847 (18%) 760 (43%) 832 (22%)

Given in the brackets, along with each resource utilization number, is the percentage of used

resources from the total resources available on the corresponding FPGA devices. Table 4.6

shows that implemented EFTIP co-processor fits into the mid-level Kintex7 and Virtex7 Xilinx

FPGA devices (XC7K410 and XC7VX690) and high-end XC7Z100 Xilinx FPGA device of

the Zynq series. The scalability of the HW/SW solution can be observed from the point of

several customization parameters of the EFTIP co-processor given in the Table 4.3. The Table

4.4 shows how some of these customization parameters influence the utilization of the hardware
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resources.

The number of instances the EFTIP co-processor can store in its Training Set Memory is limited

by the parameter NM
I , selected at the design phase of the the EFTIP. In case that the datasets

which cannot fit into the Training Set Memory need to be used, either a double buffering

approach could be used or EFTIP could be used in the streaming mode. In the streaming mode,

the data would be continuously streamed from the host CPU memory using the DMA transfer.

In this case, there would be no Training Set Memory, as the instances would be supplied to the

Classifier from the outside via the DMA. In the double buffering approach, the Training Set

Memory would be used as a ring buffer. While the EFTIP is using the NTE port to read the

instance descriptions to the Classifier, the User port would be used to load new instances to the

Training Set Memory. The DMA transfer from the main memory would be used here as well.

EFTIP reads instances from the data set in predictable, sequential order, so it is easy to setup

the DMA transfer and execute it without the intervention of the software during the transfer.

This means that the full bandwidth of the main memory can be used for the data without any

overhead.

If the EFTIP co-processor were to support the datasets with larger number of attributes, which

results in wider training set instance encodings, the training set transfer time could impact the

HW/SW implementation performance. In this case, again, the double buffering or the EFTIP

in streaming mode could be used. The throughput of the EFTIP co-processor, i.e. the widest

possible training set instance encoding that could be used without degrading the performance,

would then be limited only by the bandwidth of the main memory, since there is no overhead to

the training set data streaming. If the bandwidth of one main memory module is not enough, the

EFTIP could use several memory modules simultaneously to read the data out in parallel. The

internal memory widths would also increase, but this would pose no significant problem either,

because the internal FPGA memory primitives can be easily configured to have arbitrary data

widths. Next, the number of attributes affects the size of the adder tree of the NTE module.

However, by increasing the size and the depth of the adder tree, only the pipeline depth is

increased, resulting only in the increase in the initial latency of the EFTIP co-processor, without

degrading the EFTIP throughput.

If the attribute encodings (RA) were to be enlarged, other than increasing the encoding width

of the training set instance, which was discussed above, the EFTIP co-processor multipliers

and adders would need to support wider operands. This would not pose a significant constraint

for implementing both multipliers and adders, since the arbitrary width multipliers and adders

can be built using a number of same blocks of smaller width connected in a pipeline. Hence,

the increase in the data widths would not affect the HW/SW implementation performance,

because only the pipeline depths would be increased, which would in turn increase the initial

latency without affecting the throughput of the system. However, as far as the author is aware,

the attribute encodings with more than 32 bits are rarely used in hardware acceleration of the

machine learning algorithms, as discussed in [56][81][82].

Finally, if the EFTIP co-processor were to support the datasets with the larger number of classes

CM and the larger number of the DT leaves NM
l , the equation (31) shows that the EFTIP latency

would only linearly increase as a function of these two parameters.
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4.6.2 Estimation of Induction Speedup

Three implementations of the EFTI algorithm have been developed for the experiments, all of

them written in the C language:

• SW-PC - Pure software implementation for the PC discussed in the Section 3.5.

• SW-ARM - Pure software implementation for the ARM Cortex-A9 processor.

• HW/SW - HW/SW co-design solution, where the EFTIP co-processor implemented

in the FPGA was used for the time critical fitness evaluation task. The remaining

functionality of the EFTI algorithm (shown in the Algorithm ??) was left in software,

and implemented for the ARM Cortex-A9 processor.

For the SW-ARM and the HW/SW implementations, the ARM Cortex-A9 667 MHz (Xilinx

XC7Z100 Zynq-7000) platform has been used. The software was built using the Sourcery

CodeBench Lite ARM EABI 4.9.1 compiler (from within the Xilinx SDK 2015.2) and the

EFTIP co-processor was built using the Xilinx Vivado Design Suite 2015.2. The experiments

were structured following the description given in the Section 2.8, and all EFTI algorithm

implementation used in the experiments were setup using the “High accuracy” configuration

for the Table 3.10 and given 500k iterations for the induction. The DT inference times were

measured by different means for two target platforms:

• For the PC platform, the <time.h> C library was used and timing was output to the

console,

• For the ARM and DSP platforms, hardware timer was used and the timing was output

via the UART.

Table 4.7: The DT induction times for various EFTI implementations and average

speedups of HW/SW implementation over pure software implementations

Dataset HW/SW [s] SW-ARM
Speedup

SW-ARM
SW-PC

Speedup

SW-PC

adult 17.97± 00.31 452.46± 02.78 25.18 221.53± 05.75 12.33

ausc 0.59± 00.01 7.23± 00.06 12.19 4.37± 00.21 7.36

bank 18.43± 00.04 666.21± 27.81 36.14 311.70± 03.34 16.91

bc 0.55± 00.02 6.10± 00.48 11.10 4.25± 00.11 7.72

bch 13.81± 02.19 174.47± 16.92 12.64 115.62± 01.24 8.37

bcw 0.50± 00.00 4.41± 00.00 8.88 3.35± 00.05 6.74

ca 0.50± 00.00 4.94± 00.00 9.85 4.45± 00.05 8.87

car 0.90± 00.00 7.60± 00.00 8.40 14.37± 00.40 15.89

cmc 1.13± 00.01 17.25± 00.29 15.29 11.93± 00.29 10.57

ctg 3.25± 00.05 41.77± 00.97 12.86 27.36± 00.64 8.43

cvf 9.23± 00.14 206.24± 05.29 22.33 110.56± 02.76 11.97

eb 48.51± 00.61 1265.06± 16.01 26.08 737.24± 09.88 15.20

eye 8.25± 00.09 213.12± 01.61 25.83 96.22± 05.96 11.66

Continued on next page
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Table 4.7 – continued from previous page

Dataset HW/SW [s] SW-ARM
Speedup

SW-ARM
SW-PC

Speedup

SW-PC

ger 0.89± 00.01 13.90± 00.17 15.60 8.16± 00.68 9.16

gls 0.60± 00.00 3.38± 00.07 5.64 2.24± 00.07 3.74

hep 0.38± 00.00 1.67± 00.03 4.43 1.29± 00.07 3.43

hrtc 0.63± 00.01 4.04± 00.13 6.44 2.69± 00.08 4.29

hrts 0.39± 00.00 2.75± 00.03 6.99 1.82± 00.12 4.64

ion 0.53± 00.05 5.16± 00.08 9.73 3.19± 00.16 6.02

irs 0.29± 00.01 1.38± 00.05 4.80 0.98± 00.05 3.41

jvow 10.21± 00.12 218.21± 03.38 21.37 119.40± 02.90 11.69

krkopt 26.80± 00.41 702.25± 16.34 26.20 349.76± 11.05 13.05

letter 32.59± 01.83 590.89± 30.83 18.13 355.80± 07.50 10.92

liv 0.42± 00.00 3.34± 00.06 7.96 2.26± 00.08 5.38

lym 0.53± 00.01 2.14± 00.05 4.03 1.77± 00.05 3.33

magic 10.34± 00.21 254.57± 02.83 24.61 117.77± 02.44 11.39

msh 6.26± 00.06 142.52± 01.33 22.75 68.49± 04.10 10.93

nurse 9.66± 00.07 242.39± 02.59 25.09 112.53± 02.25 11.65

page 4.00± 00.03 76.63± 02.72 19.17 36.59± 01.61 9.15

pen 11.96± 00.16 240.75± 04.04 20.13 140.94± 02.01 11.79

pid 0.62± 00.01 7.36± 00.13 11.94 4.48± 00.31 7.27

psd 0.90± 00.02 14.37± 00.35 16.02 8.55± 00.18 9.53

sb 1.39± 00.00 32.88± 00.02 23.70 16.10± 00.31 11.61

seg 2.68± 00.03 39.60± 00.75 14.75 29.58± 00.62 11.02

shuttle 40.73± 00.48 979.32± 33.66 24.04 841.89± 22.17 20.67

sick 1.93± 00.02 72.62± 00.24 37.60 31.72± 01.23 16.42

son 0.72± 00.01 3.47± 00.06 4.79 2.74± 00.16 3.79

spect 0.40± 00.01 2.47± 00.10 6.09 1.85± 00.10 4.57

spf 2.04± 00.46 29.80± 03.22 14.64 25.95± 00.45 12.75

thy 3.30± 00.02 55.11± 01.15 16.68 28.16± 00.91 8.52

ttt 0.73± 00.00 9.00± 00.09 12.37 6.39± 00.32 8.80

veh 1.10± 00.01 12.45± 00.18 11.34 9.87± 00.18 8.99

vene 0.37± 00.00 2.99± 00.04 8.13 2.01± 00.05 5.45

vote 0.48± 00.00 4.64± 00.06 9.68 2.97± 00.10 6.20

vow 1.85± 00.02 20.95± 00.44 11.30 12.32± 00.27 6.65

w21 4.11± 00.04 82.29± 00.56 20.00 47.53± 01.34 11.55

w40 5.39± 00.08 100.65± 00.59 18.68 54.74± 01.06 10.16

wfr 5.48± 00.05 99.26± 01.41 18.13 62.95± 01.00 11.50

wilt 2.24± 00.00 34.22± 00.03 15.25 20.69± 00.44 9.22

Continued on next page
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Table 4.7 – continued from previous page

Dataset HW/SW [s] SW-ARM
Speedup

SW-ARM
SW-PC

Speedup

SW-PC

wine 4.11± 00.05 80.08± 01.84 19.47 46.12± 01.26 11.21

zoo 0.53± 00.02 1.56± 00.04 2.96 1.31± 00.03 2.49

Avg. 15.44± 2.28 9.30± 1.11

All datasets from the Table 2.1 were compiled together with the source code and were readily

available in the memory. Therefore, the availability of the training set in the main memory was

the common starting point for all three implementations, thus there was no training set loading

overhead on the DT induction timings. However, in the HW/SW co-design implementation,

the datasets need to be packed in the format expected by the Training Set Memory organization

(shown in the Figure 4.17) and loaded to the EFTIP co-processor via the AXI bus (performed

by the hw_load_training_set() function). To make a fair comparison with the pure software

implementations, time needed to complete these two operations was also included in the total

execution time of the HW/SW implementation.

The results of the experiments are presented in the Table 4.7. For each implementation and

dataset, the average induction times of the five 5-fold cross-validation runs are given together

with their 95% confidence intervals. The last row of the table provides the average speedups of

the HW/SW implementation over the SW-ARM and SW-PC, together with the 95% confidence

intervals.

The Table 4.7 indicates that the average speedup of the HW/SW implementation is 15.4 times

over the SW-ARM and 9.3 times over the SW-PC implementation. The speedup varies with the

datasets used for the induction, which is expected since the EFTI algorithm computational

complexity is dependent on the dataset characteristics as the equation (26) suggests. The

computational complexity increases as NI , NA, Nl and NC increase. The number of leaves

in DT, Nl, is dependent on the training set instance attribute values, but can be expected to

increase also with NI , NA and NC . By observing the speedups of the HW/SW implementation

over the pure software implementations shown in the Figure 4.22, for each dataset and the

datasets’ characteristics given in the Table ??, it can be seen that indeed, more speedup is

gained for datasets with larger NI , NA and NC values.

Datasets adult, bank, eb, eye, krkopt, letter, magic and shuttle are the largest

of the datasets in terms of NI , and thus have some of the largest speedup gains. Some other

datasets have somewhat less instances, but have a significant number of attributes, like msh,

cvf, pen, thy, w21, w40 and wfr, so that high speedups were achieved there too. A

high speedup was achieved also for the following datasets: jvow, nurse, page and wine,

which have smaller number of instances and smaller number of attributes than the above two

groups, but tended to induce deeper DTs. The deeper the DT is the more NTEs participate

actively in the accuracy calculation. Since the NTEs operate in parallel, the more of them

are active the more speedup is gained. However, the partial reclassification employed by

the pure software implementations, for which no analog has been implemented in the EFTIP

co-processor, influences the speedup significantly, but in an unpredictable way. Hence, the

inference times for some datasets with rather small number of instances, attributes or induced

DT depths, can still have substantial speedups because the structure of the induced DTs may
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be such that a significant number of instances need to be reclassified each iteration after the

mutation is applied.

0

20

40

60 a) HW/SW speedup over the SW-ARM implementation

ausc ca car cmc ctg ger jvow page pid psd sb seg sick spect spf thy veh vote vow w21 wfr
0

2

4

b) HW/SW speedup over the SW-PC implementation

Figure 4.22: The speedup of the HW/SW implementation over a) the SW-ARM

implementation, b) the SW-PC implementation

The Figure 4.22 and the Table 4.7 suggest that the HW/SW implementation using the EFTIP

co-processor offers a substantial speedup in comparison to the pure software implementations,

for the ARM and PC. This is mainly because both processors that were used in the experiments

have a limited number of on-chip functional units that can be used for multiplication and

addition operations, as well as the limited number of internal registers to store the node test

coefficient values and instance attributes. This means that the loop from the equation (1) can

only be partially unrolled, when targeting these processors, which would be the case for any

processor type. On the other hand, the EFTIP co-processor can be configured to use as many

multiplier/adder units as needed, and as many internal memory resources for storing coefficient

and attribute values which can be accessed in parallel. Because of this, in case of EFTIP, the

loop from the equation (1) can be fully unrolled, therefore gaining the maximum available

performance. Furthermore, the EFTIP implementation used in the experiments, operates

at much lower frequency (133MHz) than ARM (667MHz) and PC (3.5GHz) platforms. If

the EFTIP co-processor were implemented in the ASIC technology, the operating frequency

would be increased by an order of magnitude, and the DT induction speedups would increase

accordingly.
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5 EEFTI algorithm

In this section, the EEFTI algorithm for the induction of the DT ensembles which uses Bagging

on top of the EFTI algorithm is proposed. The ability of the EFTI algorithm to operate on a

single individual and induce small DTs is even more important for the ensembles, since all

the operations, be it induction or classification of new instances, are performed on all the DT

members of the ensemble at once. The following topics will be covered in this section:

• Section 5.1 - Description of the Bagging algorithm

• Section 4.2 - Description of the EEFTI algorithm

• Section 5.3 - Experiments showing the superior performance of the ensembles induced

by the EEFTI algorithm over single classifiers in terms of the classification accuracy

5.1 Bagging Algorithm

The choice of the Bagging algorithm was made mainly because it generates one subset of

the training set for each ensemble member, hence completely decoupling the induction of

the individual members from each other, which in turn makes the algorithm suitable for the

parallelization and hardware acceleration. Furthermore, the Bagging algorithm was reported

to reduce the accuracy variance and help avoid overfitting. Two common ways of forming the

subsets are:

• random sampling without replacement - forms disjoint subsets of size NIS = NI

ne
, and

• random sampling with replacement - forms overlapping subsets of size NIS ≤ NI ,

where NIS is the size of the subsets, NI the size of the whole training set and ne the number

of subsets, i.e. the number of the ensemble members. The most important feature of the

sampling procedure is the diversity of the ensemble members it helps induce. This is especially

important for the deterministic induction algorithms, since given the same training subset they

would induce identical DT individual each time. In case of stochastic algorithms on the other

hand, this is less of a problem. Hence, the EEFTI algorithm can be used even when NIS = NI .

5.2 EEFTI Description

The Algorithm 3.1 shows the EEFTI algorithm pseudo-code. EEFTI first partitions the training

set in the subsets using the divide_train_set() function that implements one of the

techniques discussed in the Subsection 5.1. Next, for each member of the ensemble an EFTI

tasks is created and assigned its corresponding training subset (train_par[i]). In addition,

the reference to the result object r is passed to the EFTI task, to which it can assign the

resulting DT and any additional information about the induction, like inference time, etc. All

result objects are gathered in the res array and are returned to the user when the induction is

finished. Handles to the created tasks are gathered in the tasks array, which is used by the

all_finished() helper function, which in turn checks the statuses of the running EFTI

tasks and returns true when all of them have finished the induction and exited. Once all the

individual tasks have finished and thus populated their corresponding result objects, the EEFTI

algorithm exits by returning the res array to the user.
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Algorithm 5.1: The main function of the EEFTI algorithm

def eefti(train_set, ensemble_size):

train_par = divide_train_set(train_set, ensemble_size)

res = []

tasks = []

for i in range(ensemble_size):

r = {}

t = create_task(efti, train_par[i], r)

res.append(r)

tasks.append(t)

while(not all_finished(tasks)):

pass

return res

5.3 Advantages of the DT ensembles

As it was already said, the ensemble classifier systems were shown to provide improvement

to the classification performance over a single classifier [61]. In order to test whether EEFTI

algorithm is capable of inducing an ensemble that has superior accuracy than the individual

classifier induced by the EFTI algorithm, an experiment has been conducted whose results

are shown in this subsection. The ensembles of sizes 3, 5, 9, 17 and 33 were induced on

all datasets from the Table 2.1 using five 5-fold cross-validation techinique together with the

Tukey multiple comparisons test as described in the Section 2.8. The induced ensembles’

accuracies were measured by performing the classification of the test set using the majority

voting technique. In the Table 5.1 the average accuracies of the single classifier and the

ensembles of five different sizes used in this experiment are given for each dataset together

with their 95% confidence intervals. The accuracy rankings of the induced classifiers are given

in the Table 5.2 for each dataset, together with the average rank for each classifier used.

Table 5.1: The accuracies of the ensembles with various numbers of elements

Dataset 1 3 5 9 17 33

adult 83.01±0.12 83.26±0.12 83.27±0.05 83.30±0.05 83.35±0.05 83.33±0.03

ausc 88.99±0.25 88.82±0.24 88.88±0.21 89.19±0.18 89.15±0.19 89.27±0.14

bank 88.57±0.12 88.36±0.06 88.32±0.02 88.30±0.00 88.30±0.00 88.30±0.00

bc 93.25±0.41 93.25±0.40 93.45±0.44 93.75±0.43 94.37±0.45 95.20±0.47

bch 22.73±0.11 24.92±0.20 26.63±0.23 27.89±0.23 28.74±0.22 29.15±0.20

bcw 97.77±0.09 97.77±0.08 97.83±0.09 97.87±0.08 97.91±0.07 97.87±0.07

ca 88.85±0.19 88.95±0.26 88.94±0.21 88.92±0.26 89.06±0.21 89.19±0.22

car 85.30±0.36 86.23±0.42 87.15±0.37 87.30±0.32 87.39±0.36 87.97±0.28

Continued on next page
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Table 5.1 – continued from previous page

Dataset 1 3 5 9 17 33

cmc 57.52±0.47 58.47±0.70 58.54±0.47 59.61±0.65 59.38±0.57 59.90±0.42

ctg 75.21±0.46 78.84±0.37 80.12±0.21 81.14±0.29 81.65±0.25 81.96±0.20

cvf 76.89±0.39 77.58±0.18 77.96±0.17 78.13±0.15 78.08±0.18 77.98±0.10

eb 53.53±1.07 60.18±0.60 63.73±0.31 65.95±0.21 66.77±0.11 67.16±0.07

eye 59.28±0.19 59.58±0.27 59.53±0.21 59.57±0.15 59.58±0.12 59.66±0.10

ger 95.70±0.52 94.98±0.58 95.15±0.39 95.92±0.36 96.10±0.34 96.04±0.31

gls 82.07±0.71 82.77±0.66 83.83±0.85 83.87±0.89 84.97±0.73 85.08±0.71

hep 91.20±0.62 92.80±0.60 92.59±0.73 92.44±0.62 92.57±0.61 92.93±0.45

hrtc 72.15±0.45 74.92±0.65 75.83±0.58 77.20±0.74 77.57±0.68 77.69±0.63

hrts 88.59±0.35 88.67±0.34 88.84±0.41 89.05±0.41 89.14±0.32 89.42±0.41

ion 93.14±0.63 93.83±0.54 94.05±0.47 94.43±0.41 94.94±0.30 94.97±0.33

irs 98.29±0.23 98.43±0.35 98.43±0.25 98.51±0.30 98.51±0.28 98.48±0.27

jvow 78.13±0.73 83.83±0.34 86.84±0.28 89.24±0.24 90.67±0.21 91.61±0.11

krkopt 39.03±0.47 41.56±0.24 43.59±0.30 44.85±0.21 45.57±0.22 45.89±0.16

letter 56.73±0.68 63.92±0.47 69.68±0.25 73.45±0.22 76.07±0.22 77.93±0.20

liv 75.97±0.64 77.51±0.70 78.37±0.68 79.39±0.63 79.36±0.68 80.13±0.63

lym 90.76±0.64 92.05±0.72 92.24±0.59 92.81±0.53 93.05±0.51 93.03±0.53

magic 82.63±0.27 83.55±0.21 83.63±0.16 83.74±0.12 83.72±0.05 83.79±0.06

msh 97.73±0.25 97.72±0.30 97.85±0.21 98.03±0.17 98.13±0.19 98.22±0.16

nurse 89.35±0.51 89.14±0.42 90.24±0.37 91.08±0.19 91.41±0.15 91.48±0.13

page 95.74±0.16 95.60±0.13 95.36±0.11 95.48±0.10 95.48±0.06 95.49±0.07

pen 92.61±0.36 94.87±0.30 95.61±0.18 96.23±0.17 96.52±0.14 96.78±0.08

pid 79.61±0.22 80.19±0.27 80.57±0.26 80.83±0.27 81.04±0.24 81.06±0.20

psd 99.32±0.32 99.16±0.41 99.68±0.18 99.80±0.08 99.92±0.04 99.93±0.03

sb 93.46±0.02 93.44±0.01 93.43±0.01 93.42±0.00 93.42±0.00 93.42±0.00

seg 92.40±0.46 93.28±0.29 93.68±0.31 94.51±0.27 94.91±0.22 95.04±0.21

shuttle 99.35±0.09 99.36±0.10 99.48±0.08 99.55±0.04 99.56±0.05 99.59±0.03

sick 94.38±0.41 94.26±0.38 94.30±0.39 93.97±0.15 93.89±0.01 93.88±0.01

son 87.54±0.80 89.85±0.78 90.40±0.88 91.67±0.66 92.48±0.78 93.12±0.65

spect 92.71±0.36 92.08±0.42 92.41±0.36 92.58±0.37 92.61±0.39 92.63±0.35

spf 69.45±0.34 71.43±0.33 72.06±0.31 72.43±0.33 72.74±0.27 72.77±0.22

thy 95.44±0.28 95.02±0.23 95.09±0.13 94.95±0.11 94.96±0.09 94.96±0.06

ttt 74.79±0.74 74.50±0.57 74.75±0.65 75.21±0.45 75.67±0.60 75.40±0.54

veh 67.65±0.75 68.30±0.64 70.59±0.61 71.84±0.50 71.90±0.55 72.46±0.59

vene 93.65±0.21 93.69±0.21 93.68±0.17 93.84±0.21 93.96±0.21 93.87±0.17

vote 96.35±0.36 96.07±0.35 96.40±0.31 96.78±0.28 96.68±0.27 96.74±0.24

Continued on next page
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Table 5.1 – continued from previous page

Dataset 1 3 5 9 17 33

vow 72.26±0.98 81.35±0.74 87.42±0.60 90.80±0.56 93.14±0.43 94.91±0.44

w21 85.20±0.18 86.68±0.11 87.31±0.12 87.59±0.09 87.93±0.08 88.10±0.07

w40 82.69±0.26 84.86±0.24 86.09±0.15 86.94±0.12 87.55±0.14 87.76±0.08

wfr 74.11±0.68 76.92±0.58 78.58±0.54 80.04±0.44 80.54±0.47 81.25±0.37

wilt 94.61±0.00 94.61±0.00 94.61±0.00 94.61±0.00 94.61±0.00 94.61±0.00

wine 55.61±0.14 56.96±0.24 57.00±0.21 57.32±0.15 57.46±0.16 57.42±0.20

zoo 98.14±0.49 98.69±0.47 98.69±0.44 98.97±0.36 98.97±0.36 99.09±0.37

The results show that an ensemle of classifiers almost always has superior accuracy over the

single classifier, with few exceptions with bank, page, sb and thy datasets. Also, it can

be seen that increasing the number of ensemble members helps the performance until a certain

point of saturation, which is different for different datasets. The accuracy on some datasets

could not be improved by using ensembles of sizes beyond 3, like adult, bcw, ca, eye, hep,

irs, lym, magic and zoo, while for some datasets progressively larger ensembles continued

to steadily advance in terms of the accuracy, like bch, jvow, letter and vow. Nevertheless,

the results in the Table 5.1 show that the accuracy variance decreases the larger the ensembles

are used, even when the average value shows no improvement, which is exactly what was

expected. Finally, the average ranks in the Table 5.2 show indeed that larger ensembles show

statistically significant improvement in the classification accuracy.
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Table 5.2: The accuracies of the ensembles with various numbers of elements

Dataset 1 3 5 9 17 33 Dataset 1 3 5 9 17 33

adult 2 1 1 1 1 1 msh 2 2 1 1 1 1

ausc 2 2 1 1 1 1 nurse 3 3 2 1 1 1

bank 1 2 2 2 2 2 page 1 1 2 2 2 2

bc 3 2 2 2 1 1 pen 5 4 3 2 1 1

bch 6 5 4 3 2 1 pid 3 2 2 1 1 1

bcw 2 1 1 1 1 1 psd 2 2 1 1 1 1

ca 2 1 1 1 1 1 sb 1 2 2 2 2 2

car 4 3 2 1 1 1 seg 3 2 2 1 1 1

cmc 3 2 2 1 1 1 shuttle 3 2 1 1 1 1

ctg 5 4 3 2 1 1 sick 1 1 1 1 1 1

cvf 3 2 1 1 1 1 son 3 2 2 1 1 1

eb 5 4 3 2 1 1 spect 1 1 1 1 1 1

eye 2 1 1 1 1 1 spf 4 3 2 1 1 1

ger 2 2 2 1 1 1 thy 1 2 2 2 2 2

gls 3 2 1 1 1 1 ttt 2 1 1 1 1 1

hep 2 1 1 1 1 1 veh 4 3 2 1 1 1

hrtc 3 2 2 1 1 1 vene 2 1 1 1 1 1

hrts 3 2 1 1 1 1 vote 2 2 1 1 1 1

ion 3 2 2 1 1 1 vow 6 5 4 3 2 1

irs 2 1 1 1 1 1 w21 5 4 3 2 1 1

jvow 6 5 4 3 2 1 w40 5 4 3 2 1 1

krkopt 5 4 3 2 1 1 wfr 5 4 3 2 1 1

letter 6 5 4 3 2 1 wilt 1 1 1 1 1 1

liv 3 2 2 1 1 1 wine 3 2 2 1 1 1

lym 2 1 1 1 1 1 zoo 2 1 1 1 1 1

magic 2 1 1 1 1 1 Rank 2.98 2.29 1.86 1.39 1.16 1.08
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6 Co-processor for the DT ensemble induction - EEFTIP

For the induction of a single DT, it was already demonstrated that the EFTIP co-processor

can be used in a HW/SW architecture to achieve substantial speedups over the pure software

implementation of the EFTI algorithm. Furthermore, it was explained in the Section 4.1

what was behind the decision to accelerate only the accuracy calculation task in hardware.

Hence, in an attempt to achieve the same benefits for the DT ensemble induction, the EEFTIP

co-processor proposed in this section was implemented using EFTIP as a module for the

accuracy calculation. However, the EEFTIP co-processor also takes advantage of the intrinsic

parallelism of the Bagging algorithm to achieve even higher speedups when compared to the

pure software implementation of the EEFTI algorithm.
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Controller
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Interconnect

Processing System

IRQ Status

EFTIP1

EFTIP2
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IRQ
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IRQ

EEFTIP

AXI4

IRQ

Figure 6.1: The EEFTIP co-processor structure and integration with the host CPU

The EEFTIP co-processor structure and integration with the host CPU is depicted in the Figure

6.1. The EEFTIP consists of an array of EFTIP modules (described in the Section 4) EFTIP1

to EFTIPSM , each of which can be used to evaluate the accuracy of the DT individual for

the induction of one ensemble member. Each EFTIP has its own address space and can be

individually accessed for all operation described in the Section 4. In addition, the EEFTIP

co-processor features the IRQ Status (Interrupt Request Status) block that allows the user to

read-out the operation status of all EFTIP units. The maximal number of ensemble member

accuracy calculations that can be performed in parallel equals the total number of the EFTIP

units in the EEFTIP co-processor, which is a parameter that can be set during the design time of

the EFTIP co-processor, and is called Sm. The following topics will be covered in this section:

• Section 6.1 - Description of the EEFTIP IRQ Status module

• Section 6.2 - Theoretical induction speedup derivation achievable by using the EEFTIP

co-processor

• Section 6.3 - Discussion on the software routines that need to be added to the EEFTI

algorithm, in order for it to make use of the EEFTIP co-processor

• Section 6.4 - Experimental section that shows the speedups that can be achieved by using

the EEFTIP co-processor
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6.1 IRQ Status Module

IRQ Status module has been implemented in order to provide the user with the means of

reading the statuses of all EFTIP units with only one AXI4 read operation and thus optimize

the AXI bus traffic. Each EFTIP unit comprises an IRQ (Interrupt Request) port for signaling

the end of the accuracy calculation, which was in turn connected to the IRQ Status block of the

EEFTIP co-processor. The IRQ Status block comprises an array of IRQ Status Word Registers

representing the statuses of all EFTIP units, which can all be read in a single burst via the AXI

bus. Additionally, the IRQ Status block provides a combined IRQ signal, which is triggered

each time any of the EFTIP units signal their corresponding IRQ outputs, i.e. each time any of

the EFTIP units finish the accuracy calculation.

Each IRQ Status Word is a 32-bit register (since EEFTIP was optimized for 32-bit AXI) packed

from the bits representing the statuses of up to 32 EFTIP units each. Each bit is called EFTIPi

Status Bit, where i denotes the ID of the EFTIP unit whose status the bit is tracking, as shown in

the Figure 6.2. The figure shows IRQ Status register space for one specific Sm value, but there

are no limitations on the number of EFTIP units that can be connected to the IRQ Status block.

The bits of the IRQ Status Word Register are sticky, i.e. set each time the IRQ is signaled from

the corresponding EFTIP and cleared when the register is read by the user.

EFTIP32

Status Bit
EFTIP31

Status Bit
· · · EFTIP2

Status Bit
EFTIP1

Status Bit
IRQ Status Word 0

Unused Unused · · · EFTIPSm

Status Bit
EFTIPSm−1

Status Bit
IRQ Status Word

︀
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32

︀

·
·
·

·
·
·

·
·
·

·
·
·

Figure 6.2: IRQ Status register space

6.2 Theoretical estimation of the acheivable speedup of the

proposed HW/SW system

In this section the speedup of the HW/SW implementation over the pure software

implementation of the EEFTI algorithm will be calculated as a function of the number of the

ensemble members, ne:

speedup(ne) =
Tsw(ne)

Ths(ne)
(32)

where Tsw and Ths denote the run times of the pure software and HW/SW implementations

respectively. As already discussed, the good candidate for the hardware acceleration of the

EEFTI algorithm is the accuracy calculation task, while leaving the mutation and selection to

be implemented in software has some flexibility benefits. Hence, the contributions of these two

parts to the total algorithm runitme will be observed separately:

speedup(ne) =
Tsw_ms(ne) + Tsw_acc(ne)

Ths_ms(ne) + Ths_acc(ne)
(33)
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where Tsw_ms and Tsw_acc denote the amount of time pure software implementation spends

on the mutation/selection and the accuracy calculation tasks respectively, while Ths_ms and

Ths_acc represent the same values for the HW/SW implementation. Tsw_ms and Ths_ms are

linear functions of ne, since the mutation is performed once per iteration per ensemble member.

Hence, if the number of iterations is kept constant, we obtain:

Tsw_ms(ne) = Tsw_ms(1) · ne,

Ths_ms(ne) = Ths_ms(1) · ne,
(34)

which when combined with the equation (33) yield the following:

speedup(ne) =
Tsw_ms(1) · ne + Tsw_acc(ne)

Ths_ms(1) · ne + Ths_acc(ne)
(35)

Please observe that the Ths_ms is somewhat greater than the Tsw_ms (Ths_ms = Tsw_ms + ∆t)

since it also comprises the latency of the hardware accelerator interface operations, which is

not present in the pure software implementation.

Depending on which approach to forming the training subsets is used, Tsw_acc and Ths_acc will

behave differently with respect to ne. When random sampling without replacement is used,

Tsw_acc and Ths_acc are constant with respect to ne, since the training set is partitioned amongst

ensemble members, making the number of instances being classified and thus the amount of

computation, constant. However, when random sampling with replacement is used, these times

will tend to grow with ne with the worst case being when NIS = NI , i.e. when whole training

set is used for each individual. Hence, the behavior of the speedup for these two corner cases

will be discussed next.

6.2.1 Random sampling without replacement

Because the HW/SW accuracy calculation is performed in parallel for all ensemble members,

the calculation time is proportional to the size of the training subset allocated for each ensemble

member. Since the training set is divided equally among the ensemble members (using the

EEFTIP co-processor), Ths_acc is inversely proportional to the ne:

Ths_acc(ne) =
Ths_acc(1)

ne

(36)

By incorporating the fact that Tsw_acc is constant in this case and substituting equation (36) into

the (32), we obtain:

speedup(ne) =
Tsw_ms(1) · ne + Tsw_acc

Ths_ms(1) · ne +
Ths_acc(1)

ne

=
Tsw_ms(1) · n

2
e + Tsw_acc · ne

Ths_ms(1) · n2
e + Ths_acc(1)

(37)

Tsw_acc term was shown in the Section 3.4 and the Section 4.1 to take almost all of the

computational time. The datasets that can be of interest to run DT ensemble induction on

using the EEFTIP are the ones that require significant time to execute in the software on the

CPU. For these datasets Tsw_acc ≫ Tsw_ms and thus Tsw_acc ≫ Ths_ms. By using the hardware

acceleration and massive parallelism, Tsw_acc ≫ Ths_acc is accomplished as well. By taking

these parameter relationships into the account, (speedup)(ne) function given by the equation

(37) takes shape depicted in the Figure 6.3.
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Figure 6.3: The shape of the speedup(ne) function given by the equation (37).

The plot in the Figure 6.3 suggests that accelerating the EEFTI by a co-processor that performs

the DT accuracy calculation in parallel for all ensemble members, will provide an increase in

the speedup as the number of ensemble members increases in the beginning. Then, after a

speedup maximum has been reached, it will slowly degrade, but continue to offer a substantial

speedup for all reasonable ensemble sizes. The maximum of the speedup can be found

by seeking the maximum of the function given by the equation (37). By taking into the

account parameter relationships, the point of the maximum of the speedup(ne) function can

be expressed as follows:

max(speedup(ne)) ≈
Tsw_acc

2
︀

Ths_acc(1)Ths_ms(1)
at ne ≈

︃

Ths_acc(1)

Ths_ms(1)
(38)

Furthermore, the Figure 6.3 shows that even though the speedup starts declining after reaching

its maximum value for certain ne, the downslope is slowly flattening, and the significant

speedup is achieved even for large ensemble sizes.

6.2.2 Whole training set for each member

In this case, the total number of instances in the ensemble rises linearly with the number of

ensemble members. This means that Tsw_acc will rise linearly and Ths_acc will remain constant

being that it is performed in parallel. This yields the following form for the speedup function:

speedup(ne) =
Tsw_ms(1) · ne + Tsw_acc(1) · ne

Ths_ms(1) · ne + Ths_acc(1)
(39)

Taking into the account that Tsw = Ths_ms + Tsw_acc, and rearanging the equation (39), the

following is obtained:

speedup(ne) =
Tsw(1)

Ths_ms(1)
·

1

1 + Ths_acc(1)
Ths_ms(1)·ne

(40)

The equation (40) shows that the speedup increases with the number of ensemble members

induced and asymptotically converges to the ratio of the total time needed for the single

member induction in software (Tsw(1)) to the time needed for the mutation/selection tasks in

the HW/SW co-design implementation (Ths_ms(1)), which basically means that the speedup

can be increased by optimizing the execution time of the mutation/selection tasks and the

communication with the co-processor.
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6.3 Software for the EEFTIP assisted DT ensemble induction

As it was described in the previous chapters, the EEFTIP co-processor can perform accuracy

evaluation task in parallel for as many ensemble members as there are EFTIP units within.

Hence, in the HW/SW implementation of the EEFTI algorithm, each of the EFTI tasks is

assigned one EFTIP unit to use exclusively for the acceleration of the accuracy evaluation

for its DT individual. Since there is a single AXI bus connecting the CPU to the EEFTIP

co-processor, no two EFTI tasks can access it in the same time.

The EFTI tasks could be left alone to compete for the rights to use EEFTIP and check whether

their corresponding EFTIP unit has finished computing the accuracy, but there is a more

economical approach that utilizes the IRQ Status module of the EEFTIP co-processor. In this

approach, the EFTI tasks are disallowed to poll the status registers of their EFTIP units. Their

responsibility is to load the DT individuals and start the accuracy calculation process. On the

other hand a management task, called the Scheduler, is introduced to exclusively monitor the

registers of the IRQ Status module and inform the individual EFTI tasks about the completion

of their accuracy calculation processes. This is done by using semaphores of the underlying

operating system, which are used to signal the EFTI tasks that the accuracy calculation has been

completed and the access to the EEFTIP has been now granted to them, so that they can update

the DT information and start the new calculation cycle. As soon as the accuracy calculation on

their corresponding EFTIP unit is started, the control is given back to the Scheduler task and

EFTI waits for the new completion signal via semphore.

Algorithm 6.1: The pseudo-code of the Scheduler task used in the HW/SW co-design

implementation

def scheduler(tasks, semaphores):

while(not all_finished(tasks)):

status = hw_read(eeftip_irq_status_addr())

for eftip_id, eftip_stat in enumerate(status):

if eftip_stat == 1:

semaphore_give(semaphores[eftip_id])

context_switch()

The pseudo-code for the Scheduler task is given in the Algorithm 6.1. The main task

of the Scheduler task is to poll the IRQ Status register (whose address is returned by the

eeftip_irq_status_addr() helper function) of the EEFTIP co-processor in a loop.

It then iterates through the received status value to check which EFTIP units have reported to

have finished the accuracy calculation, and activates the correponding EFTI tasks. After all the

required tasks have been informed, the Scheduler issues a call to the context_switch()

function of the underlying OS, so that the OS can serve the other tasks that have been activated

via emited semaphores. The loop ends when all the tasks have finished the induction and exited,

which is monitored by the all_finished() helper function.
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Algorithm 6.2: The pseudo-code of the EEFTI algorithm using the EEFTIP co-processor

def eefti(train_set, ensemble_size):

train_par = divide_train_set(train_set, ensemble_size)

res = []

semaphores = []

tasks = []

for eftip_id in range(ensemble_size):

r = {}

s = create_semaphore()

t = create_task(efti, train_par[eftip_id], r, eftip_id, s)

res.append(r)

semaphores.append(s)

tasks.append(t)

scheduler(tasks, semaphores)

return res

The EEFTI top level pseudo-code with the added instantiation of the synchronization

mechanism in the form of the Scheduler task and the semaphores is presented in the Algorithm

6.2. In addition to the training set and the reference to the result object r, each of the EFTI

tasks created is assigned a semaphore handle, and the unique ID (variable eftip_id) that

serves as a handle to the EFTIP unit of the EEFTIP co-processor assigned to the task. After

all the EFTI tasks have been created, the control is transfered to the Scheduler task until all

ensemble members have been induced.

The HW/SW implementation of almost all of the EFTI tasks, which were described in the

Section 4.5, is used almost verbatim for the HW/SW implementation of the EEFTI algorithm.

One difference is that here a co-processor with multiple EFTIP units is accessed by the

software. Hence, all the helper functions of the HW/SW implementation of the EFTI algorithm

for calculating the appropriate hardware memory addresses, need now take into the account the

ID of the EFTIP unit (eftip_id) they are interfacing. The second needed change was to

adapt the code from the Algorithm 3.3 for the accuracy_calc() function to support the

described protocol for the access rights delegation using semaphores. The adapted function

pseudo-code is shown in the Algorithm 6.3.

Algorithm 6.3: The pseudo-code of the fitness evaluation function used in the HW/SW

co-design implementation

def accuracy_calc(train_set, eftip_id, semaphore):

hw_write(eftip_operation_control_addr(eftip_id), EFTIP_START)

semaphore_wait(semaphore)

hits = hw_read(eftip_result_addr(efipt_id))

return hits/len(train_set)

The Figure 6.4 shows the benefits of careful scheduling scheme over the naive solution where

each EFTI task is let to finish whole iteration before the other is let to start. The diagram in the
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figure shows how occupied with different EFTI tasks is the CPU and the EEFTIP co-processor

for these two different scenarios, where the operations related to the different EFTI tasks are

given in different colors. Time periods marked with letters M and S represent the mutation and

selection tasks respectively, and the idle periods of the CPU are showed hatched in figure.

With the naive approach shown in the Figure 6.4a, a lot of CPU time is waisted on waiting for

the accuracy calculation to finish, and the potential of the parallel EFTIP units is not exploited.

By introducing the Scheduler task and making the accuracy_calc() function suspend its

execution and return the control back as soon as it finishes with the mutation task, sets and

starts the accuracy calculation on its corresponding EFTIP unit, the HW/SW architecture that

uses the EEFTIP co-processor can be exploited to its full potential, which leads to the timing

diagram shown in the Figure 6.4b.

6.4 Experiments

To estimate the DT ensemble induction speedup of the HW/SW implementation over the pure

software implementation of the EEFTI algorithm, the experiments have been performed on the

induction of the ensembles of up to 25 members and the results are given in this section. In

order to support the datasets with higher number of intances, the random sampling without

replacement was used to form the training subsets, in order to make them smaller.

6.4.1 Required Hardware Resources for the EEFTIP co-processor

For the experiments, five different instances of the EEFTIP co-processor were generated, one

for each of the following ensemble sizes: 2, 4, 8, 16 and 25. The values of the customization

parameters, given in the Table 6.1, were chosen so that the generated co-processors could fit

inside the XC7Z100 Xilinx Zynq device that was used for testing.

Table 6.1: Values of the customization parameters of the EEFTIP co-processor instances, one

for each of the ensemble sizes used in the experiments.

Parameter Sm = 2 Sm = 4 Sm = 8 Sm = 16 Sm = 25

DT max. depth (Lm) 5 5 5 5 5

Max. attributes num. (Am) 16 16 16 16 16

Attribute encoding resolution (RA) 16 16 16 16 16

Class encoding resolution (RC) 8 8 8 8 8

Max. training set classes (CM ) 64 64 64 64 64

Max. number of leaves (ACEm) 16 16 16 16 16

Max. number of training set instances (Im) 24000 12000 6000 4096 2048

Max. number of nodes per level (Nlm) 16 16 16 16 16

The VHDL language has been used to model the EEFTIP co-processor and it was

implemented using the Xilinx Vivado Design Suite 2015.2 software for the logic synthesis

and implementation with the default synthesis and P&R options. From the implementation
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Iteration 1 Iteration 2
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(a) Sequential operation
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(b) Interlaced operation

Figure 6.4: Achieving the maximum CPU utilization by interlacing the inducion

operations of different ensemble members (b), as opposed to performing these operations

sequentially (a).
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report files, device utilization data has been analyzed for the EEFTIP co-processor instance

with Sm = 25 (Table 4.5), which has the largest footprint. The information about the number

of used slices, BRAMs and DSP blocks has been extracted, and is presented in the Table 6.2,

for different target FPGA devices. The operating frequency of 100 MHz of the system clock

frequency was attained for all the implemented EEFTIP co-processor instances from the Table

4.5.

Table 6.2: FPGA resources required to implement the EEFTIP co-processor with 25 EFTIP

units and the configuration given in the Table 4.5.

FPGA Device Slices/CLBs BRAMs DSPs

XC7Z100 62091 (89%) 412.5 (55%) 2000 (99%)

XCKU115 33231 (40%) 412.5 (19%) 2000 (36%)

XC7VX690 63885 (59%) 412.5 (28%) 2000 (56%)

Given in the brackets along with each resource utilization number is a percentage of used

resources from the total resources available in the corresponding FPGA devices. Table 6.2

shows that the implemented EEFTIP co-processor fits into xc7z100 Xilinx FPGA device of the

Zynq series, and into mid- to high-level Virtex7 and UltraScale Kintex7 Xilinx FPGA devices

(XC7VX690 and XCKU115).

6.4.2 Estimation of the Induction Speedup

For the experiments, the EEFTI algorithm was implemented for three platforms (all software

was written in the C programming language):

• SW-PC: Pure software implementation for the PC

• SW-ARM: Pure software implementation for the ARM Cortex-A9 processor

• HW/SW: The EEFTIP co-processor implemented in the FPGA was used for the fitness

evaluation, while all other tasks of the EEFTI algorithm (shown in the Algorithm ??)

were implemented in software for the ARM Cortex-A9 processor.

For the software implementations of the EEFTI algorithm on the ARM platform, at first the

FreeRTOS was used as the operating system since it has a port for the ARM Cortex-A9 and

it is open source. However, experiments showed that it has rather high task switching latency,

which degraded the execution speed of the HW/SW implementation. In lack of other open

source RTOSes ported for the ARM Cortex-A9 that we could find, a simple simple cooperative

scheduler was developped to be used for the SW-ARM and HW/SW implementations.

For the PC implementation, a 64-bit, 4-core, Intel i5-2500K CPU operating at approximately

3.5GHz, with 8GB or RAM, running Ubuntu 16.04 operating system platform was used

and the software was built using the GCC 5.4.1 compiler. For the SW-ARM and HW/SW

implementations, ARM Cortex-A9 was used running at 667MHz. The software was built using

the Sourcery CodeBench Lite ARM EABI 4.9.1 compiler (from within the Xilinx SDK 2015.2)

and the EEFTIP co-processor was built using the Xilinx Vivado Design Suite 2015.2.
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Not all of the datasets from the Table 2.1 were used in these experiments for two different

reasons. Some of the datasets, like ausc, bc, bcw, ger, gls, hep, hrtc, hrts, ion,

irs, liv, lym, pid, son, ttt, veh, vote, vow and zoo, have too few instances to

support induction of up to 25 members using training set partitioning by sampling without

replacement. On the other hand, some datasets like sick`, ``spf, thy and w40 had

too many attributes to fit into the implemented co-processors. The others, like mushroom,

w21 and wfr were preprocessed using the PCA (Principal Component Analysis) to reduce

their number of attributes to 16, what the implemented co-processors support. For each of the

datasets, five experiments were performed in which the ensembles were induced with: 2, 4,

8, 16 and 25 members. For each of these experiments five 5-fold cross-validations has been

carried out and the DT ensemble classifier induction times have been measured.

The results of the experiments are presented in the Table 6.3. The table contains the speedups of

the HW/SW implementation over the SW-ARM and SW-PC implementations for each dataset

and the ensemble size. At the bottom of the table, the average speedups are given for each

ensemble size.

Table 6.3: The speedups of the HW/SW implementation over the SW-ARM and SW-PC

implementations for each dataset and ensemble size.

SW-ARM PC-ARM

Dataset 2 4 8 16 25 2 4 8 16 25

adult 24.68 43.87 60.32 74.89 48.04 8.92 16.88 19.42 24.28 15.76

bank 26.86 50.18 76.21 98.37 73.82 9.28 17.38 31.84 31.64 23.66

bch 37.57 54.48 44.13 17.66 10.86 13.52 19.04 15.88 7.10 4.36

cvf 31.14 48.55 63.44 33.70 18.58 11.22 15.70 20.14 11.16 6.32

eb 30.25 52.83 70.47 63.44 43.12 16.86 30.34 30.12 27.52 18.52

eye 22.03 31.39 48.99 34.58 17.77 8.46 9.62 15.06 11.34 6.06

jvow 34.84 50.48 48.28 24.13 14.44 16.40 19.88 19.24 10.22 6.60

krkopt 30.10 45.60 56.04 41.16 26.72 15.34 27.16 24.52 18.72 11.66

letter 47.84 68.32 72.24 45.85 30.34 20.92 32.54 30.38 19.04 11.94

magic 19.43 26.70 43.77 36.47 20.06 9.20 10.12 16.06 14.02 7.96

msh 17.90 30.80 37.53 16.44 8.96 6.20 9.72 12.12 5.52 3.46

nurse 24.33 40.07 52.21 29.02 16.47 12.46 16.60 21.28 11.70 6.90

page 19.43 28.50 24.20 10.92 6.42 6.80 10.22 9.34 4.10 2.52

pen 42.50 54.34 50.63 27.42 16.46 19.30 22.52 20.96 11.64 7.30

shuttle 28.62 55.75 93.88 119.97 93.21 12.92 23.24 43.38 43.58 33.50

w21 25.37 40.33 34.95 14.41 8.83 10.36 16.06 13.26 5.92 3.54

wfr 26.89 42.53 37.70 16.17 9.71 9.80 15.10 12.94 6.18 3.74

wine 23.59 33.09 24.66 10.91 6.85 9.08 12.62 10.06 4.76 3.00

Avg.: 28.52 44.32 52.20 39.75 26.15 12.06 18.04 20.34 14.92 9.82

Table 6.3 indicates that the average speedup of the HW/SW implementation is between 26 and

52 times over the SW-ARM and between 10 and 20 times over the SW-PC implementation,
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depending on the number of the ensemble members induced. It can be seen that the speedups

follow the theoretical curve from the Figure 6.3 shown in the Section Theoretical estimation of

the acheivable speedup of the proposed HW/SW system, which is also visible in the Figure 6.5.

In the Figure 6.5 each bar represents the speedup for one ensemble size, hence the envelope of

the bar graph for each dataset correlates with the theoretical speedup curve. It should be noted

that the envelopes appear distorted, since ensemble sizes for which the speedups are drown as

bars are not equidistant, but follow the exponential function. By observing the speedup of the

HW/SW implementation over the pure software implementations shown in the Table 6.3 for

each dataset used in the experiments, it can be seen that more speedup is gained for datasets

with larger NI , NA and NC .
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Figure 6.5: Speedup of the HW/SW implementation over a) SW-ARM implementation

and b) SW-PC implementation, given for each dataset used in the experiments. Each bar

represents a speedup for one ensemble size.

Figure 4.22 and Table 6.3 suggest that the HW/SW implementation using EEFTIP co-processor

offers a substantial speedup in comparison to the pure software implementations for both PC

and ARM. Furthermore, the EEFTIP implementation used in the experiments operates at much

lower frequency (100MHz) than both ARM (667MHz) and PC(3.5GHz) platforms. If EEFTIP

co-processor were implemented in ASIC, the operating frequency would be increased by an

order of magnitude, and the DT induction speedup would increase accordingly.
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7 Conclusion

This thesis was concerned with the evolutionary induction of the oblique binary decision trees

using nonincremental approach. Two algorithms were presented, one for a single classifier

induction called EFTI, and the other for a decision tree ensemble induction called EEFTI.

Furthermore, two architectures were proposed for hardware acceleration of the two induction

algorithms.

The proposed EFTI algorithm was created in an attempt to devise a strategy for the DT

induction that would induce smaller DTs than the existing solutions without the loss in

accuracy, but try to use as little resources for the induction as possible. It was shown in the thesis

that the EFTI algorithm succeeds in fulfilling the requirements that were set in the beginning:

• It operates only on one DT individual, unlike many full DT induction algorithms that use

the populations of 20 to 100 or more individuals. This implies a 20 to 100 fold times

less resources needed for its implementation, which are critical in embedded systems.

Furthermore, the most time consuming task of accuracy calculation, besides the control

flow, comprises only the simple operations of multiplication and addition performed for

the node test evaluations. Hardware blocks that perform these operations are found in

abundance within the chips used in embedded systems, such as DSPs and FPGAs.

• It is easily parallelizable. Within the accuracy calculation, each instance from the training

set traverses the DT by itself and the traversal is decoupled from the traversals of

other instances, which is suitable for parallelization by either pipelining or completely

performing the instance traversal in parallel.

• It produces smaller DTs than the existing solutions, without the loss in DT accuracy,

which was proved by the experiments in the Section 3.5.

Second, a parameterizable co-processor for the hardware aided DT induction using an

evolutionary approach, called EFTIP, was proposed. The EFTIP co-processor can be used

for the hardware acceleration of the DT accuracy evaluation task, since this task was

proven in the Section 3.4 and Section 4.1 to be the execution time bottleneck. The EFTI

algorithm was adapted to take advantage of the EFTIP co-processor in a HW/SW co-design

architecture. Comparison of the HW/SW EFTI algorithm implementation with the pure

software implementations suggests that the proposed HW/SW architecture offers substantial

speedups for all the tests performed on the selected UCI datasets.

Next, the EEFTI algorithm was presented which uses the EFTI algorithm together with

Bagging to induced the DT ensembles. The experimental results discussed in the Section

5.3, show that the ensembles induced by the EEFTI algorithm are superior in terms of the

classification accuracies than the single classifier DTs induced by the EFTI algorithm.

Finally, a parameterizable co-processor, called EEFTIP, is proposed. The EEFTIP co-processor

can be used for the hardware aided induction of the DT ensembles using EA. It was shown in

the paper that the EEFTI algorithm spends most of the execution time in the DT accuracy

evaluation process, hence the EEFTIP co-processor was developed to accelerate that task. The

EEFTI algorithm has been implemented in the software and modified to use the EEFTIP

co-processor implemented in the FPGA as a co-processor. Comparison of the HW/SW

implementation of the EEFTI algorithm with the pure software implementations suggests
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that the proposed HW/SW architecture offers substantial speedups for all tests performed on

selected UCI datasets.

154



Hardware Acceleration of Nonincremental Algorithms for the Induction of Decision Trees and Decision Tree Ensembles 155

References

[1] Hugh G Gauch. Scientific method in practice. Cambridge University Press, 2003.

[2] Peter Flach. Machine learning: the art and science of algorithms that make sense of data.

Cambridge University Press, 2012.

[3] Kevin P Murphy. Machine learning: a probabilistic perspective. MIT press, 2012.

[4] Jesse Levinson, Jake Askeland, Jan Becker, Jennifer Dolson, David Held, Soeren Kammel,

J Zico Kolter, Dirk Langer, Oliver Pink, Vaughan Pratt, and others. Towards fully

autonomous driving: systems and algorithms. In Intelligent Vehicles Symposium (IV), 2011

IEEE, 163–168. IEEE, 2011.

[5] Jesmin F Khan, Sharif MA Bhuiyan, and Reza R Adhami. Image segmentation and shape

analysis for road-sign detection. IEEE Transactions on Intelligent Transportation Systems,

12(1):83–96, 2011.

[6] Lior Rokach. Data mining with decision trees: theory and applications. World scientific,

2007.

[7] Lior Rokach and Oded Maimon. Top-down induction of decision trees classifiers-a survey.

Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on,

35(4):476–487, 2005.

[8] Shigeo Abe. Support vector machines for pattern classification. volume 53. Springer, 2005.

[9] Simon S Haykin, Simon S Haykin, Simon S Haykin, and Simon S Haykin. Neural networks

and learning machines. volume 3. Pearson Education Upper Saddle River, 2009.

[10] Richard O Duda, Peter E Hart, and David G Stork. Pattern classification. John Wiley &

Sons, 2012.

[11] Jorma Rissanen. Minimum description length principle. Wiley Online Library, 1985.

[12] Ian H Witten and Eibe Frank. Data Mining: Practical machine learning tools and

techniques. Morgan Kaufmann, 2005.

[13] Simon JD Prince. Computer vision: models, learning, and inference. Cambridge

University Press, 2012.

[14] Sudha Challa. Fundamentals of object tracking. Cambridge University Press, 2011.

[15] Usman Ali and Mohammad Bilal Malik. Hardware/software co-design of a real-time

kernel based tracking system. Journal of Systems Architecture, 56(8):317–326, 2010.

[16] Matteo Tomasi, Francisco Barranco, Mauricio Vanegas, Javier Díaz, and E Ros. Fine grain

pipeline architecture for high performance phase-based optical flow computation. Journal

of Systems Architecture, 56(11):577–587, 2010.

[17] Arthur Lesk. Introduction to bioinformatics. Oxford University Press, 2013.

[18] Pierre Baldi and Søren Brunak. Bioinformatics: the machine learning approach. MIT

press, 2001.

155



Hardware Acceleration of Nonincremental Algorithms for the Induction of Decision Trees and Decision Tree Ensembles 156

[19] Bing Liu. Web data mining: exploring hyperlinks, contents, and usage data. Springer

Science & Business Media, 2007.

[20] Matthew A Russell. Mining the Social Web: Data Mining Facebook, Twitter, LinkedIn,

Google+, GitHub, and More. O’Reilly Media, Inc., 2013.

[21] Sholom M Weiss, Nitin Indurkhya, and Tong Zhang. Fundamentals of predictive text

mining. Springer Science & Business Media, 2010.

[22] Charu C Aggarwal and ChengXiang Zhai. Mining text data. Springer Science & Business

Media, 2012.

[23] Sreerama K. Murthy, Simon Kasif, and Steven Salzberg. A system for induction of oblique

decision trees. Journal of artificial intelligence research, 1994.

[24] J. Ross Quinlan. Induction of decision trees. Machine learning, 1(1):81–106, 1986.

[25] JR Quinlan. C4. 5: programs for empirical learning morgan kaufmann. San Francisco,

CA, 1993.

[26] Leo Breiman, Jerome Friedman, Charles J Stone, and Richard A Olshen. Classification

and regression trees. CRC press, 1984.

[27] Erick Cantu-Paz and Chandrika Kamath. Inducing oblique decision trees with

evolutionary algorithms. Evolutionary Computation, IEEE Transactions on, 7(1):54–68,

2003.

[28] Ali Mirza Mahmood, K Mrutunjaya Rao, Kiran Kumar Reddi, and others. A novel

algorithm for scaling up the accuracy of decision trees. International Journal on Computer

Science and Engineering, 2(2):126–131, 2010.

[29] Olcay Taner Yıldız. Univariate decision tree induction using maximum margin

classification. The Computer Journal, 55(3):293–298, 2012.

[30] Asdrúbal López-Chau, Jair Cervantes, Lourdes López-García, and Farid García Lamont.

Fisher’s decision tree. Expert Systems with Applications, 40(16):6283–6291, 2013.

[31] Rodrigo C Barros, Pablo A Jaskowiak, Ricardo Cerri, and Andre CPLF de Carvalho. A

framework for bottom-up induction of oblique decision trees. Neurocomputing, 135:3–12,

2014.

[32] Rastislav Struharik, Vuk Vranjkovic, Stanisa Dautovic, and Ladislav Novak. Inducing

oblique decision trees. In Intelligent Systems and Informatics (SISY), 2014 IEEE 12th

International Symposium on, 257–262. IEEE, 2014.

[33] Athanassios Papagelis and Dimitrios Kalles. Ga tree: genetically evolved decision

trees. In 2012 IEEE 24th International Conference on Tools with Artificial Intelligence,

0203–0203. IEEE Computer Society, 2012.

[34] Xavier Llora and Stewart W Wilson. Mixed decision trees: minimizing knowledge

representation bias in lcs. In Genetic and Evolutionary Computation–GECCO 2004,

797–809. Springer, 2004.

[35] Stephen F Smith. Flexible learning of problem solving heuristics through adaptive search.

In IJCAI, volume 83, 422–425. 1983.

156



Hardware Acceleration of Nonincremental Algorithms for the Induction of Decision Trees and Decision Tree Ensembles 157

[36] Martijn CJ Bot and William B Langdon. Application of genetic programming to induction

of linear classification trees. In Genetic Programming, pages 247–258. Springer, 2000.

[37] Fernando EB Otero, Alex A Freitas, and Colin G Johnson. Inducing decision trees with

an ant colony optimization algorithm. Applied Soft Computing, 12(11):3615–3626, 2012.

[38] Urszula Boryczka and Jan Kozak. Enhancing the effectiveness of ant colony decision tree

algorithms by co-learning. Applied Soft Computing, 30:166–178, 2015.

[39] Rodrigo Coelho Barros, Marcio Porto Basgalupp, ACPLF De Carvalho, and Alex Alves

Freitas. A survey of evolutionary algorithms for decision-tree induction. Systems, Man,

and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on, 42(3):291–312,

2012.
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