g%‘i..:’v% YHUBEP3UTET Y HOBOM CALlY £ 2
:z ;g:;ggg PAKYNTET T XHUYKUX HAYKA Y %
OaINS HOBOM CALlY 0§ A

boroaH Bykobpartosuh

XappBepckKa akuenepauuja
HenKpeMeHTanHnx anropurtama 3a
dopmupame crabana oanyke U MXOBUX
aHcambana

OOKTOPCKA ONCEPTAUUNJA

Hosun Cap, 2016

YHUBEP3WUTET Y HOBOM CALlY ® ®AKYNTET TEXHUYKUX HAYKA
21000 HOBW CAL, Tpr Oocuteja Obpapgosuha 6

KIbYYHA JOKYMEHTAUWJCKA UHOOPMALIUJA

PenHu 6poj, PBP:

WpeHTndmkaumonm 6poj, UBP: 1

Tun pokymenTauuje, TA: Monorpadpcka nybnukauwja

Twn 3anuca, T3: TekcTyanHu wWtamnaHn martepujan

BpcTta paga, BP: [okTopcka anceptauuja

Aytop, AY: BoraaH BykobpaToBuh

MenTop, MH: ap Pactucnae CTtpyxapuk, BaHpeaHU npodecop

Hacnos paga, HP: XapaBepcka akuenepauuvja HeMHKpeMeHTanHux anroputama 3a popmuparse

ctabana ogsnyke v HUXOBUX aHcambana

RS RR S Y

Jesuk nybnukauwje, JIM: EHrnecku

Jesuk nssopa, JU: Cpnicku/EHrnecku

3emrba nybnvkosarsa, 3IM: : Cpbuja

Yxe reorpadcko nogpydje, YI: ; BojsoaunHa

[oanna, IMO: 2016

Mapasay, U3: AyTOpCKMN penpuHT

MecTo 1 agpeca, MA: dakynTeT TexHUYkux Hayka, Tpr Jocuteja Obpagosuha 6, Hoen Cap
dunanukm onuc paga, PO: 7/160/94/45/56/0/0

(nornasbalcTpanal unTaTalTabena/crivkalrpaduka/npuriora)

HayyHa o6nacr, HO: ENeKTPOTEXHUYKO U pavyyHaPCKO MHXEHEPCTBO

—mpmm—g

Hay4Ha gncuunnuna, HO: EnekTpoHuka

MpenvetHa onpenHyua/KgyyHe peun, MNO: Crabna oanyke, xapaBepcka akuernepaumja, pekoHurypabunHm xapaeep,
aHcambrv knacumkaTopa, EBOMyTUBHY arrOpUTMK

———

YIK

Yygsa ce, YY: Brnbnuoteka ®akynteta TexHU4knx Hayka y Hosom Cagy, Tpr Jocuteja
O6papgosuha 6, 21000 Hoen Capg

BaxxHa HanomeHna, BH:

—————4

MN3Bog, U3: Y 0BOj AncepTauuju, npeacraBrbeHun cy Hosu anroputmu EFTI n EEFTI 3a
dopmupane ctabana oanyke n HUXOBUX aHcambarna HEMHKpPEMEHTaNHoOM
MEeTOAOM, Kao 1 pasHe MOryhHOCTH 3a HUXOBY UMNNEMEHTaUMjy.
EkcnepumeHTH nokaasyjy Aa je npeanoxexun EFTI anroputam y moryhHocTh
4a npoussege ApacTUYHO Maka ctabna 6e3 rydbutka Ta4HOCTU y OOHOCY Ha
noctojehe top-down nHkpemeHTanHe anropuTme, a ctabna aHaTHo Behe
TaYyHOCTU y OfHOCY Ha nocTojehe HenHKpemeHTanHe anropuTme. Takohe cy
npeanoxeHe xapABEPCKE apXMTEKTYPE 3a akLenepauujy OBuUxX anroputama
(EFTIP n EEFTIP) n noka3saHo je ga je y3 nomoh oBux apxutektypa Moryhe
OCTBapuWTU 3HaTHa yOp3aksa.

Hatym npuxsatawa Teme, AM:

Oatym on6pane, OO:

YnaHosu komucuje, KO: MpeacenHuk: ap Cranuwa [dayTtoBuh, 4OLEHT
YnaH: Aap Byk Bpankosuh, goueHT
YnaH: ap Visan Me3seu, noueHT MoTnnc meHTopa
YnaH: 1 Ap Teyduk Tokuh, pegoBHY npogecop
Ynat, meHTop: i ap Pactucnas Ctpyxapuk, BaHpeaHu npocecop

O6pasay Q2.HA.06-05- M3game 1

UNIVERSITY OF NOVI SAD ® FACULTY OF TECHNICAL SCIENCES
21000 NOVI SAD, Trg Dositeja Obradovica 6

KEY WORDS DOCUMENTATION

Accession number, ANO:

Identification number, INO:

Document type, DT:

Monograph

Type of record, TR:

Printed text

Contents code, CC:

Ph.D. Thesis

Decision Trees and Decision Tree Ensembles

Author, AU: Bogdan Vukobratovic

Mentor, MN: i Rastisla Struharik, Ph. D., associate professor

Title, TI: E Hardware Acceleration of Nonincremental Algorithms for the Induction of
i

Language of text, LT:

English

Language of abstract, LA:

English/Serbian

Country of publication, CP:

Serbia

Locality of publication, LP:

Autonomous Province of Vojvodina

Publication year, PY:

2016

Publisher, PB:

Author’s reprint

Publication place, PP:

Faculty of Technical Sciences, Trg Dositeja Obradovic¢a 6, 21000 Novi Sad

Physical description, PD:

(chapters/pages/ref./tables/pictures/graphs/appendixes)

7/160/94/45/56/0/0

Scientific field, SF:

Electrical and Computer Engeneering

Scientific discipline, SD:

—mpmm—g

Electronics

Subject/Key words, S/KW:

Decision trees, hardware acceleration, ensemble classifiers, reconfgurable hardware,
evolutionary algorithms

uc

———

Holding data, HD:

Note, N:

—————4

Abstract, AB:

The thesis proposes novel full decision tree and decision tree ensemble
induction algorithms EFTI and EEFTI, and various possibilities for their
implementations are explored. The experiments show that the proposed EFTI
algorithm is able to infer much smaller DTs on average, without the
significant loss in accuracy, when compared to the top-down incremental DT
inducers. On the other hand, when compared to other full tree induction
algorithms, it was able to produce more accurate DTs, with similar sizes, in
shorter times. Also, the hardware architectures for acceleration of these
algorithms (EFTIP and EEFTIP) are proposed and it is shown in experiments
that they can offer substantial speedups.

Accepted by the Scientific Board on, ASB:

Defended on, DE:

Defended Board, DB: President:

Stanisa Dautovic, Ph.D., ass. professor

Member:

Vuk Vranjkovic, Ph.D., ass. professor

Member:

lvan Mezei, Ph.D., ass. professor Menthor's sign

Member:

Teufik Tokic, Ph.D., full professor

Member, Mentor:

Rastislav Struharik, Ph.D., ass. professor

Obrazac Q2.HA.06-05- Izdanje 1

AbcTpakT

Y 0BOj jiEcepTalMju, TPEJICTAB/HEHN Cy HOBH aJTOPUTMU 3a (popMUpaibe cTadajia OJIyKe
HEMHKPEMEHTAJTHOM METOJIOM, Ka0 W pa3He MOTyNHOCTH 3a HUXOBY HMILIEMEHTAIH]Y.
[Ipeo je mar ommc nosor EFTI (Evolutionary Full Tree Induction) asropurma,
JIN3ajHUPAHOT TaKO Jla OMOTYhU MMILJIEMEHTAIM]Y €& IITO Marbe Xap/IBEPCKUX pPecypca,
Kao U Jia IPOU3BOJM IITO Mara crabdja oJijiyke, a 0e3 yTuliaja Ha IbUXOBY TAIHOCT.
OBo npyzxa moryhuoct na ce EFTI ajmroputam kopuctu y embeses cucreMuMa, Tje je
onTUMaJIHa yriorpeba pecypca oj1 Besmke Baxkunoctu. Nmmtementanuja EFTT anropurma
3a PC mmardgopmy je onma mopehena ca PC mmmiemenTanmjamMa HEKOJIUKO JIPYTUX
nocrojehux asropurama 3a dpopMuparme cradaa oJIyKe Y IMOTJIely TATHOCTH U BEJTUINHE
npousBeeHnx crabasa. ExcrepumenTtn nokasyjy ga je upejyioxkenu EFTI anropuram y
MoryhHoCcTH j1a Tpou3Beje JIPAaCTUYHO Mara cradja 06e3 IrybnTKa TadyHOCTH, Y OJIHOCY
Ha top-down wmaKpementasne ajaropurme. Ca jpyre crpane, y mnopehemy ca Jpyrum
HEMHKPEMEHTAJTHUM aJropuT™Muma 3a dopmupame crabanta oiyke, EFTI je ycreao
Jla TPOW3BeJie 3HATHO TadHUja cTabja, ciaumdHe BeaumduHe, 3a kpahe Bpeme. Hakon
TOra, UCTPaKMBaHa je MOIYNHOCT Xap/BepCKe akKIieJIepaliije OBOT aJirOPUTMa Ha OCHOBY
pe3y/TaTa HmeroBor mpodajinHra u pa3MaTpamba heroBe BpeMeHcke KoMminiekcaoctu. Ha
ocHoBy anasm3ze, npejoxket je EFTIP (Evolutionary Full Tree Induction co-Processor)
IberOBa, apXUTEKTypa je mnpejcraBbena. /lasbe y aucepraruju, jrata je xap/Bep-copTBep
nviiemenTtanuja EFTT aaropurma na ocnoBy EFTIP ko-tiporiecopa koju je KoHcTpyuncan
Jia obaBsba HAjUHTEH3WBHUjYy daly mporeca dopMmupama crabjia HEMHKPEMEHTAJIHOM
MeTo/OM, a3y IMpopadyHa TaIHOCTU cTabja omiyke. Haj3aa, y exkcrepuMeHTaJHO]
ceknuju he ce roopuTu O mpejHOCTH cucreMa Koju kopuctu EFTIP ko-mporecop,
y moryeay OpsuHe opMuparma cTadjga OJIyKe. 3aThM, JaT je OIMUC AJTOPUTMa 3a
dbopmupame ancambana crabana omaryke EEFTI (Ensembles Evolutionary Full Tree
Induction). Hakon Tora, jaTu cy pe3ysiraru eKcliepuMenTa y Kojem cy nopehene raunoctn
Koje npy:kajy ancam6su popmupanu y3 nomoh EEFTT anropurma u nojeaunaydna crabdiia
omtyke ¢opmmpana y3 nomoh EFTI amropurma. Pesynraru nokasyjy ga je EEFTI
ajroputaM y MoryhHOCTH J1a TIpom3Bejie aHcambjie KOju Cy TadyHUjU OJI T0jeTUHATHIX
crabana ogayke. Crmano kao u 3a EFTI ajgropuram, pasmarpana je xapasep-codreep
apxurektypa BEEFTI anropurma, mnpenmoxken je EEFTIP ko-mporecop 3a meroBy
Xap/IBEPCKY aKIlesIepalujy u JaTh Cy pe3yJITaTu eKClIiepUMeHaTa KOjU IPUKA3Y]y ITPEJHOCT
OBe apxXuTEeKType y Iorjey op3uHe popMupama ancamodasia cradasia oJIyKe.

Uvod

MammHcKO yuerme je rpaHa HCTpaskKuBadke objacTy BelnTadke nHrenurennuje. Ona ce
OaBu pasBojeM ajropuTamMa Koju ‘yue’ mspiaadehn obpacie u3 yJa3HUX OJaTaka U Kao
CBOj M3/1a3 JIajy CucTeMe KOHCTPYHCaHe Jla MpaBe IPEJINKIje HaJl HOBUM IOAIlNMA.
Je/iHa o TIaBHUX CHara crucTeMa MAIMHCKOD ydema je MON reHepaJsmsarnyje, Koja M
omoryhasa Jia ocTBape J100pe pe3ysTaTe Ha HOBUM, JIO CaJla HEBU)EHUM ITO/IallnMa, HAKOH
IIITO Cy IPETXO/IHO OMJIN M3JIOXKEHU CKYITy MoJaTaka 3a TPeHHpParbe.

Paznu cucremu MaImmHCKOT yuerma Cy J0 caJla MPEJIOKEHN Y JIMTEePATYPU, YKIbydyjyhu:
crabia omayke (DT ox enr. decision trees), meyponcke mpexke (ANN of enr. “artificial

Hardware Acceleration of Nonincremental Algorithms for the Induction of Decision Trees and Decision Tree Ensembles ii

neural networks”) u “support vector” mammune (SVM). OBu cucremu ce 1mocebHO MIPOKO
npuMeyjy y obsactu Bahema mojaraka (enr. “data mining”), ca DT, ANN u SVM-oBuma
Kao HajIIoIyJIapHAjUMA.

[Iporiec yuema, T3B. MHIAYKIIMja CUCTEMA MAITUHCKOT YIemha, MOXKe OUTH KaKO HaIr/Ie1aH
Tako 1 HeHa e aH. Hajirejano ydeme mojipa3yMeBa Jia je y3 CBaKu yJIa3Hu Mo/laTak u3
TPEHUHT CKYyTIa JIAT U YKeJbeHU OJI3UB cucTeMa Ha Taj nogarak. Ca japyre crpane, y ciaydajy
KaJla ce aJI'OPUTMY 3a UHJYKIHjy MPYZKU CAMO TPEHUHT CKYII MoJlaTaka 0e3 yKeJheHOr
0JI3MBA, ped je O HEeHaJ rJIeJaHoOM yderby. Y TOM CJIy4ajy, aJfOpuTaM 3a WHJIYKII)jy MOpa
caMm Jia OTKpHje CTPYKTypy U oOpaciie y CKyIly YJIa3HUX MOJaTaka, IITO caMo 10 cebu
MO2Ke OUTH U IIJb PelllaBarba HEKOT IpodJeMa. YJIa3HU TOJIAIN KOjU Ce KOPUCTE 38 YUIeIhe
ce ODMYHO cacToje OJ1 CKyIla MHCTAHIIM ITPOoOJeMa KOji ce peliaBa CHCTEMOM MAaIlUHCKOT
ydera U Ha3uBa Cce TPEHWHI cKyl. ZKHUBOTHM BEK CHUCTEMa MAIMHCKOL y4Yerba OOUTHO
uma jBe daze: TpeHuHr (daly (Takobhe MO3HATY KAao MHIYKIHM]Y Win obydaBarbe) u das3y
koputthema. KoHcTpykimja cucreMa ce BpIin y TPEHUHT pa3u y3 OMON TPEHUHT CKYTIa,
JIOK ce y a3u Kopuihema WHIYKOBaHU CUCTEM CyodaBa Cca HOBUM, JIO CaJia HEBU)EHUM
MHCTaHIIaMa ¥ TOKYIIaBa Ja Jia MTo 006U 0/I3UB, KOpUCTeNN 3HAE U3BYIEHO U3 TPEHUHT
CKYTIa.

CrabJia ojryke

CucreMu MAIlIMHCKOI yd4e€lba MOIY pellaBaTh pa3He MpobjiemMe, Kao IITO CY
kjacudukaiumja, perpecuja, KacTepucarbe, UTI. 3a pemaBame 1podeMa
KJIacudukalmje, 3a KOju ce 4ecTo Kopucre crabiia OJUIyKe, IMOTPEOHO je pacropeguTu
yJla3He WHCTaHIe NpobjieMa y HEeKHM JUCKPETHU CKyl Kiaca. VHcranie rnpobjiema ce
Hajuernrthe Mojeyjy BeKTopoMm arpubyTa A, Ha OCHOBY KOJUX Ce BpIIHU KJacuuKalmja.
[Iporec kitacudukaruje y3 momoh crabsia ojjryke ce MozKe IPeJICTaBUTH JUjarpaMoM KOju
uMa CTPYKTYpy cTabja, Kao MITO ce BUU Ha cjuny ucroyg. OBaj jamarpam mpejcraB/ba
TOK OJIM3aK TOKY JBbYJICKOI PAa3MWIN/baiba, T€ r'a je JIAKO Pa3yMeTH, ITO YWHU cTadJa
OJIJTyKe TIOMyJIapHUM W300pOM 3a perraBama mpobieMa Kiacudukammje. Crabia omyke
uMajy u OpojHe Jpyre MPEJIHOCTH Y OJIHOCY Ha OCTaje CHUCTEMe MAIIMHCKOT YUerba,
u3Melhy ocTasior: BUCOK CTelleH UMYHOCTHU Ha IIyM, MOTyYhHOCT KJiacuduKaluje NHCTaHI!
ca pelyJJaHTHUM WU aTPUOyTHMa KOjU HEJI0CTajy, MOryhHOCT KiacuuKoBambha WHCTAHII
KaKO Ca KaTerOPpUYKUM, TaKO W Ca HYMEPUYKUM aTpUOyTUMa UTI.

Teopetcku, crabiia ojIyKe MOr'y OUTH Pa3JIMYUTOr CTEIeHA, Il ce Hajuernhe KOpUcTe
bunapha crabjia, OJIHOCHO cTab/ia y KOjUMa CBaKM YBOp MMa IO jBa moroMka. Climka
IpuKasyje mnporec Kiacudukaiuje Ha ouaapaoMm crabdbsy omyayke. Crabjio ce cacToju o
4 uBopa O3HaUYeHNX Kpyropuma HymepucanuMm oj 1 jgo 4. Crabso takohe uma 5 jimcroBa
O3HAYEHUX KBaJIpaTUMa, [IPU YeMy je CBAKOM JIUCTY JI0/Ie/beHa je/IHa OJ1 Kjiaca Ipobema
(Cy o Cs y oBom npumepy). Krnacudukanuja ce BpImm Tako MITO ce MyCTH Jia ¢e MHCTAHIIA
kpelie kpo3 crabiio, movesm o1 KopeHa (Hymepucanor 6pojeM 1), cBe JIOK He CTUTHE JI0
HEKOT' OJ] JINCTOBa. Y 3aBUCHOCTHU O] JIICTA Y KOME MHCTaHIA 3aBPIIU CBOj IIYT KPO3
cTabJI0, 1HOj ce MPUIPYKYyje Kaaca J0/Ie/beHA TOM JIUCTY.

CeakoM 4uBopy cTabiia OJIyKe IpupykeH je 1o jenad tect (1) mo Ty y oBoMm npumepy),
KOJjU Ha OCHOBY aTpuOyTa MHCTAHIlE OJIydyje KPO3 KOju MOTOMaK he ce HACTaBUTH IIyT
Kpo3 ctabsio. Y ciaydajy OmHapHHX cTabasa, oJf TECTOBa Ce OvueKyje OMHAPHU OJIrOBOD.
Konauna myrama uHCTaHIle Kpo3 cTad0 he 3aBUCUTU O] pe3ysiTaTa TeCTOBa Yy CBAKOM

i

Hardware Acceleration of Nonincremental Algorithms for the Induction of Decision Trees and Decision Tree Ensembles iii

T1 (X)

4-C4 5-Cy 7-Cs

8-04 9'05

Crmuka 1: Ilpomnec knacudukarmje Ha ONHAPHOM CTabJIy OJTyKe.

YBOPY cTabja Ha KOju WHCTaHIa Hambe y TOKy cBor myta. llymrajyhu jeamy mo jemmy
MHCTAHITY TPEHUHT CKYIIa, MOXKe Ce JJOOUTU HeroBa MOTIyHA KJiacudukaiuja.

Csaku mpobiieM 4nja ce KjaacuuKallmja perrasa moMohy crabaJa ojiyke, JedUHUCAH
je ckynoM cBojux uHcTaHim. [lpu nedunucamy rnpobdsema, moTpedHO je n3abdpaTu Koju
arpubyTu fie unHMTH BeKTOp arpubyTa (X) WHCTAHIM W JEJIHO3HAYHO IIPEJICTAB/HATU
uHcTaHie upobsema. Ckyn cBux Mmoryhmx BekTopa arpubyTta mpejcraBba Ny -
JIMMEH3NOHAJIHN TIPOCTOp arpubyra, rae je Ny Opoj arpmbyra KojuMa Cy WHCTaHIE
OTIMCAHE U YjeJIHO U BEJIMYNHA BEKTOPa X. ¥ KOHTEKCTY IIPOCTOpa aTpudyTa, CBAaKU TECT
ounapuor crabJia oJJIyKe JIeJId 0Baj IPOCTOP Ha JiBa PEruoHa, YMHehn Jia je cBaKOM YBOPY
U JIUCTY cTabJjia acoIUpaH jejlaH Moj-peruoH mpocropa. CBaku 9BOp crabJia Ha OCHOBY
CBOI' TeCTa JIeJIn ceOU acoIMpPaHu OJI-PErMOH Ha JBa U JI0/Ie/byje CBAKH O]l IbUX 110 jeTHOM
cBoM 1oroMky. KonadaH pe3yJitaT oBOI IIpoleca je jacHa IapTHIlija IpocTopa aTpudyTa
Ha JINCjYHKTHE PErmoHe acolupaHe Kjacama mpodsema.

Ha ocHoBy kapakrTepuctnka (yHKIMja KOjUMa Cy HUMILIEMEHTHPAHU TeCTOBHU, crabjia
OJIJIYKE Ce MOI'Yy TOJEJUTH Ha: OPTOroHaJHA, HEeOpPTOroHa/jHa u HenuHeapHa. (CBoje
Ha3WBe, OBU TUIIOBH cTabaJ/1a O/IyKa Cy JOOMJIM Ha OCHOBY M3TJIe/Ia IIOBPIITH KOjOM HhUXOBH
TECTOBH Jiejie IpocTop arpubyTa. Tako oproroHayiHa crtabJya OJJIYKe Jejie ITPOCTOP
OPTOI'OHaJIHUM XHUIIEpPaBHUMa, HCEOPTOIOHaJIHa - HEOPTOI'OHaJIHUM XHIIEppaBHHMa, a
HeJIMHeapHa - HeJIMTHeAPHUX XUIePIIOBPIINMA.

Y oBoj aucepranuju, HOKyc je Ha HEOPTOrOHAJHUM CTabJIMMa OJJIYKE jep ce YKeJbeHa
TAYHOCT Ha TPEHUHI' CKYIy Ca FhbUMa MOXKe MOCTUNU ca JIPACTUYHO Marbe YBOpOBA Yy
OJIHOCY Ha OPTOrOHAJHA cTabsa. 3a CJUYHY TadHOCT Ha TPEHUHT CKYIy, HEOPTOTOHAJIHA
crabja dvecTo uMajy O0/bY TAvYHOCT HA HOBUM WHCTaHIama mpobsiema. Takobe,
BeJIMYMHA cTabaJia OJJIyKe je 3HadajHa y Xap/BEPCKO] UMILIEMEHTAIUjU, jep 3aXTeBa
Mamu 0poj pecypca. IllTo ce Twde HesmHeapHUX cTadasia OJJIyKe, OHA Cy 3HATHO
CJIOYKEHUja OJI HEOPTOTOHAJIHUX, Ia W OJ OPTOIOHAJHUX, a HeMajy Belly TadHOCT
KJ1acupuKaImje. Kon Heoproronannmx crabajia oOJUIYKe, TECTOBH Yy YBOPOBHMA
reHepUIly HeOPTOrOHAJIHE XUIIEPPaBHU KOjuMa, jiejie ipocTop arpubyra. Heoproronasna
XUIleppaBaH je jeJIHO3HAa4YHO ojpehena caeehoM jeHaImHOM:

Na

=1

il

Hardware Acceleration of Nonincremental Algorithms for the Induction of Decision Trees and Decision Tree Ensembles iv

rjle W IpeJicTaB/ba BEKTOp Koeduimjenara tecra a 6 (takohe 3BaHor mpar, win emr.
threshold) mozenyje adunu geo Tecra.

unyknuja crabaja ojryKe

Hauesno, crabia ojjiyke ce MOTY WHJIyKOBATH Ha J[BA HAYMHA: WHKPEMEHTAJTHO (IBOP
o 4BOp) wiau ryiobasHo uHayKyjyhu meno crabio ogjeanom. Behwuna ajsropurama 3a
WH/IyKITjy HEOPTOTOHATHUX cTabaJia o/iyTyKe KOPUCTE HEKY BPCTY XeyPUCTUKE y MPOIIECy
ONTUMHU3aIje WHIYKOBAHOT cTabsa, KOja je UecTO HEKHW THUIl €BOJYTUBHOT aJTOPUTMa
(EA), jep je nponanaxeme ontumajsHor crabsia ojyyke NP-rexkak ajropuramcku
po0dJIeM.

NukpemenTaanu npuctyn rpaju crtabjio OJIyKe IOYEeBIIN OJ KOpeHa u Jiojajyhm my
UTEepaTUBHO jefaH 1o jegan uBop. OBo je “greedy” mpuUCTyI, y KOMe ce ImapaMeTpu TecTa
MIPUJIPYKEHOT YBOPY, Tj. BPEIHOCTH BeKTOpa KoedullnjeHaTa W W BPETHOCT Ipara 6,
ONITUMU3Yjy Ha OCHOBY mMHMOpMaIinja o rmepdopMaHcaMa nHIyKOBaHOT cTabJia, JOCTYITHUX
y MOMEHTY Kpenparba TPeHYTHOI YBOpa, Tj. HA OCHOBY ‘JIoKaaHuX uHpopMmanuja. Hakon
IIITO je YBOP JI0/IaT y CTA0JIO U aJrOPUTaM HACTAB/ba Jla KPerpa JIpyre YBOPOBE, CUTYaIUja
ce MPOMEHWJa U JIOCTyIIHe Cy HOBe mHdopmalmje, ajan one Hehe O6utnm mckopwuiihene
3a JIOJIATHY OITUMM3AIIA]y YBOpOBa Koju cy Beh mojmatu y crabjio, Te ce Kaxke Jia je
ONITHUMU3AIMOHN ITIPOTIEC OCTA0 3apO0J/beH Yy JIOKAJHOM ONTUMYyMY. AJiropuram OOHTHO
OIITUMUZYje ITapaMeTpe TecTa y IPoIecy MaKCUMI3aliuje HeKe ujbHe (DYHKIje Koja Mepu
KBAJIUTET II0JeJIe MHCTAHIIN U3 TPEHUHI CKYIIa Koje y Ipollecy Kiacudukalmje ycreBajy
Jla, CTUTHY JI0 YBOpa KoMe je mpuapyzkeH Tect. OBOM TOJEIOM ce J00Hjajy JBa MOICKyTa
WHCTAHIM, OJ] KOjUX ce cBaku mpocsiehyje Ha oOpa/Ly Imo jeJHOM ITOTOMKY 9BOpa. 3a CBaKU
0J1 OBa /JIBa TOJICKYIIa Ce JIaJbe ITPOBEPaBa Jia JIM CE CACTOje O/l MHCTAHIN KOje TIPUIajiajy
Pa3IMIUTUM KJlacaMa WX je MaK MOACKYI “9UCT’, Y CMUCITY Ja CAJIPYKU UHCTAHIIE CAMO
jemHe Kjace. ¥ cIydajy Jia je MOJCKYIl YHCT, Kao IMOTOMAaK Ce JIojlaje JINCT U HheMy Ce
acolupa KJjiaca WHCTAHIM W3 MOJCKYyIa. Y CyIpPOTHOM, MPOIEC MHJYKIHje cTadjia ce
HaCTaB/ba UTEPATUBHO U KAO ITOTOMAK Ce JI0/Iaje HOBU YBOP Yy IUJbY Jasbe Je00e MOJICKYIIa
WHCTAHIM Ha YHCTe NOJcKynoBe. lIpenHocT MHKpeMeHTaHOT MpUCTyIA je Op3WHa, aau
MHJ/IyKOBaHa cTabJia cy CyOONTHMAaJIHA IO BEJIUYUHU U KACHUjUM KJIACU(PUKAIIMOHUM
pe3yJiTaruMa Ha HOBUM WHCTAHIIAMA.

Jlpyru mpuctyn 3a Kpewpame crabajia oJIyKe je MHJIYKIHja Iejor crabjia OjjeIHOM,
OJTHOCHO, HEWMHKpeMeHTaJnu upuctyin. OBje ce y CBako] WTEpalyju ajaropuTMa
MaHUILYJIUIIE TeJUM cTabIoM, TAaKo Jia Cy YBEK Ha pacrojiaraimy KoMIuieTHe (riobaJiHe)
undopmMmaryje o nepdopMancaMa UHIYKOBAHOr crabjia ojiiyke. ¥ IIPOIECY UHIYKIIHje,
peMa HEKOM aJjirOpUTMYy, YBOPOBU C€ JIOfajy Wih OpHUIIy U HapaMeTpu HbUXOBUX
TeCTOBa Ce Memajy y IM/by olnTumusaluje crabdsa. IlomrTo ce omTtmmusanuja BpIIn
Ha OCHOBY TIyIoDaJIHMX wuHOpMaIja o mepdopMaHcamMa, OBaj IOCTYIIAK HAYeTHO
MIPOM3BO/IN KOMIIAKTHI]ja, & Y€CTO U TadHUja cTabIa OJJIYKe y OJIHOCY Ha WHKPEMEHTAJTHE
asiroput™Me. Ca Jipyre crpane, OBH aJrOpUTMU MMajy Bely BpeMEHCKY KOMILJIEKCHOCT OJf
MHKPEMEHTATHIX, IITO PE3Y/ITYje Y JIy?KUM BPpEMEHUMa IMOTPEOHUM 3a UHJIYyKITU]Y.

Kao mTo je pedeno, mnpoHaaxkKeme ONTUMAJHOD cTabjia oiiayke je NP texkak
mpobjieM, aam YaK W aKoO Ce KOPUCTH WHKPEMEHTAJHW IMPUCTYI WHIYKIAH, Kajaa je
ped O HEOPTOrOHAJHUM CTaDIUMa OJJIYKe, HaJaykKeme OINTHMAJIHOI II0JI0XKaja jeJIHe
HeopToronajne xureppabau je NP-texkak aJjiropuramcku mpobsem. I3 oor pasiora,

v

Hardware Acceleration of Nonincremental Algorithms for the Induction of Decision Trees and Decision Tree Ensembles v

Behnna asiropuraMa 3a WHILYKIIN]Y HEOPTOTOHAJIHUX CTa0aJIa OJTyKe KOPUCTE HEKY BPCTY
XEYPUCTHKE Y IIPOIECY ONTHUMU3AINje, KOja je 1eCTO HeKa BPCTa €BOJIYTUBHOL aJrOPUTMA
(EA). Cimka npukasyje TaKCOHOME]Y €BOJIYTUBHHUX aJropuTaMa 3a WHIYKIUjy crabasia
OJITYKe.

Evolutionary

DT
Full DT Components
Classification Regression Hyperplanes Pruning Other
Axis- . Regression Model
Parallel Oblique DT DT

Cnuka 2: TakcoHOMMja €BOIYTUBHUX aJropuTaMa 3a WHIYKIH]y crabaia ojIyKe.

Y 0BOj aucepranuju, IMpejiaXke ce HOBU ajrOpuTaM 3a WHJIYKIINA])Y HEOPTOTOHAJTHUX
crabajia OJTyKe HemHKpeMeHTajHOM MerojoM Ha Oasum EA - EFTI amropurma. OBaj
aJITOPUTaM je OCMUIILBeH uMajyhnm y BUy eMOeses]] cUcTeMe, IJie He IMOCTOju OOm/be
pecypca, Kao INTO Cy MeMopuja # Iporecopcko Bpeme. /JIpyrum peunmma, EFTI
aJITOPUTaM je OCMHUIIJBEH Ja MOXKE Jla Ce UMILJIEMEHTHpPa Ca IITO Maihe pecypca W Ha
Taj HaYUMH OMOryNM HeroBa INTO JAaKIla MHTerpammja y embemen cucreme. 300T CBoOje
Marhe BPEMEHCKe KOMILIEKCHOCTH, HHKPEMEHTAJHI AJITOPUTMU TPEHYTHO JOMUHUPA]Y Y
UCTPaXKMBAYKOM TI0JbY MHIYKIUje cTabasia ojiyKe. V3 oBor passora, npu jgu3ajuy EFTI
aJIroOpuTMa BODEHO je padyHa O TOMe Jia ce OMOryhm Iherosa IITO JIAKINa ITapaJsiesHa
AMILJIEMEHTaIlja ¥ CAMUM TUM OMOryhu pa3Boj epUKacHOT XapABEPCKOT aKIiejgepaTropa
KOju OM JIpDACTUYIHO CKPATHO BpeMe IMOTPEOHO 3a MHJIYKIIN]Y, T€ YIMHUO a4 OBaj IPUCTYI
takohe mobmje Ha arpaxktupHocTH. (Ca Jpyre crpaHe, €KCIEPUMEHTAJIHO jeé IOKA3aHO
ma EFTI anropuram mnpomsBojm KOMIIaKTHHja cTabjia OJJIYKe OJ] MHKPEMEHTAJHUX
ajJiropuTaMa, a 0e3 yTuiaja Ha BUXOBY TadHOCT. VHIyKIMja KOMITAaKTHUjUX cTadajia je
MHTEpPEecaHTHAa ca J[Ba alleKTa: KOMIIAKTHUja cTab/ia N3UCKYjy Mambhe XapIBepPCKUX pecypca
3a UyBalbe W MAHUIIYJIAIHU]y; KOMIIAKTHUja cTabja cy npedepupana rpeMa HPUHIUIY
OxkamoBe OIITPHIIE, jep IPEeJICTaB/ba]y jeJHOCTABHUJU MOJIEN CUCTEMA.

AsropuTMu 3a MHIYKIHjy cTabasia ojryke Oasupanu Ha EA decTto KopucTe momysamujy
JEJMHKU, TITO HUje 3r0JIHO 3a Xap/IBEPCKY aKIleJepallijy jep 3axTeBa 3HadajHe Xap/IBePCKe
pecypce. U3 oor passora je EFTI amropmram amzajuupan jga KOpUCTH caMO jeTHY
jeIMHKY 3a WHAYKIHUjy. AyTopy HEje IMO3HAT HU jeJilaH mocTojehn ajropuraM u3 HaydHe
JIITepaType KOju UCIyHhaBa 0Baj YCJIOB.

Hardware Acceleration of Nonincremental Algorithms for the Induction of Decision Trees and Decision Tree Ensembles vi

Anroputmun 3a dopmupare crabajia Yy XapJBepy HEMHKPEMEHTAJHOM
METO/IOM

Qaza MHAYKIHjE, V CJIy4ajy Jla ¢ce KOPUCTU HEMHKPEMEHTAHU aJIrOpuTam 3a (popMuparbe
cTabJia OJJIyKe, MOXKe TpajaTu caTuMa WM JaK JaHMa 3a IpakTHIHe mpobseme. Ako Ou
ce daza MHIAYKIMje ycresa yop3saTu, Mmoryhe 6u 6uao Kopuctutu Behe TpeHUHT CKyIIOBE,
mro 6u O6mI0 o1 1mocebHOI 3HaYaja y almKaiujama ‘Babema mogaraka”. lasbe, OpxKu
TPEHUHT cTabaJia ojjiyke Om omoryhmo kpahe gum3ajH nuKayce M OTBOPUO MOryhHOCT
MHJIYKIFje cTadaJia OJJIyKe Y PeaJTHOM BPEMEHY 3a IPUMEHe KOje 3aXTeBajy Tako Op30
npuiarohasarme, Kao mro cy “web mining”’, 6uonndopMaTnKa, MaIlIuHCKA BHJ, ‘text
mining” uTI.

[Ipobsiemy akresnepariuje dasze UHIYKIHje ce MOYXKe PUCTYIIUTH Ha JIBA HAUNHA:

* Pa3zBojeM HOBUX aJrOpUTAMCKUX OKBUPaA MJIM HOBUX COMDPTBEPCKUX ajIaTa, IPU IeMY
je oBaj TOCTYNaK JJOMUHAHTAH y JUTEPATYPH.

e Pa3BojeM HOBUX Xap/IBEpCKUX apXUTEKTypa, ONTHUMHU30BaHUX 3a yOp3aHo
U3BpIIaBabe mocrojeNux ajgropuramMa 3a UHIYKIH]Y.

Y 0oBOj JamcepTaluju IpeIoXKeHa je Xap/iBepcKa apxuTekTypa, Hazpana EFTIP, koja ce
MOXKe KOPHUCTHUTH 3a akiesepanujy kako EFTI amropuTMa, Tako m Apyrux ajropurama
3a MHJYKIMjy cTradaja oJiJlyKe HEMHKpPEeMEHTAJHOM MeTonoM. Ha mjany xap/Bepcke
aKiejiepaiuje crabajia ojjiyka, BehuHa HaydHUX pajioBa ce (OoKycupa Ha yOp3aBarbe
Beh mHAyKOBaHUX cTabajia, JIOK je XapJBepcKa akiiejepaliija HHIyKIje ctabasia oIIyKe
caabo mpucyTtHa. Komko je mo3HaTo ayTopy, IoCToje caMo JIBa paja Ha TeMY Xap/IBepCKe
aKIesepalyje ajaropuraMa 3a WHIYKIUjYy cTabajia oJjIyKe, ajaun oba kopucrte “‘greedy”,
“top-down”, unkpemenTayiau npuctyi. KoJmko je ayTopy HO3HATO, HE IIOCTOjU HU je/iaH
paJi HAa TeMy XapJBepCKe akliejepallije ajJropuTaMa 3a HEeMHKPEMEHTAJHY WHILYyKITU]y
crabaJia oJlJIyKe.

Anropurmu 3a dopMupare ancamobasia

Hla 6u ce ynamnpeamie nepdopMmance Kiacudukaropa, IIPEJJIOKeHO je Kopuinheme
aHcaMbaJia cucTeMa 3a KJacupUKaIldjy yMecTo jeaHor Kiacuduraropa. AmxcamoOr
KjacuukaTopa KOMOWHYje MpEeInKIlje HEeKOJUKO WHIUBUIyaTHUX KIacupukaropa y
by Jobujamba Oosbux nepdopmancu. Tpenuparme ancamOasia 3axTeBa WHJLYKIIH]Y
CKyTIa TOjeIMHaYHUX KJjacudukaTopa, yriaaBHoMm crtabasa ojayke win ANN-oBa, [nmje
HpeJInKInje ce OHIa KoMOunyjy y das3u Kopuiihema ancambiia y nporecy Kiacuukaryje
HOBUX mMHcTaHim. lako jemHoctaBHa, oBa HJeja ce IOKasaJa Kao BeoMa edeKTHBHA,
pou3Bojiehu cucreMe KOju Cy TMPENU3HUU O] TI0je IMHATHOT KJIaCU(DUKATOPA.

[Ipunukom wHAYKIHje ancaMOJia KiacudukaTopa, IoTpedbHO je PEeImuTh JiBa mpobJemMa:

* Kako 00e30euTu pasHoOBPCHOCT WiaHOBa aHcambjia, Tj. PA3HOBPCHOCT HUXOBUX
IpeIuKIja

* Kojy mporenypy ymoTpedbuTtn 3a KOMOMHOBaH€ IMOjeIMHATHUX MTPEINKITNja CBAKOT
KJlacuduKaTopa, Tako Ja ce Iojada yTUlaj J0OpuX OJIyKa a IOTHUCHE YTHUIAj
JIOIIHX.

vi

Hardware Acceleration of Nonincremental Algorithms for the Induction of Decision Trees and Decision Tree Ensembles vii

Meby najmomynapaujuM MeTogamMa Koje 00e30ehyjy pasHOBPCHOCT wWiaHOBa aHcambsia
cy bpajmanos “bagging” asropuram, I[lamupos “boosting” asropuram, AdaBoost,
Bommepros ‘“stacked generalization” ajropuram, moHjiepucaHo BehUMHCKO rjlacame u
“behavior knowledge spaces”.

['naBua npeiHOCT ancambaJia KiacuduKaTopa y OJHOCY Ha Moje/IMHavdHe KIacu(uKaTope
je Beha TaynocT mpejukimja u Beha podoyctHoct na mym. Ca Jpyre crpane, y OJHOCY
Ha MojeJuHavdHe Kjaacudukarope, MmoTpedHe Cy BeJIMKe KOJUYUHE MeMopuje Ja ou ce
cMecTuIe JeduHnIje YiaHoBa aHcaMOJIa, a BeJInKa padyHapcka Moh jia 61 ce u3padyHao
0/IrOBOp aHcambJia, IITO CBe BOJU Ka JIy’KUM U y TOTJIEY pecypca 3aXTeBHUjuM (azama
unayknuje. OBo je cTora mro ce ancamb/iun oouvdHo cactoje o 30 u BUIIIE TOjeTNHATHIX
KJacudukaTropa, Te ako Ou Kejieqn ucre rnepdopMaHce KaacupUKAIMje MITO ce TUUe
Op3uHe Kao y CJIy4ajy MojeIMHaYHIX KIacudurkaTopa, ouio 6u nmorpeduo 30+ myra Buiie
MeMOpHje U padyHapcke Mohwu.

Y oBoj mucepraruju, npenoxen je EEFTI anropuram - HOBM €BOJIYyTUBHH aJropUTaM
3a MHJIYKIIA]y aHcaMOaJia HeOPTOrOHAJHIX cTabaja o/iIyKe HEeMHKPEMEHTATHOM METO/IOM
KOjU 3aXTeBa CaMo jeJHy jeJInHKY 1o 4jany ancamOsa, na 6azu EFTI anropurma. Uern
apryMeHTH y Be3U TOTOJHOCTH 3a Xap/BEPCKYy akiejiepanujy Hasejgenn y Besu EFTI
aJITOPUTMAa, BazKe U 3a ajaropurtam 3a nnayknujy ancambana EEFTI. logarna moTuBarmja
3a pa3soj EEFTI anropurma je yumenuiia ja ancaMmOu umajy 6osbe nepdopmance o
1ojeINHaYHUX KjaacudukaTopa, Kao mTo je Beh pedeno.

Anropurmu 3a opmMupare ancamobasia y XapiBepy

Kao mrro je Beh peueno y mperxo/iHOj CEKIMjU, aJlOPUTMU 3a (OpMHUpPamhe aHcambasia
nmajy jgpactudno Behe morpebe 3a pecypcuMma y OJHOCY Ha aJIrOpUTMe 3a HUHIYKIIH]Y
nojeinHaYHUX Kjaacudukaropa. JOII jeIHOM, Xap/Bepcka akiiejepaliija aHcamoOasia
KjacuduKaropa Ipy»Ka Ha4YUH Jla ce OoMOoryhm ja Tpajame WHAyKIHje aHcambalia
Oy/ie ynopeJuBO ca TpajarmeM WHJIYKIje IMOjeIMHAYHOr KjaacudukaTopa, Te ce y OBOj
JIECEepTAIMjU IIpeJIazke Xap/Bepcka apxuTekTypa 3a akieseparujy EEFTI anropurma,
nazBana EEFTIP.

[IIto ce Tuue xapjBepcke akieaepaluje aHcaMmbasia cucTeMa 3a KjaacupUKaImjy, npeMa
3HAY ayTopa, BehWHa ce MPEeJJIOKEHNX Pellemha DaBU XapIBEPCKOM UMILIEMEHTAITjOM
ancambasia KiaacuduKaTopa KOju Cy NpeTxXoaHo ¢opMmupanu y codrrepy. Aytopy je
[O3HAT CaMO jeJlaH PaJi y KOMe je IpeJJIozKeHa apXUTeKTypa 3a Xap/IBePCKY €BOJIYIIN]Y
XOMOTeHUX aHcaMbaJsia Kjiacudukaropa 6a3zupanux Ha cTadImMa OJIJIyKe, ajau Yy OBOM PaJLy
ce 4IaHOBM aHcambJia WHJIYKYjy MHKpeMeHTaJ Ho “greedy” aJropuTMOM.

EFTI

Y 0BOM 0/1e/bKY KPATKO je OIICaH €BOIyTUBHU aJITOPUTaM 3a WHIYKIN]y HEOPTOTOHAJTHUX
crabana ojiyke nemnkpeMentagnoM MerogoM - EFTI. OcnoBua crpykrypa EFTI
aJITOPUTMa, KOjy JieJie MHOTH €BOJYTUBHU AJTOPUTMU, JATa je IICEeYT0-KOJOM HCIO/I.
Kao ynaz, EFTI amropuram mo6mja TpeHHHr CKyl WHCTaHIM (IpOMeHJbHBa train set
y TICeyI0-KO/Iy) KOju y cebu caaprku nHdOopMaIujy Kojoj KJIacu Mpuiaja Koja WHCTAHIIA.

vil

Hardware Acceleration of Nonincremental Algorithms for the Induction of Decision Trees and Decision Tree Ensembles viii

Kao pesynrar, EFTI anropuram tpebda j1a ¢popMupa mTo onTuMaJIHije cTab/I0 OJIyKe 10
ATy TAYHOCTU KJacupuKaluje u BeJnInHe cTadia.

Agropuram 1: Crpykrypa EFTI anmropurma

def efti(train_set, max_iter):
dt — initialize(train _set)
fitness _eval(dt, train_set)

for iter in range(max_ iter):
dt mut — mutate(dt)
fitness _eval(dt mut, train_set)

dt — select(dt, dt_mut)

return dt

Ha camom mouerky wHyKIHje, TeHepHIlne ce cTad/o OJl jeJHOT YBOpa U WHUIIM]AJIA3Y]e
BEroB TecT - npomeH/buBa dt y 1ceymo-koiy. MHumujasnmsaimja Tecta ce BPIIU Ha
HacCyMHUYaH HadWH, aJId je UIaK BoDeHa CTPYKTYPOM TPEHUHT CeTa Yy IUJbY IOCIEINIeha
KOHBepreHIlnje eBOJIYTUBHOI ajroputva. lIpucryna 3a HACyMUUYHY WHUIW]AJI3AI]Y
tecta kopunihen y EFTI anropurmy je 6asupan na nacymMudno nzadpanom jurosy. Kao
IIITO je MPUKA3aHO Ha CJIUIN UCIIOM, IOCTYIAaK Ce CACTOJU U3 MOCTaB/batba XUIIEPPABHU Y
npocropy arpubyra H;;(w,6), HOpMaIHO Ha JIy’K KOja Cllaja JIBe HACYMUIHO m3abpare
uHcTaHne X' 1 X7 Koje Ipunajiajy pasjinduTM KiacaMa (IpuKaszaHe IPBEHUM 3Be3/aMa
U 3eJIeHUM KBaJIpaTUMa Ha CJIMIN), HA pa3ja/buHu j1epuHICAHO] HACYMUYHO U3a0paHIM
napamerpoM . OCHOBHA ITPETIIOCTABKA j€ Jia Cy MHCTAHIE Y OKBUPY UCTE KJIace HA HEKU
HAYUH TPYIUCAHE Y IPOCTOPY arpubyTa, Te ce OBUM IIOCTYIKOM IoBehaBa IraHca Jia
he mako HacyMUYHa WHUIMjAJIA3aIja TECTa JOBECTU HWIIAK IO KOPUCHE Jieobe mTpocTopa
aTpubyTa n3Mely oBe JiBe KJace.

Hij(w,ﬁ) =W o —9,

T2

(2)

W:(Xi_xj)7
0=oéw-x+(1—-06)w-x/

Hakon dopmuparma wuHunujaasor tecta, dyHknuja fitness eval() padyna mnouerHn
durHec HOBOHacTasie jenmake. DyHKIHMja 3a padyHaibe (HUTHECA y3uMa y 003up
rmapaMeTpe jeJIMHKe KOju Cy MHTEPECAHTHU 3a ONTHUMU3AIMOHH IIPOIeC, KOMOWHYje uxX
HAa OCHOBY TeXKMHA KOjy CBaKU Tapamerap HOCH (JIOJIe/beHHX OJi CTpaHe KOPUCHUKA Y
BULy KoHpUryparmje agroputMma) n Bpaha jeuHCTBeH 6pOj KOju HpejcTaBba (DUTHEC
jenunke. Ilapamerpu crabiia oy Hajseher mHTepeca 3a (azy kopuinhema Cy cBaKako
IberoBa TAYHOCT U BEJINYHMHA, T€ CY OBa JIBa IapaMeTpa U KOpHuilheHa y UMILJIeMEeHTaIN] 1
EFTI anropur™a y 0BOj Jaucepraryju.

OcraTak ajropuT™Ma TMOKYIIaBa Ja UTepaTUBHO yHaIpean (hpUTHEC jequHKe mposazehn y
CBaKOj UTepaIyju Kpo3 ciiejiehe Kopake:

* Myranuja - dbyHkimja mutate() Ha HaCyMUYaH HAYUH Merba JeJMHKY y HaJU Jia
he noBonacrasa jequnka (mpomersbuBa dt mut) HampegoBaTH y morsery buTHeCA.

viil

Hardware Acceleration of Nonincremental Algorithms for the Induction of Decision Trees and Decision Tree Ensembles ix

Zo

Cmuka 3: Muannmjanmsanuja tecta 6a3mpaHa Ha HACYMUYHO U3a0PAHOM JTHIIONY.
H,;;(w,0) je xumeppaBaH Koja OArOBapa TeCTy, W je BeKTOp Koedmumnujenara, a ¢
mpar Tecra.

Mory ce BpmuTH JiBe BpCTe MyTallija: MyTalldja BEKTOpa KoedulmjeHaTa TeCTOBa
y IBOPOBHMa WJIH OJIy3UMarbe/ 10aBarbe HOBOI YBOpa y CTabJIO.

* Eanyarmja durneca - dynknuja fitness eval() wa Beh mnomenyr HaumH
npopadyHaBa (DUTHEC MyTUPAHE jeINHKE

 Cenekruja - dynknumja select(), y K0joj ce mpoBepasa Jia Ji je OCTBapeH HAIPeaK
y norJie;ty buTHECA, Y YUjeM CJIy4ajy ce MyTHPaHa jeJIMHKa IPUXBaTa 38 TPEHYTHO
Hajoosby. ¥ CylnpOTHOM, Jia OM ce OMOI'yNUJI0 €BOJIyTHBHOM AJITOPUTMY Ja HAILYCTH
JIOKaJIHe onTuMyMe (M Ha Taj HAYMH UMa IMAHCY Ja IpoHahe ryIoba/HU OITHMYM)
UIlaK ce Jlaje ImaHca, OOMYHO MaJia, JeJUHKU ca HIKHM (DUTHECOM ja Oylie
npuxpahena. Ipyrum peunma, HeKe jeJMHKE ca HUXKUM (pUTHECOM he HACYMUTHO
outu npuxpahene, a ocraje ogdadeHe.

Hakon xesbeHor 6poja mrepanuja (yiaasau napamerap max iter), EFTI ajropuram ce
zaBpiiasa u Bpaha TpenyTHO HajOO/bY jeJMHKY KOjy je MPOHAIIAO0.

Komporiecop 3a eBOIyTUBHY WHAYKIU]Y Teux cradbasa oiyke - EFTIP

Bpemenckn ganeko najromiuiekcuuju jeo EFTI anropurva je padyname durHeca
jeJmHKe, 3aTO MITO je y TY CBPXY HOTPEOHO M3BPHINTH KJACU(MDUKAIU]Y TEJOT TPEHIHT
ckyma. Jla 6u ce u3Bpimia Kiracudukaimja, MOTPeOHO je CBaKy WHCTAHILY MPOIYCTUTHU
Kpo3 cTabJio, IpH YeMy je MOTPeOHO yPaJuTH OHOJMKO TeCTOBA KOJIMKO je U YBOPOBA
Ha MyTy Kpo3 cTabJyio. Y HajropeM ciiydajy Koj Jolle bajancupaHor cradia, oaj 6poj
MOXKe OWTH jeJHaK YKyHmHOM Opojy |uBopoBa y crtabsy. (CBakum TecT ce jJajbe CacToju
0J1 TIpopadyHa CcyMe IPOU3BOJIa HaJ| CBUM aTPUOYTUMA, Te je KOMILIEKCHOCT padyHarba
duTHeca u3 Tor passora:

T(fitness_eval) = O(Ny-n- Ny) (3)

, T1e je Ny 6poj uncrannu y Tpenunr cery, N4 6poj arpudbyra u n 6poj uBoposa y cradiry.

X

Hardware Acceleration of Nonincremental Algorithms for the Induction of Decision Trees and Decision Tree Ensembles x

Ananm3a BpeMeHCKe KOMILIEKCHOCTH aJIrOPUTMa, Kao U Ipodajiupame Ha KOHKPETHUM
npuMepuma, mokalyjy Ja je HajsaxteBuuju geo EFTI anropurma ympaso mpopatyH
dutneca. Y ToMm cBeTy, y mby xapjsepcke akieneparuje EFTT aaropurma npeioxken
je HW/SW kommsaju mpuctym, y KojeM je Haj3aXTeBHUjU Je0 (DYHKIHje 3a padyHambe
duTHEeCA - padyHabe TAYHOCTH KJacuuKaldje - HMIJIEMEHTHPAH Kao XapIBEPCKU
korporiecop - EFTIP, a ocrarak EFTI anropurma octaBiben y codpTBepy Jia ce u3BpiiaBa
Ha 1eHTpasiHoj mporecopckoj jeaununu (CPU ox enr. Central Processing Unit). Tomarha
IIPEJHOCT OBaKBe apxXuTeKType je y ToMme 1mrTo ce EFTIP komporiecop Moxke KOpucTuTu
U 3a aKIe/iepalnjy pa3Hux JIPYyrux ajJropuraMa 3a WHIYKIUjy cTadaJia ojjIyKe OazupaHe
na EA, akmenepupajyhu kinacudukaiujy TpPeHUHT CKyTla U IPOPadyH TadHOCTH cTabiia,
KOpaK KOjH je YBeK IPHUCYTaH NPUIUKOM padyHama (pUTHeCA.

Knacudukanuja nHCTaHIE ce BPIIM TAKO INTO MHCTAHIIA IIOYEBIIH O KOPEHA IPOJIa3N
Kpo3 cTabjI0 OJIyKe HHUBO II0 HHBO HAHMXKE, IJe je beH TadaH IIyT oJpeheH mcxoamMma
TECTOBa y YBOPOBHMA. 3a& CBaKy MHCTAHILY BPIIHM CE€ CaMO jeJlaH TeCT 110 HUBOY cTabdJia.
HeszaBucno oj1 ucxoja Tecra, MHCTaHIA YBeK OuBa mpocjeheHa Ha jeJaH HUBO HUCIOJ,
TpeHyTHOI. I3 oBHX pasjora, ajropuraMm KJjacudukaiuje y3 momoh crabia OIjIyKe je
3rojlaH 3a IIPOTOYHY 00pa/Ly ca 110 jeHOoM (a30M IIPOTOUHE 00paie 3a CBAKU HUBO CTA0JIA.
Ha ocnoBy oBe anajinze mnpejioxkena je crpykrypa EFTIP xorporecopa jiata Ha cauim
HCIIOI.

Processing System EFTIP co-processor
[¢ 1
AXI4 e = Tyaini
AXI4 Control Unit Set ﬁggfr é clcuiacy
CPU <:> y alculator
addr
AXI4 oM =
Interconnect e
— Ll addr N TE1
DDR3 DDR3 |ax14 SM | data
Memory <:> Memory <:> !
. Controller addr
CM data
— LQ addr N TE2
SM data
U
4
addr
CM data
LDZ\J' addr NTEDIVI
SM data
DT Memory Array Classifier

Cmnuka 4: Crpykrypa EFTIP komnporecopa u merosa nnrerparnuja ca CPU.

EFTIP komporecop je mpeasuben 3a moesuBame ca CPU-om mpeko AXI4 AMBA
Marucrpale, koja je cranmapaaa Ha ARM apxurekrypama. Komporecop npyzxa cieaehu
unrepdejc mpema codpreepy:

e CroyrmiTame TPEHUHT CKYIa Ha KOIIPOIECOD

Hardware Acceleration of Nonincremental Algorithms for the Induction of Decision Trees and Decision Tree Ensembles xi

Crymrame onuca ctadjia oJIJIyKe Ha KOIPOIECOp, KAKO HheroBe CTPYKTYPe, TAKO U
KoeduijeHara CBUX TECTOBA

KonrpoJta niporieca mpopadyHa TaqHOCTH

NirauraBame pe3yaraTa

I'naBrne xommonente EFTIP kompomnecopa, npukazane cy Ha cauny n3HaI;:

Classifier (Knacudukarop) - VssprnaBa kiacudukanujy cBake HHCTAHIE TPEHIHT
cKyma Ha crabsy omyryke. OBaj IpoIec je MMILIeMEeHTUPaH y BUJLY IPOTOYHE 0OpaJie
kopuiihemem oipehenor 6poja NTE momyna (ox enr. Node Test Evaluator), on
KOjIX CBaKM M3PadyHaBa TeCTOBE 3a 110 jeJlaH HUBO cTabia oryke. [lapamerap DM
IpejcTaB/ba JAyOUHY HPOTOYHE 0Opajie U CaMUM THUM MAaKCHUMAJIHy JayOuHYy cTabJa
KOje ce MOxke MHJyKoBaTh. Ha cBOM m3j1a3y, 3a CBaKy MHCTAHILy TPEHHHI CKYyIla,
Knacudukarop maje 6poj Kjiaace y Kojy je MHCTaHIa KJacu(pUKOBaHA.

Training Set Memory (Memopuja 3a Tpenunr Ckyt) - Memopuja y K0joj ce dyBajy
CBe MHCTaHIe TPEHUHT CcKyTa U maby Kinacudukaropy Ha Kiacudukarujy.

DT Memory Array (Huz DT Mewmopuja) - Huz memopuja y KoMme ce CKiajurire
ommcu crabja oJIyke, cactoju ce ox momynaa Ly mo Lp. Cpaka ¢dasa mporoune
obpajie y Kiacudukaropy 3axTeBa COICTBEHY MEMOPHjY y KOjOj ce 4yBajy OIUCH
CBUX YBOpPOBa Ha HUBOY cTabJja 3a Koju je jara (asa 3a1yzKeHa.

Accuracy Calculator (Kankynarop Taunocrn) - Ha ocnoBy kiacudukanuja koje
Knacudukarop naje ma com wmznazy, Kankynarop Taunoctu padyna TadHOCT
crabJjia OJ/TyKe Ha TPEHUHT CKYIIY.

Control Unit (Konrposna jemmnuna) - Ilpencrasba moct usmely crosbarisber
AXI4 unrepdejca m yHyTpalrmuxX IpOoTOKoIa. Takohe KoopamHUpa IETOKYITHAM
IIPOIECOM IIPOPATYHA TATHOCTH.

EBostyTuBHI ajiropuTaM 3a HMHJIYKIM]Y aHcamObaJia IeJnX HeOPTOIOHAJHIX

crabasa ojnyke - EEFTI

EEFTTI je anropuram, mpe/ijioyKeH y OBOj JUCEPTAIU]jU, 38 UHIYKIH]y ancaMbaJia cradbasia
omiyke, 6basupan wa EFTI amropurmy. Jla 6u EEFTI anropuram morao ja mnjaykyje
YJIaHOBe aHcambJia y mapaJiesn, 3roaHo je kopuctutu “Bagging” anropuram 3a UHIyKITHjy
ancambasia. OBaj ajropuram nupesBuba I0/e/y TPEHUHD CKyIla Ha 10 jeJlaH MOJCKYII
3a CBaKOI' WwiaHa ancamOsa Koju ce mHjaykyje. CBakm O MOJCKYIIOBa Ce OHJa KOPUCTU
3a MHJIYKIUjy HCKJBYYHMBO CBOI' ojroBapajyher wnana ancamOsa. Hawenno rocroje asa
HadnHa 3a hopMUparbe MOJACKYIIOBa:

HACYMHUYIHO ofabupame 6e3 MoHaB/baiba - (POPMHUPAHHU ITOJCKYIIOBH Ce He IIPeKIalajy
u BesmauHe cy Nig = M ou

Ne ?
HACYMHIYHO O/labHparbe ca MOHAB/bambeM - (POPMUPAHN TMOJACKYTIOBH Cy BeJMTHHE
Nis < Nip,

, T7ie je Nyg BemvnHa MOJICKYTIoBa, /N7 BeJIMUnHa TPEHUHT CKYTIa, a N, OpPOj MOJICKYIIOBa,
Tj. WwiaHoBa aHcambJia.

x1

Hardware Acceleration of Nonincremental Algorithms for the Induction of Decision Trees and Decision Tree Ensembles xii

CBaku 1ojeJIMHAYHN YIAH aHcaM0Jia ce Jia/be MHJYKYje Ha OCHOBY JIO/I€JbEHOT MOJICKYIIa
TpenuHr ceta y3 nomoh asropurma ciamanor EFTI - jy. Tlceyno-kon EEFTI anropurma
je npukazan ucnoj. EEFTI npBo nesm rpeHuHr ckyn Ha mojicKynose y3 moMoh (byHKImje
divide train set() u uyBa ux y Hu3y task par, 10K mpoMeH/bUBA Tes UyBa HU3 KOjU
OKYIIJba MH/yKOBaHe djiaHoBe ancambiia. Hakon Tora, 1o jeman EFTI mporec ce kpenpa
3a CBAKOrI WiaHa aHcaM0Ja, pedepeHiie Ha HbUX ce cMemTajy y Hu3 tasks m mokpehe ce
wuxoB paj. Hakon mro cy ceu EFTT npornecu 3apmmmiu ca pajgom, EEFTT anropuram je
3aBpIIEH U HU3 MHYKOBAaHUX cTabasa ce Bpalia kao pe3ysarar. Y 0BaKBOj KOH(UTYpaIlnjH,
EFTI nporecu cy moTIyHO HE3aBUCHU M MOT'Y Ce U3BpINaBaTH y MHapaJien 0e3 1morpede
3a MehycoOHOM KOMYHUKAIUjOM.

Anropurtam 2: Crpykrypa EEFTI anropurma

def eefti(train _set, ensemble size):
train_par — divide train_set(train_set, ensemble _size)

res — [

tasks —]
for i in range(ensemble _size):
r—{}

t — create task(efti, train_par[i], r)
res.append(r)
tasks.append(t)

while(not all _finished(tasks)):
pass

return res

Komporiecop 3a €BoTyTUBHY UHYKIH]Y ancaMbasia MeJnxX ctadasia ojIyKe -
EEFTIP

[Tomro je Bpemencku najzaxrteuuju jgeo EFTI anropurma npopadyn tadnoctu cradasia
OJI/IyKe, OBaj 3ajarak ojHocu Hajsuie Bpemena u kKoj EEFTI anropurma. I3 oBor
pazsora, npejyioxken je EEFTIP xkomnpornecop koju ce cacroju ox nHusza EFTIP momyna
Jia 6u omoryhmo mHIyKIHjy djaaHoBa ancaMOja y napaJjeu. llpemioxkena apxurekTypa
EEFTIP komporecopa n merosa Besa ca CPU-oMm mpukazana je Ha CJIUIU WCITOI,

Posto je vremenski najzahtveniji deo EFTI algoritma proracun tacnosti stabala odluke,
ovaj zadatak odnosi najvise vremena i kod EEFTT algoritma. 1z ovog razloga, predlozen
je EEFTIP koprocesor koji se sastoji od niza EFTIP modula da bi omoguéio indukciju
¢lanova ansambla u paraleli. Predlozena arhitektura EEFTIP koprocesora i njegova veza
sa CPU-om prikazana je na slici ispod.

EEFTIP kompormecop ce nosesyje ca CPU-om Takohe mpeko AXI4 AMBA marucrpaite,
n nupyxka unrepdejc ka cakoMm oj nojeaunagnux EFTIP momyna, on EFTIP; 5o
EFTIPgn, The je cBAKM OJ1 HBUX HPEJABUDEH Jla padyHa TAYHOCT 3a I10 jeJIHOT |JIaHa
ancambsta. [lapamerap S, upejacrasmpa ykyman 6poj EFTIP momyra y EEFTIP
KOITPOIIECOPY M CAaMUM TUM MAKCHUMAaJIHU OpOj YIaHOBa ancambiia Koje KOIPOIeCop MOXKe

xii

Hardware Acceleration of Nonincremental Algorithms for the Induction of Decision Trees and Decision Tree Ensembles xiii

Processing System EEFTIP
{
AXI4 IRQ
<:> AXI4 IRQ Status
CPU ———
AXI4 IRQ
> EFTIP
Interconnect !
p DDR3 AXI14 IRQ
DDR3
Memor <:> Memory :> EFTIP,
Y Controller
[=—> prrIRs, M9

Cauka 5: Crpykrypa EEFTIP komnporecopa u mwerosa uarerpaiuja ca CPU-om.

na uHpykyje y napasenn. Taxohe, EEFTIP nocemyje IRQ Status (ox enr. “Interrupt
ReQuest Status”) momyn, koju okymba craryche curnase csux EFTIP kommonentn,
omoryhaBa KOPHCHHUKY Jla MX WIIMYATA CBE 3aje/IHO0 U TeHepuille KOMOMHOBAHU CHIHAJ
npekna cBaku myT Kagia Heku oj EFTIP mosyra 3aBpimm mpopadyH TavHOCTH.

[MITo ce Tude coprrepcke crpane, EFTI nporecu ce Mory usBpIiaBaTu y mapaJiesu, TaKko
IIITO C€ CBAKOM OJ FbUX €KCKJIy3uBHO jojenn 1o jegan EFTIP momayn na kopurrheme.
Csaku oj EFTI uporeca nakon myTalpje cBoje jeuHke, UCTy maJjbe jaoje/beHom EFTIP
Momyay Ha mpopauyn rtadnoctu. EFTI mpomec Tama Bpaha mporpamcky KOHTPOJTY
OIIEPaTUBHOM cucTeMmy, dekajyhu ma npekugau curaast o crpane EEFTIP konporecopa
Jla je MpopadyH TAvYHOCTH 3a IHerOBY jeJIMHKY 3aBpIIEH W Ja pPe3yJATaTu MOory OuTu
umrauTann. Y MehyBpemeny, mporecopcko Bpeme ce jojiesbyje apyrum EFTI nporecuma,
KOjU Ta KOPUCTE Ha WJICHTUYIAH HAYUMH.

xiii

S, UNIVERSITY OF NOVI SAD SR
S et 2 - -

S5cv>rz FACULTY OF TECHNICAL SCIENCES @ '
IR NOVI SAD *’@

Bogdan Vukobratovi¢

Hardware Acceleration of
Nonincremental Algorithms for the
Induction of Decision Trees and
Decision Tree Ensembles

PhD Thesis

Novi Sad, 2016

Contents

1

2

Abstract

Introduction
2.1 Machinelearning L e e e
22 DecisionTrees e e e e
2.3 Decisiontree induction i e e e e e e e e e e
2.3.1 General approaches to DT induction
2.3.2 Evolutionary oblique full DT induction
2.4 Hardware aided decision treeinduction
2.5 Induction of decision tree ensembles
2.6 Hardware aided induction of decision tree ensembles
277 UCIDatabase Library it
2.8 The structure of the experiments used in the thesis

EFTI algorithm

3.1 Thealgorithmoverview e

3.2 Detaileddescription e e e e e
321 Mutation e e e e e
3.2.2 The DT node insertion algorithm
3.23 Fitnessevaluation L e
324 Selection L. e

3.3 Improvements to the basic EFTI algorithm
3.3.1 Unrepresentedclasses it
3.3.2 Searchprobability
3.3.3 Partial reclassification L

3.4 Complexity of the EFTI algorithm

3.5 ExXperiments e e e e e e e e e e e
3.5.1 Dependence on the number of iterations
3.5.2 Equitemporal comparison with the existing solutions
3.5.3 Group comparison of all algorithms

Co-processor for the DT Induction - the EFTIP
4.1 ProfilingResults e
4.2 Existing Architectures for Hardware Acceleration of the DT Classification . . .
4.3 EFTIP Detailed Description o i v i
43.1 Classifier e
4.3.2 Training SetMemory oo e
433 DT Memory Atray v v v i vt e e e e e e
434 Accuracy Calculator e
435 ControlUnit. o e e e e e e
4.4 Required Hardware Resources and Performance
4.5 Software for the EFTIP Assisted DT Induction.
4.6 EXperiments e e e e e e e e e e e
4.6.1 Required Hardware Resources for the EFTIP Co-Processor Used in
Experiments
4.6.2 Estimation of Induction Speedup

10

11
11
14
20
21
23
24
25
26
26
28

30
30
36
36
38
39
46
49
49
50
58
62
63
65
67
88

Hardware Acceleration of Nonincremental Algorithms for the Induction of Decision Trees and Decision Tree Ensembles 3

5 EEFTI algorithm 137
5.1 Bagging Algorithm L 137

5.2 EEFTIDesCription o v v v i i it et et i e e et e e 137
5.3 Advantagesof the DT ensembles 138

6 Co-processor for the DT ensemble induction - EEFTIP 142
6.1 IRQ StatusModule 143
6.2 Theoretical estimation of the acheivable speedup of the proposed HW/SW system 143
6.2.1 Random sampling without replacement 144

6.2.2 Whole training set foreachmember 145

6.3 Software for the EEFTIP assisted DT ensemble induction 146

6.4 EXPEriments v v v i it e e e e e e e e e e e e e 148
6.4.1 Required Hardware Resources for the EEFTIP co-processor 148

6.4.2 Estimation of the Induction Speedup 150

7 Conclusion 153
Bibliography 155

List of Figures

2.1

2.2
2.3

24

2.5

2.6

2.7
3.1

32

33

34

3.5

3.6

3.7

3.8

39

3.10

3.11

3.12

3.13

An overview of how machine learning is used to solve problems in a certain
domain, by constructing the model via process of learning on the training set. . 13
The classification process by the binary DT. 15
The yinyang dataset used for the demonstration of the classification process by
oblique DTs. Instances of the dataset are described using two attributes x; and
x5, and can belong to one of the two classes C', represented by the red star
symbols, and C5, represented by the blue square symbols. 17
Oblique binary DT that could be used to classify the instances of the yinyang
dataset ploted in the Figure 2.3. The red curvy line shows the traversal path for
one possible instance. This example traversal path can be visually presented
via series of dataset attribute space regions, as ploted in the Figure 2.6. 17
The attribute space partition of the yinyang dataset from the Figure 2.3
generated by the DT from the Figure 2.4. The dashed lines on the figure
represent the hyperplanes generated by the node’s tests that partition the
attribute space into the regions, each corresponding to a leaf of the DT. Each of
the attribute space regions is marked with the ID of its corresponding leaf and
the class assigned totheleaf. 18
The figure shows the attribute space regions assigned to the nodes and leafs an
example instance visits during its traversal along the line shown in the Figure 2.4. 19
The taxonomy of evolutionary algorithms for DT induction as presented in [39]. 24
An example evolutionary process by the EFTI algorithm. Iteration: 000000,

Fitness: 0.6024, Size: 2, Accuracy: 0.6005 32
An example evolutionary process by the EFTI algorithm. Iteration: 000013,
Fitness: 0.6287, Size: 2, Accuracy: 0.6274, 32
An example evolutionary process by the EFTI algorithm. Iteration: 003599,
Fitness: 0.9138, Size: 5, Accuracy: 09202 33
An example evolutionary process by the EFTI algorithm. Iteration: 007859,
Fitness: 0.9265 Size: 4, Accuracy: 09297 33
An example evolutionary process by the EFTI algorithm. Iteration: 030268,
Fitness: 0.9272, Size: 5, Accuracy: 09331, 34
An example evolutionary process by the EFTI algorithm. Iteration: 177050,
Fitness: 0.9273, Size: 6, Accuracy: 09374 34
An example evolutionary process by the EFTI algorithm. Iteration: 279512,
Fitness: 0.9274, Size: 7, Accuracy: 09395 35
An example evolutionary process by the EFTI algorithm. Iteration: 415517,
Fitness: 0.9342, Size: 5, Accuracy: 09396 35
Example showing how a DT is mutated by adding anode toit. 37
Example showing how a DT is mutated by removing a node fromit. 37
Hyperplanes cannot be initialized completely at random, since there is a high
chance of them being ineffective 39

Initialization of the node test based on the randomly chosen dipole. H;;(w,0)
is a hyperplane corresponding to the node test, w is coefficient vector, and 0 is
the threshold.o 40
The structure of the distribution matrix. From each matrix row i, the dominant
class k; and the number of instances of the dominant class d; ;) that finished
the traversal in the leaf with ID i are obtained. 42

Hardware Acceleration of Nonincremental Algorithms for the Induction of Decision Trees and Decision Tree Ensembles 5

3.14 The layout of Pareto frontiers for the accuracy value of 0.8, when N¢ equals 5,
for K, parameter values of: 0,0.02and0.1.
3.15 Dependencies of the induced DT sizes and accuracies on the oversize weight
(K,) parameter values. Datasets 1-25.
3.16 Dependencies of the induced DT sizes and accuracies on the oversize weight
(K,) parameter values. Datasets 25-50.
3.17 An example of the hill climbing problem and the issue of escaping the local
optimum A by a greedy strategy in order to reach pointB.
3.18 Plots of the fitness evolutions during first 15k iterations of the DT induction
from veh and ion datasets when the HereBoy search probability strategy is
used (green) and when no search probability is used (blue). Several potential
issues with the HereBoy search probability approach are pointed out: 1 - Poorer
solution accepted and interrupted a series of fitness advancements, 2 - No new
solutions accepted for a long time, wasting execution time, 3 - Solution with
significantly less fitness accepted.
3.19 The simplified version of the probability of accepting a less fit individual of
certain fitness in Dy iterations after the advancement in fitness. In each plot, for
different values of St and py, the p’.(D;) function is plotted for an individuals
whose fitness is smaller than that of the current candidate solution by: 1%, 5%,
10%,20% and 40%.o e e e
3.20 Plots of the fitness evolutions during first 15k iterations of the DT induction
from veh and ion datasets, when the Metropolis search probability strategy is
used (green) and when no search probability is used (blue).
3.21 Dependency of the induced DT sizes and accuracies on the number of iterations
the EFTI algorithm was run. Datasets 1-25.
3.22 Dependency of the induced DTs on the number of iterations the EFTI algorithm
was run. Datasets 25-50. L
4.1 The visual representation of the induction time percentages that the EFTI
algorithm spent on average in the sub-functions of the fitness evaluation task,
given foreachdataset.
4.2 The DT classification hardware implementation using one hardware module per
DTnode e
4.3 The idea behind the SMPL (Single Module Per Layer) architecture. There is
one universal hardware module (Universal nodes L; — L3) per DT level that
implements all DT nodesonthelevel.
4.4 The EFTIP co-processor structure and integration with the host CPU
4.5 The architecture of the Classifier module consisting of the NTE modules
connected IN AN AITAY.« v o v vt v bt e e e e e e e e e e
4.6 The dot product calculated for N4 = 7, using binary multipliers and adders,
broken into 4 steps inside which the operations can be performed in parallel. . .
4.7 The NTE (Node Test Evaluator) block architecture
4.8 The example DT used to discuss the NTE operation. 6 and w are displayed
for all nodes, first in decimal format and then in the fixed point representation
immediately below. L e
4.9 The vene dataset with the marked instance that will be used for the Classifier
module operation demonstration. The attribute space regions are titled by the
leaf IDs that they are associated to.,

54

113

Hardware Acceleration of Nonincremental Algorithms for the Induction of Decision Trees and Decision Tree Ensembles 6

4.10

4.11

4.12

4.13
4.14
4.15
4.16

4.17
4.18
4.19
4.20

4.21
4.22
6.1
6.2

6.3
6.4

6.5

The preparation for the first pipeline stage, where the loading of the coefficient
vector for the selected node from the CM memory is performed. All the blocks
and the signal paths active in this phase are highlighted in blue. 114
The first pipeline stage, where the element-wise multiplication between vectors
w and x is performed. All the active parts are highlighted in blue in the figure. . 116
The second pipeline stage, where the final evaluation of the node test is
performed and the decision on where the traversal will continue is made. All

the blocks and the signal paths active in this stage are marked in the figure. . . . 116
The third pipeline stage, . All the blocks and the signal paths active in this stage
are highlightedinblue. 117
The results of the node test evaluation on the second DT level by the NT'Es
module. 118

The results of the node test evaluation on the third DT level by the NT'E's module.119
The process of pipelined operation of the Classifier module with only the
contents of the Instance and Node queues displayed, which in turn represent

which instance is being processed by which stage of which NTE. 120
The Training set memory organization« o v v v v oo . . 120
The DT memory organization v v v v v v v i v oo u o 121
The Accuracy Calculator block diagram 122
Demonstration of the Accuracy Calculator operation for the vene dataset

classified by the DT from the Figure 4.8 124
The Control Unit FSM that manages the whole accuracy calculation process of

the EFTIP CO-PrOCESSOT « . o v v v v v v v e e e e e e e e e e e e e e e e e e 126
The speedup of the HW/SW implementation over a) the SW-ARM

implementation, b) the SW-PC implementation 136
The EEFTIP co-processor structure and integration with the host CPU 142
IRQ Status register space oo 143
The shape of the speedup(n.) function given by the equation (37). 145

Achieving the maximum CPU utilization by interlacing the inducion operations
of different ensemble members (b), as opposed to performing these operations
sequentially (a). 149
Speedup of the HW/SW implementation over a) SW-ARM implementation and
b) SW-PC implementation, given for each dataset used in the experiments. Each
bar represents a speedup for one ensemble size. 152

List of Tables

2.1

3.1
3.2

33

34
3.5
3.6
3.7
3.8
39
3.10
3.11
3.12

3.13
3.14

3.15
3.16

3.17
3.18

3.19
3.20

3.21
3.22

3.23

List of datasets (and their characteristics) from the UCI database, that are used

in the experiments throughout this thesis 27
The average sizes of the DTs induced for various values of the parameter K, . . 45
The average accuracies of the DTs induced for various values of the parameter

Ko oo e 45

The values of the parameters relevant to the search probability set to the
EFTI algorithm while running the experiments for comparing different search
probability approaches oL Lo oL 55
Average fitness values of the induced DTs using four selection strategies,
together with their 95% confidence intervals and Tukey HSD based rankings . . 55
The parameter set used for the EFTI algorithm in the partial reclassification

COMPArison eXperiments v v v v v v v e e e e e e e e e 61
The results of the experiments testing the benefits on the EFTI algorithm

induction times of using the partial reclassification procedure 61
The list of the existing algorithms used for the comparison with the proposed

EFTT algorithm o e e 64
The average fitness values for the DTs induced using different number of iterations 65
The average sizes of the DTs induced using different number of iterations . . . 66
Two sets of the parameters set to the EFTI algorithm for the comparison

EXPEIIMENLS .« . & v v v v v i e e e e e e e e e e e e e e e e e e e 70
The average induction times of the CART-LC algorithm per dataset 70

The results of the comparison experiments between the CART-LC algorithm
and the EFTI algorithm, displayed side by side for different induced DTs’
characteristics: accuracy, size and fitness L. 71
The average induction times of the OCI1-ES algorithm per dataset 73
The results of the comparison experiments between the OCI-ES algorihtm
and the EFTI algorithm, displayed side by side for different induced DTs’
characteristics: accuracy, size and fitness, 73
The average induction times of the OC1-SA algorithm per dataset 75
The results of the comparison experiments between the OC1-SA algorihtm
and the EFTI algorithm, displayed side by side for different induced DTs’
characteristics: accuracy, size and fitness 76
The average induction times of the OC1 algorithm per dataset 78
The results of the comparison experiments between the OCI algorihtm
and the EFTI algorithm, displayed side by side for different induced DTs’
characteristics: accuracy, size and fitness L. L. 78
The average induction times of the NODT algorithm per dataset 81
The results of the comparison experiments between the NODT algorithm
and the EFTI algorithm, displayed side by side for different induced DTs’
characteristics: accuracy, size and fitness L. 81
The average induction times of the GALE algorithm per dataset 83
The results of the comparison experiments between the GALE algorithm
and the EFTI algorithm, displayed side by side for different induced DTs’
characteristics: accuracy, size and fitness 84
The average induction times of the GaTree algorithm per dataset 86

Hardware Acceleration of Nonincremental Algorithms for the Induction of Decision Trees and Decision Tree Ensembles 8

3.24

3.25

3.26

3.27

3.28

3.29

3.30

3.31

3.32

4.1

4.2

4.3

4.4
4.5

4.6
4.7
5.1
5.2
6.1
6.2

6.3

The results of the comparison experiments between the GaTree algorithm
and the EFTI algorithm, displayed side by side for different induced DTs’
characteristics: accuracy, size and fitness 86
The average accuracies of the induced DTs by all algorithms from the Table 3.7
and EFTI, on all datasets from the Table 2.1 from five 5-fold cross-validation test. 88
The 95% confidence intervals for the accuracies of the induced DTs by all
algorithms from the Table 3.7, on all datasets from the Table 2.1 from five
5-fold cross-validation test. L o 90
The relative differences in accuracies of the DTs induced by the algorithms
from the Table 3.7, compared to the DTs induced by the EFTI algorithm on the
same dataset. L e e e e e e e e e 91
The average sizes of the induced DTs by all algorithms from the Table 3.7 and
EFTI, on all datasets from the Table 2.1 from five 5-fold cross-validation test. . 92
The 95% confidence intervals for the sizes of the induced DTs by all algorithms
from the Table 3.7, on all datasets from the Table 2.1 from five 5-fold
cross-validationtest. L e 93
The relative differences in sizes of the DTs induced by the algorithms from the
Table 3.7, compared to the DTs induced by the EFTI algorithm on the same

The ranking of the algorithms from the Table 3.7 and EFTI based on the
induced DT accuracies, calculated using the procedure explained in the Section

2 e e 95
The ranking of the algorithms from the Table 3.7 and EFTI based on the
induced DT sizes, calculated using the procedure explained in the Section 2.8. . 97
Percentages of the induction time that the EFTI algorithm spent on average in
the sub-functions of the fitness evaluation task, given for each dataset. 100
The parameter set for configuring the EFTIP co-processor compatible with the
venedataset. L. L e e e e e e e 113
The customization parameters that can be configured at the design phase of the
EFTIP CO-PTOCESSOT « v v v v v v v e 127
Required hardware resources for the EFTIP architecture implementation 127
The values of customization parameters of the EFTIP co-processor instance
used in the DT induction speedup experiments 131
FPGA resources required to implement the EFTIP co-processor for the DT
induction with selected UCI datasets 131
The DT induction times for various EFTI implementations and average
speedups of HW/SW implementation over pure software implementations . . . 133
The accuracies of the ensembles with various numbers of elements 138
The accuracies of the ensembles with various numbers of elements 141
Values of the customization parameters of the EEFTIP co-processor instances,
one for each of the ensemble sizes used in the experiments. 148
FPGA resources required to implement the EEFTIP co-processor with 25
EFTIP units and the configuration given in the Table 4.5. 150
The speedups of the HW/SW implementation over the SW-ARM and SW-PC
implementations for each dataset and ensemble size. 151

Hardware Acceleration of Nonincremental Algorithms for the Induction of Decision Trees and Decision Tree Ensembles 9

List of Algorithms

3.1
3.2

33

34

3.5

3.6

3.7

3.8

4.1
4.2

4.3

4.4

4.5

5.1
6.1

6.2
6.3

Overview of the EFTI algorithm 31
The pseudo-code of the fitness evaluation task, given by fitness_eval ()
function. L e 40
The pseudo-code of the accuracy calculation task, given by
accuracy_calc () function. 41
The pseudo-code of the procedure for determining the end-leaf for an instance,
implemented by find_dt_leaf_ for_inst () function. 41
The pseudo-code of the select () function of the EFTI algorithm, that
implements the basic individual selection procedure 49
The pseudo-code of the efti () function of the EFTI algorithm when using
Metropolis with multiple restarts, 57
The pseudo-code of the select () function of the EFTI algorithm when
using Metropolis with multiple restarts 57
The modified find_dt_leaf_ for_inst () function that implements the
partial reclassification method L L Lo 59
The pseudo-code of the EFTI algorithm using the EFTIP co-processor 128
The pseudo-code of the hw_load_train_set () function that performs
the transfer of the training set to the EFTIP co-processor 129

The pseudo-code of the hw_1load_dt () function that performs the transfer
of the DT individual coefficients and structural data to the EFTIP co-processor . 129
The pseudo-code of the accuracy_calc () function adapted to use the

EFTIP CO-PTOCESSOT . . . v v v v v e it et e e e e e e e e e e e e e e e e 130
The pseudo-code of the hw_populate_classes () function adapted to

use the EFTIP CO-PrOCESSOT . . v v v v v v v e e e e e e e e e e e e e e e 130
The main function of the EEFTI algorithm 138
The pseudo-code of the Scheduler task used in the HW/SW co-design

mmplementation L. L Lo e e e e e e e e 146
The pseudo-code of the EEFTI algorithm using the EEFTIP co-processor . . . 147
The pseudo-code of the fitness evaluation function used in the HW/SW

co-design implementation Lo 147

Hardware Acceleration of Nonincremental Algorithms for the Induction of Decision Trees and Decision Tree Ensembles 10

1 Abstract

In this dissertation, new algorithms for the full decision tree (DT) induction are presented, and
various possibilities for their implementation are explored. First, the description is given for the
novel EFTI (Evolutionary Full Tree Induction) algorithm, which was designed in such a way
that its implementations can utilize as little hardware resources as possible for the DT induction,
as well as to induce as small decision trees as possible, without sacrificing the classification
accuracy. This enables the EFTI algorithm to be utilized in embedded applications, where
the optimal resource utilization is of paramount importance. The implementation of the EFTI
algorithm for the PC platform is then compared with the PC implementations of the several
other existing DT induction algorithms in terms of size and accuracy of the induced DTs
and the DT inference times. The experiments show that the proposed EFTI algorithm is
able to infer much smaller DTs on average, without the significant loss in accuracy, when
compared to the top-down incremental DT inducers. On the other hand, when compared to
other full tree induction algorithms, it was able to produce more accurate DTs, with similar
sizes, in shorter times. Next, the possibility of the hardware acceleration of the EFTI algorithm
is explored and the results of the algorithm profiling are discussed. Based on the profiling
results, the hardware co-processor EFTIP (Evolutionary Full Tree Induction co-Processor) is
proposed and its architecture is described. Then, the hardware-software (HW/SW) co-design
implementation of the EFTI algorithm is given, relying on the EFTIP co-processor to perform
the most computationally intensive part of the evolutionary DT induction, namely the DT
accuracy evaluation. Finally, the benefits of using the EFTIP co-processor, in terms of the
DT induction speed, are discussed in the experimental section, where several EFTI algorithm
implementations have been compared on the execution times. Next, the algorithm for the
induction of the DT ensembles, named EEFTI (Ensembles Evolutionary Full Tree Induction)
is described. First, the benefits of building an ensemble of DTs is discussed using the results of
experiments comparing the accuracy of the DT ensembles with the accuracy of the single DTs.
Again, the hardware-software (HW/SW) co-design implementation of the EEFTT algorithm is
described and the results of the experiments comparing the execution speeds of the different
EEFTI algorithm implementations are given.

10

Hardware Acceleration of Nonincremental Algorithms for the Induction of Decision Trees and Decision Tree Ensembles 11

2 Introduction

The research on decision trees is a part of a brother field called machine learning, which in turn
is a branch of the artificial intelligence. The machine learning techniques are useful for solving
problems when:

* There exists a lot of input data on the problem, but no algorithm (or no efficient one) to
produce the output based on the input data is known.

* Either the problem changes with time, or some of its characteristics are not known at the
design time, hence an adaptable solution is needed, when the new circumstances arise.

Because of the ever increasing penetration of the machine learning systems into the embedded
world, and its even greater potential for in the future, the presented induction algorithms have
been tailored for implementation in the embedded systems, in that they use less resources for
the operation than the existing solutions. One way of reducing the resource consumption is
to induce and thus operate on smaller decision trees. Furthermore, the smaller decision trees
also represent a more succinct solution to the problem, which is always preferred in science
(Occam’s razor [/]). Hence, the main motivation for this dissertation was to develop the
decision tree induction algorithms that:

1. induce smaller DTs than the existing solutions without the loss of accuracy,
2. can be efficiently used in embedded applications, and
3. are easily parallelizable and hence can be efficiently accelerated in hardware

For big datasets, which are common in practice, the presented decision tree induction
algorithms are very time consuming. Hence, the hardware accelerators for EFTI and EEFTI
algorithms are also proposed, namely EFTIP and EEFTIP co-processors, that significantly
reduce their times of execution. Furthermore, the implementations of the proposed induction
algorithms that utilize these hardware accelerators are also described.

2.1 Machine learning

Our ever-improving capabilities in collecting the data from the world and constant increase in
processing power available to us, have significantly changed our approaches to problem solving
in recent decades. Science has also taken advantage of the computers’ ability to store massive
amounts of data. Ever since it became possible to sequence proteins and the DNA molecule
some time after that, immense datasets started emerging from the scientific research in the field
of biology, which was followed shortly by other sciences as well. Ever-increasing number and
power of telescopes used in astronomy produce larger and larger pools of raw data, with Hubble
for an example generating about 140 Gb of raw data each week. Equally, medical science large
datasets arise from storing the outcomes of medical tests. The Human Connectome Project
aims at mapping the human connectome of a large number of adults and has generated around
2 terabytes of data at the time of writing, and CERN data center processes about 1 petabyte of
data each day.

The size and complexity of these datasets mean that humans are unable to extract useful
information therefrom, without the help of sophisticated and efficient algorithms. However,

11

Hardware Acceleration of Nonincremental Algorithms for the Induction of Decision Trees and Decision Tree Ensembles 12

there is a scientific field, called the machine learning, that studies the systems that can make
use of the abundance of the available data and computational power to solve problems. The
machine learning /2//3] is a branch of artificial intelligence that studies algorithms and systems
that improve their performance with experience, i.e. that can “learn” from the data. In other
words, machine learning is about making computers modify or adapt their actions (whether
these actions are making predictions, or controlling a robot) so that these actions get more
accurate, where accuracy is measured by how well the chosen actions reflect the desired ones.
Of particular interest are, of course, the problems that haven’t been satisfactorily solved using
other methods.

For an example, one of the challenges to whose solution the machine learning contributed
greatly is the problem of self-driving vehicles. There are many aspects of automated driving
which are best solved by some type of machine learning system. First of all, the vehicle must
be made aware of its surroundings in three dimensions, usually by having multiple cameras that
continuously provide the vehicle with images of the space around it. The final goal of this task
is to recognize the objects of interest for driving: road lines to follow, pedestrians and other
obstacles to avoid, road signs to acknowledge, etc. The object recognition is usually performed
in two steps [4][5]:

* clustering of the image pixels that probably belong to the same object into so called
regions of interest (ROI) (also called image segmentation), and

* classification of ROIs into classes of known objects

Second of all, based on the surroundings and the driving directions given by the vehicle user,
the vehicle needs to devise and maintain a driving strategy, i.e. to determine control signals
to vehicle actuators (the steering wheel, gas and break pedals, etc.) in order to, among others,
maximize the driving speed within the current speed limit, minimize the risk of collision, etc.
These three tasks: the pixel clustering, the ROI classification and driving strategy development
are usually solved using machine learning systems that are all induced (built) using different
learning strategies, which will be discussed below.

The Figure 2.1 shows an overview of how machine learning is used to address a given task as
described in [2]. A task has a goal of solving a certain problem of interest regarding the objects
of the problem domain, which are in turn defined in terms of its attributes (also called features).
The choice of attributes defines a ‘language’ in which all the objects in the problem domain
get their relevant aspects described. Once a suitable attribute representation is selected, the
machine learning system will not be concerned with the domain objects themselves, but only
operate on their attribute representations. Domain objects are usually represented in the form
of an attribute vector, also called an instance (since it acts as a problem instance for the machine
learning system), which lists the values of all object attributes. Hence, the goal is to obtain an
appropriate mapping for a task, called a model, from attributes to the desired outputs, which
in turn correspond to the outputs of the problem that is being solved by the machine learning
system. Obtaining such a model from training data is what constitutes a learning problem.

Machine learning systems can be constructed using supervised learning, unsupervised learning
or any combination of the two techniques /2//3]. Supervised learning implies providing the
desired responses to the instances of the training set to construct the system, while unsupervised
learning implies constructing the system based on the instances only. When the supervised
learning is used, the lifetime of a machine learning system usually comprises two distinct
phases:

12

Hardware Acceleration of Nonincremental Algorithms for the Induction of Decision Trees and Decision Tree Ensembles 13

D i m Tnst m © Output :
01'rna1n » Attributes — sances > Model : -
objects w P :

~

(4

Training set N Learning

Algorithm

Learning problem
Figure 2.1: An overview of how machine learning is used to solve problems in a certain
domain, by constructing the model via process of learning on the training set.

* the training phase (induction or learning), during which the learning problem is solved
and the model is developed, and

* the deployment phase, during which the model is used to process new data

For an example, the classification of ROIs for self-driving vehicles is usually performed by the
machine learning systems, induced by the method of supervised learning. During the training
phase, a training set is used to build the system, which comprises input data instances and the
desired system responses to them. Once constructed, the system is ready to be used, where
new, previously unseen data, will arrive and the system must provide the responses using the
knowledge extracted from the training set.

When using unsupervised learning, the correct responses to the input data are not provided,
instead the algorithm tries to identify similarities between the inputs, so that instances that have
something in common solicit similar outputs. The statistical approach to unsupervised learning
is known as density estimation. The clustering of image pixels to obtain ROIs for self-driving
vehicles is an example of machine learning system that uses unsupervised learning. The system
is never trained with the examples on how to map pixel groups to ROISs (since there are too many
possible correct mappings), but has to apprehend it on its own, based on the attributes the pixels
in a group share.

Reinforcement learning is somewhere between supervised and unsupervised learning. The
learning algorithm gets told when the answer is wrong, but without the advice on how to
correct it. It has to explore and try out different possibilities until it discovers how to get
the answer right. Reinforcement learning is sometime called learning with a critic, because of
the monitor that scores the answer, but does not suggest improvements. Developing the right
driving strategies for self-driving vehicles is usually performed by the machine learning system
that was trained using the reinforcement learning procedure. To provide for learning purposes
the right combination of the positions of the steering wheel, acceleration and breaking pedals,
etc. in each time instant, with dynamic circumstances, would be an impossible task to perform.
Hence, in order to develop correct driving strategies, the machine learning system can be let to
drive the vehicle and be given positive or negative feedback during the process based on some
general parameters, for an example: the driving speed or the distance it holds from the objects

13

Hardware Acceleration of Nonincremental Algorithms for the Induction of Decision Trees and Decision Tree Ensembles 14

around.

One of the main features of machine learning systems is the power of generalization, allowing
them to perform well on new, unseen data instances, after having experienced a learning
procedure. It is of special interest to maintain the power of generalization of the system being
trained by the supervised learning method. A machine learning problem may have multiple
solutions, i.e. multiple models can perform equally well on the training set. If care is not
taken, it is possible for the induced machine learning system to perform excellently on the
training set, but fail when used on new data. This phenomenon is called overfitting, in that
the induced model learned too many features of the training set that are not shared by other
problem instances, i.e. the model was made to overly fit the training set. Good performance
on the training data is only a means to an end, not a goal in itself, since it is the performance
on the new data that should be maximized. By maximizing the induced model’s power of the
generalization, it is in the same time made to better deal with noise, which represents small
inaccuracies in the data that are inherent in measuring any real world process. The model must
not take the instance attribute values too literally, but should expect that each of them has some
noise superimposed.

The machine learning systems can perform various tasks, such as classification, regression,
clustering, etc. The classification implies categorizing problem instances in some number
of discrete classes. Sometimes it is more natural to abandon the notion of discrete classes
altogether and instead predict a real number, i.e. perform the task which is called regression.
The task of grouping data without prior information on the groups is called clustering, which
usually uses models induced by the method of unsupervised learning. A typical clustering
algorithm works by assessing the similarity between instances (the things we’re trying to
cluster, e.g., connected pixels) and putting similar instances in the same cluster and ‘dissimilar’
instances in different clusters. There are many other patterns that can be learned from the data
in an unsupervised way. Association rules are a kind of pattern that are popular in marketing
applications, and the result of such learned patterns can often be found on online shopping web
sites.

In the open literature, a range of machine learning systems have been introduced, including
decision trees (DTs) [6][7], support vector machines (SVMs) /8] and artificial neural networks
(ANNs) /9].

2.2 Decision Trees

Widely used machine learning model for classification tasks is a DT classifier. The
classification process by the DT can be depicted in a flowchart-like tree structure given in
the Figure 2.2. Due to their comprehensible nature, which resembles the process of human
reasoning, DTs have been widely used to represent classification models. Among other
machine learning algorithms DTs have several advantages, such as the robustness to noise,
the ability to deal with redundant or missing attributes, the ability to handle both numerical and
categorical data and the facility of understanding the computation process.

In theory, DTs can have an arbitrary branching factor (n-ary DTs), but the binary DTs (with
the branching factor of 2), i.e. the DTs with only two children per node, are used most often
for being easiest to implement and manipulate. Furthermore, a tree with an arbitrary branching
factor can always be represented by a functionally equivalent binary DT [/0/. The Figure 2.2

14

Hardware Acceleration of Nonincremental Algorithms for the Induction of Decision Trees and Decision Tree Ensembles 15

T1 (X)

4-C4 5-Cy 7-Cs

8-04 9'05

Figure 2.2: The classification process by the binary DT.

shows the process of classification by a binary DT. The DT in the figure consists of 4 nodes
represented by circles numbered 1, 2, 3 and 6. The DT also has 5 leaves represented by squares
numbered 4, 5, 7, 8 and 9, where each of the leaves has a class assigned to it (C through Cj
in this example). The classification is performed by letting instances traverse the tree, starting
from the root (enumerated as 1), until they reache one of the leaves. The instance is then
classified into the class assigned to the leaf in which it finished the traversal.

Each of the DT nodes is assigned a test: 77, 75, T3 and 7§ in this example. In each node the
instance visits during its traversal through the DT, the node test is used to determine through
which of the node’s children will the traversal continue, based on the instance’s attribute values.
In case of a binary DT, the node test decision is likewise binary. If the test evaluates to True
(T), the DT traversal is continued via the left child, otherwise if it evaluates to False (F), itis
continued via the right child. The final path of the instance through the DT depends on the test
results in all the nodes the instance encounters during the traversal.

Each machine learning problem needs to have a domain defined, which is in turn given as the
set of all domain objects. First, the set of attributes is chosen to uniquely represent the domain
objects in form of the attribute vector - x. Also, the domain of each attribute needs to be
defined, where there are usually two choices:

¢ the domain can be a finite set of unordered values, in which case the attribute is called
categorical, or

¢ the domain can be a subset of the set of the real numbers, in which case the attribute is
called numerical.

The set of all possible attribute vectors forms the /V4 - dimensional attribute space, where N4 is
the number of attributes that are used to describe the domain object, i.e. the size of the attribute
vector x. In the context of the attribute space, each binary DT node test splits the space into
two regions, one containing all the instances for which the test produced the result True and
the other containing the rest of the instances, for which the test evaluated to False. Each
DT node can be thus assigned a sub-region of the attribute space, that in turn contains all the
instances that pass through that node during their traversal of the DT. Hence, each node splits
the region assigned to it by into two sub-regions and assigns each of them to one of its children.
This process of attribute space partitioning starts from the DT root, which is assigned whole
attribute space (every instance needs to visit the root node), and continues downwards to the DT

15

Hardware Acceleration of Nonincremental Algorithms for the Induction of Decision Trees and Decision Tree Ensembles 16

leaves. The final result of this process is a clear partition of the attribute space into a number
of disjoint regions, each associated with one leaf node. Each of these regions in the partition
can thus be assigned the associated leaf’s class, meaning that all the instances contained in the
region will be classified into that class.

Based on the characteristics of the functions implementing the node tests, the DTs can be
categorized into: orthogonal (also univariate), oblique (also multivariate) and nonlinear. The
names of the categories were derived from the shape of the hypersurface defined by their tests.
Hence, the orthogonal DTs divide the attribute space using the hyperplanes orthogonal to some
attribute axis, the oblique DTs using oblique hyperplanes, and nonlinear DTs using nonlinear
hyperplanes.

This thesis focuses on the oblique binary classification DTs. The tests performed by an oblique
DT in each node are afine and have the following form:

Na
W‘X:Zwi-xi<0, (D)

i=1

where w represents the coefficient vector and 6 (called the threshold) models the afine part of
the test.

Next, an example describing the classification process by oblique DTs will be given. The
Figure 2.3 shows a dataset named, yinyang that will be used for this example, plotted in its
attribute space. The dataset instances are conveniently described using only two attributes x;
and x», so that they can be represented in 2-D attribute space. The dataset comprises instances
belonging to one of the two classes: C'; and C5. Each instance is represented in the figure by
either a red star (if it belongs to the class ') or a blue square (if it belongs to the class C5),
with its position defined by the values of its attributes.

An example of the oblique binary DT that can be used to accurately classify the instances of the
yinyang dataset, is shown in the Figure 2.4. Since this is an oblique DT, each of its node tests
follows a form defined by the equation (1). Each DT leaf has one of two classes of the yinyang
dataset assigned to it. The classification is performed by letting each instance of the yinyang
dataset traverse the DT, starting from the root node, in order to be assigned a class. During
the traversal, tests are evaluated at each of the DT nodes along the instance path. Based on the
results of the node test conditions (True or False), the DT traversal is continued accordingly
until a leaf is reached, when the instance is classified into the class assigned to that leaf. One
possible traversal path is shown in the Figure 2.4, where the instance got classified into the
class (; after the traversal.

As it was already discussed, a different way of looking at the classification process by the DT is
by examining what happens in the attribute space. The structure of the attribute space regions
is defined by the DT node tests, resulting in one region assigned to each node and each leaf of
the DT as shown in the Figure 2.5. The dashed lines in the figure represent the 1-D hyperplanes
(lines in this case) generated by the node tests that partition the attribute space. The regions
of the final partition are the ones assigned to the DT leaves, and each of them is marked with
the ID of its corresponding leaf and the class assigned to that leaf. The regions assigned to the
non-leaf nodes can be easily obtained from the figure plot and the DT structure from the Figure
2.4, by noticing that the node’s region equals the union of its children regions. Working from
the bottom up recursively, regions for all DT nodes can be obtained by combining the regions
assigned to their descendents.

16

Hardware Acceleration of Nonincremental Algorithms for the Induction of Decision Trees and Decision Tree Ensembles 17

1.0
O
¥
O
Y
* Oo
0.8} i
* % E O DD
% * % Opg O O (e
* Tt o =
;* ** ®* % * -4 Eh O o
v g " EEE R Hae0 D oo
¥ w o Y W
* % Ok « % *0O o
0.4} Hk % w %E% sl O %D oU 1
LA 34 . g 95 oo
* O
w * o x By o
ool * * oo |
' *ﬁéﬁ** * g P o
He
00 | | | |
0.0 0.2 0.4 0.6 0.8 1.0
T

Figure 2.3: The yinyang dataset used for the demonstration of the classification process
by oblique DTs. Instances of the dataset are described using two attributes x1 and x»,
and can belong to one of the two classes C, represented by the red star symbols, and
Cs, represented by the blue square symbols.

4-Cy

8-C 9-C 10-Cy 11-Cy

Figure 2.4: Oblique binary DT that could be used to classify the instances of the yinyang
dataset ploted in the Figure 2.3. The red curvy line shows the traversal path for one
possible instance. This example traversal path can be visually presented via series of
dataset attribute space regions, as ploted in the Figure 2.6.

17

Hardware Acceleration of Nonincremental Algorithms for the Induction of Decision Trees and Decision Tree Ensembles 18

1
1
! O
* 1
* W1 x:—@lzm%
(W -
4 . X ' D]E)]- Csy
«4-C e'opo O @
* ¥ /E\ m A
e W ;’D S O e
7’:{1&(b * e @[:] TS DD 0wy Q—,@gzo
Ty AL OB o wihxs 0, =0 1]
s, 2R R B e
%* 2 1 }fp 1{(S, 0
N 1 v
%* N O W a1 0
* (] e >0
ﬁ’ W5'&Q\\ QO: ﬂf¢m %D O O
WQ'X—%%tOg *g}(\ 1 . O
, * % ~ ., O O
e * * \GI/’ @ E
= w
w, B w# 7 7-Ch
) 8-C1 * * :IZI oo™
* O
%*
ﬁgﬁ* : 0 O
*
1
1

Figure 2.5: The attribute space partition of the yinyang dataset from the Figure 2.3
generated by the DT from the Figure 2.4. The dashed lines on the figure represent
the hyperplanes generated by the node’s tests that partition the attribute space into the
regions, each corresponding to a leaf of the DT. Each of the attribute space regions is
marked with the ID of its corresponding leaf and the class assigned to the leaf.

18

Hardware Acceleration of Nonincremental Algorithms for the Induction of Decision Trees and Decision Tree Ensembles 19

i 0
1 1
] [m] : a
* 1 * 1
% wl-xkal‘:]q) % Wi xkﬂlzmcb
) O],]- ! [u]];|_
¥ :E [m] m] 02 * :DD [m] [m] 02
= # * - * *
¢4¢CI * '‘0p o Op % ‘74}(01 * %:0pg 0 Op %
x * e m 1 x % - m 1
% Yo s O P % ik <o, O [m] P
4 \:}ﬁ * o« ,*@j AN o0, 0 wy-x—0;=0 % * K % ,*@j s, O 0 wy-x—0;=0
N P « N .
* % s O0%Y% xwis 0‘5:03 .1 = *® gl OO o wps 9‘5203 -1
2,0 :"1“ wb L Fo o * o :"1“ ENa =
* ~_ - * ~_ -
/ﬁ:~ é | e L bl /.ﬁ:\ g | 1 paal
w %g s b Rl 0 ® Ng b Rl
SUE s KBS 0g R0 0 e)0 o SUE by KBS 0g R0 0 e)0 o
fr % "] - [m] MO@ & 1 . a
W2 X 0 % N ﬁﬁﬁ\ [P Og 0o Wal X — 03 I fran XSS [Og Oo
b * Teg b *oy =L
s ox V0 T s ox V0 T
))
8-C, :.D oo 8-C; :,D oo
xf w7k U o 2 w7 ¥ 0o g
1 O i O
)
*, 4
1 1
L L

(a) Region of the attribute space assigned to the (b) Region of the attribute space assigned to the

node 2 of the DT from the Figure 2.4. node 5 of the DT from the Figure 2.4.
‘
! m]
* [
% W1'XL91:DEbD c
Vo -
4-C, * . D]Ev]- 2
x ¥l . ¥ »IE'?D o Op gy
A g . o m .1
LA TP @fﬁ B0, 0wy Xo6=p
. 5 5 :iiﬁg_%f}jﬁaﬁ_m g0
* a7 ' RS
“ﬁ,ﬁ:\ k: 2 L 1?3@
L0 Aws RS G0 T HLy T Y o
Wy x—,ﬁftoi N ﬁ‘g\;\ vl oo
L N . \E‘:”D 8 7 i
ﬁ‘;‘z P N d% m]
8-Cy : = oo
ﬁ‘@ﬁﬁ 5 o

(c) Region of the attribute space assigned to the
node 8 of the DT from the Figure 2.4.

Figure 2.6: The figure shows the attribute space regions assigned to the nodes and leafs
an example instance visits during its traversal along the line shown in the Figure 2.4.

19

Hardware Acceleration of Nonincremental Algorithms for the Induction of Decision Trees and Decision Tree Ensembles 20

In order to find out in which region the instance resides, and thus to which class it belongs,
we need to let the instance traverse the DT. The Figure 2.6 shows this process for the example
traversal path shown in the Figure 2.4. At the begining of the classification, when the instance
starts at the root, all the regions are valid candidates. After the root node test is evaluated, the
location of the instance can be narrowed down to the regions either to the left or to the right of
the hyperplane w; - x — 6 = 0, generated by the root node test. For this example instance, the
root node test evaluated to True, the instance continues to the node 2, and the location of the
instance is narrowed down to the region assigned to the node 2 and shown in the Figure 2.6a.
Then, the test of the node 2 is evaluated for the instance, and it turns out to be False, hence
the instance continues to the node 5 and the number of possible regions is reduced again to the
ones marked in the Figure 2.6b, i.e. to the part of the attribute space assigned to the node 5.
Finally, the node 5 test is evaluated to True, the instance hits the leaf node 8 and it is finally
located in the region marked in the Figure 2.6¢ and assigned the C class.

2.3 Decision tree induction

In the field of machine learning, as is with most other scientific disciplines, simpler models
are preferred over the more complex ones as stated in the principle of Occam’s razor [/].
The same principle, but in terms of the information theory, was proposed in ///] under the
name Minimum Description Length (MDL). In essence, it says that the shortest description
of something, i.e. the most compressed one, is the best description. The preference for
simplicity in the scientific method is based on the falsifiability criterion. For each accepted
model of a phenomenon, there is an extremely large number of possible alternatives with an
increasing level of complexity, because aspects in which the model fails to correctly describe
the phenomenon can always be masked with ad hoc hypotheses to prevent the model from
being falsified. Therefore, simpler theories are preferable to more complex ones because they
are more testable. Hence, there is an obvious benefit for having the algorithm that induces
smaller DTs, since smaller DT corresponds to a simpler description of a phenomenon being
modeled by it.

Second, with growth and advancements in the field of electronics, wireless communications,
networking, cognitive and affective computing and robotics, embedded devices have penetrated
deeper into our daily lives. In order for them to seamlessly integrate with our dynamic daily
routine, for execution of any non-trivial task, they need to employ some sort of machine
learning procedure. Hence, the EFTI algorithm, proposed in this thesis, was designed with
its implementation for the embedded systems in mind. In other words, the EFTI algorithm was
designed to require as little hardware resources for implementation as possible in order for it
to be easily integrated into an embedded system. Furthermore, it is shown in this thesis that it
induces smaller DTs, without the loss of accuracy, then the other existing induction algorithms,
which then require less resources to be operated on and are thus more suitable for the embedded
applications.

The DT induction phase can be very computationally demanding and can last for hours or even
days for practical problems, especially when run on the less powerful, embedded processors.
By accelerating the EFTI algorithm in hardware, the machine learning systems could be trained
faster, allowing for shorter design cycles, or could process larger amounts of data, which is
of particular interest if the DTs are used in the data mining applications //2/. This might
also allow the DT learning systems to be rebuilt in real-time, for the applications that require

20

Hardware Acceleration of Nonincremental Algorithms for the Induction of Decision Trees and Decision Tree Ensembles 21

such rapid adaptation, such as: machine vision [/3][14][15][16], bioinformatics [17][18],
web mining [/9]/20], text mining [2/][22], etc. Hence, the EFTI algorithm was designed
to be parallel in nature and thus be easily accelerated by an application specific co-processor.
Furthermore, some of the world leading semiconductor chip makers offer the solutions which
consist of a CPU integrated with an FPGA, like Xilinx with its Zynq series and Intel with its new
generation Xeon chips. The hardware accelerated implementation of the EFTT algorithm can be
readily implemented on these devices, with the hardware for the EFTI algorithm acceleration
built for the integrated FPGA.

2.3.1 General approaches to DT induction

Finding the smallest DT consistent with the training set is an NP-hard problem /23], hence,
in general it is solved using some kind of heuristic. The DT is said to be consistent with the
training set if and only if it classifies all the training set instances in the same way as defined in
the training set. There are two general approaches to DT induction using supervised learning:
incremental (node-by-node, also known as Top-Down Induction of Decision Trees, or TDIDT)
and nonincremental (or full tree) induction.

The incremental approach uses greedy top-down recursive partitioning strategy of the training
set for the tree growth. The algorithm starts with an empty DT and continues by forming
the root node test and adding it to the DT. In the attribute space, the root node test splits the
training set in two partitions, one that will be used to form the root’s left child subtree, and
the other the right child subtree. In other words, the root node is assigned the whole training
set, which is partitioned in two by the root node test and each partition is assigned to one of
the root’s two children. The node test coefficients are optimized in the process of maximizing
some cost function measuring the quality of the split. Iteratively, the nodes are added to the DT,
whose tests further divide the training set partitions assigned to them. If the node is assigned
a partition of the training set where all instances belong to the same class (the partition is
clean), no further division is needed and the node becomes a leaf with that class assigned to
it. Otherwise, the process of partitioning is continued until only clean partitions remain. In
this stage, the induced DT is considered overfitted, i.e it performs flawlessly on the training
set, but badly on the instances outside the training set. The common approach for increasing
the performance of the overfitted DT on new instances is prunning, which strips some subtrees
from the DT according to some algorithm.

The incremental approach is considered greedy in the sense that the node test coefficients
(coefficient vector w and threshold value) are optimized by examining only the part of
the training set assigned to the current node, i.e. based on the “local” information. The
information on how the training set partitions are handled in other subtrees of the DT (subtrees
not containing the node currently being inserted into the DT) are not used to help optimize the
test coefficients. Furthermore, by the time the node has been added to the DT and the algorithm
continued creating other nodes, the situation has changed and the new information is available,
but it will not be used to further optimize the test of the node already added to the DT. This
means that only some local optimum of the induced DT can be achieved.

Incremental algorithms use a simpler heuristic and are computationally less demanding than
the full DT inducers. However, the algorithms that optimize the DT as a whole, using complete
information during the optimization process, generally lead to more compact and possibly more
accurate DTs when compared with incremental approaches. Furthermore, the DTs can be

21

Hardware Acceleration of Nonincremental Algorithms for the Induction of Decision Trees and Decision Tree Ensembles 22

induced both using only axis-parallel node tests or using oblique node tests. The advantage
of using only axis-parallel tests is in reduced complexity, as the task of finding the optimal
axis-parallel split of the training set is polynomial in terms of N4 and N;. More precisely,
the optimization process needs to explore only N4 - N; distinct possible axis-parallel splits
[23]. On the other hand, in order to find the optimal oblique split, total of 24 . (]]\Z) possible
hyperplanes need to be considered /23], making it an NP-hard problem. On the other hand,
the DTs induced with oblique tests often have much smaller number of nodes than the ones
with axis-parallel tests. Hence, in order to fulfill its goal of inducing smaller DTs than existing
solutions, the EFTI algorithm needs to implement oblique DT induction.

Various algorithms for incremental DT induction have been proposed in the open literature.
The ID3 algorithm proposed in [24] was designed to operate mainly on categorical attributes.
In the DT created by the ID3 algorithm, each node test operates on a single attribute only. The
number of outcomes the test can produce equals the number of different values the attribute
can take, and the attribute space will be split into the same number of regions by the test. In
order to choose which attribute should be used for the test in a node, the information gain (IG),
given by the equation (2), is calculated for all possible attributes. The information gain is a
difference between the information entropy of the attribute space region assigned to the node,
and the combined entropies of the regions produced by the node test split.

IG(A;,S) = H(S) =Y p(t)H(1), 2)

teT

where H(S) is information entropy of the region assigned to the node, T is the partition in
subregions generated by the node test based on the attribute A;, p(t) is the proportion of the
number of elements in subregion ¢ to the number of elements in the region assigned to the
node S and H(t) is the information entropy of the subregion ¢. The attribute whose test
would produce the largest IG is selected to form the node test. As an improvement to ID3,
the C4.5 algorithm was published in /25]. C4.5 introduced the possibility to handle continuous
attributes, to handle instances whose attributes are missing and introduced the prunning step
after the DT has been created.

The Classification and Regression Tree (CART) algorithm was introduced in /26, that unlike
ID3 induces binary DTs. Similar to ID3, only the value of a single attribute is tested in each
node test, hence CART produces axis-parallel binary splits. When searching for the best test
for a node, CART evaluates every possible way in which attribute domain could be split in
two, hence the attribute domains need to be discrete and finite. Various measures could be
used for selecting the best split: Gini index, Twoing, information entropy, etc., which can
all be plugged in to the equation (2) instead of the information entropy H to get a numerical
estimate for the efficiency of the split. An extension to CART that generates oblique tests has
also been proposed in [26] by the name CART with linear combinations or CART-LC. The
OC1 algorithm was proposed in /23], which improves upon the CART-LC algorithm. While
considering the best split for a DT node, OC1 first searches for the best axis-parallel test for
the node. OCI then tries to produce an oblique test that will outperform it, and if that fails,
the algorithm defaults to the axis-parallel test. Furthermore, unlike CART-LC that is fully
deterministic, OC1 incorporates the ideas from simulated annealing algorithm, which address
the issue of escaping local optima and enable OC1 to produce different DTs from a single
training set. Various extensions to OC1 algorithm based on evolutionary algorithms were
introduced in /27], namely: OCI-ES (OC1 extension using evolution strategies), OC1-GA
(OC1 extension using genetic algorithms) and OCI-SA (OC1 extension using simulated

22

Hardware Acceleration of Nonincremental Algorithms for the Induction of Decision Trees and Decision Tree Ensembles 23

annealing). These extensions were specifically employed in the process of searching for the
best oblique split. The authors of so called C4.45 and C4.55 algorithms claim in /28] to have
acheived performance superior to C4.5 algorithm with respect to both accuracy and size, by
using various optimizational techniques to improve upon original C4.5 algorithm.

The Univariate Margin Tree (UMT) algorithm given in /29/, borrows the ideas from linear
SVMs for the way it tries to find the optimal split for a node. Fisher’s decision tree algorithm
for incremental oblique DT induction, proposed in [30/, implements yet a different strategy
for obtaining the split using Fisher’s linear discriminant, and reported obtaining smaller DTs,
with shorter induction time without the loss in accuracy when compared to C4.5. A bottom-up
induction approach was explored in /37, resulting in the Bottom-Up Oblique Decision-Tree
Induction Framework (BUTIF). This algorithm operates by clustering the instances based on
their classes and position in the attribute space, and asssigning those clusters to the leaf nodes
prior to creating the trunk of the DT. Starting from the formed leaves, the BUTIF algorithm
generates the DT by merging the existing subtrees until finally the root is formed. In /32,
authors employed the HereBoy evolutionary algorithm to optimize the positions of the node
test hyperplanes.

The alternative to the incremental DT induction is the full DT induction. In this approach a
complete DT is manipulated during the inference process. Acording to some algorithm, the
tree nodes are added or removed, and their associated tests are modified. Considerable number
of full DT inference algorithms has been also proposed. A genetic algorithm operating on full
DTs as individuals, called GaTree, was introduced in /33 /. Another algorithm based on genetic
algorithms, called GALE and proposed in /34, attempted to extract additional parallelism from
the induction process by employing ideas from the field of cellular automata and the Pittsburgh
approach /35]. In [36], genetic programming was employed to create a nested structure of
IF-THEN-ELSE statements that is homologous to a DT. Finally, the ant colony optimization
technique was used for the algorithms introduced in /37]/38].

2.3.2 Evolutionary oblique full DT induction

Since the process of finding the optimal oblique DT is a hard algorithmic problem, most of
the oblique DT induction algorithms use some kind of heuristic for the optimization process,
which is often some sort of evolutionary algorithm (EA). The Figure 2.7 shows the taxonomy
of EAs for the DT induction as presented in /39].

The evolutionary algorithms for inducing DTs by global optimization (the full DT induction)
are usually some kinds of Genetic Algorithms /33//34][40], which in turn operate on
a population of candidate solutions. The typical populations used by these algorithms
contain tens or even hundreds of individuals. In order to save on needed resources for the
implementation, the EFTI algorithm operates only on a single candidate solution and single
result of its mutation, which classifies it in the class of (1+1)-ES (Evolutionary Strategy).
Hence, the proposed algorithm requires one or even two orders of magnitude less hardware
resources for the implementation then the existing evolutionary algorithms. Furthermore,
stohastic algorithms such as EFTI, that do not use populations of candidate solutions and thus
do not employ recombination, can also be classified in the class of Stochastic Hill Climbing
algorithms /4/]. Furthermore, the EFTI algorithm utilizes the simple technique of adaptive
random search for mutations, which can be implemented efficiently both regarding the time
needed for execution and hardware resources needed (having embedded systems as target in

23

Hardware Acceleration of Nonincremental Algorithms for the Induction of Decision Trees and Decision Tree Ensembles 24

Evolutionary
DT
Full DT Components
Classification Regression Hyperplanes Pruning Other
Axis- . Regression Model
Parallel Oblique DT DT

Figure 2.7: The taxonomy of evolutionary algorithms for DT induction as presented in
[39].

mind). As far as author is aware, EFTI is the first full DT building algorithm that operates on
a single-individual population. Howeyver, it also proved to provide smaller DTs with similar or
better classification accuracy than other well-known DT inference algorithms, both incremental
and full DT [42].

2.4 Hardware aided decision tree induction

In order to accelerate the DT induction phase, two general approaches can be used. The
first approach focuses on developing new algorithmic frameworks or new software tools, and
is the dominant way of meeting this requirement [43//44]. The second approach focuses
on the hardware acceleration of machine learning algorithms, by developing new hardware
architectures optimized for accelerating the selected machine learning systems.

The hardware acceleration of the machine learning algorithms receives a significant attention
in the scientific community. A wide range of solutions have been suggested in the open
literature for various predictive models. The author is aware of the work that has been done
on accelerating SVMs and ANNs, where hardware architectures for the acceleration of both
learning phase and the execution have been proposed. The architectures for the hardware
acceleration of SVM learning algorithms have been proposed in /45]/, while the architectures
for the acceleration of previously created SVMs have been proposed in [46][47][48][49]. The
research in the hardware acceleration of ANNs has been particularly intensive. Numerous
hardware architectures for the acceleration of already learned ANNs have been proposed
[50][51][52]. Also, a large number of hardware architectures capable of implementing ANN
learning algorithms in hardware have been proposed [53//54][55]. However, in the field of
hardware acceleration of the DTs, the majority of the papers focus on the acceleration of already
created DTs [56][57][58]. Hardware acceleration of DT induction phase is scarcely covered.
The author is currently aware of only two papers on the topic of hardware acceleration of the
DT induction algorithms /59//60]. However, both of these results focus on accelerating greedy
top-down DT induction approaches. In /59] the incremental DT induction algorithm, where EA
is used to calculate the optimal coefficient vector one node at a time, is completely accelerated
in hardware. In /60] a HW/SW approach was used to accelerate the computationally most

24

Hardware Acceleration of Nonincremental Algorithms for the Induction of Decision Trees and Decision Tree Ensembles 25

demanding part of the well known CART incremental DT induction algorithm.

In this thesis, a co-processor called EFTIP (Evolutionary Full Tree Induction co-Processor)
that can be used for the acceleration of the EFTI algorithm is proposed. As mentioned earlier,
full DT induction algorithms typically build better DTs (smaller and more accurate) when
compared to the incremental DT induction algorithms. However, full DT induction algorithms
are more computationally demanding, requiring much more time to build a DT. This is one
of the reasons why incremental DT induction algorithms are currently dominating the DT
field. Developing a hardware accelerator for full DT induction algorithm should significantly
decrease the DT inference time, and therefore make it more attractive. As far as the author
is aware, this is the first hardware accelerator in open literature concerned with the hardware
acceleration of full DT induction algorithm. Being that the EAs are iterative by nature and
extensively perform simple computations on the data, the EFTI algorithm should benefit from
the hardware acceleration, as would any other DT induction algorithm based on the EAs.
Proposed EFTIP co-processor is designed to accelerate only the most computationally intensive
part of the EFTI algorithm, leaving the remaining parts of the algorithm in software. It is
shown later in the thesis, that the most critical part of the EFTI algorithm is the training set
classification step from the fitness evaluation phase. EFTIP was designed to accelerate this step
in hardware. Another advantage of this HW/SW co-design approach is that the proposed EFTIP
co-processor can be used with a wide variety of other EA-based DT induction algorithms
[39][36][40][34][33] to accelerate the training set classification step that is always present
during the fitness evaluation phase.

2.5 Induction of decision tree ensembles

The ensemble classifier systems can be used to further improve the classification performance
[61]. The ensemble classifier combines predictions from several individual classifiers in order
to obtain a classifier that outperforms every one of them. The ensemble learning requires
creation of a set of individually trained classifiers, typically DTs or ANNs, whose predictions
are then combined during the process of classification of previously unseen instances. Although
simple, this idea has proved to be effective, producing systems that are more accurate than a
single classifier.

In the process of creation of ensemble classifiers, two problems have to be solved: ensuring
the diversity of ensemble members and devising a procedure for combining individual member
predictions in order to amplify correct decisions and suppress the wrong ones. Some of the
most popular methods for ensuring ensemble’s diversity are Breiman’s bagging /62 /, Shapire’s
boosting /62], AdaBoost [62], Wolpert’s stacked generalization /63], and mixture of experts
[64]. Most commonly used combination rules include: majority voting, weighted majority
voting and behavior knowledge spaces [65].

The main advantages of an ensemble over single classifier systems are the higher accuracy
and greater robustness. However, large amounts of memory are needed to store the ensemble
classifier and high computing power is required to calculate the ensemble’s output, when
compared with the single classifier solutions, leading to much longer ensemble inference and
instance classification times. This is because ensemble classifiers typically combine 30 or
more individual classifiers /62] so, if we want to get the same performance as with the single
classifier system, 30+ times more memory and computing power would be required. Once
more, hardware acceleration of ensemble classifier offers a way of achieving this goal.

25

Hardware Acceleration of Nonincremental Algorithms for the Induction of Decision Trees and Decision Tree Ensembles 26

In this thesis, a DT ensemble evolutionary induction algorithm EEFTI (Ensembles
Evolutionary Full Tree Induction), based on the EFTI algorithm and the Bootstrap Aggregation
(also known as Bagging). The Bagging algorithm was chosen since it makes the induction of
the individual ensemble members completely decoupled from each other, making EEFTI very
well suited for the parallelization and hence hardware acceleration.

2.6 Hardware aided induction of decision tree ensembles

Concerning the hardware acceleration of ensemble classifier systems, according to my best
knowledge, most of the proposed solutions are related to the hardware implementation of
ensemble classifiers that were previously inferred in the software. Most of the proposed
solutions are concerned with the hardware acceleration of homogeneous ensemble classifiers
[66][67][68][69][70]. As far as the author is aware, there is only one proposed solution to
the hardware implementation of heterogeneous ensemble classifiers /7//. Please notice, that
all these solutions are only capable of implementing ensemble classifiers systems that were
previously inferred in software, running on some general purpose processor. Author is aware of
only one paper /59]/, that proposes an architecture for the hardware evolution of homogeneous
ensemble classifier systems based on the DTs. This solution uses the DT inference algorithm
that incrementally creates DTs that are members of the ensemble classifier system.

Regarding the hardware implementation the main concern is the number of required hardware
resources, mainly memory, necessary to implement a DT ensemble classifier. Smaller DTs
are preferred because they require less hardware resources for the implementation and lead to
ensembles with smaller hardware footprint. Therefore, algorithms for DT ensemble classifier
induction that generate small, but still accurate, DTs are of great interest when the hardware
implementation of DT ensemble classifiers is considered. This requirement puts the full DT
induction algorithms and the proposed EFTI algorithm into the focus. As discussed earlier,
the EFTI algorithm provides smaller DTs with similar or better classification accuracy than
the other well-known DT inference algorithms, but is also more computationally demanding
than the incremental inducers. Hence the EEFTI algorithm could merit greatly from the
hardware acceleration to shorten the induction times, making it more attractive. In this
thesis, the EEFTIP co-processor is proposed to accelerate parts of the EEFTI that are most
computationally intensive, with the remaining parts of the algorithm running on the CPU. The
EEFTIP co-processor architecture benefits also from the fact that the EFTI algorithm evolves
the DT using only one individual, in contrast to many other algorithms based on the EA that
require populations [36//40][34][33]. The architecture can thus be simplified with hardware
resources allocated only for a single individual per ensemble member. Furthermore, by using
the HW/SW co-design approach, proposed EEFTIP co-processor can be used to accelerate DT
ensemble inducers based on the Bagging algorithm which rely on a variety of other EA-based
DT induction algorithms [39]//36][40][34][33]. As far as the author is aware, the EEFTIP
co-processor is the first solution concerned with the hardware acceleration of full DT ensemble
induction algorithm based on bagging proposed in the open literature.

2.7 UCI Database Library

For the various experiments presented in the thesis, datasets from the UCI benchmark datasets
database were used /72]. The UCI database is commonly used in the machine learning

26

Hardware Acceleration of Nonincremental Algorithms for the Induction of Decision Trees and Decision Tree Ensembles 27

community to estimate and compare the performance of different machine learning algorithms.
The Table 2.1 lists the UCI datasets (and their characteristics) that were used throughout the
experiments in this thesis.

Table 2.1: List of datasets (and their characteristics) from the UCI database, that are
used in the experiments throughout this thesis

Short Dataset Name No. of No. of No. of
Name attributes instances classes
adult Adult 14 32561 2
ausc Australian Credit Approval 14 690 2
bank Bank Marketing 16 45211 2
bc Balance Scale 4 625 3
bch Bach Choral Harmony 16 5665 60
bcw Breast Cancer Winsconsin 9 699 2
ca Credit Approval 15 690 2
car Car Evaluation 6 1728

cmc Contraceptive Method Choice 9 1473 3
ctg Cardiotocography 21 2126 10
cvf Clave Vectors Firm-Teacher Model 15 10800 7
eb Tamilnadu Electricity Board Hourly Readings 4 45781 31
eye EEG Eye State 14 14980 2
ger German Credit Data 24 1000 2
gls Glass Identification Database 9 214 7
hep Hepatitis 19 155 2
hrtc Heart Disease Clevelend 13 303 5
hrts Heart Statlog 13 270 2
ion Johns Hopkins University Ionosphere 34 351 2
irs Iris Plants 4 150 3
jvow Japanese Vowels 14 4274 9
krkopt Chess (King-Rook vs. King-Pawn) 6 28056 18
letter Letter Recognition 16 20000 26
liv BUPA liver disorders 6 345 2
lym Lymphography 18 148 4
magic MAGIC Gamma Telescope 10 19020 2
msh Mushroom 22 8124 2
nurse Nursery 8 12960 5
page Page Block Classification 10 5000 5
pen Pen-Based Recognition of Handwritten Digits 16 10992 10
pid Pima Indians Diabetes 8 768 2

Continued on next page

27

Hardware Acceleration of Nonincremental Algorithms for the Induction of Decision Trees and Decision Tree Ensembles 28

Table 2.1 — continued from previous page

Short Dataset Name No. of No. of No. of
Name attributes instances classes
psd Parkinson Speech 27 1040 2
sb Seismic Bumps 18 2584 2
seg Image Segmentation 18 2310 7
shuttle Shuttle 9 58000 7
sick Thyroid Disease 2 Class 29 3772 2
son Sonar (Mines vs. Rocks) 60 208 2
spect SPECT Heart 22 267 2
spf Steel Plates Faults 27 1941 7
thy Thyroid Disease 4 Class 29 3772 4
ttt Tic-Tac-Toe Endgame 9 958 2
veh Vehicle Silhouettes 18 846 4
vote Congressional Voting Records 16 435 2
VoW Vowel Recognition 10 990 11
w21 Waveform Database Generator - 21 Attributes 21 5000 3
w40 Waveform Database Generator - 40 Attributes 40 4090 3
wir Wall Following Robot Navigation 24 5000 4
wilt Wilt 5 4839 2
wine Wine 11 4898 7
700 Z.00 17 101 7

2.8 The structure of the experiments used in the thesis

Similar experimental setup is used throughout this thesis whenever a quality of a certain feature
needs to be assessed for an induction algorithm or its specific implementation. Unless stated
otherwise, this procedure comprises the induction of the DTs from all datasets listed in the
Table 2.1, and measuring the inference times and the qualities of the produced DTs, such
as accuracy and size. All the results reported for the experiments in accompanying tables
and figures, are the averages of the five 5-fold cross-validations, usually given with their 95%
confidence intervals.

The cross-validation setup for assessing the induction algorithm or its implementation is
performed for each dataset selected for the experiment in the following way:

* The dataset D, is partitioned into 5 non-overlapping sets: Dy, Ds, ... D5, by randomly
selecting the instances from D using uniform distribution

e For the i'" cross-validation run, where i € (1,5), training set is formed by using all the
instances from D except the ones from D;, train_set = D\ D;, and is used to induce
the DT by the current algorithm being tested

* Inferred DT is finally tested for accuracy by letting it perform the classification on the

28

Hardware Acceleration of Nonincremental Algorithms for the Induction of Decision Trees and Decision Tree Ensembles 29

instances form the set D;.

This whole procedure is repeated 5 times, resulting in 25 inferred DTs for each dataset and
for each inference algorithm. For each of the DTs, the information about various features is
gathered: classification accuracy, DT size, DT depth, inference time, DT fitness, etc., for which
the average values and 95% confidence intervals are calculated.

Often, the aim of an experiment used in this thesis is to discover whether there is a statistical
difference between the performance of different algorithms, or the same algorithms with
different parameters, or the different implementations of the same algorithm. The well known
Student’s t-test is used in statistics to determine if two sets of data are significantly different
from each other. However, in the experiments throughout this thesis, there are usually more
than two sets of data compared, hence the t-test cannot be applied. Instead, for each feature
tested and dataset used, first the one-way analysis of variance (ANOVA) /73] test is applied on
collected data, with the significance level set at 0.05. When ANOVA analysis indicates that at
least one of the results is statistically different from the others, the Tukey multiple comparisons
test /74] 1s used to group the algorithms into groups of statistically identical results. Hence,
for each feature of interest and each dataset, a set of groups is obtained, where the algorithms
within the group have similar performance for that feature and dataset. Finally, these groups are
ranked with respect to their average performance on that feature and dataset, and each tested
algorithm is assigned a number, representing the position of its group within the ranking.

Finally, often the average of all ranking numbers for the algorithm for one feature is taken to
represent the overall performance of that algorithm on all datasets with respect to that feature.
The average rankings are then compared between the algorithms per feature, to determine the
benefits of using one over the other.

29

Hardware Acceleration of Nonincremental Algorithms for the Induction of Decision Trees and Decision Tree Ensembles 30

3 EFTI algorithm

This section describes an evolutionary algorithm for oblique full DT induction using supervised
learning - EFTI. As we have seen in the introduction (Section 2.3), an algorithm that would take
advantage of the full DT induction, but limit its resource consumption to make it attractive for
the world of embedded systems is lacking in the open literature. The main motivation for
creating EFTI, was thus to develop an algorithm that:

* is suitable for the implementation on embedded systems, i.e. has low hardware resource
requirements,

* is easy parallelizable and accelerated in hardware, and

* uses nonincremental DT induction to induce smaller DTs than the existing solutions,
without the loss in DT accuracy.

Since inferring an optimal DT in terms of both size and accuracy is an NP-hard problem,
the EFTI algorithm needed to be based on some kind of heuristic. In order to minimize the
hardware resource consumption of the algorithm implementation, it was chosen to be operated
only on a single candidate solution, effectively excluding all the algorithms that operate on
populations, such as particle swarm optimization, memetic algorithms, genetic algorithms,
and some types of evolutionary algorithms. For all these reasons, it was chosen to base the
EFTI algorithm on the (1+1) Evolutionary Strategy, since on one hand it operates on a single
individual, while on the other it was supposed to be capable of managing the highly complex
problem of searching for the small, yet accurate enough DTs, by using the nature inspired
evolutionary process. The following topics will be covered in this section:

» Section 3.1 - Overview of the algorithm

Section 3.2 - Detailed description of the algorithm

Section 3.3 - The improvements to the basic algorithm version

Section 3.4 - Analysis of the algorithm’s computational complexity

Section 3.5 - Experimental section that shows the performance of the EFTI algorithm in
comparison to the performances of the existing DT induction algorithms

3.1 The algorithm overview

The Algorithm 3.1 shows the algorithmic framework for the EFTI algorithm, which is similar
for all evolutionary algorithms and comprises mutation, fitness evaluation and selection tasks,
but lacks the crossover step, since the algorithm does not employ a population of individuals.
The DT is induced from the training set - the argument t rain_set received by the efti ()
function as shown in pseudo-code. Since the EFTI algorithm performs supervised learning,
the training set should consist of the problem instances, together with their known class
memberships. The EFTI algorithm maintains a single candidate solution, stored in the
variable dt in the pseudo-code. The evolution is started from a randomly generated (by the
initialize () function) one-node DT, consisting only of the root node, and the effort
is iteratively made to improve on it. In each iteration, the DT is slightly changed by the

30

Hardware Acceleration of Nonincremental Algorithms for the Induction of Decision Trees and Decision Tree Ensembles 31

mutate () function, to obtain the mutated individual which is then stored in the dt_mut
variable. Two types of mutations are employed on the DT individual:

» Every iteration, a node test coefficient in a certain number of randomly selected nodes is
changed, and

* Every few iterations, a node is either added or removed from the DT
Algorithm 3.1: Overview of the EFTI algorithm

def efti(train_set, max_iter):
dt = initialize(train_set)
fitness_eval (dt, train_set)

for iter in range (max_iter) :
dt_mut = mutate (dt)
fitness_eval (dt_mut, train_set)

dt = select (dt, dt_mut)

return dt

The fitness of the mutated individual, calculated by the fitness_eval () function
(Algorithm 3.2), is then compared with the fitness of the candidate solution within the
select () function (Algorithm ?? iterations, the EFTT algorithm tries to improve upon the DT
candidate solution, after which the algorithm exits and the fittest DT individual found during
this process is returned. Once the DT is formed in this way, it can be used to classify problem
instances outside of the training set.

In the Figures 3.1 through 3.8, one example evolutionary process performed by the EFTI
algorithm on the vene dataset is shown. The vene dataset contains instances of three different
classes: (', marked by the red stars, C5, marked by the green squares, and C'3, marked by the
blue triangles. Eight specific moments in the DT evolution where significant breakthroughs in
the fitness of the DT were made, are presented in these figures by both plotting the tree structure
and displaying the partition of the attribute space that the DT individuals at these moments
induced. The nodes are drawn in the figures using circles and the leaves using squares, and
each node and each leaf is assigned a unique ID. Each leaf node and its corresponding attribute
space region are labeled in the format i-Cj, where i equals the ID of the leaf, and j equals the
class number assigned to that leaf, hence also to the region. For each of these figures, the
following information is given:

e Jteration - the iteration number in which the DT individual was evolved
¢ Fitness - the fitness of the DT individual
¢ Size - the size of the DT individual: calculated as the number of leaves in the DT

* Accuracy - the accuracy of the DT individual on the training set: calculated as the
percentage of the instances from the training set that the DT individual classifies correctly

At the beginning of the EFTI algorithm, the initial individual is generated (Figure 3.1) to
contain only one node, since EFTI has a goal of creating DTs as small as possible. By the
iteration #13 (Figure 3.2), no new nodes were added, but the root node test was modified to

31

Hardware Acceleration of Nonincremental Algorithms for the Induction of Decision Trees and Decision Tree Ensembles 32

LN
2.0, || 3¢y)
:"‘:»'/'"',."————‘ A
S 20),
|- =5
(a) Initial one-node DT generated by the &) Initial atiibute space partiion

initialize () function

Figure 3.1: An example evolutionary process by the EFTI algorithm. Iteration: 000000,
Fitness: 0.6024, Size: 2, Accuracy: 0.6005

/N
2—01 3—03 2-01 ,”’
2% ’,’lﬂ‘!
2 o
Phe £l A
2‘"’ \
a’/ X A
- SN /
- oYy X
/ &%3 Cs
.- L ; Y

(a) No added nodes that were tried managed to (b) Position of the split shifted to increase the
increase fitness accuracy

Figure 3.2: An example evolutionary process by the EFTI algorithm. Iteration: 000013,
Fitness: 0.6287, Size: 2, Accuracy: 0.6274

32

Hardware Acceleration of Nonincremental Algorithms for the Induction of Decision Trees and Decision Tree Ensembles 33

PN Loose

\ ’—"
g 1 ’4
1 ‘/
@ @ 4-01 :

A ﬂ”’k
3 \ I LR
s v .. T e
LN LN #.9-Cy
4-01 5-02 6-01 @ . ’(‘r’ \:‘M\\ iy
S INCOL ! ~s\\
-7 VN A : ~‘~~
8-03 9-02 F ! N - / Seo
6'01 / A }B/TC?’)
! ?

(a) Three new nodes added to increase the (b) Three new splits added for finer attribute space
accuracy partition

Figure 3.3: An example evolutionary process by the EFTI algorithm. Iteration: 003599,
Fitness: 0.9138, Size: 5, Accuracy: 0.9202

4-C, \ 5 G-
VAN /N \ o gl
) ; f i
401 || 5-Ce || 6-C5 || T-Co , Ay 7-Cy
—"'f.’:Ll ~\\;*~
P o [N

(a) Since the region of leaf #6 contained almostno (b) The region of the leaf #6 (Figure 3.3b)
individuals in the Figure 3.3b, it was removed and

was removed, since it was almost empty and
the node #7 was basically moved up to replace

contributed little to accuracy. The resulting DT

node #3 (Figure 3.3a), and thus removing the said is smaller, even with a slight increase in accuracy

empty region. (since the split induced by node 1 has also shifted
slightly to a better position).

Figure 3.4: An example evolutionary process by the EFTI algorithm. Iteration: 007859,
Fitness: 0.9265 Size: 4, Accuracy: 0.9297

33

Hardware Acceleration of Nonincremental Algorithms for the Induction of Decision Trees and Decision Tree Ensembles 34

VRN 9-C,
O, (3) S L T
VAN VAR s 3 Wn o
4-C, @ 6-Cy || 7-Co | LT R o
o
8—03 9-Cy /’,—"’ A AA_& \“~\~\
b 6—03«-‘:
(a) The leaf #5 was made into a node

(b) Small increase in accuracy was obtained by
further dividing the central region of the attribute

space, where the individuals of all three classes
overlap

Figure 3.5: An example evolutionary process by the EFTI algorithm. Iteration: 030268,
Fitness: 0.9272, Size: 5, Accuracy: 0.9331

A 7 ' ‘,"“"
Y L o
4N o B A e D
8-01 9-02 10-03 11-02 /_,—” o ’aA.& \\~\
L-” £0-C

(a) The leaf #4 was now made into a node

(b) Again, further division of central attribute

space region produced a small increase in
accuracy.

Fitness has progressed even less,
since the addition of a new node diminished the
advantage of a small accuracy increase.

Figure 3.6: An example evolutionary process by the EFTI algorithm. Iteration: 177050,
Fitness: 0.9273, Size: 6, Accuracy: 0.9374

34

Hardware Acceleration of Nonincremental Algorithms for the Induction of Decision Trees and Decision Tree Ensembles 35

SN VARRN
@ @ 6-Cy || 7-Cs
/N /N
0-Cy |[10-C4] [11-C
/A
1204 | [13-¢,

(a) The leaf #8 was split into two

12-¢, 11-C
\\~\~ %‘“ ‘| —‘—”’
e T 10 G
13-C, —C’ s 1-Cy
‘:" ‘1\~
,»"'/ A ‘M-‘* , IR
L- A 6-03/.‘: A

(b) The region of leaf #8 was split, bringing no
improvement to the class separation, but with
some other shifts in the split positions, some small
accuracy gain was achieved

Figure 3.7: An example evolutionary process by the EFTI algorithm. Iteration: 279512,
Fitness: 0.9274, Size: 7, Accuracy: 0.9395

J o\ /N
@ 5Co || 605 || 7-C,
/A
s, |] 9-cy

(a) Leaf #9 was removed together with the node

#4, which brought the node #8 up in the place of

the node #4. Leaves #10 and #11 were removed,
and the node #5 was reverted to leaf again.

6-C

(b) EFTI gave up on finely partitioning the central
attribute space region, since very little gain in
accuracy could not justify the increase in the DT
size, and it managed to produce the smaller DT
without sacrificing the accuracy. The split by
the node #8 between the regions #12 and #13
in the Figure 3.7, became the split between the
regions #8 and #9 after the node #8 moved up to
replace the node #4. This, once useless split, has
now shifted to turn out very useful in separating
instances of the classes C1 and C5 and hence
contributing to the accuracy.

Figure 3.8: An example evolutionary process by the EFTI algorithm. Iteration: 415517,
Fitness: 0.9342, Size: 5, Accuracy: 0.9396

35

Hardware Acceleration of Nonincremental Algorithms for the Induction of Decision Trees and Decision Tree Ensembles 36

produce the increase in the DT accuracy from 0.6005 to 0.6274. During the further evolution,
some nodes were added which raised the accuracy of the DT. Notice how fitness started to
deviate from the accuracy when the DT grew bigger. This is because the fitness also depends
on the size of the DT to which it applies, in that it is more significantly penalized, the more
leaves the DT has. In this example, the biggest drop in the fitness caused by the DT size is in
the iteration #279512 of the DT evolution (Figure 3.7), where the DT individual comprised 7
leaves and even though the accuracy climbed to 0.9395 (classification success rate of 94%), the
fitness remained at 0.9274. In this way, the evolutionary process was forced to search for the
smaller DT solutions, in which it eventually succeeded by the iteration #415517 (Figure 3.8),
where the DT size dropped to only 5 leaves with no loss in accuracy.

3.2 Detailed description

In this section, the detailed descriptions of the individual EFTI sub-tasks are given. Although
EFTI is based on the (1+1)-ES, it comprises many additional features which are specific to the
DT induction, that need to be discussed here, like tree structure mutation procedure, fitness
calculation specifics, etc.

3.2.1 Mutation

For the sake of describing an oblique DT, two different sets of information need to be provided:
the coefficient numerical data that describe the oblique tests in the nodes, and the topological
data that describes the connections between the nodes. Accordingly, inducing an oblique DT
implies inducing the node test coefficients as well as the topological structure. Hence, as it was
already discussed in the algorithm overview, the EFTI algorithm needs to perform two types of
mutations on the DT individual:

¢ The node test coefficients mutation
* The DT topology mutation

During each iteration of the EFTT algorithm, a small number («) of DT nodes’ test coefficients
is selected at random and then mutated by adding (or subtracting) to it a small random number.
Every change in the node test influences the classification, as the instances take different paths
through the DT and get classified in a different way. Finding the optimal oblique split is in
itself an NP hard problem (as already discussed in the Section 2.3.1), hence deciding which
coefficients should be mutated in order to enhance the DT accuracy is also a hard algorithmic
problem. For this reason, the coefficients to be mutated are selected randomly according to the
uniform distribution from the set of all coefficients from all DT nodes. Usually, only one to
several coefficients (dictated by the parameter o) are mutated in each iteration in order for the
classification result to change in small steps. The larger the number of coefficients mutated in
each iteration, the more the algorithm starts behaving as a random search.

Once the decision is made which coefficients are to be mutated, the amount by which to change
each of the coefficients needs to be specified. Since the algorithm cannot know in advance
the optimal order of magnitude of a coefficient value, which would in turn allow it to adjust
the size of the coefficient mutation step, the only reference it can take the advantage of is
the coefficient’s current value. Furthermore, as it will be discussed in the Section 3.2.2, the

36

Hardware Acceleration of Nonincremental Algorithms for the Induction of Decision Trees and Decision Tree Ensembles 37

@) @)

/N VAR
2-Cy || 3-Cs @ 3-Cs
/N
4-Cy || 5-Cy
(a) DT before the addition of the (b) DT after a node has been added
node in place of the leaf #2 in place of the leaf #2

Figure 3.9: Example showing how a DT is mutated by adding a node to it

/@\ /@\

X @ ®@ O

. /l \ VAN /N VAR
P4 @ 6-Cs || 7-Cs 40y | [5Gy || 6-C5 || 7-C
L4 -
VAN
8-Cs || 9-Cy
(a) DT before the removal of the leaf #4, (b) DT after the leaf #4 and its parent
together with its parent node #2 node #2 were removed, and the sub-tree
induced by former node #5 moved to the
position of node #2

Figure 3.10: Example showing how a DT is mutated by removing a node from it

node test coefficients are not initialized completely at random, but are calculated according to
an algorithm to provide an improvement to the overall accuracy of the DT, hence their initial
values provide a useful starting reference point in searching for their optimal values. Due
to all this, the EFTI algorithm selects the mutation step for the coefficients according to the
normal distribution centered at zero, with the standard deviation proportional to the value of
the coefficient to be mutated. However, for the coefficients with small values, the deviation
would be likewise low, and it would be hard to escape this situation via process of mutation.
Similarly, for the coefficients with large values, the deviation would be likewise high, and these
coefficients would be changed in too large increments. Hence, the EFTI algorithm saturates
the deviation for both small and large coefficient values at 0,,;, and o,,,, respectively. The
saturation points o,,;, and 0,,,, are fixed throughout the algorithm operation and selected by
the user. The random variable representing the mutation step for the coefficient w;, named
Xowi 18 finally given by the equation:

Omin, wy S Omin
2
mei ~ N(0,0')’U = Wy, Omin <Wi < Omax (3)
Omaz Omaz Swz

This means that the mutated value w]" for the selected coefficient w; is obtained as w;" =

37

Hardware Acceleration of Nonincremental Algorithms for the Induction of Decision Trees and Decision Tree Ensembles 38

On the other hand, the topology mutations represent very large moves in the search space, so
they are performed even less often. In every iteration, there is a chance (/3) that a single node
will either be added to the DT or removed from it. This change either adds an additional test
to the classification process, or removes one from it. The node is always added in place of an
existing leaf, i.e. never in place of an internal non-leaf node, as shown in the example in the
Figure 3.9. The leaf which is to be turned into a node is selected at random uniformly from
all the leaves in the DT. The test coefficients of the newly added non-leaf node are calculated
using the same initialization procedure as for the root test coefficients, which is explained in the
Section 3.2.2. On the other hand, if a node is to be removed, first a leaf is selected at random
uniformly from all the leaves in the DT. Then both the leaf and its parent are removed from
the DT, while the leaf’s sibling moves up to replace its former parent, as shown in the example
in the Figure 3.10. By adding a test, a new point is created where during the classification,
instances from different classes might separate and take different paths through the DT and
eventually be classified as different, which can in turn increase the accuracy of the DT. On the
other hand, by removing unnecessary tests the DT is made smaller, and the size of the DT is
also an important factor in the fitness calculation in the EFTI algorithm as discussed in the
Section 3.2.3.2.

There is a known result regarding (141)-ES algorithms called 1/5 success rule /75], stating that
the mutation step size should be adapted dynamically in order to keep the mutation success rate
close to one-fifth, meaning that approximately every fifth mutation should lead to an individual
with higher fitness. To accomplish this, the mutation step is dynamically adapted try to control
the success rate. There are at least two problems with adopting the 1/5 strategy here: first there
are two different types of mutations (coefficient and topological) with each one having its own
mutation rate, and second the success rates were measured to be closer to around 1% when the
EFTI algorithm was run on practical datasets. Although the effort was made in an attempt to
devise a dynamic adaptation strategy akin to the 1/5 success rule that would provide statistically
significant benefits to the EFTI algorithm, it was futile.

3.2.2 The DT node insertion algorithm

Each time a node is to be added to the DT, whether it is the root node for the DT initialization
or any other node in the mutation procedure, the node’s test needs to be initialized. Initializing
the test coefficients with random numbers proved to be an impediment to the evolutionary
process, since there is a rather small probability for a node test generated in this way to provide
a useful split in the attribute space, i.e. a split that divides instances of different classes.
With this, completely random, procedure, the hyperplane usually lands completely outside
the attribute space region where the instances are located, where the Figure 3.11a shows one
such hyperplane as an example. Even if the hyperplane intersects the area of the attribute
space where the instances reside, the split can still be ineffective in the way that it does not
help distinguish between instances of different classes, i.e. it does not contribute to the DT
accuracy, where the Figure 3.11b shows one such hyperplane as an example. This influences
the algorithm convergence negatively, in that it takes too many generations to relocate the
ill-positioned hyperplane to the location where it starts contributing to the accuracy of the DT
individual.

However, in order to allow for wider search space exploration, the node tests need to be
generated at random, but this process needs to be guided by the structure of the training set,

38

Hardware Acceleration of Nonincremental Algorithms for the Induction of Decision Trees and Decision Tree Ensembles 39

(a) Hyperplane initialized to the position outside (b) Hyperplane initialized to the position where it
the region where the instances reside does not contribute to the DT accuracy

Figure 3.11: Hyperplanes cannot be initialized completely at random, since there is a
high chance of them being ineffective

to speed up the convergence of the evolutionary algorithm towards the optimal solution. One
of the approaches for the random initialization basically ensures that two randomly selected
training set instances (called a mixed dipole) take different paths during classification at the
node being initialized, and is suggested in /40/. The mixed dipole comprises two instances
from the training set that belong to different classes. As shown in the Figure 3.12, the procedure
consists of placing the hyperplane H,;(w,6) in the attribute space, perpendicular to the line
connecting the mixed dipole (x*, x?). The hyperplane corresponds to the node test given by the
equation (1), where w is the test coefficient vector and @ is the test threshold. The attribute space
of the vene dataset, used in this example has two dimensions, one for each of the attributes
x1 and 5. The hyperplane’s exact position is finally fixed by randomly generated parameter
§ € (0,1), which determines whether the hyperplane is placed closer to x* (for § < 0.5), or
closer to x’ (for > 0.5). Mathematically, the equation for the hyperplane generated by the
method of the mixed dipole described in this paragraph is obtained in the following way:

HU(W,Q) =W (ajl) — 9,
o)
4)

w = (x' —x’),

0=dw-x"+(1-0)w-x’

This procedure aims to introduce a useful test into the DT, based on the assumption that the
instances of the same class are somehow grouped in the attribute space, and that the test
produced in this way will help separate the instances belonging to the classes of the dipole
instances.

3.2.3 Fitness evaluation

The DT can be optimized with respect to various parameters, where the DT accuracy and its
size are usually the most important. Hence, in order to solve this multi-objective optimizational
problem with the evolutionary approach, a fitness function needs to be defined to effectively

39

Hardware Acceleration of Nonincremental Algorithms for the Induction of Decision Trees and Decision Tree Ensembles 40

Zo

Figure 3.12: Initialization of the node test based on the randomly chosen dipole.
H,;;(w,0) is a hyperplane corresponding to the node test, w is coefficient vector, and
0 is the threshold.

collapse it to a single objective optimizational problem. This can be done in various ways, and
here one procedure, employed by the EFTI algorithm is given.

Algorithm 3.2: The pseudo-code of the fitness evaluation task, given by
fitness_eval () function.

def fitness_eval (dt, train_set):

accuracy = accuracy_calc(dt, train_set)

Nc = train_set.cls_num{()
oversize = (len(dt.leaves()) - Nc)/Nc
dt.fit = accuracyx* (1l - Koxoversizexoversize)

3.2.3.1 Accuracy calculation

The main task of the optimization process performed by EFTI is to maximize the accuracy of
the DT individual on the training set. The accuracy is calculated by letting the DT individual
classify all problem instances from the training set and then by comparing the classification
results to the desired classifications, specified in the training set. The pseudo-code for this task
is given in the Algorithm 3.3 by the function accuracy_calc (), where the input parameter
dt receives the DT individual whose accuracy is to be calculated, and t rain_set expects
the training set.

40

Hardware Acceleration of Nonincremental Algorithms for the Induction of Decision Trees and Decision Tree Ensembles 41

Algorithm 3.3: The pseudo-code of the accuracy calculation task, given by
accuracy_calc () function.

def accuracy_calc(dt, train_set):

distribution = [[0] % train_set.cls_num()
for i in range(len(dt.leaves()))]

for instance in train_set:
leaf = find_dt_leaf for_inst (dt, instance)
distribution[leaf.id] [instance.cls] += 1

hits = 0

for leaf in dt.leaves():
dominant_class_cnt = max(distribution[leaf.id])
hits += dominant_class_cnt

return hits / len(train_set)

First, the class distribution is determined by letting all instances from the training set traverse
the DT, within the find_dt_leaf_ for_inst () function whose pseudo-code is given
in the Algorithm 3.4. This function determines the instance traversal path, and returns the
leaf node in which the instance finished the traversal. The traversal starts at the root node
(accessed via dt . root), and is performed in the manner depicted in the Figure 2.2, where
one possible path is given by the red curvy line. Until a leaf is reached, the node tests are
evaluated and the decisions to which child to proceed, are made based on the test outcomes.
The function dot_product (), calculates the scalar product of the node test coefficient
vector w (stored in cur_node . w attribute), and the attribute vector of the instance x (stored
in instance.x variable). The value returned, is compared with the node test threshold 6
(stored in cur_node . thr attribute).

Algorithm 3.4: The pseudo-code of the procedure for determining the end-leaf for an
instance, implemented by find_dt_leaf_for_inst () function.

def find_dt_leaf for_inst (dt, instance):

cur_node = dt.root

while (not cur_node.is_leaf):
psum = dot_product (instance.x, cur_node.w)

if psum < cur_node.thr:
cur_node = cur_node.left
else:
cur_node = cur_node.right

return cur_node

Next step in the accuracy calculation process (the first for loop in the Algorithm 3.3) is to
calculate the class distribution matrix. The distribution matrix, shown in the Figure 3.13, has

41

Hardware Acceleration of Nonincremental Algorithms for the Induction of Decision Trees and Decision Tree Ensembles 42

one row for each of the leaves in the DT, i.e. for each attribute space partition induced by the
DT. Each row in turn contains one element for each of the classes in the training set. Hence,
a row of the distribution matrix contains the statistics on how many instances of each of the
training set classes finished the traversal in the leaf corresponding to the row.

C1 Cz CNC
Leaf ID 1 di1 di2 C di,n, I::} khd(l,kl)
Leaf ID 2 da,1 da.2 . da. N, E> ka2, d(2 k)
Leaf ID IV, dn, 1 dn, 2 S dn, N. E> szvd(Nz,kNl)

Figure 3.13: The structure of the distribution matrix. From each matrix row 1, the
dominant class k; and the number of instances of the dominant class d; y,y that finished
the traversal in the leaf with ID 1 are obtained.

The classes of all the instances from the training set are known and accessed via the instance
attribute instance.cls (within the accuracy_calc () function). For each instance in
the training set, based on its class and the ID of the leaf in which it finished the traversal, the
distribution matrix is updated. This leaf is obtained via the find_dt_leaf_ for_inst ()
function and stored into the 1eaf variable, and its ID is accessed via the attribute 1eaf . id.
The d; ; element of the distribution matrix contains the number of instances of the class j (C})
that finished in the leaf node with the ID i after the DT traversal. After all the instances from
the training set traverse the DT, this matrix contains the distribution of classes among the leaf
nodes.

The second for loop of the accuracy_calc () function finds the dominant class for each
leaf node. The dominant class for a leaf node is the class having the largest percentage of
instances, among the ones that finished the traversal in that leaf node. Formally, the dominant
class k; of the leaf node with the ID i is:

/fi|(d(z',ki) = mj‘?‘X(di,j)) (5)

The structure of the distribution matrix is displayed in the Figure 3.13. Rows correspond to the
leaves of the DT, and the columns correspond to the classes of the training set. From each row
(i) of the distribution matrix, we obtain the dominant class k; and the number of instances of
the dominant class d; ,) that finished the traversal in the leaf with ID 1.

If we were to do a classification run with the current DT individual of the training set, the
maximum accuracy would be attained if all leaf nodes were assigned their corresponding
dominant classes. Thus, each instance which finishes in a certain leaf node, that belongs to
that node’s dominant class, is added to the number of classification hits (the hits variable of
the Algorithm 3.3), otherwise it is qualified as a missclassification. Hence,

N
hits = Z d(i,ki)~ (6)
=1

The accuracy of the DT is, hence, equal to the percentage of the instances
whose classifications were declared as hits, as given in the pseudo-code:
accuracy = hits/len(train_set).

42

Hardware Acceleration of Nonincremental Algorithms for the Induction of Decision Trees and Decision Tree Ensembles 43

3.2.3.2 Oversize

The DT oversize is calculated as the relative difference between the number of leaves
in the DT and the total number of classes (N¢) in the training set (obtained via the
train_set.cls_cnt () function). In order to be able to classify correctly all training
set instances, the DT needs to have at least one leaf for each class occurring in the training set.
Therefore, without knowing anything else about the dataset, our best guess is that the minimal
DT that could be consistent with the dataset has one leaf for each of the dataset classes. For
that reason, the oversize measure given by the equation (7), was defined in such a way to have
the DT start suffering penalties to the fitness when the number of its leaves exceeds the total
number of classes in the training set, i.e. the oversize measure is zero when N; = N,:
. Nl - Nc
oversize = N
fit = accuracy- (1 — K, - oversize?)

(7)

The DT oversize negatively influences the fitness, as it can be seen from the equation (7). The
parameter /, is used to control how much influence the DT oversize will have on the overall
fitness. In other words, it determines the shape of the collection of Pareto frontiers for the DT
individual. Each DT individual can be represented as a point in a 2-D space induced by the DT
oversize and accuracy measures. In a Pareto set all elements have the same fitness value, even
though they have different accuracy and oversize measures.

0.90

0.88f accuracy =0.8
N.=5 K,=0.1

0.86

0.84}

accuracy

0.82

0.80

0.78

2 3 4 5 6 7 8 9 10
N, - number of leaves

Figure 3.14: The layout of Pareto frontiers for the accuracy value of 0.8, when N¢
equals 5, for K, parameter values of: 0, 0.02 and 0.1.

The Figure 3.14 shows the layout of the Pareto frontier for an example of fitness value of 0.8
and few different values of the parameter K ,, with the value of 5 selected for the parameter
N¢. It can be seen that if K, is chosen to be 0, the oversize does not influence the fitness,
which is in turn always equal to the value of the accuracy. When K, > 0, the EFTI algorithm
will be willing to trade accuracy for the DT size. As it can be seen from the figure, when the

43

Hardware Acceleration of Nonincremental Algorithms for the Induction of Decision Trees and Decision Tree Ensembles 44

parameter K, has a large value, for an example 0.1, the big DTs are highly discouraged in that
an individual of size 5 with the accuracy of 0.8 is equally fit in the eyes of the algorithm as the
larger one with more than 10% higher accuracy, but of size 10.

As shown in the Algorithm 3.2, the dependence of the fitness on the oversize measure is
quadratic. This serves two purposes:

1. Since oversize turns negative when the DT size falls below N¢, such undersized DTs
would be getting a boost in fitness if it were not for the squaring. If all classes are to be
represented in the DT, the number of leaves should at least match the number of classes,
so that it would be at least possible, for each class to have a leaf. By squaring the oversize,
the undersized DTs are discouraged in the same way the oversized are.

2. By using the quadratic dependence, the rate at which fitness decreases with the DT size
is lower when the size is closer to the N¢, and gets progressively higher as the size
increases. This way, the DTs whose size is close to N¢ are penalized less then they
would be if the dependence of the fitness on oversize were linear.

In order to measure the influence of the oversize on the induced DTs, an experiment has been
conducted on all datasets from the Table 2.1. The DTs were induced for a number of values for
the parameter K,, namely K, € {0,0.001,0.01,0.02,0.06,0.1,0.2}. The results are presented
in the Table 3.1, Table 3.2, Figure 3.15 and Figure 3.16. The Table 3.1 and the Table 3.2 list
the induced DT sizes and accuracies respectively, for all datasets and all values of the oversized
weight parameter K, used in the experiment. In the figures, the plots are organized in pairs,
where each pair consists of the accuracy and size plots for the same five algorithms displayed in
juxtaposition. Please notice that the x-axis, corresponding to the value of the parameter K, is
given in logarithmic scale, as well as the y-axis of the DT size plots. Please also notice that the
ranges for the y-axis, be it for the accuracy or the size plots, vary from plot to plot and depend
on the datasets used for the induction.

The values in the Table 3.1 clearly indicate that the largest DTs are induced when the DT
oversize is ignored during the induction, K, = 0. From there, the induced DT sizes drop
quickly when the value of K, is increased, only to start saturating after certain &, value, which
is different for each dataset. This is usually the place where the EFTI algorithm needs to start
inflicting serious damage to the DT accuracies, only to compress the DTs furher in size by
small factors. This trend can be also observed with accuracies in the Table 3.2. The accuracies
are, naturaly, largest when there is no size limit imposed, i.e. K, = 0. Then, as the value
of K, increases, the induced DTs of some of the datasets experience a significant drop in
the accuracy, where this drop is of course traded-off against a significant drop in their sizes.
These datasets, like bch, cmc, krkopt, letter, ttt, wfr, wine, etc., are the ones whose
internal complexity really demands for bigger DTs in order to describe them more precisely.
On the other hand, the induced DTs of some of the datasets, experience little or no change in
the accuracy when the K, value increases up to a certain point. For these datasets, like ausc,
bank, bcw, irs, psd, shuttle, sick, zoo, etc., initial large DTs are indeed excessive in
size and the more succinct DT representation was successfully found by the EFTI aglorithm.
When the EFTI algorithm is used in practice, it is a design choice whether the most accurate
DTs are needed no matter their size, or we are interested in the smallest DT's at the cost of their
accuracy, or we are willing to accept certain trade-off between the DT size and its accuracy. It
is obvious from these results that there is a different behavior of the inferred DTs from different
datasets, in terms of DT accuracies and sizes, when the oversize fitness weight /, is varied.
Hence, the actual value of the K, parameter will depend on the domain of the problem being
solved.

44

Hardware Acceleration of Nonincremental Algorithms for the Induction of Decision Trees and Decision Tree Ensembles 45

Table 3.1: The average sizes of the DTs induced for various values of the parameter K,

Dataset \ 0 0.001 0.01 0.02 0.06 0.1 0.2
adult 273.88 5.72 3.04 2.80 2.12 2.00 2.00
ausc 31.88 9.52 3.76 3.00 248 2.04 2.04
bank 172.08 3.44 2.12 2.00 2.00 2.00 2.00
bc 40.76 14.84 6.88 5.08 3.92 3.56 3.16
bch 87736 814.88 283.84 192.60 133.56 109.88 92.92
bew 9.72 5.16 2.88 2.04 2.00 2.00 2.00
ca 32.64 9.60 4.00 3.12 2.60 2.12 2.04
car 119.04 23.60 9.84 7.60 5.80 5.04 4.96
cme 179.76 22.68 8.28 6.48 4.72 4.28 4.00
ctg 262.04 75.12 26.92 21.84 15.80 13.96 12.64
cvf 558.40 33.76 13.04 10.32 8.60 7.92 7.60
eb 1419.56 264.12 113.60 85.24 59.00 51.36 45.00
eye 131.64 8.76 4.20 3.36 2.84 2.08 2.00
ger 45.28 7.92 3.44 3.16 2.76 2.52 2.08
gls 44.00 32.92 22.24 16.12 12.32 10.68 9.60
hep 14.96 10.52 4.72 4.00 3.00 2.76 2.04
hrtc 68.12 53.84 17.12 12.44 8.20 7.52 6.36
hrts 24.16 11.76 4.64 3.84 3.00 2.68 2.00
ion 31.32 10.96 5.36 4.16 3.08 3.04 3.00
irs 8.56 4.76 5.28 4.24 3.88 3.28 3.12
jvow 519.64 83.68 32.72 25.56 17.88 15.72 13.20
krkopt 1973.12 170.96 63.84 48.36 32.96 28.96 24.72
letter 1445.68 254.44 105.88 80.84 55.32 48.40 39.80
liv 46.32 15.08 6.08 4.36 3.16 3.00 2.76
lym 21.68 15.64 11.00 8.04 5.92 5.28 5.00
magic 197.16 6.20 3.44 3.00 2.84 2.24 2.04
msh 49.00 8.88 4.72 3.96 292 3.00 2.32
nurse 451.76 23.60 10.04 8.60 6.88 6.32 6.08
page 53.84 12.60 7.44 6.24 5.72 5.20 5.00
pen 355.12 52.12 25.72 21.44 16.76 14.88 13.60
pid 62.48 11.48 4.72 3.48 2.84 2.28 2.08
psd 31.00 6.68 3.56 2.92 248 2.20 2.04
sb 17.32 3.60 2.16 2.00 2.00 2.00 2.00
seg 120.56 35.48 17.32 14.48 11.28 10.08 9.20
shuttle 62.84 11.68 8.48 7.76 7.12 7.08 7.04
sick 31.92 3.68 248 2.40 2.16 2.04 2.00
son 32.04 14.72 6.48 5.12 3.44 3.00 2.96
spect 19.32 11.84 4.16 3.24 2.68 2.08 2.00
spf 233.84 49.52 20.44 15.96 11.28 10.12 9.00
thy 34.80 8.72 5.00 4.48 4.00 4.00 4.00
ttt 104.00 13.96 5.32 4.12 3.00 2.96 2.20
veh 149.28 34.32 13.76 10.48 7.64 6.88 5.96
vene 15.84 9.84 5.44 4.60 3.96 3.92 3.80
vote 23.32 8.40 4.08 3.08 2.64 2.04 2.04
VOW 214.12 100.16 48.00 36.64 25.08 21.64 17.96
w21 178.08 12.20 5.84 5.04 4.00 4.00 4.00
w40 227.12 15.36 6.36 5.44 4.24 4.00 3.96
wir 350.12 28.48 11.76 9.48 6.92 5.88 5.00
wilt 8.60 3.04 2.00 2.00 2.00 2.00 2.00
wine 340.12 43.76 16.04 12.52 9.40 8.68 8.00
Z00 15.64 9.64 9.88 9.16 9.40 8.76 8.72

Table 3.2: The average accuracies of the DTs induced for various values of the
parameter KK,

Dataset \ 0 0.001 0.01 0.02 0.06 0.1 0.2

adult \ 0.85 0.83 0.82 0.82 0.82 0.83 0.82
\ Continued on next page |

45

Hardware Acceleration of Nonincremental Algorithms for the Induction of Decision Trees and Decision Tree Ensembles 46

Table 3.2 — continued from previous page

Dataset \ 0 0.001 0.01 0.02 0.06 0.1 0.2
ausc 0.92 0.90 0.88 0.88 0.88 0.88 0.86
bank 0.89 0.89 0.89 0.89 0.88 0.88 0.88
bc 0.97 0.95 0.93 0.92 0.91 0.92 0.89
bch 0.35 0.36 0.27 0.24 0.22 0.21 0.20
bcw 0.98 0.98 0.98 0.98 0.98 0.98 0.97
ca 0.92 0.90 0.88 0.88 0.88 0.87 0.85
car 0.93 0.91 0.86 0.85 0.84 0.82 0.82
cme 0.70 0.61 0.57 0.57 0.55 0.55 0.51
ctg 0.87 0.83 0.79 0.77 0.75 0.74 0.74
cvf 0.81 0.78 0.76 0.76 0.76 0.76 0.75
eb 0.62 0.59 0.54 0.54 0.53 0.53 0.52
eye 0.67 0.62 0.60 0.60 0.59 0.58 0.57
ger 0.96 0.96 0.95 0.95 0.94 0.95 0.93
gls 0.89 0.89 0.84 0.82 0.80 0.78 0.77
hep 0.93 0.93 0.90 0.90 0.89 0.89 0.86
hrte 0.86 0.85 0.75 0.72 0.70 0.69 0.68
hrts 0.92 0.91 0.88 0.88 0.87 0.87 0.84
ion 0.96 0.95 0.92 0.91 0.90 0.90 0.87
irs 0.98 0.98 0.98 0.98 0.98 0.98 0.97
jvow 0.90 0.81 0.73 0.70 0.68 0.67 0.63
krkopt 0.58 0.47 0.40 0.39 0.37 0.36 0.35
letter 0.74 0.66 0.57 0.55 0.52 0.50 0.50
liv 0.83 0.79 0.73 0.73 0.71 0.72 0.68
lym 0.95 0.95 0.93 0.92 0.90 0.89 0.86
magic 0.85 0.83 0.81 0.82 0.82 0.80 0.78
msh 1.00 0.99 0.97 0.97 0.95 0.95 0.92
nurse 0.92 0.90 0.89 0.88 0.86 0.86 0.83
page 0.97 0.96 0.96 0.95 0.95 0.95 0.94
pen 0.98 0.96 0.93 0.92 0.90 0.89 0.87
pid 0.87 0.82 0.79 0.79 0.78 0.78 0.76
psd 0.98 0.98 0.97 0.97 0.97 0.97 0.94
sb 0.94 0.94 0.93 0.93 0.93 0.93 0.93
seg 0.97 0.96 0.93 0.92 0.90 0.90 0.86
shuttle 1.00 1.00 1.00 0.99 0.99 0.99 0.99
sick 0.97 0.95 0.95 0.95 0.94 0.94 0.94
son 0.94 0.91 0.86 0.84 0.80 0.81 0.78
spect 0.91 0.90 0.87 0.87 0.87 0.87 0.85
spf 0.82 0.74 0.69 0.68 0.66 0.65 0.64
thy 0.96 0.95 0.95 0.96 0.95 0.95 0.94
ttt 0.87 0.79 0.74 0.74 0.72 0.72 0.70
veh 0.85 0.75 0.68 0.65 0.63 0.62 0.59
vene 0.95 0.95 0.94 0.93 0.93 0.93 091
vote 0.98 0.97 0.95 0.96 0.96 0.95 0.91
VoW 0.93 0.88 0.76 0.71 0.64 0.61 0.57
w2l 0.90 0.87 0.85 0.85 0.84 0.84 0.80
w40 0.90 0.84 0.82 0.81 0.80 0.80 0.75
wir 0.88 0.80 0.75 0.73 0.70 0.69 0.68
wilt 0.95 0.95 0.95 0.95 0.95 0.95 0.95
wine 0.67 0.60 0.57 0.56 0.55 0.55 0.55
Z00 0.98 0.98 0.98 0.98 0.98 0.98 0.97

3.2.4 Selection

The selection task is responsible for deciding, in each iteration, which DT will be taken for the
candidate solution for the next iteration: either the current candidate solution, i.e. the parent
(in the evolutionary sense), or the mutated individual. The selection procedure implemented by
the Algorithm 3.5 is the most basic one, where whenever the mutated individual outperforms

46

Hardware Acceleration of Nonincremental Algorithms for the Induction of Decision Trees and Decision Tree Ensembles 47

102 1.00
= ger —ger
e gjick s gjck
T Ca 0.95 1 Ca
1 = \/Ote = \Ote »
0.90
10° 0.85
10" 1073 1072 10! 10 1073 1072 10!
(a) DT size: ger; sick, ca, vote, wilt (b) DT accuracy: ger, sick, ca, vote, wilt
102 1.00
/////,,,m// TR 0.98 u----.-uu--uu-..H'-/-/»/,T,,/-Nuu---.u.,,"." e rs
w msh i w msh
N — psd < i, | — de n
10 L A R TR L)
”//"”'.""’h
oA
et inieee| 0.94 :
10° 0.92
10 1073 1072 101 10 1073 1072 10
(c) DT size: bew, irs, msh, psd, thy (d) DT accuracy: bew, irs, msh, psd, thy
103 0.95
= qusC = qusc
L s bank e bank
102 'o.' - CQ 0.90] i CQ
.". hep LLLLLTTTTTTTTY "rammmmany — hep
¢ s hrts s hrts
)
10! 0.85
'.".."""'lll--ll-u.u..uulll
10° 0.80
10* 1073 107 101 10 1073 107 101
(e) DT size: ausc, bank, ca, hep, hrts (f) DT accuracy: ausc, bank, ca, hep, hrts
102 1.00
= on = jon
'.,... e gh LTINS o)
mn— spect 0.95 = o Spect
— th LEEY YT ITIT] u-"nu.“"'MpHuH === th b
]_01 "',' "'.'..,.... nns bcy ' '.l.,.' nens bcy
. L] "
""" . nld ... g - "
. = 0.90 0, \
T - uuum//uumumumuuu = ”/W””W”W”’” :
"taaay,, "trvirnaggnnns :,:’:’:U./”.”H‘/“,"‘.m ””r//um//muummmm\mm\mmmmvmmmmm
10° 0.85
10 1073 1072 10! 10 1073 1072 10!
(g) DT size: ion, sb, spect, thy, bc (h) DT accuracy: ion, sb, spect, thy, bc
103
= son e aloznl
¥, v W21 0.9 fru,,, win adult
102 R, wn adult o,
", m—Car
m— Car -.uu..,.".. s magic
magic LT e Kl
..."'”W’”’-n....., QT
10t o o SN N
RLLLLTT o . o
BRLLLLT T TR T
LLLL) LR ey
10°
10 1073 1072 10! 10 1073 1072 10

(i) DT size: son, w21, adult, car, magic

() DT accuracy: son, w21, adult, car, magic

Figure 3.15: Dependencies of the induced DT sizes and accuracies on the oversize
weight (K,) parameter values. Datasets 1-25.

47

Hardware Acceleration of Nonincremental Algorithms for the Induction of Decision Trees and Decision Tree Ensembles 48

= 700 P = 700 -
s shuttle ’””Hmmuumumuumumumummmv *++ shuttle 7
102 p,, "Seg 0.9 Liviirrrnsnssnnnnnn, "oseg
.':".”'.’”,”'.’”L”l.f/‘: -.'-.,....... page w,
.,.... 11 g|s
17..
10 0.8'll.
""ll..
10° 0.7
10 107 1072 10* 10 107 10 10"
(a) DT size: zoo, shuttle, seg, page, gls (b) DT accuracy: zoo, shuttle, seg, page, gls
10° 1.0
= nurse ""-----................. = nurse
T p.en "'--..,-u.....,, LT p.en
102 i p|d 0.9 i p|20
b, e —
MM/H/MW“',,,}”'”%.. T LT ctg
1 R T
10 Humuuwm”,”“”””” 0.8 ,mmummH'Mmm,mmm.wu,mmHH.mwm.umw
rrHHmuHum/n/wuummmwHrmmvmmm/u” ..'l..lllllllllu/ll.
10° 0.7
10" 1073 107 10* 10 10 10 10*
(c) DT size: nurse, pen, pid, w40, ctg (d) DT accuracy: nurse, pen, pid, w40, ctg
103 1.0
— cvf = cvf
wir hrtc 0.9 b LTI oTa e
102 i jVOW : "y, wnm jvow

iy,
" h-.’n’h/. "
. JYTLTTTTYS
m— iV ray it
ay ”/////,,,/

ettt 0.8

— |\

10t .
7 ///////////Hu/Hmw.u:l:u...'ll .
10° 0.6 .
10 1073 107 101 10 107 107 1071
(e) DT size: cvf, hrtc, jvow, liv, ttt DT accuracy: cvf, hrtc, jvow, liv, tit
y J
103 1.0
:, m— spf
Y, i yeh

102 i \JOW

""----...,M

10 1 MM,;,”.”ﬂ;
10° 0.4
10 1073 107 10* 10 107 102 107
(g) DT size: spf, veh, vow, cmc, wine (h) DT accuracy: spf, veh, vow, cmc, wine
0.8
— eb
annn eye (TR)]
win— krkopt || 0.6
| == letter
s pbch -
Sr—n—, -y 4
0.2
10* 10"
(i) DT size: eb, eye, krkopt, letter, bch () DT accuracy: eb, eye, krkopt, letter, bch

Figure 3.16: Dependencies of the induced DT sizes and accuracies on the oversize
weight (K,) parameter values. Datasets 25-50.

48

Hardware Acceleration of Nonincremental Algorithms for the Induction of Decision Trees and Decision Tree Ensembles 49

its parent in fitness, it is always taken as the new candidate solution, and is discarded otherwise.
Hence, it can be called greedy. An improvement to this basic version of the selection procedure
will be discussed in the Section 3.3.2, in which a less fit individual is sometimes given a chance
to be selected.

Algorithm 3.5: The pseudo-code of the select () function of the EFTI algorithm, that
implements the basic individual selection procedure

def select (dt, dt_mut):
if dt_mut.fit > dt.fit:
return dt_ mut
else:
return dt

3.3 Improvements to the basic EFTI algorithm

In this section several additional features that can improve either the execution time or the
quality of solutions produced by the EFTI algorithm are discussed:

» Section 3.3.1 - Make fitness dependent on the number of training set classes that are not
represented in the DT individual, i.e not assigned to any leaf.

» Section 3.3.2 - Introduce the search probability, i.e. the probability with which a less fit
individual can be selected for the candidate solution.

* Section 3.3.3 - Improve the induction times by keeping track of the classification traversal
paths, and trying to reuse them between iterations.

3.3.1 Unrepresented classes

When working with highly imbalanced datasets, the induced DT can happen to contain no
leaves to which an under-represented class has been assigned. In these cases it might be useful
to encourage the EFTI algorithm to represent all classes from the dataset within the DT. Here,
an extension to the fitness formula is given that aims at discouraging the DTs in which some
classes are not represented. The percentage of missing classes is calculated as the percentage of
the classes for which the DT does not have a leaf, to the total number of classes in the training
set (N¢):

Nc - NDTc (8)

missing =
N,

where Npr. is the number of classes represented in the DT leaves. The fitness calculation
is then updated so that the penalties are taken for the missing classes in the DT individual:
dt.fit = accuracyx (1l - Koxoversizexoversize)* (1l - Kmsmissing),
where the parameter K, is used to control how much influence the number of missing classes
will have on overall fitness.

49

Hardware Acceleration of Nonincremental Algorithms for the Induction of Decision Trees and Decision Tree Ensembles 50

3.3.2 Search probability

Evolution is inherently an unpredictable process. It is akin to searching for the highest peak in
the mountain range but only being able to see one’s immediate vicinity, i.e. not being able to
peek at distant mountain tops that could guide one’s exploration (see Figure 3.17). Simplest
strategy for conquering the peak closest to one’s current location is to always choose the path
that leads upwards. This strategy is thus called the greedy hill-climbing strategy. However,
there is no guarantee that the closest peak is in the same time the highest in the mountain range
and it often is not. One example of such a peak is the peak marked by the letter A in the Figure
3.17, which is called the local maximum. It is a maximum, since all points in its neighborhood
have lower elevation, but it is only local since there is a higher peak in this search space, namely
B from the Figure 3.17. The greedy approach described above fails in finding a path from point
A to point B, since there exist no monotonically uphill path connecting A to B. In order to get
to point B the exploration has to first traverse through the regions with lower elevation, shown
by an arrow in the Figure 3.17, in order to get to the base of the hill with the summit at the point
B, from which it can start moving up again. However, it is not clear in which direction from the
point A the movement should proceed. Nothing is gained if the movement continues towards
the point C, since the predominant uphill movement will eventually bring the exploration back
to the point A, only wasting the computational time. Even worse, if the exploration step size
is large, the position might be moved to the point D, from where it could wander off in the
opposite direction from the global maximum B.

Figure 3.17: An example of the hill climbing problem and the issue of escaping the local
optimum A by a greedy strategy in order to reach point B.

In terms of the evolutional DT induction, instead of striving for higher elevation, the algorithm
is striving for a DT individual with higher fitness, and instead of walking in the mountains, the
DT individual is being mutated to move around in the search space. For practical problems,
the search spaces for the DT individuals have much higher dimensionality and are thus much
more complicated than the hill-climbing problem described above. However, the main idea
is the same, in order to visit and discover as many fitness peaks as possible (in order to find

50

Hardware Acceleration of Nonincremental Algorithms for the Induction of Decision Trees and Decision Tree Ensembles 51

the highest one), the algorithm sometimes needs to pursue a less fit individual. Since it is
impossible to tell which poorer performing solution will eventually lead to an improved one,
the decision of going after a poorer solution is made at random with some probability. Here,
this probability will be called the search probability, since it allows for the evolutionary process
to search the wider neighborhood of the current solution. Without this search, the systems tend
to get stuck at local maximas.

Several approaches to providing the values for the search probability that were tried with
the EFTI algorithm in an effort to increase its performance, will now be discussed. The
results of the experiments used to infer which of the approaches offers statistically significant
improvement to the quality of solutions induced by EFTI, are discussed in the Section 3.3.2.4.

3.3.2.1 HereBoy

One approach for selecting the search probability is implemented by the HereBoy algorithm
[76], and is based on the concept used in the Simulated Annealing. The probability is given
high value in the beginning and is reduced over time, which is referred as the cooling schedule
in the Simulated Annealing literature. The idea behind the cooling schedule is to allow the
system a lot of freedom to explore the search space at the beginning when the system is in a
high state of disorder, i.e. when only poor solutions are available. Then, slowly, as the desired
structures emerge, i.e. better solutions are being found, the freedom to search is restricted so
that these structures are not destroyed. The following equation shows how HereBoy calculates
the search probability, but in terms of the DT fitness as used by the EFTI algorithm, where the
constant 1 in the equation corresponds to the maximal possible fitness:

p=po(l— £it) ©)

There are several potential issues with using the HereBoy approach to search probability. The
Figure 3.18 shows two examples of how the fitness changes during the DT induction when the
HereBoy approach is used and when no search probability is used. Several potential issues are
pointed out on the plots, by marking the relevant moments in the DT induction when the effects
of these issues make an influence on the evolution of the DT fitness.

First, the maximum possible fitness that the DT can attain, which influences the search
probability via equation (9), is different for different datasets, and is not known in advance.
Second, sometimes during the DT evolution, there are intervals when better solutions are found
often, which is akin to standing at the slope of a hill in the hill climbing problem (for an
example at the point C in the Figure 3.17). It might be worthwhile to let evolution reach a
plateau before trying to search the less fit neighborhood. With the HereBoy approach there is
no such mechanism, and it is possible to interrupt the hill climbing any time, which manifests
itself in the drops in fitness in the middle of rapid climbing, marked with #1 in the Figure 3.18.
On the other hand, by not changing the candidate solution for a large number of iterations, the
execution time is wasted by not exploring as large portion of the search space as it was possible.
With the HereBoy approach, the search probability remains fixed when there is no change in
fitness, making possible for a large iteration intervals when no solutions are accepted, especially
if the search probability is low (for an example the current fitness is close to the maximum value
of 1). These intervals are marked with #2 in the Figure 3.18. Finally, the search probability
is equal for all mutated individuals, no matter their fitness. Sometimes, even small changes to
the node test coefficients can produce significant shifts in the way the DT classifies the training

51

Hardware Acceleration of Nonincremental Algorithms for the Induction of Decision Trees and Decision Tree Ensembles 52

1l 2 0.90}
, 0-85}
rI‘Lr_ g f
5
3
T 0.80
— Greedy — Greedy
— Hereboy — Hereboy
. . I 0.75 s s !
0 5k 10k 15k 0 5k 10k 15k
iteration iteration
(a) Induction from veh dataset. (b) Induction from ion dataset.

Figure 3.18: Plots of the fitness evolutions during first 15k iterations of the DT induction
from veh and ion datasets when the HereBoy search probability strategy is used
(green) and when no search probability is used (blue). Several potential issues with
the HereBoy search probability approach are pointed out: 1 - Poorer solution accepted
and interrupted a series of fitness advancements, 2 - No new solutions accepted for a
long time, wasting execution time, 3 - Solution with significantly less fitness accepted.

set, especially if the DT is large and the mutated node is near the root. Hence, there is a
substantial chance of accepting a significantly less fit individual with this approach, which is
akin to jumping to the point D in the search space, as shown in the Figure 3.17. These large
jumps can be seen in the Figure 3.18 marked with #3.

3.3.2.2 Metropolis

The Metropolis approach to the search probability calculation was devised for the EFTI
algorithm based on the idea of the similar method used in the Simulated Annealing called
the Metropolis criterion (or Metropolis-Hastings criterion) /77]. The adoption of Metropolis
criterion is an attempt to remedy the issue where all less fit mutated individuals have the same
probability of being accepted, no matter their fitness. Hence in the Metropolis approach,
the fitness of the mutated individual (dt_mut . fit), more precisely the relative difference
between the candidate solution fitness (dt . £it) and the mutated individual fitness, will have
its influence through the following factor:

dt.fit —dt_mut.fit (10)

A = : ,
dt.fit

where St is the search temperature, which dictates how much less fit an individual can be,
and still have a chance to be accepted. This is user supplied parameter, and it is kept constant
throughout the induction. Furthermore, for at the same time to allow the algorithm to climb
the current hill uninterrupted, and to discourage long iteration intervals where no solution is
selected, a concept of stagnation duration Dy is introduced, which is defined as the number of
iterations where no improvement to fitness has been made. The search probability is then made

52

Hardware Acceleration of Nonincremental Algorithms for the Induction of Decision Trees and Decision Tree Ensembles 53

proportional to the D; to finally obtain its final form within the Metropolis approach:

Ap

p(DsaAF) :poDse_ﬁ (11)

Basically, the search probability restarts to 0 after each advancement in the fitness happens, and
increases linearly with each iteration in which no such advancement is made. Since the main
idea is not to select a less fit individual either too early or too late after the advancement in the
fitness, we are basically interested in determining how high is the probability p;, of accepting
an individual of certain fitness in an iteration interval after the advancement in fitness, as a
function of Dq:

Dy i—1

ps(Ds) = sz H(l - ,Oj)

=1
D ! 1—1 (12)

- _Ap; _AFj

= Zpoie o H(l — poje 57)
=1

Jj=1

It is obvious from the equation (12), that p, depends on the fitnesses of all proposed mutated
individuals in previous Dy iterations, which are in turn some random variables. Hence to
avoid elaborate mathematical procedure of obtaining the distribution for the p, in general case,
a simplified case is considered. The plots in the Figure 3.19 represent p,(D;) functions for
various values of Ar, py and S, with the simplification that all A7 values from the (12), are
equal to Ap. In other words, a case is considered where in all past D iterations, all proposed
mutated individuals had an equal fitness. This simplified version of p,(D;) is called p’, (D).

It can be seen from the plots in the Figure 3.19, that all the functions have a sigmoid shape,
which is in fact what was intended. The probability of accepting the less fit solution is low in
the interval where the stagnation duration is small, then increases at certain pace (depending
on the parameters selected) as the iterations pass, until it approaches a 100% chance of being
selected. The plots show that the parameter S7 influences how differently will the individuals
with different fitnesses be treated. When S = 0.05 (Figure 3.19a and Figure 3.19b), the
curves are far apart, hence it will be much harder for the individuals with lower fitnesses to get
selected, and the algorithm will only explore individuals with fitnesses closer to the fitness of
the candidate solution. On the other hand, for higher values of the parameter S (Figure 3.19¢
and Figure 3.19d), the ps curves are tighter together and the differences between individuals
of different fitnesses are blurred. In this case, the algorithm will explore individuals from
wide fitness range. As for the parameter pg, the higher its value is, the sooner another less fit
individual will get selected.

The Figure 3.20 shows the way the fitness of the induced DT individual evolved when
Metropolis approach was used. It can be seen that there are significantly less big fitness drops
and that the plateaus are shorter. And indeed, this approach succeeded in helping find better
solutions in the first 15k iterations than the HereBoy approach did (Figure 3.18a and Figure
3.18b).

3.3.2.3 Multiple restarts

It was observed that sometimes, for some datasets, after the poorer solution has been selected,
the evolutionary process never succeeds in bringing the fitness back to the levels where it was

53

Hardware Acceleration of Nonincremental Algorithms for the Induction of Decision Trees and Decision Tree Ensembles 54

— Ap=10%
D AF:5%
— AF:].%
) 500 1000 o 0 500 1000
D, D,
(@) ST = 0.05, pg =5 x 107° (b) St = 0.05, po =5 x 1074
— Ap=20%
— Ap=10%
D AF:5%
— Ap=1%
) 500 1000 o 0 500 1000
D, D,
(c) ST =02, py=5x107° (d) St =0.2, pg=5x10"*

Figure 3.19: The simplified version of the probability of accepting a less fit individual of
certain fitness in D, iterations after the advancement in fitness. In each plot, for different
values of St and po, the p.(Ds) function is plotted for an individuals whose fitness is
smaller than that of the current candidate solution by: 1%, 5%, 10%, 20% and 40%.

0.70 .

0.65}
a o 0851
2060 2

0.55 0.80

— Greedy — Greedy
0.50 — Metropolis — Metropolis
0 5k 10K sk 275 5k 10K Tk
iteration iteration
(a) Induction from veh dataset. (b) Induction from ion dataset.

Figure 3.20: Plots of the fitness evolutions during first 15k iterations of the DT induction
from veh and ion datasets, when the Metropolis search probability strategy is used
(green) and when no search probability is used (blue).

54

Hardware Acceleration of Nonincremental Algorithms for the Induction of Decision Trees and Decision Tree Ensembles 55

before. Hence an addition to the search method has been proposed that would prevent the
evolutionary process to explore for too long with individuals with the fitness less then the
current known best fit individual. A parameter called return probability pr was introduced that
determines the probability the evolutionary process has each iteration of returning to the best
known candidate solution.

3.3.2.4 Experiments

The experimental procedure explained in the Section 2.8 was used to discover whether any of
the proposed approaches statistically influences the induced DTs’ fitnesses for the better. The
values of the parameters relevant to the search probability that were used in the experiments
are given in the Table 3.3 for all tested approaches.

Table 3.3: The values of the parameters relevant to the search probability set to the EFTI
algorithm while running the experiments for comparing different search probability approaches

Approach Po St PR
Greedy 0 - -
HereBoy 1x1073 - 0
Metropolis 5x 1075 0.05 0
Metropolis with restarts 5x107° 0.05 1x10°*

The results are given in the Table 3.4, where for each of the discussed approaches, the mean
value of the induced DTs fitness is given together with the 95% confidence intervals, and its
ranking based on the Tukey HSD. The fitness values shown in the results table are not the ones
used during the induction, but are calculated based on the accuracy of the induced DT on the
test set. The results in the first table column, titled Greedy, were obtained without using any
search strategy, i.e. by only ever accepting the solution with higher fitness.

Table 3.4: Average fitness values of the induced DTs using four selection strategies,
together with their 95% confidence intervals and Tukey HSD based rankings

Greedy Hereboy Metropolis Metropolis with
restarts
Dataset Fitness Rank Fitness Rank Fitness Rank Fitness Rank
adult 0.834+0.002 2 |0.837+0.001 1 |0.8334+0.001 2 |0.835+0.001 1
ausc 0.885+0.002 3 10.891+0.002 2 | 0.892+0.002 1 |0.896+0.002 1
bank 0.888 +0.002 3 |0.889+0.001 2 | 0.889+0.001 2 |0.892+0.001 1
be 0.924 +0.006 2 10.935+0.004 1 |0.9334+0.002 1 |0.93940.003 1
bch 0.241+0.001 2 10.24140.001 1 |0.2274+0.001 4 10.2304+0.002 3
bew 0.978 £0.001 2 10.978+0.001 1 |0.9784+0.001 1 |0.978+0.001 1
ca 0.883+0.003 3 | 0.888+0.002 2 | 0.891+0.002 1 |0.89240.002 1
car 0.865+0.005 2 | 0.874+0.003 1 |0.855+0.002 3 |0.868£0.004 1
cmc 0.571+0.007 3 10.596+0.005 2 | 0.59940.004 1 | 0.60640.005 1
ctg 0.761 £0.006 2 | 0.779+0.005 1 |0.776+0.005 1 |0.783+0.006 1
cvf 0.767+0.004 3 10.786+0.003 1 |0.78040.002 2 | 0.790+0.002 1

Continued on next page |

55

Hardware Acceleration of Nonincremental Algorithms for the Induction of Decision Trees and Decision Tree Ensembles 56

Table 3.4 — continued from previous page

Metropolis with

Greedy Hereboy Metropolis
restarts

Dataset Fitness Rank Fitness Rank Fitness Rank Fitness Rank
eb 0.621 +0.007 3 10.635+£0.007 2 10.6364+0.004 2 |0.649+0.006 1
eye 0.61340.005 1]0.602+0.003 2 10.59440.001 3 10.59840.001 2
ger 0.94240.009 2 10.966+0.002 1]0.968+0.001 1 10.96940.002 1
gls 0.79740.007 2 10.827£0.008 1 |0.8184+0.008 1 10.8234+0.010 1
hep 0.906 +0.008 2 10.915+0.005 1]0.9174+0.005 1 [0.923+£0.006 1
hrtc 0.71740.006 2 10.727£0.006 1 |0.7234+0.005 1 10.72940.005 1
hrts 0.8734+0.005 2 10.886+0.004 1 |0.8934+0.003 1 |0.891£0.005 1
ion 0.89940.010 2 10.937+0.004 1]0.9374+0.004 1 10.9374+0.005 1
irs 0.983 +0.004 2 10.987£0.002 1 |0.98740.002 1 |0.987£0.002 1
jvow 0.79940.009 2 10.822+£0.007 1 |0.8354+0.006 1 |0.832+0.007 1
krkopt 0.39940.004 2 10.413£0.006 1 |0.42040.006 1 |0.412£0.006 1
letter 0.591 +0.006 3 10.608+£0.007 2 10.6234+0.005 1]0.61440.009 1
liv 0.76040.005 2 10.761£0.006 1 |0.76240.004 1]0.7664+0.005 1
lym 0.883+0.007 3 10.899+0.008 2 10.909+0.007 1 10.91440.006 1
magic 0.83540.003 2 10.838£0.001 1]0.83240.001 2 10.83940.001 1
msh 0.96040.003 3 10.9744+0.001 2 10.98140.001 1 [0.980£0.002 1
nurse 0.896 +0.009 2 10.90940.004 1]0.91140.001 1 10.91540.002 1
page 0.956 +0.002 3 10.961£0.002 2 10.9624+0.001 2 10.966+0.001 1
pen 0.928 £0.004 3 10.938+£0.003 2 10.94040.002 1 10.94340.003 1
pid 0.790£0.004 2 10.798£0.002 1]0.79940.002 1 |0.801£0.002 1
psd 0.991 +0.005 2 10.999+0.000 1 |0.9984+0.000 1]0.99840.001 1
sb 0.93540.000 2 10.935+0.000 1]0.93540.000 1 |0.935+0.000 1
seg 0.918 +0.006 3 10.932+0.003 2 10.93940.003 1 10.94140.003 1
shuttle | 0.99540.001 2 10.997£0.000 1]0.99640.000 1 10.99740.000 1
sick 0.95240.006 2 10.956+0.007 1]0.9584+0.002 1 10.96240.003 1
son 0.84440.011 3 10.875£0.007 2 10.89440.006 1 |0.8874+0.007 1
spect 0.923+0.004 2 10.928+0.003 1]0.9314+0.003 1 [0.934+0.004 1
spf 0.69740.003 3 10.7084+0.004 1 |0.7074+0.003 2 [0.714£0.004 1
thy 0.953+0.004 3 10.959+0.004 2 10.96440.003 2 10.971+£0.004 1
ttt 0.7334+0.006 3 10.771£0.010 1 |0.7634+0.010 2 |0.786£0.009 1
veh 0.66440.010 3 10.704£0.008 2 10.72440.008 1 [0.730£0.010 1
vene 0.93540.002 2 10.937+£0.002 1]0.9374+0.002 1 |0.937£0.002 1
vote 0.9574+0.005 2 10.968+0.003 1]0.96840.002 1 [0.972£0.002 1
VOW 0.7054+0.010 2 10.731£0.009 1 |0.7334+0.007 1 10.72440.012 1
w21 0.85940.004 2 10.865+0.002 1]0.85940.001 2 |0.863£0.002 1
w40 0.839+0.004 3 10.843+0.003 2 10.8384+0.002 3 10.850£0.002 1
wir 0.74040.009 2 10.771£0.009 1]0.770£0.011 1 10.7704+0.010 1
wilt 0.94740.001 2 10.946£0.000 1]0.9474+0.001 1 [0.947+0.002 1
wine 0.56740.002 2 10.570£0.002 1]0.56140.001 3 10.567£0.002 2
700 0.97740.006 2 10.981£0.005 1 |0.9774+0.006 1 |0.981£0.005 1
rank 2.33 1.31 1.41 1.08

The results shown in the Table 3.4 clearly indicate that any approach that allows for exploring

the search space via less fit individuals, i.e.

any approach that uses some kind of search
probability is superior than the greedy hill-climbing, which was ranked lowest with average
ranking of 2.33. As for the Hereboy and Metropolis approaches, for some datasets one

56

Hardware Acceleration of Nonincremental Algorithms for the Induction of Decision Trees and Decision Tree Ensembles 57

generated better results and for the others the other one did. However, for vast majority of
the datasets used, the best results were obtained by using the Metropolis with multiple restarts
that yielded average ranking of 1.08, hence this technique was finally implemented into the
EFTI algorithm.

3.3.2.5 Search probability implementation in EFT/

Metropolis with multiple restarts approach was implemented for the selection procedure, since
it was shown in Section 3.3.2.4 to yield the best results among proposed solutions. A new
variable dt_best needed to be included into the efti () function to store the best solution
found so far, because when selecting less fit individuals is allowed, the current solution
candidate dt might not be in the same time the best solution overall. The new pseudo-code for
the efti () function is given in the Algorithm 3.6.

Algorithm 3.6: The pseudo-code of the efti () function of the EFTI algorithm when
using Metropolis with multiple restarts

def efti(train_set, max_iter):
dt_best = dt = initialize(train_set)
fitness_eval (dt, train_set)

for iter in range (max_iter):
dt_mut = mutate (dt)
fitness_eval (dt_mut, train_set)

dt, dt_best = select (dt, dt_mut, dt_best)

return dt_best

Within the select () function, the logic for selecting the less fit individual and returning to
the best solution need to be implemented, as shown in the Figure 3.7. When the evolution finds
a solution better then the current candidate, the selection procedure will also check if it is the
overall best, and if so, store it inside dt__best variable. On the other hand, if mutation did not
advance the fitness, the stagnation duration will be increased and the search probability will
be calculated based on it using the Metropolis criterion. A chance will be than given to the
selection procedure to terminate the search and return to the best solution overall. Otherwise,
the less fit dt_mut individual might get selected at random with the current value of search
probability.

Algorithm 3.7: The pseudo-code of the select () function of the EFTI algorithm when
using Metropolis with multiple restarts

def select (dt, dt_mut, dt_best):
if dt_mut.fit > dt.fit:
stagnation_duration = 0
dt = dt_mut

if dt_mut.fit > dt_best.fit:
dt_best = dt_mut

57

Hardware Acceleration of Nonincremental Algorithms for the Induction of Decision Trees and Decision Tree Ensembles 58

else:
stagnation_duration += 1
diff = (dt.fit - dt_mut.fit)/dt.fit
search_probability = stagnation_duration x rho_0 * \
exp (-diff/S_T);
if random() < restart_probability:

stagnation_duration = 0
dt = dt_best
elif random() < search_probability:

dt = dt_mut

return dt, dt_best

3.3.3 Partial reclassification

As it was already discussed in the Section 3.2.1, the DT mutations alter only a small portion
of the DT individual in each iteration, hence only the classification of the instances on whose
traversal paths the mutated nodes happen to reside, will be affected by the mutation. Therefore
the majority of instances will travel along identical paths from iteration to iteration, meaning
that all related computations will remain the same. Recomputation is thus only necessary for the
instances whose paths contain a mutated node. Please also notice that even when the mutated
node test coefficients change, only the elements of the vector scalar product sum (given in
the equation (1)) that correspond to the mutated coefficients must be recomputed, while the
computation of all other elements can be skipped.

Therefore, the traversal paths could be memorized for the candidate DT individual in order
to avoid unnecessary recalculations of the node tests during the classification of the mutated
DT individual, for the instances whose paths do not cross the mutated nodes. Each instance
could start the DT traversal by following its memorized path from the candidate DT individual
classification, and checking whether it will encounter any of the mutated nodes while traversing
the DT. While no mutated nodes are encountered, no test recalculations need to be executed
and the instance moves through the DT as dictated by the path stored in the memory. When
the instance encounters a mutated node, its path in the mutated DT might diverge from its
memorized path. If the topological mutation produced the changes in the encountered node,
where either a new node was added in the place of a leaf (see Figure 3.9 for an example) or
the node was removed and a different one took its place (see Figure 3.10 for an example), the
sub-tree which the instance has reached has changed, and the rest of the traversal path needs
to recomputed. If the instance encounters a node with only some of its coefficients w mutated,
the dot product of the mutated node test (w™"* - x), can be calculated based on the dot product
of the original node test (w - x) in the following way:

Wmut -X:W'X‘i‘Z(wlmm —wi)xi, (13)
€M

where M is the set of indices of all the mutated coefficients in that node. Furthermore, the
mutation on the encountered node may not be strong enough to deflect the instance from its
previous path. Hence, the outcome of the mutated node test is monitored whether it will align
with the stored path, in which case the instance has not diverged and the instance can continue

58

Hardware Acceleration of Nonincremental Algorithms for the Induction of Decision Trees and Decision Tree Ensembles 59

following the memorized path. Otherwise, the instance entered a new DT sub-tree and all
subsequent node tests need to be recalculated.

In the case the mutated individual is selected for the new candidate solution, the paths which
have diverged in the classification run need to be updated to the memory. One possible way
to implement this is to keep track of each deviation from the memorized paths during the
classification run for the mutated DT individual, and apply all these changes to the stored
traversal paths if the individual is selected for the new candidate solution. However, a different
method that takes advantage of the fact that usually less than 1% of the mutated individuals
get selected, proved to be more efficient with respect to both execution time and the memory
resource consumption. In this approach, the EFTI algorithm does not keep track of the
deviations from the memorized paths in each classification run of a mutated DT, which in
turn saves on memory access time and on the memory space for tracking the changes. Only
once a mutated DT has been selected for the new candidate solution, is the classification rerun
with the instructions to change the stored traversal paths in the memory where needed.

The proposed partial reclassification algorithm has an additional performance issue with the
small DT individuals. If the DT individual is only one or two levels deep, there is very
large probability that many of the instance paths will be affected by the mutation, and the
time consumption overhead of the partial reclassification exceeds its benefits. The EFTI
algorithm implements a strategy to turn the partial reclassification off when it operates with
small individuals.

Algorithm 3.8: The modified find _dt_leaf for_inst () function that implements
the partial reclassification method

def find dt_leaf for_inst(dt, instance, store_paths, recalc_all):

path_diverged = recalc_all
cur_node = dt.root

while not cur_node.is_leaf:
1f the memorized path is still followed
if not path_diverged:
have we crossed the topologicaly mutated node
if dt.is_topo_mutated(cur_node) :
psum = dot_product (instance.x, cur_node.w)
path_diverged = True
or only coefficients have mutated
elif dt.is_coeff mutated(cur_node) :
get stored dot product and apply the changes
psum = get_stored_psum(instance, cur_node)
for i in dt.mutated_coeff index (cur_node) :

psum += (cur_node.w[i] — cur_node.w_orig[i]) \

]
* instance.x[1]

path_diverged = True
else, path has diverged and no testing for crossing
mutated nodes 1is needed
else:
psum = dot_product (instance.x, cur_node.w)

59

Hardware Acceleration of Nonincremental Algorithms for the Induction of Decision Trees and Decision Tree Ensembles 60

still have not diverged, look-up the stored next node
if not path_diverged:
cur_node = get_stored_next_node (instance, cur_node)
path has diverged and the node test needs to be performed

else:
if psum < cur_node.thr:
cur_node = cur_node.left
else:
cur_node = cur_node.right

has the instance stayed on the path in spite mutation
if cur_node == get_stored_next_node(instance, cur_node):
path_diverged = False

should the path be memorized
if store_paths:

store_node_to_path(instance, cur_node, psum)

return cur_node

The pseudo-code in the Algorithm 3.8 describes the implementation of the partial
reclassification method within find_dt_leaf_ for_inst () function (the original
implementation is given by the Algorithm 3.4). If the partial reclassification
is turned off by EFTI algorithm (by passing the value True for the argument
recalc_all), the paths of all the training set instances will be immediately
considered to have diverged from the stored paths, and the partial classification
algorithm will not be used, making the classification procedure effectively same as
the original one. Otherwise, the classification for an instance (variable instance)
starts by following the stored path (path_diverged = recalc_all = False)
from the root node (cur_node = dt.root). The path is followed one node at
a time (cur_node = get_stored_next_node (instance, cur_node)),
in order to look out for mutated nodes along its length, by using the functions
dt.is_topo_mutated(cur_node) and dt.is_coeff_mutated (cur_node),
which signal, respectively, if the current node was mutated via topological mutation or only
its test coefficients were mutated. If it was changed by a topological mutation, the instance
is facing completely different node, hence the dot product is calculated a new. On the other
hand if the current node’s test coefficients were mutated, the dot product is reconstructed
from the stored value (retrieved via get_stored_psum(instance, cur_node)),
using the equation (13). In both cases, it is considered that the instance has diverged from
the memorized path: path_diverged = True. The rest of the node test is carried out
by comparing the dot product with the threshold to obtain the next node in the path, and if
that node corresponds to the next node in the stored path, instance can safely go back to
following it (once again path_diverged = False). Finally, in order not to update the
memorized paths in each classification run, the argument store_paths is used to signal to
find_dt_leaf for_inst () function whether the mutated DT individual has become
the new candidate solution and the updates to the memory should take place.

In the Table 3.6 the results of an experiment are shown that tests the performance benefits

60

Hardware Acceleration of Nonincremental Algorithms for the Induction of Decision Trees and Decision Tree Ensembles 61

of utilizing the partial reclassification procedure, obtained by the cross-validation procedure
explained in the Section 2.8 and the set of parameters listed in the Table 3.5. The results
show that the partial reclassification really shortens the execution time, but that the induction
speedups differ between the datasets, and depend on the size of the induced DTs, as was
expected and already discussed in this section.

Table 3.5: The parameter set used for the EFTI algorithm in the partial reclassification
comparison experiments

max_1iter K, «Q I} Po St PR

500k 0.01 1 0.6 5% 1075 0.05 1x107*

Table 3.6: The results of the experiments testing the benefits on the EFTI algorithm induction

times of using the partial reclassification procedure

Dataset Original Partial Dataset Original Partial
reclassification reclassification

adult 387.34 + 08.90 221.53 & 05.75 | msh 102.89 £ 09.77 68.49 £ 04.10
ausc 4.49 £ 00.08 4.37 £ 00.21 | nurse 164.04 £+ 08.15 112.53 £ 02.25
bank 619.58 +07.99 311.70 £ 03.34 | page 47.24 + 03.04 36.59 = 01.61
bc 3.95 4+ 00.19 4.25 4+ 00.11 | pen 345.05 + 11.57 140.94 + 02.01
bch 378.48 +13.19 115.62 £ 01.24 | pid 4.10 £ 00.27 4.48 + 00.31
bew 3.06 = 00.02 3.35+ 00.05 | psd 10.08 £ 00.25 8.55 + 00.18
ca 4.92 £00.17 4.45 £ 00.05 | sb 15.51 £ 00.03 16.10 £ 00.31
car 16.01 £ 00.56 14.37 £ 00.40 | seg 57.50 £ 01.75 29.58 £ 00.62
cmc 16.26 £ 00.69 11.93 £ 00.29 | shuttle 1015.40 + 60.03 841.89 4+ 22.17
ctg 69.02 + 02.47 27.36 & 00.64 | sick 31.03 £01.17 31.72 £01.23
cvf 177.57 £ 08.23 110.56 £+ 02.76 | son 4.90 £+ 00.19 2.74 £ 00.16
eb 1277.34 + 92.67 737.24 + 09.88 | spect 2.44 +00.17 1.85 £ 00.10
eye 94.41 £+ 07.99 96.22 4+ 05.96 | spf 61.75 £ 01.89 25.95 + 00.45
ger 10.04 £ 00.44 8.16 £ 00.68 | thy 35.77 £ 04.50 28.16 = 00.91
gls 3.98 & 00.16 2.24 +00.07 | ttt 6.31 +00.41 6.39 &+ 00.32
hep 1.63 +£00.14 1.29 £ 00.07 | veh 17.16 £ 00.43 9.87 £00.18
hrtc 5.20 &£ 00.21 2.69 4+ 00.08 | vene 1.52 £ 00.08 2.01 +=00.05
hrts 2.22 4+ 00.10 1.82 4+ 00.12 | vote 3.18 £00.19 2.97 £ 00.10
ion 6.11 £ 00.23 3.19 £ 00.16 | vow 24.08 = 00.63 12.32 £ 00.27
irs 0.90 £ 00.06 0.98 £ 00.05 | w21 69.10 £ 01.95 47.53 +£01.34
jvow 116.28 £ 03.74 119.40 £ 02.90 | w40 77.83 £ 02.20 54.74 + 01.06
krkopt 872.29 + 22.69 349.76 + 11.05 | wir 125.74 £+ 06.41 62.95 £ 01.00
letter 970.96 + 35.99 355.80 £ 07.50 | wilt 20.72 £ 00.22 20.69 + 00.44
liv 2.07 £00.11 2.26 4+ 00.08 | wine 75.33 +03.29 46.12 £ 01.26
lym 3.01 £00.13 1.77 £ 00.05 | zoo 2.01 +00.08 1.31 £ 00.03
magic 117.75 £ 03.67 117.77 + 02.44

61

Hardware Acceleration of Nonincremental Algorithms for the Induction of Decision Trees and Decision Tree Ensembles 62

3.4 Complexity of the EFTI algorithm

The computational complexity of the EFTI algorithm can be calculated by following its
pseudo-code. The computational complexity is given here in the big O notation, i.e. the
worst-case complexity will be calculated. Since the individual selection is performed in
constant time it can be omitted, and the total complexity can be computed as:

T(EFTI) =max_iter - (O(mutate) + O(fitness_eval)) (14)

The number of leaves, V;, in binary DT is always by 1 larger then the number of non-leaf
nodes. If n represents the number of non-leaf nodes in the DT, then:

Ny=n+1 (15)
In the worst case, the depth of the DT equals the number of non-leaf nodes, hence:
D=N, -1 (16)

Each iteration « coefficients are mutated, so the complexity of mutating coefficients is constant:

T(coefficient mutation)= O(1) (17)

The topology can be mutated by either adding or removing the node from the DT. When the
node is removed, only a pointer to the removed child is altered so the complexity is:

T(node removal)=0(1) (18)

When the node is added, the new set of node test coefficients needs to be calculated. hence the
complexity is:

T(node addition) = O(N,) (19)
Hence, the complexity of the whole DT Mutation task sums to:
T(mutation) = O(N,) (20)

Once the number of hits is determined, the fitness can be calculated in constant time O(1),
hence the complexity of the whole fitness_eval () function is:

T(fitness_eval) = N;-O(find_dt_leaf_ for_inst)+ O(N;- N.) + O(1) (21)

where N; is the number of instances in the training set and N is the total number of classes in
the classification problem, and O(XN; - N,) is for the dominant class calculation for each leaf.
As forthe find_dt_leaf_ for_inst () function, the complexity can be calculated as:

T(find_dt_leaf_ for_inst) = D-O(dot_product), (22)
and the complexity of the node test evaluation is:

T(dot_product) = O(N,) (23)

62

Hardware Acceleration of Nonincremental Algorithms for the Induction of Decision Trees and Decision Tree Ensembles 63

By inserting the equation (23) into the equation (22), and then both of them into the equation
(21), we obtain the complexity for the fitness_eval () function:

T(fitness_eval)=O(N;-D-Ns+ N;-N,) (24)

By inserting the equations (24), (20), (15) and (16) into the equation (14), we obtain the total
complexity of the EFTI algorithm:

T(EFTI)=max_iter - (N;-N;- Na+ N;- N.+ Ny) (25)

Since Ny < N; - N; - N4 the mutation insignificantly influences the complexity and can be
disregarded. We finally obtain that the complexity of the EFTI algorithm is dominated by the
fitness evaluation task complexity, and sums up to:

T(EFTI) = O(max_iter - (N;-N;- Na+ Ny - N.)) (26)

3.5 Experiments

In this section, the results of the experiments are presented, that were conducted in order to
compare the EFTI algorithm to the existing solutions. The algorithms listed in the Table
3.7, available in open literature, were used for the comparison. The experimental procedure
explained in the Section 2.8 was used to compare the quality of the induced DTs, in terms of
their sizes and accuracies. For the incremental DT inference algorithms, a pruning set was
created and the induced DTs were pruned after the induction. For the algorithms: CART-LC,
OC1, OC1-AP, OC1-ES and OC1-SA, the default value of 10% randomly selected training set
instances were used to form a pruning set, and the Error-Complexity pruning algorithm was
used. For the NODT algorithm, the pruning was performed in the manner described in the
original publication /32/, where a specific pruning algorithm is described and pruning set is
created by taking 30% of the training set instances selected at random.

63

Hardware Acceleration of Nonincremental Algorithms for the Induction of Decision Trees and Decision Tree Ensembles 64

Table 3.7: The list of the existing algorithms used for the comparison with the proposed EFTI
algorithm

Short Name Description
Name
CART-LC The Classification and an incremental deterministic algorithm for
Regression Tree with oblique DT induction. For its implementation,
Linear Combinations the description provided in /23] was used as a
reference.
OCl1 Oblique Classifier an incremental randomized algorithm for
oblique DT induction,
OCI1-AP Oblique Classifier - the OC1 algorithm limited to inducing only
Axis-Parallel axis-parallel tests,
OCI1-ES Oblique Classifier - an extension to OC1 that uses ES to optimize
Evolutionary Strategy the oblique hyperplanes,
OC1-SA Oblique Classifier - an extension to OC1 that uses simulated
Simulated Annealing annealing to optimize the oblique hyperplanes,
NODT HereBoy Decision Tree an incremental randomized algorithm for
induction oblique DT induction, that uses HereBoy /76]
for the hyperplane optimization process.
GaTree Genetic Algorithm decision a nonincremental (full tree) DT induction
Tree induction algorithm based on genetic algorithms.
GALE Genetic and Artificial Life a nonincremental (full tree) DT induction
Environment algorithm based on the cellular automata and

the Pittsburgh approach /35].

The software implementation of the EFTI algorithm was developed in C, using many
optimization techniques in order to maximize its performance regarding the induction speed:

* The node test coefficients are represented in fixed point and all dot product arithmetic
operations are performed on 64-bit operands only (optimized for the 64-bit CPU).

* The dot product calculation loop is unfolded for all supported N4 values.

* To save on copying the DT individuals, the current candidate solution (dt) and the
mutated individual (dt_mut) are represented by a single DT in memory. Hence, the
mutations are applied directly to the candidate solution. If the mutated solution gets
rejected by the select () function, the mutations are undone, which since they are
sparse is more efficient than copying the whole DT to create a mutated individual. On
the other hand if the mutated solution is selected, no actions are needed since the mutated
solution is at the same time the candidate solution.

* Special case was introduced for traversing the DT which contains only the root node. The
find_dt_leaf_for_inst () function contains a lot of programming structures for
iterating through the DT and also for deciding whether memorized traversal paths can be
reused or not, which is all superfluous for a simple case of one node DT.

64

Hardware Acceleration of Nonincremental Algorithms for the Induction of Decision Trees and Decision Tree Ensembles 65

* The maximum compiler optimization settings for speed were used.

The software implementation of the EFTI algorithm was compiled using the GCC 5.4.1
compiler, and all the experiments were executed on a PC with 64-bit, 4-core, Intel 15-2500K
CPU operating at approximately 3.5GHz, with 8GB or RAM, running Ubuntu 16.04 operating
system. GALE software, written in java, was run on OpenJDK 1.8, and GaTree, written for
Windows OS, was run using Wine 1.6.2 .

3.5.1 Dependence on the number of iterations

First, the results are presented for the set of the experiments that test the dependency of the
inferred DT quality to the number of iterations the EF7I algorithm was run. The induced DT
accuracies and sizes are shown in the Table 3.8 and Table 3.9 respectively, for different number
of iterations. The same results are also presented in series of plots in the Figure 3.21 and Figure
3.22. In these figures, the plots are organized in pairs, where each pair consists of the accuracy
and size plots for the same five algorithms displayed in juxtaposition. Please notice that the
x-axis, corresponding to the number of iterations, is given in logarithmic scale. Please also
notice that the ranges for the y-axis, be it for the accuracy or the size plots, vary from plot to
plot and depend on which datasets were used for the induction.

Table 3.8: The average fitness values for the DTs induced using different number of
iterations

Dataset | 1k 2k 5k 10k 20k 50k 100k 200k 500k 1000k

adult 80.52 8150 81.81 8225 8250 83.01 8322 8348 83.63 83.85
ausc 8722 87.64 87.77 8790 8828 88.99 88.60 89.15 89.77 89.92
bank 88.30 88.34 8832 8833 8842 88.57 8855 8874 89.25 89.38
bc 88.16 89.90 90.48 9094 9193 9325 9251 94.00 94.77 95.16
bch 716 759 970 15.19 21.10 22.73 2557 26.19 24.89 25.58
bew 9749 9753 97.60 9771 9773 9777 97.68 9793 9794 97.96
ca 86.72 87.55 87.66 87.69 88.15 88.85 8856 8§9.00 89.46 89.51
car 77.61 7878 81.11 82.66 84.02 8530 8595 8756 8&7.71 88.60
cme 51.54 53.13 53.67 5480 55.03 5752 5674 59.02 6120 61.29
ctg 59.38 64.44 70.04 7258 7423 7521 7655 7791 79.00 79.53
cvf 6796 69.79 7252 7T74.08 7481 76.89 7626 78.22 79.06 79.40
eb 14.65 19.26 3295 41.00 48.13 5353 59.02 6329 6513 65.54
eye 57.74 58.16 58.30 5855 5893 5928 60.00 59.74 60.16 60.34
ger 88.50 90.21 91.88 9228 92.84 9570 9399 95.62 97.08 97.40
gls 72.30 7359 7822 79.08 79.36 82.07 81.85 83.85 8495 8591
hep 87.43 88.67 89.11 89.57 8996 9120 91.12 9218 93.26 93.70
hrtc 66.56 68.16 69.58 70.17 7131 7215 7339 7490 7477 75.62
hrts 84.84 8575 8641 87.11 87.13 88.59 87.82 89.11 89.63 90.01
ion 87.05 8830 88.71 90.18 90.85 93.14 9223 9347 9460 95.13
irs 96.96 97.17 9744 97779 98.13 9829 9827 98.56 98.83 98.56
jvow 5746 65770 70.87 7335 75.14 78.13 79.10 82.19 84.05 85.73
krkopt 26.05 2932 3366 36.18 37.66 39.03 40.09 4191 4240 4293
letter 1722 27.69 44.63 5036 53.60 56.73 60.66 62.62 63.38 64.08
liv 66.43 6877 7026 71.88 72.65 7597 7539 77.01 77.86 78.59
lym 84.16 86.57 8749 88.57 89.08 90.76 90.86 91.81 93.05 93.62
magic 80.58 80.87 80.87 8132 82.00 82.63 8324 83.79 84.09 84.19
msh 91.78 93.40 94.86 9561 96.10 9773 97.56 9798 98.71 98.79
nurse 7471 7896 8250 83.85 86.33 8935 8819 90.83 91.60 92.03
page 93.44 94.09 9456 9482 95.03 9574 9539 96.15 96.66 96.92
pen 78.14 84.14 8796 89.95 9135 92.61 9325 9489 9523 9557
pid 77.10 7724 77.83 7857 78.83 79.61 79.53 79.99 80.51 80.85
psd 09325 9448 95.68 97.00 9742 9932 9836 99.41 99.80 99.84

\ Continued on next page|

65

Hardware Acceleration of Nonincremental Algorithms for the Induction of Decision Trees and Decision Tree Ensembles 66

Table 3.8 — continued from previous page
Dataset | 1k 2k 5k 10k 20k 50k 100k 200k 500k 1000k

sb 9342 9342 9344 9343 9343 9346 9346 93.48 9352 93.54
seg 81.34 84.17 87.74 8932 90.80 9240 9227 9358 94.69 95.13
shuttle 9742 97.61 9849 98.65 98.99 9935 9928 99.56 99.69 99.72
sick 94.02 9395 94.06 94.01 9430 9438 9429 9471 9642 96.98
son 78.58 80.52 8240 81.92 8329 8754 8598 88.67 90.37 90.90
spect 89.27 90.02 90.53 91.22 91.10 92.71 9246 92.88 93.64 94.32
spf 61.38 6339 6587 6749 68.10 6945 7046 72.07 7241 73.11
thy 93.05 9370 94.04 9458 9478 9544 95.12 96.01 97.10 97.54
ttt 69.61 70.10 71.33 72.05 73.10 7479 7413 7580 80.15 79.20
veh 58.17 5955 6295 62774 6503 67.65 6585 6997 7441 7534
vene 9245 9265 9276 9323 93.15 93.65 93.61 9396 94.16 94.36
vote 93.05 9352 9375 9457 9445 9635 9547 96.77 9749 97.59
VOW 4724 57776 6478 69.22 7046 7226 7436 76.28 77.29 78.21
w2l 81.83 8252 8335 8375 8430 8520 8536 86.56 86.48 86.88
w40 76.83 7852 79.29 7991 80.89 82.69 8255 8437 8525 85.80
wir 6245 6572 6891 71.17 7233 7411 7403 7688 7828 79.95
wilt 94.61 94.61 94.61 94.61 94.61 94.61 9477 94.65 94.70 94.79
wine 5225 5337 5427 5480 55.02 55.61 56.04 56.84 56.85 57.14
700 9453 97.03 98.18 9750 97.94 9814 9790 9754 98.06 98.42

Table 3.9: The average sizes of the DTs induced using different number of iterations

Dataset | 1k 2k 5k 10k 20k 50k 100k 200k 500k 1000k

adult 268 268 284 280 268 236 288 272 264 280
ausc 300 312 316 340 320 284 324 324 296 296
bank 200 2.04 200 200 200 204 208 208 216 228
bc 428 452 496 540 556 500 580 580 584 584
bch 328 420 22.04 9440 213.76 208.56 246.04 251.40 225.00 238.56
bcw 212 228 212 232 232 212 228 248 240 236
ca 308 356 340 328 352 300 3,60 336 3.04 3.00
car 544 640 640 696 740 676 840 828 792 7.88
cme 568 620 636 672 672 616 756 680 580 6.36
ctg 16.00 1828 20.80 23.20 2292 1872 24.88 2280 18.88 19.76
cvf 804 936 980 1036 1048 7.72 11.68 848 792 8.28
eb 6.72 18.20 45.28 5856 6732 58.84 73.48 5592 5028 5348
eye 3.16 324 3.08 324 332 316 352 340 344 340
ger 356 3.68 344 3,60 352 284 364 312 268 268
gls 12.32 1264 16.76 1692 17.56 1620 17.76 17.40 16.60 16.60
hep 404 416 416 432 440 396 440 424 400 4.00
hrtc 10.92 12.00 1240 1256 13.80 1220 15.12 1440 12.88 13.24
hrts 356 376 384 344 388 320 420 380 340 348
ion 476 480 496 500 524 404 508 512 383 3.84
irs 356 364 384 368 416 344 376 348 372 372
jvow 17.88 2136 2240 2436 2448 1980 2572 2052 17.88 17.24
krkopt 1548 29.00 40.24 45.68 49.08 4520 53.84 4980 47.80 48.96
letter 744 2892 63.16 7252 8248 7496 8632 76.64 7T1.36 75.32
liv 384 424 456 456 464 432 508 456 452 444
lym 748 9.08 1044 1064 10.76 9.16 10.88 10.80 920 9.52
magic 3.04 312 300 3.00 308 3.00 304 300 300 3.00
msh 392 396 432 432 456 380 460 444 3.60 352
nurse 704 792 800 800 816 620 828 696 628 640
page 532 576 628 640 660 6.08 648 652 6.16 6.16
pen 20.04 22.64 23.00 24.08 24.08 2024 2400 20.60 1948 19.56
pid 328 364 372 356 360 332 400 348 336 340
psd 292 312 292 280 264 216 280 228 200 204
sb 200 200 200 200 200 200 200 200 200 2.00
seg 1292 14.08 14.88 1584 1592 1288 16.72 14776 1256 12.32
shuttle 748 764 756 748 764 748 792 7.68 724 748

Continued on next page|

66

Hardware Acceleration of Nonincremental Algorithms for the Induction of Decision Trees and Decision Tree Ensembles 67

Table 3.9 — continued from previous page
Dataset | 1k 2k 5k 10k 20k 50k 100k 200k 500k 1000k

sick 208 204 208 208 220 224 212 228 288 3.04
son 492 488 532 584 572 468 584 568 464 4.60
spect 312 328 340 332 352 3.00 3.88 380 3.04 3.08
spf 1212 1340 15.80 16.28 17.00 14.84 18.64 16.88 15.00 16.12
thy 4.04 424 424 432 464 424 492 452 432 440
ttt 328 356 372 408 444 400 448 428 476 440
veh 948 1036 10.80 11.28 1148 952 11.80 11.20 932 936
vene 428 468 468 492 484 476 488 496 496 484
vote 304 332 336 336 344 3.04 348 324 300 3.00
VOW 25.32 3156 37.68 4020 41.52 38.00 43.00 41.00 38.56 39.44
w21 528 524 544 560 532 452 528 452 432 408
w40 572 560 564 592 584 464 592 468 436 428
wir 7.68 868 9.60 1020 1056 876 1092 10.00 896 9.04
wilt 200 2.00 200 2,00 200 200 204 204 204 208
wine 836 8.88 10.08 11.52 1140 976 1224 1132 10.80 11.56
Z00 1044 1064 1096 11.68 10.52 860 10.68 972 7.16 7.08

It can be seen from the results that indeed the more iterations are at disposal, the more accurate
the DT solutions become. However, after a certain point, which is different for different
datasets, the EFTI algorithm is unable to improve on the solution significantly when more
iterations are given for the induction. Usually, at around 500k iterations, all advancements
in the quality of induced DT individuals have stopped for the vast majority of the datasets.
Furthermore, for some datasets like bank, bcw, ca, irs and wilt, even a 1000 iterations
were enough to find a decent solution.

3.5.2 Equitemporal comparison with the existing solutions

This section presents the results of comparison of the quality between DTs induced by the
existing algorithms from the Table 3.7, and DTs induced by the EFTI algorithm in the same
amount of time. Each subsection is devoted to comparison of the EFTT algorithm to one of the
existing solutions, which was performed by first letting the other algorithm induce the DTs in a
five 5-fold cross-validations on all datasets from the Table 2.1, while measuring the induction
times. The average induction times were then calculated for each of the dataset, and EFTI was
then let to perform same five 5-fold cross-validations but constrained per dataset to running
only the amount of time that the other algorithm needed on average for the same dataset. For
each comparison, two tables were generated: one showing the average induction times per
dataset for the algorithm EFTI is being compared to, and the other showing the comparison per
dataset between the average induced DT accuracies, sizes and fitnesses. The DT fitness used
for this comparison is not the same fitness used during the induction by the EFTI algorithm,
but is recalculated after the induction from the induced DTs’ size and the accuracy attained
on the test set using the equation (7). The backgrounds of cells in the comparison table are
colored in shades of red and blue. The better the performance regarding certain feature (either
accuracy, size or fitness), of EFTI in comparison to the other algorithm on certain dataset, the
darker shade of blue is used. On the other hand if the EFTI algorithm performed worse, the
worse its performance the darker the shade of red is used as the cell background. The average
data in both tables are supplied with their 95% confidence intervals.

The Table 3.10 shows two sets of the EFTI algorithm parameters that were used in the
experiments. The “High accuracy” set was used for the comparison with incremental

67

Hardware Acceleration of Nonincremental Algorithms for the Induction of Decision Trees and Decision Tree Ensembles 68

4.0 100
3.5
95
3.0 = ger = ger
e gick 90 wer gick
i ca - i ca &
25 = VOte \lw\\v\\v\\\\\l\\lwummmnummmu\\v\\\vl\\\mm\\\\\\\\\\\\”\mm\mm“”H”m””“\m”mm — VOte
uu"---lll'-.-..,.-“‘ e wilt . e wilt
2.0 Bessgpypuuuunnsnnnnnus? esnnSEEEEREREEREEEERENETS 85
103 104 10° 10° 103 104 10° 10°
(a) DT size: ger, sick, ca, vote, wilt (b) DT acc: ger, sick, ca, vote, wilt
5 100

PR LTI
uu-l-\“'“E\m\H\H\ Wy

Y,
.m‘\“‘\ Trggpunnnt

L]
“I‘.."E\\‘\l\“l““ill
4 . aw
f a R
I R

v, 0
et Tag,et
st IS
punuunt

3 .
TITY W et
T g)

I =N ot

W .
s Kl
Y

pan
aan
aa

an

= bcw /| 95 e e |
e rs . l\i\\;\“_‘_..- . e rs
34 w msh W o w msh
— psd o — psd
v thy = we thy
2 ~ 90 —
103 104 10° 10° 103 104 10° 10°
(c) DT size: bew, irs, msh, psd, thy (d) DT acc: bew, irs, msh, psd, thy
5 95

T \\\\\\\\\\mrrrrrHrHHHrHu,,,,mH” == QUSC |[s = JUSC
\\\\\\\\\‘\ = s pank . s bank
3 [T of - ™ 85 hest e CQ
— hep — hep
we fhrts
2 FPTTT I T T T ssssEEEEEERERERRRNEEES 80
103 104 10° 10® 103 10* 10° 10°
(e) DT size: ausc, bank, ca, hep, hrts (f) DT acc: ausc, bank, ca, hep, hrts
6 ey 100
5 . ."'lo"
95

Y o
.

4 — jOn . — ON
i, FTTTIN o) ,.\.\.\-m\l\‘\“‘\“"‘"“‘:‘ s Sh
\m\\m\m\m\u\vl\v\mI\H\m\u\m\nmmuwmmm\\\\‘\ ”///////,//W”” o - spect N 90 “\““:‘N“\“l" w spect
3 2 — thy Ls* — thy
LTI ool
2 85
103 104 10° 10° 103 104 10° 10°
(g) DT size: ion, sb, spect, thy, bc (h) DT acc: ion, sb, spect, thy, bc
10 95
8 90
6 = S0N 85 = son |
e W21 e W21 !
won adult win adult
4 — car || 80 = car
[AMARMARLEELLLE S oesase s ASLEARY ***2 MAQIC s s magic
2 I 7 5
103 104 10° 10® 103 104 10° 10°
(i) DT size: son, w21, adult, car, magic () DT acc: son, w21, adult, car, magic

Figure 3.21: Dependency of the induced DT sizes and accuracies on the number of
iterations the EFTI algorithm was run. Datasets 1-25.

68

Hardware Acceleration of Nonincremental Algorithms for the Induction of Decision Trees and Decision Tree Ensembles 69

20

0

wensey,
sannunt® a

R ",

v,
I,
\\mm\m“ “,

15

"
\\\\\\\\\\\‘“

hunanns

“,
2

S/V

103 104 10°

\d
&
e
.
\d

shuttle
seg
page
gls

10

10°

(a) DT size: zoo, shuttle, seg, page, gls
30

ue
wnn A
FRSTELLLLE Loty

20 - -ul“‘l‘
10
— ~—T
—

0
103

10* 10°

(c) DT size: nurse, pen, pid, w40, ctg
30

Ty,
aan i,
2

»
aan)

aan ,
ATIIGIUI .

= iy,
ITTTTI. ““-l-n. — cVf .
I“...uu--nu----u- Tagget R hrtc
10 s jvow |J
m— iV
SRR nann NN EREYE T ey 'S11] ttt -

0
103

10* 10°

(e) DT size: cvf, hrtc, jvow, liv, ttt

40

i
SN
g a o
umm\\m\vl\\”\“\ ”””//l!///”,,, e '”””"””rrumum,mnummmn
o i
=

o

20 wr yeh
i VOW -
IIEHH=IEIIlIII"'"""""'---..,“ul‘"'" = cmC *
e wine =

10* 10° 108

(g) DT size: spf, veh, vow, cmc, wine

300

RTLLLLITN
. .
* RETTPTT LM

100

100

80

60

103

90

s sassaERiRRRRRRRRRRRRRERERRRRRRRNNEAEEETY

|
i

m\m\\m\m\mmwm
i

!
T
it

!

\\\\\\\\\\\\\\\\\\\\\\ — ZOO L
= passtErERany| ne shuttle
.u-u----.-u'“ - seg
== page
hannet® e gls

104 10° 106

(b) DT acc: zoo, shuttle, seg, page, gls

i d
. “l-‘||||llllllllll“"lll — nurse
,“"‘ e pen
“““‘ . pid
ot W40
[TL1] Ctg

104 105 106

(d) DT acc: nurse, pen, pid, w40, ctg

80

70

|
T
mv\\\\\\\\\\m\m\\\\\\\
a

aw

W

o
\mmmynm\mmm\\\

\

AT LLLLLLIU L L

= m— cVf
\\\\\\\\\\“‘“ s Rrte
a i jvow
m— iV
ettt

10* 10° 106

(f) DT acc: cvf, hrtc, jvow, liv, ttt

i
m\m\\l\mvmu\mm\mmm\v
! o

\\
o
RTTI

““‘

i
e
)
I R
gunnt? Yrages

S .t
wﬂ‘ﬂu.....-"‘
L

— Spf =

Taununnn Tosl e yeh ot
pas ARt e\ OW
S m—— cMmC
i wine

104 10° 106

(h) DT acc: spf, veh, vow, cmc, wine

80

60

40

200
~.~
& —_— b
.h. LAY eye
100 .0. o krkopt
~~ = |etter

104

(i) DT size: eb, eye, krkop

10° 10°

t, letter, bch

20

0

= obh
| A e L} eye
envanenasnsrettt o krkopt
RSt m—— |etter
llu""uuu““ s pch

10* 10°

() DT acc: eb, eye, krkopt, le

103

tter, bch

Figure 3.22: Dependency of the induced DTs on the number of iterations the EFTI
algorithm was run. Datasets 25-50.

69

Hardware Acceleration of Nonincremental Algorithms for the Induction of Decision Trees and Decision Tree Ensembles 70

algorithms, since they tend to create larger, but more accurate DTs, and the “High compression”
set was used for the comparison with full DT induction algorithms (namely GaTree and GALE),
since they tend to create smaller, but less accurate DTs.

Table 3.10: Two sets of the parameters set to the EFTI algorithm for the comparison
experiments

Approach \ K, a 5 Po St PR
High accuracy 0.01 1 0.6 5x107° 0.05 1x1074
High compression 0.2 1 0.6 5x107° 0.05 1x1071

3.5.2.1 CART-LC

The following section presents the results of the comparison between the CART-LC algorithm
and the EFTI algorithm with the “High accuracy” parameter set. CART-LC is the quickest
oblique induction algorithm of the ones used in the experiments, and its induction times are
shown in the Table 3.11.

Table 3.11: The average induction times of the CART-LC algorithm per dataset

Dataset Ind. Time [s] Dataset ‘ Ind. Time [s] Dataset Ind. Time [s]

adult 6.14 + 0.28 | hrts 0.01 £ 0.00 | shuttle 2.924+0.18
ausc 0.04 £0.00 | ion 0.03 £ 0.00 | sick 0.31 £0.02
bank 14.03 +0.49 | irs 0.00 £0.00 | son 0.02+£0.00
bc 0.01 £0.00 | jvow 3.03 £ 0.09 | spect 0.01 £0.00
bch 3.46 + 0.11 | krkopt 4.13+£0.14 | spf 0.53 £ 0.02
bcw 0.01 £ 0.00 | letter 9.10 + 0.33 | thy 0.27 £ 0.02
ca 0.04 £0.00 | liv 0.01 £0.00 | ttt 0.04 £0.00
car 0.04 £0.00 | lym 0.01 £0.00 | veh 0.08 £0.01
cme 0.08 £ 0.01 | magic 3.39 + 0.09 | vene 0.00 £ 0.00
ctg 0.45 £ 0.02 | msh 0.59 £ 0.06 | vote 0.01 £0.00
cvf 2.12 £ 0.09 | nurse 0.36 £0.01 | vow 0.10 £0.01
eb 6.94 + 0.11 | page 0.59 £0.04 | w21 1.58 £0.07
eye 2.154+0.10 | pen 2.59+0.13 | w40 2.86 +0.08
ger 0.05£0.01 | pid 0.03 £0.00 | wir 0.99 +£0.04
gls 0.01 £0.00 | psd 0.00 £ 0.00 | wilt 0.16 £0.04
hep 0.01 £0.00 | sb 0.28 £0.04 | wine 0.69 £ 0.02
hrtc 0.02 £0.00 | seg 0.19 £ 0.01 | zoo 0.00 £ 0.00

The results of the comparison experiments are displayed side by side in the Table 3.12. The
results show that, although the EFTI algorithm was not built for time efficiency as its primary
objective, it can still readily compete with a fast algorithm such as CART-LC. There are some
datasets, such as car, ctg, eb, eye, Jvow, krkopt, letter, nurse, psd, seg, vow and

70

Hardware Acceleration of Nonincremental Algorithms for the Induction of Decision Trees and Decision Tree Ensembles 71

wfr, where EFTI significantly underachieved with respect to the DT accuracy. Generally these
are the cases which require big DTs, for which the EFTI algorithm did not have time in this
scenario, or was too constrained by the oversize weight parameter /,. For all other datasets, the
EFTI algorithm managed to either produce smaller DTs, or the DTs with increased accuracy
by paying a small price in the DT size. For the datasets like: adult, bank, cmc, magic,
page, shuttle, sick, spf, ttt, wilt, and wine. EFTI managed to compress the DTs
up to 20 times (40 in the case of wine dataset), compared to the CART-LC, with the loss in
accuracy of only few percent. For the others like ausc, bc, bch, bcw, ca, hrts, 1iv, pid,
w21 and w40, EFTI even succeeded in producing more accurate DTs, with their sizes being
up to 3 times smaller than the DTs induced by the CART-LC. Finally, for some datasets like:
gls, hep, hrtc, irs, 1lym, son, spect and zoo, EFTI created DTs that are 10-20% more
accurate, by paying small price in their size, compared to the CART-LC. There are only four
datasets, for which the EFTI algorithm fitness measure shows poorer combined performance
on both fields of accuracy and size: ger, psd, seg and thy.

Table 3.12: The results of the comparison experiments between the CART-LC algorithm
and the EFT1 algorithm, displayed side by side for different induced DTs’ characteristics:
accuracy, size and fitness

Accuracy Size Fitness
Dataset | CART-LC EFTI CART-LC EFTI CART-LC EFTI

adult 85.48 82.45
ausc 84.58 87.92 41+14 2.9+4+0.1 0.81 +£0.04 0.88 +0.00
bank 89.75 88.36

bc 88.26 89.09 8.7£2.1 4.2+0.3 0.83+0.04 0.89 =+ 0.00
bch 259.3 +£120.4 207.8+7.3

bew 93.23 97.55 3.0+£0.7 2.2+0.2 0.924+0.02 0.98 + 0.00
ca 85.54 87.72 6.1+2.3 3.2+0.3

car

cmc 53.93 53.46

ctg 0.60 £0.11 0.69 + 0.01
cvf 76.03 73.80

eb

eye

ger 95.48 91.16 2.8+0.9 32+03 0.94 +£0.03 0.91+0.01
gls 66.55 74.15 11.4+26 141413 0.65+0.04 0.73+£0.01
hep 25+04 3.9+£0.2 0.77 £0.03 0.88 £ 0.01
hrtc

hrts 76.00 86.50

ion 89.71 90.20 0.87+£0.03 0.89 £0.01
irs 93.57 97.33 0.94 +£0.02 0.97 £ 0.00
jvow

krkopt

letter

Continued on next page

71

Hardware Acceleration of Nonincremental Algorithms for the Induction of Decision Trees and Decision Tree Ensembles 72

Table 3.12 — continued from previous page

Accuracy Size Fitness

Dataset | CART-LC EFTI ‘ CART-LC EFTI CART-LC EFTI

liv 66.38 68.89

lym

magic 86.12 81.20

msh 99.90 94.41

nurse

pen

psd 20400 3.3+04

sb 31+11 2.0+£00 0.91+0.03 0.93 = 0.00

seg 221442 13.7+£0.7 0.88+0.02 0.85 £ 0.01

shuttle 99.96 96.93 0.934+0.01 0.97 = 0.01

sick 97.73 94.03

son 43+14 50+04

spect 82.64 90.15 30£09 31403 0.824+0.03 0.90 = 0.00

spf 7123 66.73

thy 98.85 94.32 0.98+0.01 0.94 = 0.00

tt

veh

vene 90.40 48+17 45403 0.89 +0.03 0.92 = 0.00

vote 284+0.7 32+02 0.93+0.01 0.93 = 0.00

vow 63.6+74 35.7+0.6 0.58 +£0.04 0.58 £ 0.01

w2l

w40

wir 0.67+0.09 0.68 = 0.01

wilt

wine

200 604+06 9.9+08 0.854+0.03 0.94 = 0.01
3.5.2.2 OC1-ES

The following section presents the results of the comparison between the OC1-ES algorithm
and the EFTI algorithm with the “High accuracy” parameter set. The OC1-ES is the second
fastest algorithm among the ones used in the experiments, and needs on average (it varies
with the dataset) twice as much time for the induction as CART-LC, and its induction times
are shown in the Table 3.13. However, for some of the more complex datasets, the average
induction times were similar to the CART-LC’s (jvow, pen, w4 0), and some were even shorter
(bch, letter). OCI-ES was run with the default setting of 1000 iterations per node. Several
experiments were made to test whether higher iteration counts (2000, 5000, 10000 and 50000)
would increase the quality of the solutions, but no benefits were observed over the defaults.

72

Hardware Acceleration of Nonincremental Algorithms for the Induction of Decision Trees and Decision Tree Ensembles 73

Table 3.13: The average induction times of the OC1-ES algorithm per dataset

Dataset Ind. Time [s] Dataset ‘ Ind. Time [s] Dataset Ind. Time [s]

adult 15.28 £0.12 | hrts 0.08 £ 0.01 | shuttle 3.50+0.18
ausc 0.21 £ 0.01 | ion 0.17+£0.02 | sick 0.55 £ 0.02
bank 20.34 £0.30 | irs 0.01 £ 0.00 | son 0.04 £0.00
bc 0.09 £ 0.00 | jvow 3.21 £0.04 | spect 0.06 £0.01
bch 2.55 £ 0.01 | krkopt 10.39 £ 0.06 | spf 0.98 £0.03
bew 0.07 £ 0.00 | letter 7.06 +0.04 | thy 0.35+0.02
ca 0.21 £0.01 | liv 0.11£0.01 | ttt 0.29 £ 0.01
car 0.20 £0.01 | lym 0.05 £ 0.01 | veh 0.35£0.01
cme 0.58 +0.01 | magic 7.56 £ 0.07 | vene 0.03 £0.00
ctg 1.03 £0.02 | msh 0.88 £ 0.06 | vote 0.06 £ 0.00
cvf 3.88 £ 0.05 | nurse 1.43 £0.03 | vow 0.33 £ 0.01
eb 18.24 £ 0.15 | page 0.89 +£0.02 | w21 2.42+0.04
eye 6.30 £ 0.07 | pen 2.59 + 0.06 | w40 3.71+0.09
ger 0.16 £0.01 | pid 0.23 £ 0.01 | wfr 0.86 £ 0.03
gls 0.07 £ 0.00 | psd 0.00 £ 0.00 | wilt 0.26 £ 0.01
hep 0.054+0.01 | sb 0.93 £0.03 | wine 2.36 £0.03
hrtc 0.10 £ 0.01 | seg 0.39 £ 0.01 | zoo 0.02 £0.00

The results of the comparison experiments are displayed side by side in the Table 3.14. The
results show, that OC1-ES has very similar performance with respect to the DT accuracy to the
CART-LC for most of the datasets, with a tendency to induce larger DTs. On the other hand,
the EFTI algorithm managed only slightly to improve on DT accuracy, where it was given
more time. Hence, the discussion about the results from the Section 3.5.2.1, can be applied
almost verbatim to the results from the Table 3.14. The only differences stem from the fact
that OC1-ES produces even larger DTs, hence the compresion ratios of the EFTI algorithm are
even higher. This resulted in EFTI now producing smaller DTs for the datasets: ger, hep,
son and spect as opposed to the comparison results with CART-LC, while still retaining an
advantage in the accuracy, and even increasing it.

Table 3.14: The results of the comparison experiments between the OCI-ES algorihtm
and the EFT1 algorithm, displayed side by side for different induced DTs’ characteristics:
accuracy, size and fitness

Accuracy Size Fitness
Dataset | OC1-ES EFTI OC1-ES EFTI OC1-ES EFTI
adult 85.59 82.77 54.9 £ 16.4 2.44+0.2 —8.35£5.09 0.83 £ 0.00
ausc 85.59 88.56 52429 28£0.2 0.73£0.15 0.88 £0.00
bank 90.10 88.40 75.7+19.8 2.0+0.0 —16.30 £10.19 0.884+0.00
bc 85.09 91.43 13.94+4.0 4.8+0.3 0.65£0.12 0.91 = 0.00
bch 14.16 17.63 379.1 +£130.1 141.8+12.7 0.07£0.06 0.17 £ 0.00

Continued on next page

73

Hardware Acceleration of Nonincremental Algorithms for the Induction of Decision Trees and Decision Tree Ensembles 74

Table 3.14 — continued from previous page

Accuracy Size Fitness
Dataset | OC1-ES EFTI OC1-ES EFTI OC1-ES EFTI
bew 92.23 97.71
ca 85.25 88.47
car
e
ctg
eb
eye
ger 47413 3.0+03 0.92 +0.04 0.92+0.01
gls 12.0+£35 155+0.8
hep 454+18 41+02
hrtc 11.74£6.1 121+0.2
hrts
ion 88.51 91.19 57420 43+0.3
irs 94.28 97.55 3.6+05 3.4+0.2 0.9440.02 0.97 +0.00
jvow
krkopt
letter
liv
lym 78+£27 92+0.7
magic 85.35 81.93
msh 99.83 94.71
nurse
pen
psd 20400 3.0+04
-
seg 0.79 +0.06 0.87 & 0.01
shuttle 99.95 97.77 0.9340.02 0.98 +0.00
sick 98.53 93.94
son 65+19 52+0.3
spect 86.35 91.75 544+2.9 3.1£0.1
spf 72.83 68.05
thy 99.24 94.23 0.98+0.01 0.94 = 0.00
tt
veh 68.79 65.35
vene 88.20 93.13 54+14 45+0.2 0.86 4 0.02 0.93 =+ 0.00

Continued on next page

Hardware Acceleration of Nonincremental Algorithms for the Induction of Decision Trees and Decision Tree Ensembles 75

Table 3.14 — continued from previous page

Accuracy Size Fitness

Dataset | OC1-ES EFTI OC1-ES EFTI OC1-ES EFTI

vote 94.41 94.64 3.8+ 15 3.24+0.2 0.91 £0.04 0.94 +0.00
VoW 76.81 66.58 90.2+£73 376+1.1 0.35£0.06 0.63 %+ 0.01
w21 77.54 84.59 75.0 £ 19.5 4.5+0.2 —5.56 £3.27 0.84 £ 0.00
w40 76.87 81.86 67.0 £ 19.2 5.0£0.2 —4.51 £3.02 0.81 +0.00
wir 99.36 68.85 19.5+1.9 9.5+ 0.6 0.83 £0.04 0.67 +0.01
wilt 97.83 94.61 175+ 3.6 2.0£0.0 0.21 £0.40 0.95 =+ 0.00
wine 56.82 55.15 498.0 £ 105.5 9.8+£0.4 —35.25 £ 10.47 0.55 £ 0.00
700 77.68 97.58 45+09 10.240.8 0.78 £ 0.07 0.97 £0.01

3.5.2.3 OC1-SA

The following section presents the results of the comparison between the OC1-SA algorithm
and the EFTI algorithm with the “High accuracy” parameter set. OC1-SA takes even more time
than OC1-ES to run, and is 10 to 20 times slower than CART-LC. Its induction times are shown
in the Table 3.15. OC1-SA was run with the default setting of 20 temperature values with 50
iterations for each of them per node. Several experiments were made to test whether different
number of temperature values (10, 20, 40 and 80) and iteration counts (25, 50 and 100) would
increase the quality of the solutions, but no benefits were observed over the defaults.

Table 3.15: The average induction times of the OC1-SA algorithm per dataset

Dataset Ind. Time [s] Dataset ‘ Ind. Time [s] Dataset Ind. Time [s]

adult 131.36 + 1.44 | hrts 0.41 4 0.02 | shuttle 30.88 +1.88
ausc 1.25+0.05 | ion 2.77 + 0.25 | sick 11.23 £0.54
bank 234.89 £5.59 | irs 0.02 £0.00 | son 1.00 £ 0.01
bc 0.14 £0.01 | jvow 25.73 £ 0.36 | spect 0.56 £0.05
bch 19.63 £ 0.13 | krkopt 3241 +0.29 | spf 12.37+£0.34
bew 0.26 4+ 0.02 | letter 69.46 + 0.49 | thy 6.80 £ 0.59
ca 1.41 +0.07 | liv 0.24 +£0.01 | ttt 1.13+0.04
car 0.554+0.01 | lym 0.34 £0.04 | veh 2.66 £0.10
cme 2.17 + 0.04 | magic 47.22 + 0.65 | vene 0.02 £0.00
ctg 10.89 £ 0.31 | msh 15.61 £ 0.82 | vote 0.40 £ 0.02
cvf 33.21 £0.39 | nurse 7.65 + 0.18 | vow 1.37£0.03
eb 40.22 £+ 0.44 | page 6.68 £ 0.26 | w21 27.99 + 0.55
eye 50.82 £ 0.48 | pen 27.34+0.34 | w40 89.97 + 1.65
ger 2.24 £ 0.08 | pid 0.76 £0.02 | wir 14.83 £0.51
gls 0.24 +£0.01 | psd 0.00 £ 0.00 | wilt 0.89 £0.03
hep 0.36 £ 0.04 | sb 9.36 + 0.36 | wine 12.06 £ 0.10
hrtc 0.51£0.03 | seg 4.10 £ 0.07 | zoo 0.11 £ 0.00

75

Hardware Acceleration of Nonincremental Algorithms for the Induction of Decision Trees and Decision Tree Ensembles 76

The results of the comparison experiments are displayed side by side in the Table 3.14. The
results show, that OC1-SA produced very similar results in terms of accuracy to OC1-ES, and
tended to produce somewhat smaller DTs. Nevertheless, the conclusions for the comparison
results are almost identical to the ones discussed for OC1-ES in the Section 3.5.2.2

Table 3.16: The results of the comparison experiments between the OCI-SA algorihtm
and the EFT1 algorithm, displayed side by side for different induced DTs’ characteristics:
accuracy, size and fitness

Accuracy Size Fitness
Dataset | OC1-SA EFTI OC1-SA EFTI OC1-SA EFTI

46+£24 2.8+£0.2

adult 85.55 83.34
ausc 85.28 89.44
bank 89.96 88.94
bc 86.05 91.98
bch
bew

395.4+£150.5 207.7£1.2

ca

car

cmc

82.24
74.21

77.60
78.00

ctg
cvf
eb

eye

96.32 96.51 49+14 2.8+£0.2
15.3£35 15.7£08

3.6t1.2 4.0+0.1

0.92+£0.04 0.96£0.00

ger

88.97 94.51
93.60 97.81

ion

irs 0.93£0.02 0.98=£0.00

jvow
krkopt
letter
liv
lym
magic
msh
nurse
page
pen
pid

psd

Continued on next page

76

Hardware Acceleration of Nonincremental Algorithms for the Induction of Decision Trees and Decision Tree Ensembles 77

Table 3.16 — continued from previous page

Accuracy Size Fitness
Dataset | OC1-SA EFTI ‘ OC1-SA EFTI OC1-SA EFTI
sb 93.34 93.50 28+ 1.1 2.0£0.0 0.91+£0.03 0.93 +£0.00
seg 95.35 92.56
shuttle 99.95 98.94 0.93 £0.02 0.99 + 0.00
sick 98.28 95.60
son 6.1+1.9 43+04
spect 3.4+ 1.7 3.0£0.1 0.84 £0.07 0.93 £ 0.00
spf 71.94 72.15
thy 99.22 95.81 0.98 +0.01 0.96 = 0.00
ttt 77.68 75.72
veh 68.20 71.52
vene 89.33 92.99 45+14 46+0.2 0.88 £0.02 0.93 £ 0.00
vote 41+£14 3.0£0.1 0.90 £0.03 0.96 + 0.00
VoW
w21
w40
wir
wilt 97.86 94.60
wine 57.84 56.26
Z0O 6.0+ 0.9 8.5+0.4
3.5.2.4 OC1

The following section presents the results of the comparison between the OC1 algorithm and
the EFTI algorithm with the “High accuracy” parameter set. OC1 takes similar time to run as
OC1-SA does, which is 10 to 20 times slower than CART-LC. Its induction times are shown in

the Table 3.17.

77

Hardware Acceleration of Nonincremental Algorithms for the Induction of Decision Trees and Decision Tree Ensembles 78

Table 3.17: The average induction times of the OC1 algorithm per dataset

Dataset Ind. Time [s] Dataset ‘ Ind. Time [s] Dataset Ind. Time [s]

adult 69.24 + 1.65 | hrts 0.08 4 0.00 | shuttle 43.84 £2.91
ausc 0.45 £ 0.02 | ion 0.24 £ 0.02 | sick 3.09+£0.22
bank 208.78 £ 123.04 | irs 0.02 £ 0.00 | son 0.09 £ 0.00
bc 0.16 £0.01 | jvow 28.23 + 0.58 | spect 0.04 £0.00
bch 23.33 + 0.32 | krkopt 72.34 £ 0.55 | spf 3.89+0.17
bew 0.14 £ 0.01 | letter 127.33 £ 1.38 | thy 2.07+0.25
ca 0.47£0.02 | liv 0.12£0.01 | ttt 0.58 £0.04
car 0.714+0.04 | lym 0.03 £0.00 | veh 0.81 £0.02
cme 0.91 4+ 0.02 | magic 49.98 +1.44 | vene 0.04 £0.00
ctg 3.88 +0.10 | msh 7.05+ 0.60 | vote 0.10 £ 0.01
cvf 15.92 £ 0.42 | nurse 11.80 £ 0.30 | vow 1.06 £ 0.02
eb 127.43 + 2.64 | page 7.66 £0.45 | w21 18.40 £ 0.54
eye 15.61 £ 0.26 | pen 24.50 £ 0.40 | w40 28.54 + 0.68
ger 0.32 £ 0.03 | pid 0.37£0.02 | wir 11.70 £ 0.41
gls 0.08 £ 0.00 | psd 0.00 £ 0.00 | wilt 1.56 £ 0.09
hep 0.04 +0.00 | sb 2.03 £ 0.15 | wine 8.08 £ 0.15
hrtc 0.12 £ 0.01 | seg 1.93 £ 0.07 | zoo 0.01 £0.00

The results of the comparison experiments are displayed side by side in the Table 3.14. The
results show, that OC1 has very similar performance with respect to the DT accuracy to the
CART-LC, but has a tendency to induce smaller DTs. However, the EFTI algorithm had a
significant advantage over CART-LC when it comes to the induced DT size, and this remains
true when compared to OC1 as well. This means that the discussion about the results from the
Section 3.5.2.1, remains valid for the results from the Table 3.18 too. The differences between
results of comparisons with CART-LC and OC1 arise mainly because in case of comparison
with OC1, EFTI had 10 to 20 times more time for the evolution, hence average accuracies
have significantly improved for some of the datasets like: bch, car, cmc, ctg, eb, jvow,
nurse, veh, vow and wfr, while OC1 brought no significant improvement to the accuracies
over CART-LC.

Table 3.18: The results of the comparison experiments between the OCI algorihtm and
the EFTI algorithm, displayed side by side for different induced DTs’ characteristics:
accuracy, size and fitness

Accuracy Size Fitness
Dataset OCH1 EFTI OCH1 EFTI OCH1 EFTI
adult 85.22 83.13 33.5 + 8.8 24+4+0.2 —2.18+1.54 0.83+0.00
ausc 83.48 88.92 4.7+ 2.0 2.8+ 0.2 0.78 £0.07 0.89 £ 0.00
bank 89.54 88.99 17.0 £ 5.7 22402 —0.02+£0.87 0.89 + 0.00
bc 91.94 92.20 84+ 1.8 5.0£+0.3 0.87+0.03 0.92 4+ 0.00

Continued on next page

78

Hardware Acceleration of Nonincremental Algorithms for the Induction of Decision Trees and Decision Tree Ensembles 79

Table 3.18 — continued from previous page

Accuracy Size Fitness
Dataset OC1 EFTI OC1 EFTI OCH1 EFTI
bcw 93.86 97.77 3.1£0.9 2.24£0.2 0.93 £0.02 0.98 £ 0.00
ca 84.14 88.87 3.24+0.7 3.0£0.1 0.83 £0.01 0.89 + 0.00

car
cme
ctg
cvf
eb
eye
ger
gls
hep
hrtc
hrts
ion
irs
jvow
krkopt
letter
liv
lym
magic
msh
nurse
page
pen
pid
psd
sb

seg
shuttle
sick
son
spect
spf
thy

ttt

veh

53.05 57.38
79.88 75.53 28.8+9.0 188=+0.6 0.73+£0.06 0.75+0.01
75.80 77.52

93.96 93.96 40£14 2.8+£0.2
9.8+24 16.3+0.6

3.8£1.2 3.9+£0.2

0.91+0.04 0.94+0.01

29+1.0
46=£1.0
3.0£0.1

3.2+£0.2
42+£03
3.8+0.3

86.86
96.16

92.08
97.81

0.84 +£0.02
0.96 +0.01

0.91 £0.01
0.98 £0.00

74+35 3.94+0.3

0.91£0.03 0.96£0.00

2.0+0.0
22+0.3

29+04
2.0£0.0

0.93£0.00 0.93£0.00

93.73 90.82 21.1+£39 13.8+£0.8 0.88+0.03 0.90=£0.01
99.94 98.97 0.90£0.02 0.99£0.00
96.57 94.85

3.6Et1.1 4.8+£0.2

35+12 3202
69.53 70.06
98.48 95.21 0.98 £0.00 0.95 £ 0.00
75.68 7501
69.84 67.64

Continued on next page

79

Hardware Acceleration of Nonincremental Algorithms for the Induction of Decision Trees and Decision Tree Ensembles 80

Table 3.18 — continued from previous page

Accuracy Size Fitness

Dataset OCH1 EFTI OCH1 EFTI OCH1 EFTI
vene 89.40 93.32 46+1.1 4.5+0.2 0.88+0.02 0.93 4+ 0.00
vote 92.29 95.60 2.7+ 0.7 3.1+0.1 0.92 +0.01 0.95 4 0.00
VOW 485+59 373+£1.1 0.68 £ 0.03 0.67 +0.01
w21
w40
wir 0.70 4+ 0.09 0.75+ 0.01
wilt
wine
700 10.2 £ 0.7

3.5.2.5 NODT

The following section presents the results of the comparison between the NODT algorithm and
the EFTI algorithm with the “High accuracy” parameter set. NODT was run with the default
settings:

¢ Number of iterations: 100000
 Search probability: 0
* Percentage of available data used as validation set: 30%,

* Percentage of mutated bits: 10%

80

Hardware Acceleration of Nonincremental Algorithms for the Induction of Decision Trees and Decision Tree Ensembles 81

Table 3.19: The average induction times of the NODT algorithm per dataset

Dataset Ind. Time [s] Dataset ‘ Ind. Time [s] Dataset Ind. Time [s]

adult 1463.34 £ 46.73 | hrts 3.29 £ 0.16 | shuttle 1619.40 £ 46.47
ausc 10.47 +0.38 | ion 4.45 £ 0.33 | sick 51.20 £ 2.63
bank 2291.70 + 68.97 | irs 0.98 £ 0.07 | son 9.57£0.49
bc 6.18 £0.26 | jvow 99.46 + 1.90 | spect 1.96 +0.17
bch 1713.47 £16.41 | krkopt 2260.87 + 13.85 | spf 87.37£1.01
bew 3.51 +0.25 | letter 976.72 + 19.54 | thy 79.74 £ 2.55
ca 10.86 = 0.52 | liv 6.41 +0.27 | ttt 18.70 £ 0.79
car 22.224+0.70 | lym 5.48 £0.22 | veh 39.83 £0.74
cme 48.81 + 1.01 | magic 710.17 £ 13.44 | vene 2.84+0.12
ctg 77.21 £+ 1.56 | msh 83.39 £ 4.63 | vote 2.86 +0.16
cvf 331.90 £+ 5.53 | nurse 227.43 £5.02 | vow 28.85 £ 0.46
eb 1836.99 £ 561.92 | page 115.45 £ 6.33 | w2l 162.98 £ 2.05
eye 889.33 4+ 44.35 | pen 221.76 £6.02 | w40 130.97 £ 1.69
ger 10.69 + 0.69 | pid 22.16 £ 0.36 | wir 243.89 £+ 2.55
gls 5.44 £0.17 | psd 18.03 £ 0.72 | wilt 49.67 £ 2.20
hep 1.57£0.15 | sb 55.38 £ 1.38 | wine 222.03 £2.30
hrtc 8.53 + 0.26 | seg 36.17 £ 0.69 | zoo 6.44 + 0.01

The results of the comparison experiments are displayed side by side in the Table 3.14. It can be
seen from the results, that only in few cases has the NODT induced significantly advantageous
DTs in terms of accuracy, like from datasets: eye, jvow, krkopt, and letter, but usually
the EFTI algorithm had better results both in terms of the accuracy and size. For other datasets,
when NODT produced slightly more accurate DTs then EFTI, it was compensated by their size
being significantly larger in comparison to the DTs induced by EFTI. And vice versa, when
NODT produced smaller DTs, their accuracy was usually worse than that of DTs induced by
EFTI. This can also be seen in the fitness column, where EFTI always had advantage over

NODT.

Table 3.20: The results of the comparison experiments between the NODT algorithm and
the EFTI algorithm, displayed side by side for different induced DTs’ characteristics:
accuracy, size and fitness

Accuracy Size Fitness

Dataset NODT EFTI NODT EFTI NODT EFTI

adult 80.44 83.63 527.4+£7.8 2.6 +0.2 —555.07 £ 16.67 0.83 = 0.00
ausc 82.35 89.77 7.8+ 0.8 3.0+ 0.1 0.75£0.02 0.90 = 0.00
bank 87.36 89.25 416.6 + 5.8 2.24+0.2 —375.53 £ 10.71 0.89 + 0.00
bc 90.02 94.77 94+1.1 5.8 0.3 0.854+0.02 0.94 4+ 0.00
bch 12.17 24.89 332.6 £10.3 225.0+4.4 0.10 & 0.00 0.23 4+ 0.00
bew 93.22 97.94 3.4+ 0.7 2.44+0.2 0.924+0.02 0.98 +0.00

Continued on next page

81

Hardware Acceleration of Nonincremental Algorithms for the Induction of Decision Trees and Decision Tree Ensembles 82

Table 3.20 — continued from previous page

Accuracy Size Fitness
Dataset NODT EFTI NODT EFTI NODT EFTI
ca 82.61 89.46
car 91.44 87.71
cmce
ctg 74.06 79.00
cvf 76.87 79.06
eb 65.62 65.13
eye
gls
hep
hrtc 10.14+1.0 129+0.4
hrts 3.9+0.6 3.44+0.2
ion 3.6+04 3.94+0.2
irs 35+03 3.7+0.3 0.94+0.02 0.99 =+ 0.00
jvow
krkopt
letter
liv
lym
magic 84.09
msh 99.82 98.71 6.24+0.5 3.6 +0.2 0.95+0.01 0.98+0.00
nurse 95.65 91.60
page 96.51 96.66
pen 95.23
pid
psd 99.80
sb 90.30 93.52
seg 94.23 94.69 1814+1.0 12.6+0.5 0.92+£0.01 0.94£0.00
shuttle 99.80 99.69
sick 96.08 96.42
son
spect 2.6+04 3.0x0.1
spf 68.34 72.41
thy 92.82 97.10
ttt
veh 72.48 74.41 16.7 £ 0.9 9.3+0.5
vene 88.67 94.16 6.8+ 1.1 5.04+0.2 0.87+0.01 0.94+0.00
vote 3.44+04 3.0+0.0

Continued on next page

Hardware Acceleration of Nonincremental Algorithms for the Induction of Decision Trees and Decision Tree Ensembles 83

Table 3.20 — continued from previous page
Accuracy Size Fitness
Dataset NODT EFTI NODT EFTI NODT EFTI
VoW 73.86 77.29 35017 38.6%+1.0 0.70£0.02 0.724+0.01
w21 82.03 86.48 452+1.9 4.34+0.2 —0.84 £0.14 0.86 £ 0.00
w40 80.52 85.25 33.9+£25 444+0.2 —0.08 £0.13 0.85 =+ 0.00
wir 80.13 78.28 72.2+£1.6 9.0£0.3 —1.544£0.11 0.77£0.01
wilt 97.09 94.70 18.2 4+ 3.0 2.0+£0.1 0.22+0.26 0.95 4 0.00
wine 55.94 56.85 198.6 £3.9 10.8+0.5 —3.64£0.16 0.57 £0.00
Z00 78.72 98.06 5.4+0.2 7.2+0.2 0.79+0.03 0.98+0.00
3.5.2.6 GALE

The following section presents the results of the comparison between the GALE algorithm and
the EFTI algorithm with the “High compression” parameter set, since GALE operates on full
DTs in its induction procedure and thus tends to create smaller DTs. The induction times of
the GALE algorithm are shown in the Table 3.21, and are even higher than OCI1, since GALE
operates on the population of the full DTs, which requires more computational time.

Table 3.21: The average induction times of the GALE algorithm per dataset

Dataset Ind. Time [s] Dataset ‘ Ind. Time [s] Dataset Ind. Time [s]

adult 285.20 + 7.52 | hrts 4.96 4+ 0.13 | shuttle 503.44 + 51.77
ausc 6.32 + 0.09 | ion 4.88 £0.10 | sick 21.08 £0.34
bank 429.16 £+ 62.63 | irs 2.36 = 0.03 | son 3.44 £+ 0.06
bc 9.00 £ 0.09 | jvow 119.04 4+ 1.51 | spect 1.96 £+ 0.03
bch 14.76 £ 0.61 | krkopt 216.56 £ 3.85 | spf 16.68 + 0.23
bcw 5.48 + 0.07 | letter 166.08 4= 14.33 | thy 18.68 £ 0.11
ca 6.48 + 0.16 | liv 4.40 £ 0.08 | ttt 11.40 £0.40
car 10.96 £ 0.31 | lym 3.36 &+ 0.06 | veh 8.84 +0.13
cme 12.60 £ 0.30 | magic 216.12 £7.25 | vene 3.32 £0.07
ctg 18.48 £ 0.45 | msh 67.80 £ 0.93 | vote 3.44+0.10
cvf 114.92 £ 6.76 | nurse 120.92 £+ 3.41 | vow 14.04 £0.36
eb 134.52 4+ 5.17 | page 41.40 £1.43 | w21 48.96 + 0.98
eye 156.44 4+ 2.20 | pen 164.32 4+ 2.21 | w40 48.92 +1.06
ger 7.36 £ 0.12 | pid 7.28 +£0.11 | wir 38.52 £ 1.33
gls 3.96 + 0.17 | psd 7.08 + 0.10 | wilt 21.60 £0.18
hep 3.16+0.14 | sb 15.36 + 0.50 | wine 34.16 £0.73
hrtc 5.84 £0.22 | seg 22.80 £0.30 | zoo 2.92£0.04

The results of the comparison experiments are displayed side by side in the Table 3.22. The
results show that the EFTI algorithm produces more accurate DTs with all datasets used in

83

Hardware Acceleration of Nonincremental Algorithms for the Induction of Decision Trees and Decision Tree Ensembles 84

experiments (except for the t tt dataset, where it produced on average 15 times smaller DTs,
with 4% loss in accuracy). In addition, for most of the datasets, it was able to produce smaller
DTs as well. In case of the datasets where DTs produced by GALE were smaller, like: bch,
cvi, eb, gls, krkopt, letter, seg and shuttle, they were also much less accurate
then the ones induced by EFTI.

Table 3.22: The results of the comparison experiments between the GALE algorithm and
the EFTI algorithm, displayed side by side for different induced DTs’ characteristics:
accuracy, size and fitness

Accuracy Size Fitness
Dataset | GALE EFTI ‘ GALE EFTI GALE EFTI
adult 81.17 83.02 30£0.0 2.0+£0.0 0.77£0.00 0.83 = 0.00
ausc 85.12 89.00
bank 89.02 88.82 0.89 +0.00 0.89 = 0.00
bc
bch
bew 92.35 97.80
ca 85.45 88.66
car 3.0+ 0.0 4.4+0.2
cme 40£0.0 4.0+£0.0
ctg 11.0£0.0 11.04£0.2
cvf
eb
eye 56.68 59.57
ger 93.98 96.70 0.89 +£0.01 0.97 = 0.00
gls
hep
e
hrts
ion 90.40 91.50
irs 94.97 98.45 30£0.0 3.0£0.0 0.95+0.02 0.98 = 0.00
jvow 150+ 0.0 10.6£0.3
krkopt
liv
o
magic 78.29 80.18
msh 95.08 96.83
nurse
page 0.92£0.00 0.96 £ 0.00
pen
pid 7352 79.34

Continued on next page

84

Hardware Acceleration of Nonincremental Algorithms for the Induction of Decision Trees and Decision Tree Ensembles 85

Table 3.22 — continued from previous page

Dataset

Accuracy Size Fitness
GALE EFTI GALE EFTI GALE EFTI

psd
sb
seg
shuttle
sick
son
spect
spf
thy
ttt
veh
vene
vote
vow
w21
w40
wir
wilt
wine

Z00

100.00
93.34

98.98
93.51

2.0£0.0

6.0+ 0.0 8.0£0.2
93.75 94.05 2.0+0.0 2.0£0.0
88.04 93.44

93.78
75.58

2.0£0.0 1.00£0.00 0.99£0.01

0.89£0.00 0.94=£0.00

0.94+£0.00 0.94=£0.00

2.0£0.0 2.0£0.0
6.0+0.0 8.1+0.1
3.0£0.0 4.0+0.0

0.88£0.01 0.93£0.00

95.15 0.93 £ 0.00

72.83

0.95 £ 0.00

6.0+0.0
5.0+0.0

18.0£00 15.5+0.3

49+£0.2
3.0£0.0

90.87 92.47
93.62 96.51

71.84
94.67

74.82
94.70

0.71+£0.02 0.74£0.01
0.95+£0.00 0.95£0.00

3.5.2.7 GaTree

The following section presents the results of the comparison between the GaTree algorithm and
the EFTI algorithm with the “High compression” parameter set, since GaTree operates on full
DTs in its induction procedure and thus tends to create smaller DTs. The induction times of
the GaTree algorithm are shown in the Table 3.23.

85

Hardware Acceleration of Nonincremental Algorithms for the Induction of Decision Trees and Decision Tree Ensembles 86

Table 3.23: The average induction times of the GaTree algorithm per dataset

Dataset Ind. Time [s] Dataset ‘ Ind. Time [s] Dataset Ind. Time [s]

adult 450.57 £ 126.11 | hrts 0.60 £ 0.05 | shuttle 415.02 £+ 15.47
ausc 2.82 + 0.59 | ion 5.91 + 0.47 | sick 9.89 £0.94
bank 455.79 £+ 49.89 | irs 0.71 £0.05 | son 7.03 £ 0.37
bc 0.91£0.02 | jvow 2047.51 4+ 222.08 | spect 0.26 + 0.01
bch 14.39 £ 1.78 | krkopt 44.00 £ 1.06 | spf 55.52 £ 5.74
bew 1.18 £ 0.06 | letter 61.65 4 2.48 | thy 13.50 £0.90
ca 2.414+£0.44 | liv 2.60 £0.21 | ttt 1.01 +0.06
car 1.24 £0.09 | lym 0.25 4+ 0.01 | veh 5.92 4+ 0.70
cmce 2.19 £ 0.12 | magic 3562.43 + 450.99 | vene 12.36 £0.79
ctg 33.36 + 3.72 | msh 15.39 + 0.64 | vote 0.39 £0.01
cvf 14.35 + 0.34 | nurse 13.36 + 0.43 | vow 86.91 + 4.00
eb 7704.86+1883.51 | page 78.34 £ 3.39 | w2l 387.71 £19.65
eye 389.92 £ 26.98 | pen 56.41 £+ 4.66 | w40 382.56 £ 13.28
ger 3.07£4.98 | pid 9.40 + 0.81 | wir 463.34 £+ 51.23
gls 2.71 £ 0.66 | psd 32.14 £ 5.47 | wilt 251.65 +11.21
hep 0.78 4+ 0.76 | sb 26.99 + 3.48 | wine 68.14 + 6.00
hrtc 0.73 £0.09 | seg 63.97 £ 7.80 | zoo 0.23 +0.01

The results of the comparison experiments are displayed side by side in the Table 3.24. The
results show that the EFTI algorithm produces more accurate DTs with all datasets used in
experiments, with almost all of them being smaller in size as well. In case of the datasets where
DTs produced by GaTree were smaller, like: bch, eb, letter, page, and thy, they were
also much less accurate then the ones induced by EFTI.

Table 3.24: The results of the comparison experiments between the GaTree algorithm
and the EFT1 algorithm, displayed side by side for different induced DTs’ characteristics:
accuracy, size and fitness

Accuracy Size Fitness
Dataset GaTree EFTI GaTree EFTI GaTree EFTI
adult 79.15 82.96
ausc 85.25 89.20
bank 88.34 89.04 2.8+0.2 2.0+ 0.0 0.84 +0.02 0.89 4+ 0.00
bc
bch
bew
ca 84.49 88.85
car 4.7+ 1.3 4.34+0.2
cme

Continued on next page

86

Hardware Acceleration of Nonincremental Algorithms for the Induction of Decision Trees and Decision Tree Ensembles 87

Table 3.24 — continued from previous page

Accuracy Size Fitness
Dataset GaTree EFTI ‘ GaTree EFTI GaTree EFTI
ctg 12.3+£1.1 10.8 £0.2
cvf 13.0 £+ 2.0 7.0£0.0
eb
eye 55.73 59.49
ger 93.40 96.76 2.8+ 0.6 2.0+ 0.0 0.90 £0.04 0.97 = 0.00
gls
hep
hrtc 10.9+ 1.9 6.0 £0.1
hrts
ion
irs
jvow 12.0+1.6 10.3+0.2
krkopt
letter
liv
lym
magic
s
nurse 6.1+1.4 5.0£0.1
page 40£04 5.0£00 0.88 4 0.00 0.96 = 0.00
pen 128419 12.1£0.3
pid
psd
>
seg 14.54+1.2
shuttle 9.0£0.7
sick 2.9 4 0.2 0.87+0.03 0.94 = 0.00
son
spect 2.6 £0.8
spf 11.0+1.4
thy 92.36 95.96 29+0.3 0.90 £ 0.01 0.96 4+ 0.00
ttt 72.92 72.78
veh
vene
vote 33407 2.0+£0.0
VoW 229+1.6 15.74+0.3
w21
w40

Continued on next page

87

Hardware Acceleration of Nonincremental Algorithms for the Induction of Decision Trees and Decision Tree Ensembles 88

Table 3.24 — continued from previous page

Accuracy Size Fitness
Dataset GaTree EFTI GaTree EFTI GaTree EFTI
wir 43.24 74.61 8.2+ 0.7 4.9+0.1 0.30 +0.04 0.74 +0.01
wilt 94.55 94.62 3.4+0.3 2.0£0.0 0.82+0.04 0.95+0.00
wine 45.56 56.19 9.2£+0.7 7.0£0.1 0.43 £0.01 0.56 = 0.00
700 80.60 97.90 13.2+£2.0 7.2+£0.2 0.51 £0.17 0.98 £0.01

3.5.3 Group comparison of all algorithms

In this section, the results of the experiments are displayed and discussed, that compare all the
algorithms from the Table 3.7 together with the proposed EFTI algorithm in terms of induced
DT accuracies and sizes. In these experiments, the EFTI algorithm was setup using the “High
accuracy” configuration for the Table 3.10 and given 1000k iterations for the induction. The
cross-validation employed and the rankings devised in the manner described in the Section 2.8.
The results are listed in the following tables:

Table 3.25 shows the average accuracies of the induced DTs,
Table 3.26 shows the 95% confidence intervals for the accuracies of the induced DTs

Table 3.27 shows the relative differences in accuracies of the DTs induced by the existing
algorithms compared to the DTs induced by the EFTI algorithm on the same dataset.
Values are given in percents, where the positive numbers show the amount by which an
existing algorithm produces more accurate DTs, relative to those induced by EFTI, and
negative numbers show the opposite.

Table 3.28 shows the average sizes of the induced DTs,
Table 3.29 shows the 95% confidence intervals for the sizes of the induced DT's

Table 3.30 shows the relative differences in sizes of the DTs induced by the existing
algorithms compared to the DTs induced by the EFTI algorithm on the same dataset.
Values are given in percents, where the positive numbers show the amount by which an
existing algorithm produces larger DTs, relative to those induced by EFTI, and negative
numbers show the opposite.

Table 3.31 shows the ranking of the algorithms based on the accuracies of the induced
DTs

Table 3.32 shows the ranking of the algorithms based on the sizes of the induced DTs

Table 3.25: The average accuracies of the induced DTs by all algorithms from the Tuble
3.7 and EFTI, on all datasets from the Table 2.1 from five 5-fold cross-validation test.

OC1-AP CART-LC OC1 OC1-ES OC1-SA NODT GALE GaTree EFTI

adult

ausc

bank

85.83 85.48 85.22 85.59 85.55 80.44 81.17 79.15 83.85
85.45 84.58 83.48 85.59 85.28 82.35 85.12 85.25 89.92
90.14 89.75 89.54 90.10 89.96 87.36 89.02 88.34 89.38

Continued on next page|

88

Hardware Acceleration of Nonincremental Algorithms for the Induction of Decision Trees and Decision Tree Ensembles 89

Table 3.25 — continued from previous page

OC1-AP CART-LC OC1 OC1-ES OC1-SA NODT GALE GaTree EFTI
bc 79.01 88.26 91.94 85.09 86.05 90.02 7864 71.68 95.16
bch 14.36 13.25 12.46 14.16 13.88 12.17 7.21 6.83 25.58
bew 91.11 93.23 93.86 92.23 92.44 93.22 9235 9332 9796
ca 85.10 85.54 84.14 85.25 84.87 82.61 85.45 84.49 89.51
car 96.17 94.72 93.16 95.21 94.32 91.44 73.62 74.06 88.60
cme 54.75 53.93 53.05 53.53 52.10 46.66 52.18 46.38 61.29
ctg 82.18 81.95 79.88 82.15 82.24 74.06 53.34 29.25 79.53
cvf 75.08 76.03 75.80 72.61 74.21 76.87 6292 5947 79.40
eb 65.45 65.46 65.49 65.48 65.47 65.62 15.65 14.82 65.54
eye 83.44 83.37 84.72 83.40 83.52 7494 56.68 55.73 60.34
ger 96.06 95.48 93.96 96.16 96.32 89.34 9398 9340 9740
gls 64.63 66.55 62.23 64.91 64.67 60.19 60.62 34.86 8591
hep 78.19 77.29 7729 78.58 77.42 79.35 80.91 7794 93.70
hrtc 54.31 52.66 02.71 52.46 54.04 54.54 56.00 53.80 75.62
hrts 77.78 76.00 79.41 78.00 75.19 78.89 7800 77.33 90.01
ion 88.86 89.71 86.86 88.51 88.97 86.06 90.40 79.89 95.13
irs 92.93 93.57 96.16 94.28 93.60 93.60 9497 67.33 98.56
jvow 87.11 90.64 90.86 88.10 87.93 91.03 46.19 17.08 85.73
krkopt 80.42 77.70 71.41 76.25 75.17 65.93 25.03 24.36 4293
letter 86.15 83.81 82.10 84.40 85.08 83.31 18.66 10.98 64.08
liv 65.04 66.38 65.68 64.99 65.51 65.86 60.00 54.67 78.59
lym 69.90 74.61 77.08 T1.79 70.43 76.37 7646 76.97 93.62
magic 85.22 86.12 86.22 85.35 85.17 82.25 7829 6494 84.19
msh 99.89 99.90 99.73 99.83 99.91 99.82 95.08 95.74 98.79
nurse 99.12 98.08 95.73 97.65 96.66 95.66 79.18 54.61 92.03
page 96.75 96.92 96.85 97.10 96.85 96.51 9236 90.22 96.92
pen 95.65 96.64 96.49 95.84 95.74 96.81 62.69 25.21 95.57
pid 74.23 74.27 73.44 73.30 73.90 71.69 73.52 66.22 80.85
psd 100.00 100.00 100.00 100.00 100.00 92.90 100.00 82.08 99.84
sb 93.08 93.17 93.32 93.28 93.34 90.30 93.34 93.27 93.54
seg 95.47 94.54 93.73 94.36 95.35 9423 69.15 17.72 95.13
shuttle 99.96 99.96 99.94 99.95 99.95 99.80 88.08 8238 99.72
sick 98.49 97.73 96.57 98.53 98.28 96.08 93.75 94.07 96.98
son 70.55 71.88 69.59 70.28 70.38 73.94 72.03 54.24 90.90
spect 87.37 82.64 81.75 86.35 87.47 84.30 88.04 79.62 94.32
spf 73.58 71.23 69.53 72.83 71.94 68.34 52.88 42.25 73.11
thy 99.29 98.85 98.48 99.24 99.22 92.82 93.78 9236 97.54
ttt 85.87 79.36 75.68 81.27 77.68 7175 7558 7292 79.20
veh 68.01 69.20 69.84 68.79 68.20 7248 57.88 39.22 75.34
vene 89.87 90.40 89.40 88.20 89.33 88.67 90.87 29.87 94.36
vote 93.68 93.28 92.29 9441 94.16 8720 93.62 9540 97.59
VOW 76.30 78.18 78.20 76.81 76.63 73.86 39.09 6.16 78.21
w2l 76.99 81.30 81.99 77.54 77.12 82.03 71.71 33.06 86.88
w40 76.39 80.66 80.89 76.87 76.25 80.52 68.84 33.34 85.80
wir 99.34 98.09 97.40 99.36 99.35 80.13 71.84 43.24 79.95
wilt 97.99 98.01 97.93 97.83 97.86 97.09 94.67 9455 94.79
wine 56.37 57.41 57.17 56.82 57.84 55.94 49.60 45.56 57.14
700 85.79 85.31 82.44 77.68 83.10 78.72 85.02 80.60 98.42

89

Hardware Acceleration of Nonincremental Algorithms for the Induction of Decision Trees and Decision Tree Ensembles 90

Table 3.26: The 95% confidence intervals for the accuracies of the induced DTs by
all algorithms from the Table 3.7, on all datasets from the Table 2.1 from five 5-fold
cross-validation test.

OC1-AP CART-LC OC1 OC1-ES OC1-SA NODT GALE GaTree EFTI

adult +0.15 £0.16 +0.17 £0.21 +0.18 £0.20 +£0.37 +£0.91 +0.14
ausc £1.16 £1.01 +1.41 £1.03 +£1.11 £1.37 £143 057 =£0.18
bank +£0.14 £0.14 +0.12 +£0.11 +£0.15 +£0.10 +£0.11 +0.12 +0.14
bc +1.24 +£1.64 +1.11 £1.55 £1.83 +£1.02 +£1.70 +£1.13 +0.30
bch £0.42 +0.46 +0.37 £043 +£0.46 +034 024 +0.24 +0.20
bcw £1.08 £1.15 +1.13 £140 £1.35 £1.28 +£1.37 =+£0.61 +0.08
ca +0.97 £1.13 +1.29 <£1.16 +£1.14 £1.10 +£0.98 +0.83 =£0.16
car +£0.49 £0.59 +0.79 064 £0.59 087 £1.63 =£1.50 =+£0.37
cmc +1.27 £1.13 +1.38 £1.69 £1.28 +097 +£1.75 £0.57 +0.47
ctg +0.76 £0.76 +1.01 £086 +£0.79 +084 +3.21 +0.79 +0.43
cvf +0.51 £0.47 +£0.50 =£0.59 +0.43 £041 +£1.26 =+0.59 +0.22
eb +0.23 £0.23 +0.17 £0.21 +0.21 £0.14 +£0.68 +4.83 +0.46
eye +£047 £0.37 +£0.36 £0.31 £0.34 £033 045 038 =£0.18
ger +£0.49 £0.58 +£1.20 £0.51 £0.45 £1.35 £1.35 £5.33 =£0.15
gls +£3.91 £3.65 +3.16 £4.20 +£3.46 +£3.12 358 286 +0.83
hep +3.34 £3.29 +3.27 £3.84 £3.08 275 £229 £223 +0.57
hrtc +£2.00 £2.36 +3.03 £2.76 £2.12 £250 +1.08 +£2.22 +0.57
hrts +2.15 £2.44 +2.04 £2.63 £2.11 £254 +£2.13 +£0.99 041
ion +1.49 £1.32 +191 £1.79 +134 £2.14 £1.77 +£1.36 +0.31
irs +£2.04 £1.71 +£1.38 £1.57 £1.98 £198 £1.69 +£3.37 =+0.36
jvow +0.38 £0.34 +0.36 £0.50 +£0.32 +048 +£2.63 +0.23 +0.48
krkopt £0.31 +0.43 +0.44 £0.35 £0.42 +0.55 +0.73 +0.34 +0.61
letter +0.31 £0.23 +0.37 +£0.31 +£0.27 +0.39 135 037 =+0.71
liv +2.09 £2.14 +18 £1.64 +£2.89 £288 +£2.08 +£1.25 £0.50
lym +£3.86 £3.99 +£2.23 £2.61 £350 £242 351 £259 +0.62
magic +0.19 £0.17 +0.25 £0.24 +£0.28 +£0.27 +£050 +£0.36 +0.05
msh +0.06 £0.06 +0.07 £0.08 +£0.04 +0.06 +£080 +0.52 +0.20
nurse £0.10 £0.15 +£0.31 =£0.22 +0.28 £0.18 £1.82 +£0.53 =+0.14
page +0.18 £0.20 +0.23 £0.20 +£0.19 £0.36 +£0.25 +0.25 £0.09
pen +0.13 £0.22 +0.21 £0.20 +0.21 £0.22 +£1.74 +£0.98 +0.24
pid +1.63 £1.22 +£1.99 =£1.13 +£1.20 +087 +£1.55 +0.83 =+£0.17
psd +0.00 =£0.00 £0.00 £0.00 +£0.00 +047 +£0.00 +£3.96 =+0.07
sb +0.35 £0.40 +0.35 £040 +£0.48 +0.54 +0.10 +£0.21 +0.02
seg +0.46 £0.47 +0.66 +£0.65 £0.55 +049 +241 +049 +0.27
shuttle £0.02 £0.01 +0.01 £0.01 +0.01 £0.01 £1.32 +£0.54 +0.01
sick £+0.27 £0.30 +0.25 £0.28 +0.41 £0.29 +£0.04 +£0.28 +0.27
son +2.61 £3.36 +£2.46 £245 £3.17 £237 £285 £1.67 +0.60
spect £1.91 £2.45 +2.45 £2.06 £1.78 £2.65 053 +£0.99 +0.22
spf +£0.92 £0.90 +091 £1.19 +£1.18 +£1.03 +142 +£1.26 +0.43
thy +0.11 +£0.18 +0.27 £0.16 +£0.14 +0.51 +0.14 +0.18 =+0.26
ttt +1.43 £1.67 +1.67 =£1.66 +£2.21 £1.92 +£241 £1.42 £1.06
veh +1.44 +£1.68 +1.66 £147 +£1.93 £1.32 +£249 +1.40 +0.83
vene +2.19 £1.57 +1.61 £1.78 £1.79 £151 £1.18 049 =+0.16
vote +1.31 £1.04 +1.26 £1.31 +£1.10 +£1.67 +£1.00 +£0.37 =+0.24
vow +1.17 £1.69 +1.57 £1.83 +£1.42 +£1.31 +£1.66 +0.34 +0.77
w2l +0.54 £0.60 +0.57 £0.52 £0.48 +0.25 +097 041 +0.15

Continued on next page|

90

Hardware Acceleration of Nonincremental Algorithms for the Induction of Decision Trees and Decision Tree Ensembles 91

Table 3.26 — continued from previous page

OC1-AP CART-LC OC1 OC1-ES OC1-SA NODT GALE GaTree EFTI
w40 +£0.51 £0.56 +0.57 £046 +£0.48 +046 +098 +0.22 +0.26
wir +0.11 £0.18 +0.30 £0.10 +£0.11 +0.31 +£1.67 +0.73 +0.89
wilt +0.22 £0.23 +0.18 +£0.19 +£0.27 +0.33 +0.02 +0.19 +0.24
wine +0.81 +0.86 +0.89 +£0.87 +£0.86 +0.77 083 +0.31 +0.20
zoo £3.82 +£3.30 +4.29 £7.15 +6.11 £2.69 £2.56 +£2.55 +0.37

Table 3.27: The relative differences in accuracies of the DTs induced by the algorithms
from the Table 3.7, compared to the DTs induced by the EFTI algorithm on the same

dataset.

OC1-AP CART-LC OC1 OC1-ES OC1-SA NODT GALE GaTree
adult 2.37 1.95 1.63 2.08 2.04 —4.07 -3.19 —5.60
ausc —4.97 —5.94 -7.16 —4.81 -5.16 —8.42 —5.33 —5.20
bank 0.85 0.41 0.18 0.81 0.65 —2.26 —0.41 —1.17
bc —16.97 —7.25 —-3.38 —10.58 —9.57 —5.40 —17.35 —24.67
bch —43.84 —4822 —-51.29 —44.64 —45.73 —-52.43 -71.80 -—-73.29
bcw —6.99 —4.83 —4.18 —5.85 —5.64 —4.84 —5.73 —4.74
ca —4.92 —4.44 —5.99 —4.76 —-5.18 —-7.71 —4.53 —5.60
car 8.55 6.91 5.15 7.46 6.46 3.20 —16.90 —16.40
cmc —10.67 —-12.01 —-13.46 -—-12.66 —14.99 —-23.88 —14.87 —24.33
ctg 3.32 3.04 0.43 3.29 3.40 —6.88 —32.94 —63.22
cvf —5.44 —4.25 —4.53 —8.55 —6.53 -3.18 —20.75 —25.10
eb —0.14 —0.12 —0.07 —0.10 —0.11 0.12 -76.12 —77.39
eye 38.29 38.17 40.40 38.22 38.42 24.20 —6.06 —7.63
ger —1.38 —1.97 —-3.53 —1.27 —1.11 —8.28 —3.51 —4.11
gls —24.76 —22.54 —27.56 —2444 2472 —-2994 —-2943 —59.42
hep —-16.55 —-17.52 —-1752 -16.14 —-17.38 —15.31 —-13.65 —-16.83
hrtc —28.17 -30.36 —-30.29 -30.63 —2853 —27.87 —-2594 —28.85
hrts —-13.59 -—-15.57 —-11.78 -13.35 -—-1647 -—-12.36 —-13.35 —14.09
ion —6.60 -5.70 —8.70 —6.96 —6.48 —9.54 —4.98 —-16.03
irs -5.71 —5.06 —2.44 —4.34 -5.03 —-5.03 -3.64 —-31.68
jvow 1.62 5.73 5.99 2.77 2.57 6.19 —46.11 —80.08
krkopt 87.31 80.98 66.33 77.61 75.08 53.57 —41.69 —43.26
letter 34.43 30.79 28.12 31.71 32.77 30.01 —70.88 —82.87
liv —17.23 —1554 —-1642 —-17.31 -16.64 —16.20 —-23.65 —30.44
lym —25.34 —20.30 —17.67 —23.32 —24.78 —18.43 —1833 —-17.79
magic 1.22 2.30 2.42 1.38 1.17 —-2.31 —7.00 —22.86
msh 1.11 1.12 0.94 1.05 1.13 1.04 —3.76 —3.09
nurse 7.71 6.57 4.02 6.11 5.03 3.94 —-13.96 —40.66
page —-0.17 —0.00 —0.08 0.18 —0.07 —0.42 —4.71 —6.92
pen 0.08 1.12 0.96 0.29 0.18 1.30 —-34.40 -—-73.62
pid —&.20 —&.14 —-9.17 —-9.34 —-8.60 —11.33 -9.07 -18.10
psd 0.16 0.16 0.16 0.16 0.16 —6.95 0.16 —17.79
sb —-0.49 —0.39 —0.23 —0.27 —-0.21 —3.46 —0.22 —0.29
seg 0.36 —0.62 —1.47 —0.81 0.23 -0.94 -—-27.32 —81.37
shuttle 0.24 0.23 0.22 0.23 0.23 0.08 —-11.68 —17.39
sick 1.56 0.77 —0.42 1.60 1.34 —-0.92 —-3.32 -3.00
son —-22.39 -2093 —23.45 —-22.69 —2257 -—-18.66 —20.76 —40.33

Continued on next page|

91

Hardware Acceleration of Nonincremental Algorithms for the Induction of Decision Trees and Decision Tree Ensembles 92

Table 3.27 — continued from previous page
OC1-AP CART-LC OC1 OC1-ES OC1-SA NODT GALE GaTree
spect —7.37 —1238 —13.33 —8.45 —-7.26 —10.63 —6.66 —15.58

spf 0.64 —2.58 —-490 -039 —-1.60 —6.53 —27.68 —42.22
thy 1.79 1.34 0.96 1.74 1.72 —484 —-386 —5.31
ttt 8.43 0.20 —4.44 2.62 —1.92 —-9.40 —4.56 =793
veh —-9.73 —8.16 —7.31 —8.69 —948 380 —23.18 —47.95
vene —4.76 —4.20 —-5.26 —-6.53 =533 —6.03 —-3.70 —68.35
vote —4.01 —4.41 -5.44 =326 —-3.51 -10.656 —4.07 =224
VOW —2.44 —-0.04 —0.01 -1.79 -2.03 =556 —=50.02 —92.12
w2l —11.39 —6.42 -5.63 —10.75 —-11.23 —5.58 —1746 —61.94
w40 —-10.96 —5.99 —-5.72 —-1041 —11.12 —6.15 —19.76 —61.14
wir 24.25 22.70 21.83 24.28 24.28 0.23 —-10.14 —45.92
wilt 3.37 3.40 3.32 3.20 3.24 243 —-0.13 —0.25
wine —1.34 0.48 0.07 —0.55 1.24 =209 —-13.19 —-20.26

zoo —1283 -—-1331 -16.23 —-21.07 —15.56 —20.01 —-13.61 —18.10

Table 3.28: The average sizes of the induced DTs by all algorithms from the Table 3.7
and EFTI, on all datasets from the Table 2.1 from five 5-fold cross-validation test.

OC1-AP CART-LC OC1 OC1-ES OC1-SA NODT GALE GaTree EFTI

adult 86.5 55.0 33.5 54.9 89.5 227.4 3.0 9.0 2.8
ausc 7.7 4.1 4.7 0.2 4.6 7.8 8.0 7.7 3.0
bank 97.8 42.7 17.0 75.7 72.3 416.6 2.0 2.8 2.3
bc 224 8.7 8.4 13.9 16.0 9.4 14.0 14.0 5.8
bch 403.8 259.3 285.5 379.1 395.4 332.6 8.0 18.0 238.6
bcw 10.5 3.0 3.1 5.6 5.8 3.4 3.0 10.6 24
ca 6.0 6.1 3.2 8.7 9.4 8.4 8.0 7.2 3.0
car 01.8 36.3 27.8 47.3 43.0 26.4 3.0 4.7 7.9
cme 68.7 214 25.1 34.0 35.7 60.0 4.0 11.9 6.4
ctg 73.8 92.7 28.8 59.6 04.3 43.1 11.0 12.3 19.8
cvf 547.4 35.6 37.0 2198 199.9 142.8 2.0 13.0 8.3

eb 1592.0 18184 1013.5 2278.1 1545.2 2654.7 3.0 6.2 53.5
eye 547.0 945.5 430.8 616.7 560.4 469.6 3.0 9.9 3.4

ger 5.2 2.8 4.0 4.7 4.9 4.6 3.0 2.8 2.7
gls 124 114 9.8 12.0 15.3 8.9 5.0 19.1 16.6
hep 4.8 2.5 3.8 4.5 3.6 2.4 10.0 9.1 4.0
hrtc 7.7 6.0 7.2 11.7 6.4 10.1 8.0 10.9 13.2
hrts 6.6 4.8 2.9 7.6 5.9 3.9 18.0 12.0 3.5
ion 5.5 4.3 4.6 2.7 4.9 3.6 7.0 12.3 3.8
irs 3.1 3.2 3.0 3.6 3.4 3.9 3.0 24.8 3.7

jvow 438.8 233.1 2329 4126 404.4 46.9 15.0 12.0 17.2
krkopt 3728.7 2964.0 2738.3 3600.7 3504.4 12414 5.0 13.1 49.0
letter 1354.1 905.7 882.8 12554 1260.7 363.4 20.0 17.5 75.3

liv 11.1 8.8 7.4 10.2 10.1 11.5 2.0 20.2 4.4
lym 5.5 4.2 3.3 7.8 5.1 2.7 2.0 11.8 9.5
magic 139.2 65.6 66.2 97.9 111.7 284.9 7.0 4.7 3.0
msh 18.6 10.4 10.4 19.6 21.3 6.2 9.0 9.4 3.5
nurse 217.1 132.4 120.1 231.6 223.1 71.6 10.0 6.1 6.4
page 27.8 18.0 14.6 23.9 22.6 23.6 6.0 4.0 6.2

| Continued on next page|

92

Hardware Acceleration of Nonincremental Algorithms for the Induction of Decision Trees and Decision Tree Ensembles 93

Table 3.28 — continued from previous page

OC1-AP CART-LC OCf1

OC1-ES OC1-SA NODT GALE GaTree EFTI

pen
pid
psd
sb
seg
shuttle
sick
son
spect
spf
thy
ttt
veh
vene
vote
VOW
w21
w40
wir
wilt
wine
700

209.4
10.6
2.0
2.7
38.2
27.1
13.6
7.3
5.2
56.2
7.2
56.0
30.7
6.0
4.4
94.5
T71.7
73.1
19.9
19.3
529.1
2.9

98.4
9.1
2.0
3.1

22.1

25.0
9.1
4.3
3.0

50.3
5.4

33.8

23.0
4.8
2.8

63.6

294

20.1

25.3

12.7

414.4
6.0

80.4
9.2
2.0
2.2

21.1

27.9

11.9
3.6
3.5

43.4
4.9

20.5

28.8
4.6
2.7

48.5

17.9

16.0

23.8

13.6

352.6
2.6

196.8
7.0
2.0
4.1

31.6
24.8
13.9
6.5
0.4
80.0
7.1
48.7
37.6
0.4
3.8
90.2
75.0
67.0
19.5
17.5

498.0

4.5

188.3
10.0
2.0
2.8
37.9
24.2
14.8
6.1
3.4
25.6
7.9
43.4
32.8
4.5
4.1
90.8
29.3
55.4
20.3
18.1
504.3
6.0

44.0
15.9
2.9
21.2
18.1
40.3
11.7
2.7
2.6
46.2
24.2
19.8
16.7
6.8
3.4
35.0
45.2
33.9
72.2
18.2
198.6
5.4

28.0
6.0
2.0
1.0
6.0
4.0
2.0
7.0
2.0
6.0
3.0

31.0
6.0
2.0
6.0

18.0
9.0

18.0
3.0
2.0
7.0
7.0

12.8
15.3
10.2
3.9
14.5
9.0
2.9
29.8
2.6
11.0
2.9
11.5
18.7
31.6
3.3
22.9
17.0
17.3
8.2
3.4
9.2
13.2

19.6
3.4
2.0
2.0

12.3
7.5
3.0
4.6
3.1

16.1
4.4
4.4
9.4
4.8
3.0

39.4
4.1
4.3
9.0
2.1

11.6
7.1

Table 3.29: The 95% confidence intervals for the sizes of the induced DTs by all
algorithms from the Table 3.7, on all datasets from the Table 2.1 from five 5-fold
cross-validation test.

OC1-AP CART-LC OC1 OC1-ES OC1-SA NODT GALE GaTree EFTI
adult +23.9 £17.1 +8.8 £164 £30.2 +7.8 £0.0 +3.3 £0.2
ausc +3.8 +1.4 +2.0 +2.9 +2.4 +0.8 £0.0 +0.8 +0.1
bank £29.9 +£222 +5.7 £198 £23.6 +5.8 +0.0 £0.2 +0.2
bc +6.4 £2.1 +1.8 +4.0 +4.5 £1.1 £0.0 +1.6 £0.2
bch £146.2 +£1204 £142.2 £130.1 =+£150.5 +£10.3 £0.0 +1.9 £5.0
bcw £3.0 +0.7 +0.9 +1.9 +1.7 +0.7 £0.0 +1.2 £0.2
ca +2.4 +2.3 +0.7 +2.8 +3.9 +1.5 £0.0 +0.8 £0.0
car +5.1 +3.7 +3.6 +5.6 +4.9 +1.5 £0.0 +1.3 +0.3
cmec £35.2 £14.0 +£12.6 £18.2 £13.2 £2.8 £0.0 +1.1 £0.2
ctg +17.0 £11.9 +£9.0 +£13.8 £155 £2.0 £0.0 £1.1 +0.8
cvf £113.7 £10.3 +£9.5 746 £63.5 +3.8 £0.0 +2.0 £0.3
eb +£731.7 £778.8 £587.5 £1009.6 +740.6 +14.3 £0.0 £6.1 +1.9
eye +76.7 £734 +58.2 £86.3 £95.3 +8.9 £0.0 +1.1 £0.2
ger +1.2 +0.9 +1.4 +1.3 +1.4 +0.7 +0.0 +0.6 +0.2
gls £3.8 +£2.6 +2.4 £3.5 +£3.5 +£1.2 £0.0 £3.6 £0.3
hep +1.7 +0.4 +1.2 £1.8 +1.2 +0.4 +0.0 +1.7 +0.1
hrtc +5.4 £2.5 £3.5 £6.1 +4.0 +1.0 £0.0 +1.9 £0.6
hrts +2.3 2.2 £+1.0 +2.7 +2.8 £0.6 £0.0 +1.2 £0.2
ion +1.9 +1.2 +1.0 +2.0 +1.4 +0.4 £0.0 +1.2 £0.2
irs +0.2 +0.2 +0.1 +0.5 +0.4 +0.3 +0.0 +2.9 +0.4

Continued on next page|

93

Hardware Acceleration of Nonincremental Algorithms for the Induction of Decision Trees and Decision Tree Ensembles 94

Table 3.29 — continued from previous page

OC1-AP CART-LC OC1 OC1-ES OC1-SA NODT GALE GaTree EFTI
jvow +32.4 £19.7 +21.9 =£30.3 £31.9 +2.6 £0.0 +1.6 £0.9
krkopt £102.1 £98.0 +97.4 +£133.2 £148.1 £20.5 £0.0 +1.9 +1.2
letter +19.8 £80.4 +91.1 £81.7 +£794 £6.3 £0.0 £2.5 +2.2
liv +4.7 +3.9 +3.5 +4.3 +4.4 +1.1 £0.0 +1.6 +0.2
lym +1.8 +1.2 +0.8 +2.7 +1.9 +0.3 +0.0 +1.4 +0.6
magic +28.7 £11.2 £23.5 £240 £35.1 +6.4 £0.0 £0.5 £0.0
msh +0.8 £0.7 +1.0 +1.6 +1.4 £0.5 £0.0 +1.3 £0.2
nurse £5.6 £9.5 +17.7 £134 +£24.6 £2.0 £0.0 +1.4 £0.3
page +7.9 +6.9 £3.0 £6.0 +5.9 £3.1 £0.0 +0.4 £0.2
pen +15.7 +£10.8 +94 £15.7 £14.1 +2.3 +0.0 +1.9 +0.6
pid +6.0 +4.3 +3.8 +2.4 +5.7 +1.0 +0.0 +1.2 +0.2
psd £0.0 £0.0 £0.0 £0.0 £0.0 £0.5 £0.0 £2.5 £0.1
sb +2.9 +1.1 £0.3 +3.8 +1.1 +2.2 £0.0 +0.4 £0.0
seg £5.2 +4.2 +3.9 £5.5 +5.1 £+1.0 £0.0 +1.2 £0.6
shuttle +2.2 +1.5 +2.9 +2.6 2.7 +1.6 £0.0 +0.7 £0.2
sick +2.6 +2.2 +4.1 +2.5 +3.4 +1.4 £0.0 +0.2 +0.1
son +2.1 +1.4 +1.1 £+1.9 +1.9 £0.2 £0.0 £2.0 +0.3
spect £2.9 £0.9 +1.2 £2.9 +1.7 +0.4 £0.0 £0.8 £0.1
spf +14.5 £17.1 +16.9 £19.7 +£16.9 +£2.5 £0.0 +1.4 +0.7
thy £0.6 £+1.0 £0.5 £+1.0 £+1.0 +2.1 £0.0 £0.3 £0.2
ttt +10.1 8.7 +7.1 +£10.1 £11.1 +1.5 £0.0 +2.1 £0.2
veh +8.6 +7.7 +£79 £12.3 +9.3 +0.9 +0.0 +2.3 +0.3
vene +1.9 1.7 +1.1 +1.4 +1.4 +1.1 £0.0 £2.1 £0.2
vote +1.4 £0.7 +0.7 +1.5 +1.4 +0.4 £0.0 £0.7 £0.0
VOW £6.3 +7.4 +5.9 +7.3 +6.9 +1.7 £0.0 +1.6 +1.1
w2l £25.8 £13.9 +54 £19.5 £13.8 +1.9 £0.0 +1.3 £0.1
w40 +28.9 +5.1 +34 £19.2 £19.6 +2.5 £0.0 +0.9 £0.2
wir +2.0 +3.1 +3.5 +1.9 +2.2 +1.6 +0.0 +0.7 +0.4
wilt +4.0 +£3.1 +4.5 £3.6 +3.3 £3.0 £0.0 £0.3 £0.1
wine £109.0 £93.3 +89.3 £105.5 =£105.5 +3.9 £0.0 £0.7 +0.4
700 £0.6 £0.6 £0.5 +0.9 0.9 £0.2 £0.0 +2.0 £0.1

Table 3.30: The relative differences in sizes of the DTs induced by the algorithms from
the Table 3.7, compared to the DTs induced by the EFTI algorithm on the same dataset.

OC1-AP CART-LC OC1

OC1-ES OC1-SA NODT GALE GaTree

adult 2988.6
ausc 160.8
bank 4187.7
bc 282.9
bch 69.2
bew 345.8
ca 98.7
car 557.9
cme 979.9
ctg 273.3
cvf 6511.6
eb 2876.9

1864.3
39.2
1771.9
48.6
8.7
254
102.7
360.9
235.8
166.8
329.5
3300.2

1095.7 1860.0
58.1 74.3 56.8
643.9 3221.1 3070.2
43.8 138.4 173.3
19.7 58.9 65.7
32.2 135.6 147.5
6.7 189.3 212.0
252.3 200.5 446.2
294.3 435.2 461.6
45.5 201.6 174.9
347.3 2564.1 23145
1795.1 4159.8 2789.4

3097.1 18737.1

163.5

18173.7
61.0
39.4
44.1

178.7

234.5
842.8
118.2
1624.2
4863.9

7.1
170.3

—12.3

139.7

-96.6

27.1
166.7

—61.9
—-37.1
—44.3
—75.8
—94.4

2214
160.8
22.8
140.4
—-92.5
349.2
138.7
—40.1
86.8
—-37.9
97.5
—88.3

Continued on next page|

94

Hardware Acceleration of Nonincremental Algorithms for the Induction of Decision Trees and Decision Tree Ensembles 95

Table 3.30 — continued from previous page

OC1-AP CART-LC OC1

OC1-ES OC1-SA NODT GALE GaTree

eye
ger
gls
hep
hrtc
hrts
ion

irs
Jjvow
krkopt
letter
liv
lym
magic
msh
nurse
page
pen
pid
psd
sb

seg
shuttle
sick
son
spect
spf
thy

ttt

veh
vene
vote
VOW
w21
w40
wir
wilt
wine
Z00

15989.4
92.5
—25.1
19.0
—41.7
90.8
42.7
—16.1
2445.5
7515.8
1697.8
149.5
—42.0
4540.0
428.4
3292.5
351.3
970.6
210.6
-2.0
186.0
209.7
262.6
347.4
598.3
70.1
248.4
64.5
1171.8
227.8
23.1
46.7
139.6
1657.8
1608.4
120.4
828.8
4476.8
—16.4

15943.5
6.0
—31.3
—38.0
—54.7
37.9
12.5
—14.0
1252.2
5954.0
1102.4
98.2
—-56.3
2085.3
196.6
1968.8
192.2
403.3
167.1
-2.0
56.0
79.2
233.7
198.7
—7.0
—-1.3
212.2
22.7
667.3
145.3
0.0
—6.7
61.2
621.6
369.2
179.6
209.6
3485.1
—15.3

12571.8 18037.6

50.7
—41.2
—6.0
—45.9
—17.2
18.7
—18.3
1251.0
5492.9
1072.1
67.6
—65.5
2106.7
196.6
1776.9
137.0
311.0
169.4
—2.0
10.0
71.1
272.7
292.1
—22.6
13.0
169.5
10.9
366.4
208.1
-5.8
—10.7
23.0
339.2
272.9
162.8
953.8
2950.5
—20.3

74.6
—28.0
12.0
—11.8
119.5
47.9
—2.2
2293.0
7254.3
1566.8
129.7
—18.1
3162.7
458.0
3518.7
287.7
906.1
107.1
-2.0
106.0
156.2
232.1
356.6
41.7
74.0
396.0
61.8
1007.3
302.1
11.6
25.3
128.8
1738.2
1464.5
115.9
742.3
4207.6
—36.7

16381.2 13710.6

82.1
—7.7
—11.0
—51.4
69.0
27.1
-9.7
2245.5
7057.7
1573.8
127.9
—46.2
3624.0
205.7
3385.6
266.9
862.6
192.9
-2.0
40.0
207.8
223.0
385.5
32.2
11.7
244.7
79.1
885.5
250.0
—6.6
36.0
130.1
1352.9
1193.5
124.3
771.2
4262.6
—15.8

71.6
—46.5
—40.0
—-23.9

12.6

—6.2
—5.4
172.2
2435.6
382.5
158.6
—71.8
9396.0
75.0
1019.4
282.4
124.9
368.2
190.2
958.0
47.1
438.5
284.2
—40.9
—-16.9
186.4
449.1
350.9

78.2

39.7

12.0
—11.3

1007.8
692.5
698.7
775.0

1617.6

—23.7

—11.8
11.9
—69.9
150.0
—39.6
417.2
82.3
—-194
—13.0
—89.8
—73.4
12.6
—47.5
133.3
155.7
56.2
—2.6
43.1
76.5
-2.0
—50.0
—51.3
—46.5
—34.2
52.2
—35.1
—62.8
—31.8
604.5
—-35.9
3.3
100.0
—54.4
120.6
320.6
—66.8
—-3.8
—39.4
—-1.1

191.8
4.5
14.9
127.0
—17.8
244.8
220.8
566.7
—30.2
—-73.3
—76.8
354.1
244
55.6
167.0
—4.4
—35.7
—34.8
349.4
400.0
96.0
17.5
20.9
-3.9
547.8
—16.9
—32.0
—33.6
161.8
100.0
553.7
9.3
—42.0
315.7
304.7
—8.8
61.5
—-204
85.9

Table 3.31: The ranking of the algorithms from the Table 3.7 and EFTI based on the
induced DT accuracies, calculated using the procedure explained in the Section 2.8.

OC1-AP CART-LC OCf1

OC1-ES OC1-SA NODT GALE GaTree EFTI

adult
ausc

bank
bc

1
3
1
>

1

2
2
3

2

2
2
2

1
2
1
4

1

2
1
3

N O =~ Ot

4
2
4
5

6
2
5
6

3
1
3
1

Continued on next page|

95

Hardware Acceleration of Nonincremental Algorithms for the Induction of Decision Trees and Decision Tree Ensembles 96

Table 3.31 — continued from previous page

OC1-AP CART-LC OCf1

OC1-ES OC1-SA NODT GALE GaTree EFTI

AT N A A A AL A A A A A A AT NI A AN A A A A A A A H A A A NN = < <~

O ANAANFFLOON-AFAANNLTNIIOOOOOANI-FOFIFION NN OFFFLIOMO FANFO OO F FAN

IO AN AN FANFLIOMNMN OMAANANANAN—<FOLOFANOFLOMMA—"A—ANNOANANMNHFNMFANANMNLOLILD HF DA

T ANAFTFTAFOAN AFTFAANANANN /O AN NN MO AN A <FANAMNM 10N ANANLO F— AN FANANAN NN N

AN AN I M M A AN A ANFIF AN NN AN AN A A NN AN ANANN MM~

AN AN AN AN A F AN /AN A AN AT AN ANAN TN T TN A A A AN AN 44N ANANN—MMM—A A

M AN AN AN AN O AANANANN—A—10OMNM AN AN AN A~ FTAFTAANNMANANANN AN~ — N

M AN AN AN AN /A AN ANANAN AN NN A AAT AN A A A" NN FHF—A AN ANANMNM—ANN A~

= Q

Qo ﬂlv (D) o —

S o o » O = |5} L o —_— O - Q8
= B o 2 4 O = 88 o Wkt EdPc Loansg o WS S O > =823 == g 0
00 & & = 5L 0 e % s > 5802 % Q s 0000 TEecxTZ S
2288558300 mecEsElEEE s 2EEZ3888083 3 3FE5E2288x222%R

1.725 1.706 27725 3314 4137 1.804

1.961

1.686

rank 2.294

96

Hardware Acceleration of Nonincremental Algorithms for the Induction of Decision Trees and Decision Tree Ensembles 97

Table 3.32: The ranking of the algorithms from the Table 3.7 and EFTI based on the
induced DT sizes, calculated using the procedure explained in the Section 2.8.

OC1-AP CART-LC OC1

OC1-ES OC1-SA NODT GALE GaTree EFTI

adult
ausc
bank
bc
bch
bcw
ca
car
cme
ctg
cvf
eb
eye
ger
gls
hep
hrtc
hrts
ion
irs
Jvow
krkopt
letter
liv
lym
magic
msh
nurse
page
pen
pid
psd
sb
seg
shuttle
sick
son
spect
spf
thy
ttt
veh
vene
vote
VOW
w21
w40

e OO N WERE R WNWWERECIDRRL, NOTW R S R NDNOODDEREDNDNDDNDDNDDN WWWWWWWUTDN0DWWWENoWw

N R FRFFNNDNNNFFEF RN WWRFR R EFEFWNWWNR R WERNNRFR FEF R FERFRNFAENNRFRENRFEWRFRRFDNDRFDNRFDND

—_

R R WHF R NDNNNNDRFRE RPN WWR R R WNDWWINOR P WWNR R RPFRPRRFRPRRFRERPRPNNRERPRRENNRERNDRFRR

WWUIlHR R WWWWHRENWWAERRFRPRRPRPERARNNAERARNNNRFRPERCTWRFRFRFINNRFE RPN WNDNDNDRFRE AN RFRPDNDDNDWRND

WUl HEF WWWINORENWWERrRRFRERFEEFEPBRNRAROOWRERE R OWRRFEFERFEEENDNWNDNDNDDND WN N DNDNDDND DN

NNNNNF R FRFRNOOONF RPN WNRNNDNNNNDNDNOIFRF NN R R R R RFRERFEAENDWNNNDNDNDND DN OUN

e el T I e e e N e R e e e e e T T T S e R e e e NG I N e e e e e " R S S NORE NGRS
et e e N e NG B NS I U N S e e S L I e I U e e e U I I I U e L I N e e e e e e Pt e PR NI
el e e e e e e e e e e e e e e e T e T T e e e O e T S e e e e el e e e e e e

Continued on next page|

97

Hardware Acceleration of Nonincremental Algorithms for the Induction of Decision Trees and Decision Tree Ensembles 98

Table 3.32 — continued from previous page

OC1-AP CART-LC OC1 OC1-ES OC1-SA NODT GALE GaTree EFTI

wir 4) 3 3 3 6 1 2 2
wilt 3 2 2 2 2 2 1 1 1
wine 4 3 3 3 3 2 1 1 1
Z00 2 1 1 1 1 1 1 3 1

rank 3.176 1.843 1.627 2.294 2.275 2059 1275 1.706 1.118

The results of the experiments in this section show that the proposed EFTI algorithm is capable
of inducing the DTs of the accuracies comparable to other well known incremental algorithms
like CART-LC and OCl1, but with the significant reduction in their sizes. This can be seen in the
average rankings of the algorithms based on their accuracies and sizes. In terms of accuracy,
the EFTI scored an average of 1.804, compared to 1.686 of CART-LC and 1.961 of OC1. On
the other hand, when it comes to size, EFT] had a significantly higher average rank of 1.118,
compared to 1.843 of CART-LC and 1.627 of OC1. When compared to full DT induction
algorithms GALE and GaTree, EFTI was better in terms of induced DT size and significantly
better when it came to DT accuracies.

98

Hardware Acceleration of Nonincremental Algorithms for the Induction of Decision Trees and Decision Tree Ensembles 99

4 Co-processor for the DT Induction - the EFTIP

Very few theorems exist about evolutionary algorithms that can be used to guarantee some
aspect of their behavior, with probably the most famous results being the one that states that
(1+1) ES takes O(nlog(n)) iterations to find a maximum of any linear function /78]. Even
worse, the “No Free Lunch” theorem /79] implies that no optimization algorithm can have,
on average, a superior performance when applied to many different problems, which means
that usually optimization algorithms need to be specifically tuned for each problem. However,
in order to find the optimal parameter set for an EA or test the efficiency of a new algorithm
feature, for the lack of theoretical guidelines usually an experimental approach needs to be
used. In order for the experiment to have a level of statistical significance, usually multiple
runs of cross-validation technique are used.

For tuning the parameters and testing new features for the EFTI algorithm, five 5-fold
cross-validations were performed for each dataset with 500k iterations, which for the largest of
them, shuttle took almost 6 hours on a desktop PC (average induction times when partial
reclassification is used can be found in Table 3.6). In order to find an optimal parameter
set, some kind of meta-heuristic needs to be employed, where in each of its iterations such
a cross-validation test would be needed to evaluate its current candidate solution. This would
then amount to days or even weeks of processing time. Embedded CPUs are even less powerful
and would take even more time for these operations. Hence, the application of the DT induction
using EAs in a dynamically adaptable real-time embedded machine learning system would be
impractical.

In this thesis, in an attempt to address the issue of long inference times, a co-processor
called EFTIP (Evolutionary Full Tree Induction co-Processor) is proposed, that can be used
to accelerate the operation of the full DT induction algorithms, hence the EFTI algorithm too,
by an order of magnitude. The following topics will be covered in this section:

* Section 4.1 - Presentation of the results of the EFTI algorithm profiling that reveal
its most computationally intensive parts, which in turn make good candidates for the
hardware acceleration

» Section 4.2 - Overview of the existing hardware architectures for the DT classification
acceleration

» Section 4.3 - Detailed description of the EFTIP co-processor.

* Section 4.4 - Analysis of the required hardware resources and the performance of the
EFTIP co-processor

» Section 4.5 - Discussion on the software routines that need to be added to the EFTI
algorithm, in order for it to make use of the EFTIP co-processor

» Section 4.6 - Experimental section that shows the speedups that can be achieved by using
the EFTIP co-processor

4.1 Profiling Results

It is clear from the equation (26) that the fitness_eval () function is a good candidate
for the hardware acceleration, since it is the dominant contributor to the algorithm’s time

99

Hardware Acceleration of Nonincremental Algorithms for the Induction of Decision Trees and Decision Tree Ensembles 100

complexity. To confirm the results obtained by the computational complexity analysis, the
software profiling was performed on the EFTI algorithm’s C implementation. The EFTI
algorithm was let to induce DTs from all datasets from the Table 2.1 in order to gather
the profiling data. The software implementation of the EFTI algorithm was compiled using
the GCC 5.4.1 compiler, run on the PC with 64-bit, 4-core, Intel 15-2500K CPU operating
at approximately 3.5GHz, with 8GB or RAM, running Ubuntu 16.04 operating system and
profiled using the GProf performance analysis tool for each of the datasets individually.

Table 4.1: Percentages of the induction time that the EFTI algorithm spent on average
in the sub-functions of the fitness evaluation task, given for each dataset.

Dataset | FDLFI[%] AC[%] ENT[%] ASPC[%] Others %]

adult 63.89 10.86 23.76 1.08 0.41
ausc 51.44 17.15 28.58 0.00 2.83
bank 75.57 6.53 16.79 0.88 0.23
bc 70.01 13.34 8.33 6.67 1.65
bch 67.92 22.59 6.84 0.86 1.79
bew 71.44 21.43 7.14 0.00 0.01
ca 48.65 10.81 35.14 2.70 2.70
car 66.68 17.95 10.26 2.56 2.55
cme 62.51 21.25 10.63 5.00 0.61
ctg 72.98 17.30 8.11 1.08 0.53
cvf 65.48 16.85 16.02 1.24 0.41
eb 74.25 16.01 7.46 0.62 1.66
eye 59.23 15.42 22.70 2.02 0.63
ger 69.40 2.04 28.58 0.00 0.02
gls 57.90 15.79 15.79 0.00 10.52
hep 55.56 22.23 11.11 0.00 11.10
hrtc 60.01 13.34 26.67 0.00 0.02
hrts 46.67 33.34 10.00 0.00 9.99
ion 63.64 9.09 22.73 0.00 4.54
irs 57.15 28.58 14.29 0.00 0.02
jvow 71.12 19.19 8.69 0.56 0.44
krkopt 68.80 17.49 11.79 0.70 1.22
letter 70.98 15.51 10.60 0.97 1.94
liv 78.58 0.00 17.86 0.00 3.56
lym 66.68 0.00 8.33 0.00 24.99
magic 64.70 13.07 20.13 1.46 0.64
msh 56.58 16.19 25.72 1.14 0.37
nurse 68.13 19.39 11.02 0.81 0.65
page 68.60 13.09 15.97 1.57 0.77
pen 72.02 19.41 7.41 0.72 0.44
pid 72.23 19.45 5.56 2.78 0.02
psd 63.24 13.24 19.12 0.00 4.40
sb 61.06 21.06 14.21 3.16 0.51
seg 65.11 19.27 13.02 1.04 1.56
shuttle 67.68 8.95 22.10 0.81 0.46
sick 47.73 21.03 28.98 2.27 0.01
son 0.00 9.09 90.92 0.00 0.01
spect 66.68 8.33 25.00 0.00 0.01
spf 65.42 15.04 18.05 0.00 1.49
thy 47.18 14.15 37.74 0.47 0.46
ttt 57.90 21.06 14.48 5.26 1.30
veh 57.38 19.67 21.31 0.00 1.64
vene 63.64 27.28 0.00 0.00 9.08
vote 45.01 25.00 20.00 0.00 9.99
VoW 69.01 21.00 6.00 1.00 2.99
w21 53.16 20.00 25.76 0.55 0.53
w40 53.40 13.82 31.85 0.23 0.70
wir 65.35 13.62 19.93 0.74 0.36

100

Hardware Acceleration of Nonincremental Algorithms for the Induction of Decision Trees and Decision Tree Ensembles 101

100%

90%

80%

70%

adult ausc bank bc bch bcw ca car cmc ctg cvf eb eye ger hep hrtc

gls

(a) The datasets adult - hrtc

100% . . —

90%

80%

70%

hrts ion irs jvow krkopt letter liv lym magic msh nurse page pen pid psd seg

(b) The datasets hrts - seg
100%

90%

80%

70%

shuttle sick son spect spf thy ttt veh vene vote vow w21l w40 wfr wilt wine zoo

(¢) The datasets shuttle - zoo

Figure 4.1: The visual representation of the induction time percentages that the EFTI
algorithm spent on average in the sub-functions of the fitness evaluation task, given for
each dataset.

Table 4.1 — continued from previous page
Dataset | FDLFI [%] AC [%] ENT [%] ASPC [%] Others [%]

wilt 68.19 14.77 13.07 3.98 0.01
wine 69.79 17.04 12.64 0.27 0.26
700 42.86 42.86 14.29 0.00 0.01
average | 61.74 16.69 18.09 1.08 2.41

The results obtained by the profiling are listed in the Table 4.1 and displayed graphically
in the Figure 4.1. The results displayed in the table represent the percentage of the
induction time that the EFTI algorithm spent on average in the sub-functions of the fitness
evaluation task: FLDFI - find_dt_leaf_ for_inst (),AC-accuracy_calc(),ENT
- evaluate_node_test () and ASPC - apply_single_path_change (), together
with the percentage of the time spent inside all other functions given in the column titled
“Others”. The percentages given for the individual functions represent self-time, i.e. the
execution time of the function without the execution times of its sub-functions. On the other
hand, the Figure 4.1 shows, for each dataset, the percentage of the time spent in all fitness
evaluation related functions combined.

The results presented in this subsection are consistent with the algorithm complexity analysis
performed in the Section 3.4. On average, EFTI spent 99.0% of time calculating the fitness of
the individual, hence the obvious computational bottleneck lays in the fitness evaluation task,
which undoubtedly makes it a candidate for the hardware acceleration.

101

Hardware Acceleration of Nonincremental Algorithms for the Induction of Decision Trees and Decision Tree Ensembles 102

Since all other tasks (mutation, selection, initialization, etc.) take an insignificant amount of
time on average to perform, it seems that there is no need to accelerate them in hardware.
The EFTI algorithm can thus be implemented using HW/SW co-design architecture, where the
fitness evaluation task would be implemented in hardware, while the rest of the functionality
would remain in software. However, the EFTI algorithm could still benefit from moving all the
remaining tasks to hardware too, since that would lower the communication overhead between
the CPU and the custom hardware.

Nevertheless, for two reasons it was decided for the proposed EFTIP co-processor to
accelerate only the accuracy_calc () function (and all of its sub-functions) from the fitness
evaluation task, with the rest of the EFTI algorithm functionality left in software. The first
reason is that it would be much more difficult to change and experiment with the fitness
formula and the tasks of mutation, selection, initialization, etc. if they were implemented
in hardware. Second reason is that many other evolutionary algorithms for optimizing the
DT structure can then be implemented in software and make use of the hardware accelerated
fitness evaluation task, like: Genetic Algorithms (GA), Genetic Programming (GP), Simulated
Annealing (SA), etc. This fact significantly expands the potential field of use for the proposed
EFTIP co-processor core.

4.2 Existing Architectures for Hardware Acceleration of the DT
Classification

The accuracy of a DT is calculated by letting the DT classify the instances of a training set. The
results of the DT classification are then compared with the known classification of the training
set and the accuracy is calculated as a ration of the number of correct classifications to the total
number of instances in the training set. The EFTI algorithm employs a sequential approach to
performing this task, which is described in the Section 3.2.3.1.

First attempt at developing a hardware implementation of this procedure might be to implement
every DT node as a separate hardware module, and connect the modules in the form of the DT.
The hardware architecture based on this idea is proposed in /80/, and shown in the Figure 4.2.

The instance that is to be classified is distributed among all hardware DT nodes, where it is
used in the node test evaluations. All the DT classes are made available on the inputs of the
Demultiplexer (Figure 4.2). Starting from the root, the node tests are evaluated sequentially
along the classification path of the instance, and based on their results the correct class for the
output of the Demultiplexer is selected.

The hardware architecture proposed in /80] has two major drawbacks, one regarding the
amount of hardware resources needed, and the other regarding the time needed to perform
the classification. First, the architecture needs one hardware module per DT node, which
in turn requires a significant amount of resources in order to be able to perform the dot
product calculation of the node test (equation (1)). Second, the time needed to perform the
classification is proportional to the depth of the DT and to the time needed to perform the node
test calculation. In other words, this architecture does not scale well with the size of the DT.

One possible way of decreasing the classification time using this architecture is to perform all
node tests in parallel. This is akin to what has been suggested in [66/, where an equivalence
between decision trees and threshold networks is used to devise a hardware architecture for

102

Hardware Acceleration of Nonincremental Algorithms for the Induction of Decision Trees and Decision Tree Ensembles 103

Instance

l

L

@ - 2-C4 | | 3-C,

VARV
4-C1 | | $-C:-
Demultiplexer
J
Class

Figure 4.2: The DT classification hardware implementation using one hardware module
per DT node

decision tree classification, where all node tests are performed in parallel. Once all of the node
tests have been evaluated, their results can be combined using a boolean function in order to
determine in which node the instance finished the classification, and hence to which class it
should be classified into. This way, the time needed to perform the classification equals the
time needed to evaluate one node test, plus the time needed to evaluate the output boolean
function. Still, the issue with number of node hardware modules remains.

The architecture that remedies both resource and timing problems, and was thus adopted by
the EFTIP co-processor, is proposed in /56] and called SMPL (Single Module Per Layer).
Instead of implementing each DT node in hardware separately, this architecture requires only
one universal node per DT level, which is in turn used to evaluate the tests of all nodes from
that DT level. The fact that makes this solution possible is that the instances traverse the DT
only in one direction from top to bottom, never returning to already visited nodes.

The Figure 4.3 shows the structure of the SMPL architecture implementation for the same
example DT used in the Figure 4.2. The architecture implementation consists of three universal
nodes L, through L3, one for each of the DT levels that contain non-leaf nodes. The instance
starts its traversal of the DT by being input to the L; module, which implements the root DT
node in every SMPL architecture implementation. The universal node L, evaluates the root
node test and passes the instance along with the test results to the L, module, which is akin to
the instance continuing its traversal to the level 2 of the DT. The L, module has the capability
of calculating the node test for all the nodes on the level 2 of the DT, in this case node #2
and #3. Based on the root node test results received from L, the L, module knows to which
root child the instance has been passed, and thus the appropriate level 2 node test is evaluated,
whose results, together with the instance, are in turn passed to its successor, and this process is
continued until one of the universal nodes detects that the instance has arrived to a leaf node,

103

Hardware Acceleration of Nonincremental Algorithms for the Induction of Decision Trees and Decision Tree Ensembles 104

Instance Instance

l

L1 Universal node

Level 1

L5 Universal node

................. J \NJ\/

Level 3 @ 1-Cy 2-Cs || 3-Cy L3 Universal node

............ J\J

4-Ch || 5-C5 Class

Level 2

Figure 4.3: The idea behind the SMPL (Single Module Per Layer) architecture. There is
one universal hardware module (Universal nodes Ly — Ls) per DT level that implements

all DT nodes on the level.

i.e. it has been classified. Thereafter, the information about the class is passed onward and
following universal nodes perform no test evaluations on this instance. Finally, the last module
of the SMPL architecture outputs the class of the instance.

The SMPL is a pipelined architecture, hence the instances can be effectively classified in
parallel on all universal nodes, with the small cost of an initial pipeline latency. The node
test evaluation results calculated by an universal node, that are to be made available to the next
universal node in pipeline, are stored in the register available between every two nodes (blocks
named reg in the Figure 4.3). That way, once the node test is evaluated for an instance and
stored in the output register, the universal node is free to start processing the following instance
from the dataset, while the next universal node in pipeline utilizes the stored results from the
register.

The EFTIP co-processor classification module was decided to be based on the SMPL
architecture as it requires significantly less hardware resources for the implementation then
the architectures /80] and [66]. In order to evaluate oblique DT node tests, the addition,
multiplication and comparison operations are needed. Hence, the SMPL architecture requires
notably less adders, multipliers and comparators then architectures proposed in /80] and [66].
However, the memory resources requirements for storing the node test coefficients and leaf
classes are identical between all three given architectures.

4.3 EFTIP Detailed Description

As it was discussed in the section Section 4.1, the EFTIP is designed to accelerate the most time
consuming task of the evolutionary DT induction algorithms, which is the task of determining
the accuracy of the DT individual, which is in turn needed for the fitness evaluation of the
DT (the Algorithm 3.2). More precisely, the EFTIP co-processor calculates the number of
successful classifications, i.e. the number of classifications hits - the hits variable of the
Algorithm 3.3.

104

Hardware Acceleration of Nonincremental Algorithms for the Induction of Decision Trees and Decision Tree Ensembles 105

The EFTIP co-processor is designed as an IP core and embedded to the SoC through
the interconnect interface AXI4 AMBA bus. The ARM Advanced Microcontroller Bus
Architecture (AMBA) is an open-standard, on-chip interconnect specification for the
connection and management of functional blocks in system-on-a-chip (SoC) designs. Today,
AMBA is widely used on a range of ASIC and SoC parts including the processors used in
modern portable mobile devices like smartphones. Via the AXI4 bus, the software running on
the CPU can completely control the EFTIP operation:

Download the training set

Download the DT description, including the structural organization and the coefficient
values for all node tests present in the DT

Start the accuracy evaluation process

Read-out the classification performance results

Processing System EFTIP co-processor
- AXT4 [RQ ’ :
AXI4 Control Unit Training Accuracy
CPU Set Memory Calculator
addr
AXI4 oM e
Interconnect e
== [, NTEFE;
addr
DDR3 DDR3 |axu4 SM | data’
Memory <:> Memory <:> T
Controller addr
CM data
— LQ addr N TE2
SM data
U
4
addr
CM data
Lpwm: addr NTEpwm
SM data
DT Memory Array Classifier

Figure 4.4: The EFTIP co-processor structure and integration with the host CPU

The major components of the EFTIP co-processor and their connections are depicted in the
Figure 4.4:

* Classifier (Section 4.3.1) - Performs the DT traversal for each training set instance,
i.e. implements the find_dt_leaf_ for_inst () function from the Algorithm 3.4.
The classification process is pipelined using a number of Node Test Evaluator modules
(NTEs) corresponding to the universal nodes of the SMPL architecture, with each NTE
performing the DT node test calculations for one DT level. The parameter D is the
number of pipeline stages and thus the maximum supported depth of the induced DT.
For each instance in the training set, the Classifier outputs the ID assigned to the leaf

105

Hardware Acceleration of Nonincremental Algorithms for the Induction of Decision Trees and Decision Tree Ensembles 106

in which the instance finished the traversal (please refer to the accuracy_calc ()
function from the Algorithm 3.3).

* Training Set Memory (Section 4.3.2) - The memory for storing all training set instances
that should be processed by the EFTIP co-processor.

* DT Memory Array (Section 4.3.3) - The array of memories used for storing the DT
description, composed of sub-modules L, through Lp». Each Classifier pipeline stage
requires its own memory that holds the description of all nodes at the DT level it is
associated with. Each DT Memory sub-module is further divided into two parts: the CM
(Coefficient Memory - memory for the node test coefficients) and the SM (Structural
Memory - memory for the DT structural information).

* Accuracy Calculator (Section 4.3.4) - Based on the classification data received from
the Classifier, it calculates the accuracy of the DT and keeps track of which training set
classes were found to be dominant for each of the DT leaves. For each instance of the
training set, the Classifier supplies the ID of the leaf in which the instance finished the
DT traversal. Based on this information the Accuracy Calculator updates the distribution
matrix. After all the instances have been classified, it calculates the accuracy results and
forwards them to the Control Unit, where they can be read by the user.

* Control Unit (Section 4.3.5) - Acts as a bridge between the AXI4 interface and the
internal protocols. It also controls the accuracy evaluation process and generates an IRQ
(Interrupt ReQuest) when the calculation is done.

4.3.1 Classifier

The classifier module performs the classification of an arbitrary set of instances on an arbitrary
binary oblique DT. As it was already discussed in the Section 4.2, the Classifier module was
implemented by modifying the SMPL architecture described in [56/. The original architecture
from /56] was designed to perform the classification using already induced DTs, hence it was
adapted so that it could be used with the EFTI algorithm for the DT induction as well.

Classifier
NTE; NTE, NTE pur
Instance Instance Instance Instance Instance Instance
|:> Input Output :> Input Output :> :> Input Output :>
Node ID Node ID Node ID Node ID Node ID Node ID
0 |:> Input Output :> Input Output :> :> Input Output :>
———>|CM addr ——> CM addr ———|CM addr
CM data CM data CM data
SM addr SM addr SM addr
SM data SM data SM data

Figure 4.5: The architecture of the Classifier module consisting of the NTE modules
connected in an array.

In order for the EFTIP co-processor to calculate the accuracy of a DT on a dataset, the Classifier

106

Hardware Acceleration of Nonincremental Algorithms for the Induction of Decision Trees and Decision Tree Ensembles 107

needs to perform the DT traversal for each instance of the dataset, i.e. it needs to implement
the find_dt_leaf_ for_inst () function from the Algorithm 3.4 in hardware. As it was
discussed in the Section 4.2, during the traversal of an instance, only one node per DT level is
visited, i.e. only one node test is performed per DT level for a single instance. Hence, a single
module that implements the evaluation of the oblique node test (equation (1)), could be used
to incorporate the test evaluations for all nodes on one DT level. Naturally, this module needs
to be programmable in that it has to support the node test evaluation with different coefficient
vectors in order to be able to evaluate tests for all nodes residing at the same DT level. However,
the programmability is needed also since the EFTIP co-processor is used for the DT induction,
hence the node test coefficients are not known in advance and can change over the course of
the induction.

The Figure 4.5 shows the Classifier module as being composed from NTE modules, each of
which is associated with one DT level, and implements the node test evaluation procedure for
all nodes on that DT level. The NTE modules correspond to the universal nodes of the SMPL
architecture. During the traversal of the DT, an instance always descends one DT level at the
time, and never returns to the levels it already visited. The NTE modules are thus connected
into a chain, where an instance is transferred from the first NTE to the last one in the chain, in
order to calculate its DT traversal path. The number of NTEs the Classifier comprises - D,
determines the maximum depth of the DT whose accuracy can be calculated by that hardware
instance of the EFTIP co-processor. The DM value can be specified by the user during the
design phase of the EFTIP co-processor.

Since an instance always travels down the NTE chain, one NTE at a time, there is no reason
why multiple instances could not traverse the chain simultaneously. The moment the NT'F;
evaluated the node test for the first instance of the dataset and the instance was transferred to
the NT' E,, the NT E; becomes free to evaluate the node test for the next instance in the dataset.
In other words, the NTE modules can form the pipeline, with one stage per DT level, capable
of accommodating D instances in parallel, after the initial latency during which the pipeline
is filled.

The N'T'E; always processes the root DT node. However, which nodes are processed by other
stages depends on the path of the traversal for each individual instance. Hence each NTE
module needs to have access to the descriptions of all the nodes on the DT level associated
with it. Since each stage of the NTE pipeline needs to operate in parallel (in a distributed
manner), the node description data needs to be distributed as well, and thus each stage has one
sub-module of the DT Memory Array assigned to it that holds the descriptions of all the nodes
on the DT level associated with that stage. Furthermore, each DT Memory Array sub-module
is divided into two parts in order to save on some NTE hardware resources, namely CM and
SM, because the data from these two memory parts is needed at different times in the node test
evaluation, which will be discussed in more detail in the following text. Therefore, each NTE
contains interfaces, comprising the address and data buses, for accessing the CM and SM parts
of the assigned DT Memory Array sub-module: CM addr, CM data, SM addr and SM data.

When an instance is transferred from one NTE module to the next, the decision via which node
the traversal continues (made by evaluating the node test) needs to be communicated along with
it too. There are two major cases that need to be handled differently:

1. the instance continues the traversal via one of the children of the node whose test has
been evaluated by the current NTE module. In this case, the next NTE in the chain is sent

107

Hardware Acceleration of Nonincremental Algorithms for the Induction of Decision Trees and Decision Tree Ensembles 108

the ID of the child (non-leaf) node to which the instance should descend.

2. the instance has already been classified, in which case the traversal is finished. However,
in order not to disturb the filled pipeline, the instance is nevertheless transferred down
the NTE chain. In this case, the next NTE in the chain is sent the ID of the leaf in which
the instances finished its traversal. Based on that, the next NTE will recognize that no
further calculations need to be performed for this instance, and that it can simply pass
leaf ID onward.

The inter-NTE interface comprises the following buses:
¢ Instance bus - Passes the instance to the next NTE, as the instance traverses the DT.

* Node ID bus - Passes to the next NTE either the ID of a non-leaf node, through which the
traversal is to be continued, or the ID of a leaf node into which the instance has already
been classified in some of the previous pipeline stages. The leaf and the non-leaf IDs are
distinguished by the value of the node ID’s MSB. If the value of the MSB is zero, the
node ID is a non-leaf ID, otherwise it is a leaf ID.

For each instance, received at the Classifier input, the first NTE block processes the dot product
calculation using the attributes of the received instance x and the root node coefficients w.
Based on the result, it then decides on how to proceed with the DT traversal: via the left or via
the right child. The ID of the selected child node, which can either be a leaf or a non-leaf, is
output via the Node ID Output port. If the selected child is a leaf node, the classification is done,
and the next stages will perform no further calculations, but only pass forward the ID of the leaf
into which the instance has been classified. On the other hand, if the selected child is a non-leaf
node, the next stage will continue the traversal through the selected child by calculating the
node test associated to it. The calculation of each NTE corresponds to one iteration of the
find_dt_leaf_for_inst () function loop (Algorithm 3.4), and the NTE output Node
ID corresponds to the cur_node variable, more specifically to its attribute id, which is in
turn needed for the formation of the distribution matrix in the function accuracy_calc ()

of the Algorithm 3.3 (1eaf. id). The node ID is output synchronously with the instance via
the Instance Output port.

All subsequent stages operate in a similar manner, except that in addition, they also receive
the calculation results from their predecessor stage. Somewhere along the NTE chain, all
instances will finish the traversal into some leaf. The information about this leaf is finally
output from the Classifier module via the Node ID Output port of the last NTE in the chain to
the Accuracy Calculator module (together with the corresponding instance description via the
Instance Output port) in order to update the distribution matrix and calculate the final number
of classification hits.

4.3.1.1 Dot Product Parallelism

To evaluate a DT node test, each NTE needs to evaluate the dot product between node test
coefficient vector w and instance attribute vector x, which is at the same time by far the most
complex operation of the NTE module. By extracting the parallelism from the dot product
operation, additional speedup could be gained. The Figure 4.6 shows which parts of the dot
product calculation can be performed in parallel on an example where N4 = 7. If we are only
allowed to perform binary addition (which is usually the case when a hardware block performs

108

Hardware Acceleration of Nonincremental Algorithms for the Induction of Decision Trees and Decision Tree Ensembles 109

is used for this task), the calculation could be performed in 4 steps, with all the operations
performed in a single step circled with the dashed lines in the figure. In the Step 1 all the
multiplications could be performed in parallel since there is no data dependency between them,
while in later steps the IV -ary addition is broken down into the sequence of binary addition
operations, where all of them within the same step can be executed in parallel.

Step1 W1-T1 W2 -T2 W3-T3 Wq T4 Ws:-T5 We:'Te Wry-T7

Step 2 ST+ 5 S3 + Sy Ss + Sg S
Step 3 512 + S34 S56 + S?
Step 4 51234 + 5567

Figure 4.6: The dot product calculated for N, = 7, using binary multipliers and adders,
broken into 4 steps inside which the operations can be performed in parallel.

To take advantage of this dot product calculation parallelism, the NTE module is again
internally pipelined, all in order to achieve the maximal possible throughput. Each of the
steps (Figure 4.6) of the dot product calculation is mapped into one internal pipeline stage. The
number of stages needed for the dot product pipeline equals 1 for the multiplication step, plus
[{d(N,4)| for N 4-ary addition to be performed via binary addition operations. There is never a
need to flush the NTE pipeline, because of the nature of the DT accuracy calculation, where the
instances enter the pipeline one by one in a predefined order, descend through the DT without
making any loops and finally get classified, at which point the NTE needs to perform no further
calculation on them, which in turn makes space for the rest of the instances to be processed.

4.3.1.2 Node Test Evaluator - NTE

The block diagram in the Figure 4.7 shows the architecture of the NTE module. When the value
received at the Node ID Input of an NTE contains a non-leaf node ID, it tells the NTE which
node’s test is to be evaluated among all the nodes at the DT level on which that NTE module
operates. The node test is performed on the dataset instance received at the Instance Input port
together (at the same time) with the node ID. Each instance carries two types of information:
the attribute vector x and the class C to which it belongs. The instance and the selected node
together make a pair of objects that all procedures in the NTE module operate on, and in the
text they are called: the current instance and the current node. Please notice that due to the
pipelining, different stages of the NTE operate in fact on different current nodes and instances.
The NTE expects the ID of a non-leaf node to equal the node’s index in the list of all non-leaf
nodes at the DT level on which the NTE operates. Hence, the non-leaf node IDs are local to,
i.e. only unique within, the DT level they are at, and the node numbering restarts from 0O for
each DT level. On the other hand, the leaf IDs need to be global, i.e. unique across the whole
DT, since they will be used to identify which leaf was the instance classified into.

109

Hardware Acceleration of Nonincremental Algorithms for the Induction of Decision Trees and Decision Tree Ensembles 110

When the value received at the Node ID Input of an NTE contains a leaf node ID, this signals
the NTE that the corresponding instance has already been classified, hence the dot product
calculation is not performed (more precisely, in order to simplify the design it is still performed,
but the results are discarded). The received node ID value is simply output verbatim via the
“Node ID Output” port along with the corresponding dataset instance.

Node Test Evaluator - NTE

Stage Stage Stage Stage
1 2 cee Np—1 Np
Instance Instance Queue
Input Inst Output
npu I,L-+NP71 Ii+1VF72 . IZ+1 Ii nstance utpu
D w1 - @ Node ID Output
—
1 \‘D\l
])r@\,; MUX2+—
H wa < [l D NM 01
- 23 . B e,
CM addr .. To i=1
: Coeflicient . ~
1\’101[1(?1‘)‘ .)®—)D < MUX1
CM data| Interface D WA 1 : U - 01
IOWII
x Nﬁ’ 1 ~ D - XD
®
D w N -)D
TNM - :
A
0
SM addr Structural |
N
SM data Memory
Interface ChL
Node ID
Node Queue
Node ID I t Node ID MSB
e e NiyNp—1 NiyNp—2 S Nit1 N; IMSB]

Figure 4.7: The NTE (Node Test Evaluator) block architecture

The Classifier hence performs the operations on the current node and instance in the following
order:

1. The test coefficient vector w of the current node is fetched from the CM part of the DT
Memory Array sub-module via the Coefficient Memory Interface. The current node’s ID
is used as an index to calculate the address of the node’s coefficient vector in the CM
memory, which is communicated via the CM addr port. If the current node is a leaf, the
fetch is not performed and all zeros are loaded for the vector w, but the results of the dot
product are discarded anyway in this case.

2. The dot product between the fetched coefficient vector w and the attribute vector x of the
current instance, is calculated in several steps discussed in the Section 4.3.1.1. First the
multiplication step is performed in parallel, and then the obtained element-wise products
are summed using the adder tree.

3. The current node’s test threshold () and the IDs of the current node’s both children (ChLL
- the ID of the left child and C'h R - the ID of the right child) are retrieved from the SM

110

Hardware Acceleration of Nonincremental Algorithms for the Induction of Decision Trees and Decision Tree Ensembles 111

part of the DT Memory Array sub-module, again using the current node ID as an index
to calculate the address where this information is stored in the SM memory. Again, if the
current node is a leaf, the fetch is not performed and all zeros are loaded for #, ChR and
ChL.

4. Finally, the decision on where to proceed with the DT traversal is made. If the current
node is a non-leaf node, the MSB of its ID has a value 0, which makes the MUX2 block
forward the output of the MUXI to the Node ID Output port of the NTE. The output of
the MUX]1 in turn depends on the result of the comparison between the dot product value
and the value of @, and either ChL or ChR is sent to the Node ID Output. On the other
hand, if the current node is a leaf (meaning that the current instance has already been
classified), the MSB of its ID has a value 1, which makes the MUX2 block forward the
current node’s ID to the Node ID Output. Whichever the case may be, a node ID will be
output via Node ID Output port along with the current instance via Instance Output port,
and they will become the current node and the current instance for the next NTE in the
chain.

The main parameter that needs to be specified by the user during the design phase of the EFTIP
is the maximum supported number of attributes per instance - N/, i.e. the maximum supported
sizes of the vectors w and x. This parameter affects the size and latency of the NTE module as
it will be explained in the text that follows.

The NTE module’s main task is the dot product calculation of the vectors w and x. By using
only two input multipliers and adders, this computation is parallelized and pipelined as much
as possible as discussed in the Section 4.3.1.1. The multiplications are performed for all N4/
coefficient and attribute pairs in parallel, while the tree of two input adders that is [Id(N})]
deep, is necessary to implement the summing operation. In order to achieve higher operating
frequency of the implemented EFTIP co-processor, the dot product calculation datapath is
broken into stages, with one stage per calculation step. Each step comprises multiplication
or addition operations that can be performed in parallel. Finally, the outputs of each of the
adder and multiplier blocks are registered to form the pipeline.

Second important parameter besides N}, that needs to be specified by the user during the
design phase of the EFTIP is R4 - the number of bits used for the signed fixed point
representation of the elements of the vectors w and x. Hence, the elements of w and x
are considered to be in the QO0.(R4 — 1) format. For an example, if 16 bits are used for
the representation of the vector elements, they are considered to be in QO0.15 format. After
the multiplication stage, the products will thus be in the Q0.(2R4 — 2) signed fixed point
format. The value of the sum, output by each adder, is larger by 1 bit than the value of its
operands, hence the registers increase in size by 1 integer bit per pipeline stage. After the final
addition, the sum representation will have reached the size of: 2R4 — 1 + (ld(N M ﬂ bits in
the Q([ld(N})]).(2R4 — 2) format. Finally, the value of the final sum, which is compared
to the threshold 6, is truncated to the Q([ld(NA")|).(Ra — 1 — [Id(N}")]) format in order to
return to the operands of R4 bits in size. Consequently, the NTE expects the value of 6 to be
supplied encoded in the Q([{d(NA")]).(Ra — 1 — [Id(N}")]) format. The NTE module also
supports datasets with less than N4/ number of instance attributes, N4 < N4’. In this case, the
surplus coefficients wy , 41, Wn,+2, ... W N should be all set to zero, in order not to affect the
calculation of the sum.

The necessary number of bits used to encode the non-leaf node and leaf IDs - Ry, can be

111

Hardware Acceleration of Nonincremental Algorithms for the Induction of Decision Trees and Decision Tree Ensembles 112

calculated based on the parameter D*. Since the non-leaf node IDs are unique only across one
DT level, of which the last level can have the largest number of nodes, and the D™ parameter
limits the number of levels the induced DT can have, there is a maximum of 2 M=1 different
non-leaf node IDs to be encoded for the selected value of the parameter D*. On the other
hand, the leaf IDs need to be globally unique, hence there needs to be one ID available for each
leaf in the DT. The possible number of leaves is also related to the parameter D, and equals
2b™. Additionally, the MSB of the ID representation is reserved for differentiating between
the leaf and non-leaf node IDs, which finally means that the total number of bits for encoding
IDs should be Ry > DM + 1 if it is needed for the EFTIP co-processor to support complete
binary DTs of depth D™ . Usually, if the DT individuals are given enough depth to grow, the
EFTI algorithm will induce DTs that are much smaller than the complete binary DT of the same
depth. Hence, depending on the dataset and other algorithm and co-processor configurations,
it might be viable to lower the value of Ry.

The Figure 4.7 shows the NTE module partitioned in Np pipeline stages by the vertical dotted
lines, with each part labeled by the stage ID: Stage 1, Stage 2, ... Stage Np. The total number
of pipeline stages needed (Np), equals the depth of the adder tree, plus the multiplication stage
and the decision stage in the end where node test results are interpreted:

Np = [ld(NY)] +2 (27)

Prior to the Stage 1 of the NTE, the coefficients of the vector w are fetched from the CM
memory, which seems like it requires a separate pipeline stage. However, this step was merged
with the Stage Np of the previous NTE to be performed together in a single clock cycle. This
implementation choice saved both one clock cycle per NTE on the EFTIP co-processor latency,
and on additional registers that would be needed were these tow steps implemented in two
separate pipeline stages.

The Instance Queue and the Node Queue delay lines are necessary due to the pipelining. Each
NTE performs calculations only for a single DT level, hence once the calculations is finished
the instance needs to be transferred to the next NTE module in the Classifier chain. This transfer
needs to correlate in time with the output of the node test evaluation results via the Node ID
output port. Hence, the Instance Queue has to have the length equal to Np, since it needs to
delay the output of the instance to the next NTE module for Np clock cycles, which are needed
for the calculations.

The Node Queue is necessary for preserving the current node’s ID (the signal Node ID in the
Figure 4.7). If the current node is a non-leaf node, then in the pipeline Stage Np — 1 its ID
will be used to calculate the address of the node’s structural description in the SM part of the
DT Memory Array sub-module. This description comprises three values: the ID of the left
child - C'hL, the ID of the right child - ChR and the node test threshold value - ¢, which are in
turn needed in the last pipeline stage, where a decision on how to continue the traversal will be
made. On the other hand if the current node is a leaf, then its ID is needed in the last pipeline
stage to be output via Node ID Output to the next NTE in the chain.

The operations in each pipeline stage depend only on the output of the previous stage, i.e. there
are no loops in the design. This allows for each pipeline stage to start processing the next
dataset instance immediately after it has finished with the current instance. The indices of the
instances and nodes inside the Instance Queue and Node Queue reflect this feature. While Stage
Np processes the instance [;, which is currently in the node /NV;, the Stage Np — 1 can process

112

Hardware Acceleration of Nonincremental Algorithms for the Induction of Decision Trees and Decision Tree Ensembles 113

in parallel the next instance in the dataset, namely /;,,, which is in the node /N, ;. Hence, the
total of Np instances are processed in different pipeline stages by a single NTE in parallel.

4.3.1.3 The Classifier Operation Example

Lets use the DT from the Figure 3.8a, whose induction from the vene dataset by the EFTI
algorithm was discussed in the Section 3.1. First, the parameters compatible with the vene
dataset need to be selected for the Classifier module. The vene training set instances are
described using two attributes, N4 = 2, hence the minimum value that can be chosen for N 1]4”
is N = N, = 2. For the sake of simplicity, in this example, N}! will be set to this minimum
value of 2. The value of R4 can be chosen freely based on the accuracy that needs to be
achieved during the dot product calculation, and here it will be set to 16, which should provide
the high enough precision to obtain the highest possible classification results. The example DT
is 3 levels deep, hence the D parameter needs to be set to at least that value. Even though the
Classifier would provide correct results even if it contained more levels than that, for the sake
of simplicity D* will be set 3. Also, even though it would suffice to select Ry = D +1 = 4,
Ry will be set to 8 to gain on the readability of the leaf IDs. Based on these selections the other
parameters can be calculated: Hd(N M ﬂ =1, Np =3, w and x elements format is QO0.15, and
0 format is Q1.14. The list of all relevant parameters for the Classifier module is given in the
Table 4.2.

Table 4.2: The parameter set for configuring the EFTIP co-processor compatible with the
vene dataset.

DM N R Ry [1d(NAT)) Np FPformat FP format
X, W 0
3 2 16 8 1 3 QO0.15 Ql1.14

w = [0.603, —0.986],0 = —0.092
w = [4D2A, 81D1],0 = FA20

w = [0.516,0.075],0 = 0.326 / \ w = [0.199,0.296], 6 = 0.270

w = [4214, 0995],60 = 14DF w = [197E, 25DA],6 = 113F
w = [0.120, —0.226], 6 = —0.062 /N LN
w = [0OF65, E317],6 = FC00 80 81 82
83 84

Figure 4.8: The example DT used to discuss the NTE operation. 0 and w are
displayed for all nodes, first in decimal format and then in the fixed point representation
immediately below.

The Figure 4.8 shows the induced DT with the values of # and w displayed for all nodes, first

113

Hardware Acceleration of Nonincremental Algorithms for the Induction of Decision Trees and Decision Tree Ensembles 114

1.0 T
A
‘\
\}
0.81 \ 80 :
\}
83 , X = [0. 5929, 0. 64251
A I L~
A, 1 V\ " ’f
061 Joe A u Be e
. e st
2 AN Vi
2 .M," SN ’»v:’ 82
’1\3 7 v‘)’r Ne
0.4} " NV A RS
S 7R ke a8 TN
L -~ Y0 . _-*.» \\\\
02f -7 £ 4814/ .
-7 N AS
0_0 L L L L
0.0 0.2 0.4 0.6 0.8
1

1.0

Figure 4.9: The vene dataset with the marked instance that will be used for the
Classifier module operation demonstration. The attribute space regions are titled by

the leaf IDs that they are associated to.

NTE1 Stage Stage Stage
1 2 3
Instance Instance Queue
Input Instance Output :
x = [4BE4, 523D
c=2
Node ID Output
= w
~
CM add . - ~ —
2o Coeflicient 1 D\) MOU >1(2
0 Memory /®—)D
w
CM data Interface D 2 - AD
" =1
w = [4D24,81D1] ? < l—MUux1
B 01
0
SM addr Structural
Memor Chit
: SM data y
- Interface | cnpr
Noade ID
Node Queue
: Node ID Input [MSB]

‘ Node ID

Figure 4.10: The preparation for the first pipeline stage, where the loading of the
coefficient vector for the selected node from the CM memory is performed. All the blocks
and the signal paths active in this phase are highlighted in blue.

114

Hardware Acceleration of Nonincremental Algorithms for the Induction of Decision Trees and Decision Tree Ensembles 115

in decimal format and then in the fixed point representation immediately below. Next, it will
be shown how the Classifier module calculates the classification results of the example DT on
a single instance. For this example an instance marked in the Figure 4.9 will be classified.
The instance belongs to the class C and has the attribute vector x = [0.5929, 0.6425], which
encoded in Q0.15 becomes x = [4BE4,523D]. As the Figure 4.5 shows, the instance is first
input to the NTE; module’s Instance Input port. Please notice that the information about the
class to which the instance belongs is not used by the Classifier module, and will be used
only once the instance is classified and the results are transmitted to the Accuracy Calculator
module. The value of the Node ID Input on the NTE; module is fixed to 0, i.e. the node with
ID 0 is always selected since the root node is the only possible choice for the first DT level.

Before the first pipeline stage, w needs to be loaded from memory for the selected node.
The read from the CM memory is performed asynchronously and the coefficients are lead
to their corresponding registers in order to be used in the first pipeline stage that performs the
multiplication operation. The vector x is led to the Instance Queue, and the current node ID is
led to the Node Queue. All blocks and signal paths active in this phase are highlighted in blue
in the figure Figure 4.10.

Next, in the first pipeline stage the element-wise multiplication between vectors w and X is
performed as shown in the Figure 4.11 with all active parts highlighted in blue. The current
instance and the current node ID are now stored in the first elements of the Instance and Node
queues respectively. The vector w and x element values are shown in the figure, as well as the
multiplication results which are in Q0.30 fixed point format as it was already described. Please
notice, that NTE performs signed additions and multiplications, hence the sign extension is
needed for all operands, but this is not shown in the figures. Hence, in order to obtain the
correct result for the wy - o multiplication, the coefficient wy, which is negative in this case,
first needs to be sign extended to Q0.30 format: wy = 7FFF81D1, and then only lower 31 bits
from the product are kept, while discarding the upper bits which arose from multiplying with
the sign extension:

Wy - 24 = TFFF81D1 - 0000523D = 523CD776E0CD 2% 5776E0CD (28)

Then in the pipeline Stage 2 (Figure 4.12), the addition of the element-wise products is
performed. Since the Classifier module was configured to support only two instance attributes
via the N attribute, the addition can be performed within single pipeline stage. If a higher
value were selected for the N}/ parameter, multiple stages would be needed in order to calculate
the dot product sum. The current instance and the current node ID are now stored in the second
element of the Instance and Node queues respectively. The vector element-wise products are
shown in the figure, as well as the addition result, that is in the same time the final dot product
result, and is encoded in Q1.30 fixed point format. Again, the negative element w, - 2 needs
to be sign extended to the format of the result: w, - o = D776EO0CD, after which the addition
can be performed:

wq - 1 + Wy - x5 = 16E00768 + D776E0CD = EE56E835 N 0TS (29)

The dot product sum is finally converted to the format of 6, which is Q1.14 in this example, by
truncating the lower bits. Additionally, the information needed for the final decision on where
the traversal will continue is fetched from the SM memory and prepared for the last pipeline
stage. The fetched values for §, ChL and C'hR for this example are shown in the figure.

115

Hardware Acceleration of Nonincremental Algorithms for the Induction of Decision Trees and Decision Tree Ensembles 116

NTE1 Stage Stage Stage
1 2 3
Instance Instance Queue
Input [4BE47 523D] B B Instance Output :
2
4D2A Node ID Output
gy @ 16E00768
CM addr - “BEE D~ MUX 2}
Coefficient 1 D\ 01
Memory 81D1 /®_)D
/ w
: CM data Interface . 32D -)rD
Ty 7 C 5776E0CD
< |—MUX1
01
6
- SM addr Structural ChR
SM data Memory
Interface: | onr,
Node ID
Node Queue
Node ID Input 0 Node ID|| [MSB]

Figure 4.11: The first pipeline stage, where the element-wise multiplication between
vectors w and X is performed. All the active parts are highlighted in blue in the figure.

NTE1 Stage Stage Stage
1 2 3
Instance Instance Queue
Input [4BE4, 523D] Instance Output :
0
Node ID Output
D w1
~ @ 16E00768
M add . = ~ '
CM addr Coeflicient 1 D\) EEBGES35 MOU>1(2<;
Memory /®—)D
CM data Interface D w3 -)'D
zp T <> 5776E0CD
< —MUX1
01
0 = FA20
SM addr Structural
M ChR =1
- SM data emory
: Interface | cnr, — o
Node ID
Node Queue
: Node ID Input

- 0 -

‘ Node ID|| [MSB]

Figure 4.12: The second pipeline stage, where the final evaluation of the node test is
performed and the decision on where the traversal will continue is made. All the blocks
and the signal paths active in this stage are marked in the figure.

116

Hardware Acceleration of Nonincremental Algorithms for the Induction of Decision Trees and Decision Tree Ensembles 117

Finally in the pipeline Stage 3, the dot product calculation results are compared to the value
of #, to obtain the node test result, which in this case EE56 < FA20 evaluated to t rue (these
are both negative values in Q1.14 and the comparator block performs the signed comparison).
Based on the comparison result, the MUX1 block forwards the ID of the left child ChL = 0
to its output, which is then passed to the port O of the MUX2 block. Since the current node is
not a leaf (the current instance is yet to be classified), the Node ID MSB has a value 0, which
selects the value from the MUX?2 port O to be forwarded by the MUX2 block to its output,
which is in turn lead to the Node ID Output port. Hence, the result of the NT'E; operation in
this example is that the ChL = 0 value is output via Node ID Output port, and the DT traversal
for this instance will continue via node with ID O on the second DT level, which will in turn be
performed by the N'T'Es module.

NTE1 Stage Stage Stage
1 2 3
Instance Instance Queue
Input [4BE4, 523D] Instance Output
2 x = [4BE4, 523D)]
Cc=2
Node ID Output
w1
[} - 0
CM addr e ~ MUX2<O—
Coeflicient 1 D\ D i
Memory @—)D

CM data Interface D w2)'D 7 0 0

: 3 true
e EE56
2 < omuxt
FA20 —
01
0 1 0
- SM addr Structural
Memor Chi
SM data CImory
Interface: | onr,
Noade ID
Node Queue
: Node ID Input . Node ID|| [MSB]
0

Figure 4.13: The third pipeline stage, . All the blocks and the signal paths active in this
stage are highlighted in blue.

The outputs Instance Output = [4BE4, 523D|, C' = 2 and Node ID Output = 0, as shown in the
Figure 4.13, are then passed to the N'7'E> module where the traversal of the instance continues.
The NT'E5 module performs in the exact same 3 stages as the N7 E; module did, but on a
different DT node. The Figure 4.14 combines the results of the computations from all 3 NT' E,
stages in one image, which in fact occur in successive cycles. This time, the value passed from
the previous NTE (the value 0 in this example), is used to select the node for the test evaluation,
among the two possible nodes on the DT level 2. As it is shown in the figure, the test evaluates
to false, and hence the traversal is to be continued via the right child. In this case, the right
child is a leaf with the ID 80, and the instance’s classification is thus determined.

Notice however, how close the dot product sum 16AA is to the # value 14DF. This is due
to the proximity of the instance to the hyperplane separating region 80 and regions 83 and
84 in the attribute space. If the instance were positioned exactly on the hyperplane, these
two values would be identical. Anyway, the instance is passed to the next (and also the last)

117

Hardware Acceleration of Nonincremental Algorithms for the Induction of Decision Trees and Decision Tree Ensembles 118

NTE module, which will recognize that no further computation is needed for the instance, and
simply pass the results to the Classifier output. The Figure 4.15 shows likewise the relevant
computation results from all 3 stages of N'I'E5 module in one image. Basically, the results of
the dot product calculations are disregarded (and omitted from the figure for this reason), and
the MUX?2 component of the NTE module recognizes that it has received a leaf ID on its Node
ID Input port (node ID’s MSB value is 1), and simply outputs the same leaf ID value for the
instance to the Node ID Output port. Since the N1 I3 is the last NTE module in the Classifier
chain, its Node ID Output port is at the same time the output of the whole Classifier module.

The Classifier thus calculated that the instance [4BE4, 523D| finishes its traversal of the DT from
the Figure 4.8 in the leaf with the ID 80. From the attribute space partition induced by the DT
shown in the Figure 4.9, it can be seen that the classification is indeed correct.

NTE2 Stage Stage Stage
1 2 3
Instance Instance Queue
Input Instance Output :
x = [4BE4, 523D x = [4BE4, 523D
Cc=2 c=2
4214 Node ID Output
D wq
~ @ 1396b5d0 80
4BE4
CM addr . v T ~> 16AAB851 MUx2d—
Coefficient 1 D\) 01
0
Memory 0995 ®_)D 0
1 so[/0
CM data Interface D w3 AD
593D 3 false
2 T 03140281 16AA 0
w = [4214,0995] ? < =Muxi
14DF - 01
0 = 14DF 80 0
SM addr Structural
Memor ChE = 80
: SM data y
: Interface: | o, =0
Noade ID
Node Queue
. Node ID Input Node ID|| [MSB|

0

0

Figure 4.14: The results of the node test evaluation on the second DT level by the NT' F,
module.

However, the Classifier module operates on multiple instances of the dataset in parallel using
the pipelining technique. The Figure 4.16 shows this process by displaying only the contents of
the Instance and Node queues, which is enough to represent which instance is being processed
by which stage of which NTE. Each pipeline stage is represented by a pair of Instance and Node
queue elements which are displayed directly above one another in the figure. The Instance
Queue element of the pair shows the attribute vector and the class assigned to the instance it
contains, while the Node Queue element shows the current ID of the node this instance is at.

At the beginning, the queues are empty and the first instance [is received from the Training
Set Memory as shown in the Figure 4.16a. The node test evaluation computation is carried out
in the NT E; module stage by stage, and in three clock cycles the [, instance is transferred
to the NT'E5 module, as shown in the Figure 4.16b. There, its traversal is continued via the
node with ID 0 on the DT level 1 (Figure 4.8). By this time, three more instances have been

118

Hardware Acceleration of Nonincremental Algorithms for the Induction of Decision Trees and Decision Tree Ensembles 119

NTE3 Stage Stage Stage
1 2 3
Instance Instance Queue
Input Instance Output :
x = [4BE4, 523D) x = [4BE4, 523D]
C=2 c=2
Node ID Output
[} gy 80
M add) o T / L
OM addr Coeflicient 1 5‘D ~ MOU)I(Q
Memory /®—)D
, / . 80
: CM data Interface D w2 -)rD X
g
)
< —MUX1
01
6
- SM addr Structural
M ChR
SM data emory
Interface: | onr,
Node ID
Node Queue
Node ID Input Node ID|| [MSB]

80 1

Figure 4.15: The results of the node test evaluation on the third DT level by the NT F5
module.

loaded from the Training Set Memory, and are in the process of the node test evaluation in three
stages of the NT'EJ; module. Since they all need to start from the root node, their selected node
IDs are all 0. Finally, the Figure 4.16c shows the moment in the classification where the first
instance of the dataset [, has reached the end of the pipeline and is outputted to the Accuracy
Calculator module, along with its classification into the leaf node with the ID 83.

4.3.2 Training Set Memory

This is the memory that holds all the training set instances that should be processed by the
EFTIP co-processor. It is a two-port memory with ports of different widths and is shown in the
Figure 4.17. It is comprised of the 32-bit wide stripes, in order to be accessed by the host CPU
via the 32-bit AXI interface. Each instance description, spanning multiple stripes, comprises
the following fields:

* Array of instance attribute values: ;; to x; NM, each R4 bits wide (parameter specified
by the user at design time),

* Instance class: C;, which is R bits wide (parameter specified by the user at design time)
The training set memory can be accessed via two ports:
» User Port - Read/Write port accessed by the CPU via the AXI interface, 32-bit wide.

* NTE Port - Read port for the parallel read-out of the whole instance, R4 - N j\f + R bits
wide.

The width of the NTE Port is determined at the design phase of the EFTIP, and corresponds

119

Hardware Acceleration of Nonincremental Algorithms for the Induction of Decision Trees and Decision Tree Ensembles 120

NTE, NTE, NTE;
Iy

[298F, 5680]
1

Instance Queue

O - - - - - - - -
Node Queue
(a) State after the Ist clock cycle
NTE, NTE, NTE;
13 IZ Il I() i

[3EFA, 465D) |[4263, 26F5]([2194, 552B]| |[298F, 5680]
1 3 1 1

Instance Queue

0 0 0 0 - - - - -

Node Queue

(b) State after the 4th clock cycle

NTE, NTE, NTE;
Iy Is I7 Is I5 1y I3 I, I Io
[5F45, 4C4D]|[5A23, 5514 |[4494, 296E]| | |[4D37, 1A0F]|[2C05, 3D0D)|[5245, 5BSF|| | [3EFA, 465D)|[4263, 26F5]|[2194, 552B]| [298F, 5680]
2 2 3 3 1 2 1 3 1 1

Instance Queue

0 0 0 1 0 0 0 81 0 83

Node Queue
(c) State after the 10th clock cycle
Figure 4.16: The process of pipelined operation of the Classifier module with only

the contents of the Instance and Node queues displayed, which in turn represent which
instance is being processed by which stage of which NTE.

‘ User Port Interface Controller }<:(> User Port
32b Stripe . 32b Stripe
Instance 1 Z1,1 Z1,2 - 1Ny o
Instance 2 Z2,1 22,2 = Lo, NM Co
Instance N ‘ TNM 1 TNM o TyM M CNIM
‘ NTE Port Interface Controller }<:(> NTE Port

Figure 4.17: The Training set memory organization

120

Hardware Acceleration of Nonincremental Algorithms for the Induction of Decision Trees and Decision Tree Ensembles 121

to the maximal size of the instance, i.e. the instance with the N i” number of attributes, that
can be processed. The instance attributes are encoded using an arbitrary fixed point number
format, specified by the user. However, the same number format has to be used for all instances’
attribute encodings. The total maximum number of instances (N /), i.e. the size of the Training
Set Memory, is selected by the user at the design phase of the EFTIP, and determines the
maximum possible training set size that can be stored inside the EFTIP co-processor.

4.3.3 DT Memory Array

DT Memory Array is composed of DY sub-modules used for storing the DT description,
including the structural information and the coefficient values for every node test of the DT.
Each sub-module of the DT Memory Array is a three-port memory with ports of different
widths (as shown in the Figure 4.18) and is comprised of 32-bit wide stripes in order to be
accessed by the host CPU via the 32-bit AXI interface.

User Port,
User Port Interface Controller S,
32b Stripe cee cee cee 32b Stripe
Node 1 w11 wy,2 Wy, Ny 61 ChlL4 ChR,
Node 2 w21 Wa 2 - Wa, N M (2 ChlL» ChRy
Node NM(1)| Wnp@a WNM(1),2 : WNp (), N3 Onpr) ChLyyay | ChRyyqy
§ 3
CM Port SM Port

= CM Port Interface Controller SM Port Interface Controller e

Figure 4.18: The DT memory organization

Each DT Memory Array sub-module contains a list of node descriptions as shown in the Figure
4.18, and has two parts. The CM part of the memory comprises the array of the node test
coefficients: w;; to w; NM, each R4 bits wide. The SM part of the memory contains the
following fields:

¢ The node test threshold: 6;, which is R 4 bits wide
e The ID of the left child: C'hL;, which is R bits wide
* The ID of the right child: C'hR;, which is Ry bits wide

An array of parameters, NM(1),1 € (1, D™), that can be specified by the user at the design
stage, is used to control the size of the individual DT Memory Array sub-modules. These
parameters impose a constraint on the maximum number of nodes that the induced DT can
have on each level. The size of each DT Memory Array sub-module is configured separately,
since the first DT level can only have one node (which is the root node). At the worst case,
possible number of nodes per DT level increases exponentially with the depth of the DT level.
However, in practice, the induced DTs are never complete binary trees, hence the increase of

121

Hardware Acceleration of Nonincremental Algorithms for the Induction of Decision Trees and Decision Tree Ensembles 122

the sub-modules’ size with the corresponding DT level depth saturates quickly. To make the
addressing of the DT Memory Array sub-modules of different size easier, every sub-module is
given the address space of an identical size and it is up to the user to take care of how many DT
node descriptions are actually available in each sub-module.

Since the fields C'hL; and C'h R; can either contain a leaf or a non-leaf ID, and the ID’s MSB is
used to discern the ID type, with their width of Ry, they can encode 2%~ ~! IDs. The value of
the parameter Ry is calculated at the design time so that the fields C'’hL; and ChR; can encode
both the the maximum number of nodes per any DT level and the maximum number of leaves
the induced DT can have, i.e.:

Ry =1+ [ld(maz(N}'(1),..., NY(DM), NM))| (30)

DT Memory Array sub-module can be accessed via three ports:
* User Port - The read/write port, accessed by the CPU via the AXI interface, 32-bit wide.

* CM Port - The read port for the parallel read-out of all node test coefficients for the
addressed node, R4 - N} bit wide.

* SM Port - The read port for the parallel read-out of the node structural information for
the addressed node, R4 + 2 - Ry bit wide.

4.3.4 Accuracy Calculator

This module calculates the accuracy of the DT by forming the distribution matrix as described
by the Algorithm 3.3. It monitors the classifications outputted by the Classifier for each instance
in the training set, and based on its class (C) and the leaf in which it finished the traversal (Leaf
ID), the appropriate element of the distribution matrix is incremented. The Accuracy Calculator
block is shown in the Figure 4.19.

Accuracy Calculator

LDCCy
Leaf ID . dominant_classy
Dominant
C Incrementer Class Cal
ass Lalc. dominant_class_cnty
Class Distribution
Memory hits
Accuracy
Provider dt_classes
LDCCym
! dominant_class ym
L Dominant L
Incrementer Class Cal
ass Lalc. dominant_class_cnt yar
] | |
Class Distribution
Memory

Figure 4.19: The Accuracy Calculator block diagram

122

Hardware Acceleration of Nonincremental Algorithms for the Induction of Decision Trees and Decision Tree Ensembles 123

In order to speed up the dominant class calculation (second loop of the accuracy_calc ()

function in the Algorithm 3.3), the Accuracy Calculator is implemented as an array of
calculators, called Leaf Dominant Class Calculator - LDCC, whose each element keeps track
of the distribution for the single leaf node. Hence, the dominant class calculation for a leaf (the
dominant_class and the dominant_class_cnt variables from the Algorithm 3.3) and
counting the total number of instances that finished the traversal in the leaf, can be performed in
parallel for each leaf node. In other words, each LDCC is responsible for maintaining one row
of the distribution matrix from the Figure 3.13. The parameter N/, which can be specified by
the user during the design phase of the EFTIP co-processor, determines the number of LDCC
blocks available in the Accuracy Calculator module, and hence imposes a constraint on the
maximum number of leaves in the induced DT. Since the width of the node ID representation,
parameter Ry, also constraints the maximum number of leaves, these two parameters need to
be correlated, with at least Ry = (ld(N M ﬂ + 1, with the one additional bit used to discern the
node IDs from the leaf IDs. Each LDCC comprises:

* Class Distribution Memory - For keeping track of the class distribution of the
corresponding leaf node.

* Incrementer - Updates the memory based on the Classifier output.

* Dominant Class Calculator - Finds and outputs the dominant class for the leaf and
the number of instances of the dominant class that were classified in the leaf, using the
signals dominant_class; and dominant_class_cnt; respectively, where ¢ € (1, NZM),
as shown in the Figure 4.19.

For the leaf it is responsible for, each LDCC keeps track of how many instances of each of the
training set classes were classified in the leaf. The parameter N}/, also specified by the user
at the EFTIP design time of the, determines the width of the Class Distribution Memory and
hence the maximum number of classes of the training set the EFTIP co-processor supports.
It then finds a class that has the largest number of instances in the leaf (the dominant class
corresponding to the dominant_class variable in Algorithm 3.3), and outputs its ID via
the dominant_class port. If the instance’s class equals the dominant class of the leaf node
it finished the traversal in, it is considered a hit, otherwise it is considered a miss. Hence,
the value output to the dominant_class_cnt port represents the number of classification hits
for the corresponding leaf node and corresponds to the dominant_class_cnt variable in
Algorithm 3.3. The total number of instances classified in the leaf is output via hits port.

When the classification of the training set is finished, the Accuracy Provider block performs
the following:

* It sums the classification hits for all leaf nodes and outputs the sum as the number of hits
for the whole DT (the hits port), which is then stored in the Classification Performance
Register of the Control Unit.

* Gathers the information about dominant classes for each of the leaves and outputs this
value via dt_classes port for storing it in Classes Register in Control Unit.

4.3.4.1 The Accuracy Calculator Operation Example

In this subsection a demonstration of the Accuracy Calculator operation is given for the vene
dataset classified by the DT from the Figure 4.8, and is shown in the Figure 4.20. The

123

Hardware Acceleration of Nonincremental Algorithms for the Induction of Decision Trees and Decision Tree Ensembles 124

Accuracy Calculator Accuracy Calculator
LDCCy LDCCy
— —
— 0 0 0 — 0 0 0
LDCC, LDCC,
1 [\
— 0 0 0 > 0 0 1
Is I, L Io LDCC, | L L I b LDCC,
8381|8383 i ‘ 83 |80|83]|81
10311 — | 0 0 0 1213 — | 0 0 0
Classifier Output LDCCsy Classifier Output LDCCsy
——
S 1 0 0 — 2 0 0
LDCCy LDCCy
L+ L+
— 0 0 0 — 0 0 0
1 Cy Cs Ch Cs Cs

(a) First instance 1y of the training set arrives (b) Instances continue to arrive and the matrix gets

populated
Accuracy Calculator Accuracy Calculator
LDCCy LDCCy
— | 0 |3 | o0 o |87 | o | D=1l
dt_classes = [2, 3, 2, 1, 3]
LDCCy LDCC, e 2
\
) 0 2 41 0 2 41
149 Thas LDCC, LDCC,
80 | 81 ‘
1723 — 0 8 0 0 8 0
Classifier Output LDCCsy LDCCsy
— 45 0 0 45 0 0
LDCCy LDCCy
— 5 2 10 5 2 10
Cl CQ 03 Cl CQ CS

(c) Distribution matrix almost complete, with only (d) Distribution matrix complete, final results
two instances left output

Figure 4.20: Demonstration of the Accuracy Calculator operation for the vene dataset
classified by the DT from the Figure 4.8

124

Hardware Acceleration of Nonincremental Algorithms for the Induction of Decision Trees and Decision Tree Ensembles 125

classification results arrive from the Classifier module in each clock cycle for a different training
set instance and are comprised from the leaf ID and the instance class pairs, as shown in the
Classifier Output queue in the figure. The Accuracy Calculator is shown comprising the LDCC
array of which only five active LDCC modules are shown, each responsible for one of the DT
leaves 80 - 84. The remaining N} — 5 LDCC modules are inactive in this example since
there are only five leaves in the DT. Each LDCC is shown comprising the Class Distribution
Memory consisting of three elements, one for each of the classes (C, Cs and C'3) occurring
in the vene training set, while the remaining C¥ — 3 elements are inactive and not shown
in the figure. Together all LDCC modules with their Class Distribution Memories form the
distribution matrix.

Based on the ID of the leaf the instance was classified into, the appropriate LDCC is activated. It
then uses the instance class information to increment the corresponding item in the distribution
matrix row it is responsible for. In the Figure 4.20a, the first instance in the training set [is
shown arriving from the classifier module, prior to which the distribution matrix was empty. I,
was classified into the leaf with the ID 83 for which the L DC'C5 module is responsible, and
it belongs to the class (', represented by the first column in the distribution matrix. Hence,
the LDC'C3 module increments the first element of its class distribution row as shown in the
figure. In the Figure 4.20b, the instance /5 of the class C'3, which was classified into the leaf
81, activated L DC'C'3 module to increment the item corresponding to the class C's.

The Figure 4.20c displays the moment when the last two instances from the training set arrive,
and the distribution matrix is almost complete. Finally, in the Figure 4.20d, the complete
distribution matrix is shown and its items corresponding to the dominant classes are highlighted
in blue. The Accuracy Provider module then gathers the information from all LDCC modules
about the dominant classes and combines them to get the total number of hits and the array
of dominant classes that are sent to the Control Unit.

4.3.5 Control Unit

Control Unit provides the AXI4 interface access to the configuration and the status registers, as
well as to the DT Memory Array and the Training Set Memory by providing a unified memory
space. Furthermore it generates an IRQ signal when the accuracy calculation is finished. The
following registers are provided:

* Operation Control - Allows the user to start, stop and reset the EFTIP co-processor.

* Training Set Configuration - Allows the user to specify the relevant properties of the
training set currently used: N; - the number of instances and N¢ the number of classes
in the training set.

* Classification Performance Register - Informs the user when the accuracy evaluation
task is done, and enables the user to read the calculated number of the classification hits.

* Classes Registers - Stores the dominant classes associated to each of the DT leaves,
received form the Accuracy Calculator’s dt_classes port.

The accuracy calculation process is performed automatically under the management of the
Control Unit and is depicted by the diagram in the Figure 4.21. The EFTIP co-processor
remains in the Idle state until the start signal is given via the Operation Control register. By that
moment, both the Training Set Memory and the DT Memory Array should have been loaded

125

Hardware Acceleration of Nonincremental Algorithms for the Induction of Decision Trees and Decision Tree Ensembles 126

J Start
Enqueue Next
Instance
JAH enqueued
JAI] flushed
Calculate
Accuracy

Figure 4.21: The Control Unit FSM that manages the whole accuracy calculation
process of the EFTIP co-processor

with the training set instances and the desired DT description for the EFTIP co-processor to
use. The Control Unit then moves to the Enqueue state and starts issuing a sequence of read
commands to the Training Set Memory, one per clock cycle, in order to retrieve the instances
of the training set and forward them to the Classifier module. This process is continued until all
the instances have been read out of the Training Set Memory, when the Control Unit moves to
the Flush state. In this state, the Control Unit waits for the Classifier to finish the classification
of the last training set instance, after which the Accuracy Calculator is instructed to perform
the dominant class calculation and the Control Unit enters the Calculate Accuracy state. After
the Accuracy Calculator finished populating the Classification Performance Register and the
Classes Register, the Control Unit returns to the Idle state once again, ready for the new
accuracy calculation cycle.

4.4 Required Hardware Resources and Performance

The EFTIP co-processor is implemented as an IP core with many customization parameters
discussed in the previous chapters that can be configured at the design phase. These parameters,
listed in the Table 4.3, mainly impose constraints on the maximum size of the DT that can be
induced, and the maximum size of the training set that can be used. The amount of hardware
resources required to implement the EFTIP co-processor is a function of the customization
parameters and is given in the Table 4.4.

126

Hardware Acceleration of Nonincremental Algorithms for the Induction of Decision Trees and Decision Tree Ensembles 127

Table 4.3: The customization parameters that can be configured at the design phase of the

EFTIP co-processor
Name Description Constraint
DM The number of NTEs in the Classifier The maximum depth of the induced DT
N j‘{ Determines: Training Set Memory width, The maximum number of attributes
DT Memory Array sub-module width, training set can have
NTE adder tree size.
R, Determines: Training Set Memory width, Resolution of induced DT coefficients
DT Memory Array sub-module width,
NTE adder tree size.
NM Accuracy Calculator memory depth The maximum number of training set
and induced DT classes
Rc Number of bits class encoding Parameter must be at least [d(N2T)
NM Number of the LDCC elements The maximum number of leaves of the
induced DT
Ry Number of bits for node ID encoding Parameter must be at least Ry =
[ld(NM)] +1
NM Training Set Memory depth The number of training set instances
that can be stored in the EFTIP
CO-processor
NM(l) DT Memory Array sub-modules’ depths ~ The maximum number of nodes per

level of the induced DT

Table 4.4: Required hardware resources for the EFTIP architecture implementation

Resource

Module

Quantity

RAMs

(number of bits)

Training Set Memory

DT Memory Array

N}” . (RA*N% +Rc)
SPU(NM() - ((Ra + 1) % NA + 2 % Ry))

Accuracy Calculator NM - N Tlogs(NM)]
NTE DM . Np-(Rs-N¥ + Ro)+
DM . Np- Ry
Multipliers NTE DM . N
Adders NTE DM [loga (N1
Incrementers Accuracy Calculator NM

Second, the number of clock cycles required to determine the DT accuracy will be discussed.
The Classifier has a throughput of one instance per clock cycle, hence all instances are classified
in Ny cycles. However, there is an initial latency equal to the total length of the pipeline
DM . Np. Furthermore, the Accuracy Calculator needs extra time after the classification has
finished, in order to determine the dominant class which is equal to the total number of classes
in the training set N, plus the time to sum all dominant class hits, which is equal to the number

127

Hardware Acceleration of Nonincremental Algorithms for the Induction of Decision Trees and Decision Tree Ensembles 128

of active leaves /NV;. Finally, the time required to calculate the DT accuracy, expressed in clock
cycles, for a given training set can be calculated as follows:

accuracy evaluation time = (N; + DM . Np+ No + N,) clock cycles, 3D

and is thus dependent on the training set size.

4.5 Software for the EFTIP Assisted DT Induction

With the EFTIP co-processor performing the DT accuracy evaluation task, remaining
functionality of the EFTI algorithm (Algorithm 3.1) is implemented in software. Furthermore,
the software needs to implement procedures for interfacing the EFTIP co-processor as well.
The needed changes to the main function of the EFTI algorithm can be seen in the adapted
pseudo-code of the efti () function given in the Algorithm 4.1. For the pure software
implementation, the reference to the training set is passed as an argument, and can be readily
accessed for the accuracy calculation task since it resides in the memory directly accessible to
the CPU. However the EFTIP co-processor has its own memory, the Training Set Memory, for
storing the training set instances that needs to be loaded before the induction process starts.
The EFTI algorithm performs many fitness evaluations on the same dataset during the DT
induction, hence the hw_load_train_set () function, given by the pseudo-code in the
Algorithm 4.2, is used to load the training set instances to the EFTIP co-processor only once at
the beginning of the algorithm. Once stored in the Training Set Memory, the information about
the training set instances will be reused in every iteration of the algorithm.

Algorithm 4.1: The pseudo-code of the EFTI algorithm using the EFTIP co-processor

def efti(train_set, max_iter):
hw_load_train_set (train_set, fp_format)

dt_best = dt = initialize(train_set)
hw_load_dt (dt.root)
fitness_eval (dt, train_set)
for iter in range (max_iter):
dt_mut = mutate (dt)
hw_load_dt_diff (dt_mut)

fitness_eval (dt_mut, train_set)

dt, dt_best = select (dt, dt_mut, dt_best)

if dt !'= dt_mut:
if dt == dt_best:
hw_load_dt (dt.root)
else:

hw_revert_dt_diff (dt_mut)

128

Hardware Acceleration of Nonincremental Algorithms for the Induction of Decision Trees and Decision Tree Ensembles 129

hw_load_dt (dt_best.root)
hw_populate_classes (dt_best)

return dt_best

Algorithm 4.2: The pseudo-code of the hw_load_train_set () function that
performs the transfer of the training set to the EFTIP co-processor

def hw_load_train_set (train_set, fp_format):

for i, instance in enumerate(train_set):
pack_row = pack_instance (instance, fp_format)

for e, elem in enumerate (pack_row) :
hw_write(eftip_train_mem_addr(i,e), elem)

After the initial DT individual is created, it needs to be transferred to the EFTIP co-processor in
order for its accuracy to be determined, which is performed by the hw_1oad_dt () function
given by the pseudo-code in the Algorithm 4.3. This is the recursive function that loads both
coefficient and structural information about the DT node and all of its descendants to the
corresponding CM and SM memory parts of the DT Memory Array of the EFTIP co-processor.
First, the pack_dt_node () function, whose implementation was omitted for brevity, packs
the node’s coefficients and structural information, in a list of 32-bit values in a way that the
organizations of the SM and CM DT memory parts dictate (Figure 4.18). As it can be seen from
the pseudo-code, the packing depends on the fixed point format (Qx.y) used for the coefficients
(the argument fp_format) and the width of the node and leaf ID representations Ry (the
argument Rn). The packed information is then written to the EFTIP co-processor memories one
32-bit word at a time, at desired locations whose addresses are calculated by helper functions
eftip_dt_cm_addr () and eftip_dt_sm_addr () whose implementations are again
omitted.

Algorithm 4.3: The pseudo-code of the hw_1load_dt () function that performs the
transfer of the DT individual coefficients and structural data to the EFTIP co-processor

def hw_load_dt (node) :
if not node.is_leaf:
cm_pack, sm_pack = pack_dt_node (node, fp_format, Rn)

for e, elem in enumerate (cm_pack) :
hw_write (eftip_dt_cm_addr (node.level, node.id, e), elem)

for e, elem in enumerate (sm_pack) :
hw_write(eftip_dt_sm_addr (node.level, node.id, e), elem)

hw_load_dt (node.left)
hw_load_dt (node.right)

With both training set and the DT loaded to the co-processor, the accuracy calculation function
needs only to send the start signal (the hw_start () helper function) and wait for the results

129

Hardware Acceleration of Nonincremental Algorithms for the Induction of Decision Trees and Decision Tree Ensembles 130

(the hw_get_hits () helper function), as it can be seen from the Algorithm 4.4.

Algorithm 4.4: The pseudo-code of the accuracy_calc () function adapted to use the
EFTIP co-processor

def accuracy_calc(train_set):
hw_start ()

hits = 0
while hits ==
hits = hw_get_hits()

return hits / len(train_set)

In the end of the EFTI algorithm the induction procedure settles for the best DT individual
(variable dt_best). However, the information about the dominant classes of the DT leaves is
not retrieved from the EFTIP co-processor during each iteration to save time on data transfer
since it is not critical for the EFTI algorithm operation. Nevertheless, the induced DT returned
by the algorithm needs to have classes assigned to all of its leaves, which is performed by
the hw_populate_classes () function given by the pseudo-code in the Algorithm 4.5.
This function invokes one last accuracy calculation on the best DT individual, which will in
turn populate the Classes Register of the Control Unit with the dominant classes for all the
DT leaves. This information can then be read by the software, at the address calculated by
the eftip_cu_cls_addr () helper function in the pseudo-code, and assigned to the DT
software data structure.

Algorithm 4.5: The pseudo-code of the hw_populate_classes () function adapted
to use the EFTIP co-processor

def hw_populate_classes (dt) :
hw_start ()

hits = 0
while hits ==
hits = hw_get_hits()

for leaf in dt.leaves():
leaf.cls = hw_read(eftip_cu_cls_addr (leaf.id))

4.6 Experiments

In this section, the results of the experiments designed to estimate the DT induction speedup of
the HW/SW implementation of the EFTI algorithm using the EFTIP co-processor over its pure
software implementation are discussed.

130

Hardware Acceleration of Nonincremental Algorithms for the Induction of Decision Trees and Decision Tree Ensembles 131

4.6.1 Required Hardware Resources for the EFTIP Co-Processor Used in
Experiments

The customization parameters of the EFTIP co-processor, whose descriptions are given in the
Table 4.3, have been set for the experiments to support all training sets from the Table 2.1, and
their values are listed in the Table 4.5.

Table 4.5: The values of customization parameters of the EFTIP co-processor instance used in
the DT induction speedup experiments

Parameter Value
DT Max. depth (D) 13
Max. attributes num. (N17) 64
Attribute encoding resolution (R 4) 16
Class encoding resolution (R¢) 8
Class encoding resolution (R) 9
Max. training set classes (C*) 64
Max. number of leaves (NM) 256

Max. number of training set instances (/N }V[) 46000
Max. number of nodes per level (N (1)) [1,2,4,8,16, 16, 16, 32, 32, 32, 64, 64, 64]

The EFTIP co-processor has been modeled in the VHDL hardware description language and
implemented using the Xilinx Vivado Design Suite 2014.4 software for logic synthesis and
implementation, with the default synthesis and P&R options. From the implementation report
files, the device utilization data has been analyzed and the information about the number of
used slices, BRAMs and DSP blocks has been extracted, and is presented in the Table 4.6. The
maximum operating frequency of 133 MHz of the system clock frequency for the implemented
EFTIP co-processor was attained.

Table 4.6: FPGA resources required to implement the EFTIP co-processor for the DT induction
with selected UCI datasets

FPGA Device Slices BRAMs DSPs
XC77100 24418 (32%) 755 (100%) 832 (43%)
XC7K410 21156 (32%) 760 (96%) 832 (58%)

XC7VX690 20847 (18%) 760 (43%) 832 (22%)

Given in the brackets, along with each resource utilization number, is the percentage of used
resources from the total resources available on the corresponding FPGA devices. Table 4.6
shows that implemented EFTIP co-processor fits into the mid-level Kintex7 and Virtex7 Xilinx
FPGA devices (XC7K410 and XC7VX690) and high-end XC7Z100 Xilinx FPGA device of
the Zynq series. The scalability of the HW/SW solution can be observed from the point of
several customization parameters of the EFTIP co-processor given in the Table 4.3. The Table
4.4 shows how some of these customization parameters influence the utilization of the hardware

131

Hardware Acceleration of Nonincremental Algorithms for the Induction of Decision Trees and Decision Tree Ensembles 132

resources.

The number of instances the EFTIP co-processor can store in its Training Set Memory is limited
by the parameter NV, selected at the design phase of the the EFTIP. In case that the datasets
which cannot fit into the Training Set Memory need to be used, either a double buffering
approach could be used or EFTIP could be used in the streaming mode. In the streaming mode,
the data would be continuously streamed from the host CPU memory using the DMA transfer.
In this case, there would be no Training Set Memory, as the instances would be supplied to the
Classifier from the outside via the DMA. In the double buffering approach, the Training Set
Memory would be used as a ring buffer. While the EFTIP is using the NTE port to read the
instance descriptions to the Classifier, the User port would be used to load new instances to the
Training Set Memory. The DMA transfer from the main memory would be used here as well.
EFTIP reads instances from the data set in predictable, sequential order, so it is easy to setup
the DMA transfer and execute it without the intervention of the software during the transfer.
This means that the full bandwidth of the main memory can be used for the data without any
overhead.

If the EFTIP co-processor were to support the datasets with larger number of attributes, which
results in wider training set instance encodings, the training set transfer time could impact the
HW/SW implementation performance. In this case, again, the double buffering or the EFTIP
in streaming mode could be used. The throughput of the EFTIP co-processor, i.e. the widest
possible training set instance encoding that could be used without degrading the performance,
would then be limited only by the bandwidth of the main memory, since there is no overhead to
the training set data streaming. If the bandwidth of one main memory module is not enough, the
EFTIP could use several memory modules simultaneously to read the data out in parallel. The
internal memory widths would also increase, but this would pose no significant problem either,
because the internal FPGA memory primitives can be easily configured to have arbitrary data
widths. Next, the number of attributes affects the size of the adder tree of the NTE module.
However, by increasing the size and the depth of the adder tree, only the pipeline depth is
increased, resulting only in the increase in the initial latency of the EFTIP co-processor, without
degrading the EFTIP throughput.

If the attribute encodings (1?4) were to be enlarged, other than increasing the encoding width
of the training set instance, which was discussed above, the EFTIP co-processor multipliers
and adders would need to support wider operands. This would not pose a significant constraint
for implementing both multipliers and adders, since the arbitrary width multipliers and adders
can be built using a number of same blocks of smaller width connected in a pipeline. Hence,
the increase in the data widths would not affect the HW/SW implementation performance,
because only the pipeline depths would be increased, which would in turn increase the initial
latency without affecting the throughput of the system. However, as far as the author is aware,
the attribute encodings with more than 32 bits are rarely used in hardware acceleration of the
machine learning algorithms, as discussed in /56 //81][82].

Finally, if the EFTIP co-processor were to support the datasets with the larger number of classes
CM and the larger number of the DT leaves N}M, the equation (31) shows that the EFTIP latency
would only linearly increase as a function of these two parameters.

132

Hardware Acceleration of Nonincremental Algorithms for the Induction of Decision Trees and Decision Tree Ensembles 133

4.6.2 Estimation of Induction Speedup

Three implementations of the EFTI algorithm have been developed for the experiments, all of
them written in the C language:

* SW-PC - Pure software implementation for the PC discussed in the Section 3.5.
* SW-ARM - Pure software implementation for the ARM Cortex-A9 processor.

* HW/SW - HW/SW co-design solution, where the EFTIP co-processor implemented
in the FPGA was used for the time critical fitness evaluation task. The remaining
functionality of the EFTI algorithm (shown in the Algorithm ??) was left in software,
and implemented for the ARM Cortex-A9 processor.

For the SW-ARM and the HW/SW implementations, the ARM Cortex-A9 667 MHz (Xilinx
XC7Z100 Zyng-7000) platform has been used. The software was built using the Sourcery
CodeBench Lite ARM EABI 4.9.1 compiler (from within the Xilinx SDK 2015.2) and the
EFTIP co-processor was built using the Xilinx Vivado Design Suite 2015.2. The experiments
were structured following the description given in the Section 2.8, and all EFTI algorithm
implementation used in the experiments were setup using the “High accuracy” configuration
for the Table 3.10 and given 500k iterations for the induction. The DT inference times were
measured by different means for two target platforms:

* For the PC platform, the <time.h> C library was used and timing was output to the
console,

* For the ARM and DSP platforms, hardware timer was used and the timing was output
via the UART.

Table 4.7: The DT induction times for various EFTI implementations and average
speedups of HW/SW implementation over pure software implementations

Speedu Speedu

Dataset HW/SW[s] ~ SW-ARM S0 f SW-PC SWPG.

adult 17.97+00.31 452.46 + 02.78 25.18 221.53 4 05.75 12.33
ausc 0.59 £ 00.01 7.23 £ 00.06 12.19 4.37 + 00.21 7.36
bank 18.43+£00.04 666.21 £ 27.81 36.14 311.70 + 03.34 16.91
bc 0.55 £ 00.02 6.10 £ 00.48 11.10 4.25 4+ 00.11 7.72
bech 13.81 40219 17447 +16.92 12.64 115.62 +01.24 8.37
bew 0.50 +00.00 4.41+ 00.00 888 3.35400.05 6.74
ca 0.50 £ 00.00 4.94 + 00.00 9.85 4.45+00.05 8.87
car 0.90 +00.00 7.6 = 00.00 840 14.37+00.40 15.89
cmce 1.13 + 00.01 17.25 £ 00.29 15.29 11.93 £+ 00.29 10.57
ctg 3.25+00.05 41.77 +00.97 1286 27.36 + 00.64 8.43
cvf 9.234+00.14 206.24 £ 05.29 22.33 110.56 + 02.76 11.97
eb 48.51+00.61 1265.06 + 16.01 26.08 737.24 4 09.88 15.20
eye 8.25£00.09 213.124+01.61 25.83 96.22 £+ 05.96 11.66

Continued on next page

133

Hardware Acceleration of Nonincremental Algorithms for the Induction of Decision Trees and Decision Tree Ensembles 134

Table 4.7 — continued from previous page

Speedu Speedu

Dataset HW/SW[s] ~ SW-ARM S F SW-PC SWPG.

ger 0.89 £ 00.01 13.90 £ 00.17 15.60 8.16 £ 00.68 9.16
gls 0.60 = 00.00 3.38 £ 00.07 5.64 2.24 £00.07 3.74
hep 0.38 = 00.00 1.67 £ 00.03 4.43 1.29 £ 00.07 3.43
hrtc 0.63 = 00.01 4.04 £00.13 6.44 2.69 £+ 00.08 4.29
hrts 0.39 £ 00.00 2.75£00.03 6.99 1.82 +£00.12 4.64
ion 0.53 = 00.05 5.16 = 00.08 9.73 3.19 £ 00.16 6.02
irs 0.29 £ 00.01 1.38 £ 00.05 4.80 0.98 £ 00.05 3.41
jvow 10.21 £00.12 218.21 £ 03.38 21.37 119.40 £ 02.90 11.69
krkopt 26.80 £00.41 702.25 £ 16.34 26.20 349.76 £11.05 13.05
letter 32.59£01.83 590.89 & 30.83 18.13 355.80 £ 07.50 10.92
liv 0.42 £ 00.00 3.34 £ 00.06 7.96 2.26 £00.08 5.38
lym 0.53 = 00.01 2.14 £ 00.05 4.03 1.77 £ 00.05 3.33
magic 10.34 £00.21 254.57 £+ 02.83 24.61 117.77 £ 02.44 11.39
msh 6.26 £00.06 142,52 £01.33 22.75 68.49 + 04.10 10.93
nurse 9.66 £ 00.07 242.39 £ 02.59 25.09 112.53 £02.25 11.65
page 4.00 £ 00.03 76.63 + 02.72 19.17 36.59 £ 01.61 9.15
pen 11.96 £ 00.16 240.75 £ 04.04 20.13 140.94 +£ 02.01 11.79
pid 0.62 £ 00.01 7.36 £00.13 11.94 4.48 £00.31 7.27
psd 0.90 = 00.02 14.37 £ 00.35 16.02 8.55 = 00.18 9.53
sb 1.39 4+ 00.00 32.88 £ 00.02 23.70 16.10 = 00.31 11.61
seg 2.68 £00.03 39.60 £ 00.75 14.75 29.58 £ 00.62 11.02
shuttle 40.73 £00.48 979.32 £ 33.66 24.04 841.89 £ 22.17 20.67
sick 1.93 £ 00.02 72.62 £ 00.24 37.60 31.72 £ 01.23 16.42
son 0.72 £ 00.01 3.47 £ 00.06 4.79 2.74 £00.16 3.79
spect 0.40 = 00.01 2.47+00.10 6.09 1.85 £ 00.10 4.57
spf 2.04 £ 00.46 29.80 £ 03.22 14.64 25.95 £ 00.45 12.75
thy 3.30 £ 00.02 95.11 £ 01.15 16.68 28.16 £ 00.91 8.52
ttt 0.73 £ 00.00 9.00 = 00.09 12.37 6.39 &= 00.32 8.80
veh 1.10 £ 00.01 12.45 £ 00.18 11.34 9.87 £00.18 8.99
vene 0.37 £ 00.00 2.99 £ 00.04 8.13 2.01 £ 00.05 5.45
vote 0.48 £ 00.00 4.64 £ 00.06 9.68 2.97 £00.10 6.20
VOW 1.85 £ 00.02 20.95 £ 00.44 11.30 12.32 £ 00.27 6.65
w21 4.11 £00.04 82.29 £ 00.56 20.00 47.53 £ 01.34 11.55
w40 2.39 £ 00.08 100.65 £ 00.59 18.68 54.74 + 01.06 10.16
wir 5.48 4+ 00.05 99.26 £ 01.41 18.13 62.95 = 01.00 11.50
wilt 2.24 £00.00 34.22 £ 00.03 15.25 20.69 £ 00.44 9.22

Continued on next page

134

Hardware Acceleration of Nonincremental Algorithms for the Induction of Decision Trees and Decision Tree Ensembles 135

Table 4.7 — continued from previous page

i Speedup i Speedup
Dataset HW/SW [s] SW-ARM SW-ARM SW-PC SW-PC
wine 4.11 £ 00.05 80.08 + 01.84 19.47 46.12 + 01.26 11.21
Z00 0.53 + 00.02 1.56 + 00.04 2.96 1.31 4+ 00.03 2.49
Avg. 15.44 £+ 2.28 9.30 £ 1.11

All datasets from the Table 2.1 were compiled together with the source code and were readily
available in the memory. Therefore, the availability of the training set in the main memory was
the common starting point for all three implementations, thus there was no training set loading
overhead on the DT induction timings. However, in the HW/SW co-design implementation,
the datasets need to be packed in the format expected by the Training Set Memory organization
(shown in the Figure 4.17) and loaded to the EFTIP co-processor via the AXI bus (performed
by the hw_load_training_set() function). To make a fair comparison with the pure software
implementations, time needed to complete these two operations was also included in the total
execution time of the HW/SW implementation.

The results of the experiments are presented in the Table 4.7. For each implementation and
dataset, the average induction times of the five 5-fold cross-validation runs are given together
with their 95% confidence intervals. The last row of the table provides the average speedups of
the HW/SW implementation over the SW-ARM and SW-PC, together with the 95% confidence
intervals.

The Table 4.7 indicates that the average speedup of the HW/SW implementation is 15.4 times
over the SW-ARM and 9.3 times over the SW-PC implementation. The speedup varies with the
datasets used for the induction, which is expected since the EFTI algorithm computational
complexity is dependent on the dataset characteristics as the equation (26) suggests. The
computational complexity increases as Ny, N4, N; and N increase. The number of leaves
in DT, N, is dependent on the training set instance attribute values, but can be expected to
increase also with N;, N4 and N¢. By observing the speedups of the HW/SW implementation
over the pure software implementations shown in the Figure 4.22, for each dataset and the
datasets’ characteristics given in the Table ??, it can be seen that indeed, more speedup is
gained for datasets with larger N;, N4 and N values.

Datasets adult, bank, eb, eye, krkopt, letter, magic and shuttle are the largest
of the datasets in terms of N, and thus have some of the largest speedup gains. Some other
datasets have somewhat less instances, but have a significant number of attributes, like msh,
cvi, pen, thy, w21, w40 and wfr, so that high speedups were achieved there too. A
high speedup was achieved also for the following datasets: jvow, nurse, page and wine,
which have smaller number of instances and smaller number of attributes than the above two
groups, but tended to induce deeper DTs. The deeper the DT is the more NTEs participate
actively in the accuracy calculation. Since the NTEs operate in parallel, the more of them
are active the more speedup is gained. However, the partial reclassification employed by
the pure software implementations, for which no analog has been implemented in the EFTIP
co-processor, influences the speedup significantly, but in an unpredictable way. Hence, the
inference times for some datasets with rather small number of instances, attributes or induced
DT depths, can still have substantial speedups because the structure of the induced DTs may

135

Hardware Acceleration of Nonincremental Algorithms for the Induction of Decision Trees and Decision Tree Ensembles 136

be such that a significant number of instances need to be reclassified each iteration after the
mutation is applied.

60 a) HW/SW speedup over the SW-ARM implementation

b) HW/SW speedup over the SW-PC implementation

at R

ausc ca car cmc cfg gér jvéW pébe p|d psd s‘b' seg sick spéct spf thy véh vo'te vaw w21 w[fr

Figure 4.22: The speedup of the HW/SW implementation over a) the SW-ARM
implementation, b) the SW-PC implementation

The Figure 4.22 and the Table 4.7 suggest that the HW/SW implementation using the EFTIP
co-processor offers a substantial speedup in comparison to the pure software implementations,
for the ARM and PC. This is mainly because both processors that were used in the experiments
have a limited number of on-chip functional units that can be used for multiplication and
addition operations, as well as the limited number of internal registers to store the node test
coefficient values and instance attributes. This means that the loop from the equation (1) can
only be partially unrolled, when targeting these processors, which would be the case for any
processor type. On the other hand, the EFTIP co-processor can be configured to use as many
multiplier/adder units as needed, and as many internal memory resources for storing coefficient
and attribute values which can be accessed in parallel. Because of this, in case of EFTIP, the
loop from the equation (1) can be fully unrolled, therefore gaining the maximum available
performance. Furthermore, the EFTIP implementation used in the experiments, operates
at much lower frequency (133MHz) than ARM (667MHz) and PC (3.5GHz) platforms. If
the EFTIP co-processor were implemented in the ASIC technology, the operating frequency
would be increased by an order of magnitude, and the DT induction speedups would increase
accordingly.

136

Hardware Acceleration of Nonincremental Algorithms for the Induction of Decision Trees and Decision Tree Ensembles 137

5 EEFTI algorithm

In this section, the EEFTI algorithm for the induction of the DT ensembles which uses Bagging
on top of the EFTI algorithm is proposed. The ability of the EFTI algorithm to operate on a
single individual and induce small DTs is even more important for the ensembles, since all
the operations, be it induction or classification of new instances, are performed on all the DT
members of the ensemble at once. The following topics will be covered in this section:

» Section 5.1 - Description of the Bagging algorithm
» Section 4.2 - Description of the EEFTI algorithm

* Section 5.3 - Experiments showing the superior performance of the ensembles induced
by the EEFTI algorithm over single classifiers in terms of the classification accuracy

5.1 Bagging Algorithm

The choice of the Bagging algorithm was made mainly because it generates one subset of
the training set for each ensemble member, hence completely decoupling the induction of
the individual members from each other, which in turn makes the algorithm suitable for the
parallelization and hardware acceleration. Furthermore, the Bagging algorithm was reported
to reduce the accuracy variance and help avoid overfitting. Two common ways of forming the
subsets are:

* random sampling without replacement - forms disjoint subsets of size N;g = % and
* random sampling with replacement - forms overlapping subsets of size N;g < Ny,

where Njg is the size of the subsets, N; the size of the whole training set and n. the number
of subsets, i.e. the number of the ensemble members. The most important feature of the
sampling procedure is the diversity of the ensemble members it helps induce. This is especially
important for the deterministic induction algorithms, since given the same training subset they
would induce identical DT individual each time. In case of stochastic algorithms on the other
hand, this is less of a problem. Hence, the EEFTI algorithm can be used even when N;g¢ = Nj.

5.2 EEFTI Description

The Algorithm 3.1 shows the EEFTI algorithm pseudo-code. EEFTI first partitions the training
set in the subsets using the divide_train_set () function that implements one of the
techniques discussed in the Subsection 5.1. Next, for each member of the ensemble an EFTI
tasks is created and assigned its corresponding training subset (train_par [1]). In addition,
the reference to the result object r is passed to the EFTI task, to which it can assign the
resulting DT and any additional information about the induction, like inference time, etc. All
result objects are gathered in the res array and are returned to the user when the induction is
finished. Handles to the created tasks are gathered in the tasks array, which is used by the
all_finished () helper function, which in turn checks the statuses of the running EFT]
tasks and returns t rue when all of them have finished the induction and exited. Once all the
individual tasks have finished and thus populated their corresponding result objects, the EEFTI
algorithm exits by returning the res array to the user.

137

Hardware Acceleration of Nonincremental Algorithms for the Induction of Decision Trees and Decision Tree Ensembles 138

Algorithm 5.1: The main function of the EEFTI algorithm

def eefti(train_set, ensemble_size):

train_par = divide_train_set (train_set, ensemble_size)

res = []
tasks = []
for 1 in range (ensemble_size):
r = {}
t = create_task(efti, train_par[i], r)

res.append(r)
tasks.append (t)

while (not all_finished(tasks)):
pass

return res

5.3 Advantages of the DT ensembles

As it was already said, the ensemble classifier systems were shown to provide improvement
to the classification performance over a single classifier /6/]. In order to test whether EEFTI
algorithm is capable of inducing an ensemble that has superior accuracy than the individual
classifier induced by the EFTI algorithm, an experiment has been conducted whose results
are shown in this subsection. The ensembles of sizes 3, 5, 9, 17 and 33 were induced on
all datasets from the Table 2.1 using five 5-fold cross-validation techinique together with the
Tukey multiple comparisons test as described in the Section 2.8. The induced ensembles’
accuracies were measured by performing the classification of the test set using the majority
voting technique. In the Table 5.1 the average accuracies of the single classifier and the
ensembles of five different sizes used in this experiment are given for each dataset together
with their 95% confidence intervals. The accuracy rankings of the induced classifiers are given
in the Table 5.2 for each dataset, together with the average rank for each classifier used.

Table 5.1: The accuracies of the ensembles with various numbers of elements

Dataset 1 3 5 9 17 33

adult 83.01+0.12 83.264+0.12 83.27+0.05 83.304+0.05 83.35+0.05 83.334+0.03
ausc 88.9940.25 88.8240.24 88.88+0.21 89.1940.18 89.15+0.19 89.274+0.14
bank 88.57+£0.12 88.364+0.06 88.32+0.02 88.30£0.00 88.3040.00 88.30+0.00
bc 93.25+0.41 93.2540.40 93.45+0.44 93.754+0.43 94.37+£0.45 95.2040.47
bch 22.734+0.11 24.92+0.20 26.63+£0.23 27.89+0.23 28.744+0.22 29.154+0.20
bew 97.77£0.09 97.77+0.08 97.83+0.09 97.87+£0.08 97.91£0.07 97.8740.07
ca 88.85+0.19 88.954+0.26 88.94+0.21 88.9240.26 89.06+0.21 89.1940.22
car 85.30£0.36 86.234+0.42 87.15+0.37 87.30£0.32 87.394+0.36 87.97+0.28

Continued on next page

138

Hardware Acceleration of Nonincremental Algorithms for the Induction of Decision Trees and Decision Tree Ensembles 139

Table 5.1 — continued from previous page

Dataset 1 3 5 9 17 33

cmc 57.52+£0.47 58.474+0.70 58.544+0.47 59.61£0.65 59.38+0.57 59.9040.42
ctg 75.21+0.46 78.84+0.37 80.12+0.21 81.1440.29 81.65+0.25 81.9640.20
cvf 76.89+0.39 77.584+0.18 77.96+0.17 78.13+£0.15 78.0840.18 77.984+0.10
eb 53.53+1.07 60.184+0.60 63.73+0.31 65.95+0.21 66.77+0.11 67.164+0.07
eye 59.284+0.19 59.5840.27 59.53+0.21 59.574+0.15 59.58+0.12 59.66+0.10
ger 95.70+0.52 94.984+0.58 95.154+0.39 95.92+0.36 96.10+0.34 96.04+0.31
gls 82.07£0.71 82.774+0.66 83.83+0.85 83.87+0.89 84.97+0.73 85.084+0.71
hep 91.20+0.62 92.804£0.60 92.59+0.73 92.4440.62 92.57+£0.61 92.934+0.45
hrtc 72.154+0.45 74.9240.65 75.83+0.58 77.204+0.74 77.57+£0.68 77.694+0.63
hrts 88.59+0.35 88.67+0.34 88.84+0.41 89.054+0.41 89.14+0.32 89.424+0.41
ion 93.144+0.63 93.83+0.54 94.05+£0.47 94.434+0.41 94.94+0.30 94.974+0.33
irs 98.29+0.23 98.434+0.35 98.43+0.25 98.51+0.30 98.5140.28 98.484+0.27
Jjvow 78.13+0.73 83.83+0.34 86.84+0.28 89.2440.24 90.67+£0.21 91.6140.11
krkopt 39.034+0.47 41.56+0.24 43.59+0.30 44.854+0.21 45.57+0.22 45.89+£0.16
letter 56.73£0.68 63.9240.47 69.68+0.25 73.45+£0.22 76.074+0.22 77.93+0.20
liv 75.97+£0.64 77.514+0.70 78.37+0.68 79.39+£0.63 79.364+0.68 80.13+0.63
lym 90.76£0.64 92.054+0.72 92.2440.59 92.81+£0.53 93.054+0.51 93.03+0.53
magic 82.63+0.27 83.55+0.21 83.63+£0.16 83.74+£0.12 83.72£0.05 83.79+0.06
msh 97.73+0.25 97.724+0.30 97.854+0.21 98.03+£0.17 98.13+0.19 98.22+0.16
nurse 89.35+0.51 89.1440.42 90.24+0.37 91.084+0.19 91.41+£0.15 91.484+0.13
page 95.74+£0.16 95.604+0.13 95.36+0.11 95.48+0.10 95.48+0.06 95.4940.07
pen 92.61+0.36 94.874+0.30 95.61+0.18 96.234+0.17 96.52+0.14 96.784+0.08
pid 79.61£0.22 80.1940.27 80.57+0.26 80.83+£0.27 81.044+0.24 81.06+0.20
psd 99.32+£0.32 99.164+0.41 99.68+0.18 99.80£0.08 99.9240.04 99.93+0.03
sb 93.46+0.02 93.4440.01 93.43+£0.01 93.4240.00 93.42+0.00 93.424+0.00
seg 92.404+0.46 93.284+0.29 93.68+0.31 94.514+0.27 94.91+£0.22 95.0440.21
shuttle 99.354+0.09 99.36+0.10 99.4840.08 99.55+0.04 99.56+0.05 99.5940.03
sick 94.38+£0.41 94.264+0.38 94.304+0.39 93.97+0.15 93.8940.01 93.8840.01
son 87.54+0.80 89.854+0.78 90.40+0.88 91.67+£0.66 92.484+0.78 93.124+0.65
spect 92.71+£0.36 92.084+0.42 92.414+0.36 92.58+0.37 92.614+0.39 92.63+0.35
spf 69.454+0.34 71.43+0.33 72.06£0.31 72.43+£0.33 72.74+£0.27 72.771+0.22
thy 95.44+0.28 95.0240.23 95.094+0.13 94.95+£0.11 94.9640.09 94.96+0.06
ttt 74.79+£0.74 74.504+0.57 74.75+0.65 75.21£0.45 75.674+0.60 75.40+0.54
veh 67.65+£0.75 68.304+0.64 70.59+0.61 71.84+0.50 71.9040.55 72.46+0.59
vene 93.654+0.21 93.6940.21 93.68+0.17 93.844+0.21 93.96+0.21 93.874+0.17
vote 96.354+0.36 96.07+0.35 96.40+0.31 96.78+0.28 96.68+0.27 96.7440.24

Continued on next page

139

Hardware Acceleration of Nonincremental Algorithms for the Induction of Decision Trees and Decision Tree Ensembles 140

Table 5.1 — continued from previous page

Dataset 1 3 5 9 17 33

VOW 72.26£0.98 81.354+0.74 87.424+0.60 90.80£0.56 93.144+0.43 94.91+0.44
w21 85.20£0.18 86.684+0.11 87.314+0.12 87.59+0.09 87.93+0.08 88.1040.07
w40 82.69+0.26 84.864+0.24 86.09+0.15 86.94+0.12 87.554+0.14 87.76+0.08
wir 74.11+£0.68 76.9240.58 78.58+0.54 80.0440.44 80.54+0.47 81.2540.37
wilt 94.61+0.00 94.614+0.00 94.61+£0.00 94.614+0.00 94.61+£0.00 94.6140.00
wine 55.61+0.14 56.96+0.24 57.00+£0.21 57.324+0.15 57.46+0.16 57.424+0.20
Z00 98.14+£0.49 98.6940.47 98.69+0.44 98.97+0.36 98.97+0.36 99.094+0.37

The results show that an ensemle of classifiers almost always has superior accuracy over the
single classifier, with few exceptions with bank, page, sb and thy datasets. Also, it can
be seen that increasing the number of ensemble members helps the performance until a certain
point of saturation, which is different for different datasets. The accuracy on some datasets
could not be improved by using ensembles of sizes beyond 3, like adult, bcw, ca, eye, hep,
irs, 1lym, magic and zoo, while for some datasets progressively larger ensembles continued
to steadily advance in terms of the accuracy, like bch, jvow, letter and vow. Nevertheless,
the results in the Table 5.1 show that the accuracy variance decreases the larger the ensembles
are used, even when the average value shows no improvement, which is exactly what was
expected. Finally, the average ranks in the Table 5.2 show indeed that larger ensembles show
statistically significant improvement in the classification accuracy.

140

Hardware Acceleration of Nonincremental Algorithms for the Induction of Decision Trees and Decision Tree Ensembles 141

Table 5.2: The accuracies of the ensembles with various numbers of elements

9 17 33

5

33 Dataset 1

17

9

1

Dataset

3

sb

3

1

2

5
5

1

298 229 1.86 1.39 1.16 1.08

1| msh

1

2

adult

1 | nurse

ausc

2 | page

2

bank
bc

1 | pen
1|pid
1|psd

2

1

bch

bcw

ca

1|seg

1
1
1

car

1 | shuttle
1| sick
1|son

cmce

ctg

cvf
eb

1| spect

1|spf
1 | thy

1]ttt

1
1
1
1

eye

ger
gls

1| veh

hep

1| vene

1

hrtc
hrts
ion

1| vote

1| vow
1|w21
1| w40
1| wir
1| wilt

1
1

2

1rs

6
5
6

Jjvow

1
2

krkopt

letter

1 | wine

liv

1| zoo

lym

1 | Rank

1

2

magic

141

Hardware Acceleration of Nonincremental Algorithms for the Induction of Decision Trees and Decision Tree Ensembles 142

6 Co-processor for the DT ensemble induction - EEFTIP

For the induction of a single DT, it was already demonstrated that the EFTIP co-processor
can be used in a HW/SW architecture to achieve substantial speedups over the pure software
implementation of the EFTI algorithm. Furthermore, it was explained in the Section 4.1
what was behind the decision to accelerate only the accuracy calculation task in hardware.
Hence, in an attempt to achieve the same benefits for the DT ensemble induction, the EEFTIP
co-processor proposed in this section was implemented using EFTIP as a module for the
accuracy calculation. However, the EEFTIP co-processor also takes advantage of the intrinsic
parallelism of the Bagging algorithm to achieve even higher speedups when compared to the
pure software implementation of the EEFTI algorithm.

Processing System EEFTIP
{
AXI4 IRQ
<::> AXI4 IRQ Status
CPU —
AXI4 IRQ
EFTIP
Interconnect :> 1
DDR3 AX14 RQ
DDR3
Memory <:> Memory :> EFTIP,
Controller
|[=—> &rrIRs, M9

Figure 6.1: The EEFTIP co-processor structure and integration with the host CPU

The EEFTIP co-processor structure and integration with the host CPU is depicted in the Figure
6.1. The EEFTIP consists of an array of EFTIP modules (described in the Section 4) EFTIP,
to EFTIPgu, each of which can be used to evaluate the accuracy of the DT individual for
the induction of one ensemble member. Each EFTIP has its own address space and can be
individually accessed for all operation described in the Section 4. In addition, the EEFTIP
co-processor features the IRQ Status (Interrupt Request Status) block that allows the user to
read-out the operation status of all EFTIP units. The maximal number of ensemble member
accuracy calculations that can be performed in parallel equals the total number of the EFTIP
units in the EEFTIP co-processor, which is a parameter that can be set during the design time of
the EFTIP co-processor, and is called S,,,. The following topics will be covered in this section:

* Section 6.1 - Description of the EEFTIP IRQ Status module

* Section 6.2 - Theoretical induction speedup derivation achievable by using the EEFTIP
CO-processor

e Section 6.3 - Discussion on the software routines that need to be added to the EEFTI
algorithm, in order for it to make use of the EEFTIP co-processor

» Section 6.4 - Experimental section that shows the speedups that can be achieved by using
the EEFTIP co-processor

142

Hardware Acceleration of Nonincremental Algorithms for the Induction of Decision Trees and Decision Tree Ensembles 143

6.1 IRQ Status Module

IRQ Status module has been implemented in order to provide the user with the means of
reading the statuses of all EFTIP units with only one AXI4 read operation and thus optimize
the AXI bus traffic. Each EFTIP unit comprises an IRQ (Interrupt Request) port for signaling
the end of the accuracy calculation, which was in turn connected to the IRQ Status block of the
EEFTIP co-processor. The IRQ Status block comprises an array of IRQ Status Word Registers
representing the statuses of all EFTIP units, which can all be read in a single burst via the AXI
bus. Additionally, the IRQ Status block provides a combined IRQ signal, which is triggered
each time any of the EFTIP units signal their corresponding IRQ outputs, i.e. each time any of
the EFTIP units finish the accuracy calculation.

Each IRQ Status Word is a 32-bit register (since EEFTIP was optimized for 32-bit AXI) packed
from the bits representing the statuses of up to 32 EFTIP units each. Each bit is called EFTIP;
Status Bit, where i denotes the ID of the EFTIP unit whose status the bit is tracking, as shown in
the Figure 6.2. The figure shows IRQ Status register space for one specific 5, value, but there
are no limitations on the number of EFTIP units that can be connected to the IRQ Status block.
The bits of the IRQ Status Word Register are sticky, i.e. set each time the IRQ is signaled from
the corresponding EFTIP and cleared when the register is read by the user.

EFTIP: EFTIP: EFTIP. EFTIP,
IRQ Status Word 0 32 31 2 1
Q Status Wor Status Bit Status Bit Status Bit Status Bit
Su EFTIPs, | EFTIPs, _,
IRQ Status Word [53] Unused Unused Status Bit | Status Bit

Figure 6.2: IRQ Status register space

6.2 Theoretical estimation of the acheivable speedup of the
proposed HW/SW system

In this section the speedup of the HW/SW implementation over the pure software
implementation of the EEFTI algorithm will be calculated as a function of the number of the
ensemble members, n,:

speedup(n,) = Tow(ne) (32)

Ths(”e)
where T, and 7}, denote the run times of the pure software and HW/SW implementations
respectively. As already discussed, the good candidate for the hardware acceleration of the
EEFTI algorithm is the accuracy calculation task, while leaving the mutation and selection to
be implemented in software has some flexibility benefits. Hence, the contributions of these two
parts to the total algorithm runitme will be observed separately:

Tsw_ms (ne) + Tsw_acc(ne)
Ths_ms (ne) + Ths_acc(ne)

speedup(n.) = (33)

143

Hardware Acceleration of Nonincremental Algorithms for the Induction of Decision Trees and Decision Tree Ensembles 144

where T, ms and Ty, qc. denote the amount of time pure software implementation spends
on the mutation/selection and the accuracy calculation tasks respectively, while 73 ,,s and
Ths_ace Tepresent the same values for the HW/SW implementation. 7%, ,,s and Tjs s are
linear functions of n., since the mutation is performed once per iteration per ensemble member.
Hence, if the number of iterations is kept constant, we obtain:

Tsw_ms (ne) = Tsw_m3(1> * N,

(34)
Ths_ms (ne) = Ths_ms(]-) * Ne,
which when combined with the equation (33) yield the following:
Tsw ms(l) * Ne + Tsw acc(ne)
speedup(n,) = = = 35
P p() Ths_ms(l) * Ne + Ths_acc(ne) ()
Please observe that the T} ,,s is somewhat greater than the Ty, s (Ths ms = Tsw ms + Ar)

since it also comprises the latency of the hardware accelerator interface operations, which is
not present in the pure software implementation.

Depending on which approach to forming the training subsets is used, T, qcc and Ths e Will
behave differently with respect to n.. When random sampling without replacement is used,
Tsw ace and Ths 4. are constant with respect to n., since the training set is partitioned amongst
ensemble members, making the number of instances being classified and thus the amount of
computation, constant. However, when random sampling with replacement is used, these times
will tend to grow with n, with the worst case being when N;¢ = Ny, i.e. when whole training
set is used for each individual. Hence, the behavior of the speedup for these two corner cases
will be discussed next.

6.2.1 Random sampling without replacement

Because the HW/SW accuracy calculation is performed in parallel for all ensemble members,
the calculation time is proportional to the size of the training subset allocated for each ensemble
member. Since the training set is divided equally among the ensemble members (using the
EEFTIP co-processor), Ths qcc 1S inversely proportional to the n.:

Ths_acc(”e) = M (36)

Te

By incorporating the fact that 7, ... 1s constant in this case and substituting equation (36) into
the (32), we obtain:

speedu () TSW_mS<1) “Ne + Tsw_acc Tsw_ms(l) : ng + Tsw_acc *Ne
ne == =
P b Thsfms(l) iz + —Ths’aCC(l) Ths_ms(l) : ng + Ths_acc<1) (37)

n

Tsw ace term was shown in the Section 3.4 and the Section 4.1 to take almost all of the
computational time. The datasets that can be of interest to run DT ensemble induction on
using the EEFTIP are the ones that require significant time to execute in the software on the
CPU. For these datasets Ty, ace > Tsw ms and thus Ty, gee > Ths ms. By using the hardware
acceleration and massive parallelism, T, qcc => Ths ace 15 accomplished as well. By taking
these parameter relationships into the account, (speedup)(n.) function given by the equation
(37) takes shape depicted in the Figure 6.3.

144

Hardware Acceleration of Nonincremental Algorithms for the Induction of Decision Trees and Decision Tree Ensembles 145

speedup

Figure 6.3: The shape of the speedup(n.) function given by the equation (37).

The plot in the Figure 6.3 suggests that accelerating the EEFTI by a co-processor that performs
the DT accuracy calculation in parallel for all ensemble members, will provide an increase in
the speedup as the number of ensemble members increases in the beginning. Then, after a
speedup maximum has been reached, it will slowly degrade, but continue to offer a substantial
speedup for all reasonable ensemble sizes. The maximum of the speedup can be found
by seeking the maximum of the function given by the equation (37). By taking into the
account parameter relationships, the point of the maximum of the speedup(n.) function can
be expressed as follows:

Tsw acc T s acc 1
max(speedup(n,)) ~ = at ne & Ths.ace(1) (38)

2 \/Ths_acc<1>Ths_ms(1) Ths_ms (1)

Furthermore, the Figure 6.3 shows that even though the speedup starts declining after reaching
its maximum value for certain n., the downslope is slowly flattening, and the significant
speedup is achieved even for large ensemble sizes.

6.2.2 Whole training set for each member

In this case, the total number of instances in the ensemble rises linearly with the number of
ensemble members. This means that 7, ... will rise linearly and 7} 4. Will remain constant
being that it is performed in parallel. This yields the following form for the speedup function:

Tsw_ms(l) * Ne + Tsw_acc(l) * Ne
Ths_ms(l) * Ne + Ths_acc(l)

speedup(n.) = (39)

Taking into the account that T, = Ths ms + Tsw ace» and rearanging the equation (39), the
following is obtained:

T,.(1 1
speedup(n,) = (L)

= Ths,ms(1> 1 + %

(40)

The equation (40) shows that the speedup increases with the number of ensemble members
induced and asymptotically converges to the ratio of the total time needed for the single
member induction in software (T, (1)) to the time needed for the mutation/selection tasks in
the HW/SW co-design implementation (7} ,,s(1)), which basically means that the speedup
can be increased by optimizing the execution time of the mutation/selection tasks and the
communication with the co-processor.

145

Hardware Acceleration of Nonincremental Algorithms for the Induction of Decision Trees and Decision Tree Ensembles 146

6.3 Software for the EEFTIP assisted DT ensemble induction

As it was described in the previous chapters, the EEFTIP co-processor can perform accuracy
evaluation task in parallel for as many ensemble members as there are EFTIP units within.
Hence, in the HW/SW implementation of the EEFTI algorithm, each of the EFTI tasks is
assigned one EFTIP unit to use exclusively for the acceleration of the accuracy evaluation
for its DT individual. Since there is a single AXI bus connecting the CPU to the EEFTIP
co-processor, no two EFTI tasks can access it in the same time.

The EFTI tasks could be left alone to compete for the rights to use EEFTIP and check whether
their corresponding EFTIP unit has finished computing the accuracy, but there is a more
economical approach that utilizes the IRQ Status module of the EEFTIP co-processor. In this
approach, the EFTI tasks are disallowed to poll the status registers of their EFTIP units. Their
responsibility is to load the DT individuals and start the accuracy calculation process. On the
other hand a management task, called the Scheduler, is introduced to exclusively monitor the
registers of the IRQ Status module and inform the individual EF7T tasks about the completion
of their accuracy calculation processes. This is done by using semaphores of the underlying
operating system, which are used to signal the EFTI tasks that the accuracy calculation has been
completed and the access to the EEFTIP has been now granted to them, so that they can update
the DT information and start the new calculation cycle. As soon as the accuracy calculation on
their corresponding EFTIP unit is started, the control is given back to the Scheduler task and
EFTI waits for the new completion signal via semphore.

Algorithm 6.1: The pseudo-code of the Scheduler task used in the HW/SW co-design
implementation

def scheduler (tasks, semaphores):
while (not all finished(tasks)):
status = hw_read(eeftip_irqg status_addr())

for eftip_id, eftip_stat in enumerate (status):
if eftip_stat == 1:

semaphore_give (semaphores[eftip_id])

context_switch ()

The pseudo-code for the Scheduler task is given in the Algorithm 6.1. The main task
of the Scheduler task is to poll the IRQ Status register (whose address is returned by the
eeftip_irg_status_addr () helper function) of the EEFTIP co-processor in a loop.
It then iterates through the received status value to check which EFTIP units have reported to
have finished the accuracy calculation, and activates the correponding EFTI tasks. After all the
required tasks have been informed, the Scheduler issues a call to the context_switch ()
function of the underlying OS, so that the OS can serve the other tasks that have been activated
via emited semaphores. The loop ends when all the tasks have finished the induction and exited,
which is monitored by the al1_finished () helper function.

146

Hardware Acceleration of Nonincremental Algorithms for the Induction of Decision Trees and Decision Tree Ensembles 147

Algorithm 6.2: The pseudo-code of the EEFTI algorithm using the EEFTIP co-processor

def eefti(train_set, ensemble_size):
train_par = divide_train_set (train_set, ensemble_size)

res = []
semaphores = []
tasks = []
for eftip_id in range (ensemble_size) :
r = {}
s = create_semaphore ()
t create_task(efti, train_par[eftip_id], r, eftip_id, s)
res.append(r)
semaphores.append(s)
tasks.append (t)

scheduler (tasks, semaphores)

return res

The EEFTI top level pseudo-code with the added instantiation of the synchronization
mechanism in the form of the Scheduler task and the semaphores is presented in the Algorithm
6.2. In addition to the training set and the reference to the result object r, each of the EFTI
tasks created is assigned a semaphore handle, and the unique ID (variable eftip_1id) that
serves as a handle to the EFTIP unit of the EEFTIP co-processor assigned to the task. After
all the EFTI tasks have been created, the control is transfered to the Scheduler task until all
ensemble members have been induced.

The HW/SW implementation of almost all of the EFTI tasks, which were described in the
Section 4.5, is used almost verbatim for the HW/SW implementation of the EEFTI algorithm.
One difference is that here a co-processor with multiple EFTIP units is accessed by the
software. Hence, all the helper functions of the HW/SW implementation of the EFTI algorithm
for calculating the appropriate hardware memory addresses, need now take into the account the
ID of the EFTIP unit (eftip_1id) they are interfacing. The second needed change was to
adapt the code from the Algorithm 3.3 for the accuracy_calc () function to support the
described protocol for the access rights delegation using semaphores. The adapted function
pseudo-code is shown in the Algorithm 6.3.

Algorithm 6.3: The pseudo-code of the fitness evaluation function used in the HW/SW
co-design implementation

def accuracy_calc(train_set, eftip_id, semaphore) :
hw_write (eftip_operation_control_addr (eftip_id), EFTIP_START)
semaphore_wait (semaphore)
hits = hw_read(eftip_result_addr(efipt_id))

return hits/len(train_set)

The Figure 6.4 shows the benefits of careful scheduling scheme over the naive solution where
each EFTI task is let to finish whole iteration before the other is let to start. The diagram in the

147

Hardware Acceleration of Nonincremental Algorithms for the Induction of Decision Trees and Decision Tree Ensembles 148

figure shows how occupied with different EFTI tasks is the CPU and the EEFTIP co-processor
for these two different scenarios, where the operations related to the different EFTI tasks are
given in different colors. Time periods marked with letters M and S represent the mutation and
selection tasks respectively, and the idle periods of the CPU are showed hatched in figure.

With the naive approach shown in the Figure 6.4a, a lot of CPU time is waisted on waiting for
the accuracy calculation to finish, and the potential of the parallel EFTIP units is not exploited.
By introducing the Scheduler task and making the accuracy_calc () function suspend its
execution and return the control back as soon as it finishes with the mutation task, sets and
starts the accuracy calculation on its corresponding EFTIP unit, the HW/SW architecture that
uses the EEFTIP co-processor can be exploited to its full potential, which leads to the timing
diagram shown in the Figure 6.4b.

6.4 Experiments

To estimate the DT ensemble induction speedup of the HW/SW implementation over the pure
software implementation of the EEFTI algorithm, the experiments have been performed on the
induction of the ensembles of up to 25 members and the results are given in this section. In
order to support the datasets with higher number of intances, the random sampling without
replacement was used to form the training subsets, in order to make them smaller.

6.4.1 Required Hardware Resources for the EEFTIP co-processor

For the experiments, five different instances of the EEFTIP co-processor were generated, one
for each of the following ensemble sizes: 2, 4, 8, 16 and 25. The values of the customization
parameters, given in the Table 6.1, were chosen so that the generated co-processors could fit
inside the XC7Z100 Xilinx Zynq device that was used for testing.

Table 6.1: Values of the customization parameters of the EEFTIP co-processor instances, one
for each of the ensemble sizes used in the experiments.

Parameter Sp,=2 S,=4 S5,=825,=165,,=25
DT max. depth (L,,) 5 5 5 5 5
Max. attributes num. (A,,) 16 16 16 16 16
Attribute encoding resolution (R 4) 16 16 16 16 16
Class encoding resolution (R¢) 8 8 8 8 8
Max. training set classes (C'yy) 64 64 64 64 64
Max. number of leaves (AC'E,,) 16 16 16 16 16
Max. number of training set instances (/,,) 24000 12000 6000 4096 2048
Max. number of nodes per level (V;,,,) 16 16 16 16 16

The VHDL language has been used to model the EEFTIP co-processor and it was
implemented using the Xilinx Vivado Design Suite 2015.2 software for the logic synthesis
and implementation with the default synthesis and P&R options. From the implementation

148

Hardware Acceleration of Nonincremental Algorithms for the Induction of Decision Trees and Decision Tree Ensembles 149

Iteration 1 Tteration 2

(b) Interlaced operation

Figure 6.4: Achieving the maximum CPU utilization by interlacing the inducion
operations of different ensemble members (b), as opposed to performing these operations
sequentially (a).

149

Hardware Acceleration of Nonincremental Algorithms for the Induction of Decision Trees and Decision Tree Ensembles 150

report files, device utilization data has been analyzed for the EEFTIP co-processor instance
with S, = 25 (Table 4.5), which has the largest footprint. The information about the number
of used slices, BRAMs and DSP blocks has been extracted, and is presented in the Table 6.2,
for different target FPGA devices. The operating frequency of 100 MHz of the system clock
frequency was attained for all the implemented EEFTIP co-processor instances from the Table
4.5.

Table 6.2: FPGA resources required to implement the EEFTIP co-processor with 25 EFTIP
units and the configuration given in the Table 4.5.

FPGA Device Slices/CLBs BRAMs DSPs

XC77100 62091 (89%) 412.5 (55%) 2000 (99%)
XCKUI115 33231 (40%) 412.5 (19%) 2000 (36%)
XC7VX690 63885 (59%) 412.5 (28%) 2000 (56%)

Given in the brackets along with each resource utilization number is a percentage of used
resources from the total resources available in the corresponding FPGA devices. Table 6.2
shows that the implemented EEFTIP co-processor fits into xc7z100 Xilinx FPGA device of the
Zynq series, and into mid- to high-level Virtex7 and UltraScale Kintex7 Xilinx FPGA devices
(XC7VX690 and XCKU115).

6.4.2 Estimation of the Induction Speedup

For the experiments, the EEFTI algorithm was implemented for three platforms (all software
was written in the C programming language):

* SW-PC: Pure software implementation for the PC
* SW-ARM: Pure software implementation for the ARM Cortex-A9 processor

* HW/SW: The EEFTIP co-processor implemented in the FPGA was used for the fitness
evaluation, while all other tasks of the EEFTI algorithm (shown in the Algorithm ??)
were implemented in software for the ARM Cortex-A9 processor.

For the software implementations of the EEFTI algorithm on the ARM platform, at first the
FreeRTOS was used as the operating system since it has a port for the ARM Cortex-A9 and
it is open source. However, experiments showed that it has rather high task switching latency,
which degraded the execution speed of the HW/SW implementation. In lack of other open
source RTOSes ported for the ARM Cortex-A9 that we could find, a simple simple cooperative
scheduler was developped to be used for the SW-ARM and HW/SW implementations.

For the PC implementation, a 64-bit, 4-core, Intel i5-2500K CPU operating at approximately
3.5GHz, with 8GB or RAM, running Ubuntu 16.04 operating system platform was used
and the software was built using the GCC 5.4.1 compiler. For the SW-ARM and HW/SW
implementations, ARM Cortex-A9 was used running at 667MHz. The software was built using
the Sourcery CodeBench Lite ARM EABI 4.9.1 compiler (from within the Xilinx SDK 2015.2)
and the EEFTIP co-processor was built using the Xilinx Vivado Design Suite 2015.2.

150

Hardware Acceleration of Nonincremental Algorithms for the Induction of Decision Trees and Decision Tree Ensembles 151

Not all of the datasets from the Table 2.1 were used in these experiments for two different
reasons. Some of the datasets, like ausc, bc, bcw, ger, gls, hep, hrtc, hrts, ion,
irs, liv, lym, pid, son, ttt, veh, vote, vow and zoo, have too few instances to
support induction of up to 25 members using training set partitioning by sampling without
replacement. On the other hand, some datasets like sick™, ~“spf, thy and w40 had
too many attributes to fit into the implemented co-processors. The others, like mushroom,
w21 and wfr were preprocessed using the PCA (Principal Component Analysis) to reduce
their number of attributes to 16, what the implemented co-processors support. For each of the
datasets, five experiments were performed in which the ensembles were induced with: 2, 4,
8, 16 and 25 members. For each of these experiments five 5-fold cross-validations has been
carried out and the DT ensemble classifier induction times have been measured.

The results of the experiments are presented in the Table 6.3. The table contains the speedups of
the HW/SW implementation over the SW-ARM and SW-PC implementations for each dataset
and the ensemble size. At the bottom of the table, the average speedups are given for each
ensemble size.

Table 6.3: The speedups of the HW/SW implementation over the SW-ARM and SW-PC
implementations for each dataset and ensemble size.

SW-ARM PC-ARM
Dataset 2 4 8 16 25 2 4 8 16 25
adult 24.68 43.87 6032 74.89 48.04| 892 16.88 1942 2428 15.76
bank 26.86 50.18 76.21 98.37 73.82| 9.28 17.38 31.84 31.64 23.66
bch 37.57 5448 44.13 17.66 10.86(13.52 19.04 15.88 7.10 4.36
cvf 31.14 48.55 63.44 33770 18.58| 11.22 15.70 20.14 11.16 6.32
eb 30.25 52.83 7047 6344 43.12| 16.86 30.34 30.12 27.52 18.52
eye 22.03 31.39 48.99 3458 17.77|| 846 9.62 15.06 11.34 6.06
jvow 3484 5048 48.28 24.13 1444 1640 19.88 19.24 10.22 6.60
krkopt 30.10 45.60 56.04 41.16 26.72| 1534 27.16 24.52 18.72 11.66
letter 47.84 6832 7224 4585 30.34|| 2092 32.54 30.38 19.04 11.94
magic 1943 26.70 43.77 3647 20.06] 9.20 10.12 16.06 14.02 7.96
msh 17.90 30.80 37.53 16.44 8.96|| 620 9.72 12.12 552 346
nurse 2433 40.07 5221 29.02 1647| 1246 16.60 21.28 11.70 6.90
page 19.43 28.50 24.20 10.92 642 6.80 1022 9.34 4.10 252
pen 4250 5434 5063 2742 1646| 19.30 22.52 20.96 11.64 7.30
shuttle 28.62 55.775 93.88 119.97 93.21| 12.92 23.24 43.38 43.58 33.50
w21 25.37 4033 3495 1441 8.83|| 10.36 16.06 13.26 5.92 3.54
wir 26.89 4253 37.70 16.17 9.71| 9.80 15.10 1294 6.18 3.74
wine 23.59 33.09 24.66 1091 6.85]| 9.08 12.62 10.06 4.76 3.00
Avg.: 28.52 4432 5220 39.75 26.15] 12.06 18.04 20.34 1492 9.82

Table 6.3 indicates that the average speedup of the HW/SW implementation is between 26 and
52 times over the SW-ARM and between 10 and 20 times over the SW-PC implementation,

151

Hardware Acceleration of Nonincremental Algorithms for the Induction of Decision Trees and Decision Tree Ensembles 152

depending on the number of the ensemble members induced. It can be seen that the speedups
follow the theoretical curve from the Figure 6.3 shown in the Section Theoretical estimation of
the acheivable speedup of the proposed HW/SW system, which is also visible in the Figure 6.5.
In the Figure 6.5 each bar represents the speedup for one ensemble size, hence the envelope of
the bar graph for each dataset correlates with the theoretical speedup curve. It should be noted
that the envelopes appear distorted, since ensemble sizes for which the speedups are drown as
bars are not equidistant, but follow the exponential function. By observing the speedup of the
HW/SW implementation over the pure software implementations shown in the Table 6.3 for
each dataset used in the experiments, it can be seen that more speedup is gained for datasets
with larger N;, N4 and N¢.

120 a) HW/SW speedup over SW-ARM implementation

100

ﬂm Mﬁﬂh JYTINY [TVN
ishandbachabding

30+t
adult bank bch cvf eb eye jvow krkopt letter magic msh nurse page pen shuttle w21l wfr wine

20+
10+

o

Figure 6.5: Speedup of the HW/SW implementation over a) SW-ARM implementation
and b) SW-PC implementation, given for each dataset used in the experiments. Each bar
represents a speedup for one ensemble size.

Figure 4.22 and Table 6.3 suggest that the HW/SW implementation using EEFTIP co-processor
offers a substantial speedup in comparison to the pure software implementations for both PC
and ARM. Furthermore, the EEFTIP implementation used in the experiments operates at much
lower frequency (100MHz) than both ARM (667MHz) and PC(3.5GHz) platforms. If EEFTIP
co-processor were implemented in ASIC, the operating frequency would be increased by an
order of magnitude, and the DT induction speedup would increase accordingly.

152

Hardware Acceleration of Nonincremental Algorithms for the Induction of Decision Trees and Decision Tree Ensembles 153

7 Conclusion

This thesis was concerned with the evolutionary induction of the oblique binary decision trees
using nonincremental approach. Two algorithms were presented, one for a single classifier
induction called EFTI, and the other for a decision tree ensemble induction called EEFTI.
Furthermore, two architectures were proposed for hardware acceleration of the two induction
algorithms.

The proposed EFTI algorithm was created in an attempt to devise a strategy for the DT
induction that would induce smaller DTs than the existing solutions without the loss in
accuracy, but try to use as little resources for the induction as possible. It was shown in the thesis
that the EFTI algorithm succeeds in fulfilling the requirements that were set in the beginning:

* It operates only on one DT individual, unlike many full DT induction algorithms that use
the populations of 20 to 100 or more individuals. This implies a 20 to 100 fold times
less resources needed for its implementation, which are critical in embedded systems.
Furthermore, the most time consuming task of accuracy calculation, besides the control
flow, comprises only the simple operations of multiplication and addition performed for
the node test evaluations. Hardware blocks that perform these operations are found in
abundance within the chips used in embedded systems, such as DSPs and FPGAs.

* Itis easily parallelizable. Within the accuracy calculation, each instance from the training
set traverses the DT by itself and the traversal is decoupled from the traversals of
other instances, which is suitable for parallelization by either pipelining or completely
performing the instance traversal in parallel.

* It produces smaller DTs than the existing solutions, without the loss in DT accuracy,
which was proved by the experiments in the Section 3.5.

Second, a parameterizable co-processor for the hardware aided DT induction using an
evolutionary approach, called EFTIP, was proposed. The EFTIP co-processor can be used
for the hardware acceleration of the DT accuracy evaluation task, since this task was
proven in the Section 3.4 and Section 4.1 to be the execution time bottleneck. The EFTI
algorithm was adapted to take advantage of the EFTIP co-processor in a HW/SW co-design
architecture. Comparison of the HW/SW EFTI algorithm implementation with the pure
software implementations suggests that the proposed HW/SW architecture offers substantial
speedups for all the tests performed on the selected UCI datasets.

Next, the EEFTI algorithm was presented which uses the EFTI algorithm together with
Bagging to induced the DT ensembles. The experimental results discussed in the Section
5.3, show that the ensembles induced by the EEFTI algorithm are superior in terms of the
classification accuracies than the single classifier DTs induced by the EFTI algorithm.

Finally, a parameterizable co-processor, called EEFTIP, is proposed. The EEFTIP co-processor
can be used for the hardware aided induction of the DT ensembles using EA. It was shown in
the paper that the EEFTI algorithm spends most of the execution time in the DT accuracy
evaluation process, hence the EEFTIP co-processor was developed to accelerate that task. The
EEFTI algorithm has been implemented in the software and modified to use the EEFTIP
co-processor implemented in the FPGA as a co-processor. Comparison of the HW/SW
implementation of the EEFTI algorithm with the pure software implementations suggests

153

Hardware Acceleration of Nonincremental Algorithms for the Induction of Decision Trees and Decision Tree Ensembles 154

that the proposed HW/SW architecture offers substantial speedups for all tests performed on
selected UCI datasets.

154

Hardware Acceleration of Nonincremental Algorithms for the Induction of Decision Trees and Decision Tree Ensembles 155

References

[1] Hugh G Gauch. Scientific method in practice. Cambridge University Press, 2003.

[2] Peter Flach. Machine learning: the art and science of algorithms that make sense of data.
Cambridge University Press, 2012.

[3] Kevin P Murphy. Machine learning: a probabilistic perspective. MIT press, 2012.

[4] Jesse Levinson, Jake Askeland, Jan Becker, Jennifer Dolson, David Held, Soeren Kammel,
J Zico Kolter, Dirk Langer, Oliver Pink, Vaughan Pratt, and others. Towards fully
autonomous driving: systems and algorithms. In Intelligent Vehicles Symposium (1V), 2011
IEEE, 163-168. IEEE, 2011.

[5] Jesmin F Khan, Sharif MA Bhuiyan, and Reza R Adhami. Image segmentation and shape
analysis for road-sign detection. I[EEE Transactions on Intelligent Transportation Systems,
12(1):83-96, 2011.

[6] Lior Rokach. Data mining with decision trees: theory and applications. World scientific,
2007.

[7] Lior Rokach and Oded Maimon. Top-down induction of decision trees classifiers-a survey.

Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on,
35(4):476-487, 2005.

[8] Shigeo Abe. Support vector machines for pattern classification. volume 53. Springer, 2005.

[9] Simon S Haykin, Simon S Haykin, Simon S Haykin, and Simon S Haykin. Neural networks
and learning machines. volume 3. Pearson Education Upper Saddle River, 2009.

[10] Richard O Duda, Peter E Hart, and David G Stork. Pattern classification. John Wiley &
Sons, 2012.

[11] Jorma Rissanen. Minimum description length principle. Wiley Online Library, 1985.

[12] Tan H Witten and Eibe Frank. Data Mining: Practical machine learning tools and
techniques. Morgan Kaufmann, 2005.

[13] Simon JD Prince. Computer vision: models, learning, and inference. Cambridge
University Press, 2012.

[14] Sudha Challa. Fundamentals of object tracking. Cambridge University Press, 2011.

[15] Usman Ali and Mohammad Bilal Malik. Hardware/software co-design of a real-time
kernel based tracking system. Journal of Systems Architecture, 56(8):317-326, 2010.

[16] Matteo Tomasi, Francisco Barranco, Mauricio Vanegas, Javier Diaz, and E Ros. Fine grain
pipeline architecture for high performance phase-based optical flow computation. Journal
of Systems Architecture, 56(11):577-587, 2010.

[17] Arthur Lesk. Introduction to bioinformatics. Oxford University Press, 2013.

[18] Pierre Baldi and Sgren Brunak. Bioinformatics: the machine learning approach. MIT
press, 2001.

155

Hardware Acceleration of Nonincremental Algorithms for the Induction of Decision Trees and Decision Tree Ensembles 156

[19] Bing Liu. Web data mining: exploring hyperlinks, contents, and usage data. Springer
Science & Business Media, 2007.

[20] Matthew A Russell. Mining the Social Web: Data Mining Facebook, Twitter, LinkedlIn,
Google+, GitHub, and More. O’Reilly Media, Inc., 2013.

[21] Sholom M Weiss, Nitin Indurkhya, and Tong Zhang. Fundamentals of predictive text
mining. Springer Science & Business Media, 2010.

[22] Charu C Aggarwal and ChengXiang Zhai. Mining text data. Springer Science & Business
Media, 2012.

[23] Sreerama K. Murthy, Simon Kasif, and Steven Salzberg. A system for induction of oblique
decision trees. Journal of artificial intelligence research, 1994.

[24] J. Ross Quinlan. Induction of decision trees. Machine learning, 1(1):81-106, 1986.

[25] JR Quinlan. C4. 5: programs for empirical learning morgan kaufmann. San Francisco,
CA, 1993.

[26] Leo Breiman, Jerome Friedman, Charles J Stone, and Richard A Olshen. Classification
and regression trees. CRC press, 1984.

[27] Erick Cantu-Paz and Chandrika Kamath. Inducing oblique decision trees with
evolutionary algorithms. Evolutionary Computation, IEEE Transactions on, 7(1):54-68,
2003.

[28] Ali Mirza Mahmood, K Mrutunjaya Rao, Kiran Kumar Reddi, and others. A novel
algorithm for scaling up the accuracy of decision trees. International Journal on Computer
Science and Engineering, 2(2):126-131, 2010.

[29] Olcay Taner Yildiz. Univariate decision tree induction using maximum margin
classification. The Computer Journal, 55(3):293-298, 2012.

[30] Asdrabal Lopez-Chau, Jair Cervantes, Lourdes Lopez-Garcia, and Farid Garcia Lamont.
Fisher’s decision tree. Expert Systems with Applications, 40(16):6283-6291, 2013.

[31] Rodrigo C Barros, Pablo A Jaskowiak, Ricardo Cerri, and Andre CPLF de Carvalho. A
framework for bottom-up induction of oblique decision trees. Neurocomputing, 135:3-12,
2014.

[32] Rastislav Struharik, Vuk Vranjkovic, Stanisa Dautovic, and Ladislav Novak. Inducing
oblique decision trees. In Intelligent Systems and Informatics (SISY), 2014 IEEE 12th
International Symposium on, 257-262. IEEE, 2014.

[33] Athanassios Papagelis and Dimitrios Kalles. Ga tree: genetically evolved decision
trees. In 2012 IEEE 24th International Conference on Tools with Artificial Intelligence,
0203-0203. IEEE Computer Society, 2012.

[34] Xavier Llora and Stewart W Wilson. Mixed decision trees: minimizing knowledge
representation bias in Ics. In Genetic and Evolutionary Computation—-GECCO 2004,
797-809. Springer, 2004.

[35] Stephen F Smith. Flexible learning of problem solving heuristics through adaptive search.
In IJCAI, volume 83, 422-425. 1983.

156

Hardware Acceleration of Nonincremental Algorithms for the Induction of Decision Trees and Decision Tree Ensembles 157

[36] Martijn CJ Bot and William B Langdon. Application of genetic programming to induction
of linear classification trees. In Genetic Programming, pages 247-258. Springer, 2000.

[37] Fernando EB Otero, Alex A Freitas, and Colin G Johnson. Inducing decision trees with
an ant colony optimization algorithm. Applied Soft Computing, 12(11):3615-3626, 2012.

[38] Urszula Boryczka and Jan Kozak. Enhancing the effectiveness of ant colony decision tree
algorithms by co-learning. Applied Soft Computing, 30:166—178, 2015.

[39] Rodrigo Coelho Barros, Marcio Porto Basgalupp, ACPLF De Carvalho, and Alex Alves
Freitas. A survey of evolutionary algorithms for decision-tree induction. Systems, Man,
and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on, 42(3):291-312,
2012.

[40] Marek Kretowski and Marek Grzes. Global induction of oblique decision trees: an
evolutionary approach. In Intelligent Information Processing and Web Mining, pages
309-318. Springer, 2005.

[41] Jason Brownlee. Clever algorithms: nature-inspired programming recipes. Jason
Brownlee, 2011.

[42] B Vukobratovic and R Struharik. Evolving full oblique decision trees. In Computational
Intelligence and Informatics (CINTI), 2015 16th IEEE International Symposium on,
95-100. IEEE, 2015.

[43] Ron Bekkerman, Mikhail Bilenko, and John Langford. Scaling up machine learning:
Parallel and distributed approaches. Cambridge University Press, 2011.

[44] Alok N Choudhary, Daniel Honbo, Prabhat Kumar, Berkin Ozisikyilmaz, Sanchit Misra,
and Gokhan Memik. Accelerating data mining workloads: current approaches and future

challenges in system architecture design. Wiley Interdisciplinary Reviews: Data Mining
and Knowledge Discovery, 1(1):41-54, 2011.

[45] Davide Anguita, Andrea Boni, and Sandro Ridella. A digital architecture for support
vector machines: theory, algorithm, and fpga implementation. Neural Networks, IEEE
Transactions on, 14(5):993-1009, 2003.

[46] Markos Papadonikolakis and C Bouganis. Novel cascade fpga accelerator for support
vector machines classification. Neural Networks and Learning Systems, IEEE Transactions
on, 23(7):1040-1052, 2012.

[47] Davide Anguita, Luca Carlino, Alessandro Ghio, and Sandro Ridella. A fpga core
generator for embedded classification systems. Journal of Circuits, Systems, and
Computers, 20(02):263-282, 2011.

[48] Davood Mahmoodi, Ali Soleimani, Hossein Khosravi, Mehdi Taghizadeh, and others.
Fpga simulation of linear and nonlinear support vector machine. Journal of Software
Engineering and Applications, 4(05):320, 2011.

[49] Vuk Vranjkovic and Rastislav Struharik. New architecture for svm classifier and its
application to telecommunication problems. In Telecommunications Forum (TELFOR),
2011 19th, 1543-1545. IEEE, 2011.

157

Hardware Acceleration of Nonincremental Algorithms for the Induction of Decision Trees and Decision Tree Ensembles 158

[50] Antony Savich, Medhat Moussa, and Shawki Areibi. A scalable pipelined architecture

for real-time computation of mlp-bp neural networks. Microprocessors and Microsystems,
36(2):138-150, 2012.

[51] Dmitri Vainbrand and Ran Ginosar. Scalable network-on-chip architecture for
configurable neural networks. Microprocessors and Microsystems, 35(2):152-166, 2011.

[52] J Echanobe, I del Campo, K Basterretxea, MV Martinez, and Faiyaz Doctor. An

fpga-based multiprocessor-architecture for intelligent environments. Microprocessors and
Microsystems, 38(7):730-740, 2014.

[53] Janardan Misra and Indranil Saha. Artificial neural networks in hardware: a survey of two
decades of progress. Neurocomputing, 74(1):239-255, 2010.

[54] Amos R Omondi and Jagath Chandana Rajapakse. FPGA implementations of neural
networks. volume 365. Springer, 2006.

[55] Hirokazu Madokoro and Kazuhito Sato. Hardware implementation of back-propagation
neural networks for real-time video image learning and processing. Journal of Computers,
8(3):559-566, 2013.

[56] Rastislav Struharik and Ladislav Novak. Intellectual property core implementation of
decision trees. IET computers & digital techniques, 3(3):259-269, 2009.

[57] Qingzheng Li and Amine Bermak. A low-power hardware-friendly binary decision tree
classifier for gas identification. Journal of Low Power Electronics and Applications,
1(1):45-58, 2011.

[58] Fareena Saqgib, Aindrik Dutta, Jim Plusquellic, Philip Ortiz, and Marios S Pattichis.
Pipelined decision tree classification accelerator implementation in fpga (dt-caif).
Computers, IEEE Transactions on, 64(1):280-285, 2015.

[59] Rastislav Struharik and Ladislav Novak. Evolving decision trees in hardware. Journal of
Circuits, Systems, and Computers, 18(06):1033—-1060, 2009.

[60] Grigorios Chrysos, Panagiotis Dagritzikos, loannis Papaefstathiou, and Apostolos Dollas.
Hc-cart: a parallel system implementation of data mining classification and regression
tree (cart) algorithm on a multi-fpga system. ACM Transactions on Architecture and Code
Optimization (TACO), 9(4):47, 2013.

[61] Lior Rokach. Ensemble-based classifiers. Artificial Intelligence Review, 33(1-2):1-39,
2010.

[62] Peter Biihlmann. Bagging, boosting and ensemble methods. In Handbook of
Computational Statistics, pages 985—-1022. Springer, 2012.

[63] M Ozay and F Vural. Performance analysis of stacked generalization classifiers. In 2008
IEEE 16th Signal Processing, Communication and Applications Conference. 2008.

[64] Robert A Jacobs, Michael I Jordan, Steven J Nowlan, and Geoffrey E Hinton. Adaptive
mixtures of local experts. Neural computation, 3(1):79-87, 1991.

[65] YS Huang and CY Suen. The behavior-knowledge space method for combination of
multiple classifiers. In IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, 347-347. INSTITUTE OF ELECTRICAL ENGINEERS INC (IEEE), 1993.

158

Hardware Acceleration of Nonincremental Algorithms for the Induction of Decision Trees and Decision Tree Ensembles 159

[66] Amine Bermak and Dominique Martinez. A compact 3d vlsi classifier using bagging
threshold network ensembles. Neural Networks, IEEE Transactions on, 14(5):1097-1109,
2003.

[67] Hassab Elgawi Osman. Random forest-Ins architecture and vision. In Industrial
Informatics, 2009. INDIN 2009. 7th IEEE International Conference on, 319-324. IEEE,
20009.

[68] Brian Van Essen, Chris Macaraeg, Maya Gokhale, and Ryan Prenger. Accelerating a
random forest classifier: multi-core, gp-gpu, or fpga? In Field-Programmable Custom
Computing Machines (FCCM), 2012 IEEE 20th Annual International Symposium on,
232-239. IEEE, 2012.

[69] Hanaa Hussain, Khaled Benkrid, Chuan Hong, and Huseyin Seker. An adaptive fpga
implementation of multi-core k-nearest neighbour ensemble classifier using dynamic
partial reconfiguration. In Field Programmable Logic and Applications (FPL), 2012 22nd
International Conference on, 627-630. IEEE, 2012.

[70] Rastislav JR Struharik and Ladislav A Novak. Hardware implementation of decision tree
ensembles. Journal of Circuits, Systems, and Computers, 22(05):1350032, 2013.

[71] Minghua Shi, Amine Bermak, Shrutisagar Chandrasekaran, Abbes Amira, and Sofiane
Brahim-Belhouari. A committee machine gas identification system based on dynamically
reconfigurable fpga. Sensors Journal, IEEE, 8(4):403-414, 2008.

[72] David J Newman, Seth Hettich, Cason L Blake, and Christopher J Merz. Uci repository
of machine learning databases. 1998.

[73] John Neter, Michael H Kutner, Christopher J Nachtsheim, and William Wasserman.
Applied linear statistical models. volume 4. Irwin Chicago, 1996.

[74] Yosef Hochberg and Ajit C Tamhane. Multiple comparison procedures. Wiley, 2009.

[75] Anne Auger. Benchmarking the (1+ 1) evolution strategy with one-fifth success rule on
the bbob-2009 function testbed. In Proceedings of the 11th Annual Conference Companion
on Genetic and Evolutionary Computation Conference: Late Breaking Papers, 2447-2452.
ACM, 20009.

[76] Delon Levi. Hereboy: a fast evolutionary algorithm. In Evolvable Hardware, 2000.
Proceedings. The Second NASA/DoD Workshop on, 17-24. IEEE, 2000.

[77] Nicholas Metropolis, Arianna W Rosenbluth, Marshall N Rosenbluth, Augusta H Teller,
and Edward Teller. Equation of state calculations by fast computing machines. The journal
of chemical physics, 21(6):1087-1092, 1953.

[78] Stefan Droste, Thomas Jansen, and Ingo Wegener. On the analysis of the (1+ 1)
evolutionary algorithm. Theoretical Computer Science, 276(1):51-81, 2002.

[79] David H Wolpert. The lack of a priori distinctions between learning algorithms. Neural
computation, 8(7):1341-1390, 1996.

[80] Santos Lopez-Estrada and Rene Cumplido. Decision tree based fpga-architecture for
texture sea state classification. In 2006 IEEE International Conference on Reconfigurable
Computing and FPGA’s (ReConFig 2006), 1-7. IEEE, 2006.

159

Hardware Acceleration of Nonincremental Algorithms for the Induction of Decision Trees and Decision Tree Ensembles 160

[81] Vuk S Vranjkovi¢, Rastislav JR Struharik, and Ladislav A Novak. Reconfigurable
hardware for machine learning applications. Journal of Circuits, Systems and Computers,
24(05):1550064, 2015.

[82] Davide Anguita, Alessandro Ghio, Stefano Pischiutta, and Sandro Ridella. A support
vector machine with integer parameters. Neurocomputing, 72(1):480-489, 2008.

[83] Xindong Wu and Vipin Kumar. The top ten algorithms in data mining. CRC Press, 2009.

[84] Lipo Wang and Xiuju Fu. Data mining with computational intelligence. Springer Science
& Business Media, 2006.

[85] David Heath, Simon Kasif, and Steven Salzberg. Induction of oblique decision trees. In
1JCAI, 1002-1007. Citeseer, 1993.

[86] Md Zahidul Islam. Explore: a novel decision tree classification algorithm. In Data
Security and Security Data, pages 55-71. Springer, 2010.

[87] X Liu, D Wang, L Jiang, and F Chen. An improved algorithm for oblique decision tree
classification based on rough set theory. J Comput Inf Syst, 7(11):4042—4049, 2011.

[88] Naresh Manwani and PS Sastry. Geometric decision tree. Systems, Man, and Cybernetics,
Part B: Cybernetics, IEEE Transactions on, 42(1):181-192, 2012.

[89] UCI. UCI Machine Learning Repository. http://archive.ics.uci.edu/ml/.

[90] Pong P Chu. RTL hardware design using VHDL: coding for efficiency, portability, and
scalability. John Wiley & Sons, 2006.

[91] Giovanni De Micheli. Synthesis and optimization of digital circuits. McGraw-Hill Higher
Education, 1994.

[92] Shlomo Weiss and Casimir Kulikowski. Computer systems that learn. San Mateo, CA:
Morgan Kaufmann, 1991.

[93] JS Urban Hjorth. Computer intensive statistical methods: Validation, model selection,
and bootstrap. CRC Press, 1993.

[94] Mark Plutowski, Shinichi Sakata, and Halbert White. Cross-validation estimates imse.
training (as training can be faster on smaller datasets), 2:4, 1994.

160

	Абстракт
	Uvod
	Стабла одлуке
	Индукција стабала одлуке
	Алгоритми за формирање стабaла у хардверу неинкременталном методом
	Алгоритми за формирање ансамбала
	Алгоритми за формирање ансамбала у хардверу

	EFTI
	Копроцесор за еволутивну индукцију целих стабала одлуке - EFTIP
	Еволутивни алгоритам за индукцију ансамбала целих неортогоналних стабала одлуке - EEFTI
	Копроцесор за еволутивну индукцију ансамбала целих стабала одлуке - EEFTIP

	Abstract
	Introduction
	Machine learning
	Decision Trees
	Decision tree induction
	General approaches to DT induction
	Evolutionary oblique full DT induction

	Hardware aided decision tree induction
	Induction of decision tree ensembles
	Hardware aided induction of decision tree ensembles
	UCI Database Library
	The structure of the experiments used in the thesis

	EFTI algorithm
	The algorithm overview
	Detailed description
	Mutation
	The DT node insertion algorithm
	Fitness evaluation
	Selection

	Improvements to the basic EFTI algorithm
	Unrepresented classes
	Search probability
	Partial reclassification

	Complexity of the EFTI algorithm
	Experiments
	Dependence on the number of iterations
	Equitemporal comparison with the existing solutions
	Group comparison of all algorithms

	Co-processor for the DT Induction - the EFTIP
	Profiling Results
	Existing Architectures for Hardware Acceleration of the DT Classification
	EFTIP Detailed Description
	Classifier
	Training Set Memory
	DT Memory Array
	Accuracy Calculator
	Control Unit

	Required Hardware Resources and Performance
	Software for the EFTIP Assisted DT Induction
	Experiments
	Required Hardware Resources for the EFTIP Co-Processor Used in Experiments
	Estimation of Induction Speedup

	EEFTI algorithm
	Bagging Algorithm
	EEFTI Description
	Advantages of the DT ensembles

	Co-processor for the DT ensemble induction - EEFTIP
	IRQ Status Module
	Theoretical estimation of the acheivable speedup of the proposed HW/SW system
	Random sampling without replacement
	Whole training set for each member

	Software for the EEFTIP assisted DT ensemble induction
	Experiments
	Required Hardware Resources for the EEFTIP co-processor
	Estimation of the Induction Speedup

	Conclusion
	Bibliography

