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Rezime

Današnji računarski sistemi se sastoje od umreženih računara, višestruke aplikacije
se izvršavaju na jednom računaru, a veb sajtovi imaju više korisnika. Zatim, više
procesora, kao i višejezgarni procesori mogu istovremeno vršiti operacije na jednom
računaru, a programi se mogu razdvojiti na osnovne delove i na taj način ubrzano
izvršavati. Stoga, moramo zaključiti da je konkurentnost prisutna svuda. Komu-
nikacija i interakcija su postale centralni aspekt svih modernih softverskih sistema,
polazeći od procesa u geografski distribuiranim mrežama pa do niti procesa koje
se izvršavaju na različitim jezgrima u okviru istog procesora. Nedeterminističko
preplitanje konkurentnih operacija otežava otkrivanje i otklanjanje grešaka (uza-
jamnog blokiranja, race conditions, narušavanje bezbednosti,...). Razvoj efikas-
nih metoda za kontrolu konkurentnosti sistemima, kao što su operativni sistemi
i sistemi za rukovođenje bazama podataka, čija se dostupnost i pouzdanost po-
drazumevaja, je izazovan zadatak. Raznovrsnost i kompleksnost problema vezanih
za konkurentnost je prouzrokovala razvoj širokog sprektra formalnih modela. For-
malni model mora biti jednostavan, ekspresivan, definisan korišćenjem tehnika
logike i matematike i mora pružiti sredstva za analizu posmatranog problema. Neki
od dobro poznatih modela konkurentnosti su model aktera [74, 4], transakcione
memorije [91, 66, 67], Petrijeve mreže [116, 124] i procesni računi [105, 108, 75].

U tezi će biti razmatrana tri problema. Prvi je rukovođenje i kontrola pristupa
podacima u distribuiranoj mreži sa polu-strukturiranim podacima u XML formatu,
sa naglaskom na pitanja bezbednosti posmatranih podataka. Metode za kontrolu
prava pristupa, iako sprečavaju neovlašćeni pristup podacima, samostalno nisu
dovoljne da u potpunosti zaštite bezbednost podataka. Naime, pristup određenim
podacima je ili dozvoljen ili zabranjen, a nemoguće je kontrolisati kako se ti podaci
kasnije koriste, kao ni da li je došlo do nepoželjenog uticaja na njih. Zbog toga
je neophodno uvesti i druge metode za kontrolu rukovođenja podacima. Primena
takvih metoda često može biti složena kada se radi o konkurentnim i distribuiranim
sistemima.

Drugi problem je rukovođenje i kontrola pristupa podacima u distribuiranoj
mreži sa podacima u RDF formatu, sa naglaskom na pitanja privatnosti posma-
tranih podataka. Potreba da se podaci objavljuju u formatu koji omogućava
kombinovanje polu-strukturiranih i strukturiranih podataka prisutna je sve češće.
Takvi podaci su najčešće u RDF formatu koji podržava njihovo povezivanje, kom-
binovanje i razmenjivanje među različitim aplikacima. Velika vrednost mreže
povezanih podataka leži u javnoj dostupnosti. Iako jednostavan i širok pristup
povezanim podacima ima značajnih prednosti za njihove korisnike, ne odgovaraju
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svi podaci takvom načinu pristupa. Na primer, RDF se često koristi za pred-
stavljanje ličnih podataka sa društvenih mreža. To dovodi do pitanja očuvanja
privatnosti povezanih podataka jer nedostatak mehanizama za zaštitu privatnosti
često obeshrabruje njihovo objavljivanje. Rešavanje ovog problema zahteva jasno
objašnjenje pojma privatnosti koji se u [151] definiše u smislu kontrole pristupa
i prenosa podataka. Stoga je, kao i kod prvog problema, pored metoda za kon-
trolu pristupa, neophodno uvesti i dodatne metode da bi se zaštitila privatnost
podataka u mreži.

Treći problem je prevencija grešaka u memoriji i curenja memorije, kao i
grešaka u komunikaciji generisanim programima napisanim na jeziku koji po-
država razmenu poruka bez kopiranja, a u prisutvu izuzetaka. Razmena poruka
je fleksibilna paradigma koja dozvoljava autonomnim entitetima da razmenjuju
informacije i da se sinhronizaciju. Izraz „razmena poruka” na neki način suger-
iše da poruke prelaze sa jednog entiteta na drugi, iako se najčešće razmenjuju
samo njihove kopije. Dok je slanje kopija neizbežno u distribuiranim sistemima,
prisustvo jedinstvenog memorijskog prostora omogućava primenu razmene poruka
bez kopiranja, pri kojoj se razmenjuju samo pokazivači na poruke. Razmena
poruka bez kopiranja i izuzeci su očigledno suprotnosti: sa jedne strane, takva
razmena poruka zahteva veoma disciplinovan i kontrolisan pristup memoriji, dok,
sa druge strane, izuzeci u opštem slučaju prekidaju normalan tok izvršavanja pro-
grama. Prevencija gorepomenutih grešaka u prisustvu izuzetaka zahteva statičku
analizu programa, kao i podršku sistema u toku izvršavanja.

Ciljevi teze su formalizacija ovih problema i pronalaženje odgovarajućih metoda
za njihovo rešavanje. Procesni računi su usredsređeni na komunikaciju, interakciju
i sinhronizaciju, te predstavljaju pogodan formalni model za probleme koji su raz-
matrani u ovoj tezi. Tipski sistemi pripadaju statičkim metodama za verifikaciju
i nametanje raznih svojstava.

Pregled sadržaja i strukture teze
Teza se sastoji od šest poglavlja. Nakon uvodnog poglavlja koje opisuje predmet i
ciljeve istraživanja, u drugom poglavlju je dato više detalja o formalizmima koji
su korišćeni. Naime, drugo poglavlje sadrži osnovne pojmove procesnih računa i
tipskih sistema, kao i definiciju π-računa.

Osnova svakog konkurentnog izračunavanja je pojam procesa. Koncept procesa
i konkurentnost su srž modernih operativnih [132] i distribuiranih [139] sistema.
Proces predstavlja instancu programa čije je izvršavanje u toku i koja može
istovremeno da obavlja više od jednog zadatka koristeći jedinice konkurentnosti
zvane niti. Međusobna interakcija procesa, tj. slanje i primanje poruka, vrši se
preko medijuma za komunikaciju koji se zovu kanali. Milner, Parrow i Walker su
početkom devedesetih godina prošlog veka predstavili π-račun [108] kao formalni
model za konkurentnost. Proces u π-računu je apstrakcija autonomnog entiteta
koji može da stupa u interakciju sa drugim procesima, a kanal u π-računu je
apstrakcija komunikacione veze između dva procesa. Pomoću π-računa se mogu
opisati konkurentni sistemi koji mogu menjati konfiguraciju tokom izvršavanja,
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slanjem i primanjem kanala preko kanala. Njegova sintaksa omogućava opisi-
vanje suštine konkurentnih sistema: procesa, paralelne kompozicije procesa, ko-
munikaciju među procesima, prenošenje kanala, kreiranje novih kanala, nedeter-
minizam i replikaciju procesa. Pojam izračunavanja u procesnom računu može
biti dat preko relacije redukcije ili preko sistema označenih tranzicija. U tezi će
biti korišćen prvi način.

Tipski sistemi su jedna od najrasprostranjenijih tehnika za analizu programskih
jezika. Oni se koriste za eliminisanje nepoželjnih ponašanja, tj. grešaka koje se
javljaju tokom izvršavanja. Svaki jezik ima svoje specifične greške. Generalno
govoreći, tipski sistem klasifikuje elemente jezika, koje nazivamo termi, na skupove,
koje nazivamo tipovi, i pokazuje odsustvo određenih grešaka na osnovu dodeljenih
tipova. Može se dogoditi da neki termi budu odbačeni od strane tipskog sistema,
iako je njihovo ponašanje tokom izvršavanja ispravno. Sa druge strane, precizniji
tipski sistem će zaista tipizirati više termova, ali najverovatnije po cenu složenijeg
algoritma za proveru tipiziranosti. Stoga je važno napraviti pravi balans između
ova dva pitanja.

U konkurentnim programima i sistemima tipski sistemi se često koriste za elim-
inaciju grešaka kao što su uzajamna blokiranja i race conditions, kao i za proveru
disciplinovanog ponašanja, ekstrakciju informacija o programima koja može biti
korisna za predviđanje ponašanja programa tokom izvršavanja itd.

Tipski sistemi u ovoj tezi su blisko povezani sa određenim tipskim sistemima
za π-račun. Tipski sitemi uvedeni u trećem i četvrtom poglavlju se oslanjaju na
jednostavne tipove iz šestog poglavlja [130]. Jednostavni tipovi zahtevaju razmenu
podataka unapred zadatog tipa. Tipski sistem uveden u šestom poglavlju teze je
sličan tipovima sesija iz [144, 62]. Osnovna ideja tipova sesija je da se kanali tip-
iziraju sekvencom tipova koja predstavlja trag njegove upotrebe. Oni obezbeđuju
odsustvo grešaka u komunikaciji i poštovanje protokola sesije. Originalni tipovi
sesija iz [78, 79] na početku ne prepoznaju razliku između krajeva jednog kanala,
dok u [144, 62] autori prave tu razliku koriseći endpoint tipove. U radu [38] se
može naći više informacija o sesijama i tipovima sesija, kao i detaljan pregled
literature.

Da bismo opisali procesne račune sa tipovima potrebno je uvesti standardnu
terminologiju i notaciju, koja je data i u šestom poglavlju [130]. Izraz oblika u : T ,
gde je u ime kanala, a T tip, dodeljuje tip imenu. Tipski kontekst je konačan
skup dodela tipova imenima. Podrazumeva se da su sva imena u jednom kon-
tekstu različita. Tipske kontekste označavamo sa Γ. Tipski sud je izraz oblika
Γ ` e : T , gde e označava term posmatranog jezika. Tipski sud Γ ` e : T iskazuje
da term e ima tip T u kontekstu Γ. Term je dobro tipiziran u Γ ako postoji T
takav da se Γ ` e : T može izvesti iz aksioma i pravila zaključivanja posmatranog
tipskog sistema. Tipski sistem je pouzdan ukoliko termi koji su dobro tipizirani ne
prouzrokuju greške tokom izvršavanja. Termi koji ne prouzrokuju greške tokom
izvršavanja se nazivaju termi sa dobrim ponašanjem. Da bi se pokazalo da je tipski
sistem pouzdan najčešće je potrebno pokazati dva tvrđenja: dobra tipiziranost je
očuvana tokom izvršavanja (eng. subject reduction) i dobro tipizirani termi imaju
dobro ponašanje (eng. type safety). Formalizacija ovih tvrđenja zavisi od posma-
tranog jezika i tipskog sistema, a njihovi dokazi najčešće zahtevaju pokazivanje
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više dodatnih osobina.
Treće, četvrto i peto poglavlje razmatraju po jedan od problema navedenih u

uvodu i mogu se posmatrati kao odvojene celine koje se oslanjaju na pojmove i
račun date u drugom poglavlju. Sva tri poglavlja sadrže definicije odgovarajućih
procesnih računa, dobrih ponašanja i tipskih sistema, kao i dokaze pouzdanosti
tih tipskih sistema. U narednim paragrafima dajemo pregled rezultata iznesenih
u ovim poglavljima i navodimo odgovarajuće publikacije.

Treće poglavlje se odnosi na problem rukovođenja i kontrole pristupa podacima
u distribuiranoj mreži sa polu-strukturiranim podacima u XML formatu, sa na-
glaskom na pitanja bezbednosti posmatranih podataka.

Podaci prisutni na vebu su često u formatima fleksibilne strukture koja zavisi
od namene samih podataka. Kod takvih, polu-strukturiranih podataka, podaci i
njihova šema nisu razdvojeni, kao što je to slučaj kod strukturiranih podataka,
prisutnih u relacionim bazama. Polu-strukturirani podaci su lako dostupni, pri-
lagodljivi, prenosivi i pogodni za razmenu između različitih vrsta baza. Extensible
Markup Language (XML) [19] i XQuery [16, 126] su trenutno standardne metode
za izražavanje i pretraživanje polu-strukturiranih podataka.

Jedan od glavnih koraka u rukovođenju distribuiranim sistemima sa podacima
je regulacija bezbednosti, koja je jedno od glavnih sredstava za prevenciju neodob-
renog pristupa resursima sistema. Upravljanje pristupom na osnovu uloga (eng.
role-based access control - RBAC) [129] je metoda za kontrolu pristupa zasnovana
na pojmovima korisnika, uloga i dozvola. Ova metoda kontroliše prava pristupa
korisnika resursima sistema u skladu sa aktivnostima koje obavljaju. Prilikom
pristupa resursima, korisnik ima ona prava koja su dodeljena njegovim ulogama.
Uloge u jednom sistemu su statički definisane na osnovu organizacione strukture,
te je stoga regulacija bezbednosti svedena na rukovođenje pravima, tj. dozvolama.
To čini RBAC jednostavnom i pogodnom tehnikom za kontrolu prava pristupa.

Bezbednost podataka se definiše u smislu održivosti njihove poverljivosti, in-
tegriteta i dostupnosti. Osobina poverljivosti razmatra kome se prenose. Integritet
podataka se odnosi na neodobrenu modifikaciju podataka i obično je definisan kao
očuvanje nekog bitnog svojsta, kao što je konzistentnost, preciznost ili smislenost
podataka. U tom smislu, tvrdimo da je bezbedost podataka zaštićena ukoliko
korisnici ne prekoračuju prava dodeljena njihovim ulogama, tj.

• ako se podaci prenose samo onim učesnicima kojima je dozvoljeno da im
pristupaju, i

• ako procesi pristupaju podacima poštujući unapred zadate politike, i

• ako procesi ne vrše promene na podacima nakon kojih podaci postaju nekonzis-
tentni spram unapred zadatih politika.

U ovom poglavlju razmatramo mrežu odvojenih lokacija koje sadrže XML po-
datke i procese. U takvoj mreži se može očekivati da nisu svi podaci dostupni
svim procesima i da samo ovlašćeni procesi mogu menjati podatke. Zbog toga, po-
dacima i procesima dodeljuju se uloge. Takođe, pretpostavljamo da svaka lokacija
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ima svoju politiku zaštite bezbednosti koja određuje koje uloge mogu da joj pris-
tupe. Samo procesi kojima je dozvoljeno da u potpunosti pristupe nekim podacima
imaju pravo da ih menjaju. Zatim, kako je mogućnost promene prava pristupa
jedna od poželjnih karakteristika ovakve mreže, takve promene se moraju vršiti u
skladu sa politikama lokacija. Povreda bezbednosti bi bila bilo kakva akcija koja
nije dozvoljena ili nakon koje podaci mogu postati nekonzistentni. Nekontrolisano
čitanje i prenošenje podatka takođe mogu prouzrokovati povrede bezbednosti.
Kao što smo već rekli, da bi se održala bezbednost u sistemu, pored metoda
za kontrolu pristupa, neophodno je uvesti i dodatne metode za analizu podataka
i procesa.

Peer-to-peer mreže sa dinamičkim veb podacima su modelirane Xdπ računom
u radu [55]. Podaci su predstavljeni osnovnim modelom polu-strukturiranih po-
dataka, neuređenim označenim stablom koje sadrži pokazivače na druge delove
mreže i neaktivne procese koji nakon pokretanja mogu pretraživati i menjati po-
datke. Autori su kao model za XML dokumente izabrali stablo sa korenom i
označenim granama. U suštini, takvo stablo predstavlja graf u kome su grane
označene tagovima XML elemenata. Prilikom izbora modela podataka, autori su
odlučili da se pokazivači i neaktivni procesi nalaze samo u listovima stabla. Oba
ova izbora, iako se neznatno razlikuju od standardnog modela za XML podatke,
nisu uticali na ideje iznete u [55].

Sa ciljem da se RBAC primeni na model peer-to-peer mreže sa polu-
-strukturiranim veb podacima, u radu

• Mariangiola Dezani-Ciancaglini, Silvia Ghilezan, Svetlana Jakšić, Jovanka
Pantović: Types for Role-based Access Control of Dynamic Web Data in
Proceedings of the 19th Workshop on Functional and (Constraint) Logic
Programming (WFLP’10), LNCS, Vol. 6559, pages 1-29, Springer, 2011.
([40])

uvodimo rXdπ kao njen formalni model. Bezbednost takve mreže kontrolišemo
pomoću tehnika RBAC i tipskog sistem. U našem modelu, mreža je paralelna kom-
pozicija lokacija, pri čemu svaka lokacija sadrži stablo podataka čijim granama su
dodeljene uloge i procese sa ulogama. Kako je ovaj model dobijen proširivanjem
Xdπ računa ulogama, procesi, kao i u originalnom modelu, mogu međusobno ko-
municirati, menjati lokacije, koristiti i menjati podatke. Pored ovih mogućnosti,
naši procesi mogu menjati i uloge na lokalnim podacima. Na taj način smo do-
bili model koji omogućava i aktivaciju i deaktivaciju uloga u lokalnim stablima
podataka, tj. promenu prava pristupa. Jezik koji je prikazan u trećem poglavlju
veoma je sličanrXdπ računu. Postoji neznatna razlika u notaciji, kao i u tome što
jezik u trećem poglavlju omogućava replikaciju proizvoljnog procesa i što umesto
redukcionih konteksta koristi relaciju redukcije, zadatu pomoću relacije lokalne
interakcije.

Dajemo definiciju mreže sa dobrim ponašanjem koja zahteva poštovanje za-
datih politika lokacija, kao i da procesi ne prelaze ovlašćenja svojih uloga prilikom
slanja, pristupa i promene podataka i da ne narušavaju konzistentnost podataka.
Naime, na bilo kojoj lokaciji mreže sa dobrim ponašanjem:
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• stablo sa podacima ne može da sadrži uloge koje su niže od minimalnih uloga
propisanih od strane politike lokacije, a proces mora da ima bar jednu od
tih minimalnih uloga;

• proces sa ulogama može da doda ulogu na granu lokalnog stabla samo ako
je to dozvoljeno politikom lokacije;

• proces sa ulogama može da izbriše ulogu sa grane lokalnog stabla samo ako
je to dozvoljeno politikom lokacije;

• dostupnost podataka ne sme biti prekinuta, tj. ukoliko proces može da
pristupi nekoj grani, takođe mora moći da pristupi i njenoj roditeljskoj grani;

• grana stabla podataka nikada nije potpuno nedostupna;

• proces sa ulogama može da prenosi samo one vrednosti kojima može i sam
da pristupi;

• proces sa ulogama pretražuje samo putanje kojima može da pristupi;

• proces sa ulogama može da pročita samo one podatke kojima može da pris-
tupi;

• proces sa ulogama može da izbrše podstablo ukoliko može da pristupi svim
granama tog podstabla.

Predlažemo tipski sistem i pokazujemo njegovu pouzdanost, tj. da se dobra tip-
iziranost mreže zadržava tokom njenog rada i da su mreže koje su dobro tipizirane,
ujedno i mreže sa dobrim ponašanjem.

Četvrto poglavlje se odnosi na problem rukovođenja i kontrole pristupa po-
dacima u distribuiranoj mreži sa podacima u RDF formatu, sa naglaskom na pi-
tanja privatnosti posmatranih podataka.

Povećanjem međusobne povezanosti različitih izvora informacija, povećava se i
njihova vrednost. Sa tom idejom, pre desetak godina, pokrenuta je inicijativa, naz-
vana Semantic Web za utvrđivanje odgovarajućeg opšteg formata za povezivanje
podataka. Semantic Web se razvio u kolekciju preporuka za objavljivanje podataka
na vebu [15, 14]. Očekuje se da veb povezanih podataka poraste u ogromni graf
povezanih podataka, zasnovan na principima koje je formulisao Berners-Lee [11]:

• korišćenje URIs (IRIs) za imenovanje svega,

• korišćenje HTTP URIs (IRIs) da bi se ta imena mogla naći,

• korišćenje standardizovanih formata za objavljivanje podataka da bi se mogle
dobiti funkcionalne informacije,

• mogućnost povezivanja podataka da bi se stvorila što bogatija mreža po-
dataka.

vi



Preporučeni standardi za objavljivanje i pretraživanje povezanih podataka su Re-
source Description Framework (RDF ) [101, 131] i SPARQL [122]. RDF je okvir za
predstavljanje informacija o njhovim izvorima. Bilo šta se može smatrati izvorom
informacija, uključujući dokumente, ljude, fizičke objekte i apstraktne koncepte.
Suštinu RDF-a predstavljaju trojke oblika

< subjekat > < predikat > < objekat >,

pomoću kojih se mogu praviti iskazi o izvorima informacija. RDF trojka izražava
vezu između subjekta i objekta, pri čemu je priroda te veze izražena predikatom.
U najopštijem obliku, podaci u RDF formatu su skupovi trojki. Elementi trojki
mogu biti URIs (IRIs), literali i prazni čvorovi. Preporučeni jezik za pretraživanje
RDF podataka je SPARQL, dok se SPARQL Update preporučuje kao standard za
umetanje, brisanje i ažuriranje.

Kao što smo već napomenuli u [151], privatnost je definisana u smislu kontrole
pristupa i prenosa podataka, tj. kao „mogućnost kontrolisanja ko ima pristup
informacijama i kome se te informacije prenose”. Na osnovu toga smatramo da je
privatnost podataka zaštićena ako:

• vlasnik podataka uvek može da pristupi svim svojim podacima, i

• vlasnik podataka može da kontroliše ko ima pristup njegovim podacima, i

• vlasnik podataka može da vrši izmene nad svojim podacima.

Osim toga, privatnost se, pored na status nekih podataka, može odnositi i na rele-
vantnost podataka za neku grupu ili na sposobnost čitalaca da razumeju podatke
[134].

U ovom poglavlju razmatramo mrežu korisnika koji imaju svoje profile (po-
datke) u RDF formatu i procese koji se izvršavaju u njihovo ime. Da bismo
omogućili da korisnici mogu da kontrolišu privatnost svojih podataka, imenima
korisnika, resursa i trojki podataka dodeljujemo politike zaštite privatnosti. Slično
kao u [127, 128], uzimamo SPARQL šablone kao politike zaštite privatnosti i kažemo
da neki korisnik može pristupiti trojci podataka ako podaci koji odgovaraju tom
korisniku zadovoljavaju ASK upitnik sačinjen na osnovu politike zaštite privatnosti
te trojke. Ako je ime nekog korisnika dostupno nekom drugom korisniku, onda se
i taj drugi korisnik takođe smatra vlasnikom podataka i ima pravo da ih menja.
Povreda privatnosti bi bila izmena podataka nakon koje oni postaju nedostupni
svom originalnom vlasniku i može biti prouzrokovana nekontrolisanim čitanjem
podataka. Problem je sličan problemu iz trećeg poglavlja, te je stoga i za njegovo
rešavanje pored metoda za kontrolu pristupa, potrebno uvesti dodatne metode za
analizu podataka i procesa.

Postoji više radova na temu formalizacije različitih aspekata povezanih po-
dataka. Procesni računi koji se pojavljuju u [81, 82] predstavljaju apstraktnu
sintaksu za RDF i SPARQL pomoću koje se opisuju struktura povezanih podataka
i upitnici. Autori radova [127, 128] opisuju model formalne semantike ontologije
vezane za privatnost i predstavljaju aplikaciju koja omogućava korisnicima da
kreiraju svoje politike privatnosti i kontrolišu pristup svojim podacima na osnovu
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profila (podataka) onih korisnika koji upućuju zathev za čitanje tih podataka. U
[42] autori proučavaju poreklo povezanih podataka pomoću procesnog računa, a
tipski sistem statički određuje prava pristupa na osnovu porekla podataka. U
ovom poglavlju, a i na sličan način u

• Svetlana Jakšić, Jovanka Pantović, Silvia Ghilezan: Linked Data Privacy, in
Mathematical Structures in Computer Science, Cambridge University Press,
FirstView:1-21, 2015. ([90]),

fokusiramo se na privatnost povezanih podatka. Uvodimo procesni račun koji
predstavlja jezgro jezika procesa koji stupaju u interakciju sa podacima u RDF
formatu. Ovaj procesni račun sadrži neke od operanada π-računa i modelira frag-
ment jezika SPARQL , relavantan za analizirana pitanja privatnosti, kao i deo jezika
višeg reda pomoću kojeg se RDF podaci konzumiraju. Podržane operacije su op-
eracije čitanja, pisanja, brisanja i menjanja podataka. Politike privatnosti trojki
se takođe mogu ažurirati. Procesi su zajedno sa podacima smešteni na korisnička
imena koja u paralelnoj kompoziciji predstavljaju mrežu korisnika. Relacija re-
dukcije data je preko relacije interakcije korisnika sa podacima. U relaciji redukcije
se razlikuju slučajevi interakcije sa sopstvenim i sa tuđim podacima.

Na osnovu pokazanih svojstava zadovoljivosti politika korisnici čiji su podaci
u potpunosti obrisani smatraju se blokiranim. Razlikujemo aktivne i blokirane
korisnike. Definišemo odsustvo povreda privatnosti u definiciji mreža sa dobrim
ponašanjem. Naime, privatnost u posmatranoj mreži smatramo zaštićenom ako:

• podaci aktivnog korisnika zadovoljavaju politiku imena tog korisnika i
posredno, taj korisnik može da pristupi svim svojim podacima;

• korisnik čiji podaci zadovoljavaju politiku imena nekog drugog korisnika, ima
omogućen pristup i svim podacima tog drugog korisnika;

• blokirani korisnici nemaju pravo da preuzimaju nove podatke iz mreže;

• se blokiranom korisniku ne mogu dopisati podaci;

• aktivni korisnici mogu da menjaju, ažuriraju i brišu podatke onih korisnika
čija imena su im dostupna;

• blokirani korisnik može da dovrši akcije promena u mreži nad onim koris-
nicima čije su politike privatnosti niže od njegovih.

Predlažemo tipski sistem i pokazujemo njegovu pouzdanost, tj. da se, kao i u
trećem poglavlju, dobra tipiziranost mreže zadržava tokom njenog rada i da su
mreže koje su dobro tipizirane, ujedno i mreže sa dobrim ponašanjem.

Ključ jednostavnosti i efikasnosti ovog tipskog sistema leži u uvedenoj relaciji
poređenja politika. Ono što razlikuje račun i tipski sistem predložene ovom
poglavlju od drugih koji analiziraju mnoštvo osobina vezanih za bezbednosti i
kontrolu pristupa, jeste što se ovde ne koriste dodatna sredstva za kontrolu privat-
nosti, osim onih koja su već prisutna u samom jeziku. Naime, politike zaštite pri-
vatnosti podataka izražene kao ASK upitnici, te se provera njihove zadovoljivosti
svodi na zadovoljivost upitnika podacima korisnika koji pokušavaju da pristupe
tim podacima.
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Peto poglavlje se odnosi na problem prevencije grešaka u memoriji i curenja
memorije, kao i grešaka u komunikaciji u generisanih programima napisanim na
jeziku koji podržava razmenu poruka bez kopiranja, a u prisutvu izuzetaka.

Operativni sistem Singularity [84, 83] je primer sistema koji se snažno oslanja
na paradigmu razmene poruka bez kopiranja. Procesi u ovom operativnom sistemu
imaju pristup zajedničkom regionu koji se naziva hip za razmenu, komunikacija
među procesima se odvija samo prenosom poruka preko kanala alociranih na hipu,
a i same poruke su pokazivači na hipu. U [84, 83, 50] je detaljno objašnjeno da
automatsko sakupljanje smeća nije praktično, te stoga to mora biti urađeno od
strane procesa.

Razmena poruka bez kopiranja ima očiglednih prednosti u odnosu na kon-
vencionalnije forme prenosa poruka. U isto vreme, može izazvati pojavu suptil-
nih grešaka u programiranju koje potiču od eksplicitnog rukovanja objektima i
deljenja podataka. Zbog toga su i sami dizajneri operativnog sistema Singularity
opremili Sing#, programski jezik na kome je napisan Singularity, eksplicitnim kon-
struktima (tipovima) i tehnikom za statičku analizu koja pomaže programerima da
napišu kod u kojem nema nekoliko vrsta grešaka, uključujući: greške u memoriji,
tj. pristup nealociranim ili dealociranim objektima na hipu; curenja memorije,
tj. nagomilavanja nedosupnih alociranih objekata na hipu; grešaka u komunika-
ciji koje mogu prouzrokovati prekidanje procesa i biti okidač za prethodne vrste
grešaka.

Neki aspekti Sing#-a su već bili formalizovani i proučeni u [44, 136, 146, 17].
Naime, kako Sing# koristi ugovore kanala za prevenciju grešaka u komunikaciji, u
[17] je pokazano da se oni mogu pogodno predstaviti kao varijanta tipova sesija, i
da se informacije dobijene od tipova sesija, zajedno sa linearnom disciplinom, mogu
iskoristiti za prevenciju grešaka u memoriji i komunikaciji. U ovom poglavlju i u

• Svetlana Jakšić and Luca Padovani: Exception Handling for Copyless Mes-
saging, in Science of Computer Programming, Vol. 84, pages 22-51, ISSN
0167-6423, Elsevier, 2014. ([89]), i

• Svetlana Jakšić, Luca Padovani: Exception Handling for Copyless Messaging
in Proceedings of the 14th International ACM SIGPLAN Symposium on
Principles and Practice of Declarative Programming PPDP 2012, pages 151-
162, ACM, 2012. ([88]).

se fokusiramo na izuzetke i rukovanje njima. Dva glavna problema, prouzrokovana
izuzecima, koja smo primetili kod Singularity operativnog sistema su:

• kako se, korišćenjem ugovora kanala, greške u komunikaciji sprečavaju kom-
plementarnim akcijama procesa koji poseduju različite krajeve istog kanala,
skok u toku izvršavanja jednog procesa, izazvan na primer izbacivanjem
izuzetka, može da naruši ravnanje krajeva kanala i poremeti naredne in-
terakcije, i

• kada se izbaci izuzetak, poruke koje su poslate a još nisu primljene, kao i
objekti koji su alocirani od početka izvršavanja try bloka, mogu da postanu
nedostupni, te da na taj način dođe do curenja memorije.
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U Sing#-u postoje mehanizmi za rešavanje ovih problema, za koje pokazujemo da
su limitirani i nezadovoljavajući.

Predlažemo rešenje koje kombinuje statičku analizu (inspirisanu postojećim
radovima na temu rukovanja izuzecima u sesijama [25, 23, 24]) sa sve-ili-ništa se-
mentikom try blokova, u formi transakcija. Osnovna ideja je da se try blok ili
izvršava u potpunosti i da se tada njegovi efekti na hip trajno zabeleže ili da se
prekida izbacivanje izuzetka. Ukoliko se to dogodi, svi procesi koji su bili ušli u
transakciju se obaveštavaju o izbacivanju izuzetka da bi se tipovi krajeva kanala
mogli ponovo poravnati, a hip se vraća na stanje u kom je bio pre početka try
bloka. Između ostalog, da bi se izbeglo curenje memorije, neophodno je dinamički
pratiti memoriju koja je alocirana tokom izvršavanja try bloka kako bi se ta mem-
orija mogla pravilno vratiti u početno stanje u slučaju izbacivanja izuzetka.

Predlažemo procesni račun u kojem procesi mogu da primaju i šalju poruke bez
kopiranja. Taj račun je, u suštini, varijanta π-računa, osim što imena predstavljaju
pokazivače hip lokacije, umesto komunikacionih kanala. Dodatni operandi su slični
odgovarajućim iz Sing#-a. Semantika operacija data je pomoću relacije redukcije
koja ujedno opisuje izvršavanje procesa i njihove uticaje na hip.

Dajemo definiciju procesa sa dobrim ponašanjem koja zahteva odsustvo nedos-
tupnih alociranih pokazivača i da nemogućnost daljeg izvršavanja procesa znači
da je u jednom od stanja koja definišemo kao zaglavljena (uključujući, na primer
i uzajamno blokiranje), a koja ne mogu proizvesti curenje memorije. Predlažemo
tipski sistem koji omogućava prevenciju pomenutih grešaka, čak i u slučaju izbaci-
vanja izuzetka, ali samo ukoliko su i odgovarajući delovi koda za rukovođenje tim
izuzetkom prisutni. Neki procesi zapravo nikada neće prouzrokovati greške tokom
izvršavanja iako se ne mogu tipizirati. U ovom poglavlju i u [89] smo tipski sistem
iz [88] proširili relacijom podtipiziranja i na taj način značajno povećali preciznost
tipskog sistema. Pokazujemo pouzdanost tog tipskog sistema sa podtipiziranjem,
tj. da se dobra tipiziranost konfiguracija, sačinjenih od hipa i procesa, održava
tokom izvršavanja procesa i da su dobro tipizirani procesi ujedno i procesi sa
dobrim ponašanjem.

Jedna od ključnih ideja koje smo koristili je da u try blokovima „zaključamo”
tipove pokazivača na krajeve kanala koji nisu odgovarajuće označeni (tj. nisu
označeni kao tipovi vezani za transakciju) i zabranimo procesima da ih koriste. Na
taj način tipski sistem može statički da obezbedi da procesi ne vrše modifikacije
izvan dela hipa koji se lako može vratiti u stanje pre početka transakcije.

Koristimo invarijante garantovane tipskim sistemom da pokažemo kako se
troškovi implementacije izuzetaka mogu smanjiti: redovi u kojima se nalaze poruke
koje čekaju da budu primljene od strane nekog kraja kanala koji je ušao u transak-
ciju su sigurno prazni na početku transakcije, te stoga vraćanje hipa na početno
stanje znači, jednostavno, pražnjenje tog reda. Takođe, samo krajevi kanala koji
su alocirani u toku transakcije mogu biti dealocirani u toku transakcije, te stoga
vraćanje hipa na početno stanje ne iziskuje realociranje.

Šesto poglavlje sadrži zaključak teze i razmatra detalje aktuelnog i budućeg
istraživanja kandidata.
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Abstract

This thesis investigates problems of secure and private data access and adminis-
tration in distributed networks and prevention of memory errors and leaks as well
as the communication errors in copyless messaging communication paradigm. All
problems are formalized in process calculi and type systems are used for verifica-
tion of desired properties of systems and programs.

The outline of the thesis is the following. The thesis consists of six chapters,
starting with the introductory and ending with the concluding chapter.

Brief overview of theoretical background is given in the second chapter. This
chapter contains the basic notions of process calculi and type systems, together
with the definition of π-calculus.

Each one of the next three chapters considers one of the problems investigated
in the thesis. These chapters may be observed as separate entities which rely
on the notions and calculus given in the second chapter. In particular, the third
chapter addresses the problem of secure data administration in a distributed net-
work containing XML data. We introduce a role-based access control calculus for
modelling such networks. We define favourable security properties and use a type
system to ensure that security of the network is not violated during the execution
of processes.

The problem of privacy in a distributed network with data in RDF is investi-
gated in the fourth chapter. We introduce a calculus to model such network and
assign privacy protection policies to the users. We define favourable privacy prop-
erties in terms of access rights and use a type system to prove that these properties
are preserved during the computation. The key of simplicity and effectiveness of
the type system lies in the introduced policy comparison relation.

The fifth chapter deals with the prevention of memory errors and leaks as well
as the communication errors in copyless messaging communication paradigm, in
presence of exceptions. Message passing is a flexible paradigm that allows au-
tonomous entities to exchange information and to synchronize with each other.
While copying messages is inevitable in a distributed setting, the availability of
a shared address space makes it possible to implement a copyless form of mes-
sage passing, whereby only pointers to messages are exchanged. We formalize a
core language of processes that communicate and synchronize through the copy-
less message passing paradigm and can throw exceptions. We study a type sys-
tem guaranteeing some safety properties, in particular that well-typed processes
are free from communication errors and do not leak memory even in presence of
(caught) exceptions.
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Chapter 1

Introduction

Today computer systems consist of multiple computers in a network, multiple
applications run on a computer, multiple processors (or multi-core processors)
operate on a computer, web sites have multiple users, and computations are of-
ten split in order to run faster. Therefore we must conclude that concurrency is
present everywhere. Communication and interaction have become a central aspect
of all modern software systems, which range from distributed processes connected
by wide area networks down to collections of threads running on different cores
within the same processing unit. The design of efficient methods for concurrency
control in systems such as operating systems and database management systems
that are generally assumed to operate indefinitely and without unexpected termi-
nation is a challenging task. It is difficult to detect bugs (race conditions, dead-
locks, security violations,...) in the presence of concurrency because computations
interleave nondeterministically. The diversity and complexity of problems related
to concurrency has resulted in variety of formal models. In general, a formal model
must be simple, expressive, defined by using techniques from logics and mathe-
matics and it must provide a technique for analysis of a specific property. Some
well-established models for concurrency are the actor model [74, 4], transactional
memories [91, 66, 67], Petri nets [116, 124] and process calculi [105, 108, 75].

Three problems will be investigated in this thesis. The first one is data man-
agement and access control in a distributed network with semi-structured data in
XML format, with the accent on the security of the observed data. Access control
methods prevent unauthorized access to the data, but that solely is not enough to
protect the security of information. In particular, the access is either allowed or
denied, so there are no means to control how the data is used afterwards or if the
data was influenced in an improper way. In order to prevent security violations in
a network, additional methods for data management control must be introduced.
Concurrency and distribution often present challenges for such methods.

The second problem is data management and access control in a distributed
network with data in RDF format, with the accent on the privacy of the observed
data. There is often the need to publish data in a format which allows structured
and semi-structured data to be mixed. Such web of data is referred to as Web
of Linked Data and it uses RDF to interlink, mix, expose and share data across
different applications. A great merit of the Web of Linked Data is its exposure
to public consumption. Even though public availability brings a great advantage

1
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to users of such data, not all data are produced for public usage. For example,
RDF is often used to represent personal information and data from social networks.
This gives rise to the question of privacy of linked data, since the lack of privacy
protection mechanisms often discourages people from publishing data on the Web
of Linked Data. Addressing this issue requires a clear explanation for the intuition
of the notion of privacy. In [151], the privacy is defined as “the ability to control
who has access to information and to whom that information is communicated”.
Besides access control, as for the first problem, additional means are required in
order to preserve privacy in a network.

The third problem is prevention of memory errors and leaks as well as com-
munication errors in copyless messaging communication paradigm in presence of
exceptions. Message passing is a flexible paradigm that allows autonomous en-
tities to exchange information and to synchronize with each other. The term
“message passing” seems to suggest a paradigm where messages move from one
entity to another, although more often messages are copied during communica-
tion. While this is inevitable in a distributed setting, the availability of a shared
address space makes it possible to implement a copyless form of message passing,
whereby only pointers to messages are exchanged. Copyless messaging and excep-
tions are clearly at odds with each other: on the one hand, copyless messaging
requires a very disciplined and controlled access to memory; on the other hand,
exceptions are in general unpredictable and disrupt the normal control flow of
programs. Prevention of aforementioned errors in presence of exceptions requires
static analysis techniques and some support from the runtime system.

The objectives of the thesis are to formalize these problems and use type
systems to verify certain properties. Process calculi focus on communication,
interaction and synchronization, and as such are appropriate formal model for the
problems considered in this thesis. The use of type systems is a prominent static
method for verification and enforcement of variety of properties. In Chapter 2, we
will give more details on the formalisms used in the thesis.

1.1 Publications and structure of the thesis
Chapter 2 contains basic notions of process calculi and type systems, together
with the definition of π-calculus. Each of Chapters 3, 4 and 5 consider one of the
problems investigated in the thesis. These chapters may be viewed as separate
entities which rely on notions and calculus given in Chapter 2. Chapter 3 is based
on the paper:

1. Mariangiola Dezani-Ciancaglini, Silvia Ghilezan, Svetlana Jakšić, Jovanka
Pantović: Types for Role-based Access Control of Dynamic Web Data in
Proceedings of the 19th Workshop on Functional and (Constraint) Logic
Programming (WFLP 2010), LNCS, Vol. 6559, pages 1-29, Springer, 2011.
([40]).

It introduces a role-based access control calculus for modelling dynamic web data
and a corresponding type system. It is an extension of the Xdπ calculus proposed
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in [55]. A network is a parallel composition of locations, where each location con-
tains processes with roles and a data tree whose edges are associated with roles.
Processes can communicate, migrate from a location to another, use the data,
change the data and the roles in the local tree. We obtain a model which controls
access to data. We propose a type system which ensures that a specified net-
work policy is respected during computations and which enforces desired security
properties.

The foundation of Chapter 4 is the paper:

1. Svetlana Jakšić, Jovanka Pantović, Silvia Ghilezan: Linked Data Privacy, in
Mathematical Structures in Computer Science, Cambridge University Press,
FirstView:1-21, 2015. ([90]).

It introduces a calculus and a type system for privacy (access) control of RDF data.
The introduced calculus presents a core language of processes that interact with
data in RDF format. These processes together with data are enclosed under named
users which are put in parallel, representing a network of users interacting with
each other. We define the desired privacy properties of the network by defining
well-behaved network. We have studied a type system guaranteeing some privacy
properties by proving that well-typed network is well behaved. The key of the
type system simplicity and effectiveness lies in the policy comparison relation. By
defining a type system and proving its soundness, we have been able to verify
preservation of privacy properties from [127, 128], where the vocabulary for fine-
grained privacy preference control and a tool for privacy preference management
were defined, as well as several more general properties.

Chapter 5 is based on the papers:

1. Svetlana Jakšić and Luca Padovani: Exception Handling for Copyless Mes-
saging, in Science of Computer Programming, Vol. 84, pages 22-51, ISSN
0167-6423, Elsevier, 2014. ([89]);

2. Svetlana Jakšić, Luca Padovani: Exception Handling for Copyless Messaging
in Proceedings of the 14th International ACM SIGPLAN Symposium on
Principles and Practice of Declarative Programming PPDP 2012, pages 151-
162, ACM, 2012. ([88]).

We introduce a calculus and a type system for copyless messaging that is able
to guarantee the absence of communication errors, memory faults, and memory
leaks in presence of exceptions. We have formalized a core language of processes
that communicate and synchronize through the copyless message passing paradigm
and can throw exceptions. In this context, where the sharing of data and explicit
memory allocation require controlled policies on the ownership of heap-allocated
objects, special care must be taken when exceptions are thrown to prevent commu-
nication errors (arising from misaligned states of channel endpoints) and memory
leaks (resulting from messages forgotten in endpoint queues). We have studied
a type system guaranteeing some safety properties, in particular that well-typed
processes are free from communication errors and do no leak memory even in pres-
ence of (caught) exceptions. We have taken advantage of invariants guaranteed by
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the type system for taming the implementation costs of exception handling: the
queues of endpoints involved in a transaction are guaranteed to be empty when
the transaction starts, so that state restoration in case of exception simply means
emptying such queues; also, only endpoints local to a transaction can be freed in-
side the transaction, so that state restoration in case of exception does not involve
re-allocations.

Chapter 6 concludes the thesis and discusses current and future work of the
candidate.



Chapter 2

Background

Overview This chapter contains basic notions of process calculi and type sys-
tems. Section 2.1.1 describes the syntax and semantics of π-calculus.

2.1 Process calculi
The basis of concurrent computation is the notion of a process. The process
concept and concurrency are the heart of modern operating [132] and distributed
systems [139]. A process is an executing instance of a computer program. It
may be able to perform more that one task at the time using concurrent units
of execution named threads. Processes interact with each other by sending and
receiving messages over communication mediums called channels.

2.1.1 π-calculus

The π-calculus [108] is a formal model for concurrent computation introduced by
Milner, Parrow and Walker in early 90’s. A π-calculus process is an abstraction
of an autonomous entity willing to interact with other processes and a π-calculus
channel is an abstraction of a communication link between two processes. The
π-calculus is able to describe concurrent systems that may change configuration
during computation by communication of channels along channels (channel trans-
mission). By its syntax it is possible to represent the essence of concurrent systems:
processes, parallel composition of processes, communication between processes,
channel transmission, creation of fresh channels, nondeterminism and replication
of processes. In the following paragraphs we give a version of the π-calculus which
will serve as the base for process calculi presented in Chapters 3, 4 and 5.

We assume that we are given an infinite set Channels of channel names ranged
over by a, b, . . . , and an infinite set of Variables of variables ranged over by x, y, . . . .
Channel names and variables are together referred to as names. We let u, v, . . .
range over elements of Channels ∪ Variables.

The π-calculus processes are defined by the grammar given in Figure 2.1. The
term 0 denotes the idle process that performs no action. Names are the only
messages that are communicated trough channels. More precisely, the term u?x.P
denotes a process that first receives a name v on name u and then behaves as P

5
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P ::= Process
0 inaction

| u?x.P input
| u!u.P output
| P | P parallel
| P ⊕ P choice
| (νa)P restriction
| ∗P replication

Figure 2.1: Syntax of π-calculus processes.

fn(0) = ∅ bn(0) = ∅
fn(u?x.P ) = {u} ∪ (fn(P ) \ {x}) bn(u?x.P ) = {x} ∪ bn(P )
fn(u!v.P ) = {u, v} ∪ fn(P ) bn(u!v.P ) = bn(P )
fn(P |Q) = fn(P ) ∪ fn(Q) bn(P |Q) = bn(P ) ∪ bn(Q)

fn(P ⊕Q) = fn(P ) ∪ fn(Q) bn(P ⊕Q) = bn(P ) ∪ bn(Q)
fn((νa)P ) = fn(P ) \ {a} bn((νa)P ) = {a} ∪ bn(P )

fn(∗P ) = fn(P ) bn(∗P ) = bn(P )

Figure 2.2: Free and bound names of processes.

where x has been replaced by v, while the term u!v.P denotes a process that
sends name v on name u and then behaves as P. The term P |Q denotes a parallel
composition of processes P and Q. It can execute all sequences of messages sent
and receive by both P and Q interleaved in any order. If P and Q share a channel
and one is willing to send a message while the other one is willing to receive the
message, then P | Q can perform an internal communication. The term P ⊕ Q
denotes a process that nondeterministically decides to behave as either P or Q.
The restriction (νa) in the term (νa)P denotes that the channel a is not used
outside of process P , i.e. is fresh in process P . The term ∗P denotes a process
that can behave as P an infinite number of times.

We adopt some standard conventions regarding the syntax of processes: we
sometimes use a prefix form for parallel compositions and write, for example,∏

i=1..n Pi instead of P1 | · · · | Pn; we identify
∏

i∈∅ Pi with 0; we omit trailing
occurrences of 0. We give the following order of operator precedence from highest
to lowest: input and output prefixes, replication, parallel composition and choice.

The name binders of the calculus are input prefix and restriction. Free and
bound names of a process P , denoted by fn(P ) and bn(P ), are defined in Figure 2.2.
Input prefix is the only binder for the variables. Free and bound variables of a
process P , denoted by fv(P ) and bv(P ), are defined in Figure 2.3. We say that
process P is a closed process if it has no free variables. We often use process to
refer to closed processes.

The notion of computation in a process calculus can be given by a reduction
relation or a by labelled transition system. We give the operational semantics
for the present variant of the π-calculus in terms of a structural congruence over
processes and a reduction relation. Structural congruence identifies structurally
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fv(0) = ∅ bv(0) = ∅
fv(u?x.P ) = ({u} ∩ Variables) ∪ (fv(P ) \ {x}) bv(u?x.P ) = {x} ∪ bv(P )
fv(u!v.P ) = ({u, v} ∩ Variables) ∪ fv(P ) bv(u!v.P ) = bv(P )
fv(P |Q) = fv(P ) ∪ fv(Q) bv(P |Q) = bv(P ) ∪ bv(Q)

fv(P ⊕Q) = fv(P ) ∪ fv(Q) bv(P ⊕Q) = bv(P ) ∪ bn(Q)
fv((νa)P ) = fv(P ) bv((νa)P ) = bv(P )

fv(∗P ) = fv(P ) bv(∗P ) = bv(P )

Figure 2.3: Free and bound variables of processes.

[S-Par Idle]
P | 0 ≡ P

[S-Par Commutativity]
P |Q ≡ Q | P

[S-Par Associativity]
(P |Q) |R ≡ P | (Q |R)

[S-Replication]
∗P ≡ P | ∗P

[S-Res Idle]
(νa)0 ≡ 0

[S-Res Swap]
(νa)(νb)P ≡ (νb)(νa)P

[S-Res Scope]
a /∈ fn(P )⇒ (νa)(P |Q) ≡ P | (νa)Q

Figure 2.4: Structural congruence

equivalent processes. It is the smallest equivalence relation that includes alpha
conversion (renaming of bound names) and rules given in Figure 2.4. Namely,
rules [S-Par Idle], [S-Par Commutativity] and [S-Par Associativity] are com-
mutative monoid laws for parallel composition. Rule [S-Replication] states that
the replication of a process can be considered as infinite number of copies of that
process running in parallel. Rule [S-Res Idle] states that since there are no names
in the idle process, the restriction in front of it can be removed. The names can
be restricted in an arbitrary order, as stated in rule [S-Res Swap]. The most in-
teresting rule is [S-Res Scope], often called “scope extrusion”, which states that
the scope of a restricted name can be extended to a process which does not have
this name as a free name.

We say that process P reduces to Q if P → Q can be derived by an application
of the reduction rules of Figure 2.5. In the rest of this paragraph we give informal
descriptions of these rules. Rule [R-Communication] contains the primitive step
of computation in π-calculus. The processes a!b.P , which sends name b on name
a, and a?x.Q, which is willing to receive a name on name a, running in parallel
reduce to processes P and Q running in parallel, where name b substitutes variable
x in Q. Rule [R-Parallel] specifies that if process P is able to reduce, then the
same reduction can happen if P is put in parallel with some process R. Similarly,
rule [R-Restriction] enables reduction under restriction. Rule [R-Choice] states
that a process P ⊕ Q nondeterministically reduces to either P or Q. The last
rule, [R-Structural Congruence], states that process P can reduce to process
Q whenever both processes can be rearranged by the structural congruence so
that obtained processes are able to reduce. We use →∗ to denote reflexive and
transitive closure of → .
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[R-Communication]
a!b.P | a?x.Q→ P |Q{b/x}

[R-Parallel]
P → P ′

P |Q→ P ′ |Q

[R-Restriction]
P → Q

(νa)P → (νa)Q

[R-Choice]
i ∈ {1, 2}

P1 ⊕ P2 → Pi

[R-Structural]
P ≡ P ′ P ′ → Q′ Q′ ≡ Q

P → Q

Figure 2.5: Reduction relation

More operators, such as standard summation (external choice), are going to be
introduced and discussed later. It is possible to encode if-else commands with
the non-deterministic process P ⊕ Q omitting the condition that determines the
chosen branch. This is just one of many variations of the language. Its choice is
induced by the need of having a base for process calculi presented in the thesis,
that model more complex systems. The π-calculus given in this section will be
slightly adapted and extended in order to fit the envisaged problems.

More detailed presentations of the variations, syntax, semantics, equivalences
and axiomatisations one could find in [107, 114, 130]. Nowadays there is a large
family of calculi for concurrent computing with the π-calculus as a core [72, 70,
28, 3, 51, 115, 79, 121, 123, 26, 53].

2.2 Type systems
Roots of type systems used in computer science reach to the beginning of the 20th
century when type theory was introduced in works of Whitehead and Russell [152]
as an alternative to set theory. Further well-known type theoretic contributions
to the field of mathematical foundations are the works of Church [30] and Martin-
Löf [102] and currently active Homotopy type theory [140].

Practical impact of type theory reflects in a variety of areas of mathematics,
logics and computer science such as proof assistants [13, 111, 112, 138, 68, 110, 34,
118] and programming languages [119, 109] and even broadly in linguistics [97, 141]
and social sciences [135, 7].

Type systems are one of the most widely used techniques for programming
languages analysis. Type systems are used to avoid undesired behaviors (run-
time type errors), which are specific for each language. A type system, in general,
splits elements of the language, called terms, into sets, called types, and proves
absence of certain errors on the basis of the types that are thus assigned. It may
happen that some terms are rejected by the type system although they always
behave correctly on run-time. The design of more precise type system enables
more terms to be typed but at the cost of possibly more complex typechecking
algorithm, so the balance between these two issues is important.
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Type systems in concurrent programs and systems are extensively used to
eliminate run-time errors such as deadlocks and race conditions as well as to
analyse whether a process behaves in a disciplined manner, to extract information
about programs that can be helpful to reason about their run-time behavior etc.

There are many type systems for π-calculus and other process calculi, start-
ing from simple sorting and typing systems designed for problems such as arity
mismatch and communication errors in case of polyadic π-calculus [106, 58, 145]
to more specialized purposes such as deadlock freedom [93] and secure informa-
tion flow [80]. Further examples include type disciplines that address consistent
usage of names for input and output [120], impose linearity constraints on usage
of names [94], present general type framework [85] etc. See [92] for more details
on types for π-calculus.

Type systems in the thesis are related to specific type systems for π-calculus.
Types introduced in [40] and [90] are related to simple types from Chapter 6 of
[130]. Simple types prescribe that only data of the expected type are exchanged.
Types introduced in [88, 89] are similar to session types of [144, 62]. The key idea
of session types is to type channel names with sequences of types that prescribe the
trace of the channel usage. They ensure the absence of communication errors and
the conformance to the session protocol. The original session types from [78, 79]
do not initially distinguish between two channel ends while in [144, 62] the authors
define endpoint types. See [38] for a survey on sessions and session types.

In order to describe typed calculi we need to introduce some standard termi-
nology and notation as in Chapter 6 of [130]. An expression of the form u : T ,
where u is a name and T is a type, assigns a type to a name. A type environment
is a finite set of assignments of types to names. It is assumed that names of the
type environment are all different. We use Γ to range over type environments.
Type judgements are expressions of the form Γ ` e : T where e is a term of the
language. Sometimes, when there is no ambiguousness, T is omitted. A type
judgement Γ ` e : T indicates that term e has type T. A term of a language is
well typed in Γ if there is T such that Γ ` e : T is derivable from the axioms and
the inference rules of the type system.

A type system is sound if well-typed terms cannot cause run-time errors during
computation. Terms that do not cause run-time errors during computation are
called well behaved. In order to prove that a type system is sound one should
usually prove two main results: well-typedness is preserved during computation
(subject reduction), and well-typed terms are well behaved (type safety). The
formalization of these results depends on the language and the type system under
consideration, and their proofs usually require a number of additional properties.
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Chapter 3

Types for secure access

Overview This chapter is based on the paper “Types for Role-Based Access
Control of Dynamic Web data” [40]. In Section 3.1, we describe the setting and the
problem we are addressing. In Section 3.2, we introduce a role-based access control
calculus for modelling dynamic web data, as an extension of Xdπ calculus proposed
in [55]. In Section 3.3, we define a type system which ensures that the specified
security protection policies are respected during computations. In Section 3.4,
we prove the soundness of the type system with respect to the definition of well-
behaved networks given in Section 3.2.4.

3.1 Dynamic web data and secure access
Data present on the Internet are often in formats that conform to a flexible struc-
ture which depends on the purpose of the data. In such semi-structured data, there
is no separation between data and schema, as there is in structured data, present
in relational databases. Semi-structured data are accessible, portable and suitable
for exchanges between databases of different kinds. Extensible Markup Language
(XML) [19] and XQuery [16, 126] currently belong to the standard methods for
expressing and querying semi-structured data.

XML is a language designed to store and transport data and is readable by
both humans and machines. Documents written in XML have a tree structure
that starts at the root and branches to the leaves. Elements of the trees begin
with element’s start tag, < tag >, and finish with element’s end tag, < /tag >.
Tags can have arbitrary names. Elements can contain text, attributes and other
elements. The terms parent, child, ancestor, descendant and sibling are used to
describe relationships between elements of the XML trees. Siblings are children
on the same level. For example, in Figure 3.1, root element is the parent of two
sibling child elements and the ancestor of two subchild elements.

Recommended language for querying XML data is XQuery which can be used
to extract information for further use, generate reports, transform XML data
and search web documents. It features XPath (a syntax for identifying parts of
XML data [9]) expressions, as well as, functions and for, let, where, order by

11
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< root >
< child >
< subchild > · · · < /subchild >

...
< /child >
< child >
< subchild > · · · < /subchild >

...
< /child >

< /root >

Figure 3.1: XML data structure.

and return expressions. There is an extension of the XQuery language which pro-
vides means of modifying XML documents or data, XQuery Update Facility [125].
It enables insertion, deletion, modification and creation of nodes.

One of the essential steps in managing distributed systems with data is the
security administration, which is one of the main features in prevention of unau-
thorized access to system resources. Role-based access control (RBAC) [129] is an
access control method that relies on the notions of users, roles and permissions.
It controls the access of users to the system resources in accordance with the ac-
tivities they have to perform in the system. In accessing the system resources, a
user has those permissions which are assigned to its roles. In a system, roles are
statically defined by the organisation structure, hence the security administration
is reduced to the management of permissions. This makes RBAC a simple and
desirable access control technology.

Security of data is defined in terms of preservation of confidentiality, integrity
and availability. Confidentiality is about to whom the data are transmitted. In-
tegrity refers to unauthorized modification of the data. It is often phrased as
preservation of some important property, such as consistency, accuracy or mean-
ingfulness of data. In this sense, we deem that the security of data is protected if
users (processes) do not exceed rights assigned to their roles i.e.

• if the data is transmitted only to the parties which are allowed to access
them, and

• if processes access data respecting predetermined policies, and

• if processes do not change the data in such way that the data becomes
inconsistent with respect to predetermined policies.

Access control methods prevent unauthorized access to the data, but that solely
is not enough to protect the security of information. In particular, the access is
either allowed or denied, so there are no means to control how the data is used
afterwards or if the data was influenced in an improper way. So, in order to
preserve security, further methods for data and process analysis are needed.
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< music >
< song >
< title > Yellow sun < /title >

...
< /song >
< song >
< title > Blue moon < /title >

...
< /song >

< /music >

Figure 3.2: Example of XML data.

Peer-to-peer networks with dynamic web data are modelled in Xdπ calculus
presented in [55]. The data model is a basic model of semi-structured data, un-
ordered labelled trees with pointers for referring to other parts of the network with
embedded processes for querying and updating such data. The authors chose edge-
labelled rooted trees as model for XML documents. Essentially, it is a graph in
which edges are labeled with element tags. Another choice, they made, was to
embed processes and pointers only in leaves instead throughout the tree. Both of
these choices, although slightly different from the standard model of XML data,
did not influence the ideas presented in [55]. The paper [41] discusses a security
type system for the Xdπ calculus based on security levels. In [40] we focus on
security properties based on RBAC. A brief summary of the research presented
in [40] and in this chapter is:

• we formalize a calculus which applies RBAC to a network with semi-
structured data;

• we develop a type system for preventing security violations and we show its
soundness.

3.1.1 Examples and motivation

In Figure 3.2, we give an example of XML data. The root element’s tag is music,
which is the parent of two sibling song elements. These siblings have children with
tags title. As in [55], we will use edge-labelled rooted trees which contain data
only in the leaves as model of XML documents. In this example, leaves contain
text. XQuery language uses the function doc to open files and XPath expressions
to navigate through XML elements. If we assume that the data from Figure 3.2
are the contents of the file "musicbox.xml", then the following query could be
used to select all title elements in the this file:

doc("musicbox.xml")/music/song/title

It would extract the following data

< title > Yellow sun < /title >
< title > Blue moon < /title > .
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< music >
< song category = "demo" >
< title > Yellow sun < /title >

...
< /song >
< song category = "full" >
< title > Blue moon < /title >

...
< /song >

< /music >

Figure 3.3: Example of XML data wtih attributes.

The query

for $x in doc("musicbox.xml")/music/song/title
return $x/title

returns the same XML data, while the query

for $x in doc("musicbox.xml")/music/song/title
return data($x)

returns only the data inside title element. It is possible to write queries which
return data in HTML format.

Figure 3.3 shows the same data as Figure 3.2, except that some elements have
attributes. In particular, two sibling song elements have two different values
for category attribute. It could be expected that the song in demo category is
accessible by everyone, contrary to the full versions of songs. In the context of
RBAC, we could annotate the data so that we control the access in a desired way.
Accessibility should not be discontinued, meaning that those that are allowed to
access a child element must be allowed to access the parent element. Furthermore,
we consider systems in which changes of data and access rights is possible. The
processes that change data must be allowed to do so and reasonably have higher
roles than those that just read data.

Now, let us consider a network of distinct locations, each containing XML data
and processes. It can be expected that not all data should be accessible by all
processes and that data may be changed only by authorized processes. For this
reason, roles are assigned to both, data and processes. We suppose that each
location has a security protection policy which prescribes which roles can access
the location. Only processes that are allowed to access all of the data they aim
to change, are allowed to do so. Since it should be possible to change access
rights, this should, also, be done according to the location policy. A security
violation would be any action which is not permitted or which can make the data
inconsistent with respect to the location policy. A security violation may be caused
by uncontrolled reading or transmitting of data.
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3.2 Language
Notation Let us assume that there is an infinite set Channels of channel names
annotated with value types ranged over by aT v, bT v, . . . and an infinite set Variables
of variables ranged over by x, y, . . . . We let symbols u, v, . . . range over elements
of Channels ∪ Variables. Further on, we assume that there is a set Locations of
location names ranged over by l,m, . . . and a set Edges of edge labels ranged over
by a, b, . . . We let symbol λ range over elements of Locations ∪ Variables.

Roles We assume given a countable set Roles of roles ranged over by r, s, . . .
Let (Roles,v) be a lattice and let ⊥,> ∈ Roles be its bottom and top elements,
respectively. The join operation is denoted by t. We use α, β, . . . , ρ, σ, . . . to
denote non-empty sets of roles and τ, ζ, . . . to denote sets of roles containing >.
We use E ,D, . . . to denote subsets of {(ρ, r) : ρ ⊆ Roles, r ∈ Roles}. We introduce
two relations and two operations on the sets of roles.
Definition 3.2.1. We say that set σ is accessible to the set ρ, and write σ ≤ ρ,
if there is one role in the set σ that is smaller than or equal to one role in ρ, i.e.

σ ≤ ρ⇐⇒ (∃s ∈ σ)(∃r ∈ ρ)s v r.

We say that set ρ complies with the set σ, and write σ 5 ρ, if for every role in ρ
there exist a smaller or equal role in σ, i.e.

σ 5 ρ⇐⇒ (∀r ∈ ρ)(∃s ∈ σ)s v r

We disable role r from the set of roles ρ, written ρ \\r, as follows:

ρ \\r = {s ∈ ρ|s 6v r}

The join operation for roles is extended to the sets of roles, as follows

ρ1 t ρ2 = {r1 t r2|r1 ∈ ρ1, r2 ∈ ρ2}

3.2.1 Syntax

Data The data model is an unordered edge-labelled data tree, denoted by D,
E, . . . The syntax of data trees is given by the grammar in Figure 3.4. The term
∅D denotes empty data tree. Data trees or subtrees may be variables. The term
D1 |D2 denotes composition of data trees joining the roots. Every edge in a data
tree is annotated with a set of roles that contains >. The term aτ [V] denotes data
tree consisting of a tree edge with label a annotated with set of roles τ and data
term V. Data trees, scripts and pointers belong to the syntax of data terms, as
stated in Figure 3.4.

A script �Π is a static process embedded in a tree. It can be activated by a
process from the same location. We use Π to range over processes with roles and
variables.

A path p identifies data in a tree. The syntax of paths is given in Figure 3.4.
A path is either an edge with a label annotated with a set of roles, a variable or
a composition of two paths.
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D ::= Data tree
∅D empty data tree

| x variable
| D |D composition
| aτ [V] edge

V ::= Data term
| D data tree
| �Π script
| p@λ pointer

p ::= Path
aα edge

| x variable
| p/p composition

Figure 3.4: Syntax of data trees, paths and data terms.

χ ::= �x(σ,E,D) | yα@x(σ,E,D) | x(σ,E,D,τ,ζ)

Figure 3.5: Syntax of patterns.

A pointer p@λ refers to the data identified by the path p at location λ.
The syntax allows the leaves of a data tree to contain an empty data tree, a

script or a pointer. In the examples, we also allow arbitrary texts in the leaves.

Patterns The syntax of patterns is given in Figure 3.5. They appear as argu-
ments in commands for reading and changing data, where they are used, together
with paths, to identify data terms in data trees. The term �x(σ,E,D) denotes a
script pattern whose variable is decorated with three sets of roles. The term
yα@x(σ,E,D) denotes a pointer pattern whose path variable is decorated with a set
of roles and whose location variable is decorated with three sets of roles. The
term x(σ,E,D,τ,ζ) denotes a data tree pattern whose variable is decorated with five
sets of roles. In Section 3.3 we will relate all these sets of roles with the types of
corresponding data terms. By |χ| we denote the data term obtained from χ by
erasing all decorations.

Processes We distinguish two kinds of processes: pure processes and processes
with roles. Their definitions, given in Figure 3.6, are mutually recursive.

Pure processes We can divide pure processes into four groups:

1. the terms 0, u?x.P, u!v.P, P | P and ∗P are π-calculus processes. Symbol v
ranges over values defined in Figure 3.7.

2. the term GO λ.R denotes a process that will migrate to location λ and there
continue as R.

3. the terms RUNp, READp(χ).P and CHANGEp(χ,V).P denote processes that man-
age the data.

In particular, the term RUNp denotes a process that activates scripts identified
by path p.
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P ::= Process
0 inaction

| u?x.P input
| u!v output
| P | P parallel
| ∗P replication
| GO λ.R migrate
| RUNp run scripts
| READp(χ).P read data
| CHANGEp(χ,V).P change data
| ENABLEp(r).P enable role
| DISABLEp(r).P disable role

R ::= Process with roles
Pqρ single process

| R |R parallel
| (νaT v)R restriction

Figure 3.6: Syntax of processes.

v ::= u | �R | λ | p | D

Figure 3.7: Syntax of values.

The term READp(χ).P denotes a process that reads data terms identified by
path p and pattern χ and then continues as P . The pattern variables are
substituted with the identified data terms in P.

The term CHANGEp(χ,V).P denotes a process that changes data identified by
path p and pattern χ with V and then continues as P . Pattern variables may
appear in V and before the change, they are substituted by the identified
data terms.

4. the terms ENABLEp(r).P and DISABLEp(r).P denote processes that manage
roles in the data.

In particular, the term ENABLEp(r).P denotes a process that allows role r to
access additional part of the data identified by the path p.

The term DISABLEp(r).P denotes a process that forbids role r to access data
beyond the data identified by the path p.

We use P,Q, . . . to range over pure processes.

Processes with roles The term Pqρ denotes pure process P with set of roles
ρ assigned to it. The term R1 | R2 denotes the parallel composition of processes
with roles. The term (νaT v)R denotes restriction of channel aT v in process R, as
in π-calculus. Processes with possibly different roles can share the same private
channel.

Locations and networks The syntax of networks is given in Figure 3.8. The
term l[D ‖ R] denotes a location named l which encloses data tree D and process
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N ::= Network
l[D ‖ R] location

| N 8N parallel
| (νaT v)N restriction

Figure 3.8: Syntax of networks.

with roles R. The term N1 8N2 denotes parallel composition of networks. We let
restricted channels be shared between several locations. This is denoted by the
term (νaT v)N .

Location policies We assume given a function P that assigns security protec-
tion policies to location names. Sometimes, we refer to security protection policies
as location policies or just policies. A security policy is a triple (σ, E ,D). The
data accessibility policy is given by the set σ. It is the set of minimal roles a
process is required to have to access the data at location protected by the policy.
The administration policy is given by two other sets which prescribe roles that a
process should have in order to be allowed to change access rights, i.e. to enable
and disable roles on the edges of the local data tree. In order to have more flexible
administration policy we define an extension of the set membership relation for
sets E and D.
Definition 3.2.2.

(ρ, r) ∈+ E ⇐⇒ ∃(ρ′, r′) ∈ E such that ρ′ ≤ ρ and r′ v r;

(ρ, r) ∈− D ⇐⇒ ∃(ρ′, r′) ∈ D such that ρ′ ≤ ρ and r v r′.

We have introduced ∈+ and ∈− in order to:

• allow processes with higher roles to modify access rights which processes
with lower roles can already modify (condition ρ′ ≤ ρ);

• allow to enable higher roles when lower roles can be enabled (condition
r′ v r);

• allow to disable lower roles when higher roles can be disabled (condition
r v r′).

We say that a process with roles ρ can enable role r if (ρ, r) ∈+ E , and that a
process with roles ρ can disable role r if (ρ, r) ∈− D.

A location policy is well formed if it does not permit role > to be enabled or
disabled by any role and if the roles involved in changing access right are only the
roles of some edges in the local tree. Formally:
Definition 3.2.3 (Well-formed policy). A location policy (σ, E ,D) is well form-
ed if (ρ, r) ∈ E ∪ D implies r 6= > and σ 5 ρ ∪ {r}.

We consider only well-formed policies.



3.2. LANGUAGE 19

Syntactic conventions We adopt some standard conventions regarding the
syntax of processes:

– we sometimes use a prefix form for parallel compositions and write, for example,∏
i=1..nRi instead of R1 | · · · |Rn;

– we identify
∏

i∈∅Ri with 0;

– we sometimes use ~ν to denote (νaT v11 ) . . . (νaT vnn );

– we omit trailing occurrences of 0 and write, for example, ENABLEp(r) instead of
ENABLEp(r).0;

– we sometimes omit curly braces when there is only one element in the set and
write, for example, (ρ, r) instead of {(ρ, r)} and r instead of {r};

Example 3.2.4. The data from Figure 3.2 corresponds to the following data tree

musicτ1 [songτ2 [titleτ3 [Yellow sun] . . . ] | songτ4 [titleτ5 [Blue moon] . . . ]]

The first and the second query from Section 3.1.1 correspond to the following
process

READmusicτ/songτ ′ (χ).

The third query, which returns data inside the title element, corresponds to

READmusicτ/songτ ′/titleτ ′′ (χ).

We left edge annotations and patterns unspecified. This example suggests that our
paths identify data at their ends. Notice that paths of XPath and XQuery identify
data slightly different (at the beginning of final edge), but this is purely a matter
of choice. The exact way how paths identify data in our calculus will be explained
in the next section.

4
Example 3.2.5. Let us assume that there are roles in the following order ⊥ v
guest v member v owner v > and ⊥ v administrator v owner v >. We also
assume guest 6v administrator. In this and in several other examples we will
observe the following network

musicbox[Dmb ‖ Rmb] 8 repository[Drp ‖ Rrp].

Let us assume that the privacy policy of musicbox is as follows:

P(musicbox) = ({guest}, ({owner}, guest), ({owner}, member)).

This policy is well formed because guest 6= > and member 6= > and {guest} 5
{owner} ∪ {guest} and {guest} 5 {owner} ∪ {member}. The accessibility policy
is such that the lowest role which may be allowed to access some data is guest.
The administration policy consists of two sets, each containing just one pair. Let
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us denote them by Emb and Dmb. As an illustration of the relations ∈+ and ∈−, the
following holds

({>}, guest) ∈+ Emb
({owner}, member) ∈+ Emb
({member}, guest) 6∈+ Emb
({owner},⊥) 6∈+ Emb
({>},⊥) ∈− Dmb

({owner}, owner) 6∈− Dmb.

Role administrator cannot be enabled nor disabled at location musicbox because

({owner}, administrator) 6∈+ Emb
({owner}, administrator) 6∈− Dmb.

Furthermore, this policy will not allow a process with role administrator to run
at location musicbox because guest 6v administrator. We leave specification of
data and processes with roles for the further examples. 4

3.2.2 Data accessibility and identification

In our language data, paths and processes are annotated with sets of roles, which
control access to data. We now formalize such access control by introducing two
notions: a permission to access data terms and identification of data terms.

Each process with at least one role bigger than or equal to some role in σ has
the permission to access an edge aσ, i.e. if set σ is accessible to the set of process’s
roles. More formally:
Definition 3.2.6 (Edge access). The edge aσ is accessible to a process with roles
ρ if σ ≤ ρ.

We extend this definition to paths and say that a process with roles ρ can
access path aα1

1 / . . . /a
αn
n if αn ≤ ρ. Although it would be expected that a process

with roles ρ can access path aα1
1 / . . . /a

αn
n if αi ≤ ρ for 1 ≤ i ≤ n, in our setting

this stronger condition is not needed. The data in the network should be such
that the accessibility is not discontinued, which means that if a process is allowed
to access the final edge of a path it must by allowed to access all ancestor edges.
Similarly, a process with roles ρ can access a tree path aτ11 / . . . /a

τn
n if τn ≤ ρ. Now,

we can define:
Definition 3.2.7 (Access to data terms). A process with roles can access a
data term V in a data tree D if it can access the tree path from the root of D to V.
Example 3.2.8. Let as assume that data Dmb at the location musicbox from
Example 3.2.5 is as follows:

Dmb = music{guest,>}[song{guest,>}[Ddemo] | song{member,>}[Dfull] | help{owner,>}[�R]]

Data Dmb resembles to data of Example 3.2.4. Here, we have left some parts of
data unspecified, but we have specified annotations on the edges and there is an
additional part of data, help{owner,>}[�R].

A process with role member is allowed to access existing data tree paths

music{guest,>}/song{guest,>} and music{guest,>}/song{member,>}
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because

{guest,>} ≤ {member} and {member,>} ≤ {member}.

This also means that such process can access data termsDdemo andDfull. The same
process would be allowed to access the path music{member,>}/song{member,>}, which
is not, currently, a path in the data tree. A process with role guest is allowed
to access the path music{member,>}/song{guest,>}, which is also not a path in the
data tree Dmb. A process with roles {guest, administrator} is not allowed to
access the path music{guest,>}/song{member,>}. A process with role owner is allowed
to access the data tree path music{guest,>}/help{owner,>} and data term �R at the
end of the path. Processes with lower roles are not allowed to access this data term.
A process with role owner is allowed to access the paths music{guest}/help{owner}
and music{member}/song{guest}. 4

The next lemma shows that an edge annotated with the empty set of roles
would be inaccessible for all processes.
Lemma 3.2.9. A set ρ such that ∅ ≤ ρ does not exist.

Proof. Obviously, by Definition 3.2.1.

Recall that, in our calculus, all edges in a data tree are annotated with sets of
roles which contain role > and that a well-formed policy does not allow > to be
disabled.

The next lemma states that a processes with role > can access all data, since
the sets of roles associated to tree edges are never empty.
Lemma 3.2.10. Let > ∈ ρ. If σ 6= ∅, then σ ≤ ρ.

Proof. Obviously, by Definition 3.2.1.

The paths are used to identify data terms in data trees. We say that a path
edge aα complies with a tree edge aτ if for each role of α there is at least one
smaller or equal role in τ , i.e. if set α complies with set τ. More formally:
Definition 3.2.11 (Edge compliance). Edge aα complies with edge aτ if τ 5 α.

We extend this definition to paths and say that path aα1
1 / . . . /a

αn
n complies

with a tree path aτ11 / . . . /a
τn
n if τi 5 αi for 1 ≤ i ≤ n. Path compliance is used

to define when a path, as a parameter of a process, identifies a data term in a
data tree. This is a stronger notion, which requires stronger conditions, than just
checking if there is a permission to access the data term. Namely, we need to ask
that every edge of the process path complies with the corresponding edge of the
tree path. Now we can define:
Definition 3.2.12 (Identification of data terms). A path identifies a data
term V in a data tree D if it complies with the tree path from the root of D to V.

The next lemma shows that if a process is allowed to access a path, then that
process is allowed to access data identified by that path.
Lemma 3.2.13. If α ≤ ρ and τ 5 α, then τ ≤ ρ.
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Proof. From α ≤ ρ and Definition 3.2.1, we know that there exist a role s ∈ α and
a role r ∈ ρ such that s v r. Then, from τ 5 α and the same definition we obtain
that there exists a role t ∈ τ such that t v s. We get, by transitivity of v, that
there exist two roles t ∈ τ and r ∈ ρ such that t v r, which implies τ ≤ ρ.

Example 3.2.14. The path music{member}/song{member} complies with two paths
in Dmb of Example 3.2.8. Namely, the paths music{guest,>}/song{guest,>} and
music{guest,>}/song{member,>}. So, it identifies two data terms Ddemo and Dfull.
This path is accessible only to processes with roles ρ such that {member} ≤ ρ, i.e.
processes which have at least the role member or one higher role.

The path music{guest}/song{guest} identifies just the data term Ddemo because
it complies only with the path music{guest,>}/song{guest,>}. This path is accessible
to processes with roles ρ such that {guest} ≤ ρ, i.e. processes which have at least
the role guest or one higher role.

A process with role guest is allowed to access a path music{member}/song{guest}.
This path complies with the data tree path music{guest,>}/song{guest,>}, which
identifies just Ddemo.

The process
READmusic{⊥}/song{⊥}(χ).Pqmember

is allowed to access the path music{⊥}/song{⊥}, as well as, both data terms Ddemo

and Dfull. On the other hand, path music{⊥}/song{⊥} does not comply with any
path of data tree Dmb, i.e. this path does not identify data terms in Dmb. 4

Besides paths, processes that aim to read or change data use patterns to iden-
tify data. In order to match the pattern, a data term, besides the shape, must
satisfy type information provided in the pattern. The type information is such
that the data term respects the policy of the location at which it will be used.
Namely,

(1) if the pattern is �x(σ,E,D), then the data term must be a script which can run
at locations with policy (σ, E ,D),

(2) if the pattern is yα@x(σ,E,D), then the data term must be a pointer in which

(i) the last edge of the path has the set α of roles and

(ii) the policy of the location is (σ, E ,D),

(3) if the pattern is x(σ,E,D,τ,ζ), then the data term must be a tree

(i) which can stay at locations with policy (σ, E ,D) and

(ii) such that the union of the sets of roles associated to the top edges is τ
and

(iii) such that a process with roles ρ can access the whole tree, if ζ ≤ ρ.

These conditions are enforced by using the type assignment system of Section 3.3.
More precisely, we define function match:

(1) match(�x(σ,E,D),�R) if ∅ ` R : RoleProcess(σ, E ,D);
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D | ∅D ≡ D D1 |D2 ≡ D2 |D1 (D1 |D2) |D3 ≡ D1 | (D2 |D3)

R | 0qρ ≡ R R1 |R2 ≡ R2 |R1 (R1 |R2) |R3 ≡ R1 | (R2 |R3)

(νaT v)0qρ ≡ 0qρ (νaT v)(νbTw)R ≡ (νbTw)(νaT v)R

aT v /∈ fn(R)⇒ (νaT v)(R |R′) ≡ R | (νaT v)R′ (∗P )qρ ≡ Pqρ | (∗P )qρ

(P |Q)qρ ≡ Pqρ |Qqρ N1 8N2 ≡ N2 8N1 (N1 8N2) 8N3 ≡ N1 8 (N2) 8N3)

(νaT v)(νbTw)N ≡ (νbTw)(νaT v)N

aT v /∈ fn(N) =⇒ (νaT v)(N 8N ′) ≡ N 8 (νaT v)N ′

D ≡ D′ ∧R ≡ R′ =⇒ l[D ‖ R] ≡ l[D′ ‖ R′]

aT v /∈ fn(D)⇐⇒ l[D ‖ (νaT v)R] ≡ (νaT v)l[D ‖ R]

Figure 3.9: Structural congruence

(2) match(yα@x(σ,E,D), p@l) if ∅ ` p : Path(α) and ∅ ` l : Location(σ, E ,D);

(3) match(x(σ,E,D,τ,ζ), D) if ∅ ` D : DataTree(σ, E ,D, τ, ζ).

3.2.3 Semantics

The operational semantics is defined in terms of a structural congruence over data,
processes and networks, an interaction relation and a reduction relation. Struc-
tural congruence identifies structurally equivalent terms. It is the smallest relation
≡ including alpha conversion and the laws in Figure 3.9, stating that parallel com-
position of data, processes with roles and networks is commutative and associative;
that parallel composition of data and processes have ∅D and 0qρ as neutral ele-
ments, respectively; that a replicated process with roles may be unfolded; and
that the same properties hold for the restriction operator as in π-calculus, taking
into account that processes with roles may share communication channels at the
same or at different locations. Free and bound names of data trees, processes and
networks are defined naturally by extending the definition in Figure 2.2 and taking
into account that the binders of the calculus are input, restriction and commands
for reading and changing data. Variables may be bound by inputs and commands
for reading and changing. We assume in process CHANGEp(χ,V).P pattern variables
are bound in V but not in P . Restriction binds channel names.

The operational semantics for data and roles management depends on auxil-
iary functions given in Figure 3.10. These functions select the exact part of the
data that is identified by one path and one pattern, using the relations of Defi-
nition 3.2.1, and do the changes if required. Besides others, they all have a data
tree and a path as arguments. Essentially, the functions start the computation at
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run(∅D, p) = ∅
run(D1 |D2, p) = run(D1, p) ∪ run(D2, p)

run(bτ [V], p) =


{R} if p = bα and τ 5 α and V = �R

run(V, q) if p = bα/q and τ 5 α

∅ otherwise

read(∅D, p, χ) = ∅
read(D1 |D2, p, χ) = read(D1, p, χ) ∪ read(D2, p, χ)

read(bτ [V], p, χ) =


{{V/|χ|}} if p = bα and τ 5 α and match(χ,V)

read(V, q, χ) if p = bα/q and τ 5 α

and V is a data tree
∅ otherwise

change(∅D, p, χ,W) = ∅D
change(D1 |D2, p, χ,W) = change(D1, p, χ,W) | change(D2, p, χ,W)

change(bτ [V], p, χ,W) =



bτ [W{{V/|χ|}}] if p = bα and τ 5 α

and match(χ,V)

bτ [change(V, q, χ,W)] if p = bα/q and τ 5 α

and V is a data tree
bτ [V] otherwise

enable(∅D, p, r) = ∅D
enable(D1 |D2, p, r) = enable(D1, p, r) | enable(D2, p, r)

enable(bτ [V], p, r) =


bτ [V+r] if p = bα and τ 5 α

bτ [enable(V, q, r)] if p = bα/q and τ 5 α

and V is a data tree
bτ [V] otherwise

disable(∅D, p, r) = ∅D
disable(D1 |D2, p, r) = disable(D1, p, r) | disable(D2, p, r)

disable(bτ [V], p, r) =


bτ [V−r] if p = bα and τ 5 α

bτ [disable(V, q, r)] if p = bα/q and τ 5 α

and V is a data tree
bτ [V] otherwise

(∅D)+r = ∅D (∅D)−r = ∅D
(D1 |D2)

+r = (D1)
+r | (D2)

+r (D1 |D2)
−r = (D1)

−r | (D2)
−r

(aτ [V])+r = aτ∪{r}[V] (aτ [V])−r = aτ\\r[(V)−r]
(p@l)+r = p@l (p@l)−r = p@l
(�R)+r = �R (�R)−r = �R

Figure 3.10: Definitions of auxiliary functions
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root of the data tree and try to follow the given path. If such a path exists in the
data tree and the given path complies with it, the functions operate on the data
terms at the end of the tree path. It is easy to check that selected data terms
are indeed identified by the paths, i.e. if a function operates on a data term, the
path which is the argument of the function complies with the tree path leading
to this data term. The functions run and read return a set, while the functions
change, enable and disable return a data tree. Each of them has three cases in
the definition:

• if the data tree is the empty data tree, the result is the empty set or the
empty data tree;

• if the data tree is a parallel composition of subtrees, then the function is ap-
plied to both subtrees and the result is the union or the parallel composition
of the values computed on subtrees;

• otherwise the function checks if the top path edge complies with the top tree
edge and:
– in case of compliance

∗ if the path has only one edge, then the data term is identified by
the path. Some functions do additional checks and changes;

∗ if the path is longer, the function is applied recursively;
– in case of non-compliance the result is the empty set or the current

data tree.
In particular, the function

• run checks if the identified data term is a script. The final result is the set
which contains all found processes.

• read has an additional argument, a pattern χ, and checks if the identified
data term matches the pattern. It returns a set of substitutions of the shape
{{V/|χ|}}, which are such that V matches the given pattern χ. If the data
term and the patterns are pointers, the substitution replaces the location
variable with the location and the path variable with the path. If the data
term and the pattern are scripts, the substitution replaces the variable with
the process. If the data term and the pattern are data trees, the substitution
replaces the variable with the data tree. More formally:
Definition 3.2.15. For given data term V and pattern χ, we define match-
ing substitutions, {{V/χ}}, as follows:
{{p@l/y@x}} = {p/y, l/x}
{{�R/�x}} = {R/x}
{{D/x}} = {D/x}

• change has two arguments, other than the data tree and the path, a pattern
χ and another data term W, and checks if the identified data term matches
the pattern. In case of match, the function substitutes the pattern with the
identified data term and then put this new term instead of the one identified
by the path.
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• enable and disable have an extra argument, a role r, and they use the
auxiliary functions +r and −r, respectively, to change the sets of roles assigned
to the edges of identified data terms. The function +r adds the role r to the
initial tree edges starting from the roots of the subtrees identified by the
given path, if any, and it does nothing otherwise. The function −r removes
all the roles less than or equal to the role r from all the edges in the subtrees
identified by the given path, if any, and it does nothing otherwise.

In the following examples refer to data tree Dmb of Example 3.2.8.
Example 3.2.16. Let us assume that there is a pattern x(σ,E,D,τ,ζ) such that

match(x(σ,E,D,τ,ζ), Ddemo) and match(x(σ,E,D,τ,ζ), Dfull).

By the definition of functions, given in Figure 3.10, we can derive:

read(Dmb, music
{member}/song{member}, x(σ,E,D,τ,ζ))

= read(Dmb, song
{member}, x(σ,E,D,τ,ζ))

= {{{Ddemo/x}}, {{Dfull/x}}}.

Similarly,
read(Dmb, music

{guest}/song{guest}, x(σ,E,D,τ,ζ))
= read(Dmb, song

{guest}, x(σ,E,D,τ,ζ))
= {{{Ddemo/x}}}.

The auxiliary functions defined in Figure 3.10 have as arguments a data tree and
a path. Some of them have a pattern as argument. In case the path on input
does not comply with any path in the data tree or in case the identified data does
not match the pattern, functions run and read return ∅ and the rest of auxiliary
function defined in Figure 3.10 return the same data tree as the one on the input.
We give examples for the function read :

read(Dmb, song
{guest}, x(σ,E,D,τ,ζ)) = ∅

read(Dmb, music
{guest}/help{owner}/help{owner},�x(σ,E,D)) = ∅

read(Dmb, music
{guest}/help{owner}, yα@x(σ,E,D)) = ∅.

4
Example 3.2.17. Let us now specify data termsDdemo andDfull of Example 3.2.8:

Ddemo = title{guest,>}[Yellow sun] | download{guest,>}[ys{guest}@repository]

Dfull = title{guest,>}[Blue moon] | download{member,>}[bm{member}@repository]

If we assume

match(y{guest}@x(σ
′,E ′,D′), ys{guest}@repository),

we can derive:

read(Dmb, music
{guest}/song{guest}/download{guest}, y{guest}@x(σ

′,E ′,D′))
= read(Dmb, song

{guest}/download{guest}, y{guest}@x(σ
′,E ′,D′))

= read(Dmb, download
{guest}, y{guest}@x(σ

′,E ′,D′))
= {{download{guest}[ys{guest}@repository]/y@x}}

4
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We give further examples of results computed by auxiliary functions:
Example 3.2.18. The data tree Dmb has the scripted process R at the end of path

music{guest,>}/help{owner,>}.

The path music{owner}/help{owner} complies with the path music{guest,>}/
help{owner,>}. As expected,

run(Dmb, music
{owner}/help{owner}) = {R}.

If the path does not comply with any path in the data tree the function run returns
∅. For example:

run(Dmb, music
{member}/help{member}) = ∅

run(Dmb, music
{owner}/help{owner}/help{owner}) = ∅.

The function run returns the same result if the data at the end of the path is not
a script. For example:

run(Dmb, music
{owner}) = ∅

run(Dmb, music
{owner}/song{owner}/download{owner}) = ∅.

4
Example 3.2.19. If we assume that the data at the end of tree path which com-
plies with the path music{guest} matches pattern x(σ,E,D,τ,ζ), then

change(Dmb, music
{guest}, x(σ,E,D,τ,ζ), ∅D) = music{guest,>}[∅D].

If we assume

match(y{member}@x(σ
′,E ′,D′), bm{member}@repository),

then

change(Dmb, music
{guest}/song{member}/download{member}, y{member}@x(σ

′,E ′,D′),V)
= music{guest,>}[song{guest,>}[Ddemo] | song{member,>}[D′full] | help{owner,>}[�R]].

The change affects only the pointer at the end of the data tree path

music{guest,>}/song{member,>}/download{member,>}.

In particular, it replaces the identified pointer with the new data term V on which
the substitution {{bm{member}@repository/y@x}} is applied. So,

D′full = title{guest,>}[Blue moon] | download{guest,>}[W]

where
W = V{{bm{member}@repository/y@x}}.

4
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Example 3.2.20. By means of function enable we can extend the access rights
of processes with role guest:

enable(Dmb, music
{guest}/song{member}, guest)

= music{guest,>}[song{guest,>}[D′′demo] | song{member,>}[D′′full] | help{owner,>}[�R]]

Data tree D′′demo is the same as Ddemo because role guest was already allowed
to access Ddemo. In fact, the only edge that should have changed annotations is
download{member,>}, so:

D′′full = title{guest,>}[Blue moon]|download{guest,member,>}[bm{member}@repository]

The function +r adds role r just to the initial edges of its argument, so:

enable(Dmb, music
{guest}, guest)

=
music{guest,>}[song{guest,>}[Ddemo] | song{guest,member,>}[Dfull] | help{guest,>}[�R]]

The function −r removes role r from all the edges of its argument, so:

disable(Dmb, music
{guest}, member)

= music{guest,>}[song{>}[D′′′demo] | song{>}[D′′′full] | help{owner,>}[�R]]

where

D′′′demo = title{>}[Yellow sun] | download{>}[ys{guest}@repository]

and

D′′′full = title{>}[Blue moon] | download{>}[bm{member}@repository].

4
We define an interaction relation in order to describe local communication of

processes with roles and their interaction with the local data tree. It is given by the
rules in Figure 3.11. Rules [L-Structural], [L-Parallel], [L-Restriction] and
[L-Communication] are essentially the same as [R-Structural], [R-Parallel],
[R-Restriction] and [R-Communication] reduction rules for π-calculus, given in
Figure 2.5, except that they refer to both processes and data. Processes with
different roles may communicate. Parallel composition of processes may change
the data.

In rule [L-Run], the process RUNpqρ activates all the scripts identified by the
path p in the data tree D, using the function run. The parallel composition of the
activated processes is then executed.

In rule [L-Read], the process READp(χ).Pqρ obtains a set of substitutions using
the function read, and for each substitution s in this set activates process P sqρ.
These substitutions are are identified by the path p and the pattern χ in the local
data tree D.

In rule [L-Change], the process CHANGEp(χ,V).Pqρ modifies the data tree D
using the function change. Each data term W identified by the path p and match-
ing the pattern χ gets replaced by V{W/|χ|}.
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[L-Structural]
D1 ≡ D′1 R1 ≡ R′1 (D′1, R

′
1) (D′2, R

′
2) D2 ≡ D′2 R2 ≡ R′2

(D1, R1) (D2, R2)

[L-Parallel]
(D1, R1) (D2, R2)

(D1, R1 |R) (D2, R2 |R)

[L-Restriction]
(D,R) (D′, R′)

(D, (νaT v)R) (D′, (νaT v)R′)

[L-Communication]
(D, aT v!vqρ

′ | aT v?x.Pqρ) (D,P{v/x}qρ)

[L-Run]
run(D, p) = {R1, . . . , Rn}

(D, RUNpq
ρ) (D,R1 | . . . |Rn)

[L-Read]
read(D, p, χ) = {s1, . . . , sn}

(D, READp(χ).Pqρ) (D,P s1q
ρ | . . . | P snq

ρ)

[L-Change]
change(D, p, χ,V) = D′

(D, CHANGEp(χ,V).Pqρ) (D′, Pqρ)

[L-Enable]
enable(D, p, r) = D′

(D, ENABLEp(r).Pq
ρ) (D′, Pqρ)

[L-Disable]
disable(D, p, r) = D′

(D, DISABLEp(r).Pq
ρ) (D′, Pqρ)

Figure 3.11: Local communication and interaction rules
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[R-Structural]
N1 ≡ N ′1 N ′1 → N ′2 N ′2 ≡ N2

N1 → N2

[R-Parallel]
N1 → N2

N1 8N → N2 8N

[R-Restriction]
N → N ′

(νaT v)N → (νaT v)N ′

[R-Local]
(D,R) (D′, R′)

l[D ‖ R]→ l[D′ ‖ R′]

[R-Go]
l[Dl ‖ (GO m.R)qρ |Rl] 8m[Dm ‖ Rm]→ l[Dl ‖ Rl] 8m[Dm ‖ R |Rm]

[R-Stay]
l[D ‖ (GO l.R)qρ |R′]→ l[D ‖ R |R′]

Figure 3.12: Reduction rules

In rule [L-Enable], the process ENABLEp(r).Pqρ adds the role r to the edges
starting from the roots of subtrees identified by the path p, using the function
enable.

In rule [L-Disable], the process DISABLEp(r).Pqρ removes the role r from all
the edges in the subtrees identified by the path p, using the function disable.

Reduction relation is the smallest relation between networks defined by the
rules in Figure 3.12. Rules [R-Structural], [R-Parallel] and [R-Restriction]
are standard rules which formalize the property that the reduction relation is
defined up to structural congruence and closed with respect to the usual static
contexts, as in the π-calculus.

The rest of reduction rules reflect the fact that processes may be involved in
local interactions or they may reallocate. In particular, rule [R-Local] describes
local communication and interaction using the interaction relation.

Rule [R-Go] describes the migration of a process from one location to another
one, while rule [R-Stay] describes a migration to the current location.

We use →∗ to denote the reflexive and transitive closure of → .
We now give examples of interactions and reductions in the network

musicbox[Dmb ‖ Rmb] 8 repository[Drp ‖ Rrp]

specified in Examples 3.2.5, 3.2.8 and 3.2.17. For simplicity, we assume that
variables x and y are not free in P, so the substitutions of these variables do not
affect P.
Example 3.2.21. Using the result of function read given in Example 3.2.17, by
[L-Read], we have:

(Dmb, READmusic{guest}/song{guest}/download{guest}(yα@x(σ,E,D)).GO x.Pqguest)qmember)
 (Dmb, (GO repository.Pqguest)qmember).

If we denote

Rmb = READmusic{guest}/song{guest}/download{guest}(yα@x(σ,E,D)).GO x.Pqguest)qmember,
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we can, by rules [R-Local], [R-Parallel], [R-Structural] and [R-Go], derive

musicbox[Dmb ‖ Rmb] 8 repository[Drp ‖ Rrp]
→∗ musicbox[Dmb ‖ (GO repository.Pqguest)qmember] 8 repository[Drp ‖ Rrp]
→∗ musicbox[Dmb ‖ 0qρ] 8 repository[Drp ‖ Pqguest |Rrp]

4
Example 3.2.22. By [L-Communication], we have

(Dmb, a
T v!music{guest}/help{owner}qρ

′ | aT v?x.READx(χ).Pqguest)
 (Dmb, READmusic{guest}/help{owner}(χ).Pqguest).

If we denote

Rmb = aT v!music{guest}/help{owner}qρ
′ | aT v?x.READx(χ).Pqguest,

by [R-Local] we can derive

musicbox[Dmb ‖ Rmb]→ musicbox[Dmb ‖ READmusic{guest}/help{owner}(χ).Pqguest]

4
Example 3.2.23. Using the first result of function change given in Example 3.2.19,
by [L-Change], we have:

(Dmb, CHANGEmusic{guest}(x(σ,E,D,τ,ζ), ∅D)qguest) (music{guest,>}[∅D], 0qguest).

If we denote
Rmb = CHANGEmusic{guest}(x(σ,E,D,τ,ζ), ∅D)qguest,

we can, by rule [R-Local], derive

musicbox[Dmb ‖ Rmb]→ musicbox[music{guest,>}[∅D] ‖ 0qguest].

4
Example 3.2.24. Let R = ENABLEmusic{guest}(guest)qguest. Using the first result of
function run given in Example 3.2.18, by [R-Local], we can derive:

musicbox[Dmb ‖ RUNmusic{owner}/help{owner} ]
→ musicbox[Dmb ‖ ENABLEmusic{guest}(guest)qguest].

This location may further reduce using the second result of function enable given
in Example 3.2.20. 4

3.2.4 Well-behaved networks

Before we give the definition of what we consider a well-behaved network, we
informally introduce the notion of characteristic roles for values in our language.
Characteristic roles of a channel are characteristic roles of the value this channel
transmits. The set of characteristic roles of a data tree is the union of all sets
of roles associated to the initial edges of the data tree. The set of characteristic
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roles for the empty data tree is {>}. The set of characteristic roles of a path is
the set of roles associated to the final edge of the path. The set of characteristic
roles of a script and a location is the set containing just ⊥. We denote the set of
characteristic roles of a value v with C(v).

We motivate these choices of characteristic roles by the ability of processes to
access data. If a process is allowed to access any part of a data tree, then it must
be allowed to access one of the tree’s initial edges and if a process is allowed to
access the final edge of a path, then it is allowed to access the data at the end
of this path. This motivates the choices of characteristic roles for paths and non-
empty data tree. As the accessibility of data should not be discontinued, empty
data trees, which may be found in the leaves, must be protected by the top role.
Implicitly, such trees may be replaced only by a process with the top role. We
aim to protect scripts and pointers by their parent edge. The process allowed to
access them should already be allowed to access the parent edge, so we say that
the set of characteristic roles of scripts and locations is the least protective set, i.e.
{⊥}. In Section 3.3 we relate all values and their types and formalize this notion
for value types.

Informally, in a well-behaved network at any location:

(1) a data tree cannot contain roles that are lower than those prescribed as min-
imal by the location policy and a process must be allowed to access the same
minimal roles;

(2) a process with roles can add a role to an edge in the local tree only if this is
allowed by the location policy;

(3) a process with roles can erase a role from a subtree of the local tree only if
this is allowed by the location policy;

(4) data accessibility should not be discontinued, i.e. if a process is allowed to
access an edge in a tree path, then it must be allowed to access its parent;

(5) an edge in a data tree is never completely unavailable, i.e. it is always anno-
tated with a non-empty set of roles;

(6) a process with roles can communicate only values with characteristic roles
accessible to the roles of the process;

(7) a process with roles looks for a path in the local tree only if the path is
accessible to the process;

(8) a process with roles can get a data term in the local tree only if the data is
accessible to the process;

(9) a process with roles can erase a subtree of data only if it can access the whole
subtree.

The following definition formalizes what we consider as a secure network.
Definition 3.2.25. Let N →∗ ~ν(l[D ‖ Pqρ |R]8N ′) and P(l) = (σ, E ,D). We say
that N is well behaved if the following conditions hold:
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(1) σ 5 C(D) and σ ≤ ρ;

(2) P = ENABLEp(r).Q implies (ρ, r) ∈+ E ;

(3) P = DISABLEp(r).Q implies (ρ, r) ∈− D.

(4) if aτ11 / . . . /aτnn is a path in data tree D, then τ1 5 . . . 5 τn for every i ∈
{1, . . . , n};

(5) if aτ is an edge in data tree D, then τ 6= ∅;

(6) P = aT v!v implies C(v) ≤ ρ;

(7) P = RUNp or P = READp(χ).Q or P = CHANGEp(χ,V).Q or ENABLEp(r).Q or
DISABLEp(r).Q implies C(p) ≤ ρ;

(8) P = RUNp or P = READp(χ).Q or P = CHANGEp(χ,V).Q or ENABLEp(r).Q or
DISABLEp(r).Q and p identifies a data term W in the data tree D imply that
W is accessible to the process Pqρ;

(9) P = CHANGEp(x
(σ,E,D,τ,ζ),V).Q implies ζ ≤ ρ;

Items (1), (2) and (3) ensure that data and processes with roles respect the
security protection policy of their current location. Items (4) and (5) state when
we consider data consistent. Items (6), (7), (8) and (9) state what conditions roles
of processes should satisfy in order for the processes to send, access and change
the data. There is no reason to have additional requirements for the process
GO λ.R because processes may freely change locations. The the fact that process
R respects the policy of location λ will be ensured by the type system presented
in the next section.

We now give few examples of ill-behaved locations and networks to illustrate
what kind of errors we want to eliminate with the type system presented in the
following section. We use notation and results from previous examples and assume

P(repository) = ({member, administrator}, ({owner}, administrator), ∅).

• Data D = music{member,>}[D′] and processes P1 = aT v!Dmbqadministrator and
P2 = RUNpq⊥ violate item (1) of Definition 3.2.25, for location policy given
in Example 3.2.5.

• Process Pqguest violates the security policy of location repository because
{member} 6≤ {guest}. For the same reason, process

(GO repository.Pqguest)qmember

should be eliminated by the type system. Process

(READp(y
α@x(σ,E,D)).GO x.Pqguest)qmember

is potentially dangerous, because, for specific p, α and (σ, E ,D), as shown in
Example 3.2.21, it may obtain a substitution

{{ys{guest}@repository/y@x}}

and reduce to the previous process.



34 CHAPTER 3. TYPES FOR SECURE ACCESS

• Path music{guest,>}/song{member,>}/title{guest,>} is a path in the data tree
Dmb. It violates item (4) of Definition 3.2.25.

• Process
aT v?x.READx(χ).Pqguest

receives, on channel a, a path. As shown in Example 3.2.22, it may receive

music{guest}/help{owner}

which is not a path accessible to the process with role guest, and therefore
violate item (7) of Definition 3.2.25.

• Process
CHANGEmusic{guest}(x(σ,E,D,τ,{member}), ∅D)qguest,

as shown in Example 3.2.23, erases a subtree which is not fully accessible to
it. It violates item (9) of Definition 3.2.25.

• Process

CHANGEmusic{guest}/song{member}/download{member}(yα@x(σ,E,D), a{guest,>}[y@x])qowner

identifies a pointer and it puts the additional edge a{guest,>} before that
pointer. In case this action is applied to data Dmb, as shown in Exam-
ple 3.2.19, it would create the path

music{guest,>}/song{member,>}/download{member,>}/a{guest,>}

in Dmb, which would violate item (4) of Definition 3.2.25.

• Process
RUNmusic{owner}/help{owner} ,

as shown in Example 3.2.24, activates scripted process R at the end of the
path music{guest,>}/help{owner,>} in data tree Dmb. Process R should be al-
lowed to run at the location musicbox. We give three processes that should
not be present in the data tree Dmb because, in case they are activated, the
security of the network will be violated. According to the policy of musicbox
process

ENABLEp(guest)qguest

does not have roles high enough to enable any other role. It violates item
(2) of Definition 3.2.25. Similarly, both processes

GO repository.ENABLEp(administrator)qowner

and
GO repository.DISABLEp(administrator)qowner

would violate the administration policy of location repository.
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Before we introduce the type system in the following section, we clarify some
choices in the language design for which we claim that they do not affect the
studied security properties. As already mentioned, we use edge-labelled rooted
tree as data model, where edge labels represent tags of XML elements. In the
standard XQuery data model [10] tags are nodes. XML documents necessarily
have a root element while data trees in our language may have one or more initial
edges joined at the root node of the tree. Our paths identify data at the end, not
at the last edge. We could be able to identify the whole data tree at a location by
introducing a special path with no edges - the empty path. The data is accessible
to a process if the tree path is accessible to the process. This means that, if we
return the Example 3.2.5, all the data at the end of path music{guest} is accessible
to a process with role guest, regardless of the fact that this role is not allowed
to access the end of every path in the identified subtree, i.e. role guest is not
present at every edge annotation of the identified data. Essentially, if a process is
allowed to access an initial edge of a data tree it is allowed to access data, i.e. to
read the data. In order to modify the data in any way, it should satisfy additional
conditions. We restrict the modifications of data by process CHANGEp(χ,V).Pqρ

just to processes that are allowed to fully access data (access every edge). So,
a process with role guest is allowed to access the data identified by the path
music{guest}, but not to change it. One of our goals was to protect data in the
leaves - pointers and scripts. In order for a process to access them it must be
allowed to access the full path, or more precisely the parent edge. This light
condition for changing data could be strengthened by asking, for example that the
process is allowed to assess all of the data at the location where the subtree is,
meaning that such process could be considered the owner of the location, similarly
to what will we discuss in Chapter 4. Another possibility would be to assign
richer security protection policies to the locations, which would prescribe exact
roles allowed to change data. Conditions for enabling and disabling roles on data
tree edges are determined by the policy. The function enable adds one role just
to the initial edges of the identified subtree, which is more refined than enable the
role on the whole subtree.

3.3 Type system
Aiming to prevent security violations, we introduce a type system that enforces
well-behavedness of networks.

3.3.1 Types

Syntax of the types given in Figure 3.13. The type Location(σ, E ,D) denotes the
type of a location with policy (σ, E ,D). The type Script(σ, E ,D) denotes the type
of a script which can be activated at locations with policy (σ, E ,D). The type
Path(α) denotes the type of a path having the final edge with the set of roles
α. The type Pointer(α) denotes the type of a pointer whose path is typed with
Path(α). The type DataTree(σ, E ,D, τ, ζ) denotes the type of a data tree which can
stay at locations with policy (σ, E ,D), with initial edges asking τ and which can
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Location(σ, E ,D) location type
Pointer(α) pointer type
Script(σ, E ,D) script type
DataTree(σ, E ,D, τ, ζ) data tree type
Path(α) path type
Channel(T v) channel type
Process(σ, E ,D, ρ) pure process type
Network network type
RoleProcess(σ, E ,D) process with roles type

Figure 3.13: Syntax of the types.

be completely accessed by processes with access to ζ. The type Process(σ, E ,D, ρ)
denotes the type of a pure process which can stay at locations with policy (σ, E ,D)
and which can be assigned roles ρ. The type RoleProcess(σ, E ,D) denotes the type
of a process with roles which can stay at locations with policy (σ, E ,D). The type
Channel(T v) denotes the type of a channel which can communicate values of type
T v. We use T v and Tw to range ranges over value types, which are the types that
correspond to the values defined in Figure 3.7. The type Network denotes the
type of a network. We use T to range over types.

A data tree type DataTree(σ, E ,D, τ, ζ) is well formed if σ 5 τ, meaning that
each role appearing at the initial edges of the data tree has to be bigger than or
equal to one role from the set σ of minimal roles which is given by the location
policy. This condition implies that each edge in a well-typed data tree has a set
of roles which respect the location policy.

A process type Process(σ, E ,D, ρ) is well formed if σ ≤ ρ. This requirement
guaranties that the process has at least one role bigger than or equal to one role
belonging to the set of minimal roles prescribed by the location policy.

In the following we consider only well-formed types.
An environment Γ associates variables with value types and with types of

processes with roles, i.e. we define:

Γ ::= ∅ | Γ, x : T v | Γ, x : RoleProcess(σ, E ,D)

We use the environment by the standard axioms:

[T- Value Variable]
Γ, x : T v ` x : T v

[T-Process Variable]
Γ, x : RoleProcess(σ, E ,D) ` x : RoleProcess(σ, E ,D)

Essentially, a type environment is a finite set of assignments of types to vari-
ables. We assume that variables in assignments of type environments are all dif-
ferent. The set of variables of assignments in Γ is called the domain of Γ, written
dom(Γ).We write ∅ for the environment whose domain is empty and we write Γ,Γ′

for the union of Γ and Γ′ when dom(Γ) ∩ dom(Γ′) = ∅.
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[T-Location Name]
P(l) = (σ, E ,D)

Γ ` l : Location(σ, E ,D)

[T-Script]
Γ ` Π : RoleProcess(σ, E ,D)

Γ ` �Π : Script(σ, E ,D)

[T-Path Edge]
Γ ` aα : Path(α)

[T-Path Composition]
Γ ` p : Path(β) Γ ` q : Path(α)

Γ ` p/q : Path(α)

[T-Pointer]
Γ ` p : Path(α) Γ ` λ : Location(σ, E ,D)

Γ ` p@λ : Pointer(α)

Figure 3.14: Typing rules for locations, scripts, paths and pointers.

The following nine kinds of typing judgements are induced by the syntax of
types:

Γ ` λ : Location(σ, E ,D) Γ ` �Π : Script(σ, E ,D) Γ ` p : Path(α)
Γ ` p@λ : Pointer(α) Γ ` D : DataTree(σ, E ,D, τ, ζ)

Γ ` P : Process(σ, E ,D, ρ) Γ ` R : RoleProcess(σ, E ,D)
Γ ` u : Channel(T v) Γ ` N : Network

They state that a term of the calculus is well typed in Γ and for sets of roles that
appear in the type.

3.3.2 Typing locations, scripts, paths, pointers and data
trees

Typing rules for locations, scripts, paths and pointers are given in Figure 3.14.
Rule [T-Location Name] states that a location name is well typed in any envi-
ronment and for the policy assigned to the location name by the function P .

Rule [T-Script] states that a script is well typed in an environment and for a
policy if the scripted process is well typed in the same environment and can run
at locations with that policy.

Rule [T-Path Edge] states that a path edge with roles α is well typed in any
environment and for the set α.

Rule [T-Path Composition] states that a path is well typed in any environ-
ment and for the set of roles assigned to its final edge. Notice that this set is, in
fact, the set of characteristic roles for the path.

Rule [T-Pointer] states that a pointer p@λ is well typed in any environment
and for the set of roles α if path p and λ are well typed in the same environment
and if α is the set assigned to the final edge of the path.

Typing rules for data trees are given in Figure 3.15. Rule [T-Empty Data]
states that an empty data tree is well typed in any environment and for an arbi-
trary location policy since relation σ 5 {>} holds for any σ.
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[T-Empty Data]
Γ ` ∅D : DataTree(σ, E ,D, {>}, {⊥,>})

[T-Leaf Script]
Γ ` �Π : Script(σ, E ,D)

Γ ` aτ [�Π] : DataTree(σ, E ,D, τ, τ)

[T-Leaf Pointer]
Γ ` p@λ : Pointer(α)

Γ ` aτ [p@λ] : DataTree(σ, E ,D, τ, τ)

[T-Data Tree]
Γ ` D : DataTree(σ, E ,D, τ ′, ζ) τ 5 τ ′

Γ ` aτ [D] : DataTree(σ, E ,D, τ, τ\ζ)

[T-Data Parallel]
Γ ` D1 : DataTree(σ, E ,D, τ1, ζ1) Γ ` D2 : DataTree(σ, E ,D, τ2, ζ2)

Γ ` D1 |D2 : DataTree(σ, E ,D, τ1 ∪ τ2, ζ1 t ζ2)

Figure 3.15: Typing rules for data trees.

Rule [T-Leaf Script] states that if a process respects the location policy, then
it can be a leaf of a data tree that can stay at the location with this policy. The
data tree aτ [�Π] has initial edge accessible to the processes with roles ρ such that
τ ≤ ρ and can be completely accessed by the processes with roles ρ such that
τ ≤ ρ. This is recorded in the type where last two sets of roles are τ.

Rule [T-Leaf Pointer] states that a well-typed pointer can be a leaf of a data
tree that can stay at a location with any policy. As in [T-Leaf Script] the last
two sets of roles are the same as the set of roles of the edge.

Rule [T-Data Tree] states that an edge with roles τ can connect a parent node
with a child node of type DataTree(σ, E ,D, τ ′, ζ) only if τ 5 τ ′. This ensures that
a process which can access the data tree D can also access the edge. Therefore,
since in a well-typed tree the tree path aτ11 / . . . /a

τn
n has the property τ1 5 . . . 5 τn,

we can reformulate accessibility of tree paths by processes as follows:
Lemma 3.3.1 (Access to data terms). A process with roles can access a data
term V in a well-typed data tree D if it can access the final edge of the tree path
from the root of D to V.

Proof. From [T-Data Tree], we know that in a well-typed tree the tree path
aτ11 / . . . /a

τn
n has the property τ1 5 . . . 5 τn. Let ρ be the set of roles of the

process. If τn ≤ ρ, then, by Lemma 3.2.13, τi ≤ ρ for every i ∈ {1, . . . , n − 1},
which by Definition 3.2.7 means that the process with roles ρ has access to the
data terms identified by the tree path.

In the type of the conclusion of the rule [T-Data Tree] we use \ in order to
obtain the set of roles that are allowed to access all the edges in a data tree.
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Formally, we define

τ\ζ =

{
τ if ζ = {>,⊥}
ζ otherwise.

So, we get τ\ζ = τ if D = ∅D or if τ ′ = ζ = {>,⊥} (notice that in this case τ 5 τ ′

implies ⊥ ∈ τ). Otherwise, τ\ζ = ζ.
Rule [T-Data Parallel] states that the composition of two data trees has the

union of their sets of initial roles as the set of initial roles. The composition of
two data trees is completely accessible by the set obtained by joining the sets of
roles which can completely access these data trees. From the definition of 5 we
can easily show that σ 5 τ1 ∪ τ2 ⇐⇒ σ 5 τ1 ∧ σ 5 τ2. This implies that the type
of parallel composition of two data trees is well formed.

3.3.3 Typing processes and networks

Typing rules for channels and pure processes are given in Figure 3.16. In the
following paragraphs we give their descriptions. Rule [T-Channel], as expected,
states that channel aT v can communicate values of the type T v.

Rule [T-Inaction] states that the terminating process is well typed in any
environment.

Rule [T-Pure Parallel] states that parallel composition of two processes is
well typed in the same environment, for the same location policy and for same set
of process roles as the component processes.

In Section 3.2.4, we have informally introduced characteristic roles for values.
We now define characteristic roles for value types.
Definition 3.3.2 (Characteristic roles of value types). The set of character-
istic roles of value type T v (denoted C(T v)) is defined as follows:
C(Channel(T v)) = C(T v)
C(DataTree(σ, E ,D, τ, ζ)) = τ
C(Path(α)) = α
C(Script(σ, E ,D)) = {⊥}
C(Location(σ, E ,D)) = {⊥}
We can now give the definition of characteristic roles for values and claim that

these sets are appropriate formalizations of their descriptions.
Definition 3.3.3 (Characteristic roles of values). If ∅ ` v : T v, then C(v) =
C(T v).

Characteristic roles of a well-typed data tree correspond to the fourth set in
its type. For the empty data tree it is {>}. For a non-empty data tree, it is
computed, by the typing rules for data trees, as the union of the set of roles
assigned to the initial edges. Characteristic roles of a well-typed path correspond
to the set computed by the typing rules for paths. It is straightforward to check
that this set is actually the set of roles assigned to the final edge. The characteristic
roles of the rest of the values are obviously the same as their informal descriptions.

Rule [T-Output] states that the process u!v is well typed in an environment,
for the location policy (σ, E ,D) and for the set of process roles ρ, if the channel u
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[T-Channel]
Γ ` aT v : Channel(T v)

[T-Inaction]
Γ ` 0 : Process(σ, E ,D, ρ)

[T-Pure Parallel]
Γ ` P : Process(σ, E ,D, ρ) Γ ` Q : Process(σ, E ,D, ρ)

Γ ` P |Q : Process(σ, E ,D, ρ)

[T-Replication]
Γ ` P : Process(σ, E ,D, ρ)

Γ ` ∗P : Process(σ, E ,D, ρ)

[T-Output]
Γ ` u : Channel(T v) Γ ` v : T v C(T v) ≤ ρ

Γ ` u!v : Process(σ, E ,D, ρ)

[T-Input]
Γ ` u : Channel(T v) Γ, x : T v ` P : Process(σ, E ,D, ρ) C(T v) ≤ ρ

Γ ` u?x.P : Process(σ, E ,D, ρ)

[T-Go]
Γ ` R : RoleProcess(σ, E ,D) Γ ` λ : Location(σ, E ,D)

Γ ` GO λ.R : Process(σ′, E ′,D′, ρ)

[T-Run]
Γ ` p : Path(α) α ≤ ρ

Γ ` RUNp : Process(σ, E ,D, ρ)

[T-Read]
Γ ` p : Path(α) Γ,Γχ ` P : Process(σ, E ,D, ρ) α ≤ ρ

Γ ` READp(χ).P : Process(σ, E ,D, ρ)

[T-Change]
Γ ` p : Path(α) Γ ` P : Process(σ, E ,D, ρ) α ≤ ρ

Γ,Γχ `


V : Script(σ, E ,D) or

V : Pointer(β) or

V : DataTree(σ, E ,D, τ ′, ζ ′) α 5 τ ′

if χ = x(σ,E,D,τ,ζ) then ζ ≤ ρ

Γ ` CHANGEp(χ,V).P : Process(σ, E ,D, ρ)

[T-Enable]
Γ ` p : Path(α) Γ ` P : Process(σ, E ,D, ρ) (ρ, r) ∈+ E α 5 {r} α ≤ ρ

Γ ` ENABLEp(r).P : Process(σ, E ,D, ρ)

[T-Disable]
Γ ` p : Path(α) Γ ` P : Process(σ, E ,D, ρ) (ρ, r) ∈− D α ≤ ρ

Γ ` DISABLEp(r).P : Process(σ, E ,D, r)

Figure 3.16: Typing rules for channels and pure processes.
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can transmit values of type T v, which is the type of the value v, and if the set of
characteristic roles of T v is accessible by the set of roles ρ.

Rule [T-Input] states that the process u?x.P is well typed in Γ, for the location
policy (σ, E ,D) and for the set of process roles ρ, if the channel u can transmit
values of type T v and if the set of characteristic roles of T v is accessible by the set
of roles ρ. The continuation process P must be well typed in Γ extended with a
type assignment which assigns T v to the variable x. This ensures that the variable
x is correctly used in the continuation.

Rule [T-Replication] states that the replication of a process is well typed in
an environment, for a policy and for a set of process roles, if the process is well
typed in this environment, for that policy and for that set of process roles.

Rule [T-Run] states that process RUNp, which aims to run embedded scripts at a
location with policy (σ, E ,D), is well typed in any environment, for a set of process
roles ρ which are allowed to access the final edge of the path p. The same condition,
α ≤ ρ, which ensures that processes look only for the data terms accessible to them
(Lemmas 3.2.13 and 3.3.1), appears in premises of rules [T-Read], [T-Change],
[T-Enable] and [T-Disable].

Rule [T-Go] states that the process GO λ.R which aims to move to another
location is well typed if the continuation R is well typed for the new location.
This rule is applicable also in case current and new location are the same.

Typing rules [T-Read] and [T-Change] use additional type environment Γχ
related to the patterns that appear in the corresponding processes. It assigns
types to the variables of the pattern χ and it is defined as follows:

Γχ =


x : RoleProcess(σ, E ,D) if χ = �x(σ,E,D),

x : Location(σ, E ,D), y : Path(α) if χ = yα@x(σ,E,D),

x : DataTree(σ, E ,D, τ, ζ) if χ = x(σ,E,D,τ,ζ).

The pattern variables are bound in the continuation P of the process
READp(χ).P and in the data term V of the process CHANGEp(χ,V). In rules [T-Read]
and [T-Change] the premises which mention Γχ ensure that these variables are
used according to their type annotations. The condition α 5 τ ′ in rule [T-Change]
ensures that when we replace a data term by a data tree, the obtained data tree
is well typed. In case we try to replace a subtree, i.e. if pattern is χ = x(σ,E,D,τ,ζ),
the condition ζ ≤ ρ ensures that the whole subtree is accessible to the process.

Rules [T-Enable] states that the role r can be added to the data tree at a
location with policy (σ, E ,D) only if such action agrees with the policy ((ρ, r) ∈+
E). Furthermore, the premise α 5 {r} ensures that the new role complies with
the tree path and implicitly that the new data tree is well typed. This condition
is not needed in rule [T-Disable], which ensures that role r is removed correctly
with the respect the location policy. More precisely, rule [T-Disable] states that
the role r can be removed from the data tree at a location with policy (σ, E ,D)
only if such action agrees with the policy ((ρ, r) ∈− D).

Typing rules for processes with roles are given in Figure 3.17. Rule [T-Role]
explains connection of pure processes with processes with roles. Process with roles
Pqρ is well typed for the location with policy (σ, E ,D) if pure process P is well
typed for the same location policy and roles ρ.
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[T-Role]
Γ ` P : Process(σ, E ,D, ρ)

Γ ` Pqρ : RoleProcess(σ, E ,D)

[T-Restriction]
Γ ` R : RoleProcess(σ, E ,D)

Γ ` (νaT v)R : RoleProcess(σ, E ,D)

[T-Role Parallel]
Γ ` R1 : RoleProcess(σ, E ,D) Γ ` R2 : RoleProcess(σ, E ,D)

Γ ` R1 |R2 : RoleProcess(σ, E ,D)

Figure 3.17: Typing rules for processes with roles.

[T-Location]
∅ ` l : Location(σ, E ,D)

∅ ` D : DataTree(σ, E ,D, τ, ζ) ∅ ` R : RoleProcess(σ, E ,D)

∅ ` l[D ‖ R] : Network

[T-Network Restriction]
∅ ` N : Network

∅ ` (νaT v)N : Network

[T-Network Parallel]
∅ ` N1 : Network ∅ ` N2 : Network N (N1) ∩N (N2) = ∅

∅ ` N1 |N2 : Network

Figure 3.18: Typing rules for networks.

Rule [T-Restriction] states that process (νaT v)R is well typed in an environ-
ment if process R is well typed in the same environment. Rule [T-Role Parallel]
is similar to rule [T-Pure Parallel].

Finally, we give the typing rules for networks in Figure 3.18 and explain them
in the following paragraphs. Rule [T-Location] states that a location l[D ‖ R]
with policy (σ, E ,D) is well typed if the data tree D and the process with role R
are well typed for the policy (σ, E ,D).

The function N associates to a network the set of its location names:

N (0) = ∅ N (l[D ‖ R]) = {l} N (N1 |N2) = N (N1) ∪N (N2).

It is used in [T-Network Parallel] to ensure that that each location name occurs
at most once in a well-typed network. Rules [T-Network Restriction] and
[T-Network Parallel] are similar to corresponding rules for processes.

A straightforward consequence of the type assignment rules are the following
properties:
Proposition 3.3.4. (i) Each location name occurs at most once in a well-typed

network.



3.4. TYPE SOUNDNESS 43

(ii) If a location is well typed, then enclosed data tree and process with roles do
not contain occurrences of free variables.

3.4 Type soundness
In the current section, we prove that the proposed type system guarantees the
operational property of type preservation under reduction: all networks obtained
by reduction starting from a well-typed network are again well typed. Then, we
prove that the type system is safe: a well-typed network is well behaved. By
proving these two properties, we conclude that our type system is sound.

Rules of the type system are syntax directed, meaning that a typing derivation
of any term in the language has unique structure determined by its syntactic
structure. The fact that the last typing rule applied in a typing derivation is
uniquely determined allows us to use the reversal of the typing rules in the proofs.

Before we start with proofs of two main results we need to prove several aux-
iliary lemmas. The following two lemmas are standard and they say that typing
is preserved by substitutions and by structural congruence.
Lemma 3.4.1 (Substitution).

1. If Γ, x : T v ` P : Process(σ, E ,D, ρ) and Γ ` v : T v, then Γ ` P{v/x} :
Process(σ, E ,D, ρ).

2. If Γ, x : T v ` V : T and Γ ` v : T v, then Γ ` V{v/x} : T.

3. If Γχ ` P : Process(σ, E ,D, ρ) and match(χ,V), then ∅ ` P{{V/|χ|}} :
Process(σ, E ,D, ρ).

4. If Γχ ` V : T and match(χ,W), then ∅ ` V{{W/|χ|}} : T.

Proof.

1. If x does not occur free in P, then P{v/x} = P. In that case Γ ` P{v/x} :
Process(σ, E ,D, ρ) trivially holds. We assume x ∈ fv(P ) and proceed by
induction on the derivation of Γ, x : T v ` P : Process(σ, E ,D, ρ). We show
few interesting cases.

[T-Pure Parallel] In this case we know that P = P1 | P2 and Γ, x : T v `
P1 : Process(σ, E ,D, ρ) and Γ, x : T v ` P2 : Process(σ, E ,D, ρ). We derive
the proof by induction hypothesis and rule [T-Pure Parallel].

[T-Input] In this case P = u?y.Q and Γ, x : T v ` u : Channel(Tw) and
Γ, x : T v, y : Tw ` Q : Process(σ, E ,D, ρ) and C(Tw) ≤ ρ. The only
interesting case is when u = x. Then, P = x?y.Q and T v = Channel(Tw)
and P{v/x} = v?y.Q{v/x}. By induction hypothesis we obtain Γ, y : Tw `
Q{v/x} : Process(σ, E ,D, ρ) and conclude the proof by an application of
[T-Input].

[T-Go] In this case P = GO λ.R and Γ, x : T v ` R : RoleProcess(σ′, E ′,D′)
and Γ, x : T v ` λ : Location(σ′, E ′,D′). By induction on the structure of
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R, we prove Γ ` R{v/x} : RoleProcess(σ′, E ′,D′). We distinguish two
cases, x = λ and x 6= λ. If x = λ, then, from [T-Value Variable],
T v = Location(σ′, E ′,D′), so we know Γ ` v : Location(σ′, E ′,D′). We con-
clude the proof by [T-Go]. If x 6= λ, then Γ ` λ : Location(σ′, E ′,D′), and
we conclude the proof by [T-Go].

[T-Run] In this case P = RUNp and Γ, x : T v ` p : Path(α) and α ≤ ρ.

The most interesting case is when p = q/x. For notational simplicity we
assume x /∈ fv(q). From Γ, x : T v ` p : Path(α) and [T-Path Composition]
we obtain Γ, x : T v ` q : Path(β) and Γ, x : T v ` x : Path(α). So, from
[T-Value Variable] we get T v = Path(α) and from x /∈ fv(q) we obtain
Γ ` q : Path(β).We derive the proof of Γ ` RUNq/v by [T-Path Composition]
and [T-Run].

In cases when the last applied rules in the derivation of Γ, x : T v ` P :
Process(σ, E ,D, ρ) are [T-Read], [T-Change], [T-Enable] or [T-Disable],
the proof is derived using the same reasoning on paths as in the case of
rule [T-Run] and induction hypothesis. In addition, case [T-Change] uses
3.4.1.(2).

2. We distinguish cases based on V.

(a) V = �Π. The only interesting case is when Π = x. Then, T = T v =
Script(σ, E ,D). From [T-Script] we know that v = �Π′, so V{v/x} =
�Π′ and the proof is trivial.

(b) V = p@λ. This case is similar to (a).

(c) V = D. If x does not occur free in D, then D{v/x} = D. In that
case Γ ` D{v/x} : DataTree(σ, E ,D, τ, ζ) trivially holds. We assume
x ∈ fv(D) and proceed by induction on the derivation of Γ, x : T v `
D : DataTree(σ, E ,D, τ, ζ).

[T-Empty Data] Then D = ∅D. Since D{{V/|χ|}} = ∅D = D, we
derive the proof trivially.

[T-Leaf Script] Then D = aτ [�Π] and Γχ ` �Π : Script(σ, E ,D).

From [T-Script] we know that Γχ ` Π : RoleProcess(σ, E ,D). The
only interesting possibility is when Π = x and χ = �x(σ,E,D). From
match(χ,V) we know that V = �R and ∅ ` R : RoleProcess(σ, E ,D).
Then D{{V/|χ|}} = aτ [�R]. We conclude the proof by [T-Script] and
[T-Leaf Script].

[T-Leaf Pointer] Then D = aτ [p@λ] and Γχ ` p@λ : Pointer(α).

From [T-Pointer] we know that Γχ ` p : Path(α) and Γχ ` λ :
Location(σ, E ,D). The most interesting possibility is when p = y and
λ = x and χ = yα@x(σ,E,D). From match(χ,V) we know that V = q@l
and ∅ ` q : Path(α) and ∅ ` l : Location(σ, E ,D). Then D{{V/|χ|}} =
aτ [q@l].We conclude the proof by [T-Pointer] and [T-Leaf Pointer].
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[T-Data Tree] Then D = aτ [D′] and for τ ′ and ζ ′ such that τ 5 τ ′

and ζ = τ\ζ ′ it holds Γχ ` D′ : DataTree(σ, E ,D, τ ′, ζ ′). By induction
hypothesis we obtain ∅ ` D′{{V/|χ|}} : DataTree(σ, E ,D, τ ′, ζ ′). We
conclude the proof by [T-Data Tree].

[T-Data Parallel] In this case we know that D = D1 |D2 and Γχ `
D1 : DataTree(σ, E ,D, τ1, ζ1) and Γχ ` D2 : DataTree(σ, E ,D, τ2, ζ2)
and τ = τ1 ∪ τ2 and ζ = ζ1 t ζ2. The proof is derived by induction
hypothesis and [T-Data Parallel].

3. If pattern variables do not occur free in P, then P{{V/|χ|}} = P. In that
case ∅ ` P{{V/|χ|}} : Process(σ, E ,D, ρ) trivially holds. We assume pattern
variables are free variables of P and proceed by induction on the derivation
of Γχ ` P : Process(σ, E ,D, ρ). We show few interesting cases.

[T-Go] In this case P = GO λ.R and Γχ ` R : RoleProcess(σ′, E ′,D′)
and Γχ ` λ : Location(σ′, E ′,D′). By induction on the structure of R, we
prove ∅ ` R{{V/|χ|}} : RoleProcess(σ, E ,D). We derive the proof in case
λ = x and χ = yα@x(σ

′,E ′,D′). From match(χ,V) we know that V = p@l and
∅ ` p : Path(α) and ∅ ` l : Location(σ′, E ′,D′). Since, P{{V/|χ|}} = GO l.R
we conclude the proof by [T-Go].

[T-Enable] In this case P = ENABLEp(r).Q. From [T-Enable] we know
that Γχ ` p : Path(α) and Γχ ` Q : Process(σ, E ,D, ρ). We derive the
proof in case when χ = yα@x(σ

′,E ′,D′) and y ∈ fv(p). For notational sim-
plicity we assume p = q/y and y /∈ fv(q). From Γχ ` p : Path(α) and
[T-Path Composition] we obtain Γχ ` q : Path(β) and Γχ ` y : Path(α).
From match(χ,V) we know that V = p′@l and ∅ ` p′ : Path(α) and
∅ ` l : Location(σ′, E ′,D′). From x /∈ fv(q) we obtain Γ ` q : Path(β). We
derive the proof of Γ ` ENABLEq/p′(r).Q{{V/|χ|}} by [T-Path Composition],
induction hypothesis and [T-Enable].

[T-Change] In this case P = CHANGEp(χ
′,W).Q. Interesting cases are when

variables of the pattern χ are free variables of p and free variables of W.
In first case we use same reasoning as in the case of [T-Enable] and in the
second we use Lemma 3.4.1(4).

4. The most interesting case is when V = D. Then T = DataTree(σ, E ,D, τ, ζ).
If pattern variables do not occur free in D, then D{{W/|χ|}} = D. In that
case ∅ ` D{{W/|χ|}} : DataTree(σ, E ,D, τ, ζ) trivially holds. We assume
pattern variables are free variables of D and proceed by induction on the
derivation of Γχ ` D : DataTree(σ, E ,D, τ, ζ).

[T-Empty Data] In this case D = ∅D. Since D{{W/|χ|}} = ∅D = D, we
derive the proof trivially.

[T-Leaf Script] In this case D = aτ [�Π] and Γχ ` �Π : Script(σ, E ,D).

From [T-Script] we know that Γχ ` Π : RoleProcess(σ, E ,D). The most



46 CHAPTER 3. TYPES FOR SECURE ACCESS

interesting possibility is when Π = x and χ = �x(σ,E,D). From match(χ,W)
we know thatW = �R and ∅ ` R : RoleProcess(σ, E ,D). ThenD{{W/|χ|}} =
aτ [�R]. We conclude the proof by [T-Script] and [T-Leaf Script].

[T-Leaf Pointer] In this case D = aτ [p@λ] and Γχ ` p@λ : Pointer(α).

From [T-Pointer] we know that Γχ ` p : Path(α) and that Γχ ` λ :
Location(σ, E ,D). The most interesting possibility is when χ = yα@x(σ,E,D)

and p = y and λ = x. From match(χ,W) we know that W = q@l and
∅ ` q : Path(α) and ∅ ` l : Location(σ, E ,D). Then D{{W/|χ|}} = aτ [q@l].
We conclude the proof by [T-Pointer] and [T-Leaf Pointer].

[T-Data Tree] In this case D = aτ [D′] and for τ ′ and ζ ′ such that τ 5
τ ′ and ζ = τ\ζ ′ it holds Γχ ` D′ : DataTree(σ, E ,D, τ ′, ζ ′). By induction
hypothesis we obtain ∅ ` D′{{W/|χ|}} : DataTree(σ, E ,D, τ ′, ζ ′).We conclude
the proof by [T-Data Tree].

[T-Data Parallel] In this case we know that D = D1 | D2 and Γχ `
D1 : DataTree(σ, E ,D, τ1, ζ1) and Γχ ` D2 : DataTree(σ, E ,D, τ2, ζ2) and
τ = τ1 ∪ τ2 and ζ = ζ1 t ζ2. The proof is derived by induction hypothesis
and [T-Data Parallel].

Lemma 3.4.2.

1. If ∅ ` D : DataTree(σ, E ,D, τ, ζ) and D ≡ D′, then
∅ ` D′ : DataTree(σ, E ,D, τ, ζ);

2. If ∅ ` R : RoleProcess(σ, E ,D) and R ≡ R′, then
∅ ` R′ : RoleProcess(σ, E ,D);

3. If ∅ ` N : Network and N ≡ N ′, then ∅ ` N ′ : Network .

Proof. Straightforward, by case analysis on the derivation of D ≡ D′, R ≡ R′ and
N ≡ N ′.

The next lemma shows that if a data tree is well typed, then the union of the
annotations on its initial edges equals the fourth set of its type, i.e. it equals the
characteristics roles of the tree.
Lemma 3.4.3. If ∅ ` D : DataTree(σ, E ,D, τ, ζ) and D 6= ∅D, then τ is the union
of the annotations on the initial edges of D.

Proof. The proof is by induction on the structure of D.

D = aτ
′
[V] From the typing rules for data tree, we know that in this case ∅ ` D :

DataTree(σ, E ,D, τ, ζ) must have been derived by one of rules [T-Leaf Script],
[T-Leaf Pointer] or [T-Data Tree]. In any of the possible cases it holds τ ′ = τ.

D = D1 |D2 In this case, we know that ∅ ` D : DataTree(σ, E ,D, τ, ζ) must
have been derived by from [T-Data Parallel]. So, we know that Γ ` D1 :
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DataTree(σ, E ,D, τ1, ζ1) and Γ ` D2 : DataTree(σ, E ,D, τ2, ζ2), where τ1 ∪ τ2 = τ
and ζ1 t ζ2 = ζ. We derive the proof by induction hypothesis and rule
[T-Data Parallel].

From this lemma we know that if ∅ ` aτ
′
[V] : DataTree(σ, E ,D, τ, ζ), then

τ ′ = τ . We use this fact in proofs whenever we derive the proof by induction on
the structure of D.

The next lemma shows that if a path is well typed, then the annotations on its
final edge equal the set of roles in the type, i.e. it equals the set of characteristic
roles of the path.
Lemma 3.4.4. If Γ ` aβ : Path(α), then β = α. If Γ ` p/q : Path(α), then
Γ ` q : Path(α).

Proof. Straightforward from [T-Path Edge] and [T-Path Composition].

We use the first statement of this lemma in order to simplify notation in proofs
whenever we derive the proof by cases or induction on the structure of the path.

The next lemma shows that scripts in a well-typed data tree are well typed for
the same location policy as the data tree, which implies that they can be safely
activated.
Lemma 3.4.5. Let ∅ ` D : DataTree(σ, E ,D, τ, ζ). If R ∈ run(D, p), then ∅ `
R : RoleProcess(σ, E ,D).

Proof. The proof is by induction on the structure of D.

D = ∅D In this case, by the definition of function run, given in Figure 3.10,
run(D, p) = ∅, so R ∈ run(D, p) does not hold.

D = bτ [�Π] We have two cases:

(i) p = bα and τ 5 α. In this case, Π ∈ run(D, p). From [T-Leaf Script] and
[T-Script] we obtain ∅ ` Π : RoleProcess(σ, E ,D).

(ii) p 6= bα or (p = bα and τ 65 α). In this case run(D, p) = ∅, so R ∈ run(D, p)
does not hold.

D = bτ [p@λ] In this case run(D, p) = ∅, so R ∈ run(D, p) does not hold.

D = bτ [D′] From [T-Data Tree] we have that Γ ` D′ : DataTree(σ, E ,D, τ ′, ζ ′),
for some τ ′ and ζ ′ (such that τ 5 τ ′ and ζ = τ\ζ ′). We derive the proof by
induction on structure of p.

p = aα In this case run(D, p) = ∅, so R ∈ run(D, p) does not hold.

p = aα/q We have two cases:

(i) a 6= b or (a = b and τ 65 α). In this case run(D, p) = ∅, so R ∈
run(D, p) 6= ∅ does not hold.
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(ii) a = b and τ 5 α. In this case run(D, p) = run(D′, q). By induction
hypothesis, we conclude the proof.

D = D1 |D2 In this case by the definition of function run, we know that R ∈
run(D1, p) or R ∈ run(D2, p).
Since [T-Data Parallel] implies ∅ ` D1 : DataTree(σ, E ,D, τ1, ζ1) and ∅ ` D2 :
DataTree(σ, E ,D, τ2, ζ2), we conclude ∅ ` R : RoleProcess(σ, E ,D) by induction
hypothesis.

The next lemma shows that the data terms in substitutions obtained by the
function read are matching the required pattern.
Lemma 3.4.6. Let ∅ ` D : DataTree(σ, E ,D, τ, ζ). If {{V/|χ|}} ∈ read(D, p, χ),
then match(χ,V).

Proof. The proof is by induction on the structure of D.

D = ∅D By the definition of function read, given in Figure 3.10, read(D, p, χ) =
∅, so {{V/|χ|}} ∈ read(D, p, χ) does not hold.

D = bτ [�Π] We have two cases:

(i) p = bα and τ 5 α. By the definition of function read, we know that if
{{�Π/|χ|}} ∈ read(D, p, χ), then match(χ,�Π).

(ii) p 6= bα or (p = bα and τ 65 α). In this case read(D, p, χ) = ∅, so {{�Π/|χ|}} ∈
read(D, p, χ) does not hold.

D = bτ [p@λ] Similar to the previous case.

D = bτ [D′] From [T-Data Tree] we have that Γ ` D′ : DataTree(σ, E ,D, τ ′, ζ ′),
for some τ ′ and ζ ′ (such that τ 5 τ ′ and ζ = τ\ζ ′). We derive the proof by
induction on structure of p.

p = aα By the definition of function read, we know that if {{D′/|χ|}} ∈
read(D, p, χ), then match(χ,D′).

p = aα/q We have two cases:

(i) a 6= b or (a = b and τ 65 α). In this case read(D, p, χ) = ∅, so
{{�Π/|χ|}} ∈ read(D, p, χ) does not hold.

(ii) a = b and τ 5 α. In this case read(D, p, χ) = read(D′, q, χ). By
induction hypothesis, we conclude the proof.

D = D1 |D2 By the definition of function read, we know that {{V/|χ|}} ∈
read(D1, p, χ) or {{V/|χ|}} ∈ read(D2, p, χ). Since [T-Data Parallel] implies
Γ ` D1 : DataTree(σ, E ,D, τ1, ζ1) and Γ ` D2 : DataTree(σ, E ,D, τ2, ζ2), we derive
the proof by induction hypothesis.
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The following lemma shows that if a well-typed data tree is changed by a well-
typed process the resulting data tree is still well typed. The functions change,
is defined in such way that is cannot affect the initial edges of the tree. For this
reason characteristic roles of the data tree do not change.
Lemma 3.4.7. Let ∅ ` D : DataTree(σ, E ,D, τ, ζ) and ∅ ` CHANGEp(χ,V).P :
Process(σ, E ,D, ρ). If E = change(D, p, χ,V), then there exists ζ ′ such that ∅ `
E : DataTree(σ, E ,D, τ, ζ ′).

Proof. [T-Change] implies

• (H.1) ∅ ` p : Path(α)

• (H.2) Γχ `


V : Script(σ, E ,D) or
V : Pointer(β) or
V : DataTree(σ, E ,D, τ ′′, ζ ′′) α 5 τ ′′

The proof is by induction on the structure of D.

D = ∅D In this case, by the definition of function change, given in Figure 3.10,
E = change(D, p, χ,V) = ∅D = D, so the proof is trivial.

D = bτ [�Π] We have two cases:

(i) p = bα and τ 5 α and match(�Π, χ). By the definition of function change,
we know that E = bτ [V{{�Π/|χ|}}]. Lemma 3.4.1 implies V{{�Π/|χ|}} has
the same type as V, i.e.

∅ `


V{{�Π/|χ|}} : Script(σ, E ,D) or
V{{�Π/|χ|}} : Pointer(β) or
V{{�Π/|χ|}} : DataTree(σ, E ,D, τ ′′, ζ ′′) α 5 τ ′′.

If V is a script or a pointer, the proof is straightforward. If V is a data tree,
from τ 5 α and α 5 τ ′′, by transitivity of 5, we obtain τ 5 τ ′′. We conclude
the proof in this case by an application of [T-Data Tree].

(ii) otherwise, E = D, so the proof is trivial.

D = bτ [p@λ] Similar to the previous case.

D = bτ [D′] From [T-Data Tree] we have that ∅ ` D′ : DataTree(σ, E ,D, τ ′′′, ζ ′′′),
for some τ ′′′ and ζ ′′′ (such that τ 5 τ ′′′ and ζ = τ\ζ ′′′). We derive the proof by
induction on structure of p.

p = aα We have two cases:

(i) a = b and τ 5 α and match(χ,D′). In this case E = bτ [V{{D′/χ}}]
Lemma 3.4.1 implies V{{D′/χ}} has the same type as V. We derive
the proof by an application of the typing rule for data trees which
corresponds to V.
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(ii) otherwise, E = D, so the proof is trivial.

p = aβ/q (H.1) and [T-Path Composition] imply ∅ ` q : Path(α).We have
two cases:

(i) a = b and τ 5 β. In this case E = bτ [change(D′, q, χ,V)].
By induction hypothesis, we obtain ∅ ` change(D′, q, χ,V) :
DataTree(σ, E ,D, τ ′′′, ζ iv). Since τ 5 τ ′′′, we can conclude the proof
by an application of[T-Data Tree].

(ii) otherwise, E = D, so the proof is trivial.

D = D1 |D2 In this case, from the definition of function change, we know that
E = E1 | E2, where E1 = change(D1, p, χ,V) and E2 = change(D2, p, χ,V).
[T-Data Parallel] implies Γ ` D1 : DataTree(σ, E ,D, τ1, ζ1) and Γ ` D2 :
DataTree(σ, E ,D, τ2, ζ2), where τ1∪ τ2 = τ and ζ1t ζ2 = ζ. By induction hypothe-
sis, we conclude Γ ` E1 : DataTree(σ, E ,D, τ1, ζ ′1) and Γ ` E2 :
DataTree(σ, E ,D, τ2, ζ ′2). From the definition of 5 we know that σ 5 τ1 ∧ σ 5
τ2 =⇒ σ 5 τ1 ∪ τ2. We conclude the proof with an application of rule
[T-Data Parallel].

The following two lemmas give us the types of data terms on which roles have
been enabled or disabled. From the definitions of the functions +r and −r, given
in the Figure 3.10, we see that scripts and pointers are not affected so their types
do not change. If the argument is a data tree, function +r adds role r to its initial
edges and function −r removes this role from all the edges. These changes are
shown in the types. The role must be removed from all the edges in order for
the data tree to stay well typed and consequently for the access to data not to be
discontinued.
Lemma 3.4.8.

1. If ∅ ` V : Script(σ, E ,D), then ∅ ` (V)+r : Script(σ, E ,D);

2. If ∅ ` V : Pointer(α), then ∅ ` (V)+r : Pointer(α);

3. If ∅ ` V : DataTree(σ, E ,D, τ, ζ), then ∅ ` (V)+r : DataTree(σ, E ,D, τ ′, ζ ′)
and if V 6= ∅D, then τ ′ = τ ∪ {r}.

Proof. We only prove item (3), since items (1) and (2) are trivial. From ∅ ` V :
DataTree(σ, E ,D, τ, ζ), we know that V is a data tree, i.e. V = D. The proof is by
induction on the structure of D.

[D = ∅D] Then (D)+r = ∅D and so, by [T-Empty Data] we get ∅ ` (V)+r :

DataTree(σ, E ,D, τ ′, ζ ′), where τ ′ = τ = {>}.

D = bτ [W] In this case (D)+r = bτ∪{r}[W]. Furthermore, from the typing rules
for data trees, we know

∅ `


W : Script(σ, E ,D), or
W : Pointer(β), or
W : DataTree(σ, E ,D, τ ′′, ζ ′′) and τ 5 τ ′′
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In case W is a script or a pointer, we conclude the proof with an application
of [T-Leaf script] or [T-Leaf Pointer], respectively. From τ 5 τ ′′, by the
definition of 5, we get that τ ∪ {r} 5 τ ′′. So, in case W is a data tree, we
can derive the proof with an application of [T-Data Tree].

D = D1 |D2 In this case by the definition of function +r, given in Figure 3.10,
we know that (D1 | D2)

+r = (D1)
+r | (D2)

+r. Since [T-Data Parallel] implies
∅ ` D1 : DataTree(σ, E ,D, τ1, ζ1) and ∅ ` D2 : DataTree(σ, E ,D, τ2, ζ2), we derive
the proof by induction hypothesis.

Lemma 3.4.9.

1. If ∅ ` V : Script(σ, E ,D), then ∅ ` (V)−r : Script(σ, E ,D);

2. If ∅ ` V : Pointer(α), then ∅ ` (V)−r : Pointer(α);

3. If ∅ ` V : DataTree(σ, E ,D, τ, ζ), then ∅ ` (V)−r : DataTree(σ, E ,D, τ ′, ζ ′)
and τ ′ = τ \\r.

Proof. Regarding item (1), from [T-Script], we know that V is a script. So, item
(1) trivially holds because in these cases we know that (�Π)−r = �Π. Similarly,
item (2) also holds. We only prove item (3). From ∅ ` V : DataTree(σ, E ,D, τ, ζ)
we know that V is a data tree, i.e. V = D. The proof is by induction on the
structure of D.

D = ∅D Then (D)−r = ∅D and so, by [T-Empty Data] we get ∅ ` (V)−r :
DataTree(σ, E ,D, τ ′, ζ ′) where τ ′ = τ \\r = τ = {>} and ζ ′ = ζ = {⊥,>}.

D = bτ [W] In this case (D)−r = bτ\\r[(W)−r]. Furthermore, we know

∅ `


W : Script(σ, E ,D), or
W : Pointer(β), or
W : DataTree(σ, E ,D, τ ′′, ζ ′′) and τ 5 τ ′′

In all three cases we can apply the induction hypothesis and get

∅ `


(W)−r : Script(σ, E ,D), or
(W)−r : Pointer(β), or
(W)−r : DataTree(σ, E ,D, τ ′′′, ζ ′′′) and τ ′′′ = τ ′′ \\r

In case W is a script or a pointer, we know that (W)−r = W. We also know
that it holds σ 5 τ =⇒ σ 5 τ \\r. So, in these cases, we derive the proof by an
application of [T-Leaf script] or [T-Leaf Pointer], respectively. From τ 5 τ ′′,
by the definition of 5 and \\, we get that τ \\r 5 τ ′′ \\r. So, in case W is a data
tree, we can derive the proof with an application of [T-Data Tree].

D = D1 |D2 In this case by the definition of function −r, given in Figure 3.10,
we know that (D1 | D2)

−r = (D1)
−r | (D2)

−r. Since [T-Data Parallel] implies
∅ ` D1 : DataTree(σ, E ,D, τ1, ζ1) and ∅ ` D2 : DataTree(σ, E ,D, τ2, ζ2), we derive
the proof by induction hypothesis. Notice that it holds (τ1 \\r) ∪ (τ2 \\r) =
(τ1 ∪ τ2) \\r.
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The next lemma shows that if a well-typed process updates roles on a well-
typed data tree, the resulting data tree is also well typed. Characteristic roles are
not affected by functions enable and disable.

Lemma 3.4.10. Let ∅ ` D : DataTree(σ, E ,D, τ, ζ). If

1. ∅ ` ENABLEp(r).P : Process(σ, E ,D, ρ) and E = enable(D, p, r), or

2. ∅ ` DISABLEp(r).P : Process(σ, E ,D, ρ) and E = disable(D, p, r),

then ∅ ` E : DataTree(σ, E ,D, τ, ζ ′).

Proof. 1. The proof is by induction on the structure of D and p. [T-Enable]
implies (H.1) Γ ` p : Path(α) and (ρ, r) ∈+ E and α 5 {r} and α ≤ ρ.

D = ∅D In this case, from [T-Empty Data], we know τ = {>} and ζ =
{⊥,>}. From definition of function enable, given in Figure 3.10, we know
that E = ∅D. We derive the proof by [T-Empty Data] with τ ′ = τ = {>}
and ζ ′ = ζ = {⊥,>}.

D = bτ [�Π] We have two cases:

(i) p = bα and τ 5 α. By the definition of functions enable and +r, we
know that E = bτ [�Π+r] = bτ [�Π] = D. So, the proof is trivial.

(ii) otherwise, E = D, so the proof is trivial.

D = bτ [p@λ] Similar to the previous case.

D = bτ [D′] In this case, from [T-Data Tree] we know that ∅ ` D′ :

DataTree(σ, E ,D, τ ′′, ζ ′′), for some τ ′′ and ζ ′′ (such that τ 5 τ ′′ and ζ =
τ\ζ ′′). We derive the proof by induction on structure of p.

p = aα We have two cases:

(i) a = b and τ 5 α. In this case E = bτ [D′+r]. Lemma 3.4.8 implies
∅ ` D′+r : DataTree(σ, E ,D, τ ′′ ∪{r}, ζ ′′′) or that, in case D′ = ∅D,
∅ ` D′+r : DataTree(σ, E ,D, {>}, ζ ′′′) We derive the proof by an
application of [T-Data Tree].

(ii) otherwise, E = D, so the proof is trivial.

p = aβ/q (H.1) and [T-Path Composition] imply Γ ` q : Path(α).

We have two cases:

(i) a = b and τ 5 β. In this case E = bτ [enable(D′, q, r)]. After we
apply the induction hypothesis, we obtain ∅ ` enable(D′, q, r) :
DataTree(σ, E ,D, τ ′′∪{r}, ζ iv). Since τ 5 τ ′′∪{r}, we can conclude
the proof by an application of [T-Data Tree].

(ii) otherwise, E = D, so the proof is trivial.
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D = D1 |D2 In this case, from the definition of function enable, we know
that E = E1 | E2, where E1 = enable(D1, p, r) and E2 = enable(D2, p, r).
[T-Data Parallel] implies ∅ ` D1 : DataTree(σ, E ,D, τ1, ζ1) and ∅ ` D2 :
DataTree(σ, E ,D, τ2, ζ2), where τ1 ∪ τ2 = τ and ζ1 t ζ2 = ζ. By induction
hypothesis we conclude ∅ ` E1 : DataTree(σ, E ,D, τ ′1, ζ ′1) and ∅ ` E2 :
DataTree(σ, E ,D, τ ′2, ζ ′2). From the definition of 5 we know that σ 5 τ ′1∧σ 5
τ ′2 =⇒ σ 5 τ ′1 ∪ τ ′2. We conclude the proof with an application of rule
[T-Data Parallel].

2. Similar to the previous case.

Some, but not all, of the previous lemmas hold also for terms well typed in
an environment Γ 6= ∅. Those that mention function match hold only for terms
which are well typed in ∅. In addition, the auxiliary functions are not defined for
variables. For this reason, we have proved the lemmas only for terms which are
well typed in ∅.

The following lemma proves that local interactions preserve well-typedness of
involved processes and data.
Lemma 3.4.11. Let ∅ ` D : DataTree(σ, E ,D, τ, ζ), ∅ ` R : RoleProcess(σ, E ,D)
and (D,R) (D′, R′). Then

(1) ∅ ` D′ : DataTree(σ, E ,D, τ ′, ζ ′), and

(2) ∅ ` R′ : RoleProcess(σ, E ,D).

Proof. The proof is by induction on the derivation of (D,R) (D′, R′).

[L-Communication] In this case:

• D′ = D;

• R = aT v!vqρ
′ | aT v?x.Pqρ;

• R′ = P{v/x}qρ.

From [T-Role Parallel] and [T-Role] we obtain:

• (P.1) ∅ ` aT v!v : Process(σ, E ,D, ρ′);

• (P.2) ∅ ` aT v?x.P : Process(σ, E ,D, ρ).

From (P.1) and [T-Output] we obtain (H.1) ∅ ` v : T v. From (P.2) and [T-Input]
we obtain (H.2) x : T v ` P : Process(σ, E ,D, ρ). From (H.1), (H.2) and Lemma
3.4.1(1) we deduce ∅ ` P{v/x} : Process(σ, E ,D, ρ). We conclude (2) by an appli-
cation of [T-Role], while (1) trivially holds.

[L-Run] In this case:

• D′ = D;

• R = RUNpqρ;
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• R′ = R1 | . . . |Rn where {R1, . . . , Rn} = run(D, p).

From Lemma 3.4.5 we obtain that ∅ ` Ri : RoleProcess(σ, E ,D) for every i ∈
{1, . . . , n}. We conclude (2) by n − 1 applications of [T-Role Parallel], while
(1) trivially holds.

[L-Read] In this case:

• D′ = D;

• R = READp(χ).Pqρ;

• R′ = P s1qρ | . . . | P snqρ where {s1, . . . , sn} = read(D, p, χ).

From [T-Role] and [T-Read] we obtain (H.1) Γχ ` P : Process(σ, E ,D, ρ). From
Lemma 3.4.6, Lemma 3.4.1(3) and (H.1) we deduce ∅ ` P si : Process(σ, E ,D, ρ)
for every i ∈ {1, . . . , n}. Then, we obtain ∅ ` P siqρ : RoleProcess(σ, E ,D) for
every i ∈ {1, . . . , n} by [T-Role]. We conclude (2) with n − 1 applications of
[T-Role Parallel], while (1) trivially holds.

[L-Change] In this case:

• R = CHANGEp(χ,V).Pqρ;

• D′ = change(D, p, χ,V);

• R′ = Pqρ.

From [T-Role] we obtain (H.1) ∅ ` CHANGEp(χ,V).P : Process(σ, E ,D, ρ) and
then deduce (1) by Lemma 3.4.7. From (H.1) and [T-Change] we get ∅ ` P :
Process(σ, E ,D, ρ). We obtain (2) by [T-Role].

[L-Enable] In this case:

• R = ENABLEp(r).Pqρ;

• D′ = enable(D, p, r);

• R′ = Pqρ.

From [T-Role] we obtain (H.1) ∅ ` ENABLEp(r).P : Process(σ, E ,D, ρ) and then
deduce (1) by Lemma 3.4.10(1). From (H.1) and [T-Enable] we get ∅ ` P :
Process(σ, E ,D, ρ). We obtain (2) by [T-Role].

[L-Disable] In this case:

• R = DISABLEp(r).Pqρ;

• D′ = disable(D, p, r);

• R′ = Pqρ.
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From [T-Role] we obtain (H.1) ∅ ` DISABLEp(r).P : Process(σ, E ,D, ρ) and then
deduce (1) by Lemma 3.4.10(2). From (H.1) and [T-Disable] we get ∅ ` P :
Process(σ, E ,D, ρ). We obtain (2) by [T-Role].

[L-Structural Congruence] In this case we obtain the proof by induction hy-
pothesis and Lemma 3.4.2.

[L-Parallel] In this case we obtain the proof by induction hypothesis and
[T-Role Parallel].

[L-Restriction] In this case we obtain the proof by induction hypothesis and
[T-Role Restriction].

Subject reduction on networks is proved using Lemma 3.4.11.
Theorem 3.4.12 (Subject reduction). If ∅ ` N : Network and N → N ′, then
∅ ` N ′ : Network .

Proof. The proof is by induction on the derivation of N → N ′.

[R-Local] In this case:

• N = l[D ‖ R]

• (D,R) (D′, R′)

• N ′ = l[D′ ‖ R′].

From [T-Location] we obtain

• ∅ ` l : Location(σ, E ,D);

• ∅ ` D : DataTree(σ, E ,D, τ, ζ);

• ∅ ` R : RoleProcess(σ, E ,D).

We derive the proof by Lemma 3.4.11 and [T-Location].

[R-Go] In this case:

• N = l[Dl ‖ GO m.Rqρ |Rl] 8m[Dm ‖ Rm]

• N ′ = l[Dl ‖ Rl] 8m[Dm ‖ R |Rm]

From [T-Network Parallel] we obtain:

• (P.1) ∅ ` l[Dl ‖ GO m.Rqρ |Rl] : Network ;

• (P.2) ∅ ` m[Dm ‖ Rm] : Network .

From (P.1), (P.2) and [T-Location] we obtain:

• ∅ ` l : Location(σ, E ,D);

• ∅ ` Dl : DataTree(σ, E ,D, τ, ζ);

• (L.1) ∅ ` GO m.Rqρ |Rl : RoleProcess(σ, E ,D);
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• ∅ ` m : Location(σ′, E ′,D′);

• ∅ ` Dm : DataTree(σ′, E ′,D′, τ ′, ζ ′);

• ∅ ` Rm : RoleProcess(σ′, E ′,D′);

From (L.1), [T-Role Parallel] and [T-Go] we get:

• ∅ ` Rl : RoleProcess(σ, E ,D);

• ∅ ` m : Location(σ′′, E ′′,D′′);

• ∅ ` R : RoleProcess(σ′′, E ′′,D′′).

[T-Location Name] implies (σ′′, E ′′,D′′) = (σ′, E ′,D′). We derive the proof
by applications of typing rules [T-Role Parallel], [T-Location] and
[T-Network Parallel].

[R-Stay] In this case:

• N = l[D ‖ GO l.Rqρ |R′];

• N ′ = l[D ‖ R |R′].

From [T-Location] we obtain

• ∅ ` l : Location(σ, E ,D);

• ∅ ` D : DataTree(σ, E ,D, τ, ζ);

• ∅ ` GO l.Rqρ |R′ : RoleProcess(σ, E ,D).

Then, from [T-Role Parallel] and [T-Go] we get:

• ∅ ` R′ : RoleProcess(σ, E ,D);

• ∅ ` l : Location(σ′, E ′,D′);

• ∅ ` R : RoleProcess(σ′, E ′,D′).

[T-Location Name] implies (σ′, E ′,D′) = (σ, E ,D). We derive the proof by appli-
cations of rules [T-Role Parallel] and [T-Location].

[R-Structural Congruence] In this case we obtain the proof by induction
hypothesis and Lemma 3.4.2.

[R-Parallel] In this case we obtain the proof by induction hypothesis and
[T-Network Parallel].

[R-Network Restriction] In this case we obtain the proof by induction hy-
pothesis and [T-Network Restriction].

Corollary 3.4.13. If ∅ ` N : Network and N →∗ N ′, then ∅ ` N ′ : Network .
We can now prove the soundness of the system.

Theorem 3.4.14 (Type safety). Let ∅ ` N : Network . Then N is well behaved.
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Proof. Let N →∗ ~ν(l[D ‖ Pqρ |R]8N ′) and P(l) = (σ, E ,D). From 3.4.13 we know
that ∅ ` ~ν(l[D ‖ Pqρ |R] 8N ′) : Network . Then, from [T-Network Restriction]
and [T-Network Parallel] we obtain ∅ ` l[D ‖ Pqρ | R] : Network . From
[T-Location Name] and [T-Location] we deduce:

• (L.1) ∅ ` l : Location(σ, E ,D);

• (L.2) ∅ ` D : DataTree(σ, E ,D, τ, ζ);

• (L.3) ∅ ` Pqρ |R : RoleProcess(σ, E ,D).

From (L.3), [T-Role Parallel] and [T-Role] we get

(R.1) ∅ ` P : Process(σ, E ,D, ρ).

Now, we prove items of Definition 3.2.25.

(1) Since types of data trees and pure processes are well formed, from (L.2) and
(R.1), we know that σ 5 τ and σ ≤ ρ. By Definition 3.3.3 we know that
C(D) = τ, which concludes the proof.

(2) Straightforward from [T-Enable].

(3) Straightforward from [T-Disable].

(4) We give the proof for n = 2. We have only two interesting cases. Let D =
aτ11 [D′] and D′ 6= ∅D. [T-Data Tree] implies ∅ ` D′ : DataTree(σ, E ,D, τ ′, ζ ′)
where τ1 5 τ ′. The next edge of the path, aτ22 must be one of initial edges of
D′, so τ2 ∈ τ ′. By the definition of 5 we obtain τ1 5 τ2. If D = D1 | D2 the
whole path must be a path in either D1 or D2.

(5) Annotations of edges in a data tree contain role > and a well-formed policy
does not allow this role to be enabled nor disabled.

(6) [T-Output] implies ∅ ` v : T v and C(T v) ≤ ρ. By Definition 3.3.3 we know
that C(v) = C(T v), which concludes the proof.

(7) From [T-Run], [T-Read], [T-Change], [T-Enable] and [T-Disable], we know
that ∅ ` p : Path(α) and α ≤ ρ. By Definition 3.3.3 we know that C(p) = α,
and so, C(p) ≤ ρ.

(8) By Definition 3.2.12 we know that path p complies a path from the root of D
to W. This implies that the final edge of the path p complies the parent edge
of data term W. From α ≤ ρ and Lemma 3.2.13 we obtain that the parent
edge is accessible to ρ, which by definition makes W accessible to Pqρ.

(9) Straightforward from [T-Change].
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3.5 Conclusions and related work
With the aim of application of RBAC to peer-to-peer model of semi-structured
web data, in [40], we introduced the rXdπ calculus, a formal model for dynamic
web applications with RBAC, and proposed a type system to control its safety.
In our framework, a network is a parallel composition of locations, where each
location contains processes with roles and a data tree whose edges are associated
with roles. Processes can communicate, migrate from a location to another, use
the data, change the data and the roles in the local tree. By assigning roles both to
data trees and processes, we obtain a model that allows role administration (i.e.
activation and deactivation). The language shown in this chapter is essentially
the one from [40], except that the calculus presented here, besides the use of
slightly different notation, allows replication of any process and gives an alternative
definition of reduction relation using local interaction relation, instead of reduction
contexts. The proposed type system ensures that the specified location policies
and data consistency are preserved during computations and that processes do
not exceed rights of their roles in sending, accessing and changing data.

The syntax of processes and operational semantics are inspired by XPath [9],
XQuery [16, 126] and XQuery Update Facility [125]. The data model is an edge-
labelled rooted tree, similar to [10]. The calculus presented in this chapter and
in [40] extend Xdπ-calculus [55] with RBAC. The Xdπ calculus models process
communication, and process migration, as distributed π-calculus [72], and local
interaction between processes and data. A network is a parallel composition of
locations, where each location contains one process and one data tree. The paths
of Xdπ-calculus have richer syntax, there is only one process for data management
and semantics is given by a reduction relation closed under structural congruence
and reduction contexts. The language presented in [41] extends Xdπ-calculus with
security levels. KLAIM [37] is a language designed to program distributed systems
consisting of several mobile components that interact through multiple distributed
tuple spaces or databases.

RBAC has been first formalized in [47]. The current standard is defined by
the InterNational Committee for Information Technology Standards in [6]. There
is a large literature on models, extensions and implementations for RBAC, we
only mention [129, 46, 113, 48, 96]. We discussed a model in which the pure
processes are the users, the permissions are the accesses to data in trees and the
administration policies of locations prescribe how the association between roles
and data can change. Note that we do not have user identifiers, and so we cannot
activate and deactivate roles for users. Our design choice is motivated by the
focus on the interaction between processes and data trees and to the best of our
knowledge this is a first attempt in this direction. Other common features of
RBAC system we did not consider here, since we could smoothly add them to the
present calculus, are: incompatible roles, static and dynamic separation of roles,
limits on the number of users authorised for a given role.

Security policies are often concerned with information flow that cannot be im-
plemented correctly with classical access control methods which essentially prevent
unauthorized access. In particular, an overall behavior check of the program must
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be performed, including the part that has not executed jet, in order to enforce
policies which depend on how obtained data will be used in the future execution
of the program. A language extending KLAIM which can be used for enforcing
such predictive access policies is proposed in [153]. The type system presented in
this chapter checks all the actions of the processes and it is used to control the
usage of the data.

Access control has been studied in various forms for many calculi modelling
concurrent and distributed systems. Sophisticated types controlling the use of
resources and the mobility of processes have been proposed for the Dπ calcu-
lus [72, 70]. In Dπ the resources are channels which support binary communica-
tion between processes. The typing system guarantees that distributed processes
cannot access the resources without first being granted the capability to do so.
Processes can augment their sets of capabilities via communication with other
processes. In the SafeDpi calculus [71] parametrised code may be sent between
locations and types restrict the capabilities and access rights of any processes
launched by incoming code. The paper [41] discusses a type system for the Xdπ
calculus based on security levels: security levels in data trees are assigned only
to the data in the leaves. Co-actions have been introduced for ambient calculi
as a basic mechanism for regulating access to locations and use of their resources
[98, 29, 56]. More refined controls for ambient calculi include passwords [103, 21],
classifications in groups [27, 35], mandatory access control policies [20], membranes
regulating the interaction between computing bodies and external environments
[63]. Access control for binary sessions without delegation has been investigated
in [95]. Information flow safety in multiparty sessions has been studied in [22]. In
that paper a calculus for multiparty sessions is enriched with security levels for
messages and a monitored semantics for this calculus, which blocks the execution
of processes as soon as they attempt to leak information is proposed.

Closely related papers are [18], [33] and [41]. The authors of [18] equip the
π-calculus with the notion of user: they tag processes with names of users and
with sets of roles. Processes can activate and deactivate roles. A mapping between
roles and users and a mapping between read/write actions and roles control access
rights. A type discipline statically guaranties that systems not respecting the
above mappings are rejected. In [33], the authors define a boxed ambient calculus
extended with a distributed RBAC mechanism where each ambient controls its
own access policy. A process is associated with an owner and a set of activated roles
that grant permissions for mobility and communication. The calculus includes
primitives to activate and deactivate roles. The behavior of these primitives is
determined by the process’s owner, its current location and its currently activated
roles. In [41] the authors add security levels to Xdπ calculus. The type system
ensures that the data in a location are accessible only to processes in locations of
equal or higher security level. Processes originating in a location can only go to
locations of equal or less security level, with the exception of movements which
are returns to the source location.
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Chapter 4

Types for private access

Overview This chapter is based on the paper “Linked Data Privacy” [90] which
introduces a formal model of linked data that can statically detect run-time errors
due to privacy violations. Here, the terminology and the language are slightly
adapted, and the proofs are given in more details. In Section 4.1 we describe the
setting and the problem we are addressing. In Section 4.2 we introduce a new
calculus for modelling the web of linked data and we define well-behaved network.
In Section 4.3 we introduce a simple, yet sufficiently powerful type assignment
system which, together with the introduced policy order, is able to statically check
whether a network is well behaved. In Section 4.4 first we prove several auxiliary
properties and then the main result - that a well-typed network is well behaved.
Section 4.5 concludes the chapter with discussion and related work.

4.1 Linked data and private access
The more data is connected with other sources of information, the more its value
increases. Having that in mind, an initiative to establish a generic format for
connecting data, called the Semantic Web, was born one decade ago. It has grown
into a collection of recommendations for publishing data on the Web [15, 14]. The
Web of Linked Data is expected to expand into a huge graph of linked data, based
on four principles defined by Berners-Lee [11]:

1. the use of URIs (IRIs) to name things,

2. the use of HTTP URIs (IRIs) so that these names may be found,

3. the use of standards in order to provide functional information about things,

4. the possibility of making connections between the data in order to create
rich web in which one can find all kinds of things.

The recommended standards for publishing and querying linked data are Resource
Description Framework (RDF) [101, 131] and SPARQL [122].

RDF is a framework for representing information about resources. Anything
can be considered as a resource, including documents, people, physical objects and

61
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abstract concepts. Publishing data in an open standard such as RDF and inter-
linking data sources aims to transform Web of Documents into more (re)usable,
machine-readable, Web of Data. The essence of RDF data model [36] are triples

< subject > < predicate > < object >

which allow one to make statements about resources. An RDF triple expresses a
relationship between the subject and the object. The nature of their relationship
is specified by the predicate and is called a property. RDF data are sets of triples
which may be understood as directed graph such that subjects and objects are
nodes and predicates are the edge labels. The edges are directed from subject
to object. The elements of triples are allowed be URIs (IRIs), literals or blank
nodes. The abbreviation IRI stands for International Resource Identifier, which
is a string of Unicode characters specified by a standard. The abbreviation URI
stands for Uniform Resource Identifier which is, a less general, string of ASCII
characters. Literals are basic values that are not IRIs. Blank nodes are used to
represent something that exists but whose name is unknown or insignificant. The
subject and the object of a triple may be IRIs, literals or blank nodes, while the
predicate may only be an IRI.

There are several concrete syntaxes for writing down RDF graphs (Turtle [8],
JSON-LD [133], RDFa [73], RDF/XML [54] etc.) They all meet the criteria of [36]
and are convenient for working with RDF documents, since they may encode the
same RDF data in many different ways.

The recommended query language for RDF is SPARQL. Its query forms enable
querying graph patterns along with their conjunctions and disjunctions. Features
such as negation, subqueries, creation of values by expressions, extensible value
test and constraint of queries by source RDF graph are also supported. The basic
graph pattern is the triple pattern. The syntax of the triple patterns is essentially
the same as the syntax of the RDF triples, except that variables may appear as
any of the triples’ elements. SPARQL Update [59] is an extension of SPARQL that
provides operations to insert, delete and update RDF data.

A great merit of the Web of Linked Data is its exposure to public consumption.
Even though public availability brings a great advantage to users of such data, not
all data are produced for public usage. For example, RDF is often used to represent
personal information and data from social networks. This gives rise to the question
of privacy of linked data, since the lack of privacy protection mechanisms often
discourages people from publishing data on the Web of Linked Data. Addressing
this issue requires a clear explanation for the intuition of the notion of privacy. In
[151], the privacy is defined as “the ability to control who has access to information
and to whom that information is communicated”. In this sense, we deem that
privacy of data is protected in case:

• an owner of the data can always access his own data, and

• an owner of the data can control access to his data, i.e. he can create
conditions for other consumers to access parts or all of his data, and

• an owner of the data can change the data.
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< Alice > < is > < person >
< Alice > < has affiliation > < UNS >
< UNS > < organizes > < event >
< Bob > < organizes > < event >
< paper > < published > < journal >

Figure 4.1: RDF triples in pseudocode

Furthermore, privacy may not include private status of some data only, but also,
whether the data are significant or not for some group and whether the readers
are able to understand the data properly [134].

There are several works on formalizations of different aspects of linked data.
The calculi that appear in [81, 82] provide an abstract syntax for RDF and SPARQL
in order to capture Linked Data structures and queries. The authors of [127, 128]
describe the formal semantic model of Privacy Preference Ontology and present
a privacy preference manager that lets users create privacy preferences by means
of the aforementioned ontology and restrict access to their data to third-party
users based on profile data features. In [42] the authors study provenance for
Linked Data in a process calculus, where types statically evaluate provenance
driven access control. In [90] we focus on privacy of linked data in terms of access
control. We give the brief summary of the research presented in [90] and in this
chapter:

• we formalize a calculus for modelling a linked data network;

• we develop a type system for preventing privacy violations and we show its
soundness.

4.1.1 Examples and motivation

In Figure 4.1, we give an example in the abstract syntax of RDF data model [36,
131] which is the most convenient for the formal reasoning. The name UNS appears
as an object in one triple and a subject in another. Examples of SPARQL queries
executed on this data are shown in Figure 4.2.

In general, the results of queries can be boolean values, sets or RDF graphs.
The first ask query after the key word ASK has, inside the curly braces, the sim-
plest triple pattern - a single triple that has no variables. This query should be
understood as the question: is there a triple < Bob > < is > < person > in
the queried data? The result is boolean value FALSE. The second ask query, inside
the curly braces, has a pattern consisting of two triples connected with the key
word UNION. This query should be understood as the question: is there a triple
< Alice > < is > < person > or a triple < Bob > < is > < person > in
the queried data? In this case, the result is TRUE.

The select query in Figure 4.2 has two parameters: the variable ?x after the
key word SELECT, and the pattern after the key word WHERE. The pattern is such
that the subject is the variable, the predicate is organizes and the object is
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Query Result

ASK { < Bob > < is > < person > } FALSE

ASK { < Alice > < is > < person >
UNION

< Bob > < is > < person > }
TRUE

SELECT ?x
WHERE

{
<?x > organizes event

}

?x
UNS

Bob

Figure 4.2: ASK and SELECT queries

event. The triples in the queried data, identified by this pattern, are < UNS > <
organizes > < event > and < Bob > < organizes > < event >. The query
results in the set of substitutions for the variable ?x, such that the first element
of each identified triple substitutes the variable.

Figure 4.3 contains examples of two SPARQL Update queries. Both queries are
executed on the data from Figure 4.1. The delete query has the pattern after
the key word WHERE that identifies the triples in the queried data that should be
deleted. The dot in the pattern denotes the conjunction of two patterns. This is
an example of a query that removes all the triples about anyone who is a person.
The insert data operation adds triples to the queried data.

Now, let us consider a network of users, each having their own profile (data)
in RDF format and processes running on their behalfs. In order to enable each
owner of data to control privacy of its data, we assign a privacy protection policy
to each user name, resource and data triple. Similarly to [127, 128], we take
SPARQL patterns as privacy protection policies and say that a user can access
a data triple if the user’s data satisfy the ASK query of the policy assigned to
the triple. If a user name is accessible to different users, they are all considered
as the data owners and the data can be changed by any of them. A privacy
violation would be changing the data in such way that they become inaccessible
to its original owner. For example, both queries from Figure 4.3 are potentiality
dangerous. The delete query might delete some crucial data, or it might not be
authorized to change the data at all. The insert data query might add a data
triple with a policy such that owner’s data do not satisfy the ASK query of that
policy. In addition, privacy violations may be caused by uncontrolled reading of
the data.

In the following, we give the formalization of this scenario and we develop a
type system for preventing the aforementioned privacy violations.
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Query
DELETE

WHERE

{
?x < is > < person >.
?x ?y ?z
}

Data after
< UNS > < organizes > < event >
< Bob > < organizes > < event >
< paper > < published > < journal >

Query
INSERT DATA

{
< photo > < of > < Alice >
}

Data after
< Alice > < is > < person >
< Alice > < has affiliation > < UNS >
< UNS > < organizes > < event >
< Bob > < organizes > < event >
< paper > < published > < journal >
< photo > < of > < Alice >

Figure 4.3: DELETE and INSERT DATA queries
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U ::= Policy
(u, u, u) triple

| U ∨ U disjunction
| ∃x.U exists

Figure 4.4: Syntax of privacy protection policies

D ::= Data
∅D empty

| (a, a, a)U triple
| D |D parallel

χ ::= Pattern
(u, u, u)U triple

| χ ∨ χ disjunction
| ∃xU .χ exists

Figure 4.5: Syntax of data and data patterns

4.2 Language
Notation Let us assume that there is an infinite set IRIs of IRI names (IRIs)
ranged over by a, b, c, . . . , an infinite set Variables of variables ranged over by
x, y, . . . We let symbols u, v, . . . range over elements of IRIs ∪ Variables, and refer
to them as names.

4.2.1 Syntax

Policies We assume given a function P(·) that assigns privacy protection policies
to IRI names. The syntax of privacy protection policies is given by the grammar
in Figure 4.4. The term (u1, u2, u3) denotes a triple of IRI names or variables, the
term U1 ∨ U2 denotes disjunction between policies U1 and U2, and the term ∃x.U
denotes an exists policy in which variable x is bounded. We say that a privacy
protection policy is well formed if it contains no occurrences of free variables and
we consider only such policies. We use U, V,W, . . . to range over privacy protection
policies. Sometimes we refer to a privacy protection policy as privacy policy or
just policy.

Data The syntax of data is given in Figure 4.5. The term ∅D denotes empty
data, the term (a1, a2, a3)

U denotes a triple of IRI names with an associated privacy
protection policy U and the term D1 |D2 denotes a parallel composition of data.
We use D,E, . . . to range over data. Data variables are ranged over by X, Y, . . .
We let symbol δ range over data and data variables.

Patterns The syntax of data patterns, given in Figure 4.5, is very similar to
the syntax of privacy protection policies. The only difference is that patterns are
decorated by policies. We use χ, ψ, ω, . . . to range over data patterns. We often
refer to data patterns as just patterns.
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P ::= Process
0 inaction

| P | P parallel
| P ⊕ P choice
| ∗P replication
| READu(χ,X).P read data
| WRITEu(δ).P write data
| CLEARu delete data
| MODIFYu(χ,D).P change data
| SELECTu(∃xU .χ, x).P select name
| UPDATEu(χ, U).P update policy

N ::= Network
a[D ‖ P ] user

| N 8N parallel

Figure 4.6: Syntax of processes and networks.

Processes The syntax of processes is given in Figure 4.6. We can divide them
into three groups:

1. the terms 0, P1 | P2, P1 ⊕ P2 and ∗P denote π-calculus processes;

2. the terms READu(χ,X).P, WRITEu(δ).P, CLEARu, MODIFYu(χ,D).P and
SELECTu(∃xU .χ, x).P denote processes that manage the data.
In particular, the term READu(χ,X).P denotes a process that reads from the
user named u the data identified by the pattern χ. The data variable X is
substituted with the identified data in the continuation P .
The term WRITEu(δ).P denotes a process that adds the data δ to the data of
user named u and then continues as P .
The term CLEARu denotes a process that deletes the entire data of the user
named u.
The term MODIFYu(χ,D).P denotes a process that deletes from the user
named u the data identified by the pattern χ, and writes D to the same user
and then continues as P .
The term SELECTu(∃xU .χ, x).P denotes a process that selects specific ele-
ments of data triples identified by the pattern χ. The variable x is sub-
stituted with the selected names in the continuation P. Any other exists
pattern that may appear inside the pattern χ is not considered as a binder
for P.

3. the term UPDATEu(χ, U).P denotes a process that manages privacy protection
policies. In particular, it replaces by U the privacy policies on the part of
user’s u data, identified by the pattern χ and then continues as P .

We use P,Q, . . . to range over processes.

Networks The syntax of networks is given in Figure 4.6. The term a[D ‖ P ]
denotes a user named a that encloses data D and process P. The term N1 8 N2

denotes a parallel composition of networks. We say that a network is well formed
if all its users have different names.
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User Alice P(Alice) = (Alice, is, person) = UAlice

DAlice = (Alice, is, person)UAlice

| (Alice, has affiliation, UNS)UAlice

| (UNS, organizes, event)UP

| (Bob, organizes, event)UP

| (paper, published, journal)UAlice∨∃x.(x,is,researcher)

User Bob P(Bob) = (Bob, is, person) = UBob

DBob = (Bob, has affiliation, UNS)UP

| (Bob, is, researcher)UP

| (Bob, is a friend of, Cindy)UP

Figure 4.7: Running example of data in a network

Syntactic conventions We adopt some standard conventions regarding the
syntax of processes:

– we sometimes use a prefix form for parallel compositions and write, for example,∏
i=1..n Pi instead of P1 | · · · | Pn;

– we identify
∏

i∈∅ Pi with 0;

– we omit trailing occurrences of 0 and write, for example, WRITEa(D) instead of
WRITEa(D).0.

Example 4.2.1 (Running example). In this and in several following examples,
we consider the following network:

Alice[DAlice ‖ PAlice] 8 Bob[DBob ‖ PBob]

Figure 4.7 shows the data running on behalf of both users in the network, Alice
and Bob. The triples of user Alice are similar to those given in Figure 4.1. The
difference is that, in our setting, the triples are associated with privacy protec-
tion policies. Let us assume that the privacy protection policy of IRI names
Alice and Bob is as follows: P(Alice) = (Alice, is, person) and P(Bob) =
(Bob, is, person). Further, let us assume that all other IRIs in this example have
the same privacy protection policy: UP = ∃x.∃y.∃z.(x, y, z). We leave the specifi-
cation of processes PAlice and PBob for the further examples. 4

Example 4.2.2. The processes we consider in the calculus are closely related to
SPARQL and SPARQL Update queries. We give one possible encoding of select,
delete and insert from Figures 4.2 and 4.3 without specifying policies.
SELECTAlice(∃xU .(x, organizes, event)V , x)
SELECTAlice(∃xU1 .(x, is, person)V , x).MODIFYAlice(∃yU2 .∃zU3 .(x, y, z)W , ∅D)
WRITEAlice((photo, at, party)U)
We will use these processes to illustrate the semantics of our language. We will,
also, show that they are the examples of processes that may violate privacy in a
network. 4
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4.2.2 Satisfaction of ask queries

In Section 4.1 we informally introduced two notions: satisfaction of a privacy
protection policy and identification of data triples. Now, we give their precise
definitions. The first one is a deductive system for checking whether some data
satisfies a privacy protection policy.
Definition 4.2.3 (Satisfaction of a privacy policy). We say that data D
satisfies a privacy policy U , written D |= ASK(U), if it can be deduced by means of
the following rules:

[A-Triple]

(a, b, c)W |= ASK((a, b, c))

[A-OrL]

(a, b, c)W |= ASK(U)

(a, b, c)W |= ASK(U ∨ V )

[A-OrR]

(a, b, c)W |= ASK(V )

(a, b, c)W |= ASK(U ∨ V )

[A-Exists]

(a, b, c)W |= ASK(U{d/x})
(a, b, c)W |= ASK(∃x.U)

[A-Ask]

D ≡ (a, b, c)W |D′ (a, b, c)W |= ASK(U)

D |= ASK(U)

Rule [A-Triple] states that data triple (a, b, c)W satisfies privacy policy (a, b, c).
Rules [A-OrL] and [A-OrR] state that a data triple satisfies disjunction of two

policies if is satisfies one of them.
Rule [A-Exists] state that a data triple satisfies exists policy ∃x.U if there

exists IRI name d such that the data triple satisfies policy U{d/x}. For example,
(a, b, c)W |= ASK(∃x.(x, b, c)) because (x, b, c){a/x} = (a, b, c) and by [A-Triple]
we know (a, b, c)W |= ASK((a, b, c)).

Rule [A-Ask] states that the data satisfy a privacy protection policy if there
is at least one triple in the data that satisfies the policy. We formalize this in the
following lemma which is proven straightforwardly from [A-Ask].
Lemma 4.2.4. If D |= ASK(U), then there exists a triple (a, b, c)W such that
D ≡ (a, b, c)W |D′ and (a, b, c)W |= ASK(U).

We use notion of policy satisfaction to check whether some user is allowed to
access a data triple. More precisely, we say that a user a[D ‖ P ] is allowed to
access a data triple with privacy protection policy U if D |= ASK(U).

As a direct consequence of Lemma 4.2.4, we have that a user with empty data
is not allowed to access any data triple.
Lemma 4.2.5. If D |= ASK(U), then D 6= ∅D.

We call users whose corresponding data is empty blocked users. All other users
are called active users.
Example 4.2.6. The ask queries for Figure 4.2 are encoded into our calculus as:
ASK((Bob, is, person))
ASK((Alice, is, person) ∨ (Bob, is, person)).
It is easy to check that

DAlice |= ASK((Bob, is, person))
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does not hold, while

DAlice |= ASK((Alice, is, person) ∨ (Bob, is, person))

holds. Furthermore, it also easy to check that

DAlice |= ASK(∃x.(x, is, person))

holds. 4
Example 4.2.7 (Public data). We say that a name or a data triple is public if
it has privacy protection policy

∃x.∃y.∃z.(x, y, z)

since for any D 6= ∅D it holds

D |= ASK(∃x.∃y.∃z.(x, y, z)).

4
Patterns appear as arguments in processes, where they are used to identify

the data. The second notion, we now formalize, is a method for checking whether
some data triple satisfies a pattern.
Definition 4.2.8 (Satisfaction of a pattern). We say that a triple (a, b, c)W

satisfies pattern χ, written (a, b, c)W |= χ, if it can be deduced by means of the
following rules:

[P-Triple]

(a, b, c)W |= (a, b, c)W

[P-OrL]

(a, b, c)W |= χ

(a, b, c)W |= χ ∨ ψ

[P-OrR]

(a, b, c)W |= ψ

(a, b, c)W |= χ ∨ ψ

[P-Exists]

(a, b, c)W |= χ{d/x} P(d) = U

(a, b, c)W |= ∃xU .χ
.

Rules are very similar to those in Definition 4.2.3. Rule [P-Triple] states that
in order for a data triple to satisfy a triple pattern, the data triple must be exactly
the same as the pattern, including the associated policies. Rule [P-Exists] requires
that name d which provides pattern satisfaction has the appropriate privacy policy.

Both notions of satisfaction use essentially the same mechanism, motivated by
ASK query of SPARQL. Pattern satisfaction is more strict because the syntax of
patterns, besides the structure of the data, includes the privacy policies of triples
and names and because it is defined only on single data triples.
Example 4.2.9. The satisfaction of patterns depends on the specified policies of
names and triples. The pattern ∃xUP .(x, organizes, event)UP is satisfied only by
one data triple of user Alice. Namely, the triple (UNS, organizes, event). 4

To ease the formalization, our language supports only a set of features im-
portant for privacy protection of data in terms of access control. In particular,
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D | ∅D ≡ D D1 |D2 ≡ D2 |D1 (D1 |D2) |D3 ≡ D1 | (D2 |D3)

P | 0 ≡ P P1 | P2 ≡ P2 | P1 (P1 | P2) | P3 ≡ P1 | (P2 | P3)

∗P ≡ P | ∗P N1 8N2 ≡ N2 8N1 (N1 8N2) 8N3 ≡ N1 8 (N2 8N3)

Figure 4.8: Structural congruence

we consider only triple, disjunction and exists policies and patterns while in the
syntax of SPARQL patterns there are several more. The syntax can be extended
with, for example conjunction, and both notions of satisfaction can be redefined
accordingly. We would still be able to elegantly check whether the data satisfy a
policy, while identifying the exact data that matches the pattern would get more
complicated. Since the conjunction pattern does not bring anything essentially
important for the problems considered in this chapter, it is omitted. For a similar
reason, the syntax of data allows only data triples, while graphs are excluded. The
processes are related to some of SPARQL and SPARQL Update queries, as we have
seen in the examples.

4.2.3 Operational semantics

The operational semantics is defined in terms of a structural congruence over
data, processes and networks, an interaction relation and a reduction relation.
Structural congruence identifies structurally equivalent terms. It is the smallest
relation ≡ including alpha conversion (renaming of bound variables) and the laws
in Figure 4.8, stating that parallel composition of data, processes and networks
is commutative, associative, and has ∅D and 0 as neutral element for data and
processes, respectively, and that a replicated process may be unfolded. The binders
of the calculus are commands for reading and selecting data, which bind name
variables and data variables, respectively.

The operational semantics for data and data policies management depends on
the auxiliary functions given in Figure 4.9. These functions identify the part of
the data that satisfies a pattern, using satisfaction relations, and do changes if
required. The function

• readable takes data as both arguments and returns the parallel composition
of triples of the second data that a process running on behalf of the first data
can access. We will say that an user with data Da can fully access the data
Db if readable(Da, Db) = Db;

• read takes a pattern and data as arguments and returns the parallel com-
position of the data triples that satisfy the pattern;

• delete takes a pattern and data as arguments and, contrary to read, returns
the parallel composition of all triples that do not satisfy the pattern. In other
words, this function deletes the triples that do satisfy the pattern;



72 CHAPTER 4. TYPES FOR PRIVATE ACCESS

readable(D, ∅D) = ∅D

readable(D, (a, b, c)V ) =

{
(a, b, c)V if D |= ASK(V ),

∅D otherwise
readable(D,D1 |D2) = readable(D,D1) | readable(D,D2)

read(χ, ∅D) = ∅D

read(χ, (a, b, c)V ) =

{
(a, b, c)V if (a, b, c)V |= χ,

∅D otherwise
read(χ,D1 |D2) = read(χ,D1) | read(χ,D2)

delete(χ, ∅D) = ∅D

delete(χ, (a, b, c)V ) =

{
∅D if (a, b, c)V |= χ,

(a, b, c)V otherwise
delete(χ,D1 |D2) = delete(χ,D1) | delete(χ,D2)

select(∃xU .χ, ∅D) = ∅
select(∃xU .χ, (a, b, c)V ) = {{d/x} | (a, b, c)V |= χ{d/x}

∧ d ∈ {a, b, c} ∧ P(d) = U}
select(∃xU .χ,D1 |D2) = select(∃xU .χ,D1) ∪ select(∃xU .χ,D2)

update(χ, ∅D,W ) = ∅D

update(χ, (a, b, c)V ,W ) =

{
(a, b, c)W if (a, b, c)V |= χ,

(a, b, c)V otherwise
update(χ,D1 |D2,W ) = update(χ,D1,W ) | update(χ,D2,W )

Figure 4.9: Definitions of auxiliary functions.
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• select takes an existential pattern and data as arguments and returns a
set of substitutions. For each triple in the data that satisfies the pattern, a
substitution is added to the set, if the selected name has the proper privacy
policy. Sometimes we denote a substitution with s and a set of substitutions
with S;

• update takes a pattern, data and a policy as arguments and returns the data
with privacy protection policies updated on triples that satisfy the pattern.
The new privacy protection policy is the third argument.

Example 4.2.10. We recall the network from Example 4.2.1. User Alice can
fully access her own data because it holds readable(DAlice, DAlice) = DAlice.
User Bob is allowed to access some data triples of user Alice. In particular
readable(DBob, DAlice) = (UNS, organizes, event)UP

|(Bob, organizes, event)UP

|(paper, published, journal)UAlice∨∃x.(x,is,researcher)

We give three more examples of auxiliary functions results:

• select(∃xUAlice .(x, is, person)UAlice , DAlice) = {Alice/x}

• delete(∃yUP .∃zUP .(Alice, y, z)UAlice , DAlice)

= (UNS, organizes, event)UP

|(Bob, organizes, event)UP

|(paper, published, journal)UAlice∨∃x.(x,is,researcher)

• delete(∃yUP .∃zUP .(Alice, y, z)UP , DAlice) = DAlice

4
We define an interaction relation  a,b for each two names a, b ∈ IRIs in order

to describe interactions between the process running on the behalf of the user
a[Da ‖ Pa] and data of the user b[Db ‖ Pb]. Users with names a and b are not
necessarily different. If they are the same, the interaction relation  a,a describes
the interaction of a user with its own data.

The interaction relation is given by the rules in Figure 4.10. Rules [I-Parallel],
[I-Choice] and [I-Structural] are essentially the same as [R-Parallel],
[R-Choice] and [R-Structural] reduction rules for π-calculus, given in Fig-
ure 2.5, except that they refer to both processes and data. Parallel composition
of processes may change the data.

In rule [I-Read], the data D are readable for the user with data Da and all
their triples satisfy the pattern χ. The data D substitute X in the continuation
process P .

In rule [I-Write], the data D are composed in parallel with Db. The premise
Db 6= ∅D disables writing additional data to a blocked user.

In rule [I-Clear], the data Db is replaced with ∅D, meaning that the data of
user b is entirely erased, i.e. user b is blocked. Such user is not allowed to access
any data, since from the definition of function readable(·, ·) and Lemma 4.2.5 we
derive readable(∅D, D) = ∅D.
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[I-Parallel]
(P1, Db) a,b (P2, D)

(P1 | Pa, Db) a,b (P2 | P,D)

[I-Choice]
i ∈ {1, 2}

(P1 ⊕ P2, Db) a,b (Pi, Db)

[I-Structural]
D1 ≡ D′1 P1 ≡ P ′1 (P ′1, D

′
1) a,b (P ′2, D

′
2) D2 ≡ D′2 P2 ≡ P ′2

(P1, D1) a,b (P2, D2)

[I-Read]
D = read(χ, readable(Da, Db))

(READb(χ,X).P,Db) a,b (P{D/X}, Db)

[I-Write]
Db 6= ∅D

(WRITEb(D).P,Db) a,b (P,Db |D)

[I-Clear]
(CLEARb, Db) a,b (0, ∅D)

[I-Modify]
D′ = delete(χ,Db)

(MODIFYb(χ,D).P,Db) a,b (P,D′ |D)

[I-Select]
S = select(∃xU .χ, readable(Da, Db))

(SELECTb(∃xU .χ, x).P,Db) a,b (
∏

s∈S P s, Db)

[I-Update]
D = update(χ,Db,W )

(UPDATEb(χ,W ).P,Db) a,b (P,D)

Figure 4.10: Interaction rules
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In rule [I-Modify], the data D′ are obtained from Db by deleting the triples
that satisfy the pattern χ and they, together with D in parallel, replace Db. This
rule enables users to unblock a blocked user.

In rule [I-Select], all the substitutions belonging to the set S are applied
to process P and then those processes run as a parallel composition. For each
triple in the data Db, accessible to Da, that satisfies the pattern ∃xU .χ there is a
substitution in the set S.

In rule [I-update], the data D are obtained from Db by changing privacy
protection policies on all triples that satisfy the pattern χ and they replace Db

after the interaction. The new privacy protection policies are set to be W on all
the triples identified by χ.

We write (P,D) a,b if (P,D) a,b (P ′, D′) for some P ′ andD′ and (P,D) 6 a,b

if not (P,D) a,b.
Example 4.2.11. We now specify policies for the second process from Exam-
ple 4.2.2 and give examples of this process interacting with data DAlice from
Example 4.2.1. We use the results of auxiliary functions from Example 4.2.10
and denote by P the following process

SELECTAlice(∃xUAlice .(x, is, person)UAlice , x).MODIFYAlice(∃yUP .∃zUP .(x, y, z)UAlice , ∅D)

In case this process interacts on behalf of user Bob, after the interaction it becomes
0 and the data DAlice stays unchanged.

∅ = select(∃xUAlice .(x, is, person)UAlice , readable(DBob, DAlice))

(P,DAlice) Bob,Alice (0, DAlice)

In case the process P interacts on behalf of user Alice, the function select pro-
vides a substitution, so, in two steps, the process becomes 0 and the data DAlice

gets to be changed.

{{Alice/x}} = select(∃xUAlice .(x, is, person)UAlice , readable(DAlice, DAlice))

(P,DAlice) Alice,Alice (MODIFYAlice(∃yUP .∃zUP .(Alice, y, z)UAlice , ∅D), DAlice)

D = delete(∃yUP .∃zUP .(Alice, y, z)UAlice , DAlice)

(MODIFYAlice(∃yUP .∃zUP .(Alice, y, z)UAlice , ∅D), DAlice) Alice,Alice (0, D)

The third process from Example 4.2.2, using [I-Write] adds a data triple to the
data of user Alice.

DAlice 6= ∅D
(WRITEAlice((photo, at, party)U), DAlice)

 Bob,Alice (0, DAlice | (photo, at, party)U)

4
Reduction relation is the smallest relation between networks defined by the

rules in Figure 4.11. Interaction relation enables us to define in an elegant way
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[R-User]
(Pa, Db) a,b (P ′a, D

′
b) a 6= b

a[Da ‖ P ] 8 b[Db ‖ Pb]→ a[Da ‖ P ′a] 8 b[D′b ‖ Pb]

[R-Self]
(Pa, Da) a,a (P ′a, D

′
a)

a[Da ‖ Pa]→ a[D′a ‖ P ′a]

[R-Struct]
N1 ≡ N ′1 N ′1 → N ′2 N2 ≡ N ′2

N1 → N2

[R-Parallel]
N1 → N2

N1 8N → N2 8N

Figure 4.11: Reduction relation

the reduction rules that distinguish between interaction of different users and self-
interactions. Rule [R-User] describes interaction between two users with different
names, while rule [R-Self] describes self-interaction between user’s process and its
own data. Rules [R-Struct] and [R-Parallel] are standard rules which formalize
the property that the reduction relation is defined up to structural congruence and
it is closed with respect to contexts.

We use →∗ to denote the reflexive and transitive closure of → .

Example 4.2.12. We now use some results shown in Examples 4.2.10 and 4.2.11.
Since we know that

D = delete(∃yUP .∃zUP .(Alice, y, z)UAlice , DAlice)

= (UNS, organizes, event)UP

|(Bob, organizes, event)UP

|(paper, published, journal)UAlice∨∃x.(x,is,researcher)

We apply reduction rule [R-Self] twice in order to derive

Alice[DAlice ‖ P ]→∗ Alice[D ‖ 0].

4

4.2.4 Well-behaved networks

We say that an user owns data if the name enclosing the data is accessible to that
user. We also consider a blocked user as the owner of data enclosed under her
name. Informally, in a well-behaved network:

• the data of each active user must satisfy the policy of its own name and
implicitly such user can always completely read its own data;

• a user with the data that satisfy the privacy policy of another user’s name,
must also have access to all the data triples belonging to the user with that
name;

• a blocked user does not have access to any data and implicitly cannot read
and select data from the network;

• a blocked user cannot be activated by writing data.
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• an active user is allowed to modify, update or delete the data only of another
user that he owns.

• a blocked user is allowed to change the data of another user only if the privacy
policy of the blocked user is stronger than the policy of the other user. This
enables blocked users to finish changes to the network they already started,
but, as already stated, they cannot read nor select data.

The following definition formalizes what we consider as well-behaved network,
i.e. when we consider that privacy of data is completely protected.
Definition 4.2.13. Let N →∗ a[Da ‖ Pa] 8 N ′ and P(a) = U. We say that N is
well behaved if the following three assertions hold:

(1) if Da ≡ (a1, a2, a3)
W | E, then

(i) Da |= ASK(U);

(ii) D |= ASK(U) implies D |= ASK(W );

(2) if Da = ∅D and c ∈ IRIs, then

(i) readable(Da, D) = ∅D;

(ii) (WRITEa(D), Da) 6 c,a ;

(3) Let N ′ ≡ b[Db ‖ Pb] 8N ′′ and P(b) = V. If

• Pa ≡ MODIFYb(χ,D).P |Q, or
• Pa ≡ UPDATEb(χ, V ).P |Q, or
• Pa ≡ CLEARb |Q,

then

(i) if Da 6= ∅D, then Da |= ASK(V );

(ii) if Da = ∅D, then D |= ASK(U) implies D |= ASK(V ).

The following two theorems show that, in a well-behaved network, an owner
of the data fully access its own data.
Theorem 4.2.14. Let N ≡ a[Da ‖ Pa] | N ′ be a well-behaved network. Then
readable(Da, Da) = Da.

Proof. Let P(a) = U . The proof is by induction on the structure of Da.

Da = ∅D By the definition of readable, given in Figure 4.9, we know that
readable(Da, Da) = readable(Da, ∅D) = ∅D = Da.

Da = (a1, a2, a3)
W From (ii) of Definition 4.2.13 we know that Da |= ASK(U).

Then, from (i) of the same definition we obtain Da |= ASK(W ). We conclude
readable(Da, Da) = readable(Da, (a1, a2, a3)

W ) = (a1, a2, a3)
W = Da by the

definition of function readable.
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Da = D1 |D2 In this case readable(Da, Da) = readable(Da, D1 | D2)

= readable(Da, D1)|readable(Da, D2) by the definition of function readable. By
induction hypothesis we obtain readable(Da, D1) = D1 and readable(Da, D2) =
D2, which implies readable(Da, D1 |D2) = D1 |D2 = Da.

Theorem 4.2.15. Let N ≡ a[Da ‖ Pa] | b[Db ‖ Pb] |N ′ be a well-behaved network
and P(b) = V . Then, Da |= ASK(V ) implies readable(Da, Db) = Db.

Proof. Let P(a) = U . The proof is by induction on the structure of Db.

Db = ∅D By the definition of readable, given in Figure 4.9, we know that
readable(Da, Db) = readable(Da, ∅D) = ∅D = Db.

Db = (a1, a2, a3)
W From Db |= ASK(V ) and from (i) of Definition 4.2.13 we obtain

Da |= ASK(W ). We conclude readable(Da, Db) = readable(Da, (a1, a2, a3)
W ) =

(a1, a2, a3)
W = Db by the definition of function readable.

Db = D1 |D2 In this case readable(Da, Db) = readable(Da, D1 | D2)

= readable(Da, D1)|readable(Da, D2) by the definition of function readable. By
induction hypothesis we obtain readable(Da, D1) = D1 and readable(Da, D2) =
D2, which implies readable(Da, D1 |D2) = D1 |D2 = Db.

Here are few examples of ill-behaved users and networks to illustrate what kind
of errors we want to eliminate with the type system presented in the following
section.

• If DAlice would contain a triple (photo, at, party)UBob a user named Alice

would violate condition (1).(ii) of Definition 4.2.13. That is because, for
example,

(a) (Alice, is, person)UAlice |= ASK(UAlice)

while it does not hold

(Alice, is, person)UAlice |= ASK(UBob).

Let us denote

D′Alice = DAlice | (photo, at, party)UBob .

Notice that condition (1).(i) is satisfied since from (a) we can deriveD′Alice |=
ASK(UAlice) by Definition 4.2.3.

• Obviously, the process

WRITEAlice((photo, at, party)UBob)

which aims to write the just mentioned triple to the data of user named
Alice, i.e. to add it to DAlice, must be considered as unsafe.
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• The process
WRITEBob((photo, at, party)UBob)

should be considered safe because it aims to add a triple to the data of the
user named Bob with the exact privacy protection policy of that user. Let
us denote

D′Bob = (photo, at, party)UBob |DBob.

It does not hold
D′Bob |= ASK(UBob)

This error is induced by the fact that the data of user Bob violated condition
(1).(i) in first place. Namely, it does not hold

DBob |= ASK(UBob).

Notice that
readable(DBob, DBob) = DBob

and that (1).(ii) holds for user Bob.

• The process

MODIFYAlice(∃yUP .∃zUP .(Alice, y, z)UAlice , ∅D)

deletes triples from DAlice and puts ∅D instead of these triples, i.e. it deletes
triples from DAlice. For the data D of the user Alice computed during the
reduction, as in Example 4.2.12, the condition (1).(i) does not hold.

• The process

UPDATEAlice((Alice, has affiliation, UNS)UAlice , UBob)

would make the triple (Alice, has affiliation, UNS)UAlice inaccessible to its
owner, Alice.

• Let us consider a situation in which the data of the user Bob satisfy condition
(1).(i). These data, denoted by D′Bob, must be such that they contain the
triple (Bob, is, person)W , for example

D′Bob = DBob | (Bob, is, person)UP .

The process running on behalf of user Alice

CLEARBob

violates condition (3).(i) Notice that we consider this process an error, al-
though it holds

readable(DAlice, D
′
Bob) = D′Bob.

In this specific case, user Alice can steel the identity (triples that actually
satisfy the policy) of user Bob by running the following process

PAlice = READBob((Bob, is, person)UP , X).WRITEAlice(X),

which would allow Alice behave as Bob in the future actions. On the other
hand, the user Bob cannot do such a thing to the user Alice.
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Some other choices could be made in the definition of well-behaved network,
but we have opted for the current one, since it satisfactorily describes privacy
properties. In particular, in condition (3) we could consider more processes to be
allowed to delete, modify and update data or just parts of data. The proposed
option is meaningful with the respect to the privacy protection. Furthermore,
it would be possible to strengthen condition (1) by adding the same condition
for policies of triples and their elements. Namely, we could assume that a user
that is allowed to access a triple must be allowed to access all its elements. This
would imply that any name mentioned as an element of a triple belonging to an
user must be owned by that user. This approach is similar to the one proposed
in [127], which is in our case too restrictive.

4.3 Type system
Aiming to prevent privacy violations, we introduce a type system that enforces
well-behavedness of networks. In Section 4.3.1 we introduce an order on privacy
policies, which is the main tool for the type assignment system presented in Sec-
tions 4.3.2, 4.3.3 and 4.3.4.

4.3.1 Policy comparison

We introduce a relation on privacy protection policies which will enable us to
compare them.
Definition 4.3.1 (Policy comparison relation). We define a partial order 4
on privacy policies by the following rules:

[C-OrL]
U 4 U ∨ V

[C-OrR]
V 4 U ∨ V

[C-Subst]
U{a/x} 4 ∃x.U

[C-Or]
U 4 W V 4 W

U ∨ V 4 W

[C-Exists]
U{a/x} 4 V {a/y}
∃x.U 4 ∃y.V

If U 4 V we say that U is more or equally restrictive than V or, equivalently,
that V is less or equally restrictive than U .

Using this partial order the type system will ensure that the privacy policy of
a triple is bounded below by the privacy policies of the user name it is enclosed
with. We now prove that a user which is allowed to access a resource protected
with a policy is allowed to access any resource protected with a less restrictive
policy.
Theorem 4.3.2 (Policy satisfaction). If D |= ASK(U) and U 4 V, then D |=
ASK(V ).

Proof. The proof is by induction on the derivation of U 4 V .

[C-OrL] In this case V = U ∨V ′. From D |= ASK(U), Lemma 4.2.4, [A-OrL] and
[A-Ask] we obtain D |= ASK(V ).
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[C-OrR] In this case V = V ′ ∨ U. From D |= ASK(U), Lemma 4.2.4, [A-OrR]
and [A-Ask] we obtain D |= ASK(V ).

[C-Or] In this case U = U ′ ∨ V ′ and U ′ 4 V and V ′ 4 V. From D |= ASK(U),
Lemma 4.2.4 and rules [A-OrL] and [A-OrR] we know that D |= ASK(U ′) or
D |= ASK(V ′). In both cases we derive a proof of D |= ASK(V ) by induction
hypothesis.

[C-Subst] In this case U = U ′{a/x} and V = ∃x.U ′. From D |= ASK(U),
Lemma 4.2.4, [A-Exists] and [A-Ask] we obtain D |= ASK(V ).

[C-Exists] In this case U = ∃x.U ′ and V = ∃y.V ′. From D |= ASK(U), Lemma
4.2.4, [A-Exists] and [A-Ask] we obtain D |= ASK(U ′{a/x}). From U 4 V by
Definition 4.3.1 we have U ′{a/x} 4 V ′{a/x} and then by induction hypothesis we
obtain D |= ASK(V ′{a/x}). Finally, from Lemma 4.2.4, [A-Exists] and [A-Ask]
we conclude D |= V.

Intuitively, the set of data that satisfies a privacy policy U , that is more re-
strictive than another one, is the subset of the set of data that satisfy the policy
U . For example, only processes that act on behalf of users whose data contain
the triple (Bob, is, person)U are allowed to access a triple or name protected with
privacy policy (Bob, is, person), while in order to access a triple or name pro-
tected with policy (Bob, is, person) ∨ (Alice, is, person) a process must act on
behalf of a user whose data contain the triple (Bob, is, person)U or the triple
(Alice, is, person)V . Similarly, in order to access a triple or name protected with
policy ∃x.(x, is, person) a process must act on behalf of a user whose data contain
a triple with an arbitrary subject, predicate is and object person.We can derive,
by rule [C-OrL]

(Bob, is, person) 4 (Bob, is, person) ∨ (Alice, is, person)

and by rule [C-Exists]

(Bob, is, person) 4 ∃x.(x, is, person)

and by rule [C-Or]

(Bob, is, person) ∨ (Alice, is, person) 4 ∃x.(x, is, person).

By Theorem 4.3.2, if D |= ASK((Bob, is, person)), then

D |= ASK((Bob, is, person) ∨ (Alice, is, person))

and
D |= ASK(∃x.(x, is, person)).

4.3.2 Types

We distinguish five kinds of types, given by the syntax in Figure 4.12. The type
Name(U) denotes the type of a name which has the privacy protection policy U .
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Name(U) name type Data(U) data type
Pattern(U) pattern type Process(U) process type
Network network type

Figure 4.12: Syntax of the types.

The data whose all triples and all triples’ components have policies which are not
more restrictive than U have type Data(U). The data identified by the pattern
with the type Pattern(U) have the type Data(V ), where V is at most restrictive
as U. A process with the type Process(U) does not change, delete or update data
of users whose names have policies more restrictive than U . Network denotes the
type of the network.

A type environment Γ associates name and data variables with name and data
types, i.e. we define:

Γ ::= ∅ | Γ, x : Name(U) | Γ, X : Data(U).

We denote by dom(Γ) the set of all name and data variables that appear in Γ.
For a well-formed environment Γ, we say that Γ, x : Name(U) is well formed if
x 6∈ dom(Γ), and similarly, Γ, X : Data(U) is well formed if X 6∈ dom(Γ).

We use the environment by the standard axioms:

[T-Name Variable]
Γ, x : Name(U) ` x : Name(U)

[T-Data Variable]
Γ, X : Data(U) ` X : Data(U)

The five kinds of types induce five forms of type judgments:

Γ ` u : Name(U) Γ ` D : Data(U) Γ ` χ : Pattern(U)

Γ ` P : Process(U) Γ ` N : Network .

The first four state that the name u, the data D, the pattern χ and the process P
are well typed in the environment Γ and for the privacy protection policy U . The
fifth judgment states that the network N is well typed in Γ.

4.3.3 Typing names, data and patterns

Typing rules for names, data and patterns, given in Figure 4.13 and Figure 4.14,
are described in the following paragraphs.

Rule [T-Name] states that if a privacy protection policy is assigned to a name
by the function P(·), then that name is well typed in any environment for the
assigned policy.

Rule [T-Empty Data] states that empty data is well typed in any environment
and for any privacy protection policy.

Rule [T-Data Triple] states that a data triple with the privacy policy U is well
typed for policies that are more or equally restrictive than U. That is expressed
by the relation V 4 U.
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[T-Name]
P(a) = U

Γ ` a : Name(U)

[T-Empty Data]
Γ ` ∅D : Data(V )

[T-Data Triple]
V 4 U

Γ ` (a1, a2, a3)
U : Data(V )

[T-Parallel Data]
Γ ` Di : Data(Vi)

(i∈{1,2}) V 4 Vi
(i∈{1,2})

Γ ` D1 |D2 : Data(V )

( superscript i ∈ I means for every i ∈ I)

Figure 4.13: Typing rules for names and data

[T-Triple Pattern]
W 4 U

Γ ` (u1, u2, u3)
U : Pattern(W )

[T-Disjunction]
Γ ` χi : Pattern(Wi)

(i∈{1,2}) W 4 Wi

Γ ` χ1 ∨ χ2 : Pattern(W )

[T-Exists]
Γ, x : Name(U) ` χ : Pattern(W )

Γ ` ∃xU .χ : Pattern(W )

( superscript i ∈ I means for every i ∈ I)

Figure 4.14: Typing rules for patterns
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Rule [T-Parallel Data] states that a parallel composition of data is well
typed for a privacy protection policy if the composed data have less or equally
restrictive privacy protection policies than the specified policy.

Typing rules for the patterns are such that they ensure that the data identified
by a pattern is well typed for a policy which is at most restrictive as the policy
for which the pattern is well typed.

Rule [T-Triple Pattern] is essentially the same as [T-Data Triple].
Rule [T-Disjunction] states that a disjunction pattern is well typed in an envi-

ronment and for a policy if both disjuncts are well typed in the same environment
and for a policy which is less or equally restrictive than the specified policy.

Rule [T-Exists] states that an existential pattern ∃xU .χ is well typed in an
environment and for a policy if the pattern χ is well typed in the same environment
extended with the type assignment which assigns policy U to the variable x.

4.3.4 Typing processes and networks

Typing rules for processes, given in Figure 4.15, are described in the following
paragraphs.

Rule [T-Inaction] states that the terminating process is well typed in any
environment and for any privacy protection policy.

Rules [T-Choice] and [T-Parallel Process] state that choice and parallel
composition of two processes are well typed in an environment and for a privacy
protection policy if both processes are well typed in this environment and for the
privacy protection policy.

Rule [T-Replication] states that a replication of a process is well typed in an
environment and for a privacy protection policy if the process is well typed in this
environment and for this privacy protection policy.

Rule [T-Read] states that the read process READu(χ,X).P is well typed in an
environment for a privacy protection policy U if the pattern χ is well typed in
the same environment and for a policy W and the continuation process P is well
typed in the environment extended with X : Data(W ) for the policy U . From
Lemma 4.4.8, we know that any data identified by the pattern will be well typed
in the same environment and the for the same policy as the pattern.

Rule [T-Select] states that the select process SELECTu(∃xW .χ, x).P is well
typed in an environment and for a privacy protection policy if pattern χ and
its continuation process P is well typed in the environment extended with x :
Name(W ). From Lemma 4.4.9, we know that any selected name will have the
appropriate type. Unlike in the previous rule, here we are not interested in the
type of the pattern, since we only need the information about the type of the
binding variable.

Rule [T-Write] states that a process that aims to write data δ to a user well
typed for V is well typed in an environment and for a privacy protection policy
U , if V is more or equally restrictive than W , where W is the policy for which δ
is well typed, and the continuation of the process is well typed for U. This ensures
that users that have access to the whole data will still have that privilege after
their data is extended with new data.
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[T-Inaction]
Γ ` 0 : Process(U)

[T-Choice]
Γ ` Pi : Process(U) (i∈{1,2})

Γ ` P1 ⊕ P2 : Process(U)

[T-Parallel Process]
Γ ` Pi : Process(U) (i∈{1,2})

Γ ` P1 | P2 : Process(U)

[T-Replication]
Γ ` P : Process(U)

Γ ` ∗P : Process(U)

[T-Read]
Γ ` χ : Pattern(W ) Γ, X : Data(W ) ` P : Process(U)

Γ ` READu(χ,X).P : Process(U)

[T-Select]
Γ, x : Name(W ) ` χ : Pattern(V ) Γ, x : Name(W ) ` P : Process(U)

Γ ` SELECTu(∃xW .χ, x).P : Process(U)

[T-Write]
Γ ` u : Name(V ) Γ ` δ : Data(W ) Γ ` P : Process(U) V 4 W

Γ ` WRITEu(δ).P : Process(U)

[T-Clear]
Γ ` u : Name(V ) U 4 V

Γ ` CLEARu : Process(U)

[T-Modify]
Γ ` u : Name(V ) Γ ` P : Process(U) U 4 V Γ ` χ : Pattern(W )

Γ ` D : Data(V ) D |= ASK(V )

Γ ` MODIFYu(χ,D).P : Process(U)

[T-Update]
Γ ` u : Name(V ) Γ ` χ : Pattern(W ) Γ ` P : Process(U) U 4 V 4 W

Γ ` UPDATEu(χ,W ).P : Process(U)

( superscript i ∈ I means for every i ∈ I)

Figure 4.15: Typing rules for processes
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[T-User]
∅ ` a : Name(U) ∅ ` D : Data(U) ∅ ` P : Process(U) D |= ASK(U)

∅ ` a[D ‖ P ] : Network

[T-Blocked]
∅ ` a : Name(U) ∅ ` P : Process(U)

∅ ` a[∅D ‖ P ] : Network

[T-Network]
∅ ` Ni : Network (i∈{1,2})

∅ ` N1 8N2 : Network

( superscript i ∈ I means for every i ∈ I)

Figure 4.16: Typing rules for networks

Rule [T-Clear] states that a process aiming to delete the whole data of a user
named u is well typed for a privacy protection policy, if the policy is more or
equally restrictive than the policy for which name u is well typed. This rule will
ensure that the data of a user can be completely deleted only by an user that owns
the data.

Rule [T-Modify] states that a process aiming to replace data (identified by
the pattern χ) of a user u by D, is well typed for a privacy protection policy U ,
if policy U is more or equally restrictive than the policy V , for which u is well
typed. The new data D must be well typed for V and satisfy V . The continuation
process must be well typed for U . The premise D |= ASK(V ) ensures that the
original owner of the changed data does not get blocked and that data D 6= ∅D,
i.e. this process cannot just delete data. The same premise ensures that, if pattern
χ deletes all triples that build the identity of the user u, D contains some new
triples that satisfy the policy V . The premise Γ ` D : Data(V ) ensures that the
user u is allowed to access the new data. Notice that data which are added to a
user by modifying must satisfy the policy of the user, while triples that are written
to a user should just have less restrictive policy than the policy of the user.

Rule [T-Update] states that a process aiming to update privacy policies on
the data of the user named u is well typed for a privacy protection policy U if
U 4 V 4 W , where V is the privacy policy of u and W is the new privacy policy.
The continuation is well typed for U. The premise U 4 V 4 W ensures that only
owners of the data may update them, and that newly obtained data stay available
to the original owner.

Typing rules for networks, given in Figure 4.16, are described as follows.
Rule [T-User] states that a user with enclosed data and process is well typed,

if the user name, the data and the process are well typed for the same privacy pro-
tection policy. The data must satisfy the privacy policy of the enclosing name. A
straightforward consequence of the type assignment rules is that if a user a[D ‖ P ]
is well typed, then both the data D and the process P do not contain occurrences
of free variables.

Rule [T-Blocked] states that a user with empty data is well typed if the
enclosed process is well typed for the same policy as the name of the user. We
call such user blocked user since from Lemma 4.2.5 we know that such user is not
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allowed to access any data.
Rule [T-Parallel Network] states that the parallel composition of well-typed

networks is a well typed network too.
Example 4.3.3. Again we recall Example 4.2.1. We can now show that the
examples given in Section 4.2.4 are not typeable. Namely, user Alice holding the
data

D′Alice = DAlice | (photo, at, party)UBob

and user Bob holding the process

PBob = WRITEAlice((photo, at, party)UBob)

are rejected by the type system because UAlice 64 UBob. We are not able to type
user Bob holding data DBob because DBob 6|= ASK(UBob). The process

MODIFYAlice(∃yUP .∃zUP .(Alice, y, z)UAlice , ∅D)

is rejected because ∅D 6|= ASK(UAlice). The process

UPDATEAlice((Alice, has affiliation, UNS)UAlice , UBob)

is rejected because UAlice 64 UBob. Finally, the process

PAlice = CLEARBob

is rejected because UAlice 64 UBob. On the other hand, it is easy to check that

∅ ` READBob((Bob, is, person)UP , X).WRITEAlice(X) : Process(UAlice)

holds. 4

4.4 Type soundness
In the current section, we prove that the proposed type system guarantees the
operational property of type preservation under reduction: all networks obtained
by reduction starting from a well-typed network are again well-typed. Then, we
prove that the type system is safe: a well-typed network is well behaved. By
proving these two properties, we conclude that our type system is sound.

Before we start with proofs of the two main results we need to prove several
auxiliary lemmas. The following two lemmas are standard and they say that
typing is preserved by structural congruence and by substitutions.
Lemma 4.4.1.

1. If ∅ ` D : Data(U) and D ≡ D′, then ∅ ` D′ : Data(U);

2. If ∅ ` P : Process(U) and P ≡ P ′, then ∅ ` P ′ : Process(U);

3. If ∅ ` N : Network and N ≡ N ′, then ∅ ` N ′ : Network .
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Proof. Straightforward, by case analysis on the derivation of D ≡ D′, P ≡ P ′ and
N ≡ N ′.

Definition 4.4.2. We define the substitution of a name in a pattern in such way
that it does not affect privacy policies.

((u1, u2, u3)
U){a/x} = (u1, u2, u3){a/x}U

(χ ∨ ψ){a/x} = χ{a/x} ∨ ψ{a/x}
(∃yU .χ){a/x} = ∃yU .χ{a/x} if x 6= y

Lemma 4.4.3 (Substitution).

1. If Γ, x : Name(U) ` χ : Pattern(V ) and Γ ` a : Name(U), then Γ ` χ{a/x} :
Pattern(V ).

2. If Γ, x : Name(U) ` P : Process(V ) and Γ ` a : Name(U), then Γ `
P{a/x} : Process(V ).

3. If Γ, X : Data(U) ` P : Process(V ) and Γ ` D : Data(U), then Γ `
P{D/X} : Process(V ).

Proof. 1. The proof is by induction on the derivation of Γ, x : Name(U) ` χ :
Pattern(V ).

[T-Triple Pattern] In this case:

• χ = (u1, u2, u3)
W

• (H.1) for every i ∈ {1, 2, 3} it holds Γ, x : Name(U) ` ui : Name(Ui)
and V 4 W

In case x ∈ {u1, u2, u3}, for example x = u1, then by Definition 4.4.2,
χ{a/x} = (a, u2, u3)

W . From Γ ` a : Name(U), (H.1) and
[T- Triple Pattern] we obtain Γ ` χ{a/x} : Pattern(V ).
In case x /∈ {u1, u2, u3}, then χ{a/x} = χ. From (H.1) and x /∈ {u1, u2, u3}
we obtain that for every i ∈ {1, 2, 3} Γ ` ui : Name(Ui). We conclude by an
application of rule [T-Triple Pattern].

[T-Disjunction] In this case:

• χ = χ1 ∨ χ2

• Γ, x : Name(U) ` χ1 : Pattern(V1) and V 4 V1

• Γ, x : Name(U) ` χ2 : Pattern(V2) and V 4 V2

We derive the proof by induction hypothesis, Definition 4.4.2 and rule
[T-Disjunction].

[T-Exists] In this case:

• χ = ∃yW .χ′
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• (H.2) Γ, x : Name(U), y : Name(W ) ` χ′ : Pattern(V )

(H.2) implies y /∈ dom(Γ, x : Name(U)), so we know x 6= y. Then, χ{a/x} =
∃yW .(χ′{a/x}). From (H.2), Γ ` a : Name(U) and induction hypothesis we
obtain Γ, y : Name(W ) ` χ′{a/x} : Pattern(V ). We conclude the proof by
an application of rule [T-Exists].

2. The proof is by induction on the derivation of Γ, x : Name(U) ` P :
Process(V ). Most cases are very similar, we present few of them.

[T-Select] In this case:

• P = SELECTu(∃yW .χ, y).P ′

• (H.1) Γ, x : Name(U), y : Name(W ) ` χ : Pattern(V ′)

• (H.2) Γ, x : Name(U), y : Name(W ) ` P ′ : Process(V )

From (H.1) we know that x 6= y. We give the proof in case x = u. Then,
P{a/x} = SELECTa(∃yW .χ{a/x}, y).P ′{a/x}. From (H.1), Γ ` a : Name(U)
(which implies Γ, y : Name(W ) ` a : Name(U)) and item (1) of this lemma,
we know that Γ, y : Name(W ) ` χ{a/x} : Pattern(V ′). From (H.2) and
Γ ` a : Name(U), by induction hypothesis we obtain Γ, y : Name(W ) `
P ′{a/x} : Process(V ). We conclude the proof, in this case, with an applica-
tion of rule [T-Select].

[T-Parallel Process] In this case

• P = P1 | P2

• Γ, x : Name(U) ` P1 : Process(V )

• Γ, x : Name(U) ` P2 : Process(V )

We derive the proof by induction hypothesis and [T-Parallel Process].

[T-Modify] In this case:

• P = MODIFYu(χ,D).P ′

• Γ, x : Name(U) ` u : Name(V ′)

• Γ, x : Name(U) ` P ′ : Process(V )

• V 4 V ′

• Γ, x : Name(U) ` χ : Pattern(W )

• Γ, x : Name(U) ` D : Data(V ′)

• D |= ASK(V ′)

If x = u, then U = V ′ and P{a/x} = MODIFYa(χ{a/x}, D).P ′{a/x}. Notice
that D{a/x} = D because the data triples do not contain variables. We
derive the proof by induction hypothesis and [T-Modify]. If x 6= u, then
P{a/x} = MODIFYu(χ{a/x}, D).P ′{a/x}. From the typing rules for names
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and data we can derive Γ ` D : Data(V ′) and from the typing rules for
names and name variables Γ ` u : Name(V ′). Then, we obtain the proof by
induction hypothesis and [T-Modify].

3. The proof is by induction on the derivation of Γ, X : Data(U) ` P :
Process(V ).

[T-Read] In this case:

• P = READu(χ, Y ).P ′

• Γ, X : Data(U) ` χ : Pattern(W )

• Γ, X : Data(U), Y : Data(W ) ` P ′ : Process(V )

From the typing rules for patterns we can derive Γ ` χ : Pattern(W ), since
patterns do not contain data variables. For the same reason χ{D/X} = χ.
We derive the proof from item (1) of this lemma and induction hypothesis.

[T-Write] In this case:

• P = WRITEu(δ).P
′

• Γ, X : Data(U) ` u : Name(V ′)

• Γ, X : Data(U) ` δ : Data(W )

• Γ, X : Data(U) ` P ′ : Process(V )

• V ′ 4 W

If X = δ, then U = W and P{D/X} = WRITEu(D).P ′{D/X}. From the
typing rules for names and name variables we can derive Γ ` u : Name(V ′).
We derive the proof by induction hypothesis and [T-Write]. If X 6= δ,
then P{D/X} = WRITEu(δ).P

′{D/X}. From the typing rules for names and
name variables we can derive Γ ` u : Name(V ′) and from the typing rules for
data and data variables Γ ` δ : Data(W ). We obtain the proof by induction
hypothesis and [T-Write].

The next lemma shows that if the data are well typed for a policy, then they
are well typed for any more or equally restrictive policy.
Lemma 4.4.4. If Γ ` D : Data(V ) and W 4 V, then Γ ` D : Data(W ).

Proof. The proof is by induction on the derivation of Γ ` D : Data(V ).

[T-Empty Data] In this case D = ∅D. We derive the proof directly from rule
[T-Empty Data].

[T-Data Triple] In this case D = (a1, a2, a3)
U and for every i ∈ {1, 2, 3} it holds

Γ ` ai : Name(Ui) and V 4 U. So, from W 4 V , we know that it holds W 4 U.
We conclude the proof, in this case, with an application of [T-Data Triple].

[T-Parallel Data] In this case D = D1 | D2 and for every i ∈ {1, 2} it holds
Γ ` Di : Data(Vi) and V 4 Vi. So, from W 4 V , we know that for every i ∈ {1, 2}
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it holds W 4 Vi. We apply the induction hypothesis and conclude the proof with
an application of [T-Parallel Data].

The next lemma shows that if a data triple satisfies a pattern, which is well
typed for W, then the privacy policy of the triple is less or equally restrictive
than W and the triple is well typed for W. This result ensures that the data
triples identified by a pattern are of the appropriate type and consequently used
correctly in the continuation.
Lemma 4.4.5. If (a, b, c)V |= χ and Γ ` χ : Pattern(W ), then W 4 V and
Γ ` (a, b, c)V : Data(W ).

Proof. The proof is by induction on the derivation of (a, b, c)V |= χ.

[P-Triple] In this case χ = (a, b, c)V . We derive the proof from rule
[T-Triple Pattern] and an application of rule [T-Data triple].

[P-OrL] In this case χ = χ1 ∨ χ2 and (a, b, c)V |= χ1. From [T-Disjunction]
we obtain Γ ` χ1 : Pattern(W1) and W 4 W1. By induction hypothesis we get
W1 4 V and Γ ` (a, b, c)V : Data(W1). So, by transitivity of 4, we get W 4 V
and from Lemma 4.4.4 we conclude Γ ` (a, b, c)V : Data(W ).

[P-OrR] Similar to the previous case.

[P-Exists] In this case χ = ∃xU .χ′ and there exists d such that (H.1) (a, b, c)V |=
χ′{d/x} and P(d) = U. From [T-Exists] we obtain (H.2) Γ, x : Name(U) ` χ′ :
Pattern(W ). From P(d) = U and [T-Name] we get (H.3) Γ ` d : Name(U).
From (H.2),(H.3) and Lemma 4.4.3.1 we obtain (H.4) Γ ` χ′{d/x} : Pattern(W ).
Finally, we apply induction hypothesis on (H.1) and (H.4).

The following lemmas show that data and names obtained by auxiliary func-
tions, used for interaction with data, are well typed.
Lemma 4.4.6. Let Γ ` D : Data(V ). If D′ = readable(E,D), then Γ ` D′ :
Data(V ).

Proof. The proof is by induction on the structure of D.

D = ∅D In this case, from the definition of functions readable(·, ·) given in
Figure 4.9, we conclude D′ = ∅D and then from [T-Empty Data] we obtain Γ `
D′ : Data(V ).

D = (a, b, c)W In this case we have two possible values for D′.

• If D′ = ∅D, then from [T-Empty Data] we obtain Γ ` D′ : Data(V ).

• If D′ = (a, b, c)W , then Γ ` D′ : Data(V ) holds trivially since D′ = D.

D = D1 |D2 From [T-Parallel Data] we get that for every i ∈ {1, 2} it holds
Γ ` Di : Data(Vi) and V 4 Vi. From the definition of function readable(·, ·) we
get that D′ = D′1 |D′2, where D′1 = readable(E,D1) and D′2 = readable(E,D2).
From Lemma 4.4.4 and by induction hypothesis we get Γ ` D′1 : Data(V ) and Γ `
D′2 : Data(V ).We conclude the proof by an application of rule [T-Parallel Data].
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Lemma 4.4.7. Let Γ ` D : Data(V ). If D′ = delete(χ,D), then Γ ` D′ :
Data(V ).

Proof. The proof is by induction on the structure of D.

D = ∅D In this case, from the definition of function delete(·, ·) given in Fig-
ure 4.9, we conclude D′ = ∅D and then from [T-Empty Data] we obtain Γ ` D′ :
Data(V ).

D = (a, b, c)W In this case we have two possible values for D′.

• If D′ = ∅D, then from [T-Empty Data] we obtain Γ ` D′ : Data(V ).

• If D′ = (a, b, c)W , then Γ ` D′ : Data(V ) holds trivially since D′ = D.

D = D1 |D2 In this case we derive the proof from [T-Parallel Data], Lemma
4.4.4, induction hypothesis and the definition of delete(·, ·).

Lemma 4.4.8. Let Γ ` χ : Pattern(W ). If D′ = read(χ,D), then Γ ` D′ :
Data(W ).

Proof. The proof is by induction on the structure of D.

D = ∅D In this case, from the definition of function read(·, ·) given in Figure 4.9,
we concludeD′ = ∅D and then from [T-Empty Data] we obtain Γ ` D′ : Data(W ).

D = (a, b, c)U In this case we have two possible values for D′.

• If D′ = ∅D, then from [T-Empty Data] we obtain Γ ` D′ : Data(V ).

• If D′ = (a, b, c)U , then, from the definition of function read(·, ·), we know
(a, b, c)U |= χ. From Lemma 4.4.5 we conclude Γ ` D′ : Data(W ).

D = D1 |D2 In this case we derive the proof from the definition of function
read(·, ·), induction hypothesis and [T-Parallel Data].

Lemma 4.4.9. Let S = select(∃xW .χ,D). If {d/x} ∈ S, then Γ ` d : Name(W ).

Proof. The proof is by induction on the structure of D.

D = ∅D In this case, from the definition of function select(·, ·) given in Fig-
ure 4.9, we conclude S = ∅. Therefore, {d/x} ∈ S does not hold.

D = (a, b, c)W In this case we have two possible values for S.

• If S = ∅, then {d/x} ∈ S does not hold.

• If there exists d such that {d/x} ∈ S, then, by the definition of function
select(·, ·) we know that d ∈ {a, b, c}, (a, b, c)W |= χ{d/x} and P(d) = W.
We conclude the proof with an application of rule [T-Name].
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D = D1 |D2 In this case, by the definition of function select(·, ·) we obtain
S = select(∃xW .χ,D1 | D2) = S1 ∪ S2, where S1 = select(∃xW .χ,D1) and
S2 = select(∃xW .χ,D2). If there exists d such that {d/x} ∈ S, then {d/x} ∈
S1 or {d/x} ∈ S2. In any case we conclude Γ ` d : Name(W ) by induction
hypothesis.

Lemma 4.4.10. Let Γ ` D : Data(V ), Γ ` χ : Pattern(W ) and V 4 W. If
D′ = update(χ,D,W ), then

1. Γ ` D′ : Data(V ), and

2. if D |= ASK(V ), then D′ |= ASK(V ).

Proof. The proof is by induction on the structure of D.

D = ∅D In this case, from the definition of update(·, ·, ·), we conclude D′ = ∅D
and then from [T-Empty Data] we obtain Γ ` D′ : Data(V ). From Lemma 4.2.5,
we know that it does not hold D |= ASK(V ).

D = (a, b, c)U In this case we have two possible values for D′.

• If D′ = (a, b, c)U we derive the proof trivially, since D′ = D.

• If D′ = (a, b, c)W , then, by the definition of update(·, ·, ·), we get (a, b, c)U |=
χ. Then, from Γ ` χ : Pattern(W ) and Lemma 4.4.5, we obtain Γ `
(a, b, c)U : Data(W ). From that and rule [T-Data Triple] we get Γ `
(a, b, c)W : Data(W ). From V 4 W and Lemma 4.4.4, we conclude Γ `
D′ : Data(V ). From D |= ASK(V ) and [A-Triple] we get D′ |= ASK(V ).

D = D1 |D2 In this case, for every i ∈ {1, 2} it holds Γ ` Di : Data(Vi) and
V 4 Vi. From Lemma 4.4.4 we derive that for every i ∈ {1, 2} it holds Γ ` Di :
Data(V ). We conclude Γ ` D′ : Data(V ) from the definition of update(·, ·, ·),
induction hypothesis and [T-Parallel Data]. From D |= ASK(V ), structural
congruence rules and [A-Ask] we know that D1 or D2 satisfy ASK(V ). Then, by
induction hypothesis we know that update(χ,D1,W ) or update(χ,D2,W ) satisfy
ASK(V ). We conclude D′ |= ASK(V ) from structural congruence rules and [A-Ask].

The following lemma proves that all interaction relations preserve well-
typedness of involved processes and data, and that they preserve ownership of
data. More precisely, the condition (3) ensures that the data which belong to a
user stays fully readable to that user after the interaction happens. This includes
the fact that the data might have changed during the interaction.
Lemma 4.4.11. Let ∅ ` a[Da ‖ Pa] : Network , ∅ ` b[Db ‖ Pb] : Network , P(a) =
U, P(b) = V and (Pa, Db) a,b (P ′a, D

′
b). Then

(1) ∅ ` P ′a : Process(U), and

(2) ∅ ` D′b : Data(V ), and
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(3) if D′b 6= ∅D, then D′b |= ASK(V ).

Proof. If Da 6= ∅D, then from [T-User], we know ∅ ` a : Name(U), ∅ ` Da :
Data(U), ∅ ` Pa : Process(U), Da |= ASK(U). If Da = ∅D, then from [T-Blocked]
and [T-Empty Data] we know ∅ ` a : Name(U), ∅ ` Da : Data(U), ∅ ` Pa :
Process(U). If Db 6= ∅D, then from [T-User], we know ∅ ` b : Name(V ), ∅ `
Db : Data(V ), ∅ ` Pb : Process(V ), Db |= ASK(V ). If Db = ∅D, then from
[T-Blocked] and [T-Empty Data] we know ∅ ` b : Name(V ), ∅ ` Db : Data(V ),
∅ ` Pb : Process(V ). Names a and b are not necessarily different.

The proof is by induction on the derivation of (Pa, Db) a,b (P ′a, D
′
b).

[I-Read] In this case:

• Pa = READb(χ,X).P ;

• P ′a = P{D/X} where D = read(χ, readable(Da, Db));

• ∅ ` χ : Pattern(W );

• (H.1) X : Data(W ) ` P : Process(U);

• D′b = Db.

From Lemma 4.4.8 we obtain (H.2) ∅ ` D : Data(W ). From (H.1), (H.2) and
Lemma 4.4.3.3 we derive (1). (2) and (3) hold trivially, since D′b = Db.

[I-Write] In this case:

• Pa = WRITEb(D).P ;

• P ′a = P ;

• Db 6= ∅D;

• D′b = Db |D;

• ∅ ` D : Data(W );

• (1) ∅ ` P : Process(U);

• V 4 W.

We obtain (2) from Lemma 4.4.4 and [T-Parallel Data], and (3) from structural
congruence rules for data and [A-Ask].

[I-Clear] In this case:

• Pa = CLEARb

• P ′a = 0;

• D′b = ∅D.
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We obtain (1) from [T-Inaction] and (2) from [T-Empty Data]. (3) holds since
Db = ∅D.
[I-Modify] In this case:

• Pa = MODIFYb(χ,D).P ;

• P ′a = P ;

• D′b = D′ |D where D′ = delete(χ,Db);

• (1) ∅ ` P : Process(U);

• U 4 V ;

• ∅ ` D : Data(V );

• D |= ASK(V ).

From Lemma 4.4.7, we obtain ∅ ` D′ : Data(V ). So, from [T-Parallel Data]
we obtain (2). From D |= ASK(V ), structural congurence rules and [A-Ask], we
obtain (3).

[I-Select] In this case:

• Pa = SELECTb(∃xW .χ, x).P ;

• P ′a =
∏

s∈S P s where S = select(∃xW .χ, readable(Da, Db));

• (H.1) x : Name(W ) ` P : Process(U);

• D′b = Db.

If S 6= ∅, then from (H.1), Lemma 4.4.9 and Lemma 4.4.3.2 we get that for every
s ∈ S it holds ∅ ` P s : Process(U).We conclude (1) from [T-Parallel Process].
If S = ∅, then we conclude (1) from [T-Inaction]. (2) and (3) hold trivially, since
D′b = Db.

[I-Update] In this case:

• Pa = UPDATEb(χ,W ).P ;

• P ′a = P ;

• D′b = update(χ,Db,W );

• (1) ∅ ` P : Process(U);

• Γ ` χ : Pattern(W );

• U 4 V 4 W.

We obtain (2) and (3) from ∅ ` Db : Data(V ), V 4 W and by Lemma 4.4.10.

[I-Parallel] In this case:
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• Pa = P |Q;

• (P,Db) a,b (P ′, D′b);

• P ′a = P ′ |Q;

• Γ ` P : Process(U);

• Γ ` Q : Process(U).

We derive the proof by induction hypothesis and [T-Parallel Process].

[I-Choice] We derive the proof from [T-Choice].

[I-Structural] We derive the proof from Lemma 4.4.1, induction hypothesis,
structural congruence rules and [A-Ask].

Subject reduction on networks is proved using Lemma 4.4.11. The lemma
is applied twice, once for interaction of a user with its own data and once for
interaction with the data of another user.
Theorem 4.4.12 (Subject reduction). If ∅ ` N : Network and N → N ′, then
∅ ` N ′ : Network .

Proof. The proof is by induction on the derivation of N → N ′.

[R-User] In this case:

• N = a[Da ‖ Pa] 8 b[Db ‖ Pb];

• N ′ = a[Da ‖ P ′a] 8 b[D′b ‖ Pb];

• a 6= b;

• (Pa, Db) a,b (P ′a, D
′
b);

• ∅ ` a : Name(U), ∅ ` Da : Data(U), ∅ ` Pa : Process(U) and if Da 6= ∅D,
then Da |= ASK(U);

• ∅ ` b : Name(V ), ∅ ` Db : Data(V ), ∅ ` Pb : Process(V ), and if Db 6= ∅D,
then Db |= ASK(V ).

From Lemma 4.4.11 we obtain ∅ ` P ′a : Process(U) and ∅ ` D′b : Data(V )
and if D′b 6= ∅D, then D′b |= ASK(V ). If D′b 6= ∅D, we derive the proof, by
rules [T-User] and [T-Parallel Network]. If D′b = ∅D, we derive the proof,
by rules [T-Blocked] and [T-Parallel Network].

[R-Self] In this case:

• N = a[Da ‖ Pa];

• N ′ = a[D′a ‖ P ′a];

• (Pa, Da) a,a (P ′a, D
′
a);
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• ∅ ` a : Name(U), ∅ ` Da : Data(U), ∅ ` Pa : Process(U), and if Da 6= ∅D,
then Da |= ASK(U).

From Lemma 4.4.11 we obtain ∅ ` P ′a : Process(U) and ∅ ` D′a : Data(U) and if
D′a 6= ∅D, then D′a |= ASK(U). If D′a 6= ∅D, we derive the proof, by rule [T-User].
If D′a = ∅D, we derive the proof, by rule [T-Blocked].

[R-Struct] We derive the proof, in this case, from Lemma 4.4.1, induction hy-
pothesis and structural congruence rules.

[R-Parallel] We derive the proof, in this case, by induction hypothesis and
[T-Network].

Corollary 4.4.13. If ∅ ` N : Network and N →∗ N ′, then ∅ ` N ′ : Network .
We can now prove the soundness of the type system.

Theorem 4.4.14 (Type safety). Let ∅ ` N : Network . Then N is well behaved.

Proof. Let N →∗ a[Da ‖ Pa] 8 N ′ and P(a) = U. By Corollary 4.4.13 and
[T-Network Parallel], we know that (S.1) ∅ ` a[Da ‖ Pa] : Network and (S.2)
∅ ` N ′ : Network .

(1) Let Da ≡ (a1, a2, a3)
V | E. From (S.1), [T-User], [T-Parallel Data] and

[T-Data Triple] we obtain Da |= ASK(U) and U 4 V. From Theorem 4.3.2
we get D |= ASK(U) implies D |= ASK(V ).

(2) LetDa = ∅D.We obtain readable(Da, D) = ∅D from the definition of function
readable(·, ·) From the definition of interaction relation it is obvious that
(WRITEa(D), Da) does not interact.

(3) Let N ′ ≡ b[Db ‖ Pb] 8N ′′ and P(b) = V . From (S.2) and the typing rules for
networks, we know that (S.3) ∅ ` Db : Data(V ). From (S.1) and the typing
rules for networks, we know that (S.4) ∅ ` Pa : Process(U).

So, if

• Pa ≡ MODIFYb(χ,D).P |Q, or
• Pa ≡ UPDATEb(χ, V ).P |Q, or
• Pa ≡ CLEARb |Q,

from (S.4) and rule [T-Parallel Process] we obtain:

• ∅ ` MODIFYb(χ,D).P : Process(U),

• ∅ ` UPDATEb(χ, V ).P : Process(U) and
• ∅ ` CLEARb : Process(U).

From rules [T-Change], [T-Update] and [T-Delete] we get that (S.5) U 4 V.
From (S.5) and Theorem 4.3.2 we get that D |= ASK(U) implies D |= ASK(V )
for an arbitrary data D. In case D 6= ∅D, from [T-User] we know Da |=
ASK(U), so it also holds Da |= ASK(V ).
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4.5 Conclusions and related work
We have introduced a core language of processes that interact with data in RDF
format, modelling a fragment of SPARQL and a higher order language that con-
sumes the data. These processes together with data are enclosed under named
users which are put in parallel, representing a network of users interacting with
each other. We define the desired privacy properties of the network by defin-
ing well-behaved networks. What distinguishes this work from others analysing
variety of security properties is the fact that it does not feature any additional
means for privacy control beside those that are already present in the language,
i.e. privacy policies are expressed as ask queries and policy satisfaction comes
to query satisfaction with users profiles in RDF format. We have studied a type
system guaranteeing some privacy properties by proving that well-typed networks
are well behaved. The key of the type system simplicity lies in the introduced
policy comparison relation and the chosen set of processes. As already mentioned,
the calculus is equipped only with processes essential for the privacy study. With
the extension of the process language we would get more complicated semantics
and the type system without significant impact on the privacy properties which
we have discussed.

This research contributes to the expanding trend of building the Web of Linked
Data. To the best of our knowledge, this is the first typed calculus that tackles pri-
vacy protection for Linked Data. The proposed typed calculus provides a ground
model for the development of type checkers for high level languages for Linked
Data. When the Web of Linked Data becomes significantly spread out, the natu-
ral step forward will be the study of formal models of applications that consume
the Web of Linked Data.

The Linked Data is currently present on the Web in many areas: media, publi-
cations, life sciences, geographic data and user generated content ([69, 15, 14, 12]).
The presented research mostly focuses on privacy issues for user generated content
such as posts, comments and images from social networks, discussion forums and
blogs. There is a number of tools for users to share and manage their own sightings
on a globally accessible database of linked data and for the content to be obtained
by exporting data in RDF format. Here we name SIOC exporters [45] (Linked
Data wrappers for blogging engines, content management systems and discus-
sion forums), Zemanta (provides tools for the semiautomated enrichment of blog
posts with data-level links pointing to DBpedia, Freebase, MusicBrainz, Semantic
Crunch-Base, other blogs, etc.), OpenCalais (web service that extracts semantic
metadata from text content, such as web pages), Graph API (provides Facebook
social graph data in a semantically-enriched RDF format containing Linked Data),
HyperTwitter (syntax and tool for embedding triple-like statements into Twitter
microblogging messages) and Twarql (encodes information from microblog posts
as Linked Open Data).

The syntax and the operational semantics of our calculus are inspired by
RDF data format [36] and SPARQL and SPARQL Update query languages [122, 59].
Similar calculi appear in [31, 32] which provide of a syntax of scripting language
for designing background processes that consume Linked Data , and in [42], which
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studies provenance for Linked Data. We have introduced the user profiles and
privacy policies as suggested in [127, 128, 134] where the authors propose the
authentication of users based on their FOAF (language defining a dictionary of
people-related terms that can be used in structured data) profiles and SPARQL ask
queries as privacy preference checkers.

Type systems were successfully used to analyse a wide range of security proper-
ties (authenticity, security, safety, secrecy, privacy,...). We mention the following:
in [1, 2] computational secrecy control was achieved for asynchronous π-calculus
[104] by introducing types for public and private channels and proving compu-
tational soundness theorem; in [53] the type system for objective join-calculus
guaranties that private labels are accessed only from the body of a class used to
create the object; in [52] policy conformance in a distributed system is verified
with a type system; in [64] authenticity and secrecy of well-typed protocols was
proven for timed spi-calculus. The paper [31] provide static and dynamic typing
with subtyping which identifies simple errors in the data and scripts and a minimal
type inference algorithm. The most related type assignment systems are [41, 40],
where the safety properties of data in XML format have been proved and [42]
where types statically evaluate provenance driven access control.

In [41, 40], as well as in Chapter 3 of this thesis, type systems control security
of data access in distributed networks with XML data. Matching function in
[40] and Chapter 3 type checks identified data. Type system presented in the
current chapter is able to statically check whether the data that will be identified
will violate privacy or not. Such feature is due to simple data structure, refined
syntax of patterns and syntax of processes which is more restrictive with respect
to possible usages of the identified data.

In [42], the authors study provenance for Linked Data and introduce a typed
calculus for modelling interaction between processes and Linked Data, tracing
where the data has been published and who published it. The syntax of their
calculus is similar to ours, in the sense that both calculi distinguish between pro-
cesses and data and describe their interaction. In our calculus, processes run on
behalf of data and both the data and the process are enclosed with a user name
(like in named graphs), while in the other calculus linked data is open. Since
the two calculi model orthogonal problems, triples are decorated with completely
different annotations, while the tool for checking whether a data satisfy a query is
the same. The semantics differs quite a lot since in our model it is essential that
the operations are performed on the entire observed data. For example, think
of updating a privacy policy: it must be updated on all triples satisfying some
condition i.e. policy. Other related calculi do not have to guarantee this.

By means of a type system, we have been able to verify preservation of privacy
properties taken from [127, 128], where the vocabulary for fine-grained privacy
preference control and a tool for privacy preference management were defined, as
well as several more general properties.
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Chapter 5

Types for memory control

Overview This chapter is based on the paper “Exception Handling for Copyless
Messaging” [89] and its early version [88]. In Section 5.1 we illustrate the problem
we are addressing and informally sketch our solution in terms of types and a revised
exception handling construct. In Section 5.2 we formally define the syntax and the
semantics of a language of processes to model Sing# programs and we define well-
behaved processes. Section 5.3 develops a type system for the language presented
in Section 5.2 and Section 5.4 shows its soundness. Section 5.5 concludes the
chapter with discussion and related work.

5.1 Copyless messaging and exceptions
Message passing is a flexible paradigm that allows autonomous entities to exchange
information and to synchronize with each other. The term “message passing” seems
to suggest a paradigm where messages move from one entity to another, although
more often than not messages are in fact copied during communication. While
this is inevitable in a distributed setting, the availability of a shared address space
makes it possible to implement a copyless form of message passing, whereby only
pointers to messages are exchanged.

The Singularity Operating System (Singularity OS) [84, 83] is a notable ex-
ample of system that heavily relies on the copyless paradigm. In Singularity OS,
processes have access to a shared region called the exchange heap, inter-process
communication solely occurs by means of message passing over channels allocated
on the exchange heap, and messages are themselves pointers to the exchange
heap. As detailed by [84, 83, 50], it is not practical to automatically garbage
collect objects on the exchange heap, which therefore must be explicitly managed
by processes.

The copyless paradigm has obvious performance advantages over more con-
ventional forms of message passing. At the same time, it fosters the proliferation
of subtle programming errors arising from the explicit management of objects
and the sharing of data. For this reason the designers of Singularity OS have
equipped Sing#, the programming language used for the development of Singu-
larity OS, with explicit constructs, types, and static analysis techniques to assist
programmers in writing code that is free from a number of programming errors,

101
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including: memory faults, namely the access to unallocated/deallocated objects in
the heap; memory leaks, that is the accumulation of unreachable allocated objects
in the heap; communication errors, which could cause the abnormal termination
of processes and trigger the previous kinds of errors.

Some aspects of Sing# have already been formalized and studied by [44, 136,
146, 17]. In particular, in [17] it was shown that Sing# channel contracts can
be conveniently represented as a variant of session types [78, 79], and that the
information given by session types along with a linear type discipline can prevent
memory leaks, memory faults, and communication errors. In [88, 89] we focus
on exceptions and exception handling. The interest in our research stems from
the observation that copyless messaging and exceptions are clearly at odds with
each other: on the one hand, copyless messaging requires a very disciplined and
controlled access to memory; on the other hand, exceptions are in general un-
predictable and disrupt the normal control flow of programs. Consequently, and
perhaps not surprisingly, these two aspects can be reconciled only with some na-
tive support from the runtime system. Here is a summary of the contributions of
this research:

• we formalize a calculus of processes that communicate through the copyless
paradigm and that can throw exceptions;

• we develop a type system for preventing the aforementioned errors even in
the presence of exceptions, if suitable exception handlers are provided;

• we show how to take advantage of the invariants guaranteed by the type
system in order to reduce the cost of exception handling.

5.1.1 Motivating example

To introduce the context in which we operate and the kind of problems we have
to face, we take a look at a real fragment of Singularity OS. In the discussion that
follows it is useful to keep in mind that Singularity channels consist of pairs of
related endpoints, called the peers of the channel. Each endpoint is associated with
an unbounded queue containing the messages sent to that endpoint from its peer.
Communication is therefore asynchronous and send operations are nonblocking.

Figure 5.1 shows a Sing# function that computes the name for a newly allocated
RAM disk. This function has been taken from SourceControl/latest#base/
Services/RamDisk/ClientManager/RamDiskClientManager.sg in the Singular-
ity OS source code available at http://singularity.codeplex.com/. Here, some
identifiers are shortened in order to improve readability. The function has two
output parameters, the computed disk name and the endpoint that links the disk
to the DirectoryService (abbreviated DS in the code) which is part of the file
system manager. The function begins by retrieving an endpoint ns for communi-
cating with DirectoryService (line 3). Then the function repeatedly creates a
new channel, represented as the peer endpoints imp and exp which are the out-
put parameters of the NewChannel method (lines 6–8), computes a new disk name
(line 9), and tries to register the chosen name along with imp to DirectoryService

SourceControl/latest#base/Services/RamDisk/ClientManager/RamDiskClientManager.sg
SourceControl/latest#base/Services/RamDisk/ClientManager/RamDiskClientManager.sg
http://singularity.codeplex.com/
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1 void GetNextDiskPath(out string! diskName,
2 out ServiceProviderContract.Exp! expService) {
3 DSContract.Imp:Ready ns = DS.NewClientEndpoint();
4 try {
5 while (true) {
6 ServiceProviderContract.Imp! imp;
7 ServiceProviderContract.Exp! exp;
8 ServiceProviderContract.NewChannel(out imp, out exp);
9 diskName = pathPrefix + nextDiskNumber.ToString();

10 ns.SendRegister(Bitter.FromString2(diskName), imp);
11 switch receive {
12 case ns.AckRegister():
13 nextDiskNumber++;
14 expService = exp;
15 return;
16 case ns.NakRegister(nakImp, error):
17 if (error == ErrorCode.AlreadyExists)
18 nextDiskNumber++;
19 else
20 throw new RamDiskErrorException(error);
21 delete exp;
22 delete nakImp;
23 break;
24 }
25 }
26 } finally {
27 delete ns;
28 }
29 }

Figure 5.1: Example of Sing# function.
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contract DSContract {
out message Success();
in message Register(char[]! in ExHeap path,

SPContract.Imp:Start! imp);
out message AckRegister();
out message NakRegister(SPContract.Imp:Start imp,

ErrorCode error);

// ...more message types

state Start : one { Success! → Ready; }

state Ready : one {
Register? → DoRegister;
CreateDirectory? → ...
// ...more transitions

}

state DoRegister : one {
AckRegister! → Ready;
NakRegister! → Ready;

}
}

Figure 5.2: Example of Sing# contract.

through ns (line 10). The switch receive construct (lines 11–24) is used to re-
ceive messages and to dispatch control to various cases depending on the type of
message that is received. Each case block specifies the endpoint from which a
message is expected and the tag of the message. In this example, one of two kinds
of messages are expected from the ns endpoint: either an AckRegister message
(lines 12–15) or a NakRegister message (lines 16–23). In the first case the reg-
istration is successful (line 12), so the output parameter expService is properly
initialized and the function terminates correctly (line 15). In the second case the
registration is unsuccessful (line 16), hence a new registration is attempted if the
error is recoverable (lines 17–18), otherwise an exception is thrown to abort the
execution of the function (line 20). The main loop (lines 5–25) is protected within
a try block with a finally clause that is executed regardless of whether the
function terminates correctly or not. In the example, the clause deallocates the
ns endpoint (line 27).

Sing# uses channel contracts to detect communication errors. Figure 5.2 shows
(part of) the DSContract contract associated with endpoint ns in Figure 5.1. A
contract is made of message specifications and of states connected by transitions.
Each message specification begins with the keyword message and is followed by
the tag of the message and the type of its arguments. In Figure 5.2, DSContract
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defines the Register message with two arguments (a string and another endpoint)
and the AckRegister message with no arguments. The in and out qualifiers spec-
ify the direction of messages from the point of view of the process exporting the
contract. The state of the contract gives information about which messages can
be sent/received at every given point in time. In DSContract we have a Ready
state from which Register, CreateDirectory, and other (here omitted) messages
can be received. After receiving a Register message, the contract moves to state
DoRegister, from which one of the AckRegister or NakRegister messages can
be sent, and then the contract goes back to the Ready state. In fact, each contract
has two complementary views – called exporting and importing views – which are
associated with the two peer endpoints of the channel. By convention, a contract
declaration like that in Figure 5.2 specifies the exporting view of the contract: a
provider of DSContract must adhere to its exporting view. In contrast, the func-
tion GetNextDiskPath in Figure 5.1 acts as a consumer of DSContract, therefore
the function performs complementary actions by sending a Register message and
then waiting for either an AckRegister or a NakRegister message. In the code,
the importing and exporting views correspond to the types obtained by appending
.Imp and .Exp suffixes to the name of the contract. For example, the declaration
on line 3 specifies that ns is an endpoint having as type the importing view of
DSContract in state Ready. After line 10, the type associated with ns changes to
DSContract.Imp:DoRegister and then it goes back to DSContract.Imp:Ready
after any of the receive operations on lines 12 and 16. Note that the changes in the
state of the contract associated with ns (and therefore of the type of ns) are not
explicit in the source code. They follow from the initial declaration that brings
ns into scope (line 3) and from the way ns is used in the function. By keeping
track of the contract state of ns, the compiler can statically check that the ac-
tions performed on ns (for sending and receiving messages) match corresponding
co-actions (for receiving and sending) performed on its peer endpoint, which is in
use by some other process in the system.

The code structure in Figure 5.1, involving channel allocation and deallocation,
messaging, delegation (sending endpoints over other endpoints), and exception
handling, is in fact typical throughout the whole Singularity OS and shows that
these aspects are frequently mixed in non-trivial ways. We can identify two main
problems caused by exceptions:

1. Since communication errors are prevented by the complementarity of actions
performed by processes accessing peer endpoints, a jump in the control flow
of one process, like that caused by an exception, may disrupt the alignment
of the peers of a channel and compromise subsequent interactions.

2. When an exception is thrown, messages that have been sent but not yet
received and other objects allocated since the beginning of a trymay become
unreachable and therefore turn into memory leaks.

Sing# has limited and not fully satisfactory mechanisms for dealing with these
problems. Regarding the first, Sing# provides an InState method through which
it is possible to query, at runtime, the actual state of an endpoint. This infor-
mation can be used to attempt recovery from a possibly inconsistent state of the
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endpoints. This mechanism implies an overhead for preserving and maintaining
typing information at runtime and is unreliable as it depends on the programmer.
The second problem seems to have been neglected. For example, the function in
Figure 5.1 is prone to leak memory on line 20 in the case that the exception is
thrown, since neither exp nor nakImp are properly deallocated (imp has been sent
away in the call to SendRegister so it is not the current thread’s responsibility
to deallocate it). In this example it would suffice to move the delete instructions
on lines 21 and 22 between lines 16 and 17 but, in general, it may be impossible
to identify the exact point where an exception can be thrown and therefore when
it is appropriate to deallocate resources. Note that it is unreasonable to assume
that this clean-up code will be placed in the exception handler, if only because
the handler may not be in the scope of the resources to be deallocated: in the
example, exp and nakImp are not visible in the finally block so, by the time the
exception has been thrown, it is too late to prevent the leak.

We put forward a solution that combines static analysis (inspired by existing
works on exception handling for sessions by [25, 23, 24]) with a transaction-like,
all-or-nothing semantics of try blocks. The basic idea is that a try block is either
executed completely, and then its effects on the heap are committed and become
permanent, or it is aborted by an exception. If this happens, all the processes
involved in the transaction are notified of the exception, so that the types of the
endpoints they are using can remain aligned, and the state of the heap is restored
to that at the beginning of the try block. The solution relies on the following key
ideas:

(1) Following [25, 23], we add explicit annotations to the types of endpoints used
inside a transaction so that all processes involved in the transaction are aware
of all the exceptions that can be thrown (possibly by a different process) during
the transaction. In addition, these annotations make sure that the queues of
endpoints used in a transaction are empty at the beginning of the transaction
so that heap restoration solely amounts to removing messages from queues.

(2) Inside try blocks, we “seal” the type of any endpoint whose type is not properly
annotated and we forbid processes to use endpoints with a sealed type. In this
way, the type system can statically ensure that well-typed processes do not
modify any portion of the heap outside the restorable one.

(3) We forbid the deallocation of endpoints inside try blocks, unless they have
been allocated within the very same block. In this way, state restoration does
not involve reallocations, which are difficult to implement correctly.

To prevent memory leaks, it is necessary to dynamically keep track of the
memory allocated within a try block so that this memory can be properly re-
claimed in case an exception is thrown. It is unsafe to deallocate an endpoint if
its peer is not deallocated simultaneously: mechanism (1) guarantees that these
deallocations are safe even if the type of these endpoints would not normally allow
it, because transactions define a “closed scope” that includes, for each endpoint
used in a transaction, also its peer. Starting with the next section we turn into the
technical part, in which we make precise all of the concepts informally introduced
so far.
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P ::= Process
done inaction

| open(a, a).P open channel
| close(u).P close endpoint
| u!m(u).P send
|

∑
i∈I u?mi(xi).Pi receive

| P ⊕ P conditional
| P | P parallel
| try(U) {ei : Pi}i∈IP initiate transaction
| throw e exception
| commit(U).P commit transaction
| X〈ũ〉 invocation

D ::= Definition
X(ũ)

def
= P rule

Figure 5.3: Syntax of processes and definitions.

5.2 Language
Notation We assume given an infinite set Pointers of heap addresses ranged over
by a, b, . . . , an infinite set Variables of variables ranged over by x, y, . . . , and a
set Exceptions of exceptions ranged over by e, . . . . We let names u, v, . . . range
over elements of Pointers ∪ Variables. We use A, B, . . . to denote sets of pointers,
E , . . . to denote sets of exceptions, U to denote sets of names, and ũ, ṽ to denote
sequences of names (we will sometimes use ũ to denote also the set of names in
ũ). Process variables are ranged over by X, Y , . . . .

5.2.1 Syntax

The process language is essentially a variant of the π-calculus, except that names
represent heap pointers instead of communicating channels. Processes are defined
by the grammar in Figure 5.3. The term done denotes the idle process that
performs no action. The term open(a, b).P denotes a process that allocates a
new channel, represented as the two peer endpoints a and b, in the heap and
continues as P . The term u!m(v).P denotes a process that sends the message m(v)
on the endpoint u and then continues as P . A message is made of a tag m and an
argument v. The term

∑
i∈I u?mi(xi).Pi denotes a process that waits for a message

from endpoint u. According to the tag mi of the received message, the variable
xi is instantiated with the argument of the message in the continuation process
Pi. We assume that the set I is always finite and non-empty. The terms P ⊕ Q
and P | Q are standard π-calculus processes. The term try(U) {ei : Qi}i∈IP
denotes a process willing to initiate a transaction involving the endpoints in U .
The process P is the body of the transaction and is executed when the transaction
is initiated, while the Qi’s are the handlers of the transaction which are activated
if the transaction is aborted during the execution of the body by an exception ei.
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fn(done) = fn(throw) = ∅
fn(open(a, b).P ) = fn(P ) \ {a, b}
fn(close(u).P ) = {u} ∪ fn(P )

fn(a!m(b).P ) = {a, b} ∪ fn(P )
fn(

∑
i∈I u?mi(xi).Pi) = {u} ∪

⋃
i∈I(fn(Pi) \ {xi})

fn(P ⊕Q) = fn(P |Q) = fn(P ) ∪ fn(Q)
fn(try(U) {ei : Qi}i∈IP ) = U ∪ fn(P ) ∪

⋃
i∈I fn(Qi)

fn(commit(U).P ) = U ∪ fn(P )
fn(X〈ũ〉) = ũ

bn(done) = bn(throw) = bn(X〈ũ〉) = ∅
bn(open(a, b).P ) = {a, b} ∪ bn(P )
bn(close(u).P ) = bn(a!m(b).P ) = bn(P )

bn(
∑

i∈I u?mi(xi).Pi) =
⋃
i∈I({xi} ∪ bn(Pi))

bn(P ⊕Q) = bn(P |Q) = bn(P ) ∪ bn(Q)
bn(try(U) {ei : Qi}i∈IP ) = bn(P ) ∪

⋃
i∈I bn(Qi)

bn(commit(U).P ) = bn(P )

Figure 5.4: Free and bound names of processes.

The term throw e denotes the throwing of the exception e, whose effect is to abort
the currently running transaction and to execute the appropriate handler. The
term commit(U).P denotes a process willing to terminate the currently running
transaction (involving the endpoints in U). As soon as the transaction has ended,
the process continues as P . The term X〈ũ〉 denotes the invocation of the process
associated with the process variable X. We assume that we work with a global
environment of process definitions of the form

X(ũ)
def
= P

defining these associations.
The binders of the language are open(a, b).P , which binds a and b in P , the

input prefix u?m(x).P , which binds x in P , andX(ũ)
def
= P which binds the names ũ

in P . The formal definitions of free and bound names of a process P , respectively
denoted by fn(P ) and bn(P ), are standard and given in Figure 5.4. We identify
processes modulo alpha renaming of bound names.

Syntactic conventions We adopt some standard conventions regarding the
syntax of processes:

– we sometimes use an infix form for receive operations and write, for example
u?m1(x1).P1 + · · ·+ u?mn(xn).Pn instead of

∑
i=1..n u?mi(xi).Pi;

– we sometimes use a prefix form for parallel compositions and write, for example,∏
i=1..n Pi instead of P1 | · · · | Pn;

– we identify
∏

i∈∅ Pi with done;
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GetNextDiskPath(DS , ret)
def
=

DS?NewClientEndpoint(ns).
try(ns) {RamDiskErrorException : Finally〈ns ,DS , ret〉}

Loop〈ns ,DS , ret〉

Loop(ns ,DS , ret)
def
=

open(imp, exp).ns !Register(imp).
ns?AckRegister().commit(ns).
ret !SetService(exp).Finally〈ns ,DS , ret〉

+ ns?NakRegister(nakImp).
throw RamDiskErrorException

⊕ close(exp).close(nakImp).Loop〈ns ,DS , ret〉

Finally(ns ,DS , ret)
def
= close(ns).ret !Result(DS ).close(ret)

Figure 5.5: Encoding of the function in Figure 5.1.

– we omit message arguments when they are not used and we omit trailing oc-
currences of done, and write, for example, a!a().close(a) instead of a!a(c).
close(a).done

To ease the formalization, our process language supports a minimal set of
critical features:

– we focus only on monadic messaging (messages have exactly one endpoint ar-
gument) and exception handling, disregarding other constructs and data types
of Sing#;

– we assume that receive operations use the same endpoint in every branch, for-
bidding processes like u?a(x).P + v?b(y).Q which are allowed by the switch
receive construct in Sing#;

– we work with a purely prefix-based language without sequential composition,
encoding try-catch-finally blocks in Sing# with transaction bodies and han-
dlers and commit processes within bodies;

– we encode if-else commands with the non-deterministic process P⊕Q omitting
the condition that determines the chosen branch.

We claim that all the results presented hereafter can be suitably extended to
overcome these restrictions.
Example 5.2.1. Figure 5.5 shows the encoding of the function in Figure 5.1
using the syntax of our process language. The structure of the process follows
quite closely that of the function, except for some details which we explain here.

The loop on lines 5–25 is encoded as a recursive process Loop parameterized
on its free names. The finally block on lines 26–28 is factored out as a named
process Finally, since it must be executed regardless of whether the try block



110 CHAPTER 5. TYPES FOR MEMORY CONTROL

is terminated successfully (line 15) or not (line 20). Consequently, Finally is
invoked twice in the encoding.

The main difference between the function Figure 5.1 and its encoding concerns
parameter passing, which is encoded using explicit communication on the ret
endpoint. In particular, the initialization of expService with exp on line 14
corresponds to the output operation ret !SetService(exp) in Figure 5.5.

Note that in Figure 5.1 the function uses a global name DS for accessing a
system service. In order to obtain a closed term, in the encoding we explicitly
mention a parameter DS of the GetNextDiskPath process which represents DS.
Because our type system relies on the linear access to resources, invoking a para-
metric process such as GetNextDiskPath means transferring the ownership of the
parameters to the process. To preserve linearity (of DS in this case), the Finally
process sends DS back on ret before ret is closed (more involved examples of
function modeling and ownership transfer are described in detail by [17]). 4

5.2.2 Operational semantics

In order to describe the operational semantics of processes, we need to represent
the heap where channels are allocated and through which messages are exchanged.
Indeed, channels are accessed through the pointers to their endpoints and message
arguments are themselves pointers to heap objects. Intuitively, a heap µ is a finite
map from pointers a to endpoint structures [b,Q], where b is the peer endpoint of
a and Q is the queue of messages waiting to be received from a. In the model,
we represent heaps and message queues as terms generated by the grammar in
Figure 5.6. The term ∅ denotes the empty heap, in which no endpoints are allo-
cated. The term a 7→ [b,Q] denotes an endpoint allocated at a pointing to the
endpoint structure [b,Q]. The term µ, µ′ denotes the composition of the heaps µ
and µ′. We write dom(µ) for the domain of the heap µ, that is the set of pointers
for which there is an allocated endpoint structure. The heap composition µ, µ′ is
well defined provided that dom(µ) ∩ dom(µ′) = ∅ (there cannot be two endpoint
structures allocated at the same address). In the following, we identify queues
assuming associativity of composition and the laws ε :: Q = Q :: ε = Q and we
identify heaps assuming associativity and commutativity of composition and the
law ∅, µ = µ. We write a 7→ [b,Q] ∈ µ to indicate that the endpoint structure
[b,Q] is allocated at location a in µ.

Message queues, ranged over by Q, are also represented as terms: ε denotes the
empty queue, m(c) is a queue made of an m message with argument c, and Q :: Q′

is the queue composition of Q and Q′. We identify queues modulo associativity
of :: and we assume that ε is neutral for ::.

Before defining the operational semantics of processes we formalize two notions.
The first one is that of peer endpoints:
Definition 5.2.2 (peer endpoints). We say that a and b are peer endpoints in
µ, written a µ←→ b, if a 6= b and a 7→ [b,Q] ∈ µ and b 7→ [a,Q′] ∈ µ.

Note that µ←→ is a symmetric relation.
The notion of “closed scope” that we mentioned in Section 5.1.1 is formalized

as a predicate on sets of pointers:
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µ ::= Heap
∅ empty heap

| a 7→ [a,Q] endpoint structure
| µ, µ heap composition

Q ::= Queue
ε empty queue

| m(a) message
| Q :: Q queue composition

P ::= Runtime process
· · · as in Figure 5.3

| 〈A,A, {ei : Pi}i∈IP 〉 running transaction

Figure 5.6: Syntax of heaps, queues, and runtime processes.

fn(〈A,B, {ei : Qi}i∈IP 〉) = A ∪B ∪ fn(P )
⋃
i∈I fn(Qi)

bn(〈A,B, {ei : Qi}i∈IP 〉) = bn(P )
⋃
i∈I bn(Qi)

Figure 5.7: Free and bound names of the running transaction.

Definition 5.2.3 (balanced set of pointers). We say that A ⊆ dom(µ) is
balanced in µ, written µ-balanced(A), if, for every a ∈ A, a µ←→ b implies b ∈ A.

Informally, A is balanced in µ if for every a in A, the peer of a is also in A
provided that it is still allocated in µ. Since a message sent over a ends up in
the queue of its peer, this means that any communication occurring on one of the
endpoints in A remains within the scope identified by A.

In the operational semantics of processes, we need to distinguish between a
transaction that has not started yet (and which is represented using the try con-
struct of Figure 5.3), and a running transaction. This need arises for two reasons:
First, a running transaction generally involves more than one process, each with
its own set of handlers. Therefore, it is technically convenient to devise an ex-
plicit construct that defines the scope of the transaction. Second, it is necessary
to keep track of the part of the heap that has been allocated since the initia-
tion of the transaction. Figure 5.6 extends the syntax of processes with the term
〈A,B, {ei : Pi}i∈IP 〉 where A is the set of endpoints involved in the transaction, B
is the set of endpoints that have been allocated since the transaction has started,
P is the (residual) body of the transaction, and the Pi’s represent the handlers
of the transaction. In general, P and the Pi’s will be parallel compositions of
the bodies and the handlers of the processes that have cooperatively initiated
the transaction. Free and bound names of the running transaction are defined in
Figure 5.7

The operational semantics of processes is defined in terms of a structural con-
gruence over processes (identifying structurally equivalent processes) and a re-
duction relation. Structural congruence is the least relation ≡ including alpha
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Structural congruence

[S-Par Idle]
P | done ≡ P

[S-Par Comm]
P |Q ≡ Q | P

[S-Par Assoc]
P | (Q |R) ≡ (P |Q) |R

Reduction relation

[R-Open]
µ # open(a, b).P → µ, a 7→ [b, ε], b 7→ [a, ε] # P

[R-Parallel]
µ # P → µ′ # P ′

µ # P |Q→ µ′ # P ′ |Q

[R-Close]
µ, a 7→ [b,Q] # close(a).P → µ # P

[R-Choice]
i ∈ {1, 2}

µ # P1 ⊕ P2 → µ # Pi

[R-Send]
µ, a 7→ [b,Q], b 7→ [a,Q′] # a!m(c).P → µ, a 7→ [b,Q], b 7→ [a,Q′ :: m(c)] # P

[R-Receive]
k ∈ I

µ, a 7→ [b, mk(c) :: Q] #
∑

i∈I a?mi(xi).Pi → µ, a 7→ [b,Q] # Pk{c/xk}

[R-Invoke]

X(ũ)
def
= P

µ # X〈ã〉 → µ # P{ã/ũ}

[R-Struct]
P ≡ P ′ µ # P ′ → µ′ # Q′ Q′ ≡ Q

µ # P → µ′ # Q

Figure 5.8: Operational semantics of processes.

conversion and the laws in Figure 5.8, stating that parallel composition is com-
mutative, associative, and has done as neutral element. As process interaction
mostly occurs through the heap, the reduction relation describes the evolution of
configurations µ # P rather than of processes alone, so that

µ # P → µ′ # P ′

denotes the fact that process P evolves to P ′ and, in doing so, it changes the heap
from µ to µ′.

Reduction is the smallest relation between configurations defined by the rules
in Figures 5.8 and 5.9.

We explain the rules in the following paragraphs. Rule [R-Open] describes
the creation of a new channel, which causes the allocation of two new endpoint
structures in the heap. The endpoints are initialized with empty queues and are
allocated at fresh locations, for otherwise the resulting heap would be ill formed.
Since we have assumed that Pointers is infinite, it is always possible to alpha re-
name a and b to fresh pointers using structural congruence, so that an open(a, b).P
is always able to reduce.
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[R-Start Transaction]
µ-balanced(

⋃
i∈I Ai)

µ #
∏

i∈I try(Ai) {ej : Qij}j∈JPi → µ # 〈
⋃
i∈I Ai, ∅, {ej :

∏
i∈I Qij}j∈J

∏
i∈I Pi〉

[R-End Transaction]
µ # 〈A,B, {ej : Qj}j∈J

∏
i∈I commit(Ai).Pi〉 → µ #

∏
i∈I Pi

[R-Run Transaction]
µ # P → µ′ # P ′

µ # 〈A,B, {ej : Qj}j∈JP 〉 → µ′ # 〈A, track(B, dom(µ), dom(µ′)), {ej : Qj}j∈JP ′〉

[R-Catch Exception]
k ∈ J

µ1, {ai 7→ [bi,Qi]}i∈I , µ2 # 〈{ai}i∈I , dom(µ2), {ej : Qj}j∈Jthrow ek | P 〉
→ µ1, {ai 7→ [bi, ε]}i∈I # Qk

[R-Propagate Exception]
∀j ∈ J : ej 6= e

µ1, {ai 7→ [bi,Qi]}i∈I , µ2 # 〈{ai}i∈I , dom(µ2), {ej : Qj}j∈Jthrow e | P 〉
→ µ1, {ai 7→ [bi, ε]}i∈I # throw e

Figure 5.9: Operational semantics of transactions.

Rule [R-Close] describes the closing of an endpoint, which deallocates its
structure from the heap and discards its queue. Note that both endpoints of a
channel are created simultaneously by [R-Open], but each is closed independently
by [R-Close] (this is the same semantics as the one of Sing#).

Rule [R-Choice] states that a process P ⊕ Q nondeterministically reduces to
either P or Q.

Rule [R-Send] describes the sending of a message m(c) on the endpoint a.
The message is enqueued at the right end of the queue associated with the peer
endpoint b of a. Note that, for this rule to be applicable, it is necessary for both
endpoints of a channel to still be allocated.

Rule [R-Receive] describes the receiving of a message from endpoint a. In
particular, the message at the left end of the queue associated with a is removed
from the queue, its tag mk is used to select one branch of the process, and its
argument c instantiates the corresponding variable xk.

Rule [R-Parallel] describes the independent evolution of parallel processes.
Note how the heap is treated globally even if there is only one subprocess to reduce.

Rule [R-Invoke] describes process invocations simply as the replacement of a
process variable with the process it is associated with, modulo the substitution
of its parameters. In this rule and in [R-Receive], P{ã/b̃} denotes the capture-
avoiding substitution of ã in place of b̃ in P .

Rule [R-Start Transaction] describes the initiation of a transaction by a
number of processes. The transaction is identified by a set of endpoints

⋃
i∈I Ai
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which are distributed among the processes. In order for the transaction to start,
this set of endpoints must be balanced, so that for every endpoint in the set its
peer is also in the set. The rule is nondeterministic, in the sense that there can be
multiple combinations of processes that can initiate a transaction. We leave the
choice of a particular strategy (for example, requiring

⋃
i∈I Ai to be non-empty,

minimal, and µ-balanced) to the implementation. The residual process is the tuple

〈
⋃
i∈I Ai, ∅, {ej :

∏
i∈I Qij}j∈J

∏
i∈I Pi〉

combining the bodies and the handlers of the processes involved in the transaction.
The second component is ∅ indicating that at this stage no new endpoints have
been allocated yet within the transaction. Note that the combined processes must
be able to handle the same set {ej}j∈J of exceptions for the reduction to occur.
Even if this seems to require a runtime check, the fact that all processes involved
in a transaction are able to handle the same set of exceptions will be ensured by
the type system (see rule [T-Try] in Figure 5.13).

Rule [R-End Transaction] reduces a running transaction to its continuation
when its body has terminated. The handlers are discarded. The sets Ai play no
role in the operational semantics and are used for typing purposes only. In fact,
we will see that the type system enforces the invariant that these sets coincide
with the ones decorating the try blocks corresponding to the commit processes
and, in particular, A =

⋃
i∈I Ai.

Rule [R-Run Transaction] allows the reduction of a transaction according
to the reductions of its body. The rule keeps track of the memory changes oc-
curred during the reduction of the body of the transaction by updating the second
component of the transaction to track(B, dom(µ), dom(µ′)), where

track(B,A0, A1)
def
= (B ∪ (A1 \ A0)) \ (A0 \ A1)

In practice, the pointers to objects allocated during the reduction are added to B,
while the pointers to objects deallocated during the reduction are removed from
B.

Rule [R-Catch Exception] describes the abnormal termination of a running
transaction when an exception is thrown and the transaction provides a handler
for it. In this case, the queues of all the endpoints involved in the transactions
are emptied, the memory allocated within the transaction is reclaimed, and the
appropriate handler is run. In a similar way, rule [R-Propagate Exception]
abnormally terminates running transactions when there is no suitable handler for
the thrown exception. Also in this case the queues of the endpoints involved in
the transactions are emptied and the memory allocated within the transaction is
reclaimed, but the exception is propagated (technically, re-thrown) at the outer
level.

We write µ # P → if µ # P → µ′ # P ′ for some µ′ and P ′ and µ # P X→ if not
µ # P → ; we write →∗ for the reflexive, transitive closure of → .

5.2.3 Well-behaved processes

We conclude this section providing a characterization of well-behaved processes,
those that are free from memory leaks, memory faults, and communication errors.
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[ST-Inactive]
µ # done ↓

[ST-Input]
µ, a 7→ [b, ε] #

∑
i∈I a?mi(xi).Pi ↓

[ST-Commit]
µ # commit(A).P ↓

[ST-Try]
¬µ-balanced(A)

µ # try(A) {ej : Qj}j∈JP ↓

[ST-Parallel]
µ # P ↓ µ # Q ↓

µ # P |Q ↓

[ST-Running Transaction]
µ # P ↓ P 6≡

∏
i∈I commit(Ai).Pi

µ # 〈A,B, {ej : Qj}j∈JP 〉 ↓

Figure 5.10: Stuck configurations.

A memory leak occurs when no pointer to an allocated region of the heap is re-
tained by any process. In this case, the allocated region has no owner, it occupies
space, but it is no longer accessible. A memory fault occurs when a pointer is
accessed and the endpoint it points to is not (or no longer) allocated. A commu-
nication error occurs when some process receives a message of unexpected type.
To formalize well-behaved processes, we need to define the reachability of a heap
object with respect to a set of root pointers. Intuitively, a process P may directly
reach any object located at some pointer in the set fn(P ) (we can think of the
pointers in fn(P ) as of the local variables of the process stored on its stack); from
these pointers, the process may reach other heap objects by reading messages from
the endpoints it can reach, and so forth.
Definition 5.2.4 (reachable pointers). We say that c is reachable from a in
µ, notation c ≺µ a, if a 7→ [b,Q :: m(c) :: Q′] ∈ µ. We write 4µ for the reflexive,
transitive closure of ≺µ and we define µ-reach(A) = {c ∈ Pointers | ∃a ∈ A : c 4µ
a}.

The last auxiliary notion we need provides a syntactic characterization of those
configurations that cannot reduce but that do not represent any of the errors
described above.
Definition 5.2.5 (stuck configuration). We say that the configuration µ # P is
stuck if the judgment µ # P ↓ is inductively derivable by the rules in Figure 5.10.

Rules [ST-Inactive] and [ST-Parallel] are obvious, while rules [ST-Try] and
[ST-Commit] state that transaction initiations and termination are stuck, if taken
in isolation. In the former case, the set of involved endpoints must not be balanced,
for otherwise the transaction could initiate. Rule [ST-Running Transaction]
states that a running transaction is stuck if its body is stuck and different from
a combination of processes willing to terminate the transaction, for otherwise the
transaction could terminate. Note also that no exception can have been thrown
within the body of a stuck running transaction, for the stuckness predicate is
undefined for throw e processes. Finally, rule [ST-Input] states that a process
waiting for a message from endpoint a is stuck only if the endpoint a is allocated
and its queue is empty. Then, a configuration whose processes are all waiting for
a message corresponds to a genuine deadlock. From these rules we deduce that a
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process willing to send a message on a is never stuck, and so is a process willing
to receive a message from a if the queue associated with a is not empty.
Definition 5.2.6 (well-behaved process). We say that P is well behaved if
∅ # P →∗ µ # Q implies:

(1) dom(µ) ⊆ µ-reach(fn(Q));

(2) Q ≡ Q1 |Q2 and µ # Q1 X→ imply µ # Q1 ↓.

Less formally, a process P is well behaved if every residual Q of P is such that
Q can reach every pointer in the heap and every subprocess Q1 of Q that does not
reduce is stuck (recall that the definition of µ # Q1 ↓ captures also the possibility
that Q1 is in deadlock). Here are a few examples of ill-behaved processes to
illustrate the sort of errors we want to spot with our type system:

• The process open(a, b).done violates condition (1), since it leaks endpoints
a and b.

• The process open(a, b).(close(a).close(a) |close(b)) tries to deallocate the
same endpoint a twice. This is an example of fault.

• The process open(a, b).(a!a().close(a)|b?b().close(b)) violates condition (2)
since it reduces to a parallel composition of subprocesses where one has sent
an a message, but the other one was expecting a b message.

• The process

open(a, b).try(∅) {e : done}
throw e⊕ commit(∅).close(a).close(b)

may leak a and b if the exception is thrown.

Observe that, in item (1) of Definition 5.2.6, the domain of µ is only required
to be included in (instead of being equal to) the set of pointers reachable from
the free names of Q. In particular, it may be the case that Q contains references
to unallocated objects, and yet it never attempts to use them. This formulation
of leak-freedom, which is slightly more general than the one used by [88] where
equality between the two sets was required, is necessary because the type system
that we are about to define allows subtyping, which was not considered in [88].

Notice that our notion of leak-freedom does not require a process to eventually
deallocate the objects it owns, but only to guarantee the reachability of all the ob-
jects it owns. For example, the process open(a, b).X〈a, b〉 where X(a, b)

def
= X〈a, b〉,

maintains the reachability of a and b without ever using them. This process is
well behaved according to Definition 5.2.6 and is also well typed according to the
type system that will be developed in Section 5.3.
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t ::= Type
T endpoint type

| [t] sealed type

T ::= Endpoint type
end termination

| α type variable
| {!mi(Ti).Ti}i∈I internal choice
| {?mi(Ti).Ti}i∈I external choice
| {ei : Ti}i∈IJT initiate transaction
| KT commit transaction
| rec α : r.T recursive type
| {ei : Ti}i∈IT running transaction

Figure 5.11: Syntax of types and endpoint types.

5.3 Type system
We now develop a type system that enforces well-behavedness of processes: in
Section 5.3.1 we introduce the syntax of the type language; in Section 5.3.2 we
define a notion of type weight which is used for discriminating between safe and
unsafe communications; Section 5.3.3 is devoted to extending classical subtyping
for session types by [57] so as to take transactions and exceptions into account;
Sections 5.3.4, 5.3.5, and 5.3.6 define the actual typing rules.

5.3.1 Syntax of types

We assume given an infinite set of type variables ranged over by α; we use t, s,
. . . to range over types, and T , S, . . . to range over endpoint types. The syntax
of types and endpoint types is defined in Figure 5.11. An endpoint type describes
the behavior of a process with respect to a particular endpoint: the process may
send messages over the endpoint, receive messages from the endpoint, deallocate
the endpoint, initiate and terminate transactions involving the endpoint. The
endpoint type end denotes an endpoint that can only be deallocated. An internal
choice {!mi(Si).Ti}i∈I denotes an endpoint on which a process may send any mes-
sage mi for i ∈ I. The message has an argument of type Si and, depending on the
tag mi, the endpoint can be used thereafter according to Ti. In a dual manner,
an external choice {?mi(Si).Ti}i∈I denotes an endpoint from which a process must
be ready to receive any message mi for i ∈ I and, depending on the tag mi of the
received message, the endpoint is to be used according to Ti. In endpoint types
{!mi(Si).Ti}i∈I and {?mi(Si).Ti}i∈I we assume that I 6= ∅ and mi = mj implies i = j
for every i, j ∈ I. That is, the tag mi of the message that is sent or received
identifies a unique continuation Ti. The endpoint type {ei : Si}i∈IJT denotes an
endpoint on which it is possible to initiate a transaction. The type T specifies how
the endpoint is used within the body of the transaction, whereas each type Si spec-
ifies how the endpoint is used if the transaction is aborted by the exception ei. The
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[WF-End]
Θ ` end : 0

[WF-Var]
Θ, α : r ` α : r

[WF-Rec]
Θ, α : r ` T : r

Θ ` rec α : r.T : r

[WF-Prefix]
† ∈ {?, !} Θ ` Si : 0 (i∈I) Θ ` Ti : r (i∈I)

Θ ` {†mi(Si).Ti}i∈I : r

[WF-Commit]
Θ ` T : r

Θ ` KT : r + 1

[WF-Initiate]
Θ ` Si : r (i∈I) Θ ` T : r + 1

Θ ` {ei : Si}i∈IJT : r

[WF-Run]
Θ ` Si : r (i∈I) Θ ` T : r + 1

Θ ` {ei : Si}i∈IT : r

Figure 5.12: Rank of endpoint types.

endpoint type KT denotes the termination of the transaction in which an endpoint
with this type is involved. As soon as the transaction is properly terminated, the
endpoint can be subsequently used according to T . Terms α and rec α : r.T can
be used to specify recursive behaviors, as usual. The annotation r associated with
α represents the rank of α, which will be explained shortly. Finally, the endpoint
type {ei : Si}i∈IT is analogous to {ei : Si}i∈IJT , except that it specifies the type
of an endpoint involved in a transaction which has already been initiated, but has
not terminated yet. In fact, this type is needed for technical reasons only, and will
be used in conjunction with running transaction processes 〈A,B, {ei : Pi}i∈IP 〉.
In no case the programmer is supposed to deal with endpoint types of this form.

Clearly, not every endpoint type written according to the syntax in Figure 5.11
makes sense. For example, it is possible to write terms such as {e : end}Jend
where a transaction is initiated but not terminated or terms where recursions do
not respect the intended nesting of transactions, like in rec α.{e : end}Jα or in
{e : end}Jrec α.Kα. As far as our analysis is concerned, the syntax does not even
prevent end subterms from occurring within transactions, which as we have argued
in Section 5.1.1 is undesirable since endpoints involved in transactions should not
be closed. For all these reasons we define a subset of well-formed endpoint types
based on a notion of rank. Intuitively, the rank of a term T gives the number of
transactions within which T may occur, with the proviso that end must have rank
0.

In general, we say that the endpoint type T is well formed and has rank r in
Θ if Θ ` T : r is inductively derivable by the axioms and rules in Figure 5.12,
where Θ ranges over ranking contexts associating ranks to type variables. Then,
a derivation of ∅ ` T : 0 means that T is a closed endpoint type where transac-
tion initiations and terminations are balanced. Rules [WF-Initiate], [WF-Run],
and [WF-Commit] count the number of nested transactions. Rule [WF-Prefix]
requires all branches of a choice to have the same rank, while rules [WF-Rec]
and [WF-Var] deal with recursive types in a standard way, by respectively aug-
menting and accessing the ranking context. In the following we will omit Θ from
judgments Θ ` T : r if Θ is empty.
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As welcome side effects of well formedness, note that:

• message types have rank 0 (rule [WF-Prefix]). Thus, well-typed processes
will not be able to send/receive endpoints involved in pending transactions;

• end cannot occur inside transactions (rule [WF-End]). Thus, well-typed
processes will not be able to close endpoints involved in pending transactions.

The rank annotation r in recursive terms rec α : r.T guarantees that ev-
ery well-formed endpoint type has a uniquely determined rank. Without this
annotation a term like rec α.!m(end).α could be given any rank. The following
proposition guarantees that the rank of well-formed endpoint types is unaffected
by folding/unfolding of recursions:
Proposition 5.3.1. If ` rec α : r.T : r, then ` T{rec α : r.T/α} : r.

Proof. A simple induction on the derivation of Θ, α : r ` T : r.

In what follows, we will assume that all endpoint types are closed and well
formed and we will usually omit the rank annotation from recursive terms with
the assumption that they can be properly annotated so that they are well formed;
we will also write rank(T ) for the rank of T . We will identify endpoint types mod-
ulo alpha renaming of bound type variables (the only binder being rec) and fold-
ing/unfolding of recursions knowing that this does not change their rank (Propo-
sition 5.3.1). In particular, we have rec α.T = T{rec α.T/α}. Finally, we
will sometimes use an infix notation for internal and external choices and write
!m1(S1).T1⊕ · · · ⊕ !mn(Sn).Tn instead of {!mi(Si).Ti}i∈{1,...,n} and ?m1(S1).T1 + · · ·+
?mn(Sn).Tn instead of {?mi(Si).Ti}i∈{1,...,n}.

Types are possibly sealed endpoint types of the form

[· · ·[T ]· · ·]

for some arbitrary (possibly zero) number of seals [· · ·]. Seals protect the end-
points not involved in a transaction: they are applied when the transaction is
initiated (the try primitive is executed) and are stripped off when the transaction
terminates (the commit primitive is executed). The type system prevents end-
points with a sealed type from being used, since any change to them would not
be undoable in case the currently running transaction is aborted.
Example 5.3.2. According to the process definitions in Figure 5.5, the endpoint
ns is involved in the transaction around the Loop process, it is used for sending a
Registermessage and then for receiving either an AckRegister or a NakRegister
message. The same endpoint is then closed regardless of whether the transac-
tion completes successfully or not. We can describe the overall behavior of Loop,
GetNextDiskPath and Finally on ns with the following endpoint type:

Tns = {RamDiskErrorException : end}Jrec α.!Register(Timp).
(?AckRegister().Kend + ?NakRegister(Timp).α)

where Timp is the endpoint type associated with the imp and nakImp endpoints.
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The endpoint ret is not used within the transaction, but its usage differs de-
pending on whether or not the exception is thrown:

Tret = !Result(TDS ).end⊕ !SetService(Texp).!Result(TDS ).end

If no exception is thrown, ret is used for sending a SetRegister message followed
by a Result one; if an exception is thrown, only the Result message is sent. The
above type Tret takes into account both possibilities. 4

In order to avoid communication errors, we associate peer endpoints with end-
point types describing complementary actions: if a process sends a message of
some kind on one endpoint, another process must be able to receive a message of
that kind from the peer endpoint; if one process initiates a transaction involving
one endpoint, the other process will do so as well on the peer endpoint; if one
process has finished using an endpoint, the process owning the peer endpoint has
finished too. We formalize this complementarity of actions by defining a function
that, given an endpoint type, computes its dual:
Definition 5.3.3 (duality). Duality is the function · on endpoint types defined
coinductively by the equations:

end = end

{?mi(Si).Ti}i∈I = {!mi(Si).Ti}i∈I
{!mi(Si).Ti}i∈I = {?mi(Si).Ti}i∈I
{ei : Si}i∈IJT = {ei : Si}i∈IJT

KT = KT
{ei : Si}i∈IT = {ei : Si}i∈IT

Roughly speaking, the dual of an endpoint type T is obtained from T by
swapping internal and external choices. For example, the dual of the endpoint
type Tret defined in Example 5.3.2 is

Tret = ?Result(TDS ).end + ?SetService(Texp).?Result(TDS ).end

Note that the dual T of T cannot be defined by a simple induction on the struc-
ture of T according to this intuition because the type of message arguments is
unaffected by duality. In particular we have

rec α.?m(α).end = ?m(rec α.?m(α).end).end
= !m(rec α.?m(α).end).end
6= rec α.!m(α).end .

In [17] one can find an equivalent inductive definition of duality.
We list here two important properties of duality, namely that it is an involution

and it preserves ranks:
Proposition 5.3.4. The following properties hold:

1. T = T ;

2. rank(T ) = rank(T ).
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Proof. Item (1) is an easy consequence of the definition of duality (Definition
5.3.3). Item (2) follows from the fact that the rank is only affected by the nesting
of transaction types in T and internal/external choices are treated in the same
way by rule [WF-Prefix].

5.3.2 Type weight

In [17] it was observed that the delegation of endpoints having some particular
types can generate memory leaks even if the delegating process appears to behave
correctly with respect to the type of the endpoints it uses. For example, the
process

P
def
= open(a, b).a!m(b).close(a) (5.1)

uses a and b according to the endpoint types

T = !m(S).end and S = rec α : 0.?m(α).end (5.2)

respectively. Note that T = S, therefore the complementarity of actions performed
on the peer endpoints a and b is guaranteed. Now, the process P sends endpoint
b over endpoint a. According to T , the process is indeed entitled to send an
m message with argument of type S on a and b has precisely that type. After
the output operation, the process no longer owns endpoint b and endpoint a is
deallocated. Despite its apparent correctness, P generates a leak, as shown by the
reduction:

∅ # P → a 7→ [b, ε], b 7→ [a, ε] # a!m(b).close(a)
→ a 7→ [b, ε], b 7→ [a, m(b)] # close(a)
→ b 7→ [a, m(b)] # done

In the final configuration we have µ-reach(fn(done)) = ∅ while dom(µ) = {b}.
In particular, the endpoint b is no longer reachable and therefore this configuration
violates condition (1) of Definition 5.2.6. A closer look at the heap in the reduction
above reveals that the problem lies in the cycle involving b resulting from the send
operation a!m(b): it is as if the b 7→ [a, m(b)] region of the heap needs not be owned
by any process because “it owns itself”. Fortunately, it is possible to detect the
situations in which these cycles may be generated by looking at the structure of
the types of the endpoints that are sent as messages. More specifically, for each
endpoint type we compute a value in the set N∪ {∞}, which we call weight, that
estimates the length of any chain of pointers originating from the queue of the
endpoints it denotes. A weight equal to ∞ means that this length can be infinite,
in the sense that cycles such as the one shown above may be generated. Then,
the type system makes sure that only endpoints having a finite-weight type can
be sent as messages, and this has been shown, in [17] to be enough for preventing
these kinds of memory leaks.

We proceed by recalling here the definition of weight from [17], adapted to our
context where we deal also with transaction types:
Definition 5.3.5 (weight). We say that W is a coinductive weight bound if
(T, n) ∈ W implies either:

• T = end or T = {ei : Si}i∈IJT ′ or T = KT ′ or T = {!mi(Si).Ti}i∈I , or
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• T = {?mi(Si).Ti}i∈I and n > 0 and (Si, n − 1) ∈ W and (Ti, n) ∈ W for
every i ∈ I, or

• T = {ei : Si}i∈IT ′ and (T ′, n) ∈ W.

We write T :: n if (T, n) ∈ W for some coinductive weight bound W. The
weight of an endpoint type T , denoted by ‖T‖, is defined by

‖T‖ = min{n ∈ N | T :: n}

where we let min ∅ =∞. When comparing weights we extend the usual total orders
< and ≤ over natural numbers so that n <∞ for every n ∈ N and ∞ ≤∞.

The weight of T is defined as the least of its weight bounds, or ∞ if there
is no such weight bound. For example we have ‖end‖ = ‖{!mi(Si).Ti}i∈I‖ =
0. Indeed, the queues of endpoints with type end and those in a send state
are empty and therefore the chains of pointers originating from them have zero
length. The same happens for endpoints whose type is {ei : Si}i∈IJT and KT , since
we will enforce the invariant that when a transaction is initiated or successfully
terminated, the endpoints involved in it have empty queues. Endpoint types in a
receive state have a strictly positive weight. For instance we have ‖?m(end).end‖ =
1 and ‖?m(?m(end).end).end‖ = 2. Indeed, the queue of an endpoint with type
?m(end).end may contain another endpoint with an empty queue. Therefore, the
chain of pointers originating from the endpoint with type ?m(end).end has at most
length 1. If we go back to the endpoint types in (5.2) that we used to motivate this
discussion, we have ‖T‖ = 0 and ‖S‖ =∞, from which we deduce that endpoints
with type S, like b in (5.1), are not safe to be used as messages.

5.3.3 Subtyping

The last notion we need before proceeding with the definition of the type system is
a subtyping relation for endpoint types. Because of the close relationship between
endpoint types and session types, the subtyping relation for endpoint types turns
out to be a variant of that for session types [57]. However, the peculiar nature
of exceptions has interesting consequences. The original subtyping relation for
session types is based on the fundamental duality between input and output ac-
tions. In particular, it establishes that subtyping is covariant for external choices
(inputs) and contravariant for internal ones (outputs). For example,

T = !a(S1).T1 ⊕ !b(S2).T2 6 !a(S1).T1 = S

is a valid subtyping relation between T and S. The underlying intuition is based
on the usual principle of safe substitution of an endpoint of type S with another
endpoint of type T . If a (well-typed) process is using an endpoint c of type S, then
it can only send an a message on c. So, replacing the endpoint c with another one
of type T , which allows both a and b messages to be sent, does not compromise
communication safety. In a dual manner,

T ′ = ?a(S1).T1 6 ?a(S1).T1 + ?b(S2).T2 = S ′
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is a valid subtyping relation between T ′ and S ′. In this case, a (well-typed)
process using an endpoint of type S ′ must be capable of handling (at least) a and
b messages received from the endpoint. Replacing that endpoint with another one
of type T ′ is safe because from the latter one only a messages can be received.

The covariance and contravariance properties of subtyping with respect to
input and output operations follow from the duality of endpoint types associated
with peer endpoints: when a process is entitled to send a message on an endpoint,
the process using its peer must be ready to receive it, and vice versa. By contrast,
during a transaction, exceptions can be thrown on both peers of a channel. As a
consequence, the two transaction types

{e1 : S1, e2 : S2}JT and {e1 : S1}JT

cannot be related. Indeed, if we had {e1 : S1, e2 : S2}JT 6 {e1 : S1}JT , then
the process using the endpoint a with type {e1 : S1}JT might not be prepared to
handle the exception e2 thrown by the process using the peer b of a. Similarly,
the process using the peer endpoint b might be unable to handle the exception
e2 thrown on a if we had the opposite relation. In the end, because of the bi-
directional nature of exceptions thrown during a transaction, subtyping must be
invariant for transaction types.

We now proceed to define subtyping formally, extending it to possibly sealed
endpoint types in the natural way:
Definition 5.3.6 (subtyping). Subtyping is the largest relation 6 such that
T 6 s implies either:

• t = [t′] and s = [s′] and t′ 6 s′, or

• t = s = end, or

• t = {?mi(Ti).T ′i}i∈I and s = {?mi(Si).S ′i}i∈I∪J and Ti 6 Si and T ′i 6 S ′i for
every i ∈ I, or

• t = {!mi(Ti).T ′i}i∈I∪J and s = {!mi(Si).S ′i}i∈I and Si 6 Ti and T ′i 6 S ′i for
every i ∈ I, or

• either (t = {ei : Ti}i∈IJT and s = {ei : Si}i∈IJS) or (t = {ei : Ti}i∈IT and
s = {ei : Si}i∈IS) and Ti 6 Si for every i ∈ I and T 6 S, or

• t = KT and s = KS and T 6 S.

According to the definition of 6, the covariance and contravariance properties
for external and internal choices informally introduced earlier are extended to
message argument types, in the usual manner. Observe that subtyping is always
covariant with respect to continuations. It is easy to show that 6 is a pre-order
that is contravariant with respect to duality:
Proposition 5.3.7. The following properties hold:

1. 6 is reflexive and transitive;

2. T 6 S if and only if S 6 T .
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Proof. See [57]. Transaction types do not pose additional issues.

In Section 5.3.2 we have introduced a notion of weight that will be used in
the type system for discriminating between safe and unsafe messages. Since the
weight is computed on the (static) type of endpoints and subtyping allows for the
substitution of endpoints with related but possibly different types, one important
question arises whether subtyping and type weight are coherent with each other.
This is indeed the case:
Proposition 5.3.8. T 6 S implies ‖T‖ ≤ ‖S‖.

Proof. It is easy to see that W = {(T, n) | ∃S : T 6 S ∧ S :: n} is a coinductive
weight bound. In particular, when T is an internal choice we have T :: 0 regardless
of the number of branches in T .

5.3.4 Typing processes

We can now proceed to defining a type system for processes.
A type environment is a finite map Γ = {ui : Ti}i∈I from names to types. We

write dom(Γ) for the domain of Γ, namely the set {ui}i∈I ; we write Γ,Γ′ for the
union of Γ and Γ′ when dom(Γ) ∩ dom(Γ′) = ∅; finally, we write Γ ` u : T if
Γ(u) = T . An exception environment Ẽ is a finite sequence E1 · · · En of sets of
exceptions. We write e ∈ Ẽ if e ∈ Ek for some k ∈ {1, . . . , n}. We say that a type
t is local, written local(t), if t is not sealed and has a null rank, namely t = T for
some T such that rank(T ) = 0. Intuitively, a local type denotes an endpoint that
can be modified (its type is not sealed) and is not involved in any transaction.
We extend the notion of local types to type environments so that local(Γ) holds if
every type in the codomain of Γ is local.

The typing rules for processes are inductively defined in Figure 5.13. Judg-
ments have the form

Ẽ ; Γ ` P

denoting that process P is well typed in the exception environment Ẽ and type
environment Γ. In particular, P can only throw exceptions that occur in Ẽ . The
type system makes use of a global process environment Σ associating process
variables X with pairs (t̃, Ẽ) containing the type of the parameters of X as well
as the exception environment Ẽ in which X is supposed to be invoked. It is
understood that the process environment Σ contains associations for all the global
definitions D and that the judgment Σ ` D defined by

Σ(X) = (t̃, Ẽ) Ẽ ; ũ : t̃ ` P
Σ ` X(ũ)

def
= P

holds. In particular, all of the free names of P must occur in its binding variable
X(ũ).

We describe the typing rules for processes in the following paragraphs. Rule
[T-Inaction] states that the idle process is well typed only in the empty type
environment. This is a standard rule for linear type systems implying, in our case,
that the terminated process has no leaks.



5.3. TYPE SYSTEM 125

[T-Inaction]
Ẽ ; ∅ ` done

[T-Invoke]
Σ(X) = (s̃, Ẽ) t̃ 6 s̃

Ẽ ; ũ : t̃ ` X〈ũ〉

[T-Open]
` T : 0 Ẽ ; Γ, a : T, b : T ` P

Ẽ ; Γ ` open(a, b).P

[T-Close]
Ẽ ; Γ ` P

Ẽ ; Γ, u : end ` close(u).P

[T-Send]
k ∈ I S 6 Sk ‖S‖ <∞ Ẽ ; Γ, u : Tk ` P
Ẽ ; Γ, u : {!mi(Si).Ti}i∈I , v : S ` u!mk(v).P

[T-Receive]
Si 6 S ′i

(i∈I) Ẽ ; Γ, u : Ti, xi : S ′i ` Pi (i∈I)

Ẽ ; Γ, u : {?mi(Si).Ti}i∈I `
∑

i∈I∪J u?mi(xi).Pi

[T-Choice]
Ẽ ; Γ ` P Ẽ ; Γ ` Q
Ẽ ; Γ ` P ⊕Q

[T-Parallel]
Ẽ ; Γ1 ` P Ẽ ; Γ2 ` Q
Ẽ ; Γ1,Γ2 ` P |Q

[T-Try]
Ẽ{ej}j∈J ; [Γ], {ui : Ti}i∈I ` P Ẽ ; Γ, {ui : Sij}i∈I ` Qj

(j∈J)

Ẽ ; Γ, {ui : {ej : Sij}j∈JJTi}i∈I ` try({ui}i∈I) {ej : Qj}j∈JP

[T-Throw]
e ∈ Ẽ

Ẽ ; Γ ` throw e

[T-Commit]
local(Γ2) Ẽ ; Γ1, {ui : Ti}i∈I ,Γ2 ` P

ẼE ; [Γ1], {ui : KTi}i∈I ,Γ2 ` commit({ui}i∈I).P

( superscript i ∈ I means for every i ∈ I)

Figure 5.13: Typing rules for processes.
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Rule [T-Invoke] declares that a process invocation X〈ũ〉 is well typed provided
that the number and type of actual parameters ũ match the number and type of
formal parameters in Σ(X) and that the process is invoked in the correct exception
environment. In this rule we write t̃ 6 s̃ for the pointwise extension of 6 to
sequences of types.

Rule [T-Open] deals with the creation of a new channel, which is visible in the
continuation process as two peer endpoints typed by dual endpoint types. The
premise ` T : 0 means that newly created endpoints have no pending transactions
on them.

Rule [T-Close] states that a process close(u).P is well typed provided that
u corresponds to an endpoint with type end, on which no further interaction is
possible, and P is well typed in the remaining type environment.

Rule [T-Send] states that a process u!m(v).P is well typed if u is associated
with an endpoint type T that permits the output of m messages. The type S
of the argument v must be unsealed, finite-weight, and has to be a subtype of
the expected type in the endpoint type. Finally, the continuation P must be
well typed in a type environment where the endpoint u is typed according to the
continuation Tk of T and the endpoint v is no longer visible. This models the fact
that the ownership of v is transferred to the process that receives the message.

Rule [T-Receive] deals with inputs: a process waiting for a message from an
endpoint u : {?mi(Si).Ti}i∈I is well typed if it can deal with all of the messages
mi. The continuation processes may use the endpoint u according to the endpoint
type Ti and can access the message argument xi of of some supertype S ′i of Si.

Rules [T-Choice] and [T-Parallel] are standard. In the latter, the type
environment is split into two disjoint environments to type the processes being
composed.

We now turn our attention to the constructs dealing with transactions and
exceptions.

Rule [T-Try] deals with transaction initiations. All the endpoints in the dec-
oration U must have a type allowing them to be involved in a transaction, while
the types of other names are sealed so that P is prevented from using them until
the transaction is terminated. Seals are not applied in the type environment for
the handlers since they execute only if and when the transaction is aborted and
therefore act outside of the transaction. Note that the admitted exceptions are
augmented in P but not in Q.

Rule [T-Throw] states that the process throw e is well typed in any type
environment, provided that it occurs within a transaction (the exception being
thrown must be among the ones occurring in the exception environment). For
this reason, the violation of linearity for the assumptions in the type environment
is only apparent, as control will be transferred at runtime to some appropriate
exception handler.

Rule [T-Commit] is almost the dual of rule [T-Try] and deals with transaction
termination. Again, the endpoints in the decoration U must have a matching
type in the context indicating the end of the transaction. Names with a sealed
type must have been inherited from the context surrounding the transaction being
terminated, so a seal is stripped off them in the continuation P . Names with a local
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type must have been created within the transaction being terminated, and can be
used in the continuation as well. Note that the rightmost set E in the exception
environment is stripped off when type checking P , since P executes after the
transaction has terminated hence outside of the scope where the exceptions in E
can be thrown.

Observe that the type system requires the endpoints specified in a commit

process to be exactly the same as the ones in the corresponding try. This is a
consequence of the properties of well-formed endpoint types: endpoints involved
in a transaction have a type with a strictly positive rank (see [WF-Initiate] in
Figure 5.12) meaning that they cannot be closed (because end has null rank) and
they cannot be sent as messages (again because [WF-Prefix] requires messages
to have a type with null rank). For the same reason they cannot be qualified as
local, because local endpoints have a type with a null rank. Therefore, the set
{ui}i∈I associated with a given try process will be exactly the same set associated
with the corresponding commit process.
Example 5.3.9. Using the types defined in Example 5.3.2, the reader can verify
that the bodies of the process definitions in Figure 5.5 for GetNextDiskPath, Loop,
and Finally are respectively well typed according to the type environments

Γ1 = DS : ?NewClientEndpoint(Tns).TDS , ret : Tret
Γ2 = ns : T ′ns ,DS : TDS , ret : Tret
Γ3 = ns : end,DS : TDS , ret : Tret

where

T ′ns = !Register(Timp).(?AckRegister().Kend + ?NakRegister(Timp).Tns)

is an appropriate residual of the unfolding of Tns . Note the role played by subtyping
in this example: ret is used according to the type !Result(TDS ).end in Finally

and according to the type !SetService(Texp).!Result(TDS ).end in Loop. Since Tret
is a subtype of both these types, ret can be passed to Finally and Loop thanks
to the subtyping relation in [T-Invoke]. 4

5.3.5 Typing the heap

The typing rules in Figure 5.13 are not sufficient for proving the soundness of
the type system, because they are solely concerned with the static syntax of pro-
cesses. At runtime, we must take into account running transaction processes
(see Figures 5.6 and 5.9) as well as the heap. Indeed, since inter-process com-
munication relies on heap-allocated structures, several properties of well-behaved
processes depend on properties of the heap saying that its content is consistent
with a given type environment. In this section and in the following one we develop
a type system for the runtime components of our process language. We remark
that the programmer is solely concerned with the typing rules for static processes
presented in Section 5.3.4, while the technical material presented hereafter, which
builds on and extends the previous one, is only required for proving that the type
system is sound.
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Just as we have type checked a process P against a type environment that
associates types with the names occurring in P , we also need to check that the
heap is consistent with respect to the same environment. This leads to a notion
of well-typed heap that we develop in this section. More precisely, well-typedness
of a heap µ is checked with respect to a pair Γ0; Γ of type environments: the
context Γ0,Γ must provide type information for all the allocated structures in µ
(that is, dom(Γ0,Γ) = dom(µ)); the splitting Γ0; Γ distinguishes the pointers in
dom(Γ) from the pointers in dom(Γ0) so that Γ contains the roots of µ, namely the
pointers that are not referenced from any endpoint structure in the heap, while
Γ0 contains pointers that are referenced from some endpoint structure.

Among the properties that must be enforced is the complementarity between
the endpoint types associated with peer endpoints. This notion of complemen-
tarity does not coincide with duality because the communication model is asyn-
chronous: since messages can accumulate in the queue of an endpoint before they
are received, the types of peer endpoints can be misaligned. The two peers are
guaranteed to have dual types only when their queues are both empty. In gen-
eral, we need to compute the actual endpoint type of an endpoint by taking into
account the messages in its queue. To this aim we introduce function tail for
endpoint types such that

tail(T, m1(S1) · · · mn(Sn)) = T ′

indicates that messages having tag mi and an argument of type Si can be received
in the specified order from an endpoint with type T , which can be used according
to type T ′ thereafter. The function is inductively defined by the following rules:

tail(T, ε) = T

k ∈ I S 6 Sk

tail({?mi(Si).Ti}i∈I , mk(S)) = Tk

tail(T, m(S)) = T ′

tail({ei : Si}i∈IT, m(S)) = T ′

tail(T, m1(S1)) = T ′ tail(T ′, m2(S2) · · · mn(Sn)) = T ′′

tail(T, m1(S1)m2(S2) · · · mn(Sn)) = T ′′

Notice that tail(T, m(S)) is undefined when T = end or T is an internal choice
or T denotes the initiation or the termination of a transaction. This will enforce
the property that the queue of endpoints having these types must be empty. In
the particular case of transaction initiation, this makes sure that, if an excep-
tion is thrown, heap restoration simply amounts to emptying the queues of the
endpoints involved in the transaction (mechanism (1) in Section 5.1.1). The fact
that the queues of the endpoints involved in the transaction are guaranteed to
be empty at the end of a transaction is solely motivated by our notion of duality
(Definition 5.3.3), which demands a perfect correspondence between the actions
on such endpoints during a transaction. In principle, it would be possible to relax
duality in such a way that a message sent within a transaction is received only
after the transaction is terminated. However, it would still be necessary for the
receive operation to first wait for the actual termination of the transaction, for
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otherwise the soundness of the transaction would be compromised. This means
that this increased flexibility in the syntax of programs would bear no concrete
advantage in their semantics.

We now have all the notions to express the well-typedness of a heap µ with
respect to a pair Γ0; Γ of type environments.
Definition 5.3.10 (well-typed heap). Let dom(Γ0) ∩ dom(Γ) = ∅. We write
Γ0; Γ 
 µ if all of the following conditions hold:

(1) If a 7→ [b,Q] ∈ µ and b 7→ [a,Q′] ∈ µ, then either Q = ε or Q′ = ε.

(2) If a 7→ [b, m1(c1) :: · · · :: mn(cn)] ∈ µ, then

tail(T, m1(S1) · · · mn(Sn)) = S

where Γ0,Γ ` a : [· · ·[T ]· · ·] and Γ0 ` ci : Si and ‖Si‖ < ∞ and ` Si : 0 for
1 ≤ i ≤ n and b 7→ [a, ε] ∈ µ implies Γ0,Γ ` b : [· · ·[S]· · ·] and b 6∈ dom(µ)
implies S = end.

(3) dom(µ) = dom(Γ0,Γ) = µ-reach(dom(Γ));

(4) A ∩B = ∅ implies µ-reach(A) ∩ µ-reach(B) = ∅ for every A,B ⊆ dom(Γ).

Condition (1) requires that at least one of the queues of peer endpoints in
a well-typed heap is empty. This invariant corresponds to half-duplex commu-
nication and is ensured by duality of endpoint types associated with peer end-
points, since a well-typed process cannot send messages on an endpoint until it
has read all the pending messages from the corresponding queue (we will see in
Example 5.4.12 how to safely circumvent half-duplex communication thanks to
transactions). Condition (2) requires that the content of the queue of an endpoint
must be consistent with the type of the endpoint, in the sense that the messages
in the queue have the expected tag and an argument with the expected type. In
addition, the endpoint types of message arguments must all have finite weight and
null rank. Finally, the endpoint types of peer endpoints are dual of each other,
modulo the content of the non-empty queue. Condition (3) states that the type
environment Γ0,Γ must specify a type for all of the allocated objects in the heap
and, in addition, every object (located at) a in the heap must be reachable from
a root b ∈ dom(Γ). Finally, condition (4) requires the uniqueness of the root for
every allocated object. Overall, since the roots are distributed linearly among
the processes of the system, conditions (3) and (4) guarantee that every allocated
object belongs to one and only one process.

There are a few subtleties regarding conditions (1) and (2) and the fact that, in
condition (2), the property b 7→ [a, ε] ∈ µ is the head of an implication. First of all,
condition (2) must hold for both peers of a channel, therefore if a is the peer with
the empty queue (n = 0) while b has messages in its queue, then the type of a is not
necessarily the dual of the type of b. The correct dual correspondence is checked
when the symmetric pair of endpoints is considered. Second, it is possible that at
some point only one endpoint of a channel is allocated. For example, the well-typed
process open(a, b).close(b).close(a) reduces to close(a) in a configuration where
the heap contains only a 7→ [b, ε]. When this happens, the type of the remaining
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[T-Running Process]
Γ0; ΓR,Γ 
 µ Ẽ ; Γ ` P
Ẽ ; Γ0; ΓR; Γ ` µ # P

[T-Running Parallel]
Ẽ ; Γ0; ΓR,Γ2; Γ1 ` µ # P Ẽ ; Γ0; ΓR,Γ1; Γ2 ` µ # Q

Ẽ ; Γ0; ΓR; Γ1,Γ2 ` µ # P |Q

[T-Running Transaction]
µ-balanced({ai : Sij}i∈I) (j∈J) µ-balanced(B) local(Γ2)

{ai}i∈I ∪B = µ-reach({ai}i∈I ∪ dom(Γ2))

Ẽ{ej}j∈J ; Γ0; ΓR; [Γ1], {ai : Ti}i∈I ,Γ2 ` µ # P Ẽ ; Γ1, {ai : Sij}i∈I ` Qj
(j∈J)

Ẽ ; Γ0; ΓR; Γ1, {ai : {ej : Sij}j∈JTi}i∈I ,Γ2 ` µ # 〈{ai}i∈I , B, {ej : Qj}j∈JP 〉

Figure 5.14: Typing rules for configurations.

endpoint forbids any send operation (last property of condition (2)). Note that
condition (1) is not implied by condition (2) and both conditions are necessary.

5.3.6 Typing configurations

Figure 5.14 defines typing rules for configurations µ # P as an extension of the
typing rules for processes. Judgments have the form

Ẽ ; Γ0; ΓR; Γ ` µ # P

and state that the configuration µ # P is well typed with respect to the exception
environment Ẽ and the triple Γ0; ΓR; Γ of type environments. Intuitively, Γ is the
type environment used to type check P , ΓR is the type environment describing
the type of root pointers owned by processes that are running in parallel with P ,
and Γ0 describes the type of pointers that occur in some queue.

Rule [T-Running Process] lifts well-typed processes to well-typed configura-
tions by requiring the heap to be well typed with respect to the pair of environ-
ments Γ0; ΓR,Γ where ΓR,Γ represents the whole set of roots obtained from those
owned by the process being typed (in Γ) and those owned by processes in parallel
with it (in ΓR).

Rule [T-Running Parallel] is similar to [T-Parallel], except that it deals
with three type environments which are appropriately rearranged for keeping track
of the roots of the heap.

Rule [T-Running Transaction] captures the basic properties regarding run-
ning transactions 〈{ai}i∈I , B, {ej : Qj}j∈JP 〉, which we describe here. The rule
makes use of a balancing predicate over type environments that generalizes the
notion of balancing for sets of pointers (Definition 5.2.3):
Definition 5.3.11. We say that Γ is balanced in µ, written µ-balanced(Γ), if
a ∈ dom(Γ) and a µ←→ b imply b ∈ dom(Γ) and Γ(a) = Γ(b).
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First of all, it must be possible to partition the type environment into three
parts Γ1, {ai : {ej : Sij}j∈JTi}i∈I , and Γ2 such that the environment Γ1 corresponds
to the endpoints owned by P but which are not involved in the transaction. Con-
sequently, the types of these endpoints are sealed in the judgment corresponding
to the typing of P . The environment {ai : {ej : Sij}j∈JTi}i∈I corresponds to the
endpoints involved in the transaction (the first component of the running trans-
action process), and their type indicates that the transaction is in progress. The
environment Γ2 corresponds to the endpoints that have been allocated inside the
transaction. Their type is not sealed in the judgment corresponding to the typing
of P . The premises µ-balanced({ai : Sij}i∈I) for every j ∈ J and µ-balanced(B)
indicate that the set of all the endpoints to which P has full access is balanced.
Therefore, the transaction operates in a closed scope and cannot have “side ef-
fects” from the point of view of other processes. The first premise indicates, in
addition, that the types Sij associated with peer endpoints are dual of each other
(this property is a consequence of well-typedness of the heap before the transac-
tion initiates, but it must be explicitly stated in [T-Running Transaction] where
the heap is checked against a type environment where the Si’s do not occur any
more). The premise local(Γ2) identifies the Γ2 partition of the context correspond-
ing to the endpoints that have been created inside the transaction. The premise
{ai}i∈I ∪ B = µ-reach({ai}i∈I ∪ dom(Γ2)) states that all the endpoints allocated
within the transaction have not escaped the scope of the transaction. The last
two premises correspond to the premises of rule [T-Try]. In particular, note that
the exception environment is properly augmented when typing the body of the
transaction.

Since running transaction processes appear only at runtime as the result of
[R-Start Transaction] reductions, they can never occur behind a prefix and
therefore the three rules in Figure 5.14 cover all possible forms of runtime config-
urations.

5.4 Type soundness
We can now formulate the two main results about our framework: well-typedness
is preserved by reduction, and well-typed processes are well behaved. The proofs of
these theorems require to specify a number of additional properties. The following
lemmas say that typing is preserved by structural congruence and by substitutions.
In the case of substitutions, subtyping may be applied without compromising well-
typedness.
Lemma 5.4.1. Let Ẽ ; Γ ` P and P ≡ Q. Then Ẽ ; Γ ` Q.

Proof. By case analysis on the derivation of P ≡ Q.

Lemma 5.4.2. If Ẽ ; Γ ` P and u /∈ dom(Γ) and v /∈ dom(Γ) ∪ bn(P ), then
Ẽ ; Γ ` P{v/x}.

Proof. For notational simplicity we prove the result when u is a variable and v
is a pointer. Namely, we prove that if Ẽ ; Γ ` P and x /∈ dom(Γ) ∪ bn(P ) and
a /∈ dom(Γ) ∪ bn(P ), then Ẽ ; Γ ` P{a/x}. If x does not occur free in P then
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P{a/x} = P, so Ẽ ; Γ ` P{a/x} trivially holds. We assume x ∈ fn(P ) and proceed
by induction on the derivation of Ẽ ; Γ ` P and by cases on the last rule applied.

[T-Inaction] In this case Γ = ∅ and P = done. So, P{a/x} = done = P and
Ẽ ; Γ ` P{a/x} holds.

[T-Invoke] In this case Γ = ũ : t̃ and P = X〈ũ〉. From fn(X〈ũ〉) = ũ = dom(Γ),
we conclude x /∈ fn(P ).

[T-Open] In this case P = open(c, d).Q, ` T : 0 and Ẽ ; Γ, c : T, d : T ` Q. We
know that x /∈ {c, d}, so by induction hypothesis we obtain Ẽ ; Γ, c : T, d : T `
Q{a/x}. We conclude the proof by an application of [T-Open], since P{a/x} =
open(c, d).Q{a/x}.

[T-Close] In this case Γ = Γ′, u : end, P = close(u).Q, Ẽ ; Γ ` Q and P{a/x} =

close(u).Q{a/x}. We derive the proof by induction hypothesis and [T-Close].

[T-Send] In this case Γ = Γ′, u : {!mi(Si).Ti}i∈I , v : S, P = u!mk(v).Q, k ∈ I,

‖S‖ < ∞, S 6 Sk and Ẽ ; Γ′, u : Tk ` Q and P{a/x} = u!mk(v).Q{a/x}. By
induction hypothesis we obtain Ẽ ; Γ′, u : Tk ` Q{a/x} and derive the proof by
[T-Send].

[T-Receive] In this case Γ = Γ′, u : {?mi(Si).Ti}i∈I , P =
∑

i∈I∪J u?mi(xi).Pi and
Si 6 S ′i, and Ẽ ; Γ, u : Ti, xi : S ′i ` Pi for every i ∈ I. From dom(Γ′) ∪ {u} ∪ {xi} ⊆
dom(Γ)∪bn(P ), for every i ∈ I and induction hypothesis we obtain Ẽ ; Γ, u : Ti, xi :
S ′i ` Pi{a/x} for every i ∈ I. Since P{a/x} =

∑
i∈I∪J u?mi(xi).Pi{a/x}, we derive

the proof from [T-Receive]. This case is, actually, the only interesting one. The
reason is that, because of subtyping, we have a premise for every i ∈ I and the
process is the summation for i ∈ I ∪ J .
[T-Choice] In this case P = P1 ⊕ P2, Ẽ ; Γ ` P1 and Ẽ ; Γ ` P2. We derive the
proof by induction hypothesis and [T-Choice].

[T-Parallel] In this case Γ = Γ1,Γ2, P = P1 |P2, Ẽ ; Γ1 ` P1 and Ẽ ; Γ2 ` P2. We
derive the proof by induction hypothesis and [T-Parallel].

[T-Try] In this case Γ = Γ′, {ui : {ej : Sij}j∈JJTi}i∈I , P = try({ui}i∈I) {ej :

Rj}j∈JQ, Ẽ{ej}j∈J ; [Γ′], {ui : Ti}i∈I ` Q and Ẽ ; Γ′, {ui : Sij}i∈I ` Rj for every
j ∈ J . Since P{a/x} = try({ui}i∈I) {ej : Rj{a/x}}j∈JQ{a/x}, we derive the
proof by induction hypothesis and [T-Try].

[T-Throw] In this case P = throw e. So, P{a/x} = P.

[T-Commit] In this case Ẽ = Ẽ ′E , Γ = [Γ1], {ui : KTi}i∈I ,Γ2, P = commit({ui}i∈I).
Q and Ẽ ′; Γ1, {ui : Ti}i∈I ,Γ2 ` Q. Since P{a/x} = commit({ui}i∈I).Q{a/x}, we
derive the proof by induction hypothesis and [T-Commit].

Lemma 5.4.3 (Substitution). If Ẽ ; Γ, u : t ` P and v 6∈ dom(Γ) ∪ bn(P ) and
s 6 t, then Ẽ ; Γ, v : s ` P{v/u}.

Proof. For notational simplicity we prove the result when u is a variable and v
is a pointer. Namely, we prove that if Ẽ ; Γ, x : t ` P and a 6∈ dom(Γ) ∪ bn(P ),
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and s 6 t, then Ẽ ; Γ, a : s ` P{a/x}. We proceed by induction on the derivation
of Ẽ ; Γ, x : t ` P and by cases on the last rule applied. We only prove a few
interesting cases.

[T-Inaction] This case is impossible.

[T-Open] In this case P = open(c, d).Q. Since we know x /∈ {c, d} the proof is
concluded by induction.

[T-Close] In this case P = close(u).Q and Γ, x : t = Γ′, u : end and Ẽ ; Γ′ ` Q.
If x ∈ dom(Γ′), then Γ′ = Γ′′, x : t and Γ = Γ′′, u : end. By induction hypothesis

we deduce Ẽ ; Γ′′, a : s ` Q{a/x}. Since we know that a 6= u, from rule [T-Close]
we conclude Ẽ ; Γ, a : s ` close(u).Q{a/x}.

If x = u, then Γ = Γ′, t = end. By Lemma 5.4.2, we have Ẽ ; Γ ` Q{a/x}.
From rule [T-Close] we conclude Ẽ ; Γ, a : end ` close(a).Q{a/x}.

[T-Send] In this case Γ, x : t = Γ′, u : {!mi(Si).Ti}i∈I , v : S and P = u!mk(v).Q

where k ∈ I and ‖S‖ <∞ and S 6 Sk and Ẽ ; Γ′, u : Tk ` Q.
If x ∈ dom(Γ′), then Γ′ = Γ′′, x : t and Γ = Γ′′, u : {!mi(Si).Ti}i∈I , v : Sk.

From Ẽ ; Γ′, u : Tk ` Q and by induction hypothesis we obtain Ẽ ; Γ′′, a : s, u : Tk `
Q{a/x}. Since a /∈ dom(Γ) we know that a /∈ {u, v} and from rule [T-Send] we
conclude Ẽ ; Γ, a : s ` u!mk(v).Q{a/x}.

If x = u, then Γ = Γ′, v : S. and t = {!mi(Si).Ti}i∈I and s = {!mi(S ′i).T ′i}i∈I∪J
and Si 6 S ′i and T ′i 6 Ti for every i ∈ I. Then S 6 Sk 6 S ′k. From Ẽ ; Γ′, u :
Tk ` Q and the induction hypothesis we obtain Ẽ ; Γ′, a : Tk ` Q{a/x}. We
conclude Ẽ ; Γ′, a : {!mi(S ′i).T ′i}i∈I , v : S ` a!mk(v).Q{a/x} with an application of
rule [T-Send].

If x = v, then t = S and x /∈ dom(Γ′) ∪ {u}, so by Lemma 5.4.2 Ẽ ; Γ′, u : Tk `
Q{a/x}. From Proposition 5.3.8 we deduce ‖s‖ ≤ ‖t‖ < ∞. We conclude with
an application of rule [T-Send].

[T-Try] In this case Γ, x : t = Γ′, {ui : {ej : Sij}j∈JJTi}i∈I and P =

try({ui}i∈I) {ej : Qj}j∈JQ and Ẽ ; {ej}j∈J ; [Γ′], {ui : Ti}i∈I ` Q and Ẽ ; Γ′, {ui :
Sij}i∈I ` Qj for every j ∈ J .

If x ∈ dom(Γ′), then Γ′ = Γ′′, x : t for some Γ′′. From the hypothesis s 6 t we
deduce [s] 6 [t]. From Ẽ ; {ej}j∈J ; [Γ′], {ui : Ti}i∈I ` Q and by induction hypothesis
we deduce Ẽ ; {ej}j∈J ; [Γ′′], a : [s], {ui : Ti}i∈I ` Q{a/x}. From Ẽ ; Γ′, {ui : Sij}i∈I `
Qj and by induction hypothesis we deduce Ẽ ; Γ′′, a : s, {ui : Sij}i∈I ` Qj{a/x} for
every j ∈ J . We conclude with an application of rule [T-Try].

If x = uk for some k ∈ I, then t = {ej : Skj}j∈JJTk and s = {ej : S ′kj}j∈JJT ′k
where S ′kj 6 Skj for every j ∈ J and T ′k 6 Tk. By induction hypothesis we deduce
Ẽ{ej}j∈J ; [Γ′], {ui : Ti}i∈I\{k}, a : T ′k ` Q{a/x} and Ẽ ; Γ′, {ui : Sij}i∈I\{k}, a : S ′kj `
Qj{a/x} for every j ∈ J . We conclude with an application of rule [T-Try].

The next lemma connects well-typed configurations to well-typed heaps and
shows the irrelevance of the first and second components Γ0 and ΓR in typing
processes.
Lemma 5.4.4. Let Ẽ ; Γ0; ΓR; Γ ` µ # P . Then:
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(1) Γ0; ΓR,Γ 
 µ;

(2) Γ′0; Γ′R,Γ 
 µ
′ implies Ẽ ; Γ′0; Γ′R; Γ ` µ′ # P .

Proof. By induction on the derivation of Γ0; ΓR; Γ ` µ # P and by cases on the
last rule applied. The only interesting case is [T-Running Transaction], from
which we deduce:

• P = 〈{ai}i∈I , B, {ej : Rj}j∈JQ〉;

• Γ = Γ1, {ai : {ej : Sij}j∈JTi}i∈I ,Γ2;

• µ-balanced({ai : Sij}i∈I) for every j ∈ J ;

• Ẽ{ej}j∈J ; Γ0; ΓR; [Γ1], {ai : Ti}i∈I ,Γ2 ` µ # Q.

Regarding (1), from Ẽ{ej}j∈J ; Γ0; ΓR; [Γ1], {ai : Ti}i∈I ,Γ2 ` µ # Q by induction
hypothesis we obtain Γ0; ΓR, [Γ1], {ai : Ti}i∈I ,Γ2 
 µ and then from the definition
of function tail and µ-balanced({ai : Sij}i∈I) for j ∈ J we conclude Γ0; ΓR,Γ 
 µ.

Regarding (2), from Γ′0; Γ′R,Γ 
 µ′ and the definition of function tail we de-
duce Γ′0; Γ′R, [Γ1], {ai : Ti}i∈I ,Γ2 
 µ′ and then from Ẽ{ej}j∈J ; Γ0; ΓR; [Γ1], {ai :
Ti}i∈I ,Γ2 ` µ # Q by induction hypothesis we obtain Ẽ{ej}j∈J ; Γ′0; Γ′R; [Γ1], {ai :
Ti}i∈I ,Γ2 ` µ′ #Q. We conclude with an application of [T-Running Transaction].

The next lemma shows that the rule [T-Running Parallel] for configurations
subsumes the rule [T-Parallel] for processes. It is used for simplifying some
cases in the proof of subject reduction (Theorem 5.4.7).
Lemma 5.4.5. If Ẽ ; Γ0; ΓR; Γ ` µ # P1 | P2 is derivable using [T-Parallel] and
[T-Running Process], then it is also derivable using [T-Running Process] and
[T-Running Parallel].

Proof. From Ẽ ; Γ0; ΓR; Γ ` µ # P1 | P2 and rule [T-Running Process] we obtain
(H.1) Ẽ ; Γ ` P1 |P2 and (H.2) Γ0; ΓR,Γ 
 µ. From (H.1) and rule [T-Parallel] we
obtain (T.1) Γ = Γ1,Γ2 and (P.i) Ẽ ; Γi ` Pi for i ∈ {1, 2}. From (H.2), (T.1), (P.i)
and rule [T-Running Process] we obtain Ẽ ; Γ0; ΓR,Γ3−i; Γi ` µ # Pi for i ∈ {1, 2}.
We conclude with an application of rule [T-Running Parallel].

When a new channel is allocated in the heap, it always comes as a pair of peer
endpoints. This easy property is formalized thus:
Proposition 5.4.6. If µ # P → µ′ # P ′ then µ′-balanced(dom(µ′) \ dom(µ)).

Proof. Simple induction on the reduction that occurs.

Subject reduction takes into account the possibility that types in the environ-
ment may change as the process reduces, which is common in behavioral type
theories. The next result is the complete version of subject reduction proving
that reductions preserve well-typedness and showing the relationship between the
contexts used for typing the two configurations involved. In particular, item (1)
below says that reductions preserve well-typedness; item (2) says that the rank
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of the type of endpoints are preserved by reductions, and that (de)allocated end-
points have a type with null rank; finally, item (3) formally expresses the concept
of process isolation, saying that any portion of the heap that is not reachable by
the process being reduced is not affected by the reduction. In this theorem and in
its proof, we write unsealed(Γ) if all types in the range of Γ are unsealed. We also
write

⊔
i∈I Γi for the disjoint union of the contexts Γi.

Theorem 5.4.7 (Subject reduction). Let Ẽ ; Γ0; ΓR; [ΓS],Γ ` µ # P where
unsealed(Γ) and µ # P → µ′ # P ′. Then there exist Γ′0 and Γ′ such that:

(1) Ẽ ; Γ′0; ΓR; [ΓS],Γ′ ` µ′ # P ′, and

(2) unsealed(Γ′) and for every a ∈ dom(Γ) ∩ dom(Γ′) we have rank(Γ(a)) =
rank(Γ′(a)) and for every a ∈ dom(Γ) \ dom(Γ′) we have rank(Γ(a)) = 0 and
for every a ∈ dom(Γ′) \ dom(Γ) we have rank(Γ′(a)) = 0, and

(3) for every ΓI ⊆ ΓR, [ΓS] such that µ-balanced(µ-reach(dom(ΓI ,Γ))) we have

µ-reach(dom(ΓR,ΓS) \ dom(ΓI)) = µ′-reach(dom(ΓR,ΓS) \ dom(ΓI)).

Proof. By induction on the derivation of µ # P → µ′ # P ′ and by cases on the last
rule applied. We omit trivial and symmetric cases.

[R-Open] Then P = open(a, b).P ′ and µ′ = µ, a 7→ [b, ε], b 7→ [a, ε]. From
rule [T-Running Process] we obtain:

• (H.1) Ẽ ; [ΓS],Γ ` open(a, b).P ′;

• (H.2) Γ0; ΓR, [ΓS],Γ 
 µ.

From (H.1) and rule [T-Open] we obtain:

• ` T : 0;

• (C.1) Ẽ ; [ΓS],Γ, a : T, b : T ` P ′.

Let Γ′0 = Γ0 and Γ′ = Γ, a : T, b : T . The proof of (C.2) Γ′0; ΓR, [ΓS],Γ′ 
 µ′ is
trivial. From (C.1), (C.2) and [T-Running Process] we obtain (1). We conclude
by noting that items (2) and (3) hold trivially.

[R-Close] In this case P = close(a).P ′ and µ = µ′, a 7→ [b,Q]. From rule
[T-Running Process] we obtain:

• (H.1) Ẽ ; [ΓS],Γ ` close(a).P ′;

• (H.2) Γ0; ΓR, [ΓS],Γ 
 µ′, a 7→ [b,Q].

From the hypothesis (H.1) and rule [T-Close] we obtain:

• (L.1) Γ = Γ′, a : end;

• (C.1) Ẽ ; [ΓS],Γ′ ` P ′.
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Let Γ′0 = Γ0. We only have to show that (C.2) Γ′0; ΓR, [ΓS],Γ′ 
 µ′ and
the only interesting case in Definition 5.3.10 is item 3. The relation dom(µ′) =
dom(Γ′0,ΓR, [ΓS],Γ′) is obvious. We need to prove

dom(Γ′0,ΓR, [ΓS],Γ′) = µ′-reach(dom(Γ′R, [ΓS],Γ′)).

First we show that Q is empty. Suppose by contradiction that this is not the case.
Then the endpoint type associated with a before the reduction occurs must begin
with an external choice or running transaction, which contradicts (L.1). So we
obtain

µ′-reach(dom(ΓR, [ΓS],Γ′)) = µ-reach(dom(ΓR, [ΓS],Γ)) \ {a}
= dom(Γ0,ΓR, [ΓS],Γ) \ {a} (H.2)
= dom(Γ′0,ΓR,Γ

′)

From (C.1), (C.2) and [T-Running Process] we conclude (1). Item (2) is ob-
vious while item (3) holds because µ-reach(dom(ΓR,ΓS)) = µ′-reach(dom(ΓR,ΓS)).

[R-Parallel] In this case P = P1 | P2 and µ # P1 → µ′ # P ′1 and P ′ = P ′1 | P2.
By Lemma 5.4.5 we can assume that Ẽ ; Γ0; ΓR, [ΓS],Γ ` µ # P was derived by an
application of rule [T-Running Parallel]. Then:

• Γ = Γ1,Γ2 and ΓS = ΓS1,ΓS2;

• (P.i) Ẽ ; Γ0; ΓR, [ΓS3−i],Γ3−i; [ΓSi],Γi ` µ # Pi for i ∈ {1, 2}.

From (P.1) by induction hypothesis we deduce that there exist Γ′0 and Γ′1 such
that:

(1’) Ẽ ; Γ′0; ΓR, [ΓS2],Γ2; [ΓS1],Γ
′
1 ` µ′ # P ′1, and

(2’) unsealed(Γ′1) and for every a ∈ dom(Γ1) ∩ dom(Γ′1) we have rank(Γ1(a)) =
rank(Γ′1(a)) and for every a ∈ dom(Γ1) \ dom(Γ′1) we have rank(Γ1(a)) = 0
and for every a ∈ dom(Γ′1) \ dom(Γ1) we have rank(Γ′1(a)) = 0, and

(3’) for every ΓI ⊆ ΓR, [ΓS],Γ2 such that µ-balanced(µ-reach(dom(ΓI ,Γ1))) we
have

µ-reach(dom(ΓR,ΓS,Γ2) \ dom(ΓI)) = µ′-reach(dom(ΓR,ΓS,Γ2) \ dom(ΓI)).

Let Γ′ = Γ′1,Γ2. From (1’) and Lemma 5.4.4(1) we obtain (N.1) Γ′0; ΓR, [ΓS],Γ′ 

µ′. From (P.2), (N.1), and Lemma 5.4.4(2) we deduce (P.2’) Ẽ ; Γ′0; ΓR, [ΓS1],Γ

′
1;

[ΓS2],Γ2 ` µ′ # P2. From (1’), (P.2’), and rule [T-Running Parallel] we con-
clude (1). Regarding (2), just notice that unsealed(Γ′). Regarding (3), let ΓJ ⊆
ΓR, [ΓS] be such that µ-balanced(µ-reach(dom(ΓJ ,Γ))). Take ΓI = ΓJ ,Γ2 and ob-
serve that ΓI ⊆ ΓR, [ΓS],Γ2 and µ-balanced(µ-reach(dom(ΓI ,Γ1))). From (3’) we
are able to deduce µ-reach(dom(ΓR,ΓS,Γ2)\dom(ΓI)) = µ′-reach(dom(ΓR,ΓS,Γ2)\
dom(ΓI)) and we conclude (3) by observing that dom(ΓR,ΓS) \ dom(ΓJ) =
dom(ΓR,ΓS,Γ2) \ dom(ΓI).

[R-Send] In this case P = a!m(c).P ′ and µ = µ′′, a 7→ [b,Q], b 7→ [a,Q′] and
µ′ = µ′′, a 7→ [b,Q], b 7→ [a,Q′ :: m(c)]. From [T-Running Process] we obtain:
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• (H.1) Ẽ ; [ΓS],Γ ` a!m(c).P ′;

• (H.2) Γ0; ΓR, [ΓS],Γ 
 µ′′, a 7→ [b,Q], b 7→ [a,Q′].

From (H.1) and rule [T-Send] we deduce:

• (L.1) Γ = Γ′′, a : {!mi(Si).Ti}i∈I , c : S;

• m = mk for some k ∈ I;

• S 6 Sk and ‖S‖ <∞;

• (C.1) Ẽ ; [ΓS],Γ′′, a : Tk ` P ′.

Let Γ′0 = Γ0, c : Sk and Γ′ = Γ′′, a : Tk. We show (C.2) Γ′0; ΓR, [ΓS],Γ′ 
 µ′ by
proving the items of Definition 5.3.10 in order.

1. We only need to show that Q is empty. Suppose by contradiction that this is
not the case. Then the endpoint type associated with a before the reduction
must begin with an external choice or running transaction, which contradicts
(L.1).

2. LetQ′ = m1(c1) :: · · · :: mp(cp). From hypothesis (H.2) we deduce Γ0,ΓR, [ΓS],
Γ ` b : Tb and Γ0,ΓR, [ΓS],Γ ` ci : S ′i for 1 ≤ i ≤ p where

tail(Tb, m1(S
′
1) · · · mp(S ′p)) = {!mi(Si).Ti}i∈I = {?mi(Si).Ti}i∈I

and from S 6 Sk we conclude Tk = tail(Tb, m1(S
′
1) · · · mp(S ′p)m(S)).

3. From hypothesis (H.2) we have dom(µ) = dom(Γ0,ΓR,Γ) and for every
a′ ∈ dom(µ) there exists b′ ∈ dom(ΓR,ΓS,Γ) such that a′ 4µ b′. Clearly
dom(µ′) = dom(Γ′0,ΓR,ΓS,Γ

′) since dom(µ′) = dom(µ) and dom(Γ′0) ∪
dom(Γ′) = dom(Γ0) ∪ dom(Γ). Let b 4µ b0 and ΓR,ΓS,Γ ` b0 : T0. We
have c ≺µ′ b 4µ′ b0, namely c 4µ′ b0. Now

‖S‖ ≤ ‖Sk‖ < ‖tail(Tb, m1(S ′1) · · · mp(S ′p))‖ ≤ ‖Tb‖ ≤ ‖T0‖

and ‖S‖ ≤ ∞, therefore c 6= b0. We conclude b0 ∈ dom(ΓR,ΓS,Γ
′).

4. Immediate from hypothesis (H.2).

Item (2) holds trivially. Regarding item (3), let ΓI ⊆ ΓR, [ΓS] be such that
µ-balanced(µ-reach(dom(ΓI ,Γ))). From a ∈ dom(Γ) we are able to deduce that
b ∈ µ-reach(dom(ΓI ,Γ)) and c 4µ′ b, therefore µ-reach(dom(ΓR,ΓS) \ dom(ΓI)) =
µ′-reach(dom(ΓR,ΓS) \ dom(ΓI)).

[R-Receive] In this case P =
∑

i∈I a?mi(xi).Pi and µ = µ′′, a 7→ [b, m(c) :: Q]

where Q = m1(c1) :: · · · :: mp(cp) and m = mk for some k ∈ I and P ′ = Pk{c/xk}
and µ′ = µ′′, a 7→ [b,Q]. From rule [T-Running Process] we obtain:

• (H.1) Ẽ ; [ΓS],Γ `
∑

i∈I a?mi(xi).Pi;

• (H.2) Γ0; ΓR, [ΓS],Γ 
 µ.
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From (H.1) and rule [T-Receive] we obtain:

• Γ = Γ′′, a : {?mi(Si).Ti}i∈J with J ⊆ I;

• (N.1) Ẽ ; [ΓS],Γ′′, a : Tk, xk : Sk ` Pk.

From (H.2) we deduce Γ0 = Γ′0, c : S where S 6 Sk and k ∈ J . Let Γ′ = Γ′′, a :
Tk, c : S. From (N.1) and Lemma 5.4.3 we deduce (C.1) Ẽ ; [ΓS],Γ′ ` Pk{c/xk}.
Now we only have to show (C.2) Γ′0; ΓR, [ΓS],Γ′ 
 µ′ and we do it by proving the
items of Definition 5.3.10 in order.

1. Since the queue associated with a is not empty in µ, the queue associated
with its peer endpoint b must be empty. The reduction does not change
the queue associated with b, therefore condition (1) of Definition 5.3.10 is
satisfied.

2. From (H.2) we deduce Γ0,ΓR, [ΓS],Γ ` b : Tb and

Tb = tail({?mi(Si).Ti}i∈J , m(S)m1(S
′
1) · · · mp(S ′p)) = tail(Tk, m1(S

′
1) · · · mp(S ′p))

where Γ0,ΓR, [ΓS],Γ ` ci : S ′i for 1 ≤ i ≤ p.

3. Straightforward by definition of Γ′0 and Γ′.

4. Immediate from (H.2).

Therefore, from (C.1), (C.2), and rule [T-Running Process] we conclude
Ẽ ; Γ′0; ΓR, [ΓS],Γ′ ` µ′ # P ′. Regarding (2), observe from (H.2) and condition (2)
of Definition 5.3.10 that rank(Sk) = 0. Regarding (3), it suffices to observe that
the only region of the heap that changes is the queue associated with a and that
a 6∈ dom(ΓR,ΓS).

[R-Start Transaction] In this case P =
∏

i∈I try(Ai) {ej : Qij}j∈JPi where
µ-balanced(

⋃
i∈I Ai) and P ′ = 〈

⋃
i∈I Ai, ∅, {ej :

∏
i∈I Qij}j∈J

∏
i∈I Pi〉 and µ′ = µ.

According to Lemma 5.4.5 we can assume that Ẽ ; Γ0; ΓR; [ΓS],Γ ` µ # P was
derived by rule [T-Running Parallel]. Then:

• (L.1) ΓS =
⊔
i∈I ΓSi and Γ =

⊔
i∈I Γi;

• (P.i) Ẽ ; Γ0; ΓR,
⊔
j∈I\{i}[ΓSj],

⊔
j∈I\{i} Γj; [ΓSi],Γi ` µ # try(Ai) {ej : Qij}j∈JPi

for every i ∈ I.

From (L.1), (P.i) and rule [T-Running Process] we obtain:

• (H.1) Ẽ ; [ΓSi],Γi ` try(Ai) {ej : Qij}j∈JPi where unsealed(Γi) for every i ∈ I;

• (H.2) Γ0; ΓR, [ΓS],Γ 
 µ.

From (H.1) and rule [T-Try] we obtain, for every i ∈ I:

• (L.2) Γi = Γ′i, {a : {ej : Saj}j∈JJTa}a∈Ai ;

• Ẽ{ej}j∈J ; [[ΓSi],Γ
′
i], {a : Ta}a∈Ai ` Pi;
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• Ẽ ; [ΓSi],Γ
′
i, {a : Saj}a∈Ai ` Qij for every j ∈ J .

By rule [T-Parallel] we derive:

• (P.1) Ẽ{ej}j∈J ; [[ΓS],
⊔
i∈I Γ′i], {a : Ta}i∈I,a∈Ai `

∏
i∈I Pi;

• (P.2) Ẽ ; [ΓS],
⊔
i∈I Γ′i, {a : Saj}i∈I,a∈Ai `

∏
i∈I Qij for every j ∈ J .

From (L.2) and the definition of tail it is easy to see that the queue associated
with a is empty for every i ∈ I and a ∈ Ai. Hence, from (H.2), (L.1), and (L.2)
and the fact that µ-balanced(

⋃
i∈I Ai) we have µ-balanced({a : Saj}i∈I,a∈Ai) for

every j ∈ J and
⋃
i∈I Ai = µ-reach(

⋃
i∈I Ai). Also, from (H.2) we have

• (H.2’) Γ0; ΓR, [[ΓS],
⊔
i∈I Γ′i], {a : Ta}i∈I,a∈Ai 
 µ.

From (H.2’), (P.1), and rule [T-Running Process] we obtain:

• (T.1) Ẽ{ej}j∈J ; Γ0; ΓR; [[ΓS],
⊔
i∈I Γ′i], {a : Ta}i∈I,a∈Ai ` µ #

∏
i∈I Pi.

We conclude (1) with an application of rule [T-Running Transaction], (T.1),
(P.2), and the facts proven above by taking Γ′0 = Γ0 and Γ′ =

⊔
i∈I Γ′i, {a : {ej :

Saj}j∈JTa}i∈I,a∈Ai . Item (2) is trivial and (3) holds since µ′ = µ.

[R-End Transaction] Then P = 〈A,B, {ej : Qj}j∈J
∏

i∈I commit(Ai).Pi〉 and
P ′ =

∏
i∈I Pi and µ

′ = µ. From rule [T-Running Transaction] we obtain:

• Γ = Γ1, {a : {ej : Saj}j∈JTa}a∈A,Γ2;

• (T.1) Ẽ{ej}j∈J ; Γ0; ΓR; [[ΓS],Γ1], {a : Ta}a∈A,Γ2 ` µ #
∏

i∈I commit(Ai).Pi;

• µ-balanced({a : Saj}a∈A) for every j ∈ J ;

• µ-balanced(B);

• local(Γ2);

• A ∪B = µ-reach(A ∪ dom(Γ2)).

From (T.1), [T-Running Parallel], and [T-Running Process] we deduce:

• ΓS =
⊔
i∈I ΓSi and Γ1 =

⊔
i∈I Γ1i and {a : Ta}a∈A =

⊔
i∈I{a : Ta}a∈Bi and

Γ2 =
⊔
i∈I Γ2i where rank(Γ2i) = 0 for every i ∈ I;

• Ẽ{ej}j∈J ; [[ΓSi],Γ1i], {a : Ta}a∈Bi ,Γ2i ` commit(Ai).Pi for every i ∈ I.

From rule [T-Commit] we deduce:

• Bi = Ai;

• Ta = KT ′a for every i ∈ I and a ∈ Ai;

• Ẽ ; [ΓSi],Γ1i, {a : T ′a}a∈Ai ,Γ2i ` Pi for every i ∈ I.
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From rule [T-Parallel] we deduce (H.1) Ẽ ; [ΓS],Γ1, {a : T ′a}i∈I,a∈Ai ,Γ2 ` P ′.
Let Γ′0 = Γ0 and Γ′ = Γ1, {a : T ′a}a∈A,Γ2. From Ẽ ; Γ0; ΓR; [ΓS],Γ ` µ # P and
Lemma 5.4.4(1) we obtain (H.2) Γ0; ΓR, [ΓS],Γ 
 µ. From (2) we deduce that
the queues associated with the pointers a ∈ A are empty, because Γ includes
{a : {ej : Saj}j∈JKT ′a}a∈A. Hence we deduce Γ0; ΓR, [ΓS],Γ′ 
 µ′. From (H.1)
and rule [T-Running Process] we conclude (1). We observe that (2) holds since
rank({ej : Saj}j∈JTa) = rank(T ′a) for a ∈ A and (3) holds trivially since the heap
has not changed.

[R-Run Transaction] In this case: P = 〈A,B, {ej : Rj}j∈JQ〉 and P ′ =

〈A,B′, {ej : Rj}j∈JQ′〉 where B′ = track(B, dom(µ), dom(µ′)) and µ # Q→ µ′ # Q′.
Let A = {ai}i∈I . From rule [T-Running Transaction] we deduce:

• Γ = Γ1, {ai : {ej : Sij}j∈JTi}i∈I ,Γ2;

• (T.1) Ẽ{ej}j∈J ; Γ0; ΓR; [[ΓS],Γ1], {ai : Ti}i∈I ,Γ2 ` µ # Q;

• (T.2) Ẽ ; Γ1, {ai : Sij}i∈I ` Rj for every j ∈ J ;

• (T.3) µ-balanced({ai : Sij}i∈I);

• (T.4) µ-balanced(B);

• (T.5) local(Γ2);

• (T.6) {ai}i∈I ∪B = µ-reach({ai}i∈I ∪ dom(Γ2)).

Let Γ3 = {ai : Ti}i∈I ,Γ2. From (T.1) and unsealed(Γ) by induction hypothesis
we obtain that there exist Γ′0 and Γ′3 such that:

(1’) Ẽ ; Γ′0; ΓR; [[ΓS],Γ1],Γ
′
3 ` µ′ # Q′, and

(2’) unsealed(Γ′3) and for every a ∈ dom(Γ3) ∩ dom(Γ′3) we have rank(Γ3(a)) =
rank(Γ′3(a)) and for every a ∈ dom(Γ3) \ dom(Γ′3) we have rank(Γ3(a)) = 0
and for every a ∈ dom(Γ′3) \ dom(Γ3) we have rank(Γ′3(a)) = 0, and

(3’) for every ΓI ⊆ ΓR, [[ΓS],Γ1] such that µ-balanced(µ-reach(dom(ΓI ,Γ3))) we
have

µ-reach(dom(ΓR,ΓS,Γ1) \ dom(ΓI)) = µ′-reach(dom(ΓR,ΓS,Γ1) \ dom(ΓI)).

Since rank(Ti) > 0 for all i ∈ I, from (2’) we deduce that all the ai’s are
still in the environment for Q′. Therefore we have Γ′3 = {a : T ′i}i∈I ,Γ′2. Let
Γ′ = Γ1, {ai : {ej : Sij}j∈JT ′i}i∈I ,Γ′2.

Regarding (1), from (T.4) and Proposition 5.4.6 we obtain (T.4’) µ′-balanced(B′).
From (2’) we deduce (T.5’) local(Γ′2). In order to prove (T.6’) {ai}i∈I ∪ B′ =
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µ′-reach({ai}i∈I ∪ dom(Γ′2)) observe that:

(*) dom(µ′)
= (dom(µ) ∪ (B′ \B)) \ (B \B′) by definition of B′
= (µ-reach(dom(ΓR, [ΓS],Γ1,Γ2) ∪ {ai}i∈I) ∪ (B′ \B)) \ (B \B′)

by item (3) of Definition 5.3.10
= (µ-reach(dom(ΓR, [ΓS],Γ1))

] µ-reach(dom(Γ2) ∪ {ai}i∈I) ∪ (B′ \B)) \ (B \B′)
by item (4) of Definition 5.3.10

= (µ-reach(dom(ΓR, [ΓS],Γ1)) ∪ {ai}i∈I ∪B ∪ (B′ \B)) \ (B \B′) by (T.6)
= µ-reach(dom(ΓR, [ΓS],Γ1)) ∪ {ai}i∈I ∪B′ by set theory

where ] denotes disjoint union. In addition, from (1’) and Lemma 5.4.4(1) we
obtain Γ′0; ΓR; [[ΓS],Γ1],Γ

′
3 
 µ

′, so we have:

(**) dom(µ′) = µ′-reach(dom(ΓR, [ΓS],Γ1,Γ
′
2) ∪ {ai}i∈I)

= µ′-reach(dom(ΓR, [ΓS],Γ1)) ] µ′-reach(dom(Γ′2) ∪ {ai}i∈I)

where the two equalities are respectively justified by items (3) and (4) of Def-
inition 5.3.10. From (T.3), (T.4) we obtain µ-balanced({ai}i∈I ∪ B), and then
from (T.6) we get µ-balanced(µ-reach({ai}i∈I ∪ dom(Γ2))). Therefore, by taking
ΓI = ∅ in (3’) we obtain µ-reach(dom(ΓR, [ΓS],Γ1)) = µ′-reach(dom(ΓR, [ΓS],Γ1))
and then from (*) and (**) we obtain (T.6’). We conclude this part of the proof
with an application of rule [T-Running Transaction] to (1’), (T.2), (T.3), (T.4’),
(T.5’) and (T.6’).

Regarding (2), we conclude from (2’) and rule [WF-Run] of Figure 5.12. Re-
garding (3), let ΓJ ⊆ ΓR, [ΓS] be such that µ-balanced(µ-reach(dom(ΓJ ,Γ))). Now
take ΓI = ΓJ , [Γ1] and observe that µ-balanced(µ-reach(dom(ΓI ,Γ3))). From (3’)
we conclude

µ-reach(dom(ΓR,ΓS,Γ1) \ dom(ΓI)) = µ′-reach(dom(ΓR,ΓS,Γ1) \ dom(ΓI))

which is (3) because dom(ΓR,ΓS,Γ1) \ dom(ΓI) = dom(ΓR,ΓS) \ dom(ΓJ).

[R-Catch Exception] In this case P = 〈{ai}i∈I , dom(µ2), {ej : Qj}j∈Jthrow ek |
P ′′〉 and µ = µ1, {ai 7→ [bi,Qi]}i∈I , µ2 where k ∈ J and P ′ = Qk and µ′ = µ1, {ai 7→
[bi, ε]}i∈I . From rule [T-Running Transaction] we deduce:

• (L.1) Γ = Γ1, {ai : {ej : Sij}j∈JTi}i∈I ,Γ2;

• (H.1) Ẽ ; [ΓS],Γ1, {ai : Sik}i∈I ` P ′;

• (T.1) µ-balanced({ai : Sik}i∈I);

• (T.2) local(Γ2);

• (T.3) {ai}i∈I ∪ dom(µ2) = µ-reach({ai}i∈I ∪ dom(Γ2)).

Let Γ′0 = Γ0 \ dom(µ2) and Γ′ = Γ1, {ai : Sik}i∈I . We only have to show that
(H.2) Γ′0; ΓR, [ΓS],Γ′ 
 µ′ and we prove the items of Definition 5.3.10. Items (1),
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(2), and (4) are trivial because µ′ has no more pointers than µ, some queues
in µ have been emptied in µ′, and duality of endpoint types associated with
peer endpoints is preserved by (T.1). Regarding item (3), we have to show that
dom(µ′) = dom(Γ′0,ΓR, [ΓS],Γ′) = µ′-reach(dom(ΓR, [ΓS],Γ′)). The first equality is
easy. Regarding the second equality, we derive:

dom(µ)
= µ-reach({ai}i∈I ] dom(ΓR,Γ1,Γ2)) by item (3) of Definition 5.3.10
= µ-reach(dom(ΓR,Γ1)) ] µ-reach({ai}i∈I ∪ dom(Γ2))

by item (4) of Definition 5.3.10
= µ-reach(dom(ΓR,Γ1)) ] {ai}i∈I ] dom(µ2) by (T.3)
= dom(µ1) ] {ai}i∈I ] dom(µ2) by definition of µ

where we write ] for disjoint union. From the last equality we deduce

(*) dom(µ1) = µ-reach(dom(ΓR, [ΓS],Γ1)) = µ1-reach(dom(ΓR, [ΓS],Γ1))

and now we have

dom(µ′) = dom(µ1) ] {ai}i∈I by definition of µ′
= µ1-reach(dom(ΓR, [ΓS],Γ1)) ∪ {ai}i∈I from (*)
= µ′-reach(dom(ΓR, [ΓS],Γ′)) by definition of Γ′ and µ′

We conclude (1) from (H.1), (H.2) and rule [T-Running Process]. Regarding (2),
from (L.1) we know that ranks of all pointers ai are preserved and from (T.2) that
that the rank of all pointers that are no more in the environment is 0. Regarding
(3), it holds trivially.

[R-Propagate Exception] Then P = 〈{ai}i∈I , dom(µ2), {ej : Qj}j∈Jthrow e |
P ′′〉 and µ = µ1, {ai 7→ [bi,Qi]}i∈I , µ2 and (E.1) ej 6= e for every j ∈ J and
P ′ = throw e and µ′ = µ1, {ai 7→ [bi, ε]}i∈I . From rule [T-Running Transaction]
we deduce:

• (L.1) Γ = Γ1, {ai : {ej : Sij}j∈JTi}i∈I ,Γ2;

• (T.1) Ẽ{ej}j∈J ; Γ0; ΓR; [[ΓS],Γ1], {ai : Ti}i∈I ,Γ2 ` µ # throw e | P ′′

• (T.2) µ-balanced({ai : Sij}i∈I);

• (T.3) local(Γ2);

• (T.4) {ai}i∈I ∪ dom(µ2) = µ-reach({ai}i∈I ∪ dom(Γ2)).

From (T.1), [T-Running Parallel], [T-Running Process], and [T-Throw]
we deduce e ∈ Ẽ . Let Γ′0 = Γ0 \ dom(µ2) and Γ′ = Γ1, {ai : Sik}i∈I for some
arbitrary k ∈ J . By rule [T-Throw] we derive Ẽ ; [ΓS],Γ′ ` throw e. The proof
that Γ′0; ΓR, [ΓS],Γ′ 
 µ′ and that items (2) and (3) hold is the same as for the
case [R-Catch Exception].

The next two lemmas show further relationships between the free names of a
process and the names occurring in the context used for typing it.
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Lemma 5.4.8. If ∅̃; Γ ` P , then dom(Γ) ⊆ fn(P ).

Proof. By induction on the derivation of ∅̃; Γ ` P and by cases on the last rule
applied.

[T-Inaction] In this case P = done. From the hypotheses ∅̃; Γ ` done we
conclude that Γ = ∅ and derive dom(Γ) = ∅ = fn(P ).

[T-Invoke] In this case dom(Γ) = ũ = fn(P ).

[T-Open] In this case P = open(a, b).Q and ∅̃; Γ, a : T, b : T ` Q. By induction
hypothesis we obtain dom(Γ, a : T, b : T ) ⊆ fn(Q) and then we conclude dom(Γ) =
dom(Γ, a : T, b : T ) \ {a, b} ⊆ fn(Q) \ {a, b} = fn(P ).

[T-Close] In this case P = close(u).Q, Γ = Γ′, u : end and ∅̃; Γ′ ` Q. By
induction hypothesis we obtain dom(Γ′) ⊆ fn(Q) and then we conclude dom(Γ) =
{u} ∪ dom(Γ′) ⊆ {u} ∪ fn(Q) = fn(P ).

[T-Send] In this case P = u!mk(v).Q, Γ = Γ′, u : {!mi(Si).Ti}i∈I , v : S and ∅̃; Γ′, a :

Tk ` P ′ for k ∈ I. By induction hypothesis we obtain dom(Γ′, u : Tk) ⊆ fn(Q) and
then we conclude dom(Γ) = dom(Γ′) ∪ {u} ∪ {v} ⊆ fn(Q) ∪ {v} ⊆ fn(P ).

[T-Receive] In this case P =
∑

i∈I∪J u?mi(xi).Pi, Γ = Γ′, u : {?mi(Si).Ti}i∈I and

for all i ∈ I we have ∅̃; Γ′, u : Ti, xi : S ′i ` Pi where Si 6 S ′i. By induction
hypothesis for all i ∈ I we obtain dom(Γ′, u : Ti, xi : S ′i) ⊆ fn(Pi) and then
we conclude dom(Γ) = dom(Γ′) ∪ {u} =

⋃
i∈I(dom(Γ′, xi : S ′i) \ {xi}) ∪ {u} ⊆⋃

i∈I(fn(Pi) \ {xi}) ∪ {u} ⊆
⋃
i∈I∪J(fn(Pi) \ {xi}) ∪ {u} = fn(P ).

[T-Choice] In this case P = P1 ⊕ P2 and ∅̃; Γ ` Pi for i ∈ {1, 2}. By induc-
tion hypothesis we obtain dom(Γ) ⊆ fn(Pi) for i ∈ {1, 2} and then we conclude
dom(Γ) ⊆ fn(P1) ∪ fn(P2) = fn(P ).

[T-Parallel] In this case P = P1 | P2, Γ = Γ1,Γ2 and ∅̃; Γi ` Pi for i ∈ {1, 2}.
By induction hypothesis we obtain dom(Γi) ⊆ fn(Pi) for i ∈ {1, 2} and then we
conclude dom(Γ) = dom(Γ1) ∪ dom(Γ2) ⊆ fn(P1) ∪ fn(P2) = fn(P ).

[T-Try] In this case P = try({ui}i∈I) {ej : Rj}j∈JQ, Γ = Γ′, {ui : {ej :

Sij}j∈JJTi}i∈I , ∅̃{ej}j∈J ; [Γ′], {ui : Ti}i∈I ` Q and ∅̃; Γ′, {ui : Sij}i∈I ` Rj for every
j ∈ J . We distinguish two subcases, according to whether J is empty or not. If
J = ∅, then by induction hypothesis we obtain dom([Γ′], {ui : Ti}i∈I) ⊆ fn(Q) and
then we conclude dom(Γ) = dom(Γ′) ∪ {ui}i∈I ⊆ fn(Q) = fn(P ). If J 6= ∅, then
by induction hypothesis we obtain dom(Γ′, {ui : Sij}i∈I) ⊆ fn(Rj) for every j ∈ J .
We conclude dom(Γ) = dom(Γ′) ∪ {ui}i∈I ⊆

⋃
j∈J fn(Rj) ⊆ fn(P ).

[T-Throw] This case is impossible because the exception environment consists
of a sequence of empty sets of exceptions, hence all the exceptions thrown in P
are caught.

[T-Commit] In this case Γ = [Γ1], {ui : KTi}i∈I ,Γ2, P = commit({ui}i∈I).Q and
∅; Γ1, {ui : Ti}i∈I ,Γ2 ` Q. By induction hypothesis we obtain dom(Γ1)∪

⋃
i∈I{ui}∪
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dom(Γ2) ⊆ fn(Q). We conclude dom(Γ) = dom(Γ1) ∪
⋃
i∈I{ui} ∪ dom(Γ2) ⊆

fn(Q) ⊆ fn(P ).

Lemma 5.4.9. If ∅̃; Γ0; ΓR; Γ ` µ # P , then dom(Γ) ⊆ fn(P ).

Proof. By induction on the derivation of ∅̃; Γ0; ΓR; Γ ` µ # P and by cases on the
last rule applied. Cases [T-Running Process] and [T-Running Parallel] are
easily solved by Lemma 5.4.8 and the induction hypothesis, respectively. Regard-
ing [T-Running Transaction], we have:

• P = 〈{ai}i∈I , B, {ej : Rj}j∈JQ〉;

• Γ = Γ1, {ai : {ej : Sij}j∈JTi}i∈I ,Γ2;

• (*) {ai}i∈I ∪B = µ-reach({ai}i∈I ∪ dom(Γ2));

• ∅̃{ej}j∈J ; Γ0; ΓR; [Γ1], {ai : Ti}i∈I ,Γ2 ` µ # Q;

• ∅̃; Γ1, {ai : Sij}i∈I ` Rj for all j ∈ J .

We distinguish two cases, according to whether J is empty or not. If J = ∅,
then by induction hypothesis we obtain dom([Γ1], {ai : Ti}i∈I ,Γ2) ⊆ fn(Q) and
we conclude dom(Γ) ⊆ fn(Q) ⊆ fn(P ). If J 6= ∅, then by induction hypothesis
we obtain dom(Γ1, {ai : Sij}i∈I) ⊆ fn(Rj) for every j ∈ J . From (*) we deduce
dom(Γ2) ⊆ {ai}i∈I ∪ B. We conclude dom(Γ) = dom(Γ1) ∪ {ai}i∈I ∪ dom(Γ2) ⊆⋃
j∈J fn(Rj) ∪ {ai}i∈I ∪B ⊆ fn(P ).

We can now prove the soundness of the type system.
Theorem 5.4.10 (Type safety). Let ` P . Then P is well behaved.

Proof. From the hypothesis ` P we deduce ∅̃; ∅; ∅; ∅ ` ∅ # P . Consider an arbitrary
derivation ∅ # P →∗ µ # Q. From Theorem 5.4.7 we deduce that there exist Γ0

and Γ such that ∅̃; Γ0; ∅; Γ ` µ # Q and, from Lemma 5.4.4, we obtain Γ0; Γ 
 µ.
Regarding condition (1) of Definition 5.2.6, from Γ0; Γ 
 µ and Definition 5.3.10

we know dom(µ) = µ-reach(dom(Γ)).
By Lemma 5.4.9, we have dom(Γ) ⊆ fn(Q) and then, because µ-reach is mono-

tone, we obtain dom(µ) = µ-reach(dom(Γ)) ⊆ µ-reach(fn(Q)).
Regarding condition (2) of Definition 5.2.6, suppose that Q ≡ Q1 | Q2 and

µ # Q1 X→ and Q1 6≡ throw e | Q′1 (the last hypothesis being granted by the fact
that Q is well typed in the ∅̃ exception environment). We prove µ # Q1 ↓ by
induction on Q1.

• (Q1 = done) We conclude with an application of rule [ST-Inactive].

• (Q1 = open(a, b).R) Because we have assumed that there are infinitely many
pointers and structural congruence includes alpha renaming, we may assume
a, b 6∈ dom(µ). Then µ # Q1 → , which contradicts the hypothesis, therefore
this case is impossible.
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• (Q1 = close(a).R) From [T-Running Parallel], [T-Running Process],
[T-Close] and item (3) of Definition 5.3.10 we obtain a ∈ dom(Γ) ⊆
dom(Γ0,Γ) = dom(µ), and now µ # Q1 → which contradicts the hypothesis,
therefore this case is impossible.

• (Q1 = R1⊕R2) This case is impossible because µ # R1⊕R2 always reduces.

• (Q1 = a!m(c).R) From rules [T-Running Process], [T-Running Parallel]
and [T-Send] we obtain Γ ` a : T where T is an internal choice and then
from item (3) of Definition 5.3.10 we have a ∈ dom(µ). From item (2) of
Definition 5.3.10 we deduce that the queue associated with a is empty and
also that the peer of a, say b, is still allocated in µ for otherwise T would
have to be end. Then µ # Q1 → which contradicts the hypothesis, therefore
this case is impossible.

• (Q1 =
∑

i∈I a?mi(xi).Ri) Then a 7→ [b,Q] ∈ µ and the messages and argu-
ments in Q are consistent with the type of endpoint a. The only case when
µ #

∑
i∈I a?mi(xi).Ri does not reduce is when Q = ε, therefore we conclude

µ # Q1 ↓ by an application of rule [ST-Input].

• (Q1 = R1 |R2) From the hypothesis µ # Q1 X→ we deduce µ # Ri X→ for i ∈
{1, 2}. From the hypothesis Q1 6≡ throw e |Q′1 we deduce Ri 6≡ throw e |R′i
for i ∈ {1, 2}. By induction hypothesis we obtain µ # Ri ↓ for i ∈ {1, 2}. We
conclude with an application of rule [ST-Parallel].

• (Q1 = try(A) {ej : Rj}j∈JR′) From the hypothesis µ # Q1 X→ we deduce
¬µ-balanced(A). We conclude with an application of rule [ST-Try].

• (Q1 = throw e) This case is impossible by hypothesis.

• (Q1 = commit(A).R) We conclude immediately with an application of rule
[ST-Commit].

• (Q1 = X〈ã〉) From rule [T-Invoke] we deduce X(ũ)
def
= R is a definition and

ã and ũ have the same length. Then µ # X〈ã〉 → which contradicts the
hypothesis, therefore this case is impossible.

• (Q1 = 〈A,B, {ej : Rj}j∈JR′〉) From the hypothesis µ # Q1 X→ we deduce µ #
R′ X→ and R′ 6≡

∏
i∈I commit(Ai).Ri and R′ 6≡ throw e|R′′ since these are the

cases when µ # Q1 does reduce. By induction hypothesis we deduce µ # R′ ↓
and we conclude with an application of rule [ST-Running Transaction].

We conclude this section with two examples showing how transaction types in-
crease the expressiveness of session types by allowing the safe modeling of timeouts
and mixed choices.
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Example 5.4.11 (timeouts). In some cases it is possible and desirable to es-
tablish a timeout for a receive operation to succeed. Using transaction types and
exceptions, it is easy to model timeouts in our process language. As an example,
suppose one is interested in modeling a process

a?m(x).P + τ.Q

which behaves as P as soon as it receives an mmessage from endpoint a and reduces
to Q through an internal τ move if no message is received after some unspecified
amount of time. This can be modeled by means of the process

try(a) {timeout : Q}
a?m(x).commit(a).P
| try({}) {ok : done}(throw ok⊕ throw timeout)

where the nondeterministic choice between throwing ok or timeout is the abstract
representation of the mechanism that activates the timeout. Note that the mod-
eling uses exception propagation to trigger the timeout. The type associated with
a is {timeout : S}J?m(T ).KT where T describes the behavior of P on a if the m

message is received within the timeout, while S describes the behavior of Q on a if
the timeout expires. Note that the modeling in this example is not meant to sug-
gest an actual implementation of the timeout mechanism, but rather to describe
its effect in abstract terms. In particular, the m message may have already been
sent by the time the timeout expires (and the exception timeout is thrown). Yet,
the sender of the message should be aware of this eventuality, it should be notified
in case the timeout expires, and it should provide a suitable recovery action for
this eventuality, possibly involving the resending of the m message. This is all
guaranteed by the fact that the sender, which uses the peer endpoint of a, must
do so according to the endpoint type {timeout : S}J!m(T ).KT . 4
Example 5.4.12 (mixed choices). The Sing# implementation allows the defi-
nition of contracts with so-called mixed choices, namely states in which there are
two (or more) alternative operations involving both inputs and outputs. If mixed
choices were allowed in our type language we would have, for example, endpoint
types of the form {!a(t).T, ?b(s).S} allowing either sending an a message or receiv-
ing a b message. Mixed choices break the half-duplex communication modality
and are known to make protocols less robust and prone to deadlock [136, 146].
Yet, they can be safely modeled using transaction types as, for example

Tm = {a : !a(T ).T, b : ?b(s).S}J Kend

The intuition is that a process behaving as Tm may throw either an a or a b

exception to notify its party as to which operation (output an a message or input
a b message) it will perform. An example of such process is

try(c){a : c!a(a).P, b : c?bx.Q}(commit(c).close(c) |X〈a〉)

where
X(y)

def
= X〈y〉 ⊕ throw a
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represents an internal computation that may eventually throw the a exception and
cause the sending of the a message.

Below is part of the proof derivation showing that the process is well typed in
the environment c : Tm, u : T . The branch related to the b exception has been
omitted, but it is analogous to the one for the a exception; where necessary, the
exception environment E = {a, b} is used:

E ; ∅ ` done

E ; c : end ` close(c)

E ; c : Kend ` commit(c).close(c) E ;u : [T ] ` X〈a〉

E ; c : Kend, u : [T ] ` commit(c).close(c) |X〈a〉

...

c : T ` P

c : !a(T ).T, u : T ` c!a(a).P
...

c : Tm, u : T ` try(c){a : c!a(a).P, b : c?b(x).Q}(commit(c).close(c) |X〈a〉)

Finally,

E ;u : [T ] ` X〈u〉 E ;u : [T ] ` throw a

E ;u : [T ] ` X〈u〉 ⊕ throw a

is the proof tree proving that the definition of X〈u〉 is well typed. 4

5.5 Conclusion and related work
We have formalized a core language of processes that communicate and synchro-
nize through the copyless message passing paradigm and can throw exceptions.
In this context, where the sharing of data and explicit memory allocation require
controlled policies on the ownership of heap-allocated objects, special care must
be taken when exceptions are thrown to prevent communication errors (arising
from misaligned states of channel endpoints) and memory leaks (resulting from
messages forgotten in endpoint queues). We have studied a type system guaran-
teeing some safety properties, in particular that well-typed processes are free from
communication errors and do no leak memory even in presence of (caught) excep-
tions. We have taken advantage of invariants guaranteed by the type system for
taming the implementation costs of exception handling: the queues of endpoints
involved in a transaction are guaranteed to be empty when the transaction starts,
so that state restoration in case of exception simply means emptying such queues;
also, only endpoints local to a transaction can be freed inside the transaction, so
that state restoration in case of exception does not involve re-allocations.

The choice of Sing# as our reference language has been motivated by the
fact that the Singularity code base provides concrete programming patterns that
the formal model is supposed to cover (for example, previous works on exception
handling for session-oriented languages by [25, 23] do not consider delegation inside
try-blocks, which instead is ubiquitous in Sing#). In addition, Sing# already
accommodates channel contracts, which play a crucial role in our formalization.
However, we claim that our approach is abstract enough to be applicable to other
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programming languages and paradigms, provided that suitable type information
(possibly in the form of code annotations) is attached to channel endpoints.

To measure the practical impact of our mechanism of exception handling, one
can take advantage of the availability of Singularity’s source code for verifying
whether the constraints imposed by the type discipline are reasonable in practice.
Even without thorough investigations, however, we are able to provide some favor-
able arguments to our type discipline, in particular with respect to the weight and
rank restrictions on types. As regards type weights, one has to consider that mes-
sages allocated on the exchange heap are explicitly managed by means of reference
counting [83], which notoriously falls short in handling cyclic data structures, and
that the finite-weight restriction on the type of communicated messages is just
aimed at preventing cycles in the exchange heap. Regarding ranks, the subclass
of well-formed, null-ranked types are just those in which transactions are properly
balanced. In fact, the notion of well formedness arises solely because of our choice
of modeling transactions using two matching constructs try and commit marking
their beginning and end. Their balancing arises naturally in a structured language
such as Sing#.

Even if the type system has been tailored for a process calculus with a minimal
set of critical features, it can be easily extended to incorporate commonly used
programming constructs. Some restrictions of the type system can also be relaxed
without endangering its soundness. For example, according to rule [T-Send], only
local endpoints (those that have an unsealed and null-ranked type) can be sent as
messages inside transactions. This restriction results from the syntax of endpoint
types (requiring that message arguments must have an unsealed type) and from
rule [WF-Prefix] regarding well-formed endpoint types (requiring that message
argument types must have null rank). Endpoints with a sealed type cannot be
accessed from within a transaction, because all the operations that modify the
state of the heap require the access to endpoints with unsealed type. Therefore, we
claim that endpoints with a sealed type are also safe to be sent as messages. In case
an exception is thrown, the only thing that must be restored is their ownership at
the beginning of the transaction. Nonetheless, the proof of this relaxed discipline
seems to require a non-trivial modification of rule [T-Running Transaction],
which is already quite elaborate in the present state, to account for the fact that
the state of endpoints with a sealed type can change as the result of concurrent
threads that execute outside of the transaction.

The research presented in this chapter fits in the broad spectrum of works
developing hybrid static/dynamic techniques for the controlled management of
the heap, and relies on invariants regarding the configuration of heap-allocated
structures for enabling the efficient implementation of transactional mechanisms.
Controlled heap management has fostered the development of a wide spectrum of
techniques aimed at the most diverse purposes, of which we provide here a small
account.

Pure functional programming languages are excellent candidates for the im-
plementation of implicitly parallel computations. Parallelism is usually achieved
by allowing multiple processing units to independently reduce disjoint parts of a
program (represented as a graph) stored in a (possibly virtual) shared memory.
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Both hardware [117] and software [143] architectures have been explored. In these
architectures, the crucial aspect is to achieve an optimal distribution of tasks, tak-
ing into account the fact that each processing unit often has its own local memory
where subgraphs to be reduced must be copied, and that for improved efficiency
it is necessary to take into proper account locality properties of the program [99].

Type-based approaches for enforcing and reasoning on properties of the heap
are also popular. The seminal work by [142] describes an effect type system for
region-based memory management that allows for efficient allocation and deallo-
cation of related heap structures. Interestingly, effects can be seen as primitive
forms of behavioral types. There exist type systems with resource annotations
that allow computing bounds on the heap space usage of functions and meth-
ods. Examples of such type systems are given in [76] for (first-order) functional
programs and in [77] for object-oriented programs. These approaches are usually
motivated by the need to provide firm guarantees in code meant to be executed
in embedded systems with constrained resources. Such forms of analyses can be
carried out also for untyped programs. For instance, [5] works directly on Java
bytecode, while [65] studies bounded time/space semantics for a functional and
concurrent language.

The paper [137] studies a type discipline for safe resource deallocation in con-
current programs with shared memory. The idea is to associate each shared re-
source with a fractional ownership, namely a rational number in the interval [0, 1],
which denotes the level of sharing of the resource: 0 means that the resource is
not owned, 1 means that the resource is owned exclusively, while any intermediate
rational number indicates a shared ownership of the resource (often constraining
the operations allowed on it). The type system allows a thread to deallocate a
resource only if the thread is the only owner of the resource and if all of the other
resources contained in it have been deallocated or transferred to other threads. In
our type system, a similar effect is achieved by the combination of the type rule
for the close primitive (which allows for the deallocation of endpoints only when
they are owned exclusively) and the notion of well-typed heap (which guarantees
endpoints with type end to have an empty queue).

There are strong analogies between our endpoint types and usage expressions
defined by [86], which are used for controlling access to resources (such as files and
memory) in a functional language with exceptions. Usage expressions are akin to
behavioral types and describe the valid sequence of operations allowed on some
resource. In particular, [86] defines a usage constructor U1;E U2 where U1 describes
how the resource is accessed under “nominal” conditions while U2 describes how
the resource is accessed if an exception is thrown. The structure of this usage
constructor resembles that of a transaction type {E : U2}JU1. Because usage
expressions can be composed in sequence, there is no need to explicitly mark the
points where the scope of an exception ends.

The present work continues the type-based formalization of Singularity OS
described by [17]. To simplify the formal development of the present paper we
dropped polymorphism and non-linear types from the type system in [17]. These
are orthogonal features that are independent of exception handling and can be
added without affecting the results we have presented here. A radically different
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approach for the static analysis of Singularity processes is explored by [146, 147],
where the authors develop a proof system based on a variant of separation logic.
Exceptions are not taken into account in these works.

The works more closely related to ours, and which we used as starting points,
are by [25] and [23]. In [25], which was the first to investigate exceptions in
calculi for session-oriented interactions and to propose type constructs to describe
explicitly, at the type level, the handling of exceptional events, it is possible to
associate an exception handler to a whole (dyadic) session; [23] generalizes this
idea to multiparty sessions (those with multiple participants) and allows the same
channel to be involved, at different times, in different try blocks, each with its
own dedicated exception handler. In both [25] and [23] it is possible that messages
already present in channel queues at the time an exception occurs are forgotten.
In our context, this would immediately yield memory leaks, which we avoid by
keeping track of the resources allocated during a transaction and by restoring
the system to a consistent configuration in case an exception is thrown. State
restoration is made possible in our context because the system is not distributed
and the heap is shared by the communicating processes. Neither [25] nor [23]
consider session delegation, namely the communication of channels. Also, in [23]
the type system forces inner try blocks to use a subset of the channels involved in
outer blocks. We relax these restrictions and allow locally created channels to be
involved in inner transactions. The most notable difference between [23] and the
present work regards the semantics of exceptions in nested transactions: in [23],
an exception thrown in one transaction is suspended as long as there are active
handlers in the nested ones. This semantics is motivated by the observation that,
in a distributed setting, it may be desirable to complete the execution of potentially
critical handlers before outermost handlers take control. Our semantics allows
handlers of outer transactions to take control at any time following the throwing
of an exception. As a consequence, more constrained policies, such as the one
adopted in [23], can be implemented without invalidating the results presented in
our work.

The recent interest on Web services has spawned a number of works inves-
tigating (long running) transactions in a distributed setting; a detailed survey
with many references is provided by [49]. In our context, the components Qi of a
process 〈A,B, {ei : Qi}i∈IP 〉 are analogous to compensation handlers. The main
difference between our handlers and those used for compensations is that, in the
latter case, it is usually made the assumption that it is not possible to restore the
state of the system as it was at the beginning of the transaction. In our case, state
restoration is made possible by the fact that the system is local and all the inter-
actions occur through shared memory. In this context, we can rely on some native
support from the runtime system to properly cleanup the state of the system and
avoid memory leaks.

The operational semantics of exceptions and exception handling in the present
paper has been loosely inspired by that of Haskell memory transactions described
by [67]. In particular, our semantics describes what happens when an exception is
thrown but not how exception notification and state restoration are implemented.
In this sense our semantics is somewhat more abstract than the semantics given
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in similar works [23]. The semantics of [67] uses a clever combination of small-
and big-step reduction rules and is even more abstract than ours. Technically,
having an abstract semantics is an advantage because it allows the meaning of
programs to be expressed more concisely and in an implementation-independent
way. However, because the big-step semantics is affected by diverging programs,
it is more appropriate in a functional setting where non-termination is typically
considered as a misbehavior. In our context, where non-terminating processes are
useful, we had to resort to a more detailed operational semantics that dynamically
keeps track of the allocated memory within a transaction.

[43] puts forward a programming abstraction called transactional events for
the modular composition of communication events into transactions with an all-
or-nothing semantics. Their approach focuses on finding synchronization paths
between threads communicating synchronously, while in our case transactions are
required for preserving type consistency of endpoints and for undoing the effects
of asynchronous communication.

Inadequacy of the standard error handling mechanisms provided by main-
stream programming languages has already been recognized, even in sequential
and communication-free scenarios. [149, 148, 150] develop a static analysis tech-
nique that spots error handling mistakes concerning proper resource release. Their
technique is based on finite-state automata (in other words, a basic form of behav-
ioral type) for keeping track of the state of resources along all possible execution
paths. They also propose a more effective mechanism for preventing runtime er-
rors. The basic idea is to accumulate compensation actions regarding resources on
a compensation stack as resources are allocated. This technique closely resembles
dynamic compensations in [49]. Because of their dynamic nature, compensation
stacks do not provide any assistance as far as type consistency is concerned.
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Chapter 6

Conclusion

Concurrency and distribution are big challenges for verification because of the
presence of shared data and nondeterministically interleaved computations, and
the lack of centralized control and mutual trust. In Chapters 3 and 4, we verify
security and privacy properties of distributed networks with data in XML and
RDF format. Process languages are inspired by existing query languages, featuring
commands for reading, writing and changing data. In Chapter 3 role-based access
is used to control access to the data, while in Chapter 4 access is controlled by
privacy protection polices of the users. We define relevant security and privacy
properties in terms of access rights. We use static type systems to show that
networks are correct with respect to these properties and that security and privacy
policies of locations and users are respected during computation. In Chapter 5 we
investigate the prevention of memory errors and leaks as well as the communication
errors in copyless messaging communication paradigm. To formalize the semantics
of processes we draw inspiration from software transactional memories: in our case
a transaction is a process that is meant to accomplish some exchange of messages
and that should either be executed completely, or should have no observable effect
if aborted by an exception. In this chapter we study a type discipline for copyless
messaging that, together with some minimal support from the runtime system,
is able to guarantee the absence of communication errors, memory faults, and
memory leaks in the presence of exceptions. We have taken advantage of invariants
guaranteed by the type system for taming the implementation costs of exception
handling: the queues of endpoints involved in a transaction are guaranteed to be
empty when the transaction starts, so that state restoration in case of exception
simply means emptying such queues; also, only endpoints local to a transaction
can be freed inside the transaction, so that state restoration in case of exception
does not involve re-allocations.

There is a fundamental difference between the models in Chapters 3 and 4, and
the model in Section 5. The first two models deal with distributed systems, while
the third one is designed for a local setting. The soundness results hold as long
all the terms are well typed. This is relatively easy to ensure in a local setting,
while in a distributed one it is not. Situations in which it is not known if all the
components of a network have been type checked require further restrictions of
the presented typing disciplines, as well as additional static and dynamic checks,
based on, for example, trustworthiness of the components.
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Some terms that are actually safe may be rejected by a type system due to
its impreciseness. By introducing a subtyping relation it is possible to type more
terms. In Chapter 5 we show that the exception annotations within types induce
an original subtyping relation that sheds light on the differences between excep-
tions and regular messages. Type systems of Chapter 3 can be extended with
subtyping relation, as suggested in [87]. After completing the material for the
thesis, I have been working on the preciseness of subtyping relation for multiparty
session types [39].

My current work includes a typed model for specifying communication and
dynamic authorization handling [60]. We exploited this idea in multiparty con-
versations setting and combined it with roles [61]. We are working on refining
the notion of delegating authorizations with delegating usages and sending them
separately from the content.

Besides defining which participants can communicate and in which direction,
there might be the need to constrain or examine the content of messages ex-
changed. Such policies are very expressive but difficult to analyse due to their
very essence, content-dependence. This scenario is of interest in avionics industry
and has already been analysed in [100]. In that work, the syntax of a fragment of C
programming language is augmented with content-dependant labels and programs
are verified using a tool based on the proposed type system. Concrete unresolved
issues of [100] for the verification tool and the type system presented there (sup-
port of functions, policy polymorphism and inference, extension of the observed
fragment of the language, push of the policy specification outside the code) are
related to the domain of my research. A more abstract model, with communica-
tion primitives and authorities on whose behalf programs are running, could be a
good base for reasoning about properties of systems in presence of content-based
policies. Authorities/participants in communication can be further abstracted as
channels, so that each participant is represented by a unique channel and a form
of duality of policies could be used to type channels.
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