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AOGcTpakT

Kopuctumo osmaky * 3a mctpubymmono (IlIsapnoso), (M),) (Bepaunroso) u { M)} (Poy-
MUEYOBO) OKDPYy#keme. YBOINMO U HPOydYaBaMo HOBe (yJITpa)IucTpuOyLUOHE IPOCTOPE,
TeCcT (PYHKIUjCKe IIPOCTOPE 'D*E U BUXOBE IyaJe Dgi’ OBu npocTOopU yOIIITAaBajy MPOC-
tope Dj,, DY, B u muxose resumcke sepsmje. Komcrpyrmmuja mammx moBux (yii-
Tpa)MCcTpUOYyIMOHUX IPOCTOPA j€ 3aCHOBAHO HA AHAJU3U OACOBAPAjYyYUX TPAHCIALUOHO-

UHBApUjaHTHUX Bamaxosux mpocropa (yarpa)mucrpubymuje F koja je KOHBOMymMOHU MO-
1

wy TAe je TEeKMHa W IOBE3aHa Ca onepaTopuMa TpaHC-

nys Han BeypamHroBoMm aarebpom L
nmanuje mpocropa F. DBamaxos mpocTop E; O3HavYaBa IPOCTOP L}J x E'. Kopucreun
noOuWjeHnx pe3yarara IpoydaBaMO KOHBOJynuja yiarpamuctpubymuja. IIpocTropm KoH-
BOJIyTOpA O/C* (R”) TEMIIEPUPAHUX YIATPAOUCTPUOYIMja, AHAIU3UPAHUA Cy HOMOUY Iyail-
HOCTH TeCT (YHKIMjCKUX IPOCTOPA OE(R”), nepUHUCAHUX OBOM Te30M. Kopucreun cBO-
jCTBa TPAHCIANMOHO-UHBAPUjAHTHUX BaHAXOBUX NPOCTOpPa TEMIEpPUpPAHE YITPAIUCTPU-
6ynuje F, nobujamo xapakTepusanujy xompomyunuje Pomymuey-oBux yarpamucTpubynuja,
npeko uHTerpabmaHux yarpamucrpudynuja. lokasyjemo ma: KomBonyuuja nse Poymuey-
osux ynrpamcrpubymja T, S € D'{Mp} (R™) mocroju ako u camo ako ((,0 * S) T €
DIL{IMP} (Rn) 3a CBaKmM € DMy} (R”) Mwu mpoyvyaBaMoO rpaHUYHE BPETHOCTU XOJIOM-
np¢HUX QyHKIUja neduHNCcaHUX HA Tybama. /lokaszane cy HOBe TeopeMe KiamHA. Pesyiararu
Cce 3aTUM KOPUCTE 3a IPENTABIbAKE ID/EQ Ka0 (haKTOP IPOCTOP XOJOMOPPHUX (YHKIAja.

/
Takobe, npencrasmamo enemente D, kKopucreun xeaT KepHEI METOTE.
*

Hosu Can, 2014 ITaBen JumoBcru
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Abstract

We use the common notation * for distribution (Schwartz), (M,) (Beurling) and
{M,} (Roumieu) setting. We introduce and study new (ultra)distribution spaces,
the test function spaces D7, and their strong duals ’E*;. These spaces generalize the
spaces Dj,, D7, B™ and their weighted versions. The construction of our new (ul-
tra)distribution spaces is based on the analysis of a suitable translation-invariant
Banach space of (ultra)distributions £, which turns out to be a convolution mo-
dule over the Beurling algebra Ll where the weight w is related to the translation
operators on E. The Banach space E’ stands for LL * E/. We apply our results
to the study of the convolution of ultradistributions. The spaces of convolutors
O¢(R™) for tempered ultradistributions are analyzed via the duality with respect
to the test function spaces OF(R™), introduced in this thesis. Using the properties
of the translation-invariant Banach space of ultradistributions E, we obtain a full
characterization of the general convolution of Roumieu ultradistributions via the
space of integrable ultradistributions. We show: The convolution of two Roumieu
ultradistributions 7', S € D'} (R") exists if and only if (p* ) T € D'L{IM 2 (R™)
for every ¢ € DIMp} (R™). In addition, we study boundary values of holomorphic
functions defined in tube domains. New edge of the wedge theorems are obtained.
The results are then applied to represent D;JL as a quotient space of holomorphic
functions. We also give representations of elements of Dp, via the heat kernel
method.

Novi Sad, 2014 Pavel Dimovski
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Preface

Translation-invariant spaces of functions, distributions and ultradistributions are
very important in mathematical analysis. They are connected with many central
questions in harmonic analysis |5, 25, 26, 31, 86, 112].

This thesis introduces and studies new classes of translation-invariant distri-
bution spaces, the test function space Dg and their duals, denoted as DjE;. The
construction of these spaces is based upon the analysis of suitable translation-
invariant Banach spaces of distributions E. As will be shown, our new spaces are
useful in the analysis of boundary values of holomorphic functions in tube domains
and solutions to the heat equation in the upper half-space.

The space F is a natural extension of a large class of weighted L? spaces, while
D} generalizes the spaces D7,. The spaces D7, were introduced by Schwartz [94,
93] as a major tool in the study of convolution within distribution theory and are
still the subject of various modern investigations [71]. Ortner and Wagner [69] have
considered weighted versions of the D7, spaces, which have proved usefulness in
the analysis of convolution semigroups associated to many PDE [70] and boundary
values of harmonic functions [2]. It turns out that their spaces are also particular
instances of our Dy, .

The study of boundary values of holomorphic functions in distribution and
ultradistribution spaces has shown to be quite important for a deeper understan-
ding of properties of generalized functions, which are of much relevance to the
theory of PDE [39, 90|. There is a vast literature in the subject, we only mention
a small part of it. The theory of analytic representation of distributions was ini-
tiated by Kothe [55] and Tillmann [102]. We also mention the influential works
of Silva [97], Martineau [59, 61|, and Vladimirov [106, 107]. The book by Carmi-
chael and Mitrovi¢ [13] contains an overview of results concerning boundary values
in distribution spaces. For ultradistributions and hyperfunctions, see the articles
[24, 49, 64, 75] and the monographs [12, 44, 68|.

The representation of the Schwartz spaces D}, as boundary values of holomor-
phic functions has also attracted much attention. The problem has been treated
by Tillmann [103], Luszczki and Zielezny [58], and Bengel [3]. More recently
[32, 33|, Fernandez, Galbis, and Gomez-Collado have obtained various ultradist-
ribution analogs of such results. All these works basically deal with holomorphic
functions in tube domains whose bases are the orthants of R™. In a series of pa-
pers [8, 9, 10, 11|, Carmichael has systematically studied boundary values in D},
of holomorphic functions defined in more general tubes, namely, tube domains
whose bases are open convex cones. The present work makes a thorough analysis
of boundary values in the space D .. Many of the results we obtain in Section 2.1
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are new or improve earlier results even for the special case Dy, = D/,.

In his seminal work [62, 63] Matsuzawa introduced the so-called heat kernel
method in the theory of generalized functions. His approach consists in descri-
bing distribution and hyperfunction spaces in terms of solutions to the heat equa-
tion fulfilling suitable growth estimates. Several other authors have investigated
characterizations of various distributions, ultradistributions, and hyperfunction
spaces [16, 18, 46, 101]. Our results from Section 2.4 add new information to
Matsuzawa’s program by obtaining the description of DE, via the heat kernel
method. In the case of D},, this characterization reads as follows: f € D}, if
and only if there is a solution U to the heat equation on R™ x (0,ty) such that
SUDe(0.0) LU (-, )] < 00 for some k > 0 and f = limy_o+ U( - ,1).

The second half of the thesis focuses on ultradistributions. In Section 3.4 we
obtain results which characterize convolutors through the duality with respect to
the space of test functions (’)éM” Y. Such results were recently published in our result
paper [21]|. Often, the Beurling case is not considered since it is simpler than the
Roumieu one. An important achievement of the thesis is related to the existence of
the general convolution of ultradistributions of Roumieu type. After the introduc-
tion of Schwartz’ conditions for the general convolvability of distributions, many
authors gave alternative definitions and established their equivalence. Notably,
Shiarishi [99] found out that the convolution of two distributions S,T" € D'(R")
exists if and only if: (¢ x S) T € D}, (R") for every ¢ € D (R"). The existence of
the convolution for Beurling ultradistributions can be treated [41, 40, 78] analo-
gously as for Schwartz distributions. In contrast, corresponding characterizations
for the convolution of Roumieu ultradistributions has been a long-standing open
question in the area. It was only until recently [80] that progress in this di-

rection was made through the study of e tensor products of B} and locally
convex spaces. The following characterization of convolvability was shown in [80]:
The convolution of two ultradistributions T, S € D'{Mr} (R™) exists if and only if

(p#9)T € D’{ i (
K of R, (p,x) — <(gp * T) S, x), D{MP} x BOWY C, is a continuous bilinear

mapping. The spaces BUMr and D'}, { p} (R™) were introduced in [79]. In this thesis
we make a significant 1mprovement to this result, namely, we show the following
more transparent version of Shiarishi’s result for Roumieu ultradistributions: The
convolution of T, S € D'™Me} (R™) emists if and only if (¢ = S) T e D/{M”} (R™) for
every ¢ € DM} (R™).

Our proof of the above-mentioned result about the general convolvability of
Roumieu ultradistributions is postponed to the last section of the thesis and it

is based upon establishing the topological equality D’{ ek =7 {L]Y[”} This and
other topological properties of the spaces of "integrable" ultradistributions can be
better understood from a rather broader perspective. In this thesis we introduce
and study new classes of translation-invariant ultradistribution spaces which are
natural generalizations of the weighted DJ,-spaces [12|. In the distribution setting,
our recent work [19] (explained in detail in Chapter 1 of the present thesis) extends
that of Schwartz on the D7, spaces and that of Ortner and Wagner on their

R™) for every ¢ € DIMr} (R™) and for every compact subset
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weighted versions [69, 111|; recent applications of those ideas to the study of
boundary values of holomorphic functions and solutions to the heat equation can
be found in our recent paper [20]; such applications are treated in detail in Chapter
2 of this thesis. The theory we present here is a generalization of that given in [19]
for distributions. Although some results are analogous to those for distributions, it
should be remarked that their proofs turn out to be much more complicated since
they demand the use of more sophisticated techniques and new ideas adapted to
the ultradistribution setting— especially in the Roumieu case.

This doctoral dissertation is organized in five chapters. Thematically, it is
divided in two parts. Chapter 1 and Chapter 2 are devoted to distributions and
Chapter 3 and Chapter 4 deal with ultradistributions.

Chapter 0 is devoted to introduction to the spaces of distributions and ultra-
distributions, the notation used in this thesis, the known facts and results.

In Chapter 1 we study a class of tempered translation-invariant Banach spaces

of distributions on the Euclidean space R™. The class of Banach spaces in which we
are interested are translation-invariant spaces E such that D(R") < E < D'(R"),
T, : E — FE for every h € R" and the growth function w of its translation group
(cf. Definition 1.1.1) is polynomially bounded. The symbol ” < ” stands for
continuous dense inclusion. The space E carries a natural Banach convolution
module structure over the Beurling algebra L!. Furthermore, it is shown that
E possesses bounded approximations of the unity for this module structure. We
also study properties of its dual space. Inspired by various results on factorization
of Banach and Fréchet convolution algebras [47, 74, 87, 110|, we introduce the
Banach space E! = L. * E’. The convolution module structures of E and E’ are
crucial for achieving the main results of this thesis. Our new distribution spaces
are introduced in Section 1.2. The test function space Dg consists of tempered
distributions for which all partial derivatives belong to E. We first show that Dg is
a Fréchet space of smooth functions and actually the following inclusions between
familiar test function spaces hold S(R") < Dg < O¢(R") — E(R™). The space
Dj, is defined as the strong dual of Dp. It satisfies £'(R") — O (R") — D, —
S’ (R”) the second inclusion becomes dense when F is reflexive. We study various
structural and topological properties of D/ w via Schwartz parametrix method [94].
In particular, it is proved the every f € DE, is the finite sum of partial derivatives
of elements of the Banach space E.. If E is reflexive, we prove that Dpg is an
F'S* space and DE, is a DFS* space [48], so that they are reflexive in this case.
Convolution and multiplicative products on Dj, are also discussed. Our ideas are
exemplified with the weighted spaces DLp, 1 < p < 00, and the space of n-bounded
distributions B;, where 7 is a polynomlaﬂy bounded weight function.

Chapter 2 is devoted to the study of boundary values of holomorphic functions
and analytic representations of D, . Our first main result (Theorem 2.1.1) cha-
racterizes those holomorphic function in truncated wedges which have boundary
values in D}J;. It is worth pointing out that those two results improve earlier
knowledge about boundary values in D} ,; in fact, part of our conclusion is strong
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convergence in D,, 1 < p < oo. The strong convergence was only known for
1 < p < oo and certain tubes [3, 8, 9, 11, 103]. Next, we consider extensions of
Carmichael’s generalizations of the H? spaces |9, 10, 11]. We also provide in this
section new edge of the wedge theorems. Our ideas are then applied to exhibit
an isomorphism between Dgi and a quotient space of holomorphic functions, this
quotient space is constructed in the spirit of hyperfunction theory. Chapter 2
concludes with the heat kernel characterization of Dy, in Section 2.4.

In the first part of Chapter 3 we analyze the space of convolutors, also cal-
led here ultratempered convolutors, for the space of tempered ultradistributions.
Naturally, such an investigation would be of general interest as being part of the
modern theory of multipliers. For tempered distributions this space was introdu-
ced already by Schwartz [94] and the full topological characterization was given
in the book of Horvath [38]. The space of ultratempered convolutors O (R") was
recently studied in [19]. We give structure theorems for the space of convolutors

in the Roumieu case, as well as the completeness of OgM")(R”), resp. (’)gMP} (R™).

Also the space of multipliers O](\%’)(R"), resp. O&MP}(R”) is considered. Characte-
rization theorem for the space of multipliers in Roumieu case is given. The Fourier
transform gives a topological isomorphism between the space of multipliers and
the space of convolutors in Roumieu case.

In Section 3.3 we characterize tempered ultradistributions using the growth of
its convolution averages. Following Komatsu approach [49], we describe OF(R")
through the duality with respect to the test function space OF(R™), constructed
in this thesis. The treatment of the Roumieu case is considerably more elabo-
rated than the Beurling one, as it involves the use of dual Mittag-Leffler lemma
arguments for establishing the sought duality. We also mention that the charac-
terization of the spaces OF(R") is given using weighted Lo estimates.

Translation-invariant Banach spaces of tempered ultradistributions are consi-
dered in Chapter 4, see also [22]. The presented results are analogous to the
results concerning translation-invariant Banach spaces of tempered distributions
analyzed in Chapter 1 (see also our paper |21]), although, the proofs and technics
used here are different or adapted in ultradistributional setting. We are inter-
ested in class of Banach spaces of ultradistributions that satisfy the conditions
D*(R™) — E — D"(R"), translation operators T}, : E — E for every h € R™ and
has norm with ultrapolynomial growth denoted by w(h). Such F becomes Banach
module over the Beurling algebra L}, and has nice regularizing properties. Using
duality, we obtain some results concerning £’ which turns out to be also Banach
module over the Beurling algebra L.. But E’ lacks some of the properties that £
has. That motivates the definition of a new closed subspace E’ of E’ which has
better properties with respect to the translation group. We give a characterization
of E. as the largest subspace of E’ which satisfies limy, o || 71 f — f||z = 0 for each
f € E'. In Section 4.2 we define our new test spaces DEEMP) and D}{EM”} of Beurling
and Roumieu type, respectively. In the Roumieu case we also consider another
space @iEM”}. The test spaces satisfy the property S*(R") < D}, — E — §™*(R")
and D} is a topological module over the Beurling algebra L!. The spaces D} are
continuously and densely embedded in the spaces OF(R™) defined in the Section
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3.4. In Section 4.3 we consider the strong dual of the spaces D}, denoted by D7,
which has been defined in Section 4.2. A structural theorem for ultradistributions
in the space D’E*; concerning convolution with elements of D*(R") and representa-
tion as finite sum of ultradifferential operators of elements in . NUC,, is obtained.
Analogously to the distribution results considered in 1.3, we obtain results that
enables us to embed the spaces Dj, into the space of E. tempered ultradistribu-
tions S (R™, E.). We prove that the spaces DEMP} and ﬁ}gM’”} are topologically
isomorphic. When E is reflexive, DEEM” ) and DIEL{,M »} are (F'S*)-spaces, DEM” Fand
D}éMp) are (DFS*)-spaces. Also, examples of spaces Dy, and D%, are given. The
techniques used in this thesis enable us to identify the spaces D*C,, with already
known spaces Bj; [79]. This theory is applied in the Section 4.5 to the study of
the convolution of Roumieu ultradistributions, namely we prove that the convo-
lution of T, S € DM} (R") exists if and only if (¢ * S) T € DlL{lM”} (R™) for every
¢ € DM} (R™).

I want to emphasize that already known results have citation next to them, in
order to distinguish them from the new results.






Chapter 0

Preliminaries

0.1 Distributions and tempered distributions

We use the standard notation from Schwartz distribution theory. Let 2 C R"
be a nonempty open set. There exist a sequence of compact sets in R”, {K; }‘;‘;1
satisfying the condition

Ky CintKy C Ky C ...iIltKj C Kj C Kj-‘rl and ) = U iIltKj. (1)

j=1
For arbitrary compact set K, consider the space
Di () = {p € C7 () |suppp C K}
which is a Fréchet space when provided with the family of norms

pix(p) = suple@(z)|, j €N,
zeK
o <j
where Ny = N U {0}. Let the sequence {K;}32, satisfy condition (1). The test
function space is the space

D(Q) ={p e C™(Q) |suppy is compact } = U D, ()

j=1

endowed with the inductive limit topology. The topology on D (£2) is the same
independently of the choice of the sequence {K;}32, satisfying the condition (1).
A distribution on €2 is a continuous linear functional on D (€2). The vector space

of distributions on (2 is denoted by D’ (£2).
Also we use, the space of rapidly decreasing functions,

S(R") = {p € C* |Va, B € Ny, |27\ (z)] < o0}

which is a Fréchet space when equipped with topology defined via the family of
norms

4;() = sup (14 |z ' (z)], j € No.
reR"
lal<j
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A tempered distribution is a continuous linear functional on S(R™). Unless stated
differently, D’ (R") and &’ (R"™) are endowed with the strong topology.

The Fourier transform of f € L*(R™) denoted as (Ff)(£) = f(€) is the
integral

n

(FF) () = / e f(2)de,

The Fourier transform is a topological endomorphism on & (R"). The Fourier
transform of f € &' (R") is defined as

(Ff,@) = (f, Fo) for all p € S(R").

The Fourier transform is a topological endomorphism on &’ (R").

The function § denotes the reflection, i.e., g(x) = g(—x). Given h € R", we
employ the notation 7}, for the translation operator, that is, (Thg)(xz) = g(x + h).
Naturally, the translation and reflection operations are well-defined for distribu-
tions as well. A subspace Y C D'(R") is called translation-invariant if T),(Y) =Y
for all h € R™.

The space of distributions with values in a (Hausdorff) locally convex space
X is D'(R™, X) = Ly(D(R™), X)) {93, 98], the space of continuous linear mappings
from D(R™) to X, equipped with the strong topology. Similarly, S’'(R", X') stands
for the space of X -valued tempered distributions.

0.1.1 Some results on distributions

Using the following well known theorem of Schwartz [94]|, we will obtain results
concerning distributions with values in particular Banach spaces of distributions.
Also, analogously to the distribution theory, we obtain similar results in ultradist-
ribution theory.

Theorem 0.1.1. (/94]) Let u be a continuous linear map from D(R™) to D'(R™).
Then the following conditions are equivalent:

(i) u commutes with all all partial derivatives.
(i1) u commutes with all translations.
(11i) u commutes with all convolutions.
(iv) There exists a distribution L on R™ such that
u(f) =L+ f
for every f € D(R™).
The parametriz of Schwartz is crucial for our observations.

Lemma 0.1.1. (/94]) Let K be compact symmetric neighborhood of 0 and x € Dy
be such that x = 1 near 0. Let I} be fundamental solution of A!, i.e., A'F; = 6.
Then, A (xF) — 0 = g € D(R™) and the following formula

f=0"XE)*f)—qax*f,
holds for every f € D'(R™).
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We will frequently use the following Lemma:

Lemma 0.1.2. ([36/) Let M C R"™ be measurable. Let f(x,a) be a family of
functions of x € M depending on the parameter a € B = B(ag,r) = {y €
R*|||ly — aol| < 7}, such that for each a € B, f(x,a) € LY(M). Consider the
function F' on B defined by

F(a) = /Mf(x, a)dx for all a € B.

(1) Assume that for each x € M, f(x,a) is a continuous function of a at the
point a; € B and that there is a function g(x) € L'(M) such that

|f(z,a)| < g(x) forall (x,a) € M x B.
Then F(a) is continuous at the point a;.

(2) Assume that 2 f(x,a) exists for all (x,a) € M x B and that there is a
function g(x) € L*(M) such that

’%f(x,a) < g(z) forall (z,a) € M x B.

Then F(a) is a differentiable function of a € B, and

dF(a) df(x,a)
da _/M da

dx for all (z,a) € M x B.

We also use the concept of the ¢—transform|28, 29, 83, 105|, which is defined as
follows.

Definition 0.1.1. Let ¢ € S(R") be such that [, ¢(z)dz = 1. The ¢—transform
of f € §'(R") is the smooth function

Fyf(a,t) = (flz +1€),0 (&) = (fxd)(2), (a,1) €ER" xRy
where ¢y(+) =t "¢(-/t) and t € R,

Let (€2, .S, 1) be o-finite measure space and X be a Banach space. The function,
x : Q — X, is a simple function if it is of the form x(s) = S5, a;xp,(s) where
a; € X, B; € S and u(B;) < oo for each i. A function x : Q — X is said to be
strongly measurable if there exists a sequence of simple functions x; converging
pointwise to x. A function x : 2 — X is said to be weakly measurable if, for each
f € X', the function f o x is a measurable scalar valued function.

A result, due to Pettis, says that if the function x takes values in a separable
Banach space, then x is weakly measurable if and only if x is strongly measurable.

Definition 0.1.2. A strongly measurable function f is Bochner integrable if there
exist a sequence of simple functions f; converging to f pointwise and satisfying
Jo II5(t) — £i(t)[|dp — O when i, j — oo. If f is Bochner integrable, the Bochner
integral of f is lim; . [, £(¢)dpu.
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Let F be a Banach subspace of a Hausdorff locally convex space X such that the
inclusion £ — X is linear and continuous. We need the following characterization
of S'(R™, E).

Theorem 0.1.2. (/28, 83]) Letf € S'(R", X) and ¢ € S(R") such that [, ¢(x)dx =
1. Necessary and sufficient conditions for £ to be in S'(R™, E) are:

i) Fyf(x,y) takes values in E for almost all (z,y) € R™ x (0,1] and is measu-
rable as E valued function on R™ x (0,1], and

ii) There exist constants k,l € N and C' > 0 such that

1 l
| Fof(z,y)| < Cw for almost all (z,y) € R™ x (0,1].
)
The measurability of E valued functions is meant in the Bochner sense. Also, the
integrals of E valued functions are in the Bochner sense.

We fix the notation concerning tubes and cones. Let V' C R"™ be an open

subset. The tube domain TV C C", with base V, is defined as
TV =R"+iV={z+iycC": r€R" yecV}.

We always write z = z + iy € C" (and similarly for other complex variables),
where z,y € R". We employ the notation dy(y) = dist(y,0V) for y € V. The
convex hull of a set A C R" is denoted by ch(A).

Let C' C R™ be an open cone (with vertex at the origin hereafter). Note that
C may be R™. If r > 0, we write in short C(r) := CN{y € R" : |y| < r}. We
denote by prC the intersection of the cone C with the unit sphere of R". We
say that the subcone C’ is compact in C and write C' € C if prC’ C prC. It
should be noticed that d¢ is homogeneous of degree 1, namely, dco(Ay) = Ade(y),
for every A > 0. Recall [107| that the conjugate cone of C' is defined as C* :=
{£eR”: y-£>0,Vye C}. Since C is open, one actually has y - £ > 0, for all
y € C and £ € C*. The cone C is called acute if int C* # (). For acute cones one
has

de(y) = Join y- &y € C.

(This equality is well-known [107, p.61].) Given a > 0, we denote the closed
Euclidean ball (centered at the origin) of radius a as B(a).
We will need the following results of Vladimirov:

Theorem 0.1.3. ([106]) Let f(z) be holomorphic on the tube T = R" + iC,,
C, =CNB(0,r), where C is a connected cone. If for arbitrary number v’ < r and
cone C" € C, the estimate

(1+ |=)”
|yl
holds, where o, 5 do not depend on C'" and r', then

|f(x+iy)| < M(r',C") for every z € R™ +4(C" N B(0,1"))

f(z) = lig(l)f(x +iy) e S (RY) ,m=a++n+3.
Yy
yeC

The convergence is in S'(R™) and independent of the way that y — 0,y € C.



Ultradistributions and tempered ultradistributions 11

Theorem 0.1.4. (/107]) For a holomorphic function f(z) on T belong to H,(C),
sufficient condition are: for an arbitrary cone C" @ C and arbitrary number e > 0,
there exist numbers a > 0,8 > 0 and M > 0 such that

(1 +[z)*
lyl?

We denote the heat kernel with E(x,t) = (4nt)~2e 1*2/4 (3 ¢) € R'™. The
following result is due to Matsuzawa.

|f(2)] < Meletol forall z € T

Theorem 0.1.5. (/62/) Let v € S'(R™). Then U(x,t) = uy(E(z — y,t)) €
C>(R™Y) and satisfies the following conditions:

(% ~ A) Ulx,t) =0 in R (2)

There are positive constants C, M and N such that
U(z,t)] < CtM(A + |z))Y in R Uz, t) - u in S'(RY) ast— 0+, (3)

i.e.,

lim [ U(x,t)p(z)dr = u(p),p € S(R™). (4)

t—0+

Conversely, every C’OO(]RT'I) function defined on RTFI satisfying the conditions
(2) and (3) can be expressed in the form U(x,t) = uy,(E(x —y)) with a unique
element u € S'(R™).

0.2 Ultradistributions and tempered ultradistribu-
tions

Let (M,) be a sequence of positive numbers. Some of the following conditions will
be assumed on (M,):

(M.1) (Logarithmic convexity) M} < M, 1M, for p € N;
(M.2) (Stability under ultradifferential operators) For some A, H > 0

M, < AH? min M, ,M,, p,q€N;
0<q<p
(M.3) (Strong non-quasi-analyticity)

= M, , M,
I < Ag—%L, qe€N,
Z M, qu+1 K

p=q+1 p

and weaker conditions on (M,):
(M.2)" (Stability under differential operators) For some A, H > 1

Mp+1 S AHp+1Mp> pE N;
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(M.3)" (Non-quasi-analyticity)

v~ My
gMp<oo

The Gevrey sequence M, = p!°, s > 1 satisfies all of the above conditions. Here
we always assume that My = 1.
For a sequence (M,,), the associate function M (p) on (0,400) is defined by

M (p) zsuplongﬁ, p>0.

peEN Mp

Unless stated differently, we assume that (M,) satisfies (M.1), (M.2) and
(M.3). Next, we give the definition and several important properties of the
spaces D%”’T,D%M”),D}Mp},D(MP)(Q),D{Mp}(Q),5(Mp)(Q),E{MP}(Q), (see [52, 51,
12]). Let K be a regular compact set in R™ and let © be an open set in R™.
Denote:

(M} (70 — oo gy 1P“@lls ,
& (K)={peC™K >|T|O“M‘| < oo,V € Nj },

D}MP}’T = {p € C(R")|suppy C K, % < oo, Vo € N }.
|al

Both spaces are Banach spaces with norm

[D*p(2)|
= su
||90H xEKo};N” T|a|M| |

Standard locally convex spaces, defined by Komatsu [52], that we are going to
work with are

M) (K) = lim M (K) ;£M)(Q) = lim EMH(K)

r—)O }_{@—Q
EWMY(K) = lim EM b (K); £} (Q) = lim £} (K)
=8 e
DY = lim DY D(Q) = lim DY)
7"—>0 Ke
M, My}r Y Yy M,
D! }_%D}( } 7D{M}(Q)_I1(u@nz>§( 3

The strong duals of the spaces D) (Q) and DMe}(Q) are the so called ultradist-
ributions on Q of Beurling and Roumieu type, respectively.

Assume (M.1), (M.2) and (M.3). We denote by S, (R™), m > 0, the space
of smooth functions ¢ which satisfy

o= (.

qeNG

P (g q) 1/2
m MM ()‘dx> < 00, (5)

supplied with the topology induced by the norm o,,,. If we put instead of 2,
p € [1,00] in (5), we obtain equivalent sequence of norms o,,,, m > 0. The
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spaces 8'M) (R} and &M (R™) of tempered ultradistributions of Beurling and
Roumieu type respectively, are defined as the strong duals of the spaces

SMp) (R™) = lim proj,, ,..Sa»™ (R") and S} (R") = limind,,_oSs > (R"),

respectively. We use * as a common notation for the symbols (M) and {M,}.

0.2.1 Some results on ultradistributions

Theorem 0.2.1. [52/ EMp)(K), EM)(Q) and D%Mp) are (FS)-spaces, E1Mr} (K),
D%M”} and DWHQ) are (DFS)-spaces and DMe)(Q) is an (LFS)-space. In
particular these spaces are separable complete bornological Montel and Schwartz
spaces. FEvery bounded set in D}[{Mp} or DMe)(Q) (WM} (K)) is a bounded set in

some DE(MP}’T (EMebr(K)). EMY(Q) ds a complete Schwartz space. In particular,
it is semi-reflexive. If (M,) satisfies (M.2)', then all the spaces defined above are
nuclear.

Theorem 0.2.2. [52] A sequence of positive numbers (M,), satisfies condition
(M.1) if and only if

_ P
Mp = MO Sljp m

Theorem 0.2.3. [52] The sequence (M,) satisfies (M.2) if and only if for some
A H >0,
2M (p) < M(Hp) + log(AMo).

When (M,) satisfies conditions (M.1), (M.2) and (M.3) one defines ultradiffe-
rential operators as follows:
It is said that P(§) = Z as€”, & € R", is an wltrapolynomial of the class (M)
aeNg
resp. {M,}, whenever the coefficients a, satisfy the estimate

La
, o€ Ng, (6)

for some L > 0 and C' > 0 resp. for every L > 0 and some Cj > 0. The
corresponding operator P(D) = > a,D* is an ultradifferential operator of the
class (M,), resp. {M,}. By 8 we denote the set of positive sequences which
monotonically increases (not necessarily strictly) to infinity. Assume now (M.1),
(M.2) and (M.3) and put

| aq |<

CZ
P.(¢) = (1+¢%) H (1 + W)’ resp.
pENy P
2
P =0+ ] (14 25), cecn )
peN’g p P

where m, = M,/M,_y and r > 0, resp. (r,) € R. Conditions (M.1), (M.2) and
(M.3) imply that P,, resp. P, , is an ultradifferential operator of the (M,), resp.
of {M,}, class.
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All the good properties of §* (R™) and its strong dual follow from the equi-
valence of the sequence of norms o,,,, m > 0, p € [1,00] with the each of the
following sequences of norms [54, 12]:

(&) Omyp, m >0, p € [l,00] is fixed ;

(b) $mp, m >0, p € [1,00] is fixed, where

m 2P,

Smp(p) 1= M :
a,BeNy atVlp
all, ,(a) ,M(m]|])
(C) Sm, M > 0, Where Sm(gﬁ) = sup m ||SO € ||L :
aeNG M,

In [12] it is proved that

SMet (R™) = proj lim SMr (R™),

(ri),(s;)eR "%

Sin R") ={p € CW(R") Yrivs; () < 00},

7,85

DV ;o
where 7, ( Z { ) |(|1L } for (ri), (s;) € R.

p.qeNy i= 17"z p( j—155) M,

Note that F : §* (R") — S&* (R") is a topological isomorphism and that the Fourier
transformation on & (R™) is defined as usual via duality.

Lemma 0.2.1. (Dual Mittag-Leffler [49]) Suppose that

0 Xy, g 0
U2,1 V2,1 Wa,1

0 X, 2y, 2 g, 0
Uus,2 U3,2 W3, 2

0 X,y g 0
Un+1,n Un+1,n Wn+1,n

is an inductive sequence of short topologically exact sequences of Banach spaces.
Then the sequence

0 —limX, % limY, ?, limZ, —0
— — —
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is topologically exact and p is open. If the sequence (Yy,) is reqular and injective,
the sequence (Z,) is weakly compact, then
/ / /
. il . p/ .
0+— <121Xn> <_<l£>nYn> (_(linZn) +—0
is topologically exact. As a consequence, lim X,, has the same strong dual as the
—
closed subspace i (lim Xn> of limY,,.
— —

By R we denote the set of positive sequences which monotonically increases
(not necessarily strictly) to infinity. For (r,) € R and K a compact set in R", we

denote by DE{”} the space of smooth functions ¢ on R™ supported by K such that

P

DPp(x
lolics, = sup { DL ey, e s <o
p

|p|
where N, = M, [[ 7, p € Nj. Clearly, this is a Banach space. It is proved in
i=0

[51] that

{Myp} S {My}
Dy "’ = proj (};g%DK’TZ .

If Q@ C R" is a bounded open set and r > 0, resp. (r,) € R, we put
(Mp) _ : {Mp} {Mp} _ - : {Mp}
Dy, = ind thnle Dy,n7, DQ,TP = ind thrélﬂ DKJP :

The associated function for the sequence N, is

N, (p) = sup{log, %; peN}, p>0.

p
Note that for given (r,) and every k > 0 there is py > 0 such that
Ny, (p) < M(kp), p> po. (8)

Lemma 0.2.2. ([51]) Let (a,) be a sequence of nonnegative numbers.
(i) There are positive constants h and C' such that
a, < Ch?  for every nonegative integer p

of and only iof
ap
SUp —=———
p ?:1 hj

for every sequence (hy,), h, > 0, monotonously increasing to infinity.

< 0

(i1) There are a constant C' and a sequence (h,), h, > 0, monotonously increasing
to infinity such that

C
a, < 7 7 for every nonegative integer p
j=1"%
if and only if
sup hfa, < oo
P

for any h > 0.
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In this thesis we intensively use the following result of Komatsu. In the text
we refer to it as the parametriz of Komatsu.

Lemma 0.2.3. [52] Let K be a compact neighborhood of zero, r > 0, and (r,) € R.

i) There are u € Dﬁ( "2 and ¢ € D ) such that
B(D)u=6+1, (9)
where P, is of form (7).

i) There are w € C* and ¢ € D%M"} such that
P, (D)u=0+1, (10)

i

suppu C K, sup{ — 0, J|a|— oo, (11)

zeK
where P, is of form (7).

We end this Chapter by stating and proving two already known facts and an
algebraic result which are used later in the thesis.

Lemma 0.2.4. Let Ej, j € N, be reflexive Banach spaces, each with norm || - ||g; .
Then the Banach space

Fr={(ej)i|e

- 1/2
1(e5)5llF = (Z H%’Hiy) <00
j=1

15 reflexive with its dual the Banach space

- 1/2
e; € By, ()il = (Z ||€3'”%;-> =
j=1

Proof. Every element (€}); € L generates a linear continuous functional on F'
o0

by Tier); ((e5);) = Z(eé,eﬁ and obviously HT(EQ)
j=1
reflexive Banach spaces, there exist e; € Ej, j € N, such that [|e;||g;, < 1 and

leflle; = (€fej). Put f; = ejlleflley € By Then ) |IfillE, < ()17, Le.,

j=1

L=<(c));

< ||(€})llz- Since Ej are

(f3); € Frand [[(f;);llr < [I(€});]l. Moreover

[T, Ml = ],

NUsle = [Ty, (()s)
Zne I = N3

o0

> (€ )

j=1
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We obtain HT(G) H > (e ) I, hence ”T = ||(e ) Iz

Now, let T € F’ For k € N, observe the mappmg e — Sk(e), By — F, defined
by Sk(e) = (f;); where fp = e and f; = 0 for j # k. It is obviously a continuous
linear functional, hence the composition 7" o Sy, is continuous linear functional on
Ex. Hence, there exists e}, € Ej. such that T o Sg(e) = (e, e). For k € N and
e; € E; for j = k: and e; = 0 for j > k + 1, (¢;); € F. We will denote this
element of F' by (ej) . Observe that

k

T((ej)§k)> -7 (isj(ej ) ZTOS ej) =Y (€}, (12)

Jj=1

Since Ej, j € N, are reflexive Banach spaces there exist g; € E; such that ||g;||z, <
1 and ||e;]|E§ = <€;-,gj>. Put f; = gj|]€;~HE§ and note that ||f;|z, < ||e;||E§ For

k € N, denote by ( fj)g»k) the element of F' which first k£ coordinates are precisely
f1, ..., fr and all other are zero. Now,

k

T (M) = D04 fi) = Zne % = ZufJnE

Jj=1

Since T' is continuous, there exists C' > 0 such that |1 ((e;);)| < C||(e;);||# for
k

all (ej); € F. Hence, by the above inequality, we have Z HfjHi;j <C H(fj)gk)‘
j=1

)
F

. 1/2
e., (Z ||fJH%]) < C. We obtain that 7 || f;||%, converges, ie., (f;); € F

Again by the above inequality and the fact [|f;||z, < ||€}[|r; we have

% & 1/2 & 1/2
12 2 12
E 1 ||€j||E; <C (E 1 ||f]||EJ> < <§ 1 ||6j||E§)

1/2
hence (25:1 ||e;»|]24> < C, ie., (¢j) € L. Moreover, from the continuity of T
and (12), for (e;); € F, we have

T(e) = Jim 7 (1)) = Jim (e = S

since (e])(k) — (ej);, when k — oo in I and ) (e}, ;) is absolutely convergent.

Hence T' = T{ey and by the HT H = [|(€})j]lr. Which proves that L is the

strong dual of F Since all Ej, j € N are reflexive Banach spaces so are E.
Hence we can perform the same discussions as above with £ in place of Ej to
obtain that the strong dual of L is F'. Moreover by the proof it follows that the
evaluation mapping F' — F”(= F) is surjective, hence F' is reflexive. ]
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Lemma 0.2.5. The composition of ultradifferential operators of * type is an ul-
tradifferential operator of x type.

Proof. Let P, (D) =3, aaD* and P,,(D) = ;bgD” be ultradifferential opera-
tors of x type and f € D* (R™) be arbitrary. Applying Fourier transform to the
composition P,,(D)(P.,(D)f) one obtains

A~

Let P(§) = P, (§) P, (§) = 2, ¢,&7. In (M) case there exist B, C,m, h > 0 such
that for the coefficients c, we have the estimates

ol ol -
Cy = ?P(O) - ? (PT’Q(S) Tl 0 ’y' Z ( )86 7”2 a 6P7’1 <0)

o<~
hém =9
7'Z<)(M 8)lasb., 5<BC'Z<) 7—5)!m
o<~y 6<y v
_ ABC AB -\
I( Wom Ol < =2
w‘;( )5 v — R H i ((m+h)H>

where A, H > 0 are the constants from (A.2). Then, choose h = (m + h)H. In
{M,} case, for h > 0 choose m,h > 0 such that (m + h)H < h. There exist
B, C > 0 such that the same estimates hold for the coefficients. In both cases we

get that P(&) is ultrapolynomial of % type. Applying the inverse Fourier transform
to equation (13) one obtains P,,(D) (P, (D)f) = P(D)f. O

0.3 Factorization Theorem

A left approximate identity in a Banach algebra A is, by definition, a net (e,),es
such that e, € A, for all v € I, and lim, ||e,a — a||4 = 0 for every a € A. A left
approximate identity (e,),e; C A is said to be bounded if sup,,c; |le,||a < co. If Ais
a Banach algebra with bounded left approximate identity (e, ),e; C AAand T is a
continuous representation of A on a Banach space X, then lim, ||T(e,)y—y|lx =0
for every y € SpanT(A)X. This follows from the fact that ((T'(e,))).er is a
bounded net in £(X) such that lim, | T'(e,)y — y|| = 0 for every y € T(A)X.

Theorem 0.3.1. (The Cohen-Hewitt Factorization Theorem [47]) If A is a Ba-
nach algebra with bounded left approzimate identity (e,),e; and T is a continuous
representation of A on a Banach space X, then T(A)X is a closed subspace of
X. Furthermore, for every y € T(A)X and every e > 0 there are a € A and
xz € T(A)y such that T(a)z =y, ||z —y| <e, and a =" ppe,, where v, € I
Pn >0 forneNand ) p,=1.

Other known results used in the thesis and additional notation will be cited
and introduced in the thesis when needed.



Chapter 1

New distribution spaces associated
to translation-invariant Banach
spaces

Translation-invariant spaces of functions and distributions are very important in
mathematical analysis. They are connected with many central questions in har-
monic analysis [5, 25, 26, 31, 86, 112|. This thesis introduces and studies new
classes of translation-invariant distribution spaces, the test function space Dg and
its dual, denoted as DjEi. This chapter investigate in detail their topological pro-
perties; in Chapter2 we will apply such properties in the study of boundary values
of holomorphic functions. The construction of these spaces is based upon the ana-
lysis of suitable translation-invariant Banach space of tempered distributions F,
which we carry out in Section 1.1.

1.1 On a class of translation-invariant Banach spaces

In this Section we study the class of translation-invariant Banach space of tem-
pered distributions on the Euclidean space R", introduced below. It should be
mentioned that such Banach spaces have already been considered in one-dimension
by Drozhzhinov and Zav’yalov in connection with Tauberian theorems and gene-
ralized Besov spaces [27]. It should also be remarked that these Banach spaces are
not necessarily solid Banach spaces in the sense of [30, 31]; indeed, the elements
of F may not be regular distributions and actually F needs not even be a module
over D(R™) under pointwise multiplication.

The class of Banach spaces E of distributions in which we are interested are
those satisfying the following three properties:

(a)" D(R") — E — D'(R™).
(b) Ty : E — E for every h € R” (i.e., F is translation-invariant).
(¢)' For any g € E, there are M = M, > 0 and 7 = 7, > 0 such that

||Thg||E < M(l + |h‘)T, for all h € R".
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We shall call any such Banach space satisfying the conditions (a)’, (b)’, and
(¢) a translation-invariant Banach space of tempered distributions.

Remark 1.1.1. The conditions (a)’ and (b)" imply that every translation operator
T, : E — FE is continuous. Indeed, for every h € R", T}, : E — D'(R™) since T}, :

EY D (R™) Iy pr (R™) is continuous as a composition of continuous mappings.

Hence it has a closed graph. Then the preimage of the graph via the continuous

mapping F x E L B X D (R™) is closed in E' x E. The closed graph argument

implies the claim.

Our first important result tells us that (a)’, (b)" and (¢)’ may always be replaced
by stronger conditions.

Theorem 1.1.1. Let E be a translation-invariant Banach space of tempered dis-
tributions. The following properties hold:

(a) S(R") — E — S'(R™).
(b) The mappings R" — E given by h — Tyg are continuous for each g € E.
(¢) There are absolute constants M > 0 and 7 > 0 such that

| Tholle < M||glle(1 + |h])", forall g € E and h € R".

Proof. Let us first prove (c¢). Consider the following sets,
E;,={9€lE :|Thglle <j(l+|h|)" forall heR"}, jveN

Because of (¢)', we have E' = J; oy Ej,. Baire’s Theorem implies that one of the
sets Ej, ., contains a ball {f € . Hf ul|g < r}. If g € E is such that ||g||g < 7,
then

1Thglle < | Thg + Thulle + [|Thull s < 2jo(1 + |A])"™
for all h € R". So, for arbitrary g € E, we get [|Thg||r < (470/7)(1 + |h])*] 9|l £-
The property (b) follows easily from (a)’, (b)" and (c).
Let us now show (a). We first prove the embedding S(R™) — FE. Since
D(R™) — S(R"), it is enough to prove that S(R™) C E and the continuity of the
inclusion mapping. Let ¢ € S(R™). We use a special partition of unity:

1= Y w(x—m), ¥ €Dy
meZ™

Hence, we get the representation ¢(x) = >, .. ¥(x —m)p(x). We estimate each
term in this sum. Because of (¢),

le T-m¥|le < L+ [m])™ ™ Tl e, (1.1)

@1 fmprr

where |m/| denotes Euclidean norm. We first prove that the multi-indexed sequence
{pPm}mezn is bounded in Dy 3, where

pm = (L4 [m)" 7 Tup. (1.2)
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In fact, for any j > n+ 7+ 1, we have

pi(pm) < pj(¥) max sup (1+ [m]) eV (y)] < Mig; (). (1.3)
A=) |ly—m|<1
By the assumption (a)’, the mapping Dj_11j» — E is continuous. So, there are
M,y > 0 and j € Ny, such that ||¢[|g < Map;(), for every ¢ € Dj_y1)». We may
assume that j > n + 7 + 1. Therefore, by (1.3),

Hpm”E < MlMQQj((p), for all m € Z". (14)

Next, let F'(r) be the lattice counting function of points with integer coordinates
inside the n-dimensional Euclidean closed ball of radius r. It is well known that
F(r) has asymptotics

7T.n/an

F(r)= Z v ——+—, r— 0.

3 <12 F(n/2 + 1) )
In view of (1.1), (1.2), and (1.4), we obtain
N
dF(r)  _ Mag;(p)
T ., < Msq; < 1.
| Y Tl <Male) | G < S (1)

N'<|m|<N

oo
and thus {Z‘m‘ <N ng,mz/J} is a Cauchy sequence in E whose limit is ¢ € E.
= N

Taking N =0 and N — oo in0(1.5), we get |¢||p < Magj(p), for all p € S(R™).
The continuity of S(R") < E has been established.

We now address £ C S’(R") and the continuity of the inclusion mapping.
Let g € E. Due to Schwartz’ characterization of S'(R™) (94, Thm. VI, p. 239]: ¢
belongs to S'(R™) if and only if g* ¢ is a function of at most polynomial growth for
each ¢ € D(R"). Let B be a bounded set in D(R"). The embedding £ — D’(R")
yields the existence of a constant Mz = Mjs(B) such that | (g, ¢)| < Ms||g||s for
all g € F and ¢ € B. Therefore, by (c),

(g% @) (W) < Ms||Thglle < MsMl|g|[(1+ |R])7, (1.6)

for all g € E, ¢ € B, and h € R". This shows F C S'(R™). The continuity of
the inclusion mapping would follow if we show that the unit ball of F is weakly
bounded in §'(R"). Fix ¢ € S(R") and write again ¢(z) = > ¥(x —m)p(x),
where 1 is the partition of the unity used above. We use p,, € Dj_1 j» as in (1.2).
Taking (1.6) into account and the fact that B = {p,, : m € Z"} is a bounded
subset of D(R™) (cf. (1.3)), we obtain, for all g € E,

(g * pm)(m)]
[{g,¢)| < lim
Vi 2 T
. 1
< M5MH9HEA}1_I£O Z A5 et < Msllgl|&-

[m|<N

Finally, the density of E in &'(R") follows from the dense inclusion S(R") — E.
The proof of (a) is complete. O
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Observe that condition (c) gives us the order of growth in A of the norms

||Th|| gy, where as usual L(E) is the Banach algebra of continuous linear operators
on b.

Definition 1.1.1. Let E be a translation-invariant Banach space of tempered
distributions. The growth function of the translation group is defined as

w(h) = |[T-p||L(E)-

From now on in this Chapter, we shall always assume that F is a translation-
invariant Banach space of tempered distributions with growth function w. It is
clear that w is measurable, w(0) = 1, the function log w is subadditive, and by (c),
it satisfies the estimate

w(h) < M1+ h))", heR™ (1.7)
We now study various properties of £. We start with the convolution.

Lemma 1.1.1. The convolution mapping (p,1) € S(R")xS(R") — pxp € S(R")
extends to a continuous bilinear mapping S(R") x E — E. Furthermore, the
following estimate holds

I *glle < HQHE/Rn o ()] w(z)de. (1.8)

Proof. Given ¢,1 € D(R™) we can view (p * )(x) = fsuppwgp(t)@/)(x — t)dt as
an integral in the Fréchet space S(R™). Since S(R") — FE, the Riemann sums
of this integral converge to ¢ * ¢ in the Banach space E. We have || > . (tj41 —
ti)et) Ty dlle < |¥e Zj(thrl — t;)|¢(t;)| w(t;). Passing to the limit of the
Riemann sums, we obtain ||¢ * ||z < |||/ [g. |¢(t)| w(t)dt. By using a standard
density argument, one obtains the desired extension and (1.8). O]

The convolution of elements of £ can actually be performed with more general
functions. Let L} be the Beurling algebra |5, 86] with weight w, i.e., the Banach
algebra of measurable functions u such that |[u|l1, = [g. [u(z)| w(z)dr < co.
Since S(R™) is dense in this Beurling algebra, we obtain the ensuing proposition,
a corollary of Lemma 1.1.1.

Proposition 1.1.1. The convolution extends to a mapping x : L} x E — E
and E becomes a Banach module over the Beurling algebra L., i.e., ||u* g||p <

[lullwllglle-

We shall denote this extension simply by u * g = g * u whenever v € L} and
g € E. We call L} the associated Beurling algebra to E.

Lemma 1.1.1 also allows us to consider approximations in £ by smoothing with
test functions.

Corollary 1.1.1. Let g € E and p € S(R"). Set p.(x) = "p(x/c). Then,
lim Jleg — e gl =0,

where ¢ = [g, p(x)dz.
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Proof. We first consider the case when ¢ € D(R™). As in the proof of Lemma
1.1.1, for g € S(R™) we can view g, = [, (T-,9) ¢c(y)dy, an E-valued integral.

Thus, if e < 1,
Ly
/n(g yg)gngo € Y 5

< sup llg = Toagll, / ()| dt.
suppy

tEsupp ¢

leg — ¢e = gl =

Due to the density of S(R") < E, the above inequality remains true for g € E.
Hence, in view of condition (b), this gives the result when g € E and ¢ € D(R").
In the general case, let ¢ € S(R") and let {1;}32, € D(R") be a sequence such
that ¢, — ¢ in S(R"). By Lemma 1.1.1 and (1.7), we have for ¢ < 1,

(&) * g — @< * glle < MllgllE/ (14 [2])7[ey(2) = (@) ldz,
whence the result follows because [g, ¢;(z)dz — c. O
We now study the dual space of F.

Proposition 1.1.2. The space E' satisfies

(a)" S(R™) — E' — S'(R™), where the embeddings are continuous.

(b)" The mappings R* — E' given by h — Tyf are continuous for the weak*
topology.

Moreover, the property (c) from Theorem 1.1.1 holds true when E is replaced by
£

Proof. 1t follows from (a) that S(R") — E' — S’'(R"). Given f € E' and ¢ €
S(R™),

(Thf o)l = [, Tonp)] Sw WISz llelle < M Fllzllele(l +[h]).

Since S(R™) is dense in E, T)f € E' and | Thfller < M||f|le(1 + |h|)". By (b)
applied to E, hmh_mo <Thf - Thof, g> = <f, limh_mo (T_hg - T—hog)> = O, for each
ge k. ]

We can also associate a Beurling algebra to E’. Set

w(h) = |[T-4||Ey = IT} || oy = w(=h).

The associated Beurling algebra to the dual space £’ is L.. We define the
convolution ux f = fxu of f € E' and u € L}, via transposition:

(ux f,g) = (f,uxg), ge€E. (1.9)

In view of Proposition 1.1.1, this convolution is well-defined because @ € L.
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Corollary 1.1.2. We have ||u  f||g < ||ull1s||f||e and thus E' is a Banach
module over the Beurling algebra LY. In addition, if ¢. and ¢ are as in Corollary
1.1.1, then ¢. x f — cf as € — 0 weakly* in E' for each fixed f € F'.

In general the embedding S(R") — E’ is not dense (consider for instance
E = L'). However, E’ inheres the three properties (a), (b), and (c) whenever F is
reflexive.

Proposition 1.1.3. If E is reflexive, then its dual space E' is also a translation-
invariant Banach space of tempered distributions.

Proof. By Proposition 1.1.2, it is enough to see that S(R™) is dense in £’ and that
E’ satisfies (b). But if g € E” = F is such that (g, ¢) = 0 for all ¢ € S(R"), then
the property (a) of E implies that g = 0. Thus, S(R") is dense in E’. For ¢ > 0,
we pick ¢ € S(R™) such that ||f — ||z <e. Then ||Tnf — fllg < [|[The — ¢ller +
e(1+w(h)). Observe that T, — ¢ — 0 in E’ because it does in S(R™) and S(R")
is continuously embedded into E’. Therefore, limy,_,osup ||Thf — fllz < 2e. O

The fact that property (b) fails for £’ in the non-reflexive case (E = L' is again
an example) causes various difficulties when dealing with this space. We will often
work with a certain closed subspace of E’ rather than with E’ itself. We denote
the linear span of a set A as span(A).

Definition 1.1.2. The Banach space E! is defined as E,. = L} * E'.

That FE. is a closed linear subspace of E’ is a non-trivial fact. It follows from
the celebrated Cohen-Hewitt Factorization Theorem [47], which asserts in this case
the equality Ll * B/ = span(L}, * E’) because the Beurling algebra L. possesses a
bounded approximation unity (e.g., {®e}o(0,1) such that ¢ = 1 with the notation
of Corollary 1.1.1). The space E. will be of crucial importance throughout the rest
of this work. It possesses richer properties than E’ with respect to the translation
group, as stated in the next theorem. The proof of the ensuing result makes use
of an important property of the Fréchet algebra S(R™). Miyazaki [67, Lem. 1, p.
529] (cf. [74, 110])) has shown the factorization theorem S(R") = S(R"™) « S(R")
(the related result D = span(D * D) has been proved in [87]).

Theorem 1.1.2. The space E has the properties (a)”, (b), and (¢). It is a Banach
module over the Beurling algebra LY. If @. and c are as in Corollary 1.1.1, then,
for each f € E.,
lim |[ef — ¢ * f|lg = 0. (1.10)
e—0+t

Furthermore, if E is reflexive, then E, = E'.

Proof. For (a)”, S(R") = S(R") * S(R") C L. « ' = E!, whence the assertion
follows. The property (c) for E! directly follows from Proposition 1.1.2. Observe
that ||Th(ux f) —ux* fllg < || fllel|Thu — ul1e — 0as h — 0 for u € L} and f €
E’. The property (b) on E. then follows. Likewise, the approximation property
(1.10) is easily established. Finally, if F is reflexive we have, by Proposition 1.1.3,
that S(R™) is dense in E'; since S(R*) C E, and E] is closed, we must have
E = E. O
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We point out factorization properties of the Banach modules F and E/ which
also follow from the Cohen-Hewitt Factorization Theorem.

Proposition 1.1.4. The factorizations E = L., x E and E. = L} = E. hold.

Proof. The Cohen-Hewitt Factorization Theorem yields L} * F = span(L} * E)
and L. x E/ = span(L} * E’). By Corollary 1.1.1 and Theorem 1.1.2, E =
S(R")* £ C span(Ll * E) = L' « £ and E, = S(R") x E/. C span(L} x E.) =
Ll E. thatis, E = L. * F and E. = L} x /. O

We now characterize E. by showing that it is the biggest subspace of E’ where
the property (b) holds.

Proposition 1.1.5. We have that E, = {f € E' : limy_¢ [|Thf — f||lz = 0}.

Proof. Call momentarily X = {f € E' : limj_¢ [|Thf — fl|lz = 0}, it is clearly
a closed subspace of E’. By the approximation property (1.10), it is enough to
prove that D(R") x E’ is dense in X. For this, we will show that if ¢ € D(R") is
positive and [, ¢(y)dy = 1, then lim._q || f * . — f||zr = 0, for f € X. We apply
a similar argument to that used in the proof of Corollary 1.1.1. Take ¢ € D(R"),
then

(e £ = (1. [ o0 = 01ty < lolle_ swp [T = Tl

yEsupp ¢

which shows the claim. ]

In view of property (b)” from Proposition 1.1.2, we can naturally define a
convolution mapping E' x £ — C(R"), where F = {g € S'(R") : g € E} with
norm ||g|lz = ||glle. We give a simple proposition that describes the mapping
properties of this convolution. As usual, L2°, the dual of the Beurling algebra L.,
is the Banach space of all measurable functions satisfying

U||oo,w — €SS sup |U(l‘)| < 0
|| || 5
FASING W(J;)

We need the following two closed subspaces of L2°

Uc, = {u € L ¢ lim [Ty = ul|e = o} (1.11)
and (@)
u(x

C,:=queCR"): lim —= = . 1.12

Proposition 1.1.6. E'«ECUC, and % : E' x E — UC,, is continuous. If E is
reflexive, then E'x B C C,,.

Proof. The first assertion follows at once from the property (b)”. If E’ is reflexive,
Proposition 1.1.3 gives S(R™) < E’. Thus, S(R") = S(R™)*S(R™) is dense in the
closure of span(E’ * E') with respect to the norm || ||so.. Since S(R™) is obviously
dense in C,,, we obtain E' « E C C,,. O
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We end this section with the following remark.

Remark 1.1.2. The properties from Lemma 1.1.1 and Corollary 1.1.1 essentially
characterize the class of translation-invariant Banach spaces of tempered distribu-
tions in the following sense. Let X be a Banach space that satisfies the condition
(a)" and let n : R™ — (0, 00) be a measurable function such that logn is subaddi-
tive, 7(0) = 1, and 7 is polynomially bounded. Assume that ||¢*g||x < ||¢]l1,4]l9] x
for all ¢ € D(R") and g € X. The density of D(R") in L, automatically gua-
rantees that X becomes a Banach convolution module over the Beurling algebra
L, and the convolution obviously satisfies Tj,(u x g) = (Thu) * g = u * (Tng). If
we additionally assume that L}7 possesses a bounded approximation of the unity
for X, that is, there is a sequence {e;}32, C L, such that sup; |le;|l,, = M < oo,
lim; |le; * u — |y, = 0, and lim; [le; ¥ g — g[|x for all w € L}, g € X, then the
Cohen-Hewitt Theorem yields the factorization X = L}7 x X. The latter factoriza-
tion property implies that X satisfies the conditions (b)" and (c)’.

In addition, its weight function w satisfies w(z) < Mn(z). Indeed, let € > 0. Then

IT-nellx <[ Tonej* ollx +e < / lej(x = h)|n(x)dz]|llx + ¢

n

— [ les@lnta + sl += < [ les@ln@n(bsliols + =
< My(B)lelx +e

for j big enough.

1.2 The test function space Dy

In this section we construct and study test function and distribution spaces as-
sociated to translation-invariant Banach spaces. We recall that throughout the
rest of the paper E stands for a translation-invariant Banach space of tempered
distributions whose growth function of its translation group is w (cf. Definition
1.1.1). The Banach space E. C E’ was introduced in Definition 1.1.2.

We begin by constructing our space of test functions. Let Dg be the subspace
of tempered distributions ¢ € S'(R") such that ¢ € E for all @ € NI. We
topologize Dg by means of the family of norms

= () 1.1
el = ma (1.13)
Proposition 1.2.1. Dg is a Fréchet space and S(R") — D — E — S'(R").
Moreover, Dg is a Fréchet module over the Beurling algebra LY, namely,

w?’

E,N, N € Ny. (114)

[luxellen < [lulliellel

Proof. D is a Fréchet space as a countable intersection of Banach spaces and
S(R") C D — E — S'(R™). The relation (1.14) follows from Proposition 1.1.1
and the definition of the norms (1.13). It remains to show the density of the
embedding S(R") < Dg. Let ¢ € Dy and fix N € N. Find a sequence {@sz}]o.il of
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functions from S(R") such that ||¢—1;]|p < j~V 71, for all j. Pick then ¢ € S(R")
such that [p, ¢(x)dx = 1 and set ¢;(z) = j"p(jz). We show that 1); * ¢; — ¢
with respect to the norm || || n; indeed, by Corollary 1.1.1 and Proposition 1.1.1,

limsup [l — 5 % &5l v < limsup 37 [lp — vl max / |0 (2)] w(z/j)de = 0.
oS ]Rn

J—00 J—00
[l

It turns out that all elements of our test function space Dg are smooth func-
tions. We need a lemma in order to establish this fact.

Lemma 1.2.1. Let K C R™ be compact. There is a positive integer j such that
D). C ENE. and the inclusion mappings D}, — E and D} — E. are continuous.

Proof. We may of course assume that K has non-empty interior. Let 0 > 0 and
set K, = K+ {z € R": |z|] < og}. Since D(R") — E and D(R") — E/ are
continuous, there is j = jx, € N such that

llle < Mi,pi(¢) and lgl|e < Mi,p;(¢) (1.15)

for every ¢ € D, . Using a regularization argument, Corollary 1.1.1, and Theorem
1.1.2, we convince ourselves that (1.15) remains valid for all ¢ € DJ.. O

We can now show that D — E(R™). More generally [38, 94], let Oc(R")
be the test function space corresponding to the space O (R™) of convolutors of
S'(R™), that is, p € Oc(R") if there is k € N such that [p®)(z)| < M, (1 + |z|)*,
for all . Tt is topologized by a canonical inductive limit topology as in [38]. The

spaces of continuous functions UC,, and C,, were introduced in (1.11) and (1.12).
We have,

Proposition 1.2.2. The embedding D — Oc(R™) holds. Furthermore, the par-
tial derivatives of every ¢ € Dg are elements of Cy, namely, they have decay

o' ()

2|00 wW(—1)

=0, aeN" (1.16)

Proof. We will employ the powerful Schwartz parametrix method Lemma 0.1.1,
[94]. Let K be a compact symmetric neighborhood of 0 and find x € Dk such that
X = 1 near 0. Consider the Laplace operator A on R". Let F; be a fundamental
solution of Al ie., AlF} = §. Then, Al(xF)) —§ = ¢ € D(R"), so that the
parametrix formula

f=0(xF)* f)—axf (1.17)

holds for every f € D'(R"). By the Lemma 1.2.1, one can find j € N for which
Di( C ENE'. Let ¢ € Dg . Since there is a sufficiently large [ € N such that
xF; € Dﬁ'{ C FE’, we conclude from (1.17) and Proposition 1.1.6 that for each
o € N" one has p® = ((xF}) * (Alp(®)) — g % p® € E'x E C UC, and, by
Proposition 1.1.2 we actually obtain

9@ (@) < w(=2) (IXEl 1A' s + Il lle'lz)
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< Miw(—2)||¢ll £,204]a

which also shows the embedding D — Oc(R™). Furthermore, if we set || -
oo, N := maxX|q<n || - |loc@, N =0,1,2,..., the above estimates imply

|¢llcown < Mill@llensz, @ € De, N €Ny, (1.18)

In order to show (1.16), we make use of the density D(R") < Dg. Fix N. Given
e > 0, find p € D(R™) such that ||¢ — p||paus+n < e/M;. Choose also A > 0 so large
that p(x) = 0 for all [z| > A. By (1.18), we obtain that |p(®)(z)| < ew(—x) for all
|z| > A and |a| < N. O

Remark 1.2.1. For u € §'(R") with u(® € L] |a| < N, set

el 1o, = max [[u ],
lal<N

and keep [ as above. Note that yF; € D}'( C E. If ¢ € S(R"), Proposition 1.1.1
leads to

Iz < IxElEl A + lallzle e, o Ng,
namely, F-norm bounds
lellen < Millelhwnia s » € SR, N €N (1.19)

The inequality (1.19) will be employed in Section 1.5 to study further properties
of DE

1.3 The distribution space D',

We can now define our new distribution space. We denote by ,DjE; the strong dual
of Dg. When E is reflexive, we write D, = D%, in accordance with the last
assertion of Theorem 1.1.2. In view of Proposition 1.2.1 and Proposition 1.2.2, we
have the (continuous) inclusions Og(R") C D, C §'(R"). In particular, every
compactly supported distribution belongs to the space D/, .-

The notation Dy, = (Dg)’ is motivated by the next structural theorem, which
characterizes the elements of this dual space in two ways, in terms of convolution
averages and as sums of derivatives of elements of E/ (or E’). These characteri-
zations play a fundamental role in our further considerations.

Theorem 1.3.1. Let f € D'(R™). The following statements are equivalent:
(i) f € Dy .

)

(17) f*xv e E" forallyp € DR").

(i13) f =1 € E. for allp € D(R™).
)

(iv) f can be expressed as [ = Zlﬁ\gN ggg), with gg € E'.
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(v) There are f, € E.NUC, such that

F=> 1. (1.20)

lo|<N

Moreover, if E is reflexive, we may choose f, € E'NC,,.

Remark 1.3.1. One can replace D'(R") and D(R") by S&’'(R™) and S(R") in the
statement of Theorem 1.3.1. It follows from Theorem 1.3.1, since £ C D, , that
every element of f € E’ can be expressed as a sum of partial derivatives of elements
of ELNUC, (or E'NC, in the reflexive case).

Proof. Clearly, (v) = (). We denote below Bg = {¢ € D(R") : [|¢||p < 1}.

(i) = (i1). Fix first ¢» € D(R™). By Proposition 1.1.1, the set ¢ * Bp = {{* ¢ :
¢ € Bg} is bounded in Dg. )

Hence, |(f %1, p)| — {f, + @)| < M, for ¢ € Ba. So, [{/ + 1, )| < Myllglls,
for all ¢ € D(R"). Using the fact that D(R™) is dense in F, the last inequality
means that f x ¢ € E’, for every 1» € D(R™).

(i1) = (i7i). We use the factorization property of D(R™) from [87]| to write
V=11 x P+ Yok + -+ Un * oy € D(R") with oy, ¢; € D(R™). From (ii),
we conclude f*x1 = (f*11)* 1+ -+ (f x¢n) x oy € span(E’' * D(R"™)) C E.,
for any ¢ € D(R").

(i31) = (iv). Let ¢ € D(R™) be arbitrary. Because (f * ¢,1) = (f * ¥, ) we
get that the set {(f * ¢,1)) : ¢ € Bg} is bounded in C. The Banach-Steinhaus
Theorem implies that {f * @ : ¢ € Bg} is an equicontinuous subset of D’(R").
Namely, for any compact set K C R"™ there exist N = Ng € Ngand M = Mg >0
such that |(f * p, )| < Mpn(p) for every ¢ € Bg and p € DY¥. Hence, for all
p € DY we have fxp € F'.

Let K, x € Dk and F} be as in the proof of Proposition 1.2.2. Then yF; € D¥
for sufficiently large [ so that the parametrix formula (1.17) yields f € AYE") +
E C D}J;. In particular, one obtains the representation

F=>"9, gsek. (1.21)

|8|<2l

(1v) = (v). In order to improve the representation (1.21) to the one stated in
(v), we apply the parametrix method again to each gg € E’, || < 2[. Let K be
a compact symmetric set as above. By Lemma 1.2.1, one can find j = jx such
that Dj. C E. Choosing !’ so large that xF)y € D}, the parametrix formula (1.17)
yields

g =) (fo)", (1.22)

[v| <2l

where each fg, € L, *E' C E,. Furthermore, each fg, is of the form fs, = gg*g,
with g, € D}, C E. By Proposition 1.1.6, we have f3, € UC, (resp., C, in the
reflexive case). O

Let us recall that the translation of a vector-valued distribution f is defined in
the standard way, i.e., (Tpf, @) := (£, T_,p). We also have,
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Corollary 1.3.1. Let f € D'(R", EQ(E/ E)), that is, a continuous linear mapping
f:DR") = B} - If £ commutes with every translation, i.e.,

(Tht, o) =Ty (£, @),  forallh € R" and p € D(R"), (1.23)
then, there exists f € DEEL such that £ is of the form
(f,0) =f*¢, ¢ €DR"). (1.24)

Proof. The mapping f : D(R") — E(’y( 5,y 18 linear and continuous. Since E(’T( )
D'(R™) is continuous, we obtain that f : D(R™) — D'(R") is also a continuous li-
near mapping. Due to the fact that f commutes with every translation, it follows
from a well-known theorem (cf. [91, Thm. 5.11.3, p. 332|) that there exists
f € D'(R") such that (f,¢) = f*p € E', for every ¢ € D(R"). Theorem 1.3.1
yields f € DjEi. n

Our results from above implicitly suggest to embed the distribution space D',
into the space of E’-valued tempered distributions as follows. Define first the
continuous injection

t:S'(R") — S'(R™, S'(R™)), (1.25)
where «(f) = f is given by (1.24). Now, the restriction of ¢ to Dgy,

L: Dy, — S'(R", B, (1.26)

is clearly continuous for the strong topologies. Furthermore, by (v) of Theorem
1.3.1, (D) C S'(R™, E}). Corollary 1.3.1 then tells us that (DY, ) is precisely the
subspace of §'(R"™, E!) consisting of those f which commute with all translations
in the sense of (1.23). Since the translations 7}, are continuous operators on £, we
actually obtain that the range +(Df, ) is a closed subspace of §'(R", Ey). Indeed,

L( /E’): m th

where X}, is the space of vector valued distributions such that (1.23) holds for a
fixed h € R™. The X}, is closed because it is the set where two continuous operators
are equal to each other. Hence, being intersection of closed sets, ¢(D%,) is closed.
Note that we may consider D'(R"™) instead of S'(R"™) in these embeddings.

One can readily adapt the proof of Theorem 1.3.1 to show the following cha-
racterizations of bounded subsets and convergent sequences of D), .. It is worth
noticing that Corollary 1.3.3 implies that the inverse of (1.26), defined on ¢«(Dj, ),
is sequentially continuous.

Corollary 1.3.2. The following properties are equivalent:
(i) B’ is a bounded subset of D, .

(i7) (B') is bounded in S'(R™, E') (or equivalently in S'(R™, E’)).
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(1i1) There are C' > 0 and N € N such that every f € B’ admits a representa-
tion (1.20) with continuous functions f, € E. NUC,, satisfying the uniform
bounds ||foller < M and ||follcow < M (if E is reflexive, one may choose
fa € E'NC,).

Corollary 1.3.3. Let {fj} C DE, (or similarly, a filter with a countable or
bounded basis). The followmg three statements are equivalent:

(1) {fi};2, is (strongly) convergent in D, .
(1) {e(f5)};2 s convergent in S'(R", E') ( equiv. in S'(R", EY)).

(i1i) There are N € N and continuous functions f,; € E. NUC, such that

fi=2a<n fc(f;) and the sequences {fa,j};io are convergent in both E! and
L (if E is reflexive one may choose fo; € E'NC,).

Concerning weak * convergence of sequences, the following three properties are
equivalent:

(1) {fj};2 is weakly™ convergent in Df, .
(1) {e(f5)};2 converges in S'(R™, E} ) ) (equiv. in S'(R™, (E)s(p;,m)))-

113)* There are N € N and continuous functions f.;, € E. NUC, such that
2] *
fi = ZIa\SN fc(j;.), the sequences {fa,j};io are uniformly convergent over

compacts of R™, and the norms || fa ||z and ||fojllccw remain uniformly
bounded (if E is reflexive, one may choose f,; € E'NC,,).

Proof. We only show that (i7) in Corollary 1.3.3 implies (izi) (resp., (ii)* im-
plies (ii7)*), the rest is left to the reader. Let K C R™ be a compact symme-
tric neighborhood of the origin. Since {L(fj)} _, converges in S'(R", E') (resp.,
in §'(R", EY, 5 ), there exists N such that { (fj)};Zy converges in Ly(DY, E)
(vesp., in Ly (DY, E! . E))) in particular, {¢ * f;}.2 converges in £’ (resp., weakly™
E") for each fixed 1) € D¥. If we take [ as in the proof of Theorem 1.3.1, the re-
presentation (1.17) gives f = >7 5 ggg ]) with each {gg;} =, convergent in £’
(vesp., weakly™ convergent in £') because {g * f; 172 and {(xF1) = f;}7_, are then
convergent in E’ (resp., weakly™ convergent in E’ ) Likewise, another application
of the parametrix method, as in the proof of Theorem 1.3.1, allows us to replace
the sequences {gp;}.~ by sequences {f,;}’~, having the claimed properties. [

Observe that Corollaries 1.3.2 and 1.3.3 are still valid if S'(R™) is replaced by
D'(R™).

When F is reflexive, the space Dg is also reflexive. Furthermore, we have:

Proposition 1.3.1. If E is reflezive, then Dg is an FS*-space and DY, is a DFS*-
space. In addition, S(R") is dense in D'y, .
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Proof. Let DY be the Banach space of distributions such that p(®) € E for |a] < N
provided with the norm || ||g n (cf. (1.13)). We then have the projective sequence

E<_DE<_...<_DgeDg+I%H~<—DE, (1.27)

where clearly Dp = projlimy DY. Using the Hahn-Banach Theorem, one readily
sees that every f € (DY) is of the form f = 2 jal<N £ with f, € E'. Thus,
each Banach space D¥ is reflexive, or equivalently its closed unit ball is weakly
compact. The latter implies that every injection in the projective sequence (1.27)
is weakly compact. This implies all the assertions. O

It should be noticed that the convolution of f € Dy, and u € L, defined
as (ux f,p) := (f,u*yp), p € Dg, gives rise to a continuous bilinear mapping
1 Ll x D, — Dy, as follows from (1.14). We will show in Section 1.5 that the
convolution of elements of DE, can be defined with distributions in a lager class
than L., namely, with elements of the space D, v to be introduced in Section 1.4.

We end this section with a third characterlzatlon of Df, in terms of norm
growth bounds on convolutions with an approximation of the unity. For it, we
employ the useful concept of the ¢—transform [28 29, 83, 105], which is defined
as follows. Let ¢ € S(R") be such that [, @(x)dz = 1. The ¢—transform of
f € §'(R") is the smooth function

Fyf(a,t) = (flz+1€),0(8) = (f*d)(2), (a,1) €ER" xRy

Theorem 1.3.2. A distribution f € S'(R") belongs to Dy, if and only if Fy f(-,t) €
E' for allt € (0,ty) and there are constants k € N and M > 0 such that

M
[Esf (- D)lle < e t € (0,). (1.28)
In such a case,
hm+ Fyf(-,t)=f strongly in D, . (1.29)
t—0 L

Proof. The relation (1.29) follows by combining (v) of Theorem 1.3.1 with Theo-
rem 1.1.2. Let f € Dj,. Write f as in (1.20). By Corollary 1.1.3, for t € (0, o],

IEfCoe < > N fa* (60 p

la| <N

M' M
v D HfaHE'/ [6(@)| w(tx)dz < 5

la|<N

Conversely, assume (1.28). Let ¢ € S(R™) be also such that [, ¢(z)de = 1.
Setting b1 = vy bt that Py Hont) = (P 29 ). il B T D) €
E' « S(R") C E. for each t € (O,tg). We will use the theory of (Tauberian)
class estimates from |28, 83]. Set f = «(f) € S'(R",S'(R")) (cf. (1.25)). By
Corollary 1.3.1, it is enough to show that f € S’'(R", E!). The S'(R")-valued
¢1—transform of f is the vector-valued distribution Fy f : R* x Ry — S'(R")
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given by Fy f(x,t) = T, Fy, f(-,t) € S'(R™). From what has been shown we have
that Fy f(x,t) € £, C S'(R") for all (z,t) € R™ x (0,ty) and, by property (b)
applied E. (cf. Theorem 1.1.2), we get that the the mapping R" — E! given by
x — F, f(z,t) is continuous for each fixed ¢ € (0,%;). Furthermore, using the fact
that E is a Banach modulo over L., we conclude that

[ Fp (2, )| = || T Fg, f (-, )| &
+ |$D

w(@)||Faf( ||E// p(©)lw(te)ds < 1T

for all (z,t) € R™ x (0,ty). But, as shown in 28] (see also [83, Sect. 7]), the very
last estimate is necessary and sufficient for f € S’(R", E.). This completes the
proof. O

We will apply Theorem 1.3.2 in Section 2.4 to characterize the elements of D7,
via E’-norm estimates of solutions to the heat equation in the half-space R” x R, .

1.4 Examples: LI weighted spaces

In this section we discuss some important examples of the spaces Dg and D) .-
They extend the familiar Schwartz spaces Dy» and D} ,. These particular instances
are useful for studying properties of the general D/E; (cf. section 1.5).

Let n be a polynomially bounded weight, that is, a measurable function 7 :
R™ — (0,00) that fulfills the requirement n(z + h) < Mn(z)(1 + |h|)7, for some
M, 1 > 0. We consider the norms

gl = ( [ it \pdx) for p € [1.oo) and gl = ess sup 19BN
z€ER™ 77($)

Then the space L consists of those measurable functions such that [|g|,, < oo
(for n = 1, we write as usual L? and || ||,). The number ¢ always stands for
pt+q =1 (pe[l,o0]). Of course (LP) = Ly, if 1 <p<ocand (L) = L.
The spaces E = L are clearly translation-invariant Banach space of tempered
distributions for p € [1,00). The case p = oo is an exception, because D(R")
fails to be dense in Ly°. In view of Theorem 1.1.2, the space E corresponding to
E= Lz,l is B, = E' = L} whenever 1 < p < oo. On the other hand, Proposition
1.1.5 gives that E, = UC’ for E = L), where UC, is defined as in (1.11) with w
replaced by 7.
We can easily find the Beurling algebra of L.

Proposition 1.4.1. Let
h
wy(h) := ess sup M
reR? U(x)
Then
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Consequently, the Beurling algebra associated to Lb is Lin if p=1[1,00) and L}:;n
if p= o0.

Proof. Assume first that 1 < p < oo. Clearly, w,(h) > [|T-4|[1z). Let € > 0 and
set

A={x eR": wy(h) —e <n(z+h)/n(x)}.

The Lebesgue measure of A is positive. Find a compact subset K C A with
positive Lebesgue measure and let g be the characteristic function of K. Then

lg(@)[PnP (& + h)dw = (wy(h) — &) llgll}

R’ﬂ
which yields |[T4||1zr)(h) > (w,(h) — €). Since € is arbitrary, we obtain w,(h) =
[T n|[L(zr). The case p = oo follows by duality. O

We remark that when the logarithm of 7 is a positive measurable subadditive
function and 7(0) = 1, one easily obtains from Proposition 1.4.1 that w, = 7.

Consider now the spaces Dyp for p € [1, 00|, defined as in Section 1.2 by taking
E = L?. Once again, the case p = oo is an exception because D(R") is not dense
Dre. In analogy to Schwartz notation [94], we write B, := Dre. Set further
B, for the closure of D(R") in B,. We immediately see that B, = Dg,,, where
Cy = {9 € C(R") : im0 g(x)/m(x) = 0} C L. Observe that the space E,
for £ = C, is E, = L}. By Proposition 1.2.2, Dpr C Bw,, for p € (1,00); using
the parametrix formula (1.17), one also deduces that Dpy C Bw,, Actually, the
estimate (1.18) gives Dpp — B@n for every p € [1,00). It follows from Proposition
1.3.1 that Dpp is an FS*-space and hence reflexive when p € (1, 00).

In accordance to Section 1.3, the weighted spaces DlLf, are defined as D,Lf] =

(Dpa_,) where p~' +¢7' = 1if p € (1,00); if p = 1 or p = 00, we have D}, =
(De¢,) = (B,)" and D’L%o = (D). We write B; = D}Jgo and [3’7’7 for the closure of
D(R") in B,. We call B the space of n-bounded distributions. Observe that the
DlL?, are DFS* spaces and (D/L;”,)/ = DL:—l when 1 < p < co. Theorem 1.3.1 gives
that S(R") is dense in D, and Corollaries 1.3.2 and 1.3.3 imply that (D},)" = B,

Using the parametrix method, one deduces as in the proof of Theorem 1.3.1, that
every element of Bﬁz is the sum of partial derivatives of elements of C; and that

fe B; if and only if f x ¢ € C,; likewise analogs to Corollaries 1.3.2 and 1.3.3
hold for B;. The later implies that (B;)" = Dry. Employing Theorem 1.3.1,
Corollary 1.3.2 and Corollary 1.3.3, one sees that D’L,; C B;, . 1 <p < oo, and that
the inclusion is sequentially continuous. Summarizing, we have the embeddings
D%n — Dpr — By, and D,Lb,, — Dj:,;] — Biv,, for 1 < p < oo, and B, — B, and
B, — B, .

The multiplicative product mappings - : D’Lg x B, — Dp, and - : B} X Dpp —
D', are well-defined and hypocontinuous for 1 < p < oo. In particular, f¢

is an integrable distribution in the Schwartz sense [94] whenever f € B and
¢ € Dpyor f €Dy, and p € By It (1/r) = (1/p1) + (1/p2) with 1 <7, p1,ps <
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00, it is also clear that the multiplicative product - : D’ X DLpz — D,

nin2
is hypocontinuous. Clearly, the convolution product can always be canonically

defined as a hypocontinuous mapping in the following situations, * : D'Lg X DIL}U —
1 <p<oo, *'B’XD —>B’ and * : B’XD — B,

UJ',]

Lp’

1.5 Relation between DE,,
tion and multiplication

,» and D, — Convolu-
w

Many of the properties of the Dy» and DLP extend to Dg and Dy, for the gene-
ral translation-invariant Banach space of tempered distributions F with Beurling
algebra L. The next theorem summarizes some of our previous results.

Theorem 1.5.1. We have Dyy — Dp — B@ and hence the continuous inclusions
333:, — Dy, — B,. When E is reflexive DZ}J — D)y, — B,

Proof. Notice that Proposition 1.2.2 gives the inclusions Dg C B,. We actually

have Dy < B; because of (1.18). The dense embedding S(R") < Dy1 and the

inequality (1.19) from Remark 1.2.1 show that Dy C Dg and that (1.19) remains

true for all ¢ € Dy . Consequently, Dy < Dg. By transposition of the latter

two dense inclusion mappings, D}, — Dy, — B,. In the reflexive case, Theorem

1.3.1 gives Dy, C B, and therefore DLI < DYy, — B O

We can now define multiplication and convolution operations on D, .

Proposition 1.5.1. The multiplicative products - : Dy, x Dy — D), and - :
D}, xDg — D}, are hypocontinuous. The convolution products are continuous in

the following two cases: * : DY, x D/Ll — Dl and x : D, X O¢(R") — Df, . The

convolution * : DSE; X Dp — Bw 18 hypocontz’nuous; when the space E is reflezive,
we have x : Dy, X D — B,,.

Proof. That these bilinear mappings have the range in the stated spaces follows
from Theorem 1.3.1 and Theorem 1.5.1. The hypocontinuity of the multiplicative
products is a consequence of Theorem 1.5.1. In fact, the bilinear mapping - :
DE; XDr1 — D7}, is hypocontinuous as the composition of the continuous inclusion
mapping Dy, x Dry — Bj, x Dry and the hypocontinuous mapping - : B, x
Dy — D},. Likewise, - : ngl x D — D}, is hypocontinuous. It is clear that
* D’L&J X Dp — Dg is hyp(;continuous, which, together with Corollary 1.3.2,
yields the hypocontinuity of x : D, x D}, — Df,. Since Dy, and D), are DF-
spaces, it automatically follows that the bilinear mapping * : Dp, X Dgl — D
is continuous (cf. [57, p. 160]). The continuity of * : Dp, x Ox(R") —>WDjEi is a
direct consequence of the embedding O (R") < D', . Finally, B, = (D},)" and
* DE; X D’L}J — D’Ei and * : DIL; X D — Dpg are ﬁypocontinuous, whence the
hypocontinuity of x : D, X Dy — B, follows. ]
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It is worth pointing out that, as a consequence of Proposition 4.5.2, fy is
an integrable distribution in Schwartz’ sense [94] if f € Dy, and ¢ € Dy or if
f €D}, and ¢ € Dg. We end this section with four remarks. In Remarks 1.5.2
and 1.5?4, two open questions are posed.

Remark 1.5.1. Let (X, {||;};en,) and (Y, {||||;},en,) be two graded Fréchet spaces,
namely, Fréchet spaces with fixed increasing systems of seminorms defining the to-
pology. Recall that a continuous linear mapping A : (X, {||;}eno) = (Y. {Illl;}sem)
is called tame if there are v, jo € N such that for any j > jo there is M; > 0 such
that |A(f)|l; < M;|fl,; for all f € X.

If 1 is chosen as in the proof of Proposition 1.2.2, the inequalities (1.18) and
(1.19) actually show that

(e I hw}wveno) = (P, Il 1t wvena) = (Ba, {Il oo, }wverso)

are tame dense embeddings between these graded Fréchet spaces. With the nota-
tion used in the proof of Proposition 1.3.1, we obtain in particular the “Sobolev
embedding” type results D% < E and D% — C;.

Remark 1.5.2. When E is reflexive, the space D, is barrelled, as follows from
Proposition 1.3.1 because a reflexive space is barrelled. In the general case: Is the
space D, barrelled?

Remark 1.5.3. The spaces Dy (resp., B, and Bw) are isomorphic to the Schwartz
spaces Dy» (resp., B and B) To construct isomorphisms, first note that the weight
wop = w * 1, where ¢»p € D(R") is a non-negative function, satisfies the bounds
Miw(z) < wo(z) < Mow(z), x € R*. Furthermore, wy € B,. These two facts
imply that the multiplier mapping ¢ — ¢wy is a Fréchet space isomorphism from
Dp onto Dy», 1 < p < oo. The same mapping provides isomorphisms B — B,
and B — B,,.

Remark 1.5.4. Schwartz has pointed out |94, p. 200| that the spaces Dr» are not
Montel. Remark 1.5.3 then yields that D;» are not Montel either, 1 < p < oc.
The spaces B, and B,, can never be Montel because they are not reflexive. When
w is bounded, it is easy to see that Dy is never Montel. In fact, if ¢ € D(R") is
such that ¢(x) = 0 for |z[ > 1/2 and 6 € R" is a unit vector, then {T" o0}, is
a bounded sequence in Dg without any accumulation point, as follows from the
continuous inclusion Dg — B. In general: Can Dy be Montel?



Chapter 2

Boundary values of holomorphic
functions in translation-invariant
distribution spaces

The study of boundary values of holomorphic functions in distribution and ultra-
distribution spaces has shown to be quite important for a deeper understanding
of properties of generalized functions which are of great relevance to the theory
of PDE [39, 90]. There is a vast literature on the subject, we only mention a
small part of it. The theory of analytic representation of distributions was initia-
ted by Kothe [55] and Tillmann [102]. We also mention the influential works of
Silva [97], Martineau |59, 61|, and Vladimirov [106, 107]. The book by Carmichael
and Mitrovi¢ [13] contains an overview of results concerning boundary values in
distribution spaces. For ultradistributions and hyperfunctions, see the articles
[24, 49, 64, 75] and the monographs [12, 44, 68|.

The representation of the Schwartz spaces D}, as boundary values of holomor-
phic functions has also attracted much attention. The problem has been treated
by Tillmann [103|, Luszczki and Zielezny [58|, and Bengel [3]. More recently
[32, 33|, Fernandez, Galbis, and Gémez-Collado have obtained various ultradist-
ribution analogs of such results. All these works basically deal with holomorphic
functions in tube domains whose bases are the orthants of R™. In a series of papers
[8, 9, 10, 11|, Carmichael has systematically studied boundary values in D}, of
holomorphic functions defined in more general tubes, namely, tube domains whose
bases are open convex cones. The present chapter makes a thorough analysis of
boundary values in the space ngi. Many of the results we obtain in Section 2.1
are new or improve earlier results even for the special case Dy, = Dj,.

Section 2.1 is devoted to the study of boundary values of holomorphic functions
and analytic representations of D, . Our first main result (Theorems 2.1.1) cha-
racterizes those holomorphic functions in truncated wedges which have boundary
values in D/Ei‘ It is worth pointing out that this result improves earlier knowledge
about boundary values in D} ,; in fact, part of our conclusion is strong convergence
in D},, 1 < p < oco. The strong convergence was only known for 1 < p < oo and
for certain tubes [3, 8, 9, 11, 103]. Next, we consider extensions of Carmichael’s
generalizations of the H? spaces [9, 10, 11]. We also provide in this section new
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edge of the wedge theorems. Our ideas are then applied to exhibit an isomorphism
between D’Ei and a quotient space of holomorphic functions, this quotient space
is constructed in the spirit of hyperfunction theory.

In his seminal work [62, 63] Matsuzawa introduced the so-called heat kernel
method in the theory of generalized functions. His approach consists in describing
distributions and hyperfunctions in terms of solutions to the heat equation fulfilling
suitable growth estimates. Several authors have investigated characterizations of
many others distribution, ultradistributions, and hyperfunction spaces [16, 18, 46,
101]. Our results from Section 2.4 add new information to Matsuzawa’s program
by obtaining the description of Dj‘z; via the heat kernel method. In the case of D/ ,,
this characterization reads as follows: f € D7, if and only if there is a solution
U to the heat equation on R™ x (0, ) such that sup,c( ) " |U( - ,t)||lz» < oo for
some k > 0 and f = lim; o+ U( -, ).

2.1 Boundary values and analytic representations

In this section we study boundary values and analytic representations in the
context of the space Dj,. Subsection 2.1.1 is dedicated to characterize those
holomorphic functions on tube domains, whose bases are open convex cones, that
have boundary values in the strong topology of D .-

As usual, w stands for the growth function of the translation group of E. The
numbers 7 > 0 and M’ > 1 are fixed constants such that w(z) < M'(1+ |z|)™ (cf.

(1.7)).

2.1.1 Boundary values in D,

Our first goal in this subsection is to characterize those holomorphic functions
defined on a truncated wedge that have boundary values in D/E;- We begin with
a useful lemma.

Lemma 2.1.1. Let V. C R" be an open subset and let F' be holomorphic on the
tube TV. Suppose that F(- +iy) € E' fory € V and

oy (V)"

yev WHF( + i)l =M <oo  (ki,k2 > 0). (2.1)

Then, for every a € Ni one has F(% (- +iy) € E' for ally € V and

K1+|a K2 o]
sup (dy (y))= 1o ||F(a)(-+iy)||E/ < (Qﬁ)nﬂMM'El_'_—)‘) (ﬂ) al, Ae(0,1).

yev (1+dv(y))m=*7 L= A
(2.2)
Furthermore, the E'-valued mapping F : TV — E' is holomorphic, where
F(a+iy) = To(F(- +in). (23)

Proof. The assumption V' # R" is only used to ensure that dy(y) < oo for all y €
V. Fix0 < A< 1. Let ¢ € D(R"). Let ¢ = u+iv = ({1, (2, - - -, (,) be an arbitrary
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point in the distinguished boundary of the polydisc D", that is, |(;| = |G| =+ =
|Cul = 1. We write s = t +i0 € C. For arbitrary y € V, define the function
G(s) = Gyc(s) = fgu F(x + iy + sQ)p(x)dr = (Tiy—guF'(- +i(y + tv+ ou)), ¢).
It is clear that G is defined and holomorphic in the disc {s € C : |s| < dy(y)/+/n}.
Note that

Muw(tu — ov)(1 +dy(y + tv + ou))™

G(s)| < T Iolls
(14 A2 MM(1+dy ()7 Ay (1)
ST Aoy elle forlsl= TR

The Cauchy inequality for derivatives applied to circle |s| < (A/y/n)dy(y) thus
yields

nN2(1 4+ N2 MM (1 + dy (y)) "2
(N)
OIS TR R @

Nglls, N=0,1,2,....

One easily obtains using analyticity of Gy((
¢ on the distinguished boundary that (F (T
(FUD(- +dy), ) = GN(0) we get

s) for |s| = (A/y/n)dy(y) fixed and
Wl — = 2 la=N I o From

ol

nN2(1 4+ N2 MM (1 + |dy (y)])7He
ML= X dy ()

|Pn(Q)] < lellg, N=0,1,2,...,

where Py () = 32, —n ¢* (F(- +iy), ) /al. Integrating |Py(¢)|?* over (9D)",
we obtain

(FOO (- +1iy), o) (FO(- 4 iy), o) =
P 2d — «@
A%W\N@N = [ | X e | | X P

lal=N |Bl=N

N

B (FO(-4iy), o) . 20 (- +1y), ) (FO(- +iy), ¢) .,
‘%AW (al? 'Q+§/ alf
(2m)" Z [(F +Zy 2l

laf=1

The second sum is 0 because for o # § there must exist 1 < ¢ < n such that say
a; > f; and so

aFB _ ,26i_%—5id ) dCdCo.. dCi 1dCiirdC = 0.
/(BWCC // </|<i|=1 GITHG T dG ) dGudGy...dGimadGirdG = 0

Finally,

(L 2= MM al2m) 2+ ldy )
NI(L = X (dy (y)) =+ o

[(FO( +iy), )| <
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for all p € D(R"), y € V, and o € N. The very last inequality is equivalent to
(2.2). To show (2.3), it is enough to fix z € V and ¢ € (0D)™ and to verify that
F(z 4 s() is holomorphic in |s| < dy(y)/+/n. Indeed, by the previous argument,
F(- +iy+sC) => 12, s"gk, with gy = > lal=k COF@ (- 44y)/al, is a convergent
power series in E’ for |s| < dy(y)/+/n. Employing the continuity of T}, we obtain
F(z 4+ s¢) =Y 1o, s"T,g; meaning analyticity in one direction.

Now chose ¢!, (2, ..., (" on (OD)" to be basis of C". We define the mapping ﬁ(w) =
F(H(w)), C* — C", where H(w) = 2z + w1 + ...w,(" is biholomorphic mapping
from C* — C". Using the analyticity of F in the directions for every one of
¢t ¢?, ..., ¢" and Hartgots’ Theorem we obtain analyticity of F'. Hence F/(H (2 +
wiCt + ..w,¢")) = F(w) is holomorphic. O

Lemma 2.1.1 has the ensuing consequence.

Corollary 2.1.1. Let V C R™ and let F' be holomorphic in TV such that F(-+iy) €
E' for ally € V and sup,cf || F(- +1y)||z < oo for every compact subset K C V.
Then limy ., || F'(- +iy) — F(- +iyo)||z = 0 for each yo € V.

Proof. The statement is local, so we may assume V' # R". The mapping (2.3) is
continuous at zg = iyp and F(- +iy) = F(iy). O

In the rest of the subsection we mainly focus our attention on tubes whose
bases are cones.

Theorem 2.1.1. Let C' be an open convex cone and let r > 0. Suppose that F is
holomorphic on the tube TC") and satisfies

F(- +1iy) € Dy, , foreveryy e C(r), (2.4)

and the sets {F'(- +iy) : v <|y| <r, y € C} are bounded in Dy, for each r’ > 0.
Then, the following three statements are equivalent:

(1) F satisfies
F(- +iy) e B, yeC(r), (2.5)

and the bound

IEC- +iy)|e < y € C(r). (2.6)

M
(dew) ()™

(i4) F has boundary values in D, , namely, there is f € Dy, such that

f= ZlJl_I% F(- +iy) strongly in Dy, . (2.7)

yeC
(#7i) The set {F(- +1iy): y € C(r)} is bounded in Dy, .

In addition, if any of these equivalent conditions is satisfied, then F(- +vy) € E.
for every y € C(r).



Boundary values and analytic representations 41

Proof. The implication (ii) = (¢i7) is obvious.

(1) = (4i). Assume (2.5) and (2.6). If C' = R", the result follows from Corollary
2.1.1. Suppose then that C' # R" (i.e., 0 ¢ C'). Applying the parametrix method
used in the proof of the implication (iv) = (v) from Theorem 1.3.1, we can write

F(z) = Z O°F,(2), zeT), (2.8)

la|<N

where each F, has the form
Fulz) = (F(- +iy) * 8a)(z) = / Falz 4 O)0a(€)de (z=x+iy) (29)

and each g, € F is a continuous function of compact support. Thus, each F}, is
also holomorphic on the tube T¢() satisfies F,,( - + iy) € E' for every y € C(r),
the E’-norm estimate

: M| gall1
F.(- +u)|lpg < ———=—, yel(r), 2.10
[ Fa )Ne e ()" (r) (2.10)
and the pointwise estimate
, M| ool pw(z) : c
Folz+iy)| < —=202220 0 gy € T, 2.11
eI Ty Y =

Making use of Corollary 2.1.1, the mappings y € C(r) — F,(- +iy) € E, are
continuous. The pointwise estimate (2.11) implies that each F,, has boundary
values in §'(R™) 13, 106]. Set

fa=lmFy(- +iy) inS'(R"), |a| <N. (2.12)
Yy—

yelC

In view of (2.8), it suffices to show that each f, € D, and that the limit (2.12)
actually holds in Dp,. We may assume that x € N. Let v € S (R™) and write
U(z,y) = > 51<n VB (2)(iy)?/B!. Pick @ € C(r/4). Since —0 ¢ C, we can find
M such that A < Mido(y + A0) for every y € C and A > 0. In particular,
A < Mydegy(y+A0) for A € (0,1) and y € C(r/4). Asin [39, p. 67|, we can write

(i0)° (k + 1

farxh=T(-,0) % Fol- +1i0) + > 5 )/0 N (Fo( - 4 iM0) ) d.

18l=r+1
and, for y € C(r/4),

(i10)(k + 1)

1
i / N (Fo (-+iNG+iy ) s D) dN,
: 0

Fo(tiy)s = W(-, 0)x Fo(-+if+iy)+ Y
1Bl=r+1

where the integrals are interpreted as F’-valued integrals in the Bochner sense.
By Theorem 1.1.2, the net W(-,0) x F,(- +i0 +iy) — ¥(-,0) x F,(- +1i0) in E..
Furthermore, using the estimate (2.10), we majorize

NE (- + 20 +iy) * 0P|z < (M) M) 5 0allre
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and the dominated convergence theorem for Bochner integrals thus yields

forx = lm(Fa(- +iy)x¥) in B,

yeC

Since this holds for every ¢ € S(R™), Corollary 1.3.3 implies

fo =lmFE,(- +iy) strongly in DY,
y—0 *

yeC

and (2.7) follows at once.

(73i) = (7). Using the parametrix method once again (see (ii7) from Corollary
1.3.2), we can write F as in (2.8) where each F, is holomorphic in T, F,(-+iy) €
B, and sup,cc [ Fa(- +iy)|| < 0o. The assertion (i) is a consequence of Lemma
2.1.1. In addition, we get that the holomorphic function (2.3) actually takes values

in £. Thus F(2) € E' for all z € T¢®), whence F : T¢) — E/. O

Corollary 2.1.2. Let V. C R" be an open set and let F be holomorphic in TV .
If F(- +iy) € Dy, for ally € V and {F(- +1iy) : y € K} is bounded in D,
for every compact subset K C V', then actually F( - + iy) € E. for ally € V,
sup,cr | F (- +iy)||er < oo for every compact K C 'V, and the E-valued function
(2.3) is holomorphic in TV . If in addition V # R™ and the set {F (- +iy): y € V}
is bounded in Dy, , then there is k > 0 such that sup,ey (dv (y))"(1+dv (y)) || F(-+
iy)||m < 0.

Proof. The first part of the corollary follows from the second one. Exactly the
same argument from the proof of the implication (ii7) = (i) of Theorem 2.1.1
shows the second assertion. O

Using Theorem 2.1.1, we can derive the following result.

Corollary 2.1.3. Let X C §'(R") be a Banach space. Assume that the inclusion
mapping X — S'(R™) is continuous. Let C' be an open convex cone and r > 0. If
F is holomorphic on the tube TC") and satisfies

F(-+iy) € X and [|[F(- +1y)|x < y € C(r),

M
(dew ()™
then imF'( - + iy) exists in S'(R™).

y—0

yeC

Proof. Let S;(R™) be the completion of S(R") in the norm g; (cf. Section 0). No-
tice that each S;(R") is a tempered translation-invariant Banach spaces of distribu-
tions. The embeddings S;1+1(R") — S;(R™) are compact, S(R™) = projlim;en S;(R™),
and hence §'(R") = ind lim;ey Sj(R") is a regular inductive limit of Banach spaces.
Thus, there are M; > 0 and j, € N such that ||f||S§O(Rn) < M| fllx, for all f e X.

The assertion then follows by applying Theorem 2.1.1 with E' = & (R"). O
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Observe that Corollary 2.1.3 provides sufficient conditions for the existence of
boundary values in S'(R™) in terms of rather general norms; however, in contrast
with Theorem 2.1.1, very little can be said about the boundary distribution f =
limyec0 F'( - + 4y) unless the Banach space X possesses a richer structure. It
should also be noticed that, as well-known, the holomorphic function F'is uniquely
determined by its distributional boundary values f.

We now turn our attention to holomorphic functions satisfying global estimates
over a tube having an open acute convex cone as base. We need to introduce some
notation in order to move further. Let C' C R™ be an acute open convex cone. Set
S'(C* + B(a)) = {g € S'(R") : suppg C C* + B(a)}. The Laplace transform of
g € S'(C* + B(a)) is defined [107] as the holomorphic function

L{gi2} = (g(&).e™*), »€T".

The above distributional evaluation is well-defined because S'(C* + B(a)) is cano-
nically isomorphic to the dual of the function space S(C* + B(a)) (cf. [106, 108]).

We are interested in the class of holomorphic functions F : T¢ — C that
satisfy the following two conditions:

F(- +iy) € E', forallye C, (2.13)
and the estimate (for some constants M, m, and k)
1 \*
IFC +inle < MR (14 05)  yec ()
de(y)
Because of Corollary 2.1.2, the membership relation (2.13) is equivalent to F'(- +

iy) € E;.
We now show that these holomorphic functions are in one-to-one correspon-
dence with those elements of D}, having Fourier transforms with supports in the

set O* + B(a). We work with the constants in the Fourier transform as

b6 = [ eEplade, e SR,

The next theorem extends various results by Carmichael |9, 11| and Vladimirov
[107] (obtained by them in the particular cases when E' = L? or when E’ is an L?
based Sobolev space).

Theorem 2.1.2. LetAC Cc R” be_cm acute open convex cone and let a > 0. If
f € Dy is such that f € §'(C* + B(a)), then the holomorphic function

F(z) = (2n)"L{f; 2}, =2eTC, (2.15)
satisfies (2.13), (2.14) and (2.7).

Conversely, if F is a holomorphic function on TC that satisfies the condition
(2.18) and for every subcone C' € C and € > 0 there are M = M(C',e),k =
k(C',e) > 0 such that

pla+e)ly]

I1F(- + i)l <M , yecl, (2.16)

|ly|~

then there is f € D, with supp f € C* + B(a) such that (2.15) holds.
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Proof. Assume that f € Dy, is such that supp f C C* + B(a). Set f = «(f) €
S'(R™, E) (cf. (1.26) and comments thereunder). Then, f € S'(C* + B(a), E.) =
{g € S'(R",E,): suppg C C* + B(a)} . The same procedure used to identify S'(C?)
with the dual of S(C* + B(a)) [108] shows that S'(C* + B(a), E.) is canoni-
cally isomorphic to L,(S(C* + B(a)), E.). So we identify the latter two spaces.

This allows us to define the Laplace transform of the Ej-valued distribution
(2m)™f € S'(C* + B(a), E.) as

F(z) := (2m) "L{f; 2} = (2m) (£, e€) € E., for every z € TC.

Clearly, F is holomorphic in z € T¢ with values in E/ and F(z) — f as 2 —
0,z € CO in S'(R", E!). For the later statement we choose § € prC and ¢ €
S (R") such that ¢(€) = ¢ for € € C*. Then F(z + itd) = 1/(2m)"L(f, = +
itd) = Ff(z,t) — f(z) in S'(R", E.). The second inequality in the previous
relation follows from F(z + itf) = .7-"5_1 (f'@(tﬁ)) () = f* ]-"5_1 (p(t)) (z) and
Fe ' (@(t8)) (z) = 1/t"¢ (a /).

It is easy to see that F(z + iy) = T,F(- +iy) € E. and we obtain at once
(2.13) by setting « = 0. Furthermore, ¢«(F(- +iy)) =F(- +iy) = £ =«(f) in E;
hence, Corollary 1.3.3 yields the limit relation (2.7). Next, one readily sees that
F(z) satisfies the estimate

! ))k, 2 eTC, (2.17)

F < M(1 m  a|Im z| 1 -
IFGHLp < L+ e (14

for some constants m,k, M > 0. The bound (2.14) follows by setting z = iy in
(2.17). The proof of (2.17) is exactly the same as in the scalar-valued case. We
give it for the sake of completeness. Since f : S(C* + B(a)) — E. is continuous,
there are constants k£ € N and M; > 0 such that

@2m) " KE D)l < My sup (L [EDT[¢E)|, Vo € S(C+ Bla)).

0<|a|<k
¢eC*+B(a)

Setting ¢(§) = €€ 2 =x +iy € T, in the above inequality, we obtain
|F(2)] 5 < My(1+ |z|)k£sug (1+ & + & e e vé
1€eC*

|€2|<a

< (a4 DMy (1 + |2))Fe™ sup (1 + |¢])keldc®)
LeCr

1 \*
< Mel(1 + |z|)F (1+—) ,
M 2
which gives (2.17) with M = M supgce. (1 + a)*(1 + [¢])*e ¥l and m = k.
Conversely, assume (2.13) and (2.16). As in the proof of Theorem 2.1.1, we
express I as in (2.8), where each F, is holomorphic in T¢ and satisfies: F,(-+iy) €
E! for y € C and the estimates

(ate)ly] (ate)ly|
¢ m and |F,(z+1y)| < Ma%
y|" yl"

1Fa(- +iy)ller < Ma , r+iyeT?,
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where the constants M, and k are only dependent on the subcone ¢’ € C and «.
The pointwise estimate and Vladimirov’s theorem [107, p. 167| imply that there
are f, € S'(R") with suppf, C C* 4+ B(a) such that F,(z) = (27) "L{fa: 2}.
Theorem 2.1.1 gives f, € D, Hence, (2.15) holds with f = 37,y f&”. This
completes the proof. n

Theorem 2.1.2 leads to the following general criterion for concluding that a
holomorphic function is the Laplace transform of a tempered distribution. The
proof goes in the same lines as that of Corollary 2.1.3 and we therefore omit it.

Corollary 2.1.4. Let X C S'(R™) be a Banach space for which the inclusion
mapping X — S'(R™) is continuous and let C' be an acute open convex cone. If F
is holomorphic on the tube TC and satisfies

e(a—l—e)y

P(- i) € X and (- +ig)llx < MO &)y,

yed, (218
for any subcone C" € C and ¢ > 0 , then there is g € S'(C* + B(a)) such that
F(z) = L{g; 2}.

We also obtain the following corollary, a result of Paley-Wiener type.

Corollary 2.1.5. A necessary and sufficient condition for f € DE; to have

suppf C B(a) is that f is the restriction to R™ of an entire function F that satis-
fies F(- +iy) € E' for ally € R™ and the estimate sup,cpn (14 |y|) e M| F(- +
iy)||p < oo for somem > 0 (or equivalently, sup e e TV F(- +iy)| g < oo
for each e > 0).

Proof. If sup,cga(1 + [y]) ™ ™||F( - + iy)|z < oo for some m > 0, then

supp f C B(a)+ C* for every acute open convex cone and Ne(B(a)+C*) = B(a).
The other direction can be established as in the proof of Theorem 2.1.2. n

2.1.2 Analytic representations

The results from Subsection 1.5 and Subsection 2.1.1 enable us to obtain analytic
representations of arbitrary elements of D, .

Let Cy,C5,...,C,, be acute open convex cones of R". We assume that R" =
U;.nzl C%. For example, the C; might be the 2" pairwise disjoint open orthants of
R™.

Lemma 2.1.2. Given a > 0, there are convolutors x1, X2, - -, Xm € Ox(R"™) such
that 6 = 377", x; and supp x; C C; + B(a).

Proof. As in [107, p. 7], there are py,...,p, € C®(R™) such that suppp, C
Cr 4 B(a), 0 < p; < 1, pj(z) = 1 for z € C}, and sup,pn |p§a)(x)| < Mya™lol,
j=1,2,...,m. The distributions x, given in Fourier side as X, = p,/(3_]-, p;) €
Oc(R™) € Oy (R™), v =1,2,...,m, satisfy the requirements.

]
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We now show that every element of DjE; can be represented as the sum of
boundary values of holomorphic functions.

Theorem 2.1.3. Fvery f € D;Ei admits the boundary value representation

/= Z ll/lg(l)ﬂ( - +1y)  strongly in D, , (2.19)

J=1 yGCj
where each F; is holomorphic in the tube TS,

Proof. Set f; = x; * f so that f = >0, fj, where x1,...,xm € Og(R") are
the distributions from Lemma 2.1.2. By Proposition 1.5.1, each f; € Dp,. In

addition, supp f; C C;+ B(a). Theorem 2.1.2 gives the representation (2.19) with
Fy(=) = (2m) L4 f55 7). s

The analytic functions F}; from Theorem 2.1.3 of course have the properties
(2.13) and (2.14) on the corresponding cone Cj.

2.2 Edge of the wedge theorems

Our next aim is to provide D, -versions of edge of the wedge theorems. Our first
results are of Epstein and Bogoliubov type and they are related to the following
classes of holomorphic functions on tubes, whose definitions are motivated by
Corollary 2.1.2.

Definition 2.2.1. Let V C R". The vector space Op/(T") consists of all holo-
morphic functions F on the tube TV = R™ + iV satisfying F(- + iy) € E’ for
all y € V and sup,cg || F( - + iy)|[z < oo for every compact K C V. The space
Oll;,E/ (TV) is defined as

O’?,E’ (TV) ={F € Og/(T"): {F(- +iy): y € V} is bounded in D, }.

It should be noticed that if F € Of (TV) and V is truncated cone, then
E/

Theorem 2.1.1 guarantees that limy%o’yg/]5 (- +iy) exists (strongly) in Df, .
We need the following lemma, which is a variant of a result shown by Rudin
in |88, Sect. 3.

Lemma 2.2.1. Let Vi and V5 be open connected bounded subsets of R™ such that
0€odVinNoV,. Set V. =ViUV,. Then, any function F that is holomorphic on the
tube TV, continuous on TVUR", and satisfies sup, v (1+]|z|?) 2| F (z+iy)| <
0o, for some N > 0, extends to a function F, which is holomorphic in the tube
T*V) and satisfies

Pz + )| Pz +iy)]
sup W qup T 2.20
o (U ey S MY S Ty (2.20)

where the constant My does not depend on F.
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Remark 2.2.1. If V; and V; are truncated cones, then the holomorphic function F
continuously extends on 7°"V) UR", as follows from Epstein’s edge of the wedge
theorem (cf. [88, Sect. 11]).

Proof. Applying exactly the same argument as in [100, Sect. 6.2, p. 122], one can
show that any function G, holomorphic on TV, that fulfills the L? conditions

sup | |G(x+iy)|’dr < oo and limG(- +idy) = imG(- +iy), in L*(R"),
yeV JRrn y—0 y—0
yeWL yeVa

admits a holomorphic extension G to T°*V). Find r such that |z| < r forall z € V.
Let A > r+1 and set Q(z) = II7_, (z; +iX)V 2. The function G(z) = F(2)/Qx(2)
satisfies the above two L? conditions and so F = Q,G is the desired holomorphic
extension of F to T"(V), We first show (2.20) when N = 0, which follows if we
prove F(T*V)) € F(TV UR"). Indeed, if ¢ € F(T"V)\ F(TV UR"), then
J(2) = 1/(F(z) —¢) would be continuous in 7V UR™ and holomorphic on TV, but
this would contradict the fact that J must have a holomorphic extension to the
tube T"(V). For general N, take again A > r+1 and define F)(z) = F(z) /T (2+
iAN. Then, if |F(x + iy)] < M(1+ [z]|*)"/? for all x +iy € T, we obtain that
D, s iycann(1+ [V V2P (@ 4 ig)] < (3 1) sup, e [Bae + iy)]| =
(A7) SUD, 4 iyev |F)\(x+iy)] < M(A+7)"Y (the equality SUP, iyeTeh(V) |}~7’,\(x—|—
iy)| = sup,iyerv [ FA(x +iy)| follows from the case N = 0), which in turn implies
the claimed inequality with My = (2r + 1)"V. O

We have the following DF, edge of the wedge theorem of Epstein type.

Theorem 2.2.1. Let V; and V5 be open connected bounded subsets of R™ with
0€ViNdVy. SetV=ViUVy IfFy € O} (TY) and F», € Of (TY) have
E E

* *

distributional boundary values on R™ and

. . T . . . /
ZIJIE}I(I)Fl( +2y)—31/11>I(I)F2( +1iy)  weakly in D, ,

yeV yeVs

then, there is F € Of, (T™V)) such that F(z) = Fj(z) for 2 € TV, j = 1,2,

B,
Remark 2.2.2. The existence of the limits lim, . yev, Fj(- +iy) in Dy, j = 1,2,
is part of the assumptions of Theorem 2.2.1; however, if V; and V5 are truncated
cones, such limits automatically exist and in particular F'(-+iy) converges strongly
in D, to the common limit as y € ch(V') tends to 0.

Proof. Reasoning as in the proof of Theorem 2.1.1 (via a parametrix argument),
we may assume that F; have continuous extensions to TV UR" with Fy(z) = Fy(z)
for + € R™ and that there is M such that | F;(- +y)||zr < M and |F;(z + iy)| <
Muw(x) < M(1+ |z|>)7/? for x + iy € TV, j = 1,2. The pointwise estimate and
Lemma 2.2.1 imply the existence of F, holomorphic in 7%"(") such that F(z) =
Fj(z) for z € TV, j = 1,2. It is remains to show that F(- +iy) € E’ for every
y € ch(V) and {F(- +1y): y € ch(V)} is bounded in Dy, . Let » € D(R") with
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lolle < 1. Set G(2) = [p. F(t+2)p(t)dt, z € TV). Then the restriction of G to
V extends contlnuously to TVUR™ and |G (x+iy)| < M (1+]|z|*)™/? for z+iy € TV.
The inequality (2.20 ) from Lemma 2.2.1 gives |G(z + iy)| < MM, (1 + |z|?)"/?
for x + iy € TV); in particular |G(iy)| < MM, for all y € ch(V). Since ¢ is
arbitrary and D(R") < F, we obtain that sup,cq,v) [[F( - +iy)||zr < MM.. -

In particular, we have the ensuing corollary on analytic continuation; the case
Cy = —( is an edge of the wedge theorem of Bogoliubov type.

Corollary 2.2.1. Let C; and Cy be open cones such that int(C5) Nint(Cy) = 0
and let r1,m9 > 0. Set V = Cy(r1) U Cy(ry). If F; € OF, (TC")), j =1,2, are
B
such that
lim Fi(- +dy) = lim Fy(- +iy) in Dy,
y—0 y—0 *
yeCy yeCs

then Fy and Fy can be glued together as a holomorphic function through R™; more
precisely, the domain T™V) of their holomorphic extension F € (’)b (TCh( )

contains a tube R™ +i{y € R™ : |y| <r}.

Proof. The condition implies that the cone C' = ch(C} U Cy) contains a line, and
therefore the origin as interior point. O

The last result of this section is an edge of the wedge theorem of Martineau type
[61, 68], it is related to the classes of holomorphic functions on wedges introduced
in the next definition.

Definition 2.2.2. Let C' be an acute open convex cone and a > 0.

(i) We define Og;xP(Tc) as the space of all holomorphic functions F' € Op/(T°)
such that there is x > 0 such that for every ¢ > 0

1 —K
—(a+e)|yl ;
supe 1+ F(- +1 r < Q.
yeg ( dC(y)) H ( y)HE

(it) The space Op; “P(C™) consists of all F' € Op/(C™) such that for every € > 0

sup e~ @ F(- +iy)|| g < oco.

yeR™

We also use the notation Op;**(C") := O “P(C") for this space.
E

Observe that a parametrix argument allows us to conclude that O eXP(TC)
E

O “P(T ). In particular, every element of O “P(C") is actually an entire func-
tion of exponential type.

According to Theorem 2.1.2 (cf. Corollary 2.1.5 for the case C' = R"), every
element F' € O5P (TC) is completely determined by its boundary value distri-

bution, which we denote by bv(F) = limyoyec F'(- +iy) € Dp,. In the next
theorem each Cj is either an acute open convex cones or C; = R™. Note that it
considerably improves earlier results by Carmichael [10]
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Theorem 2.2.2. Let F; € O P(T%), j = 1,2,....k, and let € > 0. Set
B

Cj, =ch(C;UC,) and CN’j =\, Cjo- If Z§:1 bv(F;) = 0, then for each j there
are G, € Og,ﬁ’ P(TCv) such that F; = S.F_ G;,. In particular, each F; has

a holomorphic extension that belongs to OHE “P(TCi). The G, may be chosen
such that G, ; = =G ,.

Proof. 1f some of the C), are R", the corresponding terms in the sum can be
absorbed into others. We may therefore assume that all C1,...,C) are acute
open convex cones. We can find g, such that F,(z) = £L{g,;z}, with suppg, C
C* + B(a) and g, € Dl . Find p, with bounded partial derivatives of any order
such that suppp, C C} + B(a+¢) and p,(z) = 1 for € suppg,. Then, g; =

— >z Pigu- Setting G, € (9‘”a ®P(TC%wr) as the Laplace transform of —p;g,,

we obtain Fj; =3 . Gj,. It remains to be shown that the G;, may be chosen
such that G, ; = —G;,. We proceed by induction over the number of summands.
The cases k = 1,2 are trivial. Assume that such a choice is possible for k. If

Zf:ll bv(F;) = 0, from what we have shown we can write Fj4 = Zle Grt1

where Gry1, € (’)“JrE SP(TC+1v). Thus, Z’?_l bv(Ggi1, + F,) = 0. By the
inductive hypothe51s we that there are G;, € Oa+5 P (T%w) such that G;, =

—G,;, 1 <jv<k,and F; + Gy41,; = ZV LG The property is then satisfied
if we define Gj,k—i—l = _Gk—‘rl,j and Gk+1,k+1 = 0. ]

2.3 The boundary value isomorphism
E, = Db, (R")

We will use our results to represent the space D7, as a quotient space of analytic
functions. We introduce suitable spaces of analytic functions. For an acute open
convex cone C, we set (cf. Definition 2.2.1)

O;fp (TC) U O;} exp (TC)'

Define also
0"(C") = 0p(C") = [ 05 (C).
* QZO *
We consider @, Op™> (T ©), where C is either an acute open convex cone or
C = R" (so that Obff{p((C”) is a term of the direct sum), and its subspace Np"7
generated by all elements of the form Fy + Fy — Fj, where F; € Oexp(Tc)

j =1,2,3, are such that C3 C C; N Cy, and Fi(2) + Fy(z) = F3(z) for z € Cg. We
remark that some of the three functions may be identically zero. Next, we define
the quotient vector space

Db P (R™) (@0 P (T ) /Npy-
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The equivalence class of Z?Zle € Do Op,, (T ©) is denoted by [Zle F;] =
Z?:l [FJ]

The mappings bv : O;’;’ (T — Dj clearly induce a well-defined boundary
value mapping ’
bv : Db (R") — D, (2.21)

namely, bV(Z?Zl[F}D = 2521 bv(F}) € Df,. Combining our previous results, we
obtain:

Theorem 2.3.1. The boundary value mapping bv : Dby, (R") — Dy, is a bijec-
tion.

Indeed, that (2.21) is surjective follows at once from Theorem 2.1.3, whereas
the injectivity is a consequence of Theorem 2.2.2.

2.3.1 The one-dimensional case

Assume that the dimension n = 1. The construction from the previous subsection
significantly simplifies if we take into account the natural orientation of the real
line. Consider first

OFP(C\R) = {F € Op(C\R) : Fasioe) € O (R £i(0,00))}.

If we replace the boundary value mapping by a jump across R mapping, we obtain
that
D, = 0" (C\R)/O"(C),
the isomorphism being realized by the mapping O (C \ R)/Og*(C) — Dy,
El *

given by [F] — lim,_,o+(F (- +1y) — F(- —1y)).

We may also give another version of the quotient representation. Let 2 be an
neighborhood of the real line of the form 2 = R + ¢, where I is an open interval
containing 0. Set

Op,, (\R) = {F € Op(Q\R): (VI' € )@)( sup [ylIF(- +ig)ller < 00)}.

Then, in view of Theorem 2.1.1 and the edge of the wedge theorem of Epstein
type (Theorem 2.2.1), the jump across R mapping produces the isomorphism

D}y, = Op, (2\R)/Op:(€2).

2.4 Heat kernel characterization

We now turn our attention to the characterization of elements D%, as boundary
values of solutions to the heat equation on R™ x (0,ty). Given f € D'(R"), we
consider the Cauchy problem for the heat equation

atU — AU = 0, teR" x (0,t0)7 (222)
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with initial value

lim U(-,¢)=f in D/(R"). (2.23)

t—0t

Observe that under certain bounds over U, such as [15]
U (z,1)] < Cexp ((%)a +ajal?) (0<a<l, a>0),

one can ensure uniqueness of the solution U and, in such a case, U is determined
a2
via convolution with the heat kernel: U(x,t) = (4mt)~"/? <f(§), 6_%>.

Theorem 2.4.1. Let f € D'(R"). Then, f € Dy, if and only if there is a solution
U to the Cauchy problem (2.22) and (2.23) that satisfies

U(-,t)e E' forallt e (0,t) (2.24)

and there are constants M > and k > 0 such that

M
U Ol < o L€ (0,%0)- (2.25)
In such a case,
lim U(-,t)=f strongly in D . (2.26)
t—0t *

Proof. If f € D, then Ul(x,t) = Fyf(x, V) with ¢(£) = (4m) "2 167/ satisfies
(2.22)—(2.26), as follows from Theorem 1.3.2. Conversely, assume that (2.22)—
(2.25) hold for U. Applying the parametrix method from the proof of Theorem
1.3.1, we conclude that U can be written as

Ulz,t)= Y 00Us(x,t), (2,t) €R" x (0,1), (2.27)

la|<N

where each U, has the form U,(x,t) = (U( - ,t) * 04)(z), with o, € E being
compactly supported and continuous. FEach U, is also a solution to the heat
equation on R™ x (0,%y), and it satisfies U,( - ,t) € E, for all t € (0,%y), the
E'-norm estimate

M|l oall1.

Wl )l < ——57—, ¢ € (0,%), (2.28)
and the pointwise estimate
w(z) (1 +[=[)” "
|Ua(l',t)| S MHQO‘HEt—k S Mat—k, (l',t) e R" x (O,to) (229)

Using the pointwise estimate (2.29) and applying Matsuzawa’s heat kernel cha-
racterization of §'(R™) [62], one concludes the existence of f, € S'(R™) such that
lim; o+ Uy( - ,t) = fo in S'(R"), for each || < N. The uniqueness criterion
for solutions to the heat equation [15] yields U,(z,t) = Fjfa.(7,\/t) with again
d(€) = (4m) /2714 The F'-norm estimate (2.28) and Theorem 1.3.2 now
imply that each f, € D}, Finally, by (2.27), we get f = 3, oy fo € Dy, O
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Theorem 2.4.1 is complemented by the ensuing result, whose proof was already
given within that of Theorem 2.4.1.

Corollary 2.4.1. Let U be a solution to the heat equation (2.22) that satisfies
(2.24) and the estimate (2.25). Then, there is a distribution f € Dy, such that
(2.26) holds. Moreover, U is uniquely determined by f.

We end this section with the following corollary, the proof is analogous to that
of Corollary 2.1.4.

Corollary 2.4.2. Let X C S§'(R") be a Banach space for which the inclusion map-
ping X — S'(R") is continuous. If U is a solution to the heat equation (2.22) that
satisfies U(-,t) € X for everyt € (0,10) and the estimate supye o ) t*|U (-, )| x <
oo for some k >0, then limy_,o+ U( - ,t) exists in S'(R™).



Chapter 3

Convolutors and multipliers in the
space of tempered ultradistributions

In [94] and [38] convolution operators and multipliers of the space S (R") were
studied by L. Schwartz and J. Horvath. Later, G. Sampson, Z. Zielezny [89, 116]
characterized convolution operators of the spaces K, p > 1. D. H. Pahk [72]
considered convolution operators in K. The topological structure of the spaces of
multipliers and convolutors in K, was studied by S. Abdulah [1]. The convolution
in ultradistribution spaces were considered in [42] by S. Pilipovi¢, A. Kaminski, D.
Kovacevié¢, while convolutors in the spaces of ultradistributions were investigated
in [12, 42, 43, 53, 76, 77, 78|.

The main interest in this chapter are convolutors and multipliers in the space
of tempered ultradistributions of Beurling and Roumieu type and their characte-

rization. To motivate the research on convolutors, consider the following example:
o

Let P(D) = > a,D* (with suitable assumptions on coefficients), then the equa-
|af=0

tion P(D)u = v can be rewritten in the form P(J) * u = v. Hence, considering

equations of the type S*u = v one generalizes the concept of ultradifferential ope-

rators with constant coefficients. In order to consider such equations, S must be

an ultradistribution that has well-defined convolution with elements of S(*») (R™),

resp. SIMe} (R™).

3.1 The space of convolutors

Assume that (M.1), (M.2) and (M.3) hold.

Definition 3.1.1. The space of the convolutors O (R™) of S (R") is the space of
all S € & (R") such that the convolution Sx¢ is in §* (R"), for every ¢ € S* (R"),
and the mapping

o — Sxp, S (R") — S (R") is continuous.

We shall also refer to the elements of O (R") as ultratempered convolutors.
Recall from [77] several results.
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Proposition 3.1.1. [77] If ¢ € S* (R") and S € S (R™) then,
(S*p)(z) =(S(t),p(z —1t)), z€R",

15 a smooth function which satisfies the following condition: There is k > 0, resp.
there is (k,) € R, such that for every operator P of class x and ¢ € §* (R")

P(D)(S x ¢)(x) = O(eMF=D) | x| — o0, resp.
P(D)(S * ¢)(x) = O(eN’“rJ““”D), | z |—= 0. (3.1)

From the definition, for S € OF (R™) the mapping
T—S+T, S (R")—S"(R"), is continuous.
Proposition 3.1.2. Let S € 8™ (R™). The following statements are equivalent .
(a) S is a convolutor.
(b) For every p € D*(R™), Sxp e S*(R").

(c) For everyr > 0, resp. there exist k > 0 such that {12 S(. —); z € R},
resp. {eM*leh) S( —x); = € R}, is bounded in D" (R™).

(d) For every r > 0, resp. there exist k > 0, there is | > 0, resp. there is
(ky) € R, and L™ (R™) functions Fy and Fy such that

S=PR(D)F + Fy, resp. S =P, (D)F + F,
and
e (| Fi(w) | + | Fa(e) )z < o0
resp.

™D (| Fy(2) | + | Fa(z) D= < oo

Proof. We will prove only the Roumieu case. The Beurling case is similar.
(a) = (b) It is obvious. (b) = (c). Let p € D* (R™).

(DTS, (1) = (VDS p(t + @) = MO (S 5 ) (—a).
Hence,
| ME(S 5 ) (—) |< Ci(S * @)

(¢) = (d). For this part we need the parametrix of Komatsu Lemma 0.2.3. Let (2
be a bounded open set in R™ which contains zero and K = Q2. Let B be a bounded
set in D}Mp}. For ¢ € B

[ (MHEDT 5, (1)) |= M | (S 4 g)(—a) < € (32)

for all z € R™ where C' > 0 does not depend on ¢ € B. Denote by Léxp( ML)
the space of locally integrable functions f on R" such that f(-)e ®*I) ¢ L1(R")

supplied with the norm
11|t exp(neeryy = 1 ()e™ D) L0
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Let B; be the closed unit ball in the space L}

¢ € B. Then,

| (S =, 0) | =| {((S*@)(—a), ¥) |<||S* @(—x) - e F V| oo ||9)]| £ exp—nrl)
< Ol exp—nmrw yy < C-

Which means
| (S %9, 0) 1< Ol |t exp(-nacer-y (3.3)
for all ¢ € B and 1 € DM}, From (3.3) it follows that

{S =« | v € Byn D1} (3.4)

is bounded set in D}EM"}, and because D}EM”} is barrelled, the set (3.4) is equicon-
tinuous. Hence, there exist (k,) € R and € > 0 such that

| (S*0,9)|< 1,9 € BiNnD™M} 9eV (),

where
MP
Vi, (e) = {x € D" Ixllsen, <€} (3.5)

The same inequality holds for the closure V; (¢) of V4, (¢) in Di{]t/,[j;} CIfhe Dg\iz h

then for some Ly > 0, [|0/Ly||xx, < €. Hence, 0/Ly € m and | (Sx6,9) |< Ly
for ¢ € By N DM} (R™). Tt follows that for ¢ € DIMe} (R™)

| (S %0,9) [< Lollvl| 11 exp(— a1 - (3.6)

{Mp}

Because DIMr} (R") is dense in L} k) it follows that for every 6 in D, ;"

exp(
S*# is a continuous functional on Léxp(_M(k‘,l). Thus S *6 belongs to Lé“;p(M(k\~|)) =

{f € Lijoc R™) |[| F(-)eMFD|1, < 00}, since the space Ly, ) 15 the dual of
the space L}

exp(—M(k|)- Hence,

15+ 0(2) [ oo expaarr-y < Lo

where Ly > 0 is a constant which depends of 6. From Lemma 0.2.3 for the chosen
(k,) € R and Q there exist (k,) and u € Dg‘gﬁ Vand o € DéMp} such that

S = P; (D)(uxS)+ (¢ *5).

Now it is obvious that F} = u* .S and Fy = ¢ % S satisfy the conditions in (d).

(d) = (a) Assume that F» = 0. The general case can be proved analogously.
We will prove that ¢ — F % ¢ is a continuous mapping from S} (R") to
SMe} (R™). Then, (a) will hold because of the continuity of the operator Py, (D)
and the fact that Py, (D)(S * ¢) = P, (D)S * ¢.

Observe that the continuity of the mapping ¢ — F' * ¢ will follow if we
prove that for every r which is bigger than some fixed r(, there exist [ such that
¢ — F % is a continuous mapping from S to Sa?' (because SMr} (R™) is
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a inductive limit of Soj\fp’T). We will prove the later statement. For the k in the
condition (d) we choose rp, small enough such that for all » < r( the integral

/ o~ MUkIE) M (1t gy

R”
converge. Fix r such that » < ry. Note that

Pl |P _rPlax—t|P rP|tP
oM, — M M

p p

< MU=t | MOl < 9 MErla—th Ml (3 7)

and the last inequality holds since the function M(p) is nonnegative. For the
associated function there exist py > 0 such that for p < py, M(p) = 0 and for
p > po, M(p) > 0 (for the properties of the associated function we refer to [49]).

2
If|z|> /0 then from the inequality (3.7) it follows that
r

eM3lel) < geM(rle=th M),

2 r
If | z|< ﬂ there exist ¢ > 0 such that eMGl#) < ¢. Hence, it follows that for
T

all z € R, the following inequality holds eMG) < 2(c 4- 1) eMUle=th M) and
obtain that
e~ MOla—t) < M) g-M(5le))

where C' = 2(c+1). Let [ < r/4. Then,

@ | F Da (Uz)) o
e Mi”@ SE/IF@)||Da90($—t)|dt€M(“”')

M (k|t]) M(r|z—t|)

eM(klt)) eM(rlz—t[)

< C,<£>asr((p) / o= MKIE) M (r1H]) gy =M (3la]) M)
o T
RTL
Because of the way that [ is chosen, it follows that

[ | F o+ Dp(x) | eMUeD]] o

A < C"s,(p),

s1(F = ) = sup

where C” is a constant which does not depend on ¢. We have shown the continuity
of the mapping ¢ — F'x¢p, from Sr 10 SMP' Hence by the previous discussion,
¢ — F % ¢ is continuous mapping from St} (R") to StMe} (R™). O

It is clear that the ultratempered convolution of Sy, S, € OF (R") is in OF (R™)
(see [42]). As well for any T € 8’ and ¢ € S§*,

((Sy % Sy) * T,1p) = (Sy % T, Sy x90) = (T % Sy, Sy %)) = (T, (Sy * S3) x ). (3.8)

Supply Of (R") with the topology from L£,(S* (R"),S*(R"™)) and denote it
byO¢ , (R™) . The same topology on this space is induced by £,(S"™ (R") , 8" (R")).
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Proposition 3.1.3. The strong topology on L(S"™ (R™), 8™ (R™)) induces the same
topology on OF (R™).

Proof. Let U be a neighborhood of zero in & (R™). Without loss of generality we
can assume that

U=U\V"B)={Se€O;S*S8*)|S«xT eV, forall T € B'},

where B’ is a bounded subset in ™ (R™) and V' is a neighborhood of zero in
S™ (R™). Assume that

VI VI(B,2) = {T € 8" (R") | | (T¢) |< e, forall p € B},
where B is bounded in §* (R"), and € > 0. Let
V=4{peS* R") | |(T,¢)|<e,forallT € B'}.

Since S* (R")is barreled is follows that V' is a neighborhood of zero in §* (R").
Without loss of generality it can be assumed that B = B = {¢ | ¢ € B} and
B' =B ={T | T¢€ B} Let

W =W(V,B)={S € Oi(8";8")|S*xp eV, forallp € B}.

We will show that W(V,B) Cc U(V',B’). Let S € W(V,B), T € B and ¢ € B.
Then ]
| (ST, ) |=| (T, 5+ ¢) [<e.

Hence S*T € V' for all T' € B'. So, the topology induced by £,(S™ (R™),S™ (R"))
is stronger than the topology induced by £,(S* (R™) ,S* (R™)). The other direction
is similar and it is omitted. ]

Proposition 3.1.4. Og, (R") is complete.

Proof. Let {S,} be a Cauchy net in Og;, (R”). Then the net {S,} is a Cauchy net
in £,(S* (R"),S*(R™)), where S, : S* (R") — S*(R™) are induced continuous
linear operators by S, S,(¢) = S, * . Since S* (R") is complete and bornological
(|104, Cor.1 of Thm.32.2]), L£,(S* (R™),S*(R™)) is complete, there exists R €
Ly(S* (R™),S* (R™)), such that S, — R. Define T € S™*(R"), by (T,¢) =
R(¢)(0). For p € §*(R™), R(p) =T * @, since for x € R"

R(p)(z) = 1il5n(5u *p)(z) = ligl(Su * (T_2¢))(0)
= R(T_20)(0) = (T, T_pp) =T * ¢().

Thus for ¢ € §* (R"), T'x ¢ € §* (R") and the map ¢ — T * ¢ is continuous. It
follows that T' € Of (R"), and moreover S, — T in Of (R") since T'=R. [

Proposition 3.1.5. A sequence S; from O¢, (R") converges to zero in Og, if
and only if for every k > 0 resp. there exist k > 0, there exists r > 0, resp. there
exists (k,) € R and sequences of L™ (R™) functions Fy,, and Fy,, such that

Sj = PT(D>F1]' + ng, resp. Sj == Pkp<D)F1j + ng, (39)
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By, By € O¢ (R7),
[eMFD () By | 4| Fyy )|z < 00

and
Flj — 07 ng — 0 m /C*,b' (310)

Proof. The proof of the proposition is similar with the proof of the Proposition
3.1.2, but it will be given for the sake of completeness. Let S; be a sequence in

OgM”} (R™) which converges to zero in O/C{f”} (R™). Let Q be a bounded open set
in R™ which contains zero and K = Q and ¢ € D}{<M"} be fixed. Then S; x ¢ — 0
in StMr} (R™). Because S{Mr} (R") is a (DFS) space, it follows that there exist
k > 0 such that S; x ¢ € Saw k, and is bounded there, i.e.,

Lo || Mkl pa( g, N
up Kl (S; *£)(@)le

1 A <C,VjeN,

where C,, is a constant which depends only on ¢. So,
"D (S5 5 ) ()| < Cyp Vi €N.
Let ¢ € By N DIMe} (R™), then

| (Sj %9, @) [=] (Sj*,9) IS [1S)* Iz

<C, (3.11)

eXP(M(’C\ D) —

for all 7 € N, where B is the closed unit ball in Lexp — M)
From (3.11) it follows that

{S; x| ¢ € ByNDW} j € N} (3.12)

is weakly bounded set in D']{(M”} , and because Di(Mp} is barreled, the set (3.12) is
equicontinuous [91, Thm.5.2]. There exist (k,) € ® and § > 0 such that

| (S; 6,4 |[< 1,80 €V, (5),v e B,nDM}(R") | jeN,

where Vi, (8) = {x € D{M”}| Ix|lxk, < 0}. The same inequality holds for the
closure Vj, (9) of Vi, (9) in Dg\{f Ifo Dé s »} then for some Ly > 0, 10/ Lo ||k, <
8, hence 0/Ly € Vj, (8) and

| (S;%0,4) |< Ly, v € BLN DM} jeN.
It follows that for ¢ € DM} (R")
| (S5 % 0,9) |< Lollth|l £t exp(—nrri-)- (3.13)

Because DM} (R™) is dense in L} (M) ) it follows that for every ¢ in D{M”} (R™),
S; % 0 are continuous functionals on L}
S * 6 belong to Lo ). Hence,

exp

M) and uniformly bounded Thus,

exp(—

155 % ()| zz < Lp,VjeN,

exp(M(k|-[)) —
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where Ly > 0 is a constant which depends on 6. From the parametrix of Komatsu
(Lemma 0.2.3), for the chosen (k,) € R and Q, there exist (k,) and u € D{MP}

and ¢ € DéMp} such that
S = Py, (D)(Sy % u) + (S, ).

Let Fi; = S; *u and Fy; = Sj * . It’s obvious that u € (’)gM"} (R™), hence

Fi;, By € (’)/{M” (R*). Also Fy; = S, *u — 0 and Fy; = S, *x¢ — 0 in
{Mp} n

Oc " (R").

Conversely, let F; — 0 and Fy; — 0 in OgM”} (R™), S; = P, (D)F; + Fj,
for some (k,) € R. Assume that Fy,, = 0 for all n € N. The general case is proved
similarly. Let M(B,V) is a neighborhood of zero in OgM”} (R™), where B is a
bounded set in St} (R™), and V is an open neighborhood of zero in StMr} (R™).
Since, Py, (D) : S} (R") — SIMp} (R") is continuous, there exist an open
neighborhood Vj such that P (D)(Vp) C V. Since F; — 0 in O/{M” (R™), and

M(B,Vp) is a neighborhood of zero, there exists jy, such that for all 7 > jo,
F; € M(B,Vp). Thus, F; * ¢ € Vp, for all ¢ € B and j > jo, and it follows that

Py, (D)(Fj x ) C Py, (D)(Vo) C V.
O

Remark 3.1.1. The inclusion Og;, (R") < S§™ (R") is continuous since for arbitrary
open neighborhood V' in §™ (R") consider O (R™):

W={SeOi(R")|SxdeV}.
Then it is obvious that from S € W it follows that S € V.

From the convergence of Fi;, Fy; to zero in Of (R"), in the above proposition,
it follows convergence in & (R").

Denote by £S8" (R") the space of elements f € &' (R™) such that for every
SeOn(R"), S« fe& (R") and the mapping

S — Sx*f, Og, (R") — & (R") is continuous.
Proposition 3.1.6. (i) £S5 (R") C &*(R") NS (R™).
(it) If f € ES (R™) and S € Of (R™) then S * f € £S5 (R™).
Proof. (i) It is clear from the definition of £S" (R™) and that if f € £§ (R"),

f € 8™ (R") and because ¢ is in OMY (R, 5 % f = f is an element in £* (R™).
c
(i7) From (i) it follows that S * f € 8™ (R™). Let T' € Of (R™). So,

Tx(Sxf)=(Tx*xS)xf

is in £&* (R™). It is obvious that the mapping T — T (S * f) is continuous, since
the mappings T — T xS — (T« S) x f = T % (S = f) are continuous. Hence,
Sx fe&S"(R). O

Note that S* (R™) is subset of £S5 (R").
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3.2 The space of multipliers

Assume (M.1), (M.2) and (M.3) hold.
As in [53] and [79], the definition of the space of multipliers is given as follows.

Definition 3.2.1. The space O}, (R") is the space of functions ¢ € £* (R™) such
that ¢ € O3, (R™) if and only if for every ¢ € S*(R™), ¢y € S*(R") and the
mapping ¢ — ¢, S* (R") — S* (R") is continuous.

From the definition, for ¢ € O3}, (R™) the mapping
T — T, 8" (R") — 8" (R")

is continuous. In the proof of the next proposition the following function will be

needed: .
vy = 32— (314

eM(klz;]) 7
j=1
where the function p € DIMe} (R"), has values in [0, 1], and suppp C {z :| 2 |<
L,z e R"}, p(z) =1, for x € {z| | x |< 1/2}. Here (z;) is a sequence of vectors
of R™ such that | z; |> 2 and | zj41 |>] z; | +2, 7 € N.
Since p € DIMr} (R™), there exist A > 0 and C' > 0 such that sup |D%p(z)| <

Ch®M,. We will show that ¢» € SIM»} (R™). Choose r > 0 such that rh < 1/2
and r < k/(H4v/2). Using that 1zl < 2, one easily obtains

[
T2a+25<$>26 | Daw(x) |2
Z MgMg dx

a?ﬁ R™

- 00 r2a+26< >2,802 hzaMg .
<2Y [ g

00 r2a+26<x>2602h2ad
ZZ MZ2M ] v
B I= e a1<1
7,,2(17,.2626 | T |2B CZhQad
<> Z MZe2M (T, x
@B J |ac z;|<1
ZZ ChP VR e
M3e2M D z x
B j lz—z;|<1

(rh)?e(rv/2)%8 | x; |#
S CQZZ M262M klz;))

a,B j=1

<oy UV |y
2 M2R2B42 | [28+2

a,f j=1




The space of multipliers 61

CroA — — W(2rV2HN\2 1 ,
S?ZZ(”‘)Q( k ) |xj|2§0'

a,B j=1
The proof of the next proposition in (M,)-case is given in [42| and [79].
Proposition 3.2.1. Let ¢ € C* (R"). The following statements are equivalent:

(i) ¢ € Oy (R").

(i) For every h > 0, resp. for every k > 0, there exists k > 0, resp. there exist

h >0,

hefle MG @]
sup < 00.
aeNg{ A4a }

(iii) For every ¢ € 8* (R™) and every r > 0, resp. for some r >0
Trap () = Opoc(Vp) < 00.
(iv) In Roumieu case, for every ¢ € SIMe} (R™) and for every (r;), (s;) € R
Vrirsy o (©) = Yoo, (ip) < 00,

Proof. Only the proof for the Roumieu case will be given.

(131) < (iv) It is obvious. We will prove (iii) = (ii) = (i) = (4i7).

(#3i) = (ii) First, o € £Me} (R"). Indeed, let K be a fixed compact set in R"
and choose x € DM} with values in [0, 1] and x(x) = 1 on a neighborhood of K.
Then there exists » > 0 such that

D @)X @Dl - r e D (@) x (@)oo
sup i < sup i

= Cs,(px) < o0.

Then, D%(p(z)x(z)) = D0 (z) for x € K. Thus ¢ € EMr} (R7),
Suppose that (i) does not hold. Then there exist k£ > 0 such that for alln € N,

le=M* Do) e
sgp YA =00

Since ¢ € EMp} (R™) for every compact set K, there exist C' > 0 and ng € N
such that for n > ng

<C.

o 1D D20 s
a neM,

Hence, we can choose «; and z;, where | z;41 |>| z; | +2, such that

eMHED | DUg(a;) |
j Mo, -
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Now take ¢ as in (3.14), where k£ and the sequence (x;) are the ones chosen here.
Then @y € SIMe} (R™), i.e., there exist [ such that

o M(k\x|)Da -
ap DL D el _

Then, there exists jy such that for all j > jo, [ > 1/ and

s M D ()

a M,
123 eMUil) | D (o)1) (x5)) |
> .,
- ie UesD | D () |
= Ja T MU,
S MUzl

This implies that i) is not in Sé\.i[”’l, which is a contradiction with the above
assumption.
(44) = (i) From the condition (i) it is obvious that ¢ € £{Mr} (R™). It is enough
to prove that for every r > 0 there is [ > 0 such that the mapping ¢y — @1 from
Sor” to Sarlis continuous.

Let 7 > 0 be fixed. Put k = r/4. By (i7), there exist h > 0 such that

he —M(klxl)Dcx -
sup e = =~ _

If ] <h/4 and | < r/4, then

()| MU D (@) () | o

M,
3 (4) PP D
=A% Ma-sMp
> <a> (20)2 [ M) DB ()= M HlaD) MKz 5 DBy )M rlahe=Mrlapa—p ),
_Bga B 20 ro— BMa—ﬁMﬁ
21 20\ a=8
< —M(rlz|) , M (klz|) , M (l]z]) < '
< Cs,W)le 3 (5)5 () () = e

where the last inequality holds because of the way that [ is chosen.
(i) = (i) It is obvious. O

Remark 3.2.1. If ¢ € O3, (R™), then p € S (R™).

Denote by L£(S* (R"),S* (R™)) the space of continuous linear mappings from
S* (R") into §* (R™). The space O3, (R™) is its subspace. We use the notation
Ly(S* (R"),S* (R™)) for the space L(S* (R™),S* (R")) with the strong topology.
Also, O3, (R™) can be equipped with the topology induced by £,(S™ (R™) , 8™ (R™)).
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Similarly as in Proposition 3.1.3 it can be proved that the topologies induced by
Ly(S* (R™),8* (R™)) and L£,(S™ (R"), 8™ (R™)) are the same. The space O}, (R™)
equipped with this topology is denoted by O3, (R").

Proposition 3.2.2. The Fourier transform is a topological isomorphism of Oy, (R™)
onto Og;, (R™).

Proof. Only the Roumieu case will be shown. Using (d) from Proposition 3.1.2,
there exists k > 0 and there exist (k,) € R such that S = P, (D)F + Fy, where
F and F; satisfy the growth condition given in Proposition 3.1.2. Without loss of
generality it may be assumed that F; = 0. By (M.2), the following estimates for
the derivatives of the Fourier transform of F' can be obtained:

| D°F(F) | =| F(2°F) |= ‘ / ) e—wfxap(x)dx‘

< |2 |* | F(x) | doe < Cl/ |z |@ e”MKl2D gy (3.15)
R™ R"
‘x|a C \a|+n+1 HC |OLH’TL+1
<y /n WMQ—HL—H(E) dx < CMaMn—i—l(?) ~

In [49] the following estimate of the analytic function Py, () is given: For every
L, there is C such that

| P, (€) |[< ACeMWRLHIC) "¢ e

Using this result and the Cauchy integral formula, we obtain that for every L > 0
there exist C' > 0 such that

' /
| DB, (€) |< O - MU1ED, (3.16)

where ¢ > 0 is a constant that does not depend on L. It is also known that, for
every m > 0,

-—0 as k— oc. (3.17)
Let m > 0 be arbitrary and L be a constant such that

e MOmED MELIEN ) < o

and h is chosen such that 2h < 1 and 2hHe < k. From (3.15), (3.16), (3.17) and
(M.1) one obtains,

he||le= MDD (P, () F(E))|

sup 7
<suy” (5) T (D)1
< sup h
@ BLla ﬁ 2 MQ*IBMﬁ
L | o= MOmleh M (Lee) o\ _(a—p)! o ( Hey 30t
S CSlip 2_(1"6 e HLOO Z ﬁ Maiﬁda—ﬂ Mn+1 (2h> (T)

B
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< Cysup ||€M(m£|)eM(Lc’|£)HL002ia Z (g) <2h:rc>|ﬁ|

BLa
< @HefM(mI&I)eM(Lc’IéDHLOO < .

By (i1) of Proposition 3.2.1, it follows that S € OEM”} (R™) and it is obvious that
the mapping S — S is injective.
Now, we will prove that the Fourier transform from OEMP } (R™) to OgMp } (R™)

is an injective mapping. Let ¢ € (’)]{WM”} (R™) and v € ST™r} (R™). The mappings

b — ot — Flow) = (5-) o9
are continuous from S} (R") to SPM} (R"). Hence, ¢ € O (R") and the
mapping ¢ — ¢ is injective from Oj{WMp} (R™) into OgM”} (R™). Now it is enough
to see that the same things hold for the F = (27)"F ! and the fact that F is
isomorphism on St} (R") and S"Mr} (R™) with an inverse F~!. Because F :
S*(R") — S*(R") is a topological isomorphism it is obvious that it is also a
topological isomorphism from Oy, , (R") to O, (R"). O

Proposition 3.2.3. The bilinear mappings
Oy (R") X 8 (R") = 8" (R"), (o, ¥) = ay,

Ohp (R") x 8™ (R") = S"(R"), (o, f) = af,

are hypocontinuous.

Proof. Tt is obvious that the bilinear mappings are separately continuous. We
will prove only that the mapping 7" : O}, (R") x §*(R") — &* (R"), defined
by T'(p, 1) = 1 is hypocontinuous. Since §* (R") is a barreled space, from [91,
Thm 5.2], it follows that for every open set V in §* (R"™), and every bounded set
B in Oy, (R"), there is an open set W in §* (R") such that (B x W) C V. Now,
let V] be an arbitrary open set in §* (R"”) and let B; be a bounded set in S* (R").
Then, for the open set Wi in Oy, (R"), where W, = {¢ € Oy, (R") |pp €
V, forall ¢h € B}, follows T'(Wy x By) C V. O

Proposition 3.2.4. The space Oy, (R") is nuclear and reflezive.
Proof. The space S (R") is reflexive and the space S’ (R") is nuclear which imply

nuclearity of the space £,(S* (R"),S* (R")). The space Oy, (R") is reflexive as

a closed subspace of the reflexive space S (R") ®WS* (R™). The space Oy, (R")
is nuclear as a closed subspace of a nuclear space. O

Corollary 3.2.1. The space Og,(R") is nuclear and reflexive.
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3.3 Characterization of §”(R") through regulariza-
tion

We present here an important characterization of tempered ultradistributions in
terms of growth properties of convolution averages, an analog to this result for
S’(R%) was obtained long ago by Schwartz (cf. [94, Thm. VI, p. 239])

Proposition 3.3.1. Let f € D™*(R™). Then, f belongs to S"(R™) if and only if
there exists A > 0, resp. (l,) € R, such that for every ¢ € D*(R")

sup e MO |(f 5 ) (2)] < 00, resp. sup e VD |(fx @) (2)] <o00.  (3.18)
TzER™ TER™

Proof. Observe that if f € 8™ (R") then (3.18) obviously holds (one only needs to
use the representation theorem for the elements of S (R"), see [12]). We prove
the converse part in the {M,} case. The (M,) case is similar. Let §2 be an open
bounded subset of R” which contains 0 and it is symmetric (i.e., —Q = ) and
denote Q = K. Let B; be the unit ball in the weighted Banach space L

exp (Vi ()"
Fix ¢ € DM For every ¢ € By N DM} (R™), (3.18) implies

(b, o) = 1(f x 2,0 < [le™ IV f ()] Il 2 < Cy.

exp(Ny, (je]) —

We obtain that the set

{f=¢|¢ € Byn DI} (R")}

is weakly bounded, hence equicontinuous in D}EM”} (D%Mp} is barrelled). Hence,
there exist (k,) € R and € > 0 such that

(f x4, 0)| <1 forall ¢ € Vi, () = {n € DL} |Inllxw, <e}

and ¢ € B, N DM} (R").

Let r, = k,—1/H, for p € N, p > 2 and put r, = min{1,7}. Then (r,) € R.
Let ¢ € Dg\({f’j) and choose Cy, such that ||1)/Cyllr,r,) < €/2. Let §; € DM} (R™)
such that d; > 0, suppdy C {z € R”||z| < 1} and g, 01(2)dz = 1. Put §;(z) =
Jj"01(jz), for j € N, j > 2. Observe that for j large enough ¢ * J; € D%Mp}. Also

|0%((¢ % 6;) () = ()] < - [0%((x = ) = (x))]0;(t)dt.

Using Taylor expansion of the function 9% in the point x — ¢ we obtain

0% (Y(z) =z — 1) < \tﬁl/ 0% (s + (1 — s)(x — 1)) | ds
1B1=1 0
|41
S C|t|M|a|+1 H ;.

i=1
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So, for j large enough,

|a]+1

0 (0 % 6)(x) — () AfIIHm/ (0t = S, T ke

supp d; J i=1

Hence Cglw*éj € Vi, (€) for all large enough j. We obtain [(f * (v x §;), ¢)| < Cy
and after passing to the limit \( x 1, )| < Cy. From the arbitrariness of ¢ we

have that for every ¢ € Dé( there exists Cy, > 0 such that |(f 1, ¢)| <
Cyllollz , for all ¢ € D{MP (R™). Density of DM }(R") in Lexp(Nl (fy) 11

plies that for every fixed ¢ € D{M”} , f* is a continuous functional on Lexp( Ny ()

exp(N pl 0’

hence
I * ¥ lle, s, e = Co:

From the parametrix of Komatsu for the sequence (r,), there are u € Dg\({{j),

x € D¥}(Q) and ultradifferential operator of {M,} type such that f = P(D)(ux*
F) 4+ x* f. Thus f € S*(R"). 0

3.4 Space Of(R") and the duality characterization
of O/ (R")

Our next concern is to define the test function spaces OF(R™) corresponding to
the spaces OF(R"). We first define for every m, h > 0 the Banach spaces

2o 1/2
[ llmn = (Z 77\42 ||Da¢e—M(h|-)||i2) < o0

aeN"™

Opr i (R") = § 0 € C (R")

Observe that for m; < ms we have the continuous inclusion OCanQ LR —

Oé{fnl,h(R”) and for hy < hy the inclusion Oé{fn,hl (R*) — Og{;m (R™) is also
continuous. As l.c.s. we define

Mp n . My, n M,y n . My ny.
OLP(R™) = lim OX (R, OZ™(R") = lim 057 (R™);

m—00 h—oo
M, n . M, n M, n . Mp} ron
Ol R = lim O (RY) ,  O8H(R?) = lim OLH (R).
m—0 h—0

Note that O(Cjt/,[f) (R™) is an Fréchet space and since all inclusions O(C%”) (R") —
EMy) (R™) are continuous (by the Sobolev imbedding theorem), OéM” ) (R™) is in-
deed a (Hausdorff) l.c.s. Moreover, as an inductive limit of barreled and borno-
logical spaces, (’)(CMP) (R™) is barreled and bornological as well. Also Oé{\i”} (R™)
is a (Hausdorff) l.c.s. since all inclusions Oé{fmh (R™) — &Mp} (R") are conti-

nuous (again by the Sobolev imbedding theorem). Hence O{CMP} (R™) is indeed
a (Hausdorff) l.c.s. Moreover, Oé%p}(R”) is barreled and bornological (DF)-
space, as inductive limit of Banach spaces. By these considerations it also fol-
lows that OF (R") is continuously injected into £* (R™). One easily verifies that
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for each h > 0, SM) (R™), respectively STMe} (R"), is continuously injected into
O(M” (R™), respectively into O{c 5 o} (R™). Moreover, one can also prove (by using
cutoff functions) that D™») (R”) respectively D{M#} (R"), is sequentially dense in
(’)(M” (R™), respectively in OCh 2 (R™), for each h > 0. Hence SM») (R™), respecti-

vely S} (R™), is continuously and densely injected into O(CM”) (R™), respectively
into O{CM”} (R™). From this we obtain that the dual (O (R"))" can be regarded
as vector subspace of S”(R™).

We will prove that the dual of OF (R") is equal as a set to O (R™) (the general
idea is similar to the one used by Komatsu in [49]). To do this, we need several

additional spaces.
For m,h > 0 define

M(h|~|)¢a c LQ(R”),

Ym,h = {(¢a)o¢6N" €

2lal {[e~MH)y [2.)
||<wa>a||ym,h=(zm | ‘”‘“"”) <oo}.

aeN"

One easily verifies that Y;, is a Banach space, with the norm || - ||y, ,
Let U be the disjoint union of countable number of copies of R”, one for each
aeN' e, U= | penn Re. Equip U with the disjoint union topology. Then U

is Hausdorff locally compact space. Moreover every open set in U is o-compact.
On each R}, we define Radon measure v, by dv, = e —2M(hlz) g, One can define a
Borel measure p,, on U by

for E a Borel subset of U. It is obviously locally finite, o-finite and fim (K) < 00
for every compact subset K of U. By the properties of U described above, i, is
regular (both inner and outer regular). We obtained that ,, is a Radon measure.
For every (¢o)a € Ypn there corresponds an element y € LQ(U , i) defined by

X|Rn = ¢a'
One easily verifies that the mapping

(wa)a = X Ym,h — LQ(Ua Mm)

is an isometry, i.e., Yy, can be identified with L*(U,u,,). Also, observe that
Og o (R™) can be identified with a closed subspace of Y, , via the mapping

Y= ((—D)agp)a’

hence it is a reflexive space as a closed subspace of a reflexive Banach space.
We obtain that the linking mappings in the projective, respectively inductive,
limit (’)%{’)(R") = lim ngn’h(]R"), respectively (’)g\ip}(R") = lim (’)th( "),

m—oo m—)O
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are weakly compact, whence O(C%”) (R™) is an (F'S*)-space, respectively (’)g\i"}(R”)
is a (DFS*)-space, in particular they are both reflexive and the inductive limit
Og,\ip}(Rn) = lim Oé{ﬁ%h(R") is regular.

m—0

Theorem 3.4.1. T € D"*(R") belongs to (O5(R™))" if and only if

(i) in the (M,) case, for every h > 0 there exist F,p, o € N* and m > 0 such
that

M |[Fope™ D],

> i < o0 (3.19)

«

and the restriction of T' to O (R”) is equal to Z D“F,, },, where the series
15 absolutely convergent in the strong dual ofO (]R”)

(17) inthe {M,} case, there exist h > 0 and F, ,, o € N", such that for every m >
0 (3.19) holds and T is equal to ), D*F, ,, where the series is absolutely

convergent in the strong dual of OéMp}(]R”).

/
Proof. We will consider first the Beurling case. Let T" € <(’) ( ")) and h > 0

be arbitrary but fixed. Denote by T}, the restriction of 7" on Oévh”)(R"). By the
definition of the projective limit topology, it follows that there exists m > 0 such
that 7}, can be extended to a continuous linear functional on (’)g mn(R). Denote
this extension by T} ;. Extend T} 1, by the Hahn-Banach theorem, to a continuous
linear functional T} 5 on Y,, . Since Y, is isometric with L2(U , lbm ), there exists
g € L*(U, jim) such that

Ton (Ya)a) = / (Ya)agdtin.

We define
mA am n
Fon= e grne , a € N,
M2 || E, ,eM®D]|?
Obviously eM*DF, ;€ L2(R") and Z Al ’h2| | HL2 = HgHLz (O ) < OO
m 6% 'm

For ¢ € O(C]t/,[f)(R”),

(T0) =Tha (-D)"h) = 3 [ Fanlo) (=PI ola)de = (D Fu )

[0}

Moreover, one easily verifies that the series > D*F, is absolutely convergent
in the strong dual of O(Mp (R™).

Conversely, let T € D’ (MP (R") be as in (7). Let h > 0 be arbitrary but fixed.
One easily verifies that T is continuous functional on D) (R") supplied with the

topology induced by O(C]t/,[:’)(R”). Since DM»)(R") is dense in O(C]\jf)(R”) we obtain
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the conclusion in (i).

/
Next, we consider the Roumieu case. Let T' € (O{CMP}(R”)> . By the definition
of the projective limit topology it follows that there exists h > 0 such that T can
be extended to a continuous linear functional 7} on O{C%p}(R"). For brevity in

notation, put
Xm,h = Oth(Rn) and th m,h/Xm,h'

Since Y, are reflexive so are X, and Z,,; as closed subspaces, respectively
quotient spaces, of reflexive Banach spaces. Moreover, observe that for m; < ms
we have X, n» N Y, n = Xin, n. Hence we have the following injective inductive
sequence of short topologically exact sequences of Banach spaces:

0 — Xuin Y1 Zin 0
l1,1/2
0 —— Xijopn —— Yion —— Z1jon —— 0
l1/2,1/3
0 —— Xy —— Yizn —— Zisn —— 0

L1/3,1/4

where every vertical line is a weakly compact injective inductive sequence of Ba-
nach spaces (since X, p, Yo n, Zm.p are reflexive Banach spaces). The dual Mittag-
Leffler lemma (Lemma 0.2.1, see [49]) yields the short topologically exact sequence:
/ / /
0¢— (lim Xy ) 4 ((lim Vg ) 4 ((lim Zyp) 0.
— ) - ) — ’
m—0 m—0 m—0
Since (Xpn)m, (Ymn)m and (Z,n)m are weakly compact injective inductive se-
quences, hence regular, we have the following isomorphisms of 1.c.s.

/ /
(@ th) — 1im X}, (lin Ymh) — 1im Y}, and ( lim Zm7h> — 1im Z),,
m—0 m—0 m—0 m— O m—0 m—0
from what we obtain the following short topologically exact sequence:

0« lim X , «— lim Y, , «— lim Z, , «<— 0.

m—0 m—0 m—0

Hence, there exists T, € hm Y, h whose restriction to O{ g - hm X is T7.

m—>0 m—>0
Now observe the projective sequence:

l1,1/2 L1/2,1/3 ’ tb1/3,1/4
lh { 1/2h ; 1/3,h
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where tLl/k,l/(kH) is the transposed mapping of the inclusion ¢y 1/4k41). The
mapping
tbl/k71/(k+1) : Yll/(k+1),h — Yll/k,h

Iﬁdeed7 for (Ya)a € Yijkp and T € Yll/(k-',-l) , there exists g € Lz(ﬁ, [41/(k+1)) such
that

is given by

s Ts (B = (T, ()a) = / 9(a)adiis s

— E _ E : —2M(hlz|)

= a /Rn wagadﬂl/(k+1) = (l{?—l—l 2|0‘M2/ ¢aga dx
_E:L/ " Lm' ~2M(hal) g _/( o (t)ud

T L REIME Jo (g 1)l 9 v = [ WaalPa)atlinyk

k2le
where (xa), = (W9a> le/kh
By definition, the projective limit lim Y, . is the subspace of [], Y, /  consis-

m—>0
ting of all elements ((w((f))a> SN Yf/k,h such that for all ¢,j € Z,, t < j,
tbl/t,l/j (( g))a> = (d’g))a (where tb1/t,1/j = tLl/t,l/(t+1)t 0..o0 tLl/(j_l),l/j). Hence,
if we put (¢a)a = (5)a, then LQ(U,MW) () = (s, for all s € Z,.
In other words, we can identify lim Y, » with the space of all (¢4 ) such that

m—>0
1/2

2|
for every s > 0, <Z i\/[? H¢ae (Rl HL2 Rn)) < 00.

Since T, € lim Yy, ,, there exists such (¥a)s such that, for m € Z, and

m—r0o0

(Xa)a S le/mha we have T2 Xa oc Z m2|a|wo¢X0¢dﬂ'1/m- Put Foz7h -

e~ 2M B
M2

«

1/2
. Hence, for every s > 0, (Z 32|a|M§ HFa,heM(hl'DHiz(Rn > < 0.

Moreover, for ¢ € (’){MF (R™), there exists m € Z, such that ¢ € OCl/mh(R").
We have

=, / Fap(@)(=D)"e(x)dz = Y (D" Fup, ¢).

«

: {Mp} mony N : M} oy
Since Of " (R") is a (DFS*)-space its strong dual (Og,” (R™)) is complete.
k) ’ b
If B is a bounded subset of (’)g\;l[”}(R") then it must belong to some Oé{fmh(R”)
and to be bounded there (the inductive limit O{C]’\zp}(R”) = lim Og o (R™) is re-

m—0
gular). One easily verifies that ) sup,cp [(DFan, p)| < 00, hence » D*Fy
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!/
converges absolutely in (O{ ”}(R”)> . Since OéM”}(R”) is continuously and den-
b

sely injected into (’){M”} (R™) (DIM»} (R™) is dense in these spaces) it follows that
the series ) D®F,  converges absolutely in the strong dual of (’)éMp}(]R").

Conversely, let T € D{Me}(R™) be as in (74). Then it is easy to verify that
T is a continuous functional on DM} (R") when we regard it as subspace of

(’)g‘gp}(R”), where h is the one from the condition in (ii). Since D{M#}(R") is dense

in O{C%p}(R”), T is continuous functional on O{C%p}(R”) and hence on O{CMP}(R”).
[l

The next theorem realizes our goal in this chapter: We may identify Og(R")
with the topological dual of OF(R™).

Theorem 3.4.2. The dual of OF(R™) is algebraically isomorphic to OF(R™).

Proof. Let T € (O5(R™)) C 8*(R™). To prove that T € OF(R"), by Proposition
3.1.2, it is enough to prove that T x ¢ € §*(R") for each ¢ € D*(R").

We consider first the (M,) case. Let ¢ € D) (R") and m > 0 be arbitrary
but fixed. By Theorem 3.4.1, for h > 2m, there exist m; > 0 and Fi, , o € N",
such that (3.19) holds. Take my > 0 such that my > Hm and H/mo < 1/(2m;).

For this my there exists C’ > 0 such that |D’p(z)| < C”Mﬁ/mlfl. Using the
inequality eM(P+d) < 2eM2P)MN) 5 X\ > 0, for z,t € R™ one obtains

Mmlzl) < 9 M (hla—t) M(hlt).

Then, we have

ml?! | DS (T % ) ()| M=)

My
mlﬁle (mlz]) N
< Z NFan] |D* ol — 1)) dt
. mlﬁle ZHF () </ D™ (e — 2 _oM(nlt)) )1/2
< h€ QO(.Z' t)‘ € dt
R’VL
mlﬁ‘ h|| Oz+,3 _ 2 2M(h|$*t|) 1/2
< leFah6 I { [ 1P etz =) «
m' A . (Hm)lﬂlHl M, .
< o B e g o) < 63 arr [ Fane™
o msy @ e
< Gy (72) ;ﬁsa

Since m > 0 is arbitrary, T x ¢ € SM»)(R") and we obtain T € (’)gMp)(]R”). In
the {M,} case, there exist my, " > 0 such that |DAp(z)| < C’Mg/m‘fl. Also, for



72 Convolutors and multipliers

T there exist h > 0 and F,j, @ € N* such that (3.19) holds for every m; > 0.
Take m > 0 such that m < h/2 and m < my/H and take m; > 0 such that
1/(2my) > H/msy. Then the same calculations as above give

mlBl \Dﬁ(T " QD)(@‘ eM(mlz|)
Mg

<C,

ie., T*pc SIMH(R™). We obtain T € OgM”}(Rn).

Conversely, let T' € Og(R™). In the (M,) case, by Proposition 3.1.2 (|21, Prop.
2|) for every r > 0 there exist an ultradifferential operator P(D) of class (M,) and
Fy, Fy € L™ (R") such that T = P(D)F1 + F, and || M)(Fy + F)||, . < C. Let
h > 0 be arbitrary but fixed. Choose such a representation of T for r > H?h.
For simplicity, we assume that Fy, = 0 and put F© = F;. The general case is
proved analogously. Let P(D) = ) c,D“ Then, there exist ¢,L > 1 such
that |co| < cLI®/M,. Let F, = coF. By [49, Prop. 3.6] we have Mz <
CeME?hlz]) < ¢ eMrlzl)  We obtain

M? 2
> i eV Flle < &3 ppleal® [ F I e ], < o0

[0}

So, for the chosen h > 0, (3.19) holds with m = 2L. Since T' = ) D*F,, by

!/
Theorem 3.4.1 we have T € (OéM”)(R”)> . In the {M,} case there exist r > 0, an

ultradifferential operator P(D) of class {M,} and L* functions F; and F, such
that T'= P(D)F; + F, and ||6M(’"|'|)(F1 + FQ)”LOO < C. For simplicity, we assume
that £y, = 0 and put F' = F|. The general case is proved analogously. Since
P(D) =) coD* is of class {M,} for every L > 0 there exists ¢ > 0 such that
lca| < cLI®l/M,. Put F, = c,F. Take h < r/H?. Let m > 0 be arbitrary but
fixed. Then there exists ¢ > 0 such that |c,| < eml® /(21%1A1,). Similarly as above

ZMﬁm_Qla‘ He]\/l(h"|)lu’a||i2 < 00.
«

!/
Since T'= )" D*F,, by Theorem 3.4.1 we have T € (O{CM”} (R”)) : O

By this Proposition, from now we will denote the dual of OF (R"™) by O (R").



Chapter 4

Translation-invariant spaces of
ultradistributions

In this chapter we obtain analogs of the results in Chapter 1(see also [21]) for ultra-
distributions. Note that new difficulties arise, mainly due to the different structure
of the spaces used in the rest of the thesis such as D*(R™), D™*(R"), S*(R"), S"(R")
e.t.c., e specially in {M,,} case. Also, there are less results available in the literature
concerning ultradistributions than those from the classical theory of distributions
that we can use. As expected, the proofs and technics used here are different
and more complex. We mention that we always assume that the sequence (M)
satisfies the assumptions (M1), (M2), and (M3) (see Section 0.2).

4.1 Translation-invariant Banach spaces of tempe-
red ultradistributions

We start by defining translation-invariant Banach spaces of ultradistributions.

Definition 4.1.1. A Banach space F is said to be a translation-invariant Banach
space of tempered ultradistributions of class = if it satisfies the following three
axioms:

(I) D*(R") — E < D"*(R").
(II) T, : E — E for each h € R™.

(III) For any g € E there exist C' = C, > 0 and 7 = 7, > 0, resp. for every 7 > 0
there exists C' = C,, > 0, such that ||Tyg|p < CeMTH) vh € R™.

As in the distribution case (Remark 1.1.1), note that (/) and (II) imply the
continuity of the operators T}, : E — FE for each h € R". The weight function of
E is the function w : R — (0, 00) given by w(h) := || T-4||2(p)-

Throughout the rest of the chapter we assume that F is a translation-invariant
Banach space of tempered ultradistributions. It is clear that w(0) = 1 and that
logw is a subadditive function. We will prove that w is measurable and locally
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bounded; this allows us to associate to E the Beurling algebra L, i.e., the Banach
algebra of measurable functions u such that [julli, = [, [u(z)] w(z)dz < oco.
The set of sequences R and the associated function N, for the sequence N, =

M, HLZ'O ri, where (1,) € R, were introduced in Subsection 0.2.1.
The next theorem collects a number of important properties of E.

Theorem 4.1.1. The following property hold for E and w:
(a) S*(R") — E — S"(R").
(b) For each g € FE, }llip%HThg — glle = 0 (hence the mapping h — Tyg is
ﬁ

continuous).

(¢) There are T,C > 0, resp. for every T > 0 there is C > 0, such that

w(h) < CeMtD - yp e R,

(d) E is separable and w is measurable.

(e) The convolution mapping x : S*(R") x S*(R") — S*(R") extends to * :
LY x E — E and E becomes a Banach module over the Beurling algebra L},
1.€.,

[uxglle < [lullullglle- (4.1)

Furthermore, the bilinear mapping * : S*(R") x E — E is continuous.

(f) Let g € E and ¢ € S*(R"). Set p.(x) = e "¢ (x/e) and ¢ = [g, p(z)dx.
Then, lirgl+ llcg — @- * g||g = 0.
e—

Alternatively, in the {M,} case, the property (c) is equivalent to:
(¢) there exist (I,) € R and C > 0 such that w(h) < CeM(M) wh € R

Proof. The property (b) follows directly from the axioms (I)—(III). For (d), notice
that (I) yields at once the separability of E. On the other hand, if D is a countable
and dense subset of the unit ball of £, we have w(h) = sup,cp |79z, and so
(b) yields the measurability of w.

We now show (¢). In the (M,) case, consider the sets

EJ:V = {g S E| HTthE < jeM(V‘h‘)vv}L € Rn}7 j?V S Z+'

Because of (III), £ = UW6Z+ Ej,. Since E;, = (\nern Ejvp, Where Ej,; =
{9 € E||Thgllp < jeM¥"D} and each of these sets is closed in E by the continuity

of Ty, so are E;,,. Now, a classical category argument gives the claim. In the {M,}
case, for fixed 7 > 0, consider the sets

E; = {g € E|||Thyllr < jeMUIhD for all h e R”} ,J E L.

Obviously £ = ez, Ej- Again the Baire Category Theorem yields the claim.
Before proving that (c) is equivalent to (¢) we state the following Lemma.
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Lemma 4.1.1. (/85]) Let g : [0,00) — [0,00) be an increasing function that
satisfies the following estimate: for every L > 0 there exists C' > 0 such that
g(p) < M(Lp) + InC. Then, there exists a subordinate function €(p) such that
g(p) < M(e(p)) +InC’, for some constant C' > 1.

Obviously (¢) = (c). Conversely, define F': [0,00) — [0,00) as

F(p) = sup sup In, ||Thglls.
k< llgll <1

One easily verifies that F(p) is increasing and satisfies the conditions of Lemma
4.1.1. Hence there exists an subordinate function €(p) and C” > 1 such that
F(p) < M(e(p)) +InC’. Hence we obtain sup ||Thg|lz < C'eMU") . Now, [49,

lgllz<1
Lemma 3.12| implies that there exists a sequence Np which satisfies (M.1) such
-~ NpMp—l / NpMp—l
that M(e(p)) < N(p) as =—— — oo as p — oo. Set [, = ———. Take
N,_1M, N,_1 M,
(I,) € M such that [, <, for all p € Z;. Then
v AP ’ AP ' N (Ih])
sup || Thglle < OV = C'sup ——=—— < O’ sup ——=—r = "Nl
llgllp<1 peN M), H?:l 2 peN M) H?:l L

whence (¢) follows.

We now address the property (a). We first prove the embedding S*(R") < E.
Since D*(R™) — S*(R"™), it is enough to prove that S*(R™) is continuously injected
into E. Let ¢ € S*(R™). We use a special partition of unity:

1= Z Y(x—m), €Dy

mezn

and we get the representation ¢(z) = > _,m ¥(x —m)p(z). We estimate each
term in this sum. Because of (c), there exist constants C' > 0 and 7 > 0, resp. for
every 7 > ( there exists C' > 0, such that:

¢ 2M(T|m
||90TfmeE < M (r|m]) ||€ ] l)me(PHE- (4'2)
We need to prove that the multi-sequence of operators {pm},,cz» @ S*(R") —
ID[*—l,l]”’ defined as
pu(p) = MTYT 0, (4.3)

is uniformly bounded. Let B be bounded set in S*(R™). Then for each h > 0,
resp. for some h > 0,

Bl [[ M Deg|,

Sup sup B < . (4.4)

peB aeNn Ma

By [49, Lemma 3.6] we have e2M(TImD) < ¢ eMH7Im) and hence

o2M (r|m]) < 2606M(2H7|m+x|)eM(2H7-|m|) < CleM(2HT|m+x|)7 (45)
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for all z € [—1,1]" and for all m € Z™. In the (M,) case let h; > 0 be arbitrary
but fixed. Choose h > 0 such that h > 2hy and h > 2H7. For this h, (4.4) holds

and by (4.5) and the fact ¢ € D - i]m one easily verifies
W D0 (4(2) Tp(@))]
4.
= (4.6

o1 (a) hlel | DBy(z)| | D (Tp(2))]
= 9lal

20T 2\ 5 M,

c WA | Dy ()| W11 [ DO gl 4 )| M)

2lal MM, _ze2M(rimD) = e2M(riml)’

B<a

for all ¢ € B, m € Z". Hence {p,|m € Z"} is uniformly bounded on B. In
the {M,} case, there exist h,C > 0 such that |D*)(z)| < CM, /h'a‘ For the h
for which (4.4) holds choose hy > 0 such that hy < min{h/2, h/2} and choose
7 < h/(2H). Then, by using (4.5), similarly as in the (}M,) case, we obtain (4.6),
ie., {pm|m € Z"} is uniformly bounded. By (I), the mapping Df | ;. — E'is
continuous, hence ||pp,(¢)||g < Cy, for all ¢ € B, m € Z™.

In view of (4.2) and the later fact, we have that {Z|m|<N oT- mw} is a
N=

Cauchy sequence in E whose limit is ¢ € E; one also obtains ||¢||p < C for
all ¢ € B. We proved that the inclusion S*(R”) — E maps bounded sets into
bounded and, since $*(R™) is bornological, it is continuous.

We now address £ C §™(R") and the continuity of the inclusion mapping. Let
g € E. We employ Proposition 3.3.1. Let B be a bounded set in D*(R"). The
inclusion £ — D"(R") yields the existence of a constant D = D(B) such that
}<g,q3>‘ < D||g||g for all g € E and ¢ € B. Therefore, by (c), there exist 7,C > 0,
resp. for every 7 > 0 there exists C' > 0, such that

(g 6)(h)| < D|Thglle < CDllgllpe™ ™",

for all g € E, ¢ € B, h € R". In the (M,) case, Proposition 3.3.1 implies that
E C S'M)(R™). In the {M,} case, the property (¢), together with Proposition
3.3.1, implies £ C St} (R"). Since £ — D™ (R") is continuous it has a closed
graph, hence so does the inclusion £ — S™(R") (§"(R") is continuously injected
into D™ (R™)). Since S™*(R") is a (DF'S)-space, resp. (F'S)-space, it is Ptak space
(cf. [91, Sect. 8|). Thus, the continuity of £ — S™(R"™) follows from the Ptak
Closed Graph Theorem (cf. [91, Thm 8.5, p. 166]). The proof of (a) is complete.

We now show that F is a Banach modulo over L. Let ,¢ € D*(R") and
denote K = supp ¢. We prove that

[ *9]|e < lelE/]R ()| w(z)d. (4.7)
The Riemann sums

L()=e" ) plen)p(-—en)=c" 3 olen)T et

nelm™, ence K neZm™ enc K
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converge to ¢ x 1 in S*(R™) as ¢ — 07. By (a) they also converge in E to the
same element, i.e., L. — p*1 ase — 0% in E. Set wy(t) = [|[T-4¢||g. Then wy, is
continuous by (b). Observe that

ILlle < Y leElIT-ctllee” = Y leleplwyley)e”  (48)

yeln, eye K yezZn, eye K

and the last term converges to / lo(y)|wy(y)dy.  Since wy(t) = ||T_w)|lp <

Y] pw(t), if we let € — 0T in (4.8) Iv<ve obtain (4.7). Using (I) and a standard den-
sity argument, the convolution can be extended to * : L x £ — E and (4.7) leads
(4.1). The continuity of the convolution as a bilinear mapping S*(R") x E' — E in
the (M,) case is an easy consequence of (4.1). In the {M,} case, we can conclude
separate continuity from (4.1), but then, [104, Thm 41.1, p. 421] implies the
desired continuity. This shows (e).

The proof of (f). We first consider the case when ¢ € D*(R") and g € S* (R").
Then g x p € §* (R") C E. For € < 1, similarly as in Theorem 4.1.1 (e) we have

I ry
/ (9—T-yg)— (—) dy
Supp pe € € FE

< sup llg=Tougl, / () dt,
supp ¢

leg — ¢ * gllz =

tEsupp ¢

which proves the corollary in this case. Due to the density of S*(R") — FE, the
above inequality remains true for g € E. Indeed, let g,, — ¢ in E and g,, € S*(R").
Then, using the estimate (4.7) we get that ¢, * g, — ¢ * g in E, which proves the
corollary when g € F and ¢ € §* (R").

In the general case, let ¢ € S*(R") and let {¢;}32, € D*(R") be a sequence
such that ¢; — ¢ in S*(R"). By Proposition 3.3.1 there exist C' > 0 and 7 > 0,
resp. for every 7 > 0 there exist C' > 0, such that for 0 < & < 1, we have

[(5)e * g — (Yi)e * glle < Cliglle /Rn exp(M (7]x])[4;(x) — r(x)[dz.

In the (M,) case, it is easy to see that this inequality implies that (1;). * g is
a Cauchy sequence in E hence it must converge. In the {M,} case, there exists
m > 0 such that ¢, — ¢ in SéoMp)’m, hence by choosing appropriate 7 > 0 we
obtain that (1;). * g is a Cauchy sequence in E. We obtain that (¢;). * g must
converge in E. Observe that the limit in E of (). * g must be ¢, * g since this
sequence converges to ¢ x g in & (R"”) and £ — 8™ (R™). Now, the claim in the

lemma easily follows.
]

Remark 4.1.1. To produce another proof of the continuity of the inclusion £ C
S™(R™), it is enough to prove that the unit ball £ is weakly bounded in &™(R").
Indeed, a Banach space is bornological, so the continuity of the inclusion would
follow if we show that the unit ball of E is bounded in §”(R™). But bounded

subsets of S(R") are the same for the weak and strong topology, since S*(R") is
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barrelled. Fix ¢ € §*(R") and write p(x) = Y, 7. ¥(x —m)p(z), where 1 is the

*

partition of unity used above. Again, p,, € D,y asin (4.3). Taking (4.7) into
account and the fact that B = {p,,(¢)|m € Z"} is a bounded subset of D*(R"),
we obtain, for all g € F,

: 5 M (rjml)
(g, < C]\}g{l)ozjvl(g*pm(@)(mﬂe

< O/HgHE]\}LH]OOlzI: e~ M(rIml) < C"|\glls,
m|<N

which completes the proof.

As done in (e), one can also extend the convolution as a mapping * : £ x L1, —
E and obviously u*x g = g * u.

We now discuss some properties that automatically transfer to the dual space
E’ by duality.

Proposition 4.1.1. The space E' satisfies
(a)" S*(R") — E' — §™*(R"), with continuous imbeddings.

(b)" The mappings R* — E' given by h — Tyf are continuous for the weak*
topology.

Proof. 1t follows from (a) that S*(R") — E' — S™*(R™). Let f € E' and ¢ €
S*(R™). Then there exist constants C' > 0 and 7 > 0, resp. for every 7 > 0 there
exists C' > 0, such that

(Thtf, o) = [, Tnp)| < w )| fllellelle < Cllfllellell s exp(M(r]h]).

Since S*(R™) is dense in E, T),f € E’ and the same inequality holds for ¢ € E.
Moreover, there exist constants C' > 0 and 7 > 0, resp. for every 7 > 0 there
exists C' > 0, such that ||T),f||g < C||f|| g exp(M(7|h])). On the other hand, by

(b) applied to F, (Tnf —Thof,9) = <f7 hhle (T-hg — Thog)> = 0, for each
—ho
ge k.

lim
h*}ho

The condition (/I) from Definition 4.1.1 remains valid for E’. We define the
weight function of E’ as

@(h) = T-nllewy = 1T) ey = w(=h),

where one of the equalities follows from the well known Bipolar Theorem (cf. [91,
p. 160]). Thus (¢) and (¢) from Theorem 4.1.1 hold for the weight function @ of
E'. In particular, the axiom (III) holds for £’. In general, however, £’ may fail to
be an translation-invariant Banach space of tempered ultradistributions because
(I) may not be any longer true for it. Note also that £’ can be non-separable. In
addition, the property (b) from Theorem 4.1.1 may also fail for E’. The associated
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Beurling algebra to E’ is L.. We define the convolution u* f = f*u of f € '
and u € L} via transposition:

(uxf,g):=(fixg), geFE.

In view of (e) from Theorem 4.1.1, this convolution is well defined because @ € L.
It readily follows that (e) holds when E and w are replaced by E’ and @; so E' is
a Banach module over the Beurling algebra L., i.e.,

lws fller < [lulloall e

Concerning the property (f) from Theorem 4.1.1, it may not be any longer satisfied
by E' (for instance consider E = L' (R™)). But, when F is a reflexive space then
E’ inheres the properties (I),(I1) and (I117).

Summing up, £’ might not be as rich as £. We introduce the following space
that enjoys better properties than £’ with respect to the translation group.

Definition 4.1.2. The Banach space E. stands for £’ = L} x E'.

Note that E’ is a closed linear subspace of E’, due to the Cohen-Hewitt Fac-
torization Theorem [47] and the fact that L} possesses bounded approximation
unities. The ensuing theorem shows that £’ possesses many of the properties that
E’ lacks. It also gives a characterization of E/ and tells us that the property (I)
holds for £’ when F is reflexive.

Theorem 4.1.2. The Banach space E! satisfies:
(i) S*(R") — E. — §*(R") and E. a is Banach modulo over L.
(13) The properties (1) from Definition 4.1.1 and (b) and (f) from Theorem 4.1.1
are valid when E is replaced by F.
(ii) E. = {f e B lim | Tnf — fllo = o}.
h—0
(iv) If E is reflexive, then E. = E' and E’ is also an translation-invariant Banach
space of tempered ultradistributions.

Proof. Call momentarily X = {f € E' : lim,_o ||Thf — f|| = 0}. Since X
is closed subspace of E’ it is enough to show that S*(R") % E’ is dense in X.
For this, we will show that if ¢ € D*(R") is positive and fy o(y)dy = 1, then
1_i>1r(r)£L Ilf * pe — fller = 0, for each f € X. We apply a similar argument to that
used in the proof of (f) in Proposition 4.1.1. Let f € X and take ¢ € D*(R").
For 0 < e < 1, we have

|<f*<p€_f7¢>|
= (s, [ otrte s —o0))] = 100 © 1 00 000+ ) - s

IA

| e Tt = £l dy < N0lle sup [T = e

YyESupp p
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which shows the claim. Except for the inclusion S*(R™) C E’, the rest of the
assertions can be proved in exactly the same way as for the distribution case; we
therefore omit details and refer to Section 1.1. To show the inclusion S*(R") C E’,
note S*(R"™) = span(S*(R") x« S*(R™)) (this follows easily by using an approxima-
tion of the unity). Hence S*(R") is a subset of the closure of span(S*(R™)«S*(R™))
in F’, and so the inclusion S*(R") C E/ must hold. O

It is worth noticing that E’ carries another useful convolution structure. In
fact, we can define the convolution mapping * : B/ x £ — L% by

(f*g)(x) = (f(t),9(z — 1)) = (f(1), T-2g(t)),

where £ = {g € §*(R")|§ € E} with norm ||g||z := ||g||z and L is the dual
of the Beurling algebra L', i.e., the Banach space of all measurable functions
satisfying ||u||oow = €SSSUP,epn |g(2)|/w(z) < 0o. As in Section 1.1 we consider
the following two closed subspaces of L2°:

UC, = {ue L] i [Ty~ oo = 0}
—
lim _u(x) = }

|z —o0 w(T)

C, = {u € C(R")

The first part of the next proposition is a direct consequence of (b) from Theorem
4.1.1. The range refinement in the reflexive case follows from the density of S*(R")
in ' (part (iv) of Theorem 4.1.2).

Proposition 4.1.2. E'«ECUC, and *: E' x E — UC,, is continuous. If E is
reflexive, then E' x £ C C,,.

4.2 The test function space D7,

We begin by constructing our test function space Dj,, where E is translation-
invariant Banach space of tempered ultradistribution. Let m > 0 and

DY = {<P € E‘ D% € E,Va € N, [|¢||pm = sup

The space D){EM”}’m is a Banach space. One easily verifies that none of these
spaces is trivial. To see this in the (M) case one only needs to use the continuity
of the inclusion SMr) — E, to obtain that SM») C D}{;Mp}’m for each m > 0.
In the {M,} case observe that SMp) i continuously injected into STMr}, hence
we have the continuous inclusions SM») — E. Now, similarly one proves that
SWMp) C D{EMP}’m for each m > 0. Also, DEM”}’W C DJ{EM”}’W for my < m; with
continuous inclusion mapping. As l.c.s. we define

M, . Mp},m M, . Mp}m
DY = lim DY, DU = lim DR
m—00 m—0
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D{EMP},m

Since is continuously injected in E for each m > 0, DEM"} is indeed

a (Hausdorff) l.c.s. Moreover DJ{EM” Vis barreled, bornological (DF)-space as an

inductive limit of Banach spaces. Obviously DJ(EMF)

is a Fréchet space. Of course
DJ(EM”), resp. D]{EM”}, is continuously injected into £.
Additionally, in the {M,} case, for each fixed (r,) € & we define the Banach

space

DEMP}’(%) — {90 c E

D% € E,Va € N", ||¢||g,r,) = su p | Hﬁ'w < oo} :
with norm || - ||g,,). Since for & > 0 and (r,) € R, there exists C' > 0 such that
klel > ¢/ (H'ﬂl j>, Dé PHE g continuously injected into D){EM”}’(TP). Define as

l.c.s. )
’D{EMP} — @ 'DJ{ZMP}v(Tp)_

(rp)eR

Then ﬁJ{EM” Vis complete Le.s. and D]{EMP Vs continuously injected into it.

Proposition 4.2.1. The space D{Mp} 15 reqular, i.e., every bounded set B in
D{Mp} 1s bounded in some D{M”} " In addition D{ Mp} complete.

Proof. For (r,) € R denote by R, the product H|—1 r;. Let B be a bounded
set in Di; »}. Then B is bounded in D{ Mp} hence for each (rp) € R there exists

C,) > 0 such that sup ~———— ID%¢lle < C,), for all ¢ € B. By Lemma 3.4 of [51]

« ROCMOZ
. : ml*!|[ D*¢||
we obtain that there exist m,Cy > 0 such that sup ————

« «

SOQangGB7

which proves the regularity of DiEM” s

It remains to prove the completeness. Since DEMP} is a (DF')-space it is enough
to prove that it is quasi-complete (see [57, p. 402, Theorem 3|). Let ¢, be a
bounded Cauchy net in DEM”}. Hence there exist m, C' > 0 such that ||¢,||gm < C
and since the inclusions DEMP} — DEM”}’(TP) are continuous it follows that ¢, is
a Cauchy net in DJ{EM”}’(T”) for each (r,) € M. It is obvious that without losing
generality we can assume that m < 1. Fix m; < m. Let € > 0. There exists
po € Z, such that (my/m)P < ¢e/(2C) for all p > py, p € N. Let 1, = p. Obviously
(rp) € M. Since ¢, is a Cauchy net in DJ{EM’J b ), there exists 1 such that for all
v, A > 1 we have ||o, — oallBr,) < €/(po!). Hence, for [a| < po

mi | D%, — Doalle _ D00 = Dpall _
M, - M, B

and for |a| > po

m™ | D2, — D,
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We obtain that for v, A > vy, ||, — @allEm < €, Le., ¢, is a Cauchy net in the
Banach space DEM‘“}’ml, hence it converges to ¢ € DEMP}’W in it and thus also in

DM} 0

Similarly as in the first part of the proof of this proposition one can prove, by
using Lemma 3.4 of [51], that D}{EM”} and DJ{EM”} are equal as sets, i.e., the canonical
inclusion DEMP} — ﬁ}gM’”} is surjective.

Proposition 4.2.2. The following dense inclusions hold S*(R") — Dy, — E —
S™*(R") and D is a topological module over the Beurling algebra LY, i.e., the
convolution * : L., x Dy — Dy is continuous. Moreover in the (M,) case the
following estimate

lu* pllm < llulliwllellzm, m >0 (4.9)

holds. In the {M,} case, for each m > 0 the convolution is also continuous bilinear
mapping L. x DJ{EM”}’m — DEM”}’m and the inequality (4.9) holds.

Proof. Clearly Dy, is continuously injected in E. We will consider the {M,} case.
We will prove that for every h > 0, SioMp}’h(R”) is continuously injected into
D}{EM’”}M " From this it readily follows that S{*#}(R") is continuously injected
into DEM’]}. Denote by oy, the norm in SioM”}’h(R") (see [12]). Since SIMp}(R™) —
E, it follows that S T(R") — E. Hence there exists C; > 0 such that
lelle < Ciowu(e), Vo € SioMp}’h/H(R”). Let ¢ € SioMp}’h(R”). It is easy to verify
that for every 8 € N*, D4 € SioM”}’h/H(R"). We have

L )’eM(%I-I)Da+B¢"

hlal | D3| hled Lo (R™)
aenr = O gEnLn P HIFI M
hled+IBL || eMRlD) patBopll
< ¢oC} sup H HL RB") < coCron (1),
B Ma-i-ﬁ

which proofs the continuity of the inclusion S;{OM”}’h(R“) — D{EM”}’h/ " The proof

that S(M»)(R") is continuously injected into DEEMP ) is similar and we omit it. We
have shown that S*(R") — D}, — E — S"(R").

To prove that Dj is a module over the Beurling algebra L. we first consider the

(M,) case. For u € DM (R™), o € D™ and m > 0 we have

vl 11

m m

— D7 (u*p)|lp = |jux —D"¢| < |ullrollellzm:
M, B M, 5

By density argument, the same inequality holds for u € L} and ¢ € DEEM” ). After

taking supremum over v € N" we obtain (4.9). In the {M,} case, by similar
calculation as above we again obtain (4.9) for ¢ € DI{EM"}’m and v € L!. Hence the
convolution is continuous bilinear mapping L x DJ{EM’J b, D]{EM” b From this we

obtain that the convolution is separately continuous mapping L} x D}{EM"} — D}MF}
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and since L} and DJ{EM”} are barreled (DF')-spaces it follows that it is continuous.

It remains to prove the density of the injection S*(R") < D3,. Let ¢ € Dj,.
Pick then ¢ € D*(R™) with support in the unit ball of R™ with center at the origin
such that ¢(x) > 0 and [, ¢(x)dx =1 and set ¢;(z) = j"¢(jx). We consider the

{M,} case, the (M),) case is similar. There exists m > 0 such that ¢, ¢ € DJ{EM”}’W
and |D%¢(x)| < CM,/m!*l for some C > 0. Let 0 < m; < m be arbitrary but
fixed. We will prove that

lp =+ 05llm — 0.

Let € > 0. Observe that there exists C; > 1 such that ||¢;|1. < Ci, Vj € Zy
and ||¢]l1, < Cy. Choose py € Z; such that (my/m)P < ¢/(2C5) for all p > py,
p € N, where Cy = C1(1 + ||¢|lgm) > 1. By (f) of Theorem 4.1.1 we can choose

|al

Jo € Z such that T;\}—l | D% — D% * ¢5]| , < € for all |a| < py and all j > jo,
83
j € N. Observe that if |o| > py we have

|ot] || |ot]
m (0% o m [0 m «
D% - D x il < T D%l + T 1D 61

my ol my ol
< () ellmm + €1 (22) T Iellm <
m m

Hence, for j > jo, [[¢—¢*¢;llgm, <€, 80 pxp; = pin DiEM”}’ml and consequently
also in DQ{EM”}.

Let V' neighborhood of 0 in DEM”}. Choose a neighborhood W of 0 in DEMP}
such that W + W C V. Then W,,, = W nN DJ{EMP}’W is a neighborhood of 0 in
D}{EM”}’ml, hence there exists j; € Z, such that ¢ x ¢;, — ¢ € W,,,, € W. Choose
mg > 0 such that my < my/j;. Then W,,, = W nN DJ{EMP}’W is a neighborhood
of 0 in DJ{EM”}’mQ. So there exists € > 0 such that {X € DEMP}’W XN Ems < 6} C
Wi, Since jimg < m, |D%(z)] < CM,/(jims)el. Pick ¢ € SIMr} such that
o =1z < e/(CC") where C" = sup w(x/j)dz which is finite by the growth

J€Z Jiz|<1
estimate for w. Now we have

|al (g laf
" o— s D0l < llo— vl [ B o) e

< Clo—vle [ wle/idn <z,
lz|<1
We obtain that ¥ * ¢;, — p x ¢;, € W,,, € W. Hence ¢ * ¢;, — ¢ = 1 * ¢;, —

px by +oxg;, —p €W+ W CV. Since ¢ x ¢; € S} (R") we conclude that
STMp}(R™) is dense in DiEM”}. O

Lemma 4.2.1. If P(D) is ultradifferential operator of = type, then P(D) : Dy, —
Dy, 1s continuous.
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Proof. Let P(D) = Y cnaCaD®. There exist h,C" > 0, resp. for every h > 0
there exists C’ > 0, such that |c,| < C'hll/M,,. For ¢ € D) we have

18] I8
m m o
LI POl < T 3 lealID™ el

a€eNd

(H max{h, m})lalﬂﬁl N
<Gy T | D™l

a€eNd

< Coll ol B, 1aa, 2 max{m,h} -

In the {M,} case, similarly as above one proves that P(D) is continuous as a
mapping from DJ{EM” bm D{EM” bm O]

In order to prove that ultradifferential operators of { M)} class act continuously

on ﬁ{EMP}, we need the following technical result from [85].
Let (k,) € . There exists (k,) € R such that k, < k, and

p+q p

q
Hk;; §2p+qu§;~HkJ}, for all p,q € Z... (4.10)
j=1 j=1 j=1

Proposition 4.2.3. Every ultradifferential operator of {M,} class acts conti-
nuously on f)}{SM”}.

Proof. Since P(D) =) co D is of {M,} class for every L > 0 there exists C' > 0
such that |c,| < CLI®/M,. Lemma 3.4 of [51] implies that there exist (r,) € R

and C; > 0 such that |c,| < Cy/ (Ma H‘jo‘:ll rj>. Let (I,) € MR be arbitrary but

fixed. Define k, = min{r,,{,}, p € Z;. Then (k,) € R and for this (k,) take
(k,) € R as in (4.10). Then, one can prove that there exist C' > 0 and H > 0

such that [[P(D)¢llg ) < C'llell s,k am) for all ¢ € ﬁ‘f‘EM”}, which proves the
continuity of P(D). O

In fact all elements of our test space Dy, are ultradifferentiable functions of
class *. To establish this fact we need the following lemma.

Lemma 4.2.2. Let K C R" be compact. There exists m > 0, resp. there exists
(I,) € MR, such that Dg‘;{z} C ENE., resp. Dg‘%ﬁ) C ENE.,. Moreover, the
K Mp

!

incluston mappings D}(Aﬁ} — E and D}(Aﬁ} — B!, resp. DE(MP}) — E and DE(

}
(0 —

(Ip)
E., are continuous.

Proof. We will give the proof in the Roumieu case, the Beurling case is similar.
Let U be a bounded open subset of R" such that K CcC U and put K; = U.

Since the inclusion Dg\f"} — F is continuous and D%\f”} = l{iﬂl Di(]\f’grp) there
(rp)ER

exist C > 0 and (r,) € R such that

lelle < Cliellw, -
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Let Xm, m € Z,, be a d-sequence from DM} such that diam(supp xm,) <
dist(K,0U)/2, for m € Z,. Take I, = r,-1/(2H), p > 2 and [} = r/(2H).
Then (I,) € R. Let ¢ € DLNZ’ }) Then ¢ * x,, € D{M"} and one easily obtains that
P * X — Y in D{ p} . We have [[¢) * x|l < Cl|9 * Xl ky (), hence ¥ * xy, is
a Cauchy sequence in E so it converges. Since 1 * X, — ¢ in DM} (R"™) and E
is continuously injected into D'tMr}(R™) the limit of ¥ * y,, in £ must be 9. If
we let m — oo in the last inequality we have ||[¢||g < C||¢||k, (). Observe that

1N &y o) < N0 K, (since ¢ € D}{(]t/(lfp}), supp? C K). Hence,

1Yz < CllYllk,a,),

which gives the desired continuity of the inclusion Dgﬁ’p}) — FE. Similarly, one

obtains the continuous inclusion Dg{f,}) — B, possibly with another (1) € R.
The conclusion of the lemma now follows with (I,) € 9 defined by I, =
min{l,, [}, p € Zy. O

Proposition 4.2.4. The embedding Dy, — OFL(R™) holds. Furthermore, for ¢ €
D3, D*p € Cy for all o € N and they satisfy the following growth condition: for
every m > 0, resp. for some m > 0,

lal

sup

Y HDaSOHLgO(R") < o0. (4.11)

Proof. Let U be the open unit ball in R” with center at 0 and K = U. Let r > 0,
resp. (1,) € R be as in Lemma 4.2.2, i.e.,

D CENEL, resp. Dy () C ENEL

and the inclusion mappings

My L R andD{ ”} — E!,

Dg\ﬁ”} — E and Dg\ﬁ”} — E., resp. D{ K. () -

are continuous. By the parametrix of Komatsu, there exist u € DUr NEVINS
DWMp)(U) and P(D) of type (M,), resp. u € D[{],(:p}) such that % — 0
when |a| — 0o, ¥ € DIMe}(U) and P(D) of type {M,}, such that P(D)u = §+1.

Let f € Di. Then f = ux P(D)f — ¢ x f. Observe that ¢ x f € E*(R").
For 8 € N*, D°P(D)f € Dj. By Proposition 4.2.2, 4 € D}%ﬁi) C E' and so

€ (E'Y = E'. Hence, by the discussion before Proposition 4.1.2, all ultradis-
tributional derivatives of u x P(D)f are continuous functions on R™. From this
we obtain that ux P(D)f € C* (R"). Indeed, this result is local in nature, so it
is enough to use the Sobolev imbedding theorem on an open disk V' of arbitrary
point x € R™ and the fact that D*(V) is dense in D(V'). Hence f € C*> (R"). For
B eN”,

D°f(x) = ux D*P(D)f(z) — ¢+ D" f(z) = Fy(x) — Fy(a).
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By the above discussion, the last equality and Proposition 4.1.2 it follows that
DPf e UC,,.

To prove the inclusion Dy — OF(R"™), we consider first the (M,) case. Let
m > 0 be arbitrary but fixed. Since P(D) =) ¢, D" is of (M,) type, there exist

my,C" > 0 such that |c,| < C”m‘f"/Ma. Let my = 4max{m,m;}. For F}, Since
P(D) acts continuously on Dj,, we have

[Fy ()] < lull g

DPP(D)f ()| ,w(~z) < C’gw(—m)HaHE,||f||E7m2H(2]\ﬂ;[%

and similarly

My

|Bo(@)] < Caw(=a) [l el Fllp2m 75— (2m)Bl"

My
omy = (= D | Fll 2ot 75— 1o

Hence
(2m) | D f ()

Mpw(—zx)

Since there exist 7, C"” > 0 such that w(z) < C"eM 12D by using Proposition 3.6
of [49] we obtain w(—x)eM 2D < O eMTHIZ) " Hence
1/2
Def )P
w(—) || oo

1/2
mlel e m2le
(Z i [l pe H”HLQ) < G (Z—Mg
< C(laller + 19lle) 1 £l 2mor,

| <" (Jlallg + 10e) | £l Bmo- (4.12)

«

which proves the continuity of the inclusion D( o O(CA{pH(R") and hence also

the continuity of the inclusion D( P, (Q(M” (R™).
P}

In order to prove that (’)éM”}(R”) is continuous inclusion it is enough

to prove that for each h > 0, D}[EMP} — Oé%p}(R”) is continuous inclusion. Now, it
is enough to prove that for every m > 0 there exists m’ > 0 such that we have the
continuous inclusion DI{EM”}’m — Oéﬂfr’z’,}h(R”). So, let h,m > 0 be arbitrary but

fixed. Take m' < m/(4H). For f € D}JM”}’m, using the same technique as above,
we have
(2m")I°1|D? f(x)]
Mpw(—x)

< " (Jalls + 16]57) 11l (4.13)

For the fixed h take 7 > 0 such that 7H < h. Then there exists C"” > 0 such that
w(z) < C"eMTlZ) and by using Proposition 3.6 of [49] we obtain w(x)eM(l#) <
CyeMTHIZ) - Similarly as above, we have

2l 1/2 )
(Z " D Hia) < C (lalle + 191e) |1l 2m:

«

which proves the continuity of the inclusion DJ{EM”}’m — (’)({%fb’,}’h (R™).
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Observe that (4.11) follows by (4.12), resp. (4.13).
It remains to prove that D*f € C;. We will prove this in the {M,} case, the
(M,) case is similar. Using Proposition 4.2.3, with similar technique as above one

can prove that for every (k,) € R there exists ([,) € P such that for f € D}MF}
we have

D7 f(2)]
w(—2) M3 [T, &
Let ¢ > 0. Since D} (R") is dense in D‘EEM”} (Proposition 4.2.2) it is dense in

f)j{sz}. Pick x € DM}(R™) such that || f — x||ga,) < &/ (C” (||Ju]lz + HzﬁHEl))
Then, by (4.14), for x € R™\supp x we have

<" (HUHE + WHE) HfHE,(lp). (4.14)

| DA f ()| _ D (f(@) — x(2)] <.
w=a)M T2 ks w=) M T2k
which proves that D f € Cy,. O

Remark 4.2.1. If f € S*(R™), by the proof of this proposition (and (4.1)) we have
D7 fl|p < llulls [| D" PD)fl,, + 11e | D], -

since u, ) € E (by the way we obtained them). Also, one easily verifies that (cf.
the proof of Proposition 4.2.3) for every m > 0 there exist m > 0 and C; > 0,
resp. for every (k,) € R there exist (I,) € R and C} > 0, such that

m D]y, 1D°Fll1
11l m < Crsup —— s resp. [ fllgk,) < Crsup ———m=—. (4.15)
a e « Ma Hj:l lj
4.3 The ultradistribution space D7,
ES
We denote by Dy, the strong dual of Dj,. Then, Dgiwl’) is a complete (DF)-space

since DJ(EM”) is a Fréchet space. Also, is a Fréchet space as the strong dual

of a (DF)-space. When FE is reflexive, we write Dy = D, in accordance with
the last assertion of Theorem 4.1.2. The notation Dy, = (Df)" is motivated by
the next structural theorem.

D

Theorem 4.3.1. / Let f € D"*(R™). The following statements are equivalent:

(i) f€Dp.

(11

) f

) f*v € FE forall ¢ € D*(R").
(iii) |

)

x 1 € B for all ¢p € D*(R™).

(tv) f can be expressed as f = P(D)g + g1, where P(D) is ultradifferential ope-
rator of * type with g,q, € E'.
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(v) There ezist ultradifferential operators Py(D) of x type and f, € E. NUC,
for k in finite set N such that

f=> PuD)fs (4.16)

keN
Moreover, if E is reflexive, we may choose fi € E' N C,,.

Remark 4.3.1. One can replace D’*(R") and D*(R") by &*(R") and S*(R?) in the
statement of Theorem 4.3.1.

Proof. We denote Bg = {¢ € D*(R")|||¢llz < 1}

(i) = (). Fix first ¢ € D*(R"). By (4.1) the set ¢ * Bp = {¢)x ¢ : ¢ € By}
is bounded in Dj. Hence, |(f * ¥, 0)| = |(f,7 * ¢)| < Cy for ¢ € Bp. So,
[(f*1,p)| < Cyllellg, for all ¢ € D*(R™). Since D*(R") is dense in E, we obtain
f*1 € F' for each ¢ € D*(R").

(17) = (iv). Let Q be a bounded open symmetric neighborhood of 0 in R™ and
put K = Q. For arbitrary but fixed ¢ € Dj we have (f * @, ¢) = (f * 1, p). We
obtain that the set {(f * ,¥)| ¢ € Bg} is bounded in C, i.e., {f * ¢| ¢ € Bg} is
weakly bounded in D%, hence it is equicontinuous. Using the same technique as
in Proposition 3.3.1 we obtain that there exists r > 0, resp. there exists (r,) € %R,
such that for each p € Dé%”), resp. for each p € Dg{fj), there exists C, > 0 such
that [(f * p, )| < C, for all ¢ € Bp. The density of D*(R") in E implies that

f*p € E for each p € Dgﬁfp% resp. for each p € Dg‘{fj) By the parametrix of

Komatsu we obtain that there exist u € ngp’, Y € DM)(Q) and ultradifferential

operator P(D) of class (M,), resp. there exist u € DéMf}, ¢ € DHQ) and
ultradifferential operator P(D) of class {M,,}, such that f = P(D)(ux f)+1¢ = f.
This gives the desired representation.

(1v) = (4) is obvious.

(zz) :> (v). Proceed as in (i7) = (iv) to obtain f = P(D)(ux* f)+1* f for some
u € DQT , ¥ € DUM)(Q) and ultradifferential operator P(D) of class (M,), resp.
some u € Dé(fj), Y € DMe}(Q) and ultradifferential operator P(D) of class {M,,}.
Moreover, by using Lemma 4.2.2; one can easily see from the proof of (ii) = (iv)
(M”) C E, resp. D{ P} C E. Because

Q,(rp)
* is again ultradifferential

that we can choose r, resp. (r,), such that D,

the composition of ultradifferential operators of class
operator of class *, Lemma 0.2.5, we obtain

o= PD)(ux (PD)(uxf)+¢x[))+¢x* (PD)(uxf)+¢*f)
= P(D)(P(D)(ux (uxf))) + P(D)(ux(¥*f))
+ PD)(Wx (ux f)) +1* (= f)

and ux (ux f),ux (Y* f), 0 (ux f), v (= f) e E.NUC, by the definition of
E! and Proposition 4.1.2. If E' is reflexive, all of these are in fact elements of C,,
by the same proposition.

(v) = (i), (iv) = (¢it) and (4i7) = (i) are obvious. O
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Proposition 4.3.1. Let £ : D*(R") — D™*(R") be linear and continuous. The
following statements are equivalent:

(1) £ commutates with every translation, i.e., (£, T_pp) = Ty (£, @), for all h €
R"™ and ¢ € D*(R"™).

(i1) £ commutates with every convolution, i.e., (£, % @) = o x (£, ¢), for all
P, p € D*(R™).

(1i1) There exists f € D™*(R™) such that (£, ) = f x @ for every ¢ € D*(R").

Proof. (i) = (ii) Let p,¢ € D*(R™) and denote K = supp . Then the Riemann
sums

L()= Y dleypl-—ep)e" = > ley)Tcype”

yeZ™ , eye K yeZ™  eye K

converge to ¢ * ¢ in D*(R"™), when € — 07. The continuity of f implies

(f % p) = lim Z w(gy)<f,T_5yg0>5d = lim Z P(ey) T, (£, go)gd,

e—0t e—0t
yeZn, eye K y€Z, eyc K

in D™(R"). Let x € D*(R"). Then

e—0t
YyeEL™  eye K

< lim Z w<5y)T€y<f7 @>5n7 X> - <<fv 90>a W * X) = <'J} * <f> 90>7 X)'

(49) = (iii). Let Q be an arbitrary symmetric bounded open neighborhood of
0 in R" and put K = . Take 9,, € D* (R™) as in the proof of Proposition 3.3.1.
For every i) € D*(R™) we have that ¢ * §,, — ¢ in D*(R™) when m — oo. Also,

o (£,8,) = (£, % 6,,) — (£,9) when m — oo. (4.17)
First we will prove that the set
{(£,0m)|m € Z,}

is equicontinuous subset of D™*(R™), or equivalently, bounded in D" (R™) (since
D*(R") is barreled). By (4.17), for each fixed ¢ € D* (R"), the set {¢(f, d,,)|m €
Z.} is bounded in D™* (R™). Denote by T,, the bilinear mapping

T,, : D x Dl — C(K)
(i, 0) = (£, 6m) x x|k

For fixed ¢ € Dj,, the mappings T}, ,, defined by ¢ — (£, d,,) xp*|k, D3, — C(K)
are linear and continuous and the set {7, | m € Z,} is pointwise bounded in
L (D, C(K)). Since Dy, is barreled, this set is equicontinuous. Similarly, for
each fixed ¢ € Dy, the mappings ¢ — (f,d,,) * ¢ * ¥|x, D}, — C(K) form
an equicontinuous subset of £ (Dj, C(K)). We obtain that the set of bilinear

mappings {T,,| m € Z, } is separately equicontinuous and since D%MP) is a Fréchet
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space, resp. D}M”} is a barrelled (DF)-space, it is equicontinuous (|57, Thm.
2|) for the case of Fréchet spaces and ([57, Thm. 11]) for the case of barreled
(DF)-spaces).

We will continue the proof considering only the {M,,} case, the (M,,) case is similar.
By the equicontinuity of the mappings T,,, m € Z, there exist C' > 0 and (k,) € R

such that for all ¢, € D}M”}, m € Z,, we have

1T (0 )| oo iy < Cllpll e e 1911 5,057

Let r, = ky,_1/H, for p € N, p > 2 and put 1 = min{l,r5}. Then (r,) € R.
For y € Dg’\?fj), for large enough j, x * 9; € D%M” b and by similar technique as
in the proof of Proposition 3.3.1 one can prove that x *J; — x in DE{’,’;E}), where
d; € D*(R™), j € Z, is the same sequence used in the proof of Proposition 3.3.1.

Let o, v € Dg?fj) and put ¢; = @ % 0;, 1; = 1 *d;. Since

||Tm(gpjvw]) - Tm(@saws)HLw(K)
ST (g, 5 — sl Lo (i) + 1T (05 — @55 s) || Lo (1)
< C(llejllxmn Vs = Ysll ) + 1105 — sl ki) 195 1,1 )

it follows that for each fixed m, T,,,(¢;, ;) is a Cauchy sequence in C(K), hence
it must converge.

On the other hand, (f,d,,) * p; *; — (£,8,,) * p * 1 in D'} (R") and since
C(K) is continuously injected into DIIEM”} it follows that T,,,(y;, ;) converges to
(f,0m) * @ *x Y| in D}EM”} (here the restriction to K is in fact the transposed
mapping of the inclusion D}M”} — Do} (R™)). Thus, T, (0, 1;) — (£, 0n) % @ *
Y|k in C(K). By arbitrariness of ¢, € Dg{;\({f’j) and by passing to the limit in the
inequality || (@5, Vi)l oo (i) < Cllgillse i) 1951 k. (k) We have

IKE, o) * 0 % Uil oo (1) < Cllell i) 191k, 1)
for all m € Z,, ¢, ¢ € Déﬂffj) For the fixed (r,) € R, by the parametrix of
Komatsu, there exist ultradifferential operator P(D) of class {M,}, u € Dg‘?fj)
and ¢ € DM} (Q) such that (f,d,,) = P(D) ({f,0,,) * u) + (£, 0,,) * 1. Applying
again the parametrix we have

(f,0m) = P(D)P(D) ((£f,0,,) * uxu) + 2P(D) ({£,6,,) * ¥ x u) + (£, 8,,) * ¥ x 1.

Since each of the sets {(f,0,,) x ux u|x|m € Z,}, {{f,0m) x Y *xulx|m € Z;}
and {(f,0,,) * Y * | | m € Z,} is bounded in D'I{(M”} hence also in DM} (Q) we
obtain that {{f,d,,)|a|m € N} is bounded in D'{M»}(Q2). By the arbitrariness of
Q it follows that this set is bounded in D'{M¢} (R™). Hence it is relatively compact
(D'tMp}(R™) is Montel), thus there exists subsequence (f, d,,.) which converges to
f in DM (R, Since (£, 8, * ) = (£, 0,.) * X for each xy € DM} (R"), after
passing to the limit we have (f, x) = f * x.

(i73) = (i) is obvious. O



The ultradistribution space D/*; 91

We also have the following interesting corollary.

Corollary 4.3.1. Let f € D™*(R", E(’T(E, E)), that is, a continuous linear mapping
f:D*(R") — EC’T(E,E). If £ commutes with every translation in sense of Proposi-
tion 4.5.1 then there exists f € D, such that f is of the form

(f,0)=f*p, €D (R"). (4.18)

Proof. Since E  p — D7 (R") is continuous, f : D*(R") — D(R") is also
continuous. For B be bounded in D*(R"), f(B) is bounded in D2 (R") and hence
bounded in D*(R"). Since D* (R") is bornological, f : D*(R") — D™*(R") is
continuous. Now the claim follows from Proposition 4.3.1 and Theorem 4.3.1. [J

If F' is complete l.c.s. we define 8™ (R™, F') = §"(R")eF and since S*(R") is

~Y

nuclear it satisfies the weak approximation property we obtain £, (S*(R"), F) =
S"(R™)eF = §"(R™)®F (for the definition of the ¢ tensor product, the definition
of the weak approximation property and their connection we refer to [93] and [51]).

Our results from above implicitly suggest to embed the ultradistribution space
Df;, into the space of E'-valued tempered ultradistributions as follows. Define first
the continuous injection

t:S"(R") —» S™(R",8*(R")) , where o(f) =f
is given by (4.18). Observe the restriction of ¢ to Df,,
v: D — S"(R", E')

(the range of ¢ is subset of §”(R™, E’) by Theorem 4.3.1 and the remark after it).
Let Bj be arbitrary bounded subset of S*(R™). The set B = {1 * ¢|¢ €
By, [|4]|r < 1} is bounded in D (by (e) of Theorem 4.1.1). For f € Df,,

sup [|(f, o)[|pr = sup [|f * @l = sup sup [(f, ¢ *p)| =sup [(f,x).
peB1 peB1 B |Yllp<1 X€B

Hence, the mapping ¢ is continuous. Furthermore, by (iii) of Theorem 4.3.1,
(D) € S™(R", E}) and Proposition 4.3.1 tells us that «(Dj, ) is precisely the
subspace of §’'(R™, E) consisting of those f which commute with all translations in
the sense of Proposition 4.3.1. Since the translations T}, are continuous operators
on E, we actually obtain that the range +(D7, ) is a closed subspace of S”(R", E)
(see the comments after Corollary 1.3.1). Note that we may consider D"™*(R")
instead of $”(R™) in these embeddings.

Corollary 4.3.2. Let B' C Dy, . The following properties are equivalent:
(i) B’ is a bounded subset of Dy, .
(17) «(B') is bounded in 8" (R™, E") (or equivalently in S™*(R", E’) ).

(i1i) There ezist a bounded subset B of E' and an ultradifferential operator P(D)
of class * such that each f € B' can be represented as f = P(D)g + g1 for
some g,q1 € B.
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(iv) There are C > 0 and a finite set N such that every f € B’ admits a re-
presentation (4.16) with continuous functions fi € E. NUC,, satisfying the
uniform bounds || fr|lgr < C and || frllww < C (if E is reflexive one may
choose fr, € E'NC,).

Proof. (i) = (ii) Follows from continuity of the mapping «.

(17) = (7i1). Let © be bounded open symmetric neighborhood of 0 in R™ and
put K = Q. Let «(B’) be bounded in S™(R", E') = £, (S* (R"), E’). Then it is
equicontinuous subset of Ly, (D}, E').

We will continue the proof in the {M,} case, the (M,,) case is similar. There exist

(kp) € | and C > 0 such that |[(f, o)z < Cll¢llk,x,) for all f € «(B’) and
{Mp}
p €D, e,
1+ @l < Clielx, k)

for all f € B and ¢ € D}MI’}. Let r, = k,—1/H, for p € N, p > 2 and put
ry = min{l,7}. Then (r,) € R. For x € Dgffj), for large enough j, x*J; € D%MP}
and by similar technic as in the proof of Proposition 3.3.1 one can prove that
X *0; — x in Dg\fii) Let p € Dg{fj) and put ¢; = @ x9;. f*p; is a Cauchy
sequence in E', hence it must converge. But f*@; converges to f*¢ in D{Me} (R™),
hence f * ¢; = f * ¢ in E'. By arbitrariness of ¢ € Déﬂffj) and by passing to the
limit in the inequality || f * @;]|& < Cl¢;l k), We have

1 * @ller < Cllelx.k,)

forall fe B, ¢ € Dg\?fj) For the fixed (r,) € R, by the parametrix of Komatsu,

there exist ultradifferential operator P(D) of class {M,}, u € Dg\({{’j) and ¢ €
DM} (Q) such that f = P(D)(f*u)+ f*1). By what we proved above {f*u| f €
B’} and {f *¢| f € B'} are bounded in E’ and (7i¢) follows.

(17) = (iv) Proceed as in is (i7) = (i77) and then use the same technique as in
the proof of (ii) = (v) of Theorem 4.3.1.

(i7i) = (i) and (iv) = (i) are obvious. O

Corollary 4.3.3. Let {fj};io C Dy, (or similarly, a filter with a countable or
bounded basis). The following three statements are equivalent:

(1) {f;};2, is (strongly) convergent in D, .
(1) {e(f5)};2 is convergent in S™(R", E') (or equivalently in S™(R", EY)).

(i13) There exist convergent sequences {g;};,{g;}; in E' and an ultradifferential
operator P(D) of class * such that each f; = P(D)g; + g;.

(iv) There exist N € Z., sequences {g}k)}j, k=1,.,N, in E. N UC, each
convergent in E. and in L and ultradifferential operators Py(D), k =
1,...,N, of class * such that f; = ZPk(D)g](-k) (if E is reflexive one may

k=1

choose gj(-k) e E'ndC,).
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Proof. The proof is similar to the proof of the above corollary and we omit it. []

Observe that Corollaries 4.3.2 and 4.3.3 are still valid if S”(R") is replaced by
D™*(R™).
In the beginning of Section 4.2, we defined the spaces ﬁEM”}’(T") and @EM”}.

As we saw there, DEM” Vand ﬁJ{EMP Y are equal as sets and the former has a stronger
topology than the latter. We will prove that these spaces are also topologically
isomorphic.

Theorem 4.3.2. The spaces D;{EM”} and ﬁéMp} are 1somorphic as l.c.s.

Proof. By the above considerations its enough to prove that the topology of ﬁéMp}
is stronger than the topology of D]{EM”}. Let V be a neighborhood of zero in
D}{EMP}. Since D}{EM”} is complete and barreled, its topology is in fact the topology
b <Dg£\4p},D1{EMp}>. Hence we can assume that V' = B°, for a bounded set B

in D;{,M”} (B° is the polar of B), ie., V =< p¢€ D){EM”} sup (T, )| < 1}. By
- TeB

Corollary 4.3.2 there exists C' > 0 and a finite set N such that every T' € B admits
a representation (4.16) with continuous functions f, € E. N UC, satisfying the

uniform bounds || f||rr < C. Since Py(D) are continuous on f?j{EM” } (Proposition
4.2.3), there exists (r,) € R and C; > 0 such that ||P,(=D)y|lz < Cill¢lle,r,)

for all k € N, p € DM, Let W = {gp e DM ol .y < 1/(001N)} be a
neighborhood of zero in ZﬁEM”}. If o € W, then for T' € B,
(T ) <D [fis P=D)e) < Y I fsller | P(=D)ells < 1,

keEN keN

i.e., o € V. Hence we obtain the desired result. O

When FE is reflexive, the space Dj, is also reflexive. Furthermore, we have:

Proposition 4.3.2. If E is reflexive, then DEEMT') and Dg,Mp} are (F'S*)-spaces,
DEM”} and D;gMp) are (DFS*)-spaces. Consequently, they are reflexive. In addi-
tion, S*(R™) is dense in DY, .

Proof. Let f)EMP},m be the Banach space of all ¢ € D™ (R") such that D%y € F,
Vo € N* and

2|

1/2
m «
lellem = (Z 7z IP wH%) < 0.

[0

Then we have the following obvious continuous inclusions f)iEM” bm DEMI’ b and

DJ{EM’] bam o, IZDEMP}’m. Hence DJ(EMP ) = lim lz)J{EMp b and DI{EMI’} = lim 1:?§5M” bm o1
m—00 m—0

I2,(E) is the Banach space of all (¢4 )aenn with ¢, € E and norm [|(¢a)alliz,(r) =
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1/2
2|e
<Z ";w—z\wa]@) , then (2, (E) is reflexive since F is (|56, Thm 2 p.360] or
a€EN” «
Lemma 0.2.4). Observe that f)}{EM’”}’m is isometrically i{ljected onto a closed sub-
space of [2,(E) by the mapping ¢ — (D%p),, hence ZND}{SM"’}’m is reflexive. Thus
DJ(EMP) is an (F'S*)-space and DiEM”} is a (DFS*)-space. In particular, they are
reflexive and DéM") is a (DFS*)-space and DgM"} is an (F'S*)-space. Now, the
denseness of S*(R") in D%, is an easy consequence of the Hahn-Banach Theorem
cf. Proposition 1.1.3. [

4.4 The weighted spaces D7, and D,
n n

As examples, in this section we discuss the weighted spaces ng and D/L*§> which
are particular examples of the spaces Dj, and D%, . They turn out to be important
in the study of properties of the general Dy, and general convolution in D™*(R")
(cf. Section 4.5.2).

Let n be an ultrapolynomially bounded weight, that is, a measurable function

n: R" — (0,00) that fulfills the requirement
n(x + h) < Cy(a)eM T,

for some C, 7 > 0, resp. for every 7 > 0 there exists C' > 0.
An interesting nontrivial example in the (M,) case is given by the following
function
n(z) = ezl
where
* M(s)

52

ds.

n: [O’OO) — [0’ 00)7 ﬁ(p) =p

To see this, observe that 7 is differentiable function with nonnegative monotoni-
cally decreasing derivative. Hence 7 is concave monotonically increasing function
and 7(0) = 0. Also, it is easy to see that M(p) < 7(p) and 7(p+ A) < 7(p) +7(N),
for all p, A > 0. By (M.3) and Proposition 4.4 of [49] there exist C,C; > 0
such that 7(p) < M(Cp) + C4, for all p > 0. For the {M,} case take (r,) € R
and perform the same construction with the sequence N, defined by Ny = 1 and
N, = M, [}, rj, p € Zy, which obviously satisfies (M.1) and (M.3) since M,
does.

For 1 < p < oo we denote with LI the measurable functions g such that
Ingll, < oc. Clearly L? are translation-invariant Banach space of tempered ult-
radistributions for p € [1,00) and the space L;° is an exception since D*(R")
is not dense in L;°. In the next considerations the number ¢ always stands for
p g =1 (pe[l,00]). Of course (LF) = Ly . if 1 <p<ooand (L) = L.
In view of Proposition 4.1.2, the space E! corresponding to £ = Lf],l is B, = L
whenever 1 < p < oco. On the other hand, (7ii) of Theorem 4.1.2 gives that
E,=UC, for E = L,, where UC,, is defined as in (1.11) with w replaced by 7.

We can easily find the Beurling algebra of L?.
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Proposition 4.4.1. Let w,(h) := esssup,cgn n(x + h)/n(z). Then

_ wy(h) if p € [1,00),
Ty = § 20 470

Consequently, the Beurling algebra associated to L% is L(,lun if p=1[1,00) and L}Jn
if p=o0.

Proof. The proof is identically the same as that of Proposition 1.4.1. O

Observe that when the logarithm of 7 is a continuous subadditive function and
n(0) = 1, one easily obtains from Proposition 4.4.1 that w, = 7.

Consider now the spaces D}, for p € [1,00] and ﬁﬁ.{” } defined as in Section 4.2

n n
by taking £/ = LP. Once again, the case p = oo is an exception since D*(R™) is not
dense in D*oo nor in D{ My} Nonetheless, we can repeat the proof of Proposition

4.2.1 to prove that D{ Mo} | is regular and complete. One can proof that each ultra-
differential operator of * class acts continuously on D*%o and each ultradifferential

operator of {M,} class acts continuously on D{ My} (cf. the proof of Proposition

4.2.3). Obviously D{ My} i injected continuously mto D{ Mp} and by using Lemma

3.4 of [51] and employmg similar technique as in the proof of Proposition 4.2.1,
one can prove that this inclusion is in fact surjective. As usual, we denote by B

the space Die and by B;'; the closure of D*(R") in B}. We denote by l%,{]M”} the

closure of DM} (R") in ﬁﬂ.{p}. It is important to note that in the case n = 1
these spaces were considered in [79] (see also [12]).

We immediately see that B = D(M”), where we denoted C,, = {g €
C(R™)[ limy) 00 g(x) /n(z) = 0} C L°. In the {M,} case this is not tr1v1al The
following theorem gives that result.

Theorem 4.4.1. The spaces Déyp}, B;{]M"} and l’;',{]Mp} are isomorphic among each
other as l.c.s..

Proof. By Proposition 4.2.1, D{CJY”} is complete barreled (DF')-space. First we
prove that D{CJL/[”} and Z§’7{7M”} are isomorphic l.c.s. Observe that D{C]T\’/[”} C ﬁ%{”}.
Moreover, by Theorem 4.3.2, the topology of D{Cyp} is the same as the induced
topology on D{MP} by f)}ﬁfp}. Since D{M#}(R™) is dense in D{M"} and B;{]M"} is the
closure of D{MP}(R”) in the complete l.c.s. D{J:[p} D{M”} and B{ Mo} are isomorphic
l.c.s. and the canonical inclusion D({Jn LN Di;.’op } gives the isomorphism. Now,
observe that the inclusion Dgf” L Dié}.f” Vis continuous. Since DIMp}(R™) is dense
in Dé{‘fp Fand BéM” }, Dgg” e B}{,Mp } and the inclusion is continuous. Also, since
the inclusion Dj%fp} — 752?} is continuous and DIMr}(R") is dense in B’,{7M”} and

l?,{]M”} , we obtain that Br{]M”} C l?,{]M”} and the inclusion is continuous. But, since
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we already proved that the inclusion Déﬁ/["} — BéM”} is a topological isomorphism

onto, we obtain that so is the inclusion D{Cy"} — B;{,Mp}. O

By Proposition 4.2.4 and estimate (4.12), resp. (4.13), one easily sees that
Diy» — B, for every p € [1,00). It follows from Proposition 4.3.2 that D;, is
n g n

reflexive when p € (1, c0).
In accordance to Section 4.3, the weighted spaces DY}, are defined as D7}, =
n . n
(D7 ) where p gt =1ifpe (1,00} if p=1, D} = (Dg,) = (By). We
n- . n
write B = D’L*%o and B} for the closure of D*(R") in B*.
When 7 is continuous the dual of £ = C), is the space /\/l,l7 consisting of all
elements v € (C. (R"))" which are of the form dv = n~'dpu, for p € M" and the
norm is |||y = [[pflan. Observe that then E = L,. In this case, by using

Theorem 4.3.1, similarly as in the case of distributions (see [92], [93]), one can

prove that the bidual of B,SM”) is isomorphic to D%”) as l.c.s. and that B,SMF)
n

’({V[p

n

is a distinguished Fréchet space, i.e., D ) is barreled and bornological. In the

L

{M,} case, observe that D'L{lM »}is a Fréchet space as the strong dual of a barreled
n

(DF)-space. Moreover, we have the following theorem.

Theorem 4.4.2. The bidual of BT{7M"} is 1somorphic to D}%{P} as l.c.s. Moreover

Df;.fp} and 15%{1’} are isomorphic l.c.s.

Proof. We already saw that DM} and ﬁﬁﬁp} are equal as sets. First we prove that
n n

the bidual of B%Mp} is isomorphic to 15}?’} Since £4Mr}(R") is continuously and

densely injected into DglM v} (the denseness can be proved by using cut-off functions
n

!/
and Theorem 4.3.1) we have the continuous inclusion (DlL{lM p}> — ELHR™) (b
n )b

stands for the strong topology). Let (r,) € R and put R, = qu\ r;. Observe the

set =
5 {(n(a))‘ D24,

MR, aecR", ozEN"}.

!/

One easily proves that it is a bounded subset of D}J{lM »} Hence if (NS (D}J{lM P }> ,
n n b
¥(B) is bounded in C and hence

sup |(U(a)])\;:g:¢(a)| — supl(0.T)] <o

/ / .

We obtain that (D}J{lM P }) - Dﬁ.ﬁ” b and the inclusion (D}J{lM ”}> — Dg{p} is
n n n b n

continuous.

Let ¢ € D%{p}. IfT e D'L{lM ”}, by Theorem 4.3.1 there exist an ultradifferential
n

operator P(D) of {M,} class and f, fi € M, such that T' = P(D)f + f;. Let
df =n~'dg and dfy = n~'dg, for g, g, € M". Define S by
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Obviously, the integrals on the right hand side are absolutely convergent. We
!/ ~ ~ ~
will prove that Sy is well defined element of (DlL{lM p}> . Let P(D), f, f € M} be

such that T'= P(D)f + f, and let df = n~'dg and df; = n~'dg, for §, 5 € M.
Chose y € DIM»}(R") to be a function such that y = 1 on the closed unit ball with
center at 0 and xy = 0 on {z € R"||z| > 2}. Put ¢, (x) = x(z/n)Y(z), n € Z,.
Then Lebesque Dominated Convergence Theorem implies

/ P(—D)wn(w)dg%/ P(=D)é(x) ;.
no " ’

x) n(x)

o= [
P(=D)h,(z) P(=D)y(x)

/n n(x) 49— /n n(z) .
Vn(T) )

o @) 7 e ()

g1,

U(x

917

when n — oo. Also, observe that for each n € Z

[ PRI | [ k) [ DU [ k)
n n( n n(

x) re 7() x) e N(2)

since both of the terms are equal to (T',1,,) in the sense of the duality (D{M#}(R™),
D'} (RY)). Hence, S, is well defined mapping D{ My} C, since it does not
depend on the representation of T'.

To prove that it is continuous it is enough to prove that it maps bounded sets
into bounded sets, since D/L{}iw "} is a Fréchet space. Let B be a bounded set in
D/{M”} By Corollary 4.3.2, there exist an ultradifferential operator P(D) of class
{M } and bounded subset B; of /\/l1 such that each T" € B can be represented
by T'= P(D)f + fi for some f, fi E By. By the way we defined Sy, it is easy

/
to verify that Sy(B) is bounded in C, so S, € (DIL{lM ”}> . We obtained that
n

! ~ /
<Dj;{}fw p}> = Dzﬁp } as sets and <D£[}jw P }> has stronger topology than the latter.

Let V' = B° be a neighborhood of zero <D{ p}> for B be a bounded subset of

D/{MP} By Corollary 4.3.2, there exist an ultradifferential operator P(D) of class

{M } and bounded subset B; of /\/l1 such that each 7' € B can be represented by
T = P(D)f+fi for some f, f; € By. There exists 1 > 1 such that |[g[[x < C for

all f € By. Also, since P(D) = 3, co D% is of {M,} class, there exist (r,) € 9% and
Cy > 1 such that |c,| < Cy/(MyR,) (see the proof of Proposition 4.2.3). Observe

p 017 DD 1 }
M T (r5/2) — 26G:Gs

in 75]{%?}, where we put C3 = >°_271%. One easily verifies that W C V. We
obtain that (D/{M”}>b and 2522.{”} are isomorphic l.c.s.

the neighborhood of zero W = {w € D{M”}
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Hence 152?} is a complete (DF')-space (since DlL{lM »} is a Fréchet space). Ob-
viously, the identity mapping D}{;];”} — 1521;1’ }is continuous and bijective.

Since 1522.{? Visa (DF)-space, to prove the continuity of the inverse mapping it is
enough to prove that its restriction to every bounded subset of ﬁi%fp} is continuous
[91, Cor. 6.7, p. 155]). If B is a bounded subset of 7522.2[1’} then for every (r,) € R,
I L e
YEB a MR,

hlel || Dol
oo(Rn)
that sup sup !
YeEB « Ma
bounded subset of Di%fp} is obviously bounded in Di%fp}, Dg%f”} and Dg.fp} have

the same bounded sets. Let ¢, be bounded net in 15,{;2.{”} which converges to ¢ in

25%” . Then there exist 0 < h <1 and C > 0 such that

< oo. Hence, by [51, Lemma 3.4|, there exists h > 0 such

< 00, i.e., B is bounded in Dﬁf"}. Since every
n

B el pel | D
S T T

Fix 0 < hy < h. Let € > 0 be arbitrary but fixed. Take p, € Z, such that
(hi/R)le < e/(2C) for all |a| > po.

Since 1, — 1 in 252];’7}, for the sequence 7, = p, p € Z,, there exists Ay such that
1D (o = )0

for all A > \g we have sup VR < —. Then for |a| < po, we have
« alla Dbo-

WD (1 — )]
M,

Ly

For |a| > po, we have

WD (y — )] e B\l
1L — <
A <2C ( h) <eg

It follows that ¥, — % in Di%fp}’hl and hence in DE,{’”}. We obtain that the

induced topology by ﬁg\;’”} on every bounded subset of 152?;”} is stronger than

the induced topology by Dé;fp}. Hence the identity mapping 152.{”} — Dg%f”} is

continuous. ]

4.5 Convolution of ultradistributions

We now apply our results to the study of the convolution of ultradistributions.
As a corollary of the last Theorem of the previous section for n = 1 we give an
improvement of the following theorem from [80| for existence of convolution of
Roumieu ultradistributions.
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4.5.1 On the general convolution of Romieu ultradistribu-
tions

Theorem 4.5.1. (/80]) Let S,T € D'*M»} (R™). The following statements are
equivalent:

i) the convolution of S and T exists;
X /
i) SoT e (B{AMP}> ;

iii) for all o € DM (R™), (p*S)T € D/{M”} and for every compact subset

K of R", (p,x) — ((¢=* S) T,x), D}M”} By C, is a continuous
bilinear mapping;

w) for all ¢ € DMek (R™), (gp * T) S € D/{Mp} and for every compact subset

K of R", (¢,x) — <(90*T) S, X>7 D}Mp} B{MP} — C, is a continuous
bilinear mapping;

v) for all o,y € DM (R™), (p % 5) (¥ *T) € L* (R).

Corollary 4.5.1. Let S, T € D{Me} (R™). Then the following conditions are equi-
valent

i) the convolution of S and T exists;
i) for all p € DU} (R), (0 ) T € DL,
i)' for all o € DM} (RY), (p+T) S € DI

Proof. We will prove that éii) < #ii)’, the prove that iv) < iv) is similar. Observe
that ii) = iii)’ is trivial. Let ii7)’ holds. Then, by Theorem 4.4.1, D/} is a
Fréchet space as the strong dual of a (DF)-space. The mapping

Xt—><(gp*5’)T,x>, Bkt 5 ¢

is continuous for each fixed ¢ € D}M”} since (gp * 5’) T e DlL{lM”}. Fix y € BMp},
Then the mapping

o (p8)T, DY — DOL (R

is continuous, hence it has a closed graph. But (gp * S) T e D/{Mp} and D'{MP}
continuously injected into D{M»} (R™), which implies the mapping

o (pxS) T, DY — DM

has a closed graph. D&Mp} is barreled (in fact it is a (DF'S)-space). Since DlL{lM 2
is a Fréchet space it is Ptak space hence this mapping is continuous by the Ptak
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Closed Graph Theorem ([91, Thm. 8.5, p. 166]). We obtain that for each fixed
x € BMr} the mapping

p <(<p*S‘)T,X>, D}M”} —C
is continuous. Hence, the bilinear mapping

(0, x) = ((p* S) T, x), DY x B 5 C

is separately continuous. Since D}(MP} and BMr} are barreled (DF)-spaces, this
mapping is continuous. ]

4.5.2 Relation between D7, , B/}, and and D7}, — Convolution
and multiplication )

Some of the properties of the D*p and D7, extend to D}, and D’g, for the general
translation-invariant Banach space of tempered ultradistributions £ with Beurling
algebra L.

Proposition 4.5.1. The following dense and continuous inclusions hold: D*
D3 < B and the inclusions are continuous D — Dy — B If E is Teﬂexwe
one has D’L* — Dy, — B

Proof. The proof follows the same lines as in the distribution case treated in
Theorem 1.5.1(by using the analogous results for ultradistributions).
O

By the above proposition and by the fact D*(R") — D}, (which is easily
. n
obtainable by direct inspection) we have D}, — D7y — an and D’L*l — D’L*p —
wn n wn n

Bfu*,, for 1 <p < o0.

Also, direct consequence of this Proposition is that the spaces D}, are never
Montel spaces when w is bounded weight. In fact, if ¢ € D*(R") is non-negative
with p(x) = 0 for |x| > 1/2 and 6§ € R™ is a unit vector, then {(7T_;p¢)/w(j0)},=0
is a bounded sequence in D7, I hence in D}, without any accumulation point.

It is also easy to verify that B* — B* and B’* — B’*

The multiplicative product mappmgs p >< B, — D and - : B X ng —
D, are well-defined and hypocontinuous for 1 < p < oco. In particular, fy is
an integrable ultradistribution whenever f € B} and ¢ € DL1 or f € D’L’:17 and
o € By If (1/r) = (1/p1) + (1/p2) with 1 < 7,p1,p2 < 00, it is also clear that
the multiplicative product - : ’L*p1 X DLpg — D’L*Zm is hypocontinuous. Clearly,
the convolution product can always be canonically deﬁned as a hypocontinuous
mapping in the following situations, * : D/ L1 — Lp, 1 <p < oo, and
x 8;7* X D/L*L — 8;7* Furthermore, such convolutlon products are continuous
bilinear mappings. In fact, in the Roumieu case these spaces are (F')-spaces and
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therefore continuity is equivalent to separate continuity; for the Beurling case, it
follows from the equivalence between hypocontinuity and continuity for bilinear
mappings on (DF)-spaces (cf. [57, p. 160]).

We can now define multiplication and convolution operations on D%, . In the
next proposition we denote by Og,(R") the space Of(R") equipped with the
strong topology from the duality (OF(R"), Oz (R™)). Using Proposition 4.5.1 and
Proposition 4.2.4 for F = C,, we obtain the next proposition.

Proposition 4.5.2. The convolution mappings x : Dy, x DYy — Dy, and * :
Dy x O¢y(R™) — DF, are continuous. The convolution and multiplicative pro-
ducts are hypocontinuous in the following cases: - : D/E*; x Dj. — D}y, - DYy %

Dy — Dy, and x : Dy, X Dy, — By, If E is reflexive, we have * : Dy, x Dy, — By,

Proof. The first two mappings are continuous because of [57, p. 160]. Using
Proposition 4.5.1 and Proposition 4.2.4 for £ = (), we obtain the continuity of
the mappings * : Dy, x O, (R") — Dy, . The rest of the proof follows the same
lines as that of Proposition 1.5.1. O]

Observe that, as a consequence of Proposition 4.5.2, fy is an integrable ultra-
distribution (i.e., an element of D) if f € Df, and ¢ € D}, orif f € D}, and
¢ € Dy.
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Kmyune peun: Temnepupane muctpubyruje; Temnepupane yaTpamucTpu-
oymuje; Tpancnanuono-uaBapujanran; RouBoaymnuja muctpudbynuja; Kon-
BoJynuja yarpamuctpubdbynuja; KouBonyrope; Bepaunar anredpa; [lapame-
TPUKC
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YIK:

Uysa ce: Dubnmorera lemaprmana 3a MaTteMaTuky 1 uHpopMaTuky, [Ipu-
poaHO-MaTeMaTuyku (akyarer, Y HuBepsurer vy Hoom Cany

uy

Basxkna mamomena:

BH

Msson: Kopuctumo osmaky * 3a muctpubynmono (Csaproso), (Mp) (Bepauaroso) u
{Mp} (PoymueyoBo) Okpyskeme. YBOANMO M IpPOyaBaMo HOBe (yITpa)aucTpubyluoHe
IpocTope, TeCT GyHEnujcke npocrope Dy, 1 BuUxoBe myaie D’Ei. OBy mpocTopu yonmra-
Bajy mpocrope Dj,, D7,, B u muxose resuncke sepsuje. KoucTpykmmja Hammx HOBUX
(ynTpa) imcTpubynMOHMX MPOCTOpa jeé 3aCHOBaHA Ha aHAJIW3W OAroBapajyhux TpaHcia-
[MOHO - WMHBAPUjAHTHUX DaHaxoBux mpoctopa (yarpa)mmcTpubynuj3 Koje O3HAaBaMo ca

E. OBu npocTopu mMajy HempeKumHy CpyIy TPaHCIALHUja, KOja je KOHBOJYIMOHM MOIYI
1

o, TI€ je TewmHa W MOBE3aHa Ca OIepPaTOPUMAa TPAHCIA-

Ha Beypiaurarosom anrebpom L
muje npocropa . Bamaxos npocrop FE. ossauasa mpocrop L. * E’. Kopucreun mo-
Oujene pesyiarara IpoydaBaMO KOHBOJIyHOWjy yiarpamuctpubynuja. IIlpocropu koHBOIILY-
TOpAa O/C* (R”) TEMIEPUPAHUX YATPATUCTPUOYIIUja, AHATUZUPAHU CYy TMOMOUY IYATHOCTHU
TeCT (YHKIU]CKUX IPOCTOPA OE(R"), ne¢rHUCAHUX Yy OBOj Te3u. Kopucreuum cBojcTBa
TPAHCJIAIMOHO - MHBAPUjaHTHUX BaHAXOBMX NPOCTOPA TEMIEPUPAHUX YITPAIAUCTPUOY-
nja, omer o3HacHUX ca [/, mobumjaMo KapakTepuU3anujy KOHBOJyIZje PoMyney-oBHX yiI-
TpaaucTpubdynurja, TpeKo MHTErpabuIHNX yaTpamucTpubynuja. Jloka3yjeMo ma: KOHBOJIY-
nuja ase Poymuey-ose yarpamactpubynuja 1, S € DMy} (R") MOCTOJU aKO U CaMO aKO
(go * S) T e DIL{lMp} (R™) 3a craru p € DMy} (R™). Takobe, mpoyuasamo rpammrdme
BPEIHOCTU XOJOMIPYHUX PYHKIU]a nepuHMCAHUX Ha TyOama. JlokazaHne cy HOBe Teopeme
”orpor rkauHa’. Pesynaratu ce 3aTUM KOpUCTE 3a MPE3EHTAI]Y D}_;; IPEKO (PAKTOP MPOC-
Topa xojroMop¢HuX ¢yHrnuja. Taxobe, mara je mpeseHTanuja egeMeHTe ,Dj’s; KOPUCTEYU

XeaT KepHeJI MeTole.

n3
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