

УНИВЕРЗИТЕТ У НИШУ

Универзитетска Библиотека "Никола Тесла"

UNIVERSITY OF NIŠ

University Library "Nikola Tesla"

ДИГИТАЛНИ РЕПОЗИТОРИЈУМ УНИВЕРЗИТЕТА У НИШУ

> Библиотека Дисертације

DIGITAL REPOSITORY OF THE UNIVERSITY OF NIŠ

Ph.D. Theses

UNIVERZITET U NIŠU Tehnološki fakultet u Leskovcu

Ljubiša B. Nikolić

POVRATNO MEŠANJE TEČNE FAZE I KINETIKA PROCESA ALKOHOLNE FERMENTACIJE U TROFAZNOM BIOREAKTORU SA VIBRACIONOM MEŠALICOM

Doktorska disertacija

Leskovac, 2003. god.

Mentor:	Prof. dr Vlada Veljković Tehnološki fakultet, Leskovac			
Članovi komisije:	Prof. dr Dejan Skala Tehnološko-metalurški fakultet, Beograd			
	Dr Miodrag Lazić, vanred. prof. Tehnološki fakultet, Leskovac			

Eksperimentalni deo doktorske teze: ispitivanje povratnog mešanja na kolonama sa vibracionom mešalicom, sinteza poroznog polimernog nosača, imobilizacija mikroorganizma, izvođenje alkoholne fermentacije i hemijska ispitivanja su urađena u laboratorijama Tehnološkog fakulteta u Leskovcu.

Ispitivanja poroznog polimernog nosača i imobilisanih mikroorganizama pomoću SEM mikroskopije su izvršena u laboratoriji za elektronsku mikroskopiju Medicinskog fakulteta u Nišu. Za pruženu pomoć, imam zadovoljstvo da se zahvalim prof. dr Stevi Najmanu, prof. dr Vojinu Saviću i Miroslavu Miljkoviću.

Porozimetrija sintetisanog polimernog nosača urađena je u Institutu za katalizu IHTM-a u Beogradu uz nesebičnu pomoć Zorice Vuković.

TG i DSC ispitivanja, ljubaznošću dr Dragana Babića, urađena su u Institutu za nuklearne nauke "Vinča" u Beogradu.

Spektri difrakcije X-zraka za polimerne uzorke su snimljeni u Novom Sadu na Prorodno-matematičkom fakultetu u Laboratoriji za rendgensku strukturnu analizu materijala, zbog čega dugujem zahvalnost prof. dr Agneš Kapor.

Veoma dragocenu pomoć sam dobio i od mr Sretena Stojanovića, Goluba Mitića i od zaposlenih u DP "Zvezda", Leskovac.

Prof. dr Vladi Veljkoviću i prof. dr Dejanu Skali zahvaljujem za sugestije, savete i podršku tokom izrade teze.

U toku izrade teze urađena su sa studentima dva diplomska rada iz ove oblasti istraživanja.

Disertacija je rezultat istrazivanja u okviru projekta koji finansira Ministarstvo za nauku, tehnologiju i razvoj Republike Srbije u okviru **Osnovna istraživanja, hemija**: "Zelena hemija - osnov za razvoj novih materijala, sinteze i inženjerstva procesa", Ev. br. 1456.

S A D R Ž A J

1.	UVO	D			1						
2.	BIO	REAK'	TOR SA	VIBRACIONOM MEŠALICOM	4						
	2.1.	HIDR	ODINAM	IKA I PRENOS MASE	5						
	2.2.	POVR	ATNO M	TNO MEŠANJE U KVM							
	2.3.	PRIM	ENA KVI								
	2.4.	OPIS	EKSPERI	IMENTALNOG POSTROJENJA	11						
3.	POV	RATN	IO MEŠA	NIF	13						
•	3.1.	TEOR	RIISKI DE		13						
	0.11	311	RASPOI	DELA VREMENA ZADRŽAVANIA	13						
		3.1.2.	MODEL	J PROTICANJA	15						
			3.1.2.1.	Model kaskade od N sekcija sa idealnim mešaniem	10						
				hez novratnog toka	16						
			3.1.2.2.	Kaskada od N sekcija sa idealnim mešanjem i							
				novratnim tokom	16						
			3123	Disperzioni model	17						
		313	METOD	E ODREĐIVANIA PARAMETARA MODELA	17						
		0.1.0.	PROTIC	ANIA	17						
			3.1.3.1.	Kaskada od N sekcija sa idealnim mešanjem bez	17						
				novratnog toka	17						
				3.1.3.1.1 Metoda momenata (MM)	17						
				3.1.3.1.2. Linearna metoda (A1)	18						
				3.1.3.1.3. Metoda optimizacije (Z1)	18						
			3.1.3.2.	Kaskada od N sekcija sa idealnim mešanjem i							
				povratnim tokom	19						
				3.1.3.2.1. Metoda momenata (MM)	19						
				3.1.3.2.2. Linearna metoda (A2)	20						
				3.1.3.2.3. Metoda optimizacije (Z2)	20						
			3.1.3.3.	Disperzioni model	20						
				3.1.3.3.1. Metoda momenata (MM)	20						
				3.1.3.3.2. Linearne metode (A3 - A5)	21						
				3.1.3.3.3. Metoda optimizacije (Z3)	22						
		3.1.4.	KOREL	ACIJE ZA KOEFICIJENT POVRATNOG TOKA	22						
		3.1.5.	IZBOR 7	ΓRASERA	28						
	3.2.	EKSP	ERIMEN	TALNI DEO	31						
		3.2.1.	IZBOR 7	ΓRASERA	31						
		3.2.2.	ODREĐ	IVANJE KOEFICIJENTA AKSIJALNE							
			DISPER	ZIJE U KVM	33						
	3.3.	REZU	LTATI I	DISKUSIJA	34						
		3.3.1.	IZBOR	ΓRASERA	34						
		3.3.2.	IZBOR I	METODE ZA ODREĐIVANJE PARAMETARA							
			MODEL	A	37						

		3.3.3.	IZBOR I	MODELA STRUJANJA	42
		3.3.4.	KOEFIC	IJENT AKSIJALNE DISPERZIJE U KVM1	44
			3.3.4.1.	Uticaj prividne brzine strujanja tečnosti na	
				koeficijent aksijalne disperzije	45
			3.3.4.2.	Uticaj prividne brzine strujanja gasa na koeficijent	
				aksijalne disperzije	49
			3.3.4.3.	Uticaj intenziteta vibracije na koeficijent aksijalne	
				disperzije	52
		3.3.5.	KOEFIC	IJENT AKSIJALNE DISPERZIJE U KVM2	54
			3.3.5.1.	Uticaj intenziteta vibracije na koeficijent aksijalne	
				disperzije	54
			3.3.5.2.	Uticaj udela čvrste faze na koeficijent aksijalne	
				disperzije	64
			3.3.5.3.	Uticaj prividne brzine strujanja gasa na koeficijent	
				aksijalne disperzije	68
		3.3.6.	POREÐI	ENJE SA DRUGIM REAKTORIMA	73
		3.3.7.	KOREL	ACIJE ZA KOEFICIJENT AKSIJALNE DISPERZIJE	75
	3.4.	ZAKL	JUČAK		78
4.	KIN	ETIKA	ALKO	IOLNE FERMENTACIJE U KVM	80
	4.1.	BIOPI	ROCESI S	SA IMOBILIZOVANIM ĆELIJAMA	81
	4.2.	PORO	ZNI POL	IMERI	83
	4.3.	EKSP	ERIMEN	TALNI DEO	84
		4.3.1.	MIKRO	ORGANIZAM I HRANLJIVA PODLOGA	84
		4.3.2.	SINTEZ	A POLIMERNOG NOSAČA	85
		4.3.3.	IMOBIL	IZACIJA ĆELIJA MIKROORGANIZMA NA	
			POLIME	ERNI NOSAČ	87
		4.3.4.	ALKOH	OLNA FERMENTACIJA	87
	4.4.	REZU	LTATI I	DISKUSIJA	90
		4.4.1.	STRUK	FURA I OSOBINE MAKROPOROZNOG NOSAČA	90
		4.4.2.	IMOBIL	IZACIJA CELIJA KVASCA	96
		4.4.3.	KINETI	KA ALKOHOLNE FERMENTACIJE U SARZNOM	
			BIOREA	KTORU	99
		4.4.4.	POVRA	TNO MESANJE U KVM ZA OPERATIVNE USLOVE	100
		4 4 5	IZVOĐE	SNJA ALKOHOLNE FERMENTACIJE	103
		4.4.5.		KA ALKOHOLNE FERMENTACIJE U BIOREAKTO-	104
			KUSAV	BRACIONOM MESALICOM	104
			4.4.3.1. 1 1 5 2	Reakcija pseudo-nunog reda	100
	1 5	7 4 17 1	4.4.3.2.	Keakcija sa wionodovom kinetikom	108
_	4.3. 1 1/11				112
5.		EKATU LOG	JKA		113
6.	PRI	LUG			120

IZVOD

U radu je proučavan uticaj protoka tečne faze, intenziteta vibracije, aeracije i udela čvrste faze, na povratno mešanje tečne faze u aksijalnom pravcu u kolonama sa vibracionom mešalicom (KVM1 i KVM2) različite geometrije: unutrašnji prečnik kolone 2,54 i 9,2 cm, visine radnog dela 173 i 86 cm, broj pločica mešalice 65 i 15, udeo slobodne površine pločice 51 i 45,4 %, respektivno. Kao tečna faza korišćena je česmenska voda, koja je proticala naniže (prividna brzina strujanja do 0,9 cm/s), kao gasna faza - vazduh (prividna brzina strujanja do 1,5 cm/s), a kao čvrsta faza polipropilenske kuglice (prečnik 8,3 mm, gustina 890 kg/m³, udeo do 8,43 %).

Za ispitivanje aksijalne disperzije (povratnog mešanja) korišćena je funkcija raspodele vremena zadržavanja, koja je određivana metodom pobude (impuls trasera sorbinske kiseline u ulaznu struju tečne faze) i odziva (praćenjem koncentracije trasera na izlazu iz kolone).

Aksijalna disperzija zavisi od intenziteta vibracije, prividne brzine strujanja gasa i tečnosti, unutrašnjeg prečnika kolone i udela čvrste faze. Za jednofazne (L), dvofazne (G-L i L-S) i trofazne (G-L-S; G-gas, L-tečnost, S-čvrsta faza) sisteme izvedene su sledeće korelacione jednačine za koeficijent aksijalne disperzije u koloni:

L: $D_L = 0.284 \cdot (A \cdot f)^{1.05} \cdot U_L^{0.3} \cdot D_C^{0.7}$ (odstupanje ±19.3 %),

G-L:
$$D_L = 2,03 \cdot (A \cdot f)^{-0,32} \cdot U_L^{0,42} \cdot U_G^{0,2} \cdot D_C^{1,39} (\pm 28,6\%),$$

L-S:
$$D_{L} = 4,56 \cdot (A \cdot f)^{1,03} \cdot U_{L}^{0,46} \cdot \varepsilon_{S}^{0,53} \cdot D_{C}^{0,38} (\pm 44,6\%),$$

G-L-S: $D_L = 1,4 \cdot (A \cdot f)^{-0,34} \cdot U_L^{0,32} \cdot U_G^{0,15} \cdot \epsilon_S^{-0,3} \cdot D_C^{1,09} (\pm 38,3\%).$

Koeficijent aksijalne disperzije je iskorišćen za matematičko modelovanje alkoholne fermentacije u bioreaktoru tipa KVM. Ovaj bioproces je realizovan pomoću ćelija kvasca *Saccharomyces cerevisiae* imobilisanim u makroporozni polimerni nosač. Nosač je sintetisan od akrilamida i metilmetakrilata sa umreživačem tetrametilol-glikolurilom. Kao supstrat korišćena je glukoza. Alkoholna fermentacija pomoću imobilisanih ćelija kvasca u šaržnom reaktoru je reakcija nultog reda. Na osnovu jednačine za brzinu procesa, uz definisan disperzioni model bioreaktora sa vibracionom mešalicom, izračunate su vrednosti očekivanih stepena konverzije supstrata, koji se slažu sa odgovarajućim eksperimentalnim rezultatima. Pokazano je, takođe, da aksijalno mešanje ne utiče na stepen konverzije kad je reakcija nultog reda.

Analiza disperzionog modela KVM u slučaju da se alkoholna fermentacija definiše Monodovim modelom pokazuje da efekat aksijalnog mešanja ima pozitivni uticaj na stepen konverzije supstrata i prinos proizvoda.

A B S T R A C T

In this paper, the influence of liquid and gas flow rates, vibration intensity, and solid phase volume fraction on the axial mixing of the liquid phase in axial direction of reciprocating plate columns with different geometry (columns RPC1 and RPC2: inner column diameter 2.54 and 9.2 cm, working height 173 and 86 cm, number of perforated plates 65 and 15, and fractional free area 51 and 45.4 %, respectively) was investigated. The tap water flowing down (superficial velocity: up to 0.9 cm/s), air (superficial velocity to 1.5 cm/s) and the polypropylene spheres (diameter 8.3 mm, density 890 kg/m³, ratio up to 8.43 %) were used as the liquid, gas and solid phase, respectively.

To study the axial dispersion (axial mixing) the resident-time distribution function was used, which was determined by the pulse input method with sorbic acid used as a tracer (tracer concentration was measured at the column outlet).

The axial dispersion depends on the vibration intensity, the superficial gas and liquid velocity, the inner column diameter, and the solid phase volume fraction. For single liquid phase (L), two-phase (G-L and L-S), and three-phase (G-L-S; G - gas, L - liquid, S - solid phase) systems the following correlation equations were obtained for the axial dispersion coefficient in the columns:

L:	$\mathbf{D}_{\mathrm{L}} = 0,284 \cdot \left(\mathbf{A} \cdot \mathbf{f}\right)^{1,05} \cdot \mathbf{U}_{\mathrm{L}}^{0,3} \cdot \mathbf{D}_{\mathrm{C}}^{0,7} \text{ (standard deviation ±19,3 \%),}$
G-L:	$\mathbf{D}_{\mathrm{L}} = 2,03 \cdot \left(\mathbf{A} \cdot \mathbf{f}\right)^{-0,32} \cdot \mathbf{U}_{\mathrm{L}}^{0,42} \cdot \mathbf{U}_{\mathrm{G}}^{0,2} \cdot \mathbf{D}_{\mathrm{C}}^{-1,39} (\pm 28,6 \ \%),$
L-S:	$D_{L} = 4,56 \cdot (A \cdot f)^{1,03} \cdot U_{L}^{0,46} \cdot \varepsilon_{S}^{0,53} \cdot D_{C}^{0,38} (\pm 44,6\%),$
G-L-S	$: \mathbf{D}_{L} = 1, 4 \cdot (\mathbf{A} \cdot \mathbf{f})^{-0,34} \cdot \mathbf{U}_{L}^{0,32} \cdot \mathbf{U}_{G}^{0,15} \cdot \mathbf{\varepsilon}_{S}^{-0,3} \cdot \mathbf{D}_{C}^{1,09} (\pm 38,3 \%).$
	The evial dispersion coefficient was used for mathematical modelin

The axial dispersion coefficient was used for mathematical modeling of ethanol fermentation in the RPC reactor. The yeast (*Saccharomyces cerevisiae*) cells were immobilized in the macroporous polymer carrier synthesized from acrylamide and methyl methacrylate, with tetramethylol glycoluril as the cross-linker. Glucose was used as the substrate. The ethanol fermentation by immobilized yeast cells in a batch reactor is a zero order reaction. Using the dispersion model of the reciprocating plate bioreactor with the process rate equation, the values of output substrate concentration under different operating conditions were calculated, which correspond to the experimental ones. It was also shown that the axial dispersion did not influence the conversion degree when the reaction is of the zero order.

The analysis of the dispersion model for the RPC with the Monod kinetics of ethanol fermentation showed that the influence of axial dispersion had a positive effect on the substrate conversion degree and the product yield.

SPISAK OZNAKA

А	-	amplituda vibracije, cm
a ₁ - a ₅	-	nagib prave linearnih metoda za određivanje parametara modela
b	-	debljina kivete, cm
b ₁ - b ₅	-	odsečak prave linearnih metoda za određivanje parametara modela
С	-	koncentracija, mol/dm ³
C_0	-	koeficijent otvora pločice, 1
C_q	-	koncentracija trasera Q, mol/dm ³
C_q^{0}	-	koncentracija trasera Q koja bi se dobila kada bi se celokupna količina ubrizganog trasera raspodelila ravnomerno u celoj zapremini suda koji se
C		analizira, mol/dm ^o
C_t	-	gustina raspodele vremena zadržavanja (GRVZ), min ⁻
d J	-	precnik otvora plocice, mm
a _{pl}	-	precnik plocice, mm
a _t	-	ekvivalentni precnik, cm
D	-	brzina razbiazivanja, n
Da	-	Damkonlerov broj, l
D _L	-	Koeficijent aksijalne disperzije, cm ⁻ /s
$D_{L}(I)$	-	Koeficijent aksijalne disperzije u monofaznom (L) sistemu, cm ⁻ /s
$D_{L}(II)$	-	koeficijent aksijalne disperzije u dvofaznom (G-L) sistemu, cm ⁷ /s
$D_{L}(III)$	-	Koeficijent aksijalne disperzije u dvofaznom (L-S) sistemu, cm ⁻ /s
$D_{L}(IV)$	-	Koeficijent aksijalne disperzije u trofaznom (G-L-S) sistemu, cm ⁻ /s
D _c	-	precnik kolone, cm
6 E	-	raktor erektivnosti, i
E _t	-	gustina raspodele vremena zadrzavanja (GR vZ), min L seleseve transformesiis systime respected by vremena zadrževenis (CDVZ) 1
Γ _(s) Ε	-	Lapiasova iransiormacija gustine raspodele vremena zadržavanja (GR VZ), 1 raspodela vremena zadržavanja (BVZ) 1
г _t Ь	-	raspouela vielnena zaulzavalija ($K V Z$), i
II f	-	frakvancija. Hz
I I	-	intervencija, 112 $I = \Lambda f_{a} e^{i \pi h}$
I T	-	milenzitet vibracije, $1 = A^{1}$, cm/s
I _t V	-	Monodova konstanta zasióonia za sunstrat. g/dm ³
к _s т	-	radna visina kalona, em
	-	visina kolone, cm
L _c 1	-	dužina mešanja cm
1	_	dužina mešanja, cin dužina mešanja koja potiče od sila površinskog napona, cm
1 _b	_	dužina mešanja koja potiče od mehaničkog mešanja, cm
m m	_	visina notnuno mešanog regiona cm
mL	_	Thileov modul 1
N	-	broi sekcija sa idealnim mešanjem
n.	-	broi pločica vibracione mešalice
P	-	koncentracija proizvoda mikrobne fermentacije. g/dm ³
P ₀	-	koncentracija proizvoda na početku mikrobne fermentacije. g/dm^3
Pe	-	Pecletov broj $Pe = (U \cdot L)/D$.
a	-	povratni tok kroz perforiranu pločicu 1
Ч		portaun tox kież performana proclea, i

Q_{G}	-	zapreminski protok gasa, dm ³ /h
Q _L	-	zapreminski protok tečnosti, dm ³ /h
(-r _A)	-	brzina hemijske reakcije, mol/dm ³ ·h
S_0	-	koncentracija supstrata na početku mikrobne fermentacije, g/dm ³
S	-	koncentracija supstrata, g/dm ³ ; funkcija Laplaceovog operatora, $S = t_{sr} \cdot s$
S	-	Laplaceov operator, 1
t	-	vreme, min
t _{sr}	-	srednje vreme zadržavanja fluida u sudu, min
U ₀ - U ₂	-	funkcije Laplaceove transformacije gustine raspodele vremena zadržavanja
U _G	-	prividna brzina strujanja gasa, cm/s
UL	-	prividna brzina strujanja tečnosti, cm/s
U _c	-	prividna brzina strujanja kontinualne faze, cm/s
U _d	-	prividna brzina strujanja dispergovane faze, cm/s
U _R	-	relativna brzina strujanja tečnosti u odnosu na dispergovanu fazu, cm/s
V	-	zapremina, cm ³
$\mathbf{V}_{\mathbf{k}}$	-	zapremina kolone, cm ³
\mathbf{X}_0	-	koncentracija biomase u mikrobnoj fermentaciji u početnom trenutku t ₀ ,
		g/dm ³
Х	-	koncentracija biomase u mikrobnoj fermentaciji u trenutku t, g/dm ³
$Y_{X/S}$	-	koeficijent prinosa biomase u odnosu na utrošeni supstrat,
		g biomase/g supstrata
$\mathbf{Y}_{\mathrm{P/S}}$	-	koeficijent prinosa proizvoda u odnosu na utrošeni supstrat,
		g etanola/g supstrata
$Y_{P/X}$	-	koeficijent prinosa proizvoda u odnosu na stvorenu biomasu,
		g etanola/g biomase
YY	-	funkcija Laplaceove transformacije gustine raspodele vremena zadržavanja
YZ	-	funkcija Laplaceove transformacije gustine raspodele vremena zadržavanja

Grčki simboli

α	-	koeficijent povratnog toka, 1
δ	-	debljina pločice, mm
3	-	udeo slobodne površine pločica, 1; apsorpcioni koeficijent, dm³/mol·cm
ε _b	-	specifična rasuta energija pri savladavanju sila površinskog napona, W/kg
ε _D	-	zapreminski udeo dispergovane faze, 1
ε _G	-	zapreminski udeo gasa u disperziji, 1
ε _m	-	specifična rasuta mehanička energija pri mešanju, W/kg
ε _s	-	zapreminski udeo čvrste faze u disperziji, 1
ε _t	-	specifična ukupna rasuta energija, W/kg
λ	-	normalizovana dužina reaktora, 1
ψ	-	normalizovana koncentracija reaktanta ili proizvoda (= S/S_0 ili P/S_0)
Ψ_{min}	-	minimum sume kvadrata razlike eksperimentalne GRVZ i GRVZ modela, 1
$\sigma_{\Theta}{}^2$	-	varijansa raspodele vremena zadržavanja, 1
θ	-	normalizovano vreme, 1
τ	-	vreme boravka fluida u sudu ili u celoj kaskadi (= V/v_0), s
τ_{i}	-	vreme boravka fluida u jednom reaktoru u kaskadi (ili u jednoj sekciji), s

μ	-	specifična brzina mikrobnog rasta, h ⁻¹
$\mu_{\rm m}$	-	maksimalna specifična brzina mikrobnog rasta, h ⁻¹
υ_0	-	zapreminski protok, cm ³ /s
ρ_0	-	gustina rastvarača, kg/m ³
ρ	-	gustina rastvora, kg/m ³

Index

c	-	kontinualna faza
d	-	dispergovana faza
exp	-	eksperimentalna vrednost
G	-	gas
L	-	tečnost
min	-	minimalna vrednost
max	-	maksimalna vrednost
mod	-	vrednost po matematičkom modelu
sr	-	srednja vrednost
1	-	za monofazne uslove
2	-	za dvofazne uslove

Skraćenice

BK DSC FT-IC	- -	barbotažna kolona diferencijalna skenirajuća kalorimetrija infracrvena spektroskopija sa Fourier-ovom transformacijom
GRVZ	-	gustina raspodele vremena zadržavanja
ICR	-	idealni cevni reaktor
KKVM	-	Karrova kolona sa vibracionom mešalicom
KVM	-	kolona sa vibracionom mešalicom
MM	-	metoda momenata
PK	-	kolona sa punjenjem
PRIM	-	protočni reaktor sa idealnim mešanjem
PVC	-	polivinil hlorid
RVZ	-	raspodela vremena zadržavanja
SEM	-	skenirajuća elektronska mikroskopija
TG	-	termogravimetrija

1. U V O D

U bioprocesima, gde su biokatalizatori žive ćelije mikroorganizama, odigrava se istovremeno rast, razmnožavanje, trošenje supstrata i sinteza primarnih i sekundarnih metabolita. Brzina rasta ćelija mikroorganizama, utroška limitirajućeg supstrata iz hranljive podloge i uticaj faktora okoline na ukupnu brzinu odvijanja posmatranog bioprocesa, ciljevi su, najčešće, mnogih ispitivanja. Da bi se stvorila jasna predstava o načinu rada bioreaktora, u kojima se dešavaju svi navedeni fenomeni, neophodno je kinetiku biohemijske konverzije supstrata povezati sa karakteristikama proticanja fluida u bioreaktoru, stepenom mešanja i kontakta gasovite i tečne faze u slučaju aerobnih procesa i brzinom prenosa mase i toplote. Ako su, pri tome, ćelije mikroorganizama, koje, inače, predstavljaju potpuno segregirane katalitičke čestice, imobilisane na čvrstom nosaču, u bioreaktor se uvodi još jedna faza, što dodatno komplikuje analizu rada ovakvih sistema. Za projektovanje i povećanje razmera (scale-up) bioreaktora neophodno je poznavanje brzina svih fizičkih i hemijskih stupnjeva složenog procesa i osnovne informacije o mešanju i proticanju fluida.

U realnim protočnim reaktorima fluidi nikada u potpunosti ne protiču idealno (sa ili bez mešanja), a u nekim slučajevima odstupanja od idealnosti mogu biti značajna. Odstupanja su najčešće prouzrokovana kanalisanjem, recirkulacijom ili stvaranjem nepokretnih zona fluida u reaktoru i ovakvo proticanje treba izbegavati jer uvek smanjuje proizvodnost uređaja ako se u njima odvijaju hemijske reakcije koje nisu autokatalitičke ili mikrobne fermentacije. Efekat neidealnog proticanja posebno utiče na nesigurnost procene efikasnosti istih uređaja većih razmera (problem kod povećanja razmere uređaja). U većini praktičnih slučajeva dovoljno je poznavati samo raspodelu vremena zadržavanja (RVZ) fluida koji protiče kroz reaktor, do koje se može doći ispitivanjem strujanja uz primenu obeležene supstance (trasera), odnosno primenom metode pobude i odziva, da bi se procenila njegova efikasnost u realnim uslovima. Zanemarivanje ovog faktora može dovesti do velikih grešaka u projektovanju.

Višefazni sistemi se sreću ne samo u biotehnologiji već i u hemijskom inženjerstvu gde reaktanti i katalizator mogu biti u različitim fazama gas-tečnost-čvrsta, i gde brzina procesa može zavisiti od veličine međufazne površine i brzine prenosa mase iz jedne u drugu fazu. Dispergovanje faza se postiže eksternim mešanjem u reaktorima različite konstrukcije i namene. Jedan od takvih reaktora je kolona sa vibracionom mešalicom (KVM).

KVM se tek poslednjih dvadesetak godina koristi kao bioreaktor (Audet i sar., 1996a, 1996b, 1998; Brauer, 1991; Gagnon i sar., 1999; Veljković, 1985; Veljković i sar., 1990). Njena osnovna prednost u odnosu na barbotažnu kolonu je ostvarivanje većeg udela gasa u disperziji gas-tečnost, veća međufazna površina i bolji kontakt faza, čime je omogućena veća brzina prenosa mase između faza. Radijalna uniformnost sastava u KVM je, takođe, veoma izražena, bez zastojnih zona, bez kanalisanog ili recirkulacionog toka. Sa relativno malom eksternom energijom, koju vibraciona mešalica prenosi na medijum, ostvaruje se dobro mešanje i dispergovanje nemešljivih faza. Efikasno mešanje je postignuto zahvaljujući konstrukciji mešalice, koja se sastoji od perforiranih pločica postavljenih na jednakom rastojanju duž osovine mešalice i njenom povratno-periodičnom kretanju u aksijalnom pravcu kolone.

Opseg intenziteta vibracije kod KVM može biti veoma veliki, od niskih do vrlo visokih, što je, inače, samo tehničko pitanje. Zbog toga se KVM može upotrebiti i za jako viskozne medijume kod kojih je otežana aeracija i mešanje, kao što su biosinteze ekstraćelijskih polisaharida (Audet i sar., 1996a, 1998). Kod fermentacija u bioreaktorima sa vibracionom mešalicom koje se izvode sa većim intenzitetom vibracije, može se pojaviti

nepovoljan uticaj smicajnih sila na ćelije kultivisanog mikroorganizma. Ovaj efekat se može eliminisati, ili bar umanjiti, imobilizacijom mikroorganizma u poroznim nosačima, pri čemu nosač fizički zaklanja ćelije. Međutim, tada se pojavljuje otpor difuziji hranljivog medijuma do ćelija mikroorganizma unutar nosača, koji može delimično usporiti proces.

Pedesetih godina XX veka počeli su da se razvijaju bioprocesi sa kontinualnim dovođenjem sveže sterilne hranljive podloge i izvođenjem fermentacione tečnosti iz bioreaktora. Razvoj kontinualnih bioprocesa je išao u smeru primene reaktora sa potpunim mešanjem ili cevnog reaktora sa klipnim proticanjem, bez ili sa učešćem recirkulacije. Kod reaktora sa potpunim mešanjem, pretpostavlja se da je mešanje tako efikasno da je koncentracija biokatalizatora praktično jednaka u bilo kom elementu zapremine reaktora. Postojanje bilo kog gradijenta u reaktoru je dovoljno malo, da se lokalna brzina reakcije za date ćelije ili čestice biokatalizatora suštinski ne menja. Kod cevnog bioreaktora postoji klipno proticanje ako je Reynoldsov broj veći od 2100. Pri klipnom proticanju pojavljuju se gradijenti koncentracija supstrata, proizvoda i biokatalizatora u aksijalnom pravcu. Za neautokatalitičke reakcije, idealna efikasnost ovih uređaja se postiže ako se pomenuti gradijenti ne naruše, tj. kada nema povratnog mešanja u aksijalnom pravcu, duž ose proticanja, odnosno kada su sve lokalne brzine iste na poprečnom preseku cevi. Kod bioprocesa je otežano idealno klipno proticanje zbog višefaznog karaktera fermentacionog medijuma, mogućeg taloženja i izdvajanja supstanci i ćelija na zidovima i krivinama cevi. Kod aerobnih procesa mogu se javiti i problemi sa održavanjem optimalne koncentracije rastvorenog kiseonika.

U KVM se meša fermentaciona tečnost i u isto vreme stvara privid klipnog proticanja sa kontrolisanim stepenom aksijalne disperzije. Gradijent koncentracija supstrata i proizvoda postoji od ulaza do izlaza iz reaktora. Pri izvođenju autokatalitičkih reakcija u KVM može se pojaviti povoljan uticaj mešanja i "ujednačavanja" koncentracije reaktanata na prinos i brzinu izvođenja procesa.

Dugogodišnja iskustva u proučavanju hidrodinamičkih osobina pri monofaznom (tečnost) i dvofaznim (tečnost-tečnost i gas-tečnost), istostrujnim i protivstrujnim proticanjima ukazuju da se KVM može iskoristiti kao bioreaktor za izvođenje mikrobnih fermentacija. Uprkos njenih povoljnih osobina za izvođenje bioprocesa, skromna su iskustva u korišćenju KVM kao bioreaktora (Audet i sar., 1996a, 1996b, 1998; Brauer, 1991; Gagnon i sar., 1999; Veljković, 1985; Veljković i sar., 1990).

U ovoj doktorskoj disertaciji izvršeno je ispitivanje povratnog mešanja i kinetike alkoholne fermentacije u trofaznoj KVM. Aksijalna disperzija tečne faze je ispitana metodom pobude i odziva, uvođenjem trasera u tečnu fazu na ulazu u kolonu i merenjem njegove koncentracije u tečnoj fazi na izlazu iz kolone. Raspodela vremena zadržavanja (RVZ) se koristi za izračunavanje parametara (broj sekcija u nizu, koeficijent povratnog toka i koeficijent aksijalne disperzije ili Pecletov broj) različitih modela proticanja: kaskade od N reaktora sa idealnim mešanjem, kaskade od N reaktora sa idealnim mešanjem sa povratnim tokom i disperzionog modela, respektivno. Izbor trasera i sistema za detekciju je, takođe, predmet rada ove teze. Kao sistem za proveru trasera i vremenskog odziva sistema za detekciju, koristi se sistem sa reaktorom sa idealnim mešanjem za koji je poznata funkcija raspodele vremena zadržavanja.

KVM je korišćena za izvođenje alkoholne fermentacije pomoću ćelija kvasca *Saccharomyces cerevisiae* imobilisanih u makroporozni polimerni nosač. Imobilizacija je pogodna ne samo kao zaštita imobilisanih ćelija od smicajnih sila već i iz drugih razloga, kao što je manje onečišćenje nastalog proizvoda. Ako se primeni manji intenzitet vibracije, a fermentacija izvodi sa suspendovanim ćelijama kvasca, moglo bi doći i do delimičnog

taloženja, ili bar povećanja koncentracije ćelija u zonama ka dnu kolone i relativnog osiromašenja u zonama ka vrhu kolone. Imobilizacijom ćelija u porozni nosač, a zatim umetanjem čvrstih čestica nosača između perforiranih pločica mešalice, postiže se relativno ujednačena koncentracija mikroorganizma u makro uslovima. Porozni biokatalizator ne može da napusti zonu između pločica, jer su perforacije na pločicama manje od dimenzija nosača.

U tu svrhu, sintetisan je i okarakterisan porozni polimerni nosač. Sinteza makroporoznog kopolimera od akrilamida i metilmetakrilata se izvodi radikalskom polimerizacijom u emulziji voda u ulju, a zatim se vrši umrežavanje niskomolekularnim višefunkcionalnim jedinjenjem.

U cilju analize kinetike alkoholne fermentacije, potrebno je poznavanje nivoa aksijalne disperzije u bioreaktoru. U literaturi, patentnoj, naučnoj i stručnoj, nisu pronađeni podaci o koeficijentu aksijalne disperzije u trofaznoj (gas-tečnost-čvrsta faza) KVM. U tečnoj fazi se nalaze hranljivi sastojci, supstrat i neophodni minerali za gajenje kulture kvasca i izvođenje fermentacije pomoću njih. U čvrstim poroznim česticama se nalaze ćelije mikroba kao biokatalizatori, a izdvajanje gasovitog proizvoda alkoholne fermentacije CO_2 čini gasnu fazu. Moguće je izvoditi i aerobnu kultivaciju nekog mikroorganizma imobilisanog na sličan način, pa bi se neophodan kiseonik uvodio barbotiranjem vazduhom, što bi, tada, činilo gasnu fazu.

2. BIOREAKTOR SA VIBRACIONOM MEŠALICOM

Fluid-fluid kontaktori se klasifikuju u gravitacijske, kolone sa mehaničkim i kolone sa pulsirajućim mešanjem. Kod gravitacijskih višefaznih kontaktora postoji izražena tendencija ka sjedinjavanju elemenata iste faze u toku kretanja kroz kolonu, dok kod kontaktora sa mehaničkim mešanjem pojavljuje se neujednačenost sastava u radijalnom pravcu (Parthasarathy, 1984). Van Dijck (1935) je patentirao dve metode pulsiranja: jednu koja koristi set perforiranih pločica, učvršćenih na zajedničkoj osovini, koje se povratnoperiodično kreću kroz kolonu (kolona sa vibracionom mešalicom, KVM; engl. Reciprocating Plate Column, RPC), dok druga podrazumeva pulsiranje fluida u koloni (pulzaciona kolona; engl. Pulsation Column). Pulzacione kolone su bile kritikovane zbog značajne energije za pulsiranje tečnosti, naročito na industrijskom nivou, i velikih varijacija pritisaka. S druge strane, KVM obezbeđuje homogeno mešanje, uz znatno manje energije (Van Dijck, 1935).

KVM je prvenstvenu namenu imala za procese ekstrakcije tečnost - tečnost i dugi niz godina se uspešno koristila upravo za ove namene (Lo i Prochazka, 1991). Ovaj tip uređaja odlikuje se malo izraženim povratnim mešanjem^{*} kontinualne i dispergovane faze. Kod intenzivnog mešanja korisni efekat uvećane međufazne površine nadoknađuje i eventualni nepovoljni efekat aksijalne disperzije, koja smanjuje gradijent koncentracije u aksijalnom pravcu (Kim i Baird, 1976a). Prednosti KVM u odnosu na kolone sa pulsiranjem tečnosti su, takođe, aksijalna i radijalna uniformnost dispergovane faze, velika specifična međufazna površina, visoka efikasnost i intenzivan prenos mase kroz međufaznu površinu. Karr (1959) je patentirao specifičan tip KVM sa perforiranim pločicama većeg slobodnog preseka (do 60%). Ove pločice se danas nazivaju Karrov tip, a kolona Karrova kolona sa vibracionom mešalicom - KKVM (Karr Reciprocating Plate Column, KRPC). Drugi tip kolone sa vibracionom mešalicom, koju su razvili Prochazka i sar. (1971), karakteriše manji udeo slobodne površine pločica i prečnik otvora nego kod KKVM.

Sproveden je veliki broj istraživanja hidrodinamike, međufaznog prenosa mase i aksijalne disperzije u različitim tipovima KVM kao kontaktora gas-tečnost, naročito u poslednjih 20 godina. Razlike između pojedinih tipova uglavnom potiču od oblika pločica (Baird i sar., 1994):

- > pločice sa velikim prečnicima otvora (Karr),
- > pločice sa slivnikom ili segmentnim prolazom (Prochazka),
- vibracioni diskovi (Tojo, Miyanami) i
- > pločice sa pravougaonim otvorima (Karpačeva, Gorodetskiy).

Predmet istraživanja u KVM bili su: promena pritiska na dnu kolone, snaga mešanja, udeo gasa, specifična međufazna površina, zapreminski koeficijent prenosa mase, veličina mehura i aksijalna disperzija. Još brojnije su veličine koje direktno utiču na rad i efikasnost kolone: prečnik i visina kolone, broj pločica, rastojanje između dve susedne pločice, prečnik otvora pločica, udeo slobodne površine pločice, debljina i vrsta materijala od koga su izrađene pločice, frekvencija i amplituda vibracije, prividna brzina strujanja gasa i prividna brzina strujanja tečnosti. Ako se uzme u obzir uređenje faza (šaržno ili protočno), način strujanja faza (protivstrujno, istostrujno, strujanje naniže ili naviše) i multifaznost sistema (monofazni, dvofazni ili višefazni), postaje jasno zašto do sada nije u potpunosti definisan sistem rada u KVM i postavljeni matematički modeli koji bi povezali geometriju, uslove rada i efikasnost kolone.

^{*} Izrazi koji se koriste za povratno mešanje su još i aksijalna disperzija, aksijalno mešanje i uzdužna disperzija

U tabeli 2.1 je dat pregled podataka o geometriji, uslovima rada i opsegu vrednosti koeficijenta aksijalne disperzije za različite KVM. Laboratorijska ispitivanja su vršena na kolonama prečnika od 2,54 cm do oko 20 cm, a visina kolona je iznosila od 78 do 618 cm.

2.1. HIDRODINAMIKA I PRENOS MASE

U projektovanju kolonskih kontaktora sa suprotnostrujnim proticanjem faza nameću se tri glavna cilja:

> brzina međufaznog prenosa mase kontaktora mora biti velika,

> protok svake faze po jedinici površine poprečnog preseka treba da bude veliki i

> aksijalna disperzija mora biti mala u cilju očuvanja suprotnostrujnog proticanja.

Optimalno projektovanje kontaktora zahteva postizanje kompromisa između ovih ciljeva. Na primer, intenzitet vibracije mora biti veliki da bi se zadovoljio prvi cilj, ali u isto vreme vibriranje mora biti i ograničeno u cilju sprečavanja plavljenja kolone i aksijalne disperzije. KVM zadovoljava sve navedene zahteve. Eksternim mešanjem se lako reguliše udeo i veličina mehurova gasa u kontinualnoj fazi i veličina međufazne površine, od koje zavisi zapreminski koeficijent prenosa mase.

Efikasnost višefaznih kontaktora zavisi, između ostalog, od brzine prenosa mase kroz međufaznu površinu. Koeficijent prenosa mase u KVM zavisi od operativnih uslova, tj. amplitude i frekvencije vibracije i protoka gasa (Baird i Rama Rao, 1988; Lounes i sar., 1995; Lounes i Thibault, 1994; Skala, 1980; Skala i Veljković, 1988; Sundaresan i Varma, 1990b; Veljković, 1985; Yang i sar., 1986b), fizičkih osobina tečnosti (Veljković, 1985), geometrijskih karakteristika kolone (Lounes i Thibault, 1994; Skala i Veljković, 1988; Sundaresan i Varma, 1990b; Veljković, 1985) i prisustva čvrste faze (Sundaresan i Varma, 1990b).

Promena pritiska na dnu kolone može biti interesantna kada se KVM koristi kao bioreaktor, jer velike fluktuacije pritiska na dnu kolone mogu nepovoljno uticati na mikroorganizme. Prisustvo gasa u tečnoj fazi smanjuje promenu pritiska na dnu kolone (Baird i Rama Rao, 1997; Banković-Ilić i sar., 1995; Boyle, 1975; Lounes i Thibault, 1993; Veljković i Skala, 1986).

Na udeo gasa i veličinu mehura u višefaznoj KVM utiču različiti parametri:

- intenzitet vibracije (Banković-Ilić i sar., 1995; Boyle, 1975; Lounes i Thibault, 1993; Rama Rao i Baird, 1988; Rama Rao i sar., 1983; Skala, 1980; Veljković, 1985; Veljković i Skala, 1986),
- prividne brzine strujanja gasa i tečnosti (Banković-Ilić i sar., 1995; Boyle, 1975; Gomaa i sar., 1991; Lounes i Thibault, 1993; Rama Rao i Baird, 1988; Rama Rao i sar., 1983; Sundaresan i Varma, 1990a; Veljković i Skala, 1986; Yang i sar., 1986a),
- geometrija kolone i vibracione mešalice (Gomaa i sar., 1991; Rama Rao i Baird, 1988; Rama Rao i sar., 1983; Sundaresan i Varma, 1990a; Veljković i Skala, 1986) i
- prisustvo čvrste faze (Skala i sar., 1993; Skala i Veljković, 1987, 1996; Veljković i sar., 1996).

Ako se KVM koristi kao kontaktor (najčešće protivstrujni) u kome se mešaju gasna i tečna faza, efikasnost uređaja će biti veća ukoliko je strujanje obe faze bliže idealnom klipnom strujanju. Ako je povratno mešanje fluida u koloni značajnije, smanjiće se efekat vibracione mešalice na uvećanje prenosa mase (Baird, 1974; Baird i sar., 1992; Kim i Baird, 1976a; Lounes i Thibault, 1993, 1996a, 1996b; Yang i sar., 1986a).

D _c	L _c	n _p	d	h	3	f	А	U _c	U _d	DL	Referenca
cm	cm		mm	mm	%	Hz	cm	cm/s	cm/s	cm ² /s	Itererenea
2,54	210	65	8	25,4	51	0 - 10	0-1,4	0,1 - 1,1	/	3 - 8	Skala, 1976
2,54	214	65	6 -8	24,5	51	0,5-6,18	0,65 - 1,5	0,38-1,2	0,8 - 3,2	2,31 - 7,61	Skala, 1980
2,54	402	130	15,9	25,4	58,4	< 6	2,54	< 1,13	\leq 0,57	1 - 3	Karr i sar., 1987
5	240	16 - 48	2,5 - 3,5	50 - 150	4,4 - 19,2	0,4 - 10	0,15-0,45	0,3-0,5	0 - 0,45	0,15 - 7	Nemecek i sar., 1974
5	90	6; 12	0,61; 0,99	15; 7	< 10	20 - 100	< 0,012	0,23 - 0,44	0,1 - 0,23	0,4 - 1,2*	Baird i sar., 1992
5,08	255	22 - 66	13,6-14,3	27-79,7	49 - 57	< 6	< 2,54	0 -1,2	0 - 0,7	0,2 - 22	Kim i Baird, 1976a
5,08	255	66	6,35; 13,6	27	54	< 6	< 2,54	0 -1,2	0 - 0,7	0,5 - 35	Kim i Baird, 1976b
5,08	396	84	-	25,4	53	$1,8 < A \cdot f$	<7,5 cm/s	0,6 - 4,34	0,7 - 5	4 - 13	Yang i sar., 1986a
5,08	142,5	52	-	27 - 75	57	< 5	2,8 - 4,5	0,49 - 3,95	≤ 0,99	1 - 13	Baird i sar., 1988
5,08	100	14 - 20	6,3 - 13,6	50 - 70	27 - 55	2,2-3,8	1 - 1,85	0,5 - 1,32	/	1 - 15	Stevens i sar., 1990
5,08	230	42; 22	12,7	27; 52	57	0 - 5	1,8; 2,9	0,15 - 0,3	/	2 - 12	Baird i sar., 1991
5,08	180	35 - 70	13,56	25,5; 51	56	< 5	3,1	-	0 - 0,38	1 - 12	Aravamudan i sar., 1996
5,16	100	6 - 40	1,5 - 3	25 - 150	2,9 - 11,7	6,6 - 10	< 0,4	0,28 - 1,5	-	1 - 15	Novotny i sar., 1970
7,62	308,6	58 - 114	12,7	27 - 52,4	57	< 5	-	0,16-0,66	/	2 - 60	Holmes i sar., 1991
9,3	100	10	3 - 8	20 - 56	9 - 30	0,6 - 3,6	1,4 - 8	1,24-3,72	0,04-0,92	13 - 54	Parthasarathy i sar., 1984
10,2	126	18	6,35	50	28	< 20	1,25 - 5	0	0 - 4	2 - 100	Lounes i sar., 1996a
15	396	46 - 92	14,7	26 - 52	58,1	0 - 8	0,32-1,27	0,5 - 1,2	0,22 - 0,44	0,3 - 20	Hafez i sar., 1979
15	210	27 - 79	6,35; 14,3	25 - 75	51; 54	0 - 5	0,6 - 2,25	0,63 - 3,02	0 - 1,88	0,5 - 50	Baird i sar., 1998
17,2	78	7	3,6	120	33 - 61	0 - 4,3	0,1 - 0,8	0,02 - 0,33	0,37 - 1,12	-	Miyanami i sar., 1978
50,8	618	150	15,9	25,4-50,8	60,3	< 6	2,54	< 1,13	≤ 0,57	3 - 44 (200)*	Karr i sar., 1987

Tabela 2.1 Geometrija kolone, operativni uslovi i vrednosti koeficijenta aksijalne disperzije u KVM za kontinualnu fazu

* Vrednost koeficijenta aksijalne disperzije za dispergovanu fazu

2.2. POVRATNO MEŠANJE U KVM

Osobine protočnih reaktora su najčešće prikazivane modelom klipnog proticanja, idealnog mešanja i disperzionim modelom. Povratno mešanje kod idealnog klipnog proticanja ne postoji, kod idealnog mešanja je beskonačno, a disperzioni model obuhvata situacije sa intenzitetom povratnog mešanja između ova dva granična, idealizovana slučaja.

Matematička analiza hemijske ili biohemijske reakcije u KVM je istovetna analizi reakcija u cevnom reaktoru sa aksijalnom disperzijom. Bilans količine supstance se postavlja za jednu komponentu (supstanca A) i jedan segment reaktora, s tim što se protok supstance kroz poprečni presek reaktora dešava strujom reakcione smeše i disperzijom (slika 2.1).

Slika 2.1 Bilans komponente A za diferencijalni element suda sa realnim strujanjem fluida (kada postoji aksijalna disperzija)

Rezultat molskog bilansa za reaktant A koji reaguje brzinom $(-r_A)$ u reaktoru kroz koji struji fluid konstantnom brzinom U i u kome dolazi do povratnog mešanja elemenata fluida definisanog koeficijentom aksijalne disperzije D_L je (Levenspiel, 1979):

$$U\frac{dC_{A}}{dI} - D_{L}\frac{d^{2}C_{A}}{dI^{2}} + (-r_{A}) = 0$$
(2.1)

U slučaju reakcije prvog reda uvođenjem bezdimenzionih veličina za vreme ($\tau = L/U$), koncentraciju ($\psi = C_A / C_{A0}$) i rastojanje ($\lambda = 1 / L$), u jednačinu 2.1 dobija se (Fogler, 1992):

$$\frac{1}{\text{Pe}} \cdot \frac{d^2 \psi}{d\lambda^2} - \frac{d \psi}{d\lambda} - \text{Da} \cdot \psi = 0$$
(2.2)

gde je Da - Damköhlerov broj:

$$Da = \frac{brzinapotro{njersteAreakcijom}}{brzinaprenosarsteAkonvekcijn} = k \cdot C_{A0}^{n-1} \cdot \tau$$
(2.3)

Za slučaj zatvoreno-zatvorenog sistema i Danckwertsove granične uslove (Danckwerts, 1953)

$$-\frac{1}{\text{Pe}} \cdot \frac{d\psi}{d\lambda} + \psi = 1, \text{ za } \lambda = 0$$

$$\frac{d\psi}{d\lambda} = 0, \text{ za } \lambda = 1$$
(2.4)

dobija se rešenje jednačine 2.2 (Levenspiel, 1979):

$$\psi_{L} = \frac{C_{AL}}{C_{A0}} = \frac{4 \cdot q_{p} \cdot exp\left(\frac{Pe}{2}\right)}{\left(1 + q_{p}\right)^{2} \cdot exp\left(\frac{Pe \cdot q_{p}}{2}\right) - \left(1 - q_{p}\right)^{2} \cdot exp\left(-\frac{Pe \cdot q_{p}}{2}\right)}$$
(2.5)
gde je $q_{p} = \sqrt{1 + \frac{4 \cdot Da}{Pe}}$.

Jednačina 2.1 može da se reši analitički samo u slučaju reakcija prvog i nultog reda, a za sve ostale reakcije mora da se primeni numeričko rešavanje. Rešenje se može prikazati u obliku niza vrednosti normalizovane koncentracije reaktanta od prvog do N-tog (izlaznog) segmenta zapremine reaktora u funkciji od normalizovane dužine reaktora kao na slikama 2.2 i 2.3. Na istim slikama je prikazana i promena koncentracije reaktanta duž reaktora u kome se pretpostavlja idealno klipno proticanje. Razlika između rešenja za idealni i realni reaktor je velika ako je Pecletov broj mali (slika 2.3), a razlike skoro da nema ako je Pecletov broj veliki (slika 2.2). Još jedan važan zaključak se može izvesti iz ovih rezultata: kod veoma izraženog povratnog mešanja koncentracija reaktanta na ulazu u realni reaktor jako odstupa od koncentracije reaktanta u napojnoj smeši, tako da reaktor radi sa smanjenom pogonskom silom (što se ne uzima u obzir kod idealnog klipnog proticanja), pa je izlazna koncentracija iz realnog reaktora veća nego iz idealnog cevnog, tj. stepen konverzije i efikasnost realnog reaktora su manji.

Slika 2.2 Promena normalizovane koncentracije u funkciji od normalizovane dužine reaktora za idealni cevni reaktor i reaktor sa povratnim mešanjem sa vrednostima Pe = 50 i Da = 2

Slika 2.3 Promena normalizovane koncentracije u funkciji od normalizovane dužine reaktora za idealni cevni reaktor i reaktor sa povratnim mešanjem sa vrednostima Pe = 3 i Da = 2

Uticaj Pecletovog i Damköhlerovog broja na vrednost izlazne normalizovane koncentracije reaktanta u slučaju reakcije prvog reda u reaktoru sa povratnim mešanjem se može videti na slikama 2.4 i 2.5. Ista izlazna koncentracija se može dobiti različitim kombinacijama vrednosti za Damköhlerov i Pecletov broj, dok je uticaj faktora mešanja i brzine procesa na stepen konverzije vrlo jak.

Slika 2.4 Normalizovana izlazna koncentracija u slučaju reakcije prvog reda u reaktoru sa povratnim mešanjem za različite vrednosti Damköhlerovog i Pecletovog broja

Slika 2.5 Konturni dijagram: linije konstantne konverzije reaktanta u reaktoru sa povratnim mešanjem pri izvođenju reakcije prvog reda za različite kombinacije vrednosti Da i Pe

2.3. PRIMENA KVM

Značajno povećanje efikasnosti kolone sa perforiranim pločicama, kao uređaja za ekstrakciju, postigao je Van Dijck (1935) uvodeći pulsiranje fluida. Nakon što je Karr (1959) razvio KVM sa velikim udelom otvorene površine pločica, ona je našla široku primenu u farmaceutskoj, hemijskoj, biohemijskoj i petrohemijskoj industriji, hidrometalurgiji i tretmanu otpadnih voda. Danas je u industrijskim razmerima realizovana KKVM prečnika 1,7 m i visine 18,3 m (Baird i Rama Rao, 1998).

KVM se u početku, uglavnom, koristila kao uređaj za ekstrakciju, jer je sa veoma malo eksterne energije mogla da ostvari dobar kontakt između dve nemešljive tečnosti, stvaranjem uniformne disperzije sa relativno sitnim kapljicama dispergovane faze. Tako, Sharma i Baird (1978) koriste KVM za ekstrakciju bakra. Kasnije, Brauer i Sucker (1979) koriste KVM kao efikasan reaktor u biološkom tretmanu otpadnih voda. Karr i sar. (1980) izvode ekstrakciju celokupne fermentacione tečnosti, a Reschke i Schügerl (1985) kontinualnu reaktivnu ekstrakciju penicilina G.

Biosintezu lizina u KVM ostvarili su Šerbak i sar. (1978), a Veljković (1985) biosintezu dekstransaharaze pomoću *Leuconostoc mesenteroides*. Brauer (1991) gaji gljivice i bakterije, dok su Gagnon i sar. (1999) gajili kulture biljnih ćelija *Vitis vinifera* u suspendovanom stanju. Audet i sar. (1996a, 1998) su sproveli fermentaciju pululana pomoću *Aureobasidium pullulans* (2552).

2.4. OPIS EKSPERIMENTALNOG POSTROJENJA

Skica eksperimentalnog postrojenja sa kolonom manjeg prečnika, pločicom i vibracionom mešalicom sa čvrstom fazom prikazana je na slici 2.6. Eksperimentalna ispitivanja su izvršena u dve kolone različite veličine, a njihove geometrijske karakteristike i operativni uslovi su dati u tabeli 2.2.

Operativni uslovi i geometrijske karakteristike	KVM1	KVM2	
Unutrašnji prečnik kolone, cm	2,54	9,20	
Ukupna visina kolone, cm	207	105	
Visina radnog dela kolone, cm	183,6	85,6	
Dužina seta vibracione mešalice, cm	172,3	72,3	
Radna zapremina kolone, cm ³	839,3	5687	
Prečnik mlaznice za ulaz gasa, cm	0,385	$2 \times 0,3$	
Prečnik osovine mešalice, cm	0,32	0,6	
Broj pločica	65	15	
Prečnik pločica, cm	2,5	9	
Rastojanje između pločica, cm	2,54	5,0	
Debljina pločice, mm	1,5	1,5	
Prečnik otvora pločica, mm	8;6	8	
Broi perforacija po pločici	4 (od 8 mm) i	57	
	4/2 (od 6 mm)	51	
Udeo slobodne površine, %	51	45,4	
Amplituda vibracije, cm	2,35; 1,0	2,35; 1,0	
Frekvencija vibracije, s ⁻¹	2 - 4,5	2 - 4,5	
Prividna brzina strujanja gasa, cm/s	0 - 1,48	0 - 1,88	
Prividna brzina strujanja tečnosti, cm/s	0,24 - 0,87	≈ 0,56	
Udeo čvrste faze, %	0 i 5,61	0; 2,86; 5,65; 8,43	
Prečnik kuglica čvrste faze, mm	8,3	8,3	
Materijal kolone	Pyrex staklo	Pleksiglas	
Materijal pločica	Čelik	Aluminijum	
Graničnici između pločica	Teflon	Teflon	
Kuglice čvrste faze	Polipropilen	Polipropilen	

Tabela 2.2 Geometrijske karakteristike i operativni uslovi KVM

KVM se sastoji od kolone koja je na dnu i vrhu opremljena priključcima za ulaz i izlaz tečnosti i gasa, tako da može da radi u protivstrujnom režimu (tečnost struji naniže a gas naviše, dok je čvrsta faza stacionarna u koloni). Vibracionu mešalicu čini šipka od nerđajućeg čelika na kojoj su, na jednakim rastojanjima, pričvršćene perforirane pločice. Mešalicu pokreće elektromotor naizmenične struje, snage 360 W, preko reduktora. Ulazni napon se održava konstantnim na 200 V pomoću regulatora napona. Obrtni moment elektromotora se preko ekscentra pretvara u povratno-periodično pravolinijsko kretanja mešalice. Amplituda kretanja mešalice (polovina rastojanja između dva krajnja položaja mešalice u jednom vibracionom ciklusu) merena je nonijusom. Frekvencija vibracije menja se prenosom preko reduktora, a meri induktivnim brojačem.

Slika 2.6 Šematski prikaz eksperimentalnog postrojenja sa kolonom prečnika 25,4 mm i dimenzijama jedne pločice vibracione mešalice i detalj rasporeda čvrste faze u KVM: E - ekscentar, EM - elektromotor, EV - elektroventil, DG - distributer gasa, K - kompresor, MP - merač protoka gasa, PR - prelivnik, PS - pisač, P - pumpa, R - rezervoar za tečnu fazu, Š - špric, UV - detektor, V - ventil

3. POVRATNO MEŠANJE

3.1. TEORIJSKI DEO

3.1.1. RASPODELA VREMENA ZADRŽAVANJA

Ako se mala količina tečnosti uvede u protočni bioreaktor, ona će se, zahvaljujući mešanju, razbiti na manje zapremine koje će se odvojiti jedna od druge i raspodeliti u celoj zapremini reaktora. Na taj način, neki deo prvobitne male zapremine tečnosti brzo će dostići izlaz iz reaktora. a drugi delovi se u toku različitog vremena mešaju po reaktoru dok ne upadnu u izlaznu struju. Izlazni tok se može, dakle, predstaviti kao smeša elemenata tečne faze sa različitim vremenima zadržavanja u reaktoru. Vreme boravka elemenata fluida u hemijskom reaktoru ili bilo kom drugom uređaju, može se posmatrati kao slučajni proces, pri čemu je vreme zadržavanja svakog elementa fluida kontinualna slučajna promenljiva u granicama od 0 do ∞ . RVZ elemenata tečne faze koji napuštaju reaktor predstavlja funkciju raspodele slučajne veličine i karakteriše režim mešanja i strukturu proticanja u reaktoru.

Za određivanje karakteristika mešanja u sudu izvodi se eksperiment tipa pobude i odziva, korišćenjem inertnog trasera (obeleživača). Pri tome, smatra se da potpuno odsustvuje povratna difuzija u ulaznom i izlaznom toku. Funkcija raspodele vremena zadržavanja E definisana je kao:

$$E_{(t)} \cdot dt = \begin{array}{l} \text{udeo toka tečnosti koji izlazi iz reaktora čije} \\ \text{je vreme boravka u reaktoru od t do t + dt} \end{array}$$
(3.1)

za koju važi (Skala i Mićić, 1982a):

$$\int_{0}^{\infty} E_{(t)} \cdot dt = 1$$
(3.2)

Teorija linearnih sistema tvrdi da izvod jednokratnog odziva po vremenu je jednoimpulsni odziv, odakle sledi da se $\mathbf{E}_{(t)}$ može interpretirati kao odziv reakcione smeše u reaktoru na jednokratni uvedeni impuls trasera u nultom vremenu. Iako "impuls" predstavlja samo apstraktan matematički pojam, definisan Diracovom delta funkcijom, njemu je u eksperimentu vrlo blisko uvođenje male količine koncentrovanog rastvora trasera za vrlo kratko vreme. Normalizovani odziv na takav ulazni signal naziva se C kriva. Slika 3.1 prikazuje C krivu i njene osobine.

Slika 3.1 Izlazni signal, nazvan C kriva, kao odziv na impulsni ulazni signal

Funkcija RVZ može se odrediti eksperimentalnim putem, a nekada i teorijski, ako je poznat matematički ili logički model procesa mešanja. Za protočni reaktor sa idealnim mešanjem gustina raspodele vremena zadržavanja (GRVZ) je:

$$E_{(t)} = \frac{\upsilon}{V} \cdot e^{-\frac{t}{t_{sr}}}$$
(3.3)

Kod cevnog reaktora (reaktora sa idealnim klipnim proticanjem) funkcija RVZ proističe iz definicije takvog tipa reaktora. Ako se u tok ulaznih supstanci uvede impuls trasera, on prolazi kroz reaktor ne mešajući se sa susednim elementima tečnosti i izlazi iz reaktora posle vremena koje karakteriše vreme zadržavanja u tom sudu. Samim tim, impuls trasera na izlazu iz reaktora ima tačno isti profil kao na ulazu u reaktor, samo je pomeren u vremenu. Odstupanje od takvog ponašanja govori o narušavanju režima idealnog klipnog proticanja.

U tabeli 3.1 je dat pregled trasera i metode njihove detekcije nekih autora prilikom određivanja RVZ.

RVZ i aksijalna disperzija u drugim kolonama (pulzacionoj, pakovanoj, barbotažnoj) određivane se sličnim sistemima trasera i detekcije. Pokušano je da se kod pulzacione kolone sa perforiranim pločicama kao traser upotrebi radioaktivni obeleživač, jod - 131 kao etil-jodid ili NaJ, a da se detekcija vrši pomoću dva detektora γ -zračenja sa fotomultiplikatorima (Arthayukti i sar., 1976).

Sistem	Traser	Metoda detekcije	Referenca
L, L-L, G-L	NaOH + HCl	Boja indikatora	Kim i Baird (1976a)
L	KCl	Konduktometrijski	Skala (1976)
L			Novotny i sar. (1970)
L-L, G-L	NaCl	Konduktometrijski	Parthasarathy i sar. (1984)
L, G-L	Metilen plavo	Spektrofotometrijski	Yang i sar. (1986a)
L	NaCl	Konduktometrijski	Stevens i Baird (1990)
L	CaCl ₂	Pomoću indeksa refrakcije	Holmes i sar. (1991)
L	Zagrejana voda	Merenjem temperature	Baird i Rama Rao (1991)
L, L-L	NaCl	Konduktometrijski	Baird i sar. (1992)
L-L	NaCl	Konduktometrijski	Novotny i sar. (1970), Rama Rao i Baird (1998)
L, G-L	KCl	Konduktometrijski	Aravamudan i Baird (1996), Lounes i Thibault (1996b)
G-L	NaCl, HCl + bromtimol plavo	Konduktometrijski, zona boje indikatora	Baird i Rama Rao (1998)
L-L	K ₂ CrO ₄	Konduktometrijski	Nemecek i Prochazka (1974)
L-L	HCl + fenolftalein	Zona boje indikatora	Hafez i sar. (1979)
L, L-L	NH ₄	Konduktometrijski	Miyanami i sar. (1978)

Tabela 3.1 Pregled korišćenih trasera i metoda detekcije pri određivanju RVZ tečne faze u KVM

3.1.2. MODELI PROTICANJA

U realnim protočnim višefaznim reaktorima tipa kolone fluidi ne protiču idealno klipno bez mešanja. Najjednostavniji oblik odstupanja od idealnog klipnog proticanja predstavlja kanalisano strujanje fluida, kada dolazi do različitog i nezavisnog vremena zadržavanja i kretanja elemenata fluida kroz reaktor. Daljim razvijanjem kanalisanog strujanja dolazi do pojave povratnog strujanja kada tok fluida još uvek zadržava svoj identitet, ali se pojavljuje i kanalisano strujanje u suprotnom pravcu u odnosu na pravac kretanja fluida. Važna razlika između povratnog i kanalisanog strujanja je u različitim brzinama proticanja fluida unutar reaktora u odnosu na srednju brzinu proticanja. Pojava povratnog strujanja praćena je i povećanim strujanjem "unapred", u smeru proticanja, u odnosu na profil brzina. S druge strane, kanalisano strujanje sa brzinama većim od srednje, praćeno je kanalisanim tokovima sa zanemarljivo malim brzinama. Da bi se sprečila pojava kanalisanog i povratnog strujanja u reaktore se ugrađuju odbojnici, koji imaju za cilj da povećaju mešanje normalno na pravac proticanja, tzv. poprečno mešanje, što u isto vreme povećava i povratno strujanje. Proticanje sa povratnim strujanjem i povratnim mešanjem karakteriše povratni tok, s tom razlikom što kod povratnog strujanja ne postoji homogenost brzina po poprečnom preseku, a kod povratnog mešanja to je jedna od glavnih karakteristika.

Neidealnost strujanja fluida najčešće se definiše pojavom mešanja, u većoj ili manjoj meri, koja je izražena u pravcu ili normalno na pravac proticanja fluida, tzv. aksijalnim odnosno radijalnim mešanjem. Najčešće se kod laboratorijskih reaktora (kolone manjeg prečnika) radijalno mešanje zanemaruje, a intenzitet aksijalnog mešanja može biti promenljiv. Koeficijent aksijalnog mešanja definiše način proticanja: proticanje sa idealnim mešanjem (intenzitet aksijalnog mešanja maksimalan) i idealno klipno proticanje (nema aksijalnog mešanja).

Modeli koji se koriste za opisivanje stvarnog načina strujanja u protočnim reaktorima najčešće se klasifikuju kao:

- kombinovani modeli, koji obuhvataju idealno mešanje fluida, neposredno opticanje, kanalisano i klipno strujanja u različitom iznosu;
- modeli kod kojih je definisana raspodela brzina (na primer, laminarno strujanje fluida u cevima) ili tzv. konvektivni modeli;
- > disperzioni modeli izvedeni na osnovu analogije između mešanja fluida tokom proticanja i procesa difuzije i
- > cirkulacioni modeli (brzine strujanja unutar reaktora su različite i menjaju se sa vremenom).

Zahvaljujući teorijskim radovima Danckwertsa (1953) pružene su osnove za razvoj matematičkih modela protočnih reaktora sa neidealnim strujanjem reakcione smeše. Metoda se, u osnovi, sastoji u utvrđivanju uticaja vremena zadržavanja elemenata fluida u reaktoru na stepen konverzije. Pokazalo se da poznavanje RVZ, može, u mnogim slučajevima, da bude dovoljno za ocenu efikasnosti rada nekog reaktora i odstupanja od idealizovanih graničnih slučajeva. Razvojem eksperimentalnih metoda za određivanje RVZ i postavljanjem matematičkih modela za različite tipove reaktora, stvorena je mogućnost tačnijeg proračuna reaktora.

Za opisivanje strujanja tečnosti u realnim sistemima najčešće se koriste sledeći modeli:

- > model kaskade od N sekcija sa idealnim mešanjem bez povratnog toka,
- > kaskada od N sekcija sa povratnim tokom između svake sekcije i
- disperzioni model.

Disperzioni model se najčešće koristi za opisivanje procesa pri kojima dolazi do neprekidnog - diferencijalnog kontakta između faza, a kaskadni modeli su pogodni za definisanje proticanja u uređajima koji su sastavljeni iz segmenata.

3.1.2.1. Model kaskade od N sekcija sa idealnim mešanjem bez povratnog toka

Model kaskade od N sekcija sa idealnim mešanjem bez povratnog toka je jednoparametarski model. Pretpostavlja se da fluid protiče kroz niz reaktora jednakih zapremina u kojima se ostvaruje potpuno mešanje. Jedini parametar ovog modela je broj reaktora (sekcija) u nizu (slika 3.2).

Slika 3.2 Kaskada od N sekcija sa idealnim mešanjem bez povratnog toka

3.1.2.2. Kaskada od N sekcija sa idealnim mešanjem i povratnim tokom

Detaljnu analizu ovog modela, dali su Miyauchi i Vermeulen (1963) i Bell i Babb (1965). Najčešće je ovaj model korišćen za definisanje proticanja fluida kroz kolonu sa nepokretnim slojem punjenja, kolonu sa pulsiranjem fluida u toku proticanja, KVM pri dvofaznom i jednofaznom toku, ekstrakcionim i barbotažnim kolonama. Model se sastoji od N sekcija sa idealnim mešanjem jednake zapremine u nizu sa povratnim tokom između sekcija (slika 3.3). Zapremina jedne sekcije iznosi V/N, a zapremina svih sekcija je V. Zapreminski protok fluida kroz niz iznosi υ , pa je nominalno vreme zadržavanja fluida u svim sekcijama $\tau = V/\upsilon$, a u jednoj sekciji $\tau_i = V/(N \cdot \upsilon)$. Ovo nije i srednje vreme zadržavanja fluida u svakoj sekciji jer je zapreminski protok fluida u svakoj sekciji veći od υ , što je posledica povratnog toka (Skala i Mićić, 1982b), i iznosi $\upsilon(1+2\alpha)$.

Slika 3.3 Kaskada od N sekcija sa idealnim mešanjem sa povratnim tokom

Diferencijalne jednačine za strujanje fluida kroz ovaj sistem mogu se izvesti na osnovu bilansa mase trasera dodatog u prvu sekciju u trenutku t = 0 kao impulsni signal. Odziv na izazvanu impulsnu promenu, odnosno koncentracija u izlaznom toku iz niza predstavlja informaciju o GRVZ fluida.

3.1.2.3. Disperzioni model

U realnim reaktorima, gde proticanje nema laminarni karakter, osnovni problem kod postavljanja matematičkog modela je nepoznavanje profila brzine strujanja fluida. Disperzionim modelom se aproksimira realno stanje, uključivanjem empirijskih parametara u osnovnu jednačinu modela. Mešanje u aksijalnom i/ili radijalnom pravcu opisano je matematičkim izrazom na identičan način kao i difuzioni prenos mase, pa se za ovaj model koristi i izraz "difuzioni model".

U zavisnosti od intenziteta turbulencije, odnosno mešanja u koloni, ovaj model, kao granične vrednosti, definiše idealno klipno proticanje i proticanje sa idealnim mešanjem. Kao rezultat aksijalne disperzije, koja, zavisi od radnih uslova i geometrije kolone, potrebna zapremina kolone kao reaktora (bioreaktora) biće nešto veća od one koja bi se predvidela u slučaju da nema povratnog mešanja (kada bi postojalo idealno klipno strujanje faza) i znatno veća kada bi se u koloni ostvarilo potpuno mešanje. Ovaj zaključak važi u slučajevima da se u KVM izvodi reakcija neautokatalitičkog tipa. Ukoliko bi se radilo o autokatalitičkim reakcijama, reakcijama mikrobne fermentacije, efekat povratnog (aksijalnog) mešanja bi bio obrnut.

3.1.3. METODE ODREĐIVANJA PARAMETARA MODELA PROTICANJA

3.1.3.1. Kaskada od N sekcija sa idealnim mešanjem bez povratnog toka

3.1.3.1.1. Metoda momenata (MM)

Za određivanje parametara ovog modela koriste se momenti funkcije gustine raspodele vremena zadržavanja, i to k-ti necentralni momenti (Skala i Mićić, 1982c):

$$\mu'_{k} = \int_{0}^{\infty} t^{k} \cdot E_{t} \cdot dt$$
(3.4)

i k-ti centralni momenti E_t:

$$\mu_k = \int_0^\infty (t - \mu'_1)^k \cdot \mathbf{E}_t \cdot dt$$
(3.5)

gde je $k = 1, 2, 3 \dots$

Prvi necentralni moment je srednja vrednost raspodele vremena zadržavanja ili srednje vreme boravka t_{sr}:

$$\mu'_1 = \int_0^\infty \mathbf{t} \cdot \mathbf{E}_t \cdot d\mathbf{t} = \mathbf{t}_{\rm sr} = \frac{\mathbf{V}}{\upsilon}$$
(3.6)

dok je drugi centralni momenat $\mu_2 = \sigma_t^2$, (Fogler, 1992; Levenspiel, 1979; Skala i Mićić, 1982c), pri čemu je

$$\sigma_{\Theta}^2 = \frac{\sigma_t^2}{t_{\rm sr}^2} = \frac{1}{N}$$
(3.7)

odnosno,

$$N = \frac{1}{\sigma_{\Theta}^2}$$
(3.8)

17

3.1.3.1.2. Linearna metoda (A1)

Grafički postupak (A1) određivanja momenata (iz linearne zavisnosti) zasnovan je na primeni sledeće jednačine (Skala i Mićić, 1982c):

$$\frac{1}{s} \cdot \ln F_{(s)exp} = \frac{t_{sr}^{2}}{2 \cdot N} \cdot s - t_{sr} = a_{1} \cdot s + b_{1}$$
(3.9)

U jednačini (3.9), Laplaceova transformacija funkcije GRVZ (E_t), tzv. prenosna funkcija eksperimenta $F_{(s)exp}$, dobijena je pomoću sledeće jednačine:

$$F_{(s)exp} = \int_{0}^{\infty} E_t \cdot e^{-s \cdot t} dt$$
(3.10)

Laplaceova transformacija za model kaskade od N sekcija sa idealnim mešanjem je:

$$F_{(s)mod} = \left(\frac{t_{sr} \cdot s}{N}\right)^{-N}$$
(3.11)

3.1.3.1.3. Metoda optimizacije (Z1)

Postupak optimizacije (Z1) se zasniva na izračunavanju minimalne vrednosti sume kvadrata razlike između eksperimentalno određene i numerički izračunate funkcije koja ukazuje na način strujanja fluida (funkcija GRVZ fluida u koloni, $E_t = GRVZ$):

$$\Psi_{\min} = \int_{0}^{\infty} (E_{\Theta \exp} - E_{\Theta \mod})^2 d\Theta$$
(3.12)

Eksperimentalno određivanje funkcije GRVZ se zasniva na praćenju koncentracije trasera na izlazu C_a dodatog impulsno na ulazu u sistem:

$$C_{\Theta exp} = E_{\Theta exp} = \frac{C_q}{C_{q0}} = \tau \cdot E_t$$
(3.13)

Funkcija GRVZ, izražena u jedinicama vremena, definisana je kao:

$$E_{t} = \frac{N^{N} \cdot t^{N-1}}{(N-1)! \cdot \tau^{N}} exp\left(-\frac{N \cdot t}{\tau}\right)$$
(3.14)

a u normalizovanom obliku (Skala i Mićić, 1982b):

$$E_{\Theta,mod} = \frac{N^{N} \cdot \Theta^{N-1}}{(N-1)!} \exp(-N \cdot \Theta)$$
(3.15)

Za necele brojeve N > 5 može se iskoristiti Stirlingova aproksimacija sa greškom manjom od 2 % (Skala i Mićić, 1982c):

$$N! = N^{N} \exp(-N) \cdot \sqrt{2\pi N}$$
(3.16)

Tada, funkcija GRVZ, izražena preko normalizovanog vremena, sa Stirlingovom aproksimacijom, ima oblik:

$$E_{\Theta,\text{mod}} = \Theta^{N-1} \cdot \frac{N^N \cdot \exp(-\Theta \cdot N)}{(N-1)^{N-1} \cdot e^{(1-N)} \cdot \sqrt{2\pi(N-1)}}$$
(3.17)

Uticaj broja sekcija u nizu na funkciju GRVZ dat je na slici 3.4. Sa povećanjem parametra N strujanje fluida kroz kaskadu sekcija se približava idealnom cevnom proticanju, a GRVZ se sužava oko $\Theta = 1$.

Slika 3.4 GRVZ u funkciji od normalizovanog vremena Θ i broja sekcija u nizu N prema jednačini 3.15

3.1.3.2. Kaskada od N sekcija sa idealnim mešanjem i povratnim tokom

3.1.3.2.1. Metoda momenata (MM)

U slučaju KVM unapred je definisan ukupan broj sekcija sa potpunim mešanjem (N), i jednak je broju sekcija između dve uzastopne perforirane pločice vibracione mešalice. Time se problem svodi samo na izračunavanje parametra α , koji definiše intenzitet povratnog mešanja između sekcija na osnovu sledeće jednačine (Skala i Mićić, 1982c; Skala, 1980):

$$\sigma_{\Theta}^2 = \frac{1 + 2 \cdot \alpha}{N} \tag{3.18}$$

19

3.1.3.2.2. Linearna metoda (A2)

Korišćenjem prenosne funkcije, odgovarajućih izvoda prenosne funkcije ovog modela i njihove kombinacije (Laplaceove transformacije funkcije GRVZ):

$$F_{(s)}' = \frac{dF_{(s)}}{ds} ; \qquad F_{(s)}'' = \frac{d}{ds} \left[\frac{dF_{(s)}}{ds} \right] = \frac{d^2 F_{(s)}}{ds^2}$$
(3.19)

$$U_0 = \ln F(s);$$
 $U_1 = -\frac{F_{(s)}'}{F_{(s)}};$ $U_2 = \frac{F_{(s)}''}{F_{(s)}} - U_1^2$ (3.20)

moguće je parametre odrediti primenom odgovarajućeg postupka linearizacije (metoda A2) (Skala, 1980; Skala i sar., 1981):

$$YY = \frac{U_2}{U_1^3} = \frac{1}{N^2} \cdot s + \frac{1 + 2 \cdot \alpha}{t_{sr} \cdot N} = a_2 \cdot s + b_2$$
(3.21)

$$YZ = \frac{1}{U_1^2} \left[1 - \frac{s \cdot U_2}{U_1} \right] = \frac{1 + 2 \cdot \alpha}{t_{sr} \cdot N} \cdot s + \frac{1}{t_{sr}^2} = a_3 \cdot s + b_3$$
(3.22)

3.1.3.2.3. Metoda optimizacije (Z2)

Prenosna funkcija ovog modela je Laplaceova transformacija funkcije GRVZ (Skala i Mićić, 1982b; Skala i sar., 1981):

$$F_{(s)mod} = \left\{ \frac{1}{2\alpha} \left[1 + 2\alpha + \frac{t_{sr}}{N} \cdot s - \sqrt{1 + 2\frac{t_{sr}}{N} \cdot s \cdot (1 + 2\alpha) + \left(\frac{t_{sr}}{N} \cdot s\right)^2} \right] \right\}^N$$
(3.23)

Optimizacijom parametara N, α i t_{sr} određuje se minimalna vrednost funkcije cilja (Z2) u Laplaceovom domenu:

$$\Psi_{\min} = \int_{s_1}^{s_2} (F_{(s)exp} - F_{(s)mod})^2 ds$$
(3.24)

 $F_{(s)exp}$ se određuje po jednačini 3.10.

3.1.3.3. Disperzioni model

3.1.3.3.1. Metoda momenata (MM)

Vrednosti momenata izračunate primenom jednačina 3.4 i 3.5, odgovaraju izrazima navedenim u tabeli 3.2 (Skala i Mićić, 1982c).

Tabela 3.2 Izrazi koji odgovaraju vrednostima momenata za različite tipove suda

Tip suda	Prvi necentralni (srednje vreme z	momenat adržavanja)	Drugi centralni mom (disperzija vremena z	enat zadržavanja)
otvoreno-otvoren	1 + 2/Pe	(3.25)	$(2Pe+8)/Pe^{2}$	(3.26)
otvoreno-zatvoren zatvoreno-otvoren	1 + 1/Pe	(3.27)	$(2Pe+3)/Pe^{2}$	(3.28)
zatvoreno-zatvoren	1	(3.29)	${2Pe-2[1-e^{-Pe}]}/{Pe^2}$	(3.30)

Eksperimenti pokazuju da disperzioni model podjednako dobro opisuje proticanje u kolonama sa nepokretnim slojem i turbulentno proticanje u cevima. Za laminarno proticanje u cevima model važi kada je cev dovoljno dugačka, da bi se uspostavila radijalna ujednačenost signala trasera. Za ispunjenje ovog uslova kod tečnosti nekada je potrebna vrlo duga cev. Na slici 3.5 je prikazan intenzitet disperzije u oblasti strujanja gde je disperzija izazvana difuzijom i konvekcijom (Levenspiel, 1979).

Slika 3.5 Aksijalna disperzija pri laminarnom proticanju fluida u cevima (Levenspiel, 1979)

Kada se analizira aksijalna disperzija u tečnoj fazi, koeficijent aksijalne disperzije D_L se određuje iz Pecletovog broja (Skala i Mićić, 1982b) iz sledeće jednačine:

$$D_{L} = \frac{U_{L} \cdot L}{Pe}$$
(3.31)

U slučaju dvofaznog sistema (G-L) Pecletov broj se definiše na sledeći način (Baird i Rama Rao, 1988):

$$Pe = \frac{U_c \cdot L}{D_L (1 - \varepsilon_G)}$$
(3.32)

3.1.3.3.2. Linearne metode (A3 - A5)

Prenosna funkcija eksperimenta preko funkcije E_{Θ} je:

$$F_{(S)exp} = \int_{0}^{\infty} E_{\Theta} \cdot e^{-S \cdot \Theta} d\Theta = \int_{0}^{\infty} E_{\Theta} \cdot e^{-s \cdot t_{sr} \cdot \Theta} d\Theta$$
(3.33)

Na osnovu prenosne funkcije date jednačinom 3.10 mogu se izračunati karakteristične funkcije U_0 , U_1 i U_2 (jednačina 3.20). Za slučaj zatvorenih oblasti ulaza i izlaza iz kolone (zatvoreno-zatvoreni granični uslovi), kriterijum koji definiše intenzitet aksijalnog mešanja (Pecletov broj), može se odrediti na osnovu sledećih linearnih zavisnosti (A3 po jednačini 3.34 i A4 po jednačini 3.35):

$$-\frac{1}{U_0} = t_{sr} \cdot \frac{s}{U_0^2} - \frac{1}{Pe} = a_4 \cdot \frac{s}{U_0^2} + b_4$$
(3.34)

$$\frac{1}{U_1^2} = \frac{4}{t_{sr} \cdot Pe} \cdot s + \frac{1}{t_{sr}^2} = a_5 \cdot s + b_5$$
(3.35)

21

Za zatvoreno-otvoreni ili otvoreno-zatvoreni granični uslov, kojim se definiše mešanje fluida na mestima ulaza i izlaza tečnosti iz kolone, moguće je odrediti Pecletov broj pomoću jednačine 3.36 (A5) (Skala, 1980):

$$\frac{1}{S} \cdot \ln F_{(S)} = \left(\frac{1}{Pe} + \frac{3}{2Pe^2}\right) \cdot S - \left(1 + \frac{1}{Pe}\right) = a_6 \cdot S + b_6$$
(3.36)

3.1.3.3.3. Metoda optimizacije (Z3)

Za otvoreno-otvorene granične uslove moguće je, umesto prenosne funkcije modela, koristiti analitičko rešenje diferencijalne jednačine disperzionog modela (Levenspiel, 1979; Skala, 1980; Skala i Mićić, 1982b):

$$E_{\Theta \,\mathrm{mod}} = \frac{1}{2} \cdot \left(\frac{\mathrm{Pe}}{\pi \cdot \Theta}\right)^{0.5} \cdot \exp\left[\frac{-\mathrm{Pe} \cdot (1-\Theta)^2}{4 \cdot \Theta}\right]$$
(3.37)

a Pecletov broj odrediti primenom postupka optimizacije kvadrata razlike (Z3):

$$\Psi_{\min} = \int_{0}^{\infty} (E_{\Theta \exp} - E_{\Theta \mod})^2 d\Theta$$
(3.38)

Na slici 3.6 data je funkcija GRVZ od bezdimenzionog vremena u funkciji Pecletovog broja. Povećanje Pecletovog broja u modelu sužava funkciju GRVZ i strujanje fluida približava idealnom klipnom proticanju.

3.1.4. KORELACIJE ZA KOEFICIJENT POVRATNOG TOKA

Matematičke jednačine koje se odnose na aksijalnu disperziju pri proticanju fluida kroz KVM date su u tabelama 3.3, 3.4 i 3.5. Većina korelacija omogućava približno određivanje aksijalne disperzije u kontinualnoj fazi, a njihova primena je ograničena samo na kolonu koja je korišćena u istraživanjima aksijalne disperzije. Izvesno neslaganje između nekih jednačina posledica je različitih geometrijskih karakteristika kolona.

Sistem i operativni uslovi	Korelacija	Referenca
Voda \uparrow ; D _c = 5 cm; f = 0,4 - 10 Hz; A = 0,15 - 0,45 cm;	$D_{L1} = 0.3 \frac{h - 2m_1}{h - 4.5} \cdot \frac{2Afd^2}{\epsilon} $ (3.39) $\left(1 + 2g \left(2Af \right)^{0.29} $	Nemecek i Prochazka
$U_{\rm L} = 0.3 - 0.5 {\rm cm/s};$	$2m_{1} = \begin{cases} 1.05 \left(\frac{2m_{1}}{\epsilon^{2}}\right) & \text{za} 2m_{1} < 0.65(h + 2.35) \\ 0.65(h + 2.35) & \text{za sve druge vrednosti} \end{cases} $ (3.40)	.0) (1974)
Voda, rastvor HCl, glukoze ili Polyov a \downarrow : D = 5.08 cm; f = 0.5 6 Hz;	$D_{L} = 1,98 \cdot A^{1,74} f^{0,96} h^{-0,69}$ za teflonske pločice (3.41)	Kim i Baird
$A < 2,35 \text{ cm}; U_L = 0 - 1,2 \text{ cm/s};$	$D_{L} = 5,56 \cdot A^{1,77} f^{1,00} h^{-1,32} $ za pločice od nerđajućeg čelika (3.42)	(1976a)
Rastvor HCl \downarrow ; D _c = 5,08 cm; f = 0,5 - 6 Hz; A < 2,35 cm;U _L = 0 - 1,2 cm/s;	$D_{L} \propto A^{1,80} f^{1,00} d^{1,8} \delta^{-0,3} h^{-1,3} $ (3.43)	Kim i Baird (1976b)
Voda \downarrow ; D _c = 2,54 cm; f = 0 - 10 Hz;	$\ln D_{L} = \ln (D_{L})_{I=0} + (A \cdot f)^{0.56} \exp(-1.44 \cdot U_{c} + 0.912) $ (3.44)	Skala (1076)
$A = 0 - 1,4 \text{ cm}; 0_L = 0,1 - 1,1 \text{ cm/s};$	$(D_L)_{I=0} = 5,15 \cdot U_c^{0,471}$ (3.45)	Skala (1970)
Voda \downarrow ; D _c = 5,08 cm; f = 2,2 - 3,8 Hz; A = 1 - 1,85 cm; U _L = 0,5 - 1,32 cm/s;	$D_{L} = \left(\frac{\ln\left(\frac{1+q}{q}\right)}{h \cdot U_{c}} + \frac{2\varepsilon\left(1-\frac{K_{2}A}{h}\right)}{K_{1}d\left\{\left(U_{c}+2\pi Af\right)\left[\left(\frac{\pi}{2\sqrt{3\varepsilon}}\right)^{0.5}-1\right]\right\}}\right)^{-1}$ (3.46)	Stevens i Baird (1990)

Tabela 3.3 Korelacije za koeficijent aksijalne disperzije za KVM: monofazni tečni sistem

Nastavak tabele 3.3

Sistem i operativni uslovi	Korelacija		Referenca
Voda \uparrow ; D _c = 7,62 cm; f < 5 Hz; U _L = 0,16 - 0,66 cm/s;	$D_{\rm L} = 9,52 \cdot \varepsilon_{\rm b}^{0,535} \varepsilon_{\rm t}^{-0,186} $	(3.47)	
	gde je: $\varepsilon_{\rm b} = \frac{gU_c \Delta \rho}{\rho}; \Delta \rho = \rho - \rho_0;$ ((3.48)	Holmes i sar.
	$\varepsilon_{t} = \varepsilon_{b} + \varepsilon_{m}; \qquad \varepsilon_{m} = \frac{2\pi^{2}}{3} \cdot \left(\frac{1 - \varepsilon^{2}}{C_{0}^{2} \varepsilon^{2}}\right) \cdot \frac{(Af)^{3}}{h}$ (4)	3.49)	(1991)
	Koeficijent aksijalne disperzije se određuje pri postojanju gradijenta gustine		
Voda \uparrow ; D _c = 5,08 cm; f = 0 - 5 Hz; A =1,8 - 2,9 cm; U _L = 0,15 - 0,3 cm/s;	$D_{L} = \left[l_{m} + (l_{b} - l_{m})(\varepsilon_{b} / \varepsilon_{t})^{0,34} \right]^{4/3} \varepsilon_{t}^{1/3}$ $l_{m} = 0.301 \text{ cm}; l_{b} = 4.02 \text{ cm};$ (1)	(3.50)	Baird i Rama Rao (1991)
Voda \downarrow ; D _c = 5 cm; f = 20 - 100 Hz; A < 0,012 cm; U _L = 0,23 - 0,44 cm/s;	$\frac{D_L}{h \cdot U} = 0.5 + \alpha \tag{(}$	(3.51)	Baird i sar. (1992)
Voda, $D_c = 10,2 \text{ cm}; f < 20 \text{ Hz}; A = 1,25 - 5 \text{ cm}; U_c = 0.$	$D_{\rm L} = 0,0612 \cdot A^{0,756} f^{1,066} \tag{(}$	(3.52)	Lounes, J. Thibault (1996a, 1996b)

Sistem i operativni uslovi	Korelacija		Referenca
Voda (k) \downarrow i vazduh (d) \uparrow ; D _c = 3,2 i 5,4 cm; f = 0,4 - 3 Hz; A = 0 - 1,5 cm; U _c = 0,05 - 0,58 cm/s; U _d = 0,044 cm/s.	$D_{L} = 1,754 \cdot A \cdot f \cdot h^{0,67} \cdot d \cdot D_{c}^{-0,67} \cdot \varepsilon^{-1,0}$	(3.53)	Miyauchi i Oya (1965)
Voda (k) \downarrow i vazduh (d) \uparrow ; D _c = 17,2 cm; f = 0 - 4,3 Hz; A = 0,1 - 0,8 cm;	$\alpha = -\frac{\varphi}{\pi} + \left[\frac{2 \cdot A \cdot f \cdot (1 - \varepsilon_G)}{U_L}\right] \left[1 - \frac{d_{pl}^2}{D_c^2}\right] \left[\frac{d_{pl}^2}{D_c}\right]^2$	(3.54)	Miyonomi i
$U_c = 0.021 - 0.33 \text{ cm/s};$ $U_d = 0.37 - 1.12 \text{ cm/s}.$ (vibracioni diskovi)	$\alpha' = -\frac{\phi}{\pi} + \left[\frac{2 \cdot A \cdot f \cdot (1 - \varepsilon_G)}{U_L}\right] \left[1 - \frac{d^2}{D_c^2}\right] \left[\frac{d_{pl}^2}{D_c}\right]^2$	(3.55)	sar. (1978)
	α' - povratni tok unutar sekcije		
Voda (k) \downarrow i vazduh (d) \uparrow ; D _c = 2,54 cm;	$D_{\rm L} = 90.5 \cdot U_{\rm R}^{-0.964}$ (3.56)		
I = 0.5 - 6.18 HZ; $A = 0.65 - 1.5$ cm; $U_c = 0.38 - 1.2$ cm/s;	$D_{L} = 81,47 \cdot U_{L}^{0,627} U_{R}^{-0,75+0,19} \cdot U_{L}$	(3.57)	Skala (1980)
$U_d = 0.8 - 3.2 \text{ cm/s}.$	$U_{R} = \frac{U_{G}}{\varepsilon_{G}} + \frac{U_{L}}{1 - \varepsilon_{G}} + 2Af$	(3.58)	
Voda (k) \downarrow i vazduh (d) \uparrow ; D _c = 9,3 cm; f = 0,6 - 3,6 Hz; A = 1,4 - 8 cm; U _c = 1,24 - 3,72 cm/s; U _d = 0,043 - 0,92 cm/s.	$\frac{D_{L}}{U_{c}L} = Pe^{-1} = 4,58 \cdot 10^{-2} A^{0,564} f^{0,622} U_{c}^{-0,39} d^{0,26} \epsilon^{-0,653} h^{-0,71}$	(3.59)	Parthasarathy i sar. (1984)
Voda (k) i vazduh (d) [†] ; $D_c = 10,2 \text{ cm}$; f < 20 Hz; A = 1,25 - 5 cm; $U_c = 0$; $U_d = 0 - 4 \text{ cm/s}$.	$D_{L} = 0,00213 \cdot (U_{G} + 10^{-4})^{0,273} + 0,069 \cdot A^{0,827} f^{1,108}$	(3.60)	Lounes, J. Thibault (1996a i 1996b)

Tabela 3.4 Korelacije za koeficijent aksijalne disperzije za KVM: dvofazni G-L sistem
Sistem i operativni uslovi	Korelacija		Referenca
Monofazni, voda i dvofazni, voda (k) \uparrow i glicerin (d) \downarrow ; D _c = 5,16 cm; f = 6,6 - 10 Hz; A < 0,4 cm; U _c = 0,28 - 1,5 cm/s; U _d = 0 - 0,5 cm/s.	$f_{ef} = \left\{ \left(1 + \frac{1}{f}\right) \exp\left[6,6\left(h - 4,5\right)\frac{\varepsilon^{2/3}U_c}{d \cdot A \cdot f}\right] - 1 \right\}^{-1} $	3.61)	Novotny i
	$f = \frac{\phi}{\pi} - \frac{1}{2} - 2\frac{A \cdot f}{\pi} \cdot \cos\phi = \arcsin\left(\frac{U_c}{2\pi A f}\right) $ (2)	3.62)	sar. (1970)
	$D_{L2} = D_{L1} + \Delta D \tag{(}$	(3.63)	
	gde je: $\Delta D = 55 \cdot (h - 2m_2) \cdot d_{32}^3$; $2Af/\epsilon^{0.66} < 6$, MS režim (3)	3.64)	
$D_c = 5 \text{ cm};$	$\Delta D = 55 \cdot (h - 2m_2) \cdot d_{32}^{3} - 0,3; 6 \le 2Af/\epsilon^{0,66} \le 13, D \text{ režim} $	3.65)	Nemecek i
f = 0.4 - 10 Hz; A = 0.15 - 0.45 cm;	$\Delta \mathbf{D} = 0.40 \cdot \varepsilon_{\mathbf{D}} / \varepsilon^{1,2} - 1.01; 13 \le 2\mathrm{Af}/\varepsilon^{0.66}, \text{ E režim} $	3.66)	Prochazka
$U_{\rm d} = 0.3 - 0.5 \text{ cm/s};$ $U_{\rm d} = 0 - 0.45 \text{ cm/s}.$	$(1,00 \text{ za } 2\text{Af}/\epsilon < 13,0)$		(1974)
	$2m_{2} = \{0,21 \cdot 2Af/\epsilon \ za \ 2Af/\epsilon \ge 13,0 \ i \ 2m_{2} < 0,54 \cdot (h+3,60) \}$	(3.67)	
	$(0,54 \cdot (h+3,60))$ za sve druge vrednosti		

Tabela 3.5 Korelacije za koeficijent aksijalne disperzije za KVM: dvofazni L-L sistem

nastavak tabele 3.5

Sistem i operativni uslovi	Korelacija	Referenca
Voda (k) \downarrow i kerozin (d) \uparrow ; D _c = 5,08 cm; f = 0,5 - 6 Hz; A < 2,35 cm; U _c = 0 - 1,2 cm/s; U _d = 0 - 0,7 cm/s.	$D_{\rm L} = 5,62 \cdot {\rm A}^{1,41} {\rm f}^{0,73} {\rm h}^{-0,88} $ (3.68)	Kim i Baird (1976a)
Voda (k) \downarrow i kerozin (d) \uparrow ; D _c = 15,3 cm; f = 0,75 - 3 Hz; A = 1,4 - 4,4 cm; U _c = 0,18 - 0,33 cm/s; U _d = 0,027 - 0,33 cm/s.	$\frac{D_{L}}{U_{c}L} = Pe^{-1} = 4,22 \cdot 10^{-2} A^{0,457} f^{0,344} U_{c}^{-0,37} d^{0,274} \varepsilon^{-0,68} h^{-0,687} $ (3.69)	Parthasarathy i sar. (1984)
n-heptan (k) \uparrow i voda (d) \downarrow ; D _c = 2,54 i 50,8 cm; f < 6 Hz; A = 2,54 cm; U _c < 1,133 cm/s; U _d < 0,57 cm/s.	$D_{ds} = D_d \left(\frac{U_d}{u_d}\right) = D_d \cdot \epsilon $ (3.70) $D_{ds} - Koeficijent aksijalne disperzije u odnosu na prividnu brzinu strujanja dispergovane faze; D_d - Koef. aksijalne disperzije za dispergovanu fazu, gdeje: u_d = U_d / \epsilon stvarna brzina strujanja dispergovane faze;Koeficijent aksijalne disperije određen za dispergovanu fazu.$	Karr i sar. (1987)

c - kontinualna faza; d - dispergovana faza; MS režim - mixer-settler; D režim - disperzija; E režim - emulzija.

3.1.5. IZBOR TRASERA

Eksperimentalno određivanje funkcije RVZ zasniva se na ispitivanju proticanja obeleženog dela fluida. Traser se ubrizga u struju fluida na ulazu u sistem koji se ispituje, a promena njegove koncentracije meri se na jednom ili više mesta u struji fluida nizvodno od ulaza do izlaza iz sistema. Obe faze eksperimentalnog rada su veoma važne i zahtevaju detaljno poznavanje osobina celokupnog sistema i karakteristika fluida čije se proticanje analizira. Da bi neka supstanca mogla da se upotrebi kao traser, mora da ispunjava određene zahteve (Skala i Mićić, 1982d):

- a) Mora se dobro rastvarati u fluidu koji protiče kroz sistem i da mu ne menja fizičke karakteristike.
- b) Mogućnost tačnog određivanja malih koncentracija trasera, jer se obično veoma mala količina unosi u sistem, da ne bi narušila strujanje u sistemu.
- c) Da je hemijski inertna u odnosu na fluid i sve druge komponente prisutne u fluidu.
- d) Kod višefaznih sistemima ne sme da prelazi iz jedne u drugu fazu.

Takođe, treba nastojati da se na mestu dodavanja i detekcije trasera ne remeti način strujanja fluida. Instrumenti za merenje fizičke karakteristike preko koje se određuje koncentracija trasera treba da imaju malu inertnost.

U ovom radu korišćena je spektrofotometrijska detekcija trasera koja omogućava detekciju malih koncentracija supstanci, postavljanje senzora van reaktora i brzo reagovanje na promene koncentracije trasera. Za traser se bira supstanca koja ima veliku vrednost apsorpcionog koeficijenta ε na odgovarajućoj talasnoj dužini emitovane svetlosti λ , saglasno Beerovom zakonu (Mišović i Ast, 1987):

 $\mathbf{A} = \boldsymbol{\varepsilon} \cdot \mathbf{b} \cdot \mathbf{c} \tag{3.71}$

gde je: ε - apsorpcioni koeficijent supstance (dm³/mol·cm), b - dužina puta zraka kroz uzorak (cm), c - koncentracija ispitivane supstance (mol/dm³). Karakteristike potencijalnih trasera date su u tabeli 3.6.

Jedinjenje	λ _{max} , nm	ε _{max} , dm³/mol∙cm	Jedinjenje	λ_{\max}, nm	ε _{max} , dm³/mol∙cm
Benzoeva kiselina	230	10000	Sorbinska kiselina	254	25000
Benzonitril	224	13000	Akrolein	210	11481
Nitrometan	201	5000	Krotonska kiselina	206	14000
Fonol	210	6200	Anilin	230	8600
Fenol	270	1450	Amm	280	1430

Tabela 3.6 Potencijalni traseri sa maksimumom apsorbancije u UV oblasti (Mišović i Ast, 1987)

Spektrofotometrom se određuje koncentracija trasera merenjem apsorpcije intenziteta zraka monohromatske svetlosti. Kroz protočnu kivetu spektrofotometra protiče znatno manji protok tečnosti nego što je protok kroz poluindustrujske ili industrijske reaktore. Protok fluida se deli na dva dela, od kojih jedan prolazi kroz protočnu kivetu spektrofotometra. Uređaj se može posmatrati kao sistem kombinovanih modela koji sadrže više od jednog parametra za matematičko opisivanje.

Provera izbora trasera i uređaja za detekciju je izvedena na laboratorijskom protočnom reaktoru sa idealnim mešanjem (PRIM), zato što su jednačine odziva na različite poremećaje na ulazu poznate i lako se mogu porediti sa eksperimentalnim rezultatima. U tom cilju napravljen je sistem koji čine PRIM i protočna kiveta UV detektora kroz koju fluid protiče idealno klipno (slika 3.7).

Slika 3.7 Sud sa idealnim mešanjem u nizu sa sekcijom u kojoj se ostvaruje klipno proticanje

Analiza odgovora na izlazu u poziciji 2 (slika 3.7) za različite poremećaje na ulazu u poziciji 1 može biti izvedena za:

a) impulsno dodavanje trasera, kada se kao odgovor dobija C_t - kriva:

$$C_{1} = \frac{q_{0}}{V_{m}} e^{-\frac{0}{V_{m}}t}$$
(3.72)

odnosno funkcija GRVZ u poziciji 2 dobijena normalizacijom je:

$$C_{t} = \frac{\upsilon}{V_{m}} e^{-\frac{\upsilon \left(t - \frac{V_{c}}{\upsilon_{1}}\right)}{V_{m}}}$$
(3.73)

Dobijena C_t - kriva je prikazana na slici 3.8.

Slika 3.8 Normalizovana C_t - kriva

Prvi necentralni momenat funkcije C_t predstavlja srednje vreme zadržavanja fluida u sistemu:

$$\mu'_{1} = t_{sr} = \int_{0}^{\infty} t \cdot C dt = \int_{\tau_{c}}^{\infty} \frac{\upsilon t}{V_{m}} e^{-\frac{\upsilon \left(t - \frac{V_{c}}{\upsilon_{1}}\right)}{V_{m}}} dt = \frac{V_{m}}{\upsilon} + \frac{V_{c}}{\upsilon_{1}}$$
(3.74)

b) kontinualno dodavanje trasera (uzlazni stepenasti poremećaj), kada se kao odgovor dobija
 F_t - kriva:

$$F_{t} = \frac{C_{2}}{C_{0}} = 1 - e^{-\frac{\upsilon(t - \tau_{c})}{V_{m}}}$$
(3.75)

Zavisnost F_t od t prikazana je na slici 3.9.

Slika 3.9 Normalizovana F_t - kriva

c) prestanak dodavanja trasera (silazni stepenasti poremećaj), kada se kao odgovor dobija I_t - kriva:

$$I_{t} = \frac{\left(\frac{C_{2}}{C_{0}}\right)}{\tau_{c} + \frac{V_{m}}{\upsilon}} = \frac{1}{\tau_{c} + \frac{V_{m}}{\upsilon}} \cdot e^{-\frac{\upsilon(t - \tau_{c})}{V_{m}}}$$
(3.76)

Funkcija I_t u zavisnosti od t prikazana je na slici 3.10.

Slika 3.10 Normalizovana I_t - kriva

3.2. EKSPERIMENTALNI DEO

3.2.1. IZBOR TRASERA

UV spektri jedinjenja potencijalnih trasera snimljeni su pomoću spektrofotometra (Perkin Elmer Lambda 15 UV/VIS Spectrophotometer).

Sistem za detekciju trasera na izlazu je sastavljen od UV detektora (LKB 2138 UVICORD S), pisača (LKB 2210 Potentiometric Recorder) i peristaltičke pumpe (LKB 2132 Micro Perpex Pump). UV detektor kontinualno meri apsorbanciju kroz protočnu kvarcnu kivetu i može da koristi interferentne filtre sa fiksnim vrednostima talasnih dužina na 206, 226, 254, 280 ili 313 nm u ultraljubičastoj i na 365 ili 405 nm u vidljivoj oblasti spektra. U radu je korišćen interferentni filter na 254 nm. Protočna kvarcna kiveta (model 2138-100) ima zapreminu 70 µl, a dužina puta zraka je 2,5 ili 5 mm. Vodovi kroz pumpu i kroz UV detektor su silikonska creva unutrašnjih prečnika 1,2 i 0,3 mm, respektivno.

Radna zapremina PRIM je 390 - 448 cm³. Dužina puta zraka monohromatske svetlosti kroz protočnu kivetu UV-detektora je 5 mm. Kao traseri korišćeni su sorbinska^{*} (Industrie Betreuung-belieferung, Gold-schuidz, Austrija) i benzoeva kiselina (Zorka, Šabac).

Reaktor i mešalica su od stakla, a odbojnici od teflona. Protočni fluid je voda iz vodovoda, čiji protok se reguliše slavinom. Ispred ulaza u reaktor nalazi se špric kojim se ubrizgava impulsni poremećaj rastvora trasera u ulaznu struju fluida (slika 3.11). Izlazni tok fluida iz reaktora se deli: manji deo se peristaltičkom pumpom uvodi u UV detektor, a zatim odbacuje. Prolaskom rastvora kroz protočnu kivetu UV detektora meri se apsorbancija i pretvara u električni signal, koji registruje pisač na papirnoj traci (čija je brzina kretanja konstantna), u zavisnosti od vremena. Proporcionalna zavisnost apsorbancije i koncentracije (jednačina 3.71) omogućava izračunavanje koncentracije trasera na izlazu.

^{*} 2,4 - heksadienska kiselina

Slika 3.11 Šematski prikaz eksperimentalnog postrojenja za praćenje odziva na izlazu pri impulsnom poremećaju na ulazu u PRIM: EM - elektromotor, K - odvod fluida, P - pumpa, PRIM - protočni reaktor sa idealnim mešanjem, PS - pisač, SL - slavina, Š - špric, UV - UV detektor

Za stepenaste poremećaje na ulazu u PRIM potrebna su dva rezervoara ispred PRIM: za rastvor trasera i za čist rastvarač (slika 3.12). Da bi zapreminski protok tečnosti kroz PRIM bio nepromenljiv, visina nivoa u rezervoarima R_1 i R_2 održava se konstantnim pomoću dopunskog rezervoara za rastvor trasera RD, ventila V_3 i slavine za čist rastvarač (voda) SL. Pomoću ventila V_1 i V_2 se reguliše vrsta fluida koji pritiče u PRIM: čist rastvarač (otvoren V_2 , zatvoren V_1) ili rastvor trasera (otvoren V_1 , zatvoren V_2), čime se lako izaziva uzlazni ili silazni stepenasti poremećaj na ulazu. Sistem za detekciju koncentracije trasera na izlazu iz PRIM je isti kao kod sistema sa impulsnim poremećajem na ulazu.

Slika 3.12 Šematski prikaz eksperimentalnog postrojenja za praćenje odziva na izlazu pri stepenastom (uzlaznom i silaznom) poremećaju na ulazu u PRIM: EM - elektromotor, K odvod fluida, P - pumpa, PRIM - protočni reaktor sa idealnim mešanjem, PS - pisač, R_1 rezervoar za rastvor trasera, R_2 - rezervoar čiste vode (bez trasera), RD - dodatni rezervoar za rastvor trasera, SL - slavina, UV - UV detektor, V - ventil

3.2.2. ODREĐIVANJE KOEFICIJENTA AKSIJALNE DISPERZIJE U KVM

Kao protočna gasna faza korišćen je vazduh iz kompresora pod pritiskom od 4 bara. Na izlazu iz kompresora pritisak se održava konstantnim (170 kPa) pomoću regulatora pritiska. Protok gasa se reguliše pomoću ventila, a meri rotametrom (VEB Prüfgeräte-Werk Mechanik, Medingen). Ispred ulaza gasa u kolonu nalazi se diskretni distributer gasa, koji prilikom početnog otvaranja radi naizmeničnim otvaranjem i zatvaranjem.

Kao protočna tečna faza korišćena je voda iz vodovoda, preko balona koji se nalazi 70 cm iznad ulaza u kolonu, i u kome se nivo vode održava konstantnim. Time se postiže konstantan pritisak na izlazu iz balona i konstantan protok tečnosti, koji se reguliše preko ventila, a meri štopericom i menzurom.

Kao čvrsta stacionarna faza korišćene su kuglice od polipropilena, gustine 890 kg/m³ i prečnika 8,3 mm. Kod manje kolone KVM1 za udeo čvrste faze od 5,61 % raspored kuglica je po pet u svakom drugom međuprostoru između pločica. Kod veće kolone KVM2 za udele čvrste faze od 2,86, 5,65 i 8,43 % vol. stavlja se u svakom međuprostoru po 39, 77 i 115 kuglica, respektivno.

Eksperimenti su izvedeni sa protokom tečnosti naniže u jednofaznom, dvofaznom (gas-tečnost i tečnost-čvrsta faza) i trofaznom (gas-tečnost-čvrsta faza) sistemu. Aksijalna disperzija ispitivana je u tečnoj fazi metodom pobude i odziva, pri čemu je kao traser upotrebljen rastvor sorbinske kiseline koncentracije 0,8 i 1 g/dm³. S obzirom da se radi o veoma razblaženom rastvoru, može se pretpostaviti da su gustina i viskozitet rastvora sorbinske kiseline identični osobinama vode. Masa rastvora sorbinske kiseline se odabire tako da koncentracija trasera koja bi se dobila kada bi se impulsno ubrizgana količina trasera rasporedila trenutno na celu zapreminu tečnosti u radnom delu kolone iznosi oko 1 mg/dm³: za KVM1 - oko 1 g rastvora (koncentracije 0,8 g/dm³), a za kolonu KVM2 oko 6 g (koncentracije 1 g/dm³). Uslovi rada kolone pre svake probe dovođeni su u stacionarno stanje.

Sorbinska kiselina je detektovana UV detektorom na fiksnoj talasnoj dužini 254 nm pri prolazu kroz protočnu kvarcnu kivetu sa dužinom puta zraka 5 mm.

Parametri modela su određivani izračunavanjem momenata (MM), linearizovanjem različitih kombinacija funkcija zasnovanih na prenosnoj funkciji modela i njenih viših izvoda (metode A1-A5) i postupkom optimizacije (Z1-Z3), odnosno izračunavanjem odgovarajuće minimalne vrednosti funkcije cilja. Ciljna funkcija je suma razlike kvadrata između eksperimentalno određene i numerički izračunate funkcije GRVZ fluida u sistemu. U svim jednačinama u kojima se koristi Laplaceov operator *s* njegova vrednost je menjana u opsegu od 0 do 0,4 (Skala i sar., 1981).

Po završetku procesa kontinualne alkoholne fermentacije u KVM1 sa ćelijama *Saccharomyces cerevisiae* imobilisanim na polimernom nosaču, sa postojećim uređenjem faza, ispitana je aksijalna disperzija za tečnu fazu impulsnom metodom. Kao traser je korišćen rastvor sorbinske kiseline koncentracije 1,02 g/dm³, a količina ubrizganog impulsa je između 1 i 2 cm³.

3.3. REZULTATI I DISKUSIJA

3.3.1. IZBOR TRASERA

Kao traseri odabrane su benzoeva i sorbinska kiselina, kao manje opasne i agresivne supstance. Snimljeni UV spektri u oblasti talasnih dužina od 190 do 350 nm, dati su na slikama 3.13 i 3.14. Maksimum apsorbancije benzoeva kiselina pokazuje na 226,8 ($\varepsilon_{max} = 9231,5 \text{ dm}^3/\text{mol}\cdot\text{cm}$) i 198,4 nm ($\varepsilon_{max} = 8368,4 \text{ dm}^3/\text{mol}\cdot\text{cm}$), a sorbinska kiselina na 258 nm ($\varepsilon_{max} = 24202 \text{ dm}^3/\text{mol}\cdot\text{cm}$)

Slika 3.13 UV-spektar benzoeve kiseline ($c = 3,3 \cdot 10^{-4} \text{ mol/dm}^3$)

Slika 3.14 UV-spektar sorbinske kiseline ($c = 8.9 \cdot 10^{-5} \text{ mol/dm}^3$)

Sorbinska kiselina je odabrana za dalji rad jer ima veći apsorpcioni koeficijent, i to blizu talasne dužine oko 254 nm, za koju UV detektor ima interferentni filter. U oblasti malih koncentracija do 10 ppm, dobijena je linearna zavisnost apsorbancije od koncentracije (slika 3.15), a jednačina za izračunavanje koncentracije trasera (do 10 ppm) je:

$$C_{g}[ppm] = 12,317 \cdot A - 0,0888$$
 (3.77)

Slika 3.15 Kalibracioni dijagram za rastvore sorbinske kiseline

Na slici 3.16 su prikazani eksperimentalni rezultati određivanja C_t krive kao odgovor sistema prikazanog na slici 3.11 na impulsni signal rastvora sorbinske kiseline. Vrednosti izračunate iz matematičkog modela (jednačina 3.73) se dobro slažu sa eksperimentalnim. Odstupanje na početku ukazuje na sledeće probleme:

- » sistem za detekciju pokazuje izvesnu inerciju pri brzim promenama,
- » sekcija za mešanje ne pokazuje potpuno idealno mešanje i
- > sekcija sa klipnim proticanjem ne pokazuje potpuno idealno klipno proticanje.

Na slikama 3.17 i 3.18 se vidi dobro slaganje eksperimentalnih rezultata i vrednosti dobijenih po jednačinama 3.75 i 3.76, respektivno. To znači da je vremenska konstanta UV detektora zadovoljavajuća i da se sistem za spektrofotometrijsku detekciju trasera može koristiti za analizu strujanja kroz realne sisteme. Rezultati pokazuju, takođe, da je odstupanje od idealnog načina strujanja kroz deo sistema za detekciju zanemarljiv.

Slika 3.17 F_t kriva kao odgovor na uzlazni stepenasti signal u PRIM; \bigcirc - eksperimentalne vrednosti i <u>-----</u> - vrednosti po jednačini 3.75 (V_m = 390 cm³, V_c = 1,5 cm³, υ = 217,4 cm³/min, υ_1 = 2,2 cm³/min, C₀ = 0,539 ppm)

Slika 3.18 I_t kriva kao odgovor na silazni stepenasti signal u PRIM; \bigcirc - eksperimentalne vrednosti i <u>-----</u> - vrednosti po jednačini 3.76 (V_m = 448 cm³, V_c = 1,5 cm³, υ = 217,4 cm³/min, υ_1 = 2,2 cm³/min, C₀ = 0,539 ppm)

3.3.2. IZBOR METODE ZA ODREĐIVANJE PARAMETARA MODELA

Na slici 3.19 date su krive tipičnog odziva na impulsni signal, pri čemu jedna kriva pokazuje brzo ispiranje (malo vreme zadržavanja u koloni), a druga kriva - sporo ispiranje trasera (duže vreme zadržavanja elemenata fluida i trasera u koloni).

Slika 3.19 Zavisnost normalizovane koncentracije trasera na izlazu iz KVM1 kao odgovor na impulsni signal; — Δ — brzo ispiranje (U_L = 0,87 cm/s, U_G = 0,274 cm/s, I = 9,4 cm/s, D_C = 2,54 cm, $\epsilon_s = 5,61 \%$, $t_{sr} = 3,11 min$), — $\overline{\bullet}$ — sporo ispiranje (U_L = 0,24 cm/s, U_G = 0 cm/s, I = 7,05 cm/s, D_c = 2,54 cm, $\epsilon_s = 5,61 \%$, $t_{sr} = 9,41 min$)

Analiza podataka po modelu kaskade od N-sekcija sa idealnim mešanjem je vršena pomoću tri metode, i to:

- metode momenata za određivanje parametra N, a srednje vreme zadržavanja je određivano kao prvi necentralni momenat (MM, jednačina 3.8);
- metode linearizovane prenosne funkcije modela, pri čemu se izračunavaju t_{sr} i N (A1, jednačina 3.9);
- optimizacijske metode minimiziranjem funkcije cilja, pri čemu se određuje parametar N (Z1, jednačine 3.12, 3.13 i 3.15).

Slika 3.20 je primer određivanja parametra modela primenom metode Z1. Zapaža se dobro slaganje eksperimentalne funkcije GRVZ i GRVZ po modelu. U tabeli 3.7 su prikazane vrednosti funkcije cilja (suma kvadrata razlike eksperimentalne GRVZ i GRVZ po modelu) za ekstremne vrednosti u KVM1 i KVM2. Najniža vrednost funkcije cilja dobija se optimizacijskom metodom Z1. Međutim, ne postoje analitička rešenja za model kaskade sa povratnim tokom i disperzioni model, tako da se u tim slučajevima može koristiti optimizacija minimiziranjem sume razlike kvadrata prenosnih funkcija modela i eksperimenta. Indirektno, kada je N > 10, ili Pe > 20, može se primeniti jednačina koja povezuje parametre različitih modela, pri čemu je greška manja od 2 % (Skala, Mićić, 1982c):

$$\sigma_{\Theta}^2 = \frac{1}{N} = \frac{2}{Pe}$$
(3.78)

Slika 3.20 E_t funkcije: eksperimentalno određena i izračunata za model kaskade od N sekcija sa idealnim mešanjem (N - broj sekcija određen postupkom Z1)

Tabela 3.7 Vrednosti funkcije cilja (suma kvadrata razlike eksperimentalne GRVZ i GRVZ po modelu - jednačina 3.12) za ekstremne vrednosti parametra N modela kaskade bez povratnog toka u KVM1 i KVM2

KVM		Operativ		Ν		Funkcija cilja ψ			
	I, cm/s	U _L , cm/s	U _G , cm/s	ε _s , %	11		MM	A1	Z1
KVM1	9,4	0,25	0	5,6	min	2,90	0,119	1,016	0,115
	3,0	0,81	0	0	max	51,87	1,283	1,261	1,190
KVM2	2,0	0,56	0	0	min	1,28	2,258	0,248	0,219
KVM2	0	0,56	0,29	0	max	12,02	2,061	1,968	1,918

Na slici 3.21 izvršeno je poređenje vrednosti srednjeg vremena zadržavanja (slika 3.21a) i broja sekcija sa idealnim mešanjem (slika 3.21b) iz oko 50 eksperimenata sa odgovarajućim parametrima po metodi momenata. Jasno se vidi dobro slaganje vrednosti za t_{sr} po metodi momenata i po metodi A1 (odstupanje -0,6 %). Metode A1 i Z1 daju nešto veće vrednosti parametra N nego metoda momenata, a odstupanja su 20,4 i 17,2 %, respektivno.

Analiza podataka po modelu kaskade od N-sekcija sa idealnim mešanjem i povratnim tokom je vršena pomoću:

- metode momenata za određivanje parametra α, pri čemu je broj sekcija sa idealnim mešanjem fiksiran i jednak broju sekcija između pločica u setu za mešanje; srednje vreme zadržavanja se određuje kao prvi necentralni momenat (MM, jednačina 3.18);
- 2. metode linearizovane prenosne funkcije modela kojom se dobijaju t_{sr} , N i α , gde je N promenljiva veličina (A2, jednačine 3.21 i 3.22);
- optimizacijske metode kojom se, minimiziranjem funkcije cilja određuju t_{sr}, N i α; moguće je da N bude jednak broju fizičkih sekcija ili promenljiva veličina koja se određuje iz modela (Z2, jednačine 3.23 i 3.24).

Slika 3.21 Vrednosti za a) srednje vreme zadržavanja i b) broj sekcija sa idealnim mešanjem po metodama \bigcirc - A1 i \bullet - Z1 u odnosu na vrednosti parametara po metodi MM (D_c = 2,54 cm, $\varepsilon_s = 0$, U_L = 0,24 - 0,87 cm/s, U_G = 0 - 1.48 cm/s, I = 2 - 9,4 cm/s)

Slike 3.22 i 3.23 ilustruju postupak određivanja parametara modela primenom metoda A2 i Z2, respektivno. Odsečak funkcije YY, teorijski, treba da ima istu vrednost kao nagib funkcije YZ. Sa primera na slici 3.22 se vidi dobro slaganje ovih vrednosti (0,053 i 0,0536, respektivno), što potvrđuje valjanost ovog modela. Linije za obe prenosne funkcije (modela i eksperimenta) se u potpunosti preklapaju primenom kriterijuma ciljne funkcije 3.24 (metod Z2, slika 3.23)

Slika 3.22 Linearizovane prenosne funkcije YY i YZ u zavisnosti od Laplaceovog operatora s (metod A2)

Slika 3.23 Zavisnost eksperimentalne prenosne funkcije $F_{(s)}$ i prenosne funkcije modela kaskade sa povratnim tokom u zavisnosti od Laplaceovog operatora s (metod Z2)

Na slici 3.24 date su uporedne vrednosti za parametre t_{sr} , N i α . Vrednosti za srednje vreme zadržavanja određene po metodama A2 i Z2 se u potpunosti slažu sa vrednostima dobijenim kao prvi necentralni moment (slika 3.24a). Međutim, dobijene vrednosti za broj sekcija u nizu sa povratnim mešanjem i za koeficijent povratnog toka, kada je N \neq const., veoma su različite, zavisno od metode kojom su izračunate (slike 3.24b i c). Metodom Z2 moguće je fiksirati vrednost N na broj fizičkih sekcija; tada se vrednosti α (po Z2) dobro slažu sa vrednostima dobijenim metodom momenata (slika 3.24d). Ovo su i očekivani rezultati, s obzirom da je broj mogućih promenljivih veći za jedan kada je N \neq const (Nikolić i sar., 2002b).

Slika 3.24 Poređenje vrednosti za t_{sr}, N i α izračunatih metodama A2 i Z2 u odnosu na vrednosti parametara izračunatih metodom MM (D_c = 2,54 cm, ϵ_s = 5,61%, U_L = 0,24 - 0,87 cm/s, U_G = 0 - 1.48 cm/s, I = 2 - 9,4 cm/s)

Analiza podataka disperzionim modelom može biti izvršena, takođe, pomoću tri metode, i to:

- metodom momenata, zavisno od graničnih uslova koji definišu tip suda (mešoviti: otvoreno-zatvoreni ili zatvoreno-otvoreni i zatvoreno-zatvoreni, respektivno) za određivanje Pecletovog broja (srednje vreme zadržavanja je određivano kao prvi necentralni momenat; MM, jednačina 3.28 ili 3.30);
- metodom linearizovanih prenosnih funkcija (A3, A4 i A5, jednačine 3.34, 3.35 i 3.36, pomoću A3 i A4 dobijaju se t_{sr} i Pe, a pomoću A5 samo Pe);
- optimizacijskom metodom minimiziranjem funkcije cilja, pri čemu se može odrediti samo Pecletov broj (metoda je primenljiva za reaktor sa otvoreno-otvorenim graničnim uslovima; Z3, jednačine 3.37 i 3.38).

Očigledno je da se vrednosti t_{sr} izračunate po metodama A3 i A4 slažu sa vrednostima izračunatim iz prvog necentralnog momenta (slika 3.25a). Vrednosti za Pecletov broj izračunat metodama A3, A4 i iz nagiba A5 (slike 3.25b i c) u potpunosti odgovaraju Pecletovom broju izračunatom metodom momenata, dok su rasipanja vrednosti iz odsečka A5 tolika da se ne smeju koristiti u analizama (slika 3.25c). Pomalo je iznenađujuće dobro

slaganje vrednosti Pecletovog broja izračunatog optimizacijskom metodom Z3 i metodom momenata, iako je korišćena jednačina 3.37, koja je, inače, rešenje za otvoreno-otvorene granične uslove, dok su eksperimenti u ovoj grupi istraživanja izvedeni na reaktoru zatvoreno-otvorenog tipa i za metodu momenata je korišćena jednačina 3.28 (slika 3.25d).

Slika 3.25 Vrednosti za t_{sr} i Pe po metodama A3, A4, A5 i Z3 u odnosu na vrednosti parametara po metodi MM ($D_c = 2,54$ cm, $\varepsilon_s = 0$, $U_L = 0,24 - 0,87$ cm/s, $U_G = 0 - 1.48$ cm/s, I = 2 - 9,4 cm/s)

Analiza primenjenih metoda pokazuje da se na dalje parametri modela mogu određivati samo jednom metodom, preko momenata (Nikolić i sar., 2002b). Određivanje Pecletovog broja metodom A5 preko odsečka se ne može koristiti. Pouzdaniji rezultati se dobijaju ako je broj sekcija u modelu kaskade sa povratnim tokom jednak broju fizičkih sekcija vibracione mešalice (Nikolić i sar., 2002b).

3.3.3. IZBOR MODELA STRUJANJA

Na slici 3.26 date su zavisnosti parametara kaskade sekcija sa idealnim mešanjem bez i sa povratnim tokom i disperzionog modela N, α i D_L u funkciji od prividne brzine strujanja gasa za iste uslove rada kolone (intenzitet vibracije i udeo čvrste faze) i za dve različite prividne brzine strujanja tečne faze.

Slika 3.26 Parametri kaskade sekcija sa idealnim mešanjem bez i sa povratnim tokom (N i α) i disperzionog modela (D_L) pri istim operativnim uslovima (D_c = 2,54 cm, ϵ_s = 0, U_L = 0,24 i 0,87 cm/s, U_G = 0 - 1,48 cm/s, I = 2 - 9,4 cm/s)

Broj sekcija sa idealnim mešanjem N opada sa povećanjem prividne brzine strujanja gasa kada je intenzitet vibracije mali (2 cm/s), s tim što je opadanje sporije pri $U_G > 0,6$ cm/s. Pri nešto većem intenzitetu vibracije (4 cm/s) broj sekcija sa idealnim mešanjem opada sa povećanjem prividne brzine strujanja gasa, ali je ova promena manje osetljiva na prividnu brzinu strujanja i udeo gasa u sistemu. Pri intenzitetu vibracije I = 7,05 cm/s uticaj prisustva i brzine strujanja gasa je skoro zanemarljiv. Pri vrlo velikim intenzitetima vibracije (9,4 cm/s)

broj sekcija sa idealnim mešanjem se povećava sa povećanjem prividne brzine strujanja gasa u koloni. Ovakve, potpuno iste promene, zapažaju se za dve prividne brzine strujanja tečnosti (0,24 i 0,87 cm/s), s tim što je broj sekcija sa idealnim mešanjem oko dva puta veći pri većoj nego pri manjoj prividnoj brzini strujanja tečnosti, pri istim ostalim operativnim uslovima.

Koeficijent povratnog toka α raste sa povećanjem prividne brzine strujanja gasa za male intenzitete vibracije, slabo zavisi od prividne brzine strujanja gasa za srednje intenzitete vibracije i opada sa prividnom brzinom strujanja gasa za velike intenzitete vibracije. Generalno, koeficijent povratnog toka je oko tri puta veći pri manjoj (0,24 cm/s) nego pri većoj prividnoj brzini strujanja tečnosti (0,87 cm/s). Povećanje koeficijenta α ukazuje na intenzivnije strujanje delova kontinualne tečne faze ka unazad u aksijalnom pravcu, čime se pojačava efekat mešanja i ujednačuje sastav tečne faze.

Sa povećanjem prividne brzine proticanja gasa pri malim intenzitetima vibracije (2 cm/s) koeficijent aksijalne disperzije raste brže, a za I = 4 cm/s sporije. Za I = 7,05 cm/s koeficijent aksijalne disperzije skoro da ne zavisi od protoka gasa, a za I = 9,4 cm/s opada pri prividnoj brzini strujanja tečne faze 0,24 cm/s. Vrednost koeficijenta aksijalne disperzije se povećava za oko 50 % kada se prividna brzina strujanja kontinualne faze uveća od 0,24 na 0,87 cm/s.

Kada je N = 1, $\alpha \rightarrow \infty$ ili $D_L \rightarrow \infty$, strujanje kontinualne faze najpribližnije odgovara strujanju kroz reaktor sa idealnim mešanjem. Nasuprot tome, povećanje N (N $\rightarrow \infty$), kada je α = 0 ili $D_L \rightarrow 0$, proticanje fluida odgovara idealnom klipnom proticanju.

Analiza primera sa slike 3.26 je pokazala da model kaskade sekcija sa idealnim mešanjem bez i sa povratnim tokom i disperzioni model mogu opisati proticanje kontinualne tečne faze kroz kolonu, pri čemu vrednosti parametara modela pokazuju u kojoj meri strujanje fluida odgovara proticanju sa idealnim mešanjem ili idealnom klipnom proticanju (Nikolić i sar., 1999, 2001; Skala i sar., 2000). Nameće se zaključak da se analiza povratnog mešanja može izvesti pomoću samo jednog modela. Najbolji izbor je disperzioni model, zato što se uključivanjem hemijske reakcije dobija i rešava samo jedna diferencijalna jednačina. Kod sekcijskih modela treba rešavati N jednačina postavljenih za N sekcija. Parametri izračunati korišćenjem kaskadnih i disperzionog modela za sve eksperimente dati su u prilogu.

3.3.4. KOEFICIJENT AKSIJALNE DISPERZIJE U KVM1

Koeficijent aksijalne disperzije je određivan u tečnoj fazi u funkciji od prividne brzine strujanja tečne i gasne faze, udela čvrste faze i intenziteta vibracije.

U tabeli 3.8 date su vrednosti koeficijenta aksijalne disperzije u KVM1 za jednofazni protok tečne faze, bez i sa čvrstom fazom, pri istim ostalim uslovima rada. Najveće vrednosti Pecletovog broja se postižu pri najmanjem intenzitetu vibracije (I = 2 cm/s) i najvećoj prividnoj brzini strujanja tečne faze ($U_L = 0,87$ cm/s) bez (Pe = 94,38) i u prisustvu čvrste faze (Pe = 64,82), dok se najmanje vrednosti Pecletovog broja postižu pri najvećem intenzitetu vibracije (I = 9,4 cm/s) i najmanjoj prividnoj brzini strujanja tečne faze ($U_L = 0,87$ cm/s) bez (Pe = 11,42) i sa prisutnom čvrstom fazom (Pe = 7,04).

Koeficijent aksijalne disperzije računat je iz Pecletovog broja, dobijenog metodom momenata, pomoću sledeće jednačine:

$$D_{L} = \frac{U_{L} \cdot L}{\operatorname{Pe} \cdot (1 - \varepsilon_{G}) \cdot (1 - \varepsilon_{S})}$$
(3.79)

analogno jednačini 3.32.

Lom/a	U cm/s	Pe (metod	a momenata)	$D_{\rm L}$ (metoda momenata), cm ² /s		
1, 011/5	O_L , CIII/S	$\varepsilon_{\rm s} = 0$	$\epsilon_{\rm s} = 5,61\%$	$\varepsilon_{\rm s} = 0$	$\epsilon_{s} = 5,61\%$	
2	0,24	53,84	29,98	0,81	1,55	
2	0,60	93,39	56,15	1,18	2,08	
2	0,87	94,38	64,82	1,68	2,59	
4	0,24	30,83	23,40	1,42	1,98	
4	0,60	65,71	49,51	1,65	2,36	
4	0,87	73,76	61,50	2,12	2,73	
7,05	0,24	15,53	8,59	2,83	5,40	
7,05	0,60	30,83	11,95	3,58	9,78	
7,05	0,87	39,54	16,71	4,01	10,31	
9,4	0,24	11,42	7,04	3,84	6,83	
9,4	0,60	22,09	9,25	4,99	12,62	
9,4	0,87	27,37	12,21	5,79	14,12	

Tabela 3.8 Vrednosti Pecletovog broja i koeficijenta aksijalne disperzije za kolonu prečnika 2,54 cm sa jednofaznim protokom tečne faze, sa i bez čvrste faze

U zatamnjenim ćelijama su ekstremne vrednosti

U tabeli 3.9 prikazane su vrednosti koeficijenta aksijalne disperzije u KVM1 za dvofazni suprotnostrujni tok tečne i gasne faze, bez i sa čvrstom fazom, za iste operativne uslove rada. Pecletov broj je u opsegu vrednosti od 11,28 do 55,93 za sistem bez čvrste faze, a u granicama od 10,29 do 50,32 za sistem sa čvrstom fazom. Koeficijent aksijalne disperzije u KVM1 nalazi se u opsegu 1,61 do 6,47 cm²/s za sistem bez čvrste faze, odnosno u granicama od 1,19 do 8,58 cm²/s u prisustvu čvrste faze. Generalno, koeficijent aksijalne disperzije je veći u prisustvu čvrste faze, sa retkim izuzecima.

Vrednosti koeficijenta aksijalne disperzije za dvofazni sistem (G-L) dobro se slažu sa ranije publikovanim podacima (2,31 do 7,61 cm²/s) za slične uslove rada: za $U_G = 0,795 - 3,126$ cm/s, I = 0,66 - 9,17 cm/s, suprotnostrujni tok gasa i tečnosti, 65 perforirane pločice vibracione mešalice u koloni unutrašnjeg prečnika 2,54 cm, udeo slobodne površine pločice 0,51 i prečnik otvora pločica 8 mm (Skala, 1980).

3.3.4.1. Uticaj prividne brzine strujanja tečnosti na koeficijent aksijalne disperzije

Na slici 3.27 su prikazane zavisnosti koeficijenta aksijalne disperzije od prividne brzine strujanja tečne faze za različite intenzitete vibracije i protoke gasa, kada u sistemu nije prisutna čvrsta faza. Koeficijent aksijalne disperzije se, generalno, povećava sa povećanjem prividne brzine strujanja tečne faze. Razlog, verovatno, leži u intenzivnijem stvaranju vrtloga oko perforiranih pločica zbog povećanja relativne brzine kretanja seta pločica u odnosu na tečnu fazu. Rezultat je u potpunosti saglasan sa ranijim zapažanjima (Parthasarathy i sar., 1984). Prisustvo gasne faze doprinosi povećanju prividne brzine strujanja tečne faze, i to pojavom kanalisanog strujanja i cirkulacije oko mehurova. Ovo je, takođe, u saglasnosti sa literaturnim podacima o jačem efektu prividne brzine strujanja tečne faze na koeficijent aksijalne disperzije u dvofaznom nego u jednofaznom toku (Baird i Rama Rao, 1988). Sa povećanjem prividne brzine strujanja tečne faze povećava se otpor strujanju tečnosti i gasa kroz otvore pločice, što favorizuje povratno mešanje. Pojačava se mlaz tečnosti kroz otvore, koji prodire u veći deo prostora između pločica, pojačavajući turbulenciju i mešanje tečne faze.

L cm/s LL cm/s		II om/a	Pe (metoda	momenata)	D_L , cm ² /s (metoda momenata)		
1, 011/8	O_L , CIII/S	$U_{\rm G},$ cm/s	$\varepsilon_{\rm s} = 0$	$\epsilon_{\rm s} = 5,61\%$	$\varepsilon_{\rm s} = 0$	$\epsilon_{s} = 5,61\%$	
2,00*	0,24*	0,27*	27,99	40,28	1,61	1,19	
2,00	0,24	0,82	18,91	20,04	2,55	2,60	
2,00	0,24	1,48	15,69	13,47	3,26	3,92	
2,00	0,60	0,27	50,56	44,39	2,26	2,74	
2,00	0,60	0,82	35,79	34,34	3,40	3,75	
2,00	0,60	1,48	33,69	30,56	3,87	4,57	
2,00	0,87	0,27	55,34	49,53	2,98	3,53	
2,00	0,87	0,82	41,64	39,27	4,25	4,80	
2,00*	0,87*	1,48*	28,92	41,11	6,47	4,94	
4,00	0,24	0,27	27,91	22,40	1,62	2,15	
4,00	0,24	0,82	23,28	23,88	2,06	2,10	
4,00	0,24	1,48	22,44	18,76	2,29	2,85	
4,00	0,60	0,27	55,93	43,79	2,04	2,76	
4,00	0,60	0,82	48,02	48,68	2,51	2,63	
4,00	0,60	1,48	42,82	38,57	3,02	3,64	
4,00	0,87	0,27	62,54	50,32	2,60	3,46	
4,00	0,87	0,82	50,98	48,95	3,34	3,83	
4,00	0,87	1,48	43,73	39,88	4,33	5,11	
7,05	0,24	0,27	17,33	10,29	2,65	4,72	
7,05	0,24	0,82	17,16	11,09	2,83	4,75	
7,05	0,24	1,48	18,24	11,96	2,89	4,63	
7,05	0,60	0,27	31,26	17,38	3,69	7,11	
7,05	0,60	0,82	33,44	21,35	3,70	6,23	
7,05	0,60	1,48	34,29	20,62	3,87	6,95	
7,05	0,87	0,27	38,81	21,55	4,22	8,58	
7,05	0,87	0,82	37,58	25,85	4,77	7,72	
7,05	0,87	1,48	42,17	28,12	4,50	7,67	
9,40	0,24	0,27	11,28	11,29	4,16	4,41	
9,40	0,24	0,82	16,26	13,34	3,06	3,86	
9,40	0,24	1,48	19,44	12,44	2,74	4,57	
9,40	0,60	0,27	26,43	17,58	4,47	7,06	
9,40	0,60	0,82	31,58	22,01	3,97	5,87	
9,40	0,60	1,48	36,27	23,44	3,68	6,19	
9,40	0,87	0,27	29,93	23,99	5,66	7,75	
9,40	0,87	0,82	41,77	31,40	4,21	6,37	
9,40	0,87	1,48	44,00	27,06	4,36	8,20	

Tabela 3.9 Vrednosti Pecletovog broja i koeficijenta aksijalne disperzije za KVM1 sa dvofaznim protivstrujnim proticanjem tečne i gasne faze, sa i bez čvrste faze

* Operativni uslovi pri kojima je, izuzetno, koeficijent aksijalne disperzije manji u prisustvu čvrste faze. U zatamnjenim ćelijama su ekstremne vrednosti

Interesantno je da se koeficijent aksijalne disperzije u sistemu bez proticanja gasa povećava sa povećanjem intenziteta vibracije, dok se u sistemu sa proticanjem gasa koeficijent aksijalne disperzije najpre smanjuje a zatim povećava sa povećanjem intenziteta vibracije (slika 3.27). Takođe, vrednosti koeficijenta aksijalne disperzije se povećavaju sa povećanjem prividne brzine strujanja gasa. To se objašnjava činjenicom da se kod većih protoka gasa i manjim intenzitetima vibracije ispod pločica zadržavaju krupniji mehurovi gasa u vidu grozdova, koji čine jednu fizičku barijeru proticanju unapred tečnoj fazi, zbog čega se povećava udeo povratnog toka. Kod većih intenziteta vibracije veći mehurovi gasa se usitne, homogenija je disperzija, razbija se barijera grozdova mehura i kontinualna faza protiče sa manje otpora, što smanjuje povratni tok.

U prisustvu čvrste faze, koja je ravnomerno raspoređena između pločica mešalice, mešanje postaje intenzivnije i koeficijent aksijalne disperzije raste (slika 3.28). O uticaju čvrste faze na aksijalnu disperziju u literaturi ne postoje podaci. Kuglice čvrste faze imaju skoro istu ulogu u mešanju kao i mehurovi gasa. Pojava recirkulacije i kanalisanja toka kontinualne faze oko čestica čvrste faze je po istom principu kao i oko mehurova gasa. Međusobni sudari i slučajno kretanje, pored usmerenog, doprinose mešanju tečne faze i dispergovanju mehura. Kako je razlika u gustini tečne i čvrste faze manja nego razlika gustine tečne i gasovite faze, manja je mogućnost nagomilavanja kuglica ispod pločice i stvaranja barijere.

Slika 3.27 Zavisnost koeficijenta aksijalne disperzije od prividne brzine strujanja tečne faze za dvofazni G-L sistem ($D_c = 2,54$ cm, $\varepsilon_s = 0$)

Slika 3.28 Zavisnost koeficijenta aksijalne disperzije od prividne brzine proticanja tečne faze za dvofazni tok u prisustvu čvrste faze ($D_c = 2,54$ cm, $\varepsilon_s = 5,61\%$)

Sa slike 3.29 se može diskutovati relativni porast koeficijenta aksijalne disperzije u dvofaznom (G-L ili L-S) i trofaznom (G-L-S) sistemu u odnosu na jednofazni sistem. Doprinos čvrste faze povećanju koeficijenta aksijalne disperzije tečne faze manji je od doprinosa gasne faze za male intenzitete vibracije. Povećanje koeficijenta aksijalne disperzije je najveće u trofaznom sistemu pri najvećem protoku gasne faze (slika 3.29a). Sa povećanjem intenziteta vibracije trend ostaje isti, samo što je doprinos povećanju koeficijenta aksijalne disperzije manji (slika 3.29b). Podaci koji odgovaraju intenzitetu vibracije I = 7,05 cm/s grupišu se prema sistemima: najveće povećanje koeficijenta aksijalne disperzije je u L-S, a zatim u trofaznom G-L-S, dok u dvofaznom G-L sistemu gotovo i da nema porasta (slika 3.29c). Ovo bi moglo ukazivati na činjenicu da su neuniformni efekti najveći kod L-S a najmanji kod G-L sistema. Sa daljim povećanjem intenziteta vibracije (I = 9,4 cm/s) koeficijenti aksijalne disperzije trofaznog (G-L-S) i dvofaznog (G-L) sistema se skoro izjednačuju sa koeficijentom aksijalne disperzije jednofaznog sistema; jedino koeficijent aksijalne disperzije za sistem L-S značajnije odstupa od vrednosti koeficijenta aksijalne disperzije jednofaznog sistema (slika 3.29d). Pojačano vibriranje seta pločica povećava uniformnost disperzije, što se odražava na približavanje vrednosti koeficijenata aksijalne disperzije.

Slika 3.29 Relativni odnos koeficijenata aksijalne disperzije višefaznog (G-L, L-S i G-L-S) sistema i jednofaznog tečnog sistema u funkciji od prividne brzine proticanja tečne faze ($\varepsilon_s = 5,61 \%$): a) I = 2 cm/s, b) I = 4 cm/s, c) I = 7,05 cm/s i d) I = 9,4 cm/s

3.3.4.2. Uticaj prividne brzine strujanja gasa na koeficijent aksijalne disperzije

Zavisnost koeficijenta aksijalne disperzije od prividne brzine strujanja gasa za KVM1 bez (G-L) i sa čvrstom fazom (G-L-S) prikazana je na slici 3.30. Za sistem G-L koeficijent aksijalne disperzije raste sa povećanjem prividne brzine strujanja gasa pri malom intenzitetu vibracije I = 2 cm/s (slika 3.30a) za sve prividne brzine strujanja tečne faze. Isto je i za I = 4 cm/s (slika 3.30b), ali je povećanje manje. Kod I = 7,05 cm/s (slika 3.30c), prividna brzina strujanja gasa skoro nema uticaj na koeficijent aksijalne disperzije, dok za I = 9,4 cm/s (slika 3.30d) koeficijent aksijalne disperzije, nezavisno od strujanja tečne faze, opada sa povećanjem prividne brzine strujanja gasa.

Kod gasne disperzije mešanje pri malom intenzitetu vibracije je određeno kretanjem mehura gasa. Prolaskom mehura izaziva se mešanje tečne faze, koje pojačava mešanje u aksijalnom pravcu. Pri velikim intenzitetima vibracije mehuri oslabe vrtloge, uvodeći poremećaj u njihove ose, pa se time smanjuje koeficijent aksijalne disperzije. Ovo smanjenje sa povećanjem prividne brzine strujanja gasa može biti i posledica zaustavljanja ili bar usporavanja cirkulacije tečnosti i nagomilavanjem mehura gasa ispod svake pločice pod dobro mešanim uslovima. Takav efekat je, ipak, manje verovatan u KVM zbog relativno velike otvorene površine pločica i većeg broja alternativnih puteva za cirkulaciju tečnosti. Do potpuno istog zaključka o uticaju prividne brzine strujanja gasa na koeficijent aksijalne disperzije došli su Kim i Baird (1976a).

U prisustvu čvrste faze, koeficijent aksijalne disperzije zavisi od operativnih uslova slično kao u dvofaznom sistemu. Za najmanji intenzitet vibracije (I = 2 cm/s, slika 3.30a) koeficijent aksijalne disperzije raste sa povećanjem prividne brzine strujanja gasne faze. Pri malo većem intenzitetu vibracije (I = 4 cm/s, slika 3.30b) koeficijent aksijalne disperzije raste kao kod dvofaznog, ali su vrednosti veće kod trofaznog sistema. Ako je mešanje intenzivnije (I = 7,05 cm/s, slika 3.30c) povećava se razlika vrednosti koeficijenta aksijalne disperzije dvofaznog i trofaznog sistema, pri istim operativnim uslovima. Pri tom, koeficijent aksijalne disperzije skoro da ne zavisi od prividne brzine strujanja gasa u dvofaznom G-L sistemu, a opada sa povećanjem prividne brzine strujanja gasa u trofaznom G-L-S sistemu. Razlog ovakvom ponašanju se može potražiti u stvaranju, kretanju i gašenju vrtloga tečne faze. Pri nižim intenzitetima vibracije u sistemu L-S mali je broj stvorenih vrtloga i veličina pojedinačnog vrtloga je mala, s obzirom da je prisutan relativno mali broj čvrstih čestica. Sa povećanjem intenziteta vibracije u L-S sistemu, sa konstantnim brojem čvrstih čestica, stvara se veći broj vrtloga, koji, zbog jačih udara prelaze duži put. Čvrste čestice se ponašaju kao elementi mešanja, koji prenose mehaničku energiju, koju su dobili udarom o pločice, na tečnu fazu i pojačavaju mešanje tečne faze. Međutim, u prisustvu gasovite faze, u sistemu se, pod uticajem jakog mešanja, stvara veliki broj manjih mehura interakcijom sa pločicama i čvrstim česticama, koji remete razvijenu cirkulaciju izazvanu pločicama i čvrstom fazom. Prolaskom, makar i malog mehura kroz vrtlog, smanjuje se dužina njegovog puta. U isto vreme, mehurovi se mogu ponašati kao elementi koji izazivaju daleko veći broj stvorenih vrtloga u svim pravcima, što neminovno dovodi do komplikovane interferencije vrtloga, skraćujući put i vreme života vrtloga, odnosno smanjujući aksijalno mešanje tečne faze.

Ipak, mora se konstatovati da je do promene intenziteta vibracije na slikama 3.30a do 3.30d došlo promenom amplitude i frekvencije. U ranijim istraživanjima (Baird i Rama Rao, 1988; Lounes i Thibault, 1996a, b) utvrđeno je da amplituda ima neznatan efekat na aksijalnu disperziju u uslovima jednofaznog proticanja, ali mnogo jači efekat u uslovima dvofaznog toka. Kako je rastojanje između pločica 2,54 cm, kada je amplituda 1 cm, jedna zona je relativno slabije izmešana, tzv. zona slabog mešanja (Stevens i Baird, 1990), jer je pločice ne zahvataju pri svom kretanju. Za h = 2,54 cm i A = 1 cm slabo mešani region iznosi oko 0,5 cm, tako da se sloj relativno male debljine meša kretanjem vrtloga. U drugom slučaju, kada je A = 2,35 cm, debljina sloja koju zahvati pločica pri svom kretanju između krajnjih položaja (2A) iznosi 4,7 cm. Ovde postoji zona preklapanja uticaja dve susedne pločice, i to za više od 2 cm (oko 1 cm sa svake strane pločice). Ta zona je dva puta jače mešana u odnosu na ostale slojeve u koloni, jer nju mešaju dve susedne pločice u svakom ciklusu. Optimalni raspored rastojanja pločica i vrednosti amplitude za eliminisanje oblasti slabog mešanja je $2 \cdot A$.

U skladu sa uticajem amplitude vibracije, pri datom rastojanju između pločica, na veličinu zona slabog i dobrog mešanja, moglo bi se očekivati da analiza podataka o koeficijentu aksijalne disperzije određenom pri različitim amplitudama (1 i 2,35 cm), može dovesti do pogrešnih zaključaka o uticaju operativnih uslova na koeficijent aksijalne disperzije. Radi sagledavanja uticaja amplitude vibracije, na slici 3.31 prikazana je zavisnost koeficijenta aksijalne disperzije od prividne brzine strujanja gasa u širem opsegu intenziteta vibracije (za različite amplitude i frekvencije). Procena je da se efekti amplitude i frekvencije na koeficijent aksijalne disperzije mogu predstaviti efektom intenziteta vibracije A·f. Nema bitnije promene oblika zavisnosti koeficijenta aksijalne disperzije od prividne brzine strujanja

gasa za I = 4 cm/s (gde je A = 1 cm) i I = 4,7 cm/s (gde je A = 2,35 cm). Zapaža se slabo povećanje koeficijenta aksijalne disperzije sa povećanjem prividne brzine strujanja gasa za male intenzitete vibracije, relativno je mali uticaj prividne brzine strujanja gasa na koeficijent aksijalne disperzije kod srednjih intenziteta vibracije i smanjenje koeficijenta aksijalne disperzije za visoke intenzitete vibracije, što je u potpunoj saglasnosti sa ranijim zaključcima.

Neobična je promena koeficijenta aksijalne disperzije za I = 0, (bez mehaničkog mešanja): najveća je vrednost za $U_G = 0$, minimum pri maloj prividnoj brzini gasne faze i porast sa povećanjem prividne brzine strujanja gasne faze. Tečna faza pri proticanju bez pokretanja pločica se loše raspodeli po poprečnom preseku kolone, stvori kanalisane tokove i time naruši u znatnoj meri idealno klipno proticanje. Mehuri narušavaju kanalisano proticanje što pomera strujanje tečne faze ka klipnom proticanju. Sa slabim do umerenim mešanjem u tečnoj fazi, poboljšana je raspodela tečne faze u poprečnom preseku i narušeno kanalisano strujanje, pa se vrednosti koeficijenta aksijalne disperzije smanjuju.

Slika 3.30 Zavisnost koeficijenta aksijalne disperzije od prividne brzine strujanja gasa u KVM1 za $\varepsilon_s = 0$ (G-L) i $\varepsilon_s = 5,61\%$ (G-L-S), a) A = 1 cm, f = 2 Hz, b) A = 1 cm, f = 4 Hz, c) A = 2,35 cm, f = 3 Hz, d) A = 2,35 cm, f = 4 Hz

Slika 3.31 Zavisnost koeficijenta aksijalne disperzije od prividne brzine strujanja gasa za $\varepsilon_s = 0$ (D_c = 2,54 cm, U_L = 0,6 cm/s, puni simboli A = 1 cm, ostali simboli A = 2,35 cm, i I = 0)

3.3.4.3. Uticaj intenziteta vibracije na koeficijent aksijalne disperzije

Na slikama 3.32 do 3.34 prikazane su zavisnosti koeficijenta aksijalne disperzije od intenziteta vibracije za različite prividne brzine proticanja tečne i gasne faze, kada je čvrsta faza odsutna (L i G-L) i prisutna (L-S i G-L-S). Najveće promene koeficijenta aksijalne disperzije sa povećanjem intenziteta vibracije su u jednofaznom i dvofaznom L-S sistemu; promene su utoliko veće, ukoliko je protok tečne faze veći. Koeficijent aksijalne disperzije raste sa povećanjem intenziteta vibracije skoro linearno pri manjoj brzini proticanja tečne faze (slika 3.32). Sa povećanjem prividne brzine strujanja tečnosti koeficijent aksijalne disperzije sporije raste pri manjim, a brže pri većim intenziteti vibracije (slike 3.33 i 3.34). Uvođenjem gasne faze u L i L-S sisteme intenzitet vibracije pokazuje manji uticaj na koeficijent aksijalne disperzije. Posmatrajući krive zavisnosti koeficijenta aksijalne disperzije od intenziteta vibracije za L-S i G-L-S u odnosu na L i G-L sisteme, respektivno, zapaža se isti oblik krive, s tim što su vrednosti koeficijenta aksijalne disperzije veće za sisteme sa čvrstom fazom u odnosu na sisteme bez čvrste faze.

Nagib zavisnosti koeficijenta aksijalne disperzije od intenziteta vibracije za sisteme bez čvrste faze se smanjuje sa povećanjem prividne brzine proticanja gasne faze. Ove krive se seku u uskom opsegu intenziteta vibracije (7 - 7,5 cm/s). To znači da koeficijent aksijalne disperzije ima istu vrednost za L i G-L sisteme, bez obzira na vrednost prividne brzine strujanja gasa (u opsegu 0 - 1,48 cm/s), kao i da se vrlo malo menja sa prividnom brzinom strujanja tečnosti (u opsegu 0,24 - 0,87 cm/s). Slično se ponašaju i L-S i G-L-S sistemi, mada nemaju tako jasan presek u jednoj tački. To je razumljivo za ovako složene sisteme, u kojima, pri različitim operativnim uslovima, deluju različiti mehanizmi stvaranja i nestajanja vrtloga.

Slika 3.32 Koeficijenti aksijalne disperzije u zavisnosti od intenziteta vibracije za $U_L = 0,24$ cm/s, $D_c = 2,54$ cm, $\varepsilon_s = 0$ (L i G-L) i $\varepsilon_s = 5,61\%$ (L-S i G-L-S)

Slika 3.33 Koeficijenti aksijalne disperzije u zavisnosti od intenziteta vibracije za $U_L = 0.6$ cm/s, $D_c = 2.54$ cm, $\varepsilon_s = 0$ (L i G-L) i $\varepsilon_s = 5.61\%$ (L-S i G-L-S)

Slika 3.34 Koeficijenti aksijalne disperzije u zavisnosti od intenziteta vibracije za $U_L = 0,87$ cm/s, $D_c = 2,54$ cm, $\varepsilon_s = 0$ (L i G-L) i $\varepsilon_s = 5,61\%$ (L-S i G-L-S)

Na slici 3.35 prikazano je relativno povećanje koeficijenta aksijalne disperzije za G-L (slika 3.35a), L-S (slika 3.35b) i G-L-S (slika 3.35c) sistem u odnosu na koeficijent aksijalne disperzije monofaznog (L) sistema. Prisutna gasna faza menja koeficijent aksijalne disperzije 0,8 do 4 puta (slika 3.35a), čvrsta faza 1,2 do 2,8 puta (slika 3.35b), a obe faze zajedno do 4,8 puta (slika 3.35c). Odnos koeficijenata aksijalne disperzije u sistemima sa aeracijom (G-L i G-L-S) se smanjuje sa povećanjem intenziteta vibracije, dok je u sistemu bez aeracije (L-S) ovaj odnos promenljiv i veći pri većim intenzitetima vibracije. Kod G-L sistema odnos koeficijenata aksijalne disperzije se približi jedinici za I > 7 cm/s.

3.3.5. KOEFICIJENT AKSIJALNE DISPERZIJE U KVM2

3.3.5.1. Uticaj intenziteta vibracije na koeficijent aksijalne disperzije

Sa povećanjem prečnika kolone povećava se koeficijent aksijalne disperzije. Svi eksperimenti u KVM prečnika 9,2 cm su izvedeni pri prividnoj brzini proticanja tečne faze 0,55 cm/s. Prividna brzina strujanja tečne faze nije menjana tokom eksperimenata jer su eksperimenti u KVM1 pokazali relativno mali uticaj prividne brzine strujanja tečnosti na aksijalnu disperziju.

U tabeli 3.10 date su vrednosti parametara tri modela: modela kaskade sa sekcijama bez povratnog toka (broj sekcija sa idealnim mešanjem N), modela kaskade sa povratnim tokom (α , N = *const.*) i disperzionog modela (Pecletov broj i koeficijent aksijalne disperzije) za slučaj proticanja tečne faze u KVM2 (sistem L). Opseg vrednosti N je 2,58 - 12,02, α se kreće u granicama 0,08 - 2,21, a D_L je 2,11 - 11,78.

Slika 3.35 Relativno uvećanje koeficijenta aksijalne disperzije dvofaznog G-L (slika a), dvofaznog L-S (slika b) i trofaznog G-L-S (slika c) sistema u odnosu na jednofazni L sistem u KVM; koeficijenti aksijalne disperzije: $D_L(I)$ - jednofaznog (L), $D_L(II)$ - dvofaznog (G-L), $D_L(III)$ - dvofaznog (L-S) i $D_L(IV)$ - trofaznog (G-L-S) sistema; $U_{L1} = 0,24$; $U_{L2} = 0,6$; $U_{L3} = 0,87$; $U_{G1} = 0,27$; $U_{G2} = 0,82$; $U_{G3} = 1,48$ cm/s.

A, cm	f, Hz	I, cm/s	$\mu_1' = t_{sr}, \min$	N	α	Pe	$D_L, cm^2/s$
0	0	0	2,96	5,55	0,76	12,44	4,59
1,00	2,00	2,00	2,94	12,02	0,08	25,46	2,11
1,00	3,00	3,00	2,86	10,36	0,18	22,13	2,47
1,00	4,00	4,00	2,82	8,48	0,33	18,34	3,09
2,35	2,00	4,70	3,09	4,03	1,24	9,35	6,73
2,35	2,50	5,88	3,03	3,30	1,62	7,86	8,63
2,35	3,00	7,05	2,99	3,09	1,77	7,42	9,31
2,35	3,50	8,23	3,06	2,73	2,07	6,68	11,15
2,35	4,00	9,40	3,15	2,58	2,21	6,37	11,78
2,35	4,50	10,58	3,09	2,60	2,19	6,41	11,66

Tabela 3.10 Parametri modela dobijeni metodom momenata za protočni L sistem u KVM2

U zatamnjenim ćelijama su ekstremne vrednosti

Na slici 3.36 prikazane su zavisnosti parametara modela od frekvencije za dve različite amplitude vibracije. Očigledno je da su promene parametara tri korišćena modela za različite amplitude vibracije slične, samo se vrednosti razlikuju. Broj sekcija sa idealnim mešanjem opada sa povećanjem frekvencije i veći je pri manjoj amplitudi. Koeficijent povratnog toka sekcijskog modela se povećava sa povećanjem frekvencije a veći je kada je amplituda vibracije veća. Koeficijent aksijalne disperzije ima manje vrednosti za manju amplitudu vibracije i raste sa povećanjem frekvencije. Kada se izraze u funkciji intenziteta vibracije (slika 3.37), broj sekcija sa idealnim mešanjem pokazuje maksimum a koeficijent povratnog toka i koeficijent aksijalne disperzije minimume za I = 2 - 3 cm/s. To znači da mali intenzitet vibracije pomera strujanje ka klipnom proticanju, dok veći intenziteti vibracije ili mirovanje pločica povećavaju aksijalnu disperziju tečne faze.

Slika 3.36 Broj sekcija sa idealnim mešanjem, koeficijent povratnog toka i koeficijent aksijalne disperzije u zavisnosti od frekvencije za različite amplitude ($D_c = 9,2$ cm; L sistem; N: A = 1 cm $-\bullet$, A = 2,35 cm -o; α : A = 1 cm $-\bullet$, A = 2,35 cm -v; D_L: A = 1 cm $-\bullet$, A = 2,35 cm -v)

U tabeli 3.11 date su vrednosti parametara tri modela za suprotnostrujno proticanje tečne i gasne faze, G-L sistem, u KVM2, a na slikama 3.38 do 3.40 su predstavljene zavisnosti tih parametara od intenziteta vibracije.

U dvofaznom G-L sistemu, parametar N modela kaskade sekcija sa idealnim mešanjem bez povratnog toka u KVM2 je skoro konstantan (oko vrednosti 2), tj. na njegovu vrednost skoro da ne utiču prividna brzina proticanja gasne faze i intenzitet vibracije (slika 3.38).

Kada vibraciona mešalica miruje, koeficijent povratnog toka se značajno poveća (od 0,76 do 4,97) sa povećanjem prividne brzine strujanja gasne faze. Dok koeficijent povratnog toka za L, prolazeći kroz minimum, raste sa povećanjem intenziteta vibracije, dotle za G-L sistem, uglavnom, opada. Iznad vrednosti intenziteta vibracije oko 9 cm/s vrednosti za koeficijent povratnog toka se grupišu oko 2,5 bez obzira na vrednost prividne brzine strujanja gasne faze (slika 3.39).

Koeficijent aksijalne disperzije u KVM2 se poveća (od 4,59 na 62,20 cm²/s) sa povećanjem prividne brzine strujanja gasa za I = 0, a u KVM1, pod istim uslovima, koeficijent aksijalne disperzije se smanji (od 9,99 do 2,70 cm²/s), kao što se može videti na slikama 3.40 i 3.41, respektivno. Veći prečnik KVM2 omogućava, pri istim prividnim brzinama strujanja gasne i tečne faze, veću aksijalnu disperziju, povećanim radijalnim pomeranjem tečne faze pri kretanju mehura naviše, što omogućava intenzivnije stvaranje vrtloga i duži put koji vrtlog prelazi pre nego što se "ugasi". Kod KVM1, zbog malog prečnika kolone, radijalno pomeranje elemenata fluida tečne faze nije izraženo, povećano je kanalisanje tečne faze kada mešalica miruje, vrtlozi se "gase" s bočnih strana i aksijalna disperzija se smanjuje. Sa povećanjem intenziteta vibracije koeficijent aksijalne disperzije, pri različitim protocima gasne faze, približava se vrednostima koeficijenta aksijalne disperzije tečne faze kod obe KVM: za KVM2 koeficijent aksijalne disperzije za I > 8 cm/s je oko 15 cm²/s, pri čemu su vrednosti koeficijenta aksijalne disperzije za I = 5 cm/s je oko 4 cm²/s (slika 3.41).

I, cm/s	U _G . cm/s	$\mu_1' = t_{sr}, \min$	Ν	α	Pe	$D_L, cm^2/s$
0	0,29	2,84	1,28	4,97	0,79	62,20
0	0,84	2,42	1,86	3,26	2,24	21,81
0	1,46	3,01	1,79	3,41	2,07	24,14
0	1,88	3,16	1,63	3,80	1,68	30,53
2,00	0,29	2,60	1,72	3,57	1,91	26,12
2,00	0,84	2,65	1,50	4,18	1,35	37,67
2,00	1,46	2,50	1,79	3,41	2,07	25,63
2,00	1,88	2,46	1,90	3,18	2,33	23,16
3,00	0,29	2,62	2,08	2,86	2,74	18,10
3,00	0,84	2,64	1,69	3,65	1,82	28,29
3,00	1,46	2,50	1,92	3,15	2,37	22,15
3,00	1,88	2,60	1,74	3,52	1,95	27,79
4,00	0,29	2,78	2,22	2,65	3,07	16,19
4,00	0,84	2,63	1,83	3,33	2,15	23,80
4,00	1,46	2,51	1,90	3,19	2,32	22,70
4,00	1,88	2,45	1,86	3,26	2,24	24,48
4,70	0,29	2,70	2,51	2,29	3,69	13,28
4,70	0,84	2,64	1,80	3,39	2,09	24,89
4,70	1,46	2,68	1,56	3,99	1,51	34,73
4,70	1,88	2,49	1,64	3,78	1,70	32,11
5,88	0,29	2,73	2,72	2,08	4,14	11,88
5,88	0,84	2,67	2,14	2,77	2,87	18,09
5,88	1,46	2,69	1,74	3,53	1,94	27,41
5,88	1,88	2,45	1,88	3,23	2,27	24,35
7,05	0,29	2,73	2,81	1,99	4,35	11,59
7,05	0,84	2,60	2,22	2,65	3,06	17,25
7,05	1,46	2,59	2,15	2,75	2,90	18,93
7,05	1,88	2,37	2,01	2,98	2,58	21,91
8,23	0,29	2,70	2,53	2,27	3,73	13,64
8,23	0,84	2,39	2,83	1,98	4,38	12,18
8,23	1,46	2,54	2,37	2,45	3,39	16,67
8,23	1,88	2,46	2,12	2,81	2,82	20,87
9,40	0,29	2,68	2,75	2,05	4,21	12,24
9,40	0,84	2,64	2,59	2,20	3,87	13,39
9,40	1,46	2,46	2,31	2,53	3,25	17,74
9,40	1,88	2,44	2,31	2,53	3,25	17,94
10,58	0,29	2,72	2,42	2,40	3,49	14,94
10,58	0,84	2,66	2,54	2,26	3,75	14,40
10,58	1,46	2,37	2,29	2,56	3,21	18,22
10,58	1,88	2,29	2,43	2,38	3,53	17,31

Tabela 3.11 Parametri modela dobijeni metodom momenata za suprotnostrujni dvofazni G-L sistem u KVM2

U zatamnjenim ćelijama su ekstremne vrednosti

Parthasarathy i sar. (1984) su objavili podatke o koeficijentu aksijalne disperzije u koloni prečnika 9,3 cm, koji se kreće u opsegu 13 - 54 cm²/s, što je u saglasnosti sa podacima dobijenim u ovom radu. Koeficijent aksijalne disperzije u koloni prečnika 10,2 cm nalazi se u opsegu 2 - 100 cm²/s (Lounes i Thibault, 1996a, b), a u koloni prečnika 7,62 cm od 2 - 60 cm²/s (Holmes i sar., 1991).

Slika 3.38 Zavisnost broja sekcija sa idealnim mešanjem od intenziteta vibracije u KVM2 za L i G-L sistem ($U_L = 0.55$ cm/s)

Slika 3.39 Zavisnost koeficijenta povratnog toka od intenziteta vibracije u KVM2 za L i G-L sistem ($U_L = 0,55$ cm/s)

Slika 3.40 Zavisnost koeficijenta aksijalne disperzije od intenziteta vibracije u KVM2 za L i G-L sistem ($U_L = 0.55$ cm/s)

Slika 3.41 Zavisnost koeficijenta aksijalne disperzije od intenziteta vibracije u KVM1 za L i G-L sistem ($U_L = 0.6$ cm/s)

U tabeli 3.12 date su vrednosti parametara modela za L-S sitem u KVM2. Sa povećanjem udela čvrste faze koeficijent aksijalne disperzije se povećava. Pri većem udelu čvrste faze stvara se veliki otpor kretanju vibracione mešalice, jer se brojne kuglice u svakoj sekciji između pločica ponašaju kao klip koji treba da savlada otpor kretanju kroz tečnu fazu. Zbog male snage pogonskog elektromotora nije mogao da se ostvari intenzitet vibracije I > 8 cm/s u L-S sistemu ($\varepsilon_s = 8,43 \%$) u KVM2. U tabeli 3.13 date su vrednosti parametara modela za trofazni G-L-S sitem u KVM2.

I cm/s	$\varepsilon_{\rm s} = 2,86 \%$			$\epsilon_{\rm s} = 5,65 \%$			$\epsilon_{\rm s} = 8,43 \%$		
1, 011/5	Ν	α	$D_L, cm^2/s$	Ν	α	$D_L, cm^2/s$	Ν	α	$D_L, cm^2/s$
0	7,69	0,41	3,34	6,38	0,60	4,47	8,37	0,34	3,39
2,00	6,13	0,64	4,23	6,10	0,65	4,69	6,93	0,51	4,16
3,00	7,54	0,43	3,42	7,95	0,38	3,48	8,35	0,34	3,40
4,00	6,50	0,58	3,92	7,98	0,38	3,50	8,80	0,30	3,21
4,70	2,85	1,96	10,67	3,36	1,58	9,36	2,43	2,38	15,08
5,88	2,80	2,00	10,80	2,74	2,05	12,28	2,20	2,68	17,59
7,05	2,91	1,91	10,38	2,53	2,27	13,81	1,98	3,04	21,16
8,23	2,68	2,11	11,50	2,42	2,40	14,91	-	-	-
9,40	2,54	2,25	12,39	2,36	2,47	15,46	_	-	-
10,58	2,58	2,21	13,00	2,24	2,63	16,86	-	-	-

Tabela 3.12 Vrednosti parametara modela za L-S sistem u KVM2

U zatamnjenim ćelijama su ekstremne vrednosti

Sa uvođenjem čvrste faze u sisteme L i G-L, vrednosti koeficijenta aksijalne disperzije grupišu se iznad intenziteta vibracije 5 cm/s za sve udele čvrste faze (slika 3.42 do 3.44).

Slika 3.42 Zavisnost koeficijenta aksijalne disperzije od intenziteta vibracije u KVM2 za L-S i G-L-S sistem ($\epsilon_s = 2,86 \%$, U_L = 0,55 cm/s)
I,	U _G ,	$\varepsilon_s = 2,86 \%$			$\epsilon_{s} = 5,65 \%$			$\epsilon_{s} = 8,43 \%$		
cm/s	cm/s	Ν	α	D_L , cm ² /s	Ν	α	$D_L, cm^2/s$	Ν	α	$D_L, cm^2/s$
0	0,29	1,68	3,68	26,19	2,25	2,62	16,84	2,66	2,13	13,41
0	0,84	1,39	4,55	45,72	1,73	3,55	27,64	1,53	4,08	38,77
0	1,46	1,73	3,54	27,47	1,83	3,33	25,51	1,77	3,45	28,30
0	1,88	1,83	3,32	24,57	2,06	2,90	21,42	1,89	3,20	25,73
2,00	0,29	1,92	3,14	19,95	1,74	3,52	26,89	3,09	1,77	11,12
2,00	0,84	1,47	4,25	37,90	1,65	3,75	31,31	2,38	2,44	16,41
2,00	1,46	1,57	3,97	33,20	1,85	3,28	25,35	2,26	2,60	18,45
2,00	1,88	1,63	3,79	31,31	1,75	3,50	29,63	2,36	2,47	18,05
3,00	0,29	1,84	3,30	21,70	2,27	2,59	16,66	3,46	1,52	9,49
3,00	0,84	1,60	3,89	30,80	1,72	3,57	28,57	2,28	2,57	17,60
3,00	1,46	1,60	3,89	31,86	1,88	3,22	24,54	2,11	2,81	20,76
3,00	1,88	1,66	3,73	30,74	2,10	2,84	20,96	2,37	2,46	17,80
4,00	0,29	1,95	3,09	19,82	2,83	1,97	11,99	3,58	1,46	9,12
4,00	0,84	1,55	4,02	33,15	1,94	3,10	22,49	2,31	2,53	17,25
4,00	1,46	1,55	4,02	34,86	1,54	4,05	38,72	1,80	3,39	28,03
4,00	1,88	1,62	3,81	32,36	1,64	3,77	34,21	1,78	3,44	29,96
4,70	0,29	2,29	2,56	15,10	2,90	1,92	11,78	2,50	2,30	15,19
4,70	0,84	2,06	2,90	19,28	2,92	1,90	11,96	2,68	2,11	14,24
4,70	1,46	1,96	3,08	21,98	3,15	1,72	11,07	2,79	2,01	14,09
4,70	1,88	1,91	3,18	23,80	2,86	1,95	13,13	2,79	2,01	14,42
5,88	0,29	2,62	2,17	12,27	2,57	2,23	14,06	2,34	2,49	16,85
5,88	0,84	2,33	2,51	15,95	2,92	1,90	12,30	2,65	2,14	14,65
5,88	1,46	1,92	3,15	23,19	2,92	1,90	12,55	2,54	2,26	16,31
5,88	1,88	1,98	3,03	22,40	2,93	1,89	12,83	2,35	2,48	19,14
7,05	0,29	2,31	2,53	15,16	2,58	2,22	14,28	2,34	2,49	17,04
7,05	0,84	2,65	2,14	13,42	3,00	1,83	11,82	2,70	2,10	14,67
7,05	1,46	2,15	2,75	19,29	2,85	1,96	13,40	3,21	1,68	11,99
7,05	1,88	2,12	2,80	20,51	2,84	1,97	13,71	2,54	2,25	17,02
8,23	0,29	2,66	2,13	12,24	2,44	2,37	15,51	2,27	2,59	18,03
8,23	0,84	2,59	2,20	14,13	2,64	2,15	14,47	2,51	2,29	16,48
8,23	1,46	2,56	2,23	15,11	2,74	2,06	14,26	2,84	1,96	14,63
8,23	1,88	2,35	2,48	17,76	2,88	1,93	13,90	2,68	2,11	16,10
9,40	0,29	2,13	2,79	17,37	2,53	2,27	14,84	2,27	2,59	18,19
9,40	0,84	2,49	2,32	15,34	2,68	2,11	14,23	2,52	2,28	16,57
9,40	1,46	2,36	2,46	17,35	2,67	2,13	15,31	2,90	1,92	14,32
9,40	1,88	2,33	2,51	18,47	2,94	1,88	13,66	2,45	2,36	18,92
10,60	0,29	2,24	2,62	16,04	2,38	2,44	16,34	2,17	2,73	19,70
10,60	0,84	2,19	2,69	19,24	2,20	2,68	19,82	2,49	2,31	17,08
10,60	1,46	2,33	2,50	18,12	2,68	2,11	15,54	2,80	2,00	15,32
10,60	1,88	2,49	2,31	16,67	2,98	1,85	13,97	2,69	2,10	16,80

Tabela 3.13 Vrednosti parametara modela za G-L-S sistem u KVM2

U zatamnjenim ćelijama su ekstremne vrednosti

Slika 3.43 Zavisnost koeficijenta aksijalne disperzije od intenziteta vibracije u KVM2 za L-S i G-L-S sistem ($\varepsilon_s = 5,65 \%$, U_L = 0,55 cm/s)

Slika 3.44 Zavisnost koeficijenta aksijalne disperzije od intenziteta vibracije u KVM2 za L-S i G-L-S sistem ($\varepsilon_s = 8,43 \%$, U_L = 0,55 cm/s)

Slike 3.45 i 3.46 omogućavaju procenu doprinosa čvrste i gasne faze povećanju koeficijenta aksijalne disperzije u L-S, G-L i G-L-S sistemima u odnosu na jednofazni sistem. Upadljiva je razlika uticaja gasne i čvrste faze na koeficijent aksijalne disperzije u odnosu na tečni sistem. Za intenzitet vibracije manje od 6 cm/s mnogo je veći uticaj gasne faze, sa izraženim maksimumima pri I \approx 2 cm/s za veće brzine proticanja gasne faze. Najveće pojedinačno povećanje koeficijenta aksijalne disperzije je oko 18 puta pri U_G = 0,8 cm/s. Za intenzitet vibracije iznad 6 cm/s gasna i čvrsta faza pojedinačno manje utiču na povećanje koeficijenta aksijalne disperzije - do 3 puta. Vrednosti koeficijenata aksijalne disperzije dvofaznih i jednofaznog sistema se približuju za I > 8 cm/s, (relativni odnos oko 1,5). Iz zavisnosti relativnog odnosa koeficijenata aksijalne disperzije trofaznog i monofaznog sistema D_L(IV)/D_L(I) (slika 3.46) od intenziteta vibracije, zapaža se istovetno ponašanje, s tim

što je za različite operativne uslove u KVM2 (različite kombinacije prividne brzine strujanja gasa i udela čvrste faze) rasipanje podataka do I = 5 cm/s veće.

Slika 3.45 Zavisnost odnosa koeficijenata aksijalne disperzije dvofaznog (G-L i L-S) i jednofaznog L sistema u KVM2 ($D_L(I)$, $D_L(II)$ i $D_L(III)$ su koeficijenti aksijalne disperzije jednofaznog (L), i dvofaznog (G-L i L-S) sistema, respektivno)

Slika 3.46 Zavisnost odnosa koeficijenata aksijalne disperzije trofaznog (G-L-S) i jednofaznog L sistema u KVM2 ($D_L(I)$, i $D_L(IV)$ su koeficijenti aksijalne disperzije jednofaznog (L), i trofaznog (G-L-S) sistema, respektivno; $U_{G1} = 0,29$ cm/s, $U_{G2} = 0,84$ cm/s, $U_{G3} = 1,46$ cm/s, $U_{G4} = 1,88$ cm/s, $\varepsilon_{S1} = 2,86$ %, $\varepsilon_{S2} = 5,65$ %, $\varepsilon_{S3} = 8,43$ %)

3.3.5.2. Uticaj udela čvrste faze na koeficijent aksijalne disperzije

Zavisnost koeficijenta aksijalne disperzije od udela čvrste faze za sistem L-S prikazana je na slici 3.47, a za sistem G-L-S, pri različitim prividnim brzinama strujanja gasa, na slikama 3.48 - 3.51. Sa povećanjem udela čvrste faze u sistem L-S, pri malom intenzitetu vibracije, koeficijent aksijalne disperzije u KVM2 je skoro konstantan, dok za I > 4 cm/s postepeno raste (slika 3.47). U trofaznom sistemu koeficijent aksijalne disperzije se smanjuje

sa povećanjem intenziteta vibracije nezavisno od prividnih brzina strujanja gasne faze (slike 3.48 do 3.51). Koeficijent aksijalne disperzije u trofaznom sistemu manje zavisi od udela čvrste faze pri višem intenzitetu vibracije, dok za L-S sisteme to važi za male intenzitete vibracije.

Na slikama 3.52 i 3.53 prikazane su zavisnosti koeficijenta aksijalne disperzije od udela čvrste faze u KVM2 za različite operativne uslove. Sa slike 3.52 vidi se da pri malom intenzitetu vibracije (I = 0 - 4 cm/s; A = 1 cm, f = 0 - 4 Hz) udeo čvrste faze ne utiče na koeficijent aksijalne disperzije u sistemima L-S. Sa povećanjem intenziteta vibracije vrednosti koeficijenta aksijalne disperzije za različite sisteme L-S i G-L-S se približavaju.

Slika 3.47 Zavisnost koeficijenta aksijalne disperzije od udela čvrste faze u KVM2 za sistem L-S ($U_{L} = 0.55$ cm/s, puni simboli A = 1 cm)

Slika 3.48 Zavisnost koeficijenta aksijalne disperzije od udela čvrste faze u KVM2 za sistem G-L-S ($U_L = 0.55$ cm/s, $U_G = 0.29$ cm/s, puni simboli A = 1 cm)

Slika 3.49 Zavisnost koeficijenta aksijalne disperzije od udela čvrste faze u KVM2 za sistem G-L-S ($U_L = 0.55$ cm/s, $U_G = 0.84$ cm/s, puni simboli A = 1 cm)

Slika 3.50 Zavisnost koeficijenta aksijalne disperzije od udela čvrste faze u KVM2 za sistem G-L-S ($U_L = 0.55$ cm/s, $U_G = 1.46$ cm/s, puni simboli A = 1 cm)

Slika 3.51 Zavisnost koeficijenta aksijalne disperzije od udela čvrste faze u KVM2 za sistem G-L-S ($U_L = 0,55$ cm/s, $U_G = 1,88$ cm/s, puni simboli A = 1 cm)

Slika 3.52 Zavisnost koeficijenta aksijalne disperzije od udela čvrste faze u KVM2 (I = 0 - 4 cm/s, A = 1 cm, f = 0 - 4 Hz, $U_G = 0 - 1,88$ cm/s)

Slika 3.53 Zavisnost koeficijenta aksijalne disperzije od udela čvrste faze u KVM2 (I = 4,7 - 10,58 cm/s, A = 2,35 cm, f = 2 - 4,5 Hz, $U_G = 0 - 1,88$ cm/s)

3.3.5.3. Uticaj prividne brzine strujanja gasa na koeficijent aksijalne disperzije

Zavisnost koeficijenta aksijalne disperzije od prividne brzine strujanja gasne faze u KVM2 prikazana je na slici 3.54 za G-L, a na slikama 3.55 do 3.57 za G-L-S sistem pri različitim udelima čvrste faze. U G-L sistemu pri I = 0, sa povećanjem prividne brzine strujanja gasa koeficijent aksijalne disperzije pokazuje maksimum za $U_G = 0.3$ cm/s (slika

3.54), dok u G-L-S sistemu za I = 0 taj maksimum se pomera ka većoj vrednosti prividne brzine strujanja gasa (oko 0,8 cm/s). Koeficijent aksijalne disperzije prolazi kroz blagi maksimum za intenzitete vibracije od 2 do 4 cm/s (A = 1 cm) i linearno se povećava za I > 4 cm/s (A = 2,35 cm) sa povećanjem prividne brzine strujanja gasne faze (slika 3.55). Pri većim udelima čvrste faze u KVM2 u G-L-S sistemu i I > 4 cm/s (A = 2,35 cm) koeficijent aksijalne disperzije se malo povećava (slika 3.55) ili se ne menja (slike 3.56 i 3.57).

Slika 3.54 Zavisnost koeficijenta aksijalne disperzije od prividne brzine strujanja gasne faze u KVM2 za G-L sistem ($\varepsilon_s = 0$, U_L = 0,55 cm/s, puni simboli A = 1 cm)

Slika 3.55 Zavisnost koeficijenta aksijalne disperzije od prividne brzine strujanja gasne faze u KVM2 za G-L-S sistem ($\varepsilon_s = 2,86 \%$, U_L = 0,55 cm/s, puni simboli A = 1 cm)

Slika 3.56 Zavisnost koeficijenta aksijalne disperzije od prividne brzine strujanja gasne faze u KVM2 za G-L-S sistem ($\epsilon_s = 5,65 \%$, U_L = 0,55 cm/s, puni simboli A = 1 cm)

Slika 3.57 Zavisnost koeficijenta aksijalne disperzije od prividne brzine strujanja gasne faze u KVM2 za G-L-S sistem ($\epsilon_s = 8,43 \%$, U_L = 0,55 cm/s, puni simboli A = 1 cm)

Da prisustvo čvrste faze ima veći uticaj na zavisnost koeficijenta aksijalne disperzije od prividne brzine strujanja gasa pri malim intenzitetima vibracije pokazuje i slika 3.58, dok je taj uticaj sve manji sa povećanjem intenziteta vibracije (slika 3.59).

Slika 3.58 Zavisnost koeficijenta aksijalne disperzije od prividne brzine strujanja gasa u KVM2 (I = 0 - 4 cm/s, A = 1 cm, f = 0 - 4 Hz, $U_G = 0 - 1,88$ cm/s, $U_L = 0,55$ cm/s)

Slika 3.59 Zavisnost koeficijenta aksijalne disperzije od prividne brzine strujanja gasa u KVM2 (I = 4,7 - 10,6 cm/s, A = 2,35 cm, f = 2 - 4,5 Hz, $U_G = 0 - 1,88$ cm/s, $U_L = 0,55$ cm/s)

3.3.6. POREĐENJE SA DRUGIM REAKTORIMA

Na slikama 3.60 do 3.62 prikazane su oblasti u kojima se nalaze vrednosti koeficijenata aksijalne disperzije (za L, G-L, L-S i G-L-S sisteme) za KVM1 i KVM2, zajedno sa literaturnim podacima za KVM, barbotažne i kolone sa punjenjem slične geometrije. Operativni uslovi i dimenzije kolona prikazani su u tabeli 3.14. Koeficijent aksijalne disperzije za KVM1 se, u jednom delu operativnih uslova, poklapa sa literaturnim vrednostima za KVM3. Primećuje se veoma uzani opseg vrednosti koeficijenta aksijalne disperzije za kolonu sa punjenjem PK1 i barbotažne kolone BK1, BK2 i BK3. Koeficijent aksijalne disperzije za KVM2 (slika 3.60) ima slične vrednosti sa koeficijentom aksijalne disperzije za KVM4, iako se razlikuju operativni uslovi (prividna brzina strujanja tečne faze). Takođe, dobro je slaganje vrednosti koeficijenta aksijalne disperzije za KVM2 i KVM4 u istom opsegu intenziteta vibracije. U zavisnosti od prividne brzine strujanja gasne faze, koeficijent aksijalne disperzije za KVM2 odgovara vrednostima za KVM5 u delu istih operativnih uslova. Kolona sa punjenjem PK2, sličnog prečnika kao KVM2, ima manje vrednosti koeficijenta aksijalne disperzije, dok se kod barbotažne kolone BK4, prečnika sličnog sa KVM2, primećuju visoke vrednosti koeficijenta aksijalne disperzije, na koje, verovatno, utuče izrazita radijalna neuniformnost zbog velikog prečnika kolone.

Generalno, kod barbotažnih i kolona sa punjenjem, mala je mogućnost "upravljanja" i "podešavanja" koeficijenta aksijalne disperzije promenom operativnih uslova, dok se kod KVM oni mogu menjati, da bi se povećala efikasnost rada reaktora. Izvođenjem reakcija nultog, prvog ili n-tog reda, efikasnost rada reaktora se povećava smanjenjem mešanja elemenata tečne faze različite starosti, pa operativni uslovi mogu biti izabrani tako da se smanji koeficijent aksijalne disperzije i strujanje približi idealnom klipnom. Naprotiv, kod izvođenja reakcija mikrobnih fermentacija i autokatalizovanih reakcija, mešanje elemenata tečne faze različite starosti je potrebno za povećanje efikasnosti rada reaktora, pa se operativni uslovi mogu podesiti tako da se poveća koeficijent aksijalne disperzije.

Kolona	D, cm	L, cm	n _p	Punjenje	Referenca
KVM1 ¹	2,54	207	65	-	Ovaj rad
KVM2 ¹	9,2	105	15	-	Ovaj rad
KVM3 ²	2,54	214	65	-	Skala, 1980
KVM4 ²	9,3	100	10	-	Parthasarathy i sar., 1984
KVM5 ²	10,2	126	18	-	Lounes i sar., 1996a
PK1	5,1	152	-	Rašigovi prstenovi, 0,635 cm	Michell i Furzer, 1972
PK2	10,2	366	-	Rašigovi prstenovi, 1,27 cm	Sater i Levenspiel, 1966
BK1	1,97	120	-	-	Cova, 1974
BK2	6,6	200	-	-	Kato i Nishiwaki, 1972
BK3	4	20	-	-	Ohki i Inoue, 1970
BK4 ³	9,2	105	-	-	Baird i Rice, 1975

Tabela 3.14 Geometrijske karakteristike reaktora tipa KVM, BK i PK, koje su korišćene za poređenje sa KVM1 i KVM2 na slikama 3.60 do 3.62

¹Ostali operativni uslovi i geometrija su dati u tabeli 2.2; ² operativni uslovi i geometrija su dati u tabeli 2.1; ³Na osnovu modela izotropne turbulencije

Slika 3.60 Oblasti vrednosti koeficijenta aksijalne disperzije za KVM i PK slične geometrije

Slika 3.61 Oblasti vrednosti koeficijenta aksijalne disperzije za KVM i BK slične geometrije

Slika 3.62 Oblasti vrednosti koeficijenta aksijalne disperzije za KVM slične geometrije

3.3.7. KORELACIJE ZA KOEFICIJENT AKSIJALNE DISPERZIJE

Prethodnim analizama vrednosti koeficijenta aksijalne disperzije u KVM1 za sisteme L, G-L, L-S i G-L-S utvrđeno je da on zavisi od operativnih uslova. Pretpostavljajući da se ova zavisnost može prikazati multifaktorijalnom stepenom funkcijom, metodom najmanjih kvadrata, dobijene su empirijske korelacije koje povezuju koeficijent aksijalne disperzije sa operativnim uslovima (tabela 3.15).

Sistem	Korelacija		Odstupanje, %
L	$D_{L} = 0.489 \cdot (A \cdot f)^{1.11} \cdot U_{L}^{0.31}$	(3.80)	±15,48
G-L	$D_{L} = 3.37 \cdot (A \cdot f)^{0.17} \cdot U_{L}^{0.38} \cdot U_{G}^{0.07}$	(3.81)	±20,6
L-S	$D_{L} = 1,26 \cdot (A \cdot f)^{1,42} \cdot U_{L}^{0,51} \cdot \varepsilon_{S}^{0,23}$	(3.82)	±32,5
G-L-S	$D_{L} = 1,38 \cdot (A \cdot f)^{0,47} \cdot U_{L}^{0,42} \cdot U_{G}^{0,03} \cdot \varepsilon_{S}^{-0,26}$	(3.83)	±28,5

Tabela 3.15 Korelacije za koeficijent aksijalne disperzije za KVM1

Da bi korelacije za izračunavanje koeficijenta aksijalne disperzije mogle da se koriste i pri povećanju razmere kolone (u opsegu prečnika od 2,54 do 9,2 cm), uvodi se prečnik KVM kao promenljiva veličina u multifaktorijalnu stepenu funkciju. Dobijene korelacije, sa vrednostima prosečnih odstupanja izračunatih i eksperimentalnih vrednosti koeficijenta aksijalne disperzije, prikazane su u tabeli 3.16. Na slikama 3.63 do 3.66 prikazane su zavisnosti izračunatih od eksperimentalnih vrednosti koeficijenata aksijalne disperzije za operativne uslove i geometriju u KVM1 i KVM2.

Sistem	Korelacija		Odstupanje, %
L	$D_{L} = 0,284 \cdot (A \cdot f)^{1,05} \cdot U_{L}^{0,3} \cdot D_{C}^{0,7}$ (3.84)		±19,3
G-L	$D_{L} = 2,03 \cdot (A \cdot f)^{-0,32} \cdot U_{L}^{0,42} \cdot U_{G}^{0,2} \cdot D_{C}^{1,39}$	(3.85)	±28,6
L-S	$D_{L} = 4,56 \cdot (A \cdot f)^{1,03} \cdot U_{L}^{0,46} \cdot \varepsilon_{S}^{0,53} \cdot D_{C}^{0,38}$	(3.86)	±44,6
G-L-S	$D_{L} = 1.4 \cdot (A \cdot f)^{-0.34} \cdot U_{L}^{0.32} \cdot U_{G}^{0.15} \cdot \varepsilon_{S}^{-0.3} \cdot D_{C}^{1.09}$	(3.87)	±38,3

Tabela 3.16 Korelacije za koeficijent aksijalne disperzije za KVM1 i KVM2

Slika 3.63 Poređenje računskih i eksperimentalnih vrednosti koeficijenata aksijalne disperzije u KVM1 i KVM2 za L sistem

Slika 3.64 Poređenje računskih i eksperimentalnih vrednosti koeficijenata aksijalne disperzije u KVM1 i KVM2 za G-L sistem

Slika 3.65 Poređenje računskih i eksperimentalnih vrednosti koeficijenata aksijalne disperzije u KVM1 i KVM2 za L-S sistem

Slika 3.66 Poređenje računskih i eksperimentalnih vrednosti koeficijenata aksijalne disperzije u KVM1 i KVM2 za G-L-S sistem

3.4. ZAKLJUČAK

Razvijena je metodologija za ispitivanje stepena neidealnosti proticanja fluida kroz realne protočne sisteme zasnovana na spektrofotometrijskom praćenju koncentracije trasera u UV oblasti. Izvršen je izbor sorbinske kiseline za traser za ispitivanje načina strujanja u realnim reaktorima zbog njenih karakteristika: rastvorljiva je u vodi i ima veliki apsorpcioni koeficijent u blizini fiksne talasne dužine raspoloživog filtra UV detektora.

Parametri korišćenih modela: kaskada sekcija sa idealnim mešanjem bez i sa povratnim tokom i disperzioni model mogu opisati način proticanja kontinualne faze kroz kolonu i pokazati u kojoj meri strujanje fluida odgovara idealnom mešanju ili idealnom klipnom proticanju. Sekcijski modeli fizički više odgovaraju za opisivanje segmentiranih reaktora tipa KVM, ali za rešavanje postavljenog modela potrebno je za svaki slučaj posebno postaviti i rešiti sistem od N jednačina. Izbor je disperzioni model, kao jednoparametarski, tako da se sa definisanim koeficijentom aksijalne disperzije postavlja i rešava samo jedna diferencijalna jednačina.

Ispitivanja koeficijenta aksijalne disperzije u tečnoj fazi su pokazala slaganje rezultata sa literaturnim za kolone slične geometrije i uslove proticanja.

Prisustvo gasne faze doprinosi povećanju koeficijenta aksijalne disperzije. Doprinos aksijalnoj disperziji potiče od mehurova oko kojih se uspostavlja kanalisano strujanje i cirkulacija i koji intenziviraju povratno proticanje tečne faze.

Čvrsta faza ima manji uticaj na koeficijent aksijalne disperzije tečne faze od gasne faze za male intenzitete vibracije. Najveće povećanje koeficijenta aksijalne disperzije je u trofaznom sistemu sa najvećim protokom gasne faze. Sa povećanjem intenziteta vibracije doprinos čvrste faze povećanju koeficijenta aksijalne disperzije je manji. Kod intenziteta vibracije oko 7 cm/s nastaje grupisanje podataka za posebne sisteme. Čvrsta faza u L-S sistemu doprinosi povećanju koeficijenta aksijalne disperzije 1,8 - 2,6 puta, u trofaznom sistemu 1,6 - 1,8 puta u odnosu na koeficijent aksijalne disperzije jednofaznog toka tečne faze dok je odnos koeficijenata aksijalne disperzije G-L sistema u odnosu na L sistem oko 1. Ovo ukazuje na činjenicu da su neuniformni efekti najveći kod L-S, zatim kod G-L-S sistema i najzad kod G-L sistema. Sa povećanjem intenziteta vibracije (I = 9,4 cm/s) vrednosti koeficijenata aksijalne disperzije jednofaznog sistema (G-L) se skoro izjednačuju sa koeficijentom aksijalne disperzije jednofaznog sistema; jedino koeficijent aksijalne disperzije za L-S sistem značajnije odstupa od vrednosti koeficijenta aksijalne disperzije jednofaznog sistema (1,6 do 2,4 puta). Pojačano vibriranje seta pločica povećava uniformnost disperzije.

Kod gasne disperzije mešanje je određeno dejstvom mehura gasa ako je intenzitet vibracije mali. Prolaskom mehura izaziva se pomeranje tečne faze koje doprinosi povećanju mešanja u aksijalnom pravcu. Međutim, kod velikih intenziteta vibracije mehuri imaju tendenciju da oslabe vrtloge, uvodeći poremećaj u njihove rotacione centre, zbog čega se smanjuje koeficijent aksijalne disperzije.

Uvođenjem gasne faze u L i L-S sisteme koji prelaze u G-L i G-L-S sisteme, respektivno, proizvod amplitude i frekvencije pokazuje manji uticaj na koeficijent aksijalne disperzije. Krive zavisnosti koeficijenta aksijalne disperzije od intenziteta vibracije za L-S i G-L-S u odnosu na L i G-L sisteme, respektivno, pokazuju isti oblik, samo su vrednosti koeficijenta aksijalne disperzije veće za sisteme sa čvrstom u odnosu na sisteme bez čvrste faze.

Koeficijent aksijalne disperzije u KVM2 se poveća kada se uvede gasna u tečnu protočnu fazu za I = 0, dok se u KVM1 pod sličnim uslovima smanji. Veći prečnik

omogućava, pri istim prividnim brzinama strujanja gasne i tečne faze, veću aksijalnu disperziju pojačanim poprečnim pomeranjem tečne faze pri kretanju mehura naviše. Kod KVM1, zbog malog prečnika, takvo poprečno pomeranje elemenata fluida tečne faze nije izraženo, povećano je kanalisanje tečne faze kada mešalica miruje, vrtlozi se "gase" s bočnih strana i aksijalna disperzija se smanjuje.

Analizom korelacionih zavisnosti koeficijenta aksijalne disperzije od operativnih uslova i geometrije kolone (jednačine 3.80 do 3.87) može se zaključiti da je:

- koeficijent aksijalne disperzije skoro linearno zavisan od intenziteta vibracije za L sistem kod KVM1 i L-S sistem kod KVM2,
- uticaj prividne brzine tečne faze skoro isti za sve sisteme i obe KVM (eksponent se nalazi u opsegu 0,3 do 0,51),
- manji uticaj prividne brzine gasne faze u KVM1 (eksponenti su 0,07 i 0,03 za G-L i G-L-S, respektivno) nego u KVM2 (0,2 i 0,15 za G-L i G-L-S, respektivno),
- veći uticaj prisutne čvrste faze u L-S sistemima (eksponenti su 0,23 i 0,53 u KVM1 i KVM2, respektivno), nego u G-L-S sistemima (-0,26 i -0,3 u KVM1 i KVM2, respektivno) i
- uticaj prečnika kolone najveći za G-L sistem (eksponent je 1,39), manji za G-L-S (1,09) i L (0,7) sistem, a najmanji za L-S sistem (0,38).

4. KINETIKA ALKOHOLNE FERMENTACIJE U KVM

Alkoholno vrenje se koristi još od najstarijih vremena, čak i kada nije bila poznata njegova suština. Danas se široko primenjuje, a u industriji najviše za dobijanje etanola. Najčešći mikroorganizmi uzročnici alkoholnog vrenja su iz roda *Saccharomyces* (Kojić, 1984; Legmann i Margalith, 1986; Ranđelović i sar., 1995; Sroka i Rzedowski, 1991): S. *cerevisiae*, S. *carlsbergensis*, S. *ellipsoideus*, S. *uvarum*, S. *rouxii*, S. *oviformis*, S. *mellis*, S. *bayanus* i dr.

U alkoholnoj fermentaciji (anaerobni proces) kvasac *Saccharomyces cerevisiae*, koji se najčešće koristi, prevodi glukozu u etanol, prema ukupnoj jednačini:

$$C_6H_{12}O_6 \rightarrow 2 C_2H_5OH + 2 CO_2$$
 (4.1)

Teorijski koeficijent prinosa etanola u odnosu na glukozu iznosi 0,511 g etanola/g glukoze. Stvarni prinos željenog proizvoda je obično manji od teorijskog, jer se supstrat troši i na sintezu biomase i drugih proizvoda. Sastav hranljive podloge varira, zavisno od vrste mikroorganizma koji se kultiviše, željenog proizvoda i dr. Za izvođenje alkoholne fermentacije pomoću *Saccharomyces cerevisiae* primeri sastava hranljivog medijuma su dati u tabeli 4.1.

	Žorojić	Tyagi i	Rotmann	Bisping i	Pejin i	Taherzadeh	Pons i		
Referenca	Zerajic (1000)*	sar.	i Rehm	Rehm	sar.	i sar.	sar.		
	(1989)*	(1992)*	(1991)*	(1986)*	(1990)**	(1996)**	(1986)**		
Komponenta		koncentracija komponenete, g/dm ³							
Glukoza	20	20	10	10-100	15-40	50	45		
Ekstrakt kvasca	10	3	1,5	3	1,5	-	0,5		
Sladni ekstrakt	-	3	-	3	-	-	-		
Pepton	-	5	-	5	-	-	-		
KH ₂ PO ₄	2	-	-	-	-	3,5	6		
K ₂ HPO ₄	-	-	5,5	-	-	-	-		
$(NH_4)_2HPO_4$	-	-	-	-	2	-	-		
$(NH_4)_2SO_4$	-	-	-	-	-	7,5	10		
NH ₄ Cl	2	-	2,5	-	-	-	-		
MgSO ₄ ·7H ₂ O	1,7	0,5	0,25	-	0,5	0,75	3		
NaCl	1	-	1	-	-	-	0,1		
$CaCl_2 \cdot 2H_2O$	0,2	-	0,011	-	-	-	0,1		
FeCl ₃ ·6H ₂ O	0,01		-	-	-	-	-		
Limunska kis.	-	-	3	-	-	-	-		
pН	5	5	5,5	5	4,6	-	4,2		
Temperatura, °C	28	30	-	27	30	30	27		

Tabela 4.1 Sastav hranljive podloge za alkoholnu fermentaciju pomoću *Saccharomyces* cerevisiae u slobodnom ili imobilisanom stanju

* imobilisane i

** slobodno suspendovane ćelije kvasca

4.1. BIOPROCESI SA IMOBILIZOVANIM ĆELIJAMA

Biokatalizatori sa imobilisanim ćelijama podrazumevaju njihovo povezivanje ili uključivanje u nerastvorne strukture koje omogućavaju zadržavanje ćelija u određenoj zoni reaktora. Imobilizacijom celih ćelija, bez obzira da li će one zadržati sposobnost rasta i deobe ili ne, praktično se imobiliše ceo enzimski sistem ćelije.

Najčešće se kao nosači za imobilizaciju ćelija mikroorganizama koriste komercijalni sunđeri (Sommariva i sar., 1991), alginatni gel (Žerajić, 1989; Ogbonna i sar., 1991; Pejin i Razmovski, 1992), karaginan (Nigam, 2000), sinterovano staklo (Bisping i Rehm, 1986; Bisping i sar., 1989; Rotmann i Rehm, 1991), šećerna trska (Jain i sar., 1991; Tyagi i sar., 1992) i pamučno vlakno (D'Souza i Kamath, 1988). Cabral i sar. (1986) su izveli imobilizaciju celih ćelija mikroorganizama (*S. bayanus, S. cerevisiae* i *Z. mobilis*) kovalentnim povezivanjem, stvaranjem helata prelaznih metala sa neorganskim poroznim nosačima. U tabelama 4.2 i 4.3 dati su primeri imobilizacije ćelija na površini nosača i procesa biosinteze pomoću imobilisanih ćelija.

Mehanizam	Mikroorganizam	Nosač	
	E. coli, Clostridium acetobutylicum	Jonoizmenjivačke smole	
	Aspergillus orysae	Modifikovana celuloza	
Adsorpcija	Streptomyces sp.	Modifikovani sefadeks	
Ausorperja	Lactobacillus sp.; kvasci	Želatin	
	Saccharomyces carlsbergensis	Polivinilhlorid	
	Pseudomonas sp.	Antracit	
Kovalentno	Bacillus subtilis	Agaroza i karbodiimid	
povezivanje	Escherichia coli	Titan(IV)-oksid	

Tabela 4.2 Primeri imobilisanih ćelija povezivanjem na površini nosača (Bailey i Ollis, 1987)

Tabela 4.3 Primeri procesa biosinteze ostvarenih pomoću imobilisanih ćelija (Bailey i Ollis, 1987)

Supstrat	Mikroorganizam	Proizvod procesa
Glukoza, NH ₃ neorganske soli,	Corynebacterium glutamicum	Glutaminska kiselina (15 g/dm ³)
Pantotenska kis., cistein, ATP	Brevibacterium ammoniagenes	Koferment A (500 µg/cm ³)
Glukozni medijum	Penicillium chrysogenum	Penicilin (1,5 i.j/cm ³ h)
Pepton (1%)	Bacillus sp. (KY 4515)	Bacitracin (16 - 19 i.j/cm ³)
Mesni ekstrakt (1%), ekstrakt kvasca (0,05 %)	<i>Bacillus subtilis</i> FERM- P 2040	α-Amilaza (15000 i.j/cm ³)
Buljon LB	Escherichia coli C600	β-Laktamaza (8 i.j/cm ³ h)

Razloga za imobilizaciju ćelija radnog mikroorganizma ima više. Jedno od preimućstava imobilisanih ćelija povezano je sa mogućnošću dostizanja znatno veće gustine ćelija nego u suspendovanim kulturama. Neke ćelije sisara rastu samo u slučaju da su povezane na površini nekog inertnog nosača, pa je imobilizacija za njih obavezna, a ne samo moguća varijanta (Bailey i Ollis, 1987). U stvarnosti, rast mikroorganizama je ograničen šupljinama u poroznom nosaču ili površinom nosača kada se imobilizacija izvodi adsorpcijom po površini. To ima za posledicu relativno manju promenljivost parametra, kao što je prenos mase, u višefaznim sistemima, nego kada se rast mikroorganizma izvodi u slobodnom stanju. Imobilizacija ćelija daje mogućnost za postojanje neprekidnog procesa bez ispiranja mikroorganizma. Ako se ćelije u potpunosti zadrže u bioreaktoru, tada nema gubitaka hranljive podloge na novi ćelijski rast. U nekim slučajevima rad sa imobilisanim ćelijama dozvoljava neprekidno odvajanje proizvoda i odstranjivanje inhibirajuće supstance.

Prednosti fermentacije sa imobilizovanim ćelijama su:

- > nemogućnost ispiranja ćelija iz reaktora sa kontinualnim dejstvom,
- smanjeno dejstvo smicajnih sila pri mešanju i
- > mogućnost gajenja ćelija u većoj koncentraciji pri imobilizaciji.

Primer je analiza kinetičkih parametara za kontinualnu proizvodnju etanola koristeći slobodne i imobilizovane ćelije *Saccharomyces cerevisiae* u karaginanu u pakovanom sloju (Nigam, 2000; tabela 4.4).

Parametri	Slobodne ćelije	Imobilisane ćelije
	$D = 0,15 h^{-1}$	$D = 1,5 h^{-1}$
Koncentracija šećera u medijumu, g/dm ³	82,5	82,3
Procenat iskorišćenog šećera	69,1	78,3
Koncentracija biomase, g/dm ³	4,2	31,2
Izlazna koncentracija etanola, g/dm ³	24,5	28,5
Koeficijent prinosa etanola, g etanola/g šećera	0,42	0,44
Procenat teoretskog prinosa	82,3	86,3
Zapreminska produktivnost etanola, g/dm ³ h	3,8	42,8
Brzina potrošnje šećera, g/dm ³ h	8,6	96,6
Specifična brzina produkcije etanola, g/g h	0,9	1,2
Specifična brzina potrošnje šećera, g/g h	2,0	2,6

Tabela 4.4 Poređenje kinetičkih parametara za kontinualnu sintezu etanola slobodnim i imobilisanim ćelijama *Saccharomyces cerevisiae* ATCC 24553 (Nigam, 2000)

Kada se u biokatalitičkom procesu obrazuje umereno rastvorljivi gas, npr. CO_2 , i kada se koristi dobro rastvorni supstrat, npr. glukoza (u alkoholnoj fermentaciji), tada koncentracija CO_2 može da bude veća od nivoa zasićenja rastvora, zbog čega će doći do izdvajanja mehurića unutar čestica katalizatora. Takva pojava će dovesti do teškoća u radu sa imobilisanim ćelijama, jer će izdvojeni CO_2 stvarati otpor doticanju supstrata do ćelija mikroorganizma u nosaču. Ta poteškoća se može eliminisati smanjivanjem makar jedne dimenzije poroznih nosača, čime se stvara mogućnost gasu da brzo napusti poroznu strukturu, smanjujući otpor njegovom izlaženju.

Kolone različitog oblika i konstrukcije u ulozi kontaktora gasa i tečnosti dobijaju na značaju poslednjih godina za izvođenje kontinualnih fermentacionih procesa. U osnovi, kinetika procesa se može posmatrati kao kinetika u realnom cevnom reaktoru sa postojanjem aksijalne disperzije. Proces mikrobne fermentacije sa imobilizovanim ćelijama na poroznom polimernom nosaču do sada nije ispitivan u KVM.

4.2. POROZNI POLIMERI

Sintezom makroporoznih polimera dobijaju se materijali različite namene. Ako se postupak dobijanja vodi tako da pore ostanu zatvorene, dobiće se penasti polimerni materijal, koji se može iskoristiti kao laki konstrukcioni materijal ili kao dobar izolator. Ako imaju otvorene pore, ovi polimeri se mogu koristiti za dobijanje različitih tipova jonoizmenjivačkih smola, kao adsorbenti i kao inertni nosači čestica katalizatora, enzima ili ćelija mikroorganizama.

Zahtevi u pogledu kvaliteta koje materijal mora da ispuni da bi mogao da se primeni kao nosač živih ćelija mikroorganizma u KVM su:

- > polimerne čestice moraju imati tvrdoću da izdrže mešanje u bioreaktoru,
- pore unutar polimera moraju biti otvorene i sa ekvivalentnim prečnikom većim od veličine ćelija mikroorganizama (za Saccharomyces cerevisiae, veličina pora veća od 3 μm),
- poroznost između 50 i 90% i
- > čvrste čestice treba da imaju bar dve dimenzije veće od 8 mm, kako ne bi prolazile kroz otvore pločica.

U patentnoj literaturi su opisani brojni postupci sinteze umreženog polimernog materijala niske gustine, pri čemu je početni proces predpolimerizacija u emulziji sa visokim udelom vodene faze (Adamski i sar., 1997; Barby i Haq, 1985; Bass i Brownscombe, 1993; Brownscombe, 1993; Beshouri, 1993; DesMarais i sar., 1993a, b, 1994; Edwards i sar., 1988; Goldman i sar., 1996; Gregory, 1989; Haq, 1985; Mork i Park, 1998; Young i sar., 1992; Young i sar., 1994). Patenti ove vrste u osnovi imaju isti pristup:

- priprema emulzije različitim vrstama površinski aktivnih sredstava kao stabilizatora emulzije, sa velikim udelom vode, i monomerima u organskoj fazi;
- korišćenje, uglavnom, vodorastvornih jedinjenja koja, raspadanjem, lako grade radikale, koji su inicijatori polimerizacije;
- korišćenje vinilnih monomera sa jednom dvostrukom vezom, kao polaznih jedinjenja za polimerizaciju;
- v upotreba jedinjenja u obliku monomera sa dve ili više dvostrukih veza, koja će se u postupku polimerizacije ugraditi u polimerne lance jednom svojom dvostrukom vezom, a drugom (ili drugim) grade poprečne veze između polimernih lanaca, čime se dobija umreženi nerastvorni polimer i
- > ispiranje polimernog materijala, otvaranje pora i sušenje.

Makroporozni kopolimer na bazi metilmetakrilata sintetisan suspenzionom kopolimerizacijom sa glicidil metakrilatom (specifične površine 12 - 70 m²/g i zapremine pora do 1 cm³/g) može se iskoristiti za selektivnu sorpciju jona metala (Jovanović i sar., 1994, 1999, 2000). Poznata je i sinteza u nadkritičnim uslovima u ugljen(IV)-oksidu sol-gel polimerizacijom pri čemu je metilmetakrilat jedan od komonomera, koji treba da daju tvrdoću gotovom polimernom proizvodu (specifična površina 5 - 328 m²/g i srednji prečnik pora 20 nm do 7,9 μ m, Cooper i sar., 2000a, b). Postoje patenti o poroznom polimetilmetakrilatu kao implatantnom materijalu u humane svrhe (MacGregor, 1978, 1986), i o poroznom polimetilmetakrilatu sa proteinskim sadržajem (Russell, 1996). Poznata je imobilizacija

enzima kovalentnim vezivanjem u poliakrilamidnom gelu ili polimetilmetakrilatnom polimeru (Mosbach, 1988; Woodward, 1988).

Makroporozni umreženi kopolimeri imaju poroznu strukturu i u čvrstom stanju, za razliku od običnih umreženih kopolimera koji postaju porozni tek posle bubrenja u nekom rastvaraču. Makroporozni umreženi kopolimeri se tradicionalno dobijaju kopolimerizacijom dva ili više monomera, od kojih bar jedan ima više od jedne dvostruke veze, u nekom inertnom medijumu. Za razliku od tradicionalnog pristupa, sinteza makroporoznog umreženog kopolimera se može izvesti monomerima sa po jednom dvostrukom vezom. Umrežavanje se izvodi jedinjenjima sa funkcionalnim grupama koje se mogu kondenzovati međusobno ali i sa funkcionalnom grupom iz jednog monomera (akrilamida) u kopolimeru. Na taj način se stvaraju poprečne veze među makromolekularnim lancima, što na kraju procesa rezultuje stvaranjem trodimenzionalne mreže i potpuno čvrstom, fiksiranom strukturom polimernog materijala, koji se ne rastvara i ne bubri.

Makroporozni kopolimer na bazi metilmetakrilata i akrilamida je interesantan materijal za imobilizaciju mikroorganizama ili enzima unutar pora. Posebno je pogodan za imobilizaciju enzima jer poseduje grupe na polimernim segmentima koje se lako mogu transformisati u acil-azidne grupe i na taj način omogućiti kovalentno vezivanje poroznog kopolimera sa slobodnim amino grupama iz neke bazne aminokiseline bilo kog proteina. Aminokiselina lizin, ima dve amino grupe, od kojih jedna učestvuje u stvaranju peptidnih veza pri ugrađivanju u strukturu proteina, dok se druga slobodna amino grupa može iskoristi za povezivanje sa acil-azidnom grupom na polimernom nosaču, pod uslovom da je povoljno orijentisana ka spoljnoj površini proteina.

Ako se princip vezivanja enzima za polimerni lanac (Mosbach, 1988; Woodward, 1988) primeni na mikroorganizme koji imaju ćelijsku membranu po modelu dvoslojne lipidne strukture sa uronjenim proteinima (Frank, 1977), može se pokušati kuplovanje proteina iz membrane sa stvorenim acil-azidnim grupama na kopolimeru:

$$CON_3 \xrightarrow{H_2N-PROTEIN-ĆELIJA} CO-NH-PROTEIN-ĆELIJA$$

acil-azidna grupa

Ako se porozni kopolimer uroni u rastvor hidrazina i ostavi dovoljno dugo da se reakcija završi, određivanjem koncentracije hidrazina pre i posle reakcije sa polimerom, odrediće se koncentracija estarskih i amidnih grupa koje su dostupne tečnoj fazi i reakciji sa hidrazinom.

4.3. EKSPERIMENTALNI DEO

4.3.1. MIKROORGANIZAM I HRANLJIVA PODLOGA

Kao radni mikroorganizam korišćen je svež pekarski kvasac (Fermin, Senta) sa 29,10 % suve biomase. Sastav hranljive podloge za alkoholnu fermentaciju prikazan je u tabeli 4.5. Fermentaciona podloga se sipa u erlenmajere, koji se zatvore vatenim čepom i sterilišu u autoklavu 15 min na 120°C.

imobilisana ćelija na polimernom "zidu"

Tabela 4.5 Sastav fermentacione podloge za alkoholnu fermentaciju pomoću Saccharomyces cerevisiae

Komponenta	Koncentracija, g/dm ³
Glukoza	40
$(NH_4)_2SO_4$	5
KH ₂ PO ₄	3,5
KCl	1
NaCl	1
MgSO ₄ ·7H ₂ O	0,75
CaCl ₂	0,1
pН	4,67

4.3.2. SINTEZA POLIMERNOG NOSAČA

Hemikalije: natrijum-dioktil-sulfosukcinat i akrilamid (Sigma Chemical Co), glikoluril (tetrahidro-imidazo[4,5-d] imidazol-2,5-dion) i metilmetakrilat (Aldrich Chemical Co), kalijum-persulfat (Riedel-de Haën) i formaldehid 37% (Merck).

Sinteza inertnog nosača mikroorganizama (Nikolić i sar., 2002a) izvodi se u nekoliko faza:

 a) Sinteza umreživača. Sinteza metilol derivata glikolurila izvodi se u rastvoru dinatrijumhidrogen-fosfata koncentracije 0,01 mol/dm³ (pH = 9,5) na temperaturi 60°C u toku 1,5 sata. Za dobijanje tetrametilol-glikolurila (1,3,4,6-tetrakis-hidroksimetil-tetrahidroimidazo [4,5-d] imidazol-2,5-dion) potreban odnos glikoluril/formaldehid je 1:4.

- b) Priprema emulzije. Potrebna količina stabilizatora emulzije (natrijum dioktil-sulfosukcinata, čija je koncentracija u rastvoru veća od kritične micelarne koncentracije: 0,2 % mas.), inicijatora (kalijum-persulfata, 0,82 % mas.), akrilamida (2,28 % mas.), umreživača (tetrametilol-glikolurila, 0,56 % mas.), vode (71,64 % mas.) i smeše etilacetata (5,26 % mas.) i metilmetakrilata (19,24 % mas.) sipa se u sud sa mešalicom i refluksnim kondenzatorom i intenzivno meša. Zbog prisutnog akrilamida u vodenoj fazi, a naročito pri zagrevanju, emulzija nije stabilna i sporo se raslojava.
- c) **Predpolimerizacija.** Temperatura reakcione smeše se poveća do 60°C, uz mešanje, i reakcija predpolimerizacije vodi 30 minuta. U ovom periodu se dostiže stanje mekog,

tečljivog gela, prestaje raslojavanje, a reakciona smeša može da se razlije u kalupe željenog oblika.

- d) Polimerizacija. U sudu oblika cilindra nastavlja se polimerizacija reakcione smeše sol-gel procesom, bez mešanja, uz termostatiranje na temperaturi najviše do 60°C, do potpunog očvršćavanja reakcione smeše. Ukupno vreme predpolimerizacije i polimerizacije je oko 2,5 h.
- e) **Obrada polimernih čestica.** Čestica očvrslog polimera se dodatno oblikuje seckanjem cilindara na tanke pločice. Zatim se pločice zagrevaju u destilovanoj vodi na temperaturi do 80°C (30 min).
- f) Otvaranje pora. Nastavi se sa zagrevanjem u destilovanoj vodi uz mešanje. Zapremina vode prema zapremini polimera je 2:1 u svakoj šarži; voda se menja posle prve faze zagrevanja. U drugom stadijumu se primenjuje linearni program povećanja temperature (0,5 °C/min) do ključanja, a zatim se na temperaturi ključanja zadrži 20 minuta.
- g) **Umrežavanje i sušenje.** Polimerne čestice se zagrevaju suvim vazduhom temperature od 130°C 50 minuta.

Dobijene polimerne čestice su oblika diska, prečnika 12,7 mm i debljine 1,5 mm, poroznosti 81,13 %.

Čisti homopolimeri poliakrilamida i polimetilmetakrilata se sintetizuju u rastvoru vode i etilacetata, uz inicijatore kalijum-persulfat i azobisizobutironitril, respektivno. Polimerizacija se izvodi na 60°C u toku 6 h. Tanak sloj polimera se osuši na 100°C i koristi za snimanje FT-IC spektara.

Analitičke metode

FT-IC spektri umreživača i polimera su snimljeni u pastili (uzorak 1,2 mg u 160 mg KBr spektrofotometrijske čistoće) na IC spektroskopu (Bomem Hartmann & Braun MB-series).

Uzorak makroporoznog polimera za skenirajuću elektronsku mikroskopiju (SEM) je pripremljen tehnikom katodnog raspršivanja (JEOL JFC - 1100E ion sputter). Na površinu uzorka makroporoznog polimera se nanosi tanak sloj zlata debljine nekoliko nm. Fotografije SEM su snimljene na skenirajućem elektronskom mikroskopu (JEOL JSM - 5300 Scanning electron microscope).

Kumulativna raspodela zapremine pora po veličini pora za uzorak makroporoznog polimera je određena na živinom porometru (Carlo Erba 2000).

Za termičke analize je korišćen sprašeni uzorak makroporoznog polimera. Termogravimetrijska merenja su izvedena u atmosferi azota (Perkin Elmer TG S2), dinamičkim testom sa 10 K/min od 25 do 600°C. Masa uzorka je oko 10 mg.

Sintetisanom makroporoznom polimeru snimljena je DSC kriva (Perkin Elmer DSC 2) u opsegu temperatura od sobne do 250°C u aluminijumskim posudama u atmosferi azota. Brzina zagrevaja je 10 K/min, a prazna posuda je korišćena kao referentni uzorak.

Homopolimeri akrilamida i metilmetakrilata i makroporozni polimer su analizirani na difraktometru za prah (Philips PW1350), pod uglom 2 θ između 2 i 50° (range 1x10³) a uslovi rada generatora X-zraka su 30 kV i 30 mA. Zračenje je CuK_{α} (λ = 1,54178·10⁻¹⁰ m) sa Ni-filterom.

Brzina prodiranja vode u polimerne čestice je određena potapanjem polimernih čestica celokupnom svojom spoljnom dodirnom površinom u destilovanu vodu i merenjem mase čestica u toku vremena.

4.3.3. IMOBILIZACIJA ĆELIJA MIKROORGANIZMA NA POLIMERNI NOSAČ

a) Imobilizacija na polimernom nosaču preko acil-azidnih grupa

Reagensi:

Rastvor hidrazina 1,127 %: 26 cm³ koncentrovanog rastvora hidrazina (15%) se rastvori u 320 cm³ destilovane vode.

Rastvor azotaste kiseline 0,5 mol/dm³: rastvori se 14,34 g NaNO₂ u 400 cm³ destilovane vode, a zatim se, na 0° C, u kapima doda 10,7 cm³ koncentrovane HCl.

Pufer pH 7,4: rastvori se 0,8937 g KH₂PO₄ i 3,7998 g Na₂HPO₄ u 500 cm³ destilovane vode.

Ispiranje ćelija kvasca: sirovi pekarski kvasac se suspenduje u destilovanoj vodi, centrifugira 5 min na 4000 min⁻¹, postupak ispiranja ponovi još dva puta i staložene ćelije resuspenduju u sterilnom fiziološkom rastvoru (0,9% NaCl).

Imobilizacija: 10 g suvih polimernih čestica se prelije rastvorom hidrazina i ostavi da stoji na sobnoj temperaturi nekoliko dana, zatim isperu destilovanom vodom oko 3 sata u ledenom kupatilu, preliju rastvorom azotaste kiseline i ostave na 0°C oko 5 sata. Polimerne čestice se ispiraju puferom pH 7,4 (2×250 cm³) na 0°C po 2 sata. Isprane ćelije kvasca (8 g sirovog kvasca) se resuspenduju u 50 cm³ fiziološkog rastvora, suspenzija ohladi do +4°C, pomeša sa 32,5 g nakvašenih polimernih čestica (6,132 g suvog polimera, obrađenog do acil-azidnih grupa, i čuvanih na 0°C) i, uz mešanje, drži na +4°C dva dana. Na kraju polimerne čestice se isperu fiziološkim rastvorom tri puta na hladno.

b) Imobilizacija na polimernom nosaču vakuum uvlačenjem

Postupak: 10 g suvih polimernih čestica se sipa u vakuum bocu na koju je postavljen levak za ukapavanje. Suspenzija 8 g ispranih kvaščevih ćelija u 50 cm³ fiziološkog rastvora se sipa u levak, a vakuum boca priključi na vakuum pumpu. Kada se postigne dovoljan vakuum, otvara se ventil levka, suspenzija se sipa u vakuum bocu, dolazi u dodir sa polimernim česticama i ulazi u pore polimera. Posle trostrukog ispiranja fiziološkim rastvorom, polimerne čestice se mogu koristiti za alkoholnu fermentaciju.

4.3.4. ALKOHOLNA FERMENTACIJA

a) Alkoholna fermentacija u erlenmajeru

Alkoholna fermentacija je izvedena šaržno, sa slobodno suspendovanim i imobilisanim ćelijama kvasca *Saccharomyces cerevisiae* (preko acil-azidnih grupa i vakuum postupkom). Fermentacija je izvođena u erlenmajerima, u anaerobnim uslovima, na temperaturi od 25 do 35°C na recipročnoj mućkalici (70 min⁻¹).

b) Alkoholna fermentacija u KVM

Proces je izveden u KVM1, sa ćelijama kvasca imobilisanim u makroporozni polimer (vakuum postupkom).

Šematski prikaz uređaja za kontinualno izvođenje alkoholne fermentacije u KVM je dat na slici 4.1. Radna visina kolone je 173 cm, a zapremina tečne faze (ne računajući zapreminu tečnosti koja je unutar polimernih čestica) - 670 cm³. Kolona je od stakla (unutrašnjeg prečnika 2,54 cm), sa oblogom od stakla kroz koju kruži voda za zagrevanje pomoću pumpe kroz zatvoreni sistem sa termostatiranim kupatilom. Temperatura u koloni je merena tačkastim termometrom sa tačnošću od $\pm 0,1$ °C. Sterilna podloga se uvodi na vrhu, a fermentaciona tečnost izlazi na dnu kolone, preko prelivnika. Otvor na vrhu kolone za izlaz ugljen(IV)-oksida je zatvoren vatenim čepom. Svi metalni i stakleni delovi kolone, koji mogu da izdrže povećanu temperaturu sterilisani su na 170°C za 30 minuta, a gumeni i plastični delovi su isprani razblaženim rastvorom HCl, a zatim, do momenta montiranja, čuvani u 70% etanolu; kolona je isprana razblaženim rastvorom HCl. U 64 sekcije kolone smešteno je po 17 polimernih čestica sa imobilisanim kvascem, što iznosi 212 g nakvašenih polimernih čestica (zapremine 207 cm³) i odgovara 39 g suvog polimera. Zapreminski udeo čvrste faze je 23,6%. Intenzitet vibracije je od 0 - 3 cm/s (amplituda je 1 cm i frekvencija 0 - 3 Hz). Zapreminski protok tečne faze je 1215 - 1258 cm³/dan.

Slika 4.1 Šematski prikaz KVM1 za kontinualnu alkoholnu fermentaciju pomoću ćelija kvasca *Saccharomyces cerevisiae* imobilisanim na makroporoznom polimernom nosaču: EM - elektromotor, E - ekscentar, FP - fermentisana podloga, KT - kontaktni termometar, PS - pisač, P - pumpa, PR - prelivnik, R - rezervoar sa sterilisanom fermentacionom podlogom, Š - špric, T - digitalni termometar sa tačkastim davačem, TVK - termostatirano vodeno kupatilo, UV - uvikord, V - ventil, VČ - vateni čep

Analitičke metode

Glukoza:

Koncentracija glukoze u podlozi je određivana reakcijom sa pikrinskom kiselinom, spektrofotometrijski (Varian Cary 100 UV/VIS spektrofotometar).

Reagens: Rastvori se 2 g pikrinske kiseline i 4 g natrijum karbonata u 1 dm^3 destilovane vode.

Postupak: 1 cm³ uzorka rastvora glukoze se prenese u normalni sud od 10 cm³, doda 5 cm³ rastvora pikrinske kiseline, otvoreni odmerni sud zagreva u ključalom vodenom kupatilu 15 min, ohladi, dopuni destilovanom vodom i meri apsorbancija na 580 nm.

Kalibracioni dijagram: Od glukoze (Zorka, Šabac) sušene na 105°C, pripremi se serija rastvora glukoze koncentracije 0,5 do 4 mg/cm³. Za svaki rastvor primeni se postupak zagrevanja sa rastvorom pikrinske kiseline, nakon hlađenja se dopune odmerni sudovi i meri apsorbancija na 580 nm. U opsegu koncentracije glukoze 0,5 do 4 mg/cm³ zavisnost apsorbancije od koncentracije glukoze je pravolinijska, a koncentracija glukoze se može izračunati po jednačini:

 $C = 8,897 \cdot A + 0,202$ (4.2) gde je A - apsorbancija na 580 nm, a C - koncentracija glukoze u mg/cm³; koeficijent linearne korelacije je 0,999.

Etanol:

Koncentracija etanola je određivana spektrofotometrijski, a kao reakcija korišćena je reakcija oksidacije etanola do sirćetne kiseline pomoću dihromata:

$$2K_2Cr_2O_7 + 3C_2H_5OH + 16HNO_3 = 3CH_3COOH + 4Cr(NO_3)_3 + 4KNO_3 + 11H_2O_3$$

Reagens: rastvori se 0,4817 g kalijum-dihromata u 100 cm³ destilovane vode u odmernom sudu od 250 cm³, a zatim dodaje, uz hlađenje, 89,8 g koncentrovane HNO₃ (65%, $\rho = 1,4$ g/cm³) i na kraju dopuni destilovanom vodom. Koncentracija dihromata je 6,5 mmol/dm³, a azotne kiseline 3,7 mol/dm³.

Postupak: uzorak (1 cm³), prethodno destilovan^{*}, sipa se u epruvetu sa šlifom, doda 5 cm³ rastvora kiselog hromata, stoji 2 sata na sobnoj temperaturi, a zatim meri apsorbancija.

Kalibracioni dijagram: Serija rastvora etanola, koncentracije između 0,1 i 2 mg/cm³, tretira se rastvorom kiselog hromata. Apsorbancija reakcione smeše se meri na 580 nm. Zavisnost apsorbancije od koncentracije etanola je linearna, a koncentracija etanola (C, mg/cm³) se može izračunati prema jednačini:

$$C = 15,823 \cdot A$$
 (4.3)

Najniža koncentracija etanola koja može da se detektuje ovom metodom je 0,1 mg/cm³.

^{*} Za destilaciju malih količina uzoraka, do nekoliko cm³, napravljen je kondenzator od staklene cevi unutrašnjeg prečnika 4 mm.

Biomasa:

Koncentracija. Koncentracija ćelija kvasca u slobodno suspendovanom stanju je određivana na osnovu optičke gustine suspenzije u vidljivom delu spektra na talasnoj dužini 580 nm. *Kalibracioni dijagram*: Seriji suspenzija kvaščevih ćelija koncentracije od 0,05 do 1 mg/cm³ (0,015 do 0,291 mg/cm³ suve biomase) u fiziološkom rastvoru meri se apsorbancija na 580 nm. Zavisnost koncentracije ćelija kvasca (C, mg suve biomase/cm³) od apsorbancije je:

$$C = 0,345 \cdot A + 5,72 \cdot 10^{-3} \tag{4.4}$$

Suva biomasa. Suva biomasa se određuje sušenjem ćelija kvasca u sušnici na 80°C za 24 sata ili na 105°C za 2 sata.

Viabilnost. Viabilnost je određena metodom bojenja ćelija metilenskim plavim u komori za brojanje po Bürker-Türku (Veljković i Lazić, 1993). Mrtve ćelije kvasca se oboje plavo, dok žive ćelije ostaju neobojene. Za uzorke kvasca koji je korišćen u fermentacijama viabilnost iznosi oko 97%.

4.4. REZULTATI I DISKUSIJA

4.4.1. STRUKTURA I OSOBINE MAKROPOROZNOG POLIMERA

Dobijeni makroporozni polimer se ne rastvara i ne bubri ni u jednom organskom rastvaraču. On može učestvovati u hemijskim transformacijama sa grupama koje se nalaze na zidovima pora, orijentisane od slobodne površine polimera. Gustina osušenih polimernih čestica je 0,21 g/cm³.

S obzirom na odnos vodene i organske faze 2,92:1, početna struktura emulzije je voda u ulju (Brownscombe, 1993). Organsku fazu čini smeša metilmetakrilata i etilacetata. U vodenoj fazi se nalaze inicijator, akrilamid i umreživač. Na površini dodira faza se nalazi emulgator. Ovakva struktura emulzije, do formiranja gela u predpolimerizaciji, indikativna je za stvaranje blok kopolimera. Da bi se potvrdilo da je izvršena sinteza makroporoznog polimera i odredila njegova struktura, analizirani su IC spektri glukolurila, tetrametilolglikolurila, homopolimera i makroporoznog polimera.

Analizirajući FT-IC spektre može se zaključiti da se valenciona traka sekundarnog cikličnog amida glikolurila v_{NH} sa oko 3200 cm⁻¹ (slika 4.2) pomera ka većim frekvencijama u slučaju tetrametilol-glikolurila, zbog uvedene C-OH grupe, v_{OH} , koja apsorbuje na oko 3300 do 3470 cm⁻¹ (slika 4.3). To potvrđuje nastajanje metilol derivata glikolurila. U spektru tetrametilol-glikolurila pojavljuju se traka od deformacione OH vibracije na 1319 cm⁻¹ i valenciona traka v_{C-O} na 1183 cm⁻¹ (slika 4.3). C-H veza u glikolurilu apsorbuje na 2842 cm⁻¹ jer je C-atom na kome se nalazi H vezan za heteroatom (N), pa je došlo do pomeranja ka višim frekvencijama. Nove tri trake od C-H apsorpcija iz CH i CH₂ grupa u metilol derivatu glikolurila (slika 4.3) se pojavljuju na 2908, 2957 i 2988 cm⁻¹. Valenciona vibracija C=O grupe ureidne strukture (glikoluril je acetilen-urea) u adicionom proizvodu je na 1718 cm⁻¹, dok je u glikolurilu pokazivala dve trake na 1685 i 1764 cm⁻¹; to su amidne trake I i II, pri čemu amidna traka I potiče od C=O grupe, a amidna traka II potiče delom od N-H deformacionih vibracija u ravni koje se kupluju sa valencionim C-N vibracijama. Nakon adicije formaldehida i uvođenja metilolne grupe, na N-atomu nema više slobodnog H-atoma, nema kuplovanja sa C-N grupom i u potpunosti se gubi amidna traka II (slika 4.3).

Slika 4.2 FT-IC spektar glikolurila

Slika 4.3 FT-IC spektar tetrametilol-glikolurila

Na slikama 4.4, 4.5 i 4.6 prikazani su FT-IC spektri poliakrilamida, polimetilmetakrilata i kopolimera metilmetakrilata i akrilamida, kao potvrda sinteze poroznog kopolimera sa umreživačem. S obzirom da je dominantan udeo (do 90%) metilmetakrilata u kopolimeru (slika 4.6), evidentna je sličnost u pojedinim trakama sa IC spektrom čistog homopolimera polimetilmetakrilata (slika 4.5). Valenciona vibracija C=O grupe polimetilmetakrilata (slika 4.5) koja pokazuje apsorpciju na 1728 cm⁻¹, prisutna je i kod poroznog kopolimera na 1733 cm⁻¹. Amidna traka I iz poliakrilamida, sa prevojem zbog blizine amidne trake II kuplovane deformacione N-H sa valentnom C-N na 1614 cm⁻¹, takođe je prisutna u kopolimeru sa slabije izraženim prevojem zbog delimičnog utroška N-H veza na umrežavanje. Cela traka je slabijeg intenziteta u poroznom kopolimeru zbog manjeg procentualnog učešća akrilamida i umreživača u strukturi kopolimera. Međutim, traka na oko 3440 cm⁻¹ pokazuje i apsorpciju valencionih N-H iz akrilamida (slika 4.4) i valencionih O-H iz umreživača (slika 4.3) koje nisu utrošene na stvaranje poprečnih veza.

Upoređivanjem IC spektara sintetisanog čistog polimetilmetakrilata (slika 4.5) i makroporoznog polimera (slika 4.6) sa literaturnim spektrima (Dechant i sar., 1972) može se videti da sigurno nisu izotaktički polimeri, ali se ne može sa sigurnošću reći da li su ataktički ili sindiotaktički. Kod makroporoznog kopolimera se pojavljuju dva dubleta (prvi na 1243 i 1277 cm⁻¹ i drugi na 1449 i 1485 cm⁻¹) u oblasti u kojoj se kod izotaktičkog javljaju isključivo nerazdvojene trake apsorpcije IC zračenja, ali se takva dva dubleta pojavljuju kod ataktičkog i sindiotaktičkog polimera.

Slika 4.4 FT-IC spektar čistog homopolimera poliakrilamida

Slika 4.5 FT-IC spektar čistog homopolimera polimetilmetakrilata

Slika 4.6 FT-IC spektar makroporoznog polimera metilmetakrilata i akrilamida sa tetrametilol-glikolurilom kao umreživačem

Iz kumulativne krive raspodele veličine pora (slika 4.7) određeni su ukupna poroznost kopolimera, oko 3,2 cm³/g, i procentualno učešće zapremine pora većih od 10 μ m, oko 6% ili 0,192 cm³/g. Iz krive raspodele veličine pora može se izračunati slobodna površina S_{S,Hg} (Jovanović i sar., 1999 i 2000). Za uzorak sintetisanog kopolimera specifična slobodna površina je 22,7 m²/g. Raspodela veličina pora poroznih polimera može se odrediti iz zavisnosti diferencijalne raspodele dV/(dlogP) od D (Cooper 2000a i 2000b). Srednji prečnik najzastupljenijih pora (slika 4.8), kreće se u opsegu 0,2 do 2 µm.

Sa SEM fotografija umreženog, poroznog kopolimera prikazanih na slici 4.9, vidi se oblik i veličina pora sintetisanog kopolimera. Uglavnom su ovalnog oblika, veličine između 1 i 10 μ m, iako se mogu primetiti i veće usamljene pore. Na slici 4.9b vidi se pora elipsastog oblika veličine 20 × 40 μ m. Takve pore su pogodne za imobilizaciju ćelija kvasca.

Slika 4.7 Kriva kumulativne raspodele zapremine pora po veličini prečnika pora za umreženi makroporozni polimer

Slika 4.8 Raspodela veličine pora u uzorku umreženog makroporoznog polimera

Slika 4.9 SEM fotografije makroporoznog polimera: a) uvećanje 2000×, bar = 10 μ m; b) uvećanje 2000×, bar = 10 μ m; c) uvećanje 3500×, bar = 5 μ m; d) uvećanje 3500×, bar = 5 μ m

TG i DTG krive (slika 4.10) pokazuju da je umreženi porozni kopolimer stabilan do 250°C, da je maksimalna brzina gubitka mase oko 380°C i da se do 400°C završi kompletna degradacija (piroliza) polimera. Degradacija je kompletna, što se i očekivalo, jer je kopolimer organske prirode.

DSC kriva (slika 4.11) pokazuje da je temperatura ostakljivanja za porozni kopolimer akrilamida i metilmetakrilata na 130°C izražena kao sigmoidni prelaz u baznoj liniji. Za homopolimere odgovarajuće temperature staklastog prelaza su (Kabanov, 1974): za poliakrilamid oko 200°C, za sindiotaktički polimetilmetakrilat 115°C, a za izotaktički polimetilmetakrilat 45°C. Iz ovih podataka može se zaključiti da je makroporozni polimer uglavnom u sindiotaktičkom stanju i da ima veću temperaturu staklastog prelaza od čistog homopolimera polimetilmetakrilata, zbog prisustva akrilamidnih jedinica u polimernim lancima i stvorenih poprečnih veza među njima.

Slika 4.10 TG i DTG kriva makroporoznog polimera

Slika 4.11 DSC kriva makroporoznog polimera

Na slici 4.12 je prikazan spektar difrakcije X-zraka za homopolimere poliakrilamid i polimetilmetakrilat i makroporozni umreženi kopolimer. U makroporoznom kopolimeru nema kristalnih zona (kao ni i u homopolimerima), ali je došlo do veoma slabog pomeranja amorfnog pika u odnosu na homopolimere.

Slika 4.12 Spektar difrakcije X-zraka za a) poliakrilamid, b) polimetilmetakrilat i c) makroporozni umreženi kopolimer

Slika 4.13 ilustruje apsorpciju vode uzorka poroznog polimernog nosača sa vremenom. Masa vode koju je apsorbovao polimer (W) u odnosu na maksimalnu masu vode koju može da apsorbuje (W_{max}) u funkciji od vremena, može se predstaviti sledećom jednačinom:

$$\frac{W}{W_{max}} = 0,479 \cdot t^{0,155}$$
(4.5)

Makroporozni polimer relativno sporo upija vodu zbog mehurića vazduha u porama, koji ne dozvoljavaju brzo kapilarno prodiranje vode unutar pora, a sila potiska je nedovoljna da potisne mehurić iz pora. Ova činjenica ne ide u prilog korišćenju imobilizovanih ćelija kvasca unutar makroporoznog polimernog nosača za alkoholnu fermentaciju. Prilikom odvijanja alkoholne fermentacije oslobađa se ugljen(IV)-oksid, čiji mehurići će zauzimati slobodni prostor unutar polimerne čestice i stvarati stalni otpor difuziji hranljivih sastojaka iz tečnosti unutar polimernih čestica do imobilisanih ćelija.

4.4.2. IMOBILIZACIJA ĆELIJA KVASCA

Na slikama 4.14a do 4.14c prikazane su SEM fotografije poroznog polimernog nosača sa imobilisanim ćelijama kvasca *Saccharomyces cerevisiae*. Mogućnost ispiranja ćelija zbog dubine pora je relativno mala. Pojedine ćelije se mogu pojaviti slobodno suspendovane u fermentacionom medijumu i potiču iz takvog poroznog nosača.

Iz razlike zapremina rastvora HCl poznate koncentracije utrošenih na titraciju hidrazina pre i posle reakcije sa sintetisanim kopolimerom može se odrediti masa utrošenog hidrazina po gramu kopolimera, što je ekvivalentno broju dostupnih estarskih i amidnih grupa u kopolimeru. Znajući ukupni broj grupa u kopolimeru, može se doći do podatka koliki udeo tih grupa je dostupan reakciji. Udeo grupa raspoređenih po slobodnoj površini polimera na dodiru faza prema tečnosti za uzorke sintetisanog makroporoznog polimera je oko 25%.

Preostalih 75% grupa se nalazi unutar zidova kopolimera "zazidano" ili umreženo, s obzirom da je prisutan i umreživač i da je reakcija sinteze kopolimera vođena tako da je došlo i do termičkog umrežavanja kopolimera.

Iz mase utrošenog hidrazina izračunat je broj funkcionalnih grupa po gramu polimera, a iz rezultata živine porozimetrije slobodna površina po gramu polimera. Iz ova dva podatka dolazi se do približnog broja nagrađenih acil-azidnih grupa po jedinici površine, što iznosi oko 60 miliona po kvadratnom mikrometru. Ako se uzme da je približna prosečna veličina jedne ćelije kvasca 3×4 µm, to je projektovana površina jedne ćelije oko 10 µm², na koju, u proseku, dolazi oko 600 miliona funkcionalnih grupa za kuplovanje. Broj funkcionalnih grupa je dovoljan pa ako ima slobodnih amino grupa u proteinu membrane ili nekom strukturnom polisaharidu za kuplovanje i ako je njihova orijentacija povoljna, onda može doći do povezivanja ćelija kvasca i polimernog nosača.

Masa kvasca u polimernom nosaču na početku je određena kao razlika količine kvasca koji se upotrebi pri imobilizaciji i količine kvasca koja ostane van polimera nakon završenog postupka imobilizacije. Na ovaj način se došlo do vrednosti 26,4 mg/g (masa suve biomase u odnosu na suvu masu polimera) za imobilizaciju vakuumom i 3,9 mg/g za imobilizaciju preko acil-azidnih grupa na polimeru. U tabeli 4.6 prikazane su mase ćelija kvasca *Saccharomyces cerevisiae* imobilisanih na različitim nosačima, pri čemu se može videti da je masa imobilisanih ćelija kvasca na makroporoznom polimeru relativno mala u odnosu na druge nosače za imobilizaciju. Ovde se pojavljuje problem određivanja biomase u toku ili nakon izvedenog procesa alkoholne fermentacije sa imobilisanim ćelijama, jer se one ne mogu isprati iz poroznog nosača i odrediti metodama koje su primenjene za slobodno suspendovane ćelije.

Slika 4.13 Apsorpcija vode uzorkom poroznog umreženog kopolimera

Slika 4.14 SEM fotografije makroporoznog polimera sa imobilisanim ćelijama kvasca *Saccharomyces cerevisiae*: a) uvećanje 2000×, bar = 10 μ m; b) uvećanje 2000×, bar = 10 μ m; c) uvećanje 3500×, bar = 5 μ m

Tabela 4.6 Masa ćelija kvasca Saccharomyces cerevisiae imobilisanih na različitim nosačima (Tyagi i sar., 1992)

Nosač	Masa ćelija (mg ćelija/g nosača)
Jonoizmenjivačka smola	133
PVC ljuspe	253
Drveno iverje	188
Keramika	16,2
Substrati prirodnog porekla	132
Strugotina omorike	$2,5 \cdot 10^8$ *
Aktivni ugalj	$1,4{\cdot}10^{8}$ *
Mlevena cigla (opeka)	$2,4\cdot 10^{8}$ *
Sirova šećerna trska	346
Aktivirana šećerna trska	410

* Izraženo kao broj ćelija po gramu nosača

4.4.3. KINETIKA ALKOHOLNE FERMENTACIJE U ŠARŽNOM BIOREAKTORU

Na slici 4.15 je prikazana promena koncentracije glukoze i etanola u toku šaržne alkoholne fermentacije sa ćelijama kvasca imobilisanih preko acil-azidnih grupa, na 30°C. Reakcija trošenja glukoze je očigledno reakcija pseudo-nultog reda:

$$-\frac{\mathrm{dS}}{\mathrm{dt}} = k_0 \tag{4.6}$$

odakle se, za početni uslov t = 0, $S = S_0$, izvodi sledeća zavisnost:

$$\mathbf{S} = \mathbf{S}_0 - \mathbf{k}_0 \cdot \mathbf{t} \tag{4.7}$$

Vrednost konstante brzine reakcije je $k_0 = 0,0807 g_{glukoza}/dm^3 \cdot h$, a specifična brzina potrošnje supstrata 1,43·10⁻³ $g_{glukoza}/g_{biokat} \cdot h$ ili 0,366 $g_{glukoza}/g_{kvasca} \cdot h$ (koeficijent linearne korelacije je 0,997); udeo biokatalizatora u fermentacionoj podlozi je 23,1 % v/v, a masa biokatalizatora je računata kao suva masa makroporoznog polimera. Koeficijent prinosa etanola u odnosu na supstrat je 0,371. Sa ćelijama kvasca imobilisanim u alginatnom gelu (4,45 % suve materije imobilisanih ćelija) Pejin i Razmovski (1992) su postigli brzinu trošenja glukoze u alkoholnoj fermentaciji 3,7 g/dm³·h i stepen konverzije glukoze u etanol 0,41, dok su Tyagi i sar. (1992) sa ćelijama kvasca imobilisanim na aktiviranoj šećernoj trsci (supstrat je melasa) ostvarili produktivnost od 31,8 g_{etanola}/dm³·h.

Slika 4.15 Promena koncentracije glukoze (S) i etanola (P) u toku alkoholne fermentacije u erlenmajeru na recipročnoj mućkalici (šaržni postupak; temperatura 30°C; 100 cm³ fermentacione podloge, 30 cm³ polimernih čestica - 5,66 g suvog polimera, sa imobilisanim ćelijama preko acil-azida)

Na slici 4.16 prikazana je promena koncentracije glukoze i etanola u toku alkoholne fermentacije sa ćelijama kvasca imobilisanim na makroporoznom polimernom nosaču postupkom sa vakuumom, a na slici 4.17 sa slobodno-suspendovanim ćelijama kvasca, na tri različite temperature. Potrošnja glukoze se može posmatrati kao reakcija pseudo-nultog reda. Vrednosti konstante brzine utroška supstrata, specifičnih brzina trošenja glukoze računate po jedinici suve biomase kvasca ili mase suvog polimernog nosača sa ćelijama kvasca i koeficijenta prinosa etanola u odnosu na potrošeni supstrat su prikazane u tabeli 4.7. Za izvođenje alkoholne fermentacije sa imobilisanim i slobodno suspendovanim ćelijama kvasca najpovoljnija temperatura je 30°C.

Slobodno suspendovane ćelije imaju oko 7 do 8 puta veću specifičnu brzinu trošenja glukoze nego imobilisane ćelije. Specifična brzina trošenja glukoze za ćelije imobilisane vakuumom (računata u odnosu na jedinicu mase suve biomase kvasca) je veća za oko 20 % nego za ćelije imobilisane preko acil-azidnih grupa. Kako je koncentracija ćelija u česticama polimera vakuum postupkom imobilizacije veća oko 6,5 puta, to je specifična brzina trošenja glukoze (računata u odnosu na jedinicu mase polimera) veća 7 do 8 puta u odnosu na polimerne čestice sa ćelijama kvasca imobilisanim preko acil-azidnih grupa.

Na osnovu vrednosti koeficijenta difuzije glukoze $(0,69\cdot10^{-9} \text{ m}^2/\text{s})$, brzine trošenja glukoze u alkoholnoj fermentaciji sa slobodno suspendovanim ćelijama (4,56 g_{glukoza}/dm³·h), početne koncentracije supstrata (40 g/dm³) i karakteristične dužine diska, posmatranog kao ravne ploče bez efekata krajeva (polovina debljine 0,75 mm) Thileov modul iznosi 0,114 (Levenspiel, 1979). Sa grafika zavisnosti faktora efektivnosti \mathscr{E} od Thileovog modula (Levenspiel, 1979) može se zaključiti da je za ovu vrednost Thileovog modula efektivnost ravna jedinici. Kako efektivnost predstavlja odnos brzine reakcije unutar pora sa brzinom reakcije pri zanemarljivom otporu difuzije kroz pore, brzine za slobodno suspendovane i imobilisane ćelije unutar polimernog nosača trebalo bi da budu jednake. Razlika koja se pojavljuje, nije rezultat otpora difuziji glukoze kroz tečni medijum unutar pora, već otpora prolazu tečnosti kroz pore zbog mehura izdvojenog ugljen(IV)-oksida.

Slika 4.16 Promena koncentracije glukoze i etanola u toku alkoholne fermentacije u erlenmajeru na recipročnoj mućkalici (šaržni postupak; 200 cm³ fermentacione podloge i 120 cm³ polimernih čestica, 22,64 g suvog polimera, sa imobilisanim ćelijama postupkom na vakuumu)

Slika 4.17 Promena koncentracije glukoze i etanola u toku alkoholne fermentacije slobodno suspendovanim ćelijama kvasca u erlenmajeru na recipročnoj mućkalici (šaržni postupak; sastav: 200 cm³ fermentacione podloge i 0,85 g sirove, žive biomase kvaščevih ćelija)

Tabela 4.7 Konstante brzine trošenja supstrata i dobijanja proizvoda, specifične brzine trošenja glukoze i nastajanja etanola po jedinici suve biomase kvasca ili mase suvog polimernog nosača i koeficijenti prinosa etanola u odnosu na potrošeni supstrat u toku alkoholne fermentacije sa slobodno suspendovanim ćelijama kvasca i imobilisanim na makroporozni polimerni nosač

	Slobodi	10-		Imobilisane preko		In	nobilisane	e vakuum	om	
Vrsta ćelije	suspend 0,247 g	lovane, (s.b.)/20	0 cm^3	acil-azida, 5,66 g polimera/100 cm ³	9,43 g p	olimera/1	100 cm^3	22,64 g	polimera/	100 cm^3
Temperatura alkoholne fermentacije, °C	26	30	35	30	26	30	35	26	30	35
$-dS/dt = k_s,$ g glukoze/dm ³ ·h	2,87	4,56	3,81	0,08	0,55	0,62	0,49	0,86	1,22	0,61
-1/X ₀ ·(dS/dt), g glukoze/h·g kvasca (s.b.)	2,32	3,69	3,10	0,37	0,45	0,50	0,40	0,29	0,42	0,21
-1/m _{POLIMER} ·(dS/dt) ·10 ² , g glukoze/h·g polimera *	-	-	-	0,14	1,17	1,31	1,04	0,76	1,08	0,54
$dP/dt = k_P,$ g etanola/dm ³ ·h	1,28	1,74	1,54	0,03	0,25	0,28	0,22	0,39	0,50	0,27
$1/X_0 \cdot (dP/dt),$ g etanola/h·g kvasca (s.b.)	1,03	1,41	1,25	0,14	0,20	0,23	0,18	0,13	0,17	0,09
$1/m_{POLIMER} \cdot (dP/dt) \cdot 10^2$, g etanola/h·g polimera *	-	-	-	0,05	0,53	0,59	0,46	0,35	0,45	0,24
$Y_{P/S}$ $g_{etanola}/g_{glukoze}$	0,45	0,38	0,40	0,37	0,45	0,45	0,43	0,45	0,41	0,44

*) Odnosi se na masu suvog makroporoznog polimera sa ćelijama kvasca, pri čemu je gustina suvog polimera 0,189 g/cm³.

4.4.4. POVRATNO MEŠANJE U KVM ZA OPERATIVNE USLOVE IZVOĐENJA ALKOHOLNE FERMENTACIJE

Aksijalna disperzija u tečnoj fazi ispitana je u KVM1 po završetku alkoholne fermentacije sa imobilisanim ćelijama kvasca, pri istim operativnim uslovima. U tabeli 4.8 date su eksperimentalno određene vrednosti parametara modela strujanja tečne faze, kao i vrednosti koeficijenata aksijalne disperzije izračunati na osnovu empirijske jednačine 3.82 za L-S sistem za KVM1 sa kuglicama prečnika 8,3 mm. Eksperimentalne i izračunate vrednosti koeficijenta aksijalne disperzije se razlikuju međusobno zbog različitog oblika (polipropilenske kuglice i makroporozni polimer oblika diska), veličine (kuglice prečnika 8,3 mm, a disk prečnika 12,7 mm i debljine 1,5 mm), udela čvrstih čestica (do 8,43 % i 23,6 %) i različite prividne brzine strujanja tečne faze (0,2 - 0,9 cm/s i oko 0,003 cm/s), respektivno. Za slučaj kada se vibraciona mešalica ne kreće (I = 0) koeficijent aksijalne disperzije je određen sa grafika zavisnosti disperzionog od Reynoldsovog broja za kolone sa nepokretnim slojem (Levenspiel, 1979) za Re = 0,193 (Reynoldsov broj je izračunat za ekvivalentni prečnik polimerne čestice 0,707 cm). S obzirom da KVM odstupa od uobičajenih kolona sa punjenjem (poroznost među čvrstim česticama znatno je veća), pojavljuje se razlika između eksperimentalne i izračunate vrednosti koeficijenta aksijalne disperzije.

Tabela 4.8 Parametri modela povratnog mešanja tečne faze u KVM1 za L-S sistem sa česticama biokatalizatora ($\varepsilon_s = 0,236$) za iste operativne uslove kao i pri alkoholnoj fermentaciji

I, cm/s	$U_{\rm L} \cdot 10^3,$ cm/s	C _q ⁰ , ppm	μ ₁ ', h	Ν	α	Pe	D _{L,exp} cm ² /s	${{D_{L,mod}}^{\#}} \ cm^2/s$
0	2,850	1,925	14,65	15,1	1,62	31,6	0,0159	$0,0053^{*}$
1	2,904	2,183	16,64	3,6	8,46	8,4	0,0607	0,0459
2	2,812	2,122	18,45	1,8	17,37	4,7	0,1050	0,1209
3	2,816	2,122	19,66	1,5	20,50	4,1	0,1193	0,2153

*) Vrednost koeficijenta aksijalne disperzije određena sa grafika za aksijalnu disperziju kroz nepokretne pakovane slojeve (Levenspiel, 1979)

#) Koeficijent aksijalne disperzije je izračunavan po jednačini 3.82

Na slici 4.18 prikazane su krive GRVZ u zavisnosti od normalizovanog vremena. Eksperimentalne krive GRVZ odgovaraju istim operativnim uslovima pri kojima je izvedena alkoholna fermentacija. Traser je dodavan posle završene alkoholne fermentacije, sa biokatalizatorom u koloni, pri istom protoku tečne faze i intenzitetu vibracije. Odstupanja od krive modela se objašnjavaju različitim graničnim uslovima primenjenim za izračunavanje: dok eksperimentalni postupak odgovara zatvoreno-otvorenim graničnim uslovima, GRVZ je izračunavana sa koeficijentom aksijalne disperzije za otvoreno-otvorene granične uslove.

Slika 4.18 Gustina raspodele vremena zadržavanja u KVM1 za L-S sistem (exp. - sa česticama biokatalizatora, $\varepsilon_s = 0,236$, za iste operativne uslove kao i pri alkoholnoj fermentaciji; mod. - po modelu za otvoreno-otvorene granične uslove, Pecletov broj izračunat iz podataka za $D_{L.mod}$)

4.4.5. KINETIKA ALKOHOLNE FERMENTACIJE U BIOREAKTORU SA VIBRACIONOM MEŠALICOM

Pošto je brzina alkoholne fermentacije veća u slučaju ćelija imobilisanih vakuumom, ovaj način imobilizacije je korišćen za pripremanje biokatalizatora za izvođenje procesa u KVM1. Proces alkoholne fermentacije je izveden pri intenzitetu vibracije od 0 do 3 cm/s, pod stacionarnim uslovima. Koncentracije glukoze i etanola, stepen konverzije i koeficijent prinosa etanola na izlazu iz bioreaktora prikazani su u tabeli 4.9. Proizvodnost etanola u KVM1, pri primenjenim operativnim uslovima, je 0,23 g/dm³/h. Čini se da intenzitet mešanja ima mali uticaj na trošenje glukoze, stvaranje proizvoda i koeficijent prinosa etanola u odnosu na utrošeni supstrat.

Tabela 4.9 Koncentracije supstrata i proizvoda na ulazu i izlazu iz kolone KVM1 u toku procesa alkoholne fermentacije sa ćelijama kvasca imobilisanim u porozni polimerni nosač

R. br.	I, cm/s	τ, h	$S_0, g/dm^3$	S, g/dm ³	S/S ₀	P, g/dm ³	P/S_0	Y _{P/S}
1	0	13,01	42,495	31,685	0,746	4,556	0,107	0,422
2	1	12,78	42,317	31,605	0,747	4,619	0,109	0,431
3	2	13,32	42,356	31,942	0,754	4,620	0,109	0,444
4	3	13,03	41,845	32,017	0,765	4,286	0,102	0,436

4.4.5.1. Reakcija pseudo-nultog reda

Za reakciju trošenja supstrata pseudo-nultog reda diferencijalna jednačina disperzionog modela je:

$$\frac{1}{\text{Pe}} \cdot \frac{d^2 \psi}{d\lambda^2} - \frac{d\psi}{d\lambda} - \text{Da} = 0$$
(4.8)

pri čemu je $\psi = S/S_0$. Jednačina 4.8 može da se reši analitički uz granične uslove koji su dati jednačinom 2.4. Rešenje u obliku zavisnosti normalizovane koncentracije od normalizovane dužine reaktora λ je:

$$\psi = 1 - \frac{\mathrm{Da}}{\mathrm{Pe}} \cdot \left[1 + \mathrm{Pe} \cdot \lambda - \mathrm{e}^{\mathrm{Pe} \cdot (\lambda - 1)} \right]$$
(4.9)

Za $\lambda = 1$ (izlaz iz reaktora) jednačina 4.9 postaje:

 $\psi = 1 - Da$

gde je Da = $k_s \cdot \tau / S_0$. Vrednost konstante brzine trošenja supstrata $k_s = 0,694 g_{glukoze}/dm^3/h$ je izračunata na osnovu specifične brzine trošenja supstrata (0,012 $g_{glukoze}/g_{biokatalizatora}/h$, prema podacima iz tabele 4.7), mase polimernih čestica sa kvascem (39 g) i zapremine tečne faze (670 cm³).

Promene normalizovane koncentracije supstrata duž idealnog cevnog i realnog bioreaktora KVM1, sa parametrima koji karakterišu alkoholnu fermentaciju (tabele 4.8 i 4.9), prikazane su na slici 4.19. Sa slike se vidi da je za reakciju pseudo-nultog reda razlika koncentracija supstrata u KVM1 i ICR po dužini reaktora veća ako je koeficijent aksijalne disperzije veći. Međutim, izlazna koncentracija iz oba reaktora je ista (u tački $\lambda = 1$).

Za reakcije dobijanja proizvoda pseudo-nultog reda diferencijalna jednačina disperzionog modela je:

$$\frac{1}{\text{Pe}} \cdot \frac{d^2 \psi}{d\lambda^2} - \frac{d\psi}{d\lambda} + \text{Da} = 0$$
(4.11)

pri čemu je $\psi = P/S_0$. Rešavanjem jednačine 4.11, uz granične uslove definisane jednačinama 4.12:

$$-\frac{1}{\text{Pe}} \cdot \frac{d\psi}{d\lambda} + \psi = 0, \text{ za } \lambda = 0$$

$$\frac{d\psi}{d\lambda} = 0, \text{ za } \lambda = 1$$
(4.12)

dobija se rešenje u obliku zavisnosti normalizovane koncentracije od normalizovane dužine reaktora λ :

$$\psi = \frac{\mathrm{Da}}{\mathrm{Pe}} \cdot \left[1 + \mathrm{Pe} \cdot \lambda - \mathrm{e}^{\mathrm{Pe} \cdot (\lambda - 1)} \right]$$
(4.13)

Za $\lambda = 1$ (izlaz iz reaktora) jednačina 4.13 postaje:

$\psi = \mathbf{D}\mathbf{a} \tag{4.14}$

gde je Da = $k_P \cdot \tau / S_0$, a $k_P = k_S \cdot Y_{P/S}$.

Promene normalizovane koncentracije etanola duž ICR i KVM1 sa povratnim mešanjem, sa parametrima koji karakterišu alkoholnu fermentaciju (tabele 4.8 i 4.9), prikazane su na slici 4.20. U tabeli 4.10 date su vrednosti normalizovanih i stvarnih koncentracija utrošenog supstrata i nastalog etanola na izlazu iz bioreaktora KVM1 (eksperimentalne i izračunate po matematičkom modelu za pseudo-nulti red reakcije fermentacije). Izračunate vrednosti koncentracije supstrata na izlazu iz KVM su veće a

koncentracije etanola manje od eksperimentalnih jer se kinetikom reakcije pseudo-nultog reda ne uzima u obzir povećanje biomase kvasca unutar makroporoznog polimera u toku alkoholne fermentacije. Promena biomase kvasca utiče na vrednost konstante brzine trošenja supstrata.

Kada bi se alkoholna fermentacija izvodila sa imobilisanim ćelijama kvasca u bioreaktoru nezavisno od proticanja tečne faze, trošenje glukoze i sinteza etanola zavisiće od kontaktnog vremena. Saglasno jednačinama 4.10 i 4.14, promene normalizovanih koncentracija glukoze i etanola na izlazu iz bioreaktora sa kontaktnim vremenom su linearne, a u slučaju KVM2 mogu se prikazati kao na slici 4.21.

Slika 4.19 Zavisnost normalizovane koncentracije supstrata od normalizovane dužine reaktora za pseudo-nulti red reakcije: a) I = 0, Pe = 31,6, $\tau = 13,01$ h, b) I = 1 cm/s, Pe = 8,4, $\tau = 12,78$ h, c) I = 2 cm/s, Pe = 4,7, $\tau = 13,32$ h, d) I = 3 cm/s, Pe = 4,1, $\tau = 13,03$ h

Tabela 4.10 Eksperimentalne i izračunate vrednosti normalizovanih i stvarnih koncentracija supstrata i proizvoda na izlazu iz bioreaktora KVM1

I, cm/s	$\Psi_{exp, S}$	$\psi_{mod,S}{}^{*}$	S _{exp} g/dm ³	S _{mod} g/dm ³	Ψ _{exp, P}	$\psi_{mod,P}^{}^{}$	P_{exp} g/dm ³	P_{mod} g/dm ³
0	0,746	0,787	31,685	33,466	0,107	0,090	4,556	3,806
1	0,747	0,790	31,605	33,447	0,109	0,090	4,619	3,824
2	0,754	0,782	31,942	33,112	0,109	0,097	4,620	4,101
3	0,765	0,784	32,017	32,802	0,102	0,094	4,286	3,944

* matematički model za pseudo-nulti red reakcije: za trošenje supstrata (jednačina 4.10) i dobijanje proizvoda (jednačina 4.14)

Slika 4.20 Zavisnost normalizovane koncentracije proizvoda od normalizovane dužine reaktora za pseudo-nulti red reakcije: a) I = 0 cm/s, Pe = 31,6, τ = 13,01 h, b) I = 1 cm/s, Pe = 8,4, τ = 12,78 h, c) I = 2 cm/s, Pe = 4,7, τ = 13,32 h, d) I = 3 cm/s, Pe = 4,1, τ = 13,03 h

Slika 4.21 Zavisnost normalizovanih koncentracija glukoze i etanola od kontaktnog vremena u KVM2 za pseudo-nulti red reakcije ($k_s = 0,694 \text{ g/dm}^3 \cdot \text{h}$, $S_0 = 40 \text{ g/dm}^3$, $Y_{P/S} = 0,44$, $\varepsilon_s = 0,236$)

4.4.5.2. Reakcija sa Monodovom kinetikom

Za reakciju trošenja supstrata u toku fermentacije koja se pokorava kinetici po Monodovom modelu važi sledeća diferencijalna jednačina disperzionog modela:

$$\frac{1}{\text{Pe}} \cdot \frac{\text{d}^2 \text{S}}{\text{d}\lambda^2} - \frac{\text{d} \text{S}}{\text{d}\lambda} + \tau \cdot \left(-\text{R}_{\text{S}}\right) = 0$$
(4.15)

u kojoj je brzina trošenja supstrata data jednačinom:

$$\left(-R_{S}\right) = \frac{\mu_{m} \cdot S}{K_{S} + S} \cdot \frac{X}{Y_{X/S}}$$
(4.16)

a promena koncentracije biomase:

$$X = X_0 + Y_{X/S} (S_0 - S)$$
(4.17)

Zamenom jednačina 4.16 i 4.17 u jednačinu 4.15 i normalizacijom koncentracije supstrata S sa početnom koncentracijom supstrata S_0 , dobija se sledeća diferencijalna jednačina:

$$\frac{1}{\text{Pe}} \cdot \frac{d^2 \psi}{d\lambda^2} - \frac{d\psi}{d\lambda} + \tau \cdot K_1 \frac{\left(K_2 - Y_{X/S} \cdot \psi\right) \cdot \psi}{K_3 + \psi} = 0$$
(4.18)

gde je: $K_1 = \frac{\mu_m}{Y_{X/S}}$; $K_2 = \frac{X_0}{S_0} + Y_{X/S}$ i $K_3 = \frac{K_S}{S_0}$.

Jednačina 4.18 može da se reši samo numerički, na primer, uvođenjem aproksimacija:

$$\frac{d^{2}\psi_{(\lambda)}}{d\lambda^{2}} \approx \frac{1}{(\Delta L)^{2}} \cdot \left[\psi_{(\lambda+\Delta L)} - 2\psi_{(\lambda)} + \psi_{(\lambda-\Delta L)}\right]$$

$$\frac{d\psi_{(\lambda)}}{d\lambda} \approx \frac{1}{\Delta L} \cdot \left[\psi_{(\lambda+\Delta L)} - \psi_{(\lambda)}\right]$$

$$k \cdot \Delta L_{*} \Delta L = \frac{\lambda}{\Delta L} \quad i \quad k = 1, 2, \dots, N,$$
(4.19)

gde je: $\lambda = k \cdot \Delta L$, $\Delta L = \frac{\lambda}{N}$ i k = 1, 2, ..., N.

Za granične uslove definisane jednačinom 2.4 dobija se:

$$\begin{bmatrix} B + \frac{1}{1 + Pe \cdot \Delta L} & A & 0 & \dots & 0 & 0 & 0 \\ 1 & B & A & \dots & 0 & 0 & 0 \\ \vdots & \vdots \\ 0 & 0 & 0 & \dots & 1 & B & A \\ 0 & 0 & 0 & \dots & 0 & 1 & A + B \end{bmatrix} \cdot \begin{bmatrix} \Psi_1 \\ \Psi_2 \\ \vdots \\ \Psi_{N-1} \\ \Psi_N \end{bmatrix} + \begin{bmatrix} \frac{C \cdot (K_2 - Y_{X/S} \cdot \Psi_1) \cdot \Psi_1}{K_3 + \Psi_1} \cdot \frac{Pe \cdot \Delta L}{1 + Pe \cdot \Delta L} \\ \frac{C \cdot (K_2 - Y_{X/S} \cdot \Psi_2) \cdot \Psi_2}{K_3 + \Psi_2} \\ \vdots \\ \frac{C \cdot (K_2 - Y_{X/S} \cdot \Psi_{N-1}) \cdot \Psi_{N-1}}{K_3 + \Psi_{N-1}} \\ \frac{C \cdot (K_2 - Y_{X/S} \cdot \Psi_N) \cdot \Psi_N}{K_3 + \Psi_N} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ 0 \end{bmatrix} (4.20)$$

gde je: A = 1-Pe· Δ L, B = Pe· Δ L-2 i C = $\tau \cdot K_1 \cdot Pe \cdot \Delta L^2$.

Za trošenje supstrata u idealnom cevnom reaktoru rešenje jednačine 4.16 je:

$$K_1 \cdot \mu \cdot \tau = K_2 \cdot \ln \frac{K_1 - K_3 \cdot \psi}{X_0} - K_4 \cdot \ln \psi$$
(4.21)

gde je: $\psi = S/S_0$, $K_1 = X_0 + Y_{X/S} \cdot S_0$, $K_2 = X_0 + Y_{X/S} \cdot (K_S + S_0)$, $K_3 = Y_{X/S} \cdot S_0$ i $K_4 = K_S \cdot Y_{X/S}$.

Za reakciju nastajanja proizvoda u fermentaciji koja se odvija po Monodovom modelu, diferencijalna jednačina disperzionog modela je:

$$\frac{1}{\text{Pe}} \cdot \frac{\text{d}^2 P}{\text{d}\lambda^2} - \frac{\text{d} P}{\text{d}\lambda} + \tau \cdot \left(\text{R}_{P}\right) = 0$$
(4.22)

u kojoj je brzina nastajanja proizvoda data jednačinom:

$$\left(\mathbf{R}_{\mathbf{P}}\right) = \frac{\mu_{\mathrm{m}} \cdot \mathbf{Y}_{\mathbf{P}/\mathbf{X}} \cdot \mathbf{S} \cdot \mathbf{X}}{\mathbf{K}_{\mathrm{S}} + \mathbf{S}}$$
(4.23)

promena koncentracije supstrata je:

gde je:

$$S = S_0 - \frac{P}{Y_{P/S}}$$
(4.24)

dok je promena koncentracije biomase definisana jednačinom 4.17.

Zamenom jednačina 4.17, 4.23 i 4.24 u jednačinu 4.22 i normalizacijom koncentracije proizvoda sa početnom koncentracijom supstrata, dobija se sledeća diferencijalna jednačina:

$$\frac{1}{\text{Pe}} \cdot \frac{d^2 \psi}{d\lambda^2} - \frac{d\psi}{d\lambda} + \tau \cdot K_1 \frac{\left(K_3 + K_2 \cdot \psi\right) \cdot \left(Y_{\text{P/S}} - \psi\right)}{K_4 - \psi} = 0 \tag{4.25}$$
$$K_1 = \mu_m \cdot Y_{\text{P/X}}; K_2 = \frac{Y_{\text{X/S}}}{Y_{\text{P/S}}}; K_3 = \frac{X_0}{S_0} \text{ i } K_4 = Y_{\text{P/S}} \cdot \left(\frac{K_S}{S_0} + 1\right).$$

Jednačina 4.25 rešava se numerički, uvođenjem aproksimacija 4.19. Za granične uslove zadate jednačinom 4.12 dobija se:

$$\begin{bmatrix} \mathbf{B} + \frac{1}{1 + \mathbf{Pe} \cdot \Delta \mathbf{L}} & \mathbf{A} & \mathbf{0} & \dots & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ 1 & \mathbf{B} & \mathbf{A} & \dots & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \vdots & \vdots \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \dots & \mathbf{1} & \mathbf{B} & \mathbf{A} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \dots & \mathbf{0} & \mathbf{1} & \mathbf{A} + \mathbf{B} \end{bmatrix} \cdot \begin{bmatrix} \Psi_{1} \\ \Psi_{2} \\ \vdots \\ \Psi_{N-1} \\ \Psi_{N} \end{bmatrix} + \begin{bmatrix} \frac{\mathbf{C} \cdot (\mathbf{K}_{3} + \mathbf{K}_{2} \cdot \Psi_{1}) \cdot (\mathbf{Y}_{P/S} - \Psi_{1})}{\mathbf{K}_{4} - \Psi_{2}} \\ \vdots \\ \mathbf{C} \cdot (\mathbf{K}_{3} + \mathbf{K}_{2} \cdot \Psi_{N-1}) \cdot (\mathbf{Y}_{P/S} - \Psi_{N-1})}{\mathbf{K}_{4} - \Psi_{N-1}} \\ \frac{\mathbf{C} \cdot (\mathbf{K}_{3} + \mathbf{K}_{2} \cdot \Psi_{N}) \cdot (\mathbf{Y}_{P/S} - \Psi_{N-1})}{\mathbf{K}_{4} - \Psi_{N}} \end{bmatrix} = \begin{bmatrix} \mathbf{0} \\ \mathbf{0} \\ \vdots \\ \mathbf{0} \\ \mathbf{0} \end{bmatrix} (4.26)$$

gde je: A = 1-Pe· Δ L, B = Pe· Δ L-2 i C = $\tau \cdot K_1 \cdot Pe \cdot \Delta L^2$.

Za nastajanje proizvoda u idealnom cevnom reaktoru rešenje jednačine 4.23 je:

$$K_{1} \cdot \tau = K_{2} \cdot \ln \frac{K_{3} + K_{4} \cdot \psi}{K_{3}} + K_{5} \cdot \ln \frac{Y_{P/S}}{Y_{P/S} - \psi}$$
(4.27)

gde je: $\psi = P/S_0$, $K_1 = \mu_m \cdot Y_{P/X}$, $K_2 = \frac{\left(K_S + S_0\right) \cdot Y_{P/S} + \frac{Y_{P/X} \cdot X_0}{Y_{X/S}}}{\left(K_S + S_0\right) \cdot \left(Y_{X/S}\right)^2 \cdot X_0}$, $K_3 = \frac{X_0}{S_0}$, $K_4 = \frac{Y_{X/S}}{Y_{P/X}}$

i
$$\mathbf{K}_5 = \frac{\mathbf{K}_S \cdot \mathbf{Y}_{P/S}}{(\mathbf{K}_S + \mathbf{S}_0) \cdot (\mathbf{Y}_{X/S})^2 \cdot \mathbf{X}_0}.$$

Konstanta zasićenja za kvasac *Saccharomyces cerevisiae*, kada je supstrat glukoza, iznosi 0,025 g/dm³ (Popov, 2000), a maksimalna specifična brzina mikrobnog rasta na 30°C

je 0,301 h⁻¹ (Asenjo i Merchuk, 1995). U uslovima izvođenja alkoholne fermentacije kao reakcije pseudo-nultog reda, brzina trošenja supstrata je oko sedam puta manja sa ćelijama kvasca imobilisanim na polimernom nosaču nego sa slobodno suspendovanim ćelijama. Saglasno tome, može se pretpostaviti da maksimalna specifična brzina mikrobnog rasta ćelija kvasca imobilisanih na polimeru iznosi 0,043 h⁻¹. Sa ovim vrednostima parametara Monodove jednačine mikrobnog rasta mogu se, pomoću jednačina 4.20, 4.21, 4.26 i 4.27, izračunati normalizovane koncentracije glukoze i etanola duž ICR i KVM1 sa povratnim mešanjem. Na slikama 4.22 i 4.23 prikazane su zavisnosti normalizovanih koncentracija glukoze i etanola od normalizovane dužine bioreaktora. Sa slika se može videti povoljan uticaj aksijalne disperzije na ovakav tip reakcija, koji se ogleda u većem stepenu konverzije supstrata i većem prinosu proizvoda u odnosu na proces u ICR. Utrošak supstrata i prinos proizvoda je veći ukoliko je veći koeficijent aksijalne disperzije. U suštini, aksijalna disperzija "ujednačava" koncentracije duž reaktora, što kinetički odgovara mikrobnim fermentacijama i autokatalizovanim reakcijama. U tabeli 4.11 date su vrednosti normalizovanih i stvarnih koncentracija utrošenog supstrata i nastalog etanola na izlazu iz bioreaktora KVM1 i ICR (eksperimentalne i po matematičkom modelu za reakciju fermentacije po Monodovom modelu). Razlike vrednosti normalizovanih i stvarnih koncentracija glukoze i etanola na izlazu iz bioreaktora su manje ako se primeni Monodov model kinetike alkoholne fermentacije (tabela 4.11) u odnosu na model alkoholne fermentacije po pseudo-nultom redu reakcije (tabela 4.10).

Slika 4.22 Zavisnost normalizovane koncentracije glukoze od normalizovane dužine reaktora za kinetiku po Monodovom modelu ($\mu_{m,imob} = 0.043 \text{ h}^{-1}$, $K_s = 0.025 \text{ g/dm}^3$, $X_0 = 1.54 \text{ g/dm}^3$, $X = 2.86 \text{ g/dm}^3$, a) I = 0 cm/s, Pe = 31.6, $\tau = 13.01 \text{ h}$, b) I = 1 cm/s, Pe = 8.4, $\tau = 12.78 \text{ h}$, c) I = 2 cm/s, Pe = 4.7, $\tau = 13.32 \text{ h}$, d) I = 3 cm/s, Pe = 4.1, $\tau = 13.03 \text{ h}$)

Slika 4.23 Zavisnost normalizovane koncentracije etanola od normalizovane dužine reaktora za kinetiku po Monodovom modelu ($\mu_{m,imob} = 0,043 \text{ h}^{-1}$, $K_s = 0,025 \text{ g/dm}^3$, $X_0 = 1,54 \text{ g/dm}^3$, $X = 2,86 \text{ g/dm}^3$, a) I = 0 cm/s, Pe = 31,6, $\tau = 13,01 \text{ h}$, b) I = 1 cm/s, Pe = 8,4, $\tau = 12,78 \text{ h}$, c) I = 2 cm/s, Pe = 4,7, $\tau = 13,32 \text{ h}$, d) I = 3 cm/s, Pe = 4,1, $\tau = 13,03 \text{ h}$)

Tabela 4.11 Eksperimentalne i izračunate vrednosti normalizovanih i stvarnih koncentracija supstrata i proizvoda na izlazu iz bioreaktora KVM1

I, cm/s	Ψ _{exp, S}	$\psi_{mod,S}^{}^{*}$	S _{exp} g/dm ³	S_{mod} g/dm ³	Ψ _{exp, P}	$\psi_{mod, P}^{} ^{*}$	P_{exp} g/dm ³	P_{mod} g/dm ³
0	0,746	0,771	31,685	32,771	0,107	0,096	4,556	4,099
1	0,747	0,764	31,605	32,301	0,109	0,102	4,619	4,315
2	0,754	0,740	31,942	31,358	0,109	0,115	4,620	4,879
3	0,765	0,756	32,017	31,626	0,102	0,106	4,286	4,438

* matematički model za kinetiku alkoholne fermentacije po Monodovom modelu: za trošenje supstrata (jednačina 4.20) i dobijanje proizvoda (jednačina 4.26)

Na slici 4.24 prikazane su zavisnosti normalizovanih koncentracija glukoze i etanola od kontaktnog vremena za izvođenje alkoholne fermentacije, koja se može definisati Monodovim modelom, u KVM2, za različite vrednosti Pecletovog broja. Jasno se uočava da se, sa smanjenjem Pecletovog broja, reakcija ubrzava za iste ostale operativne uslove, čime se pokazuje povoljan uticaj povratnog mešanja na fermentacije definisane Monodovim modelom.

Slika 4.24 Zavisnost normalizovanih koncentracija glukoze (S) i etanola (P) od kontaktnog vremena za alkoholnu fermentaciju po Monodovom modelu koja bi se izvodila u KVM2, sa ćelijama kvasca imobilisanim u polimerni nosač ($\mu_{m,imob} = 0,043 \text{ h}^{-1}$, $K_s = 0,025 \text{ g/dm}^3$, $X_0 = 1,54 \text{ g/dm}^3$, $X = 2,86 \text{ g/dm}^3$, $S_0 = 40 \text{ g/dm}^3$, $Y_{P/S} = 0,44$, $\varepsilon_s = 0,236$)

4.5. ZAKLJUČAK

Izvršena je sinteza makroporoznog umreženog polimera od metilmetakrilata i akrilamida. Kao umreživač je korišćen metilolni derivat glikolurila, a reakcije umrežavanja su reakcije kondenzacionog tipa. Dobijeni umreženi makroporozni polimer se ne rastvara i ne bubri u vodi i organskim rastvaračima, ima temperaturu ostakljivanja 130°C, stabilan je do 250°C i nema kristalnih zona. Ukupna poroznost je oko 3,2 cm³/g, slobodna površina 22,7 m²/g, a srednji prečnik najzastupljenijih pora u opsegu 0,2 do 2 μm. Dobijeni makroporozni polimerni materijal se može upotrebiti kao nosač pri imobilizaciji enzima ili ćelija mikroorganizama.

Izvedena je imobilizacija živih ćelija kvasca *Saccharomyces cerevisiae* preko acilazidnih grupa i pomoću vakuuma. Brzina alkoholne fermentacije u laboratorijskom šaržnom bioreaktoru je oko 7 do 8 puta manja sa imobilisanim nego sa slobodno suspendovanim ćelijama kvasca u istim uslovima. Koeficijent prinosa etanola u odnosu na supstrat je u opsegu 0,371 do 0,454

Alkoholna fermentacija sa suspendovanim i imobilisanim ćelijama kvasca odvija se kao reakcija pseudo-nultog reda, kao posledica daleko veće koncentracije supstrata od Monodove konstante zasićenja. Najveća brzina trošenja supstrata je na 30 °C.

Rešenja diferencijalnih jednačina bilansa mase glukoze i etanola u bioreaktoru u kome se odvija alkoholna fermentacija, nezavisno od njene kinetike (reakcija pseudo-nultog reda ili po Monodovom modelu) se relativno dobro slažu sa eksperimentom. Rešenja diferencijalne jednačine disperzionog modela za fermentaciju po Monodovom modelu pokazuju povoljan uticaj aksijalne disperzije na efekat bioprocesa.

Pokazano je da se KVM može uspešno primeniti kao reaktor za mikrobne fermentacije i autokatalizovane reakcije. Kada bi se povećala koncentracija biomase u polimernom nosaču (što bi ubrzalo reakciju alkoholne fermentacije), mogla bi se povećati prividna brzina strujanja tečne faze (fermentacione podloge) i skratiti potrebno kontaktno vreme.

5. LITERATURA

- 1. Adamski, R. P., Beshouri, S. M., Chamupathi, V. G., "Process to Prepare Low Density Porous Cross-Linked Polymeric Materials", WO 9745456 (1997).
- 2. Aravamudan, K., Baird, M. H. I., "Effect of Unstable Density Gradients Back-Mixing in a Reciprocating Plate Column", *AIChE J.* 42 (8) (1996) 2128 2140.
- 3. Arthayukti, W., Muratet, G., Angelino, H., "Longitudinal Mixing in the Dispersed Phase in Pulsed Perforated-Plate Columns", *Chem. Eng. Sci.* 31 (1976) 1193 1197.
- 4. Asenjo, J. A., Merchuk, J. C., Bioreactor System Design, Marcel Dekker Inc., New York, 1995, pp. 161 166.
- 5. Audet, J., Lounes, M., Thibault, J., "Pullulan Fermentation in a Reciprocating Plate Bioreactor", *Bioprocess Eng.* 15 (1996a) 209 214.
- Audet, J., Thibault, J., LeDuy, A., "Polysaccharide Concentration and Molecular Weight Effects on the Oxygen Mass Transfer in a Reciprocating Plate Bioreactor", *Biotechnol. Bioeng.* 52 (1996b) 507 - 517.
- Audet, J., Gagnon, H., Lounes, M., Thibault, J., "Polysaccharide Productin: Experimental Comparison of the Performance of Four Mixing Devices", *Bioprocess Eng.* 19 (1998) 45 - 52.
- 8. Bailey, J. E., Ollis, D. F., Biochemical Engineering Fundamentals, McGraw-Hill, Inc., 1987, pp. 5 164.
- 9. Baird, M. H. I., "Axial Dispersion in a Pulsed Plate Column", *Can. J. Chem. Eng.* 52 (1974) 750 757.
- Baird, M. H. I., Rama Rao, N. V., "Characteristics of a Countercurrent Reciprocating Plate Bubble Column. II. Axial Mixing and Mass Transfer", *Can. J. Chem. Eng.* 66 (1988) 222 - 231.
- 11. Baird, M. H. I., Rama Rao, N. V., "Axial Mixing in a Reciprocating Plate with Very Small Density Gradients", *AIChE J.* 37 (7) (1991) 1019 1026.
- 12. Baird, M. H. I., Rama Rao, N. V., Vijayan, S., "Axial Mixing and Mass Transfer in a Vibrating Perforated Plate Extraction Column", *Can. J. Chem. Eng.* 70 (1992) 69 76.
- Baird, M. H. I., Rama Rao, N. V., Prochazka, J., Sovova, H., "Reciprocating Plate Columns", Liquid-Liquid Extraction Equipment, John Wiley & Sons Ltd, 1994, 307 -362.
- 14. Baird, M. H. I., Rama Rao, N. V., "Pressure Drops in Gas-Liquid Flow in a 15 cm Reciprocating Plate Column", *Can. J. Chem. Eng.* 75 (1997) 282 289.
- 15. Baird, M. H. I., Rama Rao, N. V., "Axial Mixing in a 15 cm Diameter Reciprocating Plate Bubble Column", *Can. J. Chem. Eng.* 76 (1998) 370 378.
- Baird, M. H. I, Rice, R. G., "Axial Dispersion in Large Unbaffled Column", Chem. Eng. J. 9 (1975) 171 - 174.
- Banković Ilić, I., Veljković, V., Lazić, M., Skala, D., "Power Consumption and Gas Holdup in a Gas-Liquid Reciprocating Plate Column", *Chem. Eng. Comm.* 134 (1995) 17 - 32.
- 18. Barby, D., Haq, Z., "Low Density Porous Cross-Linked Polymeric Materials and Their Preparation and Use as Carriers for Included Liquids", US Patent 4,522,953 (1985).
- 19. Bass, M., Brownscombe, T. F., "Process for Preparing Low Density Porous Crosslinked Polymeric Materials", US Patent 5,210,104 (1993).

- Bell, R., Babb, A. L., "On the Extension of the Method of Moments to a Cascade of Well-Mixed Discrete Stages with Back-Flow Between Stages", *Chem. Eng. Sci.* 20 (1965) 1001 - 1006.
- 21. Bertolini, M. C., Ernandes, J. R., Laluce, C., "New Yeast Strains for Alcoholic Fermentation at Higher Sugar Concentration", *Biotechnol. Lettrs.* 13 (1991) 197 202.
- 22. Beshouri, S. M., "Process for Preparing Low Density Porous Crosslinked Polymeric Materials", US Patent 5,200,433 (1993).
- 23. Bisping, B., Rehm, H. J., "Glicerol Production by Cells of *Saccharomyces cerevisiae* Immobilized in Sintered Glass", *Appl. Microbiol. Biotechnol.* 23 (1986) 174 - 179.
- Bisping, B., Hecker, D., Rehm, H. J., "Glycerol Production by Semicontinuous Fed-Batch Fermentation with Immobilized Cells of Saccharomyces cerevisiae", Appl. Microbiol. Biotechnol. 32 (1989) 119 - 123.
- 25. Boyle, J., "Gas-Liquid Contacting in a Reciprocating Plate Column", Ph D., Univ. New Brunswick, Canada (1975).
- 26. Brauer, H., Sucker, D., "Biological Waste Water Tretment in a High Efficiency Reactor", *Ger. Chem. Eng.* 2 (1979) 77 86.
- 27. Brauer, H., "Growth of Fungi and Bacteria in the Reciprocating Jet Bioreactor", *Bioprocess Eng.* 6 (1991) 1 15.
- 28. Brownscombe, F., Gergen, W. P., Mores, M., "Process for Preparing Low Density Porous Cross-Linked Polymeric Materials", WO 9324535 (1993).
- Cabral, J. M. S., Novais, J. M., Kennedy, J. F., "Imobilization Studies of Whole Microbial Cells on Transition Metal Activated Inorganic Supports", *Appl. Microbiol. Biotechnol.* 23 (1986) 157 - 162.
- Cooper, A., "Polymer Synthesis and Processing Using Supercritical Carbon Dioxide", J. Mater. Chem. 10 (2000a) 207 - 234.
- Cooper, A., Wood, C., Holmes, A., "Synthesis of Well-Defined Macroporous Polymer Monoliths by Sol-Gel Polymerization in Supercritical CO₂", *Ind. Eng. Chem. Res.* 39 (2000b) 4741 - 4744.
- 32. Cova, D. R., "Axial Mixing in the Liquid Phase in Gas-Sparged Column," *Ind. Eng. Chem. Process Design Develop.* 13 (1974) 292 301.
- 33. Danckwerts, P. V., "Continuous Flow Systems: Distribution of Residence Times", *Chem. Engng. Sci.* 2 (1953) 1 13.
- 34. Dechant, J., Danz, R., Kimmer, W., Schmolke, R., Ultrarot-spektroskopische untersuchungen an polymeren, Akademie-Verlag, Berlin, 1972, pp. 269 273.
- DesMarais, T. A., Stone, K. J., Thompson, H. A., Young, G. A., LaVon, G. D., Dyer, J. C., "Absorbent Foam Materials for Aqueous Body Fluids and Absorbent Articles Containing Such Materials", US Patent 5,260,345 (1993a).
- DesMarais, T. A., Stone, K. J., Thompson, H. A., Young, G. A., LaVon, G. D., Dyer, J. C., "Absorbent Foam Materials for Aqueous Body Fluids and Absorbent Articles Containing Such Materials", US Patent 5,268,224 (1993b).
- DesMarais, T. A., Stone, K. J., Thompson, H. A., Young, G. A., LaVon, G. D., Dyer, J. C., "Absorbent Foam Materials for Aqueous Body Fluids and Absorbent Articles Containing Such Materials", US Patent 5,331,015 (1994).
- D'Souza, S. F., Kamath, N., "Cloth Bioreactor Contaning Yeast Cells Immobilized on Cotton Cloth Using Polyethylenimine, *Appl. Microbiol. Biotechnol.* 29 (1988) 136 -140.
- 39. Edwards, C. J. C., Gregory, D. P., Sharples, M., "Low Density Porous Elastic Cross-Linked Polymeric Materials and Their Preparation", US Patent 4,788,225 (1988).

- 40. Fogler, S., Elements of Chemical Reaction Engineering, 2nd edition, Prentice-Hall, New Jersey, 1992, pp. 708 806.
- Франк, Г. М., Молекулы и клетки, выпуск шестой, "МИР", Москва, 1977, pp. 184 -198.
- 42. Gagnon, H., Lounes, M., Thibault, J., "Power Consumption and Mass Transfer in Agitated Gas-Liquid Columns: A Comparative Study", *Can. J. Chem. Eng.* 76 (1998) 379 389.
- 43. Gagnon, H., Thibault, J., Cormier, F., Do, C. B., "Vitis vinifera Culture in a Non-Conventional Bioreactor: the Reciprocating Plate Bioreactor", *Bioprocess Eng.* 21 (1999) 405 413.
- 44. Goldman, S. A., Scheibel, J. J., "Use of Polyglycerol Aliphatic Ether Emulsifiers in Making High Internal Phase Emulsions That Can Be Polymerized to Provide Absorbent Foams", US Patent 5,500,451 (1996).
- 45. Gomaa, H. G., Landau, J., Al Taweel, A. M., "Gas-Liquid Contacting in Reciprocating Plate Columns: I. Hydrodynamics", *Can. J. Chem. Eng.* 69 (1991) 228 239.
- 46. Gregory, D. P., Sharples, M., Tucker, I. M., "Porous material", EP-A-0299762 (1989).
- Groboillot, A., Pons, M. N., Engasser, J. M., "Monitoring of Volatiles in Alcoholic Fermentations on Molasses Via a Gas Membrane Sensor", *Appl. Microbiol. Biotechnol.* 32 (1989) 37 - 44.
- 48. Hafez, M. M., Baird, M. H. I., Nirdosh, I., "Flooding and Axial Dispersion in Reciprocating Plate Extraction Columns", *Can. J. Chem. Eng.* 57 (1979) 150 158.
- 49. Haq, Z., "Porous Cross-Linked Absorbent Polymeric Materials", US Patent 4,536,521 (1985).
- 50. Holmes, T. L., Karr, A. E., Baird, M. H. I., "Effect of Unfavorable Continuous Phase Density Gradient on Axial Mixing", *AIChE J.* 37 (3) (1991) 360 366.
- Jain, D. K., Tyagi, R. D., Kluepfel, D., Agbebavi, T. J., "Production of Propionic Acid from Whey Ultrafiltrate by Immobilized Cells of *Propionibacterium shermanii* in Batch Process", *Process Biochem.* 26 (1991) 217 - 223.
- Jovanović, S., Nastasović, A., Jovanović, N., Jeremić, K., Savić, Z., "The Influence of Inert Component Composition on the Porous Structure of Glycidyl Methacrylate/Ethylene Glycol Dimethacrylate Copolymers", *Angew. Makromol. Chem.* 219 (1994) 161 - 168.
- 53. Jovanović, S., Nastasović, A., Novaković, T., Jovanović, N., "Uticaj sastava inertne komponente na parametre porozne sttrukture GMA-co-EGDMA", *Hem. Ind.* 53 (11) 372 376 (1999).
- Jovanović, S., Nastasović, A., Jovanović, N., Novaković, T., Vuković, Z., Jeremić, K., "Synthesis, Properties and Applications of Crosslinked Macroporous Copolymers Based on Methacrylates", *Hem. Ind.* 54 (11) (2000) 471 - 479.
- 55. Кабанов, В. А., Энциклопедия полимеров, "Советская Энциклопедия", Москва, 1974, pp. 29 32.
- 56. Karr, A. E., "Performance of Reciprocating Plate Extraction Columns", *AIChE J.* 5 (1959) 446 452.
- 57. Karr, A. E., Gebert, W., Wang, M., "Extraction of Whole Fermentation Broth with Karr Reciprocating Plate Extraction Column", *Can. J. Chem. Eng.* 58 (1980) 249 252.
- Karr, A. E., Ramanujam, S., Lo, T. C., Baird, M. H. I., "Axial Mixing and Scaleup of Reciprocating Plate Columns", *Can. J. Chem. Eng.* 65 (1987) 373 - 381.
- 59. Kato, Y., Nishiwaki, A., "Longitudinal Dispersion Coefficient of a Liquid in a Bubble Column", *Intern. Chem. Eng.* 125 (1972) 182 187.

- 60. Kim, S. D., Baird, M. H. I., "Axial Dispersion in a Reciprocating Plate Extraction Column", *Can. J. Chem. Eng.* 54 (1976a) 81 89.
- 61. Kim, S. D., Baird, M. H. I., "Effect of Hole Size on Hydrodynamics of a Reciprocating Perforated Plate Extraction Column", *Can. J. Chem. Eng.* 54 (1976b) 235 237.
- 62. Kojić, M., Botanika, Naučna knjiga, Beograd, 1984.
- 63. Legmann, R., Margalith, P., "Ethanol Formation by Hybrid Yeasts", *Appl. Microbiol. Biotechnol.* 23 (1986) 198 - 202.
- 64. Levenspiel, O., "Osnovi teorije i projektovanja hemijskih reaktora", prevod na srpski jezik, TMF-ICS, Beograd, 1979, pp. 251 313.
- Lo, T. C., Prochazka, J., "Reciprocating-Plate Extraction Columns", Chapter 12 in Handbook of Solvent Extraction (Lo, T. C., Baird, M. H. I., Hanson, C., Eds.), (1991) 373 - 389.
- 66. Lounes, M., Thiboult, J., "Hydrodynamics and Power Consumption of a Reciprocating Plate Gas-Liquid Column", *Can. J. Chem. Eng.* 71 (1993) 497 506.
- 67. Lounes, M., Thibault, J., "Mass Transfer in a Reciprocating Plate Bioreactor", *Chem. Eng. Comm.* 127 (1994) 169 189.
- 68. Lounes, M., Audet, J., Thibault, J., LeDuy, A., "Description and Evaluation of a Reciprocating Plate Bioreactors", *Bioproc. Eng.* 13 (1995) 1 11.
- 69. Lounes, M., Thibault, J., "Axial Dispersion in a Reciprocating Plate Column", *Can. J. Chem. Eng.* 74 (1996a) 187 194.
- Lounes, M., Thibault, J., "Hydrodynamics, Power Consumption and Mass transfer in a Reciprocating Plate Gas - Liquid Column", Chap. 20 in "Mixed - Flow Hydrodynamics", Advances in Engineering Fluid Mechanics Series, (1996b), p. 457 -498.
- 71. MacGregor, D. C., "Cardiovascular Prosthetic Devices and Implants with Porous Systems", US Patent 4,101,984 (1978).
- 72. MacGregor, D. C., "Cardiovascular Prosthetic Devices and Implants with Porous Systems", US Patent 4,627,836 (1986).
- 73. Michell, R. W., Furzer, I. A., "Mixing in Trickle Flow Through Packed Beds", *Chem. Eng. J.* 4 (1972) 53 63.
- 74. Mišović, J., Ast, T., Instrumentalne metode hemijske analize, TMF, Beograd, 1987, 20 214.
- 75. Miyanami, K., Tojo, K., Minami, I., Yano, T., "Gas-Liquid Mass Transfer in Vibrating Disc Column", *Chem. Engng. Sci.* 33 (1978) 601 608.
- 76. Miyauchi, T., Oya, H., "Longitudinal Dispersion in Pulsed Perforated-Plate Columns", *AIChE J.* 11 (1965) 395 402.
- 77. Miyauchi, T., Vermeulen, T., "Diffusion and Back-Flow Models for Two-Phase Axial Dispersion", *Ind. Eng. Chem. Fund.* 2 (1963) 304 311.
- 78. Mork, S. W., Park, C. P., "High Internal Phase Emulsions and Porous Materials Prepared Therefrom", WO 9909070 (1998).
- 79. Mosbach, K., Methods in Enzymology, Academic Press, London, vol. 137 (1988) 24-26.
- 80. Nemecek, M., Prochazka, J., "Longitudinal Mixing in a Vibrating-Sieve-Plate Column Two-Phase Flow", *Can. J. Chem. Eng.* 52 (1974) 739 749.
- Nigam, J. N., "Continuous Ethanol Production from Pieapple Cannery Waste Using Immobilized Yeast Cells", *J. Biotechnol.* 80 (2000) 189 - 193.
- 82. Nikolić, Lj., Đoković, N., Veljković, V., Skala, D., "Aksijalno mešanje u koloni sa vibracionom mešalicom", *Hem. Ind.* 53 (1999) 300 308.

- Nikolić, Lj., Nikolić, V., Skala, D., Stamenković, J., Veljković, V., Lazić, M., "Makroporozni kopolimer metilmetakrilata i akrilamida, postupak sinteze i korišćenje kao nosača za mikroorganizme i enzime", P-606/02, (2002a).
- 84. Nikolić, Lj., Stojanović, S., Takić, Lj., Veljković, V., Skala, S., "Analiza različitih postupaka linearizacije i optimizacije primenjenih za izračunavanje parametara različitih modela strujanja fluida u koloni sa vibracionom mešalicom", IV Simpozijum "Savremene tehnologije i privredni razvoj", Leskovac, HI-32, (2002b), 185 194.
- 85. Nikolić, Lj., Veljković, V., Skala, D., "Analysis of Liquid Flow in a Karr Reciprocating Plate Column", *Chem. Ind.* 55 (2001) 249 254.
- Novotny, P., Prochazka., J., Landau., J., "Longitudinal Mixing in Reciprocating and Pulsed Sieve-Plate Column - single Phase Flow", *Can. J. Chem. Eng.* 48 (1970) 405 -410.
- Ogbonna, J. C., Matsumura, M., Kataoka, H., "Effective Oxygenation of Immobilized Cells Through Reduction i Bead Diameters: A Review", *Process Biochem.* 26 (1991) 109 - 121.
- 88. Ohki, Y., Inoue, H., "Longitudinal Mixing of the Liquid Phase in Bubble Columns", *Chem. Eng. Sci.* 25 (1970) 1 16.
- Parthasarathy, P., Sriniketan, G., Srinivas, N. S., Varma, Y. B. G., "Axial Mixing of Continuous Phase in Reciprocating Plate Columns", *Chem. Engng. Sci.* 39 (6) (1984) 987 - 995.
- Pejin, D., Razmovski, R., "Uticaj uslova kontinualne fermentacije na metaboličke aktivnosti Saccharomyces cerevisiae", Prehrambeno-tehnol. biotechnol. rev. 28 (1990) 23 - 27.
- Pejin, D., Razmovski, R., "Uticaj jona bakra i kalcijuma na fermentaciju pomoću imobilisanih ćelija Saccharomyces cerevisiae u proizvodnji etanola", *Hem. Ind.* 46 (7-8) (1992) 133 - 137.
- Pons, M. N., Rajab, A., Engasser, J. M., "Influence of Acetate on Growth Kinetics and Production Control of *Saccharomyces cerevisiae* on Glucose and Ethanol", *Appl. Microbiol. Biotechnol.* 24 (1986) 193 - 198.
- 93. Popov, S., Osnovi biohemijskog inženjerstva, Tehnološki fakultet, Novi Sad, 2000, 109 160.
- 94. Prochazka, J., Landau, J., Souhrada, F., Heyberger, A., "Reciprocating Plate Extraction Column", *Brit. chem. Engng.* 16 (1971) 42 48.
- Rama Rao, N. V., Srinivas, N. S., Varma, Y. B. G., "Dispersed Phase Holdup and Drop Size Distributions in Reciprocating Plate Columns", *Can. J. Chem. Eng.* 61 (1983) 168 - 177.
- Rama Rao, N. V., Baird, M. H. I., "Characteristics of a Countercurrent Reciprocating Plate Bubble Column. I. Holdup, Pressure Drop and Bubble Diametar", *Can. J. Chem. Eng.* 66 (1988) 211 - 221.
- 97. Rama Rao, N. V., Baird, M. H. I., "Back Mixing in a Reciprocating Plate Column with Stable Density Gradients", *AIChE J.* 44 (1998) 859 863.
- Ranđelović, N., Savić, D., Ranđelović, V., Mikrobiologija, Univerzitet u Nišu, 1995, 39 42.
- 99. Reschke, M., Schügerl, K., "Continuous Reactive Extraction of Penicillin G in a Karr Column", *Chem. Eng. J.* 31 (1985) B19 B26.
- 100. Rotmann, B. H., Rehm, H. J., "Relationship Between Fermentation Capability and Fatty Acid Composition of Free and Immobilized Saccharomyces cerevisiae", Appl. Microbiol. Biotechnol. 34 (1991) 502 - 508.

- 101. Russell, J., "Protein-containing Polymers and a Method of Synthesis of Proteincontaining Polymers in Organic Solvents", US Patent 5,482,996 (1996).
- 102. Sater, V. E., Levenspiel, O., "Two-Phase Flow in Packed Beds", *Ind. Eng. Chem. Fundamentals* 5 (1966) 86 - 92.
- 103. Sharma, R. N., Baird, M. H. I., "Dissolve of Copper in a Reciprocating Plate Column", *Can. J. Chem. Eng.* 56 (1978) 310 315.
- 104. Skala, D., "Ispitivanje aksijalnog mešanja u Karrovoj koloni", Magistarski rad, Tehnološko-metalurški fakultet, Beograd, 1976.
- 105. Skala, D., "Analiza sistema gas-tečnost u koloni sa vibracionom mešalicom", Doktorska disertacija, Tehnološko-metalurški fakultet, Beograd, 1980.
- 106. Skala, D., Mićić, J., "Uticaj raspodele vremena zadržavanja na proračun hemijskih reaktora i raspodela vremena zadržavanja", *Hem. Ind.* 36 (1) (1982a) 28 34.
- 107. Skala, D., Mićić, J., "Uticaj raspodele vremena zadržavanja na proračun hemijskih reaktora III", *Hem. Ind.* 36 (3) (1982b) 105 114.
- 108. Skala, D., Mićić, J., "Uticaj raspodele vremena zadržavanja na proračun hemijskih reaktora IV", *Hem. Ind.* 36 (4) (1982c) 136 143.
- 109. Skala, D., Mićić, J., "Uticaj raspodele vremena zadržavanja na proračun hemijskih reaktora V", *Hem. Ind.* 36 (5) (1982d) 163 170.
- Skala, D., Nikolić, Lj., Veljković, V., "Analysis of Liquid Flow in a Karr Reciprocating Plate Column", 14th International Congress of Chemical and Process Engineering CHISA, Prague (2000), P.3.33
- 111. Skala, D., Zubović, S., Mićić, J., "Ispitivanje proticanja tečne faze u koloni sa vibracionom mešalicom pri suprotno-strujnom toku gas-tečnost", *Glasnik hemijskog društva Beograd* 46 (1981) 513 - 525.
- 112. Skala, D., Veljković, V., "Zadržavanje gasa u trofaznoj koloni sa vibracionom mešalicom", II Jugoslovenski kongres za hemijsko inženjerstvo i procesnu tehniku sa međunarodnim učešćem, Dubrovnik, Zbornik radova II, (1987) 56 59.
- Skala, D., Veljković, V., "Mass Transfer Characteristics in a Gas-Liquid Reciprocating Plate Column. I. Liquid Phase Volumetric Mass Transfer Coefficient", *Can. J. Chem. Eng.* 66 (1988) 192 - 199.
- 114. Skala, D., Veljković, V., Janjić, V., Lazić, M., Banković-Ilić, I., "Gas Holdup in a Gas-Liquid-Solid Reciprocating Plate Column", *Can. J. Chem. Eng.* 71 (1993) 817 - 820.
- 115. Skala, D., Veljković, "Gas Holdup in Three-phase Reciprocating Columns", Chap. 35 in "Mixed-Flow Hydrodynamics: Advences in Engineering Fluid Mechanics", ed. Cheremisinoff, N., Gulf Publishing Co., Houston, (1996) 803 - 810.
- 116. Sommariva, C., Converti, A., Del Borghi, M., "Modelling of Reactors with Entrapped Cell in Porous Supports", *Chem. Biochem. Eng.* Q. 5 (3) (1991) 135 - 140.
- 117. Sroka, W., Rzedowski, W., "The Effect of Yeast Cell Immobilization on the Proportion of Selected by-Products of Ethanol Fermentation", *Biotechnol. Lettrs.* 13 (1991) 879 - 882.
- Stevens, G. W., Baird, M. H. I., "A Model for Axial Mixing in Reciprocating Plate Columns", *Chem. Engng. Sci.* 45 (2) (1990) 457 - 465.
- 119. Sundaresan, A., Varma, Y. B. G., "Dispersed Phase Holdup and Bubble Size Distribution in Gas-Liquid Cocurrent Upflow and Countercurrent Flow in Reciprocating Plate Column", *Can. J. Chem. Eng.* 68 (1990a) 560 - 568.
- Sundaresan, A., Varma, Y. B. G., "Interfacial Area and Mass Transfer in Gas-Liquid Cocurrent Upflow in Reciprocating Plate Column", *Can. J. Chem. Eng.* 68 (1990b) 951 - 958.

- 121. Шербак, В., Селга, С., Саксе, А., "Испыание пневматическо-го ферментатора с перфорироваными тарелками примените-льно к процесам биосинтеза лизина", у Технологија микробного синтеза, Зинатне, Рига (1978) 125 130.
- 122. Taherzadeh, M. J., Lidén, G., Gustafsson, L., "The Effect of Pantothenate Deficiency and Acetate Addition on Anaerobic Batch Fermentation of Glucose by *Saccharomyces cerevisiae*", *Appl. Microbiol. Biotechnol.* 46 (1996) 176 - 182.
- 123. Tyagi, R. D., Gupta, S. K., Chand, S., "Process Engineering Studies on Continuous Ethanol Production by Immobilized *S. cerevisiae*", *Process Biochem.* 27 (1992) 23 32.
- 124. Van Dijck, W. J. D., "Tower with Internal Perforated Suitable for Extracting Liquids by tretment with Other Liquids and Similar Cocurrent Process", US Patent 2.011.186 (1935).
- 125. Veljković, V., "Ispitivanje hidrodinamičkih i masenoprenosnih karakteristika različitih reaktora i izbor optimalnog tipa za biosintezu dekstran-saharaze", Doktorska disertacija, Tehnološko-metalurški fakultet, Beograd, 1985.
- 126. Veljković, V., Banković-Ilić, I., Lazić, M., Skala, D., "Gas Holdup in Threee-phase Reciprocating Plate Columns", 12th Congress CHISA, Prague (1996), P3.90.
- 127. Veljković, V., Lazić, M., Praktikum za Osnovne procese biohemijskog inženjerstva, Tehnološki fakultet, Leskovac, 1993, 21 - 22.
- Veljković, V., Lazić, M., Rutić, D., Jovanović, S., Skala, D., "Selection of A Bioreactor and The Optimal Aerobic Condition for Dextransucrase Fermentation by *Leuconostoc mesenteroides*", *J. Serb. Chem. Soc.* 55 (1990) 483 - 490.
- 129. Veljković, V., Skala, D., "Hydrodynamic Investigation of Gas-Liquid Contacting in a Reciprocating Plate Column", *Can. J. Chem. Eng.* 64 (1986) 906 914.
- Veljković, V., Osnovi biohemijskog inženjerstva, Tehnološki fakultet, Leskovac, 1994, 51 - 92.
- 131. Žerajić, S., "Imobilizacija na kletki *S. cerevisiae* vo dvoslojni Ca-alginatni perli za kontinuirana produkcija na etanol", Magistarska teza, Skopje, 1989.
- 132. Woodward, J., Immobilised Cells and enzymes, Prevod na ruski jezik, MIR Moskva, (1988) 89-90.
- 133. Yang, N. S., Chen, B. H., McMillan, A. F., "Axial Mixing and Mass Transfer in Gas-Liquid Karr Columns", *Ind. Eng. Chem. Process. Des. Dev.* 25 (1986a) 776 - 780.
- 134. Yang, N. S., Shen, Z. Q., Chen, B. H., Mc Millan, A. F., "Presure Drop, Gas Holdup and Interfacial Area for Gas-Liquid Contact in Karr-Columns", *Ind. Eng. Chem. Proc. Dec. Dev.* 25 (1986b) 660 - 664.
- 135. Young, G. A., LaVon, G. D., Taylor, G. W., "High Efficiency Absorbent Articles for Incontinence Management", US Patent 5,147,345 (1992).
- 136. Young, G. A., LaVon, G. D., Taylor, G. W., "High Efficiency Absorbent Articles for Incontinence Management", US Patent 5,318,554 (1994).

6. PRILOG

Broj eksperimenta	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
I, cm/s	9,439	9,416	9,439	9,478	7,128	7,050	7,128	7,089	7,128	7,050	7,050	7,089	9,439	9,439	9,400	9,400
U_1 , cm/s	0,887	0,886	0,886	0,885	0,885	0,886	0,885	0,886	0,601	0,601	0,600	0,600	0,600	0,579	0,590	0,601
U _G , cm/s	0	0,274	0,822	1,480	1,480	0,822	0,274	0	0	0,274	0,822	1,480	1,480	0,822	0,274	0
τ, min	2,991	2,761	2,554	2,287	2,356	2,563	2,778	2,995	4,417	4,160	3,845	3,553	3,502	3,958	4,136	4,417
t _{sr} (MM), min	3,043	2,882	2,621	2,301	2,318	2,687	2,887	3,108	4,583	4,454	4,168	3,563	3,599	4,011	4,228	4,765
μ_1 ', min	3,184	3,110	2,869	2,681	2,705	3,020	3,127	3,352	4,770	4,677	4,367	3,938	3,900	4,510	4,647	4,961
t_{sr} (A1), min	3,175	3,108	2,868	2,680	2,704	3,019	3,124	3,348	4,743	4,665	4,360	3,932	3,896	4,504	4,636	4,910
t _{sr} (A2), min	3,179	3,105	2,864	2,677	2,701	3,015	3,122	3,347	4,761	4,666	4,357	3,929	3,892	4,499	4,636	4,951
t_{sr} (Z2), min	3,185	3,110	2,868	2,680	2,704	3,019	3,127	3,353	4,772	4,678	4,367	3,936	3,897	4,510	4,647	4,961
t_{sr} (N = const, Z2), min	3,185	3,110	2,868	2,681	2,705	3,020	3,127	3,354	4,776	4,680	4,367	3,936	3,899	4,509	4,647	4,963
t _{sr} (A3), min	3,184	3,110	2,869	2,681	2,705	3,020	3,127	3,352	4,771	4,677	4,367	3,938	3,900	4,510	4,647	4,961
t _{sr} (A4), min	3,180	3,105	2,864	2,677	2,701	3,015	3,122	3,348	4,768	4,670	4,357	3,926	3,891	4,498	4,634	4,946
N (MM), 1	5,438	11,290	14,983	12,817	13,346	12,214	10,076	7,665	5,307	7,999	9,974	9,609	11,016	10,301	8,101	3,982
N (A1), 1	7,037	14,354	19,263	18,612	19,403	16,753	12,942	10,030	7,291	10,371	12,606	13,541	14,468	14,819	11,555	6,032
N (Z1), 1	6,545	14,229	19,625	16,109	16,347	16,327	12,735	9,436	6,120	9,334	11,845	14,107	14,226	14,083	11,081	4,964
ψ _{min} (za N, MM), 1	0,151	0,559	1,035	2,295	2,443	1,407	0,527	0,329	0,186	0,209	0,246	1,133	0,718	1,708	0,872	0,381
ψ _{min} (za N, A1), 1	0,076	0,407	0,829	2,233	2,424	1,188	0,379	0,218	0,232	0,159	0,140	0,654	0,486	1,359	0,510	0,347
ψ _{min} (za N, Z1), 1	0,061	0,406	0,828	2,184	2,352	1,186	0,378	0,207	0,105	0,112	0,123	0,648	0,485	1,348	0,503	0,185
α (N = const, MM), 1	5,385	2,334	1,636	1,997	1,898	2,120	2,676	3,675	5,530	3,500	2,709	2,830	2,405	2,606	3,450	7,537
α (N = const, Z2), 1	5,005	1,932	1,257	1,316	1,238	1,548	2,230	3,170	5,308	3,229	2,423	2,147	1,964	1,940	2,765	7,039
N (A2), 1	13,566	86,672	26,425	27,616	27,071	27,298	26,096	16,909	13,051	17,094	49,047	16,693	42,169	35,118	34,300	30,173
α (A2), 1	0,650	2,795	0,236	0,293	0,245	0,384	0,605	0,456	0,662	0,478	1,752	0,209	1,134	0,851	1,263	3,074
N (Z2), 1	32,230	21,375	14,394	12,756	12,864	17,472	22,977	31,798	11,771	16,273	1160,2	1248,4	13,106	1680,1	4470,1	18,865
α (Z2), 1	2,266	0,302	-0,120	-0,154	-0,167	0,046	0,471	1,317	0,540	0,428	52,584	51,231	-0,017	63,691	227,916	1,705
Pe (MM), 1	12,211	23,992	31,398	27,056	28,115	25,845	21,554	16,707	11,946	17,380	21,348	20,616	23,441	22,007	17,584	9,254
Pe (A3), 1	11,762	26,285	36,089	34,968	36,515	31,007	23,535	17,632	11,235	17,386	21,864	23,767	25,882	26,092	19,553	8,530
Pe (A4), 1	11,565	26,275	36,466	35,270	36,854	31,283	23,360	17,340	10,906	17,007	21,889	24,355	25,968	26,254	19,625	8,509
Pe (A5, nagib)	14,285	26,108	33,628	28,856	29,949	27,967	23,510	18,679	14,977	20,305	24,451	23,644	26,114	24,925	20,616	12,703
Pe (A5, odsečak)	46,103	25,531	21,282	12,128	12,014	16,193	24,322	25,929	57,289	42,218	43,349	19,297	24,253	16,288	20,705	65,637
Pe (Z3), 1	14,360	28,833	37,641	30,138	30,664	31,013	25,745	19,260	13,494	19,773	24,430	27,259	28,092	27,054	21,903	11,165
$DL (MM), cm^2/s$	14,123	7,752	6,372	8,195	7,671	7,715	8,578	10,309	9,777	7,112	6,233	6,949	6,194	5,871	7,059	12,622
DL (A3), cm ² /s	14,663	7,076	5,543	6,341	5,906	6,431	7,856	9,768	10,395	7,109	6,086	6,027	5,610	4,952	6,348	13,693
DL (A4), cm ² /s	14,912	7,079	5,486	6,286	5,852	6,374	7,915	9,932	10,709	7,267	6,079	5,882	5,591	4,921	6,325	13,727
D _L (A5, nagib), cm ² /s	11,396	6,230	4,836	5,633	5,428	5,814	6,914	8,703	7,361	5,433	4,508	4,660	4,219	4,261	5,250	8,679
D _L (A5, odsečak), cm ² /s	3,531	6,371	7,641	13,403	13,530	10,041	6,683	6,270	1,924	2,613	2,543	5,710	4,543	6,521	5,227	1,680
D_{L} (Z3), cm ² /s	12,010	6,451	5,315	7,357	7,033	6,430	7,182	8,942	8,655	6,251	5,447	5,255	5,168	4,776	5,667	10,461
ε _G , 1	0	0,074	0,139	0,223	0,202	0,136	0,069	0	0	0,055	0,123	0,185	0,196	0,129	0,076	0
ε _s , 1	0,056	0,056	0,056	0,056	0,056	0,056	0,056	0,056	0,056	0,056	0,056	0,056	0,056	0,056	0,056	0,056

P.1. Vrednosti parametara modela i operativni uslovi rada u KVM1

Nastavak tabele P.1.

Broj eksperimenta	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32
I, cm/s	9,400	7,050	7,050	9,400	9,400	7,050	7,050	9,400	4,000	4,000	4,000	4,000	2,000	2,000	2,000	2,000
U _L , cm/s	0,247	0,239	0,238	0,239	0,234	0,241	0,238	0,238	0,864	0,864	0,864	0,875	0,875	0,864	0,864	0,863
U _G , cm/s	0	0	0,274	0,274	0,822	0,822	1,480	1,480	0	0,274	0,822	1,480	1,480	0,822	0,274	0
τ, min	10,726	11,122	10,600	10,320	9,946	9,718	9,206	8,953	3,070	2,956	2,731	2,502	2,511	2,716	2,947	3,072
t _{sr} (MM), min	10,599	10,264	10,398	9,407	9,210	9,516	8,562	9,090	3,266	2,932	2,829	2,525	2,548	2,753	2,968	3,014
μ_1 ', min	10,549	10,261	10,728	10,163	10,165	9,848	9,452	9,503	3,259	3,268	3,065	2,863	2,855	3,167	3,335	3,363
t_{sr} (A1), min	10,003	9,889	10,442	9,981	10,030	9,640	9,310	9,347	3,258	3,268	3,065	2,862	2,855	3,167	3,334	3,363
t_{sr} (A2), min	10,807	10,417	10,810	10,180	10,142	9,850	9,413	9,469	3,253	3,263	3,060	2,859	2,851	3,162	3,329	3,357
t_{sr} (Z2), min	10,613	10,300	10,757	10,235	10,172	9,884	9,452	9,509	3,258	3,268	3,064	2,862	2,855	3,167	3,334	3,363
t_{sr} (N = <i>const</i> , Z2), min	10,757	10,406	10,825	10,234	10,188	9,883	9,451	9,512	3,259	3,268	3,065	2,863	2,856	3,167	3,334	3,363
t_{sr} (A3), min	10,558	10,267	10,731	10,165	10,165	9,849	9,453	9,503	3,259	3,268	3,065	2,863	2,855	3,167	3,335	3,363
t _{sr} (A4), min	11,056	10,597	10,906	10,319	10,159	9,859	9,382	9,461	3,253	3,263	3,060	2,858	2,852	3,162	3,329	3,357
N (MM), 1	2,903	3,655	4,491	4,980	5,995	4,885	5,314	5,553	30,019	24,431	23,745	19,216	19,830	18,915	24,039	31,675
N (A1), 1	5,478	6,239	7,568	8,447	10,386	8,158	9,752	9,180	31,046	31,773	29,063	26,126	25,600	26,175	31,819	40,776
N (Z1), 1	2,774	3,423	4,529	5,577	7,587	5,333	7,448	6,557	29,132	27,136	27,088	23,295	19,737	18,570	25,993	29,057
ψ_{min} (za N, MM), 1	0,119	0,072	0,060	0,119	0,256	0,067	0,273	0,093	0,108	3,312	1,478	3,072	2,390	3,677	3,823	4,960
Ψ_{\min} (za N, A1), 1	1,016	0,722	0,553	0,412	0,337	0,372	0,227	0,244	0,124	3,381	1,434	2,996	2,647	4,062	3,990	5,437
Ψ_{\min} (za N, Z1), 1	0,115	0,064	0,060	0,097	0,170	0,054	0,113	0,049	0,103	3,264	1,415	2,948	2,390	3,676	3,796	4,929
α (N = const, MM), 1	10,523	8,255	6,626	5,925	4,838	6,051	5,522	5,263	0,566	0,810	0,848	1,165	1,114	1,192	0,831	0,510
α (N = const, Z2), 1	13,659	10,298	7,433	5,907	4,191	6,158	4,481	4,954	0,572	0,545	0,645	0,774	0,809	0,781	0,544	0,307
N (A2), 1	6,351	7,185	9,867	8,954	19,684	17,849	21,414	67,089	62,434	56,265	202,399	30,986	23,635	51,182	54,767	248,528
α (A2), 1	0,871	0,675	0,698	0,349	0,930	1,350	1,198	5,236	0,546	0,427	3,133	0,126	-0,025	0,523	0,402	2,650
N (Z2), 1	4,755	5,511	7,334	134,220	14,590	123,270	8108,121	27,660	35,573	36,642	18,455	14,065	14,201	20,437	35,033	28,033
α (Z2), 1	0,423	0,322	0,327	12,951	0,531	12,337	631,689	1,841	0,091	0,094	-0,182	-0,236	-0,225	-0,102	0,066	-0,154
Pe (MM), 1	7,043	8,587	10,291	11,285	13,338	11,091	11,961	12,444	61,503	50,319	48,946	39,878	41,107	39,274	49,534	64,817
Pe (A3), 1	4,951	6,419	8,576	10,584	13,968	9,901	12,835	11,849	59,624	60,834	55,722	49,719	49,345	49,955	60,859	78,890
Pe (A4), 1	4,093	5,430	7,578	9,261	13,344	9,431	13,022	11,718	59,410	61,096	55,692	50,259	48,517	49,744	61,150	78,876
Pe (A5, nagib)	13,652	14,803	16,383	16,380	18,906	17,280	17,879	18,753	63,862	52,628	50,978	42,108	42,221	41,002	51,878	66,961
Pe (A5, odsečak)	35,585	54,865	470,108	32,759	22,481	153,705	22,890	70,693	818,691	17,484	23,977	14,968	16,585	13,295	16,199	17,259
Pe (Z3), 1	7,154	8,555	10,192	12,824	15,558	11,968	15,351	14,241	59,794	50,626	51,616	43,179	37,165	35,695	48,728	56,118
DL (MM), cm ² /s	6,829	5,402	4,716	4,411	3,859	4,752	4,631	4,568	2,732	3,461	3,833	5,110	4,941	4,801	3,526	2,591
DL (A3), cm ² /s	9,715	7,226	5,659	4,703	3,685	5,323	4,316	4,797	2,819	2,863	3,367	4,098	4,116	3,774	2,870	2,129
DL (A4), cm ² /s	11,751	8,542	6,404	5,374	3,857	5,588	4,253	4,851	2,829	2,851	3,369	4,054	4,187	3,790	2,856	2,129
D _L (A5, nagib), cm ² /s	3,326	2,958	2,671	2,673	2,276	2,565	2,447	2,332	2,484	3,013	3,111	3,813	3,804	3,868	3,057	2,367
D _L (A5, odsečak), cm ² /s	1,276	0,798	0,093	1,337	1,914	0,288	1,911	0,619	0,194	9,070	6,613	10,727	9,683	11,928	9,789	9,185
D_{L} (Z3), cm ² /s	6,723	5,422	4,762	3,881	3,308	4,403	3,608	3,992	2,810	3,440	3,635	4,719	5,465	5,282	3,584	2,993
ε _G , 1	0	0	0,045	0,068	0,114	0,109	0,163	0,185	0	0,035	0,105	0,165	0,162	0,109	0,038	0
ε _s , 1	0,056	0,056	0,056	0,056	0,056	0,056	0,056	0,056	0,056	0,056	0,056	0,056	0,056	0,056	0,056	0,056

Nastavak tabele P.1.

Broj eksperimenta	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48
I, cm/s	2,000	2,000	2,000	2,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	2,000	2,000	2,000	2,000
U _L , cm/s	0,600	0,600	0,600	0,600	0,600	0,600	0,600	0,600	0,239	0,239	0,239	0,230	0,230	0,243	0,239	0,238
U _G , cm/s	0	0,274	0,822	1,480	1,480	0,822	0,274	0	0	0,274	0,822	1,480	1,480	0,822	0,274	0
τ, min	4,419	4,234	3,980	3,654	3,629	4,000	4,266	4,420	11,122	10,705	10,220	9,546	9,658	9,828	10,769	11,130
t _{sr} (MM), min	4,325	4,159	3,990	3,712	3,692	4,220	4,214	4,529	11,390	9,845	10,257	8,608	8,812	10,095	13,525	10,701
μ_1 , min	4,690	4,490	4,305	4,086	3,971	4,272	4,591	4,621	11,933	11,040	10,378	9,352	10,274	10,434	10,901	11,289
t_{sr} (A1), min	4,689	4,489	4,302	4,083	3,969	4,271	4,589	4,619	11,836	10,975	10,310	9,294	10,157	10,341	10,830	11,238
t _{sr} (A2), min	4,679	4,480	4,295	4,077	3,963	4,263	4,580	4,610	11,864	10,987	10,323	9,310	10,229	10,388	10,852	11,233
t _{sr} (Z2), min	4,690	4,490	4,305	4,086	3,971	4,272	4,591	4,621	11,935	11,047	10,380	9,354	10,277	10,437	10,903	11,293
t_{sr} (N = const, Z2), min	4,690	4,490	4,305	4,086	3,971	4,273	4,590	4,621	11,934	11,047	10,387	9,371	10,284	10,437	10,903	11,292
t _{sr} (A3), min	4,690	4,490	4,305	4,086	3,971	4,272	4,591	4,621	11,933	11,041	10,379	9,352	10,274	10,434	10,901	11,289
t _{sr} (A4), min	4,678	4,480	4,296	4,078	3,963	4,264	4,580	4,610	11,850	10,989	10,350	9,365	10,242	10,371	10,831	11,228
N (MM), 1	27,347	21,472	16,450	14,567	18,564	23,610	21,167	24,028	10,994	10,499	11,233	8,684	6,059	9,324	19,416	14,273
N (A1), 1	34,126	26,744	20,665	19,039	23,004	25,311	26,930	26,634	16,280	16,816	14,872	12,916	11,600	13,546	16,410	19,680
N (Z1), 1	30,516	24,935	19,364	17,190	21,996	23,464	24,709	25,320	12,747	12,895	11,843	10,606	8,632	10,282	6,572	15,908
Ψ_{min} (za N, MM), 1	2,935	1,710	1,164	1,515	1,181	0,062	2,277	0,115	0,137	0,735	0,031	0,288	0,702	0,080	7,730	0,211
Ψ_{min} (za N, A1), 1	2,943	1,620	1,064	1,450	1,062	0,096	2,181	0,114	0,238	0,822	0,140	0,291	0,667	0,226	6,517	0,298
Ψ_{min} (za N, Z1), 1	2,864	1,593	1,044	1,407	1,052	0,062	2,133	0,095	0,085	0,639	0,025	0,229	0,528	0,061	3,552	0,183
α (N = const, MM), 1	0,670	0,990	1,445	1,697	1,224	0,855	1,012	0,832	2,411	2,548	2,349	3,185	4,781	2,932	1,148	1,742
α (N = const, Z2), 1	0,486	0,776	1,183	1,333	0,988	0,854	0,768	0,785	2,176	1,998	2,376	2,853	3,522	2,773	2,076	1,558
N (A2), 1	75,009	583,974	38,233	31,512	97,556	24,795	133,154	50,787	48,798	44,383	22,860	13,701	26,149	40,248	36,620	165,292
α (A2), 1	0,666	11,193	0,500	0,395	1,772	0,014	2,152	0,518	1,563	1,233	0,505	0,180	1,130	1,586	1,005	4,866
N (Z2), 1	3310,621	202,990	37,444	30,686	101,659	24,519	2525,057	48,901	207,335	73,330	22,506	13,189	21,185	49,659	63,289	79,439
α (Z2), 1	50,762	3,562	0,479	0,371	1,868	0,007	49,743	0,479	8,199	2,365	0,488	0,150	0,807	2,035	2,047	2,058
Pe (MM), 1	56,154	44,394	34,338	30,564	38,571	48,675	43,785	49,512	23,398	22,403	23,877	18,757	13,469	20,043	40,278	29,975
Pe (A3), 1	64,440	49,989	38,114	35,068	42,912	47,785	50,241	49,808	23,903	25,810	22,491	19,632	16,089	19,616	24,887	31,214
Pe (A4), 1	64,685	49,963	37,814	34,706	42,870	46,719	50,284	49,482	24,007	25,326	21,739	18,236	15,691	19,631	24,979	30,894
Pe (A5, nagib)	59,532	47,386	36,982	32,901	41,259	50,874	46,878	52,668	31,587	28,486	30,866	23,570	18,850	27,241	52,651	37,134
Pe (A5, odsečak)	23,771	25,275	25,521	19,990	26,664	165,082	22,498	100,551	51,131	17,419	383,653	25,099	13,100	82,094	10,034	39,903
Pe (Z3), 1	58,721	48,152	38,099	33,515	43,128	48,588	47,473	52,338	25,939	24,797	25,279	21,889	16,816	21,305	9,242	31,796
DL (MM), cm^2/s	2,079	2,738	3,752	4,566	3,641	2,634	2,757	2,357	1,982	2,146	2,104	2,848	3,923	2,603	1,187	1,546
DL (A3), cm^2/s	1,812	2,432	3,380	3,980	3,273	2,683	2,403	2,343	1,941	1,863	2,234	2,721	3,284	2,660	1,921	1,485
DL (A4), cm^2/s	1,805	2,433	3,407	4,021	3,276	2,744	2,400	2,359	1,932	1,899	2,311	2,929	3,368	2,658	1,914	1,500
D_{I} (A5, nagib), cm ² /s	1,851	2,326	2,981	3,350	2,670	2,165	2,351	2,092	1,386	1,537	1,419	1,790	2,243	1,641	0,832	1,178
D_{I} (A5, odsečak), cm ² /s	4,636	4,361	4,319	5,513	4,132	0,667	4,899	1,096	0,856	2,514	0,114	1,681	3,227	0,544	4,363	1,097
$D_{L}(Z3), cm^{2}/s$	1,988	2,525	3,382	4,164	3,256	2,639	2,543	2,230	1,788	1,939	1,987	2,440	3,142	2,449	5,174	1,458
ε _c , 1	0	0,040	0,094	0,163	0,169	0,090	0,033	0	0	0,035	0,076	0,163	0,153	0,093	0,030	0
ε _s , 1	0,056	0,056	0,056	0,056	0,056	0,056	0,056	0,056	0,056	0,056	0,056	0,056	0,056	0,056	0,056	0,056

Nastavak tabele P.1.

Broj eksperimenta	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63	64
I, cm/s	2,000	2,000	2,000	2,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	2,000	2,000	2,000	2,000
U _L , cm/s	0,863	0,863	0,863	0,852	0,863	0,841	0,853	0,852	0,590	0,600	0,600	0,600	0,601	0,601	0,601	0,600
U _G , cm/s	0	0,274	0,822	1,480	1,480	0,822	0,274	0	0	0,274	0,822	1,480	1,480	0,822	0,274	0
τ, min	3,255	3,131	2,918	2,758	2,723	3,031	3,170	3,297	4,765	4,517	4,275	3,994	3,953	4,246	4,514	4,680
t _{sr} (MM), min	3,418	3,225	2,978	2,542	2,838	3,172	3,374	3,443	5,008	4,688	4,674	4,231	4,104	4,266	4,454	4,739
μ ₁ ', min	3,600	3,421	3,333	3,187	3,134	3,427	3,542	3,681	5,079	4,824	4,687	4,382	4,116	4,564	4,897	4,898
t _{sr} (A1), min	3,600	3,420	3,332	3,186	3,134	3,427	3,541	3,680	5,077	4,823	4,685	4,380	4,113	4,561	4,895	4,897
t _{sr} (A2), min	3,594	3,415	3,327	3,181	3,129	3,421	3,535	3,674	5,066	4,812	4,676	4,372	4,107	4,553	4,885	4,885
t_{sr} (Z2), min	3,598	3,420	3,333	3,186	3,133	3,426	3,540	3,679	5,079	4,824	4,688	4,382	4,116	4,564	4,897	4,897
t_{sr} (N = const, Z2), min	3,600	3,421	3,333	3,187	3,134	3,427	3,542	3,680	5,079	4,824	4,687	4,382	4,116	4,563	4,897	4,897
t _{sr} (A3), min	3,600	3,421	3,333	3,187	3,134	3,427	3,542	3,681	5,079	4,824	4,687	4,382	4,116	4,564	4,897	4,898
t_{sr} (A4), min	3,593	3,414	3,327	3,181	3,129	3,421	3,535	3,674	5,066	4,812	4,676	4,372	4,108	4,553	4,885	4,885
N (MM), 1	46,451	26,941	20,095	13,747	21,142	24,761	30,537	36,146	32,121	27,232	23,280	20,683	16,128	17,174	24,553	45,957
N (A1), 1	53,628	31,830	26,434	22,752	27,161	30,401	35,263	42,823	34,945	30,583	25,192	23,999	17,673	21,448	31,462	51,482
N (Z1), 1	53,886	32,006	22,003	10,392	24,330	28,972	34,419	39,411	33,807	29,100	23,538	23,148	16,602	20,419	26,224	50,340
ψ_{\min} (za N, MM), 1	1,936	1,036	2,740	5,958	2,014	1,682	0,813	2,369	0,087	0,272	0,067	0,293	0,052	0,972	3,585	0,868
ψ_{\min} (za N, A1), 1	1,764	0,903	2,858	7,263	1,985	1,589	0,726	2,368	0,076	0,259	0,097	0,220	0,069	0,834	3,762	0,785
ψ_{\min} (za N, Z1), 1	1,764	0,903	2,705	5,795	1,929	1,579	0,722	2,319	0,067	0,242	0,066	0,211	0,048	0,821	3,560	0,779
α (N = const, MM), 1	0,189	0,688	1,092	1,828	1,014	0,792	0,548	0,385	0,496	0,675	0,875	1,047	1,484	1,363	0,803	0,196
α (N = const, Z2), 1	0,107	0,545	0,770	0,986	0,729	0,597	0,440	0,269	0,466	0,611	0,865	0,930	1,490	1,122	0,578	0,140
N (A2), 1	46,129	48,341	86,343	47,836	44,124	51,150	49,648	121,842	102,887	84,092	131,107	53,754	33,779	79,057	83,674	59,646
α (A2), 1	-0,053	0,298	1,216	0,608	0,356	0,385	0,238	0,975	1,058	0,963	2,305	0,712	0,543	1,514	0,913	0,107
N (Z2), 1	12,181	20,758	35,384	22,789	17,148	20,168	13,589	13,920	98,440	74,868	106,995	2846,901	32,931	2504,273	3 75,880	2137,815
α (Z2), 1	-0,407	-0,173	0,197	0,020	-0,184	-0,167	-0,320	-0,352	0,991	0,801	1,788	63,350	0,517	63,164	0,781	21,052
Pe (MM), 1	94,379	55,341	41,638	28,920	43,734	50,980	62,539	73,763	65,708	55,925	48,015	42,816	33,693	35,788	50,563	93,391
Pe (A3), 1	103,782	60,786	50,279	43,084	51,714	57,950	67,515	82,666	65,970	57,490	46,755	44,473	32,273	39,309	59,190	98,641
Pe (A4), 1	105,043	61,145	50,199	42,903	51,998	58,252	67,954	82,792	65,820	57,288	46,690	44,675	32,004	39,376	58,982	99,565
Pe (A5, nagib)	98,143	58,073	43,681	30,407	46,004	53,578	65,494	76,446	69,453	59,275	51,602	46,229	36,631	38,982	53,547	97,925
Pe (A5, odsečak)	37,483	33,100	16,825	7,901	19,187	24,968	40,387	29,070	143,818	69,916	836,390	56,569	910,386	28,985	20,182	60,193
Pe (Z3), 1	103,680	62,061	41,752	21,166	46,051	55,882	68,402	76,257	68,637	58,305	48,753	47,189	35,933	40,190	50,340	99,914
DL (MM), cm^2/s	1,679	2,977	4,247	6,467	4,333	3,339	2,602	2,122	1,648	2,042	2,514	3,017	3,873	3,395	2,261	1,180
DL (A3), cm ² /s	1,527	2,711	3,517	4,341	3,664	2,937	2,411	1,893	1,641	1,987	2,581	2,904	4,044	3,091	1,931	1,117
DL (A4), cm ² /s	1,509	2,695	3,522	4,360	3,644	2,922	2,395	1,890	1,645	1,994	2,585	2,891	4,078	3,086	1,938	1,107
D _L (A5, nagib), cm ² /s	1,615	2,729	3,629	5,146	3,446	2,883	2,390	2,047	1,559	1,859	2,135	2,383	3,010	2,828	2,059	1,126
D _L (A5, odsečak), cm ² /s	4,228	4,788	9,422	19,804	8,262	6,185	3,876	5,383	0,753	1,576	0,132	1,948	0,121	3,804	5,463	1,831
D_{L} (Z3), cm ² /s	1,529	2,655	4,235	8,836	4,115	3,046	2,379	2,052	1,577	1,959	2,476	2,737	3,632	3,023	2,271	1,103
ε _G , 1	0	0,038	0,104	0,163	0,163	0,093	0,038	0	0	0,035	0,087	0,147	0,155	0,093	0,035	0
ε _s , 1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Nastavak tabele P.1.

Broj eksperimenta	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80
I, cm/s	2,000	2,000	2,000	2,000	4,000	4,000	4,000	4,000	9,400	9,400	9,400	9,400	7,050	7,050	7,050	7,050
U _L , cm/s	0,239	0,238	0,239	0,238	0,239	0,238	0,239	0,239	0,239	0,239	0,239	0,239	0,239	0,238	0,239	0,239
U _G , cm/s	0	0,274	0,822	1,480	1,480	0,822	0,274	0	0	0,274	0,822	1,480	1,480	0,822	0,274	0
τ, min	11,770	11,444	10,686	10,096	10,042	10,767	11,382	11,783	11,783	11,002	10,364	9,684	9,784	10,624	11,254	11,772
t _{sr} (MM), min	12,372	12,028	11,153	10,318	9,872	11,322	12,401	12,671	11,933	10,034	10,587	10,449	10,112	10,484	11,400	12,681
μ_1 ', min	12,167	11,817	11,304	10,640	10,326	11,277	12,225	12,368	11,893	10,993	10,107	10,107	10,287	10,812	11,589	12,293
t _{sr} (A1), min	12,135	11,732	11,168	10,493	10,259	11,176	12,130	12,285	11,544	10,770	9,959	9,996	10,181	10,682	11,433	12,038
t _{sr} (A2), min	12,089	11,753	11,238	10,563	10,270	11,206	12,143	12,283	11,907	11,005	10,092	10,051	10,240	10,764	11,559	12,239
t_{sr} (Z2), min	12,164	11,821	11,302	10,641	10,327	11,274	12,223	12,369	11,946	11,036	10,115	10,106	10,291	10,817	11,617	12,314
t_{sr} (N = const, Z2), min	12,163	11,820	11,302	10,640	10,334	11,273	12,222	12,368	11,945	11,035	10,136	10,107	10,299	10,823	11,616	12,312
t_{sr} (A3), min	12,167	11,817	11,304	10,640	10,327	11,277	12,225	12,368	11,895	10,994	10,108	10,107	10,288	10,813	11,590	12,294
t _{sr} (A4), min	12,080	11,741	11,213	10,586	10,298	11,194	12,135	12,290	11,921	11,013	10,121	10,049	10,260	10,770	11,585	12,250
N (MM), 1	26,193	13,281	8,760	7,158	10,516	10,934	13,244	14,701	5,046	4,979	7,444	9,022	8,429	7,889	7,973	7,080
N (A1), 1	30,395	16,930	13,028	11,353	14,872	15,033	17,417	18,482	8,481	9,179	9,783	12,020	12,052	11,932	11,698	10,544
N (Z1), 1	25,458	12,188	9,363	8,544	11,897	11,374	13,168	14,078	4,940	6,120	6,279	8,421	8,955	8,637	8,022	6,434
ψ _{min} (za N, MM), 1	0,300	0,179	0,090	0,102	0,105	0,103	0,169	0,225	0,091	0,195	0,233	0,205	0,044	0,069	0,033	0,205
Ψ_{\min} (za N, A1), 1	0,430	0,474	0,343	0,220	0,195	0,322	0,432	0,470	0,739	0,422	0,599	0,473	0,219	0,299	0,360	0,807
ψ_{\min} (za N, Z1), 1	0,296	0,159	0,080	0,036	0,070	0,099	0,169	0,219	0,090	0,125	0,172	0,195	0,037	0,051	0,033	0,183
α (N = const, MM), 1	0,722	1,910	3,153	3,971	2,543	2,427	1,916	1,677	5,842	5,927	3,799	3,047	3,296	3,556	3,514	4,020
α (N = const, Z2), 1	0,737	2,031	3,059	3,707	2,371	2,422	1,967	1,786	6,502	5,376	4,607	3,306	3,313	3,446	3,673	4,531
N (A2), 1	50,204	62,358	29,342	30,151	22,398	39,406	55,378	67,315	18,391	18,737	16,359	160,830	23,532	33,265	20,516	28,688
α (A2), 1	0,489	1,994	1,156	1,453	0,481	1,316	1,649	1,898	1,513	1,223	0,788	9,071	0,884	1,545	0,827	1,749
N (Z2), 1	150,465	177,182	161,992	115,740	21,846	127,135	233,332	245,752	361,553	212,117	12,549	43,604	20,178	23,785	218,141	348,043
α (Z2), 1	2,427	6,532	8,530	7,119	0,456	5,320	8,527	8,315	39,112	19,006	0,456	2,086	0,676	0,945	13,754	26,915
Pe (MM), 1	53,844	27,985	18,909	15,685	22,438	23,277	27,912	30,832	11,418	11,282	16,261	19,437	18,244	17,157	17,327	15,527
Pe (A3), 1	51,091	25,315	17,923	15,194	22,520	21,762	25,795	27,911	9,415	11,240	12,893	16,800	16,995	16,382	15,694	12,884
Pe (A4), 1	52,070	25,285	18,207	15,110	21,765	22,064	26,051	27,834	8,915	10,609	12,173	16,823	16,496	16,053	14,895	12,558
Pe (A5, nagib)	64,653	37,032	27,409	23,363	28,969	32,291	37,851	40,770	19,519	17,314	23,521	27,691	25,194	24,400	24,672	24,812
Pe (A5, odsečak)	104,428	81,267	1491,750	117,694	51,046	154,974	91,515	65,648	61,302	27,254	33,726	46,144	292,601	105,715	672,768	39,481
Pe (Z3), 1	54,670	26,284	19,931	19,264	25,844	25,473	29,245	31,561	11,631	13,000	15,213	18,940	19,345	19,235	17,668	14,881
DL (MM), cm^2/s	0,814	1,611	2,553	3,258	2,290	2,059	1,624	1,420	3,835	4,156	3,061	2,741	2,890	2,830	2,646	2,823
DL (A3), cm ² /s	0,858	1,781	2,694	3,363	2,281	2,202	1,757	1,569	4,650	4,172	3,861	3,171	3,103	2,964	2,921	3,402
DL (A4), cm ² /s	0,842	1,783	2,652	3,382	2,360	2,172	1,740	1,573	4,911	4,420	4,090	3,167	3,197	3,025	3,078	3,490
D _L (A5, nagib), cm ² /s	0,678	1,181	1,598	1,872	1,513	1,355	1,158	1,074	2,243	2,531	1,869	1,583	1,740	1,793	1,777	1,766
D _L (A5, odsečak), cm ² /s	0,420	0,538	0,029	0,372	0,858	0,282	0,479	0,667	0,714	1,608	1,303	0,950	0,150	0,414	0,065	1,110
D_{L} (Z3), cm ² /s	0,802	1,715	2,422	2,653	1,988	1,881	1,550	1,387	3,764	3,607	3,272	2,813	2,726	2,525	2,595	2,945
ε _G , 1	0	0,030	0,093	0,144	0,147	0,087	0,033	0	0	0,065	0,117	0,177	0,169	0,099	0,044	0
ε _s , 1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Nastavak tabele P.1.

Broj eksperimenta	81	82	83	84	85	86	87	88	89	90	91	92	93	94	95	96
I, cm/s	7,050	7,050	7,050	7,050	9,400	9,400	9,400	9,400	9,400	9,400	9,400	9,400	7,050	7,050	7,050	7,050
U _L , cm/s	0,601	0,601	0,601	0,601	0,601	0,601	0,601	0,601	0,864	0,864	0,853	0,864	0,858	0,875	0,853	0,864
U _G , cm/s	0	0,274	0,822	1,480	1,480	0,822	0,274	0	0	0,274	0,822	1,480	1,480	0,822	0,274	0
τ, min	4,679	4,475	4,169	3,889	3,864	4,118	4,368	4,679	3,254	3,048	2,936	2,687	2,721	2,880	3,152	3,252
t _{sr} (MM), min	5,044	4,722	4,296	4,057	4,137	4,245	4,792	4,889	3,421	3,222	3,325	2,997	2,945	3,205	3,571	3,667
μ_1 ', min	4,981	4,881	4,500	4,258	4,257	4,404	4,750	4,950	3,571	3,421	3,277	2,994	3,107	3,244	3,606	3,642
t_{sr} (A1), min	4,975	4,876	4,496	4,255	4,254	4,401	4,744	4,940	3,569	3,419	3,275	2,993	3,106	3,243	3,605	3,640
t_{sr} (A2), min	4,968	4,869	4,489	4,249	4,247	4,394	4,739	4,938	3,564	3,414	3,271	2,989	3,102	3,239	3,599	3,635
t_{sr} (Z2), min	4,981	4,881	4,500	4,258	4,256	4,404	4,751	4,951	3,570	3,420	3,276	2,993	3,106	3,243	3,604	3,640
t_{sr} (N = <i>const</i> , Z2), min	4,982	4,882	4,500	4,258	4,256	4,405	4,753	4,952	3,571	3,420	3,276	2,994	3,107	3,244	3,606	3,642
t_{sr} (A3), min	4,981	4,881	4,500	4,258	4,257	4,404	4,750	4,950	3,571	3,421	3,277	2,994	3,107	3,244	3,606	3,642
t_{sr} (A4), min	4,971	4,871	4,490	4,248	4,247	4,395	4,744	4,941	3,565	3,414	3,271	2,989	3,102	3,238	3,600	3,635
N (MM), 1	14,699	14,913	16,002	16,425	17,415	15,072	12,505	10,344	12,974	14,252	20,158	21,276	20,361	18,069	18,681	19,047
N (A1), 1	15,959	17,490	19,103	19,760	20,184	17,716	13,684	12,266	15,354	17,392	20,992	22,515	23,881	20,150	20,410	20,049
N (Z1), 1	13,744	15,879	18,298	19,215	19,801	16,520	11,829	10,608	14,631	16,776	19,666	21,800	23,465	20,682	19,676	18,470
ψ _{min} (za N, MM), 1	0,234	0,165	0,416	0,415	0,175	0,196	0,109	0,094	0,193	0,423	0,233	0,149	0,544	0,193	0,045	0,112
ψ_{\min} (za N, A1), 1	0,341	0,196	0,338	0,301	0,093	0,180	0,205	0,201	0,149	0,331	0,249	0,151	0,453	0,111	0,038	0,139
ψ _{min} (za N, Z1), 1	0,207	0,143	0,328	0,297	0,091	0,155	0,093	0,091	0,140	0,326	0,230	0,147	0,452	0,107	0,031	0,107
α (N = const, MM), 1	1,677	1,646	1,500	1,448	1,338	1,623	2,059	2,594	1,967	1,745	1,087	1,004	1,072	1,271	1,213	1,180
α (N = const, Z2), 1	1,779	1,551	1,342	1,263	1,222	1,498	2,206	2,585	1,792	1,489	1,118	0,995	0,909	1,185	1,181	1,217
N (A2), 1	25,631	25,470	31,190	70,473	45,641	30,619	16,052	23,703	26,092	81,761	37,229	39,144	1346,631	21,397	60,686	35,534
α (A2), 1	0,402	0,305	0,390	1,452	0,738	0,448	0,159	0,631	0,426	2,050	0,450	0,423	29,218	0,076	1,094	0,448
N (Z2), 1	24,009	24,231	30,782	3580,814	1 2787,452	2 29,185	15,549	21,442	14,250	23,850	36,779	16,512	20,426	29,187	12,917	12,356
α (Z2), 1	0,342	0,264	0,378	98,424	74,697	0,402	0,136	0,519	-0,008	0,232	0,425	-0,128	-0,061	0,262	-0,182	-0,191
Pe (MM), 1	30,828	31,258	33,440	34,288	36,271	31,576	26,428	22,092	27,370	29,933	41,765	44,002	42,171	37,580	38,806	39,539
Pe (A3), 1	28,328	31,488	34,889	36,183	36,958	32,199	24,097	20,943	28,081	32,111	39,286	42,564	45,307	37,408	38,043	37,390
Pe (A4), 1	27,843	30,921	34,503	36,236	37,151	31,827	23,323	20,601	27,775	32,124	39,542	42,795	45,314	38,124	37,942	37,099
Pe (A5, nagib)	34,243	34,241	36,308	37,359	39,627	34,404	29,347	25,444	29,643	32,321	44,713	46,606	44,399	40,822	41,497	42,133
Pe (A5, odsečak)	146,749	61,284	42,747	40,849	70,806	54,458	201,143	191,329	46,249	32,682	134,340	1460,458	36,666	171,133	208,943	276,226
Pe (Z3), 1	29,379	32,646	37,159	38,325	40,284	33,832	25,721	22,628	29,973	33,247	41,586	46,420	47,051	43,846	41,908	38,940
DL (MM), cm^2/s	3,577	3,688	3,701	3,869	3,681	3,967	4,469	4,991	5,793	5,655	4,207	4,364	4,495	4,766	4,218	4,012
DL (A3), cm^{2}/s	3,892	3,661	3,547	3,666	3,613	3,891	4,901	5,264	5,647	5,272	4,472	4,511	4,184	4,788	4,303	4,242
DL (A4), cm^{2}/s	3,960	3,728	3,587	3,661	3,594	3,936	5,064	5,352	5,709	5,270	4,443	4,487	4,183	4,698	4,314	4,276
D _L (A5, nagib), cm ² /s	3,220	3,220	3,037	2,951	2,782	3,205	3,757	4,333	5,349	4,907	3,501	3,402	3,549	3,934	3,773	3,765
D _L (A5, odsečak), cm ² /s	0,751	1,799	2,580	2,699	1,557	2,025	0,548	0,576	3,428	4,852	1,165	0,109	4,297	0,938	0,749	0,574
D_{L} (Z3), cm ² /s	3,753	3,531	3,330	3,461	3,314	3,703	4,592	4,872	5,290	5,092	4,225	4,137	4,029	4,085	3,906	4,074
ε _G , 1	0	0,044	0,109	0,169	0,174	0,120	0,066	0	0	0,063	0,109	0,174	0,169	0,104	0,044	0
ε _s , 1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Nastavak tabele P.1.

Broj eksperimenta	97	98	99	100	101	102	103	104	105	106	107	108	109	110	111	112
I, cm/s	0	3,000	3,000	3,000	3,000	3,000	3,000	0	3,000	3,000	3,000	3,000	0	0	4,700	4,700
U _L , cm/s	0,523	0,535	0,534	0,523	0,535	0,809	0,797	0,600	0,600	0,600	0,600	0,612	0,600	0,601	0,601	0,601
U _G , cm/s	0	0	0	0	0	0	0	0	0	0,274	0,822	1,480	1,480	0,822	0	0,274
τ, min	5,368	5,254	5,260	5,370	5,253	3,474	3,524	4,683	4,680	4,529	4,273	3,907	4,057	4,284	4,679	4,501
t _{sr} (MM), min	6,257	5,557	5,818	5,620	5,761	4,151	3,694	5,434	4,987	4,685	4,719	4,291	4,438	4,584	5,043	4,799
μ_1' , min	8,319	5,635	5,675	5,498	5,437	4,047	3,803	6,658	4,924	4,846	4,712	4,222	4,572	4,640	5,018	4,914
t _{sr} (A1), min	8,221	5,633	5,673	5,497	5,436	4,046	3,802	6,598	4,923	4,844	4,709	4,219	4,569	4,637	5,014	4,910
t _{sr} (A2), min	8,285	5,618	5,658	5,483	5,422	4,038	3,795	6,631	4,911	4,834	4,700	4,212	4,561	4,629	5,005	4,901
t _{sr} (Z2), min	8,288	5,634	5,675	5,498	5,437	4,047	3,800	6,629	4,924	4,846	4,712	4,221	4,572	4,640	5,019	4,914
t_{sr} (N = <i>const</i> , Z2), min	8,288	5,634	5,675	5,498	5,437	4,046	3,802	6,628	4,923	4,846	4,712	4,221	4,572	4,640	5,019	4,914
t_{sr} (A3), min	8,318	5,635	5,675	5,498	5,437	4,047	3,803	6,657	4,924	4,846	4,712	4,222	4,572	4,640	5,018	4,914
t _{sr} (A4), min	8,174	5,618	5,658	5,483	5,422	4,038	3,795	6,556	4,911	4,834	4,700	4,212	4,561	4,629	5,006	4,902
N (MM), 1	4,158	41,277	41,312	41,559	45,306	51,870	49,066	4,853	45,353	28,051	21,759	19,190	16,738	17,078	18,676	17,693
N (A1), 1	11,048	44,898	41,538	41,859	42,533	51,235	53,634	10,662	46,201	32,061	23,574	20,357	19,568	19,264	20,298	20,400
N (Z1), 1	8,053	43,319	38,526	39,463	33,200	47,049	51,918	11,515	43,205	30,629	22,100	18,766	18,791	18,169	18,471	19,153
ψ _{min} (za N, MM), 1	5,754	0,161	1,026	0,923	5,103	1,283	0,637	4,201	0,421	0,405	0,108	0,345	0,173	0,064	0,123	0,116
Ψ_{\min} (za N, A1), 1	5,383	0,149	1,035	0,932	4,718	1,261	0,618	2,400	0,441	0,360	0,133	0,380	0,110	0,062	0,180	0,102
ψ_{\min} (za N, Z1), 1	5,105	0,134	0,970	0,893	4,071	1,190	0,608	2,378	0,399	0,343	0,106	0,342	0,101	0,043	0,122	0,075
α (N = const, MM), 1	7,196	0,275	0,275	0,270	0,206	0,117	0,152	6,094	0,206	0,641	0,971	1,168	1,412	1,374	1,214	1,309
α (N = const, Z2), 1	3,481	0,243	0,308	0,300	0,286	0,139	0,109	3,358	0,217	0,555	0,967	1,204	1,294	1,328	1,240	1,226
N (A2), 1	8,314	70,349	206,746	113,309	174,570	63,622	110,908	7,162	148,149	54,237	78,767	40,921	113,615	84,455	47,395	89,237
α (A2), 1	0,081	0,330	2,128	0,924	1,663	0,145	0,566	-0,006	1,176	0,406	1,316	0,600	2,696	1,915	0,785	1,911
N (Z2), 1	3510,706	5 3464,427	238,230	115,737	1896,827	2820,762	2 12,586	3377,022	2 5537,470	1600,198	4217,271	1731,833	3 1793,239	9 79,612	44,692	78,006
α (Z2), 1	218,299	40,072	2,529	0,955	22,982	27,888	-0,403	-204,430	62,059	26,016	96,514	45,741	49,906	1,777	0,711	1,606
Pe (MM), 1	9,614	84,028	84,098	84,592	92,088	105,218	99,610	11,027	92,181	57,564	44,970	39,825	34,915	35,595	38,795	36,828
Pe (A3), 1	15,294	85,107	78,611	79,458	80,742	98,931	104,128	15,434	88,455	60,154	43,421	37,292	35,554	34,951	36,817	37,023
Pe (A4), 1	17,564	85,643	78,587	79,297	80,825	99,606	104,370	18,044	88,574	60,519	43,520	37,552	35,598	34,892	36,583	36,946
Pe (A5, nagib)	14,158	88,866	88,834	88,992	97,017	109,348	102,716	15,835	96,313	61,446	48,803	43,561	38,369	39,098	42,510	40,423
Pe (A5, odsečak)	6,374	146,394	80,580	91,145	35,460	78,916	68,135	9,338	154,903	58,935	951,598	119,667	67,825	173,023	351,894	86,489
Pe (Z3), 1	14,838	88,372	82,105	83,454	70,415	99,587	103,531	19,400	89,097	61,827	46,083	39,549	38,552	37,766	38,946	39,975
DL (MM), cm^2/s	9,996	1,169	1,166	1,136	1,067	1,411	1,470	9,991	1,196	1,979	2,685	3,316	3,642	3,383	2,842	3,112
DL (A3), cm ² /s	6,284	1,154	1,248	1,209	1,216	1,501	1,406	7,138	1,246	1,894	2,781	3,541	3,577	3,445	2,995	3,096
DL (A4), cm ² /s	5,472	1,147	1,248	1,212	1,215	1,491	1,403	6,106	1,245	1,882	2,774	3,516	3,572	3,451	3,014	3,102
D_{L} (A5, nagib), cm ² /s	6,788	1,105	1,104	1,080	1,012	1,358	1,425	6,957	1,145	1,793	2,258	2,577	2,872	2,820	2,594	2,727
D_{L} (A5, odsečak), cm ² /s	15,078	0,671	1,217	1,054	2,770	1,882	2,149	11,798	0,712	1,870	0,116	0,938	1,625	0,637	0,313	1,275
D_{L} (Z3), cm ² /s	6,477	1,111	1,195	1,151	1,395	1,491	1,414	5,679	1,237	1,842	2,620	3,339	3,299	3,189	2,831	2,867
ε _c , 1	0	0	0	0	0	0	0	0	0	0,033	0,087	0,150	0,133	0,084	0	0,038
ε _s , 1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Nastavak tabele P.1.

Broj eksperimenta	113	114	115	116	117	118	119	120	121	122	123	124	125	126	127	128
I, cm/s	4,700	4,700	5,875	5,875	5,875	5,875	8,225	8,225	8,225	8,225	10,575	10,575	10,575	10,575	0	0
U _L , cm/s	0,601	0,600	0,601	0,600	0,600	0,601	0,601	0,600	0,600	0,600	0,601	0,601	0,600	0,600	0,600	0,601
U _G , cm/s	0,822	1,480	1,480	0,822	0,274	0	0	0,274	0,822	1,480	1,480	0,822	0,274	0	0,274	1,480
τ, min	4,266	4,016	3,960	4,251	4,518	4,679	4,679	4,433	4,153	3,885	3,785	4,124	4,369	4,682	4,559	4,036
t _{sr} (MM), min	4,643	4,224	4,228	4,678	4,726	4,982	4,968	4,694	4,419	4,109	3,909	4,204	4,714	4,936	4,726	4,430
μ_1 ', min	4,682	4,367	4,248	4,678	4,905	4,979	5,008	4,768	4,530	4,262	4,089	4,366	4,751	5,113	4,912	4,450
t_{sr} (A1), min	4,679	4,364	4,245	4,674	4,900	4,974	5,001	4,763	4,525	4,257	4,087	4,362	4,743	5,100	4,909	4,446
t_{sr} (A2), min	4,671	4,357	4,239	4,667	4,892	4,966	4,996	4,757	4,519	4,252	4,081	4,356	4,739	5,101	4,899	4,439
t_{sr} (Z2), min	4,682	4,367	4,248	4,678	4,905	4,979	5,008	4,769	4,530	4,260	4,089	4,366	4,751	5,114	4,911	4,450
t_{sr} (N = const, Z2), min	4,682	4,367	4,248	4,678	4,906	4,979	5,011	4,769	4,530	4,260	4,090	4,365	4,751	5,115	4,911	4,450
t_{sr} (A3), min	4,682	4,367	4,248	4,678	4,905	4,979	5,008	4,768	4,530	4,262	4,089	4,366	4,751	5,113	4,912	4,450
t _{sr} (A4), min	4,670	4,357	4,238	4,666	4,894	4,967	5,000	4,758	4,519	4,249	4,081	4,355	4,740	5,102	4,898	4,439
N (MM), 1	17,925	17,240	17,367	17,098	15,453	16,513	12,738	13,265	13,837	14,072	16,712	15,754	12,091	9,210	20,218	15,742
N (A1), 1	20,258	20,213	19,312	19,055	18,307	18,311	14,479	15,306	16,361	17,361	19,797	18,702	14,013	11,603	23,876	17,617
N (Z1), 1	19,469	19,521	18,028	18,085	17,113	16,595	12,618	13,846	15,729	18,111	19,075	17,964	12,606	10,177	23,202	16,687
Ψ_{\min} (za N, MM), 1	0,147	0,214	0,134	0,120	0,264	0,124	0,053	0,062	0,131	0,392	0,355	0,248	0,117	0,180	0,399	0,069
Ψ_{\min} (za N, A1), 1	0,113	0,140	0,153	0,118	0,230	0,189	0,167	0,110	0,058	0,105	0,281	0,171	0,167	0,219	0,289	0,067
ψ_{\min} (za N, Z1), 1	0,103	0,134	0,127	0,100	0,202	0,124	0,053	0,051	0,050	0,096	0,274	0,162	0,108	0,131	0,283	0,051
α (N = const, MM), 1	1,285	1,356	1,343	1,372	1,571	1,438	2,012	1,912	1,813	1,774	1,415	1,531	2,147	2,975	1,083	1,533
α (N = const, Z2), 1	1,228	1,223	1,306	1,350	1,449	1,449	2,052	1,876	1,685	1,522	1,255	1,377	2,123	2,814	0,951	1,509
N (A2), 1	32,840	43,438	35,622	44,186	29,197	60,886	19,465	27,415	54,690	17,466	50,101	54,497	46,840	25,471	50,486	503,218
α (A2), 1	0,400	0,680	0,517	0,788	0,379	1,355	0,260	0,508	1,376	0,071	0,871	1,109	1,417	0,809	0,656	15,331
N (Z2), 1	1862,204	4 1740,467	7 1801,810	3565,752	2 28,621	52,516	18,407	25,874	2186,422	2 1907,961	48,594	4070,678	3 41,340	21,992	1613,646	5 2371,702
α (Z2), 1	49,938	46,486	50,477	102,852	0,361	1,097	0,216	0,449	74,310	59,933	0,830	119,186	1,189	0,624	36,222	74,143
Pe (MM), 1	37,291	35,920	36,173	35,636	32,339	34,463	26,897	27,954	29,100	29,571	34,861	32,942	25,600	19,814	41,885	32,918
Pe (A3), 1	36,671	36,931	35,190	34,352	33,021	32,847	25,446	27,123	29,153	30,889	36,477	33,976	24,446	19,497	43,793	31,770
Pe (A4), 1	37,094	37,134	35,463	34,591	32,584	32,705	24,785	26,757	29,272	31,951	36,322	34,065	24,323	19,196	44,056	31,783
Pe (A5, nagib)	41,356	39,319	39,746	39,612	35,498	38,187	30,001	31,168	32,641	33,782	37,659	36,186	29,105	23,149	45,728	36,425
Pe (A5, odsečak)	263,793	60,354	476,062	2692,447	54,320	1197,637	297,895	136,848	83,361	55,445	43,862	53,259	320,395	60,334	51,920	559,973
Pe (Z3), 1	40,977	39,434	37,372	38,779	35,673	35,581	27,314	29,617	32,738	36,821	38,633	36,185	26,633	21,194	46,534	35,261
DL (MM), cm^2/s	3,243	3,577	3,601	3,405	3,531	3,199	4,099	4,163	4,269	4,491	3,910	3,798	4,612	5,561	2,702	3,883
DL (A3), cm^2/s	3,298	3,479	3,702	3,532	3,458	3,357	4,333	4,291	4,261	4,299	3,737	3,682	4,830	5,652	2,584	4,024
DL (A4), cm^2/s	3,260	3,460	3,673	3,508	3,505	3,371	4,448	4,349	4,244	4,156	3,753	3,673	4,854	5,740	2,569	4,022
D_{L} (A5, nagib), cm ² /s	2,666	2,803	2,774	2,783	3,105	2,887	3,675	3,537	3,377	3,261	2,929	3,047	3,787	4,760	2,410	3,028
D_{I} (A5, odsečak), cm ² /s	0,418	1,826	0,232	0,041	2,029	0,092	0,370	0,806	1,322	1,987	2,515	2,070	0,344	1,826	2,123	0,197
$D_{L}(Z3), cm^{2}/s$	2,951	3,258	3,486	3,129	3,201	3,099	4,036	3,929	3,795	3,607	3,528	3,458	4,433	5,199	2,432	3,625
ε _c , 1	0,088	0,142	0,154	0,092	0,035	0	0	0,053	0,113	0,171	0,191	0,119	0,066	0	0,026	0,137
ε _s , 1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Broj eksperimenta	129	130	131	132	133	134	135	136	137	138	139	140	141	142	143	144	145
I, cm/s	7,050	5,875	4,700	8,225	9,400	10,575	0	10,575	0	9,400	0	0	8,225	7,050	5,875	4,700	4,700
U _L , cm/s	0,533	0,540	0,540	0,540	0,527	0,527	0,533	0,540	0,546	0,540	0,540	0,540	0,565	0,565	0,565	0,571	0,559
U _G , cm/s	0	0	0	0	0	0	0	0,836	0,836	0,836	1,463	1,839	0,836	0,836	0,836	0,836	1,463
τ, min	2,653	2,623	2,623	2,623	2,685	2,685	2,653	2,255	2,489	2,347	2,432	2,371	2,284	2,310	2,342	2,342	2,327
t _{sr} (MM), min	2,585	2,576	2,703	2,647	2,754	2,728	2,664	2,273	2,353	2,302	2,728	2,760	2,175	2,223	2,210	2,272	2,222
μ_1 ', min	2,990	3,027	3,088	3,060	3,150	3,087	2,964	2,656	2,424	2,640	3,009	3,155	2,388	2,599	2,669	2,638	2,677
t _{sr} (A1), min	2,977	3,015	3,078	3,042	3,129	3,066	2,956	2,644	2,401	2,628	2,972	3,110	2,379	2,584	2,654	2,615	2,650
t _{sr} (A2), min	2,987	3,023	3,083	3,056	3,147	3,085	2,958	2,653	2,424	2,638	3,014	3,161	2,386	2,598	2,667	2,638	2,677
t _{sr} (Z2), min	2,991	3,029	3,090	3,062	3,152	3,088	2,958	2,657	2,425	2,641	3,012	3,160	2,389	2,600	2,670	2,640	2,679
t_{sr} (N = const, Z2), min	2,994	3,029	3,089	3,065	3,155	3,094	2,957	2,662	2,445	2,646	3,029	3,168	2,395	2,604	2,675	2,647	2,685
t_{sr} (A3), min	2,990	3,027	3,088	3,060	3,151	3,087	2,964	2,656	2,424	2,640	3,009	3,156	2,388	2,600	2,669	2,638	2,677
t _{sr} (A4), min	2,992	3,026	3,085	3,064	3,153	3,094	2,949	2,663	2,462	2,646	3,041	3,170	2,397	2,604	2,675	2,650	2,686
N (MM), 1	3,087	3,300	4,030	2,726	2,580	2,599	5,548	2,535	1,864	2,592	1,793	1,629	2,827	2,220	2,139	1,799	1,558
N (A1), 1	5,085	5,573	6,342	4,591	4,387	4,263	8,664	4,231	2,586	4,192	3,006	3,072	4,043	3,844	3,929	3,205	3,086
N (Z1), 1	4,866	5,474	6,216	4,354	4,136	3,900	11,142	3,939	2,082	3,992	2,605	2,872	3,570	3,807	3,876	3,073	3,099
ψ _{min} (za N, MM), 1	0,640	0,813	0,659	0,644	0,649	0,537	1,542	0,574	0,122	0,492	0,563	1,111	0,189	0,710	0,873	0,771	1,237
Ψ_{min} (za N, A1), 1	0,235	0,327	0,275	0,205	0,168	0,176	0,480	0,220	0,201	0,157	0,212	0,196	0,116	0,175	0,239	0,156	0,180
Ψ_{min} (za N, Z1), 1	0,230	0,326	0,274	0,199	0,160	0,157	0,297	0,210	0,089	0,152	0,159	0,185	0,088	0,175	0,239	0,152	0,180
α (N = const, MM), 1	1,768	1,621	1,237	2,068	2,213	2,193	0,762	2,262	3,255	2,201	3,405	3,796	1,977	2,654	2,773	3,392	3,992
α (N = const, Z2), 1	1,259	1,067	0,839	1,523	1,663	1,740	0,395	1,670	3,678	1,689	3,156	3,084	1,745	1,933	1,886	2,636	2,814
N (A2), 1	7,756	10,438	14,673	6,394	7,253	5,844	5,877	4,853	2,189	5,106	3,328	5,189	3,940	5,695	5,352	4,140	4,713
α (A2), 1	0,455	0,660	0,905	0,396	0,598	0,405	-0,079	0,216	0,070	0,265	0,310	0,798	0,088	0,463	0,382	0,386	0,581
N (Z2), 1	7,365	23,020	28,793	7,092	6,809	5,473	1133,4	4,682	2,136	4,910	3,093	4,491	3,846	5,331	5,039	3,885	4,357
α (Z2), 1	0,402	2,095	2,280	1,500	0,524	0,339	73,299	0,186	0,050	0,230	0,236	1,601	0,071	0,393	0,322	0,321	0,488
Pe (MM), 1	4,930	5,379	6,892	4,162	3,847	3,889	9,985	3,749	2,243	3,873	2,073	1,681	4,378	3,055	2,873	2,088	1,506
Pe (A3), 1	8,076	8,977	10,422	7,075	6,585	6,428	14,411	6,677	3,663	6,593	4,081	4,056	6,529	5,897	6,037	4,647	4,361
Pe (A4), 1	7,808	8,786	10,292	6,770	6,357	6,107	15,851	6,292	3,173	6,249	3,685	3,833	6,056	5,654	5,749	4,359	4,146
Pe (A5, nagib)	8,952	9,427	11,104	8,222	8,063	8,012	15,446	7,504	6,175	7,693	6,278	6,043	8,021	6,919	6,676	6,039	5,518
Pe (A5, odsečak)	13,187	11,720	14,422	13,411	14,697	16,123	18,275	12,254	98,741	14,166	22,414	15,802	21,280	12,291	9,965	13,233	10,384
Pe (Z3), 1	10,234	11,174	12,833	9,417	9,093	8,823	22,138	8,893	5,979	8,765	6,342	6,624	8,695	8,128	8,075	6,958	6,831
DL (MM), cm^2/s	9,305	8,628	6,734	11,152	11,784	11,656	4,594	14,395	21,805	13,392	24,135	30,533	12,175	17,251	18,090	24,892	34,725
DL (A3), cm^2/s	5,680	5,170	4,453	6,560	6,885	7,052	3,183	8,082	13,351	7,866	12,261	12,655	8,164	8,935	8,608	11,182	11,994
DL (A4), cm^2/s	5,875	5,282	4,509	6,855	7,132	7,424	2,894	8,578	15,410	8,300	13,578	13,392	8,801	9,321	9,040	11,922	12,616
D_{I} (A5, nagib), cm ² /s	5,124	4,923	4,180	5,645	5,622	5,659	2,970	6,185	7,604	6,033	7,393	7,680	6,055	7,019	7,275	8,132	8,703
D_{I} (A5, odsečak), cm ² /s	3,479	3,960	3,218	3,461	3,085	2,812	2,510	3,788	0,476	3,276	2,071	2,937	2,282	3,951	4,874	3,711	4,625
D_{I} (Z3), cm ² /s	4,483	4,154	3,617	4,929	4,986	5,138	2,072	6,069	8,178	5,917	7,890	7,749	6,130	6,483	6,436	7,468	7,657
ε. 1	0	0	0	0	0	0	0	0,140	0,040	0,105	0,073	0,096	0,089	0,078	0,066	0,055	0,082
$\varepsilon_{\rm s}, 1$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

P.2. Vrednosti parametara modela i operativni uslovi rada u KVM2

Nastavak tabele P.2.

Broj eksperimenta	146	147	148	149	150	151	152	153	154	155	156	157	158	159	160	161	162
I, cm/s	5,875	7,050	8,225	9,400	10,575	10,575	9,400	8,225	7,050	4,700	5,875	5,875	4,700	7,050	8,225	9,400	10,575
U _L , cm/s	0,559	0,565	0,565	0,565	0,565	0,565	0,559	0,571	0,565	0,565	0,565	0,559	0,559	0,567	0,567	0,565	0,565
U _G , cm/s	1,463	1,463	1,463	1,463	1,463	1,880	1,880	1,880	1,880	1,880	1,880	0,293	0,293	0,293	0,293	0,293	0,293
τ, min	2,292	2,214	2,155	2,112	2,082	1,995	2,085	2,068	2,155	2,228	2,202	2,475	2,487	2,416	2,393	2,359	2,336
t _{sr} (MM), min	2,225	2,121	2,089	2,017	2,000	1,910	2,029	2,048	2,076	2,129	2,141	2,400	2,346	2,259	2,292	2,349	2,385
μ_1 ', min	2,685	2,585	2,537	2,456	2,367	2,286	2,435	2,463	2,373	2,490	2,447	2,734	2,696	2,731	2,700	2,677	2,716
t_{sr} (A1), min	2,662	2,571	2,525	2,445	2,356	2,278	2,424	2,449	2,358	2,467	2,429	2,721	2,681	2,720	2,687	2,665	2,699
t _{sr} (A2), min	2,684	2,583	2,534	2,453	2,364	2,284	2,432	2,460	2,372	2,489	2,446	2,731	2,694	2,727	2,697	2,674	2,713
t _{sr} (Z2), min	2,686	2,586	2,537	2,456	2,367	2,287	2,436	2,463	2,374	2,491	2,448	2,735	2,697	2,731	2,701	2,678	2,716
t_{sr} (N = const, Z2), min	2,691	2,588	2,539	2,458	2,370	2,289	2,437	2,465	2,379	2,497	2,456	2,740	2,701	2,733	2,704	2,682	2,721
t _{sr} (A3), min	2,685	2,585	2,537	2,456	2,367	2,286	2,435	2,463	2,373	2,490	2,447	2,735	2,696	2,731	2,700	2,677	2,716
t _{sr} (A4), min	2,690	2,587	2,538	2,456	2,369	2,288	2,435	2,463	2,380	2,498	2,460	2,740	2,701	2,731	2,702	2,682	2,720
N (MM), 1	1,736	2,153	2,370	2,307	2,289	2,432	2,309	2,115	2,009	1,638	1,876	2,715	2,506	2,812	2,526	2,750	2,415
N (A1), 1	3,374	4,033	4,315	4,239	3,978	4,216	4,143	3,883	3,348	3,008	3,152	4,352	4,123	4,985	4,367	4,384	3,979
N (Z1), 1	3,392	4,138	4,407	4,416	3,988	4,169	4,314	4,102	3,244	2,975	2,951	4,103	3,898	4,898	4,330	4,147	3,796
ψ _{min} (za N, MM), 1	1,098	0,962	0,878	0,896	0,687	0,683	0,811	0,893	0,521	0,884	0,549	0,471	0,556	0,869	0,716	0,460	0,528
ψ_{\min} (za N, A1), 1	0,195	0,255	0,276	0,269	0,190	0,233	0,223	0,203	0,104	0,126	0,138	0,157	0,174	0,359	0,210	0,154	0,134
ψ _{min} (za N, Z1), 1	0,194	0,254	0,275	0,266	0,190	0,233	0,221	0,198	0,103	0,126	0,129	0,150	0,168	0,358	0,210	0,149	0,129
α (N = const, MM), 1	3,533	2,752	2,454	2,534	2,559	2,378	2,531	2,809	2,984	3,775	3,231	2,078	2,293	1,989	2,272	2,046	2,398
α (N = const, Z2), 1	2,426	1,777	1,578	1,604	1,764	1,588	1,661	1,854	2,347	2,842	2,632	1,604	1,748	1,264	1,582	1,572	1,856
N (A2), 1	5,490	6,761	6,791	7,513	6,017	5,975	7,257	7,676	4,307	4,344	3,573	5,416	5,432	7,505	6,551	5,509	5,609
α (A2), 1	0,618	0,579	0,487	0,611	0,448	0,367	0,602	0,775	0,338	0,500	0,252	0,282	0,341	0,426	0,450	0,284	0,414
N (Z2), 1	5,108	6,332	6,481	7,233	5,869	5,806	7,049	7,239	4,144	4,100	3,421	5,241	5,147	7,185	6,277	5,330	5,364
α (Z2), 1	0,532	0,504	0,437	0,567	0,422	0,340	0,568	0,697	0,301	0,435	0,212	0,252	0,291	0,383	0,406	0,255	0,369
Pe (MM), 1	1,938	2,904	3,388	3,249	3,208	3,526	3,254	2,820	2,578	1,701	2,270	4,139	3,687	4,347	3,729	4,213	3,488
Pe (A3), 1	4,904	6,254	6,847	6,728	6,289	6,829	6,550	6,015	5,082	4,327	4,684	6,837	6,408	8,051	6,848	6,935	6,087
Pe (A4), 1	4,707	6,058	6,634	6,568	6,091	6,600	6,393	5,880	4,818	4,110	4,349	6,502	6,098	7,798	6,608	6,610	5,826
Pe (A5, nagib)	5,912	6,713	7,142	7,009	6,964	7,166	7,043	6,655	6,402	5,664	6,103	8,035	7,563	8,141	7,609	8,080	7,464
Pe (A5, odsečak)	10,197	9,416	9,562	9,439	11,215	10,370	10,276	10,210	14,690	12,575	14,879	14,954	13,979	9,789	11,613	14,891	15,197
Pe (Z3), 1	7,330	8,481	9,020	9,124	9,120	9,329	9,118	8,647	7,572	7,004	6,874	9,100	8,746	9,909	9,239	9,151	8,496
DL (MM), cm^2/s	27,407	18,933	16,669	17,743	18,219	17,307	17,938	20,873	21,908	32,114	24,347	11,882	13,275	11,588	13,642	12,244	14,937
DL (A3), cm ² /s	10,831	8,792	8,249	8,568	9,294	8,935	8,913	9,785	11,114	12,626	11,801	7,194	7,639	6,258	7,429	7,438	8,560
DL (A4), cm ² /s	11,286	9,076	8,513	8,777	9,597	9,245	9,131	10,010	11,722	13,291	12,710	7,564	8,027	6,460	7,698	7,805	8,943
D_{L} (A5, nagib), cm ² /s	8,124	7,235	6,800	6,930	6,974	6,777	6,819	7,379	7,586	8,576	7,958	5,977	6,351	5,992	6,412	6,011	6,507
D_{L} (A5, odsečak), cm ² /s	4,710	5,158	5,079	5,146	4,331	4,683	4,674	4,810	3,306	3,862	3,264	3,212	3,436	4,983	4,201	3,262	3,196
D_{L} (Z3), cm ² /s	7,247	6,483	6,261	6,318	6,410	6,540	6,403	6,806	7,459	7,799	8,042	5,405	5,597	5,084	5,506	5,637	6,133
ε _c , 1	0,096	0,117	0,140	0,158	0,169	0,204	0,177	0,166	0,140	0,111	0,121	0,024	0,019	0,032	0,041	0,059	0,068
ε _s , 1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Nastavak tabele P.2.

Broj eksperimenta	163	164	165	166	167	168	169	170	171	172	173	174	175	176	177	178
I, cm/s	4,000	3,000	2,000	2,000	3,000	4,000	4,000	3,000	2,000	2,000	3,000	4,000	4,000	3,000	2,000	0
U _L , cm/s	0,565	0,567	0,571	0,565	0,571	0,565	0,565	0,565	0,571	0,565	0,565	0,565	0,571	0,565	0,565	0,565
U _G , cm/s	0,293	0,293	0,293	0,836	0,836	0,836	1,463	1,463	1,463	1,880	1,880	1,880	0	0	0	0,293
τ, min	2,453	2,454	2,446	2,394	2,362	2,377	2,307	2,319	2,299	2,257	2,243	2,222	2,479	2,506	2,506	2,468
t _{sr} (MM), min	2,443	2,413	2,403	2,345	2,359	2,350	2,219	2,253	2,302	2,206	2,235	2,177	2,451	2,514	2,542	2,438
μ ₁ ', min	2,775	2,619	2,600	2,650	2,641	2,627	2,511	2,496	2,499	2,456	2,600	2,495	2,822	2,864	2,935	2,839
t_{sr} (A1), min	2,755	2,598	2,573	2,618	2,614	2,603	2,493	2,477	2,476	2,437	2,576	2,476	2,820	2,862	2,934	2,794
t_{sr} (A2), min	2,773	2,620	2,603	2,654	2,643	2,629	2,512	2,497	2,501	2,456	2,599	2,495	2,818	2,859	2,930	2,847
t_{sr} (Z2), min	2,776	2,621	2,603	2,653	2,644	2,629	2,513	2,498	2,501	2,458	2,602	2,496	2,822	2,863	2,934	2,843
t_{sr} (N = const, Z2), min	2,779	2,631	2,621	2,671	2,656	2,642	2,525	2,509	2,516	2,468	2,605	2,503	2,822	2,863	2,934	2,867
t_{sr} (A3), min	2,775	2,620	2,601	2,650	2,642	2,627	2,512	2,496	2,500	2,456	2,600	2,495	2,822	2,864	2,935	2,839
t _{sr} (A4), min	2,778	2,637	2,635	2,684	2,663	2,650	2,533	2,515	2,526	2,473	2,604	2,506	2,819	2,860	2,930	2,889
N (MM), 1	2,224	2,081	1,722	1,496	1,687	1,826	1,899	1,919	1,789	1,901	1,742	1,862	8,484	10,360	12,020	1,281
N (A1), 1	3,765	3,188	2,700	2,628	2,866	2,999	3,097	3,042	2,776	3,036	3,195	3,184	12,225	14,455	17,178	2,495
N (Z1), 1	3,639	2,797	2,279	2,324	2,575	2,660	2,756	2,729	2,442	2,747	3,194	3,027	11,020	13,214	15,100	2,258
ψ_{\min} (za N, MM), 1	0,642	0,352	0,397	0,808	0,633	0,504	0,468	0,406	0,447	0,413	0,906	0,621	1,213	1,376	2,061	2,258
ψ_{\min} (za N, A1), 1	0,138	0,181	0,239	0,223	0,187	0,185	0,184	0,149	0,184	0,136	0,136	0,135	1,075	1,262	1,968	0,248
ψ_{\min} (za N, Z1), 1	0,136	0,141	0,167	0,185	0,161	0,153	0,155	0,124	0,143	0,116	0,136	0,130	1,046	1,242	1,918	0,219
α (N = const, MM), 1	2,647	2,864	3,565	4,181	3,649	3,334	3,186	3,148	3,412	3,182	3,519	3,259	0,325	0,176	0,082	4,965
α (N = const, Z2), 1	2,046	2,665	3,526	3,714	3,191	2,960	2,757	2,823	3,293	2,811	2,611	2,602	0,115	0,010	0,080	4,231
N (A2), 1	6,723	3,555	2,590	2,710	3,267	3,161	3,051	3,221	2,752	3,214	5,862	3,976	20,619	24,965	119,461	2,518
α (A2), 1	0,701	0,254	0,174	0,248	0,306	0,224	0,152	0,210	0,181	0,206	0,777	0,339	0,418	0,429	3,225	0,274
N (Z2), 1	6,204	3,367	2,468	2,558	3,083	2,995	2,918	3,068	2,626	3,073	5,435	3,775	14,916	15,045	15,742	2,363
α (Z2), 1	0,600	0,203	0,130	0,191	0,249	0,174	0,114	0,167	0,139	0,167	0,676	0,288	0,157	0,050	-0,024	0,208
Pe (MM), 1	3,065	2,741	1,906	1,349	1,822	2,152	2,324	2,370	2,066	2,328	1,953	2,237	15,902	19,667	22,995	0,793
Pe (A3), 1	5,599	4,659	3,755	3,568	4,008	4,301	4,583	4,461	3,956	4,471	4,593	4,697	22,364	26,771	32,053	3,209
Pe (A4), 1	5,418	4,290	3,322	3,186	3,673	3,905	4,143	4,078	3,547	4,094	4,440	4,407	22,131	26,554	32,047	2,816
Pe (A5, nagib)	7,164	6,723	5,908	5,391	5,862	6,091	6,112	6,243	5,998	6,180	6,011	6,129	19,856	23,709	27,206	4,952
Pe (A5, odsečak)	15,685	26,002	28,347	17,173	18,504	18,544	16,192	20,128	26,383	19,056	13,108	14,577	13,262	14,428	12,963	13,720
Pe (Z3), 1	8,104	6,682	5,886	5,607	6,244	6,393	6,469	6,594	5,946	6,649	7,252	7,042	21,252	25,666	27,986	5,491
DL (MM), cm^2/s	16,190	18,095	26,117	37,670	28,285	23,800	22,702	22,152	25,629	23,161	27,791	24,482	3,088	2,470	2,112	62,202
DL (A3), cm ² /s	8,861	10,646	13,254	14,246	12,856	11,906	11,513	11,768	13,385	12,061	11,816	11,661	2,196	1,814	1,515	15,370
DL (A4), cm ² /s	9,157	11,561	14,979	15,953	14,026	13,113	12,737	12,874	14,927	13,169	12,224	12,427	2,219	1,829	1,516	17,517
D_{L} (A5, nagib), cm ² /s	6,780	7,256	8,313	9,010	8,377	7,974	7,947	7,779	8,188	7,859	8,080	7,924	2,473	2,049	1,785	9,807
D_{L} (A5, odsečak), cm ² /s	3,096	1,876	1,732	2,828	2,654	2,619	2,999	2,413	1,861	2,549	3,705	3,332	3,703	3,366	3,747	3,540
D_{L} (Z3), cm ² /s	6,122	7,423	8,455	9,066	8,252	8,010	8,156	7,961	8,905	8,110	7,483	7,778	2,311	1,892	1,735	8,982
ε _G , 1	0,021	0,016	0,013	0,045	0,047	0,052	0,080	0,075	0,073	0,099	0,105	0,113	0	0	0	0,015
ε _s , 1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Nastavak tabele P.2.

Broj eksperimenta	179	180	181	182	183	184	185	186	187	188	189	190	191	192	193	194	195
I, cm/s	3,000	4,000	2,000	0	0	2,000	3,000	4,000	4,000	3,000	2,000	0	0	2,000	3,000	4,000	4,000
U _L , cm/s	0,540	0,540	0,533	0,540	0,552	0,527	0,527	0,533	0,527	0,527	0,527	0,527	0,521	0,527	0,527	0,533	0,527
U _G , cm/s	1,880	1,880	1,880	1,880	1,463	1,463	1,463	1,463	0,836	0,836	0,836	0,836	0,293	0,293	0,293	0,293	0
τ, min	2,259	2,246	2,288	2,277	2,285	2,390	2,384	2,350	2,462	2,469	2,478	2,487	2,591	2,560	2,553	2,514	2,604
t _{sr} (MM), min	2,201	2,287	2,273	2,281	2,328	2,346	2,302	2,294	2,383	2,435	2,399	2,453	2,581	2,615	2,514	2,518	2,560
μ_1 ', min	2,671	2,641	2,642	2,592	2,547	2,688	2,714	2,723	2,870	2,853	2,844	2,814	2,972	3,001	2,884	2,970	3,073
t_{sr} (A1), min	2,648	2,614	2,616	2,570	2,522	2,659	2,686	2,694	2,838	2,821	2,810	2,774	2,939	2,973	2,856	2,944	3,070
t _{sr} (A2), min	2,671	2,642	2,643	2,592	2,548	2,691	2,715	2,724	2,871	2,855	2,848	2,819	2,978	3,005	2,886	2,969	3,068
t _{sr} (Z2), min	2,673	2,642	2,644	2,594	2,549	2,691	2,716	2,725	2,873	2,856	2,847	2,817	2,975	3,004	2,886	2,972	3,074
t_{sr} (N = const, Z2), min	2,678	2,654	2,654	2,602	2,563	2,709	2,726	2,737	2,881	2,870	2,866	2,844	2,997	3,020	2,900	2,976	3,073
t _{sr} (A3), min	2,672	2,641	2,642	2,593	2,548	2,689	2,714	2,723	2,871	2,853	2,845	2,814	2,973	3,002	2,884	2,971	3,073
t _{sr} (A4), min	2,678	2,661	2,660	2,606	2,573	2,723	2,731	2,745	2,884	2,880	2,881	2,870	3,014	3,031	2,908	2,975	3,069
N (MM), 1	1,655	1,623	1,633	1,832	1,733	1,567	1,595	1,548	1,550	1,595	1,473	1,385	1,675	1,923	1,843	1,949	6,496
N (A1), 1	3,271	2,918	2,977	3,128	2,781	2,777	3,014	2,959	3,115	2,990	2,838	2,552	2,993	3,334	3,227	3,656	10,459
N (Z1), 1	3,334	2,722	2,776	2,917	2,458	2,494	2,874	2,802	3,019	2,733	2,573	2,236	2,601	2,936	2,898	3,549	9,187
ψ _{min} (za N, MM), 1	1,192	0,948	0,837	0,648	0,401	0,886	1,156	1,241	1,490	1,105	1,389	1,354	0,855	0,698	0,733	1,027	1,640
ψ _{min} (za N, A1), 1	0,193	0,159	0,165	0,119	0,129	0,166	0,163	0,175	0,195	0,195	0,228	0,219	0,248	0,242	0,195	0,190	1,442
ψ _{min} (za N, Z1), 1	0,192	0,148	0,155	0,109	0,096	0,139	0,158	0,168	0,193	0,176	0,205	0,170	0,198	0,203	0,168	0,188	1,406
α (N = <i>const</i> , MM), 1	3,729	3,813	3,786	3,322	3,539	3,967	3,890	4,023	4,015	3,889	4,252	4,554	3,680	3,140	3,298	3,092	0,578
α (N = const, Z2), 1	2,550	3,095	2,987	2,727	3,306	3,417	2,962	3,068	2,870	3,093	3,388	4,067	3,177	2,646	2,733	2,215	0,239
N (A2), 1	5,262	3,304	3,563	3,743	2,865	2,708	3,699	3,399	4,376	3,292	2,890	2,323	2,898	3,445	3,541	6,417	20,663
α (A2), 1	0,617	0,293	0,337	0,315	0,215	0,187	0,365	0,312	0,512	0,286	0,235	0,172	0,192	0,217	0,263	0,720	0,605
N (Z2), 1	4,838	3,141	3,381	3,594	2,760	2,595	3,505	3,222	4,077	3,111	2,733	2,223	2,729	3,228	3,342	5,875	34,073
α (Z2), 1	0,516	0,244	0,284	0,275	0,180	0,148	0,310	0,258	0,431	0,231	0,181	0,129	0,136	0,157	0,208	0,607	1,334
Pe (MM), 1	1,745	1,666	1,691	2,165	1,932	1,528	1,596	1,480	1,487	1,597	1,293	1,068	1,791	2,379	2,192	2,439	11,899
Pe (A3), 1	4,718	4,108	4,210	4,530	3,915	3,843	4,233	4,137	4,313	4,132	3,865	3,353	4,115	4,746	4,581	5,267	18,623
Pe (A4), 1	4,514	3,772	3,902	4,224	3,542	3,417	3,932	3,800	4,059	3,757	3,447	2,892	3,627	4,274	4,181	5,073	18,452
Pe (A5, nagib)	5,710	5,652	5,682	6,135	5,938	5,503	5,610	5,468	5,577	5,638	5,307	5,153	5,811	6,372	6,209	6,573	15,918
Pe (A5, odsečak)	9,864	13,984	13,250	15,808	24,060	15,013	11,977	11,468	10,489	12,598	11,677	15,290	14,447	14,605	14,703	11,849	10,043
Pe (Z3), 1	7,182	6,405	6,512	7,009	6,366	6,125	6,627	6,465	6,857	6,353	5,983	5,632	6,002	6,601	6,696	7,913	17,491
DL (MM), cm^2/s	30,741	32,360	31,307	24,572	27,466	33,201	31,858	34,856	33,151	30,797	37,898	45,722	26,185	19,950	21,704	19,816	3,924
DL (A3), cm^{2}/s	11,366	13,124	12,574	11,746	13,556	13,198	12,015	12,471	11,428	11,900	12,674	14,555	11,398	10,001	10,386	9,173	2,507
DL (A4), cm ² /s	11,881	14,293	13,567	12,598	14,982	14,843	12,933	13,575	12,142	13,087	14,212	16,879	12,933	11,106	11,380	9,524	2,530
D _L (A5, nagib), cm ² /s	8,128	8,212	8,073	7,565	7,998	8,238	8,081	8,390	8,129	8,041	8,543	8,798	7,709	7,114	7,301	6,979	2,848
D _L (A5, odsečak), cm ² /s	4,705	3,319	3,462	2,936	1,974	3,020	3,785	4,000	4,322	3,599	3,882	2,965	3,101	3,104	3,083	3,871	4,514
$D_{L}(Z3), cm^{2}/s$	7,467	8,417	8,129	7,592	8,337	8,281	7,674	7,980	7,188	7,739	8,188	8,667	7,815	7,191	7,106	6,106	2,669
ε _G , 1	0,109	0,113	0,108	0,102	0,078	0,080	0,082	0,084	0,053	0,051	0,047	0,043	0,016	0,016	0,019	0,022	0
ε _s , 1	0,029	0,029	0,029	0,029	0,029	0,029	0,029	0,029	0,029	0,029	0,029	0,029	0,029	0,029	0,029	0,029	0,029

Nastavak tabele P.2.

Broj eksperimenta	196	197	198	199	200	201	202	203	204	205	206	207	208	209	210	211	212
I, cm/s	3,000	2,000	0	4,700	4,700	5,875	5,875	7,050	7,050	8,225	8,225	9,400	9,400	10,575	10,575	10,575	9,400
U _L , cm/s	0,540	0,533	0,540	0,533	0,533	0,527	0,527	0,533	0,533	0,527	0,527	0,527	0,521	0,521	0,565	0,565	0,552
U _G , cm/s	0	0	0	0	0,293	0,293	0	0	0,293	0,293	0	0	0,293	0,293	0	0,836	0,836
τ, min	2,543	2,573	2,543	2,573	2,505	2,509	2,604	2,573	2,455	2,465	2,604	2,604	2,457	2,435	2,430	2,102	2,166
t _{sr} (MM), min	2,535	2,474	2,454	2,500	2,415	2,439	2,543	2,499	2,522	2,417	2,562	2,567	2,517	2,424	2,308	2,048	2,114
μ_1 ', min	3,038	3,033	2,953	3,033	2,895	2,916	3,044	2,938	3,013	2,760	3,020	3,044	2,947	2,745	2,635	2,526	2,577
t _{sr} (A1), min	3,036	3,030	2,950	3,018	2,876	2,901	3,029	2,925	2,992	2,746	3,003	3,026	2,923	2,726	2,621	2,513	2,567
t _{sr} (A2), min	3,033	3,028	2,948	3,028	2,891	2,912	3,040	2,934	3,008	2,757	3,016	3,041	2,944	2,743	2,632	2,522	2,574
t _{sr} (Z2), min	3,038	3,033	2,952	3,032	2,895	2,916	3,046	2,941	3,014	2,760	3,022	3,048	2,948	2,746	2,635	2,526	2,578
t_{sr} (N = const, Z2), min	3,038	3,033	2,951	3,032	2,897	2,920	3,045	2,940	3,014	2,766	3,021	3,047	2,951	2,752	2,638	2,527	2,580
t _{sr} (A3), min	3,038	3,033	2,953	3,033	2,895	2,916	3,044	2,938	3,013	2,760	3,020	3,044	2,947	2,745	2,635	2,526	2,578
t _{sr} (A4), min	3,034	3,029	2,947	3,026	2,894	2,918	3,042	2,938	3,011	2,768	3,017	3,044	2,949	2,753	2,636	2,524	2,578
N (MM), 1	7,535	6,129	7,688	2,849	2,290	2,624	2,801	2,908	2,313	2,661	2,678	2,543	2,125	2,243	2,581	2,192	2,486
N (A1), 1	11,940	10,342	12,407	5,334	4,266	4,682	5,053	4,989	4,354	4,273	4,762	4,580	3,877	3,707	4,223	4,218	4,545
N (Z1), 1	10,003	8,802	11,178	5,457	4,311	4,544	4,959	4,893	4,313	3,991	4,788	4,478	3,792	3,455	4,168	4,468	4,447
ψ _{min} (za N, MM), 1	1,882	1,942	2,018	1,236	0,998	0,853	1,000	0,780	1,047	0,471	0,906	0,928	0,879	0,524	0,556	1,089	0,917
ψ _{min} (za N, A1), 1	1,791	1,758	1,729	0,424	0,247	0,306	0,351	0,268	0,263	0,165	0,244	0,269	0,171	0,132	0,135	0,308	0,345
ψ_{\min} (za N, Z1), 1	1,721	1,706	1,701	0,423	0,247	0,304	0,350	0,267	0,263	0,156	0,244	0,268	0,170	0,122	0,134	0,303	0,344
α (N = const, MM), 1	0,429	0,642	0,411	1,957	2,557	2,168	1,999	1,908	2,527	2,131	2,114	2,252	2,794	2,621	2,213	2,693	2,315
α (N = const, Z2), 1	0,134	0,247	0,104	1,147	1,681	1,443	1,274	1,291	1,644	1,664	1,409	1,518	1,996	2,103	1,657	1,627	1,452
N (A2), 1	24,474	25,297	19,506	14,819	8,948	6,835	11,218	8,851	11,623	4,931	14,705	9,020	6,994	4,813	6,819	10,409	7,325
α (A2), 1	0,629	0,871	0,376	1,277	0,880	0,424	0,916	0,618	1,274	0,226	1,510	0,788	0,724	0,358	0,529	1,073	0,502
N (Z2), 1	22,003	27,530	19,529	26,392	8,413	6,601	37,449	30,679	13,568	4,762	26,783	21,161	6,614	4,600	6,530	10,106	7,103
α (Z2), 1	0,513	0,995	0,353	2,628	0,793	0,389	4,286	3,453	1,577	0,196	3,176	2,565	0,652	0,313	0,481	1,026	0,469
Pe (MM), 1	13,994	11,160	14,301	4,426	3,212	3,943	4,323	4,551	3,261	4,022	4,058	3,768	2,842	3,106	3,849	2,993	3,644
Pe (A3), 1	21,582	18,382	22,396	8,388	6,474	7,329	7,918	7,893	6,538	6,691	7,345	7,013	5,697	5,553	6,592	6,603	7,262
Pe (A4), 1	21,438	18,283	22,661	8,447	6,338	7,066	7,781	7,693	6,459	6,302	7,254	6,835	5,524	5,256	6,390	6,518	7,064
Pe (A5, nagib)	18,036	15,151	18,547	8,595	7,260	7,879	8,397	8,561	7,433	7,883	8,203	7,850	6,982	7,104	7,803	6,835	7,415
Pe (A5, odsečak)	10,126	8,895	9,876	9,646	10,482	10,558	10,469	11,741	10,719	14,701	11,635	11,175	12,390	16,087	14,707	8,814	9,344
Pe (Z3), 1	19,023	16,739	20,622	11,279	8,998	9,550	10,525	10,085	9,554	8,839	9,865	9,553	8,349	7,922	9,125	9,198	9,657
DL (MM), cm ² /s	3,416	4,233	3,342	10,674	15,100	12,272	10,799	10,382	15,163	12,239	11,504	12,390	17,374	16,037	12,997	19,236	15,341
DL (A3), cm ² /s	2,215	2,570	2,134	5,632	7,491	6,603	5,896	5,985	7,563	7,358	6,356	6,658	8,666	8,969	7,588	8,719	7,697
DL (A4), cm ² /s	2,230	2,584	2,109	5,593	7,651	6,849	6,000	6,141	7,656	7,812	6,436	6,830	8,937	9,476	7,827	8,831	7,913
D _L (A5, nagib), cm ² /s	2,573	3,028	2,502	5,337	6,319	5,754	5,399	5,358	6,172	5,751	5,527	5,775	6,415	6,306	6,225	7,106	6,404
D_{L} (A5, odsečak), cm ² /s	4,584	5,157	4,699	4,756	4,376	4,294	4,330	3,907	4,280	3,084	3,896	4,057	3,615	2,785	3,302	5,510	5,083
D_{L} (Z3), cm ² /s	2,513	2,822	2,318	4,189	5,389	5,067	4,436	4,685	5,175	5,569	4,733	4,887	5,914	6,287	5,482	6,258	5,788
ε _G , 1	0	0	0	0	0,026	0,035	0	0	0,045	0,052	0	0	0,066	0,074	0	0,131	0,125
$\varepsilon_{\rm S}, 1$	0,029	0,029	0,029	0,029	0,029	0,029	0,029	0,029	0,029	0,029	0,029	0,029	0,029	0,029	0,029	0,029	0,029
Nastavak tabele P.2.

Broj eksperimenta	213	214	215	216	217	218	219	220	221	222	223	224	225	226	227	228
I, cm/s	8,225	7,050	5,875	4,700	4,700	5,875	7,050	8,225	9,400	10,575	10,575	9,400	8,225	7,050	5,875	4,700
U ₁ , cm/s	0,552	0,552	0,552	0,552	0,552	0,552	0,552	0,552	0,552	0,552	0,552	0,552	0,552	0,559	0,552	0,552
U _G , cm/s	0,836	0,836	0,836	0,836	1,463	1,463	1,463	1,463	1,463	1,463	1,880	1,880	1,880	1,880	1,880	1,880
τ, min	2,213	2,255	2,312	2,333	2,243	2,210	2,163	2,102	2,064	2,019	1,979	1,983	2,031	2,079	2,147	2,178
t _{sr} (MM), min	2,104	2,210	2,235	2,239	2,176	2,120	2,084	2,031	1,918	1,993	1,966	1,900	1,975	2,024	2,103	2,136
μ_1' , min	2,528	2,606	2,613	2,659	2,608	2,652	2,577	2,500	2,410	2,426	2,328	2,334	2,367	2,447	2,518	2,567
t_{sr} (A1), min	2,518	2,595	2,599	2,641	2,591	2,634	2,564	2,491	2,401	2,416	2,319	2,325	2,357	2,434	2,502	2,549
t _{sr} (A2), min	2,525	2,602	2,611	2,656	2,606	2,649	2,574	2,497	2,407	2,423	2,325	2,331	2,364	2,444	2,516	2,564
t _{sr} (Z2), min	2,528	2,606	2,614	2,659	2,609	2,652	2,577	2,500	2,410	2,426	2,328	2,334	2,368	2,447	2,519	2,567
t_{sr} (N = const, Z2), min	2,531	2,609	2,619	2,663	2,614	2,654	2,579	2,503	2,412	2,428	2,330	2,335	2,369	2,449	2,522	2,570
t _{sr} (A3), min	2,528	2,606	2,613	2,659	2,608	2,652	2,577	2,500	2,410	2,426	2,328	2,334	2,367	2,447	2,518	2,567
t _{sr} (A4), min	2,529	2,608	2,620	2,662	2,615	2,652	2,577	2,502	2,411	2,427	2,329	2,333	2,367	2,447	2,521	2,568
N (MM), 1	2,592	2,653	2,325	2,062	1,957	1,916	2,152	2,561	2,364	2,331	2,492	2,328	2,352	2,123	1,982	1,905
N (A1), 1	4,544	4,509	3,967	3,763	3,611	3,878	4,149	4,663	4,520	4,250	4,278	4,320	4,189	3,925	3,655	3,606
N (Z1), 1	4,378	4,376	3,826	3,752	3,476	3,973	4,290	4,418	4,578	4,187	4,227	4,533	4,214	4,085	3,704	3,643
ψ _{min} (za N, MM), 1	0,766	0,656	0,629	0,872	0,887	1,293	1,078	0,895	1,037	0,868	0,671	0,933	0,795	0,913	0,915	1,025
ψ _{min} (za N, A1), 1	0,297	0,233	0,175	0,184	0,212	0,324	0,313	0,417	0,428	0,298	0,225	0,311	0,235	0,221	0,187	0,190
ψ _{min} (za N, Z1), 1	0,294	0,231	0,173	0,184	0,210	0,323	0,311	0,412	0,428	0,298	0,225	0,308	0,235	0,218	0,187	0,189
α (N = <i>const</i> , MM), 1	2,201	2,139	2,511	2,895	3,077	3,153	2,754	2,233	2,461	2,503	2,309	2,507	2,476	2,798	3,031	3,175
α (N = const, Z2), 1	1,447	1,482	1,844	2,016	2,150	1,910	1,690	1,382	1,436	1,594	1,554	1,527	1,615	1,819	2,070	2,127
N (A2), 1	6,359	6,116	4,987	5,956	4,774	7,250	7,326	6,041	6,658	6,730	6,815	8,241	7,810	7,023	5,779	6,894
α (A2), 1	0,360	0,339	0,301	0,543	0,367	0,729	0,627	0,286	0,399	0,485	0,479	0,678	0,664	0,643	0,534	0,773
N (Z2), 1	6,174	5,954	4,801	5,703	4,592	6,885	7,080	5,915	6,539	6,508	6,771	10,873	7,612	6,833	5,535	6,596
α (Z2), 1	0,332	0,314	0,265	0,494	0,329	0,662	0,586	0,267	0,381	0,450	0,472	0,756	0,632	0,610	0,486	0,714
Pe (MM), 1	3,874	4,004	3,289	2,698	2,458	2,363	2,902	3,807	3,376	3,302	3,656	3,295	3,349	2,837	2,516	2,336
Pe (A3), 1	7,321	7,205	6,156	5,676	5,444	5,884	6,467	7,587	7,334	6,783	6,891	6,949	6,674	6,108	5,554	5,400
Pe (A4), 1	7,065	6,931	5,843	5,475	5,172	5,732	6,305	7,297	7,118	6,589	6,720	6,828	6,540	5,961	5,362	5,265
Pe (A5, nagib)	7,600	7,800	7,104	6,633	6,308	6,230	6,712	7,447	7,004	7,019	7,397	7,009	7,117	6,651	6,378	6,276
Pe (A5, odsečak)	10,173	11,487	12,267	11,145	10,499	8,236	8,701	8,829	7,942	9,419	11,140	8,953	10,323	9,868	10,538	10,356
Pe (Z3), 1	9,566	9,393	8,392	8,167	7,930	8,543	8,849	9,494	9,232	9,122	9,678	9,416	9,339	8,757	7,971	8,283
DL (MM), cm ² /s	14,129	13,422	15,954	19,279	21,983	23,188	19,290	15,109	17,350	18,118	16,674	18,470	17,761	20,509	22,400	23,797
DL (A3), cm ² /s	7,476	7,460	8,524	9,165	9,924	9,313	8,655	7,582	7,985	8,819	8,847	8,757	8,911	9,525	10,148	10,296
DL (A4), cm ² /s	7,747	7,755	8,981	9,501	10,446	9,560	8,877	7,884	8,227	9,078	9,072	8,913	9,095	9,760	10,512	10,561
D _L (A5, nagib), cm ² /s	6,249	6,089	6,685	7,159	7,529	7,623	7,076	6,377	6,780	6,766	6,420	6,776	6,672	7,222	7,445	7,567
D _L (A5, odsečak), cm ² /s	4,668	4,134	3,871	4,261	4,523	5,766	5,458	5,379	5,980	5,042	4,263	5,305	4,600	4,867	4,507	4,586
D_{L} (Z3), cm ² /s	5,722	5,722	6,252	6,369	6,813	6,415	6,325	6,059	6,344	6,558	6,299	6,463	6,369	6,643	7,071	6,712
ε _G , 1	0,106	0,090	0,068	0,060	0,095	0,108	0,126	0,150	0,165	0,182	0,198	0,196	0,178	0,150	0,132	0,120
ε _s , 1	0,029	0,029	0,029	0,029	0,029	0,029	0,029	0,029	0,029	0,029	0,029	0,029	0,029	0,029	0,029	0,029

Nastavak tabele P.2.

Broj eksperimenta	229	230	231	232	233	234	235	236	237	238	239	240	241	242	243	244	245
I, cm/s	4,700	5,875	7,050	8,225	9,400	10,575	10,575	9,400	8,225	7,050	5,875	4,700	0	0	0	4,700	5,875
U _L , cm/s	0,559	0,552	0,552	0,559	0,552	0,559	0,565	0,565	0,552	0,565	0,552	0,552	0,565	0,559	0,559	0,559	0,565
U _G , cm/s	1,880	1,880	1,880	1,880	1,880	1,880	1,463	1,463	1,463	1,463	1,463	1,463	1,880	1,463	0,836	0,836	0,836
τ, min	2,062	2,035	1,990	1,924	1,896	1,819	1,897	1,943	2,014	2,028	2,099	2,153	2,096	2,197	2,282	2,214	2,152
t _{sr} (MM), min	2,134	2,048	2,067	2,023	1,988	1,895	1,978	2,077	2,082	2,102	2,142	2,205	2,192	2,242	2,330	2,339	2,199
μ_1 ', min	2,359	2,385	2,318	2,333	2,256	2,207	2,300	2,418	2,397	2,417	2,498	2,562	2,494	2,589	2,604	2,591	2,438
t _{sr} (A1), min	2,350	2,377	2,309	2,325	2,249	2,201	2,292	2,408	2,388	2,408	2,489	2,554	2,477	2,567	2,578	2,580	2,428
t _{sr} (A2), min	2,356	2,381	2,315	2,330	2,253	2,204	2,297	2,415	2,394	2,413	2,494	2,558	2,491	2,588	2,604	2,588	2,435
t _{sr} (Z2), min	2,359	2,385	2,318	2,333	2,257	2,207	2,301	2,418	2,397	2,417	2,498	2,562	2,494	2,590	2,605	2,592	2,439
t_{sr} (N = const, Z2), min	2,361	2,386	2,319	2,334	2,257	2,209	2,301	2,419	2,399	2,418	2,500	2,565	2,501	2,597	2,619	2,593	2,440
t _{sr} (A3), min	2,359	2,385	2,318	2,333	2,256	2,207	2,300	2,418	2,397	2,417	2,498	2,562	2,494	2,589	2,604	2,591	2,439
t _{sr} (A4), min	2,360	2,385	2,318	2,333	2,256	2,207	2,299	2,417	2,397	2,416	2,499	2,564	2,503	2,600	2,629	2,591	2,438
N (MM), 1	2,861	2,934	2,838	2,877	2,940	2,978	2,683	2,667	2,736	2,852	2,918	3,152	2,058	1,829	1,729	2,917	2,916
N (A1), 1	4,273	4,767	4,336	4,633	4,545	4,776	4,438	4,445	4,430	4,585	4,781	5,052	3,411	3,218	2,876	4,459	4,414
N (Z1), 1	4,240	4,794	4,222	4,684	4,561	4,635	4,489	4,542	4,494	4,651	4,620	4,810	3,229	3,117	2,565	4,354	4,385
ψ _{min} (za N, MM), 1	0,325	0,570	0,368	0,527	0,416	0,518	0,599	0,619	0,538	0,533	0,591	0,577	0,515	0,769	0,596	0,381	0,370
ψ _{min} (za N, A1), 1	0,074	0,207	0,102	0,168	0,128	0,217	0,170	0,172	0,147	0,156	0,232	0,271	0,107	0,123	0,153	0,087	0,084
ψ_{\min} (za N, Z1), 1	0,073	0,207	0,101	0,168	0,128	0,215	0,170	0,171	0,146	0,156	0,230	0,267	0,102	0,122	0,122	0,086	0,084
α (N = const, MM), 1	1,947	1,886	1,967	1,933	1,881	1,851	2,110	2,125	2,059	1,955	1,899	1,721	2,902	3,328	3,549	1,900	1,901
α (N = const, Z2), 1	1,566	1,307	1,519	1,360	1,393	1,275	1,452	1,473	1,480	1,400	1,320	1,213	2,325	2,595	3,160	1,500	1,496
N (A2), 1	6,242	7,081	6,565	7,991	6,913	7,147	9,845	8,281	7,426	7,722	6,868	6,245	4,055	4,113	2,963	7,889	7,678
α (A2), 1	0,397	0,394	0,425	0,545	0,415	0,388	0,863	0,652	0,532	0,531	0,371	0,238	0,275	0,366	0,212	0,609	0,577
N (Z2), 1	6,203	7,004	6,488	8,017	9,256	7,084	9,726	8,134	7,252	7,598	6,749	6,174	3,956	3,942	2,845	7,759	7,565
α (Z2), 1	0,391	0,384	0,413	0,549	0,741	0,379	0,846	0,630	0,506	0,513	0,355	0,229	0,252	0,324	0,175	0,590	0,560
Pe (MM), 1	4,451	4,607	4,402	4,485	4,619	4,700	4,069	4,035	4,184	4,432	4,574	5,068	2,688	2,159	1,922	4,570	4,569
Pe (A3), 1	6,874	7,835	7,024	7,575	7,473	7,971	7,193	7,145	7,146	7,435	7,797	8,326	5,139	4,694	4,071	7,060	7,076
Pe (A4), 1	6,670	7,626	6,831	7,430	7,289	7,777	7,101	7,009	6,976	7,269	7,560	8,003	4,835	4,419	3,684	6,904	6,922
Pe (A5, nagib)	8,319	8,348	8,216	8,282	8,372	8,349	7,875	7,871	7,997	8,258	8,351	8,811	6,564	6,114	5,896	8,611	8,513
Pe (A5, odsečak)	19,784	12,442	17,059	13,374	15,219	12,366	12,625	12,526	13,599	13,750	12,331	12,619	15,397	13,795	18,814	19,479	19,172
Pe (Z3), 1	9,856	10,303	10,006	10,279	10,251	10,507	10,205	9,774	9,804	10,125	10,432	10,831	7,696	7,243	6,392	9,875	9,906
DL (MM), cm^2/s	13,125	12,829	13,709	13,898	13,664	13,968	15,535	15,314	14,264	13,401	12,554	11,066	21,416	25,510	27,644	11,961	12,297
DL (A3), cm ² /s	8,498	7,544	8,591	8,229	8,447	8,236	8,788	8,649	8,351	7,988	7,364	6,735	11,203	11,733	13,052	7,742	7,940
DL (A4), cm ² /s	8,759	7,751	8,833	8,389	8,659	8,442	8,902	8,817	8,554	8,171	7,595	7,007	11,907	12,464	14,422	7,917	8,117
D _L (A5, nagib), cm ² /s	5,773	5,689	5,780	5,799	5,672	5,753	6,168	6,171	5,939	5,881	5,687	5,390	7,399	7,856	8,147	5,577	5,705
D _L (A5, odsečak), cm ² /s	2,428	3,817	2,784	3,591	3,121	3,884	3,847	3,877	3,492	3,532	3,851	3,763	3,154	3,482	2,553	2,466	2,533
$D_{L}(Z3), cm^{2}/s$	5,927	5,737	6,031	6,064	6,157	6,248	6,195	6,323	6,087	5,866	5,504	5,178	7,481	7,604	8,312	5,535	5,672
ε _G , 1	0,128	0,148	0,165	0,183	0,202	0,224	0,185	0,166	0,156	0,133	0,123	0,102	0,105	0,075	0,041	0,068	0,083
ε _s , 1	0,057	0,057	0,057	0,057	0,057	0,057	0,057	0,057	0,057	0,057	0,057	0,057	0,057	0,057	0,057	0,057	0,057

Nastavak tabele P.2.

Broj eksperimenta	246	247	248	249	250	251	252	253	254	255	256	257	258	259	260	261	262
I, cm/s	7,050	8,225	9,400	10,575	10,575	9,400	8,225	7,050	5,875	4,700	0	4,700	5,875	7,050	8,225	9,400	10,575
U _L , cm/s	0,559	0,559	0,559	0,559	0,565	0,565	0,565	0,571	0,565	0,565	0,565	0,565	0,565	0,565	0,571	0,571	0,571
U _G , cm/s	0,836	0,836	0,836	0,836	0,293	0,293	0,293	0,293	0,293	0,293	0,293	0	0	0	0	0	0
τ, min	2,149	2,090	2,082	2,012	2,175	2,184	2,201	2,212	2,257	2,277	2,316	2,360	2,360	2,360	2,334	2,334	2,334
t _{sr} (MM), min	2,171	2,115	2,097	1,897	2,214	2,236	2,231	2,184	2,398	2,321	2,335	2,477	2,309	2,332	2,338	2,337	2,333
μ_1 ', min	2,453	2,417	2,449	2,299	2,560	2,461	2,515	2,354	2,703	2,524	2,676	2,728	2,689	2,726	2,607	2,594	2,715
t _{sr} (A1), min	2,444	2,406	2,439	2,288	2,547	2,449	2,501	2,342	2,688	2,513	2,658	2,717	2,676	2,710	2,591	2,577	2,697
t _{sr} (A2), min	2,450	2,413	2,446	2,296	2,558	2,459	2,512	2,351	2,700	2,521	2,673	2,724	2,685	2,721	2,605	2,591	2,712
t _{sr} (Z2), min	2,453	2,417	2,449	2,299	2,561	2,462	2,515	2,354	2,704	2,524	2,677	2,729	2,689	2,725	2,610	2,595	2,716
t_{sr} (N = const, Z2), min	2,456	2,419	2,451	2,300	2,565	2,467	2,518	2,359	2,706	2,528	2,679	2,729	2,689	2,725	2,610	2,597	2,717
t _{sr} (A3), min	2,453	2,417	2,449	2,299	2,561	2,462	2,515	2,354	2,703	2,524	2,676	2,728	2,689	2,726	2,607	2,594	2,715
t _{sr} (A4), min	2,455	2,417	2,449	2,298	2,565	2,468	2,517	2,361	2,703	2,529	2,677	2,725	2,686	2,721	2,609	2,595	2,713
N (MM), 1	3,004	2,644	2,683	2,202	2,377	2,528	2,441	2,575	2,568	2,895	2,246	3,361	2,741	2,526	2,418	2,361	2,236
N (A1), 1	4,599	4,247	4,466	4,028	3,972	3,796	3,902	3,686	4,158	4,195	3,830	5,052	4,666	4,440	3,845	3,768	3,954
N (Z1), 1	4,490	4,216	4,507	4,230	3,874	3,520	3,776	3,411	4,089	3,897	3,773	4,983	4,731	4,623	3,693	3,703	4,016
ψ _{min} (za N, MM), 1	0,398	0,489	0,618	0,911	0,574	0,295	0,468	0,194	0,546	0,227	0,661	0,408	0,746	0,831	0,493	0,484	0,849
ψ _{min} (za N, A1), 1	0,131	0,128	0,186	0,230	0,147	0,091	0,107	0,061	0,113	0,073	0,129	0,092	0,194	0,182	0,124	0,084	0,160
ψ _{min} (za N, Z1), 1	0,130	0,127	0,186	0,226	0,146	0,080	0,105	0,050	0,113	0,063	0,128	0,091	0,194	0,179	0,121	0,084	0,160
α (N = <i>const</i> , MM), 1	1,830	2,147	2,109	2,679	2,444	2,269	2,367	2,219	2,226	1,918	2,617	1,583	2,054	2,271	2,396	2,465	2,631
α (N = const, Z2), 1	1,406	1,594	1,470	1,703	1,824	1,942	1,860	2,007	1,713	1,659	1,959	1,226	1,400	1,527	1,929	1,987	1,861
N (A2), 1	5,981	6,529	7,165	8,960	5,257	4,524	5,801	4,138	7,891	5,087	6,822	13,737	15,541	81,175	6,404	7,059	10,966
α (A2), 1	0,288	0,454	0,489	0,899	0,341	0,252	0,451	0,201	0,731	0,251	0,676	1,193	1,614	11,340	0,588	0,734	1,345
N (Z2), 1	5,837	6,392	6,960	8,592	5,080	4,387	5,578	4,066	7,430	4,994	6,479	23,391	16,452	11,785	10,209	6,702	9,745
α (Z2), 1	0,267	0,432	0,458	0,839	0,308	0,225	0,410	0,186	0,654	0,235	0,612	2,400	1,737	1,201	0,762	0,667	1,132
Pe (MM), 1	4,756	3,986	4,070	3,015	3,405	3,734	3,545	3,836	3,821	4,524	3,113	5,506	4,194	3,730	3,493	3,369	3,090
Pe (A3), 1	7,495	6,783	7,192	6,392	6,182	5,925	6,054	5,785	6,403	6,660	5,780	8,099	7,367	6,871	5,871	5,707	5,966
Pe (A4), 1	7,207	6,586	7,001	6,293	5,906	5,603	5,832	5,450	6,244	6,343	5,614	8,023	7,302	6,860	5,677	5,558	5,876
Pe (A5, nagib)	8,530	7,821	7,864	6,765	7,245	7,582	7,461	7,663	7,883	8,430	7,150	9,695	8,216	7,832	7,510	7,445	7,160
Pe (A5, odsečak)	15,865	14,524	12,272	9,697	13,296	21,005	16,544	27,543	16,592	24,177	14,456	20,629	12,584	12,321	18,456	19,452	12,840
Pe (Z3), 1	9,906	9,352	9,586	9,314	8,603	8,496	8,780	8,416	9,387	9,256	8,415	11,411	10,334	9,782	8,423	8,578	8,939
DL (MM), cm ² /s	11,818	14,471	14,231	19,828	16,337	14,839	15,513	14,282	14,059	11,775	16,844	9,356	12,284	13,812	14,913	15,463	16,858
DL (A3), cm ² /s	7,499	8,505	8,053	9,351	8,997	9,352	9,085	9,472	8,391	7,999	9,073	6,361	6,993	7,497	8,873	9,127	8,730
DL (A4), cm ² /s	7,798	8,759	8,272	9,499	9,418	9,890	9,430	10,054	8,604	8,398	9,341	6,421	7,056	7,510	9,175	9,371	8,864
D _L (A5, nagib), cm ² /s	5,631	6,141	6,107	7,100	6,704	6,406	6,510	6,409	6,161	5,761	6,792	5,010	5,911	6,201	6,539	6,596	6,859
D_L (A5, odsečak), cm ² /s	3,027	3,307	3,914	4,953	3,653	2,312	2,936	1,783	2,927	2,009	3,360	2,354	3,860	3,942	2,661	2,525	3,825
$D_{L}(Z3), cm^{2}/s$	5,674	6,169	6,042	6,418	6,465	6,522	6,264	6,510	5,723	5,755	6,232	4,515	4,985	5,267	6,184	6,073	5,827
ε _G , 1	0,094	0,117	0,120	0,148	0,074	0,070	0,063	0,049	0,041	0,033	0,018	0	0	0	0	0	0
ε _s , 1	0,057	0,057	0,057	0,057	0,057	0,057	0,057	0,057	0,057	0,057	0,057	0,057	0,057	0,057	0,057	0,057	0,057

Nastavak tabele P.2.

Broj eksperimenta	263	264	265	266	267	268	269	270	271	272	273	274	275	276	277	278
I, cm/s	0	2,000	3,000	4,000	4,000	3,000	2,000	2,000	3,000	4,000	4,000	3,000	2,000	2,000	3,000	4,000
U _L , cm/s	0,571	0,565	0,565	0,565	0,565	0,565	0,565	0,565	0,565	0,565	0,565	0,565	0,571	0,571	0,565	0,571
U _G , cm/s	0	0,293	0,293	0,293	0,836	0,836	0,836	1,463	1,463	1,463	1,880	1,880	1,880	0	0	0
τ, min	2,334	2,313	2,310	2,307	2,219	2,236	2,242	2,155	2,155	2,137	2,067	2,067	2,059	2,334	2,360	2,334
t _{sr} (MM), min	2,357	2,367	2,397	2,401	2,319	2,291	2,275	2,172	2,140	2,163	2,092	2,091	2,091	2,284	2,318	2,305
μ ₁ ', min	2,738	2,655	2,680	2,721	2,689	2,685	2,660	2,574	2,457	2,576	2,487	2,413	2,445	2,733	2,763	2,655
t _{sr} (A1), min	2,735	2,627	2,661	2,707	2,667	2,659	2,634	2,555	2,439	2,550	2,466	2,399	2,425	2,730	2,761	2,653
t _{sr} (A2), min	2,734	2,656	2,677	2,717	2,686	2,685	2,660	2,573	2,456	2,574	2,486	2,411	2,442	2,728	2,758	2,651
t_{sr} (Z2), min	2,738	2,657	2,681	2,721	2,690	2,686	2,662	2,575	2,458	2,577	2,488	2,414	2,446	2,732	2,762	2,654
t_{sr} (N = const, Z2), min	2,738	2,664	2,685	2,721	2,694	2,692	2,670	2,580	2,465	2,582	2,493	2,417	2,448	2,732	2,762	2,654
t_{sr} (A3), min	2,738	2,655	2,680	2,721	2,689	2,685	2,660	2,574	2,458	2,576	2,487	2,413	2,445	2,733	2,763	2,655
t _{sr} (A4), min	2,736	2,667	2,684	2,718	2,694	2,693	2,673	2,581	2,467	2,582	2,494	2,417	2,446	2,728	2,759	2,651
N (MM), 1	6,378	1,742	2,265	2,831	1,944	1,718	1,648	1,852	1,883	1,540	1,639	2,099	1,752	6,100	7,949	7,979
N (A1), 1	9,481	2,990	3,693	4,587	3,472	3,188	3,053	3,393	3,223	3,007	3,100	3,567	3,222	9,781	12,293	11,620
N (Z1), 1	8,609	2,814	3,487	4,591	3,356	3,156	2,938	3,384	3,098	3,006	3,084	3,539	3,335	9,027	10,598	10,818
ψ_{min} (za N, MM), 1	1,027	0,800	0,515	0,589	0,790	1,053	1,051	0,928	0,655	1,374	1,138	0,622	0,976	1,376	1,721	1,106
ψ_{\min} (za N, A1), 1	0,881	0,155	0,118	0,129	0,135	0,145	0,149	0,161	0,114	0,149	0,155	0,116	0,110	1,081	1,613	0,936
ψ_{\min} (za N, Z1), 1	0,863	0,147	0,111	0,129	0,132	0,145	0,145	0,161	0,111	0,149	0,155	0,116	0,108	1,066	1,568	0,925
α (N = const, MM), 1	0,598	3,519	2,591	1,972	3,101	3,574	3,748	3,280	3,217	4,046	3,770	2,835	3,495	0,648	0,381	0,377
α (N = const, Z2), 1	0,320	2,960	2,086	1,448	2,315	2,669	2,864	2,368	2,534	2,878	2,700	2,123	2,502	0,287	0,109	0,146
N (A2), 1	11,651	4,199	5,767	11,985	5,317	4,872	4,049	4,798	4,002	4,912	4,621	5,200	6,785	211,017	24,880	44,894
α (A2), 1	0,176	0,497	0,537	1,164	0,537	0,569	0,429	0,449	0,324	0,652	0,521	0,444	0,934	11,596	0,602	1,616
N (Z2), 1	15,972	3,901	5,528	13,437	5,114	4,518	3,828	4,530	3,832	4,680	4,411	5,051	6,625	14,824	14,904	13,301
α (Z2), 1	0,439	0,415	0,489	1,369	0,492	0,481	0,369	0,388	0,283	0,590	0,468	0,413	0,898	0,335	0,151	0,112
Pe (MM), 1	11,661	1,953	3,155	4,389	2,428	1,897	1,726	2,214	2,287	1,461	1,705	2,783	1,977	11,101	14,825	14,885
Pe (A3), 1	17,014	4,203	5,526	7,198	5,090	4,556	4,326	5,032	4,788	4,248	4,498	5,457	4,716	17,448	22,500	21,175
Pe (A4), 1	16,638	3,960	5,323	7,110	4,886	4,338	4,064	4,788	4,509	4,078	4,298	5,248	4,615	17,449	22,353	21,154
Pe (A5, nagib)	15,451	6,058	7,233	8,491	6,467	5,929	5,745	6,107	6,167	5,504	5,648	6,645	5,990	15,067	18,721	18,927
Pe (A5, odsečak)	12,475	18,223	18,119	15,688	13,317	12,436	12,683	11,339	14,297	11,171	11,194	13,593	12,518	10,264	10,472	13,232
Pe (Z3), 1	17,321	6,586	8,152	10,411	7,870	7,130	6,794	7,456	7,371	6,974	7,109	8,099	7,765	17,199	20,142	21,122
DL (MM), cm^2/s	4,467	26,890	16,662	11,993	22,487	28,573	31,312	25,351	24,540	38,716	34,207	20,963	29,633	4,692	3,475	3,499
DL (A3), cm ² /s	3,062	12,492	9,512	7,312	10,724	11,894	12,497	11,152	11,720	13,312	12,969	10,689	12,426	2,985	2,290	2,460
DL (A4), cm ² /s	3,131	13,259	9,876	7,402	11,172	12,492	13,301	11,719	12,445	13,864	13,571	11,115	12,696	2,985	2,305	2,462
D _L (A5, nagib), cm ² /s	3,178	8,017	6,715	5,720	7,510	8,191	8,453	7,952	7,876	8,824	8,598	7,309	8,198	3,259	2,594	2,595
D _L (A5, odsečak), cm ² /s	3,936	2,665	2,680	3,096	3,647	3,905	3,829	4,283	3,397	4,348	4,339	3,573	3,923	4,784	4,638	3,711
D_{L} (Z3), cm ² /s	3,007	7,971	6,448	5,055	6,936	7,600	7,957	7,526	7,613	8,108	8,206	7,203	7,546	3,029	2,558	2,466
ε _G , 1	0	0,019	0,020	0,021	0,056	0,049	0,047	0,082	0,082	0,089	0,117	0,117	0,111	0	0	0
ε _s , 1	0,057	0,057	0,057	0,057	0,057	0,057	0,057	0,057	0,057	0,057	0,057	0,057	0,057	0,057	0,057	0,057

Nastavak tabele P.2.

Broj eksperimenta	279	280	281	282	283	284	285	286	287	288	289	290	291	292	293	294
I, cm/s	4,000	3,000	2,000	0	0	2,000	3,000	4,000	4,000	3,000	2,000	0	0	2,000	3,000	4,000
U _L , cm/s	0,571	0,565	0,571	0,565	0,565	0,565	0,565	0,565	0,565	0,565	0,565	0,565	0,565	0,571	0,565	0,565
U _G , cm/s	1,880	1,880	1,880	1,880	1,463	1,463	1,463	1,463	0,836	0,836	0,836	0,836	0,293	0,293	0,293	0,293
τ, min	1,972	1,997	1,977	2,026	2,102	2,075	2,061	2,055	2,151	2,157	2,163	2,177	2,248	2,215	2,236	2,230
t _{sr} (MM), min	1,963	2,017	1,979	2,002	2,090	2,075	2,060	2,049	2,129	2,087	2,147	2,155	2,253	2,179	2,177	2,237
μ_1 ', min	2,259	2,357	2,343	2,353	2,435	2,398	2,405	2,403	2,456	2,459	2,492	2,542	2,546	2,561	2,520	2,577
t _{sr} (A1), min	2,243	2,346	2,333	2,338	2,417	2,385	2,391	2,386	2,443	2,447	2,479	2,517	2,534	2,552	2,513	2,570
t _{sr} (A2), min	2,257	2,354	2,340	2,351	2,434	2,395	2,402	2,401	2,453	2,456	2,489	2,543	2,543	2,557	2,517	2,573
t _{sr} (Z2), min	2,259	2,357	2,344	2,353	2,437	2,398	2,405	2,404	2,456	2,459	2,495	2,544	2,547	2,561	2,522	2,577
t_{sr} (N = const, Z2), min	2,264	2,358	2,345	2,358	2,443	2,400	2,408	2,409	2,460	2,463	2,496	2,554	2,548	2,561	2,521	2,577
t _{sr} (A3), min	2,259	2,357	2,343	2,353	2,436	2,398	2,405	2,403	2,456	2,459	2,492	2,542	2,546	2,561	2,520	2,577
t _{sr} (A4), min	2,265	2,356	2,343	2,359	2,445	2,398	2,407	2,410	2,460	2,462	2,497	2,560	2,547	2,558	2,519	2,574
N (MM), 1	1,775	2,365	2,359	1,892	1,774	2,262	2,114	1,800	2,312	2,279	2,379	1,529	2,663	3,085	3,463	3,580
N (A1), 1	3,049	4,049	4,106	3,337	3,139	3,822	3,668	3,219	3,835	3,937	3,963	2,862	4,230	5,187	5,501	5,705
N (Z1), 1	3,044	4,157	4,121	3,297	3,081	3,834	3,692	3,176	3,671	3,839	3,855	2,742	4,096	5,324	5,429	5,716
ψ _{min} (za N, MM), 1	0,728	0,688	0,714	0,750	0,815	0,607	0,693	0,824	0,542	0,672	0,560	1,188	0,466	0,735	0,603	0,639
ψ _{min} (za N, A1), 1	0,098	0,157	0,199	0,139	0,126	0,122	0,137	0,131	0,143	0,183	0,153	0,151	0,114	0,255	0,242	0,235
ψ_{\min} (za N, Z1), 1	0,098	0,156	0,199	0,139	0,126	0,122	0,137	0,131	0,140	0,182	0,151	0,148	0,112	0,254	0,242	0,235
α (N = const, MM), 1	3,443	2,459	2,467	3,200	3,447	2,595	2,812	3,389	2,528	2,572	2,443	4,078	2,128	1,769	1,521	1,456
α (N = const, Z2), 1	2,670	1,703	1,664	2,349	2,634	1,887	2,022	2,509	1,903	1,821	1,814	3,134	1,632	1,147	1,032	0,967
N (A2), 1	4,092	8,575	7,334	4,361	3,986	6,590	5,827	4,319	5,069	5,531	5,012	3,316	6,792	14,998	9,951	22,919
α (A2), 1	0,388	0,836	0,615	0,350	0,350	0,601	0,524	0,390	0,338	0,388	0,296	0,307	0,513	1,266	0,580	1,917
N (Z2), 1	3,955	8,969	8,321	4,228	3,818	6,442	5,661	4,178	4,905	5,339	8,048	3,162	6,934	20,727	20,145	17,834
α (Z2), 1	0,353	0,899	0,771	0,320	0,308	0,575	0,491	0,356	0,307	0,354	0,814	0,261	0,534	1,950	1,715	1,376
Pe (MM), 1	2,032	3,378	3,365	2,307	2,028	3,148	2,816	2,091	3,259	3,186	3,408	1,434	4,028	4,927	5,720	5,962
Pe (A3), 1	4,556	6,392	6,530	5,066	4,637	5,941	5,647	4,797	5,980	6,169	6,220	4,052	6,666	8,477	9,176	9,476
Pe (A4), 1	4,333	6,289	6,390	4,817	4,368	5,789	5,469	4,561	5,715	5,927	5,924	3,740	6,466	8,413	9,009	9,442
Pe (A5, nagib)	5,867	7,227	7,147	6,099	5,891	7,022	6,668	5,949	7,064	6,965	7,184	5,366	7,951	8,843	9,548	9,946
Pe (A5, odsečak)	14,037	12,256	11,172	11,934	12,800	13,388	12,429	12,194	13,574	11,611	12,919	11,889	16,050	11,673	12,930	13,423
Pe (Z3), 1	7,192	9,503	9,400	7,749	7,247	8,670	8,248	7,501	8,550	8,765	8,533	6,447	9,557	10,923	11,709	12,381
DL (MM), cm ² /s	29,961	17,801	18,048	25,731	28,304	18,446	20,755	28,026	17,247	17,597	16,412	38,772	13,405	11,120	9,486	9,123
DL (A3), cm ² /s	13,362	9,409	9,299	11,716	12,381	9,774	10,348	12,215	9,398	9,089	8,992	13,720	8,100	6,464	5,913	5,739
DL (A4), cm ² /s	14,052	9,562	9,503	12,321	13,144	10,031	10,686	12,847	9,836	9,460	9,441	14,865	8,351	6,513	6,023	5,760
D _L (A5, nagib), cm ² /s	8,370	6,721	6,871	7,963	8,244	6,917	7,284	8,164	6,875	6,973	6,761	9,050	6,109	5,553	5,087	4,883
D _L (A5, odsečak), cm ² /s	3,499	3,963	4,395	4,070	3,794	3,628	3,908	3,983	3,578	4,183	3,760	4,085	3,026	4,207	3,756	3,618
D_{L} (Z3), cm ² /s	8,466	6,328	6,460	7,660	7,921	6,697	7,085	7,811	6,574	6,397	6,554	8,623	5,650	5,016	4,634	4,393
ε _G , 1	0,118	0,117	0,116	0,105	0,075	0,085	0,091	0,094	0,055	0,053	0,051	0,045	0,016	0,020	0,021	0,024
ε _s , 1	0,086	0,086	0,086	0,086	0,086	0,086	0,086	0,086	0,086	0,086	0,086	0,086	0,086	0,086	0,086	0,086

Nastavak tabele P.2.

Broj eksperimenta	295	296	297	298	299	300	301	302	303	304	305	306	307	308	309	310
I, cm/s	4,000	3,000	2,000	0	4,700	5,875	7,050	8,225	9,400	10,575	10,575	9,400	8,225	7,050	5,875	4,700
U _L , cm/s	0,565	0,565	0,565	0,565	0,565	0,565	0,565	0,565	0,565	0,565	0,565	0,565	0,565	0,565	0,565	0,565
U _G , cm/s	0	0	0	0	0,293	0,293	0,293	0,293	0,293	0,293	0,836	0,836	0,836	0,836	0,836	0,836
τ, min	2,289	2,289	2,289	2,289	2,172	2,157	2,134	2,119	2,099	2,078	1,913	1,948	1,968	1,997	2,055	2,084
t _{sr} (MM), min	2,265	2,269	2,230	2,245	2,190	2,138	2,078	2,056	2,053	2,030	1,875	1,937	1,901	1,931	2,015	2,075
μ_1 ', min	2,618	2,599	2,656	2,686	2,501	2,541	2,467	2,465	2,436	2,384	2,310	2,271	2,322	2,328	2,350	2,448
t_{sr} (A1), min	2,616	2,597	2,654	2,684	2,489	2,529	2,455	2,453	2,424	2,371	2,302	2,263	2,314	2,320	2,341	2,439
t _{sr} (A2), min	2,614	2,595	2,652	2,682	2,498	2,538	2,464	2,462	2,433	2,381	2,307	2,268	2,319	2,325	2,347	2,445
t _{sr} (Z2), min	2,617	2,598	2,655	2,685	2,504	2,542	2,468	2,465	2,437	2,384	2,310	2,272	2,322	2,328	2,351	2,448
t_{sr} (N = const, Z2), min	2,617	2,598	2,656	2,685	2,504	2,543	2,470	2,467	2,438	2,386	2,311	2,273	2,323	2,330	2,352	2,450
t _{sr} (A3), min	2,618	2,599	2,656	2,686	2,501	2,541	2,467	2,465	2,436	2,384	2,310	2,271	2,322	2,328	2,350	2,448
t _{sr} (A4), min	2,614	2,596	2,652	2,681	2,503	2,542	2,469	2,465	2,435	2,385	2,310	2,271	2,321	2,328	2,350	2,448
N (MM), 1	8,799	8,346	6,929	8,373	2,498	2,343	2,340	2,267	2,267	2,171	2,494	2,517	2,511	2,697	2,650	2,680
N (A1), 1	12,671	11,889	10,842	13,224	4,073	4,168	4,100	4,099	4,038	3,789	4,559	4,234	4,539	4,672	4,389	4,552
N (Z1), 1	11,291	10,709	9,843	11,627	4,045	4,180	4,201	4,154	4,174	3,879	4,733	4,253	4,744	4,771	4,490	4,496
ψ _{min} (za N, MM), 1	1,250	1,009	1,473	1,960	0,525	0,806	0,750	0,853	0,828	0,720	0,899	0,625	0,871	0,744	0,593	0,683
ψ_{\min} (za N, A1), 1	1,140	0,894	1,245	1,798	0,122	0,223	0,195	0,226	0,189	0,147	0,338	0,177	0,315	0,283	0,168	0,235
Ψ_{min} (za N, Z1), 1	1,106	0,866	1,224	1,764	0,122	0,223	0,194	0,225	0,187	0,146	0,336	0,177	0,312	0,283	0,167	0,234
α (N = const, MM), 1	0,296	0,339	0,510	0,336	2,302	2,488	2,491	2,588	2,587	2,725	2,307	2,281	2,288	2,096	2,142	2,112
α (N = const, Z2), 1	0,087	0,130	0,199	0,058	1,728	1,668	1,701	1,696	1,729	1,909	1,394	1,567	1,406	1,344	1,494	1,423
N (A2), 1	22,329	24,906	37,145	19,038	6,164	7,316	6,475	8,065	9,566	6,662	7,665	7,613	8,068	6,936	7,272	7,440
α (A2), 1	0,451	0,639	1,388	0,290	0,456	0,613	0,495	0,749	1,013	0,625	0,521	0,607	0,583	0,394	0,517	0,503
N (Z2), 1	12,767	12,665	13,488	807,700	14,033	8,526	6,229	7,782	9,058	6,450	7,466	7,444	7,918	6,744	8,763	7,331
α (Z2), 1	0,033	0,067	0,172	32,574	2,734	0,806	0,454	0,703	0,930	0,587	0,492	0,581	0,562	0,367	0,735	0,487
Pe (MM), 1	16,534	15,624	12,773	15,679	3,669	3,329	3,322	3,160	3,161	2,945	3,659	3,711	3,698	4,100	3,999	4,064
Pe (A3), 1	23,387	21,820	19,636	24,181	6,388	6,522	6,464	6,430	6,315	5,887	7,462	6,833	7,402	7,696	7,098	7,353
Pe (A4), 1	23,196	21,679	19,593	24,518	6,181	6,369	6,265	6,302	6,221	5,737	7,294	6,693	7,255	7,477	6,927	7,176
Pe (A5, nagib)	20,400	19,534	16,687	19,890	7,557	7,202	7,110	6,994	7,026	6,783	7,293	7,456	7,372	7,730	7,761	7,851
Pe (A5, odsečak)	12,919	13,802	10,524	10,213	14,643	10,953	11,001	10,355	11,050	11,899	8,777	11,900	9,203	9,930	12,371	11,410
Pe (Z3), 1	21,766	21,626	18,614	21,922	9,051	9,559	8,983	9,202	9,251	8,541	9,590	9,620	9,731	9,831	9,678	10,084
DL (MM), cm^2/s	3,212	3,399	4,158	3,387	15,188	16,845	17,044	18,030	18,186	19,696	17,082	16,573	16,475	14,667	14,652	14,236
DL (A3), cm ² /s	2,271	2,434	2,705	2,196	8,723	8,597	8,760	8,861	9,102	9,852	8,377	9,000	8,230	7,814	8,254	7,867
DL (A4), cm ² /s	2,290	2,450	2,711	2,166	9,015	8,804	9,038	9,041	9,241	10,109	8,570	9,188	8,397	8,043	8,459	8,061
D _L (A5, nagib), cm ² /s	2,381	2,486	2,911	2,442	6,427	6,744	6,831	6,944	6,913	7,161	6,660	6,514	6,588	6,283	6,258	6,187
D_{L} (A5, odsečak), cm ² /s	3,760	3,519	4,615	4,756	3,317	4,434	4,415	4,690	4,395	4,082	5,533	4,082	5,277	4,891	3,926	4,257
D_{L} (Z3), cm ² /s	2,440	2,456	2,853	2,423	6,157	5,866	6,304	6,192	6,213	6,790	6,518	6,393	6,261	6,117	6,054	5,736
ε ₆ , 1	0	0	0	0	0,047	0,053	0,062	0,068	0,076	0,084	0,150	0,136	0,128	0,117	0,094	0,082
ε _s , 1	0,086	0,086	0,086	0,086	0,086	0,086	0,086	0,086	0,086	0,086	0,086	0,086	0,086	0,086	0,086	0,086

Nastavak tabele P.2.

Broj eksperimenta	311	312	313	314	315	316	317	318	319	320	321	322	323	324	325	326
I, cm/s	4,700	5,875	7,050	8,225	9,400	4,700	4,700	5,875	7,050	8,225	9,400	10,575	10,575	4,700	5,875	7,050
U _L , cm/s	0,565	0,565	0,565	0,565	0,565	0,565	0,565	0,571	0,565	0,565	0,565	0,565	0,565	0,565	0,565	0,565
U _G , cm/s	1,463	1,463	1,463	1,463	1,463	1,880	1,880	1,880	1,880	1,880	1,880	1,880	1,463	0	0	0
τ, min	1,976	1,959	1,924	1,846	1,837	1,930	1,930	1,869	1,860	1,817	1,756	1,725	1,797	2,289	2,289	2,289
t _{sr} (MM), min	1,871	1,927	1,882	1,840	1,851	1,703	1,872	1,708	1,743	1,756	1,667	1,686	1,692	2,122	2,139	2,096
μ ₁ ', min	2,300	2,375	2,267	2,278	2,186	2,226	2,288	2,184	2,248	2,181	2,175	2,151	2,200	2,625	2,619	2,469
t_{sr} (A1), min	2,294	2,366	2,262	2,272	2,180	2,222	2,282	2,177	2,242	2,175	2,169	2,146	2,196	2,613	2,605	2,453
t _{sr} (A2), min	2,297	2,372	2,264	2,275	2,183	2,224	2,286	2,181	2,245	2,178	2,172	2,148	2,197	2,621	2,616	2,467
t _{sr} (Z2), min	2,300	2,375	2,268	2,279	2,186	2,226	2,287	2,184	2,248	2,181	2,175	2,151	2,201	2,625	2,620	2,470
t_{sr} (N = const, Z2), min	2,303	2,375	2,268	2,278	2,186	2,228	2,290	2,184	2,248	2,181	2,175	2,152	2,201	2,626	2,621	2,474
t_{sr} (A3), min	2,300	2,375	2,267	2,278	2,186	2,226	2,288	2,184	2,248	2,181	2,175	2,151	2,200	2,625	2,619	2,469
t _{sr} (A4), min	2,302	2,373	2,266	2,276	2,184	2,228	2,289	2,182	2,246	2,180	2,172	2,150	2,200	2,623	2,619	2,475
N (MM), 1	2,793	2,535	3,208	2,842	2,896	2,639	2,789	2,348	2,542	2,680	2,451	2,688	2,797	2,431	2,204	1,980
N (A1), 1	4,905	4,703	5,408	5,181	4,840	5,179	4,885	4,638	5,042	4,883	4,962	5,143	5,459	4,623	4,175	3,508
N (Z1), 1	4,534	4,989	5,443	5,481	4,963	4,780	4,864	5,028	5,259	4,959	4,859	5,231	5,309	4,703	4,364	3,507
ψ _{min} (za N, MM), 1	0,796	0,991	0,744	0,985	0,668	1,140	0,788	1,157	1,221	0,894	1,263	1,080	1,186	1,113	1,046	0,769
ψ_{\min} (za N, A1), 1	0,456	0,363	0,370	0,444	0,235	0,730	0,375	0,461	0,604	0,426	0,656	0,573	0,724	0,389	0,283	0,148
ψ_{\min} (za N, Z1), 1	0,446	0,358	0,370	0,439	0,234	0,723	0,375	0,453	0,602	0,425	0,656	0,573	0,723	0,388	0,280	0,148
α (N = const, MM), 1	2,006	2,261	1,682	1,963	1,918	2,153	2,010	2,482	2,254	2,112	2,356	2,104	2,003	2,379	2,677	3,036
α (N = const, Z2), 1	1,240	1,328	1,036	1,112	1,235	1,118	1,243	1,326	1,161	1,222	1,183	1,112	1,011	1,414	1,682	2,205
N (A2), 1	5,514	12,788	8,269	14,198	14,784	5,976	6,338	16,889	12,568	8,087	12,816	9,961	8,153	10,511	7,800	4,744
α (A2), 1	0,157	1,167	0,393	1,135	1,333	0,166	0,266	1,707	0,988	0,480	1,038	0,638	0,366	0,930	0,699	0,382
N (Z2), 1	5,447	12,607	18,892	17,910	14,982	5,906	5,124	16,397	11,800	8,088	12,907	10,017	17,792	11,014	7,366	4,558
α (Z2), 1	0,148	1,143	1,580	1,568	1,358	0,157	0,107	1,642	0,896	0,480	1,050	0,645	1,427	0,998	0,627	0,342
Pe (MM), 1	4,307	3,750	5,185	4,411	4,525	3,975	4,298	3,339	3,765	4,065	3,567	4,082	4,314	3,523	3,019	2,510
Pe (A3), 1	8,238	7,652	9,185	8,665	8,044	8,824	8,169	7,647	8,413	8,181	8,303	8,698	9,338	7,348	6,492	5,327
Pe (A4), 1	7,878	7,587	8,984	8,601	8,000	8,485	7,892	7,609	8,343	8,028	8,240	8,587	9,130	7,232	6,333	5,075
Pe (A5, nagib)	7,779	7,488	8,772	8,063	8,253	7,332	7,831	6,941	7,342	7,620	7,101	7,597	7,736	7,341	6,859	6,336
Pe (A5, odsečak)	8,830	8,774	9,922	8,526	11,280	6,567	9,125	7,277	6,989	8,388	6,644	7,319	6,711	8,638	9,174	11,744
Pe (Z3), 1	9,677	10,026	10,996	10,862	10,966	9,276	10,012	9,740	10,160	10,092	9,844	10,252	10,108	9,858	8,938	7,821
DL (MM), cm^2/s	14,093	16,311	11,989	14,634	14,324	15,599	14,424	19,137	17,023	16,102	18,921	16,801	15,324	15,076	17,593	21,157
DL (A3), cm ² /s	7,368	7,993	6,768	7,449	8,058	7,026	7,589	8,357	7,618	8,000	8,127	7,884	7,080	7,227	8,181	9,970
DL (A4), cm ² /s	7,705	8,062	6,920	7,504	8,102	7,307	7,856	8,398	7,682	8,153	8,189	7,986	7,241	7,343	8,386	10,464
D_L (A5, nagib), cm ² /s	6,243	6,486	5,537	6,024	5,885	6,624	6,202	7,075	6,615	6,374	6,839	6,393	6,278	6,616	7,081	7,665
D_{L} (A5, odsečak), cm ² /s	5,500	5,535	4,895	5,696	4,306	7,396	5,323	6,749	6,949	5,790	7,310	6,636	7,237	5,623	5,294	4,136
D_{L} (Z3), cm ² /s	6,272	6,101	5,654	5,942	5,911	6,684	6,192	6,561	6,308	6,485	6,855	6,689	6,541	5,387	5,942	6,791
ε ₆ , 1	0,125	0,132	0,146	0,177	0,181	0,143	0,143	0,160	0,171	0,189	0,213	0,226	0,197	0	0	0
ε _s , 1	0,086	0,086	0,086	0,086	0,086	0,086	0,086	0,086	0,086	0,086	0,086	0,086	0,086	0,086	0,086	0,086

BIOGRAFIJA

Ljubiša Nikolić je rođen 18.12.1963. godine u Leskovcu. Osnovnu školu je završio u Turekovcu, a srednju (usmereno obrazovanje, smer "Biohemija i molekularna biologija") u Leskovcu, obe sa diplomama "Vuk Karadžić". Godine 1983. upisao se na Tehnološki fakultet u Leskovcu na Farmaceutsko-kozmetičkom smeru Biohemijskog odseka. Fakultet je završio 1990. godine sa prosečnom ocenom 8,86 i ocenom 10 na diplomskom ispitu. Nagrađen je Poveljom Univerziteta u Nišu kao najbolji diplomirani student Tehnološkog fakulteta u šk. 1989/90. Kao student (1986. godine) učestvovao je na 13-tom međunarodnom takmičenju iz analitičke hemije u Segedinu, u Mađarskoj. Bio je stipendista SANU.

Od 1991. godine radi na Tehnološkom fakultetu u Leskovcu kao asistent pripravnik na predmetima: Osnovi polimernog inženjerstva, Tehnološke operacije, Teorija reaktora i Hemija i fizika makromolekula. U šk. 1991/92 upisao je poslediplomske studije na Tehnološkom fakultetu u Leskovcu na smeru Organska hemijska tehnologija i polimerno inženjerstvo. Poslediplomske studije završio je sa prosečnom ocenom 9,67, odbranivši magistarsku tezu 12.01.1996. god. pod nazivom "Optimizacija uslova reakcije umrežavanja lak filmova termoreaktivnih polimera". U zvanje asistenta je izabran 1996. godine za predmete Osnovi polimernog inženjerstva i Teorija reaktora. Bio je angažovan i na predmetu Osnovni procesi biohemijskog inženjerstva.

Autor je i koautor više radova u nacionalnim i međunarodnim časopisima: 2 u vodećim međunarodnim časopisima, 3 u međunarodnim, 11 rada u nacionalnim časopisima, 1 rad saopšten na međunarodnom naučnom skupu štampan u celini, 5 na nacionalnom skupu štampani u celini, 14 rada saopštena na međunarodnim skupovima štampana u izvodu i 23 rada saopštena na nacionalnim skupovima štampana u izvodu. Podnosilac je 3 nacionalne patentne prijave. Učestvovao je u realizaciji 2 projekta.

Универзитет у Нишу Универзитетска библиотека

Овај текст је део Дигиталног репозиторијума, јавно је доступан, и може се слободно користити за личне потребе, у образовне и научне сврхе. Ако користите текст, наведите извор.

Комерцијална употреба текста није дозвољена.

University of Niš University Library

This text is a part of the Digital repository of public domain. Permission is granted for personal, educational and scientific use. If you do use the document, indicate the source. No permission is granted for commercial use.

Новембар 2011 УБН 🔘 UBN November 2011