UNIVERZITET U BEOGRADU

HEMIJSKI FAKULTET

Dubravka J. Relić

NOVI PRISTUP U ISPITIVANJU MOBILNOSTI METALA I METALOIDA U SEDIMENTIMA PRIMENOM SEKVENCIJALNE EKSTRAKCIJE

doktorska disertacija

Beograd, 2012

UNIVERSITY OF BELGRADE

FACULTY OF CHEMISTRY

Dubravka J. Relić

A NEW APPROACH TO STUDY THE MOBILITY OF METALS AND METALLOIDS IN SEDIMENTS USING SEQUENTIAL EXTRACTION

Doctoral Dissertation

Belgrade, 2012

Mentor:

Komentor:	Dr Aleksandar Popović, vanredni profesor Hemijski fakultet Univerzitet u Beogradu
Članovi komisije:	Dr Dragana Đorđević, naučni savetnik IHTM–Centar za hemiju Univerzitet u Beogradu
	Dr Goran Roglić, vanredni profesor Hemijski fakultet Univerzitet u Beogradu
	Dr Antonije Onjia, naučni savetnik Institut za nuklearne nauke "Vinča" Univerzitet u Beogradu

Datum odbrane:

Zahvalnica

Koristim priliku da se zahvalim:

Dr Aleksandru Popoviću i dr Dragani Đorđević na strpljenju i smernicama tokom eksperimentalnog rada i pisanja ove disertacije.

Dr Goranu Rogliću i dr Antoniju Onjiu na korisnim savetima i sugestijama.

Svim kolegama, članovima Katedre za primenjenu hemiju i Centra za hemiju IHTM-a na pomoći i korisnim sugestijama.

Na kraju ovu tezu posvećujem mojoj porodici, kojoj želim da se zahvalim na strpljenju, razumevanju i požrtvovanju. Bez njihove podrške ne bih uspela.

Novi pristup u ispitivanju mobilnosti metala i metaloida u sedimentima primenom sekvencijalne ekstrakcije

Izvod

Cilj ove doktorske disertacije je određivanje sadržaja metala i metaloida u uzorcima sedimenata i muljeva iz otpadnog kanala industrijske zone Pančeva i okoline, ustanovljavanje njihovih asocijacija sa različitim supstratima, procena potencijalne mobilnosti ispitivanih elemenata u uslovima koji vladaju u ispitivanoj sredini, kao i identifikacija eventualnog antropogenog zagađenja, korišćenjem metode standardizovane sekvencijalne ekstracije. Primenjene su tri tehnike ekstrahovanja za prva tri koraka standardizovane BCR sekvencijalne ekstrakcije i to: mućkanje uzoraka na rotacionoj mućkalici u trajanju od šesnaest sati u okviru konvencionalne sekvencijalne ekstrakcije (KSE); dvominutno izlaganje uzoraka mikrotalasima snage 90 W u okviru mikrotalasne sekvencijalne ekstrakcije (MTSE); i tridesetominutno izlaganje uzoraka ultrazvučnim talasima u okviru ultrazvučne sekvencijalne ekstrakcije (UZSE). Četvrti korak u primeni sve tri tehnike je bio isti, kuvanje uzoraka sa carskom vodom na vodenom kupatilu. Tačnost i preciznost sve tri primenjene tehnike ekstrahovanja je utvrđen pomoću referentnog materijala, BCR 701. Pored sekvencijalne ekstrakcije, uzorci su rastvarani u mikrotalasnom digestoru pomoću carske vode i carske vode sa HF. Nakon svih primenjenih ekstrakcionih koraka, u rastvorima je određivan sadržaj Al, Ba, Ca, Cd, Co, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, Pb, Si, Sn, Sr, V, Ti, Zn, As, Se i Hg metodom induktivno spregnute plazme sa optičkom emisionom spektrometrijom (ICP/OES). Računanjem osnovnih (baseline) geohemijskih koncentracija i primenom multivarijantnih statističkih metoda, određeni su antropogeno poreklo elemenata i/ili kvantifikovan njihov antropogeni udeo, kao mogući izvori zagađivanja na ovim lokalitetu. Poređenje rezultata ekstrakcije sertifikovanog materijala, dobijenih različitim tehnikama, pokazalo je da je KSE najpreciznija metoda dok se primenom ultrazvučne sekvencijalne ekstrakcija (UZSE) dobijaju zadovoljavajuće tačnosti za polovinu sertifikovanih metala u prvom i trećem koraku BCR ekstrakcije, za razliku od MTSE koja daje najnepreciznije rezultate.

Na osnovu procentualne zastupljenosti ekstrahovanih koncentracija elemenata nakon prve faze BCR ekstrakcije, može se konstatovati da, na osnovu ekstrahovanih koncentracija Cd, Cu i Zn uzorci sedimenata uzeti sa lokaliteta Dekantera imaju povišen i visok rizik po životnu sredinu, dok, na osnovu koncentracija esktrahovanih Ba, Cd, Cu, Zn i Se, sedimenti sa lokaliteta Elektrolize imaju nizak i srednji rizik po životnu sredinu. Ekstrahovane koncentracije Ba, Cd, Zn i Se u prvoj fazi BCR ekstrakcije iz sedimenata Živine deponije nakon KSE i UZSE su znatno više, kako od koncentracije istih elemenata u drugim uzorcima, tako i od prosečnih vrednosti koncentracija ovih elemenata u sedimentima, što ukazuje na zagađenje spomenute lokacije ovim, lako dostupnim elementima. U preostalim fazama BCR ekstrakcije, drugoj, trećoj i četvrtoj, dobijene su znatno povišene koncentracije Ba, Cu, Pb i Zn u sedimentima Dekantera, kako u odnosu na druge uzorke, tako i u odnosu na prosečne koncentracije u sedimentima. Na osnovu korelacione, faktorske i klasterske analize ekstrahovanih koncentracija elemenata ustanovljena je sličnost u ponašanju elemenata, pre svega u pogledu njihovih asocijacija, koja postoji nakon sve četiri faze sekvencijalne ekstrakcije trima različitim tehnikama ekstrahovanja. Poređenjem dobijenih koncentracija elemenata, nakon mikrotalasne digestije carskom vodom, sa nacionalnom i evropskom direktivom o maksimalnim dozvoljenim koncentracijama, vidi se da koncentracije Cu, Pb i Zn prevazilaze maksimalne dozvoljene koncentracije u sedimentima sa lokaliteta Dekanter.

Veštački izvori energije korišćeni u ovoj disertaciji (mikrotalasi i ultrazvučni talasi), u okviru sekvencijalne ekstrakcije, mogu dati sliku o asocijacijama elemenata i njihovih supstrata u uzorcima. Ultrazvučni talasi, u trajanju od 30 minuta, daju preciznu procentualnu količinu najmobilnije frakcije mikroelemenata, na osnovu poređenja sa dobijenim nakon konvencionalne sekvencijalne ekstrakcije.

Ključne reči: metali i metaloidi; sedimenti i muljevi; sertifikovani materijal (BCR 701); konvencionalna, mikrotalasna i ultrazvučna standardizovana BCR sekvencijalna ekstrakcija; mikrotalasna digestija

Naučna oblast: Hemija Uža naučna oblast: Hemija životne sredine UDK broj: 504

A new approach to study the mobility of metals and metalloids in sediments using sequential extraction

Abstract

The goal of this dissertation is to determine the content of heavy metals and metalloids, in sediments and mud samples from the waste canals of the industrial zone of Pančevo and its surroundings, to establish their associations with different substrates, the evaluation examined the potential mobility of elements in the conditions prevailing in the environment of investigated study, and the identification of possible anthropogenic pollution using the method of standardized sequential extraction. We used three techniques to extract the first three steps of the standardized BCR sequential extraction as follows: sample agitation on a rotary shaker for a period of sixteen hours in the conventional sequential extraction (CSE), two-minute exposure of microwaves under 90 W in the microwave sequential extraction (MWSE), and thirty-minute exposure of ultrasound waves in the ultrasonic sequential extraction (USSE). The fourth step for all three techniques was the same, digestion of samples with aqua regia on a water bath. Accuracy and precision of the three extraction techniques were determined with the reference material, BCR 701. In addition to sequential extraction, samples were digested in a microwave digestor with aqua regia and aqua regia with HF. In extracts, the content of Al, Ba, Ca, Cd, Co, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, Pb, Si, Sn, Sr, V, Ti, Zn, As, Se and Hg were determined by inductively coupled plasma with optical emission spectrometry (ICP/OES). After chemical analysis of sediments and mud samples, based on the calculation of basic (baseline) geochemical concentrations and application of multivariate statistical methods, we defined anthropogenic origin of elements and quantify their anthropogenic share, as well as the possible sources of contamination at investigated sites. Comparing the results of the extraction of certified material, obtained by different techniques, showed that the most accurate technique is CSE, while after the ultrasonic extraction (USSE) satisfactory accuracy were obtained for half of certified metals in the first and third step of BCR extraction, unlike MWSE which gives less accurate results.

Based on the percentage of the extracted elements concentrations after the first phase of the BCR extraction, it can be concluded that based on the extracted concentrations of Cd, Cu and Zn, sediment samples taken from the site Decanter are having an increased and a high risk to the

environment, while sediments from Electrolysis are having a low to medium risk based on concentrations of Ba, Cd, Cu, Zn. Extractable concentrations of Ba, Cd, Zn and Se in the first phase of BCR extraction from sediments of Mercury disposal area obtained area after CSE and USSE are higher than the concentration of the same elements in other samples, and the average concentrations of these elements in sediments, suggesting contamination of this site with these easily accessible elements. In the remaining stages of the BCR extraction, second, third and fourth were observed significantly higher concentrations of Ba, Cu, Pb and Zn in sediments from Decanter site, as compared to other samples, as well as in relation to the average concentrations in the sediments. Based on correlation, factor and cluster analysis of the concentration of their associations, which exists after all the four phases of sequential extraction with three different techniques. Comparing the concentrations of elements after *aqua regia* microwave digestion with the national and the European directive on maximum allowable concentrations, it can be seen that the concentrations of Cu, Pb and Zn exceed the maximum allowable concentrations in sediments from the site Decanter.

Artificial sources of energy used in this dissertation (microwaves and ultrasound waves) in the sequential extraction, can give a picture of the associations of elements with substrates in investigated samples. Ultrasonic waves in duration of 30 minutes provide an accurate percentage amount of the most mobile fraction of trace elements, based on comparisons with the obtained after the CSE.

Key words: metals and metalloids, sediment and mud samples, certificate material (BCR 701); conventional, microwave, ultrasound standardized BCR sequential extraction; microwave digestion

Scientific field: Chemistry Field of Academic Expertise: Environmental Chemistry UDC Number: 504

SADRŽAJ

1. UVOD	1
2. TEORIJSKI DEO	3
2.1. Specijacija elemenata	3
2.2. Prirodno stanje metala i metaloida u životnoj sredini	5
2.2.1. Osnovna (baseline) i prirodna (background) geohemijska koncentracija meta	ala i
metaloida	6
2.2.2. Srednja koncentracija elemenata i medijana	7
2.3. Raspodela elemenata u zemljištu i sedimentima na osnovu hemijske reaktivnos	sti 8
2.4. Interakcije elemenata na česticama zemljišta i sedimenata	12
2.4.1. Kompleksiranje elemenata	12
2.4.2. Sorpcija elemenata	15
2.5. Selektivne ekstrakcione metode	17
2.5.1. Pregled jedne i sekvencijalne ekstrakcione procedure	20
2.5.1.1. Jedna ekstrakciona procedura	22
2.5.1.2. Sekvencijalna ekstrakcija	23
2.5.1.3. Brze tehnike ekstrakcija u sekvencijalnoj ekstrakciji	24
2.5.1.3.1. Ultrazvučna ekstrakcija	25
2.5.1.3.2. Mikrotalasna ekstrakcija	26
2.5.1.4. Kod procene rizika	27
2.6. Sertifikovani referentni materijal	
2.7. Hemometrijski pristup obrade rezultata	29
2.7.1. Jedno- i dvo-varijantne hemometrijske tehnike	29
2.7.1.1. Analiza varijansi	30
2.7.1.2. Korelaciona analiza	30
2.7.1.3. Analiza glavnih komponenata	31
2.7.1.4. Faktorska analiza	33
2.7.1.5. Klasterska analiza	35
2.8. Cilj rada	36

3. EKSPERIMENTALNI DEO	
3.1. Plan rada	
3.2. Uzorkovanje	
3.3. Priprema laboratorijskog posuđa i drugog pribora	41
3.4. Instrumenti	41
3.5. Pripremanje uzoraka za analizu i određivanje vlage	42
3.6. Sekvencijalna ekstrakcija	42
3.6.1. Priprema rastvora za ekstrakciju	42
3.6.2. Postupak ekstrakcije	43
3.7. Mikrotalasna digestija	46
3.8. Određivanje koncentracije metala u ekstraktima induktivno sp	regnutom
plazmom (Inductive Coupled Plasma – Optical Emission Spectrometer, ICP/	OES)48
3.9. Određivanje ukupnog sadržaja C, H, N, S	48
4. REZULTATI I DISKUSIJA	50
4.1. Sekvencijalna ekstrakcija	50
4.1.1. Sertifikovani materijal (BCR 701)	51
4.1.2. Sedimenti i muljevi otpadnog kanala	57
4.1.2.1. Prva faza BCR ekstrakcije	
4.1.2.1.1. ANOVA test – prva faza BCR ekstrakcije	59
4.1.2.1.2. Osnovna geohemijska koncentracije elemenata- prva f	aza BCR
ekstrakcije	63
4.1.2.1.3. Test normalne distribucije – prva faza BCR ekstrakcije	69
4.1.2.1.4. Faktorska i klasterska analiza – prva faza BCR ekstrakcije	73
4.1.2.2. Druga faza BCR ekstrakcije	74
4.1.2.2.1. ANOVA test – druga faza BCR ekstrakcije	78
4.1.2.2.2. Osnovna geohemijska koncentracije elemenata – druga i	faza BCR
ekstrakcije	79
4.1.2.2.3. Test normalne distribucije – druga faza BCR ekstrakcije	
4.1.2.2.4. Faktorska i klasterska analiza – druga faza BCR ekstrakcije	
4.1.2.3. Treća faza BCR ekstrakcije	

4.1.2.3.1. ANOVA test – treća faza BCR ekstrakcije92
4.1.2.3.2. Osnovna geohemijska koncentracija elemenata – treća faza BCR
ekstrakcije92
4.1.2.3.3. Test normalne distribucije – treća faza BCR ekstrakcije
4.1.2.3.4. Faktorska i klasterska analiza – treća faza BCR ekstrakcije
4.1.2.4. Četvrta faza sekvencijalne ekstrakcije103
4.1.2.4.1. ANOVA test – četvrta faza SE107
4.1.2.4.2. Osnovna geohemijska koncentracija elemenata – četvrta faza SE 107
4.1.2.4.2. Test normalne distribucije – četvrta faza SE111
4.1.2.4.3. Faktorska i klasterska analiza – četvrta faza SE115
4.1.2.5. Kod procene rizika ekstrahovanih koncentracija elemenata
4.2. Mikrotalasna digestija121
4.2.1. Mikrotalasna digestija carskom vodom121
4.2.1.1. Mikrotalasna digestija carskom vodom – osnovne geohemijske koncentracije
elemenata122
4.2.1.2. Mikrotalasna digestija carskom vodom – test normalne distribucije
4.2.1.3. Mikrotalasna digestija carskom vodom – faktorska i klasterska analiza 127
4.2.2. Mikrotalasna digestija carskom vodom i flurovodoničnom kiselinom128
4.2.2.1. Mikrotalasna digestija carskom vodom i flurovodoničnom kiselinom –
osnovna geohemijska koncentracija elemenata128
4.2.2.2. Mikrotalasna digestija carskom vodom i flurovodoničnom kiselinom - test
normalne distribucije
4.2.2.3. Mikrotalasna digestija carskom vodom i fluorovodoničnom kiselinom -
faktorska i klasterska analiza129
4.3. Poređenje koncentracija elemenata nakon sekvencijalne ekstrakcije i
mikrotalasnih digestija130
5. ZAKLJUČAK
6. LITERATURA141
7. PRILOG

1. UVOD

S obzirom na njihovu procentualnu zastupljenost, metali i metaloidi čine relativno mali deo mase Zemljine kore, ali predstavljaju značajne strukturne i funkcionalne komponente svih geoloških formacija, pa i sedimentnih. Interakcije u koje će neki metal i metaloid stupiti u sedimentnoj sredini zavise pre svega od biogeohemijskih karakteristika elemenata, tj. od njegove hemijske prirode. Efekti koprecipitacije, jonske izmene, adsorptivni procesi na raznim supstratima, procesi koordinacionog vezivanja, kao i hemijska stabilnost i rastvorljivost minerala metala i metaloida utiču na njegovu mobilnost a samim time i na rasprostranjenost u datoj sredini. Sedimenti se često koriste za identifikovanje izvora mikroelemenata, određivanje puteva rasejavanja i lociranje kontaminiranih mesta u vodenom sistemu. U industrijskim sredinama koje su ublizini reka, istorija zagađenja je zapisana u zagađenju aluvijalnog sedimenta i muljeva. Mikroelementi mogu dospeti u sedimente na dva načina: prirodnim putem i kao rezultat aktivnosti čoveka. Istraživanja i praćenje negativnih uticaja mikroelemenata na životnu sredinu imaju izuzetan značaj. Naročito je značajno identifikovanje i praktična primena novih pristupa, metoda, tehnika i uređaja u proceni uticaja štetnih elemenata na životnu sredinu. Kontaminacija potencijalno štetnim elementima u prirodnim sredinama je jedan od glavnih problema kad je u pitanju zdravlje ljudi i kvalitet životne sredine, kako zbog njihove nerazgradivosti, mobilnosti, tako i zbog toksičnih efekata na žive organizme. Uzimajući u obzir sve veći broj antropogenih izvora elemenata, ispitivanje zagađenja sedimenata i zemljišta su veoma značajna i aktuelna u celom svetu. Sa aspekta istraživanja zagađenja elementima, izbor metoda za opisivanje njihove raspodele, kao i procene antropogenog porekla imaju najveći značaj.

Za proučavanje asocijacija elemenata sa supstratima u površinskim i dubinskim sedimentima i u muljevima sa lokaliteta industrijske zone Pančeva i okoline, u oblasti aluviona Dunava, opredelili smo se za sekvencijalnu ekstrakcionu metodu, metodu gde se primenom ekstrakcionih sredstava rastuće ekstrakcione moći ekstrahuju specifično asocirane frakcije metala.

Cilj ovoga istraživanja je primena standardizovane sekvencijalne ekstrakcije za određivanje asocijacija elemenata sa supstratima sedimenata i muljeva u zoni uticaja industrije. Koristili smo standardizovanu BCR sekvencijalnu ekstrakciju različitih tehnika ekstrahovanja: rotaciono mućkanje, ultrazvučna i mikrotalasna ekstrakcija. Ekstrakcijom referetnog materijala bilo je moguće utvrditi tačnost i preciznost svake od tri sekvencijalne ekstrakcije. Osim što su uzorci sedimenata i muljeva ekstrahovani u okviru BCR esktrackije, oni su rastvarani u mikrotalasnom digestoru radi određivanja pseudo ukupnog i ukupnog sadržaja elemenata. Takođe korišćenjem hemijske analize ispitivanih sedimenata pomoću savremenih metoda i analitičkih tehnika u laboratoriji, kroz računanje osnovnih (*baseline*) geohemijskih koncentracija, kao i primenom multivarijantnih statističkih metoda odredili smo antropogeno poreklo elemenata i kvantifikovali njihov antropogeni udeo, kao i moguće izvore kontaminacije na ispitivanom lokalitetu.

Rezultati ove doktorske disertacije predstavljaju naučni doprinos u oblasti ispitivanja standardizovane sekvencijalne ekstrakcije, određivanju zagađenja sedimenata i muljeva ispitivanog lokaliteta elementima, kao i boljeg shvatanja njihovih biogeohemijskih ciklusa.

2. TEORIJSKI DEO

2.1. Specijacija elemenata

Termin specijacija se koristi za veliki broj analiza; od određivanja dobro definisanih jedinjenja, kao npr. Oksidacionog stanja metala ili organometalnih jedinjenja, ili oblika metala koji se definiše odgovarajućom procedurom, kao npr. "biološki dostupnog" i "mobilnog" oblika metala (Quevauviller, 2002). IUPAC (International Union of Pure and Applied Chemistry) je predložila definiciju kojom se hemijska jedinjenja definišu kao "specifični oblik metala definisan molekulskom, kompleksnom, elektronskom ili nuklearnom strukturom« (Templeton i dr., 2000). Za specijaciju se koristi aspekt hemije metala koji uključuje procese taloženja-rastvaranja, adsorpcione-desorpcione, i procese nastajanja kompleksa u odnosu na pH, redoks uslove kao i prisustvo kompleksirajućeg agensa (Bodek i dr., 1988). Pod specijacijom se podrazumeva grupa različitih osobina ili procesa, koji su od značaja za ponašanje metala, kao što su: isparljivost, fotoliza, sorpcija, atmosferska depozicija, kiselo/bazna ravnoteža, polimerizacija, kompleksiranje, elektrontransfer rekacije, rastvorljivost i taloženje, mikrobiološka transformacija i difuzija metala. Specijacija se može definisati kao funkcionalna za one osobine koje utiču na ponašanje metala u životnoj sredini kao što su pokretljivost, otpornost, toksičnost, biodostupnost, potencijal ka bioakumulaciji itd. (Langmuir i dr., 2005). Za regulatorne svrhe, funkcionalna definicija je korisna. Specijacija se može definisati kao merenje količine jednog ili više individualnih hemijskih jedinjenja u uzorku, i kao raspodela odgovarajućeg hemijskog oblika metala. Korišćenjem striktne definicije treba da se odnosi na odgovarajuću proceduru, npr. EDTA-ekstrahovani ili acetatno-ekstrahovani metali u tragovima a ne na slabo definisane termine kao što su 'biodostupni« ili »mobilni oblik«, koji se prevashodno odnose na interpretaciju procedure, a ne na samu tehnologiju ekstrahovanja (Quevauviller, 1996).

Specijacija se može definisati kao:

- 1. Proces identifikacije i kvantifikacije različitih oblika i/ili faza prisutnih u ispitivanom uzorku;
- 2. Opis količine i vrste jedinjenja u postojećem obliku i/ili fazi.

Postoje tri osnovna tipa specijacije elemenata. Prvi tip su jedinjenja koja su dostupna biljkama. Drugi tip se definiše na osnovu fizičkog ili hemijskog frakcionisanja uzoraka radi dobijanja izolovanih frakcija koje se koriste u daljem merenju. Na primer, sekvencijalna ekstrakcija se koristi da bi se izolovali metali asocirani na: "u vodi/kiselini rastvorne", "reducibilne", "oksidujuće", "rezidualne" frakcije. Reducibilne, oksidujuće i rezidualne frakcije su najčešće frakcije elemenata vezane na: hidrooksidima gvožđa i mangana, organsku materiju/sulfide i silikatnu fazu. Treći tip specijacije je tip gde se tačan oblik elementa meri ili definiše, i koji se najteže određuje zbog neophodnosti analitičke metode velike osetljivosti (Ure i Davidson, 2002a). Slika 1 ilustruje ekstrahovane količine elemenata pomoću različitih ekstrakcionih metoda.

Slika 1. Različiti pristupi određivanju elemenata u zemljištu (Ure i Davidson, 2002b).

Ukupni – ukupni sadržaj elemenata (digestija sa HF);

pseudo - ukupni sadržaj elemenata (digestija sa carskom vodom)-

maksimalni sadržaj elemenata koji se može potencijalno mobilizovati;

sekvencijalna ekstrakcija – "rezervoari" potencijalno mobilnih elemenata pod različitim uslovima (pH, *Eh*, itd.);

jedna ekstrakcija -biljki "dostupan" sadržaj elemenata;

ispiranje kolone (veštačka kiša) – trenutno mobilna jedinjenja

Oksidaciono stanje metala je značajna karakteristika njegove specijacije zbog uticaja na druge procese. Dobro je poznat primer velike mobilnosti i toksičnosti Cr(VI) u

odnosu na Cr(III) što ukazuje na značajnost oksidacionog stanja. Toksičnost zavisi od oksidacionog stanja kao i od oblika metala i metaloida: da li je katjon ili anjon, i da li ima tendenciju za građenje kompleksa. Na primer, toksičnost As(III) za vodeni svet je značajno drugačija od toksičnosti As(V). Cr(VI) se smatra kancerogenim za ljude, dok se za Cr(III) smatra da ima malu toksičnot. Dimetil-živa je toksičnija i ima veći potencijal ka bioakumulaciji nego živa hlorid.

Na mobilnost utiču mnogi faktori. Glavni faktor koji određuje mobilnost metala i metaloida je sorpcija na supstrate. Fizička sorpcija, koja je značajna za organska jedinjenja, je neprimenjiva za sorpciju toksičnih metala, koji se najčešće adsorbuju kao jonske vrste. Jonska izmena je malo zastupljena, najčešće zbog niske koncentracije toksičnih metala u odnosu na glavne jone. Na sorpcija metala i metaloida utiču: pH i mogućnosti formiranja kompleksa kao i jonska sila. Faktori koji su značajni za sorpciju metala na zemljišta i sedimente su prikazani u tabeli 1.

Zemljište	Zemljišni rastvor	Rastvor
Mineralni sastav zemljišta	рН	Hemijske osobine
Specifična površina za	Eh	Hemija kompleksiranja
adsorpciju metala		
Gustina površinski aktivnih	Sastav zemljišnog rastvora,	Hemija taloženja
mesta ili katjonski izmenjivi	koncentracije (aktiviteti)	
kapacitet		
Aeracija	Rastvorni organski ugljenik	Redoks potencijal
Mikrobiloški tip, aktivnost i	Jonska sila	Pritisak zasićene pare
populacija		
Sadržaj i osobine organske		
suspstance		
Temperatura		

Tabela 1. Faktori koji su značajni za sorpciju metala na zemljišta i sedimente (Langmuir i dr., 2005).

2.2. Prirodno stanje metala i metaloida u životnoj sredini

Mnoge površinske i podzemne vode mogu imati prirodne koncentracije metala i metaloida koje premašuju EPA standard za pijaće vode. Osim voda isti slučaj može biti i sa zmeljištem, odnosno zemljišta mogu da sadrže prirodno povišene koncentracije metala i metaloida. Kada treba da se donese odluka o obnavljanju zemljišta i/ili voda u pretpostavljeno prethodno stanje, nerealno je dodeliti ciljeve čišćenja za nivoe koji su ispod koncentracija koje su bile prisutne u ispitivanoj sredini. Veoma je važno napraviti razliku između količine elemenata koji su prirodno prisutni i količine pridodate uticajem ljudskih aktivnosti (Langmuir i dr., 2005).

2.2.1. Osnovna (baseline) i prirodna (background) geohemijska koncentracija metala i metaloida

Osnovna (*baseline*) geohemijska koncentracija metala (Salminen i Tarvainen, 1997; Salminen i Gregorauskiene, 2000) može se opisati kao koncentracija koja je izmerena na početku neke studije ili praćenja stanja životne sredine nekog lokaliteta i ona obuhvata kako prirodnu tako i koncentraciju iz nekog antropogenog izvora (Rice, 1999). Kao jedan od načina za računjanje osnovne koncentracije elemenata može se koristi geometrijska sredina (GM) i geometrijska standardna devijacija (GSD). Opseg osnovne geohemijske koncentracije se računa po formuli GM/GSD² i GM·GSD² i predstavlja opseg koncentracija za elemente na ispitivanom lokalitetu (Dudka i dr., 1995; Škrbić i Čupić, 2004; Tume i dr., 2006; Relić i dr., 2011a).

Prirodna (*background*) geohemijska koncentracija metala i metaloida, jeste koncentracija koja je postojala pre antropogenog izvora zagađenja. Ona u zemljištu zavisi od dubine uzimanja uzoraka, od toga da li se analizira ceo uzorak ili samo frakcija prema veličini čestica (Salminen i Tarvainen, 1997). Koncentracije elemenata generalno su veće u sitnijim nego u krupnijim frakcijama zemljišta.

Treba naglasiti da osnovne i prirodne geohemijske koncentracije elemenata nisu određene vrednosti, već odgovarajući opsezi vrednosti, koje mogu da se značajno razlikuju u zavisnosti od lokaliteta do lokaliteta. Takođe treba naglasiti da, prirodne geohemijske koncentracije metala i metaloida mogu prevazilaziti propisane granične koncentracije na nekim lokalitetima.

2.2.2. Srednja koncentracija elemenata i medijana

Iako su koncentracije elemenata u životnoj sredini u širokom rasponu, korisno je razmotriti srednje vrednosti koncentracija elemenata i njihove medijane. Često se medijane mogu koristiti osnovna geohemijska koncentracija, u vodama, zemljištu i u Zemljinoj kori (Rice, 1999) (tabela 2).

	Podzemne vode	Podzemne vode	Zemljište	Zemljina kora
Metal	(srednja vrednost)	(srednja vrednost)	(srednja vrednost)	(srednja vrednost)
	(U.S. EPA, 2002a)	(Newcomb i Rimstidt, 2002)	(Shacklette i Boerngen, 1984)	(Fortescue, 1992)
	(µg/L)	(µg/L)	(mg/kg)	(mg/kg)
Aluminijum			72.000	83.600
Arsen	8	13,9	7,2	1,8
Barijum	140	77	580	390
Berilijum	2		0,92	2,0
Kadmijum	1		0,35	0,16
Hrom	7		4,4	54
Kobalt		4,3	9,1	29
Bakar		70,6	25	68
Gvožđe			26.000	62.200
Olovo		2,6	19	13
Mangan			550	1.060
Živa	2		0,09	0,086
Nikal		11,5	19	99
Selen	5	2,5	0,39	0,050
Stroncijum			240	384
Sumpor				340
Vanadijum		12,5	80	136
Cink		265	60	76

Tabela 2. Srednje vrednosti nekih metala u prirodnim vodama, zemljištu i Zemljinoj kori

(Langmuir i dr., 2005)

Koncentracije jonskih vrsta koje su u vodama prisutne u koncentracijama od 1 µg/L do 1 mg/L predstavljaju mikro-komponenete, dok makro-komponenete su one koje se nalaze u koncentracijama od 1 mg/L do 1 g/L (Langmuir, 1997). Obzirom na gore navedene definicije većina elemenata spada u mikro-, a samo neki u makro-komponenete (tabela 3). Ovo je naročito prisutno u površinskim vodama, gde su koncentracije elemenata više razblažene nego što su u zemljištima i podzemnim vodama.

Komponenete i	Prosečne koncentracije	Prosečne koncentracije u	Prosečne koncentracije u
parametri	u svetskim rekama ^a	rekama, Severna Amerika	svetskim podzemnim vodama ^b
Na^+	6,3	9	30
\mathbf{K}^+	2,3	1,4	3
Mg^{2+}	4,1	5	7
Ca ²⁺	15	21	50
Fe	0,67	0,16	
Al	0,07		
Cl	7,8	8	20
NO^{3-}	1	1	
HCO ³⁻	58,4	68	200
SO4 ²⁻	11,2	20	30
$SiO_2(aq)$	13,1	9	16
pН			7,4
TDS ^c	120	142	350

Tabela 3. Fe, Al i makro-komponente (>1 mg/L) i parametri u površinskim i

podzemnim vodama (L	Langmuir i dr., 2005)
---------------------	-----------------------

^aLivingstone, 1963. ^bTurekian, 1977.

^c TDS (total dissolved solid) sadržaj suspendovanih materija

2.3. Raspodela elemenata u zemljištu i sedimentima na osnovu hemijske reaktivnosti

Kod zemljišta i sedimenata, ukupan sadržaj elemenata može biti podeljen na osnovu:

- 1. Nekih fizičkih parametara (tabela 4);
- 2. Detričnih (fragmenata stena) i nedetričnih (materijala koji nastaju dejstvom atmosferskih uticaja) frakcija;
- 3. Relativne rastvorljivosti jedinjenja (u kiselom ili u rastvoru neke soli), i
- 4. Stepena asocijacije sa komponentama zemljišta odnosno sedimenata (tabela 5) (Pickering, 2002).

Različita ispitivanja su pokazala da se koncentracije elemenata u tragovima u zemljištu i sedimentima, razlikuju u odnosu na fizičku lokaciju (dubina ispod površinskog sloja) i veličinu čestice (tabeli 4). Najveći sadržaj, u $\mu g/g$, se nalazi u sitnijim frakcijama (< 63 μ m) i mnogi istraživači ovu frakciju ispituju metodom sekvencijalne ekstrakcije. U većim frakcijama mulja i peska, u čijem sastavu dominira kvarc, sadržaj elemenata u

tragovima je veoma mali. Neke grube frakcije mogu da sadrže i delove stena koje mogu biti bogate u sadržaju ispitivanog elementa (Pickering, 2002).

Tabela 4. Specijacija elemenata u različitim frakcijama zemljišta ili sedimenata pomoću atomske apsorpcione spektrofotometrije (AAS) ili neutronske aktivacione analize (NAA) (Pickering, 2002)

Ukupan sadržaj elemenata koji se određuje u:
ukupnom uzorku (najčešće < 2 mm), ili
različitim frakcijama čestica, odn. < 2 mm, < 63, < 20 ili < 2 μ m, ili
uzorcima sa različitih dubina, npr. 0-5, 5-20 cm, itd., ili
uzorcima sa različitih horizonata zemljišta ili sedimentnog profila

Treba naglasiti da izbor odgovarajuće frakcije čestica, pogotovu u određivanju izvora zagađenja, ostaje kontraverzan zbog sledećih razloga:

- Veće frakcije sedimenata su manje podložne ispiranju i transportu. One mogu najbolje da odslikavaju antropogeni uticaj na raspodelu elementa na nekoj lokaciji u određenom vremenskom periodu;
- Sitnije frakcije peska (prečnik čestice od 20 μm do 200 μm) imaju praktičan značaj zbog razdvajanja prirodnog od antropogenog transporta elementa, prvo zbog toga što čine veći deo sedimenta, i drugo zato što u toj frakciji postoje najizraženije razlike u ponašanju elementa;
- Muljevite i glinovite frakcije, iako rasprostranjene u sedimentim područjima, u manjoj količini sadrže različita jedinjenja elemenata (Förstner, 1985).

U tabeli 5 su navedene neke hemijske reakcije koje mogu da dovedu do oslobađanja jona elemenata iz odgovarajućih čvrstih faza (Pickering, 2002). Često se i raspodela elemenata objašnjava terminima vezivanja, poput jonoizmenjivački, slabo-sorbovan, hemisorbovan vezan i kompleksiran element. Količina elemenata koja je vezana različitim modelima vezivanja, ili asocirana za različite faze prikazana u tabeli 6, može se odrediti tretiranjem čvrste faze rastvorima različitih ekstrakcionih moći (Pickering, 2002).

Komponenta sedimenta	Način vezivanja elemenata	Mehanizam oslobađanja
Taložna jedinjenja		
karbonati (uključujući	fizički sorbovani,	promena u p CO ₂ , rastvaranje
deliće	koprecipitovani,	u slabim kiselinama
školjki)	pseudo-morfoza	
sulfidi	koprecipitovani sulfidi	oksidacija S
hidrooksidi Fe/Mn	fizička sorpcija,	redukcija Fe/Mn
	koprecipitacija,	
	hemijska sorpcija	
organska kisela jedinjenja	delimično rastvorne soli,	snižavanje pH, razaranje
	kompleksi	organske materije
Ostaci organskih		
jedinjenja		
lipidi, huminske supstance	fizička sorpcija, hemijska	razaranje organske materije,
	sorpcija, kompleksi	uklanjanje ligandima (EDTA)
Ostaci stena		
	kristalna rešetka, elementi	razaranje kristalne rešetke
	vezani	
	na inertnim mestima	

Tabela 5. Asocijacije elemenata u uzorcima zemljišta ili sedimenata (Pickering, 2002).

Redosled operacija potrebnih radi razdvajanja ukupnog sadržaja elemenata po različitim frakcijama, poznat je kao šema specijacije. Može da se ostvari tako što se:

- 1. Uradi serija različitih analiza korišćenjem različitih alikvota čvrstog uzorka, ili
- 2. Serija selektivnih ekstrakcija po uzorku zemljišta ili sedimenta (Pickering, 2002).

U većini publikovanih radova, oksidacija sulfida i razaranje organske materije, prati oslobađanje elemenata sa karbonata i hidrooksida. Postoji saglasnost da mnoge neorganske komponente mogu biti obmotane organskom materijom i samim tim je potrebno prvo nju ukloniti pa nastaviti dalje sa razlaganjem. U sadašnjim radovima, priroda materijala koji obmotava čestice (hidrooksidi ili organska materija) i priroda uzorka (površinski oksidovan ili sulfidima obogaćen) se moraju uzeti u obzir prilikom izbora šeme specijacije (Pickering, 2002). Nažalost, mali broj reagenasa je selektivan za tačno odgovarajuću asocijaciju između elementa i komponente zemljišta ili sedimenta. Stepen interakcije ekstrakcionog reagensa sa uzorkom je uslovljen različitim eksperimentalnim faktorima kao što su: koncentracija ekstrakcionog sredstva, pH, temperatura, vreme reakcije, način mešanja, veličina čestice, sastav matriksa, sporedne hemijske reakcije (uključujući formiranje kompleksa sa dodatim ligandom, npr. formiranje acetato-metalnog kompleksa), stepen osvetljenja i resorpcija oslobođenih jona (Pickering, 2002).

Tabela 6. Alternativni prilazi razdvajanju sadržaja elemenata u zemljištima ili sedimentima na osnovu njihove hemijske reaktivnosti (Pickering, 2002).

Selektivne interakcije rastvarača sa:

jedinjenjima slabo vezanim na površinu čestica (npr. Elementi slabo sorbovani na jon izmenjivim mestima); tipičan reagens, voda; 1 mol dm⁻³ MgCl₂

specifičnim hemijskim fazama (radi oslobađanja hemijski sorbovanih ili asociranih elemenata sa jedinjenjima kao što su karbonatni minerali; hidrooksidi Fe, Mn; organska materija i/ili sulfidi); tipični reagensi za ove interakcije sadrže pufer sirćetna kiselina/acetat, zakišeljeni hidroksilamin, zakišeljeni vodonik-peroksid

Većina šema specijacija sadrži dve glavne operacije: izdvajanje elementa ili jedinjenja koji nas interesuje iz odgovarajućeg matriksa i određivanje sadržaja elemenata ili jedinjenja u dobijenim frakcijama. Izdvajanje elementa ili jedinjenja se bazira na: odnosu veličina čestica ili odnosu naelektrisanje/veličina čestica; različitim procesima hromatografije; procesima ekstrakcije sa rastvaračima i selektivnosti hemijskih reakcija (Pickering, 2002).

Za analizu razdvojenih frakcija koriste se tehnike velike osetljivosti i pre svega izuzetno selektivne. Inteference treba da budu minimalne. Analitičke metode koje poseduju gore navedene osobine se nalaze spomenute u tabeli 7 (Pickering, 2002).

ehnike ili procedure Uzorci za analizu	
Polarografija, voltametrija sa anodnim	Hidratizovani joni, i veoma osetljivi
skidanjem (Anodna stripping voltameterija,	kompleksi
ASV)	
Propuštanje kroz kolonu koja ima	Sakupljeni hidratizovani joni, i joni
mogućnost helatne	oslobođeni
izmene	pomoću jako i umereno osetljivih
	jedinjenja
Mešanje sa jon-izmenjivom smolom	Prikupljeni joni nakon određenog
	vremenskog
	perioda (sati, dani). Afinitet elemenata i
	pH, varira od tipa primenjene smole

Tabela 7. Određivanje osetljivih frakcija elemenata (Pickering, 2002)

2.4. Interakcije elemenata na česticama zemljišta i sedimenata

2.4.1. Kompleksiranje elemenata

Katjoni elemenata u rastvoru nekog zemljišta mogu biti rastvorni, izmenjivi, kompleksirani sa organskom materijom, supstituenti u nekom jedinjenju u odgovarajućem stehiometrijskom odnosu ili okludovani u strukturi minerala. Hemijski faktori koji utiču na adsorpciju odgovarajućeg hemijskog oblika katjona su pH i jonska sila.

Kompleksi između funkcionalne grupe na površini čvrste supstance i jona u rastvoru se klasifikuju kao kompleks koji nastaju u vodenoj sredini. Ukoliko molekul vode se ne nalazi između funkcionalne grupe na površini čvrste supstance i jona ili molekula, nastaje unutrašnji kompleks. Ukoliko se samo jedan molekul vode nađe između funkcionalne grupe i vezanog jona ili molekula, nastaje spoljašnji kompleks.

Spoljašnji kompleks nastaje elektrostatičkim vezivanjem, što ga čini manje stabilnim od unutrašnjeg kompleksa, koji nastaje jonskim ili kovaletnim vezivanjem (Ritchie i Sposito, 2002). Pošto kovaletno vezivanje zavisi od elektronske konfiguracije funkcionalne grupe na površini i kompleksirajućeg jona, može se reći da nastajanje unutrašnjeg kompleksa predstavlja specifičnu adsorpciju. Vezivanje difuzionog sloja u spoljašnji kompleks se može nazvati nespecifičnom adsorpcijom. Izraz nespecifična, ukazuje na slabu zavisnost od elektronske konfiguracije, što se i očekuje u reakcijama solvatizovanih supstanci, na površini koloida.

Rastvorene supstance u vodama se mogu opisati kao slobodni joni ili kompleksi sa vodom. Kompleksi jona jesu asocijacije katjona sa anjonom ili neutralnim molekulom (Langmuir, 1997). Ukupna koncentracija nekog metala u rastvoru jeste zbir koncentracija slobodnog jona, kompleksa i količine metala vezane za suspendovane čestice, bilo organske ili neorganske. Tako je ukupna koncentracija za $Pb(\sum Pb)$ u prirodnim vodama jednaka:

$$\sum Pb = cPb^{2+} + cPbOH^{+} + cPbCO_{3}^{0} + cPbHCO_{3}^{+} + cPbSO_{4}^{0} + cPb(suspendovane čestice)$$
(1)

Drugi metali koji se najčešće nalaze u obliku kompleksa, a ređe u jonskom obliku u prirodnim vodama su: Al^{3+} , Ag^+ , Cu^{2+} , Fe^{3+} i Hg^{2+} . As, Se, Cr, Mo, Sb i V se ne nalaze u vodama i zemljišnom rastvoru u obliku katjona, već su kovalentno vezani za kiseonik, i to u obliku arsenata, selenata, hromata, molibdata i vanadata, koji su sami po sebi kompleksi. Najznačajnija hemijska jedinjenja (uključujući i metalne komplekse u zemljišnom i vodenom rastvoru) su prikazana u tabeli 8.

Table 8. Glavna hemijska jedinjenja metala u zemljištu i prirodnim vodama, ne uključujući većinu slabih metalnih kompleksa (Langmuir i dr., 2005)^a

Metal	Zemljište	Vode	Najverovatniji toksični oblik metala
Ag	Ag^+	Ag ₊ , AgCl	Ag^+
As	AsO_4^{3}	AsO_4^{3-}, AsO_3^{3-}	AsO ₃ ³⁻
Ba	Ba^{2+}	Ba^{2+}	Ba^{2+}
Be	$Be^{2+}, Be_xO_y^{2x-2y}$	Be^{2+}	Be ²⁺
Cd	Cd^{2+1}	Cd^{2+}	Cd^{2+}
Co	Co^{2^+}	Co^{2^+}	Co ²⁺
Cr	Cr ³⁺	CrO_4^{2-}, Cr^{3+}	CrO ₄ ²⁻
Cu ^a	Cu ²⁺ , Cu-OS ^b	Cu ²⁺ , -fulvati	Cu ²⁺
Hg	Hg ²⁺ , CH ₃ Hg	Hg(OH) ₂ °, HgCl ₂ °	CH ₃ Hg
Mn	Mn^{4+}, Mn^{2+}	Mn^{2+}	Mn ²⁺
Mo	MoO_4^{2-}	MoO_4^{2-}	MoO_4^{2-}
Ni	Ni ²⁺	Ni^{2+}	Ni ²⁺
Pb	Pb^{2+}	$Pb(OH)^+$	Pb^{2+}
Sb	$Sb_{III}O_x$?	Sb(OH) ⁶⁻	?
Se	SeO ₄ ²⁻ , HseO ₃	SeO ₄ ²⁻	SeO ₄ ²⁻
V	$V_{IV}O_x$?	HVO ₄ ²⁻	?
Zn	Zn^{2+}	Zn^{2+}	Zn^{2+}

["]Većina Cu u zemljištu je kompleksirana sa organskom supstancom.

Cu-OS se odnosi na kompleks bakra sa organskom supstancom.

Kompleksiranje metala igra glavnu ulogu u kontroli metala u životnoj sredini. Povećanjem frakcije metala koja je kompleksirana povećava se rastvorljivost minerala tog metala (Langmuir, 1997). Tako rastvorljivost $PbSO_4$ zavisi od a molarne koncentracije i jona olova i sulfata, kao sto se vidi iz jednačine:

$$K_{Sp} = [(\gamma_{Pb} m P b^{2+})(\gamma_{S04} m S O_4^{2-})]$$
⁽²⁾

gde su γ_{Pb} i γ_{SO4} koeficijenti aktiviteta datih jona. Na osnovu navedene jednačine se vidi da aktivitet Pb^{2+} kontroliše rastvorljivost $PbSO_4$. Na osnovu jednačine o ukupnoj koncentraciji olova (1) se vidi da što je više olova kompleksirano, to je manja koncentracija slobodnog jona olova u rastvoru. To znači da sa rastom stepena kompleksiranja olova raste i ukupna koncentracija olova na račun olovo sulfata, tj. kompleksiranjem metala se povećava njegova rastvorljivost, što se vidi iz jednačine (2).

Kompleksi metala takođe utiču na adsorpciju metala na organsku supstancu i površinu minerala. Karbonatni, sulfatni i fluoridni kompleksi se slabije sorbuju, dok su hidroksidni kompleksi jako adsorbovani (Langmuir, 1997).

Kompleksi se formiraju između metala (kiseline) i liganada (baze) u rastvoru i na površini minerala i živih organizama. Toksične rekacije između metala i organizma su u direktnoj vezi sa osobinama metalnih kompleksa nastalih u rastvoru i na površini organizma.

Korisne definicije koje nam pomažu u objašnjenju veze između kompleksa metala i njegove toksičnosti jesu tvrde i meke kiseline i baze (Langmuir i dr., 2005). Po ovoj definiciji katjoni su Luisove (Lewis) kiseline a ligandi baze. Katjon metala i ligand u kompleksu se ponašaju kao elektron akceptor i donor. Meki kiseline i baze su kovaletno vezani jer im se elektronski oblak može polarizovati uklanjanjem elektrona. Tvrde kiseline su jakim jonskim vezama vezane za tvrde baze. Veze između tvrdih-mekih ili mekih-tvdih kiselina i baza su slabe, i takvi kompleski nastaju ređe. U tabeli 9 se nalaze tvrde i meke kiseline i baze, metala i liganda.

Tvrde kiseline i tvrde baze. Veze u kompleksima koji nastaju između dvovalentnih tvrdih kiselih katjona sa monovalentnim ili dvovalentnim tvrdim bazama su jonske prirode i često ih nazivamo jonskim parom. Kompleski nastali između npr. Be²⁺ ili trovalentnog kiselog katjona i tvrde baze, imaju tendenciju da budu jonske prirode i relativno su jaki (Langmuir i dr., 2005).

Meke kiseline i meke baze. Jake kovalentne veze nastaju u kompleksima između mekih i granično mekih kiselih katjona, i mekih baza. Ligandna mesta koja se nalaze na spoljašnjoj ili unutrašnjoj površini organizama su najčešće mekog baznog karaktera pa se meki i granično meki katjoni vezuju za ta ligandna mesta (Langmuir i dr., 2005).

Tvrde kiseline	Al ³⁺ , Ba ²⁺ , Be ²⁺ , Co ³⁺ , Cr ³⁺ , Fe ³⁺ , Mn ²⁺ , Sr ²⁺ , U ⁴⁺ , UO_2^{2+}, VO^{2+}
Granične kiseline (između tvrdih i mekih)	$Co^{2+}, Cu^{2+}, Fe^{2+}, Ni^{2+}, Pb^{2+}, Zn^{2+}$
Meke kiseline	$Ag^+, Cd^{2+}, Cu^+, Hg^{2+}, Hg^+, CH_3Hg^+, Tl^{3+}, Tl^+$
Tvrde baze	F ⁻ , H ₂ O, kiseonični anjoni: OH ⁻ , SO ₄ ²⁻ , CO ₃ ²⁻ , HCO ₃ ⁻ , C ₂ O ₄ ²⁻ , CrO ₄ ²⁻ , MoO ₄ ²⁻ H _n PO ₄ ⁿ⁻³ , H _n AsO ₄ ⁿ⁻³ , SeO ₄ ²⁻ , H ₂ VO ₄ ⁻ , NH ₃ , RNH ₂ , N ₂ H ₄ , ROH, RO ⁻ , R ₂ O, CH ₃ COO ⁻ , itd.
Granične baze (između tvrdih i mekih)	Cl ⁺ , Br ⁺ , NO ₂ ⁺ , SO ₃ ²⁻ , H _n AsO ₃ ⁿ⁻³ , C ₆ H ₅ NH ₂ , C ₅ H ₅ N, N ₃ ⁺ , N ₂
Meke baze	I [*] , HS [*] , S ₂ [*] , CN [*] , SCN [*] , Se ₂ [*] , S ₂ O ₃ ^{2*} , -SH, -SCH ₃ , -NH ₂ , R-, C ₂ H ₄ , C ₆ H ₆ , RNC, CO, R ₃ P, (RO) ₂ P, R ₃ A ₈ , R ₂ S, RSH, RS [*]

Tabela 9. Tvrde i meke kiseline (katjoni) i baze (ligandi) (Langmuir i dr., 2005)

R-se odnosi na organski deo molekula

Luisove kiseline u prirodnim vodama uključuju H^+ i metabolički neophodne katjone kao što su Na^+ , K^+ , Mg^{2+} , Ca^{2+} , Mn^{2+} , Fe^{3+} , Co^{2+} , Ni^{2+} , Cu^{2+} i Zn^{2+} i toksične metalne oblike Hg^{2+} , CH_3Hg^+ , Pb^{2+} i Cd^{2+} koji su meke kiseline. Ovi joni i jedinjenja sa neophodnim proteinima i enzimskim metalima Fe^{2+} , Cu^{2+} , Ni^{2+} i Zn^{2+} , koji su granično meki, stvaraju jake veze. Ligandi na površini organizama su uglavnom sumporove, azotove i kiseonične elektron donorske grupe, kao i rastvorne baze HCO_3^- , HPO_4^{2-} i OH^- (Langmuir i dr., 2005).

Kiseli metali, Ca^{2+} , Mg^{2+} i Na^+ čije su koncentracije u većini voda su za otprilike 10^3 puta veće od mikro-elemenata se takmiče sa npr., Zn^{2+} i Cd^{2+} za površinska mesta vezivanja. Međutim ukoliko je organska supstanca odgovorna za adsorpciju metala, Cu^{2+} je najjače vezan, bezobzira na koncentraciju makro-elemenata (Langmuir i dr., 2005).

Najveći konkurent elementima za adsorpciju na baznih, površinskim funkcionalnim mestima jeste proton. On ih može zameniti već na pH 6.

2.4.2. Sorpcija elemenata

Interakcije između čestica i elemenata igraju značajnu ulogu u regulisanju koncentracije rastvornih elemenata (odnosno biodostupnosti). Adsorpcija je prvi korak u procesu uklanjanja elemenata iz hidrogeoloških ciklusa. Promene u životnoj sredini, kao na primer promene pH (kisele kiše), povećanje koncentracije hlorida (u estuarima) ili kompleksirajućih agenasa utiču na adsorpciono/desoprcione procese (Relić, 2006).

Sorpcije različitih oblika (adsorpcija, hemisorpcija i/ili jonska izmena), se dešavaju na granici između vodene i čvrste faze, odnosno zemljišta i sedimenata. Fizička adsorpcija na površini čestica je zanovana na Van der Valsovim (Van der Waals) silama, relativno slabim jon-dipol ili dipol-dipol interakcijama. Dodatne reakcije se javljaju sa fizičkom sorpcijom na unutrašnjoj površini ili u porama čestica. Hemijska adsorpcija je okarakterisana formiranjem hemijskih veza između jona ili molekula iz rastvora i površine čestica (Förstner, 1985).

Tipična adsoprcija elemenata raste od 0% do 100% kada se pH poveća za 1-2 pH jedinice. Ovo znači da malo pomeranje pH vrednosti u površinskim vodama utiče na povećanje ili smanjenje rastvorne koncentracije elemenata. Početak adsorpcije je karakterističan za svaki element, pod normalnim uslovima kod površinskih voda (pri istim koncentracijama adsorbovane supstance i adsorbensa) Pb i Cu se snažnije vezuju za površinu hidrooksida, nego Zn i Cd (Förstner, 1985).

Čvrsta faza koja interaguje sa rastvorenim elementima u prirodnim vodama, je sastavljena od različitih konstituenata: minerala glina, karbonata, kvarca, feldspata i čvrste organske supstance. Ovi konstituenti su najčešće »obmotani« hidrooksidima Mn i Fe i organskim supstancama (Förstner, 1985). Hidrooksidi Fe i Mn mogu biti prisutni u amorfnom, mikrokristalnom i kristalnom obliku. Kao takvi mogu biti zasebne faze ili slojevi koji »obmotavaju« ostale konstituente čvrste faze. Hidrooksidi Fe/Mn su prisutni u svim delovima hidrogeološkog ciklusa (Förstner, 1985).

Organska supstanca koja učestvuje u sorpciji elemenata nastaje na sledeći način (Davis, 1980; Davis i Gloor, 1981):

- 1. Raspadanjem organizama, kao što su bakterije i alge;
- Razgradnjom biljnog i životinjskog materijala i kondenzacijom dobijenih niskomolekulskih organskih jedinjenja, nastaje materijal koji bi trebalo da ima veću molekulsku masu i da sadrži osobine polielektrolita i koloida;
- 3. Sorbovanjem nisko-molekularnih organskih jedinjenja na gline i okside.

Iako razlike između ova tri površinska tipa organske supstance nisu dobro definisane u odnosu na »vezivanje« elemenata, postoji saglasnost da je jedan od načina vezivanja elemenata peptidno vezivanje. Mnogi podaci sugerišu da jedan deo organske materije, koji je adsorbovan na česticama u prirodnim vodama, sadrži karboksilne i fenolne funkcionalne grupe, preko kojih vezuje elemente. Veći deo rastvorne organske supstance ima strukturu sličnu fulvo kiselinama. Adsorpcioni kapacitet organske materije u vezivanju elemenata se nalazi između adsorpcionog kapaciteta metalnih oksida i glina (Förstner, 1985).

Sorpcija elemenata na sedimenima je komplikovanija ukoliko su u rastvoru prisutni različiti organski i neorganski ligandi, tako da se različite komponente u sedimentu takmiče u kompleksiranju elemenata. U zavisnosti od prisutnog kompeticijskog liganda, dve situacije mogu da se jave (Davis i Leckie, 1978):

- Kompleksirajući ligand, na primer hlorid, koji nije adsorbovan na komponente sedimenta, se takmiči sa površinom adsorbensa radi kompleksiranja jona elemenata. Povećanje koncentracije liganda utiče na smanjenje adsorpcije;
- 2. Kompleksirajući ligand je adsorbovan na površini. U ovom slučaju adsorpcija elemenata je značajnije povećana (Relić, 2006).

2.5. Selektivne ekstrakcione metode

Selektivne ekstrakcione metode se koriste radi razaranja komponenata zemljišta i oslobađanja elemenata vezanih za njih. Prilikom ekstrakcije dolazi do ekstrahovanja elemenata sa izmenjivih mesta na površini čvrste supstance, ili elemenata vezanih ili asociranih sa Fe ili Mn hidrooksidima, ili sa organskom materijom. Većina poznatih ekstrakcija su manje selektivne nego što je poželjno. Rastvarači se mogu klasifikovati u odnosu na odgovarajuću komponentu u zemljištu koju rastvaraju ili u odnosu na raskidanje odgovarajuće veze ostvarene između elementa i komponente zemljišta.

Izmenjivi, nespecifično sorbovani elementi se mogu desorbovati istiskivanjem katjonima K^+, Ca^{2+}, Mg^{2+} ili NH_4^+ . Neutralne soli imaju prednost zato što ne utiču na promenu pH kao ni na rastvaranje slikatne i hidrookside faze. Amonijumove soli jakih

kiselina, kao npr. NH_4Cl ili NH_4NO_3 mogu da snize pH i da potpomognu hidrolizu glina. Soli slabih kiselina, kao npr. CH_3COONa , utiču na povećanje pH i samim tim na povećanje mogućnosti taloženja metalnih hidroksida ili kompleksiranje elemenata acetatnim anjonom. Kompleksiranje acetatnim anjonom onemogućava i resorpciju elemenata u rastvoru koji su u predhodnom koraku desorbovani. $CH_3COONH_4(1 \text{ mol/l}, pH 7)$ je u velikom broju slučajeva prihvaćen kao ekstrakciono sredstvo i preporučuje se od strane evropskih eksperata za ispitivanje jonoizmenjivih elemenata pod pokroviteljstvom biroa za referentni materijal (*Bureau Communautaire de Reference*, BCR) (Ure i Davidson, 2002b).

Specifično sorbovani elementi, elementi vezani kovaletnim vezama, ne mogu se lako zameniti sa makro katjonima kao što su K^+ ili Ca^{2+} , već zahtevaju H^+ jon ili »meke« katjone kao što je Cu^+ (Ure i Davidson, 2002b).

Razlaganje huminskih supstanci u zemljištu jakim bazama nije poželjno za specijaciju elemenata u tragovima, pošto bi se mnogi metali staložili na većim pH. Najčešće korišćena procedura jeste oksidacija organske materije sa H_2O_2 i naknadna ekstrakcija sa CH_3COONH_4 radi sprečavanja resorpcije ili taloženja desorbovanih elemenata. Nastali $C_2O_2^{-2}$ tokom oksidacije sa H_2O_2 može da »napadne« Fe i Mn hidrookside i da dovede do desorbovanja elemenata sorbovanih na glinama. Oksidacija baznim *NaClO* je preporučena iako frakcija organski vezanih elemenata različita u različitim slojevima zemljišta. Nijedna od ove dve oksidativne metode kompletno ne razara svu organsku materiju (Ure i Davidson, 2002b).

Samo drastična oksidaciona procedura koja uključuje jake kiseline kao što su $HNO_3, HClO_4$ ili smeša obe kiseline, može da utiče na potpunu destrukciju organske materije. Ovakva smeša nije ograničena samo na organski sorbovane elemente. Alternativni pristup jeste korišćenje $Na_4P_2O_7$ ili $K_4P_2O_7$ (0,1 mol/l na pH 10) koji disperguju koloidnu organsku materiju kompleksiranjem flokulacionih katjona Ca^{2+} , Al^{3+} ili Fe^{3+} . Kompleksirajući reagensi kao što su EDTA ili DTPA mogu, zavisno od njihove moći kompleksiranja, da zamene elemente iz nerastvornih organskih ili organometalnih

kompleksa i da kompleksiraju elemente sorbovane na neorganskim komponentama (Ure i Davidson, 2002b).

Najviše zastupljen reagens za ekstrakciju elemenata iz karbonatne faze je 1 M CH_3COONa zakišeljen do pH 5 sa CH_3COOH (Ure i Davidson, 2002b). Samo prisustvo CH_3COOH utiče na desorbovanje elemenata koji su sorbovani na neorganskim i organskim komponentama u zemljištu (Tessier i dr., 1979).

Amorfni hirooksidi Fe i Mn jako sorbuju elemente u tragovima, na početku u izmenjivom obliku, dok se vremenom transformišu u manje mobilne, specifično adsorbovane oblike. Zakišeljeni 0,1 M $NH_2OH \cdot HCl$ razara pretežno amorfne hidrookside Mn, dok veoma malo utiče na okside Fe (Ure i Davidson, 2002b).

Natrijum ditionat $Na_2S_2O_4$ u kombinaciji sa $Na_3C_6H_5O_7$ (natrijum citratom) i $NaHCO_3$ različitih koncentracija i sa pH opsegom od 5,8 do 7,3, se koriste radi redukcije kristalnih i amorfnih oksida Fe, i oslobađanja sorbovanih elemenata. Ova smeša natrijumovih jedinjenja se pokazala kao neodgovarajuća zbog kontaminacije ditionata sa Zn i mogućnosti taloženja metalnih sulfida (Ure i Davidson, 2002b).

Kiseli $(NH_4)_2 C_2 O_4$ (pH 3) Tamov (*Tamm*) reagens se koristi za razaranje oksida Fe i Al i desorbovanje elemenata, još od 1922. Godine (Ure i Davidson, 2002b). McLaren i dr., (1986) su koristili 0,17 M $(NH_4)_2 C_2 O_4 + 0,1$ M $H_2 C_2 O_4$. Smeša oksalata je osetljiva na svetlost (Ure i Davidson, 2002b) i ultraljubičaste zrake (Ure i Davidson, 2002b). Prilikom ekstrakcije sa oksalatima elementi u tragovima se desorbuju sa hidrooksida Fe i Al, osim Pb i Cd čiji su oksalatni oblici malo rastvorni i koji koprecipituju sa CaC_2O_4 . Korišćenje $H_2C_2O_4$ na nižim pH (<2,5) poboljšava osobine samo u odnosu na kiseli $(NH_4)_2C_2O_4$, tako da se Cd ne taloži u vidu teško rastvornog CdC_2O_4 , dok se Pb taloži (Sahuquillo i dr., 1999; Relić, 2006).

Digestija sa jakim kiselinama kao što su HNO_3 , HCl ili sa njihovom smešom (digestija sa carskom vodom), ne razara silikatni matriks i može da dâ maksimalnu količinu elementa koja je potencijalno mobilna sa promenom uslova u okruženju. Ovi reagensi ne

mobilišu elemente iz geoloških, silikatnih materijala, već razlažu nesilikatna jedinjenja. Termini kao što su pseudo ukupna analiza i pseudo ukupni sadržaj elemenata koriste se za objašnjenje rezultata dobijenih nakon digestije sa jakim kiselinama.

Digestija sa carskom vodom se koristi kao referentna procedura u pripremanju sertifikovanog referetnog uzorka zemljišta i sedimenata u birou za referentni materijal (*Bureau Communautaire de Reference*, BCR) (ISO, 1983; Ure i Davidson, 2002b).

2.5.1. Pregled jedne i sekvencijalne ekstrakcione procedure

Procedure jedne i sekvencijalne ekstrakcije se naširoko primenjuju za ispitivanje zemljišta, sedimenata, otpada, letećeg pepela i čestica iz vazduha. Odgovarajuće procedure nam daju informacije o mobilnosti i dostupnosti metala i drugih elemenata. Mobilnosti i dostupnost elemenata zavisi od reaktivnosti samih elemenata kao i od jačine hemijskih veza između elemenata i supstrata. Ti se podaci ne mogu dobiti određivanjem samo ukupne koncentracije. Jedno ekstrakciono sredstvo (najčešće ligand, razblažena kiselina ili so) se koristi u tretiranju tačno određenog dela uzorka. Mnogo detaljniji prikaz elemenata se dobija korišćenjem sekvencijalne ekstrakcije. Reagensi koji se primenjuju hemijski se razlikuju, od najslabijeg do najjačeg, i elementi se oslobađaju na osnovu različitih mehanizama, npr. Zakišeljavanjem ili kompleksiranjem. Sekvencijalna ekstrakcija je metoda gde se tretiranjem uzoraka zemljišta ili sedimenata, serijom ekstrakcionih sredstava kvantifikuje sadržaj elemenata u različitim frakcijama uzorka. Reagensi koji se koriste u ovoj ekstrakcionoj metodi su slični onima korišćenim u metodi jedne ekstrakcije, gde dolazi do oslobađanja elemenata vezanih za odgovarajuće komponente uzorka. Najosnovnija prednost sekvencijalne nad metodom jedne ekstrakcije jeste u tome što poboljšava specifičnost faze. To je zbog toga što je svaki reagens drugačije hemijske prirode (npr. razblažena kiselina, redukujući ili oksidujući agens) i svaki naredni reagens je ekstrakciono jači od predhodnog. Postupak sekvencijalne ekstrakcije vremenski je zahtevniji, nego procedura jedne ekstrakcije, ali nam daje podatke o sadržaju elemenata podeljenom na različite frakcije (Bacon i Davidson, 2008; Abollimo i dr., 2011).

Rezultati dobijeni ekstrakcijom daju tačne i korisne podatke ukoliko su eksperimenti tačno isplanirani, precizno izvršeni i na korektan način interpretirani. Primenom sekvencijalne ekstrakcione procedure dobija se velika baza podataka pogotovo ukoliko se iskombinuju podaci sa multielmentarnim analitičkim tehnikama.

Od 1970-tih godina sekvencijalna ekstrakciona šema se koristila u mnogim laboratorijama radi dobijanja informacija o mobilnosti metala iz zagađenih sedimenata (Salomons i Förstner, 1980; Pickering, 1986; López-Sánchez i dr., 1998). Empirijski karakter ekstrakcija je doveo do nastanka velikog broja različitih sekvencijalnih šema. Sve se one zasnivaju na istoj strategiji, da se rastvori koliko je selektivnije moguće frakcija elementa asocirana na poznatim supstratima. U tim šemama su korišćena razna ekstrakciona sredstva, pa je zbog toga raspodela elemenata dobijena upotrebom raznih šema, bila neuporediva. Najpopularnija sekvencijalna procedura je Tesijerova (Tessier) i BCR šema. Tesijerova procedura predviđa deljenje elemenata na pet definisanih frakcija: izmenjiva, vezana za karbonate i specifično sorbovana; vezana za okside gvožđa i mangana; vezana za organsku supstancu i sulfide; ostatak (Tessier i dr., 1979). Kao i kod ostalih sekvencijalnih ekstrakcionih šema dolazi do opadanja dostupnosti elemenata tokom ekstrakcije, tako je prva faza najlabilnija i biljci dostupna, a peta faza predstavlja elemente najmanje mobilnosti koji se pri prirodnim uslovima ne mogu mobilisati u normalnom vremenskom periodu. Ta količina elemenata se dobija ekstrakciom pomoću jakih kiselina (nrp. Aqua regia). Ukupan sadržaj metala se dobija nakon ukupne mineralizacije uzorka, prikazano u Tesijerovoj šemi, korišćenjem HClO₄ i HF.

Raznolikost ekstrakcionih šema je dovelo do razvijanja procedure koja bi omogućila uporedivost dobijenih rezultata. 1987. Godine biro za referentni materijal pri evropskoj komisiji (*Bureau Communautaire de Reference, BCR,* sada *Standard, Measurements and Testing Programme of the European Commission*) napravio je program koji harmonizuje jednu i sekvencijalnu ekstrakciju za zemljišta i sedimente. Razvoj programa je razmatran na konferenciji koju je biro za referentni materijal organizovao 1992. Godine na kojoj su 40 reprezentativnih laboratorija prihvatile sekvencijalnu ekstrakciju u tri koraka, radi frakcionisanja elemenata u sedimentima. Procedura je definisana i napisana, i nekoliko međulaboratorijskih isptivanja je rađeno radi validacije metode. Na kraju, referentni

materijal za sedimente, CRM 601 je napravljen i sertifikovan (Quevauviller i dr., 1997; López-Sánchez i dr., 1998). Postupak sertifikovanja je završen u januaru 1995. Godine (López-Sánchez i dr., 1998). Pošto se za neke elemente dobila veća disperzija rezultata, za te elemente u nekim frakcijama su navedene samo indikativne vrednosti.

2.5.1.1. Jedna ekstrakciona procedura

Najznačajnija ekstrakciona sredstva koja se koriste u jednoj ekstrakcionoj proceduri mogu se po hemijskim osobinama klasifikovati na:

- ligande: uglavnom dietilentriaminpentasirćentna (DTPA) i etilendiamintetrasirćetna kiselina (EDTA). Ovi reagensi se koriste kada se želi odrediti frakcija metala koja je dostupna biljkama (Adamo i dr., 2003; Cappuyns i Swennen, 2007; Manouchehri i dr., 2006). Biro za referentni materijal (BCR) razvio je i validirao protokol jedne ekstrakcije sa 0,05 M rastvorom amonijačne soli EDTA, u trajanju od 1 sata mućkanja na rotacionoj mućkalici, na sobnoj temepraturi (Quevauviller, 1998);
- nepuferske soli, znane i kao "mekani" reagensi, kao što su: CH₃COONH₄, CaCl₂, NaNO₃ i BaCl₂. BCR peporučuje upotrebu 0,01 M CaCl₂ mućkanjem u trajanju od 3 sata (Gleyzes i dr., 2002). Navedeno je da je ovaj reagens mnogo pogodniji nego agresivniji reagensi kao što su helatni ligandi i kiseline da bi se odredila biljki dostupna frakcija elemenata, pa je upotreba nepuferskih soli povećana u poslednjih 10 godina (Aten i Gupta, 1996; Pueyo i dr., 2004; Pérez-de-Mora i dr., 2006);
- razblažene mineralne kiseline, kao što je: 0,05 M HCl, ili organske kiseline malih molekulskih masa, kao što su: jabučna i limunska kiselina koje se u metabolizmu biljaka izbace putem korenja kao metabolički proizvod. Pretpostavlja se da se sa ekstrakcijom simuliraju prirodni procesi (Ahumada i dr., 2004; Kubová i dr., 2004; Chojnacka i dr., 2005). Neki istaživači određuju potencijalnu mobilnost elemenata pomoću metode TCLP (*Toxicity Characteristic Leaching Procedure*) koja se koristi za određivanje toksičnosti otpada (Abollimo i dr., 2011). Ova metoda predviđa korišćenje jedne ekstrakcije sa razblaženom kiselinom i *NaOH* (Xenidis i dr., 2001). Kiseline jačih koncentracija, npr. 6 M HCl se takođe koriste radi

određivanja mobilne frakcije elemenata (Abollimo i dr., 2011) ali ova procedura nije toliko česta.

2.5.1.2. Sekvencijalna ekstrakcija

U BCR sekvencijalnoj ekstrakciji postoje tri frakcije: izmenjiva, vodeno i kiselo rastvorna; reducibilna; oksidaciona; a kao četvrti korak se preporučuje digestija (*aqua regia*) tj. pseudo ukupni sadržaj elemenata (tabela 10) (Rauret i dr., 1999; Mossop i Davidson, 2003; Sahuquillo i dr., 2003; Sutherland i Track, 2003; Kubová i dr., 2004; Davidson i dr., 2006; Bacon i Davidson, 2008; Dalmacija, 2010; Krčmar, 2010).

Tabela 10. Ekstrakcioni koraci i reagenski kao i frakcije koje se rastvaraju u BCR sekvencijalnoj ekstrakcionoj šemi (Dalmacija, 2010; Krčmar, 2010)

Ekstrakcioni korak	Ekstrakciono sredstvo	Frakcija
1	0,11 mol/l <i>CH</i> ₃ <i>COOH</i>	Izmenjiva, vodorastvorna i
		kiselorastvorna faza –
		frakcija vezana za karbonate
2	$0,1 \text{ mol/l } NH_2OH \cdot HCl$	Fe-Mn hidroksidna/oksidna
pH 2		
3	8,8 mol/l <i>H</i> ₂ <i>O</i> ₂ , 1 mol/l	Organska materija / sulfidna
	CH ₃ COONH ₄	
Rezidualna frakcija npr. c	arska voda i /ili carska voda sa	Rezidualna i/ili silikatna
	HF	

Tokom vremena primena BCR sekvencijalne ekstrakcije se povećavala zbog njenih prednosti nad ostalim sekvencijalnim tehnikama. Ona je vremenski manje zahtevna i jednostavnija nego Tesijerova procedura, omogućava međulaboratorijsko upoređivanje, postoji sertifikovani referentni materijal pa je moguće ustanoviti preciznost i tačnost analize, i izvršiti validaciju analitičke procedure.

Za određivanje mobilne frakcije elemenata često se modifikuje ova procedura pri čemu se kao ekstraktanti u prvom koraku mogu koristiti:

- voda ili razblaženi rastvori soli (jonska snaga <0,01 mol/l),
- neutralni rastvori soli bez pH puferskog kapaciteta (na primer $MgCl_2$),

- rastvori soli sa pH puferskim kapacitetom (na primer CH₃COONH₄),
- organski kompleksirajući agensi (na primer etilendiamintetrasirćetna kiselina EDTA).

U poslednje vreme originalni protokol sekvencijalne ekstrakcione procedure je modifikovan u drugom koraku, zbog snažnog uticaja pH, koji može dovesti do nedovoljno reprodukovanih uslova. Modifikacija se bazira na sniženju pH vrednosti sa 2,0 na 1,5 i na koncentracije redukujućeg agensa (hidroksilamin-hidrohlorida). povećanju Ova modifikacija se pokazala posebno pogodnom za Cr, Cu i Pb (Sahuquillo i dr., 2003; Dalmacija, 2010; Krčmar, 2010). Praćenjem procesa ekstrakcije u uzorcima sedimenata utvrđeno je da sirćetna kiselina (CH_3COOH) oslobađa metale asocirane na karbonatima, kaolinitu, kalijum-feldspatu i ferihidritu. Hidroksilamin-hidrohlorid ekstrahuje metale sa montmorionita i mangan-oksida kao i nikal iz huminskih kiselina. Oksidi gvožđa se u većini ekstrahuju sa sirćetnom kiselinom. Cink asociran sa huminskim kiselinama se raspoređuje između ova dva reaktanta. Treći ekstraktant za koji se očekuje da oslobađa metale sa organskog i sulfidnog materijala, ekstrahuje značajno jedino Cu sa huminskih kiselina (Dalmacija, 2010; Krčmar, 2010).

Za određivanje rezidualne frakcije nakon BCR ekstrakcione procedure, preporučuje se digestija carskom vodom (HNO_3 : HCl=1:3) koja služi za poređenje sa digestijom originalnog materijala (uzorka) carskom vodom. Ova procedura se pokazala efikasnom: Cd, Cr, Cu, Ni, Pb i Zn (Dalmacija, 2010; Krčmar, 2010).

2.5.1.3. Brze tehnike ekstrakcija u sekvencijalnoj ekstrakciji

U skorije vreme se velika pažnja daje razvijanju tehnika ekstrahovanja. Najčešći način ekstrahovanja ispitivanih uzoraka zemljišta i sedimenata sa odgovarajućim ekstrakcionim sredstvom jeste mućkanje na rotacionoj mućkalici u trajanju od 16 sati. U poslednje vreme se razvijaju i metode koje značajnije smanjuju vreme ekstrahovanja, i to pomoću ultrazvučnih kupatila i sondi, kao i mikrotalasnih pećnica.

2.5.1.3.1. Ultrazvučna ekstrakcija

Ekstrakcija se može olakšati pomoću različitih izvora energije u cilju poboljša efikasnosti i smanjenja vremena ekstrakcije (Bryce i dr., 1995). Selektivno rastvaranje jedinjenja se može postići pomoću ultrazvuka. Upotreba ultrazvuka kao pomoćnog izvora energije je jedan od načina povećanja efikasnosti ekstrakcije. Izvor visoko-energetske vibracije u ultrazvučnim pomagalima je dizajniran da konvertujete bilo mehaničku ili električnu energiju u ultrazvuk. Rasprostiranje ultrazvuka se dešava u analitičkim uređajima u obliku ultrazvučnog kupatila i ultrazvučne sonde (Luque de Castro i Priego-Capote, 2007; Mesko i dr., 2011). Uticaj ultrazvuka se pre svega odnosi na fenomen kavitacije, koji obuhvata proizvodnju, rast i pucanje mehurića pare tokom primene ultrazvuka (Luque de Castro i Priego-Capote, 2007; Suslick i Flannigan, 2008; Mesko i dr., 2011). Kavitacija je pojava nastajanja delimičnog vakuuma u tečnosti usled brzog kretanja zvučnih talasa velikog intenziteta. Zbog velikih brzina na nekim mestima dolazi do vrlo niskog pritiska u tečnosti. Ako je ovaj (statički) pritisak niži od napona pare tečnosti, dolazi do ključanja. Nastali mehurovi pare, pomešani fluidom brzo uleću u područje višeg pritiska gde se naglo kondenzuju. Nastale kapi tečnosti velikom brzinom udaraju u površinu. Visoke temperature dovode do povećanja rastvorljivosti jedinjenja. Povećanje pritiska omogućuje prodiranje ekstrakta u uzorak. Pored toga, oksidativna energija radikala, stvorenih u toku kavitacije od strane rastvrača, može povećati efikasnost ekstrakcije (Suslick i Flannigan, 2008; Mesko i dr., 2011). Neki efekti mogu biti uključeni u postupak ekstrakcije uz pomoć ultrazvuka kao što su: (a) sudaranjem nastalih mehurića i površine čvrstih čestica pri čemu dolazi do ljušćenja površine i povećanja dodirne površine, (b) ultrazvučna energija olakšava difuziju analita od unutrašnje do spoljašnje zone. Ipak, postupci ekstrakcije uz pomoć ultrazvučne energije mogu dovesti do nekih neželjenih efekata i u tom smislu, optimizacija se mora izvršiti u cilju izbegavanja gubitaka analita i degradacije uzorka (Luque de Castro i Priego-Capote, 2007; Mesko i dr., 2011).

Ultrazvučni talasi se mogu smatrati kao alternativni način za tretman čvrstih uzoraka. Upotreba ultrazvučnih talasa ubrzava različite ekstrakcione tehnike jer efekat kavitacije prouzrokovan ultrazvučnim talasima može smanjiti veličinu čestice čime se
dobijaju nove dodirne površine koje se izlažu ekstrakcionom sredstvu, jer ultrazvučni talasi omogućavaju i agresivnije mešanje rastvora (Mason, 1990; Kazi i dr., 2006; Kazi i dr., 2006b; Jamali i dr., 2007).

2.5.1.3.2. Mikrotalasna ekstrakcija

Upotreba mikrotalasnog zračenja je opisana za različite primene kao što su: sušenje, čišćenje, adsorpcione i desorpcione procese, za ekstrakcije kao i razaranja (Magalhães i dr., 2007; Mesko i dr., 2011; Smith i Arsenault, 1996; Luque-García i Castro, 2003; Mesko i dr., 2010a; Mesko i dr., 2010b; Costa i dr., 2009; Flores i dr., 2007; Mesko i dr., 2011). Jedan od glavnih razloga efikasnosti mikrotalasa se može pripisati molekularnom kretanju zbog migracije jonske vrste i/ili rotacije dipolarnih jedninjenja pod dejstvom mikrotalasnog zračenja (Mesko i dr., 2011). Uzorci ili rastvarači koji sadrže dielektrični materijal (supstance koje imaju indukovani ili stalni dipolarni momenat) mogu da apsorbuju mikrotalasno zračenje i kao posledica toga može doći do brzog i ujednačenog grejanja (Srogi, 2007; Mesko i dr., 2011). Mikrotalasna ekstrakcija je poznata kao efikasan i pogodan način za ekstrakciju labilnih komponenata iz ispitivane matrice. Čestice se ravnomerno zagrevaju pomoću mikrotalasa, a neželjena dejstva koja se mogu desiti na višim temperaturama mogu se izbeći podešavanjem snage, vremenskog izlaganja mikrotalasima i broja ponavljanja ozračivanja. Pokazano je da visoke temperature koje se mogu dobiti pomoću mikrotalasne energije, nisu potrebne kako bi se olakšala brza desorpcija iz matrice (Smith i Arsenault, 1996; Mesko i dr., 2011). Kao rezultat brzog i kontrolisanog zagrevanja, mikrotalasno zračenje kao pomoćni izvor energije, može u velikoj meri ubrzati ekstrakciju u odnosu na procedure sa konvencionalnim zagrevanjem (Nóbrega i dr., 2002; Luque-García i Castro, 2003; Bélanger i Paré, 2006). U osnovi samo uzorci ili rastvori koji imaju dipolarne molekule ili mikrotalasne adsorbente mogu biti izloženi mikrotalasima. Ipak, preliminarni testovi se moraju izvršiti pre ekstrakcije u cilju izbegavanja neželjenog dejstva koje bi moglo dovesti do degradacije uzorka i gubitka nekih jedinjenja zbog prekomernog mikrotalasnog zagrevanja (Chen i dr., 2008; Smith i Arsenault, 1996; Luque-García i Castro, 2003; Mesko i dr., 2011).

Mikrotalasne ekstrakcije se mogu sprovesti u otvorenim i zatvorenim mikrotalasnim sistemima, čak i primenom kuhinjskih mikrotalasnih pećnica. Zatvoreni sudovi omogućavaju regulaciju ekstrakcione temperature pomoću regulacije pritiska u sudovima. Upotreba otvorenih sudova je značajnije primenjena kod Soxhletove ekstrakcije (Luque-García i Castro, 2004; Chen i dr., 2008).

2.5.1.4. Kod procene rizika

Na osnovu rezultata sekvencijalne ekstrakcione procedure se može uraditi i procena rizika – računanjem takozvanog koda procene rizika (KPR) odnosno procenta elemenata koji se nalazi u izmenjivoj, odnosno karbonatnoj frakciji (Jain, 2004; Dalmacija, 2010; Krčmar, 2010). Smatra se da je sediment koji u izmenjivoj i karbonatnoj frakciji, sadrži manje od 1% od ukupne ekstrahovane koncentracije nekog elementa, je nezagađujući za okolinu, odnosno nema rizika po okolinu (tabela 11). Sediment kod kojeg se iz iste frakcije oslobađa na primer 50% jonoizmenjivog i/ili karbonatno vezanog elementa smatra se visoko opasnim po okolinu i može se lako uključiti u lanac ishrane (Jain, 2004; Dalmacija, 2010; Krčmar, 2010).

Za razliku od sadržaja ukupnih ili pseudo ukupnih sadržaja elemenata koji ne pružaju jasnu sliku o mogućem poreklu, niti o načinu njihovog vezivanja za sediment, na osnovu rezultata sekvencijalne ekstrakcione procedure može se izvršiti ovakva procena. Smatra se da su elementi u adsorptivnoj, izmenjivoj i karbonatnoj fazi, slabije vezani, lakše i brže biodostupni, i da su uglavnom antropogenog porekla. Elementi u inertnoj, rezidualnoj frakciji ukazuju na prirodno poreklo (Jain, 2004; Dalmacija, 2010; Krčmar, 2010).

Tabela 11. Procena rizika na osnovu procenta metala u izmenjivoj i karbonatnoj frakciji sedimentala u odnosu na ukupnu koncentraciju metala u sedimentu (Jain, 2004)

Procena rizika	Kriterijum %
Nema	<1
Nizak	1-10
Srednji	11-30
Povišen	31-50
Visok	> 50

U poslednje vreme posebna pažnja se poklanja sekvencionalnoj ekstrakcionoj proceduri, ne samo radi definisanja frakcija za koje su metali vezani, nego i za rešavanje drugih problema. Krčmar (2010) je primenio sekvencijalnu ekstrakciju da bi dobio uvid o mogućnosti primene glinene barijere za zadržavanje kontaminanata na deponiji. Smatra se da su izmenjiva, karbonatna i redukujuća frakcija podložne tehnikama ispiranja zemljišta (Krčmar, 2010).

2.6. Sertifikovani referentni materijal

Postoji veliko interesovanje za sertifikovane materijale koji bi se primenjivali u laboratorijskim istraživanjima uzoraka vezanih za procese u hemiji životne sredine. Ipak, korisnost samog sertifikovanog referentnog materijala (SRM) u validaciji analitičke procedure zavisi od toga kako je sam materijal napravljen. Ukoliko je materijal napravljen radi sertifikovanja ukupnog i pseudo ukupnog sadržaja elemenata, utoliko je jednostavnije dobijanje specifičnih preporučenih vrednosti i odgovarajuće nesigurnosti. Određene poteškoće se javljaju kada se odgovarajuće frakcije izoluju iz uzorka pomoću, na neki način, definisanih procedura. Male varijacije u samom postupku izolovanja mogu dovesti do neslaganja pa je samim tim neophodno da se analitička metoda detaljno opiše uz rigorozno poštovanje iste (Sahuquillo i dr., 1999).

Ekstraktabilni sadržaj elemenata u zemljištima se najčešće određuje pomoću jedne ekstrakcije, dok je procedura sekvencijalne ekstrakcije primenjiva na uzorcima sedimenata. Greške koje prilikom korišćenja sekvencijalne ekstrakcije mogu lako nastati odražavaju se na dobijenu preciznost i tačnost (Sahuquillo i dr., 1999). Preciznost predstavlja relativnu standardnu devijaciju (RSD) koja se izračunava kao procenat odnosa standardne devijacije sa srednjom vrednosti ponavljanja. Tačnost se dobija deljenem dobijene vrednosti sa sertifikovanom, i izražava se kao procenat. Zadovoljavajuća preciznost je ona koja je \leq 20%, a tačnost kada je u opsegu od 80 do 120% u odnosu na sertifikovanu vrednost koncentracije i odgovara 95% nivou značajnosti (Chen i Ma, 2001).

2.7. Hemometrijski pristup obrade rezultata

Hemometrijske metode mogu biti značajni pomagači u pojašnjenju dobijenih rezultata, odnosno koncentracija elemenata jedne ekstrakcione procedure i sekvencijalne ekstrakcije za: razvoj i optimizaciju uslova ekstrakcije; izračunavanje frakcija elemenata; vizuelnu ilustraciju eksperimentalnih rezultata; prikupljanja informacija iz različitih područja; vezu između varijabli; određivanje sličnosti i različitosti između uzoraka; identifikaciju izvora zagađenja; modela; rizika i predviđanja za buduće događaje (Abollimo i dr, 2011). Hemometrija se primenjuje kada se radi sa kompleksnim sistemima, kao npr. Zemljištem i sedimentima, jer nam primena multivarijantnih tehnika omogućava razmatranje više varijabli istovremeno.

Različiti pristupi primeni hemometrije u statističkoj obradi rezultata dobijenih sekvencijalnom ekstrakciom postoje, zbog:

- a) interpertacije eksperimentalnih rezultata, da bi se pojasnile osobine ispitivanog sistema ili procene rizika;
- b) testiranja samih hemometrijskih tehnika gde se podaci koriste kao srednje vrednosti;
- c) razdvajanja elemenata na komponente zemljišta ili sedimenta;
- d) optimizacije eksperimentalnih uslova sekvencijalne ekstrakcije kao i efikasnosti ekstrakcije, u ređim slučajevima (Abollimo i dr., 2011).

2.7.1. Jedno- i dvo-varijantne hemometrijske tehnike

Hemometrija obuhvata ne samo multivarijantne tehnike, nego i dvo-varijantne i jedno-varijantne statističke metode. Računjanje srednje vrednosti koncentracija i standardnih devijacija je preduslov bilo koje diskusije i interperetacije rezultata. Prvi test koji se radi pre multivarijantnih tehnika jeste, Kolgomorov-Smirnovljev test (Relić i dr., 2005; Relić i dr., 2010; Relić i dr., 2011a; Relić i dr., 2011b) radi provere normalne distribucije. *Log*₁₀ ili *ln* transformacija se često izvode kada rezultati odstupaju od normalne distribucije.

2.7.1.1. Analiza varijansi

Analiza varijansi (ANOVA) se koristi radi određivanja sistemskih razlika između grupa podataka koji se razlikuju u vrednosti jednoga ili više parametara. ANOVA je skraćenica od engleskog naziva "Analysis Of Variance". Parametri mogu biti uslovi izvođenja eksperimenata (temperatura, pH, tehnika ekstrahovanja, laboratorija, vreme uzorkovanja, uticaj saobraćaja, zagađenje) (Abollimo i dr., 2011). Jednosmerna analiza varijanse za nezavisne vrednosti se koristi u onim situacijama kada se ispituju i upoređuje više od dve grupe proba, odnosno više od dva seta merenja. U principu broj grupa i/ili setova merenja može biti prilično veliki. Za svaku grupu (set) rezultata koji su međusobno nezavisni (nijedan rezultat iz jedne grupe nije u funkcionalnoj zavisnosti od rezultata iz druge) potrebno je odrediti sve opisne statističke parametre među kojima je najvažnija standardna devijacija (s) urađena na bazi t-raspodele. Ukupna varijansa podataka (izračunata kao zbir drugog korena devijacije podataka) razdvojena je na dva doprinosa, na grupni i međugrupni. Ovakvi doprinosi se upoređuju F-testom i ako je značajnost pronađena, može se zaključiti da faktor ima značajan efekat na podatke (Gržetić, pdf). U suštini F test je parametar koji opisuje odnos srednjih kvadrata između grupa i unutar grupe i koji otkriva odnos varijanse među grupama i varijanse u grupama. ANOVA je veoma značajna u objašnjavanju razlika između različitih ekstrakcionih koraka, ili između samih uzoraka, ili elemenata. Može se iskoristiti da bi se ispitali uslovi u životnoj sredini koji dovode do razlika u podacima, npr. Prisustvo prostorne ili vremenske varijacije.

2.7.1.2. Korelaciona analiza

Korelaciona analiza je dvo-varijantna tehnika koja nam ukazuje na stepen asocijacije između dve promenjive (Abollimo i dr., 2011). Jačina asocijacije je najčešće prikazana kao Pirsonov (*Pearson*) korelacioni koeficijent (*r*):

$$r(x_{1,}x_{2}) = \frac{cov(x_{1,}x_{2})}{s_{x1}s_{x2}}$$
(3)

gde je

 $cov(x_1, x_2) = \frac{\sum (x_1 - \bar{x}_1)(x_2 - \bar{x}_2)}{n-1}$ (kovarijansa), $n = broj podataka i s_x = \frac{\sum (x_i - \bar{x})^2}{n-1}$ (standardna devijacija).

Ukoliko podaci ne ulaze u normalnu distribuciju može se koristiti neparametarski Spirmanov (*Spearman*) korelacioni koeficijent:

$$r = 1 - \frac{6\sum d_i^2}{n(n^2 - 1)} \tag{4}$$

gde je n = broj uparenih podataka i $d_i =$ razlika između rangova, koji su dati dvema promenjivima.

Korelacija između dve promenjive ne mora automatski da ukazuje na vezu između njih i značenje te korelacije se mora interpretirati uzimajući u obzir sve podatke o ispitivanom sistemu.

Korelacioni koeficijenti nam pomažu da napravimo hipoteze mogućeg izvora ili hemijsko ponašanje elementa u životnoj sredini.

2.7.1.3. Analiza glavnih komponenata

Analiza glavnih komponenti (AGK *eng. Princial Component Analysis*, *PCA*) je multivarijantna tehnika koja je najčešće korišćena u obradi rezultata dobijenih jednom ektrakcijom ili sekvencijalnom ekstracionom procedurom. AGK je tehnika koja klasifikuje objekte u grupe koje nisu napravljene apriori. Analiza glavnih komponenata je prva i klasična metoda kojom pokušavamo da smanjimo dimenzionalnost tako da konstruišemo promenjive koje su međusobno nezavisne (nisu međusobno u korelaciji), a onda zadržimo samo one koje su "dovoljno informativne". Razvio ju je Hotelling, 1933. Godine (Kujundžić-Tiljak i Ivanović, pdf).

Da bi se samanjio broj promenjivih odnosno dimenzija prostora, potrebno je pronaći kriterijum za odbacivanje "malo informativnih" novih promenjivih odnosno pronaći kriterijum za zadržavanje onih koje nose najveći deo informacija. Postoji niz kriterijuma a neki od njih su:

1. Kajzerov (*Kaiser*) kriterijum prema kojem se uzimaju samo glavne komponente kojima odgovaraju vrednosti veće od 1;

2. uzimaju se samo glavne komponente kojima odgovaraju vrednosti veće od proseka svih vrednosti;

3. uzimaju se samo glavne komponente koje nose, odnosno zadržavaju svaka posebno unapred zadati deo informacija;

4. uzimaju se samo glavne komponente koje nose, odnosno zadržavaju (ukupno kao grupa) unapred zadati deo informacija;

5. broj komponenata se određuje proizvoljno (Kujundžić-Tiljak i Ivanović, pdf).

Nema pravila koje bi diktiralo izbor jednog od navedenih kriterijuma. Jedino čime se treba rukovoditi jeste cilj da broj promenjivih ne bude prevelik i da gubitak informacija iz polazne grupacije bude što manji.

U interpretaciji novodobijenih promenjivih služimo se matricom čiji su elementi linearne korelacije originalnih i novodobijenih promenjivih, ili *faktora* (Kujundžić-Tiljak i Ivanović, pdf). Ona se zasniva na smanjenju promenjivih tokom računanja takozvanih glavnih komponenata (GK, *eng. Principal components, PC*), koji su linearne kombinacije početnih promenjivih. Tako da u prisustvu *m* varijabli ($V_1, V_{2,...}V_m$) biće ukupno GK-a:

 $GK_i = w_{i1}V_1 + w_{i1}V_2 + \dots + w_{im}V_m$ (5)

gde su $w_{i1} \dots w_{im}$ su *loadings*, tj. množioci učešća originalnih varijabli linearnih kombinacija. GK nisu korelisane međusobno i zajedno obašnjavaju ukupnu varijansu podataka. Procenat varijanse opada od prvog do poslednjeg GK-a. Kod GK-a početna baza podataka $X(n \ x \ m)$, gde n redova odogovara n broju uzoraka i m kolone odgovaraju m varijablama, je razložena na dve matrice:

$$X = RW^T$$

(6)

gde je $R(n \times m)$ matrica rezultata i $W^T(m \times m)$ transponovana početna matrica.

Pošto prva GK zadržava najveći udeo varijanse, mapa prve dve ili tri GK-a omogućava nam da sagledamo većinu informacija u ispitivanim podacima. Rotacija GK-a se može uraditi i najčešće po Varimaks (*Varimax*) metodi, povećavajući udeo višeg GK-a i smanjujući udeo nižih, omogućavajući nam lakšu interpretaciju rezultata.

Primenom GK-a dobijmo:

- vizualizaciju multivarijantnih podataka u dve- ili tri-dimenzionalne mape;

- klasifikaciju objekata. Uzorci sa sličnim udelima su bliži na mapi: imaju sličan sastav, pokazuju slične karakteristike, i obrnuto. Uzorak koji se nalazi udaljen od ostalih može da ukazuje na prisustvo zagađenja ili suprotno, čisto područje u zagađenom sistemu, ili analitičku grešku;
- pozitivne i negativne korelacije između varijabli koje ukazuju na zajednički uticaj ili prisutnost neke sličnosti ili suprotnosti u hemijskim osobinama ili na izvor (antropogen ili prirodan). Kada se GK-a upotpuni sa korelacionom analizom to nam omogućava da vizuelizujemo i potvrdimo korelacije između varijabli;
- vezu između objekata i faktora pomoću kombinovane mape koja nam omogućava da identifikujemo uzorke sa visokim ili niskim koncentracijama nekog elementa;
- grupisanje varijabli u faktore, koji predstavljaju neki uticaj na uzorke, npr.
 Antropogeno zagađenje ili prirodne procese, tj. faktore koji se mogu objasniti karakteristikama samih promenjivih;
- uticaj svake promenjive na GK. Promenjive sa velikim učešćem (*loadings*) imaju veliki uticaj na GK i obrnuto.

2.7.1.4. Faktorska analiza

Faktorska analiza (FA) je multivarijantna tehnika kod koje je većina varijacija podataka objašnjena sa nekoliko statističkih nezavisnih linearnih kombinacija početnih promenjivih, poznatih kao faktori. Ova tehnika omogućava smanjenje dimenzionalnosti samog seta podataka u nekoliko faktora (Kumar i Ray, 1998).

Faktorska analiza je ime za mnoštvo procedura razvijenih u svrhe interkorelacija unutar jedne grupe promenjivih i smanjenja dimenzionalnosti prostora. Cilj FA je da se međusobna povezanost većeg broja promenjivih objasni nekim manjim brojem osnovnih ili potencijalnih promenjivih, odnosno dimenzija, ili izvora kovarijacija.

AGK i FA matematičkim postupcima transformišu promenjive koje su verovatno korelisane u manji broj nekorelisanih (AGK) ili korelisanih (FA) promenjivih koje se zovu glavne komponenete ili faktori. Kod AGK pretpostavljamo da ukupna promenjivost od dobijenih komponenata koristi u daljoj analizi, dok kod FA apriori definišemo broj faktora koje ćemo dobiti. Dobijeni faktori predstavljaju ose koje su podeljene u odnosu na varijansu. Cilj AGK jeste izračunavanje ukupne varijanse iz promenjivih ako je moguće, dok je cilj kod FA da se objasne kovarijanse ili korelacije između promenjivih. Takođe AGK se koristi da bi se smanjila baza podataka na manji broj komponenata, dok se FA koristi da bi se razumelo šta čini osnov baze podataka.

Postoje dva tipa faktorske analize: eksploratorna i konfirmatorna faktorska analiza. Eksploratorna faktorska analiza bi trebalo da omogući identifikaciju onoga što u podacima o modelu objektivno postoji. Ona omogućuje da se utvrde temeljni faktori odnosno izvori varijansi i kovarijansi među posmatranim varijablama. Konfirmatorna faktorska analiza pretpostavlja postojanje unapred formulisanog modela, hipoteze ili teorije o strukturi izvora varijansi i kovarijansi među posmatranim varijablama. Ta se hipoteza izražava u obliku ciljne matrice (*target matrix*), a zatim se izvodi testiranje, da li se empirijski podaci slažu s hipotetičkim (Kujundžić-Tiljak i Ivanović, pdf).

Zadaci faktorske anlize su:

a) da se utvrde faktori koji leže u osnovi međusobne povezanosti promenjivih, tj. redukuju dimenzionalnost originalnog prostora, nekim postupkom faktorizacije;

b) da se utvrdi povezanost pojedinih promenjivih s tim faktorima tj. rotacijom faktora postići rešenja (Kujundžić-Tiljak i Ivanović, pdf).

Faktori često nisu definisani tako da se jedna promenjiva javlja samo na jednom faktoru. Naprotiv, događa se da se jedna promenjiva javlja u više faktora. Da bi se to izbeglo nastoji se da dobijeni faktori transformišu (rotacijom pod određenim uslovima), npr. Varimaks rotacija, kako bi se dobila jasnija rešenja. Cilj takvih transformacija jeste dobijanje jednostavne strukture, da faktori budu što nezavisniji, tj. jedan faktor bi trebao da bude određen (ili opisan) jednom grupom promenjivih, drugi drugom itd., i da pritom bude što manje promenjivih koje bi bile zajedničke većem broju faktora (Kujundžić-Tiljak i Ivanović, pdf).

Jedan uslov za transformaciju faktora koji osigurava dobijanje jednostavne strukture za faktorsku matricu je Kajzerov Varimaks kriterijum. To znači da za svaki faktor Varimaks (ortogonalna) rotacija ima za cilj da dâ veliko opterećenje (visoke vrednosti u faktorskoj matrici za promenjive, visoke vrednosti korelacije između faktora i promenjive) malom broju promenjivih. Ostatak opterećenja teži da bude što bliže nuli (Kujundžić-Tiljak i Ivanović, pdf).

Za razliku od Varimaks rotacije i drugih ortogonalnih rotacija postoje i kose rotacije koje napuštaju zahtev da faktorske ose moraju da budu pod pravim uglom tj. ortogonalne. Razlog za tu vrstu rotacija leži u činjenici da se ponekad "klasteri" promenjivih ne mogu prepoznati u ortogonalnoj poziciji (Kujundžić-Tiljak i Ivanović, pdf).

R-mod faktorske analize se bazira na korelacijama između varijabli dok su kod Qmoda uloge uzoraka i promenjivih obrnute. Promenjiva $i(X_i)$ za odgovarajući uzorak *j* može se prikazati korišćenjem Q-moda sledećom jednačinom:

$$X_{i} = \sum_{r=1}^{p} l_{ir} f_{r} + e_{i}$$
⁽⁷⁾

gde je f_r učešće (*loadings*) za r faktor i –tog uzorka, e_i je slučajna varijacija za promenjivu X_i , i koeficijent l_{ir} je udeo (*score*) za element i u faktoru r. Broj faktora (p) se mora promišljeno izabrati. Neki analitičari predlažu da se zadrže oni faktori koji imaju *eigenvaules* veći od 1 (Kumar i Ray, 1998).

2.7.1.5. Klasterska analiza

Osnovna primena klasterske analize (KA) jeste grupisanje uzoraka ili promenjivih (Giacomino i dr., 2011). Klasterska analiza se može podeliti u dve grupe: a) hijerarhijsku, gde su dobijene grupe postepeno povezane (počevši od jednog objekta koji je sukcesivno povezivan u veće grupacije) ili podeljenu (počevši od jednog klastera koji obuhvata sve objekte i deljenjem u manje i homogenije klastere) i b) nehijerarhijsku, kod koje objekti nisu sukcesivno povezani već se klasteri određuju direktno.

Najćešće korišćena jeste hijerarhijska klaster analiza (HKA). Prvi korak u povezivanju objekata u klastere jeste određivanje sličnosti ili različitosti, pri čemu se korelacioni koeficijenti mogu koristiti da bi se izmerila sličnosti ili različitost.

Jedan on načina merenja udaljenosti između dva objekta i i j u HKA jeste Euklidova (*Euclidean*) udaljenost:

$$d_{ij} = \sqrt{\sum_{\nu=1}^{n} (x_{i\nu} - x_{j\nu})^2}$$
(8)

gde je *n* broj varijabli. Korišćenjem vektora, jednačina postaje:

$$d_{ij}^{2} = (x_{i} - x_{j})^{T} (x_{i} - x_{j})$$
(9)

gde su x_i i x_j vektori kolona dva objekta i T je oznaka za transponovanost.

Što je manja Euklidova udaljenost to je veća sličnost između objekata. Euklidova udaljenost se grafički može interpretirati kao dužina vektora počevši od *i* do *j*.

2.8. Cilj rada

Cilj ovog istraživanja je bio određivanje asocijacija elemenata sa supstratima sedimenata i muljeva, kao i da procenimo potencijalnu mobilnost elemenata u uslovima koji vladaju u ispitivanoj sredini, primenom metode standardizovane sekvencijalne ekstrakcije čija se tačnost i preciznost utvrđuje pomoću referentnog materijala. Primenili smo BCR sekvencijalnu ekstrakciju i to pomoću: rotacione mućkalice, ultrazvuka i mikrotalasa. Za proučavanje asocijacija elemenata sa supstratima sedimenata, koristili smo nove pristupe i metode za identifikaciju i diferencijaciju antropogenog uticaja elemenata u površinskim i dubinskim sedimentima sa lokaliteta industrijske zone Pančeva i okoline, kao i u muljevima –otpadnog kanala.

U okviru ove doktorske disertacije su analizirani površinski i dubinski sedimenti (36 uzoraka) uzeti sa lokacije petrohemijske industrije u Pančevu kao i iz njenog okruženja. Pored sedimenata analizirani su i uzorci muljeva (5 uzoraka) uzetih iz otpadnog kanala južne indsutrijske zone kao i uzorak standardizovanog referentnog materijala, BCR 701. U njihovom ispitivanju primenjene su sledeće tehnike i metode:

- elementarna analiza za određivanje sadržaja ugljenika, sumpora, azota i vodonika,
- metoda standardizovane sekvencijalne ekstrakcije za ekstrakciju elemenata iz sedimenta rotacionom mućkalicom, kao i primena brzih tehnika ekstrahovanja: ultrazvukom i mikrotalasima,
- pseudo ukupni i ukupni sadržaj elemenata pomoću standardizovane metode mikrotalasne digestije,

- određivanje sadržaja mikro- i makroelemenata (Al, Ba, Ca, Cd, Co, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, Pb, Si, Sn, Sr, V, Ti, Zn, As, Se i Hg) u ekstraktima metodom induktivno spregnute plazme sa optičkom emisionom spektrometrijom,
- poređenje srednjih koncentracija ekstrahovanih elemenata u ispitivanim uzorcima pomoću ANOVA testom,
- određivanje osnovnih (*baseline*) geohemijskih koncentracija,
- određivanje koda procene rizika (KPR) mikroelemenata po životnu sredinu,
- primena statističkih metoda: korelacione, faktorske i klasterske analize u obradi dobijenih podataka.

Nadamo se da će istraživanja koja su sprovedena u ovome radu na ispitivanom lokalitetu, imati značaj za sve istraživače koji se bave problematikom životne sredine elementima i da će opisani postupci ekstrakcija i pristupa za identifikaciju i diferencijaciju antropogenog uticaja naći primenu i na zemljištima i sedimentima drugih lokaliteta.

3. Eksperimentalni deo

3.1. Plan rada

Plan rada, u skladu sa ciljem istraživanja, obuhvatao je:

- Prikupljanje uzoraka sedimenata i muljeva;
- Pripremu laboratorijskog posuđa, reagenasa i drugog pribora;
- Pripremu uzoraka za analizu i određivanje sadržaja vlage;
- Sekvencijalnu ekstrakciju
 - Prva faza ekstrakcija *CH*₃*COOH*;
 - Druga faza ekstrakcija kiselim rastvorom NH_2OH ;
 - Treća faza razaranje kiselim rastvorom H_2O_2 ;
 - Četvrta faza razaranje carskom vodom (*HCl: HNO*₃=3:1);
 - Pomoću rotacione mućkalice: konvencionalna sekvencijalna ekstrakcija KSE;
 - Pomoću mikrotalasne pećnice: mikrotalasna sekvencijalna ekstrakcija
 MTSE;
 - Pomoću ultrazvučnog kupatila: ultrazvučna sekvencijalna ekstrakcija
 UZSE;
- Mikrotalasnu digestiju uzorka carskom vodom i carskom vodom sa *HF* u mirotalasnom digestoru;
- Određivanje koncentracije elemenata u ekstraktima metodom ICP/OES;
- Određivanje ukupnog sadržaja C, H, N, i S u ispitivanim uzorcima metodom elementarne analize;
- Analizu dobijenih rezultata;
- Korelacionu, ANOVA, faktorsku i klastersku analizu rezultata.

3.2. Uzorkovanje

Površinski (0-5 cm) i dublji sedimenti (10-15 cm; 20-25 cm; 45-50 cm; 90-100 cm) kao i uzorci muljeva su uzeti kao kompozitni uzorci na području petrohemijskog kompleksa u Pančevu i njenog okruženja tokom 2009. Godine (tabela 12). Kod nekih uzoraka zbog tvrdoće zemljišta nije moglo da se kopa dublje, te nisu uzeti uzorci sa većih dubina kao npr. 45-50 cm i 90-100 cm. Kompozitni uzorci se sastoje od četiri poduzorka. Mesta uzorkovanja su unutar Petrohemijskog kompleksa: Dekanter (D); Elektroliza (PE); put u petrohemijskom kompleksu (P); Živina deponija (ŽD); put oko petrohemijskog kompleksa (PP); izvan Petrohemijskog kompleksa: Messer (M); Vojlovica (V); Starčevo (S); Pančevo (PZ) i pet uzoraka duž otpadnog kanala (K1, K2, K3, K4, K5) (slika 2). Uzorci su spakovani u plastične teglice i čuvani u zamrzivaču na temperaturi od 4 ⁰C (Sakan i dr., 2007).

Oznake uzoraka sa dubinama uzorkovanja kao i sadržajem vlage i suve supstance su prikazane u tabeli 12.

	-	, ,				
Uzorak	Dubina (cm)	% vlage	% suve supstance			
	0-5	0,51	99,49			
D Dekanter	10-15	0,36	99,64			
Demitter	20-25	0,33	99,67			
	0-5	0,34	99,66			
PE Put oko Flektrolize	10-15	0,25	99,75			
I UL OKO EJEKTIONZE	20-25	0,34	99,66			
	0-5	2,56	97,44			
	10-15	2,45	97,55			
P Krug Petrohemije	20-25	2,55	97,45			
isi ug i ett öhennije	45-50	3,21	96,79			
	90-100	3,11	96,89			

Tabela 12. Oznake uzorka, dubina uzorkovanja, sadržaj vlage i suve supstance sedimenata i mulieva

	0-5	0,84	99,16		
~	10-15	1,02	98,98		
ZD Živina denonija	20-25	0,84	99,16		
Zivina ucpoinja	40-50	0,21	99,79		
	90-100	0,61	99,39		
	0-5	1,59	98,41		
PP	10-15	1,18	98,82		
Put oko Petrohemije	20-25	1,27	98,73		
	40-50	1,04	98,96		
	0-5	2,88	97,12		
М	10-15	2,92	97,08		
Meser	20-25	3,21	96,79		
	90-100	3,07	96,93		
	0-5	2,89	97,11		
V	10-15	2,90	97,10		
Vojilovica –	20-25	2,91	97,09		
Meteorološka stanica	45-50	3,37	96,63		
	90-100	3,03	96,97		
	0-5	1,89	98,11		
S	10-15	1,58	98,42		
Starčevo	20-25	1,40	98,60		
	40-50	2,11	97,89		
	0-5	2,86	97,14		
PZ Pančevo zgrada	10-15	2,45	97,55		
T ance vo zgrada	20-25	2,17	97,83		
7	K1	1,60	98,40		
kana	K2	0,95	99,05		
lini l	К3	3,69	96,31		
tpac	K4	7,58	92,42		
0	К5	0,78	99,22		

3.3. Priprema laboratorijskog posuđa i drugog pribora

Posuđe koje je korišćeno u radu oprano je najpre deterdžentom, zatim ispirano običnom vodom, pa dejonizovanom vodom, i na kraju oprano 2% HNO₃ (dobijenom razblaživanjem koncentrovane HNO₃) i ispirano dejonizovanom vodem.

Reagensi korišćeni u ovom radu su bili analitičke čistoće (p.a.):

- Sirćetna kiselina (Carlo Erba);
- Amonijum-acetat (Carlo Erba);
- Azotna kiselina (Carlo Erba);
- Hlorovodonična kiselina (Carlo Erba);
- Fluorovodonična kiselina (Carlo Erba);
- Borna kiselina (*Merck*);
- Hidroksilamin-monohlorhidrat (Molar);
- Vodonik-peroksid (Zorka).

Ekstrakti su čuvani u polietilenskim bočicama (100 cm³) koje su isprane najpre 2 M

HNO₃, pa dejonizovanom vodom.

3.4. Instrumenti

Instrumenti koji su korišćeni u radu su:

- 1. Vaga;
- 2. Električna sušnica;
- 3. Rotaciona mućkalica;
- 4. Mikrotalasna pećnica Electrolux, model 2100 S, 800 W snage;
- 5. Centrifuga Tehtnica;
- 6. Ultrazvučno kupatilo J.P. Selecta, sa maksimalnom snagom frekvencije od 42 kHz i efektivnom ultrazvučnom snagom od 100 W, bez zagrevanja.
- 7. Mikrotalasni digestor Milestone Ethos 1;
- 8. Induktivno spregnuta plazma sa optičkom emisionom spektrometrijom (ICP/OES) iCAP 6000, Thermo Scientific.

3.5. Pripremanje uzoraka za analizu i određivanje vlage

Pre ekstrakcije uzorci su sušeni tokom osam dana na vazduhu, i nakon toga usitnjeni u avanu. Iz svakog uzorka je odmereno oko 1000 ± 1 mg za određivanje sadržaja vlage - sušenjem na 105 ⁰C stepeni u električnoj sušnici do ustaljenja mase. Sadržaj vlage, odnosno masa suve supstance, koja nam je potrebna radi izračunavanja koncentracije ispitivanih elemenata u uzorcima, je prikazan u tabeli 12.

3.6. Sekvencijalna ekstrakcija

3.6.1. Priprema rastvora za ekstrakciju

Rastvori koji su korišćeni u radu su pripremani po odgovarajućoj proceduri (Ciceri i dr., 2008):

- U *prvom* koraku ekstrakcije je korišćena 0,11 M *CH*₃*COOH* (glacijalna sirćetna kiselina). Pripremljena je razblaživanjem 2,5 cm³ glacijalne sirćetne kiseline dejonizovanom vodom do 100 cm³. Na taj način je dobijena 0,44 M *CH*₃*COOH*. Zatim je uzeto 25 cm³ ovog rastvora i dopunjeno dejonizovanom vodom do 100 cm³ (0,11 M *CH*₃*COOH*).
- U *drugom* koraku ekstrakcije je korišćen 0,5 M hidroksiamin-hidrohlorid $(NH_2OH \cdot HCl)$. Odmereno je 3,47 g hidroksiamin-hidrohlorida, rastvoreno u nekoliko mililitara dejonizovane vode, zatim zakišeljeno sa 2,5 cm³ 2 M HNO_3 (razblaživanjem koncentrovane HNO_3) i dopunjeno do 100 cm³ dejonizovanom vodom.
- U *trećem* koraku je korišćen 30% H_2O_2 , odnosno 8,8 M H_2O_2 (i 1 M rastvor amonijum-acetata (*CH*₃*COONH*₄) pH 2. 7,708 g kristalnog amonijum-acetata rastvoreno je u nekoliko mililitara vode, zakišeljeno koncentrovanom azotnom kiselinom do pH 2, a zatim razblaženo do 100 cm³.
- U četvrtom koraku su korišćene koncentrovane kiseline: HNO₃ i HCl.

Za nivelisanje zapremina je korišćena 1 M HNO_3 , dobijena razblaživanjem koncentrovane HNO_3 .

3.6.2. Postupak ekstrakcije

Postupak sekvencijalne ekstrakcije za tri tehnike ekstrahovanja je sledeći:

- <u>Prvi ekstrakcioni korak</u>: Uzorci mase od oko 1,0 g tretirani su sa po 40 cm³ 0,11 M rastvora sirćetne kiseline. Kivete su zatim izložene mikrotalasima snage 90 W u trajanju 2 minuta; ultrazvučnim talasima 30 minuta; mućkani na rotacionoj mućkalici 16 sati (preko noći) a zatim centrifugirani 15 minuta na 4000 ob/min. Nakon centrifugiranja ekstrakt je prenešen u normalni sud od 50 cm³ i nivelisan sa 1 M *HNO*₃.
 - *Ispiranje:* Talog koji je zaostao nakon prvog koraka tretiran ja sa 5 cm³ dejonizovane vode. Zatim je izložen mikrotalasima u trajanju od 1 minuta; ultrazvucima 15 minuta; mućkanju 15 minuta; i nakon toga centrifugiran je 10 minuta na 4000 ob/min. Nakon centrifugiranja rastvor iznad taloga je dekantovan i odbačen.
- <u>Drugi ekstrakcioni korak</u>: Ispranom talogu je dodato 40 cm³ $NH_2OH \cdot HCl$. Talozi su izlagani mikrotalasima u trajanju od 2 minuta; ultrazvučnim talasima 30 minuta; mućkani na rotacionoj mućkalici 16 sati (preko noći); zatim centrifugirani 15 minuta na 4000 ob/min. Nakon centrifugiranja ekstrakt je prenešen u normalni sud od 50 cm³ i nivelisan sa 1 M HNO_3 .
 - *Ispiranje:* Talog koji je zaostao nakon drugog koraka tretiran je sa 5 cm³ dejonizovane vode. Zatim je izložen mikrotalasima u trajanju od 1 minuta; ultrazvucima 15 minuta; mućkanju 15 minuta; centrifugiran 10 minuta na 4000 ob/min. Nakon centrifugiranja rastvor iznad taloga je dekantovan i odbačen.

Slika 2. Prikaz ispitivane lokacije i mesta uzimanja uzoraka

- <u>Treći ekstrakcioni korak</u>: Nakon ispiranja talog je prenet iz kivete u čašicu pomoću 10 cm³ 30% H_2O_2 i kuvan 1 sat na vodenom kupatilu. Zatim je dodato još 10 cm³ 30% H_2O_2 i kuvano je još 1 sat. Nakon toga uzorak je prenešen u kivetu pomoću 40 cm³ CH_3COONH_4 pH vrednosti 2. Izlagan je mikrotalasima u trajanju od 2 minuta; ultrazvučnim talasima 30 minuta; mućkani na rotacionoj mućkalici 16 sati (preko noći); zatim centrifugiran 15 minuta na 4000 ob/min. Nakon centrifugiranja ekstrakt je prenešen u normalni sud od 50 cm³ i nivelisan sa 1 M HNO_3 .
 - *Ispiranje:* Talog koji je zaostao nakon trećeg koraka je tretiran sa 5 cm³ dejonizovane vode. Zatim je izložen mikrotalasima u trajanju od 1 minuta; ultrazvucima 15 minuta; mućkanju 15 minuta; centrifugiran 10 minuta na 4000 ob/min. Nakon centrifugiranja rastvor je dekantovan i odbačen.
- Četvrti ekstrakcioni korak: Nakon ispiranja talog je prenet iz kivete u čašicu pomoću 8 cm³ carske vode i kuvan u trajanju od 1 sata na vodenom kupatilu. Zatim je dodato još 8 cm³ carske vode i kuvano još 1 sat. Nakon toga uzorak je proceđen u normalni sud od 50 cm³ pomoću Munktell filter papira (389) i nivelisan sa 1 M HNO₃.

Snagu i vreme izlaganja uzoraka mikrotalasima i ultrazvucima smo održavali u tri BCR koraka. Prilikom mikrotalasne ekstrakcije temparatura uzorka nije prelazila 40 ^oC (Arain i dr., 2008), a za ultrazvučnu ekstrakciju koristili smo ultrazvučno kupatilo bez zagrevanja. Proveravali smo temperaturu vode u kupatilu i ona nije prelazila 35 ^oC (Kazi i dr., 2006a; Arain i dr., 2008). Održavanje energije i vremena izlaganja mikrotalasnih i ultrazvučnih talasa smo radili jer je su uslovi isti za sve tri faze BCR ekstrakcije u konvencionaloj ekstraciji. Pored uzoraka sedimenata i muljeva, referentni sertifikovani materijal BCR 701 smo tretirali na isti način. U tabeli 13 su prikazani reganesi i ekstrakcioni uslovi primenjeni u sekvencijalnoj ekstrakcionoj šemi.

3.7. Mikrotalasna digestija

Mikrotalasna digestija je rađena pomoću Milestone Ethos 1 uređaja, u zatvorenim teflonskim sudovima.

Digestija sa carskom vodom je rađena sa 3 cm³ HNO₃ i 9 cm³ HCl na 500 ±1 mg uzorka. Program zagrevanja se sastojao od porasta temperature do 165 °C u trajanju od 10 minuta, zatim do 175 °C u trajanju od 3 minute i grejanja na toj 10 minuta (maksimalna snaga od 1200 W).

Ohlađeni ekstrakti su prenešeni normalne sudove od 100 cm³ i nivelisani sa dejonizovanom vodom (Rönkkömäki i dr., 2008; Relić i dr., 2011a; Sakan i dr., 2011).

• Digestija sa carskom vodom plus *HF* je rađena sa 3 cm³ *HNO*₃ i 9 cm³ *HCl* i 3 cm³ *HF* na 500 ±1 mg uzorka. Prvi korak zagrevanja je isti kao kod digestije sa carskom vodom. Nakon hlađenja rastvoru je dodato 10 cm³ H_3BO_3 (5 g/100 cm³ vode) i zagrevano do 175 °C u trajanju od 10 minute, zatim do 170 °C u trajanju od 1 minuta i na toj temepraturi grejano 3 minuta (maksimalna snaga od 1200 W). Ohlađeni rastvori su prenešeni u 100 cm³ normalne sudove i nivelisani sa dejonizovanom vodom Tabela 13. Ekstrakcioni reagensi i uslovi rada kod konvencionalne (KSE), mikrotalasne (MTSE) i ultrazvučne (UZSE) BCR sekvencijalne ekstrakcije

Korak	Frakcija	Reagens	KSE	MTSE	UZSE	
T	Izmenjiva i kiselo	$40 \text{ cm}^3 0,11 \text{ mol/dm}^3$	16 sati (preko noći),			
1	rastvorna	СН ₃ СООН	sobna temperatura	2 minuta, 90 W	30 minuta, 42 kHz	
п	Oksidi gvožđa i	$40 \text{ cm}^3 0,5 \text{ mol/dm}^3$	16 sati (preko noći),			
11	mangana	$NH_2OH \cdot HCl \text{ (pH 1,5)}$	sobna temperatura	2 minuta, 90 W	30 minuta, 42 kHz	
		$10 \text{ cm}^3 8,8 \text{ mol/dm}^3$		1 sat (vodeno	1 sat (vodeno	
		H_2O_2	1 sat (vodeno kupatilo)	kupatilo)	kupatilo)	
ш	Organska	$10 \text{ cm}^3 8,8 \text{ mol/dm}^3$		1 sat (vodeno	1 sat (vodeno	
111	supstanca i sulfidi	H_2O_2	1 sat (vodeno kupatilo)	kupatilo)	kupatilo)	
		$40 \text{ cm}^3 \overline{1} \text{ mol/dm}^3$	16 sati (preko noći),	-	_	
		<i>CH</i> ₃ <i>COONH</i> ₄ (pH 2)	sobna temperatura	2 minuta, 90 W	30 minuta, 42 kHz	
		8 cm ³ aqua regia		1 sat (vodeno	1 sat (vodeno	
	Pozidualna	(<i>HCl</i> : <i>HNO</i> ₃ =3:1)	1 sat (vodeno kupatilo)	kupatilo)	kupatilo)	
1 V	Reziduallia	8 cm ³ aqua regia		1 sat (vodeno	1 sat (vodeno	
		$(HCl: HNO_3 = 3:1)$	1 sat (vodeno kupatilo)	kupatilo)°	kupatilo)	

3.8. Određivanje koncentracije metala u ekstraktima induktivno spregnutom plazmom (*Inductive Coupled Plasma – Optical Emission Spectrometer*, ICP/OES)

Koncentracija ekstrahovanih elemenata Al, Ba, Ca, Cd, Co, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, Pb, Si, Sn, Sr, Ti, V, Zn, As, Hg i Se je određena induktivno spregnutom plazmom ICP-OES iCap6000Duo, *Thermo Scientific*.

Očitavanje je rađeno pomoću kalibracionih krivih dobijenih iz serija standardnih rastvora u kojima su sadržani svi ispitivani elementi. Kalibracioni standardi su pripremljeni tako da odnos ispitivanih elemenata u seriji standarda odgovara odnosu elemenata u uzorcima. Kalibracija je rađena sa serijama od 5 standarda rastvora, a očitavanje koncentracija je vršeno sa kalibracionih krivih. Eksterni standardi su pravljeni od osnovnih rastvora elementa, koncentracije 1000 mg/L.

3.9. Određivanje ukupnog sadržaja C, H, N, S

Ukupni sadržaj C, H, N i S u ispitivanim sedimetima i muljevima je određivan na Vario El III CHNOS Elemental Analyzer-u. Dobijeni rezultati su prikazani u tabeli 14.

Uzanalı	Dubing (am)	%								
UZUTAK	Dubina (cm)	Ν	С	Н	S					
D	0-5	<0,1	4,16	0,44	0,17					
Dekanter	10-15	<0,1	1,29	0,22	<0,1					
Dekanter	20-25	<0,1	0,85	0,16	<0,1					
PE	0-5	<0,1	1,86	0,18	<0,1					
Put oko	10-15	<0,1	1,87	0,14	<0,1					
Elektrolize	20-25	<0,1	1,37	0,15	<0,1					
	0-5	0,23	2,89	0,70	0,15					
Р	10-15	0,20	2,54	0,66	<0,1					
Krug	20-25	0,23	3,01	0,82	<0,1					
Petrohemije	45-50	0,14	1,94	0,87	<0,1					
	90-100	0,12	2,56	0,77	<0,1					

Tabela 14. Oznake uzoraka sedimenata i muljeva sa ukupnim sadržajem C, H, N i S

	0-5	<0,1	2,46	0,29	<0,1
ŽD Živina	10-15	<0,1	2,22	0,31	<0,1
	20-25	<0,1	1,41	0,25	<0,1
deponija	40-50	<0,1	1,34	0,12	<0,1
	90-100	<0,1	1,67	0,14	<0,1
	0-5	0,17	2,98	0,48	<0,1
PP Det also	10-15	<0,1	1,90	0,33	<0,1
PUL OKO Petrohemije	20-25	<0,1	2,24	0,28	<0,1
i etronemije	40-50	<0,1	1,93	0,18	<0,1
	0-5	0,27	3,83	0,83	0,10
Μ	10-15	0,24	3,66	0,81	<0,1
Meser	20-25	0,21	2,86	0,81	<0,1
	90-100	<0,1	2,12	0,71	<0,1
	0-5	0,31	4,19	0,89	<0,1
V.	10-15	0,28	3,91	0,91	<0,1
Vojilovica – Motooroločko	20-25	0,25	3,67	0,91	<0,1
stanica	45-50	0,27	3,87	0,91	<0,1
	90-100	0,26	3,68	0,93	0,10
	0-5	0,10	2,93	0,50	<0,1
S	10-15	0,12	2,85	0,54	<0,1
Starčevo	20-25	<0,1	2,59	0,43	<0,1
	45-50	0,14	2,24	0,68	<0,1
PZ	0-5	0,40	4,71	0,86	0,14
Pančevo	10-15	0,22	3,29	0,64	<0,1
zgrada	20-25	0,13	2,99	0,60	<0,1
	K1	0,26	5,00	0,82	0,15
il li	K2	0,14	3,67	0,37	<0,1
padana	К3	0,43	4,67	1,26	0,14
0t k	K4	1,82	21,90	2,26	0,60
	K5	0,17	4,41	0,42	<0,1

4. REZULTATI I DISKUSIJA

4.1. Sekvencijalna ekstrakcija

U tabelama 15-52 prikazani su rezultati statističke obrade koncentracija ispitivanih elemenata nakon četiri faze SE (prve tri faze BCR ekstrakcije plus količine ekstrahovane nakon četvrte faze) trima tehnikama ekstrahovanja, i nakon dve mikrotalasne digestije uzoraka površinskih i dubinskih sedimenta, muljeva iz otpadnog kanala sa lokacije Petrohemija Pančevo i iz okruženja (slika 2), kao i sertifikovanog materijala. Koncentracije elemenata u uzorcima i u sertifikovanom materijalu su preračunate na masu suvog uzorka.

Srednja vrednost (aritmetička i geometrijska), standardna devijacija (aritmetička i geometrijska), medijana, minimalna i maksimalna koncentracija i osnovni geohemijski (*baseline*) opseg koncentracija je prvo što smo koristili za interpretaciju rezultata, u okviru statističke obrade rezultata. Nakon toga smo uradili ANOVA test da proverimo da li postoje sličnosti ili razlike u srednjim vrednostima koncentracija elemenata i varijansama, dobijenim nakon KSE, MTSE i UZSE u četiri faze SE, i dve mikrotalasne digestije. Test koji smo uradili pre multivarijantnih tehnika jeste Kolgomorov-Smirnovljev test radi provere normalne distribucije. Logaritamsku transformaciju smo primenili jer su neke koncentracije odstupale od normalne distribucije, kao i zbog računanja geometrijske standarde devijacije koju smo koristili sa geometrijskom sredinom za izračunavanje osnovnog (*baseline*) opsega koncentracija. Od multivarijantnih tehnika koristili smo faktorsku i klastersku analizu. Programe koje smo koristi za izračunavanja su *windows excel* i *windows* softverski progaram SPSS, verzija 11,5.

U prilogu (7. poglavlje) u tabelama 53-66 prikazane su dobijene koncentracije ispitivanih elemenata u uzorcima nakon četiri faze SE trima tehnikama ekstrahovanja, kao i nakon dve digestije. U tabelama 67-80 (prilog) prikazane su srednje vrednosti koncentracija elemenata sa *baseline* opsezima dobijenih nakon četiri faze SE i dve digestije, dok u tabelama 81-84 (prilog) prikazani su Pirsonovi (*Pearson*) koeficijenti korelacije između ekstrahovanih koncentracija elemenata nakon sve četiri faze SE, trima tehnikama ekstrahovanja, kao i nakon dve digestije.

4.1.1. Sertifikovani materijal (BCR 701)

U tabeli 15 su prikazane koncentracije elemenata ekstrahovanih iz sertifikovanog materijala. Prikazane su aritmetičke srednje vrednosti koncentracija sa artimetičkom standardnom devijacijom, dobijene nakon tri faze BCR SE (u nastavku faze BCR ekstrakcije) pomoću konvencionalne sekvencijalne ekstrakcije (KSE); mikrotalasne sekvencijalne ekstrakcije (MTSE); ultrazvučne sekvencijalne ekstrakcije (UZSE); i četvrte faze sekvencijalne ekstrakcije (u nastavku faze SE) koja predstavlja pseudo ukupni sadržaj elemenata. Na osnovu dobijenih koncentracija izračunata je preciznost i izračunata je tačnost za odgovarajuću fazu i tehniku ekstrakcije. Takođe su prikazane ukupne vrednosti ekstrahovanih koncentracija nakon prve tri faze BCR ekstrakcije, kao i nakon prve tri faze BCR ekstrakcije sa ekstrahovanim količinama nakon četvrte faze, koje smo koristili za izračunavanje ponovljivosti rezultata dobijenim različitim tehnikama ekstrakcije.

Na slici 3 su prikazane koncentracije metala dobijene nakon KSE, MTSE i UZSE sertifikovanog materijala, BCR 701. Isprekidanim linijama za datu fazu SE, prikazana je koncentracija metala navedena u sertifikatu BCR 701, dok je pravom linijom prikazana indikativna vrednost koncentracije, koja se očekuje nakon četvrte, pseudo ukupne faze SE.

Kao što se iz tabele 15 i sa slike 3 vidi nakon prve faze BCR ekstrakcije sertifikovanog materijala postignuta je zadovoljavajuća tačnost za sve ispitivane metale pri ekstrakciji pomoću rotacione mućkalice, sem za Cr. Tačnost za Cr je manja od 80%, što predstavlja donju granicu prihvatljive tačnosti (Chen i Ma, 2001). Kod MTSE zadovoljavajuća tačnost je dobijena za Pb (89%). Koncentracije preostalih metala koje su dobijene mikrotalasnom ekstrakcijom sa glacijalnom sirćetnom kiselinom značajnije su manje od sertifikovanih vrednosti (tabela 15 i slika 3). To je najizraženije kod ekstrahovane koncentracije Cr gde je pomoću mikrotalasa ekstrahovano oko 12% od sertifikovane vrednosti. Kod UZSE zadovoljavajuću tačnost smo dobili kod jonoizmenjivački i/ili karbonatno vezanih Cd (118%), Ni (97%) i Zn (102%). Upoređujući tačnosti koje su dobijene nakon prve BCR faze kod KSE i MTSE, primećen je skoro identičan redosled metala.

Rezultati i diskusija

Tabela 15. Koncentracije ekstrahovanih metala u sertifikovanom materijalu BCR 701, nakon tri faze BCR ekstrakcije i četvrte faze SE (pseudo ukupnog sadržaja, *aqua regia*) faze dobijene konvencionalnom, mikrotalasnom i ultrazvučnom ekstrakcijom sa tačnostima i preciznostima

	Cd-	Cr-	Cu-	Ni-	Ph-	Zn-	Cd-	Cr-	Cu-	Ni-	Ph-	7n-	Cd-	Cr-	Cu-	Ni-	Ph-	Zn-
	KSE	KSE	KSE	KSE	KSE	KSE	MTSE	MTSE	MTSE	MTSE	MTSE	MTSE	UZSE	UZSE	UZSE	UZSE	UZSE	UZSE
I F [*]	7.45	1.36	49.7	13.4	3.54	194	5.38	0.27	28.0	6.71	2.83	133	8.69	4.38	101.2	15.0	52.6	209.1
	± 0.40	± 0.05	±1.9	± 0.8	± 025	+11	± 0.11	± 0.08	± 0.7	± 0.04	± 0.07	+3	± 0.03	± 0.20	+3.6	± 0.3	+2.0	± 0.3
S.V [*]	7.34	2.26	49.3	15.4	3.18	205	7.34	2.26	49.3	15.4	3.18	205	7.34	2.26	49.3	15.4	3.18	205
T**	101,5	60,2	100,8	87,0	111,3	94,6	73,3	12,0	56,8	43,6	89,0	64,9	118	194	205	97	1.654	102
P**	5,3	3,7	3,8	6,0	7.1	5,7	2,0	29,6	2,5	0,6	2,5	2,3	0,3	4,6	3,6	2,0	3,8	0,2
II F [*]	3,77	20,1	110	26,7	129,5	119	2,24	2,84	53	5,42	43	45	1,24	9,57	40,21	8,82	53,4	39,3
	±0,14	±0,1	± 1	±0,1	±0,9	±3	±0,36	±0,15	±6	±0,42	<u>+</u> 4	±4	±0,29	±0,32	±5,95	$\pm 0,78$	±1,2	±1,0
S.V.*	3,77	45,7	124	26,6	126	114	3,77	45,7	124	26,6	126	114	3,77	45,7	124	26,6	126	114
T**	100	44,0	89	100,4	102,8	104,4	59,4	6,2	42,7	20,4	34,1	39,5	33	21	32	33	42	34
P**	3,7	0,5	0,5	0,4	0,7	2,5	16,1	5,3	11,3	7,7	9,3	8,9	23,4	3,3	14,8	8,8	2,2	2,5
III F [*]	0,188	46,5	53,8	16,14	3,9	56,3	2,53	83,1	119	24,4	48,6	120,2	0,55	92,4	63,5	18,1	11,6	48,7
	±0,001	±1,5	±1,1	±0,15	±0,1	±0,3	±0,28	±0,8	±3	±0,2	±3,0	±2,6	±0,02	±3,1	±3,3	±0,9	±0,4	±1,3
S.V.*	0,27	143	55,2	15,3	9,3	45,7	0,27	143	55,2	15,3	9,3	45,7	0,27	143	55,2	15,3	9,3	45,7
T ^{**}	69,7	32,5	97,5	105,5	41,9	123,2	937,8	58,1	215,6	159,5	522,6	263,0	203	65	115	118	125	107
P**	0,53	3,2	2,0	0,9	2,6	0,5	11,1	1,0	2,5	0,8	6,2	2,2	3,6	3,4	5,2	5,0	3,4	2,7
IV F [*]	0,30	43,2	20,5	20,0	16,9	55,1	0,46	28,2	32,5	38,9	45,5	101,3	0,33	21,8	27,2	23,8	25,1	68,7
	±0,03	±3,2	±2,7	±2,2	±1,7	$\pm 8,6$	±0,02	±1,5	±3,0	±1,4	±6.1	±3.5	±0,03	$\pm 1,1$	$\pm 1,1$	±0,4	±0,7	±0,6
I.V.*	0,13	62,5	38,5	41,4	11,0	95	0,13	62,5	38,5	41,4	11,0	95	0,13	62,5	38,5	41,4	11,0	95
T**	231	69	53	48	154	58	354	45	84	94	414	107	254	35	71	58	228	72
P**	10,0	7,4	13,2	11,0	10,1	15,6	4,3	5,3	9,2	3,6	13,4	3.5	9,1	5,0	4,0	1,7	2,8	0,9
SUM1	11,408	67,96	213,5	56,24	136,94	369,3	10,15	86,21	200	36,53	94,43	298,2	10,48	106,35	204,91	41,92	117,6	297,1
SUM2	11,708	111,16	234	76,24	153,84	424,4	10,61	114,41	232,5	75,43	139,93	399,5	10,81	128,15	232,11	65,72	142,7	365,8
PON1							89	127	94	65	69	81	92	156	96	74	86	80
PON2							91	103	99	99	91	94	92	115	99	86	93	86

^{*}S.V. – sertifikovana vrednost (μ g/g) i I.V. – indikativna vrednost (μ g/g); ^{**}T – tačnost (%) i P – preciznost (%)

SUM1 – suma ekstrahovanih koncentracija nakon tri BCR faze ($\mu g/g$)

SUM2 – suma ekstrahovanih koncentracija metala nakon prve tri BCR i četvrte faze , pseudo ukupnog sadržaja (µg/g)

PON1 – ponovljivost: SUM1(MTSE)/SUM1(KSE)*100 (%) i SUM1(UZSE)/SUM1(KSE)*100 (100%)

PON2 – ponovljivost: SUM2(MTSE)/SUM2(KSE)*100 (%) i SUM2(UZSE)/SUM2(KSE)*100 (%)

Slika 3. Prikaz raspodele koncentracija Cd, Cr, Cu, Ni, Pb i Zn u sertifikovanom materijalu BCR 701, nakon tri faze BCR i četvrte faze SE (pseudo ukpunog sadržaja, *aqau regia*) nakon konvencionalne, mikrotalasne i ultrazvučne ekstrakcije

Prema opadajućoj tačnosti metali su poređani na sledeći način: Pb>Cd>Cu>Zn>Ni>Cr kod KSE, dok kod MTSE redosled je Pb>Cd>Zn>Cu>Ni>Cr.

U slučaju UZSE, rezultati tačnosti su drugačiji. Metali koji nemaju odgovarajuću tačnost nakon prve faze BCR ekstrakcije, premašuju gornju granicu tačnosti od 120%. To je pogotovo izraženo u slučaju ekstrahovane količine Pb, gde je ta količina za 1.654% veća od sertifikovane. Redosled metala po opadajućoj tačnosti kod UZSE je sledeći: Pb>Cu>Cr>Zn>Cd>Ni. Dobijeni rezultati ukazuju da je za većinu metala u sertifikovanom

materijalu primena mikrotalasa u jačini od 90 W u trajanju od 120 s nedovoljna, dok je primena ultrazvučnih talasa u trajanju od 30 minuta za ekstrahovanje polovine sertifikovanih metala "prejaka" upoređujući dobijene koncetracije sa sertifikovanim.

Posmatrajući dobijene koncentracije nakon druge faze BCR ekstrakcije, redukcije hidratisanih oksida Fe i Mn hidroksilamin-hlorhidratom, zadovoljavajuću tačnost smo dobili za većinu metala ekstrahovanih upotrebom rotacione mućkalice, sem za Cr gde je dobijena tačnost od 44% (tabela 15 i slika 3). Redosled metala prema opadajućoj tačnosti ekstrahovanih upotrebom rotacione mućkalice je sledeći: Zn>Pb>Ni>Cd>Cu>Cr. Dobijene koncentracije metala nakon druge faze BCR ekstrakcije upotrebom mikrotalasa i ultrazvuka su manje od donje prihvatljive granice tačnosti. Ovi rezultati ukazuju da su uslovi koji su primenjeni za mikrotalasnu i ultrazvučnu ekstrakciju nedovoljni redukciju oksida Fe i Mn kao supstrata metala u sertifikovanom materijalu. Prema opadajućoj tačnosti za MTSE dobijeni su sledeći redosledi metala: Cd>Cu>Zn>Pb>Ni>Cr, za UZSE Pb>Zn>Cd≈Ni>Cu>Cr. Dobijeni redosled nakon UZSE je sličan sa redosledom nakon KSE.

Iako je prvi deo treće faze identičan za sve tri tehnike ekstrakcije, kuvanje sa vodonik-peroksidom na vodenom kupatilu (tabela 13), ekstrakcija sa amonijum-acetatom kod KSE je rađena pomoću rotacione mućkalice, kod MTSE pomoću mikrotalasa dok je kod UZSE rađena pomoću ultrazvučnih talasa. Zadovoljavajuća tačnost, nakon KSE sertifikovanog materijala je dobijena za ekstrahovane količine Ni (105,5%) i Cu (97,5%). Za Cd tačnost (69,7%) je blizu donje granice a za Zn (123,2%) blizu gornje granice prihvatljive tačnosti (tabela 15 i slika 3). Kod MTSE svi metali sem Cr pokazuju značajnije veće ekstrahovane količine (>120%) nakon treće faze. Dobijeni rezultati su očekivani zbog manjih ekstrahovanih količina nakon prve dve faze BCR ekstrakcije. Primenom ultrazvučnih talasa zadovoljavajuća tačnost je dobijena kod ekstrahovanih količina Cu (115%), Ni (118%) i Zn (107%), za Pb blizu gornje granice prihvatljive tačnosti (tabela 15 i slika 3).

Četvrta faza, pseudo ukupni sadržaj metala, sprovedena je po identičnoj proceduri za uzorke sedimenata i muljeva, kao i sertifikovani materijal (tabela 13). Sertifikovani materijal kao i preostali uzorci su kuvani sa smešom koncentrovanih kiselina: hlorovodonične i azotne kiseline u odnosu 3:1. Na slici 3 ravnim linijala su prikazane indikativne vrednosti za pseudo ukupni sadržaj metala u sertifikatu referentnog materijala BCR 701. Hrom, Cu, Ni i Zn imaju niže koncentracije, dok su koncentracije Cd i Pb više u odnosu na indikativne vrednosti u uzorku sertifikovanom materijala (BCR 701) koji je rotaciono mućkani u prethodnim BCR fazama (tabela 15). Kod sertifikovanog materijala koji je u prve tri faze BCR ekstrakcije bio tretiran mikrotalasima, dobijena je zadovoljavajuća tačnost za pseudo ukupni sadržaj Cu (84%), Ni (94%) i Zn (107%), dok je za Cr daleko niža od donje, a za Cd i Pb daleko veća od gornje prihvatljive granice tačnosti. Računajući tačnost pomoću navedenih indikativnih vrednosti u slučaju tretiranja sertifikovanog materijala ultrazvučnim talasima u prethodnim BCR fazama ekstrakcije, za Cu i Zn su dobijene vrednosti koje su bliske donjoj prihvatljivoj granici tačnosti (71% i 72%). Kao i kod prethodne dve tehnike i kod ultrazvučne ekstrakcije dobijene su veće tačnosti od gornje prihvatljive granice za Cd i Pb. Upoređujući koncentracije pseudo ukupnog sadržaja metala, može se primetiti da su najniže koncentracije dobijene u uzorku sertifikovanog materijala koji je u prethodnim fazama BCR ekstrakcije rotaciono mućkan. Uzorak sertifikovanog materijala koji je u prethodnim fazama bio tretiran ultrazvučnim talasima ima srednje vrednosti pseudo ukupnog sadržaja metala, dok su se najveće vrednosti dobijene u uzorku koji je u prethodnim trima fazama BCR ekstrakcije bio tretiran mikrotalasima.

Posmatrajući dobijene zbirne koncentracije metala nakon sve tri i četvrte faze SE, prikazane u tabeli 15, vidljivo je da su najveće koncentracije metala dobijene primenom rotacione mućkalice, zatim primenom ultrazvučnih talasa a najmanje koncentracije primenom mikrotalasa. Ponovljivost je računata pomoću odnosa zbira koncentracija metala ekstrahovanih nakon prve tri faze BCR ekstrakcije mikrotalasima kao i ultrazvučnim talasima sa ekstrahovanim koncentracijama nakon KSE, i odnosom zbira koncentracija metala nakon prve tri BCR i četvrte faze SE dobijenim nakon MTSE kao i UZSE sa količinama metala nakon KSE (slika 4). KSE je uzeta kao osnov računanja ponovljivosti iz dva razloga. Prvi razlog zato što su kod KSE dobijene, u najvećem broju, zadovoljavajuće tačnosti za sertifikovane metale, a drugi što je sam sertifikovani materijal (BCR 701)

napravljen za ekstrahovanje pomoću rotacione mućkalice. Na osnovu slike 4 se vidi da su veće koncentracije Cr dobijene u uzorku sertifikovanog materijala koji je tretiran mikrotalasima i ultrazvukom u prve tri faze BCR kao i nakon četvrte faze SE (>100%). Pošto za Cr nije dobijena zadovoljavajuća tačnost ni u jednoj fazi SE ni za jednu tehniku, dobijeni rezultat je neophodno razmatrati s oprezom. Uslovno loš rezultat Cr se može objasniti greškom u eksperimentalnom radu i/ili greškom analitičara. Za sve preostale sertifikovane metale dobijene vrednosti za ponovljivost su manje od 100% (tabela 15 i slika 4). Najmanja vrednosti za ponovljivost, za brze tehnike (MTSE i UZSE), dobijena je za Ni dok najujednačenija za Cd. Krive koje prikazuju ponovljivost za sertifikovane metale u slučaju MTSE nakon prve tri i nakon prve tri i četvrte faze, nisu slične kao kod UZSE. Razlika je najvidljivija kod Ni ekstrahovanog pomoću mikrotalasa. Kod Cr je veća razlika u ekstrahovanim količinama kod UZSE dok za preostale metale razlika između ponovljivosti 1 i 2 nije velika (tabela 15 i slika 4). Veće razlike su dobijene kod MTSE za Cr, Ni, Pb i Zn (slika 4 i tabela 15) što nam ukazuje da su uslovi primenjeni u ekstrakciji ovih metala pomoću mikrotalasa nedovoljni u prve tri faze BCR ekstrakcije.

Slika 4. Prikaz ponovljivosti sertifikovanih metala: odnosi mikrotalasno ekstrahovanih količina sa količinama dobijenih konvencionalnim putem nakon prve tri i nakon sve četiri SE faze, i odnosi ultrazvučno ekstrahovanih količina sa količinama dobijenih konvencionalnim putem nakon prve tri i nakon sve četiri SE faze

4.1.2. Sedimenti i muljevi otpadnog kanala

Pored referentnog materijala, površinski i dubinski sedimenti (36 uzoraka) uzeti sa lokacije Petrohemija Pančevo i iz njenog okruženja, i uzorci muljeva (5 uzoraka) iz otpadnog kanala (slika 2, tabela 12), bili su tretirani ekstrakcionim rastvorima u okviru BCR SE pomoću rotacione mućkalice, mikrotalasa i ultrazvuka. Osim ekstrahovanja uzorci su u mikrotalasnom digestoru rastvarani sa smešom hlorovodonične i azotne kiseline, i sa smešom hlorovodonične i azotne sa fluorovodoničnom kiselinom. Rezultati ekstrahovanih koncentracija ispitivanih elemenata, Al, Ba, Ca, Cd, Co, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, Pb, Si, Sn, Sr, Ti, V, Zn, As, Hg i Se su prikazani u tabelama 53-66 koje se nalaze u prilogu. Radi boljeg poređenja dobijenih koncentracija, za sve tri tehnike ekstrahovanja, kao i za mikrotalasne digestije, izračunali smo aritmetičku i geometrijsku srednju vrednost koncentracija elemenata sa odgovarajućim standardnim devijacijama kao i opseg *baseline* koncentracija. Ovi rezultati sa medijanom, minimalnom i maksimalnom ekstrahovanom koncentracijom elemenata su prikazani u tabelama 67-80 (prilog). Da bi se bolje videla sličnost i/ili razlika u ekstrahovanim koncentracijama prikazali smo ih odvojeno za sedimente i muljeve kao srednju vrednost koncentracija dobijenu nakon primene tri tehnike ekstrahovanja. Dobijene rezultate smo prikazali distribuirane po dubinama u ispitivanim uzorcima.

Uradili smo korelacionu analizu ekstrahovanih koncentracija elemenata u uzorcima sedimenata i muljeva, da bi utvrdili da li postoji sličnost ekstrahovanih elemenata obzirom na fazu i tehniku ekstrahovanja.

Takođe smo korelisali dobijene koncentracije elemenata iz svih ispitivanih uzoraka u okviru pojedinačne faze i tehnike, kao i digestije da bi definisali asocijacije mikroelemenata sa makroelementima kao predstavnicima supstrata, radi identifikacije supstrata i sorpciono/desoprcionih mehanizama. Rezultati ove korelacione analize su prikazani u tabelama 81-85 (prilog).

Dobijene ekstrahovane koncentracije elemenata smo analizirali pomoću faktorske i klasterske analize, dok smo srednje vrednosti koncentracija elemenata u uzorcima iz 10 lokacija poredili pomoću ANOVA testa.

4.1.2.1. Prva faza BCR ekstrakcije

Ekstrahovane koncentracije ispitivanih elemenata u sedimentima i muljevima nakon prve faze BCR ekstrakcije su prikazane u tabelama 53-55, koje se nalaze u prilogu. Na slici 5 su prikazane srednje koncentracije elemenata za uzorke sedimenata i muljeva dobijene nakon tri tehnike ekstrahovanja. Distribucije koncentracija elemenata po dubinama u uzorcima prikazane su na slikama 6-8. Aritmetička i geometrijska sredina ekstrahovanih koncentracija, artimetička i geometrijska standardna devijacija, medijana, minimalna i maksimalna koncentracija, i *baseline* opseg su prikazani u tabelama od 67-69 (prilog).

Posmatrajući ekstrahovane koncentracije metala u sertifikovanom materijalu nakon prve faze BCR ekstrakcije (tabela 15 i slika 3) vidi se da KSE daje najpribližnije rezultate sertifikovanim, dok su najniže koncentracije metala u odnosu na sertifikovane vrednosti dobijene MTSE.

Posmatrajući prikazane distribucije elemenata na slikama 5-8, uočljivo je da se najveća ekstrahovana količina jonoizmenjivih i/ili kiselo rastvornih Ca, Mg, Mn, Si i Sr dobila nakon primene KSE. Izgled krivi koje predstavljaju klasično, mikrotalasno i ultrazvučno ekstrahovane količine za ove metale su za sve uzorke sličnog trenda. Pored ovih elemenata, Cd, Cu, K, Na, Zn i Se imaju veću srednju vrednost koncentracija nakon KSE sedimenata nego sa preostalim tehnikama. Za razliku od njih Al, Ba, Co, Fe, Ni, Sn, Ti, V, As i Hg imaju veću srednju vrednost koncentracija nakon MTSE sedimenata, a Cr i Pb nakon UZSE (slika 5). To je pogotovo izraženo za uzorke sedimenata uzetih sa lokaliteta put u petrohemijskom kompleksu (P), Messer (M) i Vojlovica (V).

Sa slike 5 se vidi da je veća količina većine ispitivanih elemenata ekstrahovana u uzorcima sedimenata nego u muljevima, dok ispitivani muljevi imaju više jonoizmenjivo i/ili kiselo rastvornih Ca, Cd, Na, Sr i Se u odnosu na njihove dobijene esktrahovane količine u uzorcima sedimenata.

Uzorci sedimenata Dekantera (D) imaju značajnije više koncentracije jonoizmenjivih i/ili kiselo rastvornih Cr, Cu, Pb, Zn i Hg u odnosu na količine tih metala u preostalim uzorcima (slike 6-8). Ekstrahovane količine najmobilnije frakcije Cu i Zn nakon sve tri tehnike (tabele 53-55, prilog) u sedimentima Dekantera (D) prevazilaze prosečne koncentracije za Cu (14-190 μ g/g) i Zn (60-89 μ g/g) u zemljištu, koje su navedene u knjizi Kabata-Pendias (2011). Dobijene količine Cu i Zn predstavljaju potencijalne zagađivače sedimenata Dekantera. Osim u uzorcima sedimenata Dekantera (D) ekstrahovane količine Hg su značajno veće i u uzorcima sedimenata Elektrolize (PE). Posmatrajući tehnike ekstrahovanja, vidi se da su najveće količine Cr, Cu, Pb, Zn i Hg dobijene u uzorcima Dekantera (D) pomoću ultrazvuka, pa mućkanjem a najmanje količine su dobijene pomoću mikrotalasa. U preostalim uzorcima veće koncentracije ekstrahovanih elemenata su dobijene MTSE.

Osim uzoraka sedimenata ekstrahovali smo i muljeva uzete sa lokaliteta otpadnog kanala (slika 2). Za većinu elemenata najveće ekstrahovane količine jonizmenjivih i/ili kiselo rastvornih elemenata su dobijene primenom KSE (slika 5).

Da bi utvrdili da li postoji sličnosti u ekstrahovanim količinama uradili smo korelacionu analizu koncentracija elemenata nakon ekstrakcije svih uzoraka trima tehnikama, KSE, MTSE i UZSE (tabela 16). Za većinu elemenata uočljivo je postojanje pozitivnih korelacija, na osnovu Pirsonovih korelacionih parametara među količinama dobijenim nakon KSE, MTSE i UZSE ispitivanih uzoraka, što znači da je uticaj mikrotalasa i ultrazvuka na ekstrakciju ovih elemenata isti kao mućkanje na rotacionoj mućkalici. Pozitivne korelacije su dobijene između ekstrahovanih količina Al, Ba, Cr, Ni i Fe nakon KSE i UZSE, dok za Ni, V i Si su dobijene za ekstrahovane količine nakon primene KSE i MTSE (tabela 16). Uočljivo je nepostojanje značajnih korelacija između ekstrahovanih količina Co, Sn i Ti nakon primene tri tehnike ekstrakcije. Dobijeni rezultat može značiti da je uticaj mikrotalasa i ultrazvuka na njihovu ekstrakciju drugačiji nego ekstrahovanje pomoću rotacione mućkalice ispitivanih uzoraka.

4.1.2.1.1. ANOVA test – prva faza BCR ekstrakcije

Uradili smo poređenje srednjih vrednosti grupacija uzoraka i odredili koliko je razlika između tih vrednosti nakon ekstrakcije trima tehnikama značajna ili ne. U okviru ANOVA testa postoji vrednost F testa kojom se određuje da li postoji značajna razlika između grupacija uzoraka poređenjem standardnih devijacija.

Rezultati i diskusija

Slika 5. Prikaz srednjih ekstrahovanih koncentracija elemenata (µg/g, a za As, Hg i Se ng/g) u sedimentima i muljevima nakon prve faze BCR ekstrakcije

Slika 6. Distribucija ektrahovanih koncentracija Al, Ba, Ca, Cd, Co, Cu, Cr i Fe nakon prve faze BCR ekstrakcije primenom KSE, MTSE i UZSE
I faza	Al-KSE	Al-MTSE		Ba-KSE	Ba-MTSE		Ca-KSE	Ca-MTSE		Cd-KSE	Cd-MTSE		Co-KSE	Co-MTSE		Cr-KSE	Cr-MTSE
Al-MTSE	-0,277		Ba-MTSE	0,262		Ca-MTSE	0,573**		Cd-MTSE	0,443**		Co-MTSE	-0,133		Cr-MTSE	0,260	
Al-UZSE	0,459**	-0,249	Ba-UZSE	0,579**	-0,046	Ca-UZSE	0,729**	0,673**	Cd-UZSE	0,797**	0,342*	Co-UZSE	0,153	0,145	Cr-UZSE	0,874**	0,190
	Cu-KSE	Cu-MTSE		Fe-KSE	Fe-MTSE		K-KSE	K-MTSE		Mg-KSE	Mg-MTSE		Mn-KSE	Mn-MTSE		Na-KSE	Na-MTSE
Cu-MTSE	0,955**		Fe-MTSE	-0,159		K-MTSE	0,980**		Mg-MTSE	0,530**		Mn-MTSE	0,515**		Na-MTSE	0,979**	
Cu-UZSE	0,983**	0,990**	Fe-UZSE	0,329*	-0,154	K-UZSE	0,943**	0,907**	Mg-UZSE	0,670**	0,477**	Mn-UZSE	0,471**	0,121	Na-UZSE	0,927**	0,922**
	Ni-KSE	Ni-MTSE		Pb-KSE	Pb-MTSE		Si-KSE	Si-MTSE		Sn-KSE	Sn-MTSE		Sr-KSE	Sr-MTSE		Ti-KSE	Ti-MTSE
Ni-MTSE	0,654**		Pb-MTSE	0,703**		Si-MTSE	0,707**		Sn-MTSE	-0,163		Sr-MTSE	0,659**		Ti-MTSE	-0,072	
Ni-UZSE	0,327*	0,130	Pb-UZSE	0,976**	0,679**	Si-UZSE	0,198	0,001	Sn-UZSE	0,308	-0,149	Sr-UZSE	0,785**	0,603**	Ti-UZSE	0,284	-0,129
	V-KSE	V-MTSE		Zn-KSE	Zn-MTSE		As-KSE	As-MTSE		Hg-KSE	Hg-MTSE		Se-KSE	Se-MTSE			
V-MTSE	0,408**		Zn-MTSE	0,864**		As-MTSE	0,866**		Hg-MTSE	0,900**		Se-MTSE	0,522**				
V-UZSE	-0,042	-0,137	Zn-UZSE	0,953**	0,902**	As-UZSE	0,786**	0,644**	Hg-UZSE	0,944**	0,899**	Se-UZSE	0,782**	0,592**			

** Značajnost korelacije za 99% nivo značajnosti.
* Značajnost korelacije za 95% nivo značajnosti.

Tabela 17. Pirsonovi korelacioni koeficijenti između elemenata i tehnika ekstrakcije nakon druge faze BCR ekstrakcije

II faza	Al-KSE	Al-MTSE		Ba-KSE	Ba-MTSE		Ca-KSE	Ca-MTSE		Cd-KSE	Cd-MTSE		Co-KSE	Co-MTSE		Cr-KSE	Cr-MTSE
Al-MTSE	0,788**		Ba-MTSE	0,434**		Ca-MTSE	0,165		Cd-MTSE	-0,221		Co-MTSE	0,020		Cr-MTSE	0,900**	
Al-UZSE	0,642**	0,554**	Ba-UZSE	0,808**	0,363*	Ca-UZSE	0,349*	0,454**	Cd-UZSE	-0,159	0,881**	Co-UZSE	0,047	0,789**	Cr-UZSE	0,920**	0,989**
	Cu-KSE	Cu-MTSE		Fe-KSE	Fe-MTSE		K-KSE	K-MTSE		Mg-KSE	Mg-MTSE		Mn-KSE	Mn-MTSE		Na-KSE	Na-MTSE
Cu-MTSE	0,988**		Fe-MTSE	0,823**		K-MTSE	0,905**		Mg-MTSE	0,717**		Mn-MTSE	0,943**		Na-MTSE	0,394*	
Cu-UZSE	0,987**	0,954**	Fe-UZSE	0,608**	0,873**	K-UZSE	0,917**	0,808**	Mg-UZSE	0,532**	0,575**	Mn-UZSE	0,840**	0,772**	Na-UZSE	0,398**	0,820**
	Ni-KSE	Ni-MTSE		Pb-KSE	Pb-MTSE		Si-KSE	Si-MTSE		Sn-KSE	Sn-MTSE		Sr-KSE	Sr-MTSE		Ti-KSE	Ti-MTSE
Ni-MTSE	0,833**		Pb-MTSE	0,979**		Si-MTSE	0,487**		Sn-MTSE	0,627**		Sr-MTSE	0,384*		Ti-MTSE	0,713**	
Ni-UZSE	0,881**	0,722**	Pb-UZSE	0,917**	0,911**	Si-UZSE	0,541**	0,769**	Sn-UZSE	0,376*	0,863**	Sr-UZSE	0,645**	0,637**	Ti-UZSE	0,561**	0,709**
	V-KSE	V-MTSE		Zn-KSE	Zn-MTSE		As-KSE	As-MTSE		Hg-KSE	Hg-MTSE		Se-KSE	Se-MTSE			
V-MTSE	0,788**		Zn-MTSE	0,975**		As-MTSE	0,681**		Hg-MTSE	0,919**		Se-MTSE	-0,161				
V-UZSE	0,797**	0,799**	Zn-UZSE	0,963**	0,901**	As-UZSE	0,829**	0,739**	Hg-UZSE	0,969**	0,951**	Se-UZSE	0,413**	-0,042			

** Značajnost korelacije za 99% nivo značajnosti.
* Značajnost korelacije za 95% nivo značajnosti.

Kada je $F_{eksp.}$ < $F_{tabel.}$ i P vrednost u ANOVA testu je veća od 0,05 i znači da nema značajne razlike između srednjih vrednosti i standardnih devijacija (u tabelama će biti prikazana P vrednost). Rezultate ANOVA testa srednjih vrednosti ekstrahovanih količina elemenata dobijenih nakon prve faze BCR ekstrakcije trima tehnikama ekstrahovanja, prikazali smo u tabeli 18. Iz tabele se vidi da za većinu ispitivanih elemenata ne postoji značajna razlika između srednjih vrednosti dobijenim trima tehnikama ekstrahovanja (P >0,05). Aluminijum, Ca, Mg, Mn, Si, Sr i V imaju značajno različite srednje vrednosti. Ovi metali nemaju značajnu razliku u srednjim vrednostima koncentracija dobijenim nakon primene brzih tehnika ekstrahovanja (MTSE i UZSE). U slučaju Al i V niže koncentracije su dobijene nakon KSE dok su veće dobijene nakon MTSE i UZSE. Sličnost uticaja mikrotalasa i ultrazvučnih talasa na uzorke se ogleda u značajnoj pozitivnoj korelaciji između ova dva metala, nakon MTSE Pirsonov korelacioni koeficijent je 0,916; dok nakon UZSE r = 0.821 (tabele 82a i 83a, prilog). Nemanje značajne razlike u srednjim vrednostima dobijenim nakon ekstrakcije brzim tehnikama za Ca, Mg, Mn, Si i Sr je zato što su te vrednosti značajnije manje od dobijenih nakon KSE, što se i sa slika 6-8 vidi. Posmatrajući njihove Pirsonove koeficijente nakon KSE, vidi se da su ekstrahovane količine Mn i Si međusobno korelisane (r = 0,329, za nivo značajnosti od 95% (tabela 81a, prilog) kao i nakon UZSE (r = 0.596, za nivo značajnosti od 99%). Nakon MTSE ekstrahovane koncentracije Ca, Mg, Mn, Si i Sr su međusobno pozitivno i značajno korelisane (tabela 82a, prilog).

Kao što se iz tabele 18 vidi uticaj ultrazvučnih talasa i mikrotalasa je drugačiji od konvencionalnog mućkanja na ekstrakciju jonoizmenjivih i/ili kiselo rastvornih Al, Ca, Mg, Mn, Si, Sr i za V, što nije slučaj za preostale ispitivane elemente. Brze tehnike ekstrakcije su ekstrahovele više Al i V za razliku od Ca, Mg, Mn, Si i Sr gde su se manje količine ovih metala dobile primenom MTSE i UZSE.

4.1.2.1.2. Osnovna geohemijska koncentracije elemenata- prva faza BCR ekstrakcije

Iako se osnovna (*baseline*) geohemijska koncentracija elementa koristi kod rezultata dobijenih nakon određivanja pseudo ukupnog i ukupnog sadržaja, princip izračunavanja

osnovne geohemijske koncentracije smo primenili na rezultate dobijene nakon četiri faze SE u ispitivanim uzorcima. Posmatrajući koncentracije ispitivanih elemenata nakon prve faze BCR ekstrakcije pomoću rotacione mućkalice vidi se da su kod elemenata Al, Co, Cr, Cu, Fe, K, Na, Pb, Sn, Ti, V, Zn, As, Hg i Se maksimalne vrednosti koncentracija iznad baseline ospega za dati element (tabela 67, prilog). Ovi rezultati ukazuju da u nekim uzorcima ekstrahovane koncentracije jonoizmenjivo i/ili kiselo rastvornih količina elemenata prevazilaze opsege koji bi trebalo da predstavljaju očekivane vrednosti na osnovu ekstrahovanih koncentracija za datu tehniku. Ekstrahovane koncentracije elemenata koje su veće od *baseline* opsega kod nekih uzoraka mogu da ukažu na lokalno zagađenje tim elementima. Na osnovu ekstrahovanih koncentracija koje su veće od baseline opsega elementi se mogu grupisati po uzorcima, to su ekstrahovane koncentracije jonoizmenjivih i/ili kiselo rastvornih količina Al, Cr, Cu, Pb i Zn u uzorcima sedimenata Dekantera (D), dok za Co su ekstrahovane količine iz mulja otpadnog kanala uzetog sa lokacije K3 (tabela 53, prilog). U svim uzorcima muljeva ekstrahovane količine V prevazilaze *baseline* opsege. Postojanje značajne pozitivne korelacije ekstrahovanih koncentracija Ni i V (r = 0.986, za nivo značajnosti od 99%) u uzorcima muljeva ukazuje na prisutno naftno zagađenje u otpadnom kanalu, pošto je V prisutan u težim frakcijama proizvoda koje dobijamo petrohemijskim procesima prerade nafte (Bosco i dr., 2005; Krishna i Govil, 2007; Relić i dr., 2011a). Osim u muljevima, ekstrahovane koncentracije Ni i V u sedimentima imaju isti trend koji se ogleda u postojanju pozitivne i značajne korelacije, Pirsonov koreficijent korelacije je 0,711 (tabela 81a, prilog) za sve ispitivane uzorke. Uzorak uzet sa lokaliteta Elektrolize (PE), sa najveće dubine (PE25 (20-25 cm)) pokazuje maksimalnu koncentraciju jonoizmenjivog i/ili kiselo rastvornog Fe, dok najdublji uzorak sa lokaliteta Vojlovica (V100 (90-100 cm)) sadrži najveće koncentracije jonoizmenjivih K i As, a uzorak sa oznakom P100 (90-100 cm) (put u petrohemijskom kompleksu) ima najviše Na. Živa se u najvećoj količini ekstrahovala iz uzoraka PE i D. Koncentracije u tim uzorcima su veće za oko 50 puta od ekstrahovanih koncentracija u ostalim uzorcima. U sedimentima koji su uzeti van petrohemijskog kompleksa (M - Messer, V - Vojlovica, S - Starčevo, PZ -Pančevo zgrada) ekstrahovane su značajne koncentracije As, i to sa svih dubina sa lokaliteta V, kao i PZ.

Rezultati i diskusija

Tabela 18. Al	NOVA test sred	njih vredosti ko	ncentracija elen	enata dobijenił	n trima tehnika e	ekstrakcije nako	n prve faze BC	R ekstrakcije za	pojedinačna m	esta uzorkovanj	a (n=10)
Al-KSE-I Al-MTSE-I Al-UZSE-I	P [*] = 0,0437	Ba-KSE-I Ba-MTSE-I Ba-UZSE-I	P = 0,2821	Ca-KSE-I Ca-MTSE-I Ca-UZSE-I	$P = 2,88 \cdot 10^{-5}$	Cd-KSE-I Cd-MTSE-I Cd-UZSE-I	P = 0,1101	Co-KSE-I Co-MTSE-I Co-UZSE-I	P = 0,9815	Cr-KSE-I Cr-MTSE-I Cr-UZSE-I	P =0,6168
Al-MTSE-I Al-UZSE-I	P = 0,2877	/	/	Ca-MTSE-I Ca-UZSE-I	P = 0,7521	/	/	/	/	/	/
Cu-KSE-I Cu-MTSE-I Cu-UZSE-I	P = 0,8286	Fe-KSE-I Fe-MTSE-I Fe-UZSE-I	P = 0,2617	K-KSE-I K-MTSE-I K-UZSE-I	P = 0,8114	Mg-KSE-I Mg-MTSE-I Mg-UZSE-I	$P = 8,22 \cdot 10^{-5}$	Mn-KSE-I Mn-MTSE-I Mn-UZSE-I	$P = 4,54 \cdot 10^{-5}$	Na-KSE-I Na-MTSE-I Na-UZSE-I	P=0,4385
/	/	/	/	/	/	Mg-MTSE-I Mg-UZSE-I	P = 0,8499	Mn-MTSE-I Mn-UZSE-I	P = 0,5654	/	/
Ni-KSE-I Ni-MTSE-I Ni-UZSE-I	P = 0,2597	Pb-KSE-I Pb-MTSE-I Pb-UZSE-I	P = 0,5414	Si-KSE-I Si-MTSE-I Si-UZSE-I	P = 0,0088	Sn-KSE-I Sn-MTSE-I Sn-UZSE-I	P = 0,1526	Sr-KSE-I Sr-MTSE-I Sr-UZSE-I	P = 0,0005	Ti-KSE-I Ti-MTSE-I Ti-UZSE-I	P = 0,0909
/	/	/	/	Si-MTSE-I Si-UZSE-I	P = 0,9244	/	/	Sr-MTSE-I Sr-UZSE-I	P = 0,6855	/	/
V-KSE-I V-MTSE-I V-UZSE-I	P = 0,0272	Zn-KSE-I Zn-MTSE-I Zn-UZSE-I	P = 0,7986	As-KSE-I As-MTSE-I As-UZSE-I	P = 0,5418	Hg-KSE-I Hg-MTSE-I Hg-UZSE-I	P = 0,9610	Se-KSE-I Se-MTSE-I Se-UZSE-I	P = 0,3451		
V-MTSE-I V-UZSE-I	P = 0,1530	/	/	/	/	/	/	/	/]	
[*] Značajna razl Tabela 19. AN	ika u srednjim vi NOVA test sredi	ednostima i vari njih vredosti ko	jacijama za P<0, ncentracija elen	05 nenata dobijenił	n trima tehnika e	ekstrakcije nako	n druge faze B	CR ekstrakcije z	a pojedinačna 1	nesta uzorkovar	nja (n=10)
Al-KSE-II Al-MTSE-II Al-UZSE-II	$P = 3,55 \cdot 10^{-7}$	Ba-KSE-II Ba-MTSE-II Ba-UZSE-II	P = 0,0343	Ca-KSE-II Ca-MTSE-II Ca-UZSE-II	P = 0,0002	Cd-KSE-II Cd-MTSE-II Cd-UZSE-II	P = 0,9135	Co-KSE-II Co-MTSE-II Co-UZSE-II	P = 0,0230	Cr-KSE-II Cr-MTSE-II Cr-UZSE-II	P = 0,0343
Al-MTSE-II Al-UZSE-II	P = 0,2564	Ba-MTSE-II Ba-UZSE-II	P = 0,5666	Ca-MTSE-II Ca-UZSE-II	P = 0,1019	/	/	Co-MTSE-II Co-UZSE-II	P = 0,5298**	Cr-MTSE-II Cr-UZSE-II	P = 0,4978***
Cu-KSE-II Cu-MTSE-II Cu-UZSE-II	P = 0,9824	Fe-KSE-II Fe-MTSE-II Fe-UZSE-II	$P = 3,27 \cdot 10^{-11}$	K-KSE-II K-MTSE-II K-UZSE-II	P = 0,2978	Mg-KSE-II Mg-MTSE-II Mg-UZSE-II	P = 0,3900	Mn-KSE-II Mn-MTSE-II Mn-UZSE-II	P = 0,8820	Na-KSE-II Na-MTSE-II Na-UZSE-II	P = 0,8526
/	/	Fe-MTSE-II Fe-UZSE-II	P = 0,0678	/	/	/	/	/	/	/	
Ni-KSE-II Ni-MTSE-II Ni-UZSE-II	$P = 3,1 \cdot 10^{-5}$	Pb-KSE-II Pb-MTSE-II Pb-UZSE-II	P = 0,3668	Si-KSE-II Si-MTSE-II Si-UZSE-II	$P = 7,61 \cdot 10^{-9}$	Sn-KSE-II Sn-MTSE-II Sn-UZSE-II	$P = 1,01 \cdot 10^{-8}$	Sr-KSE-II Sr-MTSE-II Sr-UZSE-II	P = 0,0459	Ti-KSE-II Ti-MTSE-II Ti-UZSE-II	P = 0,3299
Ni-MTSE-II Ni-UZSE-II	P = 0,9390	/	/	Si-MTSE-II Si-UZSE-II	P = 0,0710	Sn-MTSE-II Sn-UZSE-II	P = 0,0863	Sr-MTSE-II Sr-UZSE-II	P = 0,2922	/	/
V-KSE-II V-MTSE-II V-UZSE-II	$P = 6,33 \cdot 10^{-6}$	Zn-KSE-II Zn-MTSE-II Zn-UZSE-II	P = 0,8661	As-KSE-II As-MTSE-II As-UZSE-II	P = 0,0004	Hg-KSE-II Hg-MTSE-II Hg-UZSE-II	P = 0,8704	Se-KSE-II Se-MTSE-II Se-UZSE-II	P = 0,0337	/	
V-MTSE-II V-UZSE-II	P = 0,2800	/	/	As-MTSE-II As-UZSE-II	P = 0,3888	/	/	Se-KSE-II Se-UZSE-II	$P = 0,1755^{\Delta}$		

Co-KSE-II i Co-MTSE-II P = 0,0585; *Cr-KSE-II i Cr-UZSE-II P = 0,0879; $^{\Delta}$ Se-KSE-II i Se-MTSE-II P = 0,1055

Slika 7. Distribucija ektrahovanih koncentracija K, Mg, Mn, Na, Ni, Pb, Si i Sn nakon prve faze BCR ekstrakcije primenom KSE, MTSE i UZSE

Ekstrahovane koncentracije As su prirodnog porekla jer su manje od prosečne koncentracija As u zemljištu koja iznosi oko 6,83 µg/g (Kabata-Pendias, 2011).

Upoređujući *baseline* koncentracije i maksimalne ekstrahove količine elemenata nakon prve faze BCR ekstrakcije, dobijene MTSE (tabela 68, prilog), vidi se da za ispitivane elemente sem za Se, maksimalne vrednosti premašuju *baseline* opsege. Geohemijski opsezi su dobijeni na osnovu ekstrahovanih koncentracija u ispitivanim uzorcima pomoću mikrotalasa. Kao što se vidi sa slika 6-8 uzorci kod kojih su dobijene najveće količine elemenata pomoću mikrotalasa su uzorci sa lokaliteta PE (Elektroliza), M (Messer) i V (Vojlovica). Uočljivo je slično "ponašanje" elemenata primenom mikrotalasa (tabela 54, prilog; slike 6-8). Uticaj mikrotalasa na ekstrakciju elemenata iako nedovoljan za sertifikovani materijal u ispitivanim uzorcima je dao značajnije veće ekstrahovane koncentracije nego KSE. Uticaj mikrotalasa na većinu elemenata u uzorcima je istovetan, odnosno najveća pravilnost je dobijena nakon prve faze MTSE.

Upoređujući maksimalne vrednosti ekstrahovanih metala nakon prve faze BCR ekstrakcije pomoću KSE i MTSE, veće koncentracije elemenata Ca, Mg, Mn, Na, Si, Cd, Cu, Pb, Sr, Zn i Se su dobijene KSE nego primenom mikrotalasa (tabele 67 i 68, prilog). Preostali elementi imaju veće maksimalne ekstrahovane koncentracije nakon MTSE.

Upređujući *baseline* koncentracije i maksimalne ekstrahovane koncentracije elemenata nakon prve faze BCR ekstrakcije dobijene UZSE (tabela 69, prilog), vidi se da za većinu ispitivanih elementa sem za Ca, Mn, Sr i Se, maksimalne vrednosti premašuju *baseline* opsege koncentracija. Geohemijski opsezi su dobijeni na osnovu ekstrahovanih koncentracija u ispitivanim uzorcima pomoću ultrazvuka. Kao što se sa slika 6-8 vidi, uzorci kod kojih se pomoću ultrazvuka dobijaju značajnije veće koncentracija ekstrahovanih elemenata su sedimenti uzeti sa lokaliteta Dekantera (D). Upoređujući koncentracije elemenata koje prevazilaze gornju granicu *baseline* opsega, uočljive su neke sličnosti u ponašanju elemenata, nakon dejstva ultrazvuka. Uočena je sličnost između dobijenih ekstrahovanih jonoizmenjivih i/ili kiselo rastvornih koncentracija Fe, Sn i Ti pomoću ultrazvučnih talasa, kao i između koncentracija Cu, Hg, Cd i Zn, zatim K i As; kao i Ni i V. Dobijena sličnost je potvrđena postojanjem značajno pozitivnih korelacija između ekstrahovanih koncentracija ovih elemenata (tabela 83a, prilog).

Slika 8. Distribucija ektrahovanih koncentracija Sr, Ti, V, Zn, As, Hg i Se nakon prve faze BCR ekstrakcije primenom KSE, MTSE i UZSE

Primenom faktorske i klasterske analize (poglavlje 4.1.2.1.4.) pokušaćemo da objasnimo u kakvoj su korelaciji ekstrahovane koncentracije ispitivanih elementata i da li primena različitih tehnika utiče na korelacije. Pre nego što primenimo faktorsku i klastersku

analizu neophodno je proveriti da li dobijene koncentracije zadovoljavaju test normalne raspodele (poglavlje 4.1.2.1.3.).

4.1.2.1.3. Test normalne distribucije – prva faza BCR ekstrakcije

Test sa kojim ćemo proveriti da li ekstrahovane koncentracije elemenata zadovoljavaju uslov normalne raspodele jeste Kolmogorov-Smirnovljev test. Da bi dobijene koncentracije bile normalno distribuirane neophodno je da značajnost testa (p) bude veća od 0,05 za nivo značajnosti 95%.

Prvi korak jeste provera da li su ekstrahovane koncentracije koje smo dobili nakon prve faze BCR ekstrakcije pomoću rotacione mućkalice, mikrotalasa i ultrazvuka normalno distribuirane. Ukoliko nisu, te koncetracije ćemo logaritmovati prirodnim logaritmom, koji smo koristili kod izračunavanja geometrijske standardne devijacije i *baseline* opsega. Ukoliko *ln* koncentracije elementa niisu normalno distribuiranae (p < 0,05), proverićemo da li neke koncentracije značajnije odstupaju od preostalih. Uklanjanjem tih koncentracija preostale ćemo podvrgnuti Kolmogorov-Smirnovljevom testu. Ukoliko koncentracije podležu normalnoj distribuciji taj element ćemo sa svim koncentracija elementa značajnije veće od preostalih i čijim uklanjanjem preostale koncentracije imaju normalnu distribuciju mogu da ukažu na lokalno zagađenje uzorka tim elementom (Relić i dr., 2011a). Ukoliko ni nakon uklanjanja značajnije različitih koncentracija se ne dobija normalna distribucija, taj element ćemo izostaviti iz dalje statističke obrade.

Dobijene koncentracije nakon prve faze BCR ekstrakcije primenom KSE su ispitivane pomoću Kolgomorov-Smirnovljevog testa. Dobijeni rezultati su prikazani u tabeli 20. Kao što se iz tabele vidi dobijene ekstrahovane koncentracije Ba, Cr, Cu, Pb, Ti i Hg nemaju normalnu distribuciju. Posmatrajući dobijene koncentracije tih metala, tabela 53 (prilog) vidi se da veće ekstrahovane koncentracije Cr, Cu, Pb i Hg su dobijene u uzocima uzetih sa lokaliteta Dekanter (D) i u slučaju Hg i nakon ekstrakcije sedimenata sa lokaliteta Elektroliza (PE).

Tabela 20. K	Colmoge	orov-Sr	nirnov	ljev tes	t ekstra	ahovani	ih konc	entrac	ija eler	nenta r	nakon	prve fa	aze BC	CR ekst	rakcije	primeno	m KSE]					
	Al	Ba	Ca	Cd	Со	Cr	Cu	Fe	К	Mg	Mn	N	a N	li P	'b Si	Sn	Sr	Ti	v	Zn	As	Hg	Se
N	41	41	41	41	41	41	41	41	41	41	41	4	1 4	1 4	1 41	41	41	41	41	41	41	41	41
Kolmogorov- Smirnov Z	1,241	0,979	0,733	1,911	1,067	2,225	3,205	1,439	1,546	1,387	1,082	1,86	5 0,73	2 2,76	0,764	1,525	0,887	3,087	1,580	2,538	1,011	2,695	1,450
Asymp. Sig. (2-tailed)	0,092	0,294	0,656	0,001	0,205	0,000	0,000	0,032	0,017	0,043	0,192	0,002	2 0,65	8 0,00	0 0,604	0,019	0,411	0,000	0,014	0,000	0,258	0,000	0,030
	lnCd	lnCr	lnCu	lnFe	ln I	K lnMg	g lnN	a InI	b ln	Sn 1	nTi	lnV	lnZn	lnHg	lnSe								
N	41	41	41	41	4	1 4	1 4	1 4	41	41	41	41	41	41	41								
Kolmogorov- Smirnov Z	1.316	1.603	1.964	0.676	0.57	9 0.748	8 0.93	7 1.49	0.7	36 3.1	266 1	.000	0.576	2.544	1.107								
Asymp, Sig, (2-tailed)	0,063	0,012	0,001	0,751	0,89	1 0,630	0,34	4 0,02	23 0,6	51 0,0	000 0),270	0,895	0,000	0,172								

Tabela 21. Kolmogorov-Smirnovljev test ekstrahovanih koncentracija elementa nakon prve faze BCR ekstrakcije primenom MTSE

	Al	Ba	Ca	Cd	Co	Cr	Cu	Fe	K	Mg	Mn	N	a N	i P	b S	i Sn	Sr	Ti	v	Zn	As	Hg	Se
N	41	41	41	41	41	41	41	41	41	41	41	4	1 4	1 4	1 4	1 41	41	41	41	41	41	41	41
Kolmogorov- Smirnov Z	2,156	1,645	0,755	1,074	1,821	1,834	2,828	2,051	1,448	,980	1,696	1,96	2 1,62	0 1,39	8 1,36	7 2,056	,629	1,796	2,028	1,794	1,694	2,505	1,060
Asymp. Sig. (2-tailed)	0,000	0,009	0,619	0,199	0,003	0,002	0,000	0,000	0,030	0,291	0,006	0,00	0,01	1 0,04	0 0,04	8 0,000	0,823	0,003	0,001	0,003	0,006	0,000	0,211
	lnAl	lnBa	lnCo	lnCr	lnCu	ı lnF	e lnI	K lnM	In InN	Na li	nNi	lnPb	lnSi	lnSn	lnTi	lnV	lnZn	lnAs	lnHg				
N	41	41	41	41	41	1 4	1 4	1 4	41 4	41	41	41	41	41	41	41	41	41	41				
Smirnov Z	1,577	0,811	1,397	1,142	0,885	5 0,97	1 0,59	4 0,87	79 1,08	88 1,0	006	0,946	1,056	0,919	1,838	1,234	0,520	0,804	0,714				
Asymp, Sig, (2-tailed)	0,014	0,527	0,040	0,147	0,414	4 0,302	2 0,87	2 0,42	22 0,18	87 0,2	264 (0,332	0,215	0,367	0,002	0,095	0,950	0,538	0,687				

Tabela 22. Kolmogorov-Smirnovljev test ekstrahovanih koncentracija elementa nakon prve faze BCR ekstrakcije primenom UZSE

	Al	Ba	Ca	Cd	Co	Cr	Cu	Fe	K	Mg	Mn	Na	Ni	Pb	Si	Sn	Sr	Ti	v	Zn	As	Hg	Se
Ν	41	41	41	41	41	41	41	41	41	41	41	41	41	41	41	41	41	41	41	41	41	41	41
Kolmogorov-	2 212	1 267	0.916	1 5 4 2	1 750	2 500	2 0 4 2	2 107	1 266	1 55 4	1 109	1 794	1 1 2 2	2 1 1 6	1 221	2 222	1 1 4 6	2.072	2.006	2 601	1 097	2 575	1 409
Asymp, Sig,	2,215	1,207	0,810	1,342	1,739	2,500	5,042	2,197	1,200	1,334	1,108	1,780	1,125	2,440	1,521	2,222	1,140	2,072	2,006	2,091	1,087	2,373	1,408
(2-tailed)	0,000	0,081	0,518	0,017	0,004	0,000	0,000	0,000	0,081	0,016	0,171	0,003	0,160	0,000	0,061	0,000	0,145	0,000	0,001	0,000	0,188	0,000	0,038
	lnAl	lnCd	lnCo	lnCı	r lnCı	ı lnFe	e lnM	g lnN	la Inl	Pb lr	ıSn	lnTi	lnV	lnZn	lnHg	lnSe							
N	41	- 41	- 41			- 1	1 1	1 /	1		41	41	- 41	41		41							
Kolmogorov-		-11	-11						1		-11	-11	-11	-11	41	1							
Smirnov Z	1,533	1,015	1,247	1,429	1,184	4 0,550	0,67	7 0,77	8 0,7	49 0,9	955 2	2,271	0,775	0,700	0,630	1,440							
Asymp, Sig, (2-tailed)	0,018	0,254	0,089	0,034	0,12	0,923	3 0,74	9 0,58	1 0,6	28 0,3	321 (0,000	0,585	0,711	0,822	0,032							

Rezultati i diskusija

Tabela	23. Fakto	orska ana	liza konce	entracija	nakon		Tabela 24	4. Faktorska a	analiza konce	entracija nak	on	Tabela	25. Faktor	rska anali	za koncen	tracija na	kon
prve fa	ze BCR e	kstrakcij	e primeno	om KSE			prve faze	BCR ekstrak	cije primeno	om MTSE		prve fa	ze BCR el	strakcije	primenon	n UZSE	
			Faktori]			Faktori]			Fak	tori		
	1	2	3	4	5			1	2	3			1	2	3	4	
lnZn	0,932						lnFe	0,901			1	lnFe	0,887				1
lnCu	0,917						lnSn	0,892				lnSn	0,864				1
lnPb	0,867						lnV	0,877				lnSi	0,658				1
lnCd	0,715						lnSi	0,793				lnPb	0,724				1
lnV		0,882					lnNi	0,751				lnV	0,618				1
lnNi		0,697					lnAs	0,735				lnMn	0,637			0,526	1
lnMn		0,653					lnMn	0,793	0,546			lnNi	0,543			0,562	1
lnAs		0,779					lnBa	0,661	0,558			lnMg	0,544		0,634		1
lnK		0,728	0,543				lnK	0,594	0,709			lnBa	0,573		0,597		1
lnBa			0,705				lnMg		0,810			lnCa			0,869		1
lnSn			-0,872				lnCa		0,835			lnSr			0,875		1
lnFe			-0,860				lnSr		0,893			lnNa			0,646		1
lnMg				0,439			lnNa		0,621			lnZn		0,862			1
lnSr				0,927			lnPb			0,798		lnCd		0,801			1
lnCa				0,889			lnCd			0,779		lnCu		0,822			1
lnSi					0,502		lnCu			0,869		lnK				0,769	1
lnNa					0,901		lnZn			0,877		lnAs				0.928	1

Slika 9. Dendogrami klastera dobijenih povezivanjem logaritmovanih koncentracija metala nakon prve faze BCR ekstrakcije unutar grupe (*Within Group*) za: a) KSE; b) MTSE; c)

71

Ekstrahovane koncentracije Ti se, u četiri uzorka, značajnije razlikuju po ekstrahovanim koncentracijama, i to u uzorcima sa lokaliteta Elektroliza (PE15; PE25) i Živina deponija (ŽD25 i ŽD50) dok kod preostalih uzoraka, dobijene koncentracije su u okviru granice detekcije. Uklanjanjem većih, odstupajućih ekstrahovanih koncentracija, i ponovnim izračunavanjem normalne distribucije, preostale koncentracije Cu i Pb su pokazale zadovoljavajuću normalnu raspodelu (p = 0,410 i p = 0,823) dok za ostale metale (Ba, Cr, Ti i Hg) nisu. U daljoj statističkoj obradi ekstrahovanih koncentracija nakon prve faze BCR KSE nećemo koristiti ekstrahovane koncentracije za Ba, Cr, Ti i Hg.

Kolgomorov-Smirnovljev test dobijenih koncentracija nakon prve faze BCR ekstrakcije primenom MTSE, prikazan je u tabeli 21. Iz tabele je vidljivo da nakon logaritmovanja ekstrahovanih koncentracija Al, Co i Ti ne zadovoljavaju uslov normalne distribucije. Upoređujući koncentracije Al, Co i Ti u ispitivanim uzorcima (tabele 53 i 54, prilog), uočljiva je sličnost koja se ogleda u tome da kod uzoraka kod kojih se pod uticajem mikrotalasa više ekstrahovalo jonoizmenjivo i/ili kiselo rastvornog Al, ima više Co i Ti. Ova sličnost se ogleda i u Pirsonovom koeficijentu korelacije ekstrahovanih koncentracija ovih metala: Al - Co (r = 0.930), Al - Ti (r = 0.826) i Co - Ti (r = 0.779) za nivo značajnosti od 99 % (tabela 82a, prilog). Upoređujući preostale koncentracije ovih metala uočljiva je sličnost u ponašanju što se sa slika 6-8 vidi. Uzorci gde su veće koncentracije ovih metala dobijene pod uticajem mikrotalasima su: P5, P15, P25 (put u petrohemijskom kompleksu), ŽD15 (Živina deponija), sve dubine uzoraka sa oznakama M (Messer), V5, V25, V50, V100 (Vojlovica), S50 (Starčevo), PZ25 (Pančevo zgrada). Razlog što koncentracije ova tri metala ne zadovoljavaju normalnu distribuciju verovatno leži u tome što su koncentracije u gore navedenim uzorcima značajnije veće od preostalih koncentracija. U daljoj statističkoj obradi nećemo korisiti Al, Co i Ti.

Kolgomorov-Smirnovljev test dobijenih koncentracija nakon prve faze BCR ekstrakcije primenom UZSE, prikazan je u tabeli 22. Iz tabele je vidljivo da, nakon logaritmovanja dobijenih koncentracija Al, Cr, Ti i Se, one ne zadovoljavaju uslov normalne distribucije. Posmatrajući ekstrahovane koncentracije metala u ispitivanim uzorcima (tabela 55, prilog) uočljive su povišene koncentracije Al, Cr, Ti i Se u sedimentima Dekantera (D), posebno u slučaju Cr. Koncentracije ovih metala su međusobno značajno korelisane (tabela 83a, prilog). Ukoliko iz testa normalne distribucije isključimo ekstrahovane vrednosti dobijene pod dejstvom ultrazvučnih talasa u sedimentima Dekantera i ponovimo test, nećemo dobiti normalnu distribuciju za ove metale. Stoga u daljoj statističkoj obradi nećemo koristiti Al, Cr, Ti, Se.

Ekstrahovane koncentracije elemenata, koji ne zadovoljavaju normalnu distribuciju zbirno za sve tri tehnike nakon prve faze BCR ekstrakcije (Al, Co, Cr, Ti, Hg i Se), izuzećemo iz dalje statitičke obrade.

4.1.2.1.4. Faktorska i klasterska analiza – prva faza BCR ekstrakcije

Primenom Varimaks rotacije u faktorskoj analizi koncentracija elemenata ekstrahovanih u prvoj fazi BCR ekstrakcije dobijeni su faktori prikazani u tabelama 23-25, i to za KSE pet faktora, tri nakon MTSE i četiri faktora nakon UZSE.

Na osnovu ekstrakcionih rezultata koji su prikazani u tabelama 53-55 (prilog) kao i na osnovu faktorske i klastera analize koncentracija (slike 9a-9c), vidi se da je uticaj mikrotalasa najujednačeniji na ispitivane uzorke, zatim sledi ultrazvučna ekstrakcija i na kraju KSE. To se ogleda u manjem broju značajnih korelacija, koje su dobijene korelisanjem ekstrahovanih koncentracija nakon prve faze BCR ekstrakcije mućkanjem (tabela 81a, prilog) i prisustvom 5 faktora. Ukoliko se uporede rezultati faktorske i klasterske analize koncentracija elemenata, vidi se da je u svim tehnikama dobijen zaseban faktor za koncentracije Cd, Zn i Cu. Ovi metali zajedno sa Pb, Cr i Hg su u značajnoj meri ekstrahovani iz sedimenata Dekatera (D) a u slučaju Hg i iz sedimenata Elektroliza (PE). Ovaj faktor može da predstavlja lokalno zagađenje tih uzoraka ovim metalima. Za sve tri tehnike postoji korelacija između Fe i Sn koja se u: KSE ogleda u faktoru 3 (r=0,993; tabela 81a, prilog), kod MTSE (r=1.000; tabela 82a, prilog) i UZSE (r= 0,999; tabela 83a, prilog) u faktoru 1. Kod KSE i UZSE je vidljiva povezanost metala koji predstavljaju lokalno zagađenje sedimenata Dekantera (Cd, Zn, Cu i Pb) sa Fe i Sn (slike 9a-9c). Ekstrahovane koncentracije Fe i Sn su u antagonističkom dejstvu sa alumosilikatnom frakcijom nakon KSE, jer se koncentracije Fe i Sn nalaze sa negativnim učešćem u faktoru 3 gde su koncentracije K prisutne sa pozitivnim učešćem (tabela 23). Antagonističko dejstvo između

Fe i K je vidljivo u korelacionoj analizi ektrahovanih koncentracija (r = -0,382 kod KSE i r = -0,316 kod UZSE; tabele 81a i 82a, prilog). Za razliku od negativnih korelacija, pozitivan korelacioni koeficijent između ekstrahovanih koncentracija Fe i K je dobijen nakon MTSE (r = 0,730, tabela 82a, prilog). Dobijeni rezultat se može objasniti time što se nakon MTSE dobilo najsličnije ponašanje elemenata u ispitivanim uzorcima.

Takođe za sve tri tehnike postoji faktor koji predstavlja karbonatnu frakciju (korelacija između Ca i Sr, kao i sa Mg) u ispitivanim uzorcima.

Iako su uslovi koji smo primenili za MTSE za sertifikovane metale nedovoljno jaki u prvoj fazi BCR ekstrakcije (ogleda se manjoj ekstrahovanoj količini sertifikovanih metala a samim tim u nedovoljnoj tačnosti), za neke ispitivane uzorke ti uslovi su dovoljni ako ne i "prejaki", jer su dobijene značajnije veće ekstrahovane koncentracije elemenata u odnosu na dobijene preostalim dvema tehnikama. Dobijene količine jonoizmenjivih i/ili kiselo rastvornih elemenata pod uticajem mikrotalasa, moguće da čine ne samo jonoizmenjive i/ili kiselo rastvorne količine nego i količine koje su dobijene daljim rastvaranjem supstrata pod dejstvom mikrotalasa.

Bez obzira što su kod većine ispitivanih elemenata ekstrahovane količine koje su dobijene primenom brzih tehnika (MTSE i UZSE) značajnije veće od onih dobijenih nakon KSE, sličnost u ponašanju elemenata postoji bez obzira na primenjenu tehniku, što se na osnovu korelacione, faktorske i klasterske analize može uočiti.

4.1.2.2. Druga faza BCR ekstrakcije

Ekstrahovane koncentracije ispitivanih elemenata u sedimentima nakon druge faze BCR ekstrakcije, reduktivnog razlaganja oksida Fe i Mn, prikazane su u tabelama 56-58 (prilog). Na slici 10 prikazane su srednje koncentracije elemenata za uzorke sedimenata i muljeva dobijene nakon druge faze BCR ekstrakcije tri tehnikama. Prikaz distribucija koncentracija elemenata u muljevima i po dubinama u sedimentima su prikazane na slikama 11-13. Aritmetička i geometrijska sredina, artimetička i geometrijska standardna devijacija, medijana, minimalna i maksimalna koncentracija i *baseline* opseg prikazani su u tabelama 70-72 (prilog).

Rezultati i diskusija

Slika 10. Prikaz srednjih ekstrahovanih koncentracija elemenata (μg/g, a za Hg i Se ng/g) u sedimentima i muljevima nakon druge faze BCR ekstrakcije

Slika 11. Distribucija ektrahovanih koncentracija Al, Ba, Ca, Cd, Co, Cu, Cr i Fe nakon druge faze BCR ekstrakcije primenom KSE, MTSE i UZSE

Posmatrajući ekstrahovane koncentracije metala u sertifikovanom materijalu nakon druge faze BCR ekstrakcije (tabela 15 i slika 3) vidi da su koncentracije najpribližnije referentnim dobijene nakon KSE, dok nakon UZSE i MTSE su ekstrahovane niže koncentracije.

Elementi koji su u najvećoj količinu ekstrahovani primenom brzih tehnika (MTSE ili UZSE) nakon druge faze BCR ekstrakcije su Ca i Sr (slike 10-13) u ispitivanim uzorcima. Dobijeni rezultat može da ukaže da brze tehnike nisu bile dovoljne za kiselo razlaganje karbonata, tj da je nerazložena količina karbonata ekstrahovana u drugom koraku BCR ekstrakcije primenom mikrotalasa i ultrazvučnih talasa. Preostali elementi imaju višu srednju vrednost koncentracija nakon KSE sedimenata i muljeva (slika 10). Ovo se može objasniti sa time da su pod dejstvom mikrotalasa i ultrazvučnih talasa primenjene jačine (90 W mikrotalasa i 100 W ultrazvučnih talasa) nakon prve faze BCR ekstrakcije ekstrahovani elementi ne samo iz jonoizmenjive i/ili kiselo rastvorne frakcije već i sa drugih supstrata u ispitivanim uzorcima. Jedno je karbonatna frakcija ekstrahovana u većoj količini KSE nego nakon primene mikrotalasa i ultrazvučnih talasa u prvoj fazi BCR ekstrakcije.

Uzorci sedimenata Dekantera (D) imaju značajnije više ekstrahovane koncentracije Cr, Cu, Na, Pb, Zn i Hg u odnosu na količine tih metala u preostalim uzorcima (slike 11-13), što je slično i sa dobijenim ekstrahovanim koncentracijama nakon prve faze BCR ekstrakcije. Ekstrahovane količine Cu, Pb, Zn i Hg trima tehnikama (tabele 56-58, prilog) u sedimentima Dekantera (D) prevazilaze prosečne koncentracije Cu (14-190 μ g/g), Pb (27 μ g/g), Zn (60-89 μ g/g) i Hg (0,58-1,8 μ g/g) za zemljišta navedene u knjizi Kabata-Pendias (2011). Ekstrahovane količine Hg su značajno veće i u uzorcima sedimenata Elektrolize (PE), kao što je slučaj i nakon prve faze (slika 8). Kod sve tri tehnike ekstrahovane koncentracije Hg su pozitivno korelisane sa koncentracijama Cr, Cu, Pb, Ti i Zn (tabele 81b, 82b, 83b, prilog). Posmatrajući tehnike ekstrahovanja vidi se da su najveće količine Cr, Pb, Hg ekstrahovane primenom rotacione mućkalice u uzorcima sedimenata Dekantera (D), a MTSE su dobijene najveće ekstrahovane količine Cu i Na, kao i Zn u uzorku sa najveće dubine, D25 (20-25 cm).

U slučaju većine ispitivanih elemenata najveće ekstrahovane količine su dobijene primenom KSE u uzorcima muljeva otpadnog kanala, dok su se najveće ekstrahovane vrednosti Ca, Na i Sr dobijene nakon UZSE, a Cd i Mn nakon MTSE (slika 10). Maksimalna ekstrahovana količina Cr se dobila iz uzorka mulja sa oznakom K2, a Fe, Na, Ni, Pb, V, Zn, As, Hg i Se iz uzorka K4, dok se u slučaju Cd najveća ekstrahovana količina dobijena u uzorku K4 primenom MTSE. Za sve ispitivane elemente uočljiv je ujednačen izgled krivi, u uzorcima muljeva iz otpadnog kanala, koje prikazuju dobijene koncentracije elemenata nakon ekstrakcije trima tehnikama.

Da bi utvrdili da li postoje sličnosti u ekstrahovanim količinama dobijenim trima tehnikama uradili smo korelacionu analizu ekstrahovanih koncentracija ispitivanih uzoraka. Na osnovu dobijenih Pirsonovih korelacionih koeficijenata (tabela 17) uočljivo je mnogo više značajnih, pozitivnih korelacija među tehnikama. Metali čije koncentracije pokazuju lošiju korelisanost između tehnika su koncentracije Ca i Cd. Za ekstrahovane koncentracije Ca dobijena je pozitivna korelacija između koncentracija dobijenim nakon KSE i MTSE, dok kod Cd između koncentracija dobijenih nakon KSE i UZSE.

4.1.2.2.1. ANOVA test – druga faza BCR ekstrakcije

Rezultate ANOVA testa srednjih vrednosti elemenata po lokacijama dobijenih nakon druge faze BCR ekstrakcije trima tehnikama ekstrahovanja, prikazali smo u tabeli 19. Iz tabele se vidi da za srednje vrednosti koncentracija Cd, Cu, K, Mg, Mn, Na, Pb, Ti, Zn i Hg ne postoji značajna razlika između srednjih vrednosti dobijenim trima tehnikama ekstrahovanja (P > 0,05).

Kod preostalih elemenata postoje značajne razlike između srednjih vrednosti koncentracija dobijenih trima tehnikama ekstrahovanja. Koncentracije tih elemenata nemaju značajnu razliku u srednjim vrednostima koncentracija dobijenim nakon brzih tehnika (MTSE i UZSE). Srednje ekstrahovane koncentracije Se dobijene nakon KSE i UZSE nemaju značajnu razliku kao i one dobijene nakon KSE i MTSE. U slučaju Co srednje ekstrahovane koncentracije dobijene nakon KSE i MTSE nemaju značajnu razliku dok ekstrahovane koncentracije Cr nakon KSE i UZSE takođe nemaju zančajnu razliku.

U slučaju Ca i Sr niže srednje vrednosti koncentracija su dobijene nakon KSE dok su se veće i slične dobijene nakon MTSE i UZSE. Drugačiji je odnos kod ostalih elemenata. Najveće vrednosti ekstrahovanih koncentracija su dobijene nakon KSE, dok manje a slične srednje vrednosti su dobijene nakon MTSE i UZSE.

4.1.2.2.2. Osnovna geohemijska koncentracije elemenata – druga faza BCR ekstrakcije

Posmatrajući koncentracije ispitivanih elemenata dobijenih nakon druge faze BCR ekstrakcije pomoću rotacione mućkalice vidi se da su kod Ba, Ca, Cd, Cr, Cu, K, Mg, Mn, Na, Pb, Sr, Ti, V, Zn i Hg maksimalne vrednosti koncentracija iznad osnovnog geohemijskog (baseline) ranga za date elemente (tabela 70, prilog). Metali čiji sadržaji ne prevazilaze baseline opsege imaju ujednačene ekstrahovane koncentracije u svim uzorcima. Kod uzoraka kod kojih su ekstrahovane koncentracije elemenata veće od odgovarajućeg baseline opsega može se posumnjati na lokalno zagađenje tim elementima. U uzorcima sedimenata Dekantra (D) to su ekstrahovane koncentracije Ba, Cr, Cu, Pb, Ti, Zn i Hg, kao i ekstrahovane koncentracije Ti i Hg iz uzoraka sa lokaliteta Eletrolize (PE). U slučaju Cu, Pb i Zn to su količine ekstrahovane iz uzorka sa površine lokaliteta PE. Ovi metali zajedno sa koncentracijama Ca, Cd, K, Na, Sr i V su u značajnije većim količinama ekstrahovani iz uzoraka otpadnog kanala uzetog sa lokacije K4 i K3, dok u slučaju ekstrahovanih koncentracija Zn i iz uzoraka muljeva sa lokacija K2 i K1. U uzorku mulja K4 je ekstrahovana količina V koje prevazilazi *baseline* opseg koncentracija što može da ukaže na naftno zagađenje (Bosco i dr., 2005; Krishna i Govil, 2007; Relić i dr., 2011a), kao što je bio slučaj sa svim uzorcima otpadnog mulja nakon prve faze BCR ekstrakcije. Postojanje pozitivne i značajne korelacije između koncentracija Ni i V u ispitivanim uzorcima potvrđuje zaključak o naftnom zagađenju uzoraka (r = 0.811, za nivo značajnosti od 99%, tabela 81b, prilog). Uzimajući u obzir samo uzorke muljeva dobijena je korelacija za koncentracije Ni i V sa Pirsonovim koeficijentom, r = 0.997.

Slika 12. Distribucija ektrahovanih koncentracija K, Mg, Mn, Na, Ni, Pb, Si i Sn nakon druge faze BCR ekstrakcije primenom KSE, MTSE i UZSE

Upoređujući baseline koncentracije i maksimalne ekstrahovane količine elemenata nakon druge faze BCR ekstrakcije dobijene MTSE (tabela 71, prilog), vidi se da za većinu ispitivanih elemenata (sa izuzetkom Ca, Mg i Se) maksimalne vrednosti premašuju baseline opsege koncentracija. Geohemijski opsezi su dobijeni na osnovu ekstrahovanih koncentracija u ispitivanim uzorcima pomoću mikrotalasa. Na osnovu koncentracija koje prevazilaze baseline opsege, elementi se mogu grupisati po uzorcima. U uzorcima P50 i P100 (put u petrohemijskom kompleksu), i u uzorcima sa lokaliteta M (Messer), V (Vojlovica) i PZ (Pančevo zgrada) kao i kod uzoraka muljeva (K3 i K4) dobijene su veće ekstrahovane količine Al, Ba, K. Sledeća grupacija uzoraka kod koje je ekstrahovana količina Cr, Cu, Pb, Ti, Zn i Hg značajnije veća od opsega jesu uzorci sa lokaliteta D (Dekanter). Značajno veće ekstrahovane količine Hg su dobijene i u uzorcima uzetih sa lokaliteta PE (Elektroliza), kao što je bio slučaj i nakon prve faze BCR ekstrakcije. Nikal i V čine grupu kod koje je maksimalna ekstrahovana količina dobijena u uzorku V15 (Vojlovica) kao i povećene ekstrahovane koncentracije V u muljevima K2, K3 i K4. Gvožđe i Sn čine sledeću grupu, zbog povećanih ekstrahovanih koncentracija u uzorcima D25 (Dekanter), zatim V50 i V100 (Vojlovica), kao i u uzorku uzetog iz otpadnog kanala K4.

Baseline koncentracije i maksimalne ekstrahove količine elemenata nakon druge faze BCR ekstrakcije dobijene pomoću ultrazvuka su prikazane u tabeli 72 (prilog). Osim za ekstrahovane koncentracije Al i Si, za preostale elemente maksimalne vrednosti koncentracija premašuju osnovne geohemijske opsege koncentracija dobijene na osnovu ekstrahovanih koncentracija u ispitivanim uzorcima pomoću ultrazvuka tih koncentracija. Kao i kod prethodnih tehnika, postoji sličnost u ponašanju ekstrahovanih količina elemenata u ispitivanim uzorcima. Tako su ekstrahovane količine Ba, Cr, Cu, Fe, Pb, Sn, Ti, Zn i Hg, koje su iznad odgovarajućih geohemijskih opsega, dobijene ekstrahovanjem uzoraka sedimenata Dekantera (D) a koncentracije Cd, Na i Sr u uzorku D5. U slučaju Cr, Ti i Hg značajno veće količine su ekstrahovane iz sedimenata sa oznakom PE (Elektroliza), što je u slučaju Ti i Hg slično sa rezultatima dobijenim sa KSE i MTSE, kao i sa rezultatima nakon prve faze BCR ekstrakcije za sve tri tehnike. Veće ekstrahovane količine Cd i Sr od odgovarajućih opsega su ekstrahovane iz muljeva sa lokaliteta K1 i K5.

Slika 13. Distribucija ektrahovanih koncentracija Sr, Ti, V, Zn, As, Hg i Se nakon druge faze BCR ekstrakcije primenom KSE, MTSE i UZSE

4.1.2.2.3. Test normalne distribucije - druga faza BCR ekstrakcije

Dobijene koncentracije nakon druge faze BCR ekstrakcije primenom KSE su bile ispitane pomoću Kolgomorov-Smirnovljevog testa, a dobijeni rezultati su prikazani u tabeli 26. Kao što se iz tabele vidi dobijene ekstrahovane koncentracije Pb, Hg i Se nisu normalno distribuirane. Posmatrajući dobijene koncentracije tih metala (tabela 56, prilog) vidi se da veće koncentracije Pb i Hg, u odnosu na koncentracije u preostalim uzorcima, dobijene su u uzorcima uzetih sa lokaliteta Dekanter (D), a u slučaju Hg i u sedimentima sa lokaliteta Elektroliza (PE). KoncentracijePb i Hg su značajno i pozitivno korelisane (r = 0,542, tabela 81b, prilog), dok sa ekstrahovanim koncentracijama Se nisu. Uklanjanjem odstupajućih koncentracija i ponovnim računanjem normalne distribucije dobija se zadovoljavajuća tačnost (p = 0,882) za Pb, dok za preostale ekstrahovane koncentracije Hg i Se nije dobijena. Na osnovu tabela 26 i 56 (prilog) i sa slike 13 se vidi da su veće koncentracije Hg dobijene ekstrahovanjem uzoraka sa lokaliteta PE. Ponavljanjem testa bez tih ekstrakcionih vrednosti nije dobijena zadovoljavajuća tačnost za Hg.

Kolgomorov-Smirnovljev test dobijenih koncentracija nakon druge faze BCR ekstrakcije primenom MTSE, prikazan je u tabeli 27. Iz tabele je vidljivo da nakon logaritmovanja ekstrahovane koncentracije Cu i Se ne zadovoljavaju uslov normalnosti. Dobijene koncentracije metala nisu značajno korelisane (tabela 82b, prilog). Posmatrajući dobijene njihove ekstrahovane koncentracije (tabela 57, prilog) vidi se da su veće koncentracije Cu dobijene ekstrahovanjem uzoraka sa lokaliteta Dekantera (D). Ponavljanjem testa bez tih ekstrakcionih vrednosti dobija se zadovoljavajuća tačnost za Cu (p = 0.760), dok za koncentracije Se u preostalim uzorcima nije dobijena.

Kolgomorov-Smirnovljev test, dobijenih koncentracija nakon druge faze BCR ekstrakcije primenom UZSE, prikazan je u tabeli 28. Iz tabele je vidljivo da koncentracije Cu ne zadovoljavaju uslov normalne raspodele. Sličan rezultat je dobijen nakon druge faze BCR ekstrakcije pomoću MTSE. Posmatrajući ekstrahovane koncentracije Cu u ispitivanim uzorcima (tabela 58, prilog) vidi se da su veće ekstrahovane vrednosti dobijene u sedimentima Dekantera (D). Ukoliko iz testa isključimo te vrednosti i ponovimo test, dobićemo normalnu distribuciju za Cu (p = 0,712).

Tabela 26. K	Colmoge	orov-Sı	nirnov	test ek	straho	vanim l	koncen	tracija	elemer	nta nako	on drug	ge faze	BCR e	kstrako	cije prin	nenom	KSE						
	Al	Ва	Ca	Cd	Co	Cr	Cu	Fe	K	Mg	Mn	Na	Ni	Pb	Si	Sn	Sr	Ti	v	Zn	As	Hg	Se
N	41	41	41	41	41	41	41	41	41	41	41	41	41	41	41	41	41	41	41	41	41	41	41
Kolmogorov- Smirnov Z	0,536	0,783	0,597	1,288	0,760	2,035	2,921	1,289	1,045	1,764	1,337	1,839	,948	2,683	,825	1,267	,515	1,686	,528	2,136	,828	2,882	2,647
Asymp, Sig, (2-tailed)	0,936	0,572	0,868	0,072	0,611	0,001	0,000	0,072	0,225	0,004	0,056	0,002	0,330	0,000	0,504	0,080	0,954	0,007	0,943	0,000	0,499	0,000	0,000
	lnCr	lnCu	lnMg	lnNa	a lnP	b lnT	li lnZ	n lnF	Ig lı	ıSe													
N	41	41	41	41	1 4	1 4	1 4	1	41	41													
Kolmogorov- Smirnov Z	1,277	1,344	1,053	1,179	9 1,67	0 0,89	6 0,87	7 2,6	57 2,4	71													
Asymp, Sig, (2-tailed)	0.076	0.054	0.217	0.124	4 0.00	0.39	8 0.42	6 0.0	0.0	000													

Tabela 27. Kolmogorov-Smirnov test ekstrahovanim koncentracija elementa nakon druge faze BCR ekstrakcije primenom MTSE

	Al	Ba	Ca	Cd	Co	Cr	Cu	Fe	К	Mg	; Mi	n Na	Ni	Pb	Si	Sn	Sr	Ti	v	Zn	As	Hg	Se
N	41	41	41	41	41	41	41	41	41	41	4	41	41	41	41	41	41	41	41	41	41	41	41
Kolmogorov- Smirnov Z	0,863	1,014	0,839	1,701	1,068	2,178	3,142	1,537	1,135	1,049	1,063	3 1,782	0,912	2,171	0,448	1,725	0,947	1,351	1,333	2,602	1,409	2,406	2,048
Asymp, Sig, (2-tailed)	0.446	0.255	0.483	0.006	0.204	0.000	0.000	0.018	0.152	0.221	0.20	3 0.003	0.377	0.000	0.988	0.005	0.331	0.052	0.057	0.000	0.038	0.000	0.000
	InCd	lnCr	lnCu	lnFe	lnN	a InP	'h ln'	Sn In	7n 1	n As	InHg	InSe	0,077	0,000	0,000	0,000	0,001	0,002	0,007	0,000	0,000	0,000	0,000
N	41	- 41	- 41			- III 1 /	1	41	41	41	41	41											
Kolmogorov-	41	41	41	41	4	1 4	-1	+1	41	41	41	41											
Smirnov Z Asymp, Sig,	0,855	1,017	1,557	0,769	0,92	1 0,81	3 0,9	22 0,9	051 0	,598	0,957	1,924											
(2-tailed)	0,458	0,252	0,016	0,595	0,36	4 0,52	3 0,3	53 0,3	326 0	,867	0,319	0,001											

Tabela 28. Kolmogorov-Smirnov test ekstrahovanim koncentracija elementa nakon druge faze BCR ekstrakcije primenom UZSE

	Al	Ва	Ca	Cd	Co	Cr	Cu	Fe	К	Mg	Mn	Na	Ni	Pb	Si	Sn	Sr	Ti	v	Zn	As	Hg	Se
N	41	41	41	41	41	41	41	41	41	41	41	41	41	41	41	41	41	41	41	41	41	41	41
Kolmogorov- Smirnov Z	0,665	0,568	0,727	1,330	0,987	2,154	3,132	1,738	1,406	1,114	1,108	1,228	0,992	2,527	0,797	1,678	0,980	2,250	1,213	2,230	1,778	2,707	1,362
Asymp, Sig, (2-tailed)	0.769	0.904	0.665	0.058	0.284	0.000	0.000	0.005	0.038	0.167	0.172	0.098	0.279	0.000	0.550	0.007	0.292	0.000	0.106	0.000	0.004	0.000	0.049
()	lnCr	lnCu	InFe	lnK	InPh	lnSr	n InT	'i Inž	Zn ln	As lr	Ho	InSe	.,,	0,000	.,	.,	*,=>=	.,	.,	.,	.,	.,	.,
N	41	- 41	- 41	- 41	- 41	- 41		1	41	41	41	41											
Kolmogorov-	41	41	41	41	41	41	1 4	1 .	+1	41	41	41											
Smirnov Z Asymp, Sig,	1,081	1,536	0,873	0,551	1,223	0,807	7 094	4 0,79	98 0,9	47 1,	339 1	,280											
(2-tailed)	0,193	0,018	0,431	0,922	0,100	0,533	3 0,33	5 0,54	48 0,3	32 0,	056 0	,075											

Rezultati i diskusija

Tabela	29. Faktor	rska analiz	za koncen	tracija na	kon	Tabela	30. Faktor	rska analiz	za konce	ntracija na	ıkon	Tabela	31. Fakto	rska anali:	za koncen	tracija na	ıkor
druge f	aze BCR e	ekstrakcije	e primeno	m KSE		druge f	aze BCR e	ekstrakcije	primen	om MTSE	1	druge f	aze BCR	ekstrakcijo	e primeno	m UZSE	
		Fakt	tori					Fakt	ori		1			fakt	tori		1
	1	2	3	4			1	2	3	4	1		1	2	3	4	1
lnAl	0,956					lnK	0,937				1	lnCr	0,907				1
lnSi	0,949					lnMn	0,930					lnZn	0,891				
lnMn	0,907					lnNi	0,918					lnFe	0,877				
lnK	0,898					lnCo	0,917					lnSn	0,877				
lnV	0,822					lnAl	0,810					lnCu	0,818				
lnMg	0,502					lnAs	0,753					lnPb	0,818				
lnCo	0,809					lnBa	0,730					lnCd	0,637		0,599		
lnCa	0,801					lnMg	0,627					lnSi		0,808			
lnNi	0,568					lnV	0,687					lnV		0,674			
lnBa	0,708	0,630				lnSi	0,624	0,576				lnAl		0,893			
lnTi	-0,653	0,536				lnCr		0,882				lnCo		0,865			
lnPb		0,950				lnCu		0,832				lnK		0,879			
lnCr		0,914				lnFe		0,856				lnMn		0,836			
lnCu		0,906				lnPb		0,776				lnBa		0,824			
lnZn		0,841				lnSn		0,865				lnNi		0,823			
lnCd			0,778			lnTi		0,791				lnTi			-0,783		
lnNa			0,650			lnZn		0,774				lnNa			0,734		
lnSr	0,710		0,615			lnCa			0,899			lnSr			0,831		
lnFe				0,784		lnCd			0,769			lnCa			0,698	0,561	
lnSn				0,750		lnSr			0,972			lnMg				0,521	
InAs				0.772	1	InNa				0 703		InAs				0 787	1

Slika 14. Dendogrami klastera dobijenih povezivanjem logaritmovanih koncentracija metala nakon druge faze BCR ekstrakcije unutar grupe (Within Group) za: a) KSE; b) MTSE;

c) UZSE

Sumirajući elemente koji ne zadovoljavaju normalnu ditribuciju, pre faktorske i klasterske analize za sve tri tehnike, iz dalje statitičke obrade rezultata izuzećemo dobijene, ekstrahovane koncentracije Hg i Se u ispitivanim uzorcima.

4.1.2.2.4. Faktorska i klasterska analiza – druga faza BCR ekstrakcije

Primenom Varimaks rotacije u faktorskoj analizi dobijenih koncentracija nakon reduktivnog razlaganja oksida Fe i Mn u okviru druge faze BCR ekstrakcije trima tehnikama, dobijeni su faktori koji su prikazani u tabelama 29-31. Kao što se iz tabela vidi faktorska analiza je dala po četiri faktora za sve tri tehnike (KSE, MTSE i UZSE).

Na osnovu ekstrakcionih rezultata koji su prikazani u tabelama 56-58 (prilog) kao i na osnovu faktorske i klastera analize koncentracije elemenata, vidi se da je ujednačen uticaj mikrotalasa, ultrazvuka kao i rotacione mućkalice na ispitivane uzorke. To se ogleda u prisustvu četiri faktora kod sve tri tehnike, kao i na osnovu raspodele elemenata po faktorima. Ukoliko se bolje uporede rezultati faktorske i klasterske analize koncentracija, vidi se da je u svim tehnikama dobijen zaseban faktor za koncentracije Cr, Zn, Cu i Pb. Posmatrajući ekstrahovane koncentracije ovih metala (tabele 56-58, prilog) vidi se da su dobijene značajnije veće koncentracije nakon ekstrakcije sedimenata Dekantera (D) nego pri ekstrakciji preostalih uzoraka. Pored ovih metala ekstrahovana je značajnije veća količina Hg iz sedimenata Dekatera (D) u odnosu na preostale ispitivane uzorke. Dobijeni faktor (tabele 29-31 i slike 14a-14c), može da ukaže na lokalno zagađenje sedimenata Dekantera sa gore navedenim metalima.

Za sve tri tehnike postoji korelacija između koncentracija Fe i Sn koja se u KSE ogleda u faktoru 4 (r=0,993; tabela 81b, prilog), a kod MTSE (r=1,000; tabela 82b, prilog) u faktoru 2 i za UZSE (r= 0,999; za nivo značajnosti od 99%, tabela 83b, prilog) u faktoru 1. Pozitivne i značajne korelacije između ekstrahovanih koncentracija ova dva metala su dobijene i nakon prve faze BCR ekstrakcije (tabele 23-25 i slike 9a-9c). Klasterska analiza ukazuju na povezanost ekstrahovanih koncentracija Fe, kao oksida Fe odnosno supstrata, sa koncentracijama sledećih elemenata ekstrahovanim koncentracijama Sn, Pb, Cu, Cr, Zn, Ti nakon MTSE i UZSE. Ekstrahovane koncentracije Cd kod UZSE se nalaze u klasteru sa

gore nevedenim metalima, dok kod MTSE i KSE se nalaze sa ekstrahovanim koncentracijama Ca i Sr, odnosno sa zaostalom nerastvorenom karbonatnom frakcijom. Prisustvo ekstrahovane količine Cd u klasteru sa koncentracijama Pb, Zn, Cr i Cu i povezanost za ekstrahovanim količinama Fe, Sn, Cr nakon UZSE (slika 14c) se ogleda u postojanju pozitivnih značajnih korelacija između koncentracija Cd i tih metala (tabela 83b, prilog), dok značajnih korelacija nema u preostale dve tehnike, KSE i MTSE, sem sa koncentracijama Zn.

Sledeća grupacija elemenata koja se javlja kod sve tri tehnike jeste grupacija koja sadrži Co, Mn i Ni i zbog prisustva ekstrahovanih koncentracija Mn predstavlja Mn oksidnu grupaciju (slike 14a-14c). Grupacija elemenata koja je vezana za okside Mn jeste ona vezana i za okside Al i Si ispitivanim uzorcima (Polić, 1991; Sakan, 2010). Ona je prisutna u faktoru 1 kod KSE i MTSE, dok kod UZSE u faktoru 2, i kao podklaster između koncentracija sledećih elemenata: Al, Si, Ba i V za sve tri tehnike (slika 14a, 14b, 14c).

Iako je uticaj mikrotalasa i ultrazvučnih talasa bio slab za sertifikovani materijal, što se ogleda u manjim ekstrahovanim koncentracijama sertifikovanih metala, to nije slučaj sa ispitivanim uzorcima sedimenata i muljeva. Ono što je interesantno jeste ujednačeniji uticaj mikrotalasa i ultrazvuka, kao brzih tehnika, sa konvencionalnom tehnikom mućkanja, koji se ogleda u postojanju istog broja faktora kao i odgovarajućih grupacija u klasterskoj analizi između sve tri tehnike ekstrakcije.

4.1.2.3. Treća faza BCR ekstrakcije

Ekstrahovane koncentracije ispitivanih elemenata u sedimentima nakon treće faze BCR ekstrakcije su prikazane u tabelama 59-61 (prilog). Na slici 15 su prikazane srednje ekstrahovane koncentracije elemenata u uzorcima sedimenata i muljeva, dobijene trima tehnikama ekstrahovanja. Prikaz distribucija tih koncentracija po dubinama u sedimentima i u uzorcima muljeva su prikazane na slikama 16-18. Aritmetička i geometrijska sredina ekstrahovanih koncentracija, artimetička i geometrijska standardna devijacija, medijana, minimalna i maksimalna koncentracija i *baseline* opsezi prikazani su u tabelama 73-75 (prilog). Posmatrajući ekstrahovane koncentracije metala u sertifikovanom materijalu nakon treće faze BCR ekstrakcije, tabela 15 i slika 3, vidi se da je za polovinu sertifikovanih metala dobijena zadovoljavajuća tačnost primenom KSE i UZSE. Mikrotalasna digestija nije dala zadovoljavajuće rezultate na osnovu dobijene tačnosti. Svi metali sem Cr pokazuju značajnije veću ekstrahovanu količinu od sertifikovane. Dobijeni rezultati jesu očekivani pošto su u prethodne dve faze BCR ekstrakcije dobijene značajnije niže ekstrahovane količine sertifikovanih metala primenom MTSE.

Ekstrahovane koncentracije Ca, Mg, Mn i Sr nakon treće faze dobijene primenom bržih sekvencijalnih tehnika (UZSE i MTSE) su veće od dobijenih nakon KSE (slike 16-18) kao što je bio slučaj nakon druge faze BCR ekstrakcije. Ovi rezultati ukazuju da su uslovi brzih tehnika ekstrahovanja bili nedovoljni za ekstrahovanje ovih metala u prvoj i drugoj fazi BCR ekstrakcije, te da se neekstrahovana količina ovih metala delom ekstrahovana u trećem BCR koraku. Nakon prve faze BCR ekstrakcije značajnije veće količine Ca, Mg. Mn i Sr su ekstrahovane nakon KSE u odnosu na one nakon MTSE i UZSE. U naredne dve faze slučaj je obrnut. Kada smo ekstrahovane količine Ca, Mg, Mn i Sr sabrali nakon prve tri faze BCR ekstrakcije i sume poredili obzirom na primenjenu tehniku, dobili smo rezultate kod kojih su količine dobijene nakon KSE veće od onih dobijenih nakon MTSE i UZSE.

Uzorci sedimenata Dekantera (D) imaju značajnije veće ekstrahovane koncentracije Ba, Cu, Pb, Zn i Hg nakon treće faze BCR ekstrakcije u odnosu na količine tih metala u preostalim sedimentima (slike 16-18). Veće ekstrahovane koncentracije Cu, Pb, Zn i Hg su dobijene i nakon prve dve faze BCR ekstrakcije sedimenata Dekantera. Dobijene koncentracije Hg su veće od opsega koncentracija za Hg u zemljištu koje iznosi od 0,58-1,8 µg/g navedeno u knjizi autora Kabata-Pendias (2011). U prethodnim fazama ekstrahovane količine Hg su bile značajno veće u uzorcima sedimenata Elektrolize (PE) u odnosu na preostale uzorke, što nakon razlaganja organske supstance i/ili sulfida nije slučaj (slika 18). Uzorak koji odskače po ekstrahovanim količinama Pb i Hg jeste uzorak sedimenta uzet sa lokaliteta Messer, dubine 20-25 cm (slike 17 i 18, tabela 59, prilog) gde dobijene vrednosti ova dva metala su veće od prosečnih za zemljišta (Kabata-Pendias, 2011).

Rezultati i diskusija

Slika 15. Prikaz srednjih ekstrahovanih koncentracija elemenata (µg/g, a za Se ng/g) u sedimentima i muljevima nakon treće faze BCR ekstrakcije

Slika 16. Distribucija ektrahovanih koncentracija Al, Ba, Ca, Cd, Co, Cu, Cr i Fe nakon treće faze BCR ekstrakcije primenom KSE, MTSE i UZSE

Pored ova dva metala u većoj količini su ekstrahovani Ba, Cr, Cu i Zn u uzorku sa te dubine, za razliku od uzoraka sa preostalih dubina tog lokaliteta. Dobijeni rezultat nam ukazuje na akumulacioni efekat tih metala na organskoj supstanci u uzorku na dubini od 20-25 cm.

Za Al, Co, Cr, Fe, K, Na, Ni, Si, Sn, Ti i Hg najveće ekstrahovane količine u uzorcima muljeva iz otpadnog kanala su dobijene primenom KSE (slika 15). Najveća ekstrahovana vrednost za date elemente je dobijena u uzorku K4, uzorak mulja uzet sa ušća otpadnog kanala u Dunav gde je došlo do akumuliranja tih elemenata. Detektovana vrednost za Hg u ovom uzorku je veća od prosečne za zemljište (Kabata-Pendias, 2011) nakon sve tri tehnike, kao i u uzorcima muljeva K2 i K3 nakon KSE.

Za preostale ispitivane elemente MTSE i UZSE su dale veće ekstrahovane količine u uzorcima muljeva. Za većinu ispitivanih elemenata uočljiv je ujednačen izgled krivi koje prikazuju ekstrahovane količine u uzorcima muljeva iz otpadnog kanala dok za neke elemente te količine su najveće u odnosu na preostale uzorke (slike 16-18). Dobijeni rezultati ukazuju na veću adsorpcionu moć organske supstance u uzorcima muljeva u odnosu na uzorke sedimenata. U uzorcima muljeva je određena veća količina organske meterije koja se ogleda u većem procentualnom učešću ukupnog ugljenika, C (%) u elementarnoj analizi muljeva (tabela 14), pogotovo uzorka K4. Pored muljeva i površinski uzorci Dekantera (D), Messer (M), Vojlovice (V) i Pančevo zgrada (PZ) imaju veći udeo C u odnosu na preostale uzorke sa tih lokaliteta.

Posmatrajući Pirsonove korelacione koeficijente između tehnika korišćenih za ekstrahovanje elemenata u trećoj fazi BCR ekstrakcije (tabela 32), uočljivo je da su za većinu koncentracija elemenata dobijene značajne pozitivne korelacije, kao i nakon prethodne dve faze. Elementi čije koncentracije dobijene nakon sve tri tehnike nemaju značajne korelacije su Ca, Cd, Co, Mg, Na, Pb, As i Se. Ekstrahovane količine Ca, Co i Mg dobijene pomoću ultrazvuka i mikrotalasa su značajno korelisane, dok u preostale dve kombinacije nisu. Nakon druge faze BCR ekstrakcije (tabela 17) takođe je dobijena značajna korelacija korelisanjem ekstrahovanih količina Co dobijenih nakon MTSE i UZSE. Razlika između ovih metala je u tome što su sličnije i veće količine Ca i Mg dobijene brzim tehnikama ekstrahovanja u odnosu na dobijene KSE, a u slučaju Co je obrnuto. Koncentracije Cd i Na dobijene konvencionalnom i mikrotalasanom ekstrakcijom su značajno korelisane, dok u slučaju ekstrahovanih količina organski vezanog Pb

korelisane su količine dobijene nakon KSE i UZSE, kao i količine Pb dobijene primenom brzih tehnika ekstrahovanja, MTSE i UZSE.

4.1.2.3.1. ANOVA test - treća faza BCR ekstrakcije

Rezultate ANOVA testa srednjih vrednosti koncentracija elemenata u uzorcima iz 10 ispitivanih lokaliteta dobijenih nakon treće faze BCR ekstrakcije trima tehnikama ekstrahovanja, prikazali smo u tabeli 34. Iz tabele se vidi da za većinu ispitivanih elemenata ne postoji značajna razlika između srednjih vrednosti dobijenih trima tehnikama ekstrahovanja (P > 0,05) dok za ekstrahovane koncentracije Ca, Co, K, Na, Ni, Si i Sr (tabela 34) ne postoji značajna razlika u koncentracijama dobijenim nakon primene brzih tehnika ekstrahovanja (MTSE i UZSE).

U slučaju Ca i Sr niže srednje vrednosti koncentracija su dobijene nakon KSE dok su veće i slične vrednosti dobijene nakon MTSE i UZSE.

Drugačiji je odnos kod ostalih elemenata, najveće vrednosti ekstrahovanih koncentracija su dobijene nakon KSE, dok manje a slične srednje vrednosti su dobijene nakon MTSE i UZSE.

Koncentracije Ca pored pozitivne i značajne korelacije sa koncentracijama Sr, su korelisane i sa koncentracijama K, Ni i Si (tabela 81c, prilog) nakon KSE, dok nakon brzih tehnika ekstrahovanja ekstrahovane količine Ca su pozitivno i značajno korelisane samo sa količinama Sr (tabele 82c i 83c). Dobijeni rezultat korelacija može se objasniti sa pretpostavkom da brze tehnike ekstrahovanja u prethodna dva BCR koraka nisu u dovoljnoj meri rastvorile karbonate u uzorcima i da se ta nerastvorna količina karbonata rastvara primenom mikrotalasa i ultrazvučnih talasa u trećem koraku BCR ekstrakcije.

4.1.2.3.2. Osnovna geohemijska koncentracija elemenata – treća faza BCR ekstrakcije

Posmatrajući koncentracije ispitivanih elemenata nakon treće faze BCR ekstrakcije pomoću rotacione mućkalice vidi se da su kod većine elemenata maksimalne vrednosti koncentracija iznad *baseline* ranga za dati element (tabela 73, prilog).

Slika 17. Distribucija ektrahovanih koncentracija K, Mg, Mn, Na, Ni, Pb, Si i Sn nakon treće faze BCR ekstrakcije primenom KSE, MTSE i UZSE

Tabela 32. Pirsonovi korelacioni koeficijenti između elemenata i tehnika ekstrakcije nakon treće faze BCR ekstrakcije

					•				•				•				
	Al-KSE	Al-MTSE		Ba-KSE	Ba-MTSE		Ca-KSE	Ca-MTSE		Cd-KSE	Cd-MTSE		Co-KSE	Co-MTSE		Cr-KSE	Cr-MTSE
Al-MTSE	0,733**		Ba-MTSE	0,619**		Ca-MTSE	-0,010		Cd-MTSE	0,165		Co-MTSE	0,108		Cr-MTSE	0,678**	
Al-UZSE	0,750**	0,829**	Ba-UZSE	0,515**	0,806**	Ca-UZSE	0,118	0,645**	Cd-UZSE	0,914**	0,174	Co-UZSE	0,093	0,776**	Cr-UZSE	0,550**	0,965**
	Cu-KSE	Cu-MTSE		Fe-KSE	Fe-MTSE		K-KSE	K-MTSE		Mg-KSE	Mg-MTSE		Mn-KSE	Mn-MTSE		Na-KSE	Na-MTSE
Cu-MTSE	0,548**		Fe-MTSE	0,852**		K-MTSE	0,639**		Mg-MTSE	0,027		Mn-MTSE	0,680**		Na-MTSE	-0,068	
Cu-UZSE	0,767**	0,893**	Fe-UZSE	0,794**	0,940**	K-UZSE	0,687**	0,886**	Mg-UZSE	-0,198	0,721**	Mn-UZSE	0,687**	0,763**	Na-UZSE	0,328*	0,266
	Ni-KSE	Ni-MTSE		Pb-KSE	Pb-MTSE		Si-KSE	Si-MTSE		Sn-KSE	Sn-MTSE		Sr-KSE	Sr-MTSE		Ti-KSE	Ti-MTSE
Ni-MTSE	0,584**		Pb-MTSE	0,247		Si-MTSE	0,757**		Sn-MTSE	0,854**		Sr-MTSE	0,321*		Ti-MTSE	0,388*	
Ni-UZSE	0,538**	0,890**	Pb-UZSE	0,411**	0,911**	Si-UZSE	0,703**	0,786**	Sn-UZSE	0,793**	0,942**	Sr-UZSE	0,496**	0,568**	Ti-UZSE	0,334*	0,591**
	V-KSE	V-MTSE		Zn-KSE	Zn-MTSE		As-KSE	As-MTSE		Hg-KSE	Hg-MTSE		Se-KSE	Se-MTSE			
V-MTSE	0,882**		Zn-MTSE	0,808**		As-MTSE	0,121		Hg-MTSE	0,444**		Se-MTSE	-0,283		1		
V-UZSE	0,855**	0,888**	Zn-UZSE	0,796**	0,946**	As-UZSE	0,172	0,221	Hg-UZSE	0,275	0,844**	Se-UZSE	0,113	0,156			

** Značajnost korelacije za 99% nivo značajnosti.
* Značajnost korelacije za 95% nivo značajnosti.

Tabela 33. Pirsonovi korelacioni koeficijenti između elemenata i tehnika ekstrakcije nakon četvrte faze SE

	Al-KSE	Al-MTSE		Ba-KSE	Ba-MTSE		Ca-KSE	Ca-MTSE		Cd-KSE	Cd-MTSE		Co-KSE	Co-MTSE		Cr-KSE	Cr-MTSE
Al-MTSE	0,825**		Ba-MTSE	0,756**		Ca-MTSE	0,389*		Cd-MTSE	0,661**		Co-MTSE	0,730**		Cr-MTSE	0,999**	
Al-UZSE	0,856**	0,857**	Ba-UZSE	0,793**	0,937**	Ca-UZSE	0,262	0,541**	Cd-UZSE	0,782**	0,590**	Co-UZSE	0,750**	0,736**	Cr-UZSE	0,999**	0,998**
	Cu-KSE	Cu-MTSE		Fe-KSE	Fe-MTSE		K-KSE	K-MTSE		Mg-KSE	Mg-MTSE		Mn-KSE	Mn-MTSE		Na-KSE	Na-MTSE
Cu-MTSE	0,569**		Fe-MTSE	0,833**		K-MTSE	0,849**		Mg-MTSE	0,756**		Mn-MTSE	0,295		Na-MTSE	0,167	
Cu-UZSE	0,810**	0,721**	Fe-UZSE	0,831**	0,762**	K-UZSE	0,878**	0,856**	Mg-UZSE	0,849**	0,754**	Mn-UZSE	0,338*	0,738**	Na-UZSE	0,704**	0,258
	Ni-KSE	Ni-MTSE		Pb-KSE	Pb-MTSE		Si-KSE	Si-MTSE		Sn-KSE	Sn-MTSE		Sr-KSE	Sr-MTSE		Ti-KSE	Ti-MTSE
Ni-MTSE	0,456**		Pb-MTSE	0,336*		Si-MTSE	-0,065		Sn-MTSE	0,837**		Sr-MTSE	0,262		Ti-MTSE	0,758**	
Ni-UZSE	0,252	0,169	Pb-UZSE	0,298	0,731**	Si-UZSE	-0,154	0,186	Sn-UZSE	0,824**	0,792**	Sr-UZSE	0,478**	0,560**	Ti-UZSE	0,442**	0,418**
	V-KSE	V-MTSE		Zn-KSE	Zn-MTSE		As-KSE	As-MTSE		Hg-KSE	Hg-MTSE		Se-KSE	Se-MTSE			
V-MTSE	0,845**		Zn-MTSE	0,846**		As-MTSE	0,384*		Hg-MTSE	-0,041		Se-MTSE	0,304				
V-UZSE	0,838**	0,843**	Zn-UZSE	0,539**	0,430**	As-UZSE	0,516**	0,570**	Hg-UZSE	-0,060	0,936**	Se-UZSE	0,581**	0,176			

** Značajnost korelacije za 99% nivo značajnosti.

* Značajnost korelacije za 95% nivo značajnosti

Slika 18. Distribucija ektrahovanih koncentracija Sr, Ti, V, Zn, As, Hg i Se nakon treće faze BCR ekstrakcije primenom KSE, MTSE i UZSE

Rezultati i diskusija

Tabela 34. ANOVA test srednjih vredosti koncentracija elemenata dobijenih trima tehnikama ekstrakcije nakon treće faze BCR ekstrakcije za pojedinačna mesta uzorkovanja (n=10)												
Al-KSE-III Al-MTSE-III Al-UZSE-III	P = 0,0627	Ba-KSE-III Ba-MTSE-III Ba-UZSE-III	P = 0,4488	Ca-KSE-III Ca-MTSE-III Ca-UZSE-III	$P = 1,38 \cdot 10^{-5}$	Cd-KSE-III Cd-MTSE-III Cd-UZSE-III	P = 0,6883	Co-KSE-III Co-MTSE-III Co-UZSE-III	P = 0,0195	Cr-KSE-III Cr-MTSE-III Cr-UZSE-III	P = 0,7150	
/		/		Ca-MTSE-III Ca-UZSE-III	P = 0,5215	/		Co-MTSE-III Co-UZSE-III	P = 0,3013	/		
Cu-KSE-III Cu-MTSE-III Cu-UZSE-III	P = 0,5698	Fe-KSE-III Fe-MTSE-III Fe-UZSE-III	P = 0,1181	K-KSE-III K-MTSE-III K-UZSE-III	P = 0,0316	Mg-KSE-III Mg-MTSE-III Mg-UZSE-III	P = 0,2391	Mn-KSE-III Mn-MTSE-III Mn-UZSE-III	P = 0,1576	Na-KSE-III Na-MTSE-III Na-UZSE-III	$P = 3,68 \cdot 10^{-6}$	
/		/		K-MTSE-III K-UZSE-III	P = 0,9832	/		/		Na-MTSE-III Na-UZSE-III	P = 0,1007	
Ni-KSE-III Ni-MTSE-III Ni-UZSE-III	P = 0,0099	Pb-KSE-III Pb-MTSE-III Pb-UZSE-III	P = 0,6617	Si-KSE-III Si-MTSE-III Si-UZSE-III	$P = 9,85 \cdot 10^{-5}$	Sn-KSE-III Sn-MTSE-III Sn-UZSE-III	P = 0,1086	Sr-KSE-III Sr-MTSE-III Sr-UZSE-III	$P = 1,29 \cdot 10^{-5}$	Ti-KSE-III Ti-MTSE-III Ti-UZSE-III	P = 0,6015	
Ni-MTSE-III Ni-UZSE-III	P = 0,5446	/		Si-MTSE-III Si-UZSE-III	P = 0,7691	/		Sr-MTSE-III Sr-UZSE-III	P = 0,7242	/		
V-KSE-III V-MTSE-III V-UZSE-III	P = 0,9146	Zn-KSE-III Zn-MTSE-III Zn-UZSE-III	P = 0,5871	As-KSE-III As-MTSE-III As-UZSE-III	P = 0,6575	Hg-KSE-III Hg-MTSE-III Hg-UZSE-III	P = 0,8492	Se-KSE-III Se-MTSE-III Se-UZSE-III	P = 0,2101			
/		/		/		/		/				

^{*}Značajna razlika u srednjim vrednostima i varijacijama za P<0,05 Tabela 35. ANOVA test srednjih vredosti koncentracija elemenata dobijenih trima tehnikama ekstrakcije nakon četvrte faze SE za pojedinačna mesta uzorkovanja (n=10)

		5	<u> </u>	J		J		1 5			,
Al-KSE-IV Al-MTSE-IV Al-UZSE-IV	P = 0,5606	Ba-KSE-IV Ba-MTSE-IV Ba-UZSE-IV	P = 0,4971	Ca-KSE-IV Ca-MTSE-IV Ca-UZSE-IV	P = 0,0011	Cd-KSE-IV Cd-MTSE-IV Cd-UZSE-IV	P = 0,3552	Co-KSE-IV Co-MTSE-IV Co-UZSE-IV	P = 0,0174	Cr-KSE-IV Cr-MTSE-IV Cr-UZSE-IV	P = 0,9545
/		/			*	/		Co-KSE-IV Co-UZSE-IV	P = 0,1964**	/	
Cu-KSE-IV Cu-MTSE-IV Cu-UZSE-IV	P = 0,1606	Fe-KSE-IV Fe-MTSE-IV Fe-UZSE-IV	P = 0,6970	K-KSE-IV K-MTSE-IV K-UZSE-IV	P = 0,7076	Mg-KSE-IV Mg-MTSE-IV Mg-UZSE-IV	P = 0,0100	Mn-KSE-IV Mn-MTSE-IV Mn-UZSE-IV	P = 0,0927	Na-KSE-IV Na-MTSE-IV Na-UZSE-IV	P = 0,0001
/		/		/		Mg-KSE-IV Mg-UZSE-IV	P = 0,3843	/		Na-KSE-IV Na-UZSE-IV	P = 0,2397
Ni-KSE-IV Ni-MTSE-IV Ni-UZSE-IV	P = 0,2216	Pb-KSE-IV Pb-MTSE-IV Pb-UZSE-IV	P = 0,4668	Si-KSE-IV Si-MTSE-IV Si-UZSE-IV	P = 0,1619	Sn-KSE-IV Sn-MTSE-IV Sn-UZSE-IV	P = 0,3412	Sr-KSE-IV Sr-MTSE-IV Sr-UZSE-IV	P = 0,0620	Ti-KSE-IV Ti-MTSE-IV Ti-UZSE-IV	P = 0,6238
/		/		/		/		/		/	
V-KSE-IV V-MTSE-IV V-UZSE-IV	P = 0,4678	Zn-KSE-IV Zn-MTSE-IV Zn-UZSE-IV	P = 0,2307	As-KSE-IV As-MTSE-IV As-UZSE-IV	P = 0,7038	Hg-KSE-IV Hg-MTSE-IV Hg-UZSE-IV	P = 0,5678	Se-KSE-IV Se-MTSE-IV Se-UZSE-IV	P = 0,0134	/	
/		/		/		/		Se-KSE-IV Se-UZSE-IV	P = 0,1960		

*Ca-KSE-IV i Ca-UZSE-IV P = 0,0123; Ca-MTSE-IV i Ca-UZSE-IV P = 0,0234; **Co-MTSE-IV i Co-UZSE-IV P = 0,1026

Ovi rezultati ukazuju da u nekim uzorcima ekstrahovane koncentracije prevazilaze opsege koji bi trebalo da predstavljaju očekivane vrednosti na osnovu ekstrahovanih koncentracija KSE.

Dobijene koncentracije elemenata koje se nalaze unutar baseline opsega, Mg, Mn Ni i Se, imaju ujednačene koncentracije u svim uzorcima. Na lokalno zagađenje ispitivanih uzoraka mogu da ukažu ekstrahovane koncentracije elemenata koje su veće od od odgovarajućeg baseline opsega. Na osnovu koncentracija koje su veće od baseline opsega, elementi se mogu grupisati po uzorcima, tako da veće ekstrahovane koncentracije Ba, Cr, Cu, Pb, Ti, Zn i Hg su dobijene u uzorcima sedimenata Dekantra (D) i u uzorku sa oznakom M25 (20-25 cm) sa lokaliteta Messer, kao što se sa slika 16-18 vidi. Ovi metali sa većinom preostalih ispitivanih elemenata (Al, Ca, Cd, Fe, K, Na, Si, Sn, Sr, V i As) su ekstrahovani u većim količinama u uzorcima muljeva iz otpadnog kanala uzetih sa lokacija K4 i K3 (slika 2). Iako ekstrahovane količine Ni ne premašuju baseline opseg koji je dobijen na osnovu njegovih ekstrahovanih koncentracija (tabela 59, prilog), najveća količina ekstrahovanog Ni u trećoj fazi BCR ekstrakcije je dobijena u uzorku K4. Maksimalna ekstrahovana količina V (30,09 µg/g) je dobijena u istom uzorku. Dobijeni rezultat ukazuje na prisutno naftnog zagađenja, što nam pozitivna i značajna korelacija između ekstrahovanih koncentracija Ni i V u ispitivanim uzorcima potvrđuje (r = 0,688, tabela 81c, prilog), kao što je bio slučaj nakon prve dve faze BCR ekstrakcije. Značajnija korelacija između ova dve metala je dobijena u uzorcima muljeva (r = 0,990).

Upoređujući opsege osnovnih (*baseline*) geohemijskih koncentracije i maksimalne ekstrahovane količine elemenata nakon treće faze BCR ekstrakcije dobijene MTSE (tabela 74, prilog), vidi se da za većinu ispitivanih elemenata, sem za Mg i Se, maksimalne vrednosti ekstrahovanih koncentracija premašuju *baseline* opsege. Geohemijski opsezi su dobijeni na osnovu ekstrahovanih koncentracija u ispitivanim uzorcima pomoću mikrotalasa. Na osnovu maksimalnih ekstrahovanih koncentracija ovi metali se mogu grupisati, tako da su veće količine Al, Co, K i Si od *baseline* opsega dobijene u uzorcima sa oznakom P (put u petrohemijskom kompleksu), M (Messer), V (Vojlovica), kao i kod uzoraka muljeva K3 i K4. U sledećoj grupaciji elemenata čija ekstrahovana količina je veća od opsega su Ba, Cd, Co, Cr, Cu, Pb, Zn, As i Hg i to u uzorcima sa lokaliteta D
(Dekanter). Nikal i V čine grupu kod koje je maksimalna ekstrahovana količina dobijena u uzorku K4, što nam ukazuje na postojanje naftnog zagađenja u ispitivanom uzorku mulja. Slično ponašanje ovih metala je dobijeno u prethodne dve faze BCR ekstrakcije.

Osnovne geohemijske koncentracije i maksimalne ekstrahovane količine elemenata nakon treće faze BCR ekstrakcije dobijene pomoću ultrazvuka su prikazane u tabeli 75 (prilog). Svi elementi sem Se, imaju maksimalne ekstrahovane koncentracije koje premašuju osnovne geohemijske opsege koncentracija. Kao i kod prethodnih tehnika, postoji sličnost u ponašanju ekstrahovanih količina elemenata po ispitivanim uzorcima. Tako ekstrahovane količine Ba, Cr, Cu, Fe, Na, Pb, Si, Sn, Zn i Hg koje su iznad odgovarajućih opsega su dobijene nakon razaranja organske supstance i/ili sulfida sedimenata Dekantera (D). Slično ponašanje pokazuju Al, K, Mn, Ni, Si, V i As, kao i Fe i Sn, Ca i Sr na osnovu ekstrahovanih količina po uzorcima koje premašuju geohemijske opsege datih elemenata. Kao kod prethodne dve tehnike, Ni i V čine grupu kod koje je maksimalna ekstrahovana količina dobijena u uzorku K4, što nam ukazuje na postojanje naftnog zagađenja u ispitivanom uzorku mulja.

4.1.2.3.3. Test normalne distribucije – treća faza BCR ekstrakcije

Dobijene koncentracije nakon treće faze BCR ekstrakcije primenom KSE su bile ispitane pomoću Kolgomorov-Smirnovljevog testa i dobijeni rezultati su prikazani u tabeli 36. Kao što se iz tabele vidi, dobijene ekstrahovane koncentracije Ba, Cd, Co, Cu, Fe, Pb, Sn, Sr, Ti, Zn, Hg i Se nisu normalno distribuirane. Logaritmovanjem ekstrahovanih koncentracija i ponavljanjem testa, za sve elemente sem za Se, dobijena je normalna distribucija. Posmatrajući dobijene koncentracije Se (tabela 59, prilog) vide se ujednačene, u okviru granice detekcije, ekstrahovane koncentracije u ispitivanim uzorcima. Dobijene koncentracije nisu normalno distribuirane.

Kolgomorov-Smirnovljev test dobijenih koncentracija nakon treće faze BCR ekstrakcije primenom MTSE je prikazan u tabeli 37. Iz tabele je vidljivo da nakon logaritmovanja, koncentracije Hg i Se ne zadovoljavaju uslov normalnosti. Koncentracije Hg i Se su značajno korelisane, r = 0,722, (tabela 82c, prilog). Posmatrajući dobijene ekstrahovane koncentracije, tabela 60 (prilog), vidi se da značajnije veće koncentracije Hg i Se su ekstrahovane u uzorcima uzetih sa lokaliteta Dekantera (D) i to sa dubina: 10-15 cm (D15) i 20-25 cm (D25), kao i u uzorku K2. Ukoliko ponovimo test i korelacionu analizu između ovih elemenata bez ekstrahovanih koncentracija u navedenim uzorcima, ne dobijamo ni normalnu distribuciju ni značajnu korelaciju.

Kolgomorov-Smirnovljev test dobijenih koncentracija nakon treće BCR faze primenom UZSE, prikazan je u tabeli 38. Iz tabele je vidljivo da nakon logaritmovanja koncentracija dobijenih nakon treće faze BCR ekstrakcije, koncentracije Hg i Se ne zadovoljavaju uslov normalnosti, kao nakon MTSE (tabela 37). Za razliku od pozitivne značajne korelacije između koncentracija Hg i Se koja se dobila primenom MTSE, primenom UZSE nije dobijena značajna korelacija (tabela 83c, prilog). Posmatrajući ekstrahovane koncentracije metala u ispitivanim uzorcima (tabela 61, prilog) vide se veće koncentracije Hg u sedimentima Dekantera (D). Ukoliko isključimo ekstrahovane vrednosti dobijene u sedimentima Dekantera i ponovimo test, nećemo dobiti normalnu distribuciju za Hg i Se.

Sumirajući elemente koji ne zadovoljavaju normalnu distribuciju za sve tri tehnike, u daljoj statističkoj obradi rezultata nećemo koristit Hg i Se, kao što je bio slučaj nakon druge faze BCR ekstrakcije.

4.1.2.3.4. Faktorska i klasterska analiza – treća faza BCR ekstrakcije

Primenom Varimaks rotacije u faktorskoj analizi koncentracija dobijenih nakon treće faze BCR ekstrakcije trima tehnikama, dobijeni su faktori prikazani u tabelama 39-41. Kao što se iz tabela vidi dobijeno je po četiri faktora za KSE i UZSE, a nakon MTSE je dobijeno pet faktora.

Na osnovu dobijenih rezultata faktorske, klasterske i korelacione analize ekstrahovanih koncentracija, može se uočiti postojanje dve grupe podklastera u klasterima dobijenim nakon KSE, MTSE i UZSE. Jednu podgrupu čine ekstrahovane količine Fe, Sn, kao i Al, K, Si i Mn. U toj grupu su i ekstrahovane koncentracije Cd, As, Co, V i Ni (tabele 39-41 i slike 19a-19c). Koncentracije gore navedenih elemenata su značajno korelisane što

se i iz tabela 81c, 82c, 83c (prilog) može videti. Razliku čini prisustvo koncentracija Ca u navedenom podklasteru, dobijenom nakon klasterske analize koncentracija nakon KSE (slika 19a). Koncentracije Ca su pozitivno korelisane sa ekstrahovanim koncentracijama Al, Mn, Mg, Fe, K, i Si (posmatramo samo makroelemente) dobijenim nakon kiselog razlaganja organske supstance ispitivanih uzoraka (tabela 81c, prilog) nakon KSE. Pored ovih makromolekula ekstrahovane koncentracije Ca su pozitivno i značajno korelisane i sa koncentracijama Cr, Cu, Ni, Sn, Sr, Ti, V, As i Se. Kod MTSE i UZSE, ekstrahovane količine Ca sa elementima koji čine gore navedeni podklaster nemaju značajnih ili imaju značajne negativne korelacije (tabela 82c i 83c, prilog). Kod bržih tehnika ekstrahovanja, MTSE i UZSE, koncentracije Ca su jedino značajno i pozitivno korelisane sa koncentracijama Mg i Sr. Kao što je u poglavlju 4.1.2.3.1. već pojašnjeno ovde je još jednom potvrđeno, da brže tehnike ekstrakcije nisu rastvorile ukupnu količinu karbonata u uzorcima, te se ta količina rastvarala i u trećem koraku BCR ekstrakcije mikrotalasima i ultrazvučnim talasima.

Drugi podklaster kod sve tri klasterske analize (slike 19a-19c) čine ekstrahovane koncentracije Ba, Cr, Cu, Pb i Zn. Na osnovu korelacione analize ekstrahovanih koncentracija nakon KSE, vidi se da su koncentracije ovih metala međusobno značajno i pozitivno korelisane, uključujući i korelacije sa ekstrahovanim koncetracijama Hg (tabela 81c, prilog). Količina Hg je pozitivno i značajno korelisana sa količinama Ba (r = 0,746), Cr (r = 0,745), Pb (r = 0,909) i Zn (r = 0,486), dok je negativno, značajno korelisana sa koncentracijama Ni (r = -0,332). Najbolja korelacija Hg, na osnovu Pirsonovog koeficijenta, dobijena je sa koncentracijama Pb nakon razlaganja organske materije i/ili sulfida (tabela 81c, prilog). Pored koncentracija Hg, koncentracije Ba i Pb imaju značajnu negativnu korelaciju sa koncentracijama Ni (tabela 81c, prilog). Pored navedenih metala, u podklasteru se nalaze i ekstrahovane količine Sr nakon KSE. Prisustvo Sr u podklasteru se može objasniti i njegovom sulfatnom prirodom, koji zajedno sa Ba čine supstrat Cr, Cu, Pb, Zn i Hg u ispitivanim uzorcima. Metali koji čine drugi podklaster (slika 19b) su značajno i pozitivno korelisani nakon MTSE (tabela 82c, prilog). To je izraženo kod koncentracija Cu i Pb koju su pozitivno i značajno korelisane sa koncentracijama Ba, Cr, Zn kao i Hg i Se.

Tabela 36. K	Colmog	orov-Sı	nirnov	ljev tes	t ekstra	ahovan	ih kono	centrac	ija eler	nenta 1	nakon	treće fa	aze BCF	R ekstra	kcije p	rimenc	m KSI	3					
	Al	Ва	Ca	Cd	Со	Cr	Cu	Fe	К	Mg	Mn	Na	Ni	Pb	Si	Sn	Sr	Ti	v	Zn	As	Hg	Se
N	41	41	41	41	41	41	41	41	41	41	41	41	41	41	41	41	41	41	41	41	41	41	41
Kolmogorov- Smirnov Z	0,657	2,625	1,174	1,989	1,942	1,354	1,809	1,422	1,081	0,960	0,571	1,254	0,490	2,665	0,659	1,428	1,502	1,570	1,141	1,731	1,124	2,434	1,677
Asymp, Sig, (2-tailed)	0,782	0,000	0,127	0,001	0,001	0,051	0,003	0,035	0,193	0,315	0,901	0,086	0,970	0,000	0,778	0,034	0,022	0,014	0,148	0,005	0,160	0,000	0,007
III KSE	lnBa	lnCd	lnCo	lnCu	lnFe	e lnP	b lns	Sn ln	Sr lı	nTi l	nZn	lnHg	lnSe										
N	41	41	41	41	4	1 4	1 4	41 4	41	41	41	41	41										
Kolmogorov- Smirnov Z	1,069	0,794	1,054	1,230	0,894	4 0,99	1 0,93	34 0,70	68 1,2	205 0,	,887	0722	1,761										
Asymp, Sig, (2-tailed)	0,203	0,554	0,217	0,097	0,40	1 0,28	0 0,34	18 0,5	97 0,1	110 0,	,411 (),674	0,004										

Tabela 37. Kolmogorov-Smirnovljev test ekstrahovanih koncentracija elementa nakon treće faze BCR ekstrakcije primenom MTSE

Al	Ва	Ca	Cd	Co	Cr	Cu	Fe	К	Mg	Mn	ı Na	ι N	i Pb	Si	Sn	Sr	Ti	v	Zn	As	Hg	Se
41	41	41	41	41	41	41	41	41	41	41	41	4	1 41	41	41	41	41	41	41	41	41	41
1,692	0,825	0,930	2,228	1,411	1,332	2,934	1,986	1,094	1,245	0,918	1,104	1,363	3 2,543	1,708	1,951	1,375	0,750	1,074	2,556	1,124	2,632	2,372
0.007	0 503	0 353	0.000	0.037	0.057	0.000	0.001	0.182	0.090	0 368	0.175	5 0.049	0,000	0.006	0.001	0.046	0.628	0199	0.000	0.160	0.000	0.000
0,007	0,505	0,333	0,000	0,037	0,057	0,000	0,001	0,102	0,070	0,500	0,175	0,04	,000	0,000	0,001	0,040	0,020	0177	0,000	0,100	0,000	0,000
lnAl	lnCd	lnCo	lnCu	ı lnF	e lnl	Ni Inl	Pb lr	ıSi lı	nSn	lnSr	lnZn	lnHg	lnSe									
41	41	- 41	41	- 1 4	-1 4	41 4	41	41	41	41	41	41	41									
0,829	1,002	0,946	5 1,193	3 0,60	2 0,67	0 0,6	35 0,9	25 0,5	565 0	,899	0,668	1,621	2,227									
0.498	0.268	0 332	0.116	5 0.86	1 0.76	51 0.7	36 03	59 0.0	07 0	39/	0.764	0.010	0.000									
	Al 41 1,692 0,007 InAl 41 0,829 0,498	Al Ba 41 41 1,692 0,825 0,007 0,503 lnAl lnCd 41 41 0,829 1,002 0,498 0.268	Al Ba Ca 41 41 41 1,692 0,825 0,930 0,007 0,503 0,353 lnAl lnCd lnCc 41 41 41 0,829 1,002 0,946 0,498 0,268 0,332	Al Ba Ca Cd 41 41 41 41 41 1,692 0,825 0,930 2,228 0,007 0,503 0,353 0,000 lnAl lnCd lnCo lnCu 41 41 41 41 0,829 1,002 0,946 1,192 0,498 0,268 0,332 0,116	Al Ba Ca Cd Co 41 41 41 41 41 41 1,692 0,825 0,930 2,228 1,411 0,007 0,503 0,353 0,000 0,037 lnAl lnCd lnCo lnCu lnF 41 41 41 41 4 0,829 1,002 0,946 1,193 0,60 0,498 0,268 0,332 0,116 0.866	Al Ba Ca Cd Co Cr 41 41 41 41 41 41 41 1,692 0,825 0,930 2,228 1,411 1,332 0,007 0,503 0,353 0,000 0,037 0,057 lnAl lnCd lnCo lnCu lnFe lnN 41 41 41 41 41 41 41 0,829 1,002 0,946 1,193 0,602 0,67 0,498 0,268 0.332 0,116 0.861 0.76	Al Ba Ca Cd Co Cr Cu 41 41 41 41 41 41 41 41 1,692 0,825 0,930 2,228 1,411 1,332 2,934 0,007 0,503 0,353 0,000 0,037 0,057 0,000 lnAl lnCd lnCo lnCu lnFe lnNi lnI 41 41 41 41 41 41 41 41 0,829 1,002 0,946 1,193 0,602 0,670 0,662 0,498 0,268 0,332 0,116 0,861 0,761 0,771	Al Ba Ca Cd Co Cr Cu Fe 41 41 41 41 41 41 41 41 41 1,692 0,825 0,930 2,228 1,411 1,332 2,934 1,986 0,007 0,503 0,353 0,000 0,037 0,057 0,000 0,001 InAl InCd InCo InCu InFe InNi InPb Ir 41 41 41 41 41 41 41 41 0,829 1,002 0,946 1,193 0,602 0,670 0,685 0,9 0,498 0,268 0,332 0,116 0,861 0,761 0,736 03	Al Ba Ca Cd Co Cr Cu Fe K 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 <td>Al Ba Ca Cd Co Cr Cu Fe K Mg 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41<td>Al Ba Ca Cd Co Cr Cu Fe K Mg Mr 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41<td>Al Ba Ca Cd Co Cr Cu Fe K Mg Mn Na 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41<td>Al Ba Ca Cd Co Cr Cu Fe K Mg Mn Na Ni 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41<td>AlBaCaCdCoCrCuFeKMgMnNaNiPb4141414141414141414141414141411,6920,8250,9302,2281,4111,3322,9341,9861,0941,2450,9181,1041,3632,5430,0070,5030,3530,0000,0370,0570,0000,0010,1820,0900,3680,1750,0490,000lnAllnCdlnColnCulnFelnNilnPblnSilnSnlnSrlnZnlnHglnSe41414141414141414141414141410,8291,0020,9461,1930,6020,6700,6850,9250,5650,8990,6681,6212,2270,4980,2680,3320,1160,8610,7610,73603590,9070,3940,7640,0100,000</td><td>Al Ba Ca Cd Co Cr Cu Fe K Mg Mn Na Ni Pb Si 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41<!--</td--><td>Al Ba Ca Cd Co Cr Cu Fe K Mg Mn Na Ni Pb Si Sn 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41<!--</td--><td>Al Ba Ca Cd Co Cr Cu Fe K Mg Mn Na Ni Pb Si Sn Sr 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41<td>Al Ba Ca Cd Co Cr Cu Fe K Mg Mn Na Ni Pb Si Sn Sr Ti 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41<td>Al Ba Ca Cd Co Cr Cu Fe K Mg Mn Na Ni Pb Si Sn Sr Ti V 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41<td>Al Ba Ca Cd Co Cr Cu Fe K Mg Mn Na Ni Pb Si Sn Sr Ti V Zn 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41<td>Al Ba Ca Cd Co Cr Cu Fe K Mg Mn Na Ni Pb Si Sn Sr Ti V Zn As 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 <td< td=""><td>Al Ba Ca Cd Co Cr Cu Fe K Mg Mn Na Ni Pb Si Sn Sr Ti V Zn As Hg 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 <td< td=""></td<></td></td<></td></td></td></td></td></td></td></td></td></td></td>	Al Ba Ca Cd Co Cr Cu Fe K Mg 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 <td>Al Ba Ca Cd Co Cr Cu Fe K Mg Mr 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41<td>Al Ba Ca Cd Co Cr Cu Fe K Mg Mn Na 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41<td>Al Ba Ca Cd Co Cr Cu Fe K Mg Mn Na Ni 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41<td>AlBaCaCdCoCrCuFeKMgMnNaNiPb4141414141414141414141414141411,6920,8250,9302,2281,4111,3322,9341,9861,0941,2450,9181,1041,3632,5430,0070,5030,3530,0000,0370,0570,0000,0010,1820,0900,3680,1750,0490,000lnAllnCdlnColnCulnFelnNilnPblnSilnSnlnSrlnZnlnHglnSe41414141414141414141414141410,8291,0020,9461,1930,6020,6700,6850,9250,5650,8990,6681,6212,2270,4980,2680,3320,1160,8610,7610,73603590,9070,3940,7640,0100,000</td><td>Al Ba Ca Cd Co Cr Cu Fe K Mg Mn Na Ni Pb Si 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41<!--</td--><td>Al Ba Ca Cd Co Cr Cu Fe K Mg Mn Na Ni Pb Si Sn 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41<!--</td--><td>Al Ba Ca Cd Co Cr Cu Fe K Mg Mn Na Ni Pb Si Sn Sr 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41<td>Al Ba Ca Cd Co Cr Cu Fe K Mg Mn Na Ni Pb Si Sn Sr Ti 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41<td>Al Ba Ca Cd Co Cr Cu Fe K Mg Mn Na Ni Pb Si Sn Sr Ti V 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41<td>Al Ba Ca Cd Co Cr Cu Fe K Mg Mn Na Ni Pb Si Sn Sr Ti V Zn 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41<td>Al Ba Ca Cd Co Cr Cu Fe K Mg Mn Na Ni Pb Si Sn Sr Ti V Zn As 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 <td< td=""><td>Al Ba Ca Cd Co Cr Cu Fe K Mg Mn Na Ni Pb Si Sn Sr Ti V Zn As Hg 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 <td< td=""></td<></td></td<></td></td></td></td></td></td></td></td></td></td>	Al Ba Ca Cd Co Cr Cu Fe K Mg Mr 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 <td>Al Ba Ca Cd Co Cr Cu Fe K Mg Mn Na 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41<td>Al Ba Ca Cd Co Cr Cu Fe K Mg Mn Na Ni 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41<td>AlBaCaCdCoCrCuFeKMgMnNaNiPb4141414141414141414141414141411,6920,8250,9302,2281,4111,3322,9341,9861,0941,2450,9181,1041,3632,5430,0070,5030,3530,0000,0370,0570,0000,0010,1820,0900,3680,1750,0490,000lnAllnCdlnColnCulnFelnNilnPblnSilnSnlnSrlnZnlnHglnSe41414141414141414141414141410,8291,0020,9461,1930,6020,6700,6850,9250,5650,8990,6681,6212,2270,4980,2680,3320,1160,8610,7610,73603590,9070,3940,7640,0100,000</td><td>Al Ba Ca Cd Co Cr Cu Fe K Mg Mn Na Ni Pb Si 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41<!--</td--><td>Al Ba Ca Cd Co Cr Cu Fe K Mg Mn Na Ni Pb Si Sn 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41<!--</td--><td>Al Ba Ca Cd Co Cr Cu Fe K Mg Mn Na Ni Pb Si Sn Sr 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41<td>Al Ba Ca Cd Co Cr Cu Fe K Mg Mn Na Ni Pb Si Sn Sr Ti 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41<td>Al Ba Ca Cd Co Cr Cu Fe K Mg Mn Na Ni Pb Si Sn Sr Ti V 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41<td>Al Ba Ca Cd Co Cr Cu Fe K Mg Mn Na Ni Pb Si Sn Sr Ti V Zn 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41<td>Al Ba Ca Cd Co Cr Cu Fe K Mg Mn Na Ni Pb Si Sn Sr Ti V Zn As 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 <td< td=""><td>Al Ba Ca Cd Co Cr Cu Fe K Mg Mn Na Ni Pb Si Sn Sr Ti V Zn As Hg 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 <td< td=""></td<></td></td<></td></td></td></td></td></td></td></td></td>	Al Ba Ca Cd Co Cr Cu Fe K Mg Mn Na 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 <td>Al Ba Ca Cd Co Cr Cu Fe K Mg Mn Na Ni 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41<td>AlBaCaCdCoCrCuFeKMgMnNaNiPb4141414141414141414141414141411,6920,8250,9302,2281,4111,3322,9341,9861,0941,2450,9181,1041,3632,5430,0070,5030,3530,0000,0370,0570,0000,0010,1820,0900,3680,1750,0490,000lnAllnCdlnColnCulnFelnNilnPblnSilnSnlnSrlnZnlnHglnSe41414141414141414141414141410,8291,0020,9461,1930,6020,6700,6850,9250,5650,8990,6681,6212,2270,4980,2680,3320,1160,8610,7610,73603590,9070,3940,7640,0100,000</td><td>Al Ba Ca Cd Co Cr Cu Fe K Mg Mn Na Ni Pb Si 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41<!--</td--><td>Al Ba Ca Cd Co Cr Cu Fe K Mg Mn Na Ni Pb Si Sn 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41<!--</td--><td>Al Ba Ca Cd Co Cr Cu Fe K Mg Mn Na Ni Pb Si Sn Sr 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41<td>Al Ba Ca Cd Co Cr Cu Fe K Mg Mn Na Ni Pb Si Sn Sr Ti 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41<td>Al Ba Ca Cd Co Cr Cu Fe K Mg Mn Na Ni Pb Si Sn Sr Ti V 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41<td>Al Ba Ca Cd Co Cr Cu Fe K Mg Mn Na Ni Pb Si Sn Sr Ti V Zn 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41<td>Al Ba Ca Cd Co Cr Cu Fe K Mg Mn Na Ni Pb Si Sn Sr Ti V Zn As 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 <td< td=""><td>Al Ba Ca Cd Co Cr Cu Fe K Mg Mn Na Ni Pb Si Sn Sr Ti V Zn As Hg 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 <td< td=""></td<></td></td<></td></td></td></td></td></td></td></td>	Al Ba Ca Cd Co Cr Cu Fe K Mg Mn Na Ni 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 <td>AlBaCaCdCoCrCuFeKMgMnNaNiPb4141414141414141414141414141411,6920,8250,9302,2281,4111,3322,9341,9861,0941,2450,9181,1041,3632,5430,0070,5030,3530,0000,0370,0570,0000,0010,1820,0900,3680,1750,0490,000lnAllnCdlnColnCulnFelnNilnPblnSilnSnlnSrlnZnlnHglnSe41414141414141414141414141410,8291,0020,9461,1930,6020,6700,6850,9250,5650,8990,6681,6212,2270,4980,2680,3320,1160,8610,7610,73603590,9070,3940,7640,0100,000</td> <td>Al Ba Ca Cd Co Cr Cu Fe K Mg Mn Na Ni Pb Si 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41<!--</td--><td>Al Ba Ca Cd Co Cr Cu Fe K Mg Mn Na Ni Pb Si Sn 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41<!--</td--><td>Al Ba Ca Cd Co Cr Cu Fe K Mg Mn Na Ni Pb Si Sn Sr 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41<td>Al Ba Ca Cd Co Cr Cu Fe K Mg Mn Na Ni Pb Si Sn Sr Ti 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41<td>Al Ba Ca Cd Co Cr Cu Fe K Mg Mn Na Ni Pb Si Sn Sr Ti V 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41<td>Al Ba Ca Cd Co Cr Cu Fe K Mg Mn Na Ni Pb Si Sn Sr Ti V Zn 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41<td>Al Ba Ca Cd Co Cr Cu Fe K Mg Mn Na Ni Pb Si Sn Sr Ti V Zn As 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 <td< td=""><td>Al Ba Ca Cd Co Cr Cu Fe K Mg Mn Na Ni Pb Si Sn Sr Ti V Zn As Hg 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 <td< td=""></td<></td></td<></td></td></td></td></td></td></td>	AlBaCaCdCoCrCuFeKMgMnNaNiPb4141414141414141414141414141411,6920,8250,9302,2281,4111,3322,9341,9861,0941,2450,9181,1041,3632,5430,0070,5030,3530,0000,0370,0570,0000,0010,1820,0900,3680,1750,0490,000lnAllnCdlnColnCulnFelnNilnPblnSilnSnlnSrlnZnlnHglnSe41414141414141414141414141410,8291,0020,9461,1930,6020,6700,6850,9250,5650,8990,6681,6212,2270,4980,2680,3320,1160,8610,7610,73603590,9070,3940,7640,0100,000	Al Ba Ca Cd Co Cr Cu Fe K Mg Mn Na Ni Pb Si 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 </td <td>Al Ba Ca Cd Co Cr Cu Fe K Mg Mn Na Ni Pb Si Sn 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41<!--</td--><td>Al Ba Ca Cd Co Cr Cu Fe K Mg Mn Na Ni Pb Si Sn Sr 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41<td>Al Ba Ca Cd Co Cr Cu Fe K Mg Mn Na Ni Pb Si Sn Sr Ti 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41<td>Al Ba Ca Cd Co Cr Cu Fe K Mg Mn Na Ni Pb Si Sn Sr Ti V 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41<td>Al Ba Ca Cd Co Cr Cu Fe K Mg Mn Na Ni Pb Si Sn Sr Ti V Zn 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41<td>Al Ba Ca Cd Co Cr Cu Fe K Mg Mn Na Ni Pb Si Sn Sr Ti V Zn As 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 <td< td=""><td>Al Ba Ca Cd Co Cr Cu Fe K Mg Mn Na Ni Pb Si Sn Sr Ti V Zn As Hg 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 <td< td=""></td<></td></td<></td></td></td></td></td></td>	Al Ba Ca Cd Co Cr Cu Fe K Mg Mn Na Ni Pb Si Sn 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 </td <td>Al Ba Ca Cd Co Cr Cu Fe K Mg Mn Na Ni Pb Si Sn Sr 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41<td>Al Ba Ca Cd Co Cr Cu Fe K Mg Mn Na Ni Pb Si Sn Sr Ti 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41<td>Al Ba Ca Cd Co Cr Cu Fe K Mg Mn Na Ni Pb Si Sn Sr Ti V 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41<td>Al Ba Ca Cd Co Cr Cu Fe K Mg Mn Na Ni Pb Si Sn Sr Ti V Zn 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41<td>Al Ba Ca Cd Co Cr Cu Fe K Mg Mn Na Ni Pb Si Sn Sr Ti V Zn As 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 <td< td=""><td>Al Ba Ca Cd Co Cr Cu Fe K Mg Mn Na Ni Pb Si Sn Sr Ti V Zn As Hg 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 <td< td=""></td<></td></td<></td></td></td></td></td>	Al Ba Ca Cd Co Cr Cu Fe K Mg Mn Na Ni Pb Si Sn Sr 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 <td>Al Ba Ca Cd Co Cr Cu Fe K Mg Mn Na Ni Pb Si Sn Sr Ti 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41<td>Al Ba Ca Cd Co Cr Cu Fe K Mg Mn Na Ni Pb Si Sn Sr Ti V 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41<td>Al Ba Ca Cd Co Cr Cu Fe K Mg Mn Na Ni Pb Si Sn Sr Ti V Zn 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41<td>Al Ba Ca Cd Co Cr Cu Fe K Mg Mn Na Ni Pb Si Sn Sr Ti V Zn As 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 <td< td=""><td>Al Ba Ca Cd Co Cr Cu Fe K Mg Mn Na Ni Pb Si Sn Sr Ti V Zn As Hg 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 <td< td=""></td<></td></td<></td></td></td></td>	Al Ba Ca Cd Co Cr Cu Fe K Mg Mn Na Ni Pb Si Sn Sr Ti 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 <td>Al Ba Ca Cd Co Cr Cu Fe K Mg Mn Na Ni Pb Si Sn Sr Ti V 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41<td>Al Ba Ca Cd Co Cr Cu Fe K Mg Mn Na Ni Pb Si Sn Sr Ti V Zn 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41<td>Al Ba Ca Cd Co Cr Cu Fe K Mg Mn Na Ni Pb Si Sn Sr Ti V Zn As 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 <td< td=""><td>Al Ba Ca Cd Co Cr Cu Fe K Mg Mn Na Ni Pb Si Sn Sr Ti V Zn As Hg 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 <td< td=""></td<></td></td<></td></td></td>	Al Ba Ca Cd Co Cr Cu Fe K Mg Mn Na Ni Pb Si Sn Sr Ti V 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 <td>Al Ba Ca Cd Co Cr Cu Fe K Mg Mn Na Ni Pb Si Sn Sr Ti V Zn 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41<td>Al Ba Ca Cd Co Cr Cu Fe K Mg Mn Na Ni Pb Si Sn Sr Ti V Zn As 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 <td< td=""><td>Al Ba Ca Cd Co Cr Cu Fe K Mg Mn Na Ni Pb Si Sn Sr Ti V Zn As Hg 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 <td< td=""></td<></td></td<></td></td>	Al Ba Ca Cd Co Cr Cu Fe K Mg Mn Na Ni Pb Si Sn Sr Ti V Zn 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 <td>Al Ba Ca Cd Co Cr Cu Fe K Mg Mn Na Ni Pb Si Sn Sr Ti V Zn As 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 <td< td=""><td>Al Ba Ca Cd Co Cr Cu Fe K Mg Mn Na Ni Pb Si Sn Sr Ti V Zn As Hg 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 <td< td=""></td<></td></td<></td>	Al Ba Ca Cd Co Cr Cu Fe K Mg Mn Na Ni Pb Si Sn Sr Ti V Zn As 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 <td< td=""><td>Al Ba Ca Cd Co Cr Cu Fe K Mg Mn Na Ni Pb Si Sn Sr Ti V Zn As Hg 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 <td< td=""></td<></td></td<>	Al Ba Ca Cd Co Cr Cu Fe K Mg Mn Na Ni Pb Si Sn Sr Ti V Zn As Hg 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 <td< td=""></td<>

Tabela 38. Kolmogorov-Smirnovljev test ekstrahovanih koncentracija elementa nakon treće faze BCR ekstrakcije primenom UZSE

	Al	Ba	Ca	Cd	Co	Cr	Cu	Fe	K	Mg	Mn	Na	N	i Pb	Si	Sn	Sr	Ti	v	Zn	As	Hg	Se
N	41	41	41	41	41	41	41	41	41	41	41	41	41	41	41	41	41	41	41	41	41	41	41
Kolmogorov-																							
Smirnov Z	1,398	1,620	0,411	1,778	1,242	1,643	2,347	1,897	1,249	0,987	1,365	1,142	1,278	2,268	1,121	1,931	0,458	0,871	1,110	2,193	1,566	3,055	2,565
Asymp, Sig, (2-tailed)	0,040	0,010	0,996	0,004	0,091	0,009	0,000	0,002	0,088	0,284	0,048	0,147	0,076	0,000	0,162	0,001	0,985	0,434	0,170	0,000	0,015	0,000	0,000
ULUZSE	ln Al	lnBa	lnCd	lnCr	lnCu	lnFe	lnMi	n InPl	h Ins	in In	Zn 1	nAs	lnHo	InSe									
III CLSL		-	- Incu	-	·	-	-		-	-	-		-	mbe									
N	41	41	41	41	41	41	41	41	4	1 4	1	41	41	41									
Kolmogorov-																							
Smirnov Z	0,680	0,579	0,733	0,763	0,612	0,867	0,822	2 0,76	3 0,9	54 1,	305 0	,595	1,470	2,327									
(2-tailed)	0.745	0.891	0.656	0.605	0.847	0.439	0.509	9 0.60	6 0.3	22 0.0)66 ()	.871	0.027	0.000									

Rezultati i diskusija

Tabela	39. Fakto	rska anali:	za koncen	tracija na	kon	Tabela	40. Fak	torska a	naliza k	oncentra	icija nal	kon	Tabela	41. Faktor	rska anali	iza koncer	tracija na	kor
treće fa	ze BCR e	kstrakcije	primenoi	n KŠE		treće fa	aze BCF	ekstral	cije pri	menom I	MTSE		treće fa	ze BCR e	kstrakcije	e primenoi	n UZSE	
		Fak	tori		1				Faktori			1			Fak	ktori		1
	1	2	3	4	1		1	2	3	4	5	1		1	2	3	4	
InMg InNa InMn InNi InK InCo InV InAI InSi InCa InSn InFe InAs InCd InCd	0,919 0,879 0,824 0,851 0,817 0,787 0,685 0,635 0,609 0,533	0,559 0,657 0,614 0,626 0,954 0,946 0,775 0,759	0.688			InFe InSn InAl InCo InK InV InSi InMn InNi InCd InNa InCa InCr InPb	0,953 0,959 0,840 0,851 0,769 0,716 0,790 0,708 0,806 0,612 0,564	0,524 0,565 0,800 0,944 0,730 0,875		0,508			InAl InNi InMn InCo InK InFe InSn InV InSi InTi InPb InBa InCr InCu InCu	0,893 0,863 0,841 0,825 0,764 0,619 0,626 0,618 0,812 0,484	0,838 0,828 0,731 0,772 0,753	0,573 0,564	0,502	
lnBa			0,947			lnZn		0,720		-0,533			lnAs				0,628	
lnCr			0,904			InSr			0,960				lnCa			0.702	0,819	
InPb InSr			0,054			InCa InMa			0,821	0.746			InCd			0,793		
lnZn			0,777			InTi				0,740						0,555	0 592	
InTi			0,752	-0,640		lnAs				0,724	0,898		lnMg			0,020	0,750	1

Slika 19. Dendogrami klastera dobijenih povezivanjem logaritmovanih koncentracija metala nakon treće faze BCR ekstrakcije unutar grupe (Within Group) za: a) KSE; b) MTSE;

c) UZSE

Koncentracije Ba i Cr pored međusobnih su pozitivno i značajno korelisane sa koncentracijama Al, Cd, Co, Cu, Pb, Fe, Mg, Mn, Na, Ni, Si, Sn , V, Zn i Hg (tabela 82c, prilog). Za razliku od značajne korelacije između koncentracija Ba sa Sr, koje su dobijene nakon KSE, ovde ta korelacija ne postoji. Nepostojanje korelacije se ogleda u prisustvu Sr u podklasteru sa Ca (slika 19b). Dobijeni rezultat se može objasniti nedovoljnim rastvaranjem karbonata u prvom, a koji se proteže u drugom i trećem koraku BCR ekstrakcije, te dobijena ekstrahovana količina Ca i Sr predstavlja zaostalu karbonatnu frakciju, kao što je bilo pojašnjeno ranije u tekstu.

Slično kao i kod rezultata dobijenim nakon KSE i MTSE, klasterska analiza rezultata nakon UZSE ukazuje na prisustvo podklastra koji čine ekstrahovane količine Ba, Pb, Cr, Cu, Zn i Na (slika 19c). Postojanje ovoga podklastera je objašnjeno prisustvom pozitivnih, značajnih korelacija između navedenih koncentracija metala (tabela 83c, prilog). Sa ovim elementima ekstrahovane količine Ba i nakon KSE takođe imaju visoke pozitivne vrednosti Pirsonovih koeficijenata (tabela 81c, prilog). Koncentracije navedenih metala, sem sa koncentracijama Na, su značajno korelisane sa ekstrahovanim koncentracijama Hg, što je isto slično sa rezultatima dobijenim nakon KSE i MTSE. Ova sličnost se ogleda u značajnije većim ekstrahovanim koncentracijama metala u uzorcima Dekantera (slika 16-18). Prisustvo Na u ovome podklasteru, može se objasniti postojanjem pozitivne korelacije između koncentracija Na i Cr (r = 0,350, za nivo značajnosti 95%).

Ekstrahovane koncetracije Ca i Mg pomoću ultrazvuka čine zaseban podklaster (slika 19c). Sa svojim učešćem u faktorskoj analizi nalaze se u faktoru 4 zajedno sa ekstrahovanim količinama Sr i As (tabela 41). Ovaj rezultat se može objasniti nedovoljnim rastvaranjem karbonata, prevashodno u prvom koraku, a koji se proteže u drugom i trećem BCR koraku, te dobijena ekstrahovana količina Ca i Mg je zaostala karbonatna frakcija.

4.1.2.4. Četvrta faza sekvencijalne ekstrakcije

Ekstrahovane koncentracije elemenata nakon četvrte faze SE su prikazane u tabelama 62-64 (prilog). Na slici 20 su prikazane srednje koncentracije pseudo ukupnog sadržaja elemenata za uzorke sedimenata i muljeva dobijene nakon tri tehnike

ekstrahovanja. Prikaz distribucija koncentracija elemenata po dubinama u sedimentima i muljevima su prikazane na slikama 21-23. Aritmetička i geometrijska sredina, aritmetička i geometrijska standardna devijacija, medijana, minimalna i maksimalna koncentracija i *baseline* opsezi su prikazani u tabelama 76-78 (prilog).

Upoređujući koncentracije pseudo ukupnog sadražaja metala može se primetiti da su najmanje koncentracije, sem Cr, dobijene u uzorku sertifikovanog materijala koji je u prethodnim fazama BCR ekstrakcije rotaciono mućkan (tabela 15 i slika 3). Uzorak sertifikovanog materijala koji je u prethodnim fazama bio tretiran ultrazvučnim talasima ima srednje vrednosti pseudo ukupnog sadržaja metala, dok su se najveće dobijene u uzorku koji je u prethodnim trima fazama BCR ekstrakcije bio tretiran mikrotalasima.

Kao i kod sertifikovanog materijala, tako i kod ispitivanih uzoraka sedimenata za većinu ispitivanih elementa su dobijene veće ekstrahovane koncentracije nakon MTSE, nego sa preostale dve tehnike, KSE i UZSE (slike 20-23). To nije slučaj kod uzoraka muljeva koji su se u prethodna tri BCR koraka konvencionalno mućkali (KSE) gde su dobijene veće koncentracije pseudo ukupnog sadržaja Mn, Si i Hg, a u slučaju ispitivanih sedimenata dobijene su nakon MTSE. Koncentracije Ni u većoj količini ekstrahovane iz sedimenata koji su u prethodnim fazama bili ultrazvučno tretirani, dok je to slučaj za koncentracije Fe, Pb i Sr u uzorcima muljeva (slika 20). Za većinu elemenata krive koje prikazuju ekstrahovane pseudo količine u ispitivanim uzorcima su slične, odnosno imaju isti trend.

Kod polovine ispitivanih elemenata pseudo ukupne količine opadaju sa povećanjem dubine u sedimentima Dekantera. To nije slučaj sa Al, Co, Ni, Ti, V i As gde je najveća ekstrahovana količina dobijena u uzorku D15 (10-15 cm) koji je u prethodna tri BCR koraka bio tretiran KSE (slike 21-23). Pseudo ukupne količine Ca i Mg takođe pokazuju najveću ekstrahovanu koncentraciju u uzorku D15, ali ne samo u uzorku koji je prethodno tretiran sa KSE, nego i sa preostale dve, brze tehnike (MTSE i UZSE) (slika 22). Količine Hg su ekstrahovane u većoj količini u odnosu na preostale ekstrahovane količine pseudo ukupnog sadržaja Hg u uzorku D15 koji je u prethodnim koracimo bio tretiran MTSE i UZSE (slika 23).

Rezultati i diskusija

Slika 20. Prikaz srednjih ekstrahovanih koncentracija elemenata (µg/g, a za Se ng/g) u sedimentima i muljevima nakon četvrte faze SE

Slika 21. Distribucija ekstrahovanih koncentracija Al, Ba, Ca, Cd, Co, Cu, Cr i Fe nakon četvrte faze SE primenom KSE, MTSE i UZSE

Kao i u prethodnim BCR fazama, značajnije veće količine Ba, Cu, Pb, Zn i Hg su ekstrahovane u uzorcima sa lokaliteta Dekanter u odnosu na količine u preostalim uzorcima

(slike 21-23). Dobijeni rezultati mogu da ukažu na zagađenje sedimenata Dekantera ovim metalima.

Na osnovu slika distribucija koncentracija elemenata (slike 21-23) vidi se pad koncentracija svih elemenata u uzorcima P25 (20-25 cm) (put u petrohemijskom kompleksu), M25 (Messer), V25 (Vojlovica) i S25 (Starčevo) koji su prethodnim fazama bili tretirani KSE i UZSE.

Dobijeni rezultati pseudo ukupnog sadražaja ispitivanih elemenata u uzorcima muljeva koji su u prethodnim fazama bili tretirani mikrotalasima ukazuju da su primenjeni uslovi za mikrotalasnu ekstrakciju slabi u prva tri BCR koraka i da je neekstrahovana količina elemenata je izekstrahovana u četvrtom, pseudo ukupnom, koraku SE.

Posmatrajući korelacione koeficijente ekstrahovanih koncentracija elemenata i tehnika koje su korišćene u prethodna tri koraka (tabela 33) uočljivo je da su u slučaju većine elemenata dobijene značajne pozitivne korelacije. Silicijum je jedini element kod kojeg nema značajnih korelacija (tabela 33).

4.1.2.4.1. ANOVA test – četvrta faza SE

Rezultate ANOVA testa srednjih vrednosti elemenata dobijenih nakon četvrte faze SE, prikazali smo u tabeli 35. Iz tabele se vidi da za većinu ispitivanih elemenata ne postoji značajna razlika između srednjih vrednosti dobijenim trima tehnikama ekstrahovanja (P > 0,05). Za pseudo ukupne količine Ca, Co, Mg, Na i Se (tabela 35) postoje značajne razlike u uzorcima koji su u prethodnim trima fazama BCR ekstrakcije bili tretirani sa KSE, MTSE i UZSE. Svi elementi imaju najveću srednju ekstrahovanu vrednost koncentracije nakon MTSE.

4.1.2.4.2. Osnovna geohemijska koncentracija elemenata – četvrta faza SE

Posmatrajući koncentracije ispitivanih elemenata dobijenih nakon četvrte faze SE u uzorcima koji su prethodnim fazama bili mućkani vidi se da su kod pseudo ukupnih količina Al, Ba, Cr, Cu, K, Mn, Na, Pb, Sr, V, Zn, As, Hg i Se maksimalne vrednosti koncentracija su iznad *baseline* ranga za dati element (tabela 76, prilog).

Slika 22. Distribucija ektrahovanih koncentracija K, Mg, Mn, Na, Ni, Pb, Si i Sn nakon četvrte faze SE primenom KSE, MTSE i UZSE

Slika 23. Distribucija ektrahovanih koncentracija Sr, Ti, V, Zn, As, Hg i Se nakon četvrte faze SE primenom KSE, MTSE i UZSE

Na lokalno zagađenje uzorka može da ukaže pseudo ukupna količina elementa koja je veća od njegovog *baseline* opsega. Na osnovu pseudo ukupnih koncentracija koje

prevazile gornju granicu baseline opsega ispitivani elementi se mogu grupisati po uzorcima. To su koncentracije Al, Ba, Cu, K, Na, Pb, V, Zn, As, Hg i Se dobijene u uzorcima sedimenata Dekantra (D) i to pseudo ukupne količine Ba i Zn u uzorcima sa svih dubina, količine Cu, Na i V u u površinskom D5 (0-5 cm) i dubinskom sedimentu D15 (10-15 cm), pseudo ukupne koncentracije Al i K samo u uzorku D15 i koncentracije Pb i Hg u uzorcima D5 i D25 (20-25 cm) (tabela 76, prilog). Dobijene pseudo ukupne količine Pb, Zn i Hg u uzorcima sedimenata Deknatera su veće od njihovih prosečnih vrednosti za zemljišta (Kabata-Pendias, 2011). Pseudo ukupne količine Ba, Pb i Hg su značajnije veće u uzorku M25 (Messer) od količina ekstrahovanih u uzorcima sa preostalih dubina ispitivanog lokaliteta, za razliku od ostalih elemenata čije su ekstrahovane pseudo ukupne količine u uzorku M25 manje od dobijenih koncentracija u preostalim uzorcima sa tog lokaliteta. Ekstrahovana koncentracija Ba je za oko 4 puta, a u slučaju Pb za oko 8 puta veća od koncentracija u preostalim uzorcima sa tog lokaliteta. Najveća razlika u ekstrahovanim količinama je dobijena kod Hg, što se sa slike 23 i vidi. Količine Hg i Pb u uzorku M25 su veće od prosečnih za zemljišta (Kabata-Pendias, 2011). U uzorcima muljeva značajnije veće koncentracije ispitivanih elemenata su dobijene u uzorku uzetog sa lokacije K3, zatim K4 i K2. Najveća ekstrahovana pseudo ukupna količina Cr je dobijena u uzorku mulja uzetog sa lokacije K2 (slika 21; tabela 62, prilog), koja je takođe veća od prosečne koncentracije navedene u knjizi Kabata-Pendias (2011).

Upoređujući *baseline* koncentracije i maksimalne ekstrahovane količine elemenata nakon četvrte faze SE u uzorcima koji su u prethodnim fazama bili tretirani mikrotalasima (tabela 77, prilog) vidi se da za polovinu ispitivanih elemenata maksimalne vrednosti premašuju *baseline* opsege koncentracija. Na osnovu maksimalnih koncentracija metali kod kojih pseudo ukupni sadržaj premašuje *baseline* opsege se mogu grupisati po uzorcima. Pseudo ukupne količine Ba, Cu, Na, Pb, Zn, As, Hg i Se su ekstrahovane u većim količinama u uzorcima sa oznakom D (Dekanter), i to količine Ba i Pb u uzorcima sa svih dubina; Cu u uzorcima D5 i D15, pseudo ukupne količine Na i Zn u uzorku D5, dok Hg u uzorcima D15, D25 i količine Se u uzorku D15 (slike 17-19; tabela 59, prilog). Dobijene pseudo količine Cu, Pb, Zn i Hg u sedimentima Dekantera su veće od prosečnih za zemljišta (Kabata-Pendias, 2011). Najveća ekstrahovana količina Cr je dobijena u uzorku

mulja sa lokacije K2 (slika 21; tabela 63, prilog), što je slično sa uzorkom mulja K2 koji je u prethodna tri koraka BCR ekstrakcije ekstrahovan KSE i dobijena količina je veća od prosečne koncnetracije Cr bilo u zemljištu bilo u Zemljinoj kori (Kabata-Pendias, 2011).

Baseline koncentracije i maksimalne ekstrahovane količine elemenata nakon četvrte faze SE u uzorcima koji su u prethodnim fazama BCR ekstrakcije bili tretirani ultrazvukom, prikazane su u tabeli 78 (prilog). Pseudo ukupne količine elemenata, sem količina Cd, Co, Fe, Mg, Mn, Na, Si, Sn i V, imaju maksimalne vrednosti koje premašuju osnovne geohemijske opsege koncentracija. Pseudo ukpune količine Ba, Cu, Pb, Sr, Zn, Hg i Se su ekstrahovane iznad odgovarajućih opsega u sedimentima Dekantera (D). Ekstrahovane količine Ba u uzorcima sve tri ispitivane dubine premašuju baseline opseg, kao što je slučaj sa uzorcima koji su u prethodnim BCR fazama bili KSE i MTSE. Dobijena vrednost sadržaja Cu u površinskom uzorku Dekantera premašuje *basline* ospeg, dok kod KSE i MTSE to su koncentracije Cu u uzorcima D5 i D15. Količine Pb su, kao i količine Cu, najviše ekstrahovane u površinskom D5 uzorku. Pseudo ukupni sadržaj Zn je veći u D5 uzorku, kao i kod MTSE i KSE. Pseudo količine Pg i Zn u D5 uzorku su veće od prosečnih za zemljišta (Kabata-Pendias, 2011). U uzorcima Dekantera, koji su u prethodnim fazama bili tretirani brzim tehnika ekstracije (MTSE i UZSE) ekstrahovana količina Hg u uzorku D15 je veća od količina iz preostala dva uzorka sa tog lokaliteta. Dobijena količina Hg je veća od njene prosečne vrednosti za zemljišta (Kabata-Pendias, 2011). Najveća ekstrahovana količina Cr se dobila u uzorku mulja zatog sa lokacije K2 (slika 21; tabela 64, prilog), kao i kod uzorka tog mulja koji je u prethodnim BCR faza bio mućkan (KSE) i mikrotalasno ekstrahovan (MTSE) i kao nakon prethodne dve tehnike dobijena vrednost je veća od prosečne (Kabata-Pendias, 2011).

4.1.2.4.2. Test normalne distribucije – četvrta faza SE

Dobijene koncentracije nakon četvrte faze SE u uzorcima koji u prethodnim fazama BCR ekstrakcije bili tretirani KSE su ispitane pomoću Kolgomorov-Smirnovljevog testa. Dobijeni rezultati su prikazani u tabeli 42. Kao što se iz tabele vidi dobijene ekstrahovane koncentracije Ba, Cr, Mn, Pb, Zn, As i Hg nisu normalno distribuirane. Logaritmovanjem koncentracija i ponavljanjem Kolgomorov-Smirnovljevog testa, za sve elemente sem za Cr, dobija se vrednost *p* koeficijenta veća od 0,05; odnosno normalna distribucija (tabela 42). Posmatrajući koncentracije Cr po uzorcima (tabela 62, prilog) vidi se da je najveća ekstrahovana količina dobijena u uzorku K2 (434,4 μ g/g). Ponavljanjem testa bez te vrednosti dobija se normalna distribucija (*p* = 0,756). Dobijena koncentracija Cr koja je za oko 100 puta veća od preostalih koncentracija što nam može ukazati na lokalno zagađenje mulja Cr (slika 2, tabela 62, prilog).

Kolgomorov-Smirnovljev test dobijenih koncentracija nakon četvrte faze SE u uzorcima koji su u prethodnim fazama BCR ekstrakcije bili tretirani MTSE, prikazani su u tabeli 43. Iz tabele je vidljivo da dobijene koncentracije Ba, Ca, Cr, Cu, Na, Pb, Sr, Zn i Hg ne zadovoljavaju uslov normalnosti. Logaritmovanjem ovih koncentracija i ponavljanjem Kolgomorov-Smirnovljevog testa za Cr, Na, Pb i Hg je dobijena normalna distribucija (p koeficijent je manji od 0,05; tabela 43). Posmatrajući koncentracije Cr po uzorcima (tabela 63, prilog) vidi se da je najveća vrednost dobijena u uzorku K2 (430,8 µg/g), slično kao i kod tog uzorka koji je u prethodnim koracima bili tretiran sa KSE (tabela 62, prilog). Ponavljanjem testa za Cr bez te vrednosti dobija se normalna distribucija (p = 0,718). Posmatrajući dobijene ekstrahovane koncentracije za ispitivane elemente (tabela 63, prilog) vidi se su značajnije veće koncentracije Hg i Pb dobijene u uzorcima uzetih sa lokaliteta Dekantera (D). Ukoliko ponovimo Kolgomorov-Smirnovljev test izuzimajući koncentracije u navedenim uzorcima, dobijamo normalnu distribuciju za oba metala (za Pb p = 0.859; za Hg p = 0.053). Dobijeni rezultat nam ukazuje na lokalno zagađenje sedimenata ovim metalima. Za razliku od Cr, Pb i Hg gde zbog značajnije većih koncentracija u nekim uzorcima nemamo normalnu distribuciju, sa pseudo ukupnim sadržajem Na je drugačiji slučaj. Razlog zbog čega nam dobijene ekstrahovane količine Na nemaju normalnu distribuciju jeste izuzetno mala, u okvirima granice detekcije, koncentracija Na u uzorku uzetog sa najveće dubine Dekantera (D25) (tabela 63, prilog). Bez tog uzorka, ln vrednosti koncentracija Na imaju normalnu distribuciju (p = 0.080).

Kolgomorov-Smirnovljev test koncentracija nakon četvrte faze SE u uzorcima koji su u prethodnim fazama BCR ekstrakcije bili tretirani sa ultrazvucima je prikazan u tabeli 44.

Rezultati i diskusija

Tabela 42. K	Colmogo	orov-Sr	nirnovl	ljev tes	t ekstra	hovani	h kono	centrac	ija elen	nenta n	akon č	etvrte f	aze SE	u uzoc	cima ko	oji su u	tri faze	e BCR	ekstrak	cije bil	li ekstra	ahovan	i sa KSE
	Al	Ba	Ca	Cd	Со	Cr	Cu	Fe	К	Mg	Mn	Na	Ni	Pb	Si	Sn	Sr	Ti	v	Zn	As	Hg	Se
N	41	41	41	41	41	41	41	41	41	41	41	41	41	41	41	41	41	41	41	41	41	41	41
Kolmogorov- Smirnov Z	0,916	2,106	0,498	0,818	0,841	3,243	0,918	1,172	1,120	0,819	1,673	0,627	0,579	2,435	0,733	1,120	0,781	0,537	0,820	1,780	1,275	2,586	1,077
Asymp. Sig. (2-tailed)	0,372	0,000	0,965	0,515	0,480	0,000	0,369	0,128	0,163	0,513	0,007	0,827	0,891	0,000	0,657	0,163	0,575	0,935	0,512	0,004	0,078	0,000	0,197
	lnBa	lnCr	lnMn	lnPb	lnZı	n lnHg																	
N	41	41	41	41	41	41																	
Kolmogorov- Smirnov Z	1,028	1,719	0,842	1,274	1,039	0,891																	
Asymp. Sig. (2-tailed)	0,241	0,005	0,477	0,078	0,23	0,406																	

Tabela 43. Kolmogorov-Smirnovljev test ekstrahovanih koncentracija elementa nakon četvrte faze SE u uzocima koji su u tri faze BCR eksrakcije bili ekstrahovani sa MTSE

	Al	Ва	Ca	Cd	Co	Cr	Cu	Fe	К	Mg	Mn	Na	Ni	Pb	Si	Sn	Sr	Ti	v	Zn	As	Hg	Se
N	41	41	41	41	41	41	41	41	41	41	41	41	41	41	41	41	41	41	41	41	41	41	41
Kolmogorov- Smirnov Z	0.989	2.706	1.392	1.051	0.899	3.109	2.283	0.872	1.127	0.591	0.925	1.646	0.879	2.730	0.765	1.063	1.409	0.558	0.908	2.226	0.613	2.905	1.209
Asymp. Sig.	0,202	2,700	0.042	0.010	0,001	0,000	2,200	0,072	0.150	0.077	0,720	0,000	0,075	2,750	0,700	0,000	0.020	0,000	0,202	0,000	0.047	2,700	0.100
(2-tailed)	0,282	0,000	0,042	0,219	0,394	0,000	0,000	0,433	0,158	0,877	0,359	0,009	0,423	0,000	0,603	0,209	0,038	0,914	0,382	0,000	0,847	0,000	0,108
IV MTSE	lnBa	lnCa	lnCr	lnCu	lnNa	lnPt	o lnS	r ln2	n lnl	łg													
N	41	41	41	41	41	41	l 4	1 4	41	41													
Kolmogorov-																							
Smirnov Z	1,108	0,510	1,785	1,231	1,480	1,407	7 0,84	5 1,3	1 1,4	73													
(2-tailed)	0,172	0,957	0,003	0,097	0,025	0,038	3 0,47	3 0,00	54 0,0	26													

Tabela 44. Kolmogorov-Smirnovljev test ekstrahovanih koncentracija elementa nakon četvrte faze SE u uzocima koji su u tri faze BCR ekstrakcije bili ekstrahovani sa UZSE

IV UZSE	Al	Ba	Ca	Cd	Co	Cr	Cu	Fe	К	Mg	Mn	Na	Ni	Pb	Si	Sn	Sr	Ti	v	Zn	As	Hg	Se
N	41	41	41	41	41	41	41	41	41	41	41	41	41	41	41	41	41	41	41	41	41	41	41
Kolmogorov- Smirnov Z	1.025	2 081	1 911	0.630	0.643	3 191	0 760	0.954	1 160	1 064	0.930	0 439	3.062	1 4 3 9	1.088	0 754	0.618	1 302	0.912	2 238	0.731	2 550	0.902
Asymp, Sig,	1,025	2,001	1,711	0,050	0,045	5,171	0,700	0,754	1,100	1,004	0,750	0,457	5,002	1,437	1,000	0,754	0,010	1,502	0,912	2,230	0,751	2,550	0,702
(2-tailed)	0,244	0,000	0,001	0,822	0,803	0,000	0,611	0,322	0,136	0,208	0,352	0,991	0,000	0,032	0,187	0,620	0,840	0,067	0,377	0,000	0,659	0,000	0,390
IV UZSE	lnBa	lnCa	lnCr	lnNi	lnPb	lnZr	n lnH	g															
Ν	41	41	41	41	41	41	l 4	1															
Kolmogorov- Smirnov Z	0,637	1,629	1,576	1,546	0,726	1,088	3 1,12	8															
Asymp, Sig, (2-tailed)	0,812	0,010	0,014	0,017	0,667	0,187	7 0,15	7															

Iz tabele je vidljivo da pseudo ukupne količine Ba, Ca, Cr, Ni, Pb, Zn i Hg ne zadovoljavaju uslov normalnosti. Ponavljanjem Kolgomorov-Smirnovljevog testa logaritmovanih koncentracija za navedene metale ispunjava se uslov za normalnu distribuciju (tabela 44) sem za Ca, Cr i Ni. Posmatrajući koncentracije Cr po uzorcima (tabela 64, prilog) vidi se da je najveća vrednost dobijena u uzorku K2 (369,6 μ g/g), slično kao i kod uzoraka koji u u prethodnim koracima bili tretirani sa KSE i MTSE (tabele 62 i 63, prilog). Ponavljanjem testa bez te vrednosti za Cr se dobija normalna distribucija (p =0,358). Dobijena koncentracija Cr je značajnije veća od preostalih i ukazuje na lokalno zagađenje mulja uzetog sa lokacije obeležene sa K2. Razlog zbog čega dobijene ekstrahovane količine Ca nemaju normalnu distribuciju jeste izuzetno mala, u okvirima granice detekcije koncentracija Ca u uzorcima uzetih sa dubina: 10-15 cm i 20-25 cm sedimenata Dekantera (D15, D25) (tabela 64, prilog). Bez logaritmovanih koncentracija iz tih uzoraka Ca pokazuje normalnu distribuciju (p = 0,364). Posmatrajući koncentracije Ni po uzorcima (tabela 64, prilog), vidi se da je najveća vrednost dobijena u uzorku V5 (419,2 µg/g) (Vojlovica). Za razliku od Cr, visoke koncentracije Ni se nisu dobijene kod uzoraka koji su u prethodnim koracima bili tretirani sa KSE i MTSE (tabele 62 i 63, prilog). Ponavljanjem testa za Ni bez te vrednosti dobija se normalna distribucija (p = 0,241). Dobijena koncentracija Ni bi mogla da ukaže na lokalno zagađenje sedimenta uzetog sa lokacije V5, ali pošto to nije dobijeno kod tog uzorka koji je u prethodna tri koraka BCR ekstrakcije KSE i MTSE, nemamo osnova za takav zaključak. Iz tabele 64 (prilog) i sa slika 18 i 19 se vidi da je koncentracija Zn u uzorku V5 značajnije veća od preostalih ekstrahovanih koncentracija, što takođe nije dobijeno u uzorku V5 koji je u prethodne tri faze BCR ekstrakcije bio tretiran sa KSE i MTSE. Dobijeni rezultati mogli bi da se objasni time da uticaj ultrazvuka nije bio dovoljan za ekstrakciju Ni i Zn u uzorku V5 u prethodne tri faze BCR ekstrakcije.

Sumirajući rezultate Kolgomorov-Smirnovljevog testa za pseudo ukupan sadržaj elemenata vidimo da možemo koristiti sve elemente u daljoj statističkoj obradi.

4.1.2.4.3. Faktorska i klasterska analiza – četvrta faza SE

Primenom Varimaks rotacije u faktorskoj analizi koncentracija dobijenim nakon četvrte faze SE u uzorcima koji su u prethodne tri faze BCR ekstrakcije bili tretirani trima tehnikama (KSE, MTSE i UZSE), dobijeni su faktori prikazani u tabelama 45-47. Iz tabela se vidi da su faktorskom analizom dobijena tri faktora u uzorcima koji su KSE, pet za pseudo ukupni sadržaj u uzorcima koji su MTSE i četiri u uzorcima koji su UZSE u prethodnim fazama BCR ekstrakcije .

Na osnovu dobijenih rezultata faktorske i klasterske analize elemenata može se uočiti postojanje dve grupe podklastera u klasterima dobijenih na osnovu pseudo ukupnog sadržaja u uzorcima koji su bili tretirani KSE, MTSE i UZSE, slično kao nakon treće faze BCR ekstrakcije (slike 19a-19c).

Jednu podgrupu čine veći deo ispitivanih elemenata. Okosnicu čine Fe, Mn, Al, K i Mg. Ovi i preostali elementi koji čine podgrupu su međusobno značajno korelisani što se iz tabela 81d-83d (prilog) može videti. Razliku čini prisustvo pseudo ukupne količine Cu u podklasteru dobijenom u uzorcima koji su u prethodnim fazama bili tretirani sa KSE i UZSE (slike 24a i 24c), dok te količine nema u podklasteru u uzorcima koji su u ranijim fazama bili tretirani sa MTSE (slika 24b).

Drugi podklaster, kod sve tri klasterske analize (slika 24a-24c), čine pseudo ukupne količine Ba i Pb. Na osnovu faktorske analize se vidi da je bi u tom subklasteru trebalo da budu Cu i Zn za sve tri tehnike. Ovi metali imaju značajno učešće u faktoru 2 (tabela 45), kod uzoraka koji su u prethodnim fazama bili tretirani sa KSE, i u klasterskoj analizi se nalaze u prvom, većem podklasteru (slika 24a). Na osnovu korelacione analize ekstrahovanih koncentracija nakon KSE, vidi se da su ovi metali međusobno značajno pozitivno korelisani (tabela 81d, prilog).

Najbolja korelacija pseudo ukupnog sadržaja Hg, na osnovu Pirsonovog koeficijenta, je sa dobijenim koncentracijama pseudo ukupnog Pb (tabela 81d, prilog) u uzorcima koji su u prethodnim fazama KSE. U faktorskoj analizi pseudo ukupne količine Hg i Pb se nalaze u faktoru 1 (tabela 45), za razliku od uzoraka koji su u prva tri BCR koraka bili MTSE i UZSE.

Tabela 45. Faktorska analiza koncentracija nakon četvrte faze SE, uzorci u ranijim fazama mućkani

		Faktori	
	1	2	3
lnCo	0,987		
lnMg	0,960		
lnV	0,959		
lnAl	0,932		
lnK	0,879		
lnMn	0,848		
lnNa	0,880		
lnTi	0,899		
lnAs	0,877		
lnNi	0,827		
lnSe	0,712		
lnFe	0,883		
lnSn	0,880		
lnCd	0,842	0,503	
lnSr	0,582	0,576	
lnCu	0,634	0,707	
lnZn	0,546	0,774	
lnCa	0,649	-0,718	
lnBa		0,945	
lnPb		0,946	
lnHg		0,626	
lnCr			0,830
lnSi			0,473

Tabela 46. Faktorska analiza koncentracija nakon četvrte faze SE, uzorci u ranijim fazama mikrotalasima

			Componen	t	
	1	2	3	4	5
lnV	0,945				
lnAl	0,943				
lnMn	0,915				
lnTi	0,912				
lnFe	0,890				
lnCo	0,882				
lnK	0,883				
lnSn	0,863				
lnMg	0,838				
lnAs	0,754				
lnHg	-0,567				
lnZn		0,955			
lnBa		0,948			
lnPb		0,918			
lnCu		0,868			
lnSr		0,793	0,427		
lnCa			0,912		
lnSe	0,500		-0,562		
lnCd	0,675				0,506
lnNa					-0,577
lnNi				0,622	
lnCr				0,877	
lnSi					0,791

Tabela 47. Faktorska analiza koncentracija nakon četvrte faze SE, uzorci u ranijim fazama ultrazvucima

		Fak	tori	
	1	2	3	4
lnAl	0,908			
lnMg	0,868			
lnTi	0,832			
lnAs	0,787			
lnMn	0,711			
lnK	0,826	0,502		
lnV	0,792	0,525		
lnFe	0,628	0,685		
lnSn	0,610	0,711		
lnCu		0,869		
lnBa		0,954		
lnPb		0,960		
lnSe		0,676		
lnZn		0,854		
lnSr		0,728	0,511	
lnCd		0,740		
lnNa	0,641		0,559	
lnHg	-0,408			
lnCo	0,766		0,592	
lnCa			0,793	
lnCr			0,811	
lnNi				0,665
lnSi				0,918

Slika 24. Dendogrami klastera dobijenih povezivanjem logaritmovanih koncentracija metala nakon četvrte faze SE unutar grupe (Within Group), u uzorcima koji se u ranijim fazama ekstrahovani za: a) KSE; b) MTSE; c) UZSE

Na osnovu ekstrahovanih koncentracija vide se povećane ekstrahovane količine Hg i Pb u uzorcima sedimenata Dekantera, kao i značajnije veće koncentracije ovih metala u uzorku M25 (Messer) u odnosu na preostale uzorke sa tog lokaliteta. Pored Ba, Pb, Hg, Zn i Cu u faktoru 2 se nalaze koncentracije Sr i Cd (tabele 45-47). Prisustvo Sr je najvidljivije u podklasteru kod uzorakak koji su u prethodna tri koraka BCR ekstrakcije bili mikrotalasno ekstrahovani (slika 24b) i se može objasniti korelacijom Sr sa Ba koji u obliku sulfata čine jedan od supstrata za Cr, Cu, Pb, Zn i Hg.

Jedini element koji nema značajne korelacije sa preostalim elementima jeste Cr nakon određivanja pseudo ukupnog sadržaja u uzorcima koji su KSE u prva tri koraka BCR ekstrakcije. To se može objasniti značajnije većom ekstrahovanom koncentracijom Cr u uzorku mulja sa oznakom K2 (tabela 62, prilog i slika 21). Na osnovu faktorske analize dobijeni rezulati su svrstali pseudo ukupni sadržaj Cr u faktor 4 (tabela 45 i slika 24a).

Dobijeni korelacioni rezultati za MTSE (tabela 82d, prilog) ukazuju na pozitivne značajne korelacije između pseudo ukupnih količina Ba i količina Cu, Pb, Sr, Zn. Ovi metali čine drugi podklaster (slika 24b). Dobijene koncentracije Ba su negativno korelisane sa Co, Mg, Ti i As (tabela 82d, prilog). Dobijeni korelacioni rezulati se ogledaju i u faktorskoj analizi gde se pseudo ukupne količine Ba, Zn, Cu, Pb i Sr nalaze u faktoru 2 (tabela 46).

Slično kao i kod rezultata dobijenih nakon KSE i MTSE, klasterska analiza rezultata nakon UZSE ukazuje na prisustvo podklastra koji čine Ba, Pb i Zn (slika 24c). Osim sa Zn i Pb, ekstrahovane koncentracije Ba su pozitivno korelisane sa koncentracijama Cd, Cu, Fe, Sn, Sr i Se (tabela 83d, prilog), što se ogleda u prisustvu svih ovih elemenata u faktoru 2 (tabela 47).

Za razliku od dobijenih rezultata u uzorcima koji su u prethodnim fazama bili KSE, Hg sa ispitivanim elementima ili nema ili ima negativne značajne korelacije, i to sa: Co (r = -0,382), Mn (r = -0,341) i As (r = -0,353). Nekorelisanost Hg sa preostalim elementima se ogleda i u negativnom, slabom učešću u faktoru 1 (tabela 47). Prisustvo Si i Ni u faktoru 4 se objašnjava postojanjem značajne pozitivne korelacije među njima (r = 0,548).

4.1.2.5. Kod procene rizika ekstrahovanih koncentracija elemenata

Na slikama 25 i 26 su prikazani procentualni udeli izmenjive i kiselo rastvorne frakcije u odnosu na ukupni sadržaj ekstraktibilnih elemenata, tj. sumu koncentracija u sve četiri faze SE. U razmatranju potencijalnih zagađivača životne sredine koristiti ćemo mikroelemente, i to: Ba, Cd, Co, Cr, Cu, Ni, Pb, Sn, Ti, V, Zn, As, Hg i Se, dok ćemo elemente koji predstavljaju najznačajnije supstrate mikroelemenata (Al, Ca, Fe, K, Mg, Mn, Na, Si, Sr) izostaviti iz razmatranja procentualnog učešće prve faze, odnosno KPR.

Na osnovu procentualne zastupljenosti ekstrahovanih koncentracija prve faze BCR ekstrakcije u odnosu na ukupni ekstrahovani sadržaj, Sn i Ti nisu uzeti u obzir prilikom slikovnog prikaza koda procene rizika. Kod njih je procentualna zastupljenost prve faza veoma niska, < 1% i nema rizika po životnu sredinu. Procentualna zastupljenost ekstrahovanih količina Cr i V su manje od 10% (slike 25 i 26). Dobijeni rezultat ukazuje da ispitivani uzorci sedimenata i muljeva imaju nizak rizik po životnu sredinu shodno niskim koncentracijama jonoizmenjivih i/ili kiselo rastvornih količina Sn, Ti, Cr i V.

Sa slika 25 i 26 se vidi da uzorci sedimenata uzetih sa lokaliteta Dekantera (D) imaju povišen (31-50%) i visok (> 50%) rizik zagađenja po životnu sredinu sledećim metalima: Cd (35%; 32%), Cu (53%; 46%) i Zn (46%; 45%), ekstrahovanih nakon KSE i UZSE. Nizak i srednji rizik po životnu sredinu pokazuju Ba (43%; 46%), Cd (44%; 34%), Cu (16%; 36%), Zn (28%; 28%) i Se (18%; 18%) korišćenjem KSE i UZSE, kao i Pb (19%) nakon UZSE, i Hg (19%; 13%) nakon MTSE i UZSE u sedimentima uzetih sa lokaliteta Elektrolize (PE). Sedimenti Živine deponije (ŽD) su zagađeni sa Ba (31%; 37%), Cd (37%; 30%), Zn (24%; 24%) i Se (45%; 24%) na osnovu rezultata dobijenim nakon KSE i UZSE, tim redom. Preostali uzorci pokazuju slične procentualne udele ekstrahovanih koncentracija nakon prve faze BCR ekstrakcije primenom KSE i UZSE, dok je MTSE dala niže ili značajnije više koncetracije jonoizmenjive i/ili kiselo rastvorne frakcije gore navedenih elemenata. Dobijeni rezultati ukazuju da za date elemente upotreba 30 minutne UZSE, za ekstrahovanje jonoizmenjive i kiselo rastvorne frakcije, može biti primenjena za razliku od MTSE koja daje ili značajnije manje ili veće ekstrahovane količine ispitivanih elemenata.

Slika 25. Prikaz koda procene rizika za Ba, Cd, Co, Cr, Cu i Ni (% udeo izmenjive i kiselo rastvorne frakcije u odnosu na ukupni sadržaj metala)

Značajno više koncentracije jonoizmenjive i/ili kiselo rastvorne frakcije su dobijene MTSE u uzorcima sedimenata uzetih sa lokaliteta Messer (M) i Vojlovica (V) (slike 25 i 26).

Na osnovu ekstrahovanih koncentracija Ni kod uzoraka uzetih sa lokaliteta Dekanter nakon UZSE i Vojlovica (V) dobijen je srednji rizik po životnu sredinu (11%) nakon MTSE.

kiselo rastvorne frakcije u odnosu na ukupni sadržaj metala)

Olovo je element koji se pod uticajem ultrazvuka više ekstrahovao u jonoizmenjivoj i kiselo rastvornoj frakciji, i to u sedimentima Dekantera (15%), Elektrolize (19%), Živine deponije (12%) i mulja sa oznakom K1 (15%). Dobijeni rezutati za Pb su u saglasnosti sa značajnije većom ekstrahovanom koncentracijom Pb u sertifikovanom materijalu nakon prve faze BCR ekstrakcije primenom ultrazvuka (tabela 15).

Metal koji se u značajnije većim količinama ekstrahovao nakon prve faze BCR ekstrakcije primenom UZSE jeste i Hg, i to u uzorcima sedimenata Elektrolize (13%), puta oko petrohemijskog kompleksa (40%), Starčeva (16%), i muljeva K5 (36%) i K1 (70%)

gde dobijena ekstrahovana vrednost ukazuje da kod uzorka mulja uzetog sa lokacije K1 postoji visok rizik po zagađenje životne sredine Hg, ukoliko se uzorak ekstrahuje pomoću ultrazvučnih talasa, dok je udeo Hg nakon preostale dve tehnike manji od 10%.

Ekstrahovane količine As u sedimenatima Elektrolize (12%) i puta oko petrohemijskog kompleksa (19%) nakon KSE ukazuju na srednji rizik po životnu sredinu, kao i u sedimetima Vojlovice (18%) nakon MTSE, dok ekstrahovane koncentracije dobijene nakon UZSE ukazuju nizak rizik po životnu sredinu.

Kod većine uzoraka sedimenata i muljeva količina Co dobijena nakon prve faze BCR ekstrakcije je manja od 10%. Srednji rizik po životnu sredinu je dobijen kod uzoraka sedimenata Dekantera (15%) nakon UZSE i kod muljeva K3 (11%) i K4 (11%) nakon KSE.

4.2. Mikrotalasna digestija

Osim što smo ispitivane uzorke sedimenata i muljeva tretirali postupkom sekvencijalne ekstrakcije, nove količine uzoraka su rastvarane pod uticajem mikrotalasa u mikrotalasnom digestoru prvo sa carskom vodom, a zatim sa carskom vodom sa fluorovodoničnom kiselinom.

4.2.1. Mikrotalasna digestija carskom vodom

Ekstrahovane koncentracije ispitivanih elemenata u sedimentima nakon mikrotalasne digestije sa carskom vodom su prikazane u tabeli 65 (prilog). Aritmetička i geometrijska sredina sa standardnim devijacijama, medijana, minimalna i maksimalna koncentracija i *baseline* opseg su prikazani u tabeli 79 (prilog). Prikaz distribucija koncentracija elemenata po dubinama u sedimentima i muljevima biće prikazani u naknadnom delu (poglavlje 4.3.) gde će se prikazati poređenja dobijenih ekstrahovanih koncentracija nakon mikrotalasnih digestija (carskom vodom i carskom vodom sa fluorovodoničnom kiselinom) i ukupnih ekstrahovnih količina elemenata nakon četiri faze SE.

4.2.1.1. Mikrotalasna digestija carskom vodom – osnovne geohemijske koncentracije elemenata

Posmatrajući koncentracije ispitivanih elemenata dobijenih nakon mikrotalasne digestije sa carskom vodom se vidi da su maksimalne vrednosti koncentracije Al, Ba, Cd, Cr, Cu, K, Na, Pb, Zn, Hg i Se iznad baseline ranga za dati element (tabela 79, prilog). Ovi rezultati ukazuju da u nekim uzorcima ekstrahovane koncentracije prevazilaze opsege koji bi trebalo da predstavljaju očekivane vrednosti na osnovu ekstrahovanih koncentracija. Koncentracije elemenata koje ne izlaze iz *baseline* opsega imaju ujednačene ekstrahovane koncentracije po uzorcima. Sedimenti kod kojih su ekstrahovane koncentracije elemenata veće od odgovarajućeg baseline opsega, mogu da ukažu na lokalno zagađenje tim elementima. Na osnovu maksimalnih koncentracija koje prevazile gornju granicu baseline opsega elementi se mogu grupisati po uzorcima, to su koncentracije Al, K, Na dobijene u uzorcima sa najvećih dubina puta u petrohemijskom kompleksu (P50 i P100), kao i sa lokaliteta Messer i Vojlovica, Sarčevo i Pančevo zgrada nakon mikrotalasne digestije. Što se tiče uzoraka muljeva, u uzorku K3 koncentracije ovih elemenata odskaču od preostalih. Drugi set elemenata, obzirom na maksimalne ekstrahovane koncentracije koje su dobijene u sedimenatima Dekantra (D) i uzorku mulja K4, su koncentracije Ba, Cd, Cu, Pb, Zn, Hg i Se (tabela 65, prilog). Živa, je pored uzoraka sedimenata Dekantera, ekstrahovana u značajnije većim koncentracijama u uzorcima Elektrolize, Živine deponije (ŽD5 i ŽD15), i u uzorku mulja K2. Slično sa Hg i Cr se u značajnije višoj koncentraciju ekstrahovao u uzorku K2.

Dobijene koncentracije Ba, Cd, Co, Cr, Cu, Mn, Ni, Pb, Zn i V nakon mikrotalasne digestije carskom vodom smo poredili sa nacionalnom i EU direktivom o maksimalnim dozvoljenim koncentracijama elemenata (tabela 48). Na osnovu poređenja se vidi da za neke ispitivane sedimente koncentracije Cu, Pb i Zn prevazilaze maksimalne dozovoljene koncentracije, kao i koncentracija Cr dobijena nakon digestije uzorka mulja K2. Moguće zagađenje može biti prouzrokovano permanentnim izvorom zagađenja koje potiče iz industrijskih pogona, kao što su petrohemijska i naftna industrija, blizina puteva i uticaj poljoprivrede (slika 2) (Relić i dr., 2011a). Osim poređenja sa dikretivama koncentracije

Ba, Cd, Co, Cr, Cu, Mn, Ni, Pb, Zn i V poredili smo sa koncentracijama tih elemenata nakon mikrotalasne digestije sedimentima i zemljišta iz Srbije, Evrope i Sveta objavljenim u radovima nekih inostranih časopisa. Geometrijska sredina Ba u sedimentima Španije (tabela 48) je veća (Tume i dr., 2006) nego geometrijska sredina dobijena mikrotalasnom digestijom sa carskom vodom ispitivanih sedimenata. Vrednosti za geometrijske sredine Cd i Cu su veće u sedimentima sa severa Srbije (Škrbić i Čupić, 2004; Sakan i Đorđević, 2010) i iz Španije (Nadal i dr., 2009; Tume i dr., 2006). Carskom vodom ekstrahovani Co je niži nego u sedimentima iz Meksiko grada (Rosales-Hoz i dr., 2003) i sedimenata iz zapadne Srbije (Dugalić i dr., 2010). Ispitivani sedimenti imaju veće koncentracije za Cr i V nego sedimenti iz Španije (Tume i dr., 2006; Nadal i dr., 2009) i severne Srbije (Škrbić i Čupić, 2004; Sakan i Đorđević, 2010), dok su Pb i Zn ekstrahovani u većim koncentracijama nego u sedimetata reke Tise (Sakan i Đorđević, 2010).

4.2.1.2. Mikrotalasna digestija carskom vodom – test normalne distribucije

Koncentracije elemenata dobijene mikrotalasnom digestijom sa carskom vodom ispitivanih sedimenata i muljeva su ispitane pomoću Kolgomorov-Smirnovljevog testa, radi određivanja postojanja normalne distribucije i dobijeni rezultati su prikazani u tabeli 49. Kao što se iz tabele vidi dobijene ekstrahovane koncentracije Cd, Cr, Cu, Pb, Zn, Hg, Se nisu normalno distribuirane. Ovi elementi imaju maksimalne ekstrahovane koncentracije koje prevazilaze *baseline* opsege u sedimentima Dekantera, u slučaju Hg i u uzorcima Elektrolize, dok je kod Cr to slučaj u uzorku mulja K2. Logaritmovanjem koncentracija u ispitivanim uzorcima i ponavljanjem Kolgomorov-Smirnovljevog testa, za sve elemente sem za Cr, dobija se vrednost *p* koeficijenta veća od 0,05; odnosno normalna distribucija (tabela 49). Posmatrajući koncentracije Cr po uzorcima (tabela 65, prilog) vidi se da je najveća dobijena u uzorku K2 (1.032 μ g/g). Ponavljanjem testa bez te vrednosti, dobija se normalna distribucija (*p* = 0,627). Povišena vrednost Cr u uzorku K2 je dobijena i kada je uzorak bilo tretiran carskom vodom na vodenom kupatilu, nakon tri faze BCR ekstrakcije (slika 21).

			ŀ	Rezultati u is	pitivanim uzo	orcima					Rezult	ati za poređei	nje	
								EU	Severna	Severna	Zapadna	Grad		
	АМ	ASD	Min	Maks	Medijana	GM	MDK ^b	granična ^c	Srbija ^d	Srbija ^e	Srbija ^f	Meksiko ^g	Španija ^h	Španija ⁱ
Ba	207,2	130,1	30,0	688,0	199,0	167,8	/	/	/	/	/	/	286,2	/
Cd	0,17	0,25	0,01	1,23	0,10	0,09	2	1-3	0,15	2,67	0,65	/	/	0,19
Co	8,8	3,3	1,9	14,1	9,6	8,0	/	/	/	/	31,34	25	/	/
Cr	76,5	153,7	24,0	1.032,0	54,0	54,1	100		/	18,1	108,1	73	39,8	20,4
Cu	79,1	235,5	2,0	1.108,0	24,0	23,8	100	50-140	28,4	89	22,72	125	31,9	/
Mn	535,6	202,9	145,0	840,0	550,0	490,7	/	/	/	1.591	1.144,23	/	/	297,5
Ni	41,6	13,8	11,0	75,0	41,0	39,0	50	30-75	/	25,4	229,41	68	40,3	nd
Pb	48,5	68,9	0,1	337,0	29,1	27,5	100	50-300	2,7	66,9	47,41	40	42,3	29,5
Zn	173,4	237,4	43,0	1.140,0	99,0	114,3	300	150-300	61,3	567	64,8	235	61,8	nd
V	56,0	27,4	9,0	97,0	63,0	47,2	/	/	31,3	/	/	31	37,4	33,8

Tabela 48. Koncentracija elemenata u ispitivanim sedimentima (µg/g na masu suve supstance), poređenje sa podacima iz Srbija i Sveta (Relić i dr., 2011a*)

* navedene brojčane vrednosti su drugalije nego što su u radu koji je naveden kao referenca, jer u radu su bili razmatrani samo uzorci sedimenata dok su se u tezi razmatrali i uzorci muljeva iz otpadnog kanala

^b MDK (Pravilnik o dozvoljenim količinama teških metala i organskih materija u zemljištu, Službeni Glasnik Republike Srbije, 1990)

^c EU granična (Council Directive 86/278/EEC) ^d Geometrijska sredina prikazana u radu Škrbić i Čupić (2004) ^e Aritmetička sredina prikazana u radu Sakan i Đorđević (2010) ^f Aritmetička sredina prikazana u radu Dugalić i dr., (2010) ^g Aritmetička sredina prikazana u radu Rosales-Hoz i dr., (2003) ^h Geometrijska sredina prikazana u radu Tume i dr., (2006) ⁱ Aritmetička sredina prikazana u radu Nadali dr. (2000)

ⁱ Aritmetička sredina prikazana u radu Nadal i dr., (2009)

^a %

	Al	Ва	Ca	Cd	Co	Cr	Cu	Fe	К	Mg	Mn	Na	Ni	Pb	Si	Sn	Sr	Ti	v	Zn	As	Hg	Se
N	41	41	41	41	41	41	41	41	41	41	41	41	41	41	41	41	41	41	41	41	41	41	41
Kolmogorov-																							
Smirnov Z	0,936	1,022	0,628	2,082	0,903	3,004	3,037	0,915	0,981	0,706	0,978	1,243	0,499	2,395	1,033	0,939	0,677	1,093	0,933	2,361	0,668	2,443	1,624
Asymp. Sig.																							
(2-tailed)	0,345	0,247	0,826	0,000	0,388	0,000	0,000	0,372	0,291	0,702	0,294	0,091	0,965	0,000	0,237	0,341	0,750	0,183	0,349	0,000	0,763	0,000	0,010
	hCd.	lnCr.	In Cu	InDb	h. 1n71	ի հրել	. InS																
	meu	mer	meu	ini o	, 1121	1 11112	5 1115	-															
Ν	41	41	41	41	4	I 41	l 4	1															
Kolmogorov-																							
Smirnov Z	1,039	1,456	1,236	1,360	1,061	1,008	3 0,63	5															
Asymp. Sig.																							
(2-tailed)	0,230	0,029	0,094	0,049	0,210	0,262	2 0,81	6															

Tabela 49. Kolmogorov-Smirnovljev test ekstrahovanih koncentracija elementa nakon mikrotalasne digestije uzoraka sa carskom vodom

Tabela 50. Kolmogorov-Smirnovljev test ekstrahovanih koncentracija elementa nakon mikrotalasne digestije uzoraka sa carskom vodom i flurovodoničnom kiselinom

	Al	Ba	Ca	Cd	Co	Cr	Cu	Fe	К	Mg	Mn	Na	Ni	Pb	Si	Sn	Sr	Ti	v	Zn
Ν	41	41	41	41	41	41	41	41	41	41	- 41	41	41	41	41	41	41	41	41	41
Kolmogorov-	1.047	1 363	0.609	2 661	0.083	3 100	3 025	1.048	1.410	0.601	0.861	1 455	0.551	2.003	0.954	0.072	0.827	1 /02	0.700	2 560
Asymp, Sig,	1,047	1,505	0,009	2,001	0,985	5,190	5,025	1,040	1,410	0,001	0,801	1,455	0,551	2,095	0,954	0,972	0,827	1,492	0,700	2,500
(2-tailed)	0,223	0,049	0,853	0,000	0,289	0,000	0,000	0,222	0,038	0,863	0,448	0,029	0,922	0,000	0,323	0,301	0,501	0,023	0,711	0,000
	lnBa	lnCd	lnCr	lnCu	lnK	L lnN	Na ln	Pb 1	nTi l	nZn										
Ν	41	41	41	41	41	1 4	41	41	41	41										
Kolmogorov-																				
Smirnov Z	1,062	2,406	1,787	1,231	1,547	2,02	24 1,6	94 1,0	678 1,	027										
Asymp, Sig, (2-tailed)	0,209	0,000	0,003	0,096	0,017	7 0,00	0,0	06 0,0	007 0,	242										

	Faktori					Faktori			
	1	2	3	4		1	2	3	4
nK	0,970				lnCo 0	0,964			
nAl	0,966				lnSn 0	0,951			
nFe	0,948				InFe 0	0,950			
nSn	0,948				lnV 0	0,939			
nCo	0,941				lnMn 0	0,936			
nMn	0,932				lnNi 0	0,699			0,559
nTi	0,939				lnAl 0	0,870			
nV	0,923				lnBa		0,759		
nAs	0,846				lnCu		0,954		
nMg	0,823				lnZn		0,956		
nNi	0,618			0,649	lnNa		-0,823		
nBa		0,837			lnMg		-0,553	0,587	
nCu		0,954			InPb -0	-0,663	0,534		
nPb		0,715			InSi -0	-0,552		-0,541	
nZn		0,906			lnSr			0,899	
nSe		0,796			lnCa			0,875	
nHg	-0,620	0,510			lnCr				0,882
nSi	-0,777								
nCd	-0,572								
nNa			0,624						

Slika 27. Dendogrami klastera dobijenih povezivanjem logaritmovanih koncentracija metala nakon mikrotalasnih digestija, unutar grupe povezivanje (Within Group), u uzorcima koji su digestirani sa: a) carskom vodom; b) carskom vodom sa flurovodoničnom kiselinom

Sumirajući rezultate Kolgomorov-Smirnovljevog testa vidimo da u daljoj statističkoj obradi možemo koristiti sve ispitivane elemente, kao što je bio slučaj nakon četvrte faze SE.

4.2.1.3. Mikrotalasna digestija carskom vodom – faktorska i klasterska analiza

Primenom Varimaks rotacije u faktorskoj analizi koncentracija elemenata dobijenih nakon mikrotalasne digestije carskom vodom, dobijena su 4 faktora (tabela 51).

Na osnovu faktorske i klasterske analize ekstrahovanih koncentracija može se uočiti postojanje dva podklastera (tabele 51 i slika 27a).Prvi podklaster (slika 27a) čine veći deo ispitivanih elemenata a okosnicu čine Fe, Mn, Al, K, kao predstavnici supstrata preostalih elemenata tog podklastera (oksidi Fe i Mn, i alumosilikati Al i K). Dobijene količine ovih metala se nalaze u faktoru 1 (tabela 51). Pored ovih metala tu su i dobijene koncentracije Mg, Sn, V, Co, Ti, As i Ni. Gore navedeni metali su i međusobno značajno pozitivno korelisani što se i iz tabele 84 (prilog) može videti. Jedini element koji je negativno korelisan sa ostalim elementima koji čine prvi podklaster jeste Si. To se ogleda i u negativnom učešću Si u faktoru 1 (tabela 51). Pored njega Hg i Cd takođe pokazuju negativno učešće u faktoru 1. Slično ponašanje ova tri metala se ogleda u pozitivnoj korelaciji Si sa Hg (r = 0,310), dok je Hg pozitivno značajno korelisana sa Cd (r = 0,488).

Drugi podklaster (slika 27a) čine Cu, Zn, Ba, Se, Pb, Cd i Hg. Ovi elementi, sem Cd, imaju značajno učešće u faktoru 2 (tabela 51) a takođe su i međusobno pozitivno korelisani (tabela 84, prilog).

Hrom pokazuje najveće učešće u faktoru 4 (tabela 51). Razlog tome jeste značajnije veća koncentracija ovoga elementa u uzorku K2 (tabela 65, prilog). Kada uklonimo tu koncentraciju i ponovimo faktorsku i klastersku analizu, dobijamo učešće Cr u faktoru 1, kao i prisustvo Cr u prvom podklasteru.

U faktoru 3 se sa učešćem većim od 0,5 nalaze Na, Ca i Sr.

Dobijeni podklasteri su slični sa onima nakon četvrte faze SE, kada smo uzorke tretirali carskom vodom na vodenom kupatilu, nakon tri faze BCR ekstrakcije.

4.2.2. Mikrotalasna digestija carskom vodom i flurovodoničnom kiselinom

Ekstrahovane koncentracije ispitivanih metala i metaloida u sedimentima nakon mikrotalasne digestije carskom vodom i flurovodoničnom kiselinom su prikazane u tabeli 66 (prilog). Aritmetička i geometrijska sredina sa standardnim devijacijama, medijana, minimalna i maksimalna koncentracija i *baseline* opseg su prikazani u tabeli 80 (prilog). Kao što se iz tabele 66 (prilog) vidi koncentracije Hg, As i Se nisu snimane hidridinom tehnikom na ICP/OES nakon rastvaranja uzoraka carskom vodom i HF. Prikaz distribucija koncentracija elemenata po dubinama u sedimentima i muljevima biće prikazani u delu teze (4.3.) gde će se porediti dobijene ekstrahovane koncentracije nakon mikrotalasnih digestija (carskom vodom i carskom vodom sa fluorovodoničnom kiselinom) sa ukupnim ekstrahovnim količinama elemenata nakon četiri faze SE.

4.2.2.1. Mikrotalasna digestija carskom vodom i flurovodoničnom kiselinom – osnovna geohemijska koncentracija elemenata

Posmatrajući koncentracije ispitivanih elemenata dobijenih nakon mikrotalasne digestije carskom vodom i HF se vidi da su kod Cd, Cr, Cu, V i Zn maksimalne vrednosti koncentracija iznad *baseline* opsega za dati element (tabela 80, prilog). Ovi rezultati ukazuju da u nekim uzorcima ekstrahovane koncentracije prevazilaze opsege koji bi trebalo da predstavljaju očekivane vrednosti na osnovu koncentracija dobijenih mikrotalasnom digestijom uzoraka sa carskom vodom i HF. Metali čije koncentracije nisu veće od *baseline* opsega imaju ujednačene ekstrahovane koncentracije u svim uzorcima.

Najveća koncentracija Cr je dobijena u uzorku mulja K2. U slučaju Cu to su ekstrahovane vrednosti u sedimentima Dekantera, Messera, i muljeva K2, K3 i K4. Ekstrahovane količine Cd koje prevazilaze *baseline* opseg su dobijene u uzorcima Dekantera (D5; D15), površinskim uzorcima Elektrolize (PE5) i Živine deponije (ŽD5), kao i uzorcima muljeva K1 i K4. Kod V to su uzorci sa najvećih dubina uzetih sa lokaliteta Puta u petrohemijskom kompleksu (P50, P100), kao i dubinskih uzoraka sa lokaliteta Vojlovica (V25, V50), dok od uzoraka mulja to je uzorak K4. Cink kao i Cu ima značajnije

veće koncentracije u sedimentima Dekantera, i u muljevima K2, K3 i K4, dok od preostalih uzoraka to su uzorci sa lokaliteta Vojlovica (V5 i V15).

4.2.2.2. Mikrotalasna digestija carskom vodom i flurovodoničnom kiselinom – test normalne distribucije

Dobijene koncentracije elemenata nakon mikrotalasne digestije sa carskom vodom i HF u uzorcima su bile ispitane pomoću Kolgomorov-Smirnovljevog testa, a dobijeni rezultati su prikazani u tabeli 50. Kao što se iz tabele vidi dobijene ekstrahovane koncentracije Ba, Cd, Cr, Cu, K, Na, Pb, Ti i Zn nisu normalno distribuirane. Logaritmovanjem koncentracija i ponavljanjem Kolgomorov-Smirnovljevog testa, ne dobija se normalna distribucija Cd, Cr, K, Na, Pb, Ti (tabela 50). Nepostojanje normalne distribucije za ove metale se može objasniti značajnom razlikom u dobijenim koncentracijama među ispitivanim uzorcima. U slučaju Cr značajnije veća količina se dobila digestijom uzorka mulja K2. Ponavljanjem testa bez te vrednosti dobija se normalna distribucija (p = 0,501). Povišena vrednost Cr u uzorku K2 je dobijena kada je uzorak bilo tretiran carskom vodom na vodenom kupatilu (nakon tri faze BCR ekstrakcije) kao i mikrotalasnom digestijom carskom vodom. U slučaju Na nije dobijena normalna distribucija zbog nižih koncentracija, a kod Pb zbog značajnije viših koncentracija u sedimetima Dekatera nego što su u preostalim uzorcima. Izuzimajući te koncentracije dobija se normalna distribucija za Na (p = 0,116) i Pb (p = 0,912).

Sumirajući rezultate Kolgomorov-Smirnovljevog testa vidimo da u daljoj statističkoj obradi ne možemo koristiti koncentracije Cd, K i Ti, jer ne zadovoljavaju test normalne distribucije.

4.2.2.3. Mikrotalasna digestija carskom vodom i fluorovodoničnom kiselinom – faktorska i klasterska analiza

Primenom Varimaks rotacije u faktorskoj analizi koncentracija elemenata dobijenih nakon mikrotalasne digestije carskom vodom sa HF, dobijena su 4 faktora (tabela 52).

Na osnovu dobijenih rezultata faktorske i klasterske, kao i korelacione analize dobijenih ekstrahovanih koncentracija elemenata može se uočiti postojanje dva podklastera (tabele 52 i slika 27b) slično rezultatima dobijenim nakon digestije sa carskom vodom (tabela 51, slika 27a).

Prvi podklaster čine veći deo ispitivanih elemenata i oksonicu čine Fe, Mn i Al, koji predstavljaju supstrate (kristalizovani oksidi i alumosilikati) preostalim mikroelemetima (Co, Sn, V, Ni). Pored ovih metala drugi deo tog podklastera čine Ca, Sr i Mg (slika 27b). Gore navedeni metali su i međusobno značajno pozitivno korelisani što se i iz tabela 85 (prilog) može i videti. Ovi elementi se nalaze prisutni u faktorima 1 i 3 sa najvećim učešćem.

Drugi podklaster (slika 27b) čine dobijene koncentracije Cu, Zn, Ba, Pb i Si. Koncentracije metala Cu, Zn, Ba i Pb imaju značajno učešće u faktoru 2 (tabela 52) a takođe su i međusobno pozitivno korelisane (tabela 85, prilog). Olovo je metal koji je prisutan i u faktoru 1 sa negativnim učešćem. U faktoru 2 sa negativnim učešćem su prisutni Na i Mg (tabela 52). Silicijum je metal koji je prisutan sa negativnim učešćem u faktorima 1 i 3, odnosno pokazuje anatagonističko dejstvo prema, sa jedne strane oksidima Fe i Mn, alumosilikatima i sa druge strane sa karbonatnom frakcijom.

Na osnovu korelacione analize (tabela 85, prilog) vidi se da Si sa većinom ispitivanih elemenata ima negativne značajne korelacije. Sličan rezultat je dobijen nakon digestije carskom vodom ispitivanih uzoraka (tabela 84, prilog). Jedinu pozitivnu značajnu korelaciju ima sa koncentracijama Pb (r = 0,579).

4.3. Poređenje koncentracija elemenata nakon sekvencijalne ekstrakcije i mikrotalasnih digestija

Distribucije koncentracija elemenata u muljevima i po dubinama u sedimentima su prikazane na slikama 28-30, radi poređenja dobijenih ekstrahovanih koncentracija nakon mikrotalasnih digestija (carskom vodom i carskom vodom sa fluorovodoničnom kiselinom) i ukupnih ekstrahovnih količina elemenata nakon četiri faze SE.

Slika 28. Distribucija ekstrahovanih koncentracija Al, Ba, Ca, Cd, Co, Cu, Cr i Fe nakon mikrotalasnih digestija i četiri faze BCR ekstrakcije

Na osnovu dobijenih distribucija elemenata u uzorcima, može se uočiti da su za većinu ispitivanih elemenata veće koncentracije dobijene mikrotalasnom digestijom carskom vodom sa flurovodoničnom kiselinom. To najizraženije kod Si i Na (slika 29).

Izrazito veće količine ovih elemenata se objašnjavaju razaranjem silikata primenom flurovodonične kiseline i time da se ova dva elemenata u najvećem delu nalaze vezana za silikatni matriks, ukoliko nisu i sami činioci istog. Dobijene količine Si su negativno korelisane sa dobijenim količinama ukupnih sadržaja preostalih elemenata, dok u slučaju ukupnog sadržaja Na njegove količine su pozitivno korelisane sa koncentracijama makroelementima iz prvog podklastera (slika 27b), kao i sa Co, Sn i Ti (tabela 85, prilog).

Elementi koji su u većim koncentracijama ekstrahovani mikrotalasnom digestijom carskom vodom sa HF su Ba, Co, Cr, K, Fe, Pb, Sn, Sr, Ti, V, dok u slučaju Ca, Mn, Ni i Zn vidimo ujednačene koncentracije nakon primene tri tehnike u BCR ekstrakciji i mikrotalasnih digestija (slike 28-30). Dobijeni rezultati ukazuju da se litofilni i siderofilni elementi, klasifikovani po Goldšmitovoj (*Goldschimidt*) geohemijskoj klasifikaciji elemenata (Alloway, 1995; Sakan, 2010) u značajnije većim koncentracijama ekstrahuju primenom carske vode sa HF, što je i očekivano pošto su oni u značajnoj meri vezani za silikate.

Na osnovu slike 29 se vidi da u uzorku V5 (0-5 cm) (Vojlovica) je dobijena najveća koncentracija Ni nakon četiri faze SE, kod koje su prve tri BCR faze bile rađene pod uticajem ultrazvuka, dok kod Pb u uzorku M25 (20-25 cm) (Messer) dobijena je najveća količina nakon KSE u prve tri faze BCR ekstrakcije.

U slučaju Al, Mg, Sn, As, Hg i Se veće koncentracije su dobijene nakon mikrotalasne digestije carskom vodom u ispitivanim uzorcima. Na osnovu slike 30 se vidi da je u uzorku uzetog sa lokacije put u petrohemijskom kompleksu i Starčevu (P15 (10-15 cm) i S15 (10-15 cm)) dobijena najveća koncentracija As, a u uzorku M25 (20-25 cm) najveće količine Hg i Pb nakon KSE u prve tri faze BCR ekstrakcije (slika 29).

Slika 29. Distribucija ekstrahovanih koncentracija K, Mg, Mn, Na, Ni, Pb, Si, Sn nakon mikrotalasnih digestija i četiri faze BCR ekstrakcije

Slika 30. Distribucija ekstrahovanih koncentracija Sr, Ti, V, Zn, As, Hg i Se nakon mikrotalasnih digestija i četiri faze BCR ekstrakcije

Sa slike 28 se vidi da su veće količine Cd i Cu u ispitivanim uzorcima dobijene nakon SE (KSE, MTSE, UZSE) nego nakon mikrotalasnih digestija. Kadmijum i Cu spadaju u halkofilne elemente po Goldšmitovoj geohemijskoj klasifikaciji elemenata (Alloway, 1995; Sakan, 2010) i oni nisu značajnije vezani za slikate (Sakan i dr., 2007) te se efikasnije ekstrahuju primenom sekvencijalne ekstrakcije.

U radu Rönkkömäki i dr. (2008) je istaknuto da iako se HF koristi za određivanje ukupnog sadržaja elemenata vezanih za silikate, njenom upotrebom može doći do gubitaka elemenata u tragovima prilikom razaranja (Sakan, 2010). Relativno male koncentracije dobijene nakon razaranja sa HCl+HNO₃+HF, kao i HNO₃+HF za većinu određivanih elemenata je, verovatno, posledica formiranja nerastvorljivog CaF₂, sa kojim koprecipituju metali (Rönkkömäki i dr., 2008; Sakan, 2010).

5. Zaključak

Cilj istraživanja prikazanog u ovoj disertaciji je primena BCR standardizovane sekvencijalne ekstrakcije u tri različite modifikacije, i to uz rotaciono mućkanje kao konvencionalna (KSE) ultrazvučne talase kao ultrazvučna (UZSE) i mikrotalase kao mikrotalasna (MTSE) sekvencijalna ekstrakcija, površinskih i dubinskih sedimenata (36 uzoraka) i muljeva (5 uzoraka) sa lokaliteta industrijske zone Pančeva i okoline. Ekstrakcijom referetnog materijala (BCR 701) utvrđena je tačnost i preciznost svake od tri tehnike ekstrakcije. Sukcesivnom primenom ekstrakcionih sredstava rastuće ekstrakcione moći, u okviru BCR sekvencijalne ekstrakcije, rastvarali smo specifično asocirane frakcije mikroelemenata i to u prvoj fazi jonozimenjivači i karbonatno asocirane frakcije, u drugoj frakcije elemenate vezane za okside mangana i gvožđa, u trećoj fazi organsko i sulfidno asocirane frakcije elemenata i u četvrtoj fazi frakcije asocirane sa kristalnim oksidima gvožđa i silikatni matriks. Navedene ekstrakcije su omogućile identifikaciju interakcija mikroelemenata sa supstratima i na osnovu toga prognozu njihove mobilnosti u ispitivanim uzorcima. Kvantifikacija antropogenog uticaja ispitivanih elemenata je izvršena poređenjem ekstrahovanih koncentracija sa prosečnim vrednostima u zemljištu, računanjem osnovnih (baseline) geohemijskih koncentracija elemenata, i koda procene rizika odnosno zastupljenosti najmobilnije količine elemenata u odnosu na ukupnu ekstrahovanu količinu nakon sve četiri faze SE. Pseudo ukupni sadržaj elemenata (Cd, Cr, Cu, Ni, Pb i Zn) koji smo odredili standardizovanom mikrotalasnom digestijom uzoraka, poredili smo sa količinama predviđenim odredbama srpskog i EU zakonodavstva koje određuju maksimalno dozvoljene koncentracije ovih metala u zemljištu.

Detaljnom analizom rezultata prikazanih u radu, izveli smo sledeće zaključke:

a) Na osnovu ekstrakcionih rezultata sertifikovanog materijala (BCR 701):

Utvđeno je da je metoda konvencionalnog mućkanja na rotacionoj mućkalici u trajanju od 16 sati najpreciznija od, u ovoj disertaciji, korišćenih tehnika. Ovom tehnikom su dobijene najpribližnije koncentracije sertifikovanih metala nakon prve tri faze u standardizovanoj BCR sekvencijalnoj ekstrakcionoj šemi. Od bržih tehnika primenjenih u ovom radu, ultrazvučna ekstrakcija u trajanju od 30 minuta je dala rezultate zadovoljavajuće tačnosti u slučaju polovine sertifikovanih metala u dve od tri faze od interesa i to Cd, Ni i Zn nakon prve i Cu, Ni i Zn nakon treće faze BCR ekstrakcije, dok mikrotalasna ekstrakcija jačine 90 W u trajanju od 2 minuta nije dala rezultate dovoljne tačnosti, pa je, pri ovim eksperimentalnim uslovima najnepreciznija, i samim tim, nepreporučljiva za korišćenje.

b) Na osnovu ekstrakcionih rezultata sedimenata i muljeva ispitivanih uzoraka:

Analizirajući ukupno 41 uzorak sedimenata i muljeva, dobijene su značajnije veće ekstrahovane koncentracije Cr, Cu, Pb, Hg i Zn ekstrahovanjem sedimenata Dekantera kao i ekstrahovanjem Hg iz sedimenata Elektrolize nakon prve faze BCR ekstrakcije trima tehnikama, u odnosu na ekstrahovane koncentracije ispitivanih elemenata u preostalim uzorcima. Pri tome ekstrahovane koncentracije Cr, Pb i Hg iz sedimenta Dekantera, kao i Hg iz sedimenata Elektrolize u prvoj fazi BCR ekstracije, iako veće od ekstrahovanih iz drugih uzoraka u ovoj fazi ekstrakcije, ne prevazilaze prosečne koncentracije u naslagama ovog tipa. Jonoizmenjive i/ili kiselo rastvorne količine Cu i Zn u ovom uzorku su, u svim varijantama ekstrakcionog eksperimenta, sa druge strane, znatno veće od ukupnih prosečnih koncentracija u zemljištima, te ovi elementi u najmobilnijim, potencijalno lako rastvorljivim frakcijama pri uslovima prisutnim u životnoj sredini, predstavljaju potencijalne zagađivače.

Količine Cu, Pb, Zn i Hg ekstrahovane iz sedimenata Dekantera i količine Hg ekstrahovane iz sedimenata Elektrolize, su znatno veće od količina ovih elemenata ekstrahovanih iz drugih ispitivanih uzoraka u drugoj fazi BCR ekstrakcije, a takođe prevazilaze i prosečne koncentracije ovih elemenata u zemljištima primenom sve tri ispitivane tehnike, što ukazuje na vrlo verovatno zagađenje sedimenata ovim metalima. Pad redoks potencijala može da dovede do "oslobađanja" ovih metala u ispitivanu životnu sredinu, odnosno do njenog zagađenja. Rezultati faktorske i korelacione analize svih uzoraka ukazuju da su oksidi Fe supstrati Sn, Cd, Pb, Cu, Cr, Zn, As, Se i Hg, dok su oksidi Mn supstrati Co i Ni, i da postoji kovarijansa između oksida Mn i Fe sa alumosilikatima u uzorcima.

Nakon ekstrahovanja organski i/ili sulfidno vezanih elemenata ispitivanih uzoraka uočljivo je da su u sedimentima Dekantera ekstrahovane veće koncentracije Ba, Cu, Pb, Zn i Hg u odnosu na količine tih metala u preostalim uzorcima sedimenata i muljeva. Poređenjem dobijenih koncentracija ispitivanih elemenata sa prosečnim vrednostima u zemljištu uočeno je da su organski i/ili sulfidno vezane količine Hg u sedimentima Dekantera kao i u uzorku mulja uzetog u blizini ušća otpadnog kanala u reku Dunav znatno veće od ukupnih prosečnih koncentracija u zemljištu, što otvara mogućnost da su ove lokacije u prošlosti zagađene živom. Dobijene ekstrahovane koncentracije Ba, Cu, Pb, Zn i Hg su značajno pozitivno korelisane, što ukazuje na mogući zajednički supstrat i/ili zajedničko poreklo. Između koncentracije preostalih ispitivanih mikroelemenata i ispitivanih makroelemeneta (Fe, Mn, Al, K) postoje značajne korelacije, što ukazuje na postojanje jedinjenja Fe, Mn, Al i K koja su supstrati delu analiziranih mikroelemenata.

Nakon određivanja pseudo ukupnog sadržaja ispitivanih elemenata u uzorcima sedimenata i muljeva uočljivo da su znatno veće količine Ba, Cu, Pb, Zn i Hg ekstrahovane u uzorcima sa lokaliteta Dekanter, u odnosu na količine ekstrahovane u ostalim uzorcima, a dobijene pseudo ukupne količine tri od ovih pet elemenata (Pb, Zn i Hg) u uzorcima sedimenata Dekanatera su veće od njihovih prosečnih vrednosti za zemljišta. Kao i nakon treće faze ekstrakcije, koncentracije Ba, Cu, Pb, Zn i Hg su međusobno značajne korelisane što ukazuje na njihovo zajedničko poreklo. Pseudo ukupne količine Cu i Zn dobijene u uzorcima koji su bili tretirani mućkanjem i ultrazvučnim talasima u prethodna tri koraka BCR ekstrakcije, su korelisane sa koncentracijama Fe, Al, K i Mn dok tih korelacija nema u uzorcima koji su bili mikrotalasno ekstrahovani. Koncentracije preostalih ispitivanih mikroelemenata (osim Cr) su značajno korelisane sa pseudo ukupnim količinama Fe, Mn, Al i K, što otvara mogućnost veze supstrat-pratilac između jedinjenja navedenih makroelemenata i dela istraživanih mikroelemenata. Jedini element čije koncentracije nisu značajno korelisane sa koncentracijama drugih elemenata jeste Cr, pre svega zbog znatno veće ekstrahovane koncentracije Cr u uzorku mulja K2. Činjenica da statistička analiza koja ne uzima u obzir ovaj uzorak dovodi do uspostavljanja značajnih korelacija koncentracija Cr sa drugim elementima i to sa makroelemetima: Fe, Mn, Al i K, ukazuje na akumulaciju hroma u ovom uzorku koja nije povezana sa načinima na koje je Cr prisutan u drugim uzorcima.

Sličnost uticaja brzih tehnika ekstrakcije sa konvencionalnom se ogleda u prisustvu sličnog broja faktora u faktorskoj i klastera u klasterskoj analizi, odnosno slične raspodele ekstrahovanih koncentracija elemenata u dobijenim faktorima i klasterima nakon četiri koraka sekvencijalne ekstrakcije. Dobijeni rezultati ukazuju da je uticaj mikrotalasa i ultrazvučnih talasa na ekstrakciju asociranih elemenata sa supstrata ispitivanih uzoraka sličan sa uticajem vremenski zahtevnijeg rotacionog mućkanja (16 sati). Uočen je, međutim, različit uticaj brzih tehnika u odnosu na konvencionalnu ekstrakciju u ekstrahovanju elemenata prisutnih u karbonatnoj frakciji (Ca, Mg, Sr i Mn). Najveće količine ovih elemenata su, kada se porede različite ekstrakcione tehnike, ekstrahovane u prvoj fazi BCR ekstrakcije konvencionalnom sekvencijalnom ekstrakcije navedeni elementi su ekstrahovani u značajnijoj meri primenom bržih sekvencijalnih tehnika, verovatno usled nepotpunog kiselog razlaganja karbonata u prvom BCR koraku.

Na osnovu koda procene rizika, tj. procentualne zastupljenosti ekstrahovanih koncentracija mikroelemenata dobijenih nakon prve faze BCR ekstrakcije, u odnosu na ukupni ekstrahovani sadržaj, uzorci sedimenata uzetih iz kruga petrohemijskog kompleksa sa lokaliteta Dekantera, Elektrolize i Živine deponije imaju povišen, visok i srednji rizik po životnu sredinu na osnovu ekstrahovanih najmobilnijih koncentracija Ba, Cd, Cu i Zn nakon KSE i UZSE. U slučaju preostalih ispitivanih elemenata kod ovih uzoraka, kao i svih ispitivanih elemenata kod nenavedenih uzoraka, rizik po životnu sredinu je nizak ili ga nema.

Dobijeni rezultati ukazuju i da je upotreba brze, 30 minutne UZSE, za ekstrahovanje najmobilnije, jonoizmenjive i kiselo rastvorne frakcije elemenata, primenjiva u proceni koda procene rizika za životnu sredinu za razliku od MTSE, koja daje ili značajnije manje ili veće ekstrahovane količine ispitivanih elemenata od dobijenih nakon KSE i UZSE.

Na osnovu poređenja dobijenih koncentracija elemenata, nakon mikrotalasne digestije carskom vodom, sa nacionalnom i evropskom direktivom o maksimalnim dozvoljenim

koncentracijama mikroelemenata u zemljištu vidi se da u slučaju sedimenata Dekantera koncentracije Cu i Zn prevazilaze maksimalne dozvoljene koncentracije, pri čemu su i u prve dve faze sekvencijalne ekstrakcije dobijene zbirne koncentracije ova tri elementa veće od maksimalno dozvoljenih koncentracija za zemljišta. Pseudo ukupni sadržaj Cr u uzorku mulja sa oznakom K2 takođe prevazilazi maksimalno dozvoljenu koncetraciju (povišena koncentracija ovog metala je dobijena i kada je uzorak bio tretiran carskom vodom na vodenom kupatilu, nakon tri faze BCR ekstrakcije). Dobijeni rezultati nam ukazuju na zagađenje sedimenata Dekantera i mulja gore navedenim metalima.

Iako ekstrakcija ultrazvučnim talasima sertifikovanog materijala daje tačnije rezultate u ekstrakciji sertifikovanih metala u odnosu na dobijene mikrotalasima, kod ispitivanih uzoraka sedimenata i muljeva veštački izvori energije dovođe do rastvaranja približno istih supstrata u sekvencijalnoj ekstrakciji, kao i konvencionalna sekvencijalna ekstrakcija. Ultrazvučna ekstrakcija kao brza tehnika ekstrahovanja može da dá precizan uvid u procentualnu količinu najmobilnije frakcije mikroelemenata poređenjem sa dobijenim nakon KSE.

6. LITERATURA

- Abollimo, O., Malandrino, M., Giacomino, A., Mentasti, E., 2011. The role of chemometrics in single and sequential extraction assays: A review Part I. Extraction procedures, uni- and bivariate techniques and multivariate variable reduction techniques for pattern recognition. *Analytica Chimica Acta* **688**, 104-121.
- Adamo, P., Denaix, L., Terribile, F., Zampella, M., 2003. Characterization of heavy metals in contaminated volcanic soils of the Solofrana river valley (southern Italy). *Geoderma* 117, 347-366.
- Ahumada, I., Escudero, P., Ascar, L., Mendoza, J., Richter, P. 2004. Extractability of arsenic, copper and lead in soils of a mining and agricultural zone in Central Chile. *Communications in Soil Science and Plant Analysis* 35, 1615-1634.
- Alloway, B.J. 1995. Heavy metals in soil: Edited by Alloway, B.J., Blackie Academic & professional, London (2nd edn).
- Arain, M.B., Kazi, T.G., Jamali, M.K., Jalbani, N., Afridi, H.I., Baig, J.A. 2008. Speciation of heavy metals in sediment by conventional, ultrasound and microwave assisted single extraction methods: A comparison with modified sequential extraction procedure. *Journal of Hazardous Material* 154, 998-1006.
- Aten, C.F., Gupta, S.K. 1996. On heavy metals in soil; rationalization of extractions by dilute salt solution, comparison of the extracted concentrations with uptake by ryegrass and lettuce, and the possible influence of pyrophosphate on plant uptake. *Science of Total Environment* **179**, 45-53.
- Bacon, J.R., Davidson, C.M., 2008. Is there a future for sequential chemical extraction? *Analyst*, **133**, 25-46.
- Bélanger, J.M.R., Paré J.R.J. 2006. Applications of microwave-assisted processes (MAP[™]) to environmental analysis. *Analytical and Bioanalytical Chemistry* **386**, 1049-1058.
- Bodek, I.B., W.J. Lyman, W.F. Reehl, D.H. Rosenblatt, eds. 1988. Environmental inorganic chemistry: Properties, processes, and estimation methods. SETAC Spec. Publ. Ser. New York: Pergamon Press.

- Bosco, M.L., Varrica, D., Dongarra, G. 2005. Case study: inorganic pollutants associated with particulate matter from an area near a petrochemical plant. *Environmental Research* **99**, 18–30.
- Bryce, D.W., Izquierdo, A., Luque de Castro, M.D. 1995. Use of focused microwaves for expeditive shortening of sample pre-treatment: digestion and reduction procedures prior to selenium speciation as selenium (IV) or selenium (VI). *Analyst* 120, 2171-2174.
- Cappuyns, V., Swennen, R., 2007. Classification Of alluvial soils according to their potential environmental risk: a case study for Belgian catchments. *Journal of Environmental Monitoring* **9**, 319-328.
- Chen, M., Ma, L.Q. 2001. Comparison of three aqua regia digestion methods for twenty Florida soils. *Soil Science Society of America Journal* **65**, 491-499.
- Chen, Y., Guo, Z., Wang, X., Moens, I. 2008. Sample preparation. *Journal of Chromatography A* **1184**, 191-219.
- Chojnacka, K., Chojnacki, A., Górecka, H., Górecki, H. 2005. Bioavailability of heavy metals from polluted soils to plants. *Science of Total Environmen*, **337**, 175-182.
- Ciceri, E., Giussani, B., Pozzi, A., Dossi, C.Recchi, S. 2008. Problems in the application of the three-step BCR sequential extraction to low amounts of sediments: An alternative validated route. *Talanta* **76**, 621-626.
- Costa, L.M., Santos, D.C.M.B., Hatje, V., Norberga, J.A., Korn, M.G.A. 2009. Focusedmicrowave-assisted acid digestion: Evaluation of losses of volatile elements in marine invertebrate samples. *Journal of Food Composition and Analysis* 22, 238-241.
- Council Directive 86/278/EEC, on the Protection of the Environment, and in Particular of the soil, When Sewage Sludge is Used in Agriculture Official Journal L **181**, 1986, pp. 6-12.
- Dalmacija, M. 2010. Procena potencijala remedijacije sedimenta kontaminiranog metalima primenom imobilizacionih agenasa, *Doktorska disertacija*, Novi Sad

- Davidson, C.M., Urquhart, G.J., Ajmone-Marsan, F., Biasioli, M., da Costa Duart, A., Díaz-Barrientos, E., Grčman, H., Hossack, I., Hursthouse, A.S., Madrid, L., Rodrigues, S., Zupan, M. 2006. Fractionation of potentially toxic elements in urban soils from five European cities by means of a harmonized sequential extraction procedures. *Analytica Chimica Acta* 565, 63-72.
- Davis, J.A., Gloor, R. 1981. Adsorption of dissolved organics in lake water by aluminium oxides: Effects of molecular weight. *Environmental Science and Technology* **15**, 1223-1227.
- Davis, J.A., Leckie, J.O. 1978. Effect of adsorbed complexing ligands on trace metal uptake by hydrous oxides. *Environmental Science and Technology* **12**, 1309-1315.
- Davis, J.S. 1980. Adsorption of dissolved organics in lake water by aluminium oxide. In:Baker, R.A. (Ed.), *Contaminants and Sediments*, Ann Arbor Sci. Publ., 2, 279-304.
- Dudka, S., Ponce-Hernandez, R., Hutchinson, T.C. 1995. Current level of total element concentrations in the surface layer of Sudbury's soils. *Science of Total Environment* 162, 161–171.
- Dugalić, G., Krstić, D., Jelić, M., Nikezić, D., Milenković, B., Pucarević, M., Zeremski-Škorić, T. 2010. Heavy metals, organics and radioacitivity in soil of Western Serbia. *Journal of Hazardous Material* **177**, 697-702.
- Flores, E.M.M., Barin, J.S., Mesko, M.F., Knapp, G. 2007. Sample preparation techniques based on combustion reactions in closed vessels – A brief overview and recent applications. *Spectrochim. Acta Part B* 62, 1051-1064.
- Förstner, U. 1985. Chemical forms and reactivities of metals in sediments. In: Leschber, R., Davis, R.D., L'Hermite, P. (Eds.), *Chemical Methods for Assessing Bioavailable Methods in Sludges and Soils*, Elsevier, London, 1-30.
- Fortescue, J.A.C. 1992. Landscape geochemistry: Retrospective and prospect, 1990. *Applyed Geochemistry* 7, 1-53.
- Giacomino, A., Abollino, O., Malandrino, M., Mentasti, E. 2011. The role of chemometrics in single and sequential extraction assays: A Review. Part II. Cluster analysis, multiple linear regression, mixture resolution, experimental design and other techniques. *Analytica Chimica Acta* 688, 122-139.

- Gleyzes, C., Tellier, S., Astruc, M., 2002. Fractionation studies of trace elements in contaminated soils and sediments: a review of sequential extraction procedures. *Trends in Analytical Chemistry* 21, 451-467.
- Gržetić, I. Analitičke greške i statistička analiza grešaka, Hemija životne sredine II, pdf dokumet.

http://helix.chem.bg.ac.rs/~grzetic/predavanja/Hemija%20zivotne%20sredine%20II /ANALITICKE%20GRESKE%20I%20ANALIZA%20GRESAKA.pdf

- ISO, 1983. Sludge and Sediment. Digestion using *aqua regia* for subsequent determination of acid soluble portion of soil zinc fraction, *DIN 38414* **7**, 4.
- Jain, C. K. 2004. Metal fractionation study on bed sediments of River Yamuna, India, *Water Research* **38**, 569–578.
- Jamali, M.K., Kazi, T.G., Arain, M.B., Afridi, H.I., Jalbani, N., Memon A. R. 2007. Heavy Metal Contents of Vegetables Grown in Soil, Irrigated with Mixtures of Wastewater and Sewage Sludge in Pakistan, using Ultrasonic-Assisted Pseudodigestion. *Journal* of Agronomy and Crop Science 193, 218-228.
- Kabata-Pendias, A. 2011. Trace Elements in Soils and Plants 4th ed, Taylor & Francis Group, Boca Raton, FL 33487-2742.
- Kazi, T.G., Jamali, M. K., Siddiqui, A., Kazi, G.H., Arain, M.B., Afridi, H.I. 2006a. An Assessment of Metal-Contaminated Soils 227 ultrasonic-assisted extraction method to release heavy metals from untreated sewage sludge samples. *Chemosphere* 63, 411-420.
- Kazi, T.G., Afridi, H.I., Jamali, M.K., Kazi, G.H., Arain, M.B., Jalbani, N., Sarfraz, R.A., Shar, G.Q. 2006b. Effect of ultrasound agitation on the release of heavy elements in certified reference material of human hair (CRM BCR 397). *Journal of AOAC International* 89, 1410-1416.
- Krčmar, D. 2010. Uticaj promene fizičko-hemijskih uslova i odabranih tretmana na mobilnost metala u sistemu sediment/voda, *Doktorska disertacija*, Novi Sad
- Krishna, A.K., Govil, P.K. 2007. Soil contamination due to heavy metals from an industrial area of Surat, Gujarat, Western India. *Environmental Monitoring and Assessment* 124, 263–275.

- Kubová, J., Streško, V., Bujdoš, M., Matúš, P., Medved, J. 2004. Fractionation of various elements in CRMs and in polluted soils. *Analytical and Bianalytical Chemistry* **379**, 108-114.
- Kujundžić-Tiljak, M., Ivanković, D. Multivarijantne metode, pdf. http://cms.mef.hr/meddb/slike/pisac15/file1528p15.pdf
- Kumar, R., Ray, R.K. 1998. Modeling microstructural heterogeneity in materials by using Q-mode factor analysis. *Materials Characterization* **40**, 7-13.
- Langmuir, D. 1997. Aqueous environmental chemistry. Upper Saddle River, NJ: Prentice-Hall. 600.
- Langmuir, D., Chrostowski, P., Chaney, R., Vigneault, B. 2005. Issue paper on the environmental chemistry of metals (Draft). U.S. Environmental Protection Agency Risk Assessment Forum, Washington.
- Livingstone, D.A. 1963. Chemical composition of rivers and lakes, 6th ed. U.S. Geology Survey Professional Paper 440-G.
- López-Sánchez, J.F., Sahuquillo, A., Fiedler, H.D., Rubio, R., Rauret, G., Muntau, H., Quevauviller, Ph., 1998. CRM 601, A stable material for its extractable content of heavy metals. *Analyst* 123, 1675-1677.
- Luque de Castro, M.D., Priego-Capot, F. 2007. Analytical application of ultrasound. Elsevier, Oxford.
- Luque-García, J.L., Luque de Castro, M.D. 2003. Where is microwave-based analytical equipment for soild sample pre-treatment going? *Trends in Analytical Chemistry* **22**, 90-98.
- Luque-García, J.L., Luque de Castro, M.D. 2004. Focused microwave-assisted Soxhlet extraction: devices and applications. *Talanta* **64**, 571–577.
- Magalhães, C.S., Garcia, J.S., Lopes, A.S., Arruda, M.A.Z. 2007. Strategies for sample preparation focusing on biomolecules determination/characterization, in: Arruda, M.A.Z. (Ed.), *Trends in Sample preparation*, Nova Science Publishers Inc., New York, 245-288.

- Manouchehri, N., Besancon, S., Bermond, A., 2006. Major and trace metal extraction from soil by EDTA: Equilibrium and kinetic studies. *Analytica Chimica Acta* **559**, 105-112.
- Mason, T. J. (ed.) 1990. A general introduction to sonochemistry. In: *Sonochemistry: The Uses of Ultrasound in Chemistry*. The Royal Society of Chemistry **1**, 1-138.
- McLaren, R.G., Lawson, D.M., Smith, R.S. 1986. The forms of cobalt in some Scottish soils as determined by extraction and isotopic exchange. *Journal of Soil Science* **37**, 223-234.
- Mesko, M.F., Mello, P.A., Bizzi, C.A., Dressler, V.I., Knapp, G., Flores, E.M.M. 2010a. Iodine determination in food by inductively coupled plasma mass spectrometry after digestion by microwave-induces combustion. *Analytical and Bioanalytical Chemistry* 398, 1125-1131.
- Mesko, M.F., Pereira, J.S.F., Moraes, D.P., Barin, J.S., Mello, P.A., Paniz, J.N.G., Nóberga, J.A., Korn, M.G.A., Flores, E.M.M. 2010b. Focused microwave-induces combustion: A new technique for sample digestion. *Analytical Chemistry* 82, 2155-2160.
- Mesko, M.F., Hartwig C.A., Bizzi C.A., Pereira, J.S.F., Mello, P.A., Flores, E.M.M. 2011. Sample preparation strategic for bioinorganic analysis by inductively coupled plasma mass spectrometry. *International Journal of Mass Spectrometry* **307**, 123-136.
- Mossop, K.F., Davidson, C.M. 2003. Comparison of original and modified BCR sequential extraction procedures for the fractionation of copper, iron, lead, manganese and zinc in soils and sediments. *Analytica Chimica Acta* **478**, 111-118.
- Nadal, M., Mari M., Schuhmacher, M., Domingo, J.L. 2009. Multi-compartment environment surveillance of a petrochemical area: Levels of micropollutants. *Environment International* 35, 227-235.
- Newcomb, W.D., Rimstidt, J.D. 2002. Trace element distribution in US groundwaters: a probabilistic assessment using public domain data. *Applyed Geochemistry* **17**, 49-57.

- Nóbrega, J.A., Trevizan, L.C., Araújo, G.C.L., Nogueira, A.R.A. 2002. Focusedmicrowave-assisted strategies for sample preparation. *Spectrochimica Acta Part B* 57, 1855–1876.
- Pérez-de-Mora, A., Madejón, E., Burgos, P., Cabrera, F. 2006. Trace element availability and plant growth in a mine-spill contaminated soil under assisted natural remediation I. Soils. *Science of Total Environment* **363**, 28-37.
- Pickering, W.F. 1986. Metal ion speciation soils and sediments (A review). Ore Geology Reviews 1, 83-146.
- Pickering, W.F., 2002. General strategies for speciation. In: Ure, A.M., Davidson C.M. (Eds.), *Chemical Speciation in the Environment*, Second Edition, Blackwell Science Ltd, London, 9-29.
- Polić, P., 1991. Ispitivanje prirode asocijacija teških metala i identifikacija njihovih supstrata u aluvijalnom sedimentu metodom sekvencijalne ekstrakcije, *Doktorska disertacija*, Beograd.
- Pueyo, M., López-Sánchez, J.F., Rauret, G. 2004. Assessment of CaCl₂, NaNO₃ and NH₄NO₃ extraction procedures for study of Cd, Cu, Pb and Zn extractability in contaminated soils. *Analytica Chimica Acta* **504**, 217-226.
- Quevauviller, Ph., 1996. CRMs for quality control of determinations of chemical forms of elements in support to EU legislation. *Fresenius' Journal of Analytical Chemistry* 354, 515-520.
- Quevauviller, Ph., Rauret, G., López-Sánchez, J.F., Rubio, R., Ure, A., Muntau, H., 1997. Certification on trace metal extractable contents in a sediment reference material (CRM 601) following a three-step sequential extraction procedure. *Science of Total Environment* 205, 223-234.
- Quevauviller, Ph., 1998. Operationally defined extraction procedures for soil and sediments analysis. *Trends in Analytical Chemistry* **17**, 632-642.
- Quevauviller, Ph., 2002. Quality control in speciation studies for environmental monitoring. In: Ure, A.M., Davidson C.M. (Eds.), *Chemical Speciation in the Environment*, Second Edition, Blackwell Science Ltd, London, 132-158.

- Rauret, G., Lopez-Sanchez, J.F., Sahuquillo, A., Davidson, C., Ure, A., Quevauviller, Ph. 1999. Improvement of the BCR 3-step sequential extraction procedure prior to the certification of new sediment and soil reference materials. *Journal of Environmental Monitoring* 1, 57-61.
- Relić, D., Đorđević, D., Popović, A., Blagojević, T. 2005. Speciations of trace metals in the Danube alluvial sediments within an oil refinery. *Environment International* 31, 661-669.
- Relić, D. 2006. Ekohemijska interpretacija sadržaja metala sedimenata aluviona Dunava (teren Rafinerije nafte Pančevo), *Magistarska teza*, Beograd.
- Relić, D., Đorđević, D., popović, A., Jadranin, M., Polić, P. 2010. Fractionation and potential mobility of trace metals in Danube alluvial aquifer within an industrialized zone. *Environmental Monitoring and Assessment* 171, 22-248.
- Relić, D., Đorđević, D., Sakan, S., Anđelković, I., Miletić, S., Đuričić, J. 2011a. Aqua regia extracted metals in sediments from the industrial area and surroundings of Pančevo, Serbia. *Journal of Hazardous Materials* 186, 1893-1901.
- Relić, D., Đorđević, D., Popović, A. 2011b. Assessment of the pseudo total content in alluvial sediments from Danube River, Serbia. *Environment Earth Science* 63, 1303-1317.
- Rice, K.C. 1999. Trace-element concentrations in streambed sediment across the conterminous United States. *Environmental Science and Technology* **33**, 2499-2504.
- Ritchie, G.S.P., Sposito, G., 2002. Speciation in soils. In: Ure, A.M., Davidson C.M. (Eds.), *Chemical Speciation in the Environment*, Second Edition, Blackwell Science Ltd, London, 237-264.
- Rönkkömäki, H., Pöykiö, R., Nurmesniemi, H., popov, K., Merisalu, E., Tuomi, T., Välimäki, I. 2008. Particle size distribution and dissolution properties of metals in cyclone fly ash. *International journal of environmental science and technology* 5, 485-494.
- Rosales-Hoz, L., Cundy, A.B., Bahena-Manjarrez, J.L. 2003. Heavy metals in sediment cores from a tropical estuary affected by anthropogenic discharges: Coatzacoalcos estuary, Mexico. *Estuarine Coastal and Shelf Science* 58, 117-126.

- Sahuquillo, A., Lopez-Sanchez, J.F., Rubio, R., Rauret, G., Thomas, R.P., Davidson, C.M., Ure, A.M. 1999. Use of a certified reference material for extractable procedure. *Analytica Chimica Acta* 382, 317-327.
- Sahuquillo, A., Rigol, A., Rauret, G. 2003. Overview of the use of leaching/extraction tests for risk assessment of trace metals in contaminated soils and sediments. *Trends in Analytical Chemistry* 22, 152–159.
- Sakan, S., Gržetić, I., Đorđević, D. 2007. Distribution and fractionation of heavy metals in Tisza (Tisa) river sediments. *Environmental Science and Pollution Research* 14, 229-236.
- Sakan, S. 2010. Novi pristup u korišćenju mikroelemenata kao trasera za identifikaciju i diferencijaciju antropogenog uticaja i prirodnog fona u sedimentima, *Doktorska teza*, Beograd.
- Sakan, S., Đorđević, D. 2010. Evaluation of heavy metal contamination in sediments using the method of total digestion and determination of the binding forms-Tisza river Basin, Serbia. *Journal of Environtal Science and Health A* 45, 783-794.
- Sakan, S., Đorđević, D., Dević, G., Relić, D., Anđelković, I., Đuričić, J. 2011. A study of trace element contamination in river sediments in Serbia using microwave-assisted aqua regia digestion and multivariate statistical analysis. *Microchemical Journal* 99, 492-502.
- Salminen, R., Tarvainen T. 1997. The problem of defining geochemical baselines: case study of selected elements and geological materials in Finland. *Journal of Geochemical Exploration* 60, 91-98.
- Salminen, R., Gregorauskiene, V. 2000. Considerations regarding the definition of a geochemical baseline of elements in the surficial materials in areas differing in basic geology. *Applied Geochemistry* 15, 647-653.
- Salomons, W., Förstner, U. 1980. Trace metals analysis on polluted sediments. II. Evaluation of environmental impact. *Environmental Technology Letters* 51, 506-517.

- Shacklette, H.T., Boerngen, J.G. 1984. Element concentrations in soils and other surficial materials of the conterminous United States. U.S. Geology Survey Professional Paper 1270.
- Službeni Glasnik Republike Srbije 1990. *Pravilnik o dozvoljenim količinama teških metala i organskih materija u zemljištu*, **11**, 239.
- Smith, F.E., Arsenault, E.A. 1996. Microwave-assisted sample preparation in analytical chemistry. *Talanta* **43**, 1207-1268.
- Srogi, K. 2007. Microwave-assisted sample preparation of coal and coal fly ash for subsequent metal determination. *Analytical Letters* **40**, 199-232.
- Suslick, K.S., Flannigan, D.J. 2008. Inside a Collapsing Bubble: Sonoluminescence and the Conditions During Cavitation. *Annual Review of Physical Chemistry* **59**, 659–683.
- Sutherland, R.A., Tack, F.M.G. 2003. Fractionation of Cu, Pb and Zn in certified reference soils SRM 2710 and SRM 2711 using the optimized BCR sequential extraction procedure. *Advances in Environmental Research* 8, 37-50.
- Škrbić, B., Čupić, S. 2004. Trace metal distribution in surface soils of Novi Sad and bank sediment of the Danube River. *Journal of Environtal Scienece and Health A* **39**, 1547-1558.
- Templeton, D., Ariese, M.F., Cornelis, R., Danielsson, L.-G., Muntau, H., van Leeuwen, H.P., 2000. IUPAC guidelines for terms related to chemical speciation and fractionation of trace elements: definitions, structural aspects and methodological approaches. *Pure and Applied Chemistry* 74, 1453-1470.
- Tessier, A., Champbell, P.G.C., Bisson, M. 1979. Sequential extraction procedure for the speciation of particulate trace metals. *Analytical Chemistry* **51**, 844-851.
- Tume, P., Bech, J., Longan, L., Tume, L., Reverter, F., Sepulveda, B. 2006. Trace elements in natural surface soils in Sant Climent (Catalonia, Spain). *Ecological Engineering* 27, 145-152.
- Turekian, K.K. 1977. The fate of metals in the oceans. *Geochimica et Cosmochimica Acta* **41**, 1139-1144.
- U.S. EPA. 2002a. List of drinking water contaminants & MCLs. http://www.epa.gov/safewater/mcl.html

- Ure A.M., Davidson, C.M. 2002a. *Chemical Speciation in the Environment*, Second Edition. Ure, A.M., Davidson C.M. (Eds.). Blackwell Science Ltd, London.
- Ure, A.M., Davidson, C.M. 2002b. Chemical speciation in soils and related materials by selective chemical extraction. In: Ure, A.M., Davidson C.M. (Eds.), *Chemical Speciation in the Environment*, Second Edition, Blackwell Science Ltd, London, 265-300.
- Xenidis, A., Stouraiti, C., Moirou, A. 2001. The effectiveness of municipal sewage sludge application on the stabilization of Pb, Zn and Cd in a soil contaminated from mining activities. *Journal of Environmental Science and Health. Part A* **36**, 971-986.

7. PRILOG

U prilogu su tabelarno prikazani dobijeni rezulati BCR ekstrakcije elemenata iz uzoraka sedimenata i muljeva.

Tabel	la 53. Koncentracije elemenata dobijene nakon prve faze BCR KSE (ng/g za As, Hg i Se dok za preostale elemente µg/g, preračunato na suvu
supsta	ancu) u ispitivanim uzorcima
KSEI	

Fara AI Ba Ca Ca Ca Ca Ca Fa Na Na Na Na Sa Sa Sa Sa Sa Ti V Za As Hg Sa D15 83.3 24.6 30.8 0.44 0.22 0.24 0.44 0.22 0.14 0.22 0.14 0.04 0.004 0.004 0.004 0.004 0.002 41.34 0.22 1.34 0.02 1.34 0.02 1.34 0.02 1.34 0.02 1.34 0.02 1.34 0.02 1.34 0.02 1.34 0.005 0.010 4.004 4.0 2.00 0.005 0.005 0.014 1.25 2.04 0.049 2.01 0.040 0.015 1.34 1.25 2.04 0.049 2.01 0.005 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 <td< th=""><th>KSE I</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></td<>	KSE I																							
D 5 83.3 24.6 90.08 0.48 0.40 0.265 33.4 75.2 1107 67.3 85.5 1.84 67.2 362.1 0.10 67.4 0.005 0.100 67.4 0.004 0.004 0.004 0.004 0.004 142 143.8 2.2 D 25 17.0 0.025 0.26 0.11 0.004 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.007 0.11 0.11 0.11 0.11 0.11 0.10 0.006 0.03 2.4 2.4 2.4 2.2 1.00 0.005 0.03 2.4 0.005 0.03 2.4 0.005 0.03 2.4 0.005 0.03 2.4 <td>Faza</td> <td>Al</td> <td>Ba</td> <td>Ca</td> <td>Cd</td> <td>Co</td> <td>Cr</td> <td>Cu</td> <td>Fe</td> <td>K</td> <td>Mg</td> <td>Mn</td> <td>Na</td> <td>Ni</td> <td>Pb</td> <td>Si</td> <td>Sn</td> <td>Sr</td> <td>Ti</td> <td>V</td> <td>Zn</td> <td>As</td> <td>Hg</td> <td>Se</td>	Faza	Al	Ba	Ca	Cd	Co	Cr	Cu	Fe	K	Mg	Mn	Na	Ni	Pb	Si	Sn	Sr	Ti	V	Zn	As	Hg	Se
D15 107 222 0.28 0.042 579.0 19.5 19.5 11.1 98.3 24.9 1.74 8,15 23.5 0.10 92.4 0.004 0.002 13.48 0.00 0.004 0.002 13.48 0.01 45.45 22.7 PE 15 33.4 9.3 0.13 1.10 0.005 0.010 45.04 1.01 53.2 2.70 75.7 0.72 2.80 0.005 0.025 1.3.7 6.9 0.025 1.3.7 6.9 41.85 2.55 75.5 75.7 1.70 18.97 0.08 0.02 2.22 2.29.7 0.08 1.88 1.01 13.75 0.05 0.03 2.14 0.05 0.09 0.12 2.4 2.4 0.01 0.00 0.00 0.02 1.3.1 2.5 2.5 P15 17.7 18.91 0.08 0.02 0.02 0.07 0.02 0.03 2.10 0.03 2.00 0.03 2.01	D 5	83,3	24,6	30038	0,48	0,40	0,265	334,75	32,3	57,2	1107	67,3	55,5	1,84	6,72	362,1	0,16	67,4	0,005	0,100	534,89	122	124,5	2,5
D25 100.7 29.7 9033 0.14 0.37 0.829 136.22 21.2 11.6 7.0 8.5 12.5 21.2 0.11 15.0 0.004 0.022 51.3.48 60 364.2 2.2 PE IS 33.3 19.3 31.07 0.14 0.19 0.060 0.60 34.8 13.6 20.67 12.3 13.3 13.4 23.6 23.2 25.7 0.22 13.4 0.005 0.000 0.005 0.000 0.000 0.018 31.2 2.1 PE IS 19.6 17.9 18971 0.08 0.21 0.003 0.28 5.1 2.403 2.021 2.14 1.85 1.01 31.3 0.005 <td>D 15</td> <td>74,6</td> <td>21,9</td> <td>17692</td> <td>0,22</td> <td>0,28</td> <td>0,642</td> <td>559,90</td> <td>19,5</td> <td>29,5</td> <td>1611</td> <td>98,3</td> <td>24,9</td> <td>1,74</td> <td>8,15</td> <td>235,3</td> <td>0,10</td> <td>29,4</td> <td>0,004</td> <td>0,004</td> <td>473,03</td> <td>142</td> <td>143,8</td> <td>2,2</td>	D 15	74,6	21,9	17692	0,22	0,28	0,642	559,90	19,5	29,5	1611	98,3	24,9	1,74	8,15	235,3	0,10	29,4	0,004	0,004	473,03	142	143,8	2,2
PE 5 27.3 17.0 40232 0.26 0.44 0.19 6.75 30.1 20.9 2576 12.7 6.7 1.68 1.99 89.3 0.13 41.2 0.005 0.025 13.37 67 73.3 71 75.7	D 25	100,7	29,7	9033	0,14	0,37	0,829	136,22	22,4	15,2	1146	73,0	8,5	1,85	25,42	215,2	0,11	15,0	0,004	0,022	513,48	60	364,5	2,2
PE15 33.4 9.3 31197 0.04 0.19 0.060 0.60 34.8 13.6 2635 13.14 2.2 1.24 0.88 75.7 0.22 28.0 0.005 0.025 13.13 14.85 2.5 P5 19.6 17.9 18971 0.08 0.21 0.030 0.30 2.2 22.9 2088 18.8 12.4 0.04 31.7 0.01 30.4 0.005 0.070 31.2 31.4 2.5 34 P55 19.6 17.7 18.971 0.08 0.21 0.005 0.070 31.2 31.4 2.5 2.4 P50 37.7 17.0 18.41 0.08 0.21 14.4 13.4 18.8 12.4 2.04 0.03 0.03 0.01 0.005 0.03 0.005	PE 5	27,3	17,0	40252	0,26	0,45	0,119	6,75	30,1	20,9	2576	127,7	6,7	1,68	1,99	89,3	0,13	41,2	0,005	0,010	48,04	41	533,2	2,7
PE 5 59.5 8.3 2566 0.11 0.26 0.12 0.46 89.5 18.3 2407 97.0 3.1 18.8 1.01 133.9 0.40 0.27 0.025 13.13 51 418.5 2.5 99 P15 17.1 17.9 19671 0.08 0.21 0.03 5.1 2.005 0.03 2.04 0.04 30.63 0.04 0.005 0.070 3.12 341 2.55 3.4 P15 17.7 18411 0.08 0.01 0.062 0.02 0.025 0.087 4.66 315 2.6 3.4 0.05 0.03 3.64 0.005 0.08 4.8 1.0 2.5 5.5 3.03 3.048 0.02 0.025 4.8 1.0 1.65 3.6 3.07 0.07 2.49 0.40 0.55 3.5 0.005 0.025 4.90 1.10 2.5 2.5 2.0 2.40 1.40 0.05 3.00	PE 15	33,4	9,3	31197	0,14	0,19	0,060	0,60	34,8	13,6	2635	131,4	2,2	1,24	0,88	75,7	0,22	28,0	0,095	0,025	13,97	69	783,1	2,5
P5 17.1 17.9 18971 0.08 0.21 0.203 0.23 2.22 229.7 208 18.7 1.80 0.41 31.75 0.01 30.4 0.005 0.89 2.49 332 2.5 2.9 P25 19.5 17.7 18451 0.08 0.21 0.004 0.57 4.9 223.3 2020 12.7 1.00 2.03 0.03 2.44 0.005 0.08 3.14 0.005 0.08 3.2 2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.6 3.4 0.005 0.025 0.48 1.1 2.5 2.5 2.0 0.43 1.56 0.05 3.5 0.005 0.25 4.60 1.1 2.5 3.3 ZD 15 2.53 10.3 30480 0.24 0.41 0.005 1.03 1.03 1.10 5.6 0.01 2.60 0.005 0.32 8.012	PE 25	59,5	8,3	25656	0,11	0,26	0,102	0,64	89,5	18,3	2407	97,0	3,1	1,85	1,01	133,9	0,40	23,7	0,567	0,025	13,13	51	418,5	2,5
P15 19.6 17.9 19671 0.08 0.12 0.005 0.38 5.1 240.3 2023 127.2 15.2 2.04 0.049 306.5 0.03 27.1 0.005 0.070 3.12 3.41 2.56 3.4 P50 37.7 17.0 18411 0.08 0.10 0.062 0.12 1.4 131.4 188.4 1249 29.0 2.07 0.36 36.97 0.07 2.49 0.005 0.025 0.48 11 2.5 2.5 ZD 5 25.6 9.4 30430 0.27 0.41 0.005 1.60 6.9 112.2 2.54 1.67.3 1.74 0.56 0.05 5.35 0.005 0.025 4.51.9 1.10 2.5 2.5 2.04 1.56.6 0.05 0.025 4.51.9 1.10 2.5 2.5 1.5 9.6 2.24 0.040 0.025 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 <td< td=""><td>P5</td><td>17,1</td><td>17,9</td><td>18971</td><td>0,08</td><td>0,21</td><td>0,203</td><td>0,30</td><td>2,2</td><td>229,7</td><td>2098</td><td>150,8</td><td>18,7</td><td>1,80</td><td>0,41</td><td>317,5</td><td>0,01</td><td>30,4</td><td>0,005</td><td>0,089</td><td>2,49</td><td>332</td><td>2,5</td><td>2,9</td></td<>	P5	17,1	17,9	18971	0,08	0,21	0,203	0,30	2,2	229,7	2098	150,8	18,7	1,80	0,41	317,5	0,01	30,4	0,005	0,089	2,49	332	2,5	2,9
P25 19,5 17,7 18411 0.08 0.01 0.064 0.057 4.9 223,7 206 151,2 18,4 2.07 1.09 290,3 0.03 26,4 0.005 0.005 0.087 4.66 315 2.6 3.2 P100 39,3 17,6 38834 0.09 0.07 0.020 0.09 18,1 853 2676 12,6 13,1 14,4 0.05 10,05 12,5 25,5 ZD 15 25,6 9,4 30493 0.027 0.041 0.005 10,00 7,0 7,9 27,4 10,5 7,3,5 2,52 0.49 15,6 0.05 47,3 0.005 0.025 29,62 164 2,5 2,5 ZD 50 32,8 5,8 229,56 0.09 0.27 0.035 61,4 41,9 12,8 14,1 13,1 14,2 1,1 1,0 1,0 1,2 2,1 1,1 2,2 0,10 0,23 0,01 0,03 1,6 1,4 1,3 2,2 1,6 0,01 0,05 <t< td=""><td>P15</td><td>19,6</td><td>17,9</td><td>19671</td><td>0,08</td><td>0,12</td><td>0,005</td><td>0,38</td><td>5,1</td><td>240,3</td><td>2023</td><td>127,2</td><td>15,2</td><td>2,04</td><td>0,49</td><td>306,5</td><td>0,03</td><td>27,1</td><td>0,005</td><td>0,070</td><td>3,12</td><td>341</td><td>2,5</td><td>3,4</td></t<>	P15	19,6	17,9	19671	0,08	0,12	0,005	0,38	5,1	240,3	2023	127,2	15,2	2,04	0,49	306,5	0,03	27,1	0,005	0,070	3,12	341	2,5	3,4
P50 37.7 17.0 1841 0.08 0.10 0.062 0.012 14.4 131.4 188 12.49 29.0 2.07 0.36 369.7 0.07 24.9 0.005 0.026 0.88 22 2.6 2.5 ZD 5 25.6 9.4 30493 0.27 0.41 0.005 1.60 6.9 112.5 2558 12.5 40.2 2.9 0.43 157.0 0.05 53.5 0.005 0.025 44.9 10 2.5 2.5.5 ZD 15 25.3 10.3 30480 0.24 0.41 0.005 1.60 6.9 112.5 2558 12.5 4.02 2.9 0.43 157.0 0.05 53.5 0.005 0.025 0.48 2.2 2.5 2.5 0.44 1.00 0.025 0.64 1.6 2.5 2.5 0.44 1.00 0.05 0.07 1.64 0.312 0.036 0.031 0.08 1.61 2.5 2.5 6.7 ZD 5 0.72 1.65 0.70 0.81 0.10 <	P25	19,5	17,7	18451	0,08	0,21	0,064	0,57	4,9	223,7	2006	151,2	18,4	2,07	1,09	290,3	0,03	26,4	0,005	0,087	4,66	315	2,6	3,2
PI00 39.3 17.6 338.4 0.09 0.07 0.020 0.09 18.1 85.3 227.6 12.6 12.6 23.6 94.3 13.0 0.005 0.025 0.48 11 2.5 25.5 ZD 15 25.6 94.3 30490 0.24 0.41 0.005 1.00 7.0 77.9 25.5 75.5 2.52 0.43 15.66 0.05 47.3 0.005 0.025 2.90 164 2.5 2.5 ZD 50 32.8 5.8 2.28 2.4 1.00 1.81 23.1 1.42 0.57 51.6 0.21 2.6 0.044 0.38 7.6 1.4 2.4 1.24 14.16 6.9 1.43 0.15 0.126 0.024 0.029 9.65 3.4 2.5 6.7 P15 1.0.4 1.5.3 2.5774 0.11 0.28 0.000 0.31 3.9 9.024 1.416 6.9 1.43 0.031 0.0	P50	37,7	17,0	18411	0,08	0,10	0,062	0,12	14,4	131,4	1888	124,9	29,0	2,07	0,36	369,7	0,07	24,9	0,005	0,026	0,88	22	2,6	2,6
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	P100	39,3	17,6	33834	0,09	0,07	0,020	0,09	18,1	85,3	2676	121,6	167,3	1,74	0,59	307,9	0,08	31,4	0,005	0,025	0,48	11	2,5	2,5
ZD IS 25.3 10.3 30480 0.24 0.41 0.005 1.00 7.0 7.79 7.29 10.5 7.5 2.52 0.49 156.6 0.05 47.3 0.005 0.025 29.62 164 2.5. 2.5 ZD D5 31.8 23.8 5.8 229.6 0.09 0.27 0.034 0.48 43.4 28.1 24.1 83.8 7.4 1.30 1.10 52.8 0.21 22.6 0.044 0.025 0.48 2.4 2.4 D10 31.0 4.7 21266 0.09 0.26 0.035 0.39 42.0 18.9 21.4 40.0 11.6 52.8 0.21 2.4 0.005 0.04 0.15 52.5 6.7 P15 10.4 15.3 25774 0.11 0.28 0.020 0.19 2.4 102.7 42.1 12.8 60.10 0.01 34.8 0.005 0.034 2.02 6.3 34 P15 10.4 13.1 3432 0.11 0.35 0.027 0.16	ŽD 5	25,6	9,4	30493	0,27	0,41	0,005	1,60	6,9	112,5	2558	122,5	40,2	2,29	0,43	157,0	0,05	53,5	0,005	0,025	45,09	110	2,5	2,5
2D 25 61,5 9,6 2284 61,2 0,33 0,030 0,35 61,4 51,9 220 118,1 23,1 1,62 0,77 1860 0,29 25,8 0,312 0,036 10,70 88 25,2 25,2 2D 100 31,0 4.7 21266 0.09 0,26 0,055 0,39 42,0 18,9 1978 83,4 2,3 0,94 0,75 51,6 0,21 20,4 0,000 0,025 9,65 44 2,5 2,5 PP 5 15,0 17,8 2385 0,14 0,39 0,440 0,31 3,9 192,4 4460 14,16 6,9 1,43 0,010 0,025 3,14 205 2,5 6,7 PP 55 10,4 13,3 32877 0,11 0,28 0,020 0,018 8,01 14,3 0,41 34,3 0,005 0,014 2,05 2,5 6,7 PF 50 10,8 13,1 3432 0,11 0,28 0,32 4,00 0,11 0,12 0,02 2,6	ŽD 15	25,3	10,3	30480	0,24	0,41	0,005	1,00	7,0	77,9	2749	103,5	73,5	2,52	0,49	156,6	0,05	47,3	0,005	0,025	29,62	164	2,5	3,3
	ŽD 25	61,5	9,6	22844	0,12	0,33	0,030	0,35	61,4	51,9	2420	118,1	23,1	1,62	0,57	186,0	0,29	25,8	0,312	0,036	10,70	88	2,5	2,5
	ŽD 50	32,8	5,8	22936	0,09	0,27	0,034	0,48	43,4	28,1	2416	82,8	7,4	1,30	1,10	52,8	0,21	22,6	0,044	0,024	10,38	76	16,1	2,4
PP 5 15.0 17.8 25385 0.14 0.39 0.040 0.31 3.9 192.4 4400 141.6 6.9 1.43 0.81 200.5 0.02 33.1 0.005 0.111 5.42 519 2.5 6.7 PP 15 10.4 15.3 28774 0.11 0.28 0.005 0.38 8.4 75.9 4844 12.2.8 8.6 1.00 0.91 10.46 0.04 3.5.9 0.005 0.224 2.74 420 2.4 4.1 PP 50 10.8 13.1 34322 0.11 0.35 0.027 0.16 5.9 31.9 5724 12.2.1 2.2 0.86 0.72 69.1 0.03 30.2 0.005 0.073 5.64 429 2.6 3.1 M 15 13.2 16.9 2710 0.03 32.61 0.03 30.3 0.005 0.055 5.47 422 2.5 5.1 M 100 29.9 11.5 40430 0.09 0.01 0.005 0.43 15.5 145.3 2224 <td>ŽD 100</td> <td>31,0</td> <td>4,7</td> <td>21266</td> <td>0,09</td> <td>0,26</td> <td>0,055</td> <td>0,39</td> <td>42,0</td> <td>18,9</td> <td>1978</td> <td>83,4</td> <td>2,3</td> <td>0,94</td> <td>0,75</td> <td>51,6</td> <td>0,21</td> <td>20,4</td> <td>0,090</td> <td>0,025</td> <td>9,65</td> <td>44</td> <td>2,5</td> <td>2,5</td>	ŽD 100	31,0	4,7	21266	0,09	0,26	0,055	0,39	42,0	18,9	1978	83,4	2,3	0,94	0,75	51,6	0,21	20,4	0,090	0,025	9,65	44	2,5	2,5
PP 15 10.4 15.3 28774 0.11 0.28 0.002 0.19 2.4 10.7 4928 118.1 7.0 1.05 0.70 89.8 0.01 34.8 0.005 0.005 3.40 205 2.5 6.3 PP 50 10.8 13.1 34322 0.11 0.28 0.007 0.16 5.9 31.9 5724 125.1 2.2 0.86 0.72 6.91 0.003 40.2 0.004 0.022 2.67 42 9.7 4.7 M 5 14.3 17.5 1840 0.005 0.045 4.7 698.7 2523 138.6 10.0 1.41 0.02 333.8 0.03 30.2 0.005 0.078 6.54 429 2.6 5.1 M 15 13.2 16.9 27105 0.099 0.10 0.015 0.005 0.51 4.9 458.0 1821 138.2 2.8 1.84 0.24 456.0 0.03 32.3 0.005 0.078 6.38 561 2.6 5.7 M 100 29.9	PP 5	15,0	17,8	25385	0,14	0,39	0,040	0,31	3,9	192,4	4460	141,6	6,9	1,43	0,81	200,5	0,02	33,1	0,005	0,111	5,42	519	2,5	6,7
PP 50 12.8 16.5 27740 0.11 0.28 0.005 0.38 8.4 75.9 4844 122.8 8.6 1.00 0.91 104.6 0.04 35.9 0.005 0.024 2.74 8.0 2.4 4.1 PP 50 10.8 13.1 34322 0.11 0.35 0.027 0.16 5.9 31.9 5724 125.1 2.2 0.86 0.72 69.1 0.03 40.2 0.004 0.022 2.67 42 9.7 4.7 M 5 13.2 16.9 27105 0.09 0.12 0.005 0.45 4.7 698.7 2574 123.5 9.0 2.10 0.33 326.1 0.03 30.3 0.005 0.045 5.47 452 2.5 5.1 M 100 29.9 11.5 40430 0.09 0.01 0.005 0.43 15.5 145.3 224 4.7 2.60.64 0.27 245.7 0.082 3.005 0.025 0.016 3.2.3 2.3 0.01 0.025 0.016 0.2.4 3.	PP 15	10,4	15,3	28774	0,11	0,28	0,020	0,19	2,4	102,7	4928	118,1	7,0	1,05	0,70	89,8	0,01	34,8	0,005	0,005	3,40	205	2,5	6,3
PP 50 10.8 13.1 34322 0.11 0.35 0.027 0.16 5.9 31.9 5724 125.1 2.2 0.86 0.72 69.1 0.03 40.2 0.004 0.022 2.67 42 9.7 4.7 M 5 14.3 17.5 28407 0.10 0.14 0.005 0.45 4.7 681.7 2523 138.6 10.0 1.41 0.29 333.8 0.03 30.2 0.005 0.055 5.64 429 2.6 3.3 M 15 13.2 16.9 27104 0.10 0.15 0.005 0.51 4.9 458.0 1821 138.2 2.8 1.84 0.24 436.6 0.03 30.3 0.005 0.078 6.38 561 2.6 5.7 M 10 29.9 11.5 443.0 0.005 0.43 15.5 145.3 2224 44.7 2.6 0.64 0.27 245.7 0.08 25.3 0.005 0.023 0.81 15 2.3 2.3 2.3 2.4 1.4 7.9 <	PP 25	23,8	16,5	27740	0,11	0,28	0,005	0,38	8,4	75,9	4844	122,8	8,6	1,00	0,91	104,6	0,04	35,9	0,005	0,024	2,74	80	2,4	4,1
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	PP 50	10,8	13,1	34322	0,11	0,35	0,027	0,16	5,9	31,9	5724	125,1	2,2	0,86	0,72	69,1	0,03	40,2	0,004	0,022	2,67	42	9,7	4,7
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	M 5	14,3	17,5	28407	0,10	0,14	0,005	0,43	4,9	681,7	2523	138,6	10,0	1,41	0,29	333,8	0,03	30,2	0,005	0,073	5,64	429	2,6	3,3
M 25 26,0 17,5 19904 0,10 0,15 0,005 0,51 4,9 458,0 1821 138,2 2,8 1,84 0,24 436,6 0,03 22,3 0,005 0,078 6,38 561 2,6 5,7 M 100 29,9 11,5 40430 0,09 0,01 0,005 0,43 15,5 145,3 2224 44,7 2,6 0,64 0,27 245,7 0,08 25,3 0,005 0,018 32,69 620 2,5 5,5 V 15 9,9 22,5 30824 0,11 0,17 0,028 0,78 3,9 733,8 3489 162,1 9,0 2,79 1,06 36,8 0,01 40,9 0,05 0,118 6,27 77.5 2,6 7,2 V 25 9,7 2,0,6 30903 0,11 0,17 0,028 0,78 349 733,8 3489 162,1 9,0 2,79 1,06 348,8 0,01 40,0 2,23 0,71 317,0 0,02 42,6 0,005 0,112 9,7 <td>M 15</td> <td>13,2</td> <td>16,9</td> <td>27105</td> <td>0,09</td> <td>0,12</td> <td>0,005</td> <td>0,45</td> <td>4,7</td> <td>698,7</td> <td>2574</td> <td>123,5</td> <td>9,0</td> <td>2,10</td> <td>0,33</td> <td>326,1</td> <td>0,03</td> <td>30,3</td> <td>0,005</td> <td>0,055</td> <td>5,47</td> <td>452</td> <td>2,5</td> <td>5,1</td>	M 15	13,2	16,9	27105	0,09	0,12	0,005	0,45	4,7	698,7	2574	123,5	9,0	2,10	0,33	326,1	0,03	30,3	0,005	0,055	5,47	452	2,5	5,1
M 100 29.9 11,5 40430 0,09 0,01 0,005 0,43 15,5 145,3 2224 44,7 2,6 0,64 0,27 245,7 0,08 25,3 0,005 0,023 0,81 15 2,3 2,3 V 5 11,4 23,3 29640 0,13 0,25 0,066 0,42 3,2 702,2 3466 179,7 7,9 2,74 0,83 343,8 0,01 40,9 0,005 0,168 32,69 620 2,5 5,5 V 15 9,9 22,5 30824 0,12 0,18 0,028 0,78 3,9 733,8 3489 162,1 9,0 2,79 1,06 364,8 0,02 42,6 0,005 0,118 16,7 7,7 2,6 7,2 1,0 0,02 42,6 0,005 0,114 41,7 2,5 9,2 1,16 364,8 10,02 42,1 0,01 9,05 0,28 3,4 851,6 37,7 12,45 10,8 38,79 0,04 34,5 0,005 0,28 2,1 1,5	M 25	26,0	17,5	19904	0,10	0,15	0,005	0,51	4,9	458,0	1821	138,2	2,8	1,84	0,24	436,6	0,03	22,3	0,005	0,078	6,38	561	2,6	5,7
V 5 11,4 23,3 29640 0,13 0,25 0,066 0,42 3,2 702,2 3466 179,7 7,9 2,74 0,83 343,8 0,01 40,9 0,005 0,168 32,69 620 2,5 5,5 V 15 9,9 22,5 30824 0,12 0,18 0,028 0,78 3,9 733,8 3489 162,1 9,0 2,79 1,06 364,8 0,02 43,1 0,005 0,184 16,27 775 2,6 7,2 V 25 9,7 20,6 30903 0,11 0,17 0,020 0,28 3,4 851,6 3787 160,0 4,0 2,23 0,71 317,0 0,02 42,6 0,005 0,112 9,75 714 42,7 10,5 V 100 9,1 8,0 26706 0,11 0,29 0,040 0,46 6,8 1773 124,5 10,8 0,97 0,83 144,8 0,02 57,2 0,005 0,26 5,88 241 2,6 2,6 S 5 10,3	M 100	29,9	11,5	40430	0,09	0,01	0,005	0,43	15,5	145,3	2224	44,7	2,6	0,64	0,27	245,7	0,08	25,3	0,005	0,023	0,81	15	2,3	2,3
V 15 9,9 22,5 30824 0,12 0,18 0,028 0,78 3,9 733,8 3489 162,1 9,0 2,79 1,06 364,8 0,02 43,1 0,005 0,184 16,27 775 2,6 7,2 V 25 9,7 20,6 30903 0,11 0,17 0,020 0,28 3,4 851,6 3787 160,0 4,0 2,23 0,71 317,0 0,02 42,6 0,005 0,112 9,75 714 42,7 10,5 V 50 16,6 13,5 21743 0,10 0,29 0,061 0,54 7,9 1060,5 2384 154,3 8,1 4,28 0,58 387,9 0,04 34,5 0,005 0,298 20,14 1457 2,5 7,5 S 5 10,3 20,1 44221 0,13 0,15 0,005 0,28 3,2 183,4 7773 124,5 10,8 0,97 0,83 144,8 0,02 57,2 0,005 0,026 5,88 241 2,6 2,6 5 5	V 5	11,4	23,3	29640	0,13	0,25	0,066	0,42	3,2	702,2	3466	179,7	7,9	2,74	0,83	343,8	0,01	40,9	0,005	0,168	32,69	620	2,5	5,5
V 25 9,7 20,6 30903 0,11 0,17 0,020 0,28 3,4 851,6 3787 160,0 4,0 2,23 0,71 317,0 0,02 42,6 0,005 0,112 9,75 714 42,7 10,5 V 50 16,6 13,5 21743 0,10 0.29 0,061 0,54 7,9 1060,5 2384 154,3 8,1 4,28 0,58 387,9 0,04 34,5 0,005 0,298 20,14 1457 2,5 9,2 V 100 9,1 8,0 26706 0,11 0,29 0,040 0,46 6,8 1178,1 2725 152,5 3,3 3,64 0,43 288,5 0,00 27,1 0,005 0,371 2,16 2,5 7,2 0,005 0,26 5,8 241 2,6 2,6 2,5 10,3 2,11 42,17 10,5 2,012 0,12 0,05 0,33 1,8 153,2 6973 114,8 14,5 0,81 0,86 156,1 0,01 5,5 0,005 0,025 7,28<	V 15	9,9	22,5	30824	0,12	0,18	0,028	0,78	3,9	733,8	3489	162,1	9,0	2,79	1,06	364,8	0,02	43,1	0,005	0,184	16,27	775	2,6	7,2
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	V 25	9,7	20,6	30903	0,11	0,17	0,020	0,28	3,4	851,6	3787	160,0	4,0	2,23	0,71	317,0	0,02	42,6	0,005	0,112	9,75	714	42,7	10,5
V 100 9,1 8,0 26706 0,11 0,29 0,040 0,46 6,8 1178,1 2725 152,5 3,3 3,64 0,43 288,5 0,03 27,1 0,005 0,371 21,87 1061 2,5 7,5 S 5 10,3 20,1 44221 0,13 0,15 0,005 0,28 3,2 183,4 7773 124,5 10,8 0,97 0,83 144,8 0,02 57,2 0,005 0,026 5,88 241 2,6 2,6 S 15 9,2 19,9 43722 0,12 0,12 0,005 0,33 1,8 153,2 6973 114,8 14,5 0,81 0,86 156,1 0,01 59,5 0,005 0,025 7,28 323 2,5 2,6 S 25 16,9 18,2 45217 0,12 0,16 0,005 0,12 11,7 122,9 8400 123,6 5,6 0,95 0,72 143,5 0,005	V 50	16,6	13,5	21743	0,10	0,29	0,061	0,54	7,9	1060,5	2384	154,3	8,1	4,28	0,58	387,9	0,04	34,5	0,005	0,298	20,14	1457	2,5	9,2
S 5 10,3 20,1 44221 0,13 0,15 0,005 0,28 3,2 183,4 7773 124,5 10,8 0,97 0,83 144,8 0,02 57,2 0,005 0,026 5,88 241 2,6 2,6 S 15 9,2 19,9 43722 0,12 0,12 0,005 0,33 1,8 153,2 6973 114,8 14,5 0,81 0,86 156,1 0,01 59,5 0,005 0,025 7,28 323 2,5 2,6 S 25 16,9 18,2 45217 0,12 0,16 0,005 0,12 11,7 122,9 8400 123,6 5,6 0,95 0,72 143,5 0,08 31,7 0,005 0,005 3,57 209 2,4 2,4 2,4 2,4 2,6 3 3323 2,5 3,6 3,6 6,4 1,02 0,47 282,7 0,08 31,7 0,005 0,045 1,04 287 2,5 6,3 PZ 5 9,6 20,3 30320 0,10 0,12 0	V 100	9,1	8,0	26706	0,11	0,29	0,040	0,46	6,8	1178,1	2725	152,5	3,3	3,64	0,43	288,5	0,03	27,1	0,005	0,371	21,87	1061	2,5	7,5
S 15 9,2 19,9 43722 0,12 0,012 0,033 1,8 153,2 6973 114,8 14,5 0,81 0,86 156,1 0,01 59,5 0,005 0,025 7,28 323 2,5 2,6 S 25 16,9 18,2 45217 0,12 0,16 0,005 0,12 11,7 122,9 8400 123,6 5,6 0,95 0,07 56,9 0,005 0,005 3,57 209 2,4 2,4 S 50 21,9 16,9 27818 0,09 0,01 0,005 0,15 16,4 112,0 4359 86,0 6,4 1,02 0,47 282,7 0,08 31,7 0,005 0,045 1,04 287 2,5 6,3 PŽ 5 9,6 20,3 30320 0,10 0,12 0,005 0,40 3,1 662,8 1752 140,5 10,11 1,09 0,78 256,1 0,01 3,96 0,005 0,078 4,82 4,82 4,8 4,6 18,7 PŽ 25 6,0 22,1 <td>S 5</td> <td>10,3</td> <td>20,1</td> <td>44221</td> <td>0,13</td> <td>0,15</td> <td>0,005</td> <td>0,28</td> <td>3,2</td> <td>183,4</td> <td>7773</td> <td>124,5</td> <td>10,8</td> <td>0,97</td> <td>0,83</td> <td>144,8</td> <td>0,02</td> <td>57,2</td> <td>0,005</td> <td>0,026</td> <td>5,88</td> <td>241</td> <td>2,6</td> <td>2,6</td>	S 5	10,3	20,1	44221	0,13	0,15	0,005	0,28	3,2	183,4	7773	124,5	10,8	0,97	0,83	144,8	0,02	57,2	0,005	0,026	5,88	241	2,6	2,6
S 25 16,9 18,2 45217 0,12 0,16 0,005 0,12 11,7 122,9 8400 123,6 5,6 0,95 0,72 143,5 0,05 56,9 0,005 0,005 3,57 209 2,4 2,4 S 50 21,9 16,9 27818 0,09 0,01 0,005 0,15 16,4 112,0 4359 86,0 6,4 1,02 0,47 282,7 0,08 31,7 0,005 0,045 1,04 287 2,5 6,3 PŽ 5 9,6 20,3 30320 0,10 0,12 0,005 0,21 2,1 662,8 1752 140,5 10,1 1,09 0,78 256,1 0,01 3,56 0,046 8,62 437 23,9 13,8 PŽ 15 8,4 20,7 37461 0,10 0,04 0,005 0,21 2,1 60,23 3731 106,6 5,5 0,97 0,70 269,5 0,01 53,0 0,005 0,048 8,62 437 23,9 13,8 14,8 540,5 3731<	S 15	9,2	19,9	43722	0,12	0,12	0,005	0,33	1,8	153,2	6973	114,8	14,5	0,81	0,86	156,1	0,01	59,5	0,005	0,025	7,28	323	2,5	2,6
S 50 21.9 16.9 27818 0.09 0.01 0.005 0.15 16.4 112.0 4359 86.0 6.4 1.02 0.47 282.7 0.08 31.7 0.005 0.045 1.04 287 2.5 6.3 PŽ 5 9.6 20.3 30320 0.10 0.12 0.005 0.40 3.1 662.8 1752 140.5 10.1 1.09 0.78 256.1 0.02 35.9 0.005 0.046 8.62 437 23.9 13.8 PŽ 15 8.4 20.7 37461 0.10 0.04 0.005 0.21 2.1 602.3 3397 127.0 4.6 1.15 0.54 292.1 0.01 39.6 0.005 0.078 4.6 18.7 PŽ 25 6.0 22.1 51609 0.10 0.01 0.005 0.37 1.8 540.5 3731 106.6 5.5 0.97 0.70 269.5 0.01 53.0 0.005	S 25	16,9	18,2	45217	0,12	0,16	0,005	0,12	11,7	122,9	8400	123,6	5,6	0,95	0,72	143,5	0,05	56,9	0,005	0,005	3,57	209	2,4	2,4
PŽ 5 9,6 20,3 30320 0,10 0,12 0,005 0,40 3,1 662,8 1752 140,5 10,1 1,09 0,78 256,1 0,02 35,9 0,005 0,046 8,62 437 23,9 13,8 PŽ 15 8,4 20,7 37461 0,10 0,04 0,005 0,21 2,1 602,3 3397 127,0 4,6 1,15 0,54 292,1 0,01 39,6 0,005 0,078 4,82 581 4,6 18,7 PŽ 25 6,0 22,1 51609 0,10 0,01 0,005 0,37 1,8 540,5 3731 106,6 5,5 0,97 0,70 269,5 0,01 53,0 0,005 0,092 4,47 691 7,2 20,1 K1 16,0 16,4 33807 0,24 0,30 0,010 0,33 10,4 185,7 735 85,7 5,4 1,04 0,38 104,2 0,05 52,6 0,005 0,005 0,025 30,52 230 2,6 4,6 <tr< td=""><td>S 50</td><td>21,9</td><td>16,9</td><td>27818</td><td>0,09</td><td>0,01</td><td>0,005</td><td>0,15</td><td>16,4</td><td>112,0</td><td>4359</td><td>86,0</td><td>6,4</td><td>1,02</td><td>0,47</td><td>282,7</td><td>0,08</td><td>31,7</td><td>0,005</td><td>0,045</td><td>1,04</td><td>287</td><td>2,5</td><td>6,3</td></tr<>	S 50	21,9	16,9	27818	0,09	0,01	0,005	0,15	16,4	112,0	4359	86,0	6,4	1,02	0,47	282,7	0,08	31,7	0,005	0,045	1,04	287	2,5	6,3
PŽ 15 8,4 20,7 37461 0,10 0,04 0,005 0,21 2,1 602,3 3397 127,0 4,6 1,15 0,54 292,1 0,01 39,6 0,005 0,078 4,82 581 4,6 18,7 PŽ 25 6,0 22,1 51609 0,10 0,01 0,005 0,37 1,8 540,5 3731 106,6 5,5 0,97 0,70 269,5 0,01 53,0 0,005 0,092 4,47 691 7,2 20,1 K1 16,0 16,4 33807 0,24 0,30 0,010 0,33 10,4 185,7 735 85,7 5,4 1,04 0,38 104,2 0,05 52,6 0,005 0,205 30,52 230 2,6 4,6	PŽ 5	9,6	20,3	30320	0,10	0,12	0,005	0,40	3,1	662,8	1752	140,5	10,1	1,09	0,78	256,1	0,02	35,9	0,005	0,046	8,62	437	23,9	13,8
PŽ 25 6.0 22.1 51609 0.10 0.01 0.005 0.37 1.8 540,5 3731 106,6 5,5 0.97 0.70 269,5 0.01 53,0 0.005 0.092 4,47 691 7,2 20,1 K1 16,0 16,4 33807 0.24 0.30 0.010 0.33 10,4 185,7 735 85,7 5,4 1.04 0.38 104,2 0.05 52,6 0.005 0.205 30,52 230 2,6 4,6	PŽ 15	8,4	20,7	37461	0,10	0,04	0,005	0,21	2,1	602,3	3397	127,0	4,6	1,15	0,54	292,1	0,01	39,6	0,005	0,078	4,82	581	4,6	18,7
K1 16,0 16,4 33807 0,24 0,30 0,010 0,33 10,4 185,7 735 85,7 5,4 1,04 0,38 104,2 0,05 52,6 0,005 0,205 30,52 230 2,6 4,6	PŽ 25	6,0	22,1	51609	0,10	0,01	0,005	0,37	1,8	540,5	3731	106,6	5,5	0,97	0,70	269,5	0,01	53,0	0,005	0,092	4,47	691	7,2	20,1
	K1	16,0	16,4	33807	0,24	0,30	0,010	0,33	10,4	185,7	735	85,7	5,4	1,04	0,38	104,2	0,05	52,6	0,005	0,205	30,52	230	2,6	4,6
K2 19,7 16,6 45829 0,27 0,18 0,025 0,41 13,2 99,1 1040 96,7 29,6 3,26 0,71 166,6 0,07 63,7 0,005 0,422 52.54 216 2.5 15.5	К2	19,7	16,6	45829	0,27	0,18	0,025	0,41	13,2	99,1	1040	96,7	29,6	3,26	0,71	166,6	0.07	63,7	0,005	0,422	52,54	216	2,5	15,5
K3 32,0 13,3 6977 0,19 1,06 0,103 0,64 23,3 335,0 905 177,7 7,9 2,41 0,51 274,4 0,12 16,7 0,005 0,300 17,21 522 2,6 8,4	K3	32,0	13,3	6977	0,19	1,06	0,103	0,64	23,3	335,0	905	177,7	7,9	2,41	0,51	274,4	0,12	16,7	0,005	0,300	17,21	522	2,6	8,4
K4 14.9 25,3 38894 0,30 0.85 0,005 1,53 58,7 411,3 2938 376,4 39,3 3,15 2,08 310,9 0,29 72,9 0,005 0,422 76,60 905 2,7 14,3	K4	14,9	25,3	38894	0,30	0,85	0,005	1,53	58,7	411,3	2938	376,4	39,3	3,15	2,08	310,9	0,29	72,9	0,005	0,422	76,60	905	2,7	14,3
K5 12,1 13,1 40442 0,14 0,21 0,005 0,14 12,9 55,1 1937 107,5 10,6 0,57 0,66 48,4 0,07 57,0 0,005 0,106 13,87 113 2,4 3,8	K5	12,1	13,1	40442	0,14	0,21	0,005	0,14	12,9	55,1	1937	107,5	10,6	0,57	0,66	48,4	0,07	57,0	0,005	0,106	13,87	113	2,4	3,8

Tabela 54. Koncentracije elemenata dobijene nakon prve faze BCR MTSE (ng/g za As, Hg i Se dok za preostale elemente µg/g, preračunato na suvu supstancu) u ispitivanim uzorcima

MTSE I																							
Faza	Al	Ba	Ca	Cd	Co	Cr	Cu	Fe	K	Mg	Mn	Na	Ni	Pb	Si	Sn	Sr	Ti	V	Zn	As	Hg	Se
D 5	24,6	8,44	10612	0,17	0,05	0,052	56,57	8,8	18,0	212	11,2	18,1	0,23	3,65	46,1	0,09	26,5	0,004	0,07	97,1	101	28,2	2,2
D 15	38,6	17,58	12568	0,15	0,06	0,221	213,27	13,9	18,4	302	36,3	14,8	4,42	4,69	63,7	0,14	22,8	0,004	0,05	157,5	182	81,6	4,5
D 25	52,0	26,06	6385	0,10	0,08	0,231	57,86	46,4	13,0	269	27,6	4,9	0,49	9,99	103,0	0,47	12,4	0,417	0,06	189,1	133	834,9	2,3
PE 5	17,0	8,81	7565	0,08	0,07	0,041	3,36	10,3	12,0	208	28,5	2,9	0,52	0,69	31,7	0,10	11,0	0,067	0,18	18,4	96	284,9	2,4
PE 15	21,1	3,31	4776	0,04	0,04	0,025	0,35	35,2	5,7	125	21,7	0,2	0,31	0,03	42,0	0,32	6,3	0,422	0,10	4,0	40	928,9	2,5
PE 25	19,2	3,03	3174	0,03	0,03	0,034	0,21	31,2	6,1	89	15,9	0,3	0,22	0,02	39,0	0,29	4,5	0,414	0,09	3,1	45	609,1	3,3
P5	383,7	41,66	14329	0,09	0,71	0,073	4,04	77,6	269,8	861	124,5	12,6	3,62	2,95	210,7	0,71	27,5	0,888	3,15	48,1	670	51,1	7,5
P15	383,5	40,30	13427	0,09	0,60	0,065	3,38	58,3	268,9	///	115,0	10,3	3,29	2,23	207,0	0,54	23,7	0,638	2,65	8,1	608	11,1	4,9
P25	3/4,0	39,03	13232	0,09	0,75	0,084	3,30	/0,5	264,9	827	134,4	12,9	3,33	2,60	223,2	0,65	23,0	0,734	2,67	8,3	380	18,8	4,5
P100	63.8	0.38	22053	0,03	0,04	0,035	0,46	11,2	90,0 65.0	702	36,5 46.0	131.4	0,50	0.02	160.2	0,10	20,5	0,005	0,10	1,5	42	30.8	2,5
ŽD 5	17.3	5.97	1/835	0.17	0.07	0.005	0.97	9.1	75.4	323	24.3	28.9	0.57	0.24	50.6	0.10	39.6	0,290	0.06	9.2	142	24.5	3.8
ŽD 15	225.3	15 47	19282	0.29	0.72	0.042	9.04	208.4	70.6	911	24,5 794	55 1	3 36	4 26	200.1	2.06	41.8	0,833	0,00	35.6	331	104.6	42
ŽD 25	9.2	4.55	4649	0.05	0.05	0.004	0.23	8.5	23.3	242	19.1	16.3	0.34	0.35	31.7	0.09	9.5	0.004	0.05	2.6	75	9.6	3.4
ŽD 50	9,5	1,82	3794	0,03	0,03	0,005	0,06	16,3	8,0	82	14,4	0,5	0,21	0,18	18,3	0,16	4,7	0,136	0,06	1,0	44	29,7	2,4
ŽD 100	14,6	1,98	4268	0,03	0,05	0,005	0,28	30,4	8,4	102	16,1	0,6	0,24	0,33	29,6	0,31	3,0	0,247	0,07	1,6	53	19,9	2,5
PP 5	18,7	10,30	5256	0,05	0,05	0,015	0,67	6,4	104,5	464	28,3	3,7	0,97	0,11	70,0	0,06	12,1	0,005	0,26	3,2	329	7,1	2,7
PP 15	9,3	8,27	6143	0,04	0,05	0,010	0,28	4,9	61,2	416	28,8	3,3	0,30	0,02	38,9	0,05	13,1	0,005	0,12	2,6	178	8,6	5,1
PP 25	12,9	9,55	6138	0,04	0,05	0,005	0,39	9,4	42,8	494	30,6	2,8	0,32	0,02	49,3	0,09	14,1	0,005	0,11	1,8	105	11,4	3,9
PP 50	18,7	6,05	4960	0,04	0,05	0,005	0,24	23,5	15,7	315	24,4	0,8	0,18	0,03	41,1	0,22	10,8	0,233	0,12	1,4	63	20,2	2,8
M 5	309,9	32,03	22138	0,16	0,60	0,078	5,93	62,4	633,3	949	118,6	4,5	2,48	2,66	230,0	0,61	26,7	1,273	1,37	16,3	640	50,4	7,8
M 15	460,6	37,75	23953	0,17	0,67	0,115	6,79	73,8	704,3	1263	135,4	4,7	2,81	2,95	278,2	0,72	29,6	1,062	1,92	18,9	801	2,5	3,5
M 25	420,8	37,54	16818	0,18	0,56	0,073	8,72	57,2	444,0	903	120,4	4,6	2,86	2,53	273,1	0,57	23,0	0,780	1,72	20,1	731	2,3	6,1
M 100	394,6	31,72	39837	0,14	0,30	0,070	8,95	68,9	179,5	1124	67,6	2,7	0,90	1,21	249,1	0,68	27,7	0,224	0,87	2,9	169	2,5	3,0
V 5	522,1	57,42	26030	0,16	1,15	0,270	4,64	112,0	790,2	2029	210,8	5,2	6,99	4,76	344,6	1,02	41,7	1,230	3,27	89,9	1343	2,6	7,5
V 15	20,2	12,82	15668	0,07	0,08	0,025	0,66	10,2	502,4	889	46,4	5,7	0,94	0,70	75,5	0,10	26,1	0,005	0,26	9,4	497	2,5	5,4
V 25	435,5	50,72	25125	0,13	0,87	0,210	4,10	147,4	8/2,2	1221	1/2,0	5,2	5,80	3,34	200,5	1,35	41,7	1,341	2,72	28,5	1393	115,7	10,1
V 30 V 100	129,2	05,52 17.68	22374	0,14	1,00	0,738	5.93	542,4 602.0	11/4,/	1521	153.3	4,7	9,25	4,95	228.0	4,91 5.47	29.2	2,639	4,95	50 3	2013	20,8	10,2
\$ 5	15.1	12 59	22374	0.06	0.13	0.015	1.65	5.2	13/ 9	1892	17.8	2.4	0.28	0.13	/8.1	0.05	33.9	0.005	0.12	7.8	157	73	2.9
S 15	23.0	12,39	22798	0.06	0.13	0.037	2 47	13.6	110.4	1902	47,0	3.1	0.43	0,15	62.9	0.13	33.6	0,005	0,12	6.1	193	14.9	4.8
S 25	15.5	11 74	21577	0.06	0.16	0.030	0.18	74	86.4	1849	50.3	47	0,45	0.03	37.7	0.07	34 3	0.005	0.12	2.8	178	19.3	3.0
S 50	449.7	40.44	22775	0.09	0.46	0.102	3.08	133.3	145.0	2003	100.8	4.6	2.13	1.80	275.9	1.20	29.6	1.866	1.67	4.5	549	33.1	4.9
PŽ 5	14,1	10,07	15889	0,04	0,07	0,008	0,45	11,6	524,1	518	41,8	3,2	0,36	0,02	63,7	0,11	20,6	0,004	0,16	5,4	164	2,1	7,7
PŽ 15	18,0	12,33	18728	0,05	0,05	0,005	0,36	6,7	437,6	607	43,2	4,8	0,45	0,03	80,0	0,06	23,1	0,005	0,17	3,8	234	2,6	5,6
PŽ 25	390,5	45,30	41999	0,11	0,49	0,123	4,73	71,8	573,2	2124	134,9	3,6	2,30	2,63	246,1	0,66	48,0	0,374	1,87	16,5	985	2,6	6,0
K1	9,9	8,23	17223	0,10	0,04	0,005	1,17	8,3	108,2	326	19,7	3,7	0,22	0,65	32,3	0,09	29,2	0,005	0,14	10,6	117	2,5	6,9
K2	19,4	9,07	18367	0,29	0,06	0,005	0,65	12,9	48,8	355	29,6	11,6	1,37	0,61	53,3	0,13	30,6	0,005	0,31	22,6	157	2,5	8,3
K3	16,2	6,90	4100	0,09	0,13	0,005	0,40	21,7	218,6	454	36,0	5,8	0,70	0,46	89,9	0,23	10,8	0,026	0,28	6,1	419	4,9	5,9
K4	17,7	17,25	24599	0,09	0,27	0,005	0,57	52,9	289,3	1207	169,9	25,3	1,31	1,18	111,5	0,53	52,0	0,005	0,74	25,7	789	4,7	9,4
K5	8,0	9,40	21703	0,08	0,04	0,005	0,16	7,8	29,9	336	34,2	4,0	0,17	0,55	22,1	0,08	35,7	0,005	0,15	7,5	89	4,9	2,9

Tabela 55. Koncentracije elemenata dobijene nakon prve faze BCR UZSE (ng/g za As, Hg i Se dok za preostale elemente µg/g, preračunato na suvu supstancu) u ispitivanim uzorcima

UZSE I																							
Faza	Al	Ba	Ca	Cd	Co	Cr	Cu	Fe	K	Mg	Mn	Na	Ni	Pb	Si	Sn	Sr	Ti	V	Zn	As	Hg	Se
D 5	79.8	17.76	22655	0.36	0.24	0.248	210.27	8.26	39.9	565	37.2	42.55	0.91	7.07	145.0	0.07	53.9	0.005	0.12	300.91	176	134.7	4.2
D 15	307,5	27,95	16068	0,24	0,41	1,283	554,54	241,56	32,2	1389	90,0	21,52	2,41	30,63	315,2	2,30	28,8	0,203	0,65	458,27	246	319,5	2,7
D 25	342,0	41,58	7798	0,18	0,51	2,206	156,62	573,60	22,4	1041	68,2	9,96	2,22	80,03	334,2	5,52	15,7	3,017	0,81	595,80	197	427,6	2,6
PE 5	147,0	16,69	15034	0,23	0,36	0,197	12,42	183,45	24,5	742	74,3	5,74	1,86	7,54	120,7	1,64	19,3	2,466	1,54	55,42	199	420,1	3,5
PE 15	32,3	5,01	6975	0,05	0,12	0,075	0,61	44,95	10,0	190	34,8	0,55	0,44	0,56	49,8	0,39	8,8	0,501	0,09	5,30	60	587,7	2,5
PE 25	129,0	10,29	11781	0,09	0,36	0,133	1,43	199,04	17,4	631	78,4	1,04	1,12	2,87	93,1	1,77	14,1	1,058	0,31	11,89	303	572,0	2,4
P5	17,8	10,08	9646	0,04	0,09	0,005	0,32	1,39	195,5	635	43,9	16,46	0,65	0,46	101,5	0,03	19,5	0,005	0,10	1,04	225	1,6	2,5
P15	16,1	11,43	9556	0,04	0,11	0,005	0,37	2,68	214,9	670	67,7	12,33	0,97	0,29	142,3	0,02	17,3	0,005	0,12	1,02	320	2,3	4,3
P25	15,9	9,57	9011	0,07	0,09	0,009	0,27	0,96	191,4	533	52,5	12,96	0,69	0,54	98,7	0,01	15,8	0,004	0,11	1,03	206	4,9	3,5
P50	21,7	11,20	14257	0,03	0,08	0,038	0,17	2,84	113,7	1045	45,6	27,38	0,50	0,25	144,0	0,03	21,5	0,005	0,02	0,37	34	8,9	2,6
P100	56,5	10,53	24379	0,05	0,12	0,049	0,12	30,77	79,3	932	53,7	150,70	0,54	0,34	166,5	0,28	24,4	0,576	0,06	0,26	21	29,9	2,4
ŽD 5	286,6	13,55	18201	0,33	0,70	1,004	11,94	275,14	106,7	1001	73,7	34,38	3,52	4,40	253,9	2,65	43,3	0,861	0,86	38,01	286	47,8	2,5
ŽD 15	38,5	6,77	11825	0,14	0,20	0,005	1,64	11,31	54,5	320	28,8	57,23	0,96	0,02	71,2	0,11	31,2	0,005	0,04	11,63	132	52,6	2,4
ŽD 25	331,2	15,48	10713	0,12	0,55	0,072	3,23	167,68	51,6	901	87,9	22,55	1,62	4,96	207,7	1,63	17,5	1,267	0,73	13,00	283	11,6	2,6
ŽD 50	71,6	5,41	10673	0,07	0,22	0,005	0,27	97,30	14,7	515	54,9	0,53	0,60	1,48	58,3	0,95	11,4	0,509	0,11	5,86	172	20,5	4,2
ŽD 100	16,5	2,67	6632	0,04	0,09	0,005	0,09	16,37	11,7	145	28,1	0,20	0,33	0,02	25,4	0,15	7,9	0,198	0,02	2,15	58	2,2	2,4
PP 5	428,4	33,49	13206	0,18	0,88	0,109	3,03	134,57	233,8	1329	139,6	5,49	2,62	3,70	312,6	1,20	23,7	0,771	2,93	10,01	792	51,7	2,6
PP 15	10,4	8,73	7241	0,04	0,09	0,005	0,22	2,70	76,6	451	35,2	3,56	0,36	0,14	48,4	0,02	14,4	0,005	0,07	1,79	207	32,4	3,6
PP 25	14,0	9,21	6627	0,05	0,08	0,024	0,28	8,36	55,3	525	33,7	4,02	0,26	0,61	67,2	0,09	16,4	0,022	0,07	1,75	123	21,9	2,4
PP 50	31,6	9,09	9021	0,05	0,12	0,009	0,45	22,93	33,5	620	40,4	5,45	0,32	0,44	73,5	0,27	16,9	0,328	0,07	1,95	67	26,1	2,5
M 5	14,5	7,22	11840	0,05	0,10	0,005	0,21	0,02	358,2	475	41,3	5,65	0,37	0,02	80,9	0,02	14,9	0,005	0,03	1,02	194	3,4	2,2
M 15	22,0	9,21	14301	0,06	0,09	0,005	0,24	6,57	469,6	621	47,3	5,99	0,50	0,03	121,9	0,06	17,6	0,005	0,06	2,02	274	2,7	5,8
M 25	17,3	5,62	6103	0,04	0,06	0,005	0,21	0,03	166,1	347	23,6	4,74	0,44	0,03	86,2	0,03	9,5	0,010	0,01	0,81	164	1,7	4,0
M 100	23,0	9,03	31659	0,07	0,04	0,005	0,30	1,01	131,8	614	25,8	1,42	0,19	0,02	84,1	0,01	20,0	0,005	0,02	0,01	35	2,1	2,5
V 5	20,1	13,98	16295	0,06	1,59	0,066	0,31	1,87	554,0	941	68,5	7,26	1,21	0,40	104,5	0,11	26,8	0,005	0,15	23,55	451	3,1	6,6
V 15	20,4	12,73	16496	0,05	0,14	0,037	0,28	5,44	552,6	969	58,8	5,80	1,04	0,15	69,8	0,03	17,5	0,003	0,16	5,88	523	1,2	4,3
V 25	14,8	8,53	10454	0,04	0,10	0,021	0,24	6,40	400,8	840	45,6	5,92	0,76	0,40	87,0	0,06	19,1	0,005	0,16	4,08	339	18,2	3,9
V 50	19,6	6,88	7463	0,03	0,13	0,010	0,33	9,70	517,8	560	42,5	5,46	1,29	0,28	102,9	0,09	14,8	0,031	0,20	8,90	716	1,9	8,0
V 100	6,7	4,91	14670	0,04	0,12	0,044	0,33	1,65	849,7	881	50,0	7,86	1,22	0,04	71,8	0,02	16,5	0,005	0,29	11,08	789	0,8	4,0
S 5	14,1	12,12	23143	0,06	0,16	0,025	0,65	1,49	155,5	1747	47,1	3,36	0,34	0,77	44,8	0,02	31,9	0,005	0,05	8,92	167	18,3	2,2
S 15	18,4	11,61	21229	0,05	0,12	0,005	1,19	7,32	114,1	1740	44,2	2,83	0,29	0,40	57,8	0,07	28,6	0,005	0,07	4,39	177	14,9	2,4
S 25	292,8	32,21	33289	0,12	0,87	0,071	2,37	94,91	150,7	4579	124,4	7,60	1,70	3,07	149,9	0,84	50,2	0,183	1,05	7,92	546	18,7	2,5
<u>S 50</u>	30,3	6,08	8122	0,02	0,06	0,020	0,13	28,42	48,6	678	23,5	3,12	0,32	0,69	93,1	0,25	10,8	0,435	0,10	0,07	111	4,8	3,1
PZ 5	8,9	12,12	15824	0,04	0,03	0,010	0,38	0,76	572,6	668	54,0	4,76	0,66	0,66	87,6	0,01	21,4	0,005	0,15	4,57	229	4,2	5,1
PZ 15	16,6	14,83	21116	0,04	0,09	0,005	0,34	0,30	508,9	743	59,5	8,28	0,61	0,47	108,7	0,01	26,3	0,005	0,10	3,96	307	4,1	7,2
PZ 25	276,7	24,26	35568	0,10	0,52	0,131	3,41	27,06	542,4	1778	114,1	8,58	1,94	2,69	198,5	0,23	42,1	0,005	1,18	12,15	710	5,6	6,7
K1	13,8	6,14	11042	0,08	0,07	0,005	1,41	2,33	68,0	196	15,6	3,61	0,20	5,48	27,1	0,03	19,2	0,005	0,10	15,49	84	18,0	2,6
K2	20,4	8,87	18586	0,14	0,06	0,005	1,59	1,16	60,2	350	31,8	17,76	1,29	0,03	51,0	0,01	30,1	0,005	0,26	21,80	144	10,8	7,7
K3	16,9	6,21	3679	0,08	0,12	0,005	1,69	12,11	207,3	383	30,3	5,41	0,61	0,20	73,7	0,11	9,7	0,005	0,23	5,35	371	7,4	4,6
K4	12,1	14,77	20097	0,10	0,32	0,005	0,71	18,37	219,3	971	153,6	19,96	1,37	0,47	93,4	0,18	42,4	0,005	0,32	28,40	696	6,5	6,7
K5	7,6	5,89	12895	0,07	0,05	0,005	1,26	0,02	28,2	230	27,9	64,95	0,14	0,05	17,3	0,02	21,7	0,005	0,07	5,25	63	3,9	2,9

Tabela 56. Koncentracije elemenata dobijene nakon druge faze BCR KSE (ng/g za Hg i Se dok za preostale elemente µg/g, preračunato na suvu supstancu) u ispitivanim uzorcima

KSE II																							
Faza	Al	Ba	Ca	Cd	Co	Cr	Cu	Fe	K	Mg	Mn	Na	Ni	Pb	Si	Sn	Sr	Ti	V	Zn	As	Hg	Se
D 5	841	196,3	2104	0,40	1,19	4,48	393,41	3032	33,7	1190	74,5	5,86	6,63	193,27	847	19,41	11,69	9,98	5,06	578,5	0,36	2084,4	2,5
D 15	741	95,8	876	0,15	0,86	9,20	336,05	2973	32,6	2098	60,7	0,74	4,58	196,82	848	19,27	4,72	6,13	2,82	382,0	0,59	7827,5	2,2
D 25	506	142,6	455	0,10	0,61	7,95	74,44	2719	14,2	901	32,5	0,49	2,85	345,36	590	17,33	3,81	9,42	2,49	426,7	0,46	4073,0	3,5
PE 5	475	14,0	1753	0,16	1,73	1,56	20,40	2182	16,6	961	57,1	1,14	9,20	31,94	557	20,86	2,17	9,90	6,20	76,9	0,80	8731,2	2,5
PE 15	362	7,2	636	0,06	2,17	1,24	3,36	2154	9,5	363	105,9	0,76	7,66	10,38	449	20,49	1,45	4,42	1,78	29,0	1,34	4138,0	2,5
PE 25	338	6,6	639	0,04	1,89	0,99	3,14	1768	12,8	279	75,2	3,53	6,56	9,18	371	16,42	2,50	3,25	1,51	23,8	0,99	1270,0	2,5
P5	1496	39,6	3371	0,12	3,91	0,93	5,16	2290	197,7	685	324,5	6,64	8,99	13,77	1364	20,99	9,07	0,62	8,42	18,5	0,60	2,5	2,5
P15	1649	40,1	3125	0,13	4,25	1,08	6,24	2421	212,1	717	365,0	6,22	9,95	13,94	1560	22,22	7,55	1,02	8,97	19,2	0,69	2,5	2,5
P25	1586	39,7	3079	0,11	3,97	1,03	4,84	2396	201,9	685	325,3	3,92	9,36	15,43	1456	21,90	6,77	0,67	8,17	18,8	0,56	24,7	2,6
P50	2620	63,8	3830	0,11	6,17	1,31	7,63	3338	158,8	863	589,5	1,46	11,58	15,69	1684	30,88	6,75	1,37	10,28	11,0	0,44	2,6	2,6
P100	2368	62,9	4262	0,10	6,01	1,19	6,55	2978	110,1	799	578,8	2,88	10,29	13,98	1446	27,26	6,15	0,99	8,30	9,2	0,38	20,0	2,9
ZD 5 ŽD 1	792	17,7	1917	0,23	2,57	0,99	18,13	2905	54,9	921	109,5	1,11	9,46	20,09	792	18,97	4,89	2,01	3,37	78,3	1,58	614,7	2,2
ZD 15	681	15,3	1983	0,17	2,36	0,74	10,20	2454	41,8	633	98,9	5,23	7,69	14,78	637	16,05	5,96	1,35	2,78	46,9	1,39	63,4	2,5
ZD 25 ŽD 50	823	15,8	1492 592	0,11	2,50	0,98	4,50	2641	28,8	246	547	0,85	7,42 5 71	11,/5	728	16,93	2,90	1,89	3,25	28,4	1,48	2,5	2,5
ZD 30 ŽD 100	248	4,0	516	0,00	1,09	0,70	1.26	1633	9,8 10.5	240	54,7 60.0	0,47	5,71	0,79 0,46	241	9,00	1,52	2,35	0,95	21.1	1,52	2 5	2,4
DD 5	1144	26.2	2800	0.12	2.10	0.02	1,20	2622	114.5	200	120.2	6.19	6.02	12.40	080	24.55	6.77	1.29	7.64	21,1	1,34	2,5	2,5
PP 15	976	19.3	2098	0.07	2,19	0,93	4,40	2698	53.6	758	92.3	1.01	5.84	10.90	887	24,55	3.90	1,58	5 38	18.8	1,21	2,5	2,5
PP 25	1396	24.5	2280	0.07	2,80	1.35	7.79	4084	48.7	993	122.8	1.06	7.16	12.80	1364	38.80	3.89	2.95	6.73	22.7	1.52	2,3	2,3
PP 50	933	15,7	2141	0,05	2,04	0,96	5,30	2959	22,0	975	76,7	0,98	4,91	10,00	857	27,93	3,41	2,45	4,62	18,6	1,16	2,2	2,2
M 5	1869	63.7	5034	0.21	4.66	0.92	12.69	2149	338.5	819	409.2	1.07	11.66	20.26	1551	14.18	8.51	0.91	7.52	38.4	0.97	2.6	3.6
M 15	1910	70,2	5212	0,21	4,74	0,93	9,41	2136	371,7	916	440,9	0,93	11,15	17,91	1624	13,98	9,19	0,91	7,61	38,7	1,00	2,5	2,5
M 25	1980	70,3	4927	0,23	5,07	1,03	11,62	2084	319,9	770	480,8	1,50	15,05	22,30	1485	13,53	8,99	0,80	6,86	43,2	1,14	2,6	2,6
M 100	1933	46,5	4110	0,13	4,50	0,75	16,39	1891	113,1	816	428,6	0,49	8,92	11,32	1184	12,32	4,99	0,90	5,55	12,7	0,40	2,3	2,3
V 5	1846	90,8	4697	0,20	4,76	1,69	6,73	3209	387,9	954	377,0	7,00	14,84	21,82	1745	30,15	12,62	0,81	9,98	95,4	1,22	2,5	2,5
V 15	1965	91,1	5199	0,22	5,26	1,80	5,62	2971	423,3	904	441,7	2,13	17,77	21,45	1734	27,56	12,52	0,82	10,18	63,4	1,62	2,6	2,6
V 25	1761	81,5	4876	0,18	5,40	1,36	5,61	3120	483,3	892	480,3	1,48	14,70	18,11	1688	28,73	11,39	0,66	8,90	45,6	1,23	2,5	2,5
V 50	2675	105,8	5118	0,20	5,98	2,86	9,87	5026	553,1	797	465,4	2,89	21,78	18,66	2144	46,85	15,32	1,51	12,27	66,6	2,48	2,5	2,5
V 100	2141	90,5	5112	0,20	5,46	2,07	9,76	6431	532,0	688	445,6	1,30	15,75	17,66	1686	60,14	13,20	1,01	12,30	61,6	3,64	2,5	2,5
S 5	1446	31,4	5783	0,11	3,46	0,87	5,75	2329	142,5	2660	228,7	1,52	6,90	10,84	1352	21,94	7,49	1,74	5,77	22,6	1,02	2,6	2,6
S 15	1254	38,3	6546	0,12	3,43	0,72	4,35	2022	119,4	2864	264,5	1,30	6,21	10,53	1073	19,16	8,62	0,93	6,00	28,9	1,13	2,5	2,5
S 25 S 50	1295	28,4 42.0	2240	0,10	3,29	0,80	5,18	2559	113,0	2901	218,6	1,19	6,20 8,61	10,08	1255	21,99	6 17	1,87	5,48	18,8	1,13	2,4	2,4
<u> </u>	1940	43,9	6006	0,12	2.07	0,00	4.44	2140	247.9	1544	275.5	1,20	0,01	21.01	1720	21.62	10.06	1,55	7.01	13,0	0,05	2,5	2,5
ΓΖ 3 ΡŽ 15	1688	49,4 54.5	5000	0,10	3,07	0,92	4,44	2347	347,0	1576	1280	4,70	9,50	10.56	1640	10.40	8 80	0,58	7,21	32.0	0,08	2,0	2,0
PŽ 25	1628	59.9	7571	0,15	4,37	0,90	7 33	1978	313.3	2382	420,9	2.46	9,90	20.31	1586	17.97	10.24	0.87	7 39	29.2	1.08	2,4	2,4
K1	1020	40.5	4140	0.37	1.66	1.62	7,55	2629	91.4	303	69.9	6 56	7.10	20,31	886	17.38	12.06	1.18	6.26	71.8	0.81	2,0	2,0
K2	1406	32.9	5951	0.33	1 33	3 17	9 38	2398	65.9	1400	80.9	9.06	14 58	23.06	1294	15.60	13.27	2.32	12.81	100.2	0.98	2,0	2,0
K3	1948	51.1	4225	0.44	3.27	1.32	8.20	4742	222.5	811	157.9	0.83	11.35	34.19	1506	31.62	11.35	1.10	10.57	59.7	1.89	2.6	3.6
K4	1740	60,1	9918	0,70	2,58	1,70	2,56	5653	152,1	1024	216,8	5,42	19,00	36,77	1156	37,84	23,55	0,68	17,33	186,7	2,32	99,1	6,1
K5	360	11,2	3787	0,13	1,08	0,66	2,16	1373	20,9	1589	47,4	0,66	4,18	11,27	311	8,88	4,15	1,04	2,74	23,6	0,70	2,4	2,4

Tabela 57. Koncentracije elemenata dobijene nakon druge faze BCR MTSE (ng/g Hg i Se dok za preostale elemente µg/g, preračunato na suvu supstancu) u ispitivanim uzorcima

MTSE																							
II Faza	Al	Ba	Ca	Cd	Co	Cr	Cu	Fe	K	Mg	Mn	Na	Ni	Pb	Si	Sn	Sr	Ti	V	Zn	As	Hg	Se
D 5	355	27,1	17161	0,51	0,76	1,23	439,10	607	25,7	827	80	24,56	2,55	63,79	360	5,82	44,56	2,89	2,26	523,10	0,22	1498,2	5,4
D 15	235	19,0	2771	0,14	0,46	1,26	469,27	617	7,4	934	71	1,90	1,97	40,57	269	5,94	6,20	2,13	1,09	339,79	0,19	6597,4	3,1
D 25	300	34,4	1124	0,11	0,50	2,58	149,94	968	4,2	631	46	0,70	1,91	97,20	257	9,39	2,87	3,58	1,21	538,11	0,14	2180,9	2,3
PE 5	102	13,0	9396	0,17	0,66	0,20	10,24	261	8,1	395	107	0,67	1,77	11,04	89	2,29	11,12	2,95	2,21	42,18	0,16	3613,5	2,4
PE 15	39	6,4	7494	0,06	0,54	0,06	1,41	147	4,5	338	105	0,53	1,06	3,15	37	1,24	8,84	0,43	0,39	8,25	0,14	1256,9	2,5
PE 25	56	8,4	10129	0,07	0,62	0,02	1,25	183	6,7	519	127	0,85	1,37	3,77	54	1,56	11,11	0,54	0,39	9,06	0,19	565,0	4,2
P5	261	11,5	3234	0,04	2,27	0,02	2,46	282	70,2	645	284	3,04	3,11	7,36	208	2,48	5,58	0,39	1,09	3,60	0,20	49,7	2,6
P15	240	12,4	3285	0,04	2,59	0,03	2,01	241	71,5	607	310	3,59	3,66	6,70	177	2,10	5,33	0,44	1,19	3,33	0,22	44,6	2,5
P25	244	12,3	3514	0,05	2,12	0,03	1,83	257	74,5	582	269	2,19	2,99	6,75	178	2,24	5,51	0,38	1,07	3,20	0,19	103,2	2,1
P50	662	60,4	5473	0,14	4,53	0,13	4,22	330	102,1	929	580	1,94	7,49	8,83	230	2,87	9,05	0,63	3,06	3,13	0,27	163,3	2,5
P100	575	59,2	10126	0,13	4,18	0,09	3,56	328	75,3	1523	544	4,60	6,25	7,44	226	2,88	11,36	0,65	2,49	1,91	0,30	312,1	2,3
ZD 5	257	13,8	7063	0,25	1,21	0,11	12,92	541	37,4	754	161	3,89	3,88	6,75	238	5,43	13,87	1,15	1,31	37,19	0,36	158,2	5,0
ZD 15	121	4,9	5111	0,09	0,72	0,07	3,53	377	16,9	419	97	4,43	1,71	4,11	111	3,68	8,80	0,77	0,58	12,00	0,20	316,5	4,2
ZD 25	211	14,8	4656	0,09	1,03	0,08	2,66	256	17,1	367	148	0,85	2,05	3,84	159	2,48	6,64	1,43	0,80	10,04	0,25	52,5	5,5
ZD 50	30	4,4	7809	0,04	0,51	0,04	0,36	117	5,5	289	95	0,77	1,00	2,24	26	1,14	9,52	0,12	0,24	5,52	0,18	40,9	3,6
ZD 100	32	4,1	5983	0,04	0,57	0,05	0,60	118	5,6	233	88	0,68	1,08	2,27	33	1,13	7,59	0,27	0,21	5,/3	0,16	2,3	8,1
PP 5	230	27,9	/502	0,15	1,18	0,10	1,93	198	/8,8	/21	169	3,36	2,09	6,28	123	1,67	13,37	0,56	2,17	/,98	0,52	14,5	2,5
PP 15	108	20,4	11115	0,09	0,81	0,09	1,85	240	33,/ 24.4	504	151	0,50	1,0/	4,05	104	2,04	10,85	0,95	1,20	4,27	0,34	4,5	5,7
PP 23 PP 50	204	27,4	10345	0,11	0,95	0,06	5,24 2.05	434	54,4 13.7	900	109	0.70	1,79	4.08	1/4	5,92 2,60	15,01	1,51	1,78	4,07	0,40	0,1 1.6	4,4
M 5	294	22.4	5204	0,07	2.29	0,05	5.60	194	160.9	1015	295	2.61	4.00	4,00	217	1.79	7.84	0.46	1.82	0.78	0,23	02.8	2,4
M 15	310	22,4	3661	0,09	3,20	0,08	1 59	104	152.3	864	385 424	3,01	4,90	9,79	183	1,70	7,04 5,78	0,40	1,62	9,78 7.04	0,47	93,0 18 3	2,4
M 25	436	20,9	3208	0,07	3 84	0,08	6.45	206	136.1	807	424	2.76	5.26	12.08	243	2 00	5.76	0.47	1,30	11.00	0.34	35 3	2,5
M 100	339	13.4	3695	0.05	3.06	0.05	5.70	230	36.2	716	357	0.50	4.75	4.63	191	2.22	3.27	1.20	1.30	1.84	0.20	25.7	2.5
V 5	216	23.4	3382	0.07	2 72	0.12	2.92	304	152.6	632	254	2 71	4 70	10.61	114	2 64	5.93	1.13	1.36	19.70	0.38	9.2	2.6
V 15	505	61.7	9348	0.25	4.26	0.49	4.05	473	317.6	1368	485	1.51	10.32	14.49	305	4.10	16.85	1.59	4.37	41.26	1.31	22.9	2.5
V 25	190	21.9	3799	0.07	3.07	0.12	2.37	338	165.7	842	324	3.32	4.72	7.89	149	2.94	6.84	0.96	1.43	7.75	0.47	1093.0	2.6
V 50	435	21,9	2772	0,07	3,81	0,47	3,17	866	215,0	598	358	0,65	7,69	8,00	270	8,08	5,07	2,27	2,21	10,44	0,99	32,2	2,7
V 100	301	20,5	2939	0,08	3,55	0,31	3,64	1099	218,9	574	356	0,48	6,18	5,96	172	9,79	4,33	2,50	2,73	10,47	1,16	13,4	2,4
S 5	127	15,7	4481	0,07	1,40	0,04	1,71	113	38,0	1467	142	1,83	2,19	3,94	54	0,95	8,29	0,50	0,87	8,02	0,32	7,9	2,5
S 15	206	31,1	11268	0,11	2,12	0,11	1,97	202	66,2	2618	275	2,22	3,23	6,43	103	1,74	17,31	0,38	1,48	13,27	0,52	89,2	2,5
S 25	198	25,0	8953	0,10	2,19	0,01	2,21	218	49,3	2560	213	3,19	3,04	5,74	109	1,89	15,32	0,63	1,42	6,84	0,57	54,5	2,5
S 50	265	15,1	3835	0,06	3,40	0,05	1,93	208	50,7	1226	358	0,78	3,68	7,25	175	1,78	4,41	0,58	1,49	1,74	0,43	17,2	2,6
PŽ 5	395	46,1	8855	0,17	3,63	0,11	3,43	171	218,3	1075	435	5,76	6,38	13,71	212	1,44	13,80	0,77	2,31	18,51	0,44	10,2	2,8
PŽ 15	218	17,6	5430	0,06	2,93	0,07	3,48	209	109,5	1025	327	0,55	4,55	12,12	158	1,77	6,08	0,70	1,53	5,07	0,75	10,8	6,0
PŽ 25	219	38,2	8064	0,18	2,94	0,06	1,90	99	218,9	689	410	3,96	4,41	12,10	145	0,82	12,74	1,09	1,45	23,09	0,47	2,6	3,5
K1	209	23,3	9546	0,36	0,86	0,36	4,15	267	54,5	205	112	2,50	2,14	10,17	71	2,54	19,74	0,62	2,43	40,08	0,44	18,0	2,5
K2	217	14,9	10374	0,27	0,34	0,37	4,41	230	25,8	280	89	2,97	4,23	6,76	181	2,20	16,84	1,54	3,87	47,87	0,35	37,4	2,5
K3	349	36,6	4495	0,39	2,07	0,13	5,91	436	138,5	492	240	1,37	4,55	15,89	118	4,85	13,12	0,68	3,39	28,64	0,74	22,6	2,6
K4	391	42,7	14894	1,05	1,27	0,22	4,47	1054	139,8	1079	356	3,91	7,72	15,19	167	10,24	33,22	0,50	8,99	118,87	1,59	19,7	2,7
K5	79	8,1	9545	0,12	0,28	0,14	1,41	143	13,6	410	74	1,84	1,22	4,86	45	1,38	14,97	0,14	1,09	14,96	0,11	7,7	2,4

Tabela 58. Koncentracije elemenata dobijene nakon druge faze BCR UZSE (ng/g za Hg i Se dok za preostale elemente µg/g, preračunato na suvu supstancu) u ispitivanim uzorcima

UZSE																							
II Faza	Al	Ва	Ca	Cd	Co	Cr	Cu	Fe	Κ	Mg	Mn	Na	Ni	Pb	Si	Sn	Sr	Ti	V	Zn	As	Hg	Se
D 5	545	48,1	10696	0,49	0,98	2,22	485,13	1494	26,4	1049	87	17,18	3,57	96,74	502	14,81	32,04	7,228	3,48	545,84	0,31	3155,4	2,5
D 15	328	27,5	1318	0,19	0,50	2,83	311,19	1854	8,6	1122	63	0,56	2,11	69,33	305	18,69	3,00	3,113	1,69	298,47	0,27	6296,2	2,4
D 25	251	69,6	725	0,15	0,28	5,14	39,80	1890	11,1	569	25	0,55	1,10	78,19	307	19,15	2,97	12,924	1,81	203,25	0,43	3254,4	3,2
PE 5	98	6,1	7959	0,12	0,53	0,28	5,45	458	6,6	544	66	0,64	1,73	6,40	131	4,33	8,33	3,567	2,13	29,95	0,23	5187,1	2,5
PE 15	114	6,7	13565	0,09	0,81	0,24	1,26	553	10,0	959	114	1,01	2,31	4,94	129	5,21	14,06	1,917	0,75	15,11	0,42	2417,0	2,5
PE 25	84	3,3	6519	0,04	0,58	0,21	0,61	417	7,3	540	78	0,57	1,42	3,11	100	3,81	6,92	1,458	0,45	7,82	0,34	957,2	2,4
P5	394	33,2	6525	0,13	2,51	0,16	2,74	485	124,5	778	361	3,41	4,65	7,06	335	4,06	11,45	0,554	3,07	8,44	0,40	2,5	2,5
P15	378	33,9	7254	0,13	2,61	0,12	2,28	410	121,5	773	356	3,63	4,99	6,91	293	3,24	11,63	0,312	3,09	7,88	0,37	17,2	2,4
P25	401	34,1	6214	0,12	2,58	0,16	2,80	410	126,6	649	344	4,15	4,65	10,37	281	3,18	11,44	0,352	3,01	8,07	0,38	39,4	2,2
P50	242	17,9	1950	0,05	1,41	0,13	1,19	217	29,9	355	204	0,62	2,12	2,32	153	1,67	3,05	0,744	1,06	2,44	0,07	43,1	2,4
P100	248	24,0	3985	0,06	1,53	0,10	1,09	217	30,8	688	251	2,08	2,23	2,55	151	1,71	4,80	0,590	1,12	1,62	0,07	41,9	2,4
ZD 5 ŽD 17	180	5,6	6452	0,12	0,78	0,09	5,27	744	26,6	579	91	6,29	1,85	6,42	161	7,30	11,66	0,896	1,09	13,69	0,29	731,0	2,5
ZD 15	471	14,5	11475	0,25	1,62	0,26	9,37	1267	46,0	1259	165	2,49	4,50	10,47	345	12,56	16,93	1,030	2,22	36,35	0,81	441,6	2,4
ZD 25 ŽD 50	202	4,7	5744	0,07	0,84	0,12	1,02	614	10,5	521	114	0,39	1,57	3,44	196	6,01	6,53	1,888	0,95	4,86	0,29	34,2	2,6
ZD 50 ŽD 100	88	3,3	1223	0,07	0,70	0,11	0,40	400	5,8	769	103	0,70	1,55	3,70	/4	4,54	/,88	1,428	0,44	1,52	0,59	32,0	2,5
ZD 100	220	4,5	6205	0,08	0,70	0,15	1.91	400	52.0	/08	97	2.02	1,75	3,97	157	4,30	14,38	0,910	1.54	9,54	0,55	2,4	2,4
PP 3 DD 15	230	20.8	0293	0,05	1.07	0,18	1,61	025	55,9 69 9	2242	125	5,95	1,25	4,84	104	5,00 8 40	9,78	0,771	1,34	4,28	0,50	21,2	2,0
PP 15	281	20,8	8620	0,10	0.81	0,31	2,57	933 574	30.2	768	150	0.03	1.82	6.09	194	5 20	13 30	1 107	2,70	6.23	0,71	11,9	2,4
PP 50	213	15.9	9523	0.07	0,81	0.12	2 35	558	14.1	708	121	0,95	1 39	5.01	125	5.13	13,39	0.861	1,07	5 39	0.28	13.7	2,4
M 5	537	38.5	11336	0.18	2 82	0.12	5.74	379	310.1	1246	392	3.51	5.16	9.10	375	3 63	16.11	0.147	2 59	16 39	0.63	2.5	2,5
M 15	465	31.4	6452	0.13	2,02	0.08	3.92	312	209.7	1053	322	4 02	4 05	6 69	316	3.00	11 13	0,147	2,09	12 25	0.47	2,5	2,5
M 25	446	31.9	6028	0.15	2.09	0.09	5.40	283	188.4	762	353	3.06	4.41	7.55	308	2.70	11.62	0.521	2,00	13.64	0.47	2,5	2.6
M 100	490	24,8	7034	0,10	2,21	0,07	5,95	361	56,4	992	319	1,11	3,73	3,98	306	3,50	7,45	1,411	1,87	1,94	0,18	4,8	2,5
V 5	464	43.7	7495	0.19	2.68	0.45	4.08	563	235.6	1268	328	5.01	6.88	10.82	338	4.76	14.38	0.861	3.14	52.08	0.67	14.1	2.5
V 15	582	49,2	8535	0,21	3,37	0,58	4,37	775	302,7	1446	396	4,86	8,99	12,18	453	6,58	16,38	0,893	3,94	36,01	1,01	23,0	2,3
V 25	332	49,5	12879	0,18	2,98	0,28	2,45	527	396,1	1607	394	4,42	6,58	8,16	307	4,38	22,82	0,339	2,79	23,16	0,90	213,3	2,6
V 50	650	60,7	11619	0,23	4,49	0,89	4,50	1214	627,1	1105	496	1,15	13,03	10,05	453	10,58	23,43	15,144	5,21	45,72	2,28	36,5	2,6
V 100	517	49,6	9272	0,22	3,61	0,60	5,77	1902	438,7	1107	396	4,00	9,37	7,81	330	17,71	17,16	1,204	6,19	42,85	2,42	13,6	2,4
S 5	209	25,1	11797	0,12	2,14	0,07	2,03	194	72,2	2733	233	2,02	3,17	5,55	114	1,68	18,58	0,164	1,34	16,59	0,45	2,5	2,5
S 15	233	26,7	9983	0,11	2,20	0,12	2,12	223	68,1	2694	249	2,02	3,36	5,99	117	1,76	15,28	0,186	1,52	12,51	0,49	32,1	2,4
S 25	136	7,8	6266	0,04	1,36	0,04	1,03	295	31,8	2067	179	0,37	1,99	20,44	127	2,44	6,41	0,361	0,96	3,18	0,34	2,5	2,5
S 50	355	28,9	8246	0,10	2,39	0,09	1,95	321	77,1	1499	308	0,79	3,43	5,65	285	2,58	10,98	0,993	2,01	3,41	0,43	2,4	2,4
PŽ 5	287	34,6	10939	0,17	2,49	0,07	2,27	201	247,9	1396	369	3,88	4,34	11,48	235	1,32	15,45	0,164	1,69	20,73	0,41	13,4	2,5
PŽ 15	423	31,5	7758	0,13	2,57	0,14	3,00	258	173,2	1264	335	0,78	4,65	10,29	261	1,94	9,81	0,535	2,19	13,91	0,47	13,1	2,6
PZ 25	272	16,5	8172	0,06	2,14	0,11	3,50	283	108,1	1210	266	0,98	3,59	8,87	233	2,32	8,82	0,869	1,61	6,10	0,41	8,6	2,5
K1	249	27,7	17177	0,41	0,84	0,37	3,15	401	89,5	355	112	2,82	2,27	10,10	104	3,85	32,28	0,077	2,65	46,26	0,40	2,6	2,6
K2	291	16,4	15107	0,29	0,35	0,53	4,27	411	36,2	403	93	3,43	5,18	7,87	223	3,95	23,18	0,395	4,93	59,18	0,36	11,7	2,5
K3	266	17,2	2145	0,21	1,04	0,06	2,58	601	61,5	392	108	3,35	2,62	7,35	139	5,82	7,83	0,379	2,08	17,65	0,34	2,6	2,6
K4	514	47,9	22008	0,85	1,47	0,39	2,40	1656	222,6	1714	381	7,44	8,94	18,81	243	16,28	46,81	0,005	10,45	146,03	1,72	5,2	2,7
K5	104	11,3	15913	0,15	0,29	0,10	1,32	210	22,1	593	82	6,32	1,45	5,38	47	2,02	25,53	0,005	1,25	17,01	0,15	2,3	2,3

Tabela 59. Koncentracije elemenata dobijene nakon treće faze BCR KSE (ng/g za Se dok za preostale elemente µg/g, preračunato na suvu supstancu) u ispitivanim uzorcima

KSE III																							
Faza	Al	Ba	Ca	Cd	Co	Cr	Cu	Fe	K	Mg	Mn	Na	Ni	Pb	Si	Sn	Sr	Ti	V	Zn	As	Hg	Se
D 5	225	87,00	74	0,08	0,53	9,18	31,37	214	11,5	445	12,8	0,92	2,42	100,13	630	1,76	2,42	31,70	1,56	64,52	0,48	12,563	2,5
D 15	1874	6,40	193	0,03	1,42	4,03	4,32	222	352,8	1670	50,6	10,28	10,66	1,84	2285	1,86	1,30	6,67	8,40	10,61	0,39	0,502	2,2
D 25	130	45,97	60	0,03	0,21	11,43	4,04	137	9,8	344	6,1	0,62	1,14	275,71	554	1,06	1,28	13,22	0,75	47,74	0,21	81,614	2,2
PE 5	117	3,76	79	0,04	0,74	1,76	10,32	125	4,8	351	9,3	0,82	4,83	26,99	401	1,07	0,32	14,83	1,12	6,28	0,13	7,925	2,5
PE 15	227	2,12	74	0,04	0,87	1,85	0,39	585	4,9	512	14,1	1,00	5,61	4,62	474	5,67	0,29	26,01	0,89	5,46	0,27	0,177	2,5
PE 25	270	1,46	109	0,02	1,38	1,32	0,02	85	49,6	1001	22,6	12,73	9,40	7,08	824	0,68	0,38	10,85	1,80	8,20	0,59	0,688	2,5
P5	1585	5,66	189	0,08	1,01	3,60	3,07	1538	144,3	1019	33,4	3,37	12,12	19,21	2256	15,20	0,67	39,44	7,62	13,75	0,55	1,343	2,5
P15	1143	4,42	107	0,06	0,80	3,06	1,50	891	130,5	894	28,7	2,43	6,17	17,91	2121	8,67	0,54	20,74	6,27	2,00	0,28	1,460	2,5
P25	1323	4,84	117	0,07	0,88	3,30	2,07	1080	138,1	946	30,4	3,04	6,39	19,94	2286	10,52	0,58	20,59	6,74	2,88	0,39	2,327	2,3
P50	2034	5,92	137	0,04	1,83	2,56	0,85	185	288,6	1933	61,8	14,88	10,51	16,66	2060	1,65	0,68	6,88	9,29	6,81	0,30	2,650	2,6
P100	1861	6,42	192	0,06	1,33	3,18	2,59	905	105,0	1142	46,8	3,96	11,81	21,42	2423	8,83	0,65	0,22	1,44	20,97	0,19	3,875	2,5
ZD 5 ŽD 15	368	2,26	59	0,05	0,83	2,18	2,97	462	24,5	552 1225	14,9	0,84	6,58	1,42	910	4,09	0,49	28,46	1,80	6,96	0,19	9,862	2,5
ZD 15 ŽD 25	507	2,49	8/	0,02	1,95	1,37	2,34	1200	141,5	1225	28,5	9,77	10,05	0,96	1120	0,62	0,61	7,29	3,30	12,15	0,05	0,018	2,5
ZD 23 ŽD 50	260	2,40	95	0,04	1,10	2,39	1,01	1299	20,4	1026	20.0	1,97	10.25	1,75	771	12,15	0,31	0.75	2,28	9,05	0,50	2,088	2,5
ŽD 100	209	1,40	85	0.02	1,30	1,42	0,02	1122	53.2	10/15	20,9	11 29	10,23	0,63	821	0,95	0.32	10.57	1,72	6.61	0.03	0,193	2,4
PP 5	1210	3 59	246	0.11	1,50	2 38	/ 39	2151	54.5	711	20,2	2.58	5.61	16 39	1687	21.72	0.95	82.92	1,75	9.59	1 11	0,002	2,5
PP 15	576	2.14	136	0.01	1 14	0.96	0.33	86	109.9	905	25,4	9.92	5.12	9.42	1185	0.69	0,55	6.68	3 30	4.83	0.05	0,452	2,5
PP 25	989	2,97	94	0.07	1.02	2.00	2.65	1488	35.5	628	20.5	2.93	4.82	15.83	1593	15.31	0.55	10.81	2.55	8.43	0.57	0.593	2,3
PP 50	426	1,83	68	0,02	0,75	1,12	0,81	388	12,6	374	12,3	0,40	2,95	8,17	871	3,79	0,39	30,40	1,72	3,25	0,10	0,709	2,2
M 5	2227	9.68	213	0.08	1.15	4,49	5.74	1953	216.8	1226	42.3	2.20	9.06	3.41	3082	18,56	1.06	27.37	7.60	8.40	0.50	1.311	2.6
M 15	1551	7,86	162	0,05	0,82	3,75	3,75	1076	192,1	1026	35,7	1,83	7,51	2,35	2696	9,95	0,92	6,23	6,53	5,82	0,27	0,263	2,5
M 25	439	80,82	49	0,06	0,61	14,11	13,44	202	109,9	1197	18,0	9,75	3,06	217,40	943	1,80	2,42	14,42	2,36	26,88	0,03	126,389	2,6
M 100	1227	6,43	117	0,03	0,82	2,37	2,46	546	101,7	868	31,3	1,62	6,20	1,84	2167	4,95	0,57	0,11	1,71	3,85	0,12	0,677	2,3
V 5	1648	9,56	245	0,10	0,90	5,20	4,99	1405	185,6	940	31,7	3,27	7,20	23,99	2537	14,01	1,42	15,98	7,70	7,13	0,43	0,313	2,5
V 15	1815	9,69	335	0,10	0,95	6,28	4,72	1824	196,8	1003	35,0	4,66	8,61	24,66	2657	18,27	1,57	3,21	8,06	6,80	0,64	1,348	2,6
V 25	1710	7,94	222	0,09	1,55	4,60	3,85	1408	219,5	1056	37,2	4,34	7,40	24,11	2730	13,93	1,21	0,78	5,58	6,44	0,30	7,626	2,5
V 50	1667	8,49	245	0,07	0,89	5,58	3,10	1299	195,2	969	32,7	3,52	7,81	22,31	2586	12,82	1,48	6,26	7,73	3,56	0,54	1,345	2,5
V 100	1890	5,64	232	0,04	1,58	3,58	1,99	195	364,7	1843	52,2	16,11	10,34	22,38	2600	1,75	1,20	6,70	8,88	8,44	0,40	0,706	2,5
S 5	745	3,14	128	0,04	0,80	1,75	1,07	561	53,8	761	19,7	2,09	4,21	11,87	1381	5,39	0,59	51,19	3,64	4,49	0,23	0,318	2,6
S 15	727	4,61	156	0,05	0,79	1,82	1,69	544	48,3	771	22,0	2,29	3,80	12,36	1403	5,25	0,79	28,70	4,32	2,92	0,21	0,347	2,5
S 25	1104	3,17	158	0,08	0,97	1,90	3,08	16/3	53,1	816	23,1	2,99	5,44	13,40	1515	16,77	0,69	72,19	3,70	12,95	0,59	2,174	2,4
<u>5 50</u>	980	4,8/	118	0,04	0,82	2,34	1,24	204	89,7	961	28,1	2,37	4,59	16,75	1907	5,05	0,61	28,38	5,15	1,15	0,23	0,897	2,5
PZ 5	1184	3,91	198	0,06	1,24	2,58	2,51	204	289,7	1583	42,5	12,09	8,34	16,07	1972	1,82	0,77	10,64	7,12	7,98	0,21	0,336	2,6
PZ 15 DŽ 25	1401	4,80	279	0,07	0,54	2,30	5,91	2114	128.0	980	247	2,08	0,87 576	22.00	2502	21.09	0,85	15,10	5,39	7,89 8 5 1	0,50	1 202	2,4
FZ 23	1/04	5.22	120	0,10	1.22	2,09	4.07	2114	196.0	1010	26.0	4,12	9,10	22,00	1700	1.92	1,05	17,20	5,20	14.04	0,99	0.721	2,0
K1 K2	718	3,32 6.65	515	0,05	1,25	5,55 6 30	4,97	1035	100,0 35.1	602	20,9	6.12	0,40 0,16	2,04	1/00	1,82	4.07	52.61	7.06	14,04	0,07	3 077	2,0
K3	2069	9.40	488	0.13	1 51	6.07	7 52	3052	150.1	1309	38.3	6.27	9.10	4 80	3248	29.59	3.80	1.83	7.98	14 34	0.26	2 808	2,5
K4	4296	13.98	826	0.73	2.44	10.87	27.21	6886	247.0	1949	63.6	8 51	18 54	17 19	4587	70.78	5 18	186 24	30.09	43 45	1.09	9 964	33
K5	409	4,08	421	0,05	0,80	1,85	2,52	976	18,4	543	12,9	4,99	5,36	1,85	611	9,03	3,13	29,01	2,33	7,41	0,14	0,023	2,4

Tabela 60. Koncentracije elemenata dobijene nakon treće faze BCR MTSE (ng/g Se dok za preostale elemente µg/g, preračunato na suvu supstancu) u ispitivanim uzorcima

MTSE																							
III Faza	Al	Ba	Ca	Cd	Co	Cr	Cu	Fe	K	Mg	Mn	Na	Ni	Pb	Si	Sn	Sr	Ti	V	Zn	As	Hg	Se
D 5	199	43,0	1751	0,14	0,73	12,48	238,78	160	6,6	576	26	1,64	2,07	91,46	369	1,52	6,13	2,24	2,23	383,06	0,03	1,357	2,2
D 15	108	26,2	1546	0,05	0,22	13,62	228,49	117	5,9	804	26	3,32	0,95	196,88	444	1,11	5,28	0,54	0,97	219,17	0,74	45,547	6,6
D 25	122	23,2	236	0,03	0,25	7,31	24,08	113	5,1	446	17	0,46	0,93	65,53	414	1,08	0,99	4,64	1,49	143,75	0,60	80,786	7,6
PE 5	64	7,4	18461	0,08	0,15	1,45	3,91	124	13,1	1053	30	4,26	0,71	6,01	145	1,24	12,35	10,96	4,01	13,89	0,13	0,514	2,4
PE 15	45	1,8	6748	0,02	0,17	0,59	0,43	113	7,4	635	13	0,51	0,45	0,80	86	1,13	7,40	8,65	0,90	2,38	0,04	0,262	2,5
PE 25	56	2,0	6899	0,02	0,17	0,65	0,28	128	7,5	742	18	0,49	0,46	0,99	124	1,28	5,87	12,11	0,93	2,12	0,04	0,126	2,4
P5	981	6,4	2592	0,04	0,99	2,27	1,71	494	71,3	1015	45	4,06	5,10	7,54	1084	4,96	3,78	52,65	8,46	1,97	0,11	1,623	2,6
P15	508	5,3	3515	0,03	0,65	1,91	1,63	277	61,1	1015	39	3,68	4,04	5,10	761	2,77	4,45	41,49	7,91	0,32	0,08	0,932	2,5
P25	850	5,9	34/4	0,04	0,93	2,18	1,46	438	/0,8	1095	49	3,80	4,75	6,64	961	4,37	4,81	40,64	7,96	1,50	0,09	3,333	2,1
P50 P100	2412	9,7	1226	0,05	1,40	3,12	2,57	100	80,5 64.4	852	01	1,97	6.05	12,30	1844	7,01 6,41	1,00	20,64	4,57	4,07	0,16	3,833	2,5
ŽD 5	2442	2.4	1230	0,03	0.28	2,70	1.20	270	11.0	806	15	2,07	0,95	2.05	207	2.26	2 00	22,80	2,00	5,90	0,11	4,038	2,5
ZD 5 ŽD 15	91	4 2	5264	0,05	0,28	0.82	1,39	329	14.6	511	13	0,42	0,04	2,03	207	2,20	5,90	20,92	1,38	9.79	0,40	0,024	2.4
ŽD 25	79	34	4881	0.02	0.27	0.81	0.72	204	89	604	15	0.32	0,31	1 33	133	1.65	4 25	13.81	1,79	4.26	0.31	0,013	3.6
ŽD 50	29	1.6	5460	0.01	0.13	0.40	0.09	106	89	544	10	0.18	0.02	0.50	58	0.87	5.09	4 63	0.39	2.51	0.07	0,002	2.4
ŽD 100	29	1.8	6751	0.01	0.14	0.49	0.20	114	9,1	588	16	0.39	0.09	0.64	75	0.92	6.37	3.42	0.42	3.58	0.07	0.002	2.4
PP 5	266	6.8	8097	0.06	0.33	1.11	2.53	523	38.1	2482	24	1.55	1.39	3.11	292	5.19	7.54	38.83	6.21	0.22	0.31	0.003	2.5
PP 15	199	3,5	7262	0,04	0,25	0,94	1,64	420	23,0	1625	19	0,67	0,76	2,84	218	4,19	7,66	35,29	3,96	1,81	0,43	0,002	2,5
PP 25	207	3,4	5960	0,04	0,29	0,92	1,40	465	16,5	1848	14	0,74	0,82	2,73	232	4,61	4,68	44,73	3,75	1,53	0,39	0,002	2,4
PP 50	193	2,3	5940	0,02	0,18	0,63	0,72	312	17,1	1304	12	0,85	0,29	1,98	264	3,11	5,54	45,17	2,30	0,27	0,24	0,003	2,5
M 5	1033	16,7	2445	0,04	0,62	2,68	2,96	384	114,9	1128	49	2,98	6,14	3,34	1148	3,67	5,16	32,56	8,83	5,67	0,07	0,987	2,4
M 15	1522	21,8	1719	0,03	0,71	2,88	3,32	526	150,2	1100	52	3,77	6,71	4,48	1716	5,01	4,74	51,79	9,60	10,10	0,16	0,920	2,5
M 25	1896	17,0	958	0,03	1,04	4,38	4,52	663	164,0	945	70	1,25	8,46	6,57	1831	6,34	2,63	16,60	10,94	12,21	0,29	1,552	2,3
M 100	201	11,2	3941	0,01	0,32	1,12	3,85	47	30,6	1165	57	0,88	0,78	2,03	226	0,42	3,47	32,13	6,86	1,74	0,57	0,002	2,7
V 5	1194	21,0	3008	0,05	0,90	4,39	3,35	661	145,2	1097	50	1,71	7,72	10,00	1385	6,60	4,15	40,21	10,35	9,62	0,36	0,201	2,6
V 15	1354	19,6	4113	0,06	0,82	4,16	3,96	738	158,5	1443	44	1,94	8,32	9,77	1282	7,38	5,39	47,38	9,63	8,67	0,42	0,796	2,5
V 25	941	18,7	2817	0,04	0,84	3,18	2,05	526	132,6	988	66	1,00	6,44	7,44	1096	5,25	3,76	36,63	8,38	2,85	0,16	5,418	2,6
V 50 V 100	1940	16,8	1829	0,07	1,07	5,12	3,19	1224	168,8	904	45	1,87	8,69	10,25	1764	12,33	3,59	49,08	9,79	6,99 7.00	0,76	2,399	2,5
V 100	1019	10,7	11545	0,05	0.42	4,00	1.70	167	62.7	2015	51	1,07	1,13	2.65	215	0,00	14.29	5.94	2,02	1,99	0,43	0.002	2,4
S J 5	218	15,9	6821	0,00	0,45	1.00	1,79	245	40.2	2915	17	1,51	1,10	2,03	215	2.45	14,58	37.03	5,05	1,38	0,95	0,002	3,3 25
\$ 25	205	18.5	6513	0.04	0,35	0.03	1,00	245	35.5	2430	15	0,99	0.82	2,05	240	2,45	5 82	41.63	3 97	1/ 93	0,33	0,002	2,5
S 50	1180	67	2316	0.03	0,21	1.68	1,30	376	747	1315	37	1.12	3 44	7 33	1115	3 76	1.92	77 34	678	1 20	0,11	1 124	2,5
PŽ 5	384	12.8	6555	0.05	0.36	1 44	4.81	281	105.4	1845	49	1.03	2 29	5 27	331	2 79	7.15	26.41	7.12	6.19	0.51	0.002	2,0
PŽ 15	419	10.5	5954	0.04	0.21	1.70	2.67	188	87.9	1817	32	0.75	2.06	4.93	438	1.87	5.47	49.89	7.01	1.66	0.35	0.003	2.6
PŽ 25	273	9,1	5897	0,01	0,17	1,50	2,29	144	67,6	1546	24	0,72	1,56	3,81	362	1,42	5,01	55,35	5,71	0,54	0,22	0,003	2,6
K1	126	16,3	7214	0,10	0,25	2,81	7,03	746	23,3	255	18	0,61	1,25	5,30	143	6,08	15,59	1,33	4,56	21,92	0,64	0,003	3.0
K2	183	10,7	10948	0,14	0,20	3,22	7,31	532	18,6	792	34	3,50	2,68	4,19	215	5,08	18,82	10,08	10,35	33,22	0,34	0,003	6,9
K3	1519	18,2	875	0,17	2,24	5,21	8,09	1902	79,1	888	74	2,10	12,09	14,16	1782	18,41	3,47	0,01	4,99	32,51	0,15	0,798	2,6
K4	2807	25,0	4968	0,75	3,19	9,39	30,42	5496	112,0	2220	127	5,82	24,82	21,41	2789	55,03	11,68	86,65	35,34	139,28	0,68	4,875	2,8
K5	50	3,5	5453	0,04	0,16	1,08	2,87	269	8,7	1097	22	0,96	0,29	1,27	127	2,58	9,00	4,67	2,86	6,63	0,04	0,002	2,4

Tabela 61. Koncentracije elemenata dobijene nakon treće faze BCR UZSE (ng/g za Se dok za preostale elemente µg/g, preračunato na suvu supstancu) u ispitivanim uzorcima

UZSE																							
III Faza	Al	Ba	Ca	Cd	Co	Cr	Cu	Fe	Κ	Mg	Mn	Na	Ni	Pb	Si	Sn	Sr	Ti	V	Zn	As	Hg	Se
D 5	255	122,3	687	0,13	0,71	13,56	119,79	305	13,2	529	24,8	5,28	2,75	119,47	547	2,86	6,82	14,40	3,18	176,66	0,10	66,822	2,5
D 15	250	127,0	522	0,06	0,29	12,81	44,23	580	18,7	952	18,2	4,11	1,51	111,12	877	5,51	6,28	6,11	0,87	70,88	0,07	135,992	2,4
D 25	157	43,4	16	0,03	0,21	5,87	4,65	212	10,9	353	7,8	0,22	5,71	71,78	569	1,98	1,29	2,69	0,68	29,97	0,18	102,586	2,2
PE 5	66	5,3	9086	0,09	0,31	1,13	2,33	163	9,7	1518	19,4	0,79	1,65	4,11	199	1,61	10,07	15,64	2,88	20,93	0,10	0,162	2,5
PE 15	50	1,4	2710	0,04	0,25	0,54	0,05	87	6,9	861	9,3	0,55	0,94	1,53	100	0,87	1,62	13,15	0,49	4,98	0,05	0,005	2,5
PE 25	176	1,8	2688	0,05	0,95	0,88	0,38	143	11,0	824	18,7	1,15	3,45	4,81	312	1,42	2,16	17,14	1,03	12,33	0,16	0,004	2,4
P5	1061	10,9	3168	0,07	0,96	1,94	2,65	628	78,6	1055	55,6	5,68	5,45	12,58	1049	6,25	5,42	61,30	8,50	3,51	0,31	0,217	2,5
P15	1010	8,2	2869	0,05	0,80	1,97	2,54	530	86,0	989	38,2	5,57	4,91	12,27	1090	5,27	4,86	65,59	8,36	3,39	0,23	0,484	2,4
P25	270	7,6	1130	0,02	0,21	0,48	0,88	208	16,1	275	14,9	0,40	1,38	10,33	240	2,06	1,27	17,58	2,01	1,56	0,10	0,029	2,2
P50	3252	22,0	1256	0,09	2,64	3,42	5,44	1051	141,9	1097	150,6	3,17	9,40	29,34	2565	10,56	2,23	0,73	1,97	9,67	0,17	3,614	2,4
P100	1370	27,6	3202	0,07	2,19	1,91	1,08	203	62,4	794	151,8	2,69	7,41	13,15	972	2,01	3,29	46,52	9,08	0,58	0,08	2,777	2,4
ZD 5	165	3,7	6297	0,06	0,46	1,11	6,11	486	16,6	1444	30,1	4,42	1,95	4,04	446	4,59	8,13	18,37	2,11	5,19	0,21	0,016	2,5
ZD 15	108	2,6	2537	0,03	0,35	1,13	1,23	165	11,6	947	11,1	0,20	1,49	1,80	396	1,54	2,89	43,59	1,83	0,00	0,05	0,032	2,4
ZD 25	82	3,5	4656	0,03	0,41	1,26	0,35	142	9,6	1039	30,5	0,12	1,66	1,79	318	1,32	4,53	35,15	0,51	0,01	0,14	0,003	2,6
ZD 50 ŽD 100	48	1,8	2033	0,20	0,41	0,59	0,11	129	6,1	806	12,4	0,25	1,58	1,27	80	1,21	1,89	10,39	0,50	0,00	0,04	0,020	2,5
ZD 100	104	1,/	4693	0,04	0,35	0,86	0,75	249	8,9	1927	12,3	4,25	1,33	1,95	128	2,30	3,70	6,59	0,55	0,55	0,09	0,027	2,4
PP 5	184	4,0	4451	0,05	0,41	1,35	1,29	390	27,3	15/3	15,6	0,79	1,54	4,50	358	3,88	3,28	44,66	4,59	3,58	0,57	0,003	2,6
PP 15 DD 25	122	2,2	2027	0,05	0,40	0,99	0,04	127	19,1	1238	9,9	1,12	1,94	3,08	207	1,23	1,40	54,57 25.80	2,01	2,57	0,08	0,002	2,4
PP 50	132	2,2	7430	0,03	0,48	0,92	0,04	139	14,5	3262	14,5	2.40	1,09	2 38	230	1,90	4,29	23,80	2,30	3.01	0,10	0,002	2,4
M 5	1044	2,5	4174	0.09	1.05	2 20	11.84	851	114.4	1174	82.7	0.20	6.17	0.10	80/	8.03	6.02	51.62	8.24	4 30	0.71	0,002	2,5
M 15	792	42.6	5/23	0,08	1,05	2,29	9.88	375	138.0	1174	02,7 145.6	0,29	4 88	9,19	669	3,05	8.43	15.26	0,24 8 11	4,30	1.47	0,003	2,5
M 25	394	14.2	1518	0.04	0.58	0.99	4 99	249	45.5	334	72.1	0.85	8.01	7 90	344	2.34	3 01	13,20	3 16	6 68	0.28	0,005	2.6
M 100	1402	17.0	4882	0.06	1.41	1.67	6.45	750	59.6	1187	102.1	3.49	10.62	6.36	1130	7.02	5.01	122.25	6.30	0.40	0.15	0,209	2.5
V 5	510	32.6	6679	0.11	0.81	4 35	6.12	410	140.7	1186	91.0	1.13	4 37	11 74	754	4 08	913	8.41	9 1 9	18 29	1.68	0.003	53
V 15	670	24.5	4467	0.09	0.83	3.04	2.71	391	135.6	1222	78.1	1.60	7.14	10.20	835	3.88	5.86	38.12	9.49	7.07	0.51	0.002	2.3
V 25	899	24,4	4964	0,09	0,93	2,32	4,23	702	131,4	1316	75,8	8,76	5,98	10,85	754	7,05	8,47	36,83	7,43	10,35	1,06	0,003	2,6
V 50	1589	28,4	3540	0,08	1,16	5,28	2,87	508	200,6	1117	68,8	2,13	11,54	16,23	1710	5,05	6,79	20,66	11,07	7,71	0,29	1,367	2,6
V 100	1436	22,4	3572	0,11	0,88	3,25	3,68	1606	153,1	1009	82,3	10,12	6,66	12,88	1254	16,27	7,60	31,61	7,19	8,79	1,41	0,361	2,4
S 5	246	7,8	7588	0,06	0,33	1,07	1,49	225	55,2	3325	22,2	1,43	1,34	3,76	255	2,22	5,30	33,02	4,82	2,13	0,88	0,002	2,3
S 15	227	6,6	8533	0,06	0,35	1,08	2,00	230	54,7	3606	21,6	1,79	1,16	3,32	206	2,26	6,14	34,92	4,65	4,64	0,75	0,002	2,6
S 25	165	4,1	5257	0,04	0,29	0,83	0,80	174	33,6	1965	17,9	0,83	0,80	3,08	221	1,72	3,85	43,15	3,51	1,85	0,27	0,003	2,5
S 50	1067	11,0	4117	0,08	0,96	1,39	3,24	568	80,6	1571	58,6	3,10	3,66	9,15	670	5,62	4,05	87,14	5,91	4,22	0,54	0,083	2,4
PŽ 5	517	14,5	6217	0,08	0,57	1,47	7,21	303	99,1	1522	60,0	5,52	3,10	9,39	423	3,01	7,87	32,29	6,68	9,16	0,59	0,002	2,5
PŽ 15	428	15,2	7254	0,07	0,54	1,71	3,11	224	109,6	1624	79,9	1,04	2,80	8,61	489	2,21	7,53	35,15	7,03	4,97	1,23	0,003	2,6
PŽ 25	318	9,7	5497	0,04	0,42	1,40	2,05	152	72,1	1451	43,8	0,87	2,57	6,62	425	1,50	5,16	44,43	5,52	2,49	0,21	0,003	2,5
K1	172	16,8	4381	0,13	0,22	3,76	6,81	595	29,9	367	14,3	4,11	1,56	6,05	246	5,62	12,44	0,08	5,12	7,01	0,39	0,003	2,6
K2	168	10,6	7648	0,13	2,10	4,01	6,85	260	19,3	876	26,1	5,46	2,80	3,51	355	2,44	13,39	8,10	9,73	14,43	0,19	0,002	4,1
K3	1129	35,6	1879	0,24	2,23	4,48	9,91	1716	96,8	698	130,7	2,49	12,36	16,08	1395	16,58	6,89	35,23	15,10	15,36	0,18	0,255	2,6
K4	2677	21,9	3310	0,68	2,86	9,07	27,77	5226	100,5	1789	96,2	6,28	22,69	20,89	2410	52,85	9,85	92,45	31,77	103,53	0,68	4,274	2,7
K5	54	4,3	7068	0,06	0,19	1,26	2,02	225	10,3	1713	20,4	0,50	1,37	2,12	195	2,12	9,50	4,76	2,50	0,01	0,07	0,002	2,3

KSE IV																							
Faza	Al	Ba	Ca	Cd	Co	Cr	Cu	Fe	К	Mg	Mn	Na	Ni	Pb	Si	Sn	Sr	Ti	v	Zn	As	Hg	Se
D 5	1168	108,5	0,01	0,38	1,57	12,6	28,3	18220	116	754	128	2,68	13,6	53,0	280	217	2,86	85	7,2	228,7	1,53	3,32	5,0
D 15	11348	17,7	186,45	0,30	3,47	11,5	28,8	17071	1310	3321	115	3,10	14,9	13,2	147	207	2,87	243	21,1	51,2	4,09	0,12	4,3
D 25	1027	57,4	0,01	0,09	0,71	4,4	5,4	4821	95	540	28	0,10	3,5	60,4	171	50	1,46	80	3,7	32,4	0,44	1,52	4,4
PE 5	2191	6,2	364,76	0,11	1,94	8,5	3,8	6738	104	2113	60	1,46	13,9	14,8	294	71	0,95	174	7,3	20,8	1,33	0,02	5,0
PE 15	1629	2,0	95,53	0,07	1,66	6,3	1,4	5187	63	1830	50	0,57	12,1	3,0	199	54	0,01	108	5,0	10,1	1,63	0,02	5,0
PE 25	2186	2,8	344,88	0,09	1,60	7,0	1,3	6296	81	1598	50	0,98	10,7	4,2	262	66	0,53	133	5,5	13,8	1,53	0,02	37,5
P5	11976	17,6	192,46	0,26	4,20	11,3	18,0	17345	1439	4205	130	3,18	22,2	11,8	200	201	3,00	310	24,3	54,3	7,04	0,11	29,0
P15	11539	16,9	244,58	0,25	4,04	10,6	16,5	16742	1388	4045	127	3,61	15,3	11,2	192	192	2,85	315	22,8	52,7	28,13	0,17	26,0
P25	10930	15,8	290,73	0,25	3,92	10,2	16,4	16418	1283	3956	124	2,66	15,5	11,2	210	189	2,67	281	22,3	48,7	7,60	0,29	25,0
P50	16393	24,1	107,76	0,37	4,57	14,7	19,5	22589	1643	4504	145	3,84	16,3	16,2	233	278	3,73	311	31,5	53,4	9,49	0,03	69,9
P100	15620	21,1	175,09	0,37	5,36	13,9	20,6	22176	1549	5492	170	4,41	23,0	15,1	229	273	3,90	336	37,0	70,3	9,39	0,01	73,7
ŽD 5	4500	5,9	273,21	0,15	2,56	9,6	9,0	9414	316	2571	80	2,17	14,2	7,0	244	101	1,74	238	10,7	25,1	4,40	2,56	8,1
ZD 15	4655	5,7	174,88	0,15	1,99	8,2	6,0	9498	241	1915	66	1,21	9,2	6,4	276	102	1,04	212	9,6	18,1	3,66	0,34	5,4
ZD 25	4529	5,2	328,41	0,13	2,34	7,8	4,1	8548	245	2362	72	1,42	13,4	5,0	211	91	1,52	219	10,3	30,0	4,03	0,15	9,2
ZD 50	2003	2,6	207,52	0,08	1,49	7,9	0,8	5717	74	1596	49	0,59	8,9	3,7	293	60	0,40	130	5,2	8,4	3,43	0,04	5,3
ZD 100	2001	2,8	210,78	0,08	1,49	7,4	1,1	5686	81	1540	48	1,02	9,1	3,5	319	60	0,43	127	5,3	8,5	3,48	0,01	5,3
PP 5	6903	9,2	273,18	0,17	2,98	7,6	8,5	11267	570	2819	97	2,56	11,6	6,6	212	123	2,16	279	14,2	30,7	2,90	0,09	5,5
PP 15	5869	11,6	345,17	0,14	1,93	6,8	5,0	9933	329	1840	66	3,37	7,3	5,8	201	107	1,66	223	10,2	25,1	2,04	0,01	5,8
PP 25	7579	9,7	244,27	0,16	2,67	7,6	5,1	10618	496	2736	88	3,00	9,5	6,3	281	116	2,64	364	14,9	24,7	2,61	0,06	7,2
PP 50	5891	7,8	194,21	0,13	2,28	6,1	4,1	8912	338	2349	76	3,35	8,5	5,3	306	96	2,02	288	11,4	22,0	2,25	0,05	4,2
M 5	13069	20,0	222,60	0,31	4,43	11,7	28,6	18278	1594	4460	151	3,99	16,9	13,2	260	216	3,70	371	27,1	53,9	6,52	0,20	26,7
M 15	12112	18,0	122,30	0,31	4,45	10,7	26,5	18090	1482	4394	142	3,09	16,4	12,7	217	215	3,04	284	24,4	56,2	6,60	0,11	27,8
M 25	1591	/5,6	0,01	0,09	0,58	9,6	11,9	6168	1/4	4/2	27	0,02	3,1	94,1	239	65	1,50	200	4,2	27,2	1,30	19,32	7,1
M 100	13615	17,3	153,08	0,34	4,70	12,0	24,2	19302	1230	4826	147	3,00	18,7	13,4	182	237	3,25	280	31,8	51,6	7,21	0,05	27,9
V 5	11560	18,7	246,42	0,28	4,49	11,4	25,9	16824	1472	4132	136	3,93	20,8	12,8	217	198	3,51	313	23,7	54,1	7,01	0,26	28,3
V 15	12135	19,4	314,87	0,31	4,80	12,0	21,1	1/939	1538	44/4	144	4,05	22,2	13,2	206	212	3,00	247	25,5	63,8 56.0	7,05	0,24	31,2
V 25 V 50	13113	21,0	165,00	0,51	3,04	12,4	24,7	19364	1622	4/31	100	4,91	19,0	13,4	289	231	3,63	200	27,9	52.0	7,00	0,47	24,5
V 100	12526	20,2	140 71	0,33	3 68	110	24,5	16891	1/182	3664	100	282	24,0 14.6	110	215	198	2 91	299	24,4	52,0 44.8	/,40	0,32	19.2
\$ 100	10218	12.9	220.62	0.27	1.64	0.5	14.5	16402	084	4604	145	5.02	15.0	11,2	215	102	2,71	402	20,5	44.9	7 19	0,03	17.2
S 15	10218	15,0	203 22	0,20	4,04	9,5	14,5	17858	904	4094	145	5,05	15,0	11,2	243	212	3,27	522	21,4	44,0	13 37	0,04	24.0
\$ 25	8221	113,5	293,22	0.23	3 93	8.1	11.7	1/030	732	3007	126	3 29	12.5	8.0	174	162	2 50	J22 414	18.0	35.2	5.93	0.10	18.7
S 50	13586	21.4	388.97	0.34	5 36	11.6	18.3	19287	1504	5702	171	4 72	17.0	13.7	222	234	3 79	529	26.5	53.0	9.27	0.07	30.0
PŽ 5	10743	16.2	175.29	0.28	3 52	9.1	20.6	16228	1108	3/15	113	2.62	11.0	12.3	222	190	2 42	250	18.7	47.1	5.74	0.01	31.6
PŽ 15	7687	14.4	139.42	0.25	3 65	8.6	19.5	15507	1023	3497	115	2,02	12.1	10.3	208	169	1 71	230	18.2	44.1	646	0.06	29.7
PŽ 25	8001	11.3	121 74	0.24	3 74	77	18.5	14481	820	3550	118	2,33	13.0	87	197	166	1,71	191	17.4	42.7	6 49	0.11	29.0
K1	5451	8.6	63.08	0.14	1 73	77	11.3	9622	344	1575	53	1 17	23.4	73	263	104	1,00	181	10.8	32.0	2 51	0.08	14.9
K2	2742	5.1	228 79	0.21	2.06	434 3	4.8	14202	153	1513	98	3 79	16.9	11.4	264	162	1,50	140	10,0	40.1	3 75	6.23	28.3
K3	12340	15.6	163.26	0.29	4.22	11.2	20.4	16801	936	3906	717	3.56	14.2	13.4	187	197	3.55	335	24.0	52.5	4.14	1.27	26.5
K4	6922	10.0	37.47	0.16	1.91	6.3	25.4	8796	531	1566	56	2.50	8.5	8.3	242	94	2.37	143	14.8	37.2	3.07	6.34	27.6
K5	2269	2,3	212,33	0,07	1,33	4,0	2,6	4649	106	1421	47	0,91	7,1	2,9	248	48	0,61	144	6,1	13,9	1,74	0,09	4,4
		,-	,	,	/	, -	, -					<i></i>	.,	<i></i>	-	-	, -		- ,	- ,.	,.	,	

Tabela 62. Koncentracije elemenata dobijene nakon četvrte faze SE, u uzorcima koji su u prethodne tri faze bili ekstrahovani pomoću KSE (ng/g za Se dok za preostale elemente μ g/g, preračunato na suvu supstancu)

Tabela 63. Koncentracije elemenata dobijene nakon četvrte faze SE, u uzorcima koji su u prethodne tri faze bili ekstrahovani pomoću MTSE (ng/g za Se dok za preostale elemente μ g/g, preračunato na suvu supstancu)

MTSE IV																							
Faza	Al	Ba	Ca	Cd	Co	Cr	Cu	Fe	K	Mg	Mn	Na	Ni	Pb	Si	Sn	Sr	Ti	V	Zn	As	Hg	Se
D 5	2569	581.0	691	0.42	2.31	26.7	205.9	13794	224	1995	138	21.14	26.2	252.5	191	225	10.61	131	12.8	421	1.65	0.22	4.4
D 15	2244	290,1	399	0,10	1,37	15,1	113,6	8047	310	2955	73	6,12	8,4	203,7	171	97	4,79	69	6,7	252	0,20	48,97	62,6
D 25	1623	170,2	19	0.09	1,06	5,2	18,2	6934	161	1276	45	0,01	8,6	41,7	219	84	2,84	91	4,8	118	0,17	2,52	4,6
PE 5	2761	15.3	8387	0.27	4.39	9.0	16.0	9455	133	5822	175	3.97	26.2	17.0	226	102	4.08	248	12.7	84	5.22	1.38	4.8
PE 15	2711	5,2	1762	0,16	4,44	10,9	6,7	7885	112	3912	105	3,15	24,3	10,6	321	84	1,84	200	8,3	39	3,13	0,15	179,2
PE 25	3276	6,2	2201	0,19	5,30	9,8	7,4	9163	126	4222	122	3,39	27,7	11,2	333	98	2,03	302	11,3	42	3,63	0,05	4,9
P5	13881	21.5	365	0.35	5.62	13.6	27.8	19289	1631	5622	171	6.36	21.5	16.6	315	231	2.19	393	29.0	61	6.66	0.05	34.4
P15	13510	20,9	372	0,35	5,64	13,3	26,2	18938	1569	5576	174	5,18	21,6	16,4	219	228	2,14	383	28,1	60	6,32	0,06	30,2
P25	14796	23,3	411	0,36	5,81	15,4	28,0	19128	1825	5948	181	6,59	23,2	17,7	355	240	2,70	419	30,4	61	6,42	0,07	31,3
P50	17798	26,3	229	0,47	6,81	15,7	34,4	24051	1796	6764	225	5,95	26,3	19,7	255	308	1,98	421	42,6	68	9,69	0,05	76,0
P100	18343	26,8	269	0,47	6,94	16,2	34,8	23604	1790	6957	227	7,14	26,2	20,6	503	310	2,41	435	44,1	67	9,50	0,05	72,3
ŽD 5	6154	16.5	2484	0.12	4.38	9.9	13.7	9277	521	4598	109	17.61	26.6	10.3	211	122	2.66	231	11.9	52	6.50	1.05	7.7
ŽD 15	6056	7,3	1159	0,13	4,40	9,4	8,9	9299	440	3873	104	12,32	26,1	8,6	217	122	1,72	219	11,2	44	6,03	0,47	8,1
ŽD 25	6964	9,3	1977	0,10	4,77	10,1	6,6	9633	421	4488	118	15,65	27,2	8,7	166	132	2,35	223	13,0	40	7,13	0,07	10,3
ŽD 50	2583	2,6	1885	0,08	3,72	6,7	2,0	5940	123	3527	77	6,28	22,7	6,3	253	74	0,74	135	5,8	28	6,49	0,08	5,2
ŽD 100	3012	4,0	2025	0,09	4,43	9,0	2,4	6749	163	4900	94	10,26	34,2	7,1	280	85	1,51	151	7,1	31	7,16	0,02	5,8
PP 5	8653	14.2	1103	0.27	5.06	9.0	17.3	14324	649	3987	148	5.02	19.2	13.4	265	163	3.03	346	17.9	49	3.88	0.07	12.2
PP 15	7799	11,3	1319	0,24	4,85	8,4	13,4	12757	475	4043	134	5,05	17,6	12,1	360	142	2,77	343	16,1	44	3,67	0,03	7.8
PP 25	9250	12,8	984	0,25	5,50	9,5	15,7	14346	510	4373	149	4,75	18,7	13,1	218	165	2,56	355	18,8	49	3,69	0,03	10,1
PP 50	6622	9,3	4319	0,19	4,50	7,3	10,9	11260	349	5899	125	4,42	15,2	10,6	353	122	3,98	309	14,1	38	2,75	0,02	5,4
M 5	16775	39,9	334	0,11	5,44	12,2	31,4	16952	1981	5344	166	20,34	23,9	13,9	212	260	3,36	299	26,7	72	9,89	0,06	61,2
M 15	15345	24,3	524	0,12	5,12	10,9	27,8	16696	1864	5115	160	39,11	22,6	11,5	206	254	3,14	247	24,1	70	10,00	0,06	62,5
M 25	17290	25,6	207	0,13	5,52	12,6	34,9	17670	2126	5444	174	19,21	24,8	13,3	169	287	2,75	285	27,7	76	10,71	0,05	79,1
M 100	18734	22,7	239	0,13	6,13	12,9	29,4	17558	1699	5851	175	16,82	26,1	12,9	243	275	2,91	331	29,1	62	10,47	0,06	49,2
V 5	13060	33.2	471	0.37	5.81	13.2	35.6	20064	1635	5340	180	6.58	27.4	27.4	241	225	2.79	318	27.3	83	7.09	0.03	35.5
V 15	14039	35,1	700	0,40	6,63	14,8	36,6	20781	1717	5628	218	7,67	39,5	18,1	421	256	4,10	371	29,1	77	7,26	0,04	41,1
V 25	16309	35,2	665	0,43	6,47	13,9	36,2	22216	2062	6255	205	7,48	26,0	22,4	331	275	3,82	431	32,6	77	7,38	0,35	49,7
V 50	15454	37,7	499	0,43	6,43	16,1	35,1	22298	1959	5971	204	6,77	33,4	17,8	262	279	3,35	350	30,6	70	8,37	0,13	40,7
V 100	15920	30,9	468	0,40	5,85	14,9	33,2	21702	1974	6176	173	7,01	25,7	20,9	312	273	2,79	338	32,5	68	6,50	0,25	33,2
S 5	11410	22,1	6532	0,20	6,01	8,1	15,5	12532	1239	8027	189	38,22	21,9	10,2	315	201	6,30	346	20,3	56	5,99	0,09	19,7
S 15	10545	17,4	3691	0,34	6,38	10,5	25,4	18202	917	7877	191	5,81	21,6	15,4	213	218	4,02	453	23,0	58	5,87	0,08	19,1
S 25	11510	57,6	4682	0,36	6,20	10,7	25,2	18324	1039	8513	198	8,70	20,9	15,5	319	220	5,95	629	24,8	75	5,69	0,06	15,0
S 50	15707	26,1	649	0,41	6,81	13,7	31,5	22237	1712	7277	215	7,47	22,4	17,3	321	276	2,90	651	31,2	65	8,06	0,04	37,9
PŽ 5	13827	30,9	3559	0,37	5,84	12,3	30,3	17894	1746	6492	196	7,59	22,6	22,3	288	223	5,36	396	27,6	76	5,10	0,06	26,3
PŽ 15	13995	26,9	727	0,37	5,84	12,4	32,6	19830	1614	6097	192	6,11	23,0	18,1	234	241	2,83	368	27,5	69	5,60	0,06	29,1
PŽ 25	13659	26,0	855	0,35	5,63	12,1	30,5	18938	1509	5933	182	7,52	25,1	17,3	374	229	3,29	386	27,1	61	6,32	0,05	29,0
K1	6857	16.9	2751	0.16	3.36	7.8	11.4	8613	554	2832	78	13.16	21.4	10.9	167	114	3.29	161	12.5	61	3.09	0.11	9.7
K2	4807	12,3	4380	0,18	3,59	430,8	11,2	12873	261	3237	126	28,03	30,8	11,4	297	187	5,50	159	15,5	88	3,95	0,53	29,8
K3	16456	21,9	263	0,21	5,36	12,5	23,3	16720	1464	4869	143	21,88	21,3	14,9	198	269	3,34	336	32,5	72	5,72	0,25	44,7
K4	9849	18,5	157	0,14	2,97	7,8	19,9	11786	848	2641	84	13,39	15,8	23,0	211	161	2,34	171	17,5	62	4,81	0,67	48,2
K5	3267	4,6	4025	0,08	2,89	5,5	4,0	5858	197	4052	74	11,37	17,3	6,3	298	73	2,71	143	8,4	26	2,19	0,07	6,4

Tabela 64. Koncentracije elemenata dobijene nakon četvrte faze SE	, u uzorcima koji su u prethodne tri faze bil	li ekstrahovani pomoću UZSE (ng/g za
Se dok za preostale elemente $\mu g/g$, preračunato na suvu supstancu)		

UZSE																							
IV Faza	Al	Ba	Ca	Cd	Co	Cr	Cu	Fe	Κ	Mg	Mn	Na	Ni	Pb	Si	Sn	Sr	Ti	V	Zn	As	Hg	Se
D 5	1588	347,7	123,08	0,48	2,17	8,9	68,1	22843	176	1298	154	3,13	12,6	82,4	229	336	7,62	97	10,3	257	3,09	0,248	45,5
D 15	2098	58,7	0,01	0,08	0,86	4,1	18,6	6095	313	1803	34	0,90	4,1	17,3	304	63	1,24	84	6,5	38	0,71	5,490	4,7
D 25	1161	67,3	0,40	0,07	0,59	2,6	6,2	4459	142	759	24	0,45	10,6	14,9	263	45	1,28	84	4,0	42	0,43	0,044	4,4
PE 5	2020	3,1	419,27	0,07	2,58	7,9	3,3	5586	108	2116	58	1,37	17,2	6,8	242	57	1,38	121	5,4	21	1,40	2,122	14,7
PE 15	2641	6,8	1101,13	0,14	2,94	8,3	9,3	7712	171	2587	76	2,06	23,5	10,8	519	80	2,13	201	9,1	55	1,56	0,025	5,0
PE 25	2402	3,4	297,65	0,08	2,51	7,7	3,4	6431	144	2243	58	1,28	16,4	5,8	247	66	0,83	150	6,2	15	2,26	0,024	4,8
P5	12023	18,5	162,08	0,21	4,38	10,4	22,0	15822	1555	4276	125	3,29	17,4	14,5	202	190	2,70	275	22,7	52	5,96	0,014	14,2
P15	13433	20,3	191,63	0,24	4,80	11,5	24,7	17175	1736	4788	140	3,99	18,5	16,4	199	212	3,12	296	25,1	59	6,83	0,091	18,0
P25	3449	6,2	32,07	0,06	1,44	3,4	6,7	5839	413	1403	43	0,67	10,1	6,6	208	61	0,46	112	7,1	22	1,88	0,009	5,4
P50	15128	21,9	221,80	0,28	4,77	13,0	24,1	18166	1698	5018	156	4,09	20,6	17,9	251	245	3,43	306	36,3	55	8,76	0,051	35,8
P100	15431	21,8	410,97	0,32	6,74	13,3	30,2	19206	1391	5713	190	5,29	26,9	21,6	426	265	3,64	361	29,7	69	11,20	0,069	46,4
ŽD 5	4786	7,0	564,02	0,16	3,94	12,5	12,2	10170	333	3814	100	3,58	25,9	11,0	244	104	2,23	212	11,6	41	5,58	0,403	4,9
ŽD 15	5822	8,6	632,79	0,19	4,00	13,2	22,9	13095	403	2697	145	3,37	26,7	10,6	308	139	2,79	266	12,3	36	5,66	0,194	5,4
ŽD 25	5660	7,1	635,36	0,19	3,84	9,2	7,8	10790	304	2688	101	2,80	18,8	10,4	315	110	2,27	253	12,1	35	5,64	0,003	5,1
ŽD 50	2152	2,6	346,99	0,08	2,64	6,7	3,1	6055	88	1899	60	1,23	17,2	5,6	288	60	1,22	137	5,8	17	4,55	0,002	2,6
ŽD 100	2133	2,5	343,78	0,07	2,64	7,1	4,6	5884	110	2274	60	1,80	18,6	6,3	270	62	0,58	142	5,9	24	3,61	0,002	2,1
PP 5	9127	13,5	658,13	0,18	4,09	8,9	13,3	13223	855	3405	118	3,45	20,5	14,3	277	150	3,35	1299	17,0	43	3,96	0,089	6,0
PP 15	5714	7,1	332,14	0,11	2,90	6,2	8,4	9098	431	2424	76	3,14	11,5	9,3	201	99	1,82	206	10,5	28	2,57	0,013	2,4
PP 25	7863	9,7	704,82	0,16	3,86	7,6	10,8	11673	528	3201	100	2,75	14,3	12,6	165	131	2,65	255	14,3	37	3,34	0,014	3,5
PP 50	5938	7,0	656,45	0,12	3,21	6,1	7,3	9387	364	2669	82	2,10	11,8	9,8	161	103	2,36	232	11,0	28	2,76	0,007	1,8
M 5	13487	22,1	347,27	0,25	4,71	11,9	31,1	18388	1587	4394	148	4,20	20,0	14,6	193	211	3,79	276	25,7	62	6,11	0,002	20,0
M 15	13838	25,2	301,43	0,27	5,22	12,0	31,3	18699	1674	4544	163	4,57	21,8	15,6	336	213	3,68	287	26,6	69	5,66	0,003	19,7
M 25	4663	7,5	52,32	0,10	1,85	4,3	12,0	6920	497	1450	58	1,33	7,3	6,0	170	76	0,95	159	9,3	26	1,94	0,003	6,7
M 100	11723	15,2	70,86	0,23	4,24	10,3	27,5	16571	1057	3771	123	2,52	18,0	12,1	200	186	2,54	213	23,3	49	5,61	0,002	15,4
V 5	15510	43,2	845,26	0,30	5,85	15,3	39,7	18802	2129	5352	176	5,82	419,2	32,6	551	236	5,82	381	30,6	437	7,10	0,009	21,6
V 15	15056	34,2	620,90	0,28	5,64	14,8	30,2	17683	2090	5177	164	5,66	27,8	23,3	220	235	5,24	346	27,7	85	6,56	0,003	18,3
V 25	12895	24,3	275,10	0,24	5,00	12,0	26,4	17766	1801	4750	144	4,47	21,8	15,8	202	218	3,52	260	24,1	65	6,82	0,002	19,2
V 50	15029	37,9	586,54	0,27	5,34	14,7	31,8	19359	2073	4955	157	4,37	27,9	21,4	223	245	4,83	301	26,7	72	5,13	0,003	17,5
V 100	16280	30,7	510,45	0,27	5,30	14,5	29,9	18480	2273	5611	160	5,35	24,7	20,8	235	248	4,60	305	28,0	71	8,22	0,003	17,0
S 5	12297	22,9	2131,99	0,26	5,76	11,0	21,9	17251	1281	6429	172	5,57	20,9	17,4	237	210	5,22	490	23,8	57	5,57	0,002	19,0
S 15	10262	15,8	1604,21	0,22	4,85	11,3	18,4	15269	1016	5370	147	4,55	17,7	14,3	166	181	4,16	408	19,9	50	6,52	0,044	12,5
S 25	7876	10,7	685,68	0,18	4,37	7,5	16,1	13897	737	4299	124	2,77	15,0	12,2	185	160	2,39	300	16,0	40	5,55	0,057	9,7
S 50	14854	28,2	702,76	0,29	6,04	12,7	25,7	18317	1744	6468	177	9,06	20,5	18,1	409	246	5,60	469	27,0	61	5,07	0,073	8,0
PŽ 5	12649	21,8	445,75	0,22	4,65	10,7	24,0	16037	1659	4733	142	4,07	25,2	17,8	198	193	3,69	330	23,0	82	7,77	0,002	19,3
PŽ 15	13507	23,6	575,32	0,26	5,39	11,7	25,8	18032	1691	5237	167	4,15	20,9	19,2	242	219	3,89	334	24,8	64	4,83	0,050	13,1
PŽ 25	13456	21,7	549,73	0,25	5,13	11,7	26,2	17614	1611	5097	155	5,05	19,7	18,6	226	216	4,14	353	25,0	57	6,38	0,079	18,4
K1	6531	15,9	544,87	0,15	3,12	8,4	14,8	10122	542	2514	75	2,40	16,7	14,1	155	110	2,91	205	14,4	60	6,70	0,058	16,4
K2	3733	11,3	3652,72	0,30	5,66	369,6	15,3	13663	232	2216	108	6,28	27,9	15,3	267	152	8,05	135	17,2	73	2,38	0,003	4,7
K3	12682	18,1	438,76	0,23	4,51	11,6	24,7	16774	1113	3994	119	3,64	18,7	23,6	96	202	3,91	281	22,2	67	3,13	0,371	24,6
K4	9253	18,6	179,20	0,18	2,74	8,8	24,3	12783	803	2570	80	3,17	13,5	23,4	162	145	2,99	177	13,4	58	3,89	0,091	11,6
K5	2486	4,8	2079,77	0,08	2,33	5,6	5,0	5486	144	2550	57	1,77	12,6	7,6	176	56	1,88	118	7,1	30	3,99	0,396	26,2

	Al	Ba	Ca	Cd	Co	Cr	Cu	Fe	K	Mg	Mn	Na	Ni	Pb	Si	Sn	Sr	Ti	V	Zn	As	Hg	Se
D 5	5950	688	44103	0,96	4,3	68	1090	15058	1436	4646	248	494	32	337,0	592	157	131	419	23	1140	2,08	202,91	0,36
D 15	4764	449	13539	0,37	1,9	41	1108	6851	1277	3983	160	132	13	222,6	1647	73	39	360	12	779	1,14	237,48	0,45
D 25	3426	493	7214	0,22	2,3	34	187	8326	749	2007	145	1	11	280,0	2123	86	22	434	9	953	1,38	162,25	0,32
PE 5	9513	61	32690	0,43	5,7	34	26	12857	2077	7318	336	115	39	29,1	2240	135	46	453	28	161	5,11	142,77	0,34
PE 15	8273	59	22460	0,10	5,6	52	4	11117	1811	6385	291	113	41	4,4	2330	118	29	378	17	55	5,92	23,14	0,06
PE 25	9762	50	25114	0,02	6,0	38	5	12287	2213	6760	341	139	37	19,1	2008	129	34	477	20	58	6,44	15,59	0,05
P5	37588	195	20589	0,04	10,4	58	25	27662	10511	9685	742	343	44	28,8	838	292	55	1104	73	80	9,18	2,57	0,09
P15	36576	199	21422	0,01	10,4	54	21	26686	10320	9732	681	337	45	6,4	1085	282	53	1103	69	76	9,35	2,65	0,10
P25	37766	216	24073	0,04	10,8	57	21	26511	10636	9218	665	390	43	36,2	813	273	52	1020	70	82	9,36	1,81	0,12
P50	54576	308	25066	0,10	14,1	78	22	34976	14581	11111	814	622	56	41,7	725	357	57	1166	97	83	12,68	2,59	0,16
P100	50572	271	35704	0,10	13,3	72	22	34293	12904	11639	782	51	51	39,3	634	352	59	1173	90	80	12,65	2,37	0,15
ŽD 5	14929	76	35051	0,37	6,8	34	27	15855	3514	7696	394	349	41	23,4	1437	166	74	666	30	112	6,64	24,90	0,04
ŽD 15	17907	114	31189	0,29	7,3	68	24	17131	4253	7581	392	411	43	5,3	1554	183	71	746	34	101	6,78	19,92	0,05
ŽD 25	16590	93	26740	0,06	7,2	43	9	16061	3711	6812	406	244	38	24,8	1538	168	37	667	32	68	6,75	2,29	0,06
ŽD 50	6495	30	24493	0,08	5,0	24	4	9649	1275	5630	275	80	32	14,6	1784	99	33	294	13	43	6,40	0,15	0,01
ŽD 100	6958	36	26160	0,16	5,1	32	2	9951	1457	5379	315	105	32	15,5	2172	101	27	294	15	47	6,40	0,23	0,02
PP 5	25562	169	26290	0,10	7,3	39	13	20235	6293	9864	456	240	30	21,8	1193	213	50	1012	49	62	6,29	0,11	0,07
PP 15	22492	116	27936	0,04	7,1	35	10	18399	5134	9794	409	203	27	0,1	1237	195	54	990	42	54	5,07	0,30	0,07
PP 25	22771	113	29933	0,02	7,0	33	11	19024	4885	10263	429	197	25	22,4	884	199	55	962	42	56	4,69	0,15	0,07
PP 50	20912	106	34277	0,08	7,0	33	10	18143	4268	9864	412	175	25	24,4	1247	188	53	918	38	54	4,57	0,35	0,05
M 5	44173	260	33486	0,08	11,4	62	46	30181	12736	11112	756	336	50	79,6	698	324	68	1187	81	114	11,17	0,58	0,14
M 15	44844	278	37325	0,04	11,2	62	40	29708	13381	11787	743	367	48	13,4	418	312	72	1178	81	115	11,10	0,78	0,16
M 25	50164	292	25102	0,10	12,6	70	51	33383	14292	11059	840	418	55	19,0	694	353	64	1275	89	123	12,50	1,02	0,16
M 100	46311	253	47097	0,08	11,9	65	30	30793	11846	10710	707	47	47	35,4	480	316	56	1136	81	83	10,57	1,15	0,07
V 5	43763	279	30923	0,04	12,0	70	36	30033	13544	11415	773	388	61	44,1	1020	315	76	1164	83	179	11,48	0,46	0,21
V 15	43489	283	31844	0,10	12,2	71	34	30622	13243	11594	741	353	63	44,6	1194	318	77	1152	82	145	11,85	0,43	0,23
V 25	42196	254	32066	0,04	12,5	66	29	30104	12831	11565	758	312	56	41,1	807	314	67	1071	78	127	11,77	0,69	0,22
V 50	45116	272	24621	0,08	13,7	79	32	34605	14076	10161	802	317	75	41,2	723	364	63	1125	86	145	15,32	0,43	0,20
V 100	45732	283	29404	0,08	12,1	71	26	31287	14472	10546	691	380	60	41,7	610	321	59	1047	83	150	12,87	0,33	0,16
S 5	33738	187	44710	0,10	10,4	47	21	26854	9197	17561	582	340	35	24,1	674	282	88	1398	63	348	9,19	0,68	0,06
S 15	32558	186	43361	0,01	10,1	45	20	25990	8651	16392	550	318	34	25,6	803	270	85	1323	61	80	9,33	0,25	0,07
S 25	30582	173	44432	0,10	9,6	43	18	24489	8219	17025	531	324	31	23,4	921	252	85	1330	57	67	8,70	0,29	0,04
S 50	39124	230	30365	0,02	12,4	57	19	29754	10728	12723	677	388	40	33,7	547	303	56	1370	70	76	11,59	0,58	0,13
PŽ 5	41253	234	34511	0,10	10,2	57	29	27675	12888	12017	714	381	41	41,1	1027	290	72	1198	75	116	9,41	1,21	0,15
PŽ 15	41096	239	39083	0,01	10,5	56	28	27905	12460	11874	712	366	40	38,8	717	290	72	1203	74	99	10,40	0,87	0,14
PŽ 25	37186	221	49374	0,01	9,6	53	28	25484	10941	12583	628	355	36	36,4	595	266	82	1136	67	84	9,62	0,73	0,10
K1	19541	135	30998	0,45	5,6	46	16	15160	4931	4553	259	236	35	32,4	1170	154	57	640	43	130	4,75	1,63	0,12
K2	10610	68	45054	0,33	4,8	1032	16	20916	2079	5859	339	313	48	29,1	1577	217	62	494	37	167	4,91	19,19	0,28
K3	48041	270	13449	0,31	12,0	76	29	32228	12188	8754	526	425	51	60,0	584	328	53	1247	90	152	8,11	4,77	0,36
K4	29541	194	60745	1,23	7,3	54	47	20470	6900	7279	560	376	70	68,6	692	206	118	805	91	405	7,80	14,68	1,33
K5	10156	62	50684	0,22	4,1	28	7	11647	2069	6425	377	121	24	20,3	2211	122	73	444	22	61	3,69	4,70	0,07

Tabela 65. Koncentracije elemenata dobijene nakon mikrotalasne digestije pomoću carske vode ($\mu g/g$, preračunato na suvu supstancu) u ispitivanim uzorcima

Tabela 66. Koncentracije elemenata dobijene nakon mikrotalasne digestije pomoću carske vode plus HF (μ g/g, preračunato na suvu supstancu) u ispitivanim uzorcima

	Al	Ba	Ca	Cd	Co	Cr	Cu	Fe	K	Mg	Mn	Na	Ni	Pb	Si	Sn	Sr	Ti	V	Zn
D 5	9484	696	38765	0,81	5,4	65	969	19456	4712	4351	258	977	29	481	233935	196	123	1265	24	2264
D 15	10713	348	13423	0,20	3,0	49	1308	8428	6289	4257	190	908	13	426	259649	85	44	963	15	870
D 25	10953	526	8050	0,10	2,6	41	244	9114	5867	2689	159	1313	11	482	264796	92	48	926	18	962
PE 5	19203	165	38002	0,30	5,8	52	22	12745	5891	7365	352	3050	37	195	232139	128	87	1126	31	154
PE 15	19681	151	25113	0,10	6,2	57	5	11336	5950	6701	325	3140	36	210	248117	115	69	1042	22	52
PE 25	21469	184	23713	0,10	6,2	55	6	11853	7654	6411	325	3354	34	206	261264	117	70	1060	25	62
P5	33347	282	20991	0,10	13,8	82	24	29166	12633	4715	710	3549	44	169	211295	291	81	3730	88	117
P15	36402	295	20523	0,10	13,8	90	24	32711	14103	5714	795	3592	45	171	212754	338	92	3995	149	83
P25	38425	301	21430	0,10	13,2	81	22	28028	13563	6345	672	3534	45	175	208794	287	86	3514	132	85
P50	43235	339	21999	0,10	17,3	91	26	35876	14563	6064	842	3341	52	162	191922	368	77	4414	172	110
P100	42701	326	27768	0,10	16,9	87	27	35594	14604	6355	804	4069	50	155	185312	364	77	4356	170	96
ŽD 5	25158	196	36038	0,31	8,3	55	26	16932	7880	7122	416	3516	41	183	228265	168	112	1750	39	115
ŽD 15	25288	205	33403	0,10	8,5	58	21	17250	8266	6620	417	3562	40	182	230355	174	107	1920	41	100
ŽD 25	29738	202	29541	0,10	8,6	69	10	17417	8133	7668	473	3748	35	185	228698	174	90	2100	63	76
ŽD 50	19799	156	23560	0,10	5,7	38	3	10354	6514	5592	281	3153	29	209	245030	104	73	1028	33	47
ŽD 100	20045	153	24624	0,10	6,8	74	4	11314	6211	6027	311	3133	32	207	243205	115	71	1056	34	48
PP 5	31340	245	28977	0,10	10,0	57	13	23331	10442	7041	524	3992	33	170	219071	233	94	2944	62	69
PP 15	29625	216	30405	0,10	8,4	49	9	18686	9187	7462	432	4076	26	177	228311	189	95	2527	48	52
PP 25	30314	228	28749	0,10	8,8	54	10	19568	9623	7272	424	4177	26	170	242900	194	95	2566	55	39
PP 50	32811	234	32552	0,10	7,7	43	8	17249	9380	8844	410	4260	22	173	220090	173	103	2362	70	50
M 5	36056	325	32607	0,10	15,1	84	49	32176	14098	4150	792	3330	50	157	190582	328	93	4230	152	120
M 15	33961	323	35471	0,10	15,0	83	45	37142	14066	4329	777	3217	49	151	190548	375	94	4006	94	136
M 25	36728	320	23519	0,10	16,3	87	50	33476	13517	4487	826	3228	54	164	196887	341	75	4196	99	125
M 100	37945	302	43606	0,10	14,8	77	33	30836	12969	4527	701	2959	46	146	183214	314	77	3900	141	83
V 5	32601	336	30115	0,10	15,4	92	34	31577	13803	4219	860	3173	63	162	196006	317	94	3937	96	209
V 15	33102	332	25259	0,10	15,7	101	35	32077	14789	5958	804	3266	66	168	208077	317	94	3903	102	198
V 25	38535	345	29379	0,10	16,3	86	32	32631	15785	5988	853	3223	60	162	190128	330	102	4074	155	128
V 50	37447	347	23164	0,10	16,9	96	37	35680	15490	5729	814	3040	75	159	190923	359	94	4057	160	156
V 100	34932	315	27840	0,10	15,5	92	31	31953	14640	4598	728	2898	58	153	187797	326	82	3825	149	174
S 5	34236	330	42905	0,10	12,9	64	19	28134	14366	9952	588	4385	35	142	192515	282	127	3684	83	150
S 15	29720	295	35057	0,10	12,4	65	19	27170	13414	9846	565	4363	34	140	205523	268	117	3541	82	66
S 25	37130	326	40781	0,10	12,5	61	19	26555	13604	10922	559	4578	33	147	188373	269	127	3634	120	81
S 50	37502	344	28035	0,10	14,9	74	24	31089	13687	6127	689	4189	39	156	190559	316	99	4017	144	83
PŽ 5	29721	285	29285	0,10	13,7	72	28	29065	14408	5841	722	3412	42	161	192998	291	90	3826	88	123
PŽ 15	30634	278	29798	0,10	13,7	77	28	29385	14405	6986	737	3562	42	155	211198	291	92	3762	90	89
PŽ 25	33696	292	42256	0,10	12,9	74	30	27994	14452	8283	686	3532	40	155	206649	278	109	3659	85	83
K1	24579	222	30827	0,27	6,9	50	21	15820	8689	3988	279	3201	32	174	209415	161	109	1888	77	129
K2	15804	167	38517	0,10	8,6	2063	40	33773	6026	5397	512	3131	76	179	212494	343	103	1509	70	207
K3	41353	312	12907	0,17	15,4	94	37	35766	13111	5437	556	3914	51	166	201221	355	77	4261	114	197
K4	22518	205	42150	1,12	8,5	75	56	21772	8570	7012	587	1324	68	114	94574	222	141	1926	158	409
K5	22254	178	55795	0,16	5,5	50	10	14129	6433	7296	444	3458	30	168	209679	143	141	1447	34	70

Tabela 67. Srednje vrednosti koncentracije elemenata sa *baseline* opsezima dobijenim nakon prve faze BCR KSE, u ispitivanim uzorcima sedimenata i muljeva ($\mu g/g$ preračunato na masu suvoga uzorka, *ng/g preračunato na masu suvoga uzorka).

.

Element	AM	ASD	Min	Maks	Medijana	GM	GSD	GM/GSD ²	GM*GSD ²
Al	25,98	21,42	5,96	100,73	19,53	20,28	0,67	44,62	9,21
Ba	16,48	5,47	4,74	29,74	17,05	15,42	0,39	100,49	2,37
Ca	29.498,2	9.844,3	6.977,1	51.608,8	29.640,5	27.589,6	0,4	167.648,2	4.540,4
Cd	0,14	0,08	0,08	0,48	0,11	0,13	0,43	0,70	0,02
Co	0,26	0,20	0,01	1,06	0,21	0,18	1,11	0,14	0,22
Cr	0,073	0,162	0,005	0,829	0,020	0,021	1,487	0,010	0,047
Cu	25,72	102,11	0,09	559,90	0,41	0,65	1,89	0,18	2,30
Fe	16,30	19,19	1,76	89,52	7,89	9,32	1,05	8,37	10,37
Κ	286,1	311,1	13,6	1.178,1	145,3	145,1	1,3	89,7	234,9
Mg	3.004,5	1.750,9	735,1	8.400,1	2557,8	2.595,8	0,5	8.861,6	760,4
Mn	127,0	49,5	44,7	376,4	123,6	120,1	0,4	964,0	15,0
Na	17,75	28,32	2,15	167,31	8,47	9,85	0,99	9,95	9,75
Ni	1,76	0,85	0,57	4,28	1,74	1,57	0,49	6,56	0,38
Pb	1,65	4,10	0,24	25,42	0,71	0,79	0,90	0,98	0,63
Si	226,0	108,5	48,4	436,6	245,7	193,7	0,6	518,5	72,4
Sn	0,08	0,09	0,01	0,40	0,05	0,04	1,10	0,04	0,05
Sr	37,8	14,5	15,0	72,9	34,5	35,2	0,4	244,5	5,1
Ti	0,03	0,10	0,00	0,57	0,01	0,01	1,15	0,01	0,01
V	0,10	0,11	0,00	0,42	0,05	0,05	1,17	0,04	0,07
Zn	50,57	131,09	0,48	534,89	9,65	10,59	1,62	4,04	27,80
As [*]	333,5	321,5	10,8	1.457,1	230,5	192,3	1,2	133,3	277,5
Hg [*]	62,1	164,8	2,3	783,1	2,6	6,5	1,8	2,1	20,7
Se [*]	5,7	4,7	2,2	20,1	3,4	4,5	0,7	10,2	2,0

AM-aritmetička sredina; ASD-artimetička standardna devijacija; Min-minimalna koncentracija; Maks-maksimalna koncentracija; GM-geometrijska sredina; GSD-geometrijska standardna devijacija

Tabela 68. Srednje vrednosti koncentracije elemenata sa *baseline* opsezima dobijenim nakon prve faze BCR MTSE, u ispitivanim uzorcima sedimenata i muljeva ($\mu g/g$ preračunato na masu suvoga uzorka, *ng/g preračunato na masu suvoga uzorka).

8	AM	ASD	Min	Max	Medijana	GM	GSD	GM/GSD^2	GM*GSD ²
Al	163,1	204,6	8,0	729,2	22,0	54,7	1,6	22,2	135,1
Ba	20,70	17,15	1,82	65,32	12,36	14,24	0,93	16,54	12,26
Ca	16.463,8	9.673,7	3.174,3	41.999,2	16.353,6	13.371,7	0,7	26.905,1	6.645,7
Cd	0,10	0,06	0,03	0,29	0,09	0,08	0,61	0,23	0,03
Co	0,29	0,32	0,03	1,15	0,08	0,14	1,21	0,10	0,21
Cr	0,08	0,13	0,00	0,76	0,04	0,03	1,46	0,01	0,06
Cu	10,28	34,29	0,06	213,27	1,41	1,58	1,81	0,48	5,17
Fe	66,7	122,7	4,9	602,0	27,0	28,4	1,2	18,6	43,3
K	256,5	312,7	5,7	1.174,7	109,3	104,0	1,5	43,4	249,3
Mg	842,1	638,5	81,8	2.206,8	739,2	598,8	0,9	722,8	496,0
Mn	68,8	55,7	11,2	210,8	44,8	50,1	0,8	75,8	33,1
Na	11,05	21,53	0,24	131,36	4,66	4,91	1,27	3,06	7,87
Ni	1,74	2,14	0,17	9,25	0,63	0,88	1,18	0,63	1,23
Pb	1,66	2,01	0,02	9,99	0,70	0,54	1,93	0,14	1,99
Si	127,9	100,1	18,3	344,6	77,7	90,9	0,9	120,9	68,3
Sn	0,62	1,12	0,05	5,47	0,26	0,28	1,21	0,19	0,40
Sr	24,8	12,2	3,0	52,0	25,6	20,9	0,7	46,3	9,4
Ti	0,49	0,85	0,00	4,40	0,10	0,06	2,50	0,01	0,40
V	0,94	1,31	0,05	4,95	0,18	0,34	1,48	0,15	0,73
Zn	24,0	40,5	0,7	189,1	8,0	9,0	1,4	4,6	17,7
As*	486,2	723,3	31,2	3564,3	178,3	234,6	1,2	161,8	340,0
Hg [*]	83,8	210,2	2,1	928,9	14,1	15,9	1,7	5,7	44,0
Se [*]	5,1	3,0	2,2	16,2	4,3	4,5	0,5	17,0	1,2

Tabela 69. Srednje vrednosti koncentracije elemenata sa *baseline* opsezima dobijenim nakon prve faze BCR UZSE, u ispitivanim uzorcima sedimenata i muljeva (μ g/g preračunato na masu suvoga uzorka, *ng/g preračunato na masu suvoga uzorka).

Element	AM	ASD	Min	Max	Medijana	GM	GSD	GM/GSD ²	GM*GSD ²
Al	78,6	116,3	6,7	428,4	20,2	33,9	1,2	23,3	49,4
Ba	12,3	8,3	2,7	41,6	9,8	10,4	0,6	32,8	3,3
Ca	14.851,4	7.703,9	3.679,5	35.568,4	13.050,2	13.099,0	0,5	50.107,1	3.424,4
Cd	0,09	0,08	0,02	0,36	0,06	0,07	0,66	0,16	0,03
Co	0,25	0,30	0,03	1,59	0,12	0,15	0,93	0,17	0,13
Cr	0,14	0,41	0,00	2,21	0,01	0,02	1,73	0,01	0,06
Cu	23,2	92,9	0,1	554,5	0,4	0,9	2,0	0,2	3,5
Fe	53,6	108,9	0,0	573,6	7,8	6,4	2,6	0,9	43,9
K	199,5	207,8	10,0	849,7	118,6	109,2	1,2	75,4	158,1
Mg	836,5	715,1	145,0	4.578,7	657,3	670,3	0,7	1.560,5	287,9
Mn	55,3	31,5	15,6	153,6	46,3	48,3	0,5	182,4	12,8
Na	15,2	25,8	0,2	150,7	5,9	6,8	1,3	4,0	11,7
Ni	0,94	0,76	0,14	3,52	0,66	0,70	0,80	1,09	0,45
Pb	3,87	13,01	0,02	80,03	0,45	0,45	2,06	0,11	1,94
Si	112,6	76,0	17,3	334,2	91,6	92,7	0,6	225,8	38,1
Sn	0,51	1,04	0,00	5,52	0,08	0,10	1,87	0,03	0,35
Sr	22,2	10,9	7,9	53,9	19,2	20,0	0,5	94,4	4,2
Ti	0,30	0,64	0,00	3,02	0,01	0,03	2,32	0,00	0,14
V	0,32	0,54	0,01	2,93	0,11	0,14	1,31	0,08	0,23
Zn	40,3	120,5	0,0	595,8	5,3	4,3	2,4	0,8	24,2
As*	273,1	214,9	21,3	791,9	205,7	196,9	0,9	251,8	153,9
Hg^{*}	71,4	154,6	0,8	587,7	10,8	13,0	1,8	4,1	41,1
Se [*]	3,7	1,7	2,2	8,0	2,9	3,4	0,4	22,0	0,5

Tabela 70. Srednje vrednosti koncentracije elemenata sa *baseline* opsezima dobijenim nakon druge faze BCR KSE, u ispitivanim uzorcima sedimenata i muljeva ($\mu g/g$ preračunato na masu suvoga uzorka, *ng/g preračunato na masu suvoga uzorka).

Element	AM	ASD	Min	Max	Medijana	GM	GSD	GM/GSD ²	GM*GSD ²
Al	1.371,6	656,1	248,0	2.674,5	1.470,6	1.168,6	0,6	2.863,1	477,0
Ba	50,3	38,8	4,6	196,3	42,2	36,5	0,9	46,1	28,9
Ca	3.752,2	2.128,2	455,0	9.918,1	3.935,2	2.981,9	0,8	4.833,0	1.839,7
Cd	0,17	0,12	0,04	0,70	0,13	0,14	0,58	0,42	0,05
Co	3,34	1,56	0,61	6,17	3,36	2,92	0,57	9,06	0,94
Cr	1,62	1,74	0,66	9,20	0,99	1,26	0,60	3,48	0,45
Cu	26,0	77,7	1,0	393,4	6,5	7,9	1,1	6,1	10,2
Fe	2.731,3	1.059,6	1.373,1	6.431,1	2.409,5	2.577,5	0,3	23.839,9	278,7
K	169,2	156,8	9,5	553,1	113,8	95,1	1,2	62,8	144,2
Mg	1.050,0	655,7	246,0	2.900,9	877,6	891,6	0,6	2.655,5	299,3
Mn	256,0	174,8	32,5	589,5	223,6	188,2	0,9	255,0	138,8
Na	2,55	2,33	0,46	9,06	1,30	1,73	0,88	2,24	1,34
Ni	9,56	4,17	2,85	21,78	8,96	8,76	0,43	48,06	1,60
Pb	33,0	62,9	8,8	345,4	15,6	18,8	0,8	29,5	12,0
Si	1.173,9	485,2	240,5	2.144,4	1.274,5	1.042,7	0,5	3.485,6	311,9
Sn	22,34	9,98	8,88	60,14	20,22	20,57	0,40	126,84	3,34
Sr	7,67	4,47	1,32	23,55	7,12	6,35	0,67	14,23	2,84
Ti	2,17	2,41	0,58	9,98	1,26	1,52	0,77	2,56	0,90
V	6,71	3,51	0,93	17,33	6,70	5,63	0,67	12,63	2,51
Zn	70,9	116,9	9,2	578,5	29,1	38,5	1,0	41,6	35,6
As	1,1	0,6	0,4	3,6	1,1	1,0	0,5	3,7	0,3
Hg [*]	708,5	1981,1	2,2	8731,2	2,6	11,7	2,7	1,6	87,0
Se [*]	2,7	0,6	2,2	6,1	2,5	2,6	0,2	88,7	0,1

Tabela 71	. Srednje vre	dnosti kon	centracije ele	en	nenata sa	baselir	<i>ie</i> opsezima o	lobi	jenim	nakon di	ruge faze	BCR
MTSE, u	ispitivanim	uzorcima	sedimenata	i	muljeva	(µg/g	preračunato	na	masu	suvoga	uzorka,	*ng/g
preračuna	to na masu si	uvoga uzor	·ka).									

Element	AM	ASD	Min	Max	Medijana	GM	GSD	GM/GSD ²	GM*GSD ²
Al	258,6	140,2	29,9	662,3	237,4	213,1	0,7	413,1	109,9
Ba	22,9	14,5	4,1	61,7	20,4	18,8	0,7	43,4	8,2
Ca	6.770,1	3.499,4	1.123,6	17.160,6	6.317,6	5.890,6	0,6	18.972,6	1.828,9
Cd	0,15	0,17	0,04	1,05	0,09	0,11	0,73	0,20	0,06
Co	2,01	1,33	0,28	4,53	2,09	1,52	0,82	2,24	1,03
Cr	0,23	0,46	0,01	2,58	0,09	0,10	1,17	0,08	0,14
Cu	28,5	99,0	0,4	469,3	3,3	4,0	1,4	2,0	7,8
Fe	340,4	250,0	99,4	1.098,7	248,3	280,1	0,6	780,0	100,6
K	81,6	77,2	4,2	317,6	52,6	45,9	1,2	30,3	69,5
Mg	811,6	513,3	204,9	2.617,6	702,3	693,0	0,6	2.188,2	219,5
Mn	250,9	147,4	46,1	580,1	247,1	205,6	0,7	454,0	93,1
Na	2,65	3,74	0,48	24,56	1,92	1,73	0,87	2,28	1,32
Ni	3,73	2,20	1,00	10,32	3,45	3,12	0,63	7,90	1,23
Pb	11,9	17,1	2,2	97,2	7,0	8,0	0,8	13,8	4,6
Si	160,4	77,6	26,2	360,4	169,5	137,6	0,6	355,8	53,2
Sn	3,15	2,40	0,82	10,24	2,23	2,55	0,62	6,57	0,99
Sr	11,1	7,8	2,9	44,6	8,9	9,3	0,6	27,2	3,2
Ti	1,03	0,81	0,12	3,58	0,72	0,79	0,75	1,39	0,45
V	1,80	1,46	0,21	8,99	1,42	1,41	0,72	2,72	0,73
Zn	48,0	121,8	1,7	538,1	9,4	12,1	1,4	6,0	24,1
As	0,42	0,33	0,11	1,59	0,34	0,34	0,64	0,83	0,14
Hg [*]	455	1209	2	6597	37	52	2	12	217
Se*	3,1	1,3	2,1	8,1	2,5	3,0	0,3	29,5	0,3

Tabela 72. Srednje vrednosti koncentracije elemenata sa *baseline* opsezima dobijenim nakon druge faze BCR UZSE, u ispitivanim uzorcima sedimenata i muljeva (μ g/g preračunato na masu suvoga uzorka, ^{*}ng/g preračunato na masu suvoga uzorka).

Element	AM	ASD	Min	Max	Medijana	GM	GSD	GM/GSD^2	GM*GSD ²
Al	328,1	167,5	80,8	791,0	289,0	282,6	0,6	813,1	98,2
Ba	26,3	16,5	3,3	69,6	25,9	20,3	0,8	29,9	13,7
Ca	8.947,6	4.369,2	725,2	22.008,4	8.209,3	7.617,7	0,7	17.140,5	3.385,5
Cd	0,16	0,14	0,04	0,85	0,13	0,13	0,64	0,32	0,05
Co	1,69	1,04	0,28	4,49	1,50	1,35	0,72	2,57	0,71
Cr	0,44	0,91	0,04	5,14	0,15	0,20	1,05	0,18	0,22
Cu	22,9	87,3	0,4	485,1	2,8	3,4	1,3	1,9	6,3
Fe	632,3	484,9	194,4	1.902,0	465,9	505,4	0,6	1.206,1	211,7
K	114,8	136,6	5,8	627,1	64,8	56,5	1,3	33,5	95,6
Mg	1.096,4	651,4	354,5	3.342,5	986,4	948,0	0,5	3.271,8	274,7
Mn	226,2	130,3	24,8	495,9	218,8	183,7	0,7	369,6	91,3
Na	2,91	2,95	0,37	17,18	2,29	1,92	0,95	2,14	1,72
Ni	3,84	2,58	1,10	13,03	3,39	3,18	0,61	8,43	1,20
Pb	12,9	19,8	2,3	96,7	7,2	8,1	0,8	12,8	5,1
Si	236,7	116,3	46,7	502,0	234,0	206,3	0,6	654,7	65,0
Sn	5,89	4,87	1,32	19,15	4,35	4,53	0,71	9,04	2,27
Sr	14,2	8,7	3,0	46,8	11,6	11,9	0,6	31,6	4,5
Ti	1,62	3,08	0,00	15,14	0,82	0,61	1,58	0,24	1,52
V	2,37	1,79	0,44	10,45	2,00	1,92	0,67	4,31	0,85
Zn	43,8	97,4	1,6	545,8	13,7	15,3	1,3	8,9	26,1
As	0,55	0,50	0,07	2,42	0,41	0,42	0,71	0,83	0,21
Hg^{*}	564,0	1428,3	2,3	6296,2	14,1	27,9	2,4	4,8	162,9
Se*	2,49	0,15	2,20	3,20	2,50	2,49	0,06	726,46	0,01

Tabela 70. Srednje vrednosti koncentracije elemenata sa *baseline* opsezima dobijenim nakon treće faze BCR KSE, u ispitivanim uzorcima sedimenata i muljeva (µg/g preračunato na masu suvoga uzorka, *ng/g preračunato na masu suvoga uzorka).

Element	AM	ASD	Min	Max	Medijana	GM	GSD	GM/GSD ²	GM*GSD ²
Al	1.140,6	807,9	116,7	4.296,1	1.103,9	854,9	0,8	1.194,5	611,8
Ba	10,04	18,32	1,46	87,00	4,87	5,43	0,92	6,41	4,60
Ca	189,8	150,3	48,6	826,2	137,3	152,3	0,6	368,9	62,9
Cd	0,07	0,11	0,01	0,73	0,05	0,05	0,70	0,11	0,03
Co	1,22	1,15	0,21	7,95	0,97	1,03	0,52	3,84	0,28
Cr	3,78	2,96	0,96	14,11	2,58	3,03	0,64	7,29	1,26
Cu	4,64	6,32	0,02	31,37	2,97	2,19	1,58	0,88	5,43
Fe	991,7	1.185,1	84,6	6.885,7	584,8	567,4	1,1	449,5	716,1
K	121,0	96,6	4,8	364,7	109,9	76,5	1,1	58,9	99,4
Mg	973,5	399,8	344,1	1.949,4	969,0	893,7	0,4	4.800,2	166,4
Mn	29,0	13,5	6,1	63,6	28,3	25,8	0,5	99,7	6,7
Na	5,28	4,33	0,40	16,11	3,37	3,63	0,94	4,14	3,20
Ni	7,34	3,20	1,14	18,54	7,20	6,61	0,50	26,18	1,67
Pb	25,6	53,5	0,6	275,7	14,5	9,6	1,4	5,0	18,4
Si	1.764,1	912,8	401,3	4.587,0	1.788,1	1.517,7	0,6	4.400,9	523,4
Sn	9,86	12,13	0,62	70,78	5,67	5,28	1,22	3,57	7,83
Sr	1,17	1,10	0,29	5,18	0,77	0,88	0,72	1,71	0,45
Ti	24,9	32,1	0,1	186,2	14,8	12,7	1,4	6,2	26,2
V	5,20	4,78	0,75	30,09	4,49	3,88	0,78	6,38	2,36
Zn	11,6	12,7	1,2	64,5	7,9	8,2	0,8	12,8	5,2
As	0,34	0,27	0,03	1,11	0,27	0,24	0,95	0,27	0,22
Hg	7,270	22,944	0,002	126,389	1,293	1,113	1,964	0,289	4,292
Se [*]	2,50	0,17	2,20	3,30	2,50	2,49	0,06	616,14	0,01

Tabela 71. Srednje vrednosti koncentracije elemenata sa *baseline* opsezima dobijenim nakon treće faze BCR MTSE, u ispitivanim uzorcima sedimenata i muljeva (μ g/g preračunato na masu suvoga uzorka, *ng/g preračunato na masu suvoga uzorka).

Element	AM	ASD	Min	Max	Medijana	GM	GSD	GM/GSD ²	GM*GSD ²
Al	692,8	786,1	28,6	2.806,6	217,7	322,2	1,4	176,4	588,6
Ba	11,8	8,9	1,6	43,0	10,5	8,5	0,9	11,0	6,6
Ca	4.848,4	3.460,6	235,8	18.461,0	4.881,0	3.639,2	0,9	4.877,5	2.715,2
Cd	0,07	0,11	0,01	0,75	0,04	0,04	0,78	0,07	0,03
Co	0,62	0,62	0,13	3,19	0,33	0,42	0,85	0,59	0,30
Cr	2,85	3,05	0,03	13,62	1,70	1,75	1,10	1,44	2,13
Cu	15,2	50,4	0,1	238,8	2,6	2,8	1,5	1,3	6,2
Fe	543,3	864,9	46,6	5.496,3	328,9	336,7	0,9	418,6	270,8
K	60,7	53,9	5,1	168,8	40,2	36,2	1,1	28,2	46,4
Mg	1.182,4	606,7	255,3	2.914,9	1.015,4	1.045,1	0,5	4.003,8	272,8
Mn	37,4	24,4	9,9	127,0	31,9	30,8	0,6	76,7	12,4
Na	1,68	1,36	0,18	5,82	1,12	1,22	0,83	1,75	0,85
Ni	3,71	4,63	0,02	24,82	1,56	1,71	1,44	0,83	3,53
Pb	13,7	33,8	0,5	196,9	4,9	4,9	1,2	3,2	7,5
Si	726,4	698,7	57,5	2.789,5	362,4	437,6	1,1	386,5	495,5
Sn	5,31	8,66	0,42	55,03	3,11	3,22	0,92	3,82	2,72
Sr	5,94	3,80	0,99	18,82	5,16	4,95	0,63	12,37	1,98
Ti	27,8	21,8	0,0	86,6	26,4	13,8	1,8	4,1	46,5
V	5,86	5,68	0,39	35,34	4,57	4,06	0,94	4,61	3,58
Zn	27,6	72,0	0,2	383,1	4,3	5,2	1,7	1,8	15,2
As	0,31	0,23	0,03	0,93	0,29	0,22	0,94	0,24	0,19
Hg	3,985	14,204	0,002	80,786	0,201	0,089	3,431	0,008	1,048
Se [*]	2,9	1,2	2,1	7,6	2,5	2,7	0,3	32,7	0,2
Prilog

Tabela 72. Srednje vrednosti koncentracije elemenata sa *baseline* opsezima dobijenim nakon treće faze BCR UZSE, u ispitivanim uzorcima sedimenata i muljeva (μ g/g preračunato na masu suvoga uzorka, *ng/g preračunato na masu suvoga uzorka).

Element	AM	ASD	Min	Max	Medijana	GM	GSD	GM/GSD ²	GM*GSD ²
Al	605,9	710,8	47,5	3251,8	254,7	327,3	1,2	246,5	434,6
Ва	19,2	26,8	1,4	127,0	10,9	10,2	1,1	7,7	13,4
Ca	4.306,6	2.310,5	16,4	9.085,8	4.381,5	3.255,9	1,1	2.827,5	3.749,1
Cd	0,09	0,10	0,02	0,68	0,06	0,07	0,63	0,17	0,03
Co	0,81	0,68	0,19	2,86	0,54	0,61	0,74	1,12	0,33
Cr	2,69	2,97	0,48	13,56	1,47	1,84	0,82	2,73	1,24
Cu	7,84	19,58	0,05	119,79	2,71	2,55	1,49	1,16	5,63
Fe	533,3	833,9	87,0	5.226,5	260,2	337,8	0,8	484,5	235,5
K	60,1	52,7	6,1	200,6	45,5	37,2	1,1	32,8	42,2
Mg	1.326,7	764,5	274,8	3.606,0	1.174,5	1.136,6	0,6	3.352,0	385,4
Mn	50,0	42,5	7,8	151,8	30,1	34,5	0,9	43,4	27,5
Na	2,60	2,44	0,12	10,12	1,60	1,54	1,15	1,17	2,02
Ni	4,40	4,27	0,80	22,69	2,80	3,08	0,83	4,46	2,13
Pb	14,7	25,8	1,3	119,5	7,9	7,3	1,1	6,3	8,3
Si	570,9	680,4	41,2	3.034,2	250,2	303,5	1,2	223,2	412,6
Sn	5,24	8,42	0,87	52,85	2,44	3,28	0,84	4,60	2,34
Sr	5,67	3,00	1,27	13,39	5,30	4,82	0,62	12,65	1,83
Ti	31,5	26,0	0,1	122,3	31,6	19,5	1,3	11,1	34,3
V	5,61	5,44	0,49	31,77	4,65	3,69	1,01	3,62	3,77
Zn	14,5	32,2	0,0	176,7	5,0	3,0	2,5	0,5	18,4
As	0,40	0,43	0,04	1,68	0,21	0,24	1,03	0,23	0,26
Hg	7,790	27,855	0,002	135,992	0,005	0,032	3,311	0,003	0,349
Se [*]	2,6	0,5	2,2	5,3	2,5	2,6	0,2	102,6	0,1

Tabela 76. Srednje vrednosti koncentracije elemenata sa *baseline* opsezima dobijenim nakon četvrte faze SE, u uzorcima koji su u prethodne tri faze bili ekstrahovani pomoću KSE (µg/g preračunato na masu suvoga uzorka, ^{*}ng/g preračunato na masu suvoga uzorka).

Element	AM	ASD	Min	Max	Medijana	GM	GSD	GM/GSD ²	GM*GSD ²
Al	8.195,5	4.618,1	1.027,2	16.392,9	8.110,9	6.425,4	0,8	9.983,7	4.135,3
Ba	17,7	19,6	2,0	108,5	15,5	12,2	0,9	16,4	9,1
Ca	198,5	100,5	0,0	389,0	200,9	76,7	3,4	6,7	885,2
Cd	0,22	0,10	0,07	0,38	0,25	0,20	0,52	0,72	0,05
Co	3,23	1,41	0,58	5,36	3,58	2,85	0,55	9,44	0,86
Cr	19,7	65,6	4,0	434,3	9,6	10,1	0,7	22,9	4,4
Cu	14,9	9,2	0,8	28,8	16,5	10,6	1,0	10,7	10,6
Fe	13.652,8	5.361,1	4.649,3	22.589,4	15.867,5	12.405,7	0,5	55.589,9	2.768,5
K	820,5	588,8	63,3	1.730,4	877,6	530,0	1,1	437,0	642,8
Mg	3.142,0	1.434,7	471,6	5.701,6	3455,8	2.719,1	0,6	7.339,2	1.007,4
Mn	119,8	103,9	27,2	717,0	115,4	99,2	0,6	288,3	34,1
Na	2,75	1,38	0,02	5,75	2,92	2,08	1,08	1,79	2,41
Ni	14,2	5,2	3,1	24,8	14,2	13,1	0,4	64,9	2,6
Pb	14,1	16,6	2,9	94,1	11,6	10,4	0,7	20,7	5,2
Si	232,5	44,4	147,5	344,5	221,6	228,5	0,2	6.376,5	8,2
Sn	157,7	68,5	48,1	277,9	178,9	140,1	0,5	504,2	38,9
Sr	2,33	1,12	0,00	3,90	2,57	1,69	1,42	0,84	3,42
Ti	258,8	113,6	54,7	529,3	266,3	231,6	0,5	890,1	60,3
V	5,18	7,46	0,23	26,51	1,46	2,08	1,32	1,19	3,64
Zn	43,4	33,4	8,4	228,7	43,8	36,1	0,6	93,6	13,9
As	5,5	4,6	0,4	28,1	4,4	4,2	0,8	7,2	2,5
Hg	1,08	3,27	0,01	19,32	0,11	0,14	1,86	0,04	0,48
Se [*]	20,4	15,9	4,2	73,7	20,9	14,8	0,9	20,3	10,8

Prilog

Tabela 77. Srednje vrednosti koncentracije elemenata sa *baseline* opsezima dobijenim nakon četvrte faze SE, u uzorcima koji su u prethodne tri faze bili ekstrahovani pomoću MTSE (µg/g preračunato na masu suvoga uzorka, ^{*}ng/g preračunato na masu suvoga uzorka).

Element	AM	ASD	Min	Max	Medijana	GM	GSD	GM/GSD ²	GM*GSD ²
Al	10.568,9	5.579,8	1.623,0	18.734,3	11.460,3	8.621,8	0,7	16.549,4	4.491,7
Ba	44,4	97,6	2,6	581,0	22,4	21,4	1,0	20,8	21,9
Ca	1.645,4	1.882,5	18,6	8.386,8	713,3	877,3	1,2	583,2	1.319,8
Cd	0,25	0,13	0,08	0,47	0,22	0,22	0,58	0,65	0,07
Co	5,03	1,41	1,06	6,94	5,47	4,74	0,40	30,05	0,75
Cr	21,6	64,8	5,2	430,8	12,1	12,1	0,6	29,1	5,0
Cu	28,5	33,2	2,0	205,9	25,8	20,0	0,9	26,6	14,9
Fe	15.023,0	5.422,7	5.858,4	24.051,2	16.708,3	13.932,4	0,4	82.177,7	2.362,1
K	1.073,3	717,5	111,6	2.125,6	1.139,3	747,6	1,0	770,0	725,9
Mg	5.135,3	1.595,1	1.276,4	8.512,8	5.393,6	4.839,5	0,4	34.060,0	687,6
Mn	152,7	48,0	45,2	226,8	168,3	143,7	0,4	1.012,0	20,4
Na	11,1	8,7	0,0	39,1	7,5	7,6	1,3	4,3	13,5
Ni	23,6	5,8	8,4	39,5	23,6	22,7	0,3	262,7	2,0
Pb	25,5	46,6	6,3	252,5	15,1	16,3	0,7	32,6	8,2
Si	268,4	73,7	166,1	502,8	253,8	259,2	0,3	3.713,0	18,1
Sn	195,3	74,6	72,5	310,1	221,5	178,8	0,4	887,1	36,0
Sr	3,30	1,64	0,74	10,61	2,84	3,00	0,44	15,82	0,57
Ti	306,0	127,2	69,4	651,1	324,4	277,0	0,5	1.187,0	64,6
V	21,5	10,0	4,8	44,1	23,6	18,8	0,6	59,1	6,0
Zn	74,6	64,6	26,1	420,8	61,9	63,7	0,5	268,7	15,1
As	5,9	2,6	0,2	10,7	6,0	4,8	0,9	6,5	3,5
Hg	1,43	7,62	0,02	48,97	0,07	0,12	1,50	0,05	0,26
Se [*]	32,8	32,2	4,4	179,2	29,1	21,3	1,0	21,6	20,9

Tabela 78. Srednje vrednosti koncentracije elemenata sa *baseline* opsezima dobijenim nakon četvrte faze SE, u uzorcima koji su u prethodne tri faze bili ekstrahovani pomoću UZSE (µg/g preračunato na masu suvoga uzorka, ^{*}ng/g preračunato na masu suvoga uzorka).

Element	AM	ASD	Min	Max	Medijana	GM	GSD	GM/GSD ²	GM*GSD ²
Al	8.898,9	5.112,1	1.160,7	16.280,2	9.190,0	6.999,8	0,8	11.434,1	4.285,1
Ba	26,5	52,7	2,5	347,7	18,3	15,1	0,9	16,9	13,6
Ca	599,4	674,3	0,0	3.652,7	442,3	255,9	2,5	40,2	1.630,2
Cd	0,20	0,09	0,06	0,48	0,22	0,18	0,53	0,63	0,05
Co	4,00	1,49	0,59	6,74	4,30	3,62	0,51	13,76	0,95
Cr	18,4	55,6	2,6	369,6	10,6	10,0	0,7	20,2	4,9
Cu	20,1	12,5	3,1	68,1	21,9	16,0	0,7	28,7	8,9
Fe	13.493,7	5.215,6	4.459,1	22.843,1	14.582,9	12.300,6	0,5	57.184,7	2.645,9
K	961,4	705,2	87,9	2.273,4	828,6	649,5	1,0	641,1	658,0
Mg	3.653,3	1.526,6	759,4	6.468,4	3.792,3	3.289,2	0,5	13.370,6	809,1
Mn	116,0	46,0	24,2	189,7	123,3	104,7	0,5	420,7	26,1
Na	3,47	1,75	0,45	9,06	3,41	2,96	0,63	7,44	1,18
Ni	28,2	62,1	4,1	419,2	18,7	18,9	0,6	49,1	7,3
Pb	16,3	12,0	5,6	82,4	14,7	14,1	0,5	53,4	3,7
Si	249,9	92,2	95,7	551,3	231,7	236,1	0,3	2.117,5	26,3
Sn	161,1	74,2	45,5	335,6	170,8	141,6	0,5	473,0	42,4
Sr	3,20	1,72	0,46	8,05	3,06	2,70	0,64	6,56	1,12
Ti	273,7	190,7	83,8	1.299,2	262,9	236,1	0,5	847,1	65,8
V	17,8	8,8	4,0	36,3	17,1	15,3	0,6	43,6	5,4
Zn	63,5	69,5	15,1	436,7	55,0	49,8	0,6	132,4	18,8
As	4,8	2,3	0,4	11,2	5,1	4,1	0,7	9,1	1,8
Hg	0,248	0,905	0,002	5,490	0,024	0,023	2,079	0,005	0,098
Se*	13,9	10,8	1,8	46,4	13,1	10,2	0,8	14,2	7,3

Prilog

Tabela 79. Koncentracije elemenata dobijene mirotalasnom digestijeom, *aqua regia*, tj. pseudo ukupni sadržaj u ispitivanim uzorcima sedimenata i muljeva (μ g/g preračunato na masu suvoga uzorka).

Element	AM	ASD	Min	Max	Medijana	GM	GSD	GM/GSD ²	GM*GSD ²
Al	29.087,7	15.751,8	3.426,0	54.576,0	32.558,0	23.277,5	0,8	39.649,2	13.665,9
Ba	207,2	130,1	30,0	688,0	199,0	167,8	0,7	334,8	84,1
Ca	32.016,5	10.792,9	7.214,0	60.745,0	30.998,0	29.995,4	0,4	194.966,1	4.614,8
Cd	0,17	0,25	0,01	1,23	0,10	0,09	1,21	0,06	0,13
Co	8,8	3,3	1,9	14,1	9,6	8,0	0,5	36,6	1,8
Cr	76,5	153,7	24,0	1.032,0	54,0	54,1	0,6	168,0	17,4
Cu	79,1	235,5	2,0	1.108,0	24,0	23,8	1,2	16,9	33,6
Fe	22.691,7	8.366,0	6.851,0	34.976,0	25.484,0	20.879,5	0,4	107.757,9	4.045,7
K	7.926,3	4.835,2	749,0	14.581,0	8.651,0	5.934,7	0,9	7.733,2	4.554,5
Mg	9.472,2	3.412,1	2.007,0	17.561,0	9.864,0	8.780,2	0,4	48.929,7	1.575,6
Mn	535,6	202,9	145,0	840,0	550,0	490,7	0,5	2.397,2	100,5
Na	283,0	136,2	1,0	622,0	324,0	219,5	1,1	197,8	243,6
Ni	41,6	13,8	11,0	75,0	41,0	39,0	0,4	259,1	5,9
Pb	48,5	68,9	0,1	337,0	29,1	27,5	1,2	17,7	42,6
Si	1.127,9	559,4	418,0	2.330,0	921,0	1.006,9	0,5	4.400,6	230,4
Sn	61,9	21,7	22,0	131,0	59,0	58,1	0,4	433,8	7,8
Sr	236,2	86,8	73,0	364,0	266,0	217,4	0,4	1.128,1	41,9
Ti	916,1	344,4	294,0	1.398,0	1.047,0	834,9	0,5	3.762,9	185,3
V	56,0	27,4	9,0	97,0	63,0	47,2	0,7	109,0	20,5
Zn	173,4	237,4	43,0	1.140,0	99,0	114,3	0,8	191,1	68,4
As	8,2	3,4	1,1	15,3	8,7	7,2	0,7	16,1	3,2
Hg	22,0	56,3	0,1	237,5	1,2	2,0	2,1	0,5	8,8
Se	0,17	0,21	0,01	1,33	0,12	0,11	0,85	0,16	0,08

Tabela 80. Koncentracije elemenata dobijene mirotalasnom digestijom, *aqua regia* plus fluorovodonična kiselina u ispitivanim uzorcima sedimenata i muljeva ($\mu g/g$ preračunato na masu suvoga uzorka).

Element	AM	ASD	Min	Max	Medijana	GM	GSD	GM/GSD ²	GM*GSD ²
Al	29.516,6	8.810,8	9.483,8	43.234,9	31.339,9	27.858,5	0,4	199.412,5	3.891,9
Ba	283,6	100,9	150,6	696,3	294,6	268,8	0,3	2.516,9	28,7
Ca	29.924,4	9.194,4	8.050,1	55.795,1	29.378,7	28.343,5	0,4	223.432,9	3.595,5
Cd	0,16	0,20	0,02	1,12	0,10	0,12	0,68	0,25	0,05
Co	11,1	4,3	2,6	17,3	12,5	10,1	0,5	45,0	2,3
Cr	118,6	311,7	38,3	2.062,7	73,7	73,7	0,6	209,9	25,9
Cu	84,4	247,4	3,0	1.308,1	25,9	26,1	1,2	18,8	36,2
Fe	24.502,7	8.963,6	8.428,2	37.141,8	27.994,1	22.576,2	0,4	119.115,1	4.278,9
K	11.019,2	3.561,4	4.712,3	15.785,2	12.968,8	10.379,4	0,4	78.082,7	1.379,7
Mg	6.236,3	1.736,6	2.689,4	10.921,9	6.064,2	6.003,4	0,3	75.105,1	479,9
Mn	565,8	207,6	158,9	860,0	564,8	521,4	0,4	2.730,3	99,6
Na	3.312,9	846,7	908,4	4.578,3	3.354,3	3.147,9	0,4	23.111,2	428,8
Ni	42,1	14,9	11,3	76,1	40,1	39,2	0,4	244,5	6,3
Pb	189,6	80,5	114,2	482,1	168,4	179,7	0,3	2.089,0	15,5
Si	210.860,1	29.382,6	94.573,9	264.796,4	209.414,6	208.441,8	0,2	7.785.088,9	5.580,9
Sn	247,0	91,1	85,5	374,9	277,9	227,4	0,4	1.189,4	43,5
Sr	93,4	21,2	43,8	141,4	93,6	90,9	0,2	1.565,8	5,3
Ti	2.876,2	1.240,2	925,8	4.413,7	3.541,5	2.547,2	0,5	8.827,4	735,0
V	87,4	48,5	14,6	171,9	85,0	71,9	0,7	152,0	34,0
Zn	206,5	378,7	39,3	2.264,2	109,6	121,0	0,8	175,5	83,4

** Značajnost korelacije za 99% nivo značajnosti.
* Značajnost korelacije za 95% nivo značajnosti.

a)

Al

Ca

Cd

Co

a)	Al	Ba	Ca	Cd	Co	Cr	Cu	Fe	К	Mg	Mn	Na	Ni	Pb	Si	Sn	Sr	Ti	v	Zn	As	Hg	Se
Al																							
Ba	0,104																						
Ca	-0,466**	0,108																					
Cd	0,353*	0,213	0,168																				
Co	0,199	-0,036	-0,325*	0,519**																			
Cr	0,777**	0,406**	-0,465**	0,223	0,179																		
Cu	0,646**	0,337*	-0,227	0,470**	0,099	0,731**																	
Fe	0,543**	-0,323*	-0,148	0,223	0,354*	0,146	0,104																
К	-0,470**	0,173	-0,011	-0,242	-0,094	-0,229	-0,203	-0,382*															
Mg	-0,416**	0,103	0,496**	-0,262	-0,220	-0,311*	-0,234	-0,256	-0,033														
Mn	-0,354*	0,275	0,007	0,089	0,504**	-0,209	-0,213	0,077	0,402**	0,080													
Na	0,232	0,077	0,060	0,264	0,032	0,009	0,133	0,057	-0,213	-0,141	0,041												
NI	0,008	0,054	-0,275	0,229	0,354*	0,072	0,011	0,031	0,543**	-0,343*	0,469**	0,167											
Pb	0,727**	0,482**	-0,344*	0,215	0,156	0,906**	0,512**	0,125	-0,210	-0,223	-0,189	0,009	0,029										
Si	-0,009	0,483**	-0,271	-0,060	-0,105	0,051	0,109	-0,270	0,624**	-0,252	0,329*	0,164	0,516**	0,011	0.000								
Sn	0,545**	-0,344*	-0,155	0,244	0,367*	0,145	0,111	0,993**	-0,395*	-0,278	0,087	0,056	0,030	0,126	-0,283	0.120							
Sr	-0,291	0,339*	0,/50**	0,597**	0,071	-0,259	0,056	-0,133	-0,021	0,335*	0,255	0,169	0,024	-0,160	-0,114	-0,130	0.251						
V	0,505*	-0,402***	-0,127	-0,102	0.425**	-0,004	-0,008	0,782***	-0,225	-0,094	-0,124	-0,080	-0,050	-0,034	-0,228	0,731**	-0,231	0.161					
7.	0.704**	0.472**	0,041	0,295	0,435	-0,155	-0,129	0,008	0,505**	-0,265	0,354	-0,030	0,711	-0,119	0,510	0,012	0,290	-0,101	0.054				
	0,794**	0,473	-0,271	0,570*	0,208	0.190	0.164	0,102	-0,223	-0,511	-0,211	0,137	0,080	0.176	0.585**	0,170	0,005	-0,081	-0,034	0.172			
Hg	0.426**	-0.057	-0,013	0.172	0,122	-0,189	0.165	0.445**	-0.292	-0.160	-0.119	-0,211	-0.067	-0,170	-0.297	-0,280	-0 184	-0,227	-0.228	0 274	-0.291		
Se	-0.423**	0,007	0.342*	0.018	0.002	-0.238	-0.185	-0 198	0,272	-0.043	0.365*	-0.138	0,007	-0.162	0.272	-0.202	0 304	-0.186	0.530**	-0.175	0.578**	-0.233	
50	0,425	0,502	0,542	0,010	0,002	0,250	0,105	0,170	0,500	0,045	0,505	0,150	0,220	0,102	0,272	0,202	0,504	0,100	0,550	0,175	0,570	0,235	
b)	41	Pa	Ca	Cł	Ca	C	Cu	Fa	V	Ma	Mn	No	NG	Dh	c:	S -2	S.,	Ti	V	Zn	Åc	Ца	50
b)	Al	Ba	Ca	Cd	Co	Cr	Cu	Fe	K	Mg	Mn	Na	Ni	Pb	Si	Sn	Sr	Ti	v	Zn	As	Hg	Se
b) Al Ba	Al	Ba	Ca	Cd	Co	Cr	Cu	Fe	K	Mg	Mn	Na	Ni	Pb	Si	Sn	Sr	Ti	v	Zn	As	Hg	Se
b) Al Ba Ca	Al 0,374* 0.650**	Ba	Ca	Cd	Co	Cr	Cu	Fe	K	Mg	Mn	Na	Ni	Pb	Si	Sn	Sr	Ti	V	Zn	As	Hg	Se
b) Al Ba Ca Cd	Al 0,374* 0,650** 0,256	0,184 0.370*	Ca	Cd	Со	Cr	Cu	Fe	K	Mg	Mn	Na	Ni	Pb	Si	Sn	Sr	Ti	v	Zn	As	Hg	Se
b) Al Ba Ca Cd Co	Al 0,374* 0,650** 0,256 0,888**	Ba 0,184 0,370* 0,219	0,524** 0,502**	-0.037	Co	Cr	Cu	Fe	K	Mg	Mn	Na	Ni	Pb	Si	Sn	Sr	Ti	v	Zn	As	Hg	Se
b) Al Ba Ca Cd Co Cr	Al 0,374* 0,650** 0,256 0,888** -0,163	Ba 0,184 0,370* 0,219 0,624**	Ca 0,524** 0,502** -0.259	-0,037 0,135	-0.367*	Cr	Cu	Fe	K	Mg	Mn	Na	Ni	Pb	Si	Sn	Sr	Ti	V	Zn	As	Hg	Se
b) Al Ba Ca Cd Co Cr Cu	Al 0,374* 0,650** 0,256 0,888** -0,163 -0,211	Ba 0,184 0,370* 0,219 0,624** 0,633**	Ca 0,524** 0,502** -0,259 -0,265	-0,037 0,135 0,200	-0,367* -0,357*	<u>Cr</u> 0.728**	Cu	Fe	K	Mg	Mn	Na	Ni	Pb	Si	Sn	Sr	Ti	v	Zn	As	Hg	Se
b) Al Ba Ca Cd Co Cr Cu Fe	A1 0,374* 0,650** 0,256 0,888** -0,163 -0,211 0,466**	Ba 0,184 0,370* 0,219 0,624** 0,633** 0,379*	Ca 0,524** 0,502** -0,259 -0,265 0,300	-0,037 0,135 0,200 0,518**	-0,367* -0,357* 0,265	Cr 0,728** 0,204	Cu 0,058	Fe	K	Mg	Mn	Na	Ni	РЬ	Si	Sn	Sr	Ti	v	Zn	As	Hg	Se
b) Al Ba Ca Cd Co Cr Cu Fe K	A1 0,374* 0,650** 0,256 0,888** -0,163 -0,211 0,466** 0,751**	Ba 0,184 0,370* 0,219 0,624** 0,633** 0,379* 0,419**	Ca 0,524** 0,502** -0,259 -0,265 0,300 0,586**	-0,037 0,135 0,200 0,518** 0,191	-0,367* -0,357* 0,265 0,791**	Cr 0,728** 0,204 -0,129	Cu 0,058 -0,212	Fe 0,406**	K	Mg	Mn	Na	Ni	Pb	Si	Sn	Sr	Ti	v	Zn	As	Hg	Se
b) Al Ba Ca Cd Co Cr Cu Fe K Mg	A1 0,374* 0,650** 0,256 0,888** -0,163 -0,211 0,466** 0,751** 0,080	Ba 0,184 0,370* 0,219 0,624** 0,633** 0,379* 0,419** 0,099	Ca 0,524** 0,502** -0,259 -0,265 0,300 0,586** 0,503**	-0,037 0,135 0,200 0,518** 0,191 -0,016	-0,367* -0,357* 0,265 0,791** -0,008	Cr 0,728** 0,204 -0,129 0,123	Cu 0,058 -0,212 0,182	Fe 0,406** -0,116	<u>K</u> 0,039	Mg	Mn	Na	Ni	Pb	Si	Sn	Sr	Ti	v	Zn	As	Hg	Se
b) Al Ba Ca Cd Co Cr Cu Fe K Mg Mn	A1 0,374* 0,650** 0,256 0,888** -0,163 -0,211 0,466** 0,751** 0,080 0,884**	Ba 0,184 0,370* 0,219 0,624** 0,633** 0,379* 0,419** 0,099 0,312*	Ca 0,524** 0,502** -0,259 -0,265 0,300 0,586** 0,503** 0,555**	-0,037 0,135 0,200 0,518** 0,191 -0,016 -0,004	-0,367* -0,357* 0,265 0,791** -0,008 0,967**	Cr 0,728** 0,204 -0,129 0,123 -0,264	Cu 0,058 -0,212 0,182 -0,258	Fe 0,406** -0,116 0,180	0,039 0,773**	Mg 0,060	Mn	Na	Ni	Pb	Si	Sn	Sr	Ti	v	Zn	As	Hg	Se
b) Al Ba Ca Cd Co Cr Cu Fe K Mg Mn Na	Al 0,374* 0,650** 0,256 0,888** -0,163 -0,211 0,466** 0,751** 0,080 0,884** 0,107	Ba 0,184 0,370* 0,219 0,624** 0,633** 0,379* 0,419** 0,099 0,312* 0,128	Ca 0,524** 0,502** -0,259 -0,265 0,300 0,586** 0,503** 0,555** 0,231	-0,037 0,135 0,200 0,518** 0,191 -0,016 -0,004 0,394*	-0,367* -0,357* 0,265 0,791** -0,008 0,967** -0,069	0,728** 0,204 -0,129 0,123 -0,264 0,007	Cu 0,058 -0,212 0,182 -0,282 0,064	Fe 0,406** -0,116 0,180 0,080	0,039 0,773** 0,060	Mg 0,060 -0,103	-0,032	Na	Ni	Pb	Si	Sn	Sr	Ti	V	Zn	As	Hg	Se
b) Al Ba Ca Cd Co Cr Cu Fe K Mg Mn Na Ni	A1 0,374* 0,650** 0,256 0,888** -0,163 -0,211 0,466** 0,751** 0,080 0,884** 0,107 0,712**	Ba 0,184 0,370* 0,624** 0,633** 0,419** 0,379* 0,419** 0,032* 0,128 0,314*	Ca 0,524** 0,502** -0,259 -0,265 0,300 0,586** 0,555** 0,231 0,586**	Cd -0,037 0,135 0,200 0,518** 0,191 -0,016 -0,004 0,394* 0,516**	-0.367* -0.357* 0.265 0.791** -0.008 0.967**	Cr 0,728** 0,204 -0,129 0,123 -0,264 0,007 -0,116	Cu 0,058 -0,212 0,182 -0,258 0,064 -0,232	Fe 0,406** -0,116 0,180 0,080 0,575**	0,039 0,773** 0,060 0,757**	Mg 0,060 -0,103 -0,167	<u>-0,032</u> 0,608**	<u>Na</u> 0,243	Ni	РЬ	Si	Sn	Sr	Ti	V	Zn	As	Hg	Se
b) Al Ba Ca Cd Co Cr Cu Fe K Mg Mn Na Ni Pb	A1 0,374* 0,650** 0,256 0,888** -0,163 -0,211 0,466** 0,751** 0,080 0,884** 0,107 0,712** -0,255	Ba 0,184 0,370* 0,624* 0,633** 0,419** 0,419** 0,419** 0,099 0,312* 0,22*	Ca 0,524** 0,502** -0,259 -0,265 0,300 0,586** 0,503** 0,531 0,586** -0,296	Cd -0,037 0,135 0,200 0,518** 0,191 -0,016 -0,004 0,394* 0,516** 0,121	Co -0,367* -0,357* 0,265 0,791** -0,008 0,967** -0,069 0,650** -0,416**	Cr 0,728** 0,204 -0,129 0,123 -0,264 0,007 -0,116 0,895**	Cu 0,058 -0,212 0,182 -0,258 0,064 -0,232 0,684**	Fe 0,406** -0,116 0,180 0,080 0,575** 0,077	0.039 0.773** 0.060 0.757**	Mg 0,060 -0,103 -0,167 0,092	-0.032 0,608** -0.297	Na 0,243 -0,051	<u>Ni</u> -0,279	Pb	Si	Sn	Sr	Ti	v	Zn	As	Hg	Se
b) Al Ba Ca Cd Co Cr Cu Fe K Mg Mn Na Ni Pb Si	A1 0,374* 0,650** 0,256 0,888** -0,163 -0,211 0,466** 0,751** 0,080 0,884** 0,107 0,712** -0,255 0,939**	$\begin{array}{c} Ba \\ 0.184 \\ 0.370^{*} \\ 0.219 \\ 0.624^{**} \\ 0.419^{**} \\ 0.419^{**} \\ 0.099 \\ 0.312^{*} \\ 0.128 \\ 0.312^{*} \\ 0.672^{**} \\ 0.404^{**} \end{array}$	Ca 0,524** 0,502** -0,259 -0,265 0,586** 0,586** 0,585** 0,585** 0,586** -0,296 0,651**	-0,037 0,135 0,200 0,518** 0,191 -0,016 -0,004 0,516** 0,211 0,198	-0,367* -0,357* 0,265 0,791** -0,008 0,967** -0,069 0,650** -0,416* 0,844**	Cr 0,728** 0,204 -0,129 0,123 -0,264 0,007 -0,116 0,895** -0,114	Cu 0,058 -0,212 0,182 -0,258 0,064 -0,232 0,684** 0,064	Fe 0,406** -0,116 0,180 0,575** 0,077 0,410**	0,039 0,773** 0,060 0,757** -0,214 0,835**	Mg 0,060 -0,103 -0,167 0,092 0,192	-0.032 0.608** -0.297 0.839**	Na 0,243 -0,051 0,158	-0,279 0,683**	<u>Pb</u> -0,214	Si	Sn	Sr	Tì	v	Zn	As	Hg	Se
b) Al Ba Ca Cd Co Cr Cu Fe K Mg Mn Na Ni Pb Si Sn	A1 0,374* 0,650** 0,256 0,888** -0,163 -0,211 0,466** 0,751** 0,080 0,884** 0,107 0,712** -0,255 0,939** 0,529**	Ba 0,184 0,370* 0,624** 0,633** 0,419** 0,419** 0,419** 0,72* 0,128 0,312* 0,672** 0,404**	Ca 0,524** 0,502** -0,259 -0,265 0,300 0,586** 0,535** 0,231 0,586** -0,296 0,651** 0,290	-0,037 0,135 0,200 0,518** 0,191 -0,016 -0,004 0,394* 0,516** 0,121 0,198 0,227	-0,367* -0,357* 0,265 0,791** -0,008 0,967** -0,069 0,650** -0,416** 0,844** 0,8425**	Cr 0,728** 0,204 -0,129 0,123 -0,264 0,007 -0,116 0,895** -0,114 0,059	Cu 0,058 -0,212 -0,258 0,064 -0,252 0,684** -0,168 -0,083	Fe 0,406** -0,116 0,180 0,57** 0,410** 0,916**	0,039 0,773** 0,060 0,757** -0,214 0,835**	Mg 0,060 -0,103 -0,167 0,092 0,192 -0,054	-0,032 0,608** -0,297 0,839** 0,319*	Na 0,243 -0,051 0,158 0,054	-0,279 0,683** 0,554**	Pb -0,214 -0,086	Si 0,517**	Sn	Sr	Tì	V	Zn	As	Hg	Se
b) Al Ba Ca Cd Cr Cu Fe K Mg Mn Na Ni Pb Si Sn Sr	A1 0,374* 0,256 0,256 0,888** -0,163 -0,211 0,466** 0,751** 0,080 0,884** 0,107 0,712** -0,255 0,939** 0,529** 0,609**	Ba 0,184 0,370* 0,219 0,624** 0,633** 0,633** 0,633** 0,419** 0,999 0,312* 0,128 0,314* 0,672** 0,404** 0,672** 0,488**	Ca 0,524** 0,502** -0,259 -0,265 0,300 0,586** 0,231 0,558** 0,231 0,586** -0,296 0,651** 0,290 0,802**	-0,037 0,135 0,200 0,518** 0,191 -0,016 -0,004 0,394* 0,516** 0,121 0,198 0,227 0,802**	-0,367* -0,357* 0,265 0,791** -0,008 0,967** -0,069 0,650** -0,416** 0,844** 0,425** 0,372*	Cr 0,728** 0,204 -0,129 0,123 -0,264 0,007 -0,116 0,895** -0,114 0,059 0,049	Cu 0,058 -0,212 0,182 -0,258 0,064 -0,232 0,684** -0,168 -0,083 0,019	Fe 0,406** -0,116 0,180 0,080 0,575** 0,077 0,410** 0,916** 0,606**	0,039 0,773** 0,060 0,757** -0,214 0,835** 0,503** 0,503**	0,060 -0,103 -0,167 0,092 0,192 -0,054 0,161	-0,032 0,608** -0,297* 0,839** 0,319* 0,400**	Na 0,243 -0,051 0,158 0,054 0,494**	-0,279 0,683** 0,554** 0,757**	-0,214 -0,086 -0,032	Si 0,517** 0,617**	<u>Sn</u> 0,493**	Sr	Tì	V	Zn	As	Hg	Se
b) Al Ba Ca Cd Cr Cu Fe K Mg Mn Na Ni Pb Si Sn Sr Ti	A1 0,374* 0,256 0,888** -0,163 -0,211 0,466** 0,751** 0,080 0,884** 0,107 0,712** -0,255 0,939** 0,529** 0,609** -0,546**	Ba 0,184 0,370* 0,219 0,624** 0,379* 0,4099 0,312* 0,128 0,314* 0,672** 0,408** 0,287 0,488** 0,339*	Ca 0,524** 0,502** -0,259 -0,265 0,300 0,565** 0,231 0,555** 0,231 0,586** -0,296 0,601** 0,290 0,802**	-0,037 0,135 0,200 0,518** 0,191 -0,016 0,394* 0,516** 0,121 0,198 0,227 0,802** -0,035	-0,367* -0,357* 0,265 0,791** -0,008 0,967** -0,069 0,650** -0,416** 0,844** 0,425** 0,372* -0,595**	Cr 0,728** 0,204 -0,129 0,123 -0,264 0,007 -0,116 0,895** -0,114 0,059 0,049 0,638**	Cu 0,058 -0,212 0,182 -0,258 0,064 -0,232 0,684** -0,068 -0,083 0,019 0,636**	Fe 0,406** -0,116 0,180 0,080 0,575** 0,916** 0,606** -0,075	0,039 0,773** 0,060 0,757** 0,214 0,835** 0,503** 0,619** -0,486**	0,060 -0,103 -0,167 0,092 -0,054 0,161 -0,026	-0,032 0,608** -0,297 0,839** 0,319* 0,400** -0,547**	Na 0,243 -0,051 0,158 0,054 0,494** -0,118	-0,279 0,683** 0,554** 0,757** -0,385*	-0,214 -0,086 -0,032 0,724**	0,517** 0,617** -0,508**	0,493** -0,147	-0,334*	Tì	V	Zn	As	Hg	Se
b) Al Ba Ca Co Cr Cu Fe K Mg Mn Na Ni Pb Si Sn Sr Ti V Z	A1 0,374* 0,650** 0,256 0,888** -0,163 -0,211 0,466** 0,751** 0,080 0,884** 0,107 0,712** -0,255 0,939** 0,529** 0,609** -0,546** 0,781**	$\begin{array}{c} 0.184\\ 0.370^{*}\\ 0.219\\ 0.624^{**}\\ 0.379^{*}\\ 0.419^{**}\\ 0.379^{*}\\ 0.312^{*}\\ 0.312^{*}\\ 0.312^{*}\\ 0.314^{*}\\ 0.314^{*}\\ 0.404^{**}\\ 0.287\\ 0.488^{**}\\ 0.393^{*}\\ 0.319^{*}\\ \end{array}$	Ca 0,524** 0,502** -0,259 -0,265 0,300 0,586** -0,296 0,651** 0,802** -0,290 0,802** -0,500** 0,745**	Cd -0,037 0,135 0,200 0,518** 0,191 -0,016 0,394* 0,516** 0,121 0,198 0,227 0,802** -0,035 0,613**	-0,367* -0,357* 0,265 0,791** -0,008 0,967** -0,069 0,650** -0,416* 0,842** 0,372* -0,595** 0,547**	Cr 0,728** 0,204 -0,129 0,123 -0,264 0,007 -0,116 0,895** -0,114 0,059 0,049 0,638** -0,074	Cu 0,058 -0,212 0,182 -0,282 -0,282 -0,232 0,684*** -0,168 -0,083 0,019 0,636** -0,193	Fe 0,406** -0,116 0,180 0,080 0,575** 0,077 0,410** 0,606** -0,075 0,664**	0,039 0,773** 0,060 0,757** -0,214 0,835** 0,619** -0,486** 0,625**	Mg 0,060 -0,103 -0,167 0,092 0,192 -0,054 0,161 -0,026 0,054	-0,032 0,608** -0,297 0,319* 0,400** -0,547** 0,546**	Na 0,243 -0,051 0,158 0,054 0,494*** -0,118 0,418**	-0,279 0,683** 0,554** 0,757** -0,385* 0,811**	-0,214 -0,086 -0,032 0,724** -0,201	0,517** 0,617** -0,508** 0,752**	<u>Sn</u> 0,493** -0,147 0,645**	-0,334* 0,858**	-0,395*	V	Zn	As	Hg	Se
b) Al Ba Ca Ca Co Co Cr Cu Fe K Mg Mn Na Ni Pb Si Sr Ti V Zn	A1 0,374* 0,650** 0,256 0,888** -0,163 -0,211 0,466** 0,751** 0,080 0,884** 0,107 0,712** -0,255 0,939** 0,529** 0,529** 0,529** 0,609** -0,546** 0,781** -0,233	Ba 0,184 0,370* 0,624** 0,633** 0,419** 0,419** 0,312* 0,419** 0,312* 0,404** 0,672** 0,404** 0,628 0,404** 0,287 0,404** 0,287 0,404** 0,339* 0,319*	Ca 0,524** 0,502** -0,259 -0,265 0,300 0,586** 0,535** 0,231 0,586** -0,296 0,651** 0,290 0,802** -0,550** -0,745** -0,184	-0,037 0,135 0,208 0,518** 0,191 -0,016 -0,004 0,516** 0,121 0,198 0,227 0,802** -0,035 0,613** 0,376*	-0.367* -0.357* 0.265 0.791** -0.008 0.967** -0.416** 0.844** 0.425** 0.595** -0.595** -0.547** -0.434**	Cr 0,728** 0,204 -0,129 0,123 -0,264 0,007 -0,116 0,895** -0,114 0,638** -0,074 0,638**	Cu 0,058 -0,212 0,182 -0,258 0,064 -0,232 0,684** -0,168 -0,083 0,019 0,636**	Fe 0,406** -0,116 0,180 0,575** 0,077 0,410** 0,606** 0,075 0,664** 0,190	0,039 0,773** 0,060 0,757** -0,214 0,835** 0,619** -0,486** 0,625** -0,187	Mg 0,060 -0,103 -0,167 0,092 -0,054 0,161 -0,026 0,054 0,105	-0.032 0.608** -0.297 0.839** 0.319* 0.400** -0.547** -0.546** -0.323*	Na 0,243 -0,051 0,158 0,054 0,494** -0,118 0,418** 0,135	-0,279 0,683** 0,554** -0,385* -0,811** -0,129	-0,214 -0,214 -0,086 -0,032 0,724** -0,201 0,894**	0,517** 0,617** -0,508** 0,752** -0,192	0,493** -0,147 0,645** -0,015	-0.334* 0.858** 0.178	-0,395* 0,730**	-0.072	Zn	As	Hg	Se
b) Al Ba Ca Cd Cd Co Cr Cu Fe K Mg Mn Na Si Sn Sr Si Si Sn Sr Ti V Zn As	A1 0,374* 0,650** 0,256 0,888** -0,163 -0,211 0,466** 0,751** 0,080 0,884** 0,107 0,712** -0,255 0,939** 0,529** 0,609** 0,609** 0,609** 0,781** -0,233 0,162	Ba 0,184 0,370* 0,219 0,624** 0,633** 0,419** 0,419** 0,419** 0,419** 0,312* 0,419* 0,52** 0,404** 0,287 0,404** 0,287 0,404** 0,319* 0,755** -0,034	Ca 0,524** 0,502** -0,259 -0,265 0,506** 0,586** 0,586** 0,586** 0,586** 0,290 0,651** 0,290 0,802** 0,290 0,651** 0,290 0,745** 0,745**	-0,037 0,135 0,200 0,518** 0,191 -0,016 -0,004 0,516** 0,227 0,802** -0,035 0,613** 0,376* 0,288	-0.367* -0.357* 0.265 0.791** -0.008 0.967** -0.416** 0.844** 0.372* -0.595** -0.547** -0.434** 0.547**	Cr 0,728** 0,204 -0,129 0,123 -0,264 0,007 -0,116 0,895** -0,114 0,059 0,049 0,638** -0,074 0,837** -0,130	Cu 0,058 0,212 0,182 -0,258 0,064 -0,232 0,0684** -0,168 -0,083 0,019 0,636** -0,193 0,868** -0,264	Fe 0,406** -0,116 0,180 0,575** 0,077 0,410** 0,666** -0,075 0,664** 0,190 0,722**	0,039 0,773** 0,060 0,757** -0,214 0,835** 0,619** -0,486** -0,486* -0,187 0,625** -0,187	Mg 0.060 -0.103 -0.167 0.092 -0.054 0.161 -0.026 0.054 0.105 -0.158	-0.032 0.608** -0.297 0.839** 0.319* 0.400** -0.547** -0.547** -0.323* 0.015	Na 0,243 -0,051 0,158 0,054 0,494** 0,118 0,418** 0,118 0,418	-0,279 0,683** 0,554** 0,757** -0,381** 0,811** -0,129 0,520**	-0,214 -0,086 -0,032 0,724** -0,201 0,894** -0,260	0,517** 0,617** -0,508** -0,752** -0,192 0,151	0,493** -0,147 0,645** -0,015 0,686**	-0,334* 0,858** 0,178 0,384*	-0.395* 0.730** -0.239	-0,072 0,367	-0,165	As	Hg	Se
b) Al Ba Ca Cd Cd Cr Cu Fe K Mg Mn Na Ni Sn Sr Ti V V Zn As Hg So	A1 0,374* 0,650** 0,256 0,888** -0,163 -0,211 0,466** 0,751** 0,080 0,884** 0,107 0,712** -0,255 0,939** 0,529** 0,609** 0,529** 0,609** 0,546** 0,781** -0,233 0,162 -0,438**	Ba 0,184 0,370* 0,624** 0,633** 0,419** 0,419** 0,404** 0,414** 0,414** 0,404** 0,404** 0,404** 0,404** 0,488** 0,39* 0,488** 0,39* 0,488** 0,39* 0,488** 0,39* 0,488** 0,488** 0,418 0,418 0,418 0,418 0,418 0,418 0,418 0,418 0,418 0,418 0,418 0,419 0,418 0,419 0,418 0,4190,419 0,419 0,419 0,419 0,419 0,4190,419 0,419 0,419 0,4190,41	Ca 0,524** 0,502** -0,259 -0,265 0,300 0,586** 0,231 0,565** 0,231 0,565** 0,231 0,565** 0,231 0,586** -0,290 0,651** 0,290 0,802** 0,745** 0,745** 0,745**	-0,037 0,135 0,200 0,518** 0,191 -0,016 -0,004 0,394* 0,516** 0,227 0,802** -0,035 0,613** 0,376* 0,288 -0,068	-0,367* -0,357* 0,265 0,791** -0,008 0,650** 0,844** 0,844** 0,844** 0,842** 0,372* -0,595** 0,547** -0,354** 0,163 -0,416**	Cr 0,728** 0,204 -0,129 0,123 -0,264 0,007 -0,116 0,895** -0,114 0,059 0,049 0,037** -0,130 0,625**	Cu 0,058 -0,212 -0,258 0,064 -0,258 0,064 -0,232 0,684*** -0,168 -0,193 0,686*** -0,264 0,513**	Fe 0,406** -0,116 0,180 0,575** 0,606** -0,075 0,664** 0,190 0,722** -0,074	0,039 0,773** 0,060 0,757** 0,214 0,835** 0,619** 0,619** 0,625** 0,187 0,399** -0,342*	Mg 0,060 -0,103 -0,167 0,092 0,192 -0,054 0,161 -0,026 0,055 -0,158 0,057	-0.032 0.608** -0.297 0.339** 0.319* 0.400** -0.547** 0.546** -0.323* 0.015 -0.328*	Na 0,243 -0,051 0,158 0,054 0,494** -0,118 0,418* 0,418* 0,135 -0,106 -0,194	-0,279 0,683** 0,554** 0,815* -0,815* -0,129 0,520** -0,261	-0,214 -0,086 -0,032 0,724** -0,201 0,894** -0,260 0,542**	0,517** 0,617** 0,752** 0,752* 0,192 0,151 -0,393*	Sn 0,493** -0,147 0,645** -0,015 0,686** -0,110	-0,334* 0,858** 0,178 0,384* -0,317*	-0,395* 0,730** -0,239 0,797**	-0,072 0,367* -0,302	-0,165 0,500**	-0,210	Hg	Se

Mn

Na

Ni

Pb

Tabela 81. Pirsonovi korelacioni koeficijenti za KSE: a) I faza; b) II faza; c) III faza i d) IV faza Cu

Fe

Cr

 Se
 0.678**
 -0.050
 0.001
 0.621**
 0.634**

 **
 Značajnost korelacije za 99% nivo značajnosti.
 *
 Značajnost korelacije za 95% nivo značajnosti.

c)

Al

Ba

Ca

Cd

Co

Cr

Cu

Fe

AI																							
Ba	-0.160																						
Co	-0,100																						
Ca	0,701**	-0,124																					
Cd	0,706**	0,065	0,793**																				
Co	0.117	-0.176	0.071	0.112																			
Cr	0.267	0.705**	0.227*	0.459**	0.129																		
0.	0,207	0,793***	0,527*	0,438	-0,158																		
Cu	0,285	0,683**	0,418**	0,636**	-0,018	0,687**																	
Fe	0.769**	-0.078	0.805**	0.899**	0.059	0.343*	0.469**																
K	0.710**	0.117	0.315*	0.228	0.227	0.152	0.022	0.100															
Ma	0,717	-0,117	0,515	0,228	0,227	0,152	0,022	0,177	0.050**														
wig	0,/1/**	-0,109	0,380*	0,371*	0,356*	0,144	0,072	0,292	0,8/8**														
Mn	0,885**	-0,219	0,474**	0,438**	0,244	0,076	0,082	0,443**	0,872**	0,906**													
Na	0.168	-0.072	0.131	0.042	0.372*	-0.003	-0.085	-0.131	0.558**	0.740**	0.468**												
Ni	0.692**	0.251*	0 572**	0 555**	0.400**	0.016	0.112	0.501**	0.564**	0.720**	0.725**	0.524**											
DL	0,082***	-0,531*	0,373***	0,333***	0,409***	0,016	0,115	0,501	0,364***	0,729**	0,723***	0,324***											
PO	-0,230	0,793**	-0,205	-0,030	-0,213	0,756**	0,318*	-0,146	-0,160	-0,177	-0,293	-0,092	-0,433**										
Si	0,959**	-0,179	0,616**	0,593**	0,085	0,233	0,197	0,710**	0,727**	0,669**	0,840**	0,100	0,596**	-0,246									
Sn	0.774**	-0.081	0.810**	0.905**	0.053	0.336*	0.470**	0.995**	0 199	0.296	0.452**	-0.133	0.499**	-0 144	0.709**								
Sr	0,116**	0.246*	0.042**	0.607**	0,033	0,550	0,470**	0.625**	0.140	0,220	0.207	0,100	0.214*	0.160	0.262*	0 622**							
T .	0,446**	0,546*	0,843**	0,09/**	0,021	0,05/**	0,670**	0,035***	0,149	0,226	0,207	0,109	0,314*	0,168	0,303*	0,623**							
\mathbb{T}^{n}	0,399**	0,009	0,569**	0,819**	0,036	0,246	0,501**	0,735**	-0,088	0,083	0,135	-0,120	0,314*	-0,062	0,251	0,736**	0,492**						
V	0,871**	-0,086	0,784**	0,874**	0,167	0,368*	0,444**	0,792**	0,614**	0,665**	0,718**	0,267	0,688**	-0,163	0,787**	0,797**	0,608**	0,633**					
Zn	0.071	0.785**	0.103	0.418**	0.003	0 744**	0.807**	0.238	0.105	0.022	0.059	0.037	0.006	0.637**	0.029	0.237	0.515**	0.352*	0.196				
As	0,071	0,785**	0,195	0,418	-0,003	0,744	0,807	0,238	-0,105	-0,022	-0,039	-0,037	0,000	0,037**	-0,029	0,237	0,515	0,352	0,190				
	0,559**	-0,030	0,448**	0,556**	-0,055	0,167	0,333*	0,693**	0,187	0,178	0,368*	-0,122	0,262	-0,090	0,498**	0,694**	0,246	0,565**	0,511**	0,188			
Hg	-0,212	0,746**	-0,180	0,003	-0,114	0,745**	0,275	-0,118	-0,126	-0,066	-0,257	0,026	-0,332*	0,909**	-0,232	-0,119	0,208	-0,033	-0,132	0,486**	-0,186		
Se	0,592**	0,045	0,621**	0,796**	0,205	0,323*	0,519**	0,702**	0,284	0,480**	0,456**	0,248	0,562**	-0,129	0,515**	0.697**	0,524**	0,621**	0,742**	0,251	0,416**	-0,022	
(b)	Δ1	Ba	Ca	Cd	Co	Cr		Fe	к	Mg	Mn	Na	Ni	Ph	Si	Sn	Sr	Ti	v	Zn	Δs	Hσ	Se
d)	Al	Ba	Ca	Cd	Co	Cr	Cu	Fe	K	Mg	Mn	Na	Ni	Pb	Si	Sn	Sr	Ti	V	Zn	As	Hg	Se
d) Al	Al	Ba	Ca	Cd	Co	Cr	Cu	Fe	K	Mg	Mn	Na	Ni	Pb	Si	Sn	Sr	Ti	V	Zn	As	Hg	Se
d) Al Ba	Al	Ba	Ca	Cd	Co	Cr	Cu	Fe	К	Mg	Mn	Na	Ni	Pb	Si	Sn	Sr	Ti	V	Zn	As	Hg	Se
d) Al Ba	Al	Ba	Ca	Cd	Co	Cr	Cu	Fe	K	Mg	Mn	Na	Ni	Pb	Si	Sn	Sr	Ti	V	Zn	As	Hg	Se
d) Al Ba Ca	A1	-0,536**	Ca	Cd	Co	Cr	Cu	Fe	К	Mg	Mn	Na	Ni	Pb	Si	Sn	Sr	Ti	V	Zn	As	Hg	Se
d) Al Ba Ca Cd	Al -0,096 0,158 0,832**	Ba -0,536** 0,290	Ca 0,008	Cd	Co	Cr	Cu	Fe	K	Mg	Mn	Na	Ni	Pb	Si	Sn	Sr	Ti	v	Zn	As	Hg	Se
d) Al Ba Ca Cd Co	A1 -0,096 0,158 0,832** 0,935**	Ba -0,536** 0,290 -0,129	Ca 0,008 0,312*	Cd 0,852**	Со	Cr	Cu	Fe	K	Mg	Mn	Na	Ni	Pb	Si	Sn	Sr	Ti	v	Zn	As	Hg	Se
d) Al Ba Ca Cd Co Cr	Al -0,096 0,158 0,832** 0,935** -0,156	Ba -0,536** 0,290 -0,129 -0,091	Ca 0,008 0,312* 0,045	Cd 0,852** 0,014	-0,101	Cr	Cu	Fe	K	Mg	Mn	Na	Ni	РЬ	Si	Sn	Sr	Ti	V	Zn	As	Hg	Se
d) Al Ba Ca Cd Co Cr Cu	Al -0,096 0,158 0,832** 0,935** -0,156 0,733**	Ba -0,536** 0,290 -0,129 -0,091 0,364*	Ca 0,008 0,312* 0,045 -0,221	Cd 0,852** 0,014 0.856**	-0,101 0,688**	-0.143	Cu	Fe	K	Mg	Mn	Na	Ni	РЬ	Si	Sn	Sr	Ti	V	Zn	As	Hg	Se
d) Al Ba Ca Cd Co Cr Cu Ea	A1 -0,096 0,158 0,832** 0,935** -0,156 0,733**	Ba -0,536** 0,290 -0,129 -0,091 0,364* 0,187	Ca 0,008 0,312* 0,045 -0,221	Cd 0,852** 0,014 0,856**	-0,101 0,688**	-0,143	Cu	Fe	К	Mg	Mn	Na	Ni	РЬ	Si	Sn	Sr	Ti	v	Zn	As	Hg	Se
d) Al Ba Ca Cd Co Cr Cu Fe	A1 -0,096 0,158 0,832** 0,935** -0,156 0,733** 0,885**	Ba -0,536** 0,290 -0,129 -0,091 0,364* 0,187	Ca 0,008 0,312* 0,045 -0,221 0,064	Cd 0,852** 0,014 0,856** 0,984**	-0,101 0,688** 0,895**	-0,143 0,055	0,815**	Fe	К	Mg	Mn	Na	Ni	РЬ	Si	Sn	Sr	Ti	v	Zn	As	Hg	Se
d) Al Ba Ca Cd Co Cr Cu Fe K	Al -0,096 0,158 0,832** 0,935** -0,156 0,733** 0,885** 0,959**	Ba -0,536** 0,290 -0,129 -0,091 0,364* 0,187 -0,001	Ca 0,008 0,312* 0,045 -0,221 0,064 0,124	Cd 0,852** 0,014 0,856** 0,984** 0,834**	-0,101 0,688** 0,895** 0,920**	-0,143 0,055 -0,148	Cu 0,815** 0,796**	Fe 0,884**	К	Mg	Mn	Na	Ni	Pb	Si	Sn	Sr	Ti	v	Zn	As	Hg	Se
d) Al Ba Ca Cd Co Cr Cu Fe K Mg	Al -0,096 0,158 0,832** 0,935** -0,156 0,733** 0,885** 0,959** 0,927**	Ba -0,536** 0,290 -0,129 -0,091 0,364* 0,187 -0,001 -0,200	Ca 0,008 0,312* 0,045 -0,221 0,064 0,124 0,359*	Cd 0,852** 0,014 0,856** 0,984** 0,834** 0,791**	-0,101 0,688** 0,895** 0,920** 0,988**	-0,143 0,055 -0,148 -0,152	Cu 0,815** 0,796** 0,611**	Fe 0.884** 0.842**	K 0,899**	Mg	Mn	Na	Ni	Pb	Si	Sn	Sr	Ti	v	Zn	As	Hg	Se
d) Al Ba Ca Cd Co Cr Cu Fe K Mg Mn	Al -0,096 0,158 0,832** 0,935** -0,156 0,733** 0,885** 0,959** 0,959** 0,927** 0,484**	Ba -0,536** 0,290 -0,129 -0,091 0,364* 0,187 -0,001 -0,200 0,018	Ca 0,008 0,312* 0,045 -0,221 0,064 0,124 0,359* 0,045	Cd 0,852** 0,014 0,856** 0,984** 0,984** 0,9834** 0,791** 0,487**	-0,101 0,688** 0,895** 0,920** 0,988** 0,494**	-0,143 0,055 -0,148 -0,152 -0,015	Cu 0,815** 0,796** 0,611** 0,394*	Fe 0,884** 0,842** 0,480**	K 0,899** 0,385*	Mg 0.452**	Mn	Na	Ni	Pb	Si	Sn	Sr	Ti	V	Zn	As	Hg	Se
d) Al Ba Ca Cd Co Cr Cu Fe K Mg Mn	Al -0,096 0,158 0,832** 0,935** 0,935** 0,156 0,733** 0,885** 0,959** 0,927** 0,484** 0,959** 0,927** 0,484**	Ba -0,536** 0,290 -0,129 -0,091 0,364* 0,187 -0,001 -0,200 0,018 0,040	Ca 0,008 0,312* 0,045 -0,221 0,064 0,124 0,359* 0,045	Cd 0,852** 0,014 0,856** 0,984** 0,834** 0,791** 0,487** 0,487**	-0,101 0,688** 0,895** 0,920** 0,988** 0,988**	-0,143 0,055 -0,148 -0,152 -0,015	Cu 0,815** 0,796** 0,611** 0,594* 0,594*	Fe 0,884** 0,842** 0,842**	K 0,899** 0,385* 0,721**	0,452** 0,901**	<u>Mn</u>	Na	Ni	РЬ	Si	Sn	Sr	Ti	V	Zn	As	Hg	Se
d) Al Ba Ca Cd Co Cr Cu Fe K Mg Mn Na	Al -0,096 0,158 0,832** 0,935** -0,156 0,733** 0,885** 0,959** 0,927** 0,484** 0,768**	Ba -0,536** 0,290 -0,129 -0,091 0,364* 0,187 -0,001 -0,200 0,018 -0,049	Ca 0,008 0,312* 0,045 -0,221 0,064 0,124 0,359* 0,045 0,364*	Cd 0,852** 0,014 0,856** 0,984** 0,834** 0,791** 0,487** 0,792**	-0,101 0,688** 0,895** 0,920** 0,988** 0,494** 0,840**	-0,143 0,055 -0,148 -0,152 -0,015 0,143	Cu 0,815** 0,796** 0,611** 0,394* 0,580**	Fe 0,884** 0,842** 0,842** 0,80** 0,822**	K 0,899** 0,385* 0,721**	Mg 0,452** 0,801**	<u>Mn</u> 0,436**	Na	Ni	Pb	Si	Sn	Sr	Ti	V	Zn	As	Hg	Se
d) Al Ba Ca Cd Co Cr Cu Fe K Mg Mn Na Ni	A1 -0,096 0,158 0,832** 0,935** -0,156 0,733** 0,885** 0,959** 0,927** 0,927** 0,927** 0,927** 0,927** 0,960**	Ba -0,536** 0,290 -0,129 -0,091 0,364* 0,187 -0,001 -0,200 0,018 -0,049 -0,114	Ca 0,008 0,312* 0,045 -0,221 0,064 0,124 0,045 0,045 0,364*	Cd 0,852** 0,014 0,856** 0,984** 0,791** 0,487** 0,487** 0,677**	-0,101 0,688** 0,895** 0,928** 0,494** 0,494** 0,494**	-0,143 0,055 -0,148 -0,152 -0,015 0,143 0,115	Cu 0,815** 0,796** 0,611** 0,394* 0,580** 0,564**	Fe 0,884** 0,842** 0,480** 0,822** 0,719**	K 0,899** 0,385* 0,721** 0,685**	Mg 0.452** 0.801** 0.687**	Mn 0,436** 0,310*	Na 0,590**	Ni	Pb	Si	Sn	Sr	Ti .	v	Zn	As	Hg	Se
d) Al Ba Ca Cd Co Cr Cu Fe K Mg Mn Na Ni Pb	Al -0,096 0,158 0,832** 0,935** 0,935** 0,733** 0,885** 0,959** 0,927** 0,484** 0,768** 0,660** -0,222	Ba -0,536** 0,290 -0,129 -0,091 0,364* 0,187 -0,001 -0,200 0,018 -0,049 -0,114 0,872**	Ca 0,008 0,312* 0,045 -0,221 0,064 0,124 0,359* 0,045 0,34* 0,218 -0,534**	Cd 0,852** 0,014 0,856** 0,984** 0,984** 0,991** 0,834** 0,791** 0,677** 0,014	-0,101 0,688** 0,895** 0,920** 0,988** 0,895** 0,920** 0,988** 0,988** 0,729** -0,281	-0,143 0,055 -0,148 -0,152 -0,015 0,143 0,115 -0,022	Cu 0,815** 0,796** 0,504* 0,394* 0,394* 0,564** 0,147	Fe 0.884** 0.842** 0.842** 0.822** 0.719** -0.057	K 0,899** 0,385* 0,721** 0,685** -0,129	Mg 0.452** 0.801** 0.687** -0.321*	Mn 0,436** 0,310* -0,072	Na 0,590** -0,250	-0.291	Pb	Si	Sn	Sr	Ti	V	Zn	As	Hg	Se
d) Al Ba Ca Cd Co Cr Cu Fe K Mg Mn Na Ni Pb Si	Al -0,096 0,158 0,832** 0,935** -0,156 0,733** 0,885** 0,959** 0,927** 0,484** 0,660** -0,222 -0,377*	Ba -0,536** 0,290 -0,191 0,364* 0,187 -0,001 -0,200 0,018 -0,049 -0,114 0,872** -0,049 -0,114 0,872**	Ca 0,008 0,312* 0,045 -0,221 0,064 0,124 0,359* 0,045 0,364* 0,218 0,218	Cd 0,852** 0,014 0,856** 0,984** 0,792** 0,487** 0,677** 0,014 0,246	-0,101 0,688** 0,895** 0,920** 0,920** 0,494** 0,840** 0,729** -0,281 -0,269	Cr -0,143 0,055 -0,148 -0,152 -0,015 0,143 0,115 -0,022 0,103	Cu 0,815** 0,796** 0,611** 0,394* 0,580** 0,564** 0,147 0,342*	Fe 0,884** 0,842** 0,842** 0,80** 0,802** 0,719** -0,057 0,261	K 0,899** 0,385* 0,721** 0,685** -0,129 0,364	Mg 0.452** 0.801** 0.687** -0.321*	Mn 0,436** 0,310* -0,072 0,240	Na 0,590** -0,250 0,002	-0,291	Pb	Si	Sn	Sr	Ti	V	Zn	As	Hg	Se
d) Al Ba Ca Cd Co Cr Cu Fe K Mg Mn Na Ni Pb Si Si	Al -0,096 0,158 0,832** 0,935** 0,156 0,733** 0,885** 0,959** 0,927** 0,484** 0,768** 0,660** -0,222 -0,337* 0,805**	Ba -0,536** 0,290 -0,129 -0,091 0,364* 0,187 -0,001 -0,200 0,018 -0,049 -0,114 0,872** -0,062 0,010	Ca 0,008 0,312* 0,021 0,064 0,124 0,369* 0,364* 0,364* 0,218 -0,534**	Cd 0.852** 0.014 0.856** 0.834** 0.834** 0.791** 0.487** 0.677** 0.014 -0.246	-0,101 0,688** 0,895** 0,920** 0,494** 0,494** 0,840** -0,281 -0,269 0,800**	Cr -0,143 0,055 -0,148 -0,152 -0,015 0,143 0,115 -0,022 0,103 0,045	Cu 0,815** 0,796** 0,611** 0,580** 0,580** 0,564** 0,147 -0,342* 0,915**	Fe 0,884** 0,842** 0,480** 0,719** -0,057 -0,261 0,000**	K 0.899** 0.385* 0.721** -0.129 -0.364* 0.824*	Mg 0.452** 0.801** -0.321* -0.257 0.9414*	Mn 0,436** 0,310* -0,072 -0,240 0,477**	Na 0,590** -0,250 0,002 0,015*	-0,291 -0,199	-0.079	Si	Sn	Sr	Ti	V	Zn	As	Hg	Se
d) Al Ba Ca Cd Co Cr Cu Fe K Mg Mn Na Ni Pb Si Sn	Al -0,096 0,158 0,832** 0,935** 0,935** 0,733** 0,885** 0,959** 0,927** 0,484** 0,768** 0,660** -0,222 -0,337* 0,886**	Ba -0,536** 0,290 -0,129 -0,091 0,364* 0,187 -0,001 -0,200 0,018 -0,049 -0,114 0,872** -0,062 0,197	Ca 0,008 0,312* 0,045 -0,221 0,064 0,124 0,359* 0,045 0,364* 0,218 -0,534** 0,104 0,056	Cd 0,852** 0,014 0,856** 0,984** 0,834** 0,791** 0,487** 0,677** 0,014 -0,246 0,986**	-0,101 0,688** 0,895** 0,920** 0,888** 0,920** 0,988** 0,494** 0,729** -0,281 -0,269 0,892**	-0,143 0,055 -0,148 -0,152 -0,015 0,143 0,115 -0,022 0,103 0,048	Cu 0,815** 0,796** 0,504** 0,394* 0,564** 0,147 -0,342* 0,815**	Fe 0.884** 0.842** 0.842** 0.842** 0.719** -0.057 -0.261 0.998**	K 0,899** 0,385* 0,721** 0,685** -0,129 -0,364* 0,883**	Mg 0.452** 0.801** 0.687** -0.321* -0.321* -0.257 0.842**	Mn 0,436** 0,310* -0,072 -0,240 0,477**	Na 0,590** -0,250 0,002 0,815**	-0,291 -0,159 0,718**	Pb -0,079 -0,044	Si -0,259	Sn	Sr	Ti	V	Zn	As	Hg	Se
d) Al Ba Ca Cd Co Cr Cu Fe K Mg Mn Na Ni Pb Si Sn Sr	A1 -0,096 0,158 0,832** 0,935** 0,959** 0,959** 0,959** 0,927** 0,484** 0,768** 0,660** -0,222 -0,337* 0,888**	Ba -0,536** 0,290 -0,199 0,364* 0,187 -0,001 -0,200 0,018 -0,049 -0,114 0,872** -0,062 0,197 0,251	Ca 0,008 0,312* 0,045 -0,221 0,064 0,124 0,045 0,364* 0,218 0,364* 0,218 0,056 0,083	Cd 0.852** 0.014 0.856** 0.984** 0.792** 0.792** 0.677** 0.014 -0.246 0.986** 0.983**	-0,101 0,688** 0,895** 0,920** 0,984** 0,840** 0,840** 0,840** 0,8269 0,825**	Cr -0,143 0,055 -0,148 -0,015 -0,015 -0,015 -0,012 0,143 0,115 -0,022 0,103 0,048 -0,142	Cu 0,815** 0,796** 0,611** 0,580** 0,580** 0,564** 0,147 -0,342* 0,815** 0,815**	Fe 0.884** 0.842** 0.480** 0.822** 0.719** -0.057 -0.261 0.998**	K 0,899** 0,385* 0,721** 0,685** -0,129 -0,364* 0,833** 0,870**	Mg 0,452** 0,801** 0,687** -0,321* -0,257 0,842** 0,813**	Mn 0,436** 0,310* -0,072 -0,240 0,477**	Na 0,590** -0,250 0,002 0,815** 0,829**	Ni -0,291 -0,159 0,718** 0,607**	Pb -0,079 -0,044 0,059	-0,259 -0,246	<u>Sn</u> 0,895**	Sr	Ti	V	Zn	As	Hg	Se
d) Al Ba Ca Cd Co Cr Cu Fe K Mg Mn Na Ni Pb Si Sn Sr Ti	Al -0,096 0,158 0,832** 0,935** 0,955** 0,959** 0,959** 0,927** 0,484** 0,768** 0,660** -0,222 -0,337* 0,886** 0,886** 0,886** 0,886**	Ba -0,536** 0,290 -0,129 -0,091 0,364* 0,187 -0,001 -0,200 0,018 -0,049 -0,014 0,872** -0,062 0,197 0,251	Ca 0,008 0,312* 0,045 -0,221 0,064 0,124 0,359* 0,064 0,218 -0,534** 0,104 0,056 0,083 0,509**	Cd 0,852** 0,014 0,856** 0,984** 0,834** 0,791** 0,487** 0,677** 0,014 -0,246 0,986** 0,893**	-0,101 0,688** 0,895** 0,920** 0,848** 0,840** -0,281 -0,269 0,822** 0,858** 0,837**	Cr -0,143 0,055 -0,148 -0,152 -0,015 0,143 -0,015 0,143 -0,022 0,103 0,048 -0,142 -0,147	Cu 0,815** 0,796** 0,611** 0,580** 0,564** 0,147 -0,342* 0,817** 0,381*	Fe 0,884** 0,802** 0,802** 0,719** -0,057 -0,261 0,998** 0,657**	K 0.899** 0.385* 0.721** 0.685** -0.129 -0.364* 0.870** 0.671**	Mg 0,452** 0,801** 0,687** -0,321* -0,257 0,842** 0,813** 0,859**	Mn 0,436** 0,310* -0,072 -0,240 0,470** 0,516** 0,410**	Na 0,590** -0,250 0,002 0,819** 0,829** 0,844**	-0,291 -0,159 0,718* 0,607** 0,485**	Pb -0,079 -0,044 0,059 -0,330*	-0,259 -0,246 -0,031	Sn 0,895** 0,650**	Sr 0,738**	Ti	V	Zn	As	Hg	Se
d) Al Ba Ca Cd Co Cr Cu Fe K Mg Mn Na Ni Pb Si Sn Sr Ti V	Al -0,096 0,158 0,832** 0,935** 0,935** 0,885** 0,885** 0,959** 0,927** 0,484** 0,768** 0,660** -0,222 -0,337* 0,886** 0,888** 0,768** 0,888** 0,768** 0,768** 0,600** 0,768** 0,767** 0,767** 0,767** 0,767** 0,767** 0,767** 0,767** 0,767** 0,767** 0,777**	Ba -0,536** 0,290 -0,129 -0,091 0,364* 0,187 -0,001 -0,200 0,018 -0,049 -0,114 0,872** -0,062 0,197 0,251 -0,223 -0,053	Ca 0,008 0,312* 0,045 -0,221 0,064 0,124 0,359* 0,045 0,045 0,045 0,045 0,083 0,504** 0,104 0,056 0,083 0,509*	Cd 0,852** 0,014 0,856** 0,984** 0,834** 0,791** 0,487** 0,677** 0,014 0,986** 0,893** 0,616**	-0,101 0,688** 0,895** 0,920** 0,988** 0,494** 0,729** -0,281 -0,269 0,892** 0,858** 0,858** 0,858**	Cr -0,143 0,055 -0,148 -0,152 -0,015 0,143 0,115 -0,022 0,103 0,048 -0,142 -0,147 -0,086	Cu 0.815** 0.796** 0.504** 0.504** 0.147 -0.342* 0.815** 0.817** 0.817* 0.817*	Fe 0.884** 0.842** 0.842** 0.842** 0.822** 0.719** -0.057 -0.261 0.998** 0.657** 0.657** 0.914**	K 0,899** 0,385* 0,721** 0,685** -0,129 -0,364* 0,833** 0,870** 0,671**	Mg 0.452** 0.801** 0.687** -0.321* -0.321* -0.257 0.842** 0.813** 0.859** 0.899**	Mn 0,436** 0,310* 0,072 -0,240 0,477** 0,516** 0,410** 0,481**	Na 0,590** -0,250 0,002 0,815** 0,829** 0,844** 0,829**	-0,291 -0,159 0,718** 0,485** 0,711**	-0,079 -0,044 0,059 -0,304 -0,3104	-0,259 -0,246 -0,031 -0,296	0.895** 0.650** 0.917**	0,738** 0,892**	0.736**	V	Zn	As	Hg	Se
d) Al Ba Ca Cd Co Cr Cu Fe K Mg Mn Na Ni Pb Si Sn Sr Ti V Z	A1 -0,096 0,158 0,832** 0,935** 0,935** 0,959** 0,927** 0,885** 0,927** 0,885** 0,927** 0,860** -0,222 -0,337* 0,886** 0,660** -0,222 -0,337* 0,888** 0,747** 0,976**	Ba -0,536** 0,290 -0,091 0,364* 0,187 -0,001 -0,200 0,018 -0,049 -0,114 0,872** -0,062 0,197 -0,251 -0,223 -0,058	Ca 0,008 0,312* 0,045 -0,221 0,064 0,124 0,045 0,364* 0,218 0,364* 0,218 0,045 0,0534** 0,104 0,059** 0,143 0,509**	Cd 0.852** 0.014 0.856** 0.984** 0.791** 0.487** 0.677** 0.014 -0.246 0.986** 0.893** 0.616** 0.869**	-0,101 0,688** 0,895** 0,920** 0,920** 0,840** 0,840** 0,840** 0,828* 0,858** 0,858** 0,837** 0,837**	Cr -0,143 0,055 -0,148 -0,152 -0,015 -0,022 0,143 0,115 -0,022 0,103 0,048 -0,142 -0,147 -0,086	Cu 0,815** 0,796** 0,611** 0,580** 0,564** 0,147 -0,342* 0,815** 0,817** 0,818* 0,818* 0,818*	Fe 0,884** 0,842** 0,842** 0,719** -0,057 -0,261 0,898** 0,894** 0,894**	K 0,899** 0,385* 0,721** 0,685** -0,129 -0,364* 0,870** 0,870** 0,870**	Mg 0,452** 0,801** 0,687** -0,321* -0,321* 0,842** 0,813** 0,813** 0,839** 0,938**	Mn 0,436** 0,310* -0,072 -0,240 0,516** 0,516** 0,410**	Na 0,590** -0,250 0,002 0,815** 0,829** 0,844** 0,794**	-0,291 -0,159 0,718** 0,607** 0,485** 0,711**	-0,079 -0,044 0,059 -0,330* -0,194	-0,259 -0,246 -0,031 -0,296	0,895** 0,650** 0,917**	0.738** 0.892**	0,736**	V	Zn	As	Hg	Se
d) Al Ba Ca Cd Co Cr Cu Fe K Mg Mn Na Ni Pb Si Sr Ti V Zn	A1 -0,096 0,158 0,832** 0,935** 0,955** 0,959** 0,959** 0,927** 0,484** 0,768** 0,660** -0,222 -0,337* 0,886** 0,886** 0,886** 0,886** 0,976** 0,976**	Ba -0,536** 0,290 -0,129 -0,091 0,364* 0,187 -0,001 -0,200 0,018 -0,049 -0,114 0,872** -0,062 0,197 0,251 -0,223 -0,058 0,746**	Ca 0,008 0,312* 0,045 -0,221 0,064 0,124 0,359* 0,064 0,218 -0,534** 0,104 0,509* 0,6083 0,509** 0,143 -0,289	Cd 0,852** 0,014 0,856** 0,984** 0,834** 0,791** 0,487** 0,677** 0,014 -0,246 0,986** 0,893** 0,616** 0,869** 0,657**	-0,101 0,688** 0,895** 0,920** 0,848** 0,840** -0,281 -0,269 0,822** 0,858** 0,837** 0,837** 0,951**	Cr -0,143 0,055 -0,148 -0,152 -0,015 0,143 -0,022 0,103 0,048 -0,142 -0,048 -0,147 -0,086 0,006	Cu 0,815** 0,796** 0,611** 0,580** 0,564** 0,147 -0,342* 0,815** 0,815** 0,381* 0,745** 0,617**	Fe 0,884** 0,802** 0,802** 0,719** -0,057 -0,261 0,994** 0,657** 0,914** 0,561**	K 0.899** 0.385* 0.721** 0.685** -0.129 -0.364* 0.870** 0.671** 0.671** 0.937**	Mg 0,452** 0,801** 0,687** -0,321* -0,257 0,842** 0,813** 0,859** 0,938** 0,147	Mn 0,436** 0,310* -0,072 -0,240 0,470** 0,410** 0,410** 0,481** 0,238	Na 0,590** -0,250 0,002 0,819** 0,844** 0,844** 0,844**	-0,291 -0,159 0,718** 0,485** 0,711** 0,321*	Pb -0,079 -0,044 0,059 -0,330* -0,194 0,360*	-0,259 -0,246 -0,031 -0,296 -0,051	Sn 0,895** 0,650** 0,917** 0,562**	Sr 0,738** 0,892** 0,494**	0,736** 0,061	0,273	Zn	As	Hg	Se
d) Al Ba Ca Cd Co Cr Uu Fe K Mg Mn Na Ni Si Sn Sr Ti V V Zn As	Al -0,096 0,158 0,832** 0,935** -0,156 0,733** 0,885** 0,959** 0,927** 0,484** 0,768** 0,660** 0,886** 0,886** 0,886** 0,886** 0,747** 0,886** 0,76** 0,204 0,585**	Ba -0,536** 0,290 -0,129 -0,091 0,364* 0,187 -0,001 -0,200 0,018 -0,049 -0,114 -0,049 -0,114 -0,022 0,197 0,251 -0,251 -0,253 -0,058 0,746** -0,079	Ca 0,008 0,312* 0,045 -0,221 0,064 0,124 0,045 0,364* 0,218 0,045 0,364* 0,0143 0,509** 0,143 -0,221	Cd 0,852** 0,014 0,856** 0,984** 0,834** 0,791** 0,487** 0,677** 0,014 -0,246 0,986** 0,809** 0,667** 0,657** 0,650**	Co -0,101 0,688** 0,895** 0,920** 0,988** 0,892** 0,892** 0,858** 0,858** 0,857** 0,951** 0,242 0,620**	Cr -0,143 0,055 -0,148 -0,152 -0,015 0,143 0,115 -0,022 0,103 0,048 -0,142 -0,186 0,006 -0,044	Cu 0.815** 0.796** 0.504** 0.394* 0.564** 0.147 -0.342* 0.815** 0.817** 0.817** 0.817** 0.617**	Fe 0.884** 0.842** 0.842** 0.822** 0.719** -0.057 -0.261 0.998** 0.657** 0.561** 0.566**	K 0,899** 0,385* 0,721** 0,865** -0,129 -0,364* 0,870** 0,870** 0,671** 0,937** 0,263 0,601**	Mg 0,452** 0,801** 0,87** -0,257 0,842** 0,813** 0,839** 0,938** 0,147 0,623**	Mn 0,436** 0,310* -0,072 -0,240 0,477** 0,410** 0,410** 0,481** 0,238 0,199	Na 0,590** -0,250 0,002 0,815** 0,829** 0,844** 0,794** 0,343* 0,545**	-0,291 -0,159 0,718** 0,407** 0,407** 0,21* 0,21* 0,21*	-0,079 -0,044 0,059 -0,330* -0,360* -0,159	-0,259 -0,246 -0,031 -0,296 -0,051 -0,146	Sn 0,895** 0,650** 0,917** 0,562**	Sr 0,738** 0,892** 0,494** 0,494**	Ti 0,736** 0,061 0,538**	0.273 0.595**	Zn 0,140	As	Hg	Se
d) Al Ba Ca Cd Co Cr Cu Fe K Mn Na Ni Pb Si Si Sr Ti V Zn As Hg	A1 -0,096 0,158 0,832** 0,935** 0,935** 0,959** 0,927** 0,	Ba -0,536** 0,290 -0,091 0,364* 0,187 -0,001 -0,200 0,018 -0,049 -0,114 0,872** -0,062 0,197 -0,251 -0,223 -0,058 0,746** -0,079 0,506**	Ca 0,008 0,312* 0,04 0,124 0,044 0,124 0,045 0,045 0,045 0,044* 0,045 0,089 0,0509** 0,143 -0,599** 0,143 -0,509**	Cd 0.852** 0.014 0.856** 0.984** 0.791** 0.487** 0.677** 0.014 -0.246 0.986** 0.893** 0.616** 0.869** 0.657** 0.502**	-0,101 0,688** 0,895** 0,920** 0,920** 0,494** 0,840** 0,840** 0,822* 0,828* 0,837** 0,837** 0,951** 0,242 0,620**	Cr -0,143 0,055 -0,148 -0,152 -0,015 0,143 0,115 -0,022 0,103 0,048 -0,142 -0,147 -0,086 0,006 -0,044 0,251	Cu 0,815** 0,796** 0,611** 0,580** 0,564** 0,147 -0,342** 0,815** 0,817** 0,817** 0,8181* 0,745** 0,616**	Fe 0,884** 0,842** 0,842** 0,822** 0,822** 0,824** 0,826 0,894** 0,898** 0,894** 0,894** 0,894** 0,8914** 0,894**	K 0,899** 0,385* 0,721** 0,685** -0,129 -0,364* 0,870** 0,870** 0,871** 0,263 0,601** 0,263 0,603	Mg 0,452** 0,801** 0,687** -0,321* -0,321* 0,813** 0,813** 0,813** 0,938** 0,147 0,623**	Mn 0,436** 0,310* -0,072 -0,240 0,516** 0,516** 0,410** 0,516** 0,410** 0,238 0,199 -0,126	Na 0,590** -0,250 0,815** 0,829** 0,844** 0,794** 0,843* 0,545* -0,278	Ni -0,291 -0,159 0,607** 0,607** 0,485** 0,711** 0,419** 0,349*	Pb -0,079 -0,044 0,059 -0,330* -0,159 0,754**	-0,259 -0,246 -0,031 -0,296 -0,051 -0,146 0,064	Sn 0,895** 0,650** 0,505** 0,556** -0,231	Sr 0,738** 0,892** 0,494** 0,494** 0,494**	Ti 0,736** 0,061 0,538** -0,402**	0,273 0,595** -0,301	Zn 0,140 0,045	-0.212	Hg	Se

Mg

Mn

Na

K

Ni

Pb

Si

Sn

Sr

Ti

V

Zn

As

Hg

Se

 Se
 -0,304
 -0,284
 0,158
 -0,008
 -0,321*

 **
 Značajnost korelacije za 99% nivo značajnosti.

Tab	ela 82.	Pirson	novi k	orelaci	ioni ko	oeficije	enti za	MTSE	E: a) I :	faza; t) II fa	za; c)	III faz	a i d) I	V faza	ì							
a)	Al	Ba	Ca	Cd	Co	Cr	Cu	Fe	К	Mg	Mn	Na	Ni	Pb	Si	Sn	Sr	Ti	v	Zn	As	Hg	Se
Al Ba	0,957**	0 559**																					
Cd	0,409**	0,368*	0,383*																				
Co	0,930**	0,919**	0,470**	0,464**																			
Cr	0,701**	0,740**	0,246	0,267	0,659**																		
Cu	-0,073	0,016	-0,078	0,215	-0,100	0,234	0.040																
Fe	0,683**	0,64/**	0,267	0,295	0,673**	0,803**	-0,049	0.730**															
Mg	0,755**	0,790**	0,482**	0,238	0.623**	0.361*	-0,155	0,730**	0.573**														
Mn	0,864**	0,908**	0,582**	0,353*	0,927**	0,607**	-0,109	0,600**	0,804**	0,704**													
Na	-0,081	-0,123	0,131	0,117	-0,028	-0,075	0,023	0,004	-0,159	-0,053	-0,025												
Ni	0,845**	0,869**	0,347*	0,456**	0,897**	0,845**	0,184	0,769**	0,785**	0,494**	0,834**	-0,036											
Pb	0,507**	0,610**	0,167	0,477**	0,535**	0,636**	0,468**	0,400**	0,345*	0,209	0,455**	-0,014	0,579**										
Si	0,957**	0,930**	0,595**	0,442**	0,911**	0,615**	-0,072	0,583**	0,725**	0,638**	0,882**	0,078	0,791**	0,531**									
Sn Sn	0,684**	0,646**	0,270	0,309*	0,677**	0,799**	-0,047	1,000**	0,727**	0,369*	0,601**	0,009	0,769**	0,408**	0,587**	0.206							
Ti	0,455**	0,517**	0.255	0,331**	0,324***	0,295	-0,026	0,502	0,439***	0,706**	0,653**	-0.063	0,434***	0,203	0,495***	0,500	0.279						
v	0.916**	0.918**	0.388*	0.309*	0.917**	0,746**	-0.105	0.807**	0.823**	0.533**	0.873**	-0.104	0.900**	0,460**	0.831**	0.804**	0.411**	0.858**					
Zn	0,146	0,293	-0,027	0,355*	0,186	0,487**	0,741**	0,192	0,101	-0,029	0,148	-0,013	0,370*	0,861**	0,160	0,196	0,111	0,183	0,166				
As	0,770**	0,789**	0,348*	0,272	0,771**	0,867**	-0,064	0,916**	0,884**	0,495**	0,771**	-0,121	0,867**	0,416**	0,679**	0,911**	0,420**	0,901**	0,895**	0,196			
Hg	-0,171	-0,148	-0,355*	-0,145	-0,181	0,055	0,123	-0,056	-0,238	-0,302	-0,231	-0,099	-0,154	0,281	-0,179	-0,055	-0,387*	-0,017	-0,179	0,331*	-0,164		
Se	0,584**	0,637**	0,345*	0,329*	0,631**	0,678**	-0,079	0,719**	0,806**	0,404**	0,690**	-0,135	0,743**	0,268	0,526**	0,716**	0,486**	0,718**	0,731**	0,120	0,846**	-0,243	
b)	Al	Ba	Ca	Cd	Co	Cr	Cu	Fe	K	Mg	Mn	Na	Ni	Pb	Si	Sn	Sr	Ti	v	Zn	As	Hg	Se
Al	0.000**																						
Ба	-0.034	0.241																					
Cd	0.272	0.381*	0.592**																				
Co	0,738**	0,558**	-0,324*	-0,154																			
Cr	0,157	0,186	-0,072	0,174	-0,231																		
Cu	0,077	0,030	0,129	0,212	-0,270	0,677**																	
Fe	0,369*	0,269	-0,018	0,474**	0,034	0,580**	0,336*																
K	0,568**	0,574**	-0,138	0,142	0,769**	-0,117	-0,225	0,237	0.104														
Mg	0,295	0,432**	0,203	0,033	0,376*	-0,060	0,016	-0,030	0,194	0.367*													
Na	0.213	0.165	0.498**	0.400**	-0.042	0.256	0.588**	0,029	0.002	0,007	-0.043												
Ni	0,817**	0,704**	-0,056	0,304	0,820**	-0,051	-0,170	0,361*	0,843**	0,290	0,844**	0,032											
Pb	0,204	0,238	-0,007	0,239	-0,176	0,954**	0,699**	0,505**	-0,096	-0,003	-0,218	0,418**	-0,049										
Si	0,768**	0,494**	-0,060	0,204	0,461**	0,481**	0,494**	0,492**	0,394*	0,173	0,436**	0,462**	0,578**	0,519**									
Sn	0,363*	0,257	-0,019	0,508**	0,004	0,596**	0,352*	0,996**	0,212	-0,049	0,004	0,129	0,345*	0,527**	0,489**								
Sr	0,099	0,286	0,898**	0,772**	-0,295	0,125	0,348*	0,198	-0,042	0,163	-0,177	0,712**	0,033	0,220	0,159	0,213	0						
	0,162	0,127	-0,019	0,102	-0,114	0,739**	0,525**	0,634**	0,028	-0,141	-0,211	0,229	0,064	0,675**	0,505**	0,623**	0,107	0.100					
Zn	0.115	0,389***	0.135	0.329*	-0.317*	0.923**	0.839**	0,525***	-0.212	-0.025	-0 344*	0.542**	-0.136	0.957**	0,509**	0,550**	0,328***	0.674**	0.096				
As	0,408**	0,469**	0,162	0,551**	0,390*	-0,043	-0,177	0,564**	0,701**	0,025	0,427**	-0,070	0,709**	-0,080	0,237	0,549**	0,264	0,085	0,769**	-0,104			
Hg	-0,115	-0,075	-0,084	0,020	-0,316*	0,558**	0,741**	0,238	-0,288	-0,061	-0,337*	0,075	-0,247	0,500**	0,208	0,247	-0,032	0,529**	-0,097	0,585**	-0,248		
Se	-0,304	-0,284	0,158	-0,008	-0,321*	-0,037	0,164	-0,086	-0,276	-0,220	-0,322*	0,191	-0,298	0,005	-0,086	-0,072	0,149	0,009	-0,248	0,095	-0,135	-0,038	

** Značajnost korelacije za 95% nivo značajnosti.

c)	Al	Ba	Ca	Cd	Co	Cr	Cu	Fe	K	Mg	Mn	Na	Ni	Pb	Si	Sn	Sr	Ti	v	Zn	As	Hg	Se
Al																							
Ba	0,357*																						
Ca	-0,525**	-0,389*																					
	0,448**	0,368*	0,030																				
	0,870**	0,407**	-0,433**	0,723**	0.405++																		
	0,31/*	0,830**	-0,436**	0,45/**	0,435**	0.000++																	
Fe	-0,119	0,640**	-0,225	0,148	0,010	0,820**	0.025																
K	0,639**	0,310*	-0,142	0,944**	0,84/**	0,384*	-0,025	0.252*															
Mo	0,754**	0,392*	-0,410**	0,155	0,536**	0,165	-0,220	0,353*	0.175														
Mn	0.844**	-0,033	0,328	0,220	0,090	-0,202	-0,181	0,215	0,175	0.100													
Na	0.479**	0.317*	-0,327	0,022**	0.550**	0,355*	-0,055	0,719**	0.322*	0,190	0 500**												
Ni	0.860**	0.452**	0,015	0,552**	0.042**	0,419**	0,175	0,524**	0,522*	0,107	0,399**	0.611**											
Pb	-0.068	0,452	-0,575	0,700	0.014	0.834**	0.898**	-0.019	-0.178	-0.200	-0.026	0.204	-0.018										
Si	0.972**	0.442**	-0 565**	0.498**	0.892**	0.408**	-0.060	0.685**	0 791**	0.025	0.853**	0.551**	0.914**	0.003									
Sn	0.645**	0.310*	-0.143	0.944**	0.849**	0.385*	-0.024	1.000**	0.359*	0.226	0.725**	0.531**	0.895**	-0.017	0.690**								
Sr	-0.323*	-0.015	0.748**	0.354*	-0.164	-0.055	0.006	0.166	-0.266	0,195	-0.075	0.230	-0.068	-0.095	-0.321*	0.157							
Ti	0.376*	-0.027	-0.120	0.319*	0.319*	-0.088	-0.260	0.406**	0.416**	0.492**	0.331*	0.316*	0.428**	-0.258	0.395*	0.418**	-0.179						
v	0,618**	0,338*	-0,097	0,820**	0,707**	0,308*	-0,099	0,855**	0,555**	0,325*	0,753**	0,646**	0,857**	-0,108	0,681**	0,860**	0,195	0,634**					
Zn	-0,037	0,740**	-0,238	0,358*	0,159	0,864**	0,917**	0,169	-0,206	-0,185	0,049	0,205	0,115	0,788**	0,034	0,169	0,046	-0,209	0,068				
As	0,036	0,310*	0,089	0,261	0,062	0,265	0,110	0,255	0,152	0,416**	0,137	0,008	0,138	0,263	0,047	0,254	0,264	0,059	0,245	0,120			
Hg	-0,084	0,341*	-0,306	-0,010	-0,058	0,521**	0,364*	-0,056	-0,180	-0,226	-0,079	0,016	-0,063	0,653**	-0,021	-0,053	-0,224	-0,219	-0,126	0,451**	0,311*		
Se	-,227	0,238	-0,016	0,043	-0,180	0,427**	0,324*	-0,069	-0,291	-0,201	-0,143	0,097	-0,139	0,562**	-0,174	-0,070	0,216	-0,294	-0,075	0,366*	0,400**	0,772**	
d)	Al	Ba	Ca	Cd	Co	Cr	Cu	Fe	K	Mg	Mn	Na	Ni	Pb	Si	Sn	Sr	Ti	v	Zn	As	Hg	Se
d) Al	Al	Ba	Ca	Cd	Co	Cr	Cu	Fe	K	Mg	Mn	Na	Ni	Pb	Si	Sn	Sr	Ti	v	Zn	As	Hg	Se
d) Al Ba	A1	Ba	Ca	Cd	Co	Cr	Cu	Fe	K	Mg	Mn	Na	Ni	Pb	Si	Sn	Sr	Ti	V	Zn	As	Hg	Se
d) Al Ba Ca	A1 -0,285 -0,418**	Ba -0,174	Ca	Cd	Co	Cr	Cu	Fe	K	Mg	Mn	Na	Ni	РЬ	Si	Sn	Sr	Ti	v	Zn	As	Hg	Se
d) Al Ba Ca Cd	Al -0,285 -0,418** 0,538**	Ba -0,174 0,119	-0,154	Cd	Co	Cr	Cu	Fe	K	Mg	Mn	Na	Ni	Рb	Si	Sn	Sr	Ti	V	Zn	As	Hg	Se
d) Al Ba Ca Cd Co	Al -0,285 -0,418** 0,538** 0,789**	Ba -0,174 0,119 -0,494**	-0,154 -0,081	Cd 0,626**	Со	Cr	Cu	Fe	K	Mg	Mn	Na	Ni	РЬ	Si	Sn	Sr	Ti	v	Zn	As	Hg	Se
d) Al Ba Ca Cd Co Cr	A1 -0,285 -0,418** 0,538** 0,789** -0,139	-0,174 0,119 -0,494** -0,017	-0,154 -0,081 0,204	Cd 0,626** -0,054	-0,145	Cr	Cu	Fe	K	Mg	Mn	Na	Ni	Pb	Si	Sn	Sr	Ti	V	Zn	As	Hg	Se
d) Al Ba Ca Cd Co Cr Cu	A1 -0,285 -0,418** 0,538** 0,789** -0,139 -0,025	-0,174 0,119 -0,494** -0,017 0,940**	-0,154 -0,081 0,204 -0,261	Cd 0,626** -0,054 0,319*	-0,145 -0,247	Cr -0,036	Cu	Fe	K	Mg	Mn	Na	Ni	РЬ	Si	Sn	Sr	Ti	V	Zn	As	Hg	Se
d) Al Ba Ca Cd Co Cr Cu Fe	A1 -0,285 -0,418** 0,538** 0,789** -0,139 -0,025 0,896**	-0,174 0,119 -0,494** -0,017 0,940** -0,088	-0,154 -0,081 0,204 -0,261 -0,385*	Cd 0,626** -0,054 0,319* 0,826**	-0,145 -0,247 0,792**	-0,036 -0,027	Cu 0,177	Fe	K	Mg	Mn	Na	Ni	РЬ	Si	Sn	Sr	Ti	v	Zn	As	Hg	Se
d) Al Ba Ca Cd Co Cr Cu Fe K	A1 -0,285 -0,418** 0,538** 0,789** -0,139 -0,025 0,896** 0,962**	Ba -0,174 0,119 -0,494** -0,017 0,940** -0,088 -0,199	-0,154 -0,081 0,204 -0,261 -0,385* -0,435**	Cd 0,626** -0,054 0,319* 0,826** 0,559**	-0,145 -0,247 0,792** 0,724**	-0,036 -0,027 -0,151	Cu 0,177 0,058	Fe 0,890**	K	Mg	Mn	Na	Ni	Pb	Si	Sn	Sr	Tì	v	Zn	As	Hg	Se
d) Al Ba Ca Cd Co Cr Cu Fe K Mg	A1 -0,285 -0,418** 0,538** 0,789** -0,139 -0,025 0,896** 0,962** 0,651**	Ba -0,174 0,119 -0,494** -0,017 0,940** -0,088 -0,199 -0,396*	-0,154 -0,081 0,204 -0,261 -0,385* -0,435** 0,238	Cd 0,626** -0,054 0,319* 0,826** 0,559** 0,549**	-0,145 -0,247 0,792** 0,724** 0,856**	-0,036 -0,027 -0,151 -0,178	Cu 0,177 0,058 -0,194	Fe 0,890** 0,662**	K 0,614**	Mg	Mn	Na	Ni	Pb	Si	Sn	Sr	Tì	v	Zn	As	Hg	Se
d) Al Ba Ca Cd Co Cr Cu Fe K Mg Mn	A1 -0,285 -0,418** 0,538** 0,789** -0,139 -0,025 0,896** 0,962** 0,651** 0,796**	Ba -0,174 0,119 -0,494** -0,017 0,940** -0,088 -0,199 -0,396* -0,160 -0,067	-0,154 -0,081 0,204 -0,261 -0,385* -0,435** 0,238 -0,052	Cd 0,626** -0,054 0,319* 0,826** 0,559** 0,549** 0,549** 0,807**	-0,145 -0,247 0,792** 0,724** 0,856** 0,889**	-0,036 -0,027 -0,151 -0,178 -0,056	Cu 0,177 0,058 -0,194 0,101	Fe 0,890** 0,662** 0,905**	K 0,614** 0,780**	Mg 0.830**	Mn	Na	Ni	Pb	Si	Sn	Sr	Ti	v	Zn	As	Hg	Se
d) Al Ba Ca Cd Co Cr Cu Fe K Mg Mn Na	A1 -0,285 -0,418** 0,538** 0,789** -0,139 -0,025 0,896** 0,962** 0,651** 0,796** 0,152	-0,174 0,119 -0,494*** -0,017 0,940*** -0,088 -0,199 -0,396* -0,160 0,085	-0,154 -0,081 -0,204 -0,261 -0,385** -0,435** -0,238 -0,052 -0,148	Cd 0,626** -0,054 0,319* 0,826** 0,559** 0,559** 0,807** -0,321*	-0,145 -0,247 0,792** 0,856** -0,036	-0,036 -0,027 -0,151 -0,178 -0,056 0,314*	Cu 0,177 0,058 -0,194 0,101 0,110	Fe 0,890** 0,662** 0,905** -0,049	K 0,614** 0,780** 0,142	Mg 0,830** 0,011	<u>Mn</u> 0,003	Na	Ni	Pb	Si	Sn	Sr	Ti .	v	Zn	As	Hg	Se
d) Al Ba Ca Cd Co Cr Cu Fe K Mg Mn Na Ni	A1 -0,285 -0,418** 0,789** -0,139 -0,025 0,896** 0,651** 0,796** 0,796** 0,152 0,248	Ba -0,174 0,119 -0,494** -0,017 0,940** -0,088 -0,199 -0,396* -0,160 0,085 -0,188 -0,188	Ca -0,154 -0,081 0,204 -0,261 -0,435** 0,238 -0,052 0,148 0,013 0,013	Cd 0,626** -0,054 0,319* 0,526** 0,549** 0,807** -0,321* 0,312*	-0,145 -0,247 0,724** 0,856** 0,889** -0,036 0,511**	-0,036 -0,027 -0,151 -0,158 -0,056 0,314* 0,222	Cu 0,177 0,058 -0,194 0,101 0,110 -0,052	Fe 0,890** 0,662** -0,049 0,320*	K 0,614** 0,780** 0,142 0,271 0,271	Mg 0,830** 0,011 0,285	0,003 0,445**	0,153	Ni	РЬ	Si	Sn	Sr	Ti	v	Zn	As	Hg	Se
d) Al Ba Ca Cd Co Cr Cu Fe K Mg Mn Na Ni Pb	A1 -0,285 -0,418** 0,789** -0,139 -0,025 0,896** 0,962** 0,962** 0,766** 0,152 0,248 -0,292 0,210	Ba -0,174 0,119 -0,494** -0,088 -0,199 -0,396* -0,160 0,085 -0,188 0,959**	Ca -0,154 -0,081 0,204 -0,385* -0,435** 0,052 0,148 0,013 -0,077 0,073	Cd 0,626** -0,054 0,319* 0,549** 0,549** 0,807** -0,321* 0,312* 0,312* 0,1000	-0,145 -0,247 0,792** 0,889** -0,036 0,511** -0,495**	-0,036 -0,027 -0,151 -0,178 -0,056 0,314* 0,222 -0,013	Cu 0,177 0,058 -0,194 0,101 -0,052 0,942 -0,252	Fe 0,890** 0,662** 0,905** -0,049 0,320* -0,100	K 0,614** 0,780** 0,142 0,271 -0,205	Mg 0,830** 0,011 0,285 -0,380*	0,003 0,445** -0,171	Na 0,153 0,043	-0,228	Pb	Si	Sn	Sr	Ti .	v	Zn	As	Hg	Se
d) Al Ba Ca Cd Co Cr Cu Fe K Mg Mn Na Ni Pb Si	A1 -0,285 -0,418** 0,538** 0,789** -0,139 -0,025 0,896** 0,962** 0,651** 0,796** 0,152 0,248 -0,292 0,218 0,218	Ba -0,174 0,119 -0,494** -0,017 0,940** -0,088 -0,199 -0,396* -0,160 0,085 -0,188 0,959** -0,251 0,025	Ca -0,154 -0,081 0,204 -0,385* -0,435** 0,238 -0,052 0,148 0,013 -0,177 0,058	Cd 0,626** -0,054 0,319* 0,826** 0,559** 0,807** 0,807** 0,312* 0,100 0,459* 0,100	-0,145 -0,247 0,792** 0,826** -0,036 0,511** -0,495** 0,440**	-0,036 -0,027 -0,151 -0,178 -0,056 0,314* 0,222 -0,013 0,063 0,0053	Cu 0,177 0,058 -0,194 0,110 -0,052 0,942** -0,182	Fe 0,890** 0,662** 0,905** -0,049 0,320* -0,100 0,337* 0,0415**	K 0,614** 0,780** 0,142 0,271 -0,205 0,198	Mg 0,830** 0,011 0,285 -0,380* 0,406**	0,003 0,445** -0,171 0,413**	Na 0,153 0,043 -0,261	-0,228 0,256	-0,257	Si	Sn	Sr	Ti	V	Zn	As	Hg	Se
d) Al Ba Ca Cd Co Cr Cu Fe K Mg Mn Na Ni Pb Si Sn	A1 -0,285 -0,418** 0,538** 0,789** -0,139 -0,025 0,896** 0,962** 0,651** 0,796** 0,796** 0,152 0,248 -0,292 0,218 0,928**	Ba -0,174 0,119 -0,494** -0,017 0,940** -0,088 -0,199 -0,396* -0,160 0,085 -0,188 0,959** -0,251 -0,001 0,712**	Ca -0,154 -0,081 0,204 -0,385** 0,435** 0,238 -0,052 0,148 0,013 -0,177 0,058 -0,406**	Cd 0,626** -0,054 0,319* 0,559** 0,559** 0,559** 0,521* 0,312* 0,100 0,459** 0,075*	-0,145 -0,247 0,792** 0,856** 0,889** -0,036 0,511** -0,495** 0,440**	-0,036 -0,027 -0,151 -0,178 -0,056 0,314* 0,222 -0,013 0,063 0,023 0,023	Cu 0,177 0,058 -0,194 0,101 0,102 -0,052 -0,942** -0,182 0,256 0,714**	Fe 0,890** 0,662** 0,905** -0,049 0,320* -0,100 0,337* 0,947**	K 0,614** 0,780** 0,142 0,271 0,198 0,913* 0,916	Mg 0,830** 0,011 0,285 -0,380* 0,406** 0,594* 0,594*	0,003 0,445** -0,171 0,413** 0,848*2 0,848*2	Na 0,153 0,043 -0,261 0,210	-0,228 0,256 0,332*	-0,257 -0,032*	0,207	Sn	Sr	Ti	v	Zn	As	Hg	Se
d) Al Ba Ca Cd Co Cr Cu Fe K Mg Mn Na Ni Pb Si Sn Sr Ti	A1 -0,285 -0,418** 0,538** 0,789** -0,139 -0,025 0,896** 0,962** 0,651** 0,796** 0,152 0,248 -0,292 0,218 0,928** -0,096 0,218 0,928**	Ba -0,174 0,119 -0,494** -0,017 0,940** -0,199 -0,396* -0,160 0,085 -0,188 0,959** -0,251 -0,001 0,713**	Ca -0,154 -0,081 0,204 -0,355** 0,238 -0,052 0,148 0,013 -0,177 0,058 -0,406** 0,323*	Cd 0,626** -0,054 0,319* 0,559** 0,559** 0,549** 0,321* 0,100 0,459** 0,678** 0,261 0,702**	-0,145 -0,247 0,792** 0,856** 0,859** -0,036 0,511** 0,405** 0,404** 0,720** -0,165 0,554**	-0,036 -0,027 -0,151 -0,178 -0,056 0,314* 0,022 -0,013 0,063 0,023 0,239 0,170	Cu 0,177 0,058 -0,194 0,101 -0,052 0,942** -0,182 0,256 0,714** 0,125	Fe 0,890** 0,662** 0,905** -0,049 0,320* -0,100 0,337* 0,947** 0,947**	K 0,614** 0,780** 0,142 0,271 -0,205 0,198 0,913** -0,049 0,620**	Mg 0,830** 0,011 0,285 -0,380* 0,406** 0,594** 0,029 0,829**	0,003 0,445** -0,171 0,413** 0,848** 0,173 0,824**	Na 0,153 0,043 -0,261 0,210 0,365* 0,197	-0,228 0,256 0,332* -0,009	-0,257 -0,035 0,653**	0,207 -0,051 0.4554#	0,176	Sr	Ti	v	Zn	As	Hg	Se
d) Al Ba Ca Cd Co Cr Cu Fe K Mn Na Ni Pb Si Sn Sr Ti V	A1 -0,285 -0,418** 0,538** 0,789** -0,139 -0,025 0,896** 0,962** 0,651** 0,796** 0,152 0,248 -0,292 0,218 0,928** -0,096 0,689** 0,946** 0,946** 0,248 0,248 -0,292 0,218 0,248 -0,292 0,218 0,248 -0,292 -0,218 0,248 -0,292 -0,218 0,248 -0,292 -0,218 -0,292 -0,292 -0,218 -0,292 -0,218 -0,292 -	Ba -0,174 0,119 -0,494** -0,017 0,940** -0,088 -0,199 -0,396* -0,160 0,085 -0,188 0,959** -0,251 -0,001 0,713** -0,315* 0,205	Ca -0,154 -0,081 0,204 -0,385** 0,238 -0,052 0,148 0,013 -0,177 0,058 -0,406** 0,323* -0,032 0,25*	Cd 0,626** -0,054 0,319* 0,559** 0,559** 0,549** 0,549** 0,549** 0,510* 0,502** 0,100 0,459** 0,261 0,702**	-0,145 -0,247 0,724** 0,856** 0,889** -0,036 0,511** -0,495** 0,440** 0,440** -0,165 0,854** 0,970**	-0,036 -0,027 -0,151 -0,178 -0,056 0,314* 0,063 0,023 0,239 -0,170 0,077	Cu 0,177 0,058 -0,194 0,101 0,110 -0,052 0,942** -0,182 0,256 0,714** -0,125 0,061	Fe 0,890** 0,662** 0,905** -0,049 0,332* 0,947** 0,947** 0,083 0,774**	K 0,614** 0,780** 0,142 0,271 -0,205 0,198 0,913** -0,049 0,620** 0,902**	Mg 0,830** 0,011 0,285 -0,380* 0,406** 0,594** 0,029 0,838** 0,029	Mn 0,003 0,445** -0,171 0,413** 0,848** 0,173 0,834** 0,873**	Na 0,153 0,043 -0,261 0,210 0,365* -0,187 0,0187	-0,228 0,256 0,332* -0,009 0,169 0,201	-0,257 -0,035 0,653** -0,334*	0,207 -0,051 0,252*	0,176 0,657**	0,010	0.741**	v	Zn	As	Hg	Se
d) Al Ba Ca Cd Co Cr Cu Fe K Mg Mn Na Ni Si Sn Sr Ti V V Zn	A1 -0,285 -0,418** 0,538** 0,789** -0,139 -0,025 0,896** 0,962** 0,962** 0,962** 0,796** 0,152 0,248 -0,292 0,218 0,928** -0,096 0,689** 0,946** 0,946**	Ba -0,174 0,119 -0,494** -0,017 0,940** -0,188 -0,199 -0,396* -0,160 0,085 -0,188 0,959** -0,216 -0,001 0,713** -0,315* -0,204 0,980**	Ca -0,154 -0,081 0,204 -0,385* -0,435** 0,238 -0,052 0,148 0,013 -0,177 0,058 -0,406** 0,323* -0,323* -0,323* -0,324 -0,324 -0,324 -0,324 -0,324 -0,324 -0,324 -0,324 -0,324 -0,234 -0,234 -0,234 -0,234 -0,234 -0,235 -0,255 -0,255 -0,255 -0,255 -0,255 -0,255 -0,2	Cd 0,626** -0,054 0,319* 0,559** 0,549** 0,549** 0,549** 0,549** 0,512* 0,100 0,459** 0,678** 0,261 0,702** 0,702** 0,705**	-0,145 -0,247 0,792** 0,856** -0,036 0,511** -0,495** 0,440** -0,165 0,854** 0,808** -0,0434**	-0,036 -0,027 -0,151 -0,178 -0,056 0,314* 0,022 -0,013 0,023 0,239 -0,170 -0,063 0,071	Cu 0,177 0,058 -0,194 0,101 0,110 -0,052 0,942** -0,125 0,061 0,966**	Fe 0,890** 0,662** -0,049 0,320* -0,100 0,337* 0,947** 0,947** 0,957**	K 0,614** 0,780** 0,142 0,271 -0,205 0,198 -0,049 0,620** 0,906**	Mg 0,830** 0,011 0,285 -0,380* 0,406** 0,594** 0,029 0,538** 0,078** 0,678**	Mn 0.003 0.445** -0.171 0.413** 0.848** 0.173 0.834** 0.834**	Na 0,153 0,043 -0,261 0,210 0,365* -0,187 0,019 0,136	-0,228 0,256 0,332* -0,009 0,169 0,301	-0.257 -0.035 0.653** -0.334* -0.206 0.966**	0,207 -0,051 0,454** 0,352*	0,176 0,657** 0,943**	0,010 -0,024 0,75***	0,741** 0.770	-0118	Zn	As	Hg	Se
d) Al Ba Ca Cd Co Cr Cu Fe K Mg Mn Na Ni Pb Si Sn Sr Ti V Zn As	A1 -0,285 -0,418** 0,789** -0,139 -0,025 0,896** 0,651** 0,796** 0,796** 0,796** 0,228 0,248 -0,292 0,218 0,228** -0,096 0,689** 0,946** 0,946** 0,209 0,70**	Ba -0,174 0,119 -0,494** -0,017 0,940** -0,088 -0,199 -0,396* -0,160 0,085 -0,188 0,959** -0,251 -0,001 0,713** -0,315* -0,204 0,980**	Ca -0,154 -0,081 0,204 -0,385* -0,435** 0,238 -0,052 0,148 0,013 -0,177 0,328* -0,323* -0,323* -0,323* -0,362* -0,362* -0,152 -0,262	Cd 0,626** -0,054 0,319* 0,526** 0,549** 0,807** -0,321* 0,312* 0,312* 0,312* 0,678** 0,678** 0,261 0,702** 0,735** 0,779 0,232	-0,145 -0,247 0,792** 0,724** 0,889** -0,036 0,511** 0,495** 0,495** 0,405** 0,720** 0,720** 0,720** 0,720**	-0,036 -0,027 -0,151 -0,178 -0,056 0,314* 0,222 -0,013 0,023 0,239 -0,170 -0,063 0,071 -0,063	Cu 0,177 0,058 -0,194 0,101 0,110 -0,052 0,942** -0,182 0,256 0,714** -0,125 0,061 0,966** -0,195	Fe 0,890** 0,662** 0,905** -0,100 0,320* -0,100 0,337* 0,947** 0,947** 0,947**	K 0,614** 0,780** 0,142 0,271 -0,205 0,13* 0,913** -0,049 0,620** 0,906** -0,121 0,78**	Mg 0.830** 0.011 0.285 -0.380* 0.406** 0.394** 0.678** -0.346* 0.584**	Mn 0,003 0,445** -0,171 0,413** 0,848** 0,173 0,834** 0,873** -0,069 0,637**	Na 0,153 0,043 -0,261 0,210 0,365* -0,187 0,019 0,136 0,283	-0,228 0,256 0,332* -0,009 0,169 0,301 -0,126 0,553**	-0,257 -0,035 0,653** -0,304* -0,206 0,966**	0,207 -0,051 0,454** -0,352* -0,264 0 [102	0,176 0,657** 0,943** 0,088 0,688	0,010 -0,024 0,753**	0.741** 0.279 0.461**	-0,118 0.684**	<u>Zn</u>	As	Hg	Se
d) Al Ba Ca Cd Co Cr Cu Fe K Mg Mn Na Ni Pb Si Sn Sr Ti V Zn As Hg	A1 -0.285 -0.418** 0.538** 0.789** -0.139 -0.025 0.896** 0.962** 0.651** 0.796** 0.152 0.248 -0.292 0.218 0.928** -0.096 0.688** 0.946** -0.209 0.770** -0.260	Ba -0,174 0,119 -0,494** -0,017 0,940** -0,088 -0,199 -0,396* -0,188 0,959** -0,251 -0,001 0,713** -0,215 -0,215 -0,215 -0,215 -0,215 -0,204 0,980** -0,402**	Ca -0,154 -0,081 0,204 -0,385** 0,435** 0,435** 0,435** 0,435** 0,435** 0,435** 0,052 0,148 0,013 -0,177 0,058 -0,406** 0,323* -0,362* -0,362* -0,152 -0,262 -0,062	Cd 0,626** -0,054 0,319* 0,559** 0,559** 0,559** 0,312* 0,312* 0,312* 0,100 0,459** 0,261 0,702** 0,735** 0,179 0,232 0,179	-0,145 -0,247 0,792** 0,856** 0,889** -0,036 0,511** -0,495** 0,440** 0,854** 0,854** 0,808** -0,434** 0,732** -0,404*	-0,036 -0,027 -0,051 -0,178 -0,056 0,314* 0,222 -0,013 0,063 0,023 0,023 0,023 0,071 -0,063 0,071 -0,103 -0,013	Cu 0,177 0,058 -0,194 0,101 0,052 0,942** -0,182 0,256 0,714** -0,125 0,061 0,966** -0,195 0,00195	Fe 0,890** 0,662** 0,905** -0,049 0,320* -0,100 0,337* 0,947** 0,083 0,774** 0,957** -0,004 0,612**	K 0,614** 0,780** 0,271 -0,205 0,198 0,913** -0,049 0,620** -0,121 0,738* -0,121 0,738*	Mg 0,830** 0,011 0,285 -0,380* 0,406** 0,594** 0,678** -0,346* 0,587** -0,346* 0,5740	0,003 0,445** -0,171 0,413** 0,874** 0,873** -0,069 0,637** -0,284	Na 0,153 0,043 -0,261 0,210 0,365* -0,187 0,019 0,136 0,283 -0,095	-0,228 0,256 0,332* -0,009 0,169 0,531* -0,126 0,53**	-0.257 -0.053** -0.334* -0.206 (0.966** -0.428**	0,207 -0,051 0,454** -0,264 0,102 -0,27	0,176 0,657** 0,943** 0,688 0,689** 0,689**	0,010 -0,024 0,753** -0,301 0 144	0,741** -0,279 0,461**	-0,118 0,684**	-0,350* 0.441**	As	Hg	Se

** Značajnost korelacije za 99% nivo značajnosti.
* Značajnost korelacije za 95% nivo značajnosti.

a) Al

and the second s	Al	Ba	Ca	Cd	Co	Cr	Cu	Fe	K	Mg	Mn	Na	Ni	Pb	Si	Sn	Sr	Ti	v	Zn	As	Hg	Se
Al																							
Ba	0,825**																						
Ca	0,241	0,376*																					
Cd	0,609**	0,513**	0,244																				
Co	0,602**	0,576**	0,265	0,383*																			
Cr	0,600**	0,658**	-0,033	0,551**	0,288																		
Cu	0,391*	0,459**	0,059	0,535**	0,119	0,633**																	
Fe	0,746**	0,678**	-0,071	0,547**	0,388*	0,898**	0,433**																
K	-0,178	-0,035	0,191	-0,315*	0,110	-0,211	-0,202	-0,316*	0.000														
Mg	0,495**	0,625**	0,628**	0,145	0,472**	0,135	0,106	0,187	0,098	0.500**													
Min	0,000	0,694**	0,416**	0,518*	0,609**	0,210	0,150	0,360*	0,150	0,596**	0.022												
INA NI:	0,022	-0,015	0,220	0,180	-0,041	0,045	0,084	-0,009	-0,205	-0,040	-0,025	0.026											
Dh	0.522**	0.681**	0,220	0.282*	0,052**	0.009**	0,503*	0.856**	0,062	0,370*	0.164	0,020	0 424**										
s;	0,525**	0.825**	-0,092	0,582**	0.511**	0,928**	0,530**	0,030**	-0,213	0,110	0,104	-0,018	0,424**	0.630**									
Sn	0.738**	0,623	-0.077	0,532	0.391*	0,728	0,335	0,755	-0.312*	0,550	0.349*	-0.006	0.674**	0.864**	0 733**								
Sr	0.334*	0.463**	0.754**	0,542	0.399**	0.131	0,450	0.044	0.026	0.577**	0.492**	0 274	0.443**	0.003	0,755	0.042							
Ti	0.580**	0,405	-0 141	0.415**	0.283	0.642**	0,230	0.859**	-0 344*	0.041	0.253	0.017	0 488**	0.691**	0.521**	0.852**	-0.130						
v	0.821**	0.705**	0.204	0.492**	0.556**	0.281	0.116	0.475**	-0.004	0.402**	0.700**	-0.088	0.744**	0.245	0.668**	0.458**	0.260	0.488**					
Zn	0.475**	0.647**	-0.008	0.570**	0.189	0.889**	0.812**	0.731**	-0.228	0.086	0.145	0.057	0.426**	0.906**	0.631**	0.738**	0.187	0.506**	0.177				
As	0.330*	0.361*	0.217	0.055	0.438**	-0.027	-0.056	0.026	0.663**	0.386*	0.673**	-0.235	0.521**	-0.049	0.293	0.019	0.271	-0.070	0.513**	-0.060			
Hg	0,319*	0,285	-0,150	0,340*	0,120	0,479**	0,362*	0,602**	-0,364*	-0,060	0,122	-0,084	0,269	0,482**	0,263	0,585**	-0,128	0,635**	0,217	0,476**	-0,145		
Se	-0,208	-0,044	0,152	-0,099	0,085	-0,184	-0,107	-0,266	0,567**	-0,097	0,161	-0,150	0,095	-0,160	-0,093	-0,262	0,164	-0,259	-0,056	-0,105	0,484**	-0,254	
													,										
b)	1																						1
~)	A1	Ba	Ca	Cd	Co	Cr	Cu	Fe	К	Mσ	Mn	Na	Ni	Ph	Si	Sn	Sr	Ti	v	Zn	As	Hσ	Se
Δ1	Al	Ba	Ca	Cd	Co	Cr	Cu	Fe	К	Mg	Mn	Na	Ni	Pb	Si	Sn	Sr	Ti	V	Zn	As	Hg	Se
Al Ba	Al	Ba	Ca	Cd	Co	Cr	Cu	Fe	K	Mg	Mn	Na	Ni	Pb	Si	Sn	Sr	Ti	V	Zn	As	Hg	Se
Al Ba Ca	A1 0,749** 0,108	Ba 0.053	Ca	Cd	Co	Cr	Cu	Fe	K	Mg	Mn	Na	Ni	Pb	Si	Sn	Sr	Ti	V	Zn	As	Hg	Se
Al Ba Ca Cd	Al 0,749** 0,108 0,468**	Ba 0,053 0,458**	Ca 0.574**	Cd	Co	Cr	Cu	Fe	K	Mg	Mn	Na	Ni	Pb	Si	Sn	Sr	Ti	V	Zn	As	Hg	Se
Al Ba Ca Cd Co	Al 0,749** 0,108 0,468** 0,715**	Ba 0,053 0,458** 0,608**	Ca 0,574** 0,039	Cd	Co	Cr	Cu	Fe	K	Mg	Mn	Na	Ni	Pb	Si	Sn	Sr	Ti	V	Zn	As	Hg	Se
Al Ba Ca Cd Co Cr	Al 0,749** 0,108 0,468** 0,715** 0,122	Ba 0,053 0,458** 0,608** 0,515**	Ca 0,574** 0,039 -0,279	Cd 0,045 0,203	-0,218	Cr	Cu	Fe	K	Mg	Mn	Na	Ni	Pb	Si	Sn	Sr	Ti	V	Zn	As	Hg	Se
Al Ba Ca Cd Co Cr Cu	Al 0,749** 0,108 0,468** 0,715** 0,122 0,218	Ba 0,053 0,458** 0,608** 0,515** 0,218	Ca 0,574** 0,039 -0,279 -0,114	Cd 0,045 0,203 0,330*	-0,218 -0,194	<u>Cr</u> 0,541**	Cu	Fe	K	Mg	Mn	Na	Ni	Pb	Si	Sn	Sr	Ti	V	Zn	As	Hg	Se
Al Ba Ca Cd Co Cr Cu Fe	Al 0,749** 0,108 0,468** 0,715** 0,122 0,218 0,383*	Ba 0,053 0,458** 0,608** 0,515** 0,218 0,490**	Ca 0,574** 0,039 -0,279 -0,114 0,023	0,045 0,203 0,330* 0,512**	-0,218 -0,194 -0,026	Cr 0,541** 0,706**	Cu 0,489**	Fe	K	Mg	Mn	Na	Ni	РЬ	Si	Sn	Sr	Ti	<u>v</u>	Zn	As	Hg	Se
Al Ba Ca Cd Co Cr Cu Fe K	Al 0,749** 0,108 0,468** 0,715** 0,122 0,218 0,383* 0,697**	Ba 0,053 0,458** 0,608** 0,515** 0,218 0,490** 0,683**	Ca 0,574** 0,039 -0,279 -0,114 0,023 0,227	Cd 0,045 0,203 0,330* 0,512** 0,263	-0,218 -0,194 -0,026 0,853**	Cr 0,541** 0,706** -0,068	Cu 0,489** -0,156	Fe 0,203	K	Mg	Mn	Na	Ni	РЬ	Si	Sn	Sr	Ti	V	Zn	As	Hg	Se
Al Ba Ca Cd Co Cr Cu Fe K Mg	Al 0,749** 0,108 0,468** 0,715** 0,122 0,218 0,383* 0,697** 0,170	Ba 0,053 0,458** 0,608** 0,515** 0,218 0,490** 0,683** 0,164	Ca 0,574** 0,039 -0,279 -0,114 0,023 0,227 0,345*	Cd 0,045 0,203 0,330* 0,512** 0,263 0,050	-0,218 -0,194 -0,026 0,853** 0,305	Cr 0,541** 0,706** -0,068 -0,100	Cu 0,489** -0,156 -0,013	Fe 0,203 0,031	<u>К</u> 0,188	Mg	Mn	Na	Ni	РЬ	Si	Sn	Sr	Tì	v	Zn	As	Hg	Se
Al Ba Ca Cd Co Cr Cu Fe K Mg Mn	Al 0,749** 0,108 0,468** 0,715** 0,122 0,218 0,383* 0,697** 0,170 0,718**	Ba 0,053 0,458** 0,608** 0,515** 0,218 0,490** 0,683** 0,164 0,601**	Ca 0,574** 0,039 -0,279 -0,114 0,023 0,227 0,345* 0,131	Cd 0,045 0,203 0,330* 0,512** 0,263 0,050 0,169	-0,218 -0,194 -0,026 0,853** 0,305 0,942**	Cr 0,541** 0,706** -0,068 -0,100 -0,290	Cu 0,489** -0,156 -0,013 -0,260	Fe 0,203 0,031 -0,087	K 0,188 0,821**	Mg 0,265	Mn	Na	Ni	Рb	Si	Sn	Sr	Tì	v	Zn	As	Hg	Se
Al Ba Ca Cd Co Cr Cu Fe K Mg Mn Na	Al 0,749** 0,108 0,468** 0,715** 0,122 0,218 0,383* 0,697** 0,170 0,718** 0,401**	Ba 0,053 0,458** 0,608** 0,515** 0,218 0,490** 0,683** 0,164 0,601** 0,332*	Ca 0,574** 0,039 -0,279 -0,114 0,023 0,227 0,345* 0,131 0,336*	0,045 0,203 0,330* 0,512** 0,263 0,050 0,169 0,589**	-0,218 -0,194 -0,026 0,853** 0,305 0,942** 0,041	Cr 0,541** 0,706** -0,068 -0,100 -0,290 0,121	Cu 0,489** -0,156 -0,013 -0,260 0,577**	Fe 0,203 0,031 -0,087 0,287	K 0,188 0,821** 0,136	Mg 0,265 0,098	<u>Mn</u> 0,063	Na	Ni	Рb	Si	Sn	Sr	Ti	v	Zn	As	Hg	Se
Al Ba Ca Cd Co Cr Cu Fe K Mg Mn Na Ni	Al 0,749** 0,108 0,468** 0,715** 0,218 0,383* 0,697** 0,170 0,718** 0,401** 0,401**	Ba 0,053 0,458** 0,608** 0,515** 0,218 0,490** 0,683** 0,164 0,601** 0,332* 0,685**	Ca 0,574** 0,039 -0,279 -0,114 0,227 0,345* 0,131 0,336* 0,321*	Cd 0,045 0,203 0,330* 0,512** 0,263 0,050 0,169 0,589** 0,468**	-0,218 -0,194 -0,026 0,853** 0,305 0,942** 0,041 0,815**	Cr 0,541*** 0,706** -0,068 -0,100 -0,290 0,121 -0,044	Cu 0,489** -0,156 -0,013 -0,260 0,577** -0,072	Fe 0,203 0,031 -0,087 0,287 0,320*	K 0,188 0,821** 0,136 0,899**	Mg 0,265 0,098 0,202	<u>Mn</u> 0.063 0.803**	Na 0,234	Ni	Pb	Si	Sn	Sr	Ti	v	Zn	As	Hg	Se
Al Ba Ca Cd Co Cr Cu Fe K Mg Mn Na Ni Pb	Al 0,749** 0,108 0,468** 0,715** 0,218 0,218 0,218 0,238 0,697** 0,718** 0,401** 0,401** 0,206	Ba 0,053 0,458** 0,515** 0,218 0,490** 0,683** 0,164 0,601* 0,332* 0,685** 0,332*	Ca 0,574** 0,039 -0,279 -0,114 0,023 0,227 0,345 0,321* -0,191	Cd 0,045 0,203 0,330* 0,512** 0,263 0,050 0,169 0,589** 0,468** 0,358*	-0,218 -0,194 -0,026 0,853** 0,942** -0,041 0,815** -0,221	Cr 0,541** 0,706** -0,068 -0,100 -0,290 0,121 -0,044 0,868**	Cu 0,489** -0,156 -0,013 -0,260 0,577** -0,072 0,849**	Fe 0,203 0,031 -0,087 0,287 0,320* 0,658**	K 0,188 0,821** 0,136 0,899** -0,127	Mg 0,265 0,098 0,202 -0,010	0.063 0.803** -0.277	Na 0,234 0,439**	Ni -0,064	Pb	Si	Sn	Sr	Tì	V	Zn	As	Hg	Se
Al Ba Ca Cd Co Cr Cu Fe K Mg Mn Na Ni Pb Si	Al 0,749** 0,108 0,468** 0,715** 0,122 0,218 0,383* 0,383* 0,697** 0,170 0,718** 0,401** 0,719** 0,401** 0,709** 0,206 0,901**	Ba 0,053 0,458** 0,608** 0,515** 0,218 0,492* 0,683** 0,661** 0,683** 0,649** 0,449**	Ca 0.574** 0.039 -0.279 -0.114 0.0227 0.345* 0.131 0.3621* -0.191 -0.074	Cd 0,045 0,203 0,30* 0,512** 0,263 0,050 0,169 0,589** 0,358* 0,358*	-0,218 -0,194 -0,026 0,853** 0,942** 0,041 0,815** -0,221 0,625**	Cr 0,541** 0,706** -0,068 -0,100 -0,290 0,121 -0,044 0,868** 0,351*	Cu 0,489** -0,156 -0,013 -0,260 0,577** -0,072 0,849** 0,403**	Fe 0,203 0,031 -0,087 0,287 0,320* 0,658** 0,456**	K 0,188 0,821** 0,136 0,899** -0,127 0,602**	Mg 0,265 0,098 0,202 -0,010 0,069	0,063 0,803** -0,277 0,577**	0,234 0,439** 0,415**	Ni -0,064 0,679**	Pb 0,434**	Si	<u>Sn</u>	Sr	Ti	V	Zn	As	Hg	Se
Al Ba Ca Cd Co Cr Cu Fe K Mg Mn Na Ni Pb Si Sn	Al 0,749** 0,108 0,468** 0,715** 0,122 0,218 0,303* 0,697** 0,170 0,718** 0,401** 0,701** 0,206 0,901** 0,347*	$\begin{array}{c} & 0.053 \\ 0.053 \\ 0.458^{**} \\ 0.608^{**} \\ 0.218 \\ 0.490^{**} \\ 0.683^{**} \\ 0.164 \\ 0.601^{**} \\ 0.332^{*} \\ 0.694^{**} \\ 0.754^{**} \\ 0.754^{**} \\ 0.757^{**} \end{array}$	Ca 0,574** 0,039 -0,279 -0,114 0,023 0,227 0,345* 0,131 0,336* 0,321* -0,191 -0,074 0,013	Cd 0,045 0,203 0,330* 0,512** 0,263 0,050 0,169 0,589** 0,358* 0,358* 0,336*	-0,218 -0,194 -0,05 0,853** 0,041 0,815** -0,221 0,625** -0,086	Cr 0,541** 0,706** -0,068 -0,100 -0,290 0,121 -0,044 0,868** 0,351* 0,726**	Cu 0,489*** -0,156 -0,013 -0,260 0,577** -0,072 0,849** 0,403** 0,508**	Fe 0,203 0,031 -0,087 0,287 0,287 0,288 0,456** 0,658** 0,456** 0,997**	K 0,188 0,821** 0,136 0,899** 0,127 0,602** 0,147	Mg 0,265 0,098 0,202 -0,010 0,069 0,010	0.063 0.803** -0.277 0.577** -0.140	Na 0,234 0,439** 0,415** 0,283	Ni -0,064 0,679** 0,264	Pb 0,434** 0,681**	Si 0,426**	Sn	Sr	Ti	v	Zn	As	Hg	Se
Al Ba Ca Cd Co Cr Cu Fe K Mg Mn Na Ni Pb Si Sn Sr	Al 0,749** 0,108 0,468** 0,715** 0,122 0,218 0,323* 0,697** 0,718** 0,718** 0,718** 0,718** 0,718** 0,718** 0,719** 0,719** 0,719** 0,719** 0,719** 0,719** 0,719** 0,719** 0,719** 0,719** 0,719** 0,719** 0,719** 0,719** 0,715** 0,90** 0,90** 0,90** 0,90** 0,90** 0,90** 0,90**	$\begin{array}{c} & & & & \\ & & & & \\ & & & & \\ & & & & $	Ca 0,574** 0,039 -0,279 -0,114 0,023 0,227 0,345* 0,311 0,336* 0,321* -0,191 0,074 0,013 0,884**	Cd 0,045 0,203 0,330* 0,512** 0,263 0,059 0,589** 0,358* 0,336* 0,358* 0,336*	-0,218 -0,194 -0,026 0,853*** 0,305 0,942** 0,041 0,815** -0,221 0,625** -0,086 0,108	Cr 0,541** 0,706** -0,068 -0,100 -0,290 0,121 -0,044 0,868** 0,351* 0,726** -0,067	Cu 0,489** -0,156 -0,013 -0,260 0,577** -0,072 0,849** 0,403** 0,403** 0,508** 0,152	Fe 0,203 0,031 -0,087 0,287 0,287 0,287 0,288* 0,927** 0,456** 0,997**	K 0,188 0,821** 0,136 0,899** -0,127 0,602** 0,147 0,337*	Mg 0,265 0,098 0,202 -0,010 0,069 0,010 0,243	0,063 0,803* -0,277 0,577** -0,140 0,198	0,234 0,439** 0,415** 0,283 0,616**	Ni -0,064 0,679** 0,264 0,465**	Pb 0,434** 0,681** 0,092	Si 0,426** 0,171	<u>Sn</u> 0,244	Sr	Ti	V	Zn	As	Hg	Se
Al Ba Ca Cd Co Cr Cu Fe K Mg Mn Na Ni Pb Si Sn Sr Ti	Al 0,749** 0,108 0,468** 0,715** 0,122 0,218 0,837* 0,697** 0,170 0,718** 0,401** 0,401** 0,2016 0,901** 0,347* 0,343* 0,230	$\begin{array}{c} 0.053\\ 0.458^{**}\\ 0.608^{**}\\ 0.515^{**}\\ 0.218\\ 0.490^{**}\\ 0.164\\ 0.601^{**}\\ 0.332^{*}\\ 0.485^{**}\\ 0.457^{**}\\ 0.437^{**}\\ 0.486^{**}\\ \end{array}$	Ca 0,574** 0,039 -0,279 -0,114 0,023 0,227 0,345* 0,131 0,336* 0,321* -0,191 -0,074 0,013 0,884** -0,178	Cd 0,045 0,203 0,330* 0,263 0,12** 0,263 0,169 0,589** 0,468** 0,336* 0,315** 0,832** 0,515**	-0,218 -0,194 -0,026 0,853** 0,041 0,815** -0,221 0,625** -0,086 0,108 0,082	Cr 0,541** 0,706** -0,068 -0,100 0,2290 0,121 -0,044 0,868* 0,351* 0,726** -0,067 0,701**	Cu 0,489** -0,156 -0,013 -0,260 0,577** -0,072 0,849** 0,508** 0,152 0,327*	Fe 0,203 0,031 -0.087 0,287 0,320* 0,456** 0,997** 0,255 0,538**	K 0,188 0,821** 0,136 0,899** -0,127 0,602* 0,147 0,337* 0,255	Mg 0,265 0,098 0,202 -0,010 0,029 0,010 0,243 -0,149	Mn 0.063 0.803** -0.277 0.577** -0.140 0.198 -0.048	0,234 0,439** 0,415** 0,283 0,616** 0,018	-0,064 0,679** 0,264 0,465** 0,246	Pb 0,434** 0,681** 0,092 0,555**	Si 0,426** 0,171 0,407**	0,244 0,530**	Sr -0,006	Tì	V	Zn	As	Hg	Se
Al Ba Ca Cd Co Cr Cu Fe K Mg Mn Na Ni Pb Si Sn Sr Ti V V	Al 0,749** 0,108 0,468** 0,715** 0,122 0,218 0,383* 0,697** 0,170 0,718** 0,401** 0,206 0,901** 0,206 0,901** 0,343* 0,343* 0,230 0,652*	Ba 0,053 0,458** 0,608** 0,515** 0,218 0,490** 0,683** 0,490** 0,683** 0,49** 0,322* 0,49** 0,49** 0,49** 0,322* 0,486** 0,322* 0,486**	Ca 0,574** 0,039 -0,279 -0,114 0,023 0,227 0,345* 0,321* -0,191 -0,074 0,013 0,884** -0,178 0,884**	Cd 0,045 0,203 0,330* 0,512** 0,263 0,050 0,169 0,589** 0,358* 0,358* 0,358* 0,3515** 0,322** 0,322**	-0,218 -0,194 -0,026 0,853** -0,041 0,815** -0,021 0,625** -0,085 0,108 0,082 0,384*	Cr 0,541** 0,706** -0,068 -0,100 -0,290 0,121 -0,044 0,868** 0,351* 0,726** -0,067 0,701** 0,092	Cu 0,489** -0,156 -0,013 -0,260 0,577** -0,072 0,849** 0,403** 0,503** 0,52 0,327* 0,055	Fe 0,203 0,031 -0,087 0,320* 0,456*** 0,907*** 0,255 0,538** 0,519**	K 0,188 0,821** 0,136 0,899** -0,127 0,602** 0,147 0,337* 0,255 0,2566**	Mg 0.265 0.098 0.202 -0.010 0.069 0.010 0.243 -0.149 0.141 0.141	Mn 0,063 0,803** -0,277 0,577** -0,100 0,198 -0,048 0,488**	Na 0,234 0,439** 0,283 0,616** 0,018 0,419**	-0,064 0,679** 0,264 0,465** 0,246 0,770*	Pb 0,434** 0,681** 0,681** 0,118 0,118	0,426** 0,171 0,407** 0,483**	0,244 0,530** 0,489**	-0,006 0,699**	0,127	V	Zn	As	Hg	Se
Al Ba Ca Cd Co Cr Cu Fe K Mg Mn Na Ni Pb Si Sn Sr Ti V Zn	Al 0,749** 0,108 0,468** 0,715** 0,122 0,218 0,383* 0,697** 0,170 0,718** 0,401** 0,703** 0,206 0,901** 0,347* 0,347* 0,230 0,652** 0,281 0,565**	Ba 0,053 0,458** 0,608** 0,218 0,218 0,490** 0,683** 0,164 0,601** 0,322* 0,499** 0,499** 0,499** 0,499** 0,496** 0,332* 0,486** 0,332*	Ca 0,574** 0,039 -0,279 -0,114 0,023 0,227 0,345* 0,321* -0,191 -0,074 0,013 0,884** -0,178 0,884** -0,178	Cd 0,045 0,203 0,330* 0,512** 0,263 0,050 0,169 0,589** 0,358* 0,358* 0,356* 0,3515** 0,106 0,818** 0,355**	-0,218 -0,194 -0,026 0,853** 0,942** 0,041 0,815** -0,221 0,625** -0,088 0,082 0,384* -0,201 0,625**	Cr 0,541** 0,706** -0.068 -0,100 -0,200 0,121 -0,044 0,868** 0,726** -0,067 0,701** 0,092 0,702** 0,092	Cu 0,489** -0,156 -0,013 -0,260 0,577** -0,072 0,849** 0,508** 0,52 0,327* 0,055 0,328** 0,055	Fe 0,203 0,031 -0,087 0,320* 0,456** 0,997** 0,255 0,538** 0,519** 0,519**	K 0,188 0,821** 0,136 0,899** -0,127 0,602** 0,137* 0,255 0,566** -0,082 0,2085	Mg 0,265 0,098 0,202 -0,010 0,069 0,010 0,243 -0,149 0,141 -0,020 0,211	Mn 0,063 0,803** -0,277 0,577** -0,100 0,198 -0,048 0,488** -0,238 0,544**	Na 0,234 0,439** 0,415** 0,283 0,616** 0,018 0,419** 0,625**	-0,064 0,679** 0,264 0,465** 0,246 0,770** 0,041 0,024	Pb 0,434** 0,681** 0,092 0,555** 0,118 0,933**	Si 0,426** 0,171 0,407** 0,433** 0,433**	0,244 0,500** 0,489** 0,668**	-0,006 0,699** 0,306	0,127 0,422**	0,261	Zn	As	Hg	Se
Al Ba Ca Cd Co Cr Cu Fe K Mg Mn Na Ni Pb Si Sn Sr Ti V Zn As	Al 0,749** 0,108 0,468** 0,715** 0,122 0,218 0,383* 0,697** 0,170 0,718** 0,401** 0,701** 0,701** 0,401** 0,206 0,901** 0,247* 0,234 0,260 0,652** 0,281 0,560** 0,281	Ba 0,053 0,458** 0,608** 0,515** 0,218 0,498** 0,601** 0,632* 0,449** 0,457** 0,449** 0,457** 0,457** 0,456** 0,596** 0,596** 0,506**	Ca 0.574** 0.039 -0.279 -0.114 0.023 0.327 0.345* 0.131 0.362* -0.191 -0.074 0.013 0.884* -0.191 -0.074 0.013 0.884* -0.178 0.496** -0.005 0.371*	Cd 0,045 0,203 0,330* 0,512** 0,263 0,050 0,169 0,588** 0,358* 0,336* 0,336* 0,336* 0,336* 0,818** 0,335** 0,046	Co -0,218 -0,194 -0,026 0,853** 0,305 0,942** -0,221 0,625** -0,086 0,108 0,082 0,384* -0,201 0,593* -0,201	Cr 0,541** 0,706** -0,068 -0,100 -0,290 0,121 -0,044 0,351* 0,726** -0,067 0,701** 0,092 0,702** 0,051	Cu 0,489** -0,156 -0,013 -0,260 0,577** -0,072 0,849** 0,403** 0,505 0,327* 0,055 0,938** -0,109 0,512	Fe 0,203 0,031 -0,087 0,2287 0,320* 0,456** 0,997** 0,255 0,538** 0,519** 0,648** 0,519**	K 0,188 0,821** 0,136 0,899** -0,127 0,602** 0,147 0,337* 0,255 0,566** -0,082 0,798**	Mg 0,265 0,098 0,202 -0,010 0,069 0,010 0,243 0,141 -0,020 0,241 0,141	0.063 0.803** -0.277 0.577** -0.140 0.198 -0.048 0.488** -0.238 0.544**	Na 0,234 0,439** 0,415** 0,283 0,616** 0,018 0,419** 0,625** 0,117 0,021	Ni -0,064 0,679** 0,264 0,465 ** 0,246 0,770** 0,041 0,839**	Pb 0,434** 0,681** 0,092 0,555** 0,118 0,933** -0,043 0,661*	Si 0,426** 0,171 0,407** 0,483** 0,453** 0,453**	0,244 0,530** 0,489** 0,668** 0,507**	-0,006 0,699** 0,306 0,466**	0,127 0,462** 0,326*	0,261 0,726**	0,036	<u>As</u>	Hg	Se

Tabela 83. Pirsonovi korelacioni koeficijenti za UZSE: a) I faza; b) II faza; c) III faza i d) IV faza

 Se
 0,464**
 0,504**
 -0,059
 0,689**
 0,386*

 **
 Značajnost korelacije za 99% nivo značajnosti.

c)	Al	Ba	Ca	Cd	Co	Cr	Cu	Fe	К	Mg	Mn	Na	Ni	Pb	Si	Sn	Sr	Ti	v	Zn	As	Hg	Se
Al																							
Ва	0,107																						
Ca	-0,262	-0,432**	0.005																				
Ca	0,509**	0,123	-0,086	0 607**																			
	0,819**	0,111	-0,104	0,007***	0.274																		
	0,249	0.901**	-0,419	0,452	0,274	0 824**																	
Fe	0,040	0,820**	-0,330*	0,249	0,092	0,024**	0.174																
K	0.689**	0,110	0.031	0.231	0,037	0.123	-0.081	0 349*															
Mg	-0.111	-0.303	0.695**	-0.014	-0.166	-0.276	-0.203	-0.007	-0.033														
Mn	0.767**	0.166	-0.094	0.311*	0.761**	0.108	-0.011	0.396*	0.742**	-0.189													
Na	0.403**	0.238	-0.047	0.321*	0.342*	0.350*	0.271	0.440**	0.320*	-0.055	0.202												
Ni	0,818**	0,138	-0,287	0,732**	0,789**	0,356*	0,095	0,824**	0,572**	-0,192	0,672**	0,320*											
Pb	0,062	0,935**	-0,530**	0,078	0,020	0,886**	0,822**	0,083	-0,068	-0,300	-0,030	0,204	0,078										
Si	0,956**	0,259	-0,340*	0,548**	0,798**	0,431**	0,142	0,712**	0,677**	-0,179	0,706**	0,406**	0,851**	0,219									
Sn	0,673**	0,104	-0,164	0,916**	0,634**	0,407**	0,170	1,000**	0,349*	-0,003	0,391*	0,441**	0,821**	0,079	0,710**								
Sr	0,065	0,166	0,531**	0,382*	0,213	0,297	0,185	0,297	0,274	0,063	0,166	0,429**	0,159	-0,007	0,117	0,293							
Ti	0,397*	-0,174	0,048	0,284	0,314*	-0,093	-0,071	0,416**	0,221	0,163	0,280	0,204	0,447**	-0,202	0,331*	0,414**	-0,063						
v	0,610**	0,060	0,055	0,834**	0,697**	0,320*	0,089	0,840**	0,549**	0,027	0,531**	0,369*	0,821**	-0,063	0,645**	0,840**	0,465**	0,489**					
Zn	0,141	0,766**	-0,332*	0,488**	0,200	0,876**	0,937**	0,408**	-0,065	-0,172	-0,010	0,303	0,278	0,799**	0,261	0,408**	0,218	-0,025	0,283				
As	0,200	0,052	0,338*	0,168	0,089	0,010	-0,069	0,213	0,654**	0,182	0,422**	0,223	0,153	-0,129	0,161	0,216	0,396*	0,075	0,356*	-0,041			
Hg	-0,120	0,807**	-0,473**	-0,042	-0,156	0,744**	0,557**	-0,022	-0,223	-0,241	-0,199	0,060	-0,053	0,906**	0,053	-0,025	-0,086	-0,254	-0,197	0,569**	-0,186		
Se	-0,009	0,082	0,297	0,153	0,229	0,123	0,015	0,026	0,265	-0,087	0,242	0,006	0,049	-0,085	0,033	0,025	0,473**	-0,166	0,258	0,041	0,517**	-0,125	
d)	Al	Ba	Ca	Cd	Co	Cr	Cu	Fe	К	Mg	Mn	Na	Ni	Pb	Si	Sn	Sr	Ti	v	Zn	As	Hg	Se
d) Al	Al	Ba	Ca	Cd	Co	Cr	Cu	Fe	K	Mg	Mn	Na	Ni	Pb	Si	Sn	Sr	Ti	v	Zn	As	Hg	Se
d) Al Ba	Al	Ba	Ca	Cd	Со	Cr	Cu	Fe	K	Mg	Mn	Na	Ni	Рb	Si	Sn	Sr	Ti	v	Zn	As	Hg	Se
d) Al Ba Ca	Al -0,126 -0,067	Ba -0,159	Ca	Cd	Co	Cr	Cu	Fe	K	Mg	Mn	Na	Ni	Pb	Si	Sn	Sr	Ti	V	Zn	As	Hg	Se
d) Al Ba Ca Cd	Al -0,126 -0,067 0,636**	-0,159 0,549**	Ca 0,158	Cd	Co	Cr	Cu	Fe	K	Mg	Mn	Na	Ni	РЬ	Si	Sn	Sr	Ti	V	Zn	As	Hg	Se
d) Al Ba Ca Cd Co	Al -0,126 -0,067 0,636** 0,846**	-0,159 0,549** -0,162	Ca 0,158 0,330*	Cd 0,707**	Co	Cr	Cu	Fe	K	Mg	Mn	Na	Ni	Pb	Si	Sn	Sr	Ti	V	Zn	As	Hg	Se
d) Al Ba Ca Cd Co Cr	Al -0,126 -0,067 0,636** 0,846** -0,111	Ba -0,159 0,549** -0,162 -0,046	Ca 0,158 0,330* 0,723**	Cd 0,707** 0,222	0,233	Cr	Cu	Fe	K	Mg	Mn	Na	Ni	Pb	Si	Sn	Sr	Ti	V	Zn	As	Hg	Se
d) Al Ba Ca Cd Co Cr Cu Ea	A1 -0,126 -0,067 0,636** 0,846** -0,111 0,550**	Ba -0,159 0,549** -0,162 -0,046 0,704** 0,261*	Ca 0,158 0,330* 0,723** -0,126 0,021	Cd 0,707** 0,222 0,899** 0.041**	Co 0,233 0,457** 0,902**	-0,021	Cu	Fe	К	Mg	Mn	Na	Ni	Pb	Si	Sn	Sr	Ti	V	Zn	As	Hg	Se
d) Al Ba Ca Cd Co Cr Cu Fe	A1 -0,126 -0,067 0,636** 0,846** -0,111 0,550** 0,829** 0,962**	Ba -0,159 0,549** -0,162 -0,046 0,704** 0,361* 0,048	Ca 0,158 0,330* 0,723** -0,126 0,031 0,107	Cd 0,707** 0,222 0,899** 0,941** 0,617**	Co 0,233 0,457** 0,802** 0,802**	-0,021 0,058	Cu 0,866**	Fe	К	Mg	Mn	Na	Ni	Pb	Si	Sn	Sr	Ti	v	Zn	As	Hg	Se
d) Al Ba Ca Cd Co Cr Cu Fe K	A1 -0,126 -0,067 0,636** 0,846** -0,111 0,550** 0,829** 0,962** 0,962**	Ba -0,159 0,549** -0,162 -0,046 0,704** 0,361* -0,048 0,170	Ca 0,158 0,330* 0,723** -0,126 0,031 -0,107 0,139	Cd 0,707** 0,222 0,899** 0,941** 0,617** 0,593**	Co 0,233 0,457** 0,802** 0,771** 0,898**	-0,021 0,058 -0,116 0.099	Cu 0,866** 0,584** 0,438**	Fe 0,800** 0,761**	K	Mg	Mn	Na	Ni	Pb	Si	Sn	Sr	Ti	v	Zn	As	Hg	Se
d) Al Ba Ca Cd Co Cr Cu Fe K Mg Mn	A1 -0,126 -0,067 0,636** 0,846** -0,111 0,550** 0,829** 0,962** 0,962** 0,907** 0,840**	Ba -0,159 0,549** -0,162 -0,046 0,704** 0,361* -0,048 -0,048 -0,170 0,187	Ca 0,158 0,330* 0,723** -0,126 0,031 -0,107 0,139 0,128	Cd 0,707** 0,222 0,899** 0,941** 0,617** 0,593** 0,873**	Co 0,233 0,457** 0,802** 0,771** 0,898** 0,903**	-0,021 0,058 -0,116 -0,099 0,027	Cu 0,866** 0,584** 0,438** 0,738**	Fe 0,800** 0,761** 0.945**	K 0,863** 0,807**	Mg	Mn	Na	Ni	Pb	Si	Sn	Sr	Ti	v	Zn	As	Hg	Se
d) Al Ba Ca Cd Co Cr Cu Fe K Mg Mn Na	A1 -0,126 -0,067 0,636** 0,846** -0,111 0,550** 0,829** 0,962** 0,907** 0,849** 0,849**	Ba -0,159 0,549** -0,162 -0,046 0,704** 0,361* -0,048 -0,170 0,187 0,032	Ca 0,158 0,330* 0,723** -0,126 0,031 -0,107 0,139 0,128 0,370*	Cd 0,707** 0,222 0,899** 0,617** 0,5941** 0,593** 0,873** 0,755**	0,233 0,457** 0,802** 0,771** 0,898** 0,903** 0,803**	-0,021 0,058 -0,116 -0,097 0,027	0,866** 0,584** 0,438** 0,738** 0,541**	Fe 0,800** 0,761** 0,945** 0,945**	K 0,863** 0,807** 0,716**	Mg 0,867** 0,814**	<u>Mn</u>	Na	Ni	Pb	Si	Sn	Sr	Ti	V	Zn	As	Hg	Se
d) Al Ba Ca Cd Co Cr Cu Fe K Mg Mn Na Ni	A1 -0,126 -0,067 0,636** 0,846** -0,111 0,550** 0,829** 0,962** 0,907** 0,849** 0,907** 0,849** 0,751** 0,259	Ba -0,159 0,549** -0,162 -0,046 0,704** 0,361* -0,048 -0,170 0,187 0,032 0,034	Ca 0,158 0,330* 0,723** -0,126 0,031 -0,107 0,139 0,130 0,370* 0,085	Cd 0,707** 0,222 0,899** 0,941** 0,617** 0,873** 0,755** 0,225	0,233 0,457** 0,802** 0,711** 0,898** 0,898** 0,887** 0,887**	-0,021 0,058 -0,116 -0,099 0,027 0,302 0,019	Cu 0,866** 0,584** 0,738** 0,738** 0,541** 0,279	Fe 0,800** 0,761** 0,761** 0,781** 0,781**	K 0,863** 0,807** 0,716** 0,308*	Mg 0,867** 0,814** 0,233	Mn 0,850** 0,271	<u>Na</u>	Ni	Pb	Si	Sn	Sr	Ti	v	Zn	As	Hg	Se
d) Al Ba Ca Cd Co Cr Cu Fe K Mg Mn Na Ni Pb	A1 -0,126 -0,067 0,636** 0,846** -0,111 0,550** 0,962** 0,962** 0,967** 0,849** 0,751** 0,259 0,163	Ba -0,159 0,549** -0,162 -0,046 0,704** -0,048 -0,170 0,187 0,032 0,034 0,027**	Ca 0,158 0,330* 0,723** -0,126 0,031 -0,107 0,139 0,128 0,370* 0,085	Cd 0,707** 0,222 0,8994** 0,617** 0,593** 0,873** 0,753** 0,225 0,225	Co 0,233 0,457** 0,802** 0,771** 0,898** 0,903** 0,887** 0,887** 0,222 0,126	-0,021 0,058 -0,116 -0,099 0,027 0,002 0,019 0,003	Cu 0,866** 0,584** 0,438** 0,541** 0,279 0,861**	Fe 0,800** 0,761** 0,761** 0,781** 0,217 0,602**	K 0,863** 0,807** 0,716** 0,308* 0,209	0,867** 0,814** 0,233 0,093	<u>Mn</u> 0,850** 0,271 0,437**	0,272 0,292	<u>Ni</u> 0.217	РЬ	Si	Sn	Sr	Ti	v	Zn	As	Hg	Se
d) Al Ba Ca Cd Co Cr Cu Fe K Mg Mn Na Ni Pb Si	A1 -0,126 -0,067 0,636** 0,846** -0,111 0,550** 0,962** 0,962** 0,907** 0,849** 0,259 0,163 0,055	Ba -0,159 0,549** -0,162 -0,046 0,704** -0,048 -0,170 0,032 0,034 0,927** 0,026	Ca 0,158 0,330* 0,723** -0,126 0,031 -0,107 0,139 0,128 0,370* 0,085 -0,085 -0,085	Cd 0,707** 0,222 0,899** 0,617** 0,593** 0,593** 0,555** 0,755** 0,753** 0,753**	Co 0,233 0,457** 0,802** 0,898** 0,887** 0,887** 0,272 0,126 0,212	-0,021 0,058 -0,116 -0,099 0,027 0,302 0,019 0,003 0,047	Cu 0,866** 0,584** 0,584** 0,738** 0,541** 0,738* 0,541** 0,738* 0,861**	Fe 0,800** 0,761** 0,945** 0,781** 0,602** 0,602** 0,067	K 0,863** 0,807** 0,716** 0,308* 0,208	Mg 0,867** 0,814** 0,233 0,052	Mn 0,850** 0,271 0,437** 0,210	0,272 0,292 0,268	0,217 0,548**	<u>Pb</u>	Si	<u>Sn</u>	Sr	Ti	v	Zn	As	Hg	Se
d) Al Ba Ca Cd Co Cr Cu Fe K Mg Mn Na Ni Pb Si Sn	-0,126 -0,067 0,636** 0,846** -0,111 0,550** 0,849** 0,907** 0,849** 0,849** 0,259 0,163 0,055*	Ba -0,159 0,549** -0,162 -0,046 0,704** 0,361* -0,048 -0,170 0,170 0,187 0,032 0,034 0,927* 0,034 0,926 0,451**	Ca 0,158 0,330* 0,723** -0,126 0,031 -0,107 0,139 0,128 0,370* 0,085 -0,082 0,082 0,002	Cd 0,707** 0,222 0,899** 0,941** 0,593** 0,593** 0,553** 0,225 0,755** 0,225 0,755** 0,2171 0,954**	0,233 0,457** 0,802** 0,771** 0,898** 0,903** 0,903** 0,272 0,26 0,212 0,754**	-0,021 0,058 -0,116 -0,099 0,027 0,302 0,019 0,003 0,003	Cu 0,866** 0,584** 0,584** 0,738** 0,738** 0,541** 0,279 0,861** 0,279 0,861** 0,210 0,893**	Fe 0,800** 0,761** 0,945** 0,781** 0,602** 0,067 0,986**	K 0,863** 0,807** 0,716** 0,308* 0,209 0,086 0,780**	Mg 0,867** 0,814** 0,233 0,052 0,730**	Mn 0,850** 0,271 0,437** 0,210 0,926**	Na 0,272 0,292 0,268 0,764**	0,217 0,548** 0,209	Pb 0,085 0,676**	<u>Si</u> 0.088	Sn	Sr	Ti	v	Zn	As	Hg	Se
d) Al Ba Ca Cd Co Cr Cu Fe K Mg Mn Na Ni Sr	-0,126 -0,067 0,636** 0,846** -0,111 0,550** 0,829** 0,907** 0,849** 0,259 0,163 0,055 0,794**	Ba -0,159 0,549** -0,162 -0,046 0,704** 0,361* -0,048 -0,170 0,032 0,034 0,032 0,034 0,027** 0,036 0,451**	Ca 0,158 0,330* 0,723** -0,126 0,031 -0,107 0,139 0,128 0,370* 0,085 -0,082 0,085 -0,082 0,082 0,082 0,020	Cd 0,707** 0,222 0,899** 0,941** 0,593** 0,873** 0,873** 0,755** 0,755** 0,755** 0,755** 0,753** 0,753**	Co 0,233 0,457** 0,802** 0,898** 0,903** 0,903** 0,903** 0,903** 0,902* 0,902* 0,902** 0,902** 0,902** 0,902** 0,902** 0,212 0,902* 0,900* 0,0000* 0,0000000000	-0,021 0,058 -0,116 -0,099 0,027 0,302 0,019 0,003 0,0483**	Cu 0,866** 0,584** 0,438** 0,738** 0,738** 0,738** 0,745**	Fe 0,800** 0,761** 0,945** 0,781** 0,602** 0,067 0,986** 0,795**	K 0,863** 0,807** 0,716** 0,308* 0,209 0,086 0,780** 0,505**	Mg 0,867** 0,814** 0,233 0,053 0,152 0,730** 0,730**	Mn 0,850** 0,271 0,437** 0,210 0,926* 0,926*	Na 0,272 0,292 0,268 0,764** 0,804**	0,217 0,548** 0,209 0,286	Pb 0,085 0,676** 0,673**	Si 0,088 0,151	<u>Sn</u> 0,802**	Sr	Ti	v	Zn	As	Hg	Se
d) Al Ba Ca Cd Co Cr Cr Cr Cr K Mg Mn Na Ni Pb Si Sn Sr Ti	A1 -0,126 -0,067 0,636** 0,846** -0,111 0,509** 0,907** 0,907** 0,259 0,163 0,055 0,794** 0,503** 0,47**	Ba -0,159 0,549** -0,162 -0,046 0,361* -0,048 -0,170 0,038 -0,170 0,034 0,927** 0,026 0,451** 0,465** 0,465*	Ca 0,158 0,330* 0,723** 0,103 0,031 -0,107 0,139 0,130 0,370* 0,085 -0,082 0,082 0,082 0,082 0,475** 0,099	Cd 0,707** 0,222 0,899** 0,941** 0,617** 0,553** 0,755** 0,225 0,753** 0,255 0,753** 0,171 0,954** 0,895**	0,233 0,457** 0,802** 0,802** 0,802** 0,808** 0,807** 0,807** 0,807** 0,212 0,126 0,212 0,126 0,212 0,126 0,212 0,569**	-0,021 0,058 -0,116 -0,099 0,027 0,003 0,047 0,003 0,047 0,003 0,483** -0,094	Cu 0,866** 0,584** 0,438** 0,541** 0,279 0,861** 0,120 0,893** 0,745** 0,124	Fe 0,800** 0,761** 0,945** 0,781** 0,217 0,962** 0,967 0,986* 0,795** 0,363*	K 0,863** 0,807** 0,716** 0,308* 0,209 0,086 0,780** 0,505** 0,379*	Mg 0,867** 0,814** 0,233 0,093 0,152 0,730** 0,507**	Mn 0,850** 0,271 0,437** 0,210 0,926** 0,742** 0,742**	Na 0,272 0,292 0,268 0,764** 0,804** 0,418**	0,217 0,548** 0,209 0,286 0,118	Pb 0.085 0.676** 0.673** 0.014	0,088 0,151 0,136	<u>Sn</u> 0,802** 0,329*	Sr 0,270	Ti	v	Zn	As	Hg	Se
d) Al Ba Ca Cd Co Cr Cu Fe K Mg Mn Ni Pb Si Sn Sr Ti V	A1 -0,126 -0,067 0,636** 0,846** -0,111 0,509** 0,962** 0,907** 0,849** 0,907** 0,849** 0,907*	$\begin{array}{c} -0,159\\ 0,549^{**}\\ -0,162\\ -0,046\\ 0,704^{**}\\ 0,361^{*}\\ -0,048\\ -0,170\\ 0,187\\ 0,032\\ 0,034\\ 0,927^{**}\\ 0,026\\ 0,451^{**}\\ 0,466^{**}\\ -0,130\\ -0,037\\ \end{array}$	Ca 0,158 0,330* 0,723** -0,126 0,0107 0,139 0,128 0,370* 0,085 -0,082 0,085 -0,082 0,082 -0,082 0,475** 0,099 0,045	Cd 0,707** 0,222 0,899** 0,941** 0,617** 0,593** 0,873** 0,753** 0,753** 0,171 0,954** 0,8954** 0,8954** 0,8954** 0,260 0,739**	0,233 0,457** 0,802** 0,771** 0,898** 0,898** 0,8272 0,126 0,212 0,754** 0,669** 0,460** 0,878**	-0,021 0,058 -0,116 -0,099 0,027 0,003 0,047 0,003 0,047 0,033** -0,094 0,043	Cu 0,866** 0,584** 0,438** 0,541** 0,541** 0,541** 0,541** 0,120 0,893** 0,745** 0,124 0,610**	Fe 0,800** 0,761** 0,945** 0,781*7 0,986** 0,967 0,986** 0,363* 0,363*	K 0,863** 0,807** 0,716** 0,308* 0,209 0,086 0,780** 0,379* 0,379* 0,328**	Mg 0,867** 0,814** 0,233 0,093 0,152 0,730** 0,472** 0,888**	Mn 0.850** 0.271 0.437** 0.210 0.926** 0.742** 0.449** 0.488**	Na 0,272 0,292 0,268 0,764** 0,804** 0,418**	0,217 0,548** 0,209 0,286 0,118 0,290	0,085 0,676*** 0,673** 0,014 0,243	0.088 0.151 0.136 0.130	5n 0,802*** 0,329* 0,846**	0,270 0,613**	Ti 0,411**	v	Zn	As	Hg	Se
d) Al Ba Ca Ca Co Co Cr Cu Fe K Mn Na Ni Pb Si Sn Ti V Zn	A1 -0,126 -0,067 0,636** 0,846** -0,111 0,505** 0,962** 0,962** 0,907** 0,849** 0,907** 0,849** 0,259 0,163 0,055 0,794** 0,055 0,794** 0,963** 0,447**	$\begin{array}{c} & & & \\ & -0,159 \\ & & 0,549^{**} \\ & -0,162 \\ & -0,046 \\ & & 0,704^{**} \\ & & 0,061 \\ & & -0,170 \\ & & 0,187 \\ & & 0,032 \\ & & 0,032 \\ & & 0,032 \\ & & 0,032 \\ & & 0,032 \\ & & 0,032 \\ & & 0,032 \\ & & 0,037 \\ & & 0,037 \\ & & 0,037 \\ & & 0,037 \\ & & 0,037 \\ \end{array}$	Ca 0,158 0,330* 0,723** -0,126 0,037 0,128 0,128 0,370* 0,085 -0,082 -0,082 -0,082 -0,082 -0,082 0,475** 0,093 0,455 0,043	Cd 0,707** 0,222 0,899** 0,873** 0,873** 0,753** 0,753** 0,753** 0,753** 0,753** 0,753** 0,753** 0,753** 0,739** 0,895** 0,260 0,739**	0,233 0,457** 0,802** 0,898** 0,898** 0,887** 0,887** 0,272 0,126 0,212 0,754** 0,460** 0,878** 0,878**	-0,021 0,058 -0,116 -0,099 0,027 0,003 0,047 0,030 0,044 -0,094 0,043	Cu 0,866** 0,584** 0,438** 0,541** 0,541** 0,541** 0,541** 0,861** 0,745**	Fe 0,800** 0,761** 0,945** 0,781** 0,802** 0,602** 0,602** 0,986** 0,363* 0,874** 0,874**	K 0,863** 0,807** 0,716* 0,308* 0,209 0,086 0,780** 0,379* 0,928** 0,928**	0,867** 0,814** 0,814** 0,233 0,093 0,152 0,730** 0,472** 0,888** 0,213	Mn 0,850** 0,271 0,437** 0,210 0,926** 0,429** 0,888** 0,888** 0,888**	Na 0,272 0,292 0,268 0,764** 0,804** 0,764** 0,792** 0,356*	0,217 0,548** 0,209 0,286 0,188 0,290 0,853**	0,085 0,676** 0,673** 0,014 0,243 0,683**	\$i 0,088 0,151 0,136 0,130 0,449**	5n 0,802*** 0,329* 0,846** 0,509**	0,270 0,613** 0,579**	Ti 0,411** 0,074	V 0,345*	Zn	As	Hg	Se
d) Al Ba Ca Cd Cd Cr Cu Fe K Mn Na Ni Si Si Si Si V Zn As	A1 -0,126 -0,067 0,636** 0,846** -0,111 0,550** 0,962** 0,967** 0,849** 0,751** 0,259 0,163 0,055 0,794** 0,503** 0,503** 0,477* 0,964**	$\begin{array}{c} & & & \\ & -0,159 \\ & & 0,549^{**} \\ & -0,162 \\ & -0,046 \\ & & 0,704^{**} \\ & -0,048 \\ & -0,170 \\ & 0,032 \\ & 0,034 \\ & 0,927^{**} \\ & 0,026 \\ & 0,037 \\ & 0,026 \\ & 0,466^{**} \\ & -0,103 \\ & 0,037 \\ & 0,518^{**} \\ & -0,092 \end{array}$	Ca 0,158 0,330* 0,723** -0,126 0,031 -0,107 0,139 0,128 0,370* -0,082 -0,082 -0,082 -0,082 -0,082 -0,082 0,475** 0,099 0,043 -0,023	Cd 0,707** 0,222 0,899** 0,617** 0,593** 0,753** 0,753** 0,753** 0,753** 0,711 0,954** 0,895** 0,739** 0,739** 0,571**	Co 0,233 0,457** 0,802** 0,771** 0,898** 0,903** 0,887** 0,212 0,126 0,212 0,212 0,212 0,212 0,212 0,214* 0,669** 0,4669** 0,4669** 0,4669**	-0,021 0,058 -0,116 -0,099 0,027 0,302 0,019 0,003 0,047 0,030 0,043 -0,094 0,043 0,044 -0,043	Cu 0,866** 0,584** 0,438** 0,541** 0,279 0,861** 0,120 0,893** 0,745** 0,124 0,610** 0,665** 0,443**	Fe 0,800** 0,761** 0,945** 0,781** 0,217 0,602** 0,986** 0,795** 0,863* 0,874** 0,480** 0,480**	K 0,863** 0,807** 0,716** 0,308* 0,308* 0,309* 0,379* 0,379* 0,311* 0,311*	Mg 0,867** 0,814** 0,233 0,093 0,152 0,730** 0,872** 0,888* 0,213 0,764**	Mn 0,850** 0,271 0,437** 0,210 0,926** 0,429** 0,488** 0,888** 0,888** 0,888**	Na 0,272 0,292 0,268 0,764** 0,804** 0,792** 0,356* 0,592**	0,217 0,548** 0,209 0,286 0,128 0,290 0,853** 0,211	0,085 0,676** 0,673** 0,043 0,243 0,243 0,243	Si 0,088 0,151 0,130 0,449** 0,112	5n 0,802** 0,329* 0,846** 0,509** 0,509**	0,270 0,613** 0,579** 0,364*	Ti 0,411** 0,074 0,312*	0,345* 0,783**	<u>Zn</u> 0,226	As	Hg	Se
d) Al Ba Ca Cd Cd Co Cr Cu Fe K Mg Mn Na Ni Pb Si Si Si Si Si V Zn As Hg	-0,126 -0,067 0,636** 0,846** -0,111 0,550** 0,962** 0,962** 0,97** 0,849** 0,751** 0,259 0,163 0,055 0,794** 0,503** 0,447** 0,273** 0,274	Ba -0,159 0,549** -0,162 -0,046 0,704** 0,061* -0,048 -0,170 0,032 0,034 0,927** 0,026 0,451** 0,026 0,451** 0,026 0,451** 0,026 0,037 0,518** -0,037	Ca 0,158 0,330* 0,723** -0,126 0,031 -0,107 0,139 0,128 0,370* 0,085 -0,085 -0,085 -0,082 0,085 -0,002 0,475** 0,099 0,045 0,045 0,045 0,045 0,023 -0,021	Cd 0,707** 0,222 0,899** 0,593** 0,593** 0,555** 0,753**	Co 0,233 0,457** 0,802** 0,898** 0,898** 0,898** 0,898** 0,272 0,272 0,272 0,272 0,272 0,212 0,274** 0,669** 0,460** 0,878** 0,878** 0,878** 0,268 0,754**	-0,021 0,058 -0,116 -0,099 0,027 0,302 0,019 0,030 0,443 *** -0,094 0,043 0,044 0,043 0,044 0,043 0,044 0,043	Cu 0,866** 0,584** 0,438** 0,738** 0,541** 0,738*0 0,861** 0,120 0,803** 0,124 0,615** 0,124 0,665** 0,443** -0,077	Fe 0,800** 0,761** 0,945** 0,781** 0,945** 0,602** 0,602** 0,602** 0,602** 0,678** 0,480** 0,678** 0,678** -0,299	K 0,863** 0,807** 0,716** 0,308* 0,086 0,780** 0,308* 0,308* 0,31* 0,31* 0,31*	Mg 0,867** 0,814** 0,233 0,052 0,730** 0,807** 0,807** 0,808** 0,213 0,764** -0,247	Mn 0,850** 0,271 0,437** 0,210 0,926** 0,742** 0,429** 0,764** -0,341*	Na 0,272 0,292 0,268 0,764** 0,804** 0,356* 0,356* 0,356* 0,3592** -0,290	Ni 0,217 0,548** 0,209 0,286 0,118 0,209 0,853** 0,211 -0,078	0,085 0,676** 0,673** 0,014 0,243 0,682* 0,131 -0,005	5i 0,088 0,151 0,136 0,130 0,449** 0,112 0,066	Sn 0,802** 0,329* 0,846** 0,509** 0,661** -0,274	0,270 0,613** 0,579** 0,364* -0,223	0,411** 0,074 0,312* -0,199	V 0,345* 0,783** -0,289	2n 0,226 -0,085	<u>As</u> -0.,353*	Hg	Se

Tabela 84. Pirsonovi korelacioni koeficijenti nakon mirotalasne digestije za *the aqua regia*, tj. pseudo ukupni sadržaj elemenata u ispitivanim uzorcima sedimenata i muljeva

		cu	00	0.	cu	10	K	wig	IVIII	INA	INI	PO	31	311	51	11	v	ZII	As	пg	Se
18																					
-0,127																					
ō* 0,267	0,343*																				
* 0,159	0,068	-0,413**																			
1 -0,119	0,192	0,102	-0,118																		
2* 0,695**	-0,101	0,469**	-0,403**	-0,039																	
** 0,263	0,137	-0,327*	0,967**	0,046	-0,321*																
** 0,290	0,068	-0,367*	0,956**	-0,116	-0,304	0,963**															
** -0,023	0,365*	-0,460**	0,736**	-0,137	-0,369*	0,718**	0,689**														
* 0,170	0,159	-0,380*	0,951**	-0,083	-0,376*	0,944**	0,958**	0,704**													
* 0,315*	0,158	0,125	0,531**	0,097	0,036	0,580**	0,552**	0,400**	0,521**												
* 0,056	0,175	0,078	0,720**	0,151	-0,325*	0,709**	0,687**	0,289	0,719**	0,505**											
0,824**	-0,161	0,493**	-0,383*	-0,039	0,831**	-0,281	-0,268	-0,435**	-0,365*	-0,019	-0,307										
-0,450**	-0,288	0,046	-0,752**	0,063	0,000	-0,823**	-0,787**	-0,638**	-0,728**	-0,613**	-0,468**	0,012	0.01044								
•* 0,261	0,131	-0,339*	0,966**	0,044	-0,319*	0,999**	0,964**	0,722**	0,948**	0,581**	0,/06**	-0,284	-0,819**	0.221#							
2 0,363*	0,742**	0,506**	0,231	0,036	0,232	0,331*	0,276	0,391*	0,293	0,590**	0,321*	0,192	-0,561**	0,331*	0.252*						
** 0,184	0,169	-0,411**	0,874**	-0,140	-0,349*	0,892**	0,8/3**	0,885**	0,841**	0,526**	0,428**	-0,324*	-0,818**	0,894**	0,353*	0.054**					
* 0,237	0,194	-0,150	0,924**	-0,055	-0,517*	0,950**	0,955**	0,049**	0,951**	0,580**	0,739**	-0,208	-0,825**	0,932**	0,387*	0,854**	0.204				
* 0,773**	-0,088	0,587**	-0,454**	-0,002	0,820**	-0,32/*	-0,321*	-0,421**	-0,408**	-0,006	-0,285	0,961**	0,042	-0,329*	0,265	-0,346*	-0,294	0 474**			
* 0.569**	0,105	-0,412**	0,931**	-0,082	-0,449**	0.515**	0,912**	0.522**	0.559**	0,439**	0,791**	-0,438**	-0,039**	0.514**	0,186	0.521**	0,003**	-0,4/4**	0.604**		
0,508***	0.227	0.790**	-0,579**	0.024	0.286	-0,013**	-0,495***	-0,332***	-0,558**	-0,202	0 322*	0.375*	-0.131	-0.035	-0,002	-0,551**	0.203	0.463**	-0.004***	0.334*	
496*12******	48 92 -0,127 6* 0,267 ** 0,159 11 -0,119 2* 0,695** ** 0,200 ** 0,200 ** 0,200 ** 0,315* ** 0,056 07 0,824** ** 0,261 72 0,363* ** 0,257 1* 0,773** ** 0,068* 02 0,568** 02 0,568**	48 92 -0,127 6* 0,267 0,343* ** 0,159 0,068 11 -0,119 0,192 2* 0,695** -0,101 ** 0,263 0,137 ** 0,200 0,068 ** -0,023 0,365* ** 0,170 0,159 ** 0,315* 0,158 ** 0,056 0,175 07 0,824** -0,161 ** 0,261 0,131 72 0,363* 0,742** ** 0,184 0,169 ** 0,257 0,194 1* 0,257 0,194 ** 0,688 0,105 ** 0,668 0,105	48 92 -0,127 6* 0,267 0,343* ** 0,159 0,068 -0,413** 11 -0,119 0,192 0,102 2* 0,695** -0,101 0,469** ** 0,263 0,137 -0,327* ** 0,263 0,137 -0,327* ** 0,263 0,137 -0,327* ** 0,263 0,137 -0,327* ** 0,215* 0,158 0,125 ** 0,315* 0,158 0,125 ** 0,315* 0,158 0,125 ** 0,056 0,175 0,078 0,7 0,824** -0,161 0,493** * 0,261 0,131 -0,339* 72 0,534* 0,724* 0,506** ** 0,184 0,169 -0,411** ** 0,257 0,194 -0,156 1* 0,773** -0,0288 0,	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c} 48\\ 92&-0.127\\ 6^{*}&0.267&0.343^{*}\\ *^{*}&0.159&0.068&-0.413^{**}\\ 11&-0.119&0.192&0.102&-0.118\\ 2^{*}&0.695^{**}&-0.101&0.469^{**}&-0.403^{**}&-0.039\\ *^{*}&0.263&0.137&-0.327^{*}&0.967^{**}&0.046&-0.321^{*}\\ *^{*}&0.203&0.365^{*}&-0.068&-0.367^{*}&0.956^{**}&-0.116&-0.304&0.963^{**}\\ *^{*}&0.203&0.365^{*}&-0.460^{**}&0.736^{**}&-0.137&-0.369^{*}&0.718^{**}&0.689^{**}\\ *^{*}&0.170&0.159&-0.380^{*}&0.951^{**}&-0.083&-0.376^{*}&0.944^{**}&0.958^{**}&0.704^{**}\\ *^{*}&0.315^{*}&0.158&0.125&0.531^{**}&0.097&0.036&0.580^{**}&0.552^{**}&0.400^{**}&0.521^{**}\\ *^{*}&0.056&0.175&0.078&0.720^{**}&0.151&-0.325^{*}&0.709^{**}&0.687^{**}&0.289&0.719^{**}\\ *^{*}&0.056&0.175&0.078&0.720^{**}&0.063&0.000&-0.823^{**}&-0.288&0.435^{**}&-0.365^{*}\\ *^{*}&-0.450^{**}&-0.288&0.046&-0.752^{**}&0.063&0.000&-0.823^{**}&-0.787^{**}&-0.638^{**}&-0.728^{**}\\ *^{*}&0.261&0.131&-0.339^{*}&0.966^{**}&0.044&-0.319^{*}&0.999^{**}&0.964^{**}&0.722^{**}&0.948^{**}\\ 72&0.363^{*}&0.742^{**}&0.506^{**}&0.231&0.036&0.232&0.331^{*}&0.276&0.391^{*}&0.293\\ *^{*}&0.184&0.169&-0.411^{**}&0.874^{**}&-0.140&-0.349^{*}&0.892^{**}&0.873^{**}&0.885^{**}&0.841^{**}\\ *^{*}&0.257&0.194&-0.156&0.924^{**}&-0.033&-0.317^{*}&0.956^{**}&0.955^{**}&0.649^{**}&0.931^{**}\\ 1^{*}&0.773^{**}&-0.088&0.587^{**}&-0.434^{**}&-0.002&0.820^{**}&-0.327^{*}&-0.321^{*}&-0.421^{**}&-0.408^{**}\\ *^{*}&0.068&0.0105&-0.412^{**}&0.951^{**}&-0.082&-0.449^{**}&0.898^{**}&0.912^{**}&0.673^{**}&0.958^{**}\\ 0.608&0.0105&-0.412^{**}&0.951^{**}&-0.082&-0.449^{**}&0.888^{**}&0.912^{**}&0.637^{**}&0.958^{**}\\ 0.068^{*}&-0.227&0.488^{**}&-0.108&0.099&0.286&-0.022&-0.015&-0.242&-0.031 \end{array}$	$ \begin{array}{c} 48\\ 92&-0,127\\ 6^{*}&0,267&0,343^{*}\\ *^{*}&0,159&0,068&-0,413^{**}\\ 11&-0,119&0,192&0,102&-0,118\\ 2^{*}&0,695^{**}&-0,101&0,469^{**}&-0,403^{**}&-0,039\\ *^{*}&0,263&0,137&-0,327^{*}&0,967^{**}&0,046&-0,321^{*}\\ *^{*}&0,203&0,365^{*}&-0,460^{**}&0,736^{**}&-0,116&-0,304&0,963^{**}\\ *^{*}&0,023&0,365^{*}&-0,460^{**}&0,736^{**}&-0,137&-0,369^{**}&0,718^{**}&0,689^{**}\\ *^{*}&0,170&0,159&-0,380^{*}&0,951^{**}&-0,083&-0,376^{**}&0,944^{**}&0,958^{**}&0,704^{**}\\ *^{*}&0,315^{*}&0,158&0,125&0,531^{**}&0,097&0,036&0,580^{**}&0,552^{**}&0,400^{**}&0,521^{**}\\ *^{*}&0,056&0,175&0,078&0,720^{**}&0,151&-0,325^{*}&0,709^{**}&0,687^{**}&0,289&0,719^{**}&0,505^{**}\\ 07&0,824^{**}&-0,161&0,493^{**}&-0,383^{*}&-0,039&0,831^{**}&-0,281&-0,268&-0,435^{**}&-0,365^{*}&-0,019\\ *^{*}&-0,450^{**}&-0,288&0,046&-0,752^{**}&0,063&0,000&-0,823^{**}&-0,638^{**}&-0,365^{*}&-0,019\\ *^{*}&0,261&0,131&-0,339^{*}&0,966^{**}&0,044&-0,319^{*}&0,999^{**}&0,964^{**}&0,722^{**}&0,948^{**}&0,581^{**}\\ 72&0,363^{*}&0,742^{**}&0,506^{**}&0,231&0,036&0,232&0,331^{*}&0,276&0,391^{*}&0,293&0,580^{**}\\ *^{*}&0,184&0,169&-0,411^{**}&0,874^{**}&-0,140&-0,349^{*}&0,892^{**}&0,873^{**}&0,885^{**}&0,841^{**}&0,526^{**}\\ *^{*}&0,257&0,194&-0,156&0,924^{**}&-0,033&-0,317^{*}&0,956^{**}&0,955^{**}&0,649^{**}&0,931^{**}&0,580^{**}\\ 1^{*}&0,773^{**}&-0,088&0,587^{**}&-0,434^{**}&-0,002&0,820^{**}&-0,327^{*}&-0,321^{*}&-0,421^{**}&-0,408^{**}&-0,006\\ *^{*}&0,068&0,105&-0,412^{**}&0,951^{**}&-0,082&-0,449^{**}&0,892^{**}&0,912^{**}&0,672^{**}&0,934^{**}&0,406\\ *^{*}&0,068&0,105&-0,227&0,448^{**}&-0,072^{*}&-0,024&0,848^{**}&0,515^{**}&-0,433^{**}&-0,525^{**}&0,202\\ 02&0,314^{*}&0,248&0,790^{**}&-0,108&0,099&0,286&-0,022&-0,015&-0,242&-0,031&0,156\\ \end{array}$	$ \begin{array}{c} 48\\ 92&-0,127\\ 6^{*}&0,267&0,343^{*}\\ *^{*}&0,159&0,068&-0,413^{**}\\ 11&-0,119&0,192&0,102&-0,118\\ 2^{*}&0,695^{**}&-0,101&0,469^{**}&-0,403^{**}&-0,039\\ *^{*}&0,263&0,137&-0,327^{*}&0,967^{**}&0,046&-0,321^{*}\\ *^{*}&0,203&0,365^{*}&-0,460^{**}&0,736^{**}&-0,116&-0,304&0,963^{**}\\ *^{*}&0,023&0,365^{*}&-0,460^{**}&0,736^{**}&-0,137&-0,369^{**}&0,718^{**}&0,689^{**}\\ *^{*}&0,170&0,159&-0,380^{*}&0,951^{**}&-0,083&-0,376^{*}&0,944^{**}&0,958^{**}&0,704^{**}\\ *^{*}&0,315^{*}&0,158&0,125&0,531^{**}&0,097&0,036&0,580^{**}&0,552^{**}&0,400^{**}&0,521^{**}\\ *^{*}&0,056&0,175&0,078&0,720^{**}&0,151&-0,325^{*}&0,709^{**}&0,687^{**}&0,289&0,719^{**}&0,505^{**}\\ 07&0,824^{**}&-0,161&0,493^{**}&-0,383^{*}&-0,039&0,831^{**}&-0,281&-0,268&-0,435^{**}&-0,365^{*}&-0,019&-0,307\\ *^{*}&-0,450^{**}&-0,288&0,046&-0,752^{**}&0,063&0,000&-0,823^{**}&-0,787^{**}&-0,638^{**}&-0,565^{**}&-0,019&-0,307\\ 7^{*}&2,053^{*}&0,742^{**}&0,506^{**}&0,231&0,036&0,232&0,331^{*}&0,728^{**}&0,613^{**}&-0,613^{**}&0,706^{**}\\ 72&0,53^{*}&0,742^{**}&0,506^{**}&0,231&0,036&0,232&0,331^{*}&0,276&0,391^{*}&0,293&0,580^{**}&0,321^{**}\\ *^{*}&0,184&0,169&-0,411^{**}&0,874^{**}&-0,140&-0,349^{*}&0,892^{**}&0,873^{**}&0,688^{**}&0,841^{**}&0,526^{**}&0,428^{**}\\ *^{*}&0,257&0,194&-0,156&0,924^{**}&-0,033&-0,317^{*}&0,956^{**}&0,991^{**}&0,649^{**}&0,931^{**}&0,580^{**}&0,759^{**}\\ 1^{*}&0,773^{**}&-0,088&0,887^{**}&-0,434^{**}&-0,002&0,820^{**}&-0,327^{*}&-0,321^{*}&-0,408^{**}&0,506^{**}&0,759^{**}\\ *^{*}&0,068&0,105&-0,412^{**}&0,951^{**}&-0,082&-0,449^{**}&0,898^{**}&0,912^{**}&0,672^{**}&0,931^{**}&0,580^{**}&0,791^{**}\\ *^{*}&0,668^{*}&-0,227&0,488^{**}&-0,579^{**}&-0,082&-0,449^{**}&0,898^{**}&0,912^{**}&0,672^{**}&0,934^{**}&0,791^{**}\\ *^{*}&0,668^{*}&-0,227&0,488^{**}&-0,579^{**}&-0,082&-0,449^{**}&0,898^{**}&0,912^{**}&0,558^{**}&-0,202&-0,434^{**}\\ *^{*}&0,568^{**}&-0,227&0,488^{**}&-0,579^{**}&-0,082&-0,449^{**}&0,898^{**}&0,912^{**}&0,558^{**}&-0,202&-0,434^{**}\\ *^{*}&0,568^{**}&-0,227&0,488^{**}&-0,579^{**}&-0,082&-0,498^{**}&0,515^{$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c} & & & & & & & & & & & & & & & & & & &$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c} & & & & & & & & & & & & & & & & & & &$	$ \begin{array}{c} & & & & & & & & & & & & & & & & & & &$

** Značajnost korelacije za 99% nivo značajnosti.

* Značajnost korelacije za 95% nivo značajnosti.

Tabela 85. Pirsonovi korelacioni koeficijenti nakon mirotalasne digestije, *the aqua regia* plus fluorovodonična kiselina, ukupni sadržaj elemenata u ispitivanim uzorcima sedimenata i muljeva

	Al	Ba	Ca	Cd	Co	Cr	Cu	Fe	K	Mg	Mn	Na	Ni	Pb	Si	Sn	Sr	Ti	v	Zn
Al		-	-	-	-	-		-	-	-	-	-		-		-	-	-		
Ba	0,023																			
Ca	-0,022	-0,190																		
Cd	-0,388*	0,206	0,286																	
Co	0,896**	0,208	-0,039	-0,297																
Cr	-0,213	-0,170	0,141	-0,055	-0,046															
Cu	-0,526**	0,544**	-0,191	0,352*	-0,387*	-0,039														
Fe	0,782**	0,288	0,029	-0,189	0,939**	0,212	-0,290													
K	0,886**	0,239	-0,054	-0,348*	0,946**	-0,183	-0,349*	0,860**												
Mg	0,194	-0,345*	0,468**	-0,052	-0,021	-0,091	-0,317*	-0,079	0,083											
Mn	0,823**	0,152	0,057	-0,226	0,953**	0,005	-0,389*	0,913**	0,904**	-0,039										
Na	0,641**	-0,415**	0,185	-0,592**	0,414**	-0,030	-0,700**	0,316*	0,439**	0,615**	0,327*									
Ni	0,440**	-0,038	0,101	0,097	0,672**	0,407**	-0,345*	0,733**	0,507**	-0,174	0,728**	0,027								
Pb	-0,699**	0,582**	-0,358*	0,236	-0,597**	-0,042	0,799**	-0,507**	-0,561**	-0,424**	-0,610**	-0,720**	-0,521**							
Si	-0,533**	-0,058	-0,386*	-0,395*	-0,610**	-0,022	0,296	-0,641**	-0,568**	-0,105	-0,663**	-0,066	-0,653**	0,579**						
Sn	0,782**	0,288	0,028	-0,186	0,938**	0,215	-0,288	0,999**	0,856**	-0,089	0,914**	0,308*	0,733**	-0,504**	-0,646**					
Sr	0,082	-0,038	0,806**	0,434**	0,053	0,070	-0,211	0,139	0,077	0,541**	0,121	0,242	0,185	-0,368*	-0,509**	0,135				
Ti	0,913**	0,280	-0,040	-0,315*	0,968**	-0,134	-0,333*	0,914**	0,971**	0,030	0,917**	0,451**	0,517**	-0,548**	-0,590**	0,912**	0,083			
v	0,806**	0,194	-0,005	-0,013	0,849**	-0,016	-0,320*	0,824**	0,810**	-0,041	0,837**	0,214	0,664**	-0,538**	-0,786**	0,834**	0,137	0,824**		
Zn	-0,551**	0,764**	-0,069	0,570**	-0,360*	-0,007	0,797**	-0,212	-0,379*	-0,362*	-0,365*	-0,738**	-0,225	0,843**	0,182	-0,211	0,008	-0,328*	-0,278	
** Z	načainost	korelacije	za 99%	nivo znač	ainosti.															

* Značajnost korelacije za 95% nivo značajnosti.

Biografija

Kandidat Dubravka Relić (rođena Radmanović) je rođena 9. oktobra 1974. godine u Vukovaru, Hrvatska. Osnovnu školu i prve dve godine srednje škole završila je u Slavonskom Brodu, a ostale dve godine u XIII beogradskoj gimnaziji. Hemijski fakultet je upisala školske 1993/94, a diplomirala školske 1997/98 na Katedri za primenjenu hemiju sa prosečnom ocenom 8,20 (osam i 20/100) i ocenom 10 (deset) na diplomskom radu. Sve ispite predviđene nastavnim planom postdiplomskih studija položila sa prosečnom ocenom 10 (deset), a magistarsku tezu odbranila 2006. godine. Na Hemijskom fakultetu se zaposlila oktobra 1999. godine i u julu 2007. godine na Hemijskom fakultetu je izabrana u zvanje asistenta za užu naučnu oblast Hemija životne sredine.

Trenutno je angažovana na projektima Ministarstva nauke, prosvete i tehnološkog razvoja pod brojevima 172001 "Proučavanje fizičkohemijskih i biohemijskih procesa u životnoj sredini koji utiču na zagađenje i istraživanje mogućnosti za minimiziranje posledica", i III 43007 "Istraživanje klimatskih promena i njihovog uticaja na životnu sredinu - praćenje uticaja, adaptacija i ublažavanje".

Do sada je bila angažovana i na dva međunarodna projekta "Contiunous water quality monitoring in surface water of Montenegro and Serbia". SEE-ERA NET Pilot Joint Call Research Project i "Scientific cooperation between research institutions for the study of airborne fine particles in Important Cities of the Adriatic area" (SICMA) u okviru Programa Evropske Unije INTERREG IIIA prekogranične jadranske saradnje, Adriatic New Neighborhood Programme INTERREG / CARDS-PHARE (INTERREG IIIA).

mr Dubravka Relić je autor i koautor 4 poglavlja u monografijama, 12 naučnih radova i 43 saopštenja. Rezultati istraživanja poistekli iz ove doktorske disertacije objavljeni su u okviru tri rada štampana u međunarodnim naučnim časopisima, četiri naučna saopštenja jedno od njih štampano u celini a tri u izvodu.

Prilog 1.

Izjava o autorstvu

Potpisani-a <u>Dubravka Relić</u>

broj indeksa _____

Izjavljujem

Da je doktorska disertacija pod naslovom

Novi pristup u ispitivanju mobilnosti metala i metaloida u sedimentima primenom sekvencijalne ekstrakcije

- rezultat sopstvenog istraživačkog rada,
- da predložena disertacija u celini ni u delovima nije bila predložena za dobijanje bilo koje diplome prema studijskim programima drugih visokoškolskih ustanova,
- da su rezultati korektno navedeni i
- da nisam kršio/la autoska prava i koristio intelektualnu svojinu drugih lica.

Potpis doktoranda

U Beogradu, _30.11.2012.____

place Rent

Prilog 2.

Izjava o istovetnosti štampane i elektronske verzije doktorskog rada

Ime i prezime autora _Dubravka Relić
Broj indeksa
Studijski program
Naslov rada _ Novi pristup u ispitivanju mobilnosti metala i metaloida u sedimentima
primenom sekvencijalne ekstrakcije
Mentordr Aleksandar Popović
Komentor _dr Dragana Đorđević
Potpisani/aDubravka Relić

Izjavljujem da je štampana verzija mog doktorskog rada istovetna elektrnskoj verziji koju sam predao/la za objavljivanje na portalu **Digitalnog repozitorijuma Univerziteta u Beogradu.**

Dozvoljavam da se objave moji lični podaci vezani za dobijanje akademskog zvanja doktora nauka, kao što su ime i prezime, godina i mesto rođenja i datum odbrane rada.

Ovi lični podaci mogu se objaviti na mrežnim stranicama digitalne biblioteke, u elektronskom katalogu i u publikacijama Univerziteta u Beogradu.

Potpis doktoranda

U Beogradu, ____30.11.2012._____

hyspetra Red

Prilog 3.

Izjava o korišćenju

Oblašćujem Univerzitetsku biblioteku "Svetozar Marković" da u Digitalni repozitorijum Univerziteta u Beogradu unese moju doktorsku disertaciju pod naslovom:

Novi pristup u ispitivanju mobilnosti metala i metaloida u sedimentima primenom sekvencijalne ekstrakcije

koja je moje autorsko delo.

Disertacija sa svim prilozima predao/la sam u elektronskom formatu pogodnom za trajno arhiviranje.

Moju doktrosku disertaciju pohranjenu u Digitalni repozitorijum Univerziteta u Beogradu mogu da koriste svi koji poštuju odredbe sadržane u odabranom tipu licence Kreativne zajednice (Creative Commons) za koju sam se odlučio/la.

- 1. Autorstvo
- 2. Autorstvo nekomercijalno
- 3. Autorstvo nekomercijalno bez prerade
- 4. Autorstvo nekomercijalno deliti pod istim uslovima
- 5. Autorstvo bez prerade
- 6. Autorstvo deliti pod istim uslovima

(Molim da zaokružite jednu od šest ponuđenih licenci, kratak opis licenci dat je na poleđini lista).

Potpis doktoranda

U Beogradu, _30.11.2012.____

lipspilling that