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Pe3ume pama

Y 0BOj MOKTOPCKO] AMCEPTAIUjU YOIIITABAMO MHOTE IMO3HATE Pe3yJ-
TaTe Be3aHe 3a rOpHme TPOyraoHe Marpuie omeparopa. Ham 3amarak
je ma mpurakeMO pe3yJTaTe KapaKTepui3allije 3a pa3He TUIOBE WH-
BEPTUOUIHOCTY TAKBUX MaTPUIA OllepaTopa, KOju he oHma JaTu OIro-
Bapajyhe pesyarare nepryp0Oalja u Heke pe3yaTaTe 3a npobJieM ,,mo-
nymaBama pymna’ .

Youmrewma Koja BPOIXMMO CIPOBOIMMO y ABa mpaBna. lIpBo, yorm-
mTaBaMO MHOTe IO3HATe pe3yJTaTe M3paskeHe 3a MATPUIE OIepaTopa
pena 2 Ha MaTpulle olepaTopa Koje Cy OPOU3BOJLHOI pema n > 2.
Ipyro, pesynarare KOju Cy HOaTU Yy KOHTEKCTY AMPEKTHE TOMIOJOIIKE
cyMe cemapabuiaHnX XuJIOEePTOBUX MPOCTOPA IMPOIIUPYjEMO TaKO Ia
BajKe Ha AWPEKTHO] TOMOJOIIKO] CYMU ITPOU3BOJLHUX baHaXoBUX TPO-
cTopa.

Y mucepTanuju, TpWKa3aHa Cy MABa HOBA MeTOoda MOMONY KOjuUX
MOKEMO UCTPAKUBATU CIIEKTPaJIHE OCOOMHE MaTpuila oneparopa. I[psu
METO/I C€ OQHOCU Ha MPOIMUPEH-e TEXHUKE yTalama baHaxoBUX MpoCTo-
pa yBeneHne ox crpane parana C. Hopbesuha y [12] na ropme Tpo-
yraoHe MaTpUIle ONepaTopa MIPOU3BOJLHE AVMEH3Uje, a APYTU METOI
je amanranuja TexHuke cBobema Ha ancypn us [54], [55] ma maTpune
ormepaTopa Koje Heayjy Ha AUPEKTHO] CyMU MPOCTOpa KOJU HE MOpPajy
outu cenapabunau. OBe uneje NpeacTaBbajy OPUTMHAJIAH HAYYHU T0-
OPUHOC ayTopa, U IpuKa3aHe cy y paxoBuMma [44]-[48].
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Casxkerak

OBa DOKTOpCKa AucepTalrja uMa 3a IMUJb Ja TPUKaKe Pa3He Pe3yJaTare
Be3aHe 33 MHOTE€ TUIIOBE MHBEPTUOMIHOCTU OJIOK MATpUIa OomepaTopa
UMju Cy HEKU eJIEMEHTHU OaTW, a OocTaju Hucy. Dok marpuie omepa-
TOpa Koje hemMo Mu mpoydaBaTu jecy TOPHE TPOYTraoHEe MATPUIE OIle-
paTopa, Tj. MaTpuIe KOI KOJUX Ce UCIOJ TJIaBHE OUjaroHaJje Hajase
HyJIa OIEpATOPU. 3a TaKBe MaTPUIE OIepaTropa YBEeK NeMo mpeT-
MOCTABJBATH Jla CYy UM AVjarOHAJHU €JIEMEHTHU NaTu, & eJIEMEeHTHU M3HAL
rIaBHe nujaroHasie Hucy no3Hatu. llompa3ymeBa ce ma oBakBe Ma-
TpuUlile omepaTopa Heayjy Ha AUPEKTHOj TOIOJIOIIKO] cyMu banaxoBux
IpOCTOpa, Kao MTO je Mpenu3upaHo y HacTaBky. Ham 3amaTtak je na
IPUKAKEMO pe3yJTare KapakTepU3alyje 3a pa3He TUIOBE NHBEPTUOMII-
HOCTU TAKBUX OllepaTopa, Koju he oHAa maTtu oarosapajyhe pesymarare
neprypbanuja 1 HEKe pe3yJaTare 3a IpodJeM ,,monymaBama pyna’ .

o capma, ncrpakrBama OBe BPCTe Ouia Cy yIrJIaBHOM IPeIy3u-
MaHa y KOHTEKCTY cemapabumaux XwuibeprtoBux mpoctopa. (Crora,
npeOpojuBe OpPTOroHAJNHE Oa3e Cy YeCTO KOpHUIINeHe Yy TUM UCTPaKU-
BamuMa. AyTop oBe mucepranuje omabpao je apyradmju myT. Y MEeCTo
a KOpuUcTU JuHeapHe Oa3ze bamaxoBux mpocTopa Koje He Mopajy Outu
npebpojuBe, ayTop je pamuje omabpao pam ca omroBapajyhuMm yra-
namuMa n3Mehy oHuX moTupocTopa baHaxoBUX MpocTopa KOju UMajy
TOmOJIOMKN KoMmemMeHT. OQcuM TOra, CTpydmanu y OBOj obIacTu cy
OO0 cana yTrJIABHOM HCHUTUBAJIU CIydaj 2 X 2 TOpme TPOYraoHUX Ma-
TpUIlla OmepaTopa, MOK je ayTop OBe AMCEPTAIldje MPOoydaBao TOPHE
TpOyraoHe MaTpuile IPOU3BOJbHE muMmen3uje, Ha oBaj HauwH, TeXHUKA
yTamnama banaxoBux mpocropa ysenena on crpane parama C. Hop-
besuha y [12] je yommreHna Ha Topme TPOYraoHe MATPHUIE OIEPATOPA
IpPOU3BOJLHE AUMeH3uje, a Texuuke u3 (54|, [55] cy mpunarobene na
MaTpHUIle olepaTopa Koje Meilyjy Ha IUPEKTHO] CYMU IIPOCTOpa KOju
He Mopajy Outum cenapabunnu. OBe maeje IpeACTaBbHA]y OPUTMHAJIAH
HAYUYHU NONPUHOC ayTopa, U IpuKaszaHe cy y panosuma [44]|—[46].

Hucepranmja je mome/seHa y HEKOJMKO IJaBa, O KOjUX je CBaka
moneJpeHa y TOTJIaB/ba M mormoriasira. CBe medunmMnuje, Teopeme,



UTA. Cy HyMepUucCcaHe KOHTUHYAJHO.

[IpBa rmaBa je yBomHOTr KapakTepa. & O] Ce NPUKa3yje UCTO-

pUjCcKa To3aIrHa Be3aHa 3a HAIly TeMy, W IOBe3yjeMO TeMy pala ca
OCTaJIM IeJIOBUMa Teopujcke maTteMaTuke. Taxkobhe yBomumo u o3HaKe
Koje he ce KOPUCTUTU TOKOM MHUCAIHA AUCEPTANUje. 3aBPIIABAMO OBY
IJaBy Cca HEKMM yBOJHUM Pe3yJITATUMa KOJU Ce TUUYy HaIler pama.
Y Apyroj riaBu MPWKA3yjeMO pa3HE pe3yJjTaTe Be3aHe 33 UHBEPTU-
oustHOCT 2 X 2 MaTpwuiia omeparopa. Pe3yaratu oBe riaBe cy oaseh
no3natu y aureparypu. Hajompe majemo pe3yiarare 3a cenapabuiine
XunbepToBe IPOCTOPE, a 3aTUM IMPOIIMPYjeMO oBe pesdyiarare Ha ba-
HaXOBe IPOCTOPE KOju He MOpajy outu cenapabunanu. PesymnraTtu koju
KOPUCTE CenapadMIIHOCT Cy Ce IOjaBUJM IIPe pe3yaTaTa KOju He KO-
pucte cemapabunaHocT. AyTop je mOOMO BeJUWKU N0 pe3yJsiTara OBe
rJaaBe Kao CIHeIUjajiHe CJIydYajeBe ONIITUjUX NCTPAKUBAMma y TJIaBaMa
KOje cliene.

['nmaBuu 3amarak Tpehe riaBe je mpukasuBame pe3yTaTa MPeT-
xomHe riaBe nmpuiarobene 3a 3 x 3 marpuie oneparopa. /lajeMo Heke
pe3yarare KOju KOPUCTE CenapabuIIHOCT, U HeKe KOju He Moapa3yMe-
Bajy oBaj jak yciyoB. Pesyararu Koju KopucTe cenapadbUIHOCT OUIU
Cy IMO3HATU y JUTEPATYPU, & OHU KOJjU HE KOPUCTE MOOUjeHU Cy O
cTpaHe ayTopa W HmeroBor MeHropa y [48].

Yerspra riaasa je HajOuTHUja raaBa. Y 0] Cy UCKBYUUBO AATHU
pe3yJiTaTy KOjU Cy OPUIMHAJHU HAYYHU NONPUHOC ayTopa. Ha Taj
HAUWH, IPUKA3aHU Cy pe3ynraty u3 pedepennn [44]-[46]. Ucrpaky-
jeMo kapakrepusanuje (JeBor, necHOr) cuekrpa, (mesor, necuor) Ppen-
XOJIMOBOI' CIIEKTpAa U JIEBOT'/ neCHOT BejimoBor cmekTpa ropmux Tpoy-
TaOHUX MaTpUIla AUMEH3uje n > 2.

[leTa rimaBa caysku na npukaske jeqHY IPUMEHY pe3yJiTaTa U3 IPeT-
xomauX raaBa. Haumme, pemaBamo mpobieMm ,,monymaBama pyna’ 3a
paznuuute MmaTpuuHe nuMensuje n € N u y pazauuutuM OKpy:KeHUMA
BEKTOPCKUX mpocTopa. [Ipurazany cy HEKM MO3HATU pPE3YyJITATU, Ha-



jBume y XuiabepToBUM TPOCTOPUMA, aJIU Cy JATHA M HEKU OpPUTMHAJHU
pesyaratu aytopa u3 [47].

[Tocnenwma raaBa je momaTak Ha IMPETXOMHE rjiaBe. Y OBOj TJIaBU
ce baBMMO OJIOK MaTpuUIlaMa OIepaTopa Kojeé HHUCY rOpie TPOyTaoHe.



Abstract

This doctoral dissertation has as its aim to present various results related to
different types of invertibility of block operator matrices, whose some of the
entries are known, and the others are unknown. Block matrices in question
are upper triangular operator matrices, that is matrices whose entries below
the main diagonal are zero operators. We will always assume that diagonal
elements of such matrices are given, while elements above the main diagonal
are not. It is understood that all operator matrices in question act on a
direct topological sum of Banach spaces, as it is precised in the sequel. Our
goal is to present characterization results for different types of invertibility of
such operators, which then yield appropriate perturbation results and some
"filling in holes” results.

So far, investigations of this kind were mainly undertaken in the context
of separable Hilbert spaces. Thus, countable orthogonal bases were frequently
used in such research. The author of this dissertation has taken a different
path. Instead of using linear bases of Banach spaces that need not be
countable, the present author has rather worked with appropriate embedding
mappings between certain subspaces of Banach spaces that have a topological
complement. Moreover, specialist in this area have usually examined the
case of 2 x 2 upper triangular operator matrices, while the author of this
dissertation examines upper triangular operator matrices of an arbitrary
dimension. In this way, the technique of Banach space embeddings introduced
by Dragan S. Djordjevié¢ in [12] is generalized to upper triangular operator
matrices of an arbitrary dimension, and techniques from [54],[55] are adapted
for operator matrices acting on a direct sum of spaces which need not be
separable. The latter ideas represent the original scientific contribution of
the present author, and they can be found in papers [44]-[48].

Dissertation is divided into several chapters, each of which is divided
into sections and subsections. All definitions, theorems, etc. that appear are
numbered continuously.

The first chapter is an introductory one. In this chapter we present some
historical background related to this topic, and we connect it to other areas



of pure mathematics. We also provide notation that will be used throughout
this text. We end this chapter with some preliminary results regarding our
work.

The second chapter presents various results on invertibility for 2 x 2
operator matrices. Results in this chapter are already known in the literature.
We first present results for separable Hilbert spaces, and afterwards generalize
these to Banach spaces for which separability is not assumed. The former
appeared chronologically before the latter ones. The present author has
obtained much of the results of this chapter as special cases of more general
investigations in chapters to follow.

Main task of third chapter is to present results of the previous one
adapted to 3 x 3 operator matrices. We present some of the results that
assume separability, and some that do not use this strong assumption. The
former were already known in the literature, while the latter were obtained
by the present author and his PhD advisor in [48].

The fourth chapter is our main chapter. In this chapter one can find
results that are new scientific contribution of the author. In that way, results
from references [44]-[46] are presented. We investigate characterizations of
(left, right) spectrum, (left, right) Fredholm and left/right Weyl spectrum
for upper triangular operator matrices having dimension n > 2.

The fifth chapter ought to present an application of results from the
previous chapters. Namely, we solve the "filling in holes” problem for different
operator matrix dimensions n € IN and in different linear space settings. Some
of the known results are presented, mainly in the setting of Hilbert spaces,
but some new results that are the original work of the present author from
[47] are also presented.

The last chapter contains an appendix to previous results. It is devoted
to invertibility of block operator matrices that are not upper triangular.
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Chapter 1

Introduction

1.1 Notation and main tasks

Let X,Y,X;,...,X,, be arbitrary Banach spaces. We use notation B(X,Y) for
the collection of all linear and bounded mappings from X to Y. Usually,
spaces X and Y are linear spaces of functions, and in that case each T €
B(X,Y) is traditionally called an operator. Particularly, B(X) = B(X, X). If
T € B(X), then by N (T) and R(T) we denote the kernel and the range space
of T. Those sets are subspaces of X and Y, respectively, and N (T) is closed.

If T e B(X,Y), then its dual operator is T’ € B(Y’,X’) defined by
T'f(x):= f(Tx), f € Y. We shall use some properties of dual operators on
several occasions. For example, it is known that ||T|| =||T’|| and T + T’ is
an isometric isomorphism of B(X,Y) into B(X’,Y’). For other basic features
of dual operators we recommend [17].

For U C X we define set U° C X’, and for V C X’ we define set °V C X
as

Ue:={feX": f1y=0L
Vi={xeX: f(x)=0 for every f e V}.
U° and °V are called the left and right annihilator of U and V', respectively.

Above all interesting features that hold for annihilators, we point out only a
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few of them, see [49]:

R(A) =° [N (A)], R(A)) = N(A)°, R(A)° = N(A),... (1.1.1)

where A € B(X,Y).

For a subset K of C we use acc(K),int(K) and dK, respectively, to denote
the set of all points of accumulation of K, the interior of K and the boundary
of K.

Let D; € B(X;y), D, € B(X3),...,D,, € B(X,,) be given. We denote by
T,f (A) an n x n partial upper triangular operator matrix of the form

Dy Ay Az oo Ay Al |
0 Dy Ay ... App1  Apy
0 0 D e As._ A
A=, . T T e B eXe-eX,), (11.2)
0 0 0 Dn—l An—ln
0 0 o0 0 D,

where A := (A1p, Ai3,..., Ajj,.., Ay_1,n) is an operator tuple consisting of
unknown variables A;; € B(X;,X;), 1 <i<j<mn, n>2. For convenience, we
denote by B, the collection of all such tuples A. Sum X; &---® X,, appearing
in (1.1.2) is a direct topological sum of Banach spaces. We highly recommend
article [42] as literature for properties of topological sums of more than two
subspaces.

There are several questions that we are interested in:

Question 1. Can we find an appropriate characterization for Fredholmness,
Weylness, etc. for T,fl(A), in terms of Fredholmness, Weylness, etc. of its
diagonal entries D;?

Question 2. What can we say about () 0,(TZ(A)), where o, is one of the
AeB,

well known spectra that is examined in Fredholm theory?
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Question 3. Under what conditions the equality o,(T#(A)) = | 0.(D;) holds

for different types of spectra o,?
Here we give complete answers to each of the above questions.

We use G;(X) and G,(X) to denote the sets of all left and right invertible
operators on X, respectively. The set of all invertible operators on X is
denoted by G(X) = Gi(X) N G,(X). We list some elementary notions from
Fredholm theory (see [61]). Let T € B(X), and put a(T) = dim N (T) and
B(T) = dimX/R(T). Quantities @ and p are called the nullity and the
deficiency of T, respectively, and in the case where at least one of them
is finite we define ind(T) = a(T)— B(T) to be the index of T. Notice that
ind(T) may be +oo or integer. The following lemma enlights the reason for
using such terminology in this article.

Lemma 1.1.1. Let T € B(X). The following equivalences hold:
T is left invertible & a(T) =0 and R(T) is closed and complemented,

T is right invertible < B(T) =0 and N(T) is complemented.

The following statement due to T. Kato [33] holds.

Lemma 1.1.2. Let T € B(X). If B(T) < co, then R(T) s closed in X.

Families of left and right Fredholm operators, respectively, are defined
as [12]

D)(X)={T € B(X): a(T)< oo and R(T) is closed and complemented}
and
D, (X)={T € B(X): B(T) < o0 and N(T) is complemented).
The set of Fredholm operators is

D(X) = D (X) N D,(X) = (T € B(X): a(T) < 0o and (T) < co}.
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Families of left and right Weyl operators, respectively, are defined as
O (X) ={T € Oy(X): ind(T) < 0}

and
Of(X)={T € ®,(X): ind(T) > 0}.

The set of Weyl operators is

Dy(X) = D (X) N D} (X) ={T € ©(X) : ind(T) = 0.

Next, we also define the families of upper and lower semi-Fredholm
operators, respectively, as [61]

O, (X)={T € B(X): a(T)< oo and R(T) is closed}

and
D (X)={T € B(X): B(T) < oo}
Put
O (X)={T € D, (X): ind(T) <0}
and

O (X)={T € P_(X): ind(T) > 0}.

These are the collections of upper and lower semi-Weyl operators, respectively.

Remark 1.1.3. If X is a Hilbert space, then it is clear that

Dy(X) = D(X), P(X)=D_(X), D(X)=DI(X), PS(X)=DI(X).

For T € B(X) consider the following inclusions: {0} C N(T)C N (T?) C

- and X D R(T) 2 R(T?) 2 ---. The ascent of T, denoted by asc(T), is
defined as the least k (if it exists) for which N(T*) = N(T**1) holds. If such
k does not exist, then we say that the ascent of A is equal to infinity. The
descent of T, denoted by des(T), is defined as the least k (if it exists) for
which R(TK) = R(T**1) is satisfied. If such k does not exist, then we say
that the descent of A is equal to infinity. If the ascent and the descent of
T are finite, then they are equal ([14]). The Drazin inverse of T € B(X) is
the unique operator TP € B(X) satisfying T**1TP = Tk, TPTTP = T and
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TTP = TPT for some nonnegative integer k. The least k in the previous
definition is known as the Drazin index of T. It is well-known that TP exists
if and only if p = asc(T) = des(T) < co. In this case the Drazin index of
T is equal to p ([14]). The set of Browder operators on X is defined as
B(X)={T e ®(X): asc(T)=des(T) < oo} ={T € D(X): TP exists}={T ¢
O(X): 0¢acc o(T)}.

Corresponding spectra of an operator T € B(X) are defined as follows:
-left spectrum: 0)(T)={1eC: A-T ¢ G;(X)};
-right spectrum: 0,(T)={1eC: A-T ¢ G,(X)};
-spectrum: o(T)={1eC: A-T ¢ G(X)};
-left essential spectrum: 0j,(T) ={1 € C: A-T ¢ O)(X)};
-right essential spectrum: 0,,(T)={1 e C: A-T ¢ O, (X)};
-essential spectrum: 0,(T)={leC: A-T ¢ O(X)};
-left Weyl spectrum: 07, (T) ={A € C: A =T ¢ O, (X)};
-right Weyl spectrum: 0,,(T)={1 e C: A -T ¢ O (X)};
-Weyl spectrum: 0, (T)={1eC: A-T ¢ Oy(X)};
-Drazin spectrum: o4(T)={Ae€ C: A-T is not Drazin invertible};
-Browder spectrum: o,(T)={A € C: A—T is not Browder invertible}.

We write pl(T)’ pr(T)f P(T)’ ple(T)’ pre(T)’ pe(T)’ le(T): prw(T)’ Pw(T):
p4(T), pp(T) for the corresponding complements of the sets above,
respectively.

Five more types of spectra will also appear, namely:
-point spectrum: 0,(T) ={1 € C: A-T is not one - one};
-approximate point spectrum: o,,(T)={A € C: A —T is not bounded
below};
-residual spectrum: o,(T)={1€C: T — A is not one—one and
R(A-T) = X};
-defect spectrum: o5(T)={A e C: AT is not surjective};
-Moore-Penrose spectrum: 0,,(T)={1€C: R(A-T) is not closed}.
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1.2 Preliminaries

If Xy,..., X, are Hilbert spaces, one easily verifies that T%(A) given by (1.1.2)
has the adjoint operator matrix T (A)* given by

[ D; 0 0 . 0 0]
Ay, D} 0 .. 0 0
Aj A7 D3 0 0
TiAr=|"F TP T T T eBXjoXjeaX;)
A? n—1 Azn 1 Ai;) n-1 ' D* 0
| A7, A%, Ay, . Al L Dy, |

(1.2.1)

The following lemma imposes a connection between T and its adjoint
operator T in terms of nullity and deficiency of T. This claim will be crucial

at some points.

Lemma 1.2.1. Let X be a Hilbert space and T € B(X). Then the following
holds:

(a) a(T) = B(T*), B(T) = a(T");

(b) T € O(X) if and only if T* € D,(X*);

(c) TECD A(X) if and only if T* € ©)(X*);

(d) ind(T*) = —ind(T).

The following statement is well known in the literature.

Lemma 1.2.2. Let X be a Hilbert space and T € B(X). Then R(T) is closed
if and only if R(T*) is closed.

We emphasize the fact that our results are ought to hold in arbitrary
Banach spaces, not just the separable ones. In order to prove the main
theorems which concern perturbation of various spectra of T,f (A), we introduce
a concept that will compensate loss of separability: the notion of embedded
spaces. To our knowledge, this condition was first used in this context by D.
S. Djordjevi¢ in 2002.

Definition 1.2.3. (/12, Definition 2.2]) We say that X can be embedded in Y
and write X <Y if there exists a left invertible operator | : X — Y.

Remark 1.2.4. Obviously, X <Y if and only if there exists a right invertible
operator J; : Y — X.
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If X and Y are Hilbert spaces, than X <Y if and only if dimX < dimY.
Here, dim X stands for the orthogonal dimension of X.

In order to prove results about the left (right) Weyl spectrum, we shall
need another variant of Definition 1.2.3.

Definition 1.2.5. ([12, Definition 4.2]) We say that X can be essentially em-
bedded in Y and write X <Y if and only if:

(a) X LY;

(b) for every T € B(X,Y), Y/R(T) is an infinite dimensional linear space.

Remark 1.2.6. If X and Y are Hilbert spaces, than X <Y if and only if
dimX <dimY and Y is infinite dimensional, where dim X s the orthogonal
dimension of X.

In order to prove results about the essential spectrum, we need the
following notion.

Definition 1.2.7. [12, Definition 2.2] We say that X and Y are isomorphic
up to a finite dimensional subspace, if one of the following two statements

hold:
1) There exists a bounded below operator J; : X — Y so that dimY/J;(X) <
00, or

2) There exists a bounded below operator J, : Y — X so that dim X/J,(Y) <

Characterization of the previous notion is proved in [12]. It goes as
follows:

Lemma 1.2.8. Let M,N be finite dimensional spaces. [f M®X = N@®Y, then
X and Y are isomorphic up to a finite dimensional subspace. Particularly, if
dimM =dimN, then X =Y.

Remark 1.2.9. If X and Y are Hilbert spaces, then X and Y are isomorphic
up to a finite dimensional subspace if and only if X =Y or both X,Y are
finite dimensional.

One important difference between Hilbert and Banach spaces is that
closed subspace of a Hilbert space is always complemented (H = M & M*).
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This is not true for the case of Banach spaces. Since we would like to prove
our results by decomposing Banach spaces in an appropriate way, we shall
use a well known notion of inner regular operators.

We say that an operator T € B(X,Y) is inner regular if and only if there
is T € B(Y,X) such that TTT = T holds. In that case we say T is inner
generalized inverse of T. Notice that existence of such T does not imply its
uniqueness. In the sequel, instead of ”inner regular”, we only write "regular”
for short. We consider the appropriate spectrum: oo(T)={A € C: T -
A is not regular}. One can prove the following characterization:

Theorem 1.2.10. (/14, Corollary 1.1.5]) T € B(X,Y) is regular if and only if
N(T) and R(T) are closed and complemented subspaces of X and Y, respec-
tively.

It is important to highlight that operators in sets G;(X), G,(X),
D)(X), D,(X) are regular operators.
Moreover, it is easily proved that, following upper terminology, TT and TT
are both projections, and so we have decompositions (see [14, Theorem 1.1.3])

—

X=N(T)®R(TT), Y =N(TT)aR(T). (1.2.2)

We provide one more auxiliary lemma.

Lemma 1.2.11. (/55]) Let T*(A) e B(X, ®---®X,,). Then:

(iii) 01e(D1) U 0,e(Dy) € 0(THA) € 1) 0o(Dy):

(i) o(T{A) € U o1 (D

(1) ol THA) € U (D)
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n
(vii) 0/(Dy) Uo,(D,) € o(T(AN € U 0(Dy).

=1
Definition 1.2.12. (/8]) Calkin algebra over X is the quotient algebra B(X)/K(X),
where K(X) is the collection of all compact operators on X. Natural homo-
morphism of B(X) onto C(X) is called the Calkin homomorphism of X.

This concept is used to prove Theorem 2.1.8.

Definition 1.2.13. [19] We say that T € B(X) has the single valued extension
property (SVEP for short) at A € C if for every open neighborhood U of A,
the only solution of the equation (T —u)f(u) =0 that is analytic on U is the
constant function f = 0.

We will use this concept in the third chapter.

1.3 Historical background

Block operator matrices arise in various areas of mathematics and its applications:
in systems theory as Hamiltonians (see [10]), in saddle point problems in
non-linear analysis (see [5]), in evolution problems as linearizations of second
order Cauchy problems (see [18]), and as linear operators describing coupled
systems of partial differential equations. Such systems occur widely in magneto-
hydrodynamics (see [39]) and quantum mechanics (see [50]). In all these
applications, the spectral properties of the corresponding block operator
matrices are of vital importance, as they govern for instance the time evolution
and hence the stability of the underlying physical systems. One can see some
other applications of this topic in [17, Chapter VIII]. Moreover, reference [52]
is highly recommended as a well written treatise on this subject.

In the last few decades considerable attention has been devoted to the
study of spectral properties of operator matrices, having in mind their governing
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importance in various areas of mathematics. One has soon realized that one
way for successful work on problems arising in spectral theory, is to see
operator matrices as entries of smaller blocks. Block operator matrices,
and especially upper triangular operator matrices, have been extensively
studied by numerous authors (see [6], [7], [12], [16], [25], [35], [36], [54], [55],
references therein and many others...). The reason for this lies in the fact
that if an operator T is acting on a direct sum of Banach spaces, it takes the
upper triangular form under condition that certain number of those spaces
is invariant for T.

Development of this topic began in the last century, and is of great
importance ever since. In the beginning, authors have only considered the
case of 2 x 2 operator matrices. Pioneering work in that direction was the
article of Du and Pan from 1994 ([16]) treating the usual spectrum. Han et
al. have generalized their result to Banach spaces ([25]), and Lee has proved
some facts concerning the Weyl spectrum ([35]). Afterwards, Djordjevi¢ in
2002 gave some characterizations for 2 x 2 upper triangular operators to be
Fredholm, Weyl, and Browder ([12]). After that, many authors have explored
various properties of 2 x 2 block operators in a connection with intersection
of spectra, Weyl and Browder type theorems, etc. (see for example [36], [6]).

First article treating operator matrices of dimension 3 appeared only
a few years ago (2015). It is article [58], in which authors characterize
invertibility of T3d (A) on separable Hilbert spaces. Their result is ought to
be generalized to arbitrary Hilbert spaces by the author of this thesis and
his PhD advisor in [48]. It is interesting that investigation of this particular
case (n =3) had not begun before the investigation of general case n > 3.

Investigation of spectral properties of general n x n operators began
no sooner than 2005, when Benhida el al. published article [4]. Next,
Zguitti published article [59] investigating Drazin spectrum. Huang et al.
continued his work in 2016 by investigating properties of the point, residual,
and continuous spectrum of n x n matrix operators ([29]). Fredholm and
Weyl spectrum of such operators have been studied by Wu and Huang in
[54], [55] only a few years ago, and this thesis is concerned with generalizing
their results from separable Hilbert to arbitrary Banach spaces.
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We mention that there has been some interest in block operators with
unbounded entries lately, see [2], [40], [43], but we shall not pursue this point
any further. We also mention that it is possible to replace the setting of
Hilbert spaces with C*—algebras, see recent article [32].
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Chapter 2

Case n=2

In this chapter we provide statements related to different types of invertibility
of T,fl(A) when n = 2. Historically, this is the first case studied in a connection
with this topic. We shall use the notation M := Tzd (A), where C = Aq,. In
other words, let M be operator matrix

A C
MC = GB(X1®X2), (201)
0 B
where A € B(X;), B € B(X;) are given operators and C € B(X,, X;) is unknown.
First, we consider invertibility of M., and afterwards we continue with

Fredholm, Weyl, Browder, and Drazin invertibility of M.

2.1 Invertible completions of M

2.1.1 Separable Hilbert space setting

In this subsection we present an early result due to Du and Pan [16, Theorem
2]. In fact, [16] is the first article dealing with invertibility properties of
block operator matrices in this context. We assume here that X; and X, are
separable Hilbert spaces.

Theorem 2.1.1. [16, Theorem 2] For a given pair of operators (A,B), there
exist C € B(X,, X1) such that M is invertible if and only if A is left invertible,
B is right invertible, and a(B) = p(A).

31
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Previous Theorem obviosly implies the following:

Corollary 2.1.2. For a given pair (A, B) of operators we have

ﬂ o(Mc)=01(A)Uo,(B)U{AeC: a(B=1)=B(A=-A)}
CeB(X,,X1)

A simple example will show that inclusion o(M¢) C 0(A)U o (B) may be
proper.

Example 2.1.3. [16] If {g;};2, is an orthonormal basis of X,, define an ope-
rator By by
{BOgl =0,
Bogi=gi-1, 1=23,..

If{fi}:2, is an orthonormal basis of Xy, define an operator Ag by Ao fi = fiv1,
i=1,2,... and an operator Cy by Cy = (-,g1)fi from X, to X;. Then it is
easy to see that 0(Ag) = 0(Bg) ={A € C: |A| < 1}. But, in this case, Mc, is a
unitary operator, o(Mc,) C{A: |Al}, so the inclusion o(Mc,) € o(A)U o (B)

1S proper.

2.1.2 Non-separable Banach space setting

Next, we generalize result from subsection 2.1.1 to the setting of arbitrary
Banach spaces. We specially emphasize that we do not need separability in
order to prove results to follow. This subsection follows the article of Han,
Lee, and Lee [25]. These authors have exploited in a very elegant way so
called ghost of an index theorem due to Harte. The latter goes as follows.

Theorem 2.1.4. [26],/27] Let A€ B(X,Y),B € B(Y,Z) be operators with closed
range, where X,Y,Z are Banach spaces. Then the following relation holds:

N(A)x N(B)x Z/R(AB) = N (AB) x Y/R(A) x Z/R(B).
Now, we are able to state and prove the main result of this subsection.
In what follows, X; and X, are arbitrary Banach spaces.

Theorem 2.1.5. [25] Let operators (A, B) be given. There exist C € B(X5,X1)
such that Mc is invertible if and only if:
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(i) A is left invertible;
(ii) B is right invertible;
(iii) X/R(A) = N (B).

Perturbation result immediately follows.

Corollary 2.1.6. For a given pair (A, B) of operators we have

ﬂ o(Mc)=01(A)Ua,(B)U{A e C: N(B-1)z X,/R(A- ).
CeB(X,,X1)

The following two corollaries are also immediate results from Theorem
2.1.5.

Corollary 2.1.7. For a given pair (A, B) of operators we have
(0(A)Ua(B))\(a(A)Na(B)) S a(Mc)< a(A)Ua(B)

for every C € B(X,,X;).

Corollary 2.1.8. If M is Fredholm and if either A or B are Fredholm, then
A and B are both Fredholm with

indM¢c =indA+indB.

Equality in Corollary 2.1.8 is called "the snake lemma”. From this we
can also see that if M is Weyl, and if either A or B is Fredholm, then A is
Weyl if and only if B is Weyl.

2.2 Various completions of M
In this section we provide results related to (left, right) invertibility, Fredholm,

Weyl and Drazin invertibility of M. Unless different is said, we assume X, Y
to be arbitrary Banach spaces. Results in this section are from article [12].

2.2.1 Fredholm completions of M

We state the following result.
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Theorem 2.2.1. Let A € B(X) and B € B(Y) be given and consider the follow-
g statements

1) Mc e D(X@Y) for some C € B(Y,X).
2)

2.1) A e dy(X);

2.2) Bed,(Y);

2.3) N(B) and X/R(A) are isomorphic up to a finite dimensional
subspace.

Then 1) < 2).

We get the following consequence.

Corollary 2.2.2. For given A € B(X) and B € B(Y) the following holds:

(] oulMc) = 016(A) U are(B) UW(A, B),
CeB(X,Y)

where

W(A,B)={1eC: N(B- 1) and X/R(A - ]) are not isomorphic

up to a finite dimensional subspace}.

2.2.2 Weyl completions of M

We consider the Weyl spectrum of M.

Theorem 2.2.3. Let A € B(X) and B € B(Y) be given and consider the state-
ments:

1) Mc e ®y(Xa®Y) for some C € B(Y, X).
2) Aed)(X), Be®D,(Y), N(A)®N(B)=X/R(A)®Y/R(B).
Then 1) & 2).

As a corollary we get the following result.

Corollary 2.2.4. For given A € B(X) and B € B(Y) the following holds:

() ow(Mc) = 01e(A) U 0e(B) U Wy (A, B),
CeB(Y,X)
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where

Wo(A,B)={AeC: N(A-A)® N (B- Q) is not isomorphic to
X/RIA-A)@®Y/R(B-A)}.

2.2.3 Browder completions of M

We formulate the result for the Browder spectrum.

Corollary 2.2.5. Let A € B(X) and B € B(Y) be given. Consider the following
statements:

1) A e @yX); Be D.(Y); N(B) and X/R(A) are isomorphic up to a
finite dimensional subspace; A and B are Drazin invertible.

2) Mc e B(X®Y) for some C € B(Y,X).
Then 1) = 2).
Moreover, if 0 ¢ acc(o(A)Uo(B)), then 1) < 2).

We have more details concerning the perturbation of the Browder spectrum.

Theorem 2.2.6. If A€ B(X), Be B(Y), then

ﬂ op(Mc) C 01,(A) U 0,,(B) UW(A, B)UW, (A, B), (2.2.1)
CeB(Y,X)

where W(A, B) is defined in Corollary 2.2.1 and
Wi(A,B)={1eC: one of A=A or B— A is not Drazin invertible}.
If acco(A)Uacco(B) =0, then the equality holds in (2.2.1).

If 6,(A)=0(A) and 64(B) = 0(B), then the equality holds in (2.2.1).

If 0(A)U o (B) does not have interior points, then the equality holds in
(2.2.1).

2.2.4 Right and left Fredholm completions of M-

We formulate the following statement.
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Lemma 2.2.7. For given A € B(X), Be B(Y) and C € B(Y, X), the following
incluston holds:

Ure(MC) - Gre(A) U Gre(B)-

Particularly, if A € ®,.(X) and B€ ®,(Y), then Mc € D(X®Y) for every
CeB(Y,X).

The main result of this subsection follows.
Theorem 2.2.8. Let A € B(X) and B € B(Y) be given operators. Consider the
following statements:

1) Be CD ( and [A € D,(X) or (R(A) is closed and complemented in X
and X/R(A B))/.

2) Mc € CDr(XEBY) for some C € B(Y, X).

3) BED,.(Y) and [A € D,(X), or R(A) is not closed, or N(B) < X/R(A)
does not hold].

Then 1) = 2) = 3).

As a corollary we get the following result.
Corollary 2.2.9. Let A € B(X), Be B(Y) be given. Then

0,0(B)U{A € 0,,(A) : R(A = A) is closed and N(B— 1) < X/R(A - L)}

- ﬂ 0,0(Mc)

CeB(Y,X)
C 0,(B)U{A € 0,0(A): R(A— Q) is not closed and complemented)
U{A € 0,0(A) : X/R(A—-A) < N(B-X) does not hold}.

Analogously, we can prove similar results for the left Fredholm spectrum.
Theorem 2.2.10. Let A € B(X), Be B(Y) be given operators and consider the
following statements:

1) A€ ®(X) and [B€ DY), or (R(B) and N (B) are closed and com-
plemented subspaces of Y and N'(B) < X/R(A))].

2) Mc e Q)(X®Y) for some C € B(Y, X).
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3) AeDyX) and [B € D)(Y), or R(B) is not closed, or R(A)° < N(B)’
does not hold) |.
Then 1) = 2) = 3).

The following result concerning the perturbation of the left Fredholm
spectrum holds.

Corollary 2.2.11. Let A € B(X), Be B(Y) be given. Then

01.(A)U{A € 01,(B) : R(B—A) is closed and R(A—A)° < N (B- M)’}
- ﬂ 01.(Mc)
)

CeB(Y,X
C 01,(A)U{A € 01,(B): R(B=A) and N'(B—A)

are not closed and complemented}

U{A € 0p(B): N(B—A) < X/R(A - Q) does not hold).

Finally, we get the result for perturbations of the Fredholm spectrum
for Hilbert space operators. This result can also be obtained from Corollary
2.2.1.

Corollary 2.2.12. Let X ® Y be the orthogonal sum of infinite dimensional
Hilbert spaces. Then

ﬂ Ge(MC) = Ule(A)UUre(B)UWZ(AlB)'
CeB(Y,X)

where
W1(A,B)={A€C:dimN(B- 1) zdimR(A- 1)t
and at least one of these spaces is infinite dimensional}.

2.2.5 Left and right completions of M

We begin with the following statement.

Lemma 2.2.13. Let A € B(X), Be B(Y) be given. Then the inclusion

01(Mc¢) C 0;(A) U 0y(B)
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holds for every C € B(Y,X). Particularly, if A, B are left invertible, then M
is left invertible for every C € B(Y, X).

For the left invertibility of an operator matrix we can state the following
result.

Theorem 2.2.14. Let A € B(X), B € B(Y) be given. Consider the following
statements:

1) AeG(X), N(B) < X/R(A) and B is inner reqular.
2) Mc e G(Xa®Y) for some C € B(Y,X).

3) A€ Gi(X) and X/R(A) < N'(B) does not hold.
Then 1) = 2).

Moreover, if X,Y are infinite dimensional Hilbert spaces, and Z = X &Y
is the orthogonal sum, then 2) = 3).

As a corollary we get the following result.

Corollary 2.2.15. Let A € B(X), B € B(Y) be given. Then the following in-
clusion holds:

ﬂ a1(Mc) C 01(A)Uag(B)U{L € C: N(B-A) < X/R(A—X)
CeB(Y,X)

does not hold}.

If X®Y is the orthogonal sum of infinite dimensional Hilbert spaces X
and Y, then

o(A)U{L e C: dimR(A): < dim N (B— 1)} ﬂ o) (Mc).
CeB(Y,X)

Analogously, we can prove a similar result concerning the right spectrum
and right invertibility of M.

Theorem 2.2.16. Let A € B(X), B € B(Y) be given operators, and consider
statements:

1) BeG,(Y), X/R(A) < N(B), A is inner regular.
2) Mc e G (X®Y) for some C € B(Y,X).
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3) BEG,(Y), and N (B) < X/R(A) does not hold.
Then 1) = 2).

If X®Y 1is the orthogonal sum of infinite dimensional Hilbert spaces,
then 2) = 3).

As a corollary we get the following result.

Corollary 2.2.17. For given A € B(X), B € B(Y) the following inclusion holds:

ﬂ 0,(Mc) C 0,(B)Uag(A)U{L € C: X/R(A— 1) < N'(B- 1)
CeB(Y,X)

does not hold}.

Moreover, if X®Y 1s the orthogonal sum of infinite dimensional Hilbert
spaces, then

0, (B)U{L e C:dim N (B— 1) < dimR(A - 1)) ¢ ﬂ o.(Mc).
CeB(K,H)
As a corollary, we get the following main result.

Corollary 2.2.18. Let X ® Y be the orthogonal sum of infinite dimensional
Hilbert spaces. For given A € B(X), Be€ B(Y) the following equality holds:

ﬂ o(Mc)=01(A)Uo,(B)U{L e C:dim N (B— 1) = dimR(A — 1)L},
CeB(Y,X)



40

CHAPTER 2. CASEN =2



Chapter 3

Casen=3

In this chapter we provide statements related to different types of invertibility
of T,fl(A) when n = 3. Historically, this is the case that has not been studied
until a few years ago. We shall use the notation Mp g := T3d(A), where
D =Ay,E=Ay3,F =Ajs. In other words, let Mp g r be operator matrix

MD,E,F = € B(Xl @Xz @X:},), (301)

o o

D
B
0

O ™

where A € B(X;), B € B(X;), C € B(X3) are known operators, and D € B(X,, X;),
E € B(X3,X;),F € B(X3,X,) are unknown. First, we consider invertibility of
Mp g r if underlying spaces are separable Hilbert, and afterwards we give an
extension to arbitrary Banach spaces case.

3.1 Separable Hilbert space setting

In this short section assume that X;,X,, X3 are separable Hilbert spaces.
This section is based on article [58]. We start with an obvious auxiliary
result.

Lemma 3.1.1. Guwen triple (A,B,C), Mpgr— A is one - one for all D €
B(X,,X1),E € B(X3,X1),F € B(X3,X5) if and only if A—A,B—A,C—A are all
one - one.

41
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We give the main theorem in the perturbation form.

Theorem 3.1.2. Let triple (A, B,C) be given. Then

() o(Mp,r.r) =01(A)Uas(B)U{A € 0p(B): a(B-A)>B(A- )}
D,E,F

U{Aeos(B): B(B=A)>a(C-A)} (3.1.1)
U{A € 0,y(B) : min{a(C - 1), (A —-A)} < oo}
UAeC: a(B-A)+a(C—-A)=B(A-X)+B(B-A)}.

~_

Proof. See [58]. O

Now, the following extension of Theorem 2.1.1 to matrix dimension 3
follows at once.

Corollary 3.1.3. Let triple (A, B,C) be given. There exist D € B(X,, X;),

E € B(X3,X;), F € B(X3,X3) so that Mp g r is invertible if and only if:

(i) A is left invertible;

(i) C is right invertible;

i a(B) < B(A), B(B)<a(C), a(B)+a(C)=p(A)+B(B), R(B) closed,

i) a(C)=B(A) = oo, R(B) not closed.

3.2 Non-separable Banach space setting

Assume now that Xj,X,, X3 are arbitrary Banach spaces. This section is
based on article [48]. In [25] authors exploited decomposition properties
of inner regular operators (see (0.2) in [25]), and we pursue such an idea.
Quick reminder: the class of inner regular operators consists of operators
T € B(X,Y) that can be expressed in the form T = TT’'T for some T’ €
B(Y,X). It is known that T € B(X, Y) is inner regular if and only if its kernel
and range are closed and complemented subspaces [14, 1.1.5. Corollary].

In the sequel, we will find a huge benefit of the following matrix decomposition:

o2

N oo
o o ~
o~ o
~ T
o o ~
o W o
~ o o
o o ~
o ~ g
—~ o o

I 0
MpEgrp=|[0 I
0 0

o o x>
o~ o

0
o]. (3.2.1)
I
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Notice that the second and the fourth factor in (3.2.1) are invertible matrices
for all D € B(Y,X),E € B(Z,X),F € B(Z,Y).

The following two lemmas will be used several times in proofs of our
results.

Lemma 3.2.1. Let S, T € B(X). If T is invertible, then:
(a) R(TS)=R(S) and R(ST) =R(S);
(b) N(ST)=N(S) and N(TS) = N(S).

Lemma 3.2.2. Consider Mp g and its diagonal operators A,B,C. If any
three of those four operators are invertible for all D € B(Y,X),E € B(Z,X),F €
B(Z,Y), then the fourth is invertible as well.

Proof. This is obvious from (3.2.1). O

The following lemma is well known in the literature (see for example [12,
Lemma 2.3]).

Lemma 3.2.3. If X,Y,Z are Banach spaces then

XxY2XxZ ANdimX<oo= Y=Z.

First we prove the following theorem which will yield our main result
as a consequence. We employ the notion of embedded Banach spaces [12].
In this section we provide conditions for invertibility of Mp g p We will make
use of the following definition introduced in [12]: a Banach space X can be
embedded in a Banach space Y, denoted by X <Y, provided that there exists
a left invertible operator A € B(X,Y). Then, it is obvious that X = Y if and
only if X <Y and Y < X. If X,Y are Hilbert spaces and dimj, X is the
orthogonal dimension of X, then X <Y if and only if dim; X <dim, Y.

If U is a closed subspace of a Banach space V', we will use the following

notation for the quotient space: T- V/U.

We prove the following auxilliary result.

Lemma 3.2.4. Let X be a Banach space and let X, X, be closed subspaces of
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X such that X = X1 @ X,. If T € B(X) such that

R(T) = {(Tloul) c (ii) ‘U € D(Tl)}

for some bounded linear operator Ty with domain D(Ty), then X, < X/R(T).

Proof. Notice that

X/R(T) = {(xl +le”1) L x; € Xy, %0 € Xy, 11y € D(Tl)}.
2

For x; € X; and x, € X5, define K : X, —» X/R(T) and K’ : X/R(T) — X, as

follows:
KXZ = {(Tlul) Uy € D(Tl)}
X7

K/{(Xl * T]U]) Uy € D(Tl)} = X5.

X7

and

We see that K’K = Iy, (and KK’ is not necessarily equal to Ix/g(r)). K and
K’ are obviously continuous. ]

We prove the following theorem.

Theorem 3.2.5. Let X,Y,Z be Banach spaces, and let B € B(Y) be regular,
A e B(X) and C € B(Z). Consider the following statements:

1) a) A is left invertible and C is right invertible;
b) N(B) < X/R(A) and Y/R(B) < N(C),
c) Xéﬁ(j) = ;\%[((](2:)) for left invertible operators J; : N'(B) = X/R(A)
and J, : Y/R(B) — N (C) which realize relations < in 1) b).

2) There exist D € B(Y,X),E € B(Z,X),F € B(Z,Y) such that Mp g p is
wnvertible.

3) a) A is left invertible and C is right invertible;
b) N(B) < X/R(A) and Y/R(B) < N(C);
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Then 1) = 2) = 3).

Proof. 1) = 2): Suppose that 1) holds. By 1) a) there exist closed subspaces:
X; of X, Yy and Y, of Y, and Z; of Z such that:

X=X®oR(A), Y=Y,oR(B)=Y,&oN(B), Z=Z, &N(C).

Consequently,

X/R(A)=X,, Y/R(B)=Y,, Y/N(B)=Y, Z/N(C)=Z,.

The condition 1) b) implies the existence of left invertible operators
J1 : N(B) » Xy and J, : Y| —> N(C). Consider their invertible reductions
J1 : N(B) > R(J;) and J, : Y; = R(J,), which are denoted by the same
symbols. There exist closed subspaces R(J;)" and R(J,)" such that

Xy =R(1)@®R(J1), N(C)=R(J2) ®R(]>2).

By 1) ¢) there exists an isomorphism ] : R(J,) = R(J1)".

Define
0 0 Y, R(A)
D=|0 0 :( )=YHX= R |
Zy
:(8 8 ]i_)l) R(J») :Z_)Y:(Rl(/f))’
R(J>)
and
000 Z R(A)
E=|0 J o|:|RLY|=2z-Xx=|R(,)|
00 0) \R(J,) R(U1)

Since Ji, J5 I and J are isomorphisms between appropriate subspaces, it is
obvious that D € B(Y,X),E € B(Z,X),Fe B(Z,Y).
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To prove that Mp g r is invertible, notice the following. We have

A D E
R(MD'EJ:):R O|+R|B|+RI|F
0 0 C

= (R(A)+R(J)+R(1)')+(R(B)+ Y1)+ R(C) = X @Y S Z,

s0 Mp g r is onto.

X
Moreover, if w=|y|€e X®Y ®Z and Mp g pw = 0, we have
z

Ax+Dy+Ez=0, By+Fz=0, Cz=0.

From Cz =0 we get ze N (C) =R(],)®R(J,). We know that By € R(B) and
Fz € Y;. Thus, from By + Fz =0 we get By =0 and Fz = 0. Hence, y € N'(B)
and z € R(J,)’. We have Ax € R(A), Dy € D(N(B)) = J1(N(B)) = R(J1)
and Ez € E(R(],)") = J(R(J»)") = R(J1)’. Hence, from Ax+ Dy+Ez =0 we
conclude Ax =0, Dy = J;y =0 and Jz = 0, implying that x =0, y = 0 and
z=0. Thus, Mp g r is one-to-one.

2) = 3): Assume that Mp g p is invertible for some D, E and F defined
on appropriate domains. Consider factorization (3.2.1) to conclude that A is
left invertible and C is right invertible, thus the condition 3) a) follows.

Denote the product of the first two factors in (3.2.1) by S, the product
of the last three factors by T, i.e.

I 0 E A D 0
S=|0 1 F|, T=(0 B 0.
0 0 C 0 0 I

Now, we apply Theorem 2.1.4 and obtain

X X X
N(S)x N(T)x| Y |[/R(ST)= N (ST) x| Y |/R(S) x| Y |/R(T).
z z z

Since Mp g = ST is invertible, we know that S is right invertible and T is
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left invertible. Thus, using Lemma 3.2.1, we have
X
N(C)=N(S)=|Y [/R(T). (3.2.2)
Z

Since (again) Y =Y ®R(B) =Y, ® N (B) and X = X; ®R(A), we have

(0 0} ( Y2 Y , . .
B= (B1 0) : (N(B)) — (R(B)) (By: Y, > R(B) is invertible)

and
Dy Dlz) ( Y, ) (Xl )
D = : — .
(D21 Dy, \N(B) R(A)
Now,
A D 0
R(T)=R|0 B 0
0 0 I
D11M+D127} Xl
Ax + D21 u -+ Dzzv R(A)
= 0 el Y, |'xeX,ueY,,ve N(B),zeZ}.
Blu R(B)
z Z

From Lemma 3.2.4 we know that

X
Y/R(B) =Y, <|Y [/R(T)= N(C).
Z

If we denote the product of the first three factors in (3.2.1) by S’, and
the product of the last two by T’, i.e.
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we know that Mp g p=S’T’ is invertible, S’ is right invertible and T is left
invertible. Thus,

X X
N(S)x N(T)) =Y |/R(S)) x| Y |/R(T).
z z

and consequently

NS =Y |/R(T) (3.2.3)

X
If xe X, yeY and z € Z, notice that |y | € N(S’) if and only if
z

x+Ez=0, By+Fz=0, Cz=0.

For xe X, y€Y and z€ Z define L: N(B) —> N (S’) and L": N (S’) - N (B)
as

0 X X
N(B)ay—Ly=|y|, N(S)3|y|—~L|y|[=y.
0 z z

L and L’ are obviously continuous. We see that L’L = Iy p) (and LL’ is not
necessarily equal to Ix;s,). Thus, V(B) < N (S’).

We have
Au+ Dv
R(T') = v ueXveY,weZ
w
and
X x+Au+ Dv
Y= V+v xueX,yveY,y,wel;.
Z Z+w
X

Forxe X,yeY,ze Z define M :|Y |/R(T’) - Y/R(A) and M’ : X/R(A) —
Y
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X
Y [/R(T’) as follows:
Y
x+Au+ Dv
M V+v ueXveY,weZy={x+Au:ueX},
V+w
x+Au
M{x+Au:ueX}= v ueXveY,weZs.
w

Then M, M" are continuous, M'M = [(xgyez)r(T"), but MM’ = Ix/ga) does
X

not necessarily hold. Thus, | Y |/R(T’) < X/R(A).
Z

Finaly, we obtain N (B) < X/R(A). O

We prove the following result for Hilbert space operators.

Theorem 3.2.6. Let X,Y,Z be Hilbert spaces, A € B(X) s left invertible,
B e B(Y) s inner regular, C € B(Z) is right invertible,

dim, N (B) < dimj, X/R(A) and dim, Y/R(B) < dim;, N'(C).

Then the following statements are equivalent;

1) X;;(?'](;;‘) =~ j7\?,/((](2:)) for some left invertible operators J; : N'(B) — X/R(A)

and J, : Y/R(B) —> N(C).

2) N'(B)x N'(C) = X/R(A) x Y/R(B).

Proof. 1t is enough to prove implication 2) = 1). Suppose that 2) holds.
Left invertible operators J; : N'(B) = X/R(A) and J, : Y/R(B) — N (C) exist
by the main assumption of this theorem. We have to prove that J; and ],
can be adjusted such that 1) is also satisfied.

We consider several cases and subcases.

Case I dimy N (B) < dimj, X/R(A) and dim;, N'(C) < dimj, X/R(A).
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Subcase 1.1. X/R(A) is infinite dimensional.

Since

dimy, Y/R(B) < dim, N (C) < dimj, X/R(A),
by 2) it follows that dim, N (C) = dimj, X/R(A). Then

dimy, J; (N (B)) = dimj, N (B) < dimj, X/R(A).
Thus

X/R(A)
R(J1)

= X/R(A).
Since
dimj, R(J,) = dimy, Y/R(B) < dimj, X/R(A) = dim, N (C),

we conclude that J, can be adjusted such that

N(C)
R(J>)

= N(C) = X/R(A) = Xg(z](f)‘)

Thus, 1) holds.

Subcase 1.2. X/R(A) is finite dimensional.
Let

k =dim, N(B), [=dim,N(C), m=dim,X/R(A), n=dimY/R(B).

We have
k<m, n<l<m, k+l=m+n,

all these quantities are finite, and we get
O<m-k=I1-n,
which is 1) in finite dimensions.

Case II. dim, N'(B) < dimj, X/R(A) < dim, N (C).

Subcase I1.1. N(C) is infinite dimensional.



3.2. NON-SEPARABLE BANACH SPACE SETTING 51

We get that
N(B)x N(C)= N(C) and dimj, Y/R(B) = dim;, N'(C).

Since dimy, X/R(A) < dimj, N (C), for every left invertible J; : N'(B) = X/R(A)
is is possible to adjust some left invertible J, : Y/R(B) — N (C) such that

X/R(A)  N(C)
R(U1)  R(2)

I

holds.
Subcase I1.2. N(C) is finite dimensional.
Keep k,I,m,n the same as in Subcase 1.2. We get
k<m<l, n<l, l+l=m+n,
implying that all these quantities are finite and
O<m-k=I1-n,

which is again 1) in finite dimensions.

Case I11. dim, N'(B) = dim;, X/R(A) and dim;, N (C) < dim;, X/R(A).

Subcase I11.1. X/R(A) is infinite dimensional.

From

dimy, J,(Y/R(B)) = dimj, Y/R(B) < dim;, V' (C) < dim;, X/R(A)
= dimh N(B)

we get that for every left invertible J, : Y/R(B) — N (C) we can find a left
invertible J; : N(B) — X/R(A) such that

X/R(A)  N(C)

~

R(J1) — R(2)

Subcase I11.2. X/R(A) is finite dimensional.

This is proved in the same way as in the previous finite dimensional
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subcases.
Case IV. dimy, N (B) = dimj, X/R(A) < dimj, N/ (C).

Subcase I1V.1. N(C) is infinite dimensional.
We get
N(C)=N(B)x N(C) = X/R(A)x Y/R(B),
implying N (C) = R/R(B). Thus, for every left invertible J; : N'(B) = X/R(A)
we can adjust a left invertible J, : Y/R(B) — N (C) such that
X/R(A)  N(C)
R() — R(2)’

Il

Subcase IV.2. N(C) is finite dimensional.

Again, this is a routine. [l



Chapter 4

General case 1> 3

In this chapter we provide statements related to different types of invertibility
of T,fl(A) when n > 3 is arbitrary. This is the case that the present author
has studied the most. Let us remind ourselves, if D; € B(X;), 1 <i < n are
given operators,

[Dy Ay Az o A Ay |
0 Dy Ay ... Agyq Ay
0 0 D e Az, A
A=, . 0T T T e Bx eX,e - eX,), (40.1)
0 0 0 Dn—l An—l,n
0 0 o0 0 D,

where A := (A1p, A13,..., Ajj,.., Ay_1,n) 18 an operator tuple consisting of
unknown variables A,']- € B(Xj,Xi), 1<i<j<mn, n>2. For convenience, we
denote by B,, the collection of all such tuples A.

In this chapter we aim to generalize results of two preceding chapters
to the case where operator matrix T?(A) is with arbitrary dimension n > 3.
Our method strongly relies on results from references [54], [55]. We provide
results related to (left, right) spectrum, (left, right) Fredholm and left /right
Weyl spectrum.

93
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4.1 Invertible completions of T (A)

If Y is a complemented subspace of X, we denote a topological complement of

Y in X by Y. Specially, in the rest of this section, if Y = N(T) (Y =R(T)),
we use M(T) (K(T)) to denote its topological complement in X.

We start with a result which deals with left invertibility of T,f(A).

Theorem 4.1.1. Let Dy € B(X;), D, € B(X3),....D,, € B(X,,). Assume that
D,, 2<s<n-1, are reqular operators. Consider the following statements:

(i) (a) Dy € Gi(Xy);
(b) D,, is reqular and N (D;) < K(D;_y) for every 2<i<mn;

(ii) There exists A € B, such that T*(A) € Gi(X1 - ® X,,);
(iii) (a) Dy € G)(X1);
i—1
(b) P K(Ds) < N(D;) does not hold for 2 <i < n.
s=1

Then (i) = (ii).
If X4,..., X, are infinite dimensional Hilbert spaces, then (ii) = (iii).

Proof. (i) = (i)

In this case it holds a(D;) = 0, R(Dy) is closed for all 1 <s < n and
N(D;) < K(D;_;) for every 2 <i <n. By Lemma 1.1.1 we need to find
A € B, such that a(T#(A)) = 0 and R(T4(A)) is closed and complemented.
We choose A = (Ajj)1<i<j<n 0 that A;; = 0if j—i =1, that is we place all
nonzero operators of tuple A on the superdiagonal. It remains to define A;;
for j=1+1, 1 <i<n. First notice that A;;,; : X;;; — X;. Since all of
diagonal entries have closed range, we know that X;,; = N (D;.;)®M(D;;;),
X; = K(D;) ® R(D;), and we have N(D;.1) < K(D;). Tt follows that there

is a left invertible operator J; : N(D;;1) = K(D;). We put A; ;11 = Ji 0] :

0 0
lN(Dm)l . l’C(Di)
M(D;4q) R(D;)
Notice that R(A; ;1) is contained in a subspace which is complementary to
R(D;) foreach 1 <i<n-1.

], and we implement this procedure for all 1 <i<n-1.
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Now we have chosen our A, we show that N'(TZ(A)) = N (Dy), implying
a(T4(A)) = a(Dy) = 0. Let us put T¢(A)x = 0, where x =x; +--+x, € X; ®
-+ @ X,,. The previous equality is then equivalent to the following system of
equations
Dix;+Aqx, | [O]
Dyxy + Apzxs 0

Dn—lxn—l +An—1,nxn 0
ann | _O_

Last equation gives x, € N'(D,,). Since R(A;s1) is contained in a subspace
which is complementary to R(Dy) for all 1 < s < n—-1, we have Dyx; =
Agsi1%x41 =0 for all 1 <s <mn—1. That is, x; € N(D;) for every 1 <i <mn,
and J;x,.1 = 0 for every 1 <s < n—1. Due to left invertibility of J; we get x; =0
for 2 <s <n, which proves the claim. Therefore, a(TZ(A)) = a(D;) = 0.

Next, we show that R(T#(A)) is closed and complemented. Left invertibility
of J;’s implies the existence of closed subspaces U; of K(D;) such that X(D;) =
R(J)®U;, 1 <i<n-1 (Lemma 1.1.1). It means that X; X, ®---® X, =
R(D1)®R(]1)0U18R(D2)@R(J2)@U,&- - -@R(D)-1 )®R(]-1)OU,-1OR(D,,)®
K(D,,). Tt is not hard to see that R(T#(A)) = R(D;)@R(J;)dR(D,)®R(J,)®
- ®R(D,—1)®R(J,—1) ®R(D,,). Comparing these equalities, one easily sees
that R(T(A)) is closed and complemented (this follows from [42, Theorem
3.6] as well).

(i) = (iii)
Assume that T#(A) is left invertible and Xj,..., X, are Hilbert spaces.
Then D; € G)(X;) (Lemma 1.2.11). Assume that (iii)(b) fails. Then there
j—1
exists some j € {2,...,n} such that a(Dj) > }_ B(Ds).
s=1
We use a method similar to that in [54],[55]. We know that for each
A € B, the operator matrix T¢(A) as an operator from X; & N (D,)* @

N(Dy)® N(D3)* & N(D3)®---d N(D,)* & N(D,,) into R(D;) ®R(D;)* &
R(Dy)®R(Dy)*@---®dR(D,_1) ®R(D,_;)* ®X,, admits the following block
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representation

DI A AT A AT A A

o A

N A T B

0o 0 0 A%?) ALY A(zln) A(zzn)

i lo o o b o Al Al
L=l o o o o A0 48] (4.1.1)

3n 3n

M L@

0 0 A@_ln A&_)ln

An—l,n An—ln

W0

Notice that Ds(l), 1 <s<n-1 are invertible, and D,(ql) is injective. Therefore,

there exist invertible operator matrices U and V such that

D 0 0 0 .. 0 0

(4) (4) 3) (4)

00 AR 0 AT . AR Ay

o i o 0o 0o . 0 0

@ () @

0 00 Ay . Ay A
uTH AV =| ° 0 b 00 (4.12)

0 o 0o o0 .. AP al

0 0 0 0 0

3 )

0 An—l,n An—l,n

p o

We will explain the construction of matrices U and V in more details. It

is known that elementary transformations of a matrix can be carried out by

multiplying the matrix with elementary matrices. In that way, since Dil),

Dél),...D,(ql_)1 are invertible, by multiplying the matrix T#(A) with suitable
elementary matrices from the left, we ,,destroy” operators Ag.Jl.) and Ag),

where 1 <i,j <n—1. The product of those matrices is our matrix U. Now,
analogously, we multiply T,f (A) with suitable elementary matrices from the

right in order to ,,destroy” operators A, the product of those matrices

ij
equals matrix V.
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Note that Ag) and Ag?)
in general, but we still use them for convenience. Now, it is obvious that if

(4.2.6) is left invertible, then since D,(f)

in (4.2.6) are not the original ones from (4.2.5)

is injective,

[, (4) (4) (4) “4) 1 - } _ .

Al, A(lf) A(lil) A(liz) N(D,) R(Dy)*
0 Ay Ay .. Ay N (D3) R(Dy)*
0o o AY .. AY |:[N(Dy)|-| R(Dy)* (4.1.3)
0 0 0o .. AS14_)1 " (N(Dy)|  [R(Dy1)*]

j-1
is injective. Since a(Dj) >} B(Dy) it follows that
s=1

] A(ﬁ) ]
A9 R(Dy)+
(24) R(D,)*
. 1
e R(D;-1)
[“ 71,7

is not injective, and hence operator defined in (4.2.7) is not injective for every
A € B,,. Contradiction. This proves the desired. O

Remark 4.1.2. Notice the validity of Theorem 4.1.1 without assuming sepa-
rability of Xq,..., X,

Corollary 4.1.3. Let Dy € B(X;), D, € B(X3),...,D,, € B(X,,). Assume that

D,- A, 2<s<n-1, A€ C are reqular operators. Then

N m(T,f(A))gm(Dl)u(CJA;)uA':
k=2

AeB,

where

A= {/\E C: N(Dy— Q) X K(Dj_; = A) does not hold}, 2<k<n,

A" = {/\ €eC: D,- A is not regular}.
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If X4,..., X,, are infinite dimensional Hilbert spaces, then

m(Dl)u(LnJAk)g () (T (a),
k=2

AeB,
where
k-1
Ay {/\e ¢: @DKD,- 1) < N (D= 1) holds}, 2<k<n.
s=1

Remark 4.1.4. Obviously, Ay C A, for 2 <k <n holds.

If n =2, we recover a result from [12].

Theorem 4.1.5. ([12, Theorem 5.2]) Let Dy € B(X1),D;, € B(X,). Consider
the following statements:

(i) (a) D1 € Gi(X4);
(b) Dy is reqular;
(c) N(Dy) = K(Dy);
(i1) There exists A € By such that TZd(A) €eg(Xg®Xy);
(iii) (a) Dy € G1(Xy);
(b) K(Dy) < N(D;) does not hold.

Then (i) = (ii).
If X1, X5 are infinite dimensional Hilbert spaces, then (ii) = (iii).

Corollary 4.1.6. (/12, Corollary 5.3]) Let Dy € B(X;), D, € B(X3). Then

() ou(T(A) couDyuA LA,
AEBQ

where
A} = {/\ eC: N(D,—-A) <K(Dy - A) does not hold},

A = {/\ €C: D,— A is not regular}.
If Xy, X, are infinite dimensional Hilbert spaces, then

a(D1)UA, € () ai(TH (A)),
AeB,
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where

A, = {/\ €C: K(Dy-A) < N(Dy—A) holds}.

Remark 4.1.7. One might conjecture that the left invertible Tzd (A) must have
D, with closed range. However, this is not the case. See [5, Lemma 2] and
[31, Example 3.

Notice that Theorem 4.1.5 is a correct version of [60, Theorem 2.1].
There are several remarks concerning Theorem 2.1 in [60]. First of all, in the
notation of [60], condition (i)(b) of Theorem 4.1.5 is omitted in [60, Theorem
2.1], which is an oversight. Without that condition direction (ii) = (i) in
[60, Theorem 2.1] need not hold. Namely, the choice of Q in the proof of
part (ii) = (iv) implies R(Mg) = X ® R(B), and for R(Mg) to be closed
(Lemma 1.1.1) we must assume that R(B) is closed. Furthermore, if R(B) is
closed, notice that condition (B(A) = oo or (B € ®,(K) and a(B) < B(A))) in
[60, Theorem 2.1] is equivalent to a simple condition a(B) < B(A), which is
condition (7)(c) in Theorem 4.1.5 interpreted in the setting of Hilbert spaces.
Similar reasoning holds for [60, Theorem 2.2].

Now, we provide results dealing with right invertibility of Tnd(A).

Theorem 4.1.8. Let D; € B(X;), D, € B(X»),...,D,, € B(X,,). Assume that
D,, 2<s<n-1 are regular operators. Consider the following statements:
(i) (a) Dy, € G/ (X,);

(b) Dy is regular and K(D;) < N'(Dj,q) for every 1 <i<n-1;

(ii) There ezists A € B, such that T*(A) € G(X; ®---®X,,);

(iii) (a) D, € G,(X,);
(b) B N(Ds) < K(D;) does not hold for 1 <i<n-1.

s=i+1
Then (i) = (i1).
If X4,...,X,, are infinite dimensional Hilbert spaces, then (ii) = (iii).

Proof. (i) = (ii)

In this case it holds B(D,) = 0, R(Ds) is closed for all 1 <s < n and
K(D;) < N(Dj;1) for every 1 <i <n-1. By Lemma 1.1.1, we need to find
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A € B, such that B(T%(A)) = 0 and N(TZ(A)) is closed and complemented.
We choose A = (Ajj)1<i<j<n so that A;; = 0 if j—1i # 1, that is we place
all nonzero operators of tuple A on the superdiagonal. It remains to define
Ajj for j =i+1, 1 <i<mn. First notice that A;;y; : X5 — X;. Since
all of diagonal entries have closed and complemented range and kernel, we
know that X;,; = NM(D;;1) ® M(D;;1), X; = K(D;) ® R(D;), and we have
K(D;) < N(D;;1). Tt follows that there is a right invertible operator J; :
i+1 IC(DI)
N(Dj;1) = K(D;). We put A; ;1 = l [M Do) l [R(Di)l, and we
implement this procedure for all 1 <i<n-1.

Notice that R(A; ;1) = K(D;) for each 1 <i < n— 1. Therefore, it is
immediate that R(T¥(A)) = R(D1)®R(A1,)®R(D,)®R(A3)®---@R(D,_)®
R(A—1,,) ®R(Dy) is equal to X; ®---® X,,, that is T4(A) is surjective.

Now we show that T,f (A) has a complemented kernel. First, by Lemma
1.1.1, there exist closed subspaces V;,; of N(D;;;) such that N (D) =
N(J;))®Vi,, 1 <i<n-1. It means that X;®X,®---®X,, = N(D;)®dM(D;)®
N(DyoN ()@ V,®---dN(D,)®N (J,—1)®V,. Second, direct computation
shows that NV(T#(A)) = N(D))@N(J,)®-- ®N(J,_1). Comparing these
equalities, and consulting Theorem 3.6 from [42], we conclude that N (T4 (A))
is closed and complemented.

(if) = (iii)

This implication follows directly from part (ii) = (iii) of Theorem 4.1.1
by employing dual relations NV (T) = R(T*)*, N(T*)=R(T)+. O

Corollary 4.1.9. Let D € B(X;), D, € B(X3),...,D,, € B(X,,). Assume that
Ds—-A, 2<s<n-1, AeC are regular operators. Then

(M o(THA) Co(D (UAk)UA”

AeB,
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where

A= {/\G(D: K(Dy —A) S N(Dyyq — A) does not hold}, 1<k<n-1,

A" = {/\ €eC: D;— A is not regular}.
If Xq,..., X, are infinite dimensional Hilbert spaces, then

n—

oD u(| k) e () on(Tan

1
k=1 AeB,

where

n
Ak:{/\e(D: P N (D, - 1) < K(D; - 1) holds}, l<k<n-1.
s=k+1

Remark 4.1.10. Obviously, A CA; for 1 <k <n-1 holds.

If n =2, we recover more results from [12].

Theorem 4.1.11. ([12, Theorem 5.4]) Let Dy € B(X;), D, € B(X;). Consider
the following statements:

(i) (a) D; € G,(X3);
(b) Dy is regqular,
(c) K(D1) = N(Dy);

(i1) There exists A € By such that Tz'”l(A) € G, (X180 X5),

(iii) (a) Dy € G(X3);
(b) N(D,) < K(D;) does not hold.

Then (i) = (ii).
If X1, X5 are infinite dimensional Hilbert spaces, then (ii) = (iii).
Corollary 4.1.12. ([12, Corollary 5.5]) Let Dy € B(Xy), D, € B(X,). Then

() on(T5(A) Cor(Dy) A LA,
AGBQ

where

Al = {/\ eC: K(D;-A)<N(D,- Q) does not hold},
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N {/\ eC: Dy- A is not regular}.

If Xy, X, are infinite dimensional Hilbert spaces, then

0,(Dy)UA; € ] on(Tf(A)),
AeB,

where

Ay = {/\ €C: N(Dy—A)<K(Dy 1) holds}.

We finish our investigations with results regarding invertibility of Tf (A).

Theorem 4.1.13. Let D; € B(X;), D, € B(X3),...,D,, € B(X,,). Assume that
all Dy, 2 <s <n-—1, are inner reqular operators. Consider the following
statements:
(i) (a) Dy € Gi(Xy) and Dy, € G,(X,,);

(b) N(D;;1) =K(D;) for1 <i<n-1;

(ii) There ezists A € B, such that T*(A) € G(X; ®---®X,,);
(iii) (a) Dy € Gi(Xy) and Dy € G,(X,,);
(b) @K(Ds) < N(D;) does not hold for 2 <i <n and é N(D;) <
K(D;) d;e:; not hold for1 <i<n-1. =i
Then (i) = (ii).

If X4,...,X,, are infinite dimensional Hilbert spaces, then (ii) = (iii).

Proof. (ii) = (iii)

Let T(A) be invertible for some A € B,. Then T¢(A) is both left and
right invertible, and so Theorems 4.1.1 and 4.1.8 yield the desired.

(i) = (i1)

We find A € B, such that a(T#(A)) =0 and R(TH(A) =X, ®--- @ X,,.
We choose A = (Ajj)1<i<j<n so that A;; = 0 if j—i # 1, that is we place
all nonzero operators of tuple A on the superdiagonal. It remains to define
Ajj for j=i+1, 1 <i<n. First notice that A; ;1 : X;;1 — X;. Since all of
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diagonal entries have closed ranges, we know that X;,; = N (D;.1)®M(D;,1),
X; = K(D;) ® R(D;), and we have a(D;,1) = B(D;). It follows that there is

| o | Ji 0| |N(Dis1)
an invertible J; : N(Djy1) — K(D;). We put A; ;4 = 0 0] ' [M(Di+1)l -
[’C(Di)

, and we implement this procedure for all 1 <i<n-1.
R(Di)]

Notice that R(A; ;1) = K(D;) for each 1 <i <n—1. Thus, we prove that
T,f(A) is surjective in the same way as in the proof of Theorem 4.1.8.

Next, we are able to show that NV (T%(A)) = N (D), implying a(T4(A)) =
a(Dy) = 0. This is proved in the same way as in the proof of Theorem 4.1.1.
O

Corollary 4.1.14. Let D; € B(X;), D, € B(X3),...,D,, € B(X,,). Assume that
all Dy— A, 2<s<n-1, AeC are reqular operators. Then

-1

M) eTiancaw)veonu((_a;)

AeB, =1

:

=

where
A= {/\e C: N(Dy;1 —A)=K(Dy— A) does not hold}, 1<k<n-1.

If Xq,..., X, are infinite dimensional Hilbert spaces, then

61(Dy) U 6,(D (UAk)UA c (M) a(Ti(a),

AeB,

where

Ay = {/\ eC: é_équs ~ ) < N(Dy - A) holds}u
=1

{Ae@; @N(DS—A)<IC(Dk—)\)holds}, 2<k<n-1,
s=k+1
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n—1

A, = {/\ eC: @K(Ds _ )< N(D, - 1) holds}u

{/\ eC: é/\/(Ds ~ )< K(Dy - A) holds}.
s=2

n-1 n-1
Remark 4.1.15. Obviously, ( U Ak)U A, Q( U A,’() holds.
k=2 k=1

If we put n =2 we get:

Theorem 4.1.16. Let D € B(X;), D, € B(X;). Consider the following state-
ments:
(i) (a) D1 € Gi(Xy) and Dy € G,(X3);

(b) N(Dy) = K(Dy);

(ii) There exists A € By such that TZd(A) eg(Xg®Xy);

(iii) (a) Dy € G)(X1) and D, € G,(X3);
(b) K(Dy) < N(D3) does not hold and N (D,) < K(Dy) does not hold.

Then (i) = (ii).
If X1, X5 are infinite dimensional Hilbert spaces, then (ii) = (iii).

Corollary 4.1.17. Let Dy € B(X;), D, € B(X;). Then

() o(T£(A) S oy(Dy) U o (Da) UA,
AeB,

where
A = {/\e C: N(Dy-2)=K(Dy—A) does not hold}.

If Xy, X, are infinite dimensional Hilbert spaces, then

01(Dy) U (Do) UAC () o(T5(4),
AeB,

where
A= {/\ €C: K(Dy=1) < N(Dy— 1) holds}u

{/\ €C: N(Dy=1)<K(Dy - 1) holds}.
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Theorem 4.1.16 interpreted in the setting of Hilbert spaces is a special
case of [25, Theorem 2|. Notice that Han et al. ([25]) have proved the
equivalence (i) < (ii) of Theorem 4.1.16 in arbitrary Banach spaces. Corollary
4.1.17 recovers a result of Du and Pan ([16, Theorem 2]). Notice, however,
that in [16] separability was used, while our statement is separability-free.

4.2 Weylness of T(A)

In this section we first provide results assuming separability, and afterwards
extend results to the case without separability.

4.2.1 Separability case

Assume that X, ..., X,, are infinite dimensional separable Hilbert spaces. This
subsection bases on article [45]. We begin with a result concerning upper
semi-Weyl invertibility of T4(A).

Theorem 4.2.1. Let Dy € B(X;), D, € B(X3),...,D,, € B(X,,) be given. Con-
sider the following conditions:
(i) (a) Dy € Pu(Xy); ) )
(b) (DS €D, (X,) for2<s<nand ¥ a(D)< Y ﬁ(Ds))
s=1

s=1
or

(ﬁ(Dj) = oo for some j € {l,.,n—1}, a(Ds) < oo for 2 <s <j and

R(Dy) is closed for 2 <s < n);

(ii) There exists A € B, such that T(A) e D7 (X, ®--- @ X,,);

(iii) (a) Dy € D (Xy);
(b) (DS €d,(X,) for2<s<n and ¥ a(D,)< ¥ /3(DS))
s=1

s=1
or

(/S(Dj) = oo for some je{l,..,n—1}, a(Dy) < oo for2<s S])
Then (i) = (ii) = (iii).

Remark 4.2.2. If j = 1 in (i)(b) or (iii)(b), part "a(D) < oo for 2<s < j” is
omitted there.
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Remark 4.2.3. Notice the similarity between sufficent condition (i) and nec-
essary condition (iii): parts (i)(a) and (iii)(a) are the same, while (i)(b) and
(i5i)(b) differ in "R(Dy) is closed for 2 <s<n” solely.

Proof. (ii) = (ii1)

Suppose that Tnd (A) is upper semi-Weyl. Then T,fl(A) is upper semi-
Fredholm, implying D; € @, (X;) (Lemma 1.2.11). Suppose that (iii)(b) is
not true. We have two possibilities. First, suppose that for 2 < s < n we
have B(Dy) < oo. It means (Theorem 1.1.2) that R(D;) is closed for 1 <s < n.
Again, we have two possibilities: either there exists some i € {2,...,n} with

a(D;) = oo, or we have i a(Dy) > éﬁ(Ds)

s=1

Assume a(D;) = oo for some i € {2,...,n}. We use a method from [58].
We know that for each A € B,,, operator T,f (A) regarded as an operator from
N(Dy)*eN (Dy)®N (Dy)teN (D,y)dN (Ds)teN (D;)&---@N (D,)teN (D,)
into R(Dy)®R(D1)* @R(D2)®R(D;)* &+ ®@R(Dy—1) ®R(Dy—1 )+ ®R(D,,) &
R(D,,)* has the following block representation

() 1) 42 1) 402 (1) )
Dl 0 A12 A142 A13 Alf Aln Alﬁf
REEEE B
o o D" o A(233) A(243) A(zan) A%
0 0 0 0 A213 A LAY Azzn
o o o o DI o AY o AY
d _ 3 4
T/(A)=lo o o 0o o o . Ay Ay (4.2.1)
0o 0 0 0 0 0 AV A
O 0 0 0 0 0 A AY
O 0 0 0 0 0 Wy
O 0 0 0 0 0 0 0

Evidently, D;l), Dél),...,D,(ql) from (4.2.1) are invertible. Hence, there exist
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invertible operator matrices U and V so that

1)

DM 0o 0o 0o o0 o0 0 0
(4) (4) (4)
0o 0o o aY o a¥ 0o A
o ob" o o o 0 0
) )
0.0 0 0 0 Ay 0o Al
, o o o o D 0 0
UT;/(AV=10 0o 0 0o 0 o0 0o A (42.2)
0 0 0 0 0 0 0 0
)
0 0 0 0 0 0 o A,
0 0 0 0 0 0 b o
0 0 0 0 0 0 0 0

Operators Ag?) in (4.2.1) and (4.2.2) are not the same, but we will keep the

same notation for simplicity. Next, it is clear that (4.2.2) is upper semi-Weyl
if and only if

=S 1

4) (4 4(4) ( - ;
A, A(lf) A(lf) A(lf) N(Dy) R(D;)*
0 0 Ay AEA) A(zn) N(D,) R(D,)*
4 4 L
0 0 0 Ay .. A N (Ds) R(Ds)
S e S KR UNCTON] e : (4.2.3)
o0 o o . AP L R(Dy-1)*
0 0 o o . o | WD [RD)"]
i-1
is upper semi-Weyl. Since ) B(Ds) < co and a(D;) = oo, it follows that
s=1
[ 4(4)
)i
Azi
« Agi) = 00,
(@
_Ai—l,i_

and hence operator defined in (4.2.3) is not upper semi-Weyl for every A € B,,.
This proves the desired.
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n n
Assume next that a(D;) < oo for 2 <s<n. Then )} a(Ds)> } B(Djy),

s=1 s=1
and for each A € B,,, T (A) has representation as (4.2.1), and we use (4.2.2)
and (4.2.3) again. Since D;, 1 < s < n are upper semi-Fredholm, then

T¥(A) is upper semi-Weyl if and only if (4.2.3) is upper semi-Weyl. But
n n
Y B(Dy) < Y a(D;) implies (4.2.3) is not upper semi-Weyl for every A € B,,.
s=1 s=1

Contradiction.

Second option is that there is j € {2,...,n} with B(D;) = co, and assume
we have found the smallest such j. Then f(D;) < oo for 1 <s<j—1, hence
R(Dy) is closed for 1 <s <j—-1. Now, a(Ds) < o for 2 <s<j-11is
not possible, otherwise (iii)(b) would be true. Finally, a(D;) = co for some
j €12,...,j=1} and be proceed with (4.2.1), (4.2.2), (4.2.3) applied to T{ | (A).

(i) = (i)

Assume that Dy € P, (X;) and (i)(b) holds. If D € @, (X;) for 2<s<n
n n

and Y a(D;) < Y B(D,), we choose trivially A = 0 and TZ(A) is upper
s=1

s=1

semi-Weyl.

Suppose that B(D;) = oo for some j € {1,...,n—1}, a(D;) <oo for 2<s < j
and R(Dy) is closed for all 1 < s < n. Assume that {fs(k)}‘><> {eﬁl)}‘x’

= s=1 s=1>
{eiz)}‘;‘;l N {ei”‘”}‘;gl are orthogonal bases of R(Dy)*, X,,..., X,,, respectively.

We have two cases. Again, we adopt a method from [58].
Case 1: f(D;) =00

In this case it holds a(D;) < oo, R(D;) is closed for all 1 <s < n and
B(D;) = co. We find A € B, such that a(T%(A)) < co and R(T(A)) is closed.
We choose A = (Ajj)1<i<j<n so that A;; = 0 if i > 1, that is we place all
nonzero operators of tuple A in the first row. It remains to define Ay, for
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2 <s<n. We put

1 1
Apy(el )) :fn(s L os=1,2,.;
2 1
Aps(e?) = fn(sll, s=1,2,..;

Aln(ein_l)) = f(l) s=1,2,...

ns+n—2’

Now we have chosen our A = (A;;), it is easy to show that N(TH(A)) =
N(D;)®{0}&---@{0). Therefore, a(T?(A)) = a(D,) < co.

Secondly, we show that R(T%(A)) is closed and ﬁ(T,f(A)) = oco0. Since
R(D,) is closed for all 1 <s < n, it will follow that R(T#(A)) is closed if
we prove that R(A;) is closed for 2 < s < n. But, since we are in the
setting of separable Hilbert spaces, with regards to definition of A;,’s, the
former is obvious. We have that T,‘fl (A) is upper semi-Fredholm, and since
B(T4(A)) = B(D;) = co due to definition of A4’s, we find that T4(A) is upper
semi-Weyl.

Case 2: (Dy) = oo for some k €{2,...,n—-1}

In this case it holds a(D;) < 00, 1 <s <k, R(Dj) is closed for all 1 <s <mn
and B(Dy) = co. We find A € B,, such that a(T¢(A)) < co and R(T4(A)) is
closed. We choose A = (A;j)1<i<j<n s0 that A;; = 0 if i = k, that is we place
all nonzero operators of tuple A in the k-th row. It remains to define Ay, for
k+1<s<n. Weput

k k
Ak,k+1(€.(§ )) = le(S )l S = 1121;

k+1 k
Ak,k+2(€£ " )) :frfsll' s=1,2,..;

Agn(el™ Dy = £ s=1,2,..

ns+n—k—1’

Now we have chosen our A = (A;;) , it is easy to show that N (T4(A)) =
N(D)) @ - ®N(Dy)®{0)®---®{0}). Therefore, a(T*A)) < a(D;) +--- +
oc(Dk) < 00.
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Secondly, we show that R(T%(A)) is closed and ﬂ(Tnd (A)) = c0. Since
R(D) is closed for all 1 <s < n, it will follow that R(T%(A)) is closed if
we prove that R(Ag,) is closed for k+1 < s < n. But, since we are in the
setting of separable Hilbert spaces, with regards to definition of Aj’s, the
former is obvious. We have that Tnd (A) is upper semi-Fredholm, and since
B(T4(A)) = B(Dy) = oo due to definition of Ag,’s, we find that T4(A) is upper
semi-Weyl.

O

Remark 4.2.4. Notice the validity of part (ii) = (iii) without assuming sep-
arability of Xq,..., X,,.

Next corollary is immediate from Theorem 4.2.1.

Corollary 4.2.5. (/58, Theorem 2.5], corrected version) Let Dy € B(Xy), D, €
B(X,),...,D, € B(X,,). Then

n

Ay = {/\ eC: iﬁ(Ds “ )< Za(Ds - /\)},
s=1

s=1

A= {)\e C: R(Dy—A) is not closed}, 2<k<n.

Remark 4.2.6. One should also spot a difference between collections Ay, 2 <
k <n, in Corollary 4.2.5 and in [58, Theorem 2.5]. This difference is implied
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by the existence of sets A;, 2 <k <n, in the formulation of Corollary 4.2.5.
Our estimates are better in a sense that Ay in Corollary 4.2.5 is a subset of
Ay from [58] for every 2 <k < n.

Previous statements for n = 2 become very simple, as shown in the
sequel.

Theorem 4.2.7. ([60, Theorem 2.5], corrected version) Let Dy € B(X;) and
D, € B(X;). Consider the following statements:

(i) (a) Dy € P (X1);

(b) (D2 € @.(Xs) and a(Dy) + a(D) < B(Dy) + B(D))
or

([3’(D1) =00 and R(D,) is closed);
(i1) There exists A € By such that Tzd(A) e D (X ®X,);
(ii) (a) Dy € D (Xy);
(8) (D> € @.(X2) and a(Dy) + a(Dy) < B(Dy) + (D))
or
B(Dy) = oo.

Then (i) = (ii) = (ii).

Notice that Theorem 4.2.7 is a corrected version of [60, Theorem 2.5].
Condition "R(D,) is closed’ in (i)(b) is omitted in [60], which is an oversight.
Without that condition we can not prove that R(Tzd (A)) is closed and therefore
direction (i7) = (i) in [60, Theorem 2.5] would not hold.

Corollary 4.2.8. (/60, Corollary 2.7], corrected version) Let Dy € B(X;) and
D, € B(X;,). Then

01e(D)UAUA'C () 01(TS(A)) C 0e(D1) UAUA U A,
AEBZ

where
A::{/\eC: a(Dy - 1) = 00 and B(D, —/\)<oo},

N = {/\ €C: B(D1=A)+B(Dy—A)<a(D;—A)+a(D, - A)},

A" :={1eC: R(Dy—-A) is not closed}.
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Now we list statements dealing with the lower semi-Weyl spectrum.

Theorem 4.2.9. Let Dy € B(X;), D, € B(X5),...,D, € B(X,,) be given. Con-
sider the following conditions:
(i) (a) Dy €@-(X,); n n
(b) (Ds ed (X,) forl<s<n-1and ¥ B(D)< Y a(Ds))
s=1

s=1
or

(a(Dj) = oo for some j € {2,..,n}, B(Ds) < oo for j <s<n-1 and

R(Dy) is closed for 1 <s<n-— 1);

(ii) There exists A € B, such that T*(A) e DX, &--- @ X,,);

(iii) (a) D, € D_(X,,);
(b) (Ds €D_(X,) for 1<s<n—1and ¥ B(D)< ¥, a(DS))
s=1

s=1
or

(Oc(D~) = oo for some j €1{2,..,n}, (D) < oo for j<s<n-— 1).
Then (i) = (ii) = (iii).
Remark 4.2.10. If j = n in (i)(b) or (iii)(b), part "B(Dg) < oo for j <s<n-1"
1s omitted there.

Remark 4.2.11. Notice the similarity between sufficent condition (i) and nec-
essary condition (iii): parts (i)(a) and (iii)(a) are the same, while (i)(b) and
(1) (b) differ in "R(Ds) is closed for 1 <s<n-1" solely.

Proof. This easily follows from the statement of Theorem 4.2.1 by
duality argument, putting into use Lemmas 1.2.1 and 1.2.2. O

Corollary 4.2.12. ([58, Theorem 2.6], corrected version) Let Dy € B(X;) and
D2 S B(Xz),..., Dn € B(Xn) Then

n—1

O~1'6(1)11) U ( UAk) UA, €
k=1
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where

n
Ak::{/\eC: BDe-N)=coand Y a(Ds—)\)<oo}, l<k<n-1,
s=k+1

Ayt = {/\ €eC: Za(DS -A)< gﬁ(Ds —/\)},

AL = {/\e@: R(Dy — A) is not closed}, 1<k<n-1.

Remark 4.2.13. Again, existence of sets A, 1 <k <n—1 in the statement

of Corollary 4.2.12 implies a difference between definitions of collections Ay,
1<k<n-11in Corollary 4.2.12 and in [58, Theorem 2.6].

If we put n =2 we get:

Theorem 4.2.14. (/60, Theorem 2.6/, corrected version) Let Dy € B(X;) and
D, € B(X;). Consider the following conditions:

(i) (a) Dy € P_(X3);

(b) (D1 € @_(X1) and a(Dy) + a(Dy) 2 B(Dy) + (D))
or

(a(Dz) =00 and R(Dy) is closed);
(i1) There exists A € By such that Tzd(A) edH (X X,);
(iii) (a) Dy € D_(X,);
(©) (D1 €@-(X,) and a(Dy) + (D) = B(Dy) + B(D2))
or
OL(Dz) = 00.

Then (i) = (ii) = (iii).

Corollary 4.2.15. (/60, Corollary 2.8], corrected version) Let Dy € B(X;), D, €
B(X,). Then

0,(D)) UAUA’ C ﬂ 0,0(TE(A)) C 0,6(Dy) UAUA UA”,
AEBQ

where

A::{Ae@: B(Dy - A) = 0o and a(Dz—/\)<oo},
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A = {/\ €eC: a(D;-A)+a(Dy,-A)<B(D; - )+ B(D, - A)},

A" :={1eC: R(D;-A) is not closed)}.

4.2.2 Nonseparable spaces

In this subsection we assume Xj,..., X,, to be arbitrary infinite dimensional
Hilbert spaces. This subsection bases on results from [44]. We generalize
results of [7],[60] from n = 2 to an arbitrary dimension of upper triangular
operators, and we pose perturbation results of [58] without assuming separa-
bility of underlying spaces.

We start with a result which deals with the upper Weyl spectrum of
T4(A).

n

Theorem 4.2.16. Let D; € B(X;), D, € B(X5),...,D,, € B(X,,). Consider the
following statements:
(i) (a) Dy € D (Xy);

(b) R(Dy) is closed for 2 <s<mn and

(a(Ds) <B(D.y) for2<s<n,
zilﬁ(L%):zoo)
s=1

or (DS €D (X,) for2<s<n and i a(D;y) < i ﬁ(DS));
s=1

s=1

(4.2.4)

(ii) There exists A € B, such that T¢(A) e 7 (X; ®--- & X,,);

(iii) (a) Dy € D,(Xy);
(b) (/)’(D]) = oo for some j € {1,..,n} and a(D;) < oo for 2 <s < ]) or

n n

(DS €, (X,) for2<s<n and ¥ a(D,)< Y ﬁ(DS)).
s=1 s=1

Then (i) = (ii) = (iii).

Remark 4.2.17. If j =1 in (iii)(b), we simply omit condition "a(Ds) < co for

2<s<j7 there.
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Proof: (ii) = (iii)

Assume that T#(A) is upper Weyl. Then T,fl (A) is upper Fredholm,
hence Dy € @, (X;) (Lemma 1.2.11). Assume that (iii)(b) fails. We have two
possibilities. On the one hand, assume that for 2 < s < n we have (D;) < co.
It means (Theorem 1.1.2) that R(D;) is closed for 1 <s < n. Again, we have
two possibilities. Either there exists some i € {2,...,n} with a(D;) = oo, or we

have i a(Dg) > i B(Dy).
s=1 s=1

First suppose a(D;) = oo for some i € {2,...,n}. We use a method from
[58]. We know that for each A € B,, operator matrix T#(A) as an operator
from N(Dy)* @ N (D1)e N (D,)* @ N (Dy)e N (D3) N (Ds)@---eN (D,)" &
N(D,) into R(D;)®R(D1)* @R(D;)®@R(D)* @ ®R(D;,_1) ®R(D;-1 ) &
R(D,)®R(D,)* admits the following block representation

F(1) 1) @ 1) 4@ (1) 2) 1
Dl 0 AIZ AIZ A13 A13 Aln Aln
BV Y N
- H% S K
0 0 0 0 A23 A23 AZn A2n
o o o o DY Al A
d _ 3 4
T;(A)={o 0o 0o 0 0 0 A Al (4.2.5)
00 0 0 0 0 AY AP
00 0 0 0 0 AR AW
1
00 0 0 0 0 plV o
0000 0 0 0 0 0

Obviously, Dil), D;l),...,D,Sl) from (4.2.5) are invertible. Hence, there exist

invertible operator matrices U and V so that
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(D" 0 0 0 0 0 0
0 0 BY o BY o BY
o oD 0o o o 0 0
o 0 0o o o BY 0o B
, o o o o b o 0 0
UT,(AV=l0 0o 0o o0 0 0 0o By (4.2.6)
0 0 0 0 0 0 0 0
0 0 0 0 0 0 o BY
0O 0 0 0 0 0 pV o
000 0 0 0 0 0 0
Next, it is clear that (4.2.6) is upper Weyl if and only if
4) p(4) p4) (4) i -
PR S B O I vl
Bys B(zf) B(zf) N (D) R(Dy)*
B B N(Ds) R(Ds)*
34 3n |.
N K Y021 i (427)
o0 o o . BY, : R(Dy-1)*
0 0o 0o o . o | WNDJ L[RD)"

i—1
is upper Weyl. Since ) B(D;) < oo and a(D;) = oo, it follows that

s=1

and hence operator defined in (4.2.7) is not upper Weyl for every A € B,,.
This proves the desired.

n n
Now assume a(D;) < oo for 2 < s <n. Then we have ) a(Dy)> } B(D;),
s=1 s=1
and for each A € B,,, T#(A) has representation as (4.2.5), and we still use
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(4.2.6) and (4.2.7). Since Dy, 1 <'s < n are upper Fredholm, we conclude that
n
T4(A) is upper Weyl if and only if (4.2.7) is upper Weyl. From Y B(D;) <

s=1
n

Y a(Dy), we know (4.2.7) is not upper Weyl for every A € 5,,.
s=1

On the other hand, assume that there is j € {2,...,n} with B(D;) = oo,
and assume we have chosen the smallest such j. In that case g(Ds) < oo for
1 <s<j-1, hence R(Dy) is closed for 1 <s <j—1. Now, we easily conclude
it is impossible that a(Dy) < oo for 2 <'s < j—1, otherwise (iii)(b) would
not fail. Therefore, a(D;) = oo for some j € {2,...,j =1} and be proceed with
(4.2.5), (4.2.6), (4.2.7) applied to T{ | (A).

(i) = (if)

n n
If Dy € @,(X;) for 2 < s <m and ) a(Dy) < Y B(Ds), we trivially
s=1 s=1

choose A = (A;j) = 0. Assume that this is not the case. Otherwise, it holds
a(Dq) < 00, R(D;y) is closed for all 1 <s <n and (4.2.4) holds. We find A € B,
such that a(T4(A)) < co and R(TZ(A)) is closed. We choose A = (Aij)i<i<j<n
so that A;; = 0if j—i =1, that is we place all nonzero operators of tuple A
on the superdiagonal. It remains to define A;j for j—i=1,1<i<j<n.
First notice that A;;,; : X;;; — X;. Since all of diagonal entries have closed
ranges, we know that X;,; = N(Dj;1) ® N(Djy1)t, X; = R(D;)* @ R(D;),
and from assumption (4.2.4) we get a(D;,1) < B(D;). It follows that there is

Ji 0],

a left invertible operator J; : N(D;y1) — R(D;)*. We put A; ;11 = 0 0

NDin) | _ . X = R(D;)*
N(Di)t| = 7 T R(Dy)
all 1 <i<n-1. Notice that R(D;) is complemented to R(A; ;1) for each
1<i<n-1.

l, and we implement this procedure for

Now we have chosen our A, we show that N'(TZ(A)) = N(Dy), implying
a(T4(A)) = a(D;) < co. Let us put T¢(A)x =0, where x =x; +---+x, € X; ®
-+ @ X,,. The previous equality is then equivalent to the following system of
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equations
Dlxl +A12X2 ] 0]
Dyxy + A23X3 0

Dn—lxn—l +An—1,nxn 0
ann ] _0_

The last equation gives x,, € N'(D,,). Since R(Djs) is complemented to R(As 1)
for all 1 <s<n-1, we have Dsx; = Ag541%y41 =0 for all 1 <s<n-1. That

is, x; € N(D;) for every 1 <i <n, and J;x,,1 =0 for every 1 <s<n-—1. Due

to left invertibility of J; we get x; = 0 for 2 < s < n, which proves the claim.

Therefore, a(T(A)) = a(Dy) < .

Secondly, we show that R(T%(A)) is closed. It is not hard to see that

R(TH(A)) = R(D;) ®R(J;) ®R(D;) ®R(J2) @+ @ R(D,_1 )&

(4.2.8)
R(]n—l ) $R(Dn)-

Furthermore, due to left invertibility of J;’s, there exist closed subspaces U;
of R(D;)* such that R(D;)* =R(J;)® U;, 1 <i <n-1. It means that

X10X,0-0X,=R(D))®R(J1)o U1 ®R(Dy))eR(H)0 U, &
R(Dn—l ) @ R(]n—l ) ® Un—l ® R(Dn) ® R(Dn)J—'

(4.2.9)

Comparing equalities (4.2.8) and (4.2.9), we conclude that R(T4(A)) is closed.

We have proved that T¢(A) is upper Fredholm. Notice that [j’(T,f(A))
=dim(U;)+dim(U,) +---+dim(U,,_1 )+ B(D,,). Now, with respect to (4.2.4),
either B(D,,) = oo or we can choose at least one J; such that its codimension is
infinite, that is dim U; = o0, i € {1,...,n—1}. In either case we get ﬁ’(T,f(A)) =
oo and it follows that T7(A) is upper Weyl. O
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Corollary 4.2.18. Let D € B(X;), D, € B(X3),...,D,, € B(X,,). Then

n+1

GZe(Dl)U(UAk)Q
k=2

N

() on(T (4)
AeB,
n+1

UMDOU(QA,;)U(QA;),
=2 =2

where

k-1
Ak::{/\e@: a(Dy—A) = 0o and /3(DS—/\)<oo}, 2<k<n,

s=1

Ay = {/\ eC: Y BD-1)<) alD, —/\)},
s=1 s=1
A ={AeC: a(De—-A)>p(Der-A)), 2<k<mn,
A;1+1 = Apss
A = {/\ €C: R(Dx—-A) is not closed}, 2<k<n.

Remark 4.2.19. Obviously, Ay CA; for 2<k<n+1.
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Theorem 4.2.20. Let Dy € B(X;),D, € B(X;). Consider the following state-

ments:
(i) (a) Dy € D(Xy);

(b) (a(Dz) < B(Dy), B(Dy)+ B(Dy) = 00 and R(D,) is closed) or (Dz €

D.(Xs) and a(Dy)+a(Dy) < f(Dy) + B(Dy)

(i1) There exists A € B, such that Tzd(A) e P (X ®Xy);
(iii) (a) Dy € ®,(Xy);

(b) (ﬁ(Dl) =00 or (B(D;) = 0 and a(Dy) < oo)) or (Dz € O (X,) and

a(D1) +a(Dy) < B(D1) + B(Ds) )

Then (i) = (ii) = (iii).
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Corollary 4.2.21. Let Dy € B(X;y), D, € B(X;). Then

07(D1)UA; UA3 C ﬂ 01w(T8(A)) C 01.(D1) UA, U A3 U A,
AeB,

where

A, = {Ae@: a(Dy— 1) = oo and /3(D1—/\)<oo},
As = {/\ €C: a(Dy-A)+a(Dy=A)> B(Dy - A)+B(D, - )\)},
A/Z = {/\ eC: a(D2 - /\) > ﬁ(Dl - A)},
AY = {/\ €eC: R(D,—- ) is not closed}.

Remark 4.2.22. Notice that Ay C A).

Statements concerning the lower Weyl spectrum of T#(A) we get by
duality.

Theorem 4.2.23. Let D; € B(X;), D, € B(X5),...,D,, € B(X,,). Consider the
following statements:
(i) (a) D, € D_(Xy,);

(b) R(Dy) is closed for 1 <s<n-1 and

(ﬁ(Ds) <a(Dsyy) for1<s<n-1,
ia(Ds) - oo)
s=1

or (DS ed_(X) for1<s<n-1 and i B(Ds) < i a(DS));
s=1

s=1

(4.2.10)

(ii) There exists A € B, such that T (A) e DX, & @ X,,);
(iii) (a) D, € O_(X,,);

(b) (oc(Dj):oofor some j €{2,..,n} and B(Dy) < oo for j <5< n— 1)
(DSGCD (X.) for 1<s<n—1and ¥ B(D )si a(D ))

s=1
Then (i) = (ii) = (iii).
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Remark 4.2.24. If j = n in (iii)(b), we simply omit condition "B(Ds) < co for
j<s<n-1".

Proof. The result immediately follows from Theorem 4.2.16, having in
mind the statements of Lemma 1.2.1 and Lemma 1.2.2. O

Corollary 4.2.25. Let Dy € B(X;), D, € B(X3),...,D,, € B(X,,). Then

n-1
Ure(Dn) U ( UAk) UAy41 €

k=1
() orl T (A)
AeB,
n—1 n—

Ure(Dn)U( A}i)UArHl U( A]Z);

1
=1

=~
I
—_

>

where

n
Ak::{AeC: B(Dx—A) =oc0 and Z a(Ds—/\)<oo}, 1<k<n-1,
s=k+1

A= {/\ eC: ga(Ds -A)< g[ﬂ(Ds - /\)},

Ap:i={leC: B(Dy—A)>a(Dgy—A)}), 1<k<n-1,
A = {/\ €C: R(Dx—- ) is not closed}, 2<k<n-1.
Remark 4.2.26. Obviously, Ay CA; for 1 <k<n-1.

Theorem 4.2.27. Let Dy € B(X;), D, € B(X;). Consider the following state-
ments:
(i) (a) Dy € P_(X3);

(b) (ﬁ(Dl) < a(Dy), a(Dy) +a(Dy) = oo and R(Dy) is closed) or (D1 e
®_(X,) and B(Dy) + B(Dy) < a(Dy) + a(Dz));
(ii) There exists A € By such that T§(A) € (X, ® X,);
(iii) (a) Dy € D_(X,);
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(b) (a(Dz) — 0 or (a(Dy) = 0o and (D) < oo)) or (D1 € d_(X,) and
BD1)+B(D2) < a(Dy) +a(Dy)).
Then (i) = (i) = (iii).
Corollary 4.2.28. Let Dy € B(X), D, € B(X,). Then

0,0(Dy) UA, UA; C ﬂ 0,0(TE(A)) C 0,6(Dy) UA, U A3 UAY,
AEBZ

where

Aq ::{AEC: B(Dy—A) =00 and a(DZ—/\)<oo},

As = {/\ €C: a(Dy-A)+a(Dy=A)<B(Dy - A)+B(D, - /’\)},
A1:={1eC: B(D;-A)>a(D,—A)},
A7 = {/\ €eC: R(D; - ) is not closed}.

Remark 4.2.29. Notice that Ay CA].

4.3 Fredholmness of T (A)

In this section we provide statements related to the Fredholmness of T,f (A).
One can notice that these statements are quite similar to the ones presented
in the previous section. Their proofs are also similar, and so we omit them.
First we consider separability case, and afterwards we generalize those results.

4.3.1 Separability case

Assume that Xi,..., X,, are separable Hilbert cases. This subsection bases on
results from [45]. We start with a result which deals with upper semi-Fredholm
invertibility of T4(A).

Theorem 4.3.1. Let Dy € B(X;), D, € B(X5),...,D, € B(X,,) be given. Con-
sider the following conditions:

(i) (a) Dy € D (Xy);
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(b) Dy e @, (X,) for 2<s<mn
or
([)’(D]-) = oo for some j € {l,..,n—1}, a(Ds) < oo for 2 <s <j and

R(Dy) is closed for 2 <s < n);

(ii) There exists A € B, such that T*(A) e D (X1 @ ®X,,);

(iii) (a) Dy € O (Xy);
(b) Dy € @, (X;) for 2<s<mn
(/)’(Dj) = oo for some je{l,..,n—1}, a(D;) < oo for 2<s< ])

Then (i) = (ii) = (iii).

Remark 4.3.2. f j =1 in (i)(b) or (iii)(b). part "a(Dy) <oo for 2<5<j" is
omitted there.

Remark 4.3.3. Notice the similarity between sufficent condition (i) and nec-
essary condition (i11): parts (i)(a) and (iii)(a) are the same, while (i)(b) and
(111)(b) differ in "R(Dy) is closed for 2 <s<n” solely.

Remark 4.3.4. Again, we have the validity of part (ii) = (iii) without assum-
ing separability of Xq,...,X,,.

Corollary 4.3.5. (/55, Theorem 1], corrected version)
Let Dl € B(Xl ),D2 € B(Xz),..., Dn S B(Xn) Then

n

o1(Dy) U(UAk) c

k=2

D)
E
ol
>
n

AeB,
n n
01¢(D1) U ( UAk) U UAL)
k=2 k=2

where

k-1
Ak::{)\eC: a(Dy—A) = o0 and Zﬂ(Ds—/\)<00}, 2<k<mn,
s=1
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A= {/\e C: R(Dy—A) is not closed}, 2<k<n.

Remark 4.3.6. Notice a difference between definitions of sets Ay, 2 <k <n,
in Corollary 4.3.5 and in [55, Theorem 1].

If we put n =2 we get:

Theorem 4.3.7. (/60, Theorem 2.10], corrected version) Let Dy € B(X;) and
D, € B(X;). Consider the following statements:

(i) (a) D1 € D (Xy);
(b) D, e D (X5) or (,B(Dl) =00 and R(D,) is closed).

(i1) There exists A € B, such that Tzd(A) ed, (X 8X>);
(ifi) (a) Dy € D, (X,);
(b) D, € D, (X;) or B(Dy) = o0.
Then (i) = (ii) = (iii).
Corollary 4.3.8. (/60, Corollary 2.12], corrected version) Let Dy € B(X;), D, €
B(X;). Then

01e(D1)UA C (] 01e(T5 (A)) C 01Dy UA U A,
AEBZ

where

A::{/\EC: a(Dy—A) =co0 and ﬁ(Dl—/\)<oo},

A :={leC: R(D,-A) is not closed).

Now we list statements dealing with the lower semi-Fredholm spectrum.

Theorem 4.3.9. Let Dy € B(X;), D, € B(X3),...,D,, € B(X,,) be given. Con-
sider the following conditions:
(i) (a) Dy € P_(X,);
(b) Dy e D_(X) for1 <s<n-1
or
(a(D]-) = oo for some j € {2,..,n}, p(Ds) < oo for j <s<n-1 and

R(Dy) is closed for 1 <s<n-— 1);

(ii) There exists A € B, such that T (A) e D_(X; & & X,,);
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(iii) (a) Dy € P_(X,);
(b) Dy e D_(X) for1<s<n-1
or
(a(Dj) = oo for some j €{2,..,n}, (D) <co for j<s<n-— 1).

Then (i) = (ii) = (iii).
Remark 4.3.10. If j = n in (i)(b) or (iii)(b), part "B(Dg) < oo forj<s<n-1"
15 omitted there.

Remark 4.3.11. Notice the similarity between sufficent condition (i) and nec-
essary condition (iii): parts (i)(a) and (iii)(a) are the same, while (i)(b) and
(111)(b) differ in "R(D;) is closed for 1 <s<n—1" solely.

Corollary 4.3.12. (/55, Theorem 2], corrected version)

n—1

6..(D,) U(UAk) c

k=1

where

n
Ak::{/\eC: B(Dx—A)=o0 and Za(Ds—/\)<oo}, 1<k<n-1,
s=k+1

A= {AEC: R(Dy - A) is not closed}, 1<k<n-1

Remark 4.3.13. Again we have a difference between definitions of the sets
Ar, 1 <k <n-11in Corollary 4.3.12 and in [55, Theorem 2].

Theorem 4.3.14. ([60, Theorem 2.11], corrected version) Let Dy € B(X1),D, €
B(X,). Consider the following conditions:

(i) (a) Dy € D_(X3);
(b) D e D_(Xy) or (a(Dz) =00 and R(Dy) is closed);

(i1) There exists A € By such that Tz'”l(A) eD_(Xy®X,);
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(iii) (a) Dy € D_(X5);
(C) Dl € (D_(Xl) or a(Dz) = 00.

Then (i) = (ii) = (iii).

Corollary 4.3.15. (/60, Corollary 2.13], corrected version) Let Dy € B(X), D, €
B(X;). Then

01e(D2) UAC () 07e(TH (4)) € 07e(D2) UA U,
AEBZ

where

A::{/\GC: B(Dy —A) = o0 and a(Dz—/\)<oo},

A :={leC: R(D;-A) is not closed).

And this is a result about Fredholm invertibility of Tnd(A).

Theorem 4.3.16. Let D; € B(X;), D, € B(X5),...,D,, € B(X,,). Consider the
following statements:
(i) (a) Dy € @,(X;) and D, € D_(X;);

(b) (D]- €D, (X;) for 2<j <n and Dy € D_(Xy) for 1 <k <n- 1)

or

]
some k €{2,...,n}, k> j, B(Dy) < co, a(Dy),B(Ds) <o for 1 <s<j—1 and

k+1<s<mn, and R(Dy) is closedforZSsSn—l)

(ﬁ(Dj) = oo for some j € {1,..,n—1}, a(D;) < oo, a(Dy) = oo for

(ii) There exists A € B,, such that T,f(A) ePX;@---@X,);

(iii) (a) Dy € ®.(X;) and D, € D_(X,,);
(b) (Dj €D, (X;) for 2<j<n and Dy € D_(Xy) for 1 <k <n- 1)
or
(ﬁ(D]-) = oo for some j €{l,..,n—1} and a(D;) < 0o for 2 <s <j,

a(Dy) = oo for some k € {2,...,n}, and f(D;) < oo fork<s<n-1,k >])
Then (i) = (i1) = (iii).

Remark 4.3.17. If j =1 and/or k = n in (i)(b), condition that is ought to
hold for 1 <s<j—1 and/or k+1 <s <mn is omitted there.



4.3. FREDHOLMNESS OF TR (A) 87

If j =1 and/or k =n in (iii)(b), condition that is ought to hold for 2 <s<j
and/or k <s<n-1 is omitted there.

If n =2, condition "R(Dy) is closed for 2 <s<n-1"is omitted in (i)(b).

Remark 4.3.18. Notice the similarity between sufficent condition (i) and nec-
essary condition (iii): again, parts (i)(a) and (iii)(a) are the same, while
(1)(b) and (iii)(b) differ only slightly.

Proof. (ii) = (iii)

Let T¢(A) be Fredholm for some A € B,. Then T¢(A) is both upper
and lower semi-Fredholm, and so by employing Theorems 4.3.1 and 4.3.9 we
easily get the desired.

(i) = (ii)

Let conditions (i)(a) and (i)(b) hold. If D; € ®,(X;) for 2 < j <n and
Dy € ®_(Xj) for 1 <k <n-1, then all D;’s are Fredholm, and so we trivially
choose A = 0. Assume the validity of a lengthy condition expressed in (i)(b).

Then, one easily checks that one of the Cases 1 or 2 in the proof of [55,

Theorem 3] holds, and so we get A € B,, so that Tnd(A) EPX;®---®X,) as
described there. O

Corollary 4.3.19. (/55, Theorem 3], corrected version) Let Dy € B(Xy), D, €
B(X>),...,D, € B(X,,). Then

01e(D1) Uore(D) U | Ak ), €

01(Dy) U 0,o(D (UAk)UA U(UAk)
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where

k-1
Ay={leC: a(Dy-A)=oco and Z[ﬂ(DS—/\)<oo}U
s=1

n

{AeC: B(Dy—A) = oo and Za(DS—A)<oo}, 2<k<n-1,

s=k+1
n—1
A,={AeC: a(D,-A)=oco and Zﬁ(DS—/\)<oo}U
s=1

{AeC: B(D;—A)= oo and Za(DS—/\)<oo},
s=2

A,’c = {)\e@: R(Dy — A) is not closed}, 2<k<n-1,

Remark 4.3.20. Again, due to the presence of sets A,, 2 <k <n-1, we have

a difference between definitions of collections Ay, 2 <k <n-—1, in Corollary
4.8.19 and in [55, Theorem 3].

We get some interesting results for n = 2 that seem new in the literature.

Theorem 4.3.21. Let Dy € B(X;), D, € B(X;,). Consider the following state-
ments:
(i) There exists A € B, such that Tzd(A) eD(X; ®X5);

(ZZ) (5!) Dl c ®+(X1) and D2 [S CD_(XQ),'
(b) B(Dy) = a(D,) = o0 or (D2 €D, (X,) and Dy € cp_(xl)).

Then (i) < (ii).
Corollary 4.3.22. Let Dy € B(X;), D, € B(X;). Then

() 0e(T5(A) = 01e(D1) U 0e(D2) U A,
AeB,

where
A={1eC: a(D,-A) =co0 and (D —A) < oo}jU

{xeC: B(Dy1—-A)=00 and a(D, - 1) < oo}.
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4.3.2 Nonseparable spaces

We now assume Xj, ..., X,, to be arbitrary infinite dimensional Hilbert spaces.
This subsection bases on article [44]. We generalize results of [6],[60] from
n = 2 to an arbitrary dimension of upper triangular operators, and we
pose perturbation results of [55] without assuming separability of underlying
spaces. Proofs of theorems to follow are very similar to proofs of theorems
from subsection 4.2.2, and so we omit them.

We start with a result which deals with the upper Fredholm spectrum
d
of TH(A).

Theorem 4.3.23. Let D; € B(X;), D, € B(X3),...,D, € B(X,,). Consider the
following statements:
(i) (a) Dy € Du(Xy);

(b) R(Dy) is closed for 2 <s<n and

a(Ds) < B(Ds_q) for2<s<mn (4.3.1)

or Dy e D, (X;) for 2<s<mn;
(ii) There exists A € B, such that T*(A) e D (X1 ®---®X,,);

(iii) (a) Dy € D(X);
(b) (ﬁ(D]-) = oo for some je€{l,..,n—1} and a(Ds) < co for

2353]') or Dy € D (X;) for 2<s<n.

Then (i) = (ii) = (iii).

Remark 4.3.24. If j =1 in (iii)(b), we simply omit condition "a(Ds) < co for
2<s<j” there.
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Corollary 4.3.25. Let D, € B(X;), D, € B(X3),...,D,, € B(X,,). Then

k=2

() o(Tii(A) <

AeB,
n n
oD (g nm)u(Uay)
k=2 k=2
where
k-1
Ay := {/\E(D: a(Dy—A) = oo and Zﬁ(Ds—A)<OO}, 2<k<mn,

s=1

A;{ ={1eC: a(Dy—A)>p(Dx1—-A)}, 2<k<n,
n
A= {/\GC: Za(Ds—/\):oo},
s=2
A = {/\ €C: R(Dx—- ) is not closed}, 2<k<n.
Remark 4.3.26. Obviously, Ay CA, NA’ for 2<k <n.

Theorem 4.3.27. Let Dy € B(X;),D, € B(X3). Consider the following state-
ments:

(i) (a) Dy € D,(Xy);

(b) (oc(Dz) < B(Dy) and R(D,) is closed) or Dy € D, (X5);
(i1) There exists A € B, such that TZd(A) e, (X;0X));
(iii) (a) Dy € D,(X);

(b) B(D1) =00 or Dy € D, (X;).
Then (i) = (ii) = (iii).

Corollary 4.3.28. Let Dy € B(X;y), D, € B(X;). Then

01e(D1) U € () 01e(TS (4)) € 01o(D1) UA, UAS,
AeB,
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where
A, ::{)\GC: a(Dy - A) = 00 and B(Dy —/\)<o<>},
Ay:={AeC: a(D,-A)=B(D; - N)},
AY = {/\ €C: R(Dy- ) is not closed}.
Remark 4.3.29. Notice that A, CA).

Statements concerning the lower Fredholm spectrum of T#(A) we get by
duality.

Theorem 4.3.30. Let D; € B(X;), D, € B(X3),...,D,, € B(X,,). Consider the
following statements:
(i) (a) Dy € D_(X;);

(b) R(Dy) is closed for 1 <s<n-1 and

B(Ds) < a(Dgyq) for1<s<n-1 (4.3.2)

or Dy e D_(X;) for 1 <s<n-1;
(ii) There exists A € B, such that T*(A) e D_(X1®---®X,,);
(iii) (a) D, € D_(X,);

(b) (a(Dj) — oo for some j €{2,..,n) and B(Dy) < oo for
szSn—l) or Dy e ®_(X,) for 1 <s<n-1.
Then (i) = (ii) = (iii).

Remark 4.3.31. If j = n in (iii)(b), we simply omit condition "B(D;) < oo for
j<s<n-17 there.

Corollary 4.3.32. Let D € B(X;), D, € B(X5),...,D,, € B(X,)). Then

n—1

6,.(D,) U(UAk) c

k=1
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where

n
Ak::{/\eC: B(Dg—A) = 00 and Za(DS—/\)<oo}, l<k<n-1,
s=k+1

A :={leC: B(Dy—A)>a(Dgy —A)}), 1<k<n-1,
n-1
Ni={AeC: ) B(D-A)=col,
s=1

A= {/\e C: R(Dy—A) is not closed}, 2<k<n-1.

Remark 4.3.33. Ay CA NA’ for1<k<n-1.
Theorem 4.3.34. Let D, € B(X;1), D, € B(X;). Consider the following state-

ments:
(i) (a) Dy € P_(X3);

(b) (ﬁ(Dl) < a(D;) and R(Dy) is closed) or D1 € D_(X;);
(ii) There exists A € By such that TS (A) € D_(X, ® X,);

(iii) (a) Dy € D_(X3);
(b) a(D,) = 0o or Dy € D_(X,).

Then (i) = (ii) = (iii).
Corollary 4.3.35. Let Dy € B(X;), D, € B(X;). Then

0re(D2) UA; € () 0re(T5(A)) € 0,6(D2) UAT UAY,
AGBQ

where
Ay = {/\eC: B(Dy - A) = oo and a(Dz—/\)<oo},

Ai = {/\ eC: ﬁ(Dl —/\) > OZ(DQ - /\)},
AT = {/\ €C: R(D; - ) is not closed}.
Remark 4.3.36. Notice that Ay CA].

Last topic is the class ®(X; @---® X,,) and its corresponding essential
spectrum.
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Theorem 4.3.37. Let D; € B(X;), D, € B(X3),...,D,, € B(X,,). Consider the
following statements:
(i) (a) Dy € @4 (Xy) and D, € D_(X;);

(b) (R(Ds) is closed for 2 <s<n-1 and (a(Ds) =B(Ds_q) for2<s<mn

or a(Dg) < B(Ds_1) < oo for 2 <s < n)) or (D]- € D (X;) for 2<j<mn and

Dy € ®_(X;) for 1 §k§n—1);

(ii) There exists A € B, such that T*(A) e D(X; - ®X,,);

(iii) (a) Dy € D.(X;) and D, € D_(X,,);
(b) (ﬁ(Dj) = oo for some j € {l,..,n—1} and a(D;) < co for 2 <s<j,

a(Dy) = oo for some k €1{2,...,n}, and B(D;) < oo fork <s<n-1, k>j) or
(D]. €D, (X;) for 2<j <n and Dy € D_(Xy) for
1Sk§n—1).

Then (i) = (ii) = (iii).

Remark 4.3.38. If j =1 and/or k = n in (iii)(b), condition that is ought to
hold for 2 <s <j and/or k <s <n-—1 is omitted there.

Proof. (ii) = (iii)
Let T#(A) be Fredholm for some A € B,. Then T¢(A) is both left and

lower Fredholm, and so by employing Theorems 4.3.23 and 4.3.30 we easily
get the desired.

(i) = (ii)

If D; € ®,(X;) for 2<j <n and Dy € P_(X) for 1 <k <n-1 choose
trivially A = 0. Otherwise, this part follows the argument as seen in the proof
of Theorem 4.2.16. Namely, assumptions of (i)(b) ensure the existence of left
invertible J;’s, and so we choose A = (A;;) as shown there. We shall again
have a(T#(A)) = a(D;) < oo, and due to our assumptions we can choose all

U;’s to be finite dimensional. Therefore, B(T4(A)) = dim U} +---+dim U,,_; +
B(D,,) < co, having in mind that D, € ®_(X,,). O
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Corollary 4.3.39. Let D, € B(X;), D, € B(X3),...,D,, € B(X,,). Then

010(Dy) U 0,(D,) U(UAk) UA, C
(kf;wf (A)
A€,
o000 (| Ja)n(UJan))o(ar)
k=2 k=2 k=2

where

k-1
Ak:{/\eC: a(Dy— 1) = oo and Zﬁ(Ds—/\)<oo}U
s=1

n

{/\eC: B(Dx—A) = o0 and Za(Ds—/\)<oo}, 2<k<n-1,

s=k+1
n—1
An:{/\eC: a(D, = 1) = oo and Zﬁ(Ds—/\)<oo}U
s=1

{/\GC: B(Dy—A)=o0 and ia(Ds—/\)<oo},
s=2

6,:={AeC: B(Dy_1—A) =00 or a(Dy—A)>B(Dy_1 —A)}, 2<k<n,
Api={leC: a(Dy—A)#B(Dsoy - )}, 2<k<n,
Al :={leC: R(D;—A) is not closed}, 2<k<n-1.
Remark 4.3.40. Obviously, A €A, NS for each 2 <k <n.

Theorem 4.3.41. Let D € B(X;), D, € B(X;). Consider the following state-
ments:
(i) (a) D1 € D,(Xy) and Dy € P_(X3);

(b) (a(Dz) — B(Dy) or a(Dy) < B(Dy) < oo) or (D2 € ,(X,) and D, €
cp_(xl)).
(ii) There exists A € By such that T{(A) € D(X; ® X,).
(iii) (a) Dy € D,(X;) and Dy € D_(X,);
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(b) (a(Dz) — B(Dy) = oo) or (D2 € ®,(X,) and D, € cp_(xl>).
Then (i) = (if) = (iii).
Corollary 4.3.42. Let Dy € B(X;y), D, € B(X;). Then

01e(D1) U 07e(D2) UA € () 0o(T5(A)) € 016(D1) U 0 (Dy) U A,
AEBQ

where
A={1eC: a(Dy-A)=0c0 and B(D; —A) < oojU

{AeC: B(D1—-A)=c0 and a(D; — 1) < oo},

A = {/\ECI a(D2—/\)¢/3(D1 —/\)}ﬂ
(AeC: B(Dy-A) =00 or a(Dy—A)> B(D; - V).

Remark 4.3.43. Notice that A C A’.
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Chapter 5

Filling in holes problem

In this chapter we use results from previous chapters in order to deal with
the filling in holes problem for the operator matrices. In case n = 2, this
problem can be formulated as follows. Consider operator M from Chapter
2. Then, in general, the following is true:

0(A)Uo(B)=c(Mc)UW.

The filling in holes problem has as its task desrcribing set W. It usually turns
out that this set is a union of some of the holes in o(M), which explains
the name of this problem. We present this problem in several stages, first
for n = 2, then for n = 3, and afterwards for general n > 3. The main tool in
succeding sections will be the concept of polynomially convex hull. Denote
by Poly; the collection of all complex polynomials of one variable.

Definition 5.0.1. [11] Let K € C be compact. The polynomial hull of K is
defined as

Hull(K)={A e C: |p(z)| <supl|p(z)| for every p € Poly,}.
zeK

Obviously, K C Hull(K), and if K = Hull(K) we say that K is polyno-
mially convez. Notice also that if K1 C K,, then Hull(Ky) € Hull(K;). The
most important for us is the following relation between polynomial hulls and
holes.

Theorem 5.0.2. [11] If K C C is compact, then C\ Hull(K) is equal to the

97
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unbounded component of C\ K. Hence,

Hull(K) = KU ”holes in K”.

51 Casen=2

In this case the filling in holes problem was successfully solved about 20 years
ago by Han, Lee, and Lee [25], their work being done on arbitrary Banach
spaces. We present their results. Assume that X, X, are arbitrary Banach
spaces.

From [25, Corollary 4] we see that, in perturbing a nilpotent matrix

lg g to Ig gl, 0(Mc) shrinks from o(A)Uo(B). How much of 6(A)Uc(B)

survives? The following theorem provides a clue.

Theorem 5.1.1. For a given pair (A, B) of operators we have
n(o(Mc))=n(c(A)Uo(B)) for every C e B(X, Xy), (5.1.1)
where 1(-) denotes the "polynomially convex hull”.

Proof. See [25]. O

The following corollary says that the passage from o(A)Uao(B) to a(M()
is the punching of some open sets in o(A) N o (B).

Corollary 5.1.2. For a given pair (A, B) of operators we have
0(A)Uo(B)=c(Mc)UW,

where W is the union of certain of the holes in o(Mc) which happen to be
subsets of 0(A)No(B).

Proof. See [25]. O

The following is a generalization of [20, Problem 72].
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Corollary 5.1.3. If 0(A) N o (B) has no interior points, then
o(M¢)=0(A)Ua(B) for every C e B(X,, Xy).

In particular, if either A € B(X;) or B € B(X;) is a compact operator, then
the previous equality holds.

We now consider another case in which equality in Corollary 5.1.3 holds.
To do this write, for T € B(X),

po(T)=0(T)\oy(T) and pL(T)=0(T)\o,(T)

Thus by Corollary 5.1.3 and Theorem 2.1.5 we can see that holes in o(M()
should lie in pé(A) Npl(B). Thus we have:

Corollary 5.1.4. If p (A)Np’(B) =0 then
o(Mc)=0(A)Uc(B) for every Ce B(X, X).

We conclude with an application of Corollary 5.1.4.

Corollary 5.1.5. Suppose X and X, are Hilbert spaces. If either A € B(X;)
is cohyponormal or B € B(X;) is hyponormal, then

o(M¢)=0(A)Ua(B) for every C e B(X,, Xy).

Proof. See [25]. O

52 Casen=3

In this case the filling in holes problem was successfully solved a few years ago
by Alatancang et al. [58], their work being done on separable Hilbert spaces.
We present their results. Assume that X, X,, X5 are separable Hilbert spaces.
Now we show that

O'(A) U CT(B) U G(C) = G(MD,E,F) Uw,

where W is the union of certain gaps in o(Mp g ) which are subsets of
(c(A)Nna(B)U(c(A)Na(C))U(a(B)Nnc(C)). We obtain a necessary and
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sufficent condition for the relation o(Mp g ) = 0(A)Uo(B)U o(C) to hold
for any De B(Xz,Xl),E € B(X:),,X]),P € B(X3,X2).

Theorem 5.2.1. Let triple (A, B,C) be given. Then
0(A)Uo(B)Uo(C)=0(Mpgr)UW,

where W is the union of some gaps in o (Mp g ), which are subsets of (6(A)N
o(B))U(c(A)Na(C))U(a(B)Nna(C)).

Proof. See [58]. O

In Preliminary section we have defined point and residual spectrum of
an operator. Now we define some of their parts. The following subdivisions
are closely related to the relevant space decomposition and are useful when
studying spectral properties of operators. Let T € B(X). Then:

op1(T)={1eC: Aeo,(T): R(A-T)=X};

(T)={1€C: A€0,(T): R(A-T)=X and R(A-T) = X};
0p3(T)={A€C: A€0,(T): R(A-T)= X and R(A-T) is closed};
0p4(T)={AeC: A€ 0,(T): R(A-

0,1(T)={AeC: Aeo,(T): R(A
0,2(T)={AeC: A€o, (T): R(A

T)# X and R(T — A) is not closed};
T) is closed};
T) is not closed};

Corollary 5.2.2. Let triple (A, B,C) be given. Then
o(Mp,gr)=0(A)Ua(B)Ua(C)

for any D € B(X,,X1),E € B(X3,X1),F € B(X3,X,) if and only if the following
conditions hold.
(1) If A € p(C), then one of the following statements (a)-(b) is satisfied:

(a) A€ o,1(A)\os(B) implies a(B—A)=0 or a(B—A) = B(A-1));

(b) A€oy (B)\oj(A) implies (A= A) =0 or a(B-A)# B(A- D).
(i1) If X € p(A), then one of the following statements (a)—(b) is satisfied:

(a) A€o, 1(B)\os(C) implies a(C—-A)=0 or a(C—A)=B(B-A);
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(b) A€oy, (C)\oy(B) implies beta(B—A) =0 or a(C-A) = B(B-A).

(ii1) If A € 0,,1(A)N0,,1(C), then one of the following statements (a)-(e) is
satisfied:

(a) A€ 0p1(B) implies a(B—=A)+a(C-A) = B(A-A);
(b) A€o, 1(B) implies a(C—A)=B(A-A)+B(B-A),

(c) A€ay3(B) implies a(B—=A)>B(A-A) or a(C-A)<B(B-A) or a(B—
AM+a(C-A)=p(A-A)+B(B-]A);

(d) A€ o,,(B) implies min{a(C — 1), B(A— A1)} < oo;

(e) A€ p(B) implies a(C—A) = B(A-N).

Proof. See [58]. O

Corollary 5.2.3. Let triple (A, B, C) be given. Then
o(Mp,gr)=0(A)Ua(B)Ua(C)

for all D € B(X,,X1),E € B(X3,X1),F € B(X3,X,) if one of the following
assumptions is satisfied:

(i) A* and C have the single valued extension property (SVEP) (see [15]);
(i1) A is cohypernormal, and C is hypernormal (see [25]);

(i11) B and C are hypernormal;

(iv) A and B are cohypernormal;

(v) A* and B* have the SVEP;

(vi) B and C have the SVEP.

Proof. See [58]. O
Corollary 5.2.4. Let triple (A, B, C) be given. then
o(Mp,g,r)=0(A)Uo(B)Uo(C)

for any D € B(X,,X;),E € B(X3,X1),F € B(X3,X5,) if one of the following
assumptions is satisfied:
(i) (c(A)Na(B)U(c(A)Na(C))U(a(B)Na(C)) has no interior points (see
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[25]);

(ii) A is cohypernormal, and o(B) N o (C) has no interior points.
(i1i) C is hypernormal, and o(A)No(B) has no interior points.
(iv) A* has the SVEP, and o(B) N o (C) has no interior points.
(v) C has the SVEP, and o(A)Na(B) has no interior points.
(vi) Any two of the operators A, B,C are compact.

Proof. See [58]. O

5.3 General case n >3

In this section, Xj,..., X,, are infinite dimensional Hilbert spaces. Occasiona-
lly, we will need an assumption that the former are separable, in which case
we shall emphasize this fact. This section is based on article [47].

5.3.1 The Weyl spectrum

In this subsection we generalize results from [55, Section 3| to arbitrary
Hilbert spaces. We report that Corollaries 3.3 and 3.8 in [55] do not hold
with the equivalence: ’only if’ part is not valid. The reason for this is that
the proofs of these corollaries summon [55, Theorems 2.5, 2.6] which do not
hold with an equality (see [44, Corollaries 2.3, 2.10] for corrected versions).
Corollaries 4, 8 and 12 from [54, Section 3] are not valid for analogous reasons.
In the sequel we provide correct forms of these statements.

Theorem 5.3.1. ([4/4, Corollary 2.3]) Let Dy € B(X;y), D, € B(X;),...,D,, €
B(X,). Then

n+1

o1(D) U Jox| S 01T (A)), (5.3.1)
k=2

AeB,

where

k-1
5k;:{/\eC: a(Dy— ) = oo and /3(D5—/\)<oo},2sksn,
=1

S

Ops1 = {/\ eC: ZMDS -1)< Za(DS - /\)}.
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Theorem 5.3.2. ([/5, Corollary 2.5]) Let Dy € B(Xy), D, € B(X;),...,D,, €
B(X,). If Xy,...,X,, are separable and R(Ds— A) are closed for 2 <s < n,
A eC, then

oD V([ Jor) = () ol T (AN, (532)
where 8y, 2 <k <n+1, are defined as in Theorem 5.5.1.

Now we are able to prove the following generalization to arbitrary Hilbert
spaces of [55, Theorem 3.1].

Theorem 5.3.3. Let D; € B(X;), D, € B(X3),...,D,, € B(X,,). Then

n

| oru(De) = o (T (A) U A UA, (5:3.3)
k=1

holds for every A € B,,, where

n

A1:U{/\6(D: a(Dg—A)=oco, a(Ds—A)<oo for 2<s<k-1 and
k=2

k-1

Y B(D;=A) = oo} Np(D)N{AEC: ) B(D=A)= ) a(D;-A),
s=1 s=1

s=1

n

n
A2:U{/\€C: a(Ds—A) <oo for all 1SSSn,Zﬁ(Ds—/\)Z
=1 s=1

Za(DS —A) and (a(Dk —A)> B(Dy—A) or R(Dy— A) is not closed)}.
s=1

Remark 5.3.4. Condition ‘a(Ds—A)<oco for 2<s<k-1"1in Ay is omitted

when k = 2.

n

n
Proof. Obviously, A; UA, C | 07,(Dg), and 07, (T4(A)) C U 1w(Dk)
k=1 =1

according to Lemma 1.2.11. Assume that A € U 01w(Di) \ 015, (T (A)). Then
k=1
by Theorem 5.3.1 we get that A does not belong to the left side of (5.3.1),

n
which together with observation A € | J o07,,(Dy) easily gives A € Ay UA,. O
k=1
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Now, we can give a sufficient condition for the stability of the left Weyl
spectrum.

Corollary 5.3.5. Let D; € B(X;), D, € B(X»),...,D,, € B(X,,). Then

n

UO”lw(Dk) = 01, (T(A))

k=1

holds for every A € B, if
Al U Az = 0,

where Ay, A, are defined as in Theorem 5.3.3.
If we summon the separability condition, then we are able to state the
following.

Corollary 5.3.6. (/55, Theorem 3.1], corrected version)
Let Dy € B(X;), D, € B(X»),...,.D, € B(X,,). If Xy,...,X,, are separable and
R(Ds—A), 2<s<mn, AeC are closed, then

Ualw(Dk) = 01, (T(A))
k=1

holds for every A € B, if and only if
where A1, Ay are defined as in Theorem 5.3.3.

Proof. Sufficiency is clear, and necessity follows from Theorem 5.3.3 and
Theorem 5.3.2. O

By duality, we obtain results related to the stability of the right Weyl
spectrum. We begin with the following generalization of [55, Theorem 3.6]
to arbitrary Hilbert spaces.

Theorem 5.3.7. Let D; € B(X;), D, € B(X3),...,D,, € B(X,,). Then

n

| oD = (T (A U A LA,
k=1
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holds for every A € B,,, where

n—1
A :U{/\EC: B(Dy—A)=co, B(Ds—A)< oo for k+1<s<n—1 and
k=1
Y aDi-A)=co}Npre(Dy)N{AEC: Y a(D=A)2 ) B(D,-A)},
s=k+1 s=1 s=1

n n
AZ:U{/\GC: B(Ds—A)< oo forall 1 <s<n, Za(DS—/\)z

k=1 s=1
n

Y B(D;=A) and B(Dg—A) > a(Dy - A)).

s=1
Remark 5.3.8. Condition 'B(Ds—A) < oo for k+1 <s<n-1"in A, is omitted

when k=n-1.

Now, we can give a sufficient condition for the stability of the right Weyl
spectrum.

Corollary 5.3.9. Let Dy € B(X;y), D, € B(X3),...,D,, € B(X,,). Then
n
U 0rw(Di) = arw(Tr?(A))
k=1

holds for every A € B,, if
Al U Az - (Z),

where A1, A, are defined as in Theorem 5.3.7.

If we include the separability assumption, we obtain characterization for
the stability of the right Weyl spectrum.

Corollary 5.3.10. (/55, Theorem 3.6/, corrected version) Let Dy € B(X;), D, €
B(X,),...,D, € B(X,). If Xy,...,X,, are separable and R(D;—A), 1 <s<n-—
1, A€ C are closed, then

) oru(Di) = 00 (T (4))
k=1
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holds for every A € B,, if and only if
Al U Az = @,

where Ay, A, are defined as in Theorem 5.5.7.

5.3.2 The Fredholm spectrum

In this subsection we generalize results from [54, Section 3| to arbitrary
Hilbert spaces. We prove statements related to left Fredholm invertibility,
and then by duality obtain corresponding statements related to right Fredholm
invertibility. Finally, we finish this subsection with investigation of the
essential spectra.

We start with the following two known results.

Theorem 5.3.11. (/44, Corollary 3.3]) Let Dy € B(X;), D, € B(X3),...,D, €

B(X,). Then
016(D1) (Uék) ) erlT (A, (53.4)
AeB,
where
k-1

6k::{/\eC: a(Dy—A) =00 and Zﬁ(DS—/\)<00}, 2<k<n

Theorem 5.3.12. (/45, Corollary 2.20])
Let Dy € B(X;), D, € B(X3),...,.D, € B(X,,). If Xy,...,X,, are separable and
R(Ds—A), 2<s<mn, AeC are closed, then

01e(Dy) (Uak) (M) o(T (A, (5.3.5)

AeB,

where 0, 2 <k <n, are defined as in Theorem 5.5.11.

Now, we generalize [54, Theorem 4] to arbitrary Hilbert spaces.
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Theorem 5.3.13. Let D € B(X;), D, € B(X3),...,D,, € B(X,,). Then
n
|Jo1e(Di) = aue(T (A LA LA, (5.3.6)
k=1

holds for every A € B,,, where

n
AI:U{AGC: a(Dg— M) =oco, a(Ds—A)<oo for 2<s<k-1
k=2

k-1
and Zﬁ(Ds —A) = oo} Npre(Dy),
s=1

n
A, = U{/\ €C: a(Ds—A)<co forall s=1,..,n and
k=1
R(Dy— A) is not closed}.

Remark 5.3.14. Condition ‘a(Ds—A) <oo for 2<s<k-1"1in Ay is omitted
when k = 2.

n n
Proof. Obviously, Ay UA, C | 07.(Dy), and 07.(TZ(A)) € | 07.(Dg)
k=1 k=1

n
according to Lemma 1.2.11. Assume that A € J 01,(Dy) \ 07.(T¢(A)). Then
k=1
by Theorem 5.3.11 we get that A does not belong to the left side of (5.3.5),
n
which together with observation A € |J 05,(Dy) easily gives A € A; UA,. O
k=1

Now, we can give sufficient condition for the stability of the left Fredholm
spectrum.

Corollary 5.3.15. Let D; € B(X;), D, € B(X5),...,D,, € B(X,)). Then
n
U 01¢(Dx) = 01(T(A))
k=1
holds for every A € B,, if

AlLJAQZZQ,
where A1, A, are defined as in Theorem 5.3.13.
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Corollary 5.3.16. (/54, Corollary 4], corrected version)
Let Dy € B(X;), D, € B(X3),...,.D, € B(X,,). If Xy,...,X,, are separable and
R(Ds—A), 2<s<mn, AeC are closed, then

UUZe(Dk) = 01,(T(A))
k=1

holds for every A € B, if and only if
Al U Az - @,
where A1, Ay are defined as in Theorem 5.3.183.

Proof. Sufficiency is obvious, and necessity follows from Theorem 5.3.13
and Theorem 5.3.12. O

We provide the following results for the right Fredholm spectrum. First
we generalize [54, Theorem 5] to arbitrary Hilbert spaces.

Theorem 5.3.17. Let D, € B(X;), D, € B(X3),...,D,, € B(X,)). Then

n

| Jore(De) = 0re(TH(A) U A UA,
k=1

holds for every A € B,,, where
n—1

A1:U{/\GC: B(Dy—A)=co, B(Ds—A)<oo for k+1<s<n—1 and

k=1
n

Z, a(Ds = A) = 0o} N p,.(Dy),

s=k+1
Ay={AeC: B(Dy—A)<oo forall 1 <k <n}

Remark 5.3.18. Condition B(Ds—A) < oo for k+1 <s<n-1"1in Ay is
omitted when k=n-1.

Sufficient condition for the stability of the right Fredholm spectrum
follows.
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Corollary 5.3.19. Let D € B(X;), D, € B(X3),...,D,, € B(X,,). Then

n

U Gre(Dk) = O're(Tif(A))

k=1

holds for every A € B,, if
A] U Az = (D,

where A1, A, are defined as in Theorem 5.3.17.

Let us summon separability next.

Corollary 5.3.20. (/54, Corollary 8], corrected version)
Let Dy € B(Xy), D, € B(X3),...,D, € B(X,). Assume that Xy,...,X,, are sepa-
rable and R(Ds—A), 1 <s<n-1, A€ C are closed. Then

n

Gre(Dk) = O-re(Tlf(A))
k=1

holds for every A € B,, if and only if
A] U AZ = 0,
where A1, A, are defined as in Theorem 5.3.17.

To end this section, we provide statements dealing with the essential
spectrum. We begin with

Theorem 5.3.21. ([44, Corollary 3.17])
Let Dl € B(Xl ), D2 c B(Xz),...,Dn € B(Xn) Then

01,(D1) U 0,o(D (Uék)ué c ﬂ 0o(T4(A)) (5.3.7)
AeB,

where

5k:{/\e(D: a(Dy—A)=oco and iﬁ(Ds—/\)<OO}U

n
{/\e@: B(Dy— ) = oo and Za(Ds—/\)<oo}, 2<k<n-1,
s=k+1
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n—1

6n:{)\e(D: a(D, 1) = 0o and Zﬁ(Ds—/\)<oo}U
{/\eC: B(Dy = 1) = oo and ia(DS—/\)<oo},
s=2

Theorem 5.3.22. ([45, Corollary 2.34])
Let Dy € B(X;), D, € B(X3),...,.D, € B(X,,). If Xy,...,X,, are separable and
R(Ds—A),2<s<n-1, AeC, are closed, then

-1
01¢(D1) U Gye(D (U Juon= [)olTia),  (538)

AeB,

where O, 2 <k <n, are defined as in Theorem 5.3.21.

Theorem 5.3.23. Let D, € B(X;), D, € B(X3),...,D,, € B(X,). Then

n

|JoelDi) = o (A) U A

k=1

holds for every A € B,,, where

A= (Al U AZ) N ple(Dl) N pre(Dn);

n-l k-1
A1:U{/\e@: (a(Dk—/\): B(Ds—A) = 0o and a(Ds— 1) < oo
k=2 s=1

for ZSSSk—l) or ([j’(Dk—)\): Z a(Ds—A) =00 and B(Ds— 1) < o0
s=k+1
for k+1 SsSn—l)},

n—1

A2:{/\EC: (a(Dn—/\)=Z/3(DS—)\):oo and a(D, - ) < oo

for2§s§n—1)or([3(D1—/\): a(Ds—A)=o00 for 2<s<n-1
s=2

and B(Ds—A) <o for 2SSSn—1)}.
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n n
Proof. Obviously, A C U 0,(Dy), and o,(T4(A)) C U -(Dy) according

to Lemma 1.2.11. Assume that A € U Ge(Dk)\ae(Td(A)) Then by Theorem
5.3.21 we get that A does not belong to the left side of (5.3.8), which together

with observation A € U 0,(Dy) easily gives A € A. O
k=1

Now we can give sufficient condition for the stability of the essential
spectrum.

Corollary 5.3.24. Let Dy € B(X;), D, € B(X3),...,D,, € B(X,;). Then
n
| oe(Di) = (T (A))
k=1

holds for every A € B,, if
A =0,

where A is defined as in Theorem 5.3.23.

Corollary 5.3.25. ([54, Corollary 12], corrected version)
Let D; € B(Xy) and D, € B(X,),...,D, € B(X,,). Assume that X,...,X,, are
separable and R(Ds—A), 2<s<n-1, AeC are closed. Then

n
0o(Dy) = 0(T;{ (A)
k=1
holds for every A € B,, if and only if
A=0,

where A is defined as in Theorem 5.3.23.

Proof. Sufficiency is obvious, and necessity follows from Theorem 5.3.23
and Theorem 5.3.22. O

Statements related to the Fredholm spectrum become especially elegant
when n = 2.
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Theorem 5.3.26. (/3, Corollary 3.2]) Let Dy € B(X;), D, € B(X;). Then
0.(D1) U (D) = 0 THA) U({A €€ H(D; = 1) = a(Dy— A) = ol
ple(Dl) N pre(DZ))

holds for every A € B,.

Corollary 5.3.27. Let Dy € B(X;), D, € B(X;). Then
0:(D1) U 0(D2) = 0,(T5 (4))
holds for every A € B, if

{1eC: B(D1-A)=a(Dy—A) =00} Np1e(D1) N pre(Da) = 0.

Thus, we recover Remark 3 from [54, Section 3.

5.3.3 The Spectrum

We begin with results related to the left and the right spectrum, and afterwards
conclude with the spectrum.

Theorem 5.3.28. (/46, Corollary 2.3]) Let Dy € B(X;), D, € B(X,),...,D,, €
B(X,). Then

o1(Dy) U " Ar) < a1(T(A)) (5.3.9)
k=2

AeB,

where

>~

1
Ay ::{/\e(D: a(Dy - A) > [j’(Ds—)\)}, 2<k<n,

©
I
—_

Theorem 5.3.29. Let D, € B(X;), D, € B(X3),...,D,, € B(X,). Then

Ual(Dk) = 0y(T4(A) U A (5.3.10)
k=1
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holds for every A € B,,, where

>

-1
A=
k

n

2

©
I
—_

{A€oy(Dy): a(Dr—=A)< ) B(Ds—A)}.
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n
Proof. Obviously, A C |J 0;(Dg), and 0;(T4(A)) C | 03(Dy) according
k=1

n
to Lemma 1.2.11. Assume that A € |J oy(Dy)\ 6;(T¢(A)). Then by Theorem
k=1

5.3.28 we get that A does not belong to the left side of (5.3.9), which together
n

with observation A € |J 07(Dy) easily gives A € A. O
k=1

Corollary 5.3.30. Let Dl € B(Xl ), D2 S B(XZ),..., Dn € B(Xn)

n

|JouDi) = ou(T (4))

k=1

holds for every A € B,, if
A=0,

where A is defined as in Theorem 5.3.29.

If we put n =2 we get:
Theorem 5.3.31. Let Dy € B(X;), D, € B(X,). Then

01(D1) U 0y(Dy) = o) THA) U{A € 0y(Dy) : a(Dy— A) < B(Dy = A)} (5.3.11)

holds for every A € B,.

Corollary 5.3.32. Let Dy € B(X;), D, € B(X;). Assume that X1, X, are infi-

nite dimensional Hilbert spaces. Then
01(Dy) U y(D2) = 0y( T3 (A))

holds for every A € B, if

{/\ € O'Z(Dz) : a(D2 —/\) < ﬁ(Dl —/\)} =V

Using duality, we obtain results related to the right spectrum.
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Theorem 5.3.33. Let D, € B(X;), D, € B(X3),...,D,, € B(X,). Then

n

Uar(Dk) = 0,(THA)UA (5.3.12)
k=1

holds for every A € B,,, where

-1

n
A= A,E (0" I)k (l)k-—,X).S EE: (X(I)s_'A)}'
k=1 s=k+1

3

Corollary 5.3.34. Let D, € B(X;), D, € B(X3),...,D,, € B(X,,). Then

|Jon(De) = (T (4))

k=1

holds for every A € B,, if
A =0,

where A is defined as in Theorem 5.3.33.

Special case n = 2 gives:
Theorem 5.3.35. Let Dy € B(X;), D, € B(X;). Then

0,(D1) U 0,(Dy) = 0,(T§ (A) UfA € 0,(Dy) : B(Dy - A) < a(D; - A))
holds for every A € B,.
Corollary 5.3.36. Let D, € B(X;), D, € B(X;). Then

0,(D1) U 0,(D,) = 0,(T5 (A))

holds for every A € B, if

{A€0,(Dy): B(D1—A)<a(Dy-A)}

We finish our investigations with results related to the spectrum of
T4(A). First we recall:

n

Theorem 5.3.37. ([46, Corollary 2.14])
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Let Dl S B(Xl ), D2 € B(Xz),...,Dn € B(Xn) Then

ol(Dl)Ua,(Dn)U(Uék)Uéng M a(Tia)), (5.3.13)
k=2 AeB,
where
k-1
6k:{/\eC:a(Dk—/\)> /S(DS—/\)}U
s=1

n

{/\eC: B(Dy— 1) > Za(DS—)\)}, 2<k<n-1,

s=k+1

n—1
Oy {Ae@ a(D, /\>Zﬁ }
s=1

{)\e@: B(D; — )>S:2a(Ds—)\)}.

=

Theorem 5.3.38. Let Dy € B(X;), D, € B(X3),...,D,, € B(X,,). Then

n

| oDy = a(T(a)ua

k=1
holds for every A € B,,, where

n—1 n

A= {Ae@ ( (Di=N)< Y a(D~ 1) and /\ear(Dk))
k=2 s=k+1

=

-1

r (a(Dk—/\) < ﬁ(DS—/\) and A e O‘Z(Dk))}U

A
I
—
—_

{/\e(D: 0<B(D -N)<Y a(D,-A) or 0<a(D,- 1)<y ﬁ(DS—A)}.

5=2 s

I
—

C::

Proof. Obviously, A C U 0(Dy) and o(T 4(A)) C
k=1 k=1

to Lemma 1.2.11. Assume that A € U o(Dg)\ (T2 (A)). Then by Theorem
k=1
5.3.37 we get that A does not belong to the left side of (5.3.13), which together

0(Dy) according
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n
with observation A € [ o(Dy) easily gives A € A. O
k=1

Corollary 5.3.39. Let D, € B(X;), D, € B(X5),...,D,, € B(X,)). Then

n

| Jo(Do) =a(Ti(4))

k=1

holds for every A € B, if
A =0,

where A is defined as in Theorem 5.3.38.

Statements related to the spectrum become especially elegant when n =
2.

Theorem 5.3.40. Let Dy € B(X;), D, € B(X;). Then
o(D1)Ua(D,) = o(TH(A) U {/\ €C: 0<B(D,-A)<a(Dy—A) or
0<a(Dy— 1)< B(D; - /\)}.
holds for every A € B,.

Observe that Theorem 5.3.40 is a more precise version of [25, Corollary
7] in the Hilbert space setting. Namely, in [25], authors prove that a passage
from o(D;)U o(D;) to G(Tzd(A)) is accomplished by filling some holes in
O'(Tzd(A)) which happen to be subsets of o(D;) N o(D,). Notice, however,
that in Theorem 5.3.40, we have specified the form of these holes. To our
best knowledge, this has not been done so far.

Corollary 5.3.41. Let Dy € B(X;), D, € B(X;). Then
o(D1) U (Dy) = o(T5 (4))
holds for every A € B, if
{AEC: 0<B(D;—-A)<a(D,—-A) or

0<a(Dy— 1)< B(D —/\)} —0.



Chapter 6

Block operator matrices that are
not upper triangular

In this chapter we present some additional results regarding spectra of block
operator matrices that were not the main interest of the author of this
dissertation.

6.1 Historical overview

In the last 30 years, experts in spectral theory have examined spectral properties
of block operator matrices that need not be upper triangular. We will observe
two types of such matrices.

Let A € B(X;), B e B(X,,X;). Denote by

A B
l € B(Xl EBXZ),

Mp,c = [D C

where D € B(X;,X,),C € B(X,) are unknown operators.
Next, let A € B(X;), B€ B(X5,X;), C € B(X,). Denote by

My =
X~Ix C

A B
]eB(XleBXz),

117



where X € B(X1, X;) is unknown. In other words, My = My ¢ with C known
and X unknown.

We will give a brief historical review regarding investigations of spectral
properties of Mp ¢ and Mx.

We know from Preliminary section that the pioneering work regarding
spectral properties of M was the article of Du and Pan from 1994 [16]. Soon
after, in 1995, Takahashi [51] gave neccessary and sufficient conditions for
the invertibility of operator matrix M. His result was unfairly neglected till
2009, when Chen and Hai characterized semi-Fredholm invertibility of My in
[21]. Year after, in 2010, they published an article which characterized (left,
right) invertibility of My [22]. Next, in 2017, Hai and Zhang investigated
Fredholm invertibility of My [24], and after them, in 2018, Wu et al. characte-
rized (left, right) Weyl invertibility of My [56]. All articles mentioned in this
paragraph used the setting of separable Hilbert spaces and have not been
generalized to the setting of arbitrary Hilbert or Banach spaces till now.

First results related to the completion of operator Mp ¢ date back to
2010 when Chen and Hai published their work [9]. In this article they gave
some results regarding perturbations of the (left, right) spectra of Mp ¢ on
separable Hilbert spaces. M. Kolundzija extended some of their work to
arbitrary Banach spaces [34], and two years after Chen and Hai generalized
their own results from 2010 to the Banach space setting [23]. Next article
we ought to mention is [13], in which right and left Fredholm completions
of Mp ¢ are discussed. Finally, Weylness of Mp ¢ has been characterized in
2019 [57].

We also mention a recent result of Huang et al. [30] in which authors
characterize invertibility of block operator matrices in terms of row operators.
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Osaj Obpaszay uunu cacmaguu 0eo0 OOKMOpPcKe oducepmayuje, 0OOHOCHO
O00KMOPCKO2 YMEemHUYKo2 npojekma Koju ce opanu na Yuueepsumemy y Hoeom
Caoy. Illonywen Obpazay yxopuuumu uza mekcma OOKMOpcKe oucepmayuje,
O0OHOCHO OOKMOPCKO2 YMEMHUUKO2 NPOjeKma.

[Lman Tpermana nojgaraka

HazuB npojexTa/McTpakuBama

CriexTpasiHe ocoOMHe MaTpuIia ornepaTtopa Ha baHaxoBUM MpocToprma

(Spectral properties of operator matrices on Banach spaces)

Ha3uB nHCTUTYIMje/MHCTUTYIMja Y OKBHPY KOjHUX ce CIIPOBOH MCTPAKMBAH€

[puponno — matematuuku ¢axynrer, YHausep3urer y Hopom Camy

Ha3uB nporpaMa y oKBHPY KOT ce peaju3yje HCTPaKUBAae

1. Onuc nogaraka

1.1 Bpcra ctynuje

Y 060j cmyouju nucy npuxynmsanu nooayu.

2. [Ipukynbame nogaTaKa

3. Tperman noaaraka u mpareha qokymeHTanuja

4. be30eaHOCT MOaTaKa U 3aIITHTA MOBEP/bUBUX HHGOPMAIHja

5. JlocTynmHoOCT moagaTaKka
6. Yaore u 0roBOpHOCT

HaroHanHu opTail OTBOpeHe Hayke — OPen.ac.rs
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