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upper triangular operator matrices of an arbitrary dimen-

sion, and techniques from [54],[55] are adapted for operator

matrices acting on a direct sum of spaces which need not be

separable. The latter ideas represent the original scientific

contribution of the present author, and they can be found

in papers [44]–[48].

Accepted on Scientific

Board on:
15. 12. 2022.

Defended: (filled by the

faculty service):



9

Thesis defend board:

(title, first name, last

name, position, institu-

tion):

President: PhD Stevan Pilipović, Akademician, Professor
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Rezime rada

U ovoj doktorskoj disertaciji uopxtavamo mnoge poznate rezul-
tate vezane za gorǌe trougaone matrice operatora. Nax zadatak
je da prika�emo rezultate karakterizacije za razne tipove in-
vertibilnosti takvih matrica operatora, koji �e onda dati odgo-
varaju�e rezultate perturbacija i neke rezultate za problem ,,po-
puǌavaǌa rupa”.

Uopxteǌa koja vrximo sprovodimo u dva pravca. Prvo, uop-
xtavamo mnoge poznate rezultate izra�ene za matrice operatora
reda 2 na matrice operatora koje su proizvoǉnog reda n ≥ 2.
Drugo, rezultate koji su dati u kontekstu direktne topoloxke
sume separabilnih Hilbertovih prostora proxirujemo tako da
va�e na direktnoj topoloxkoj sumi proizvoǉnih Banahovih pro-
stora.

U disertaciji, prikazana su dva nova metoda pomo�u kojih
mo�emo istra�ivati spektralne osobine matrica operatora. Prvi
metod se odnosi na proxireǌe tehnike utapaǌa Banahovih prosto-
ra uvedene od strane Dragana S. �or�evi�a u [12] na gorǌe tro-
ugaone matrice operatora proizvoǉne dimenzije, a drugi metod
je adaptacija tehnike svo�eǌa na apsurd iz [54], [55] na matrice
operatora koje deluju na direktnoj sumi prostora koji ne moraju
biti separabilni. Ove ideje predstavǉaju originalan nauqni do-
prinos autora, i prikazane su u radovima [44]–[48].
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Sa�etak

Ova doktorska disertacija ima za ciǉ da prika�e razne rezultate
vezane za mnoge tipove invertibilnosti blok matrica operatora
qiji su neki elementi dati, a ostali nisu. Blok matrice opera-
tora koje �emo mi prouqavati jesu gorǌe trougaone matrice ope-
ratora, tj. matrice kod kojih se ispod glavne dijagonale nalaze
nula operatori. Za takve matrice operatora uvek �emo pret-
postavǉati da su im dijagonalni elementi dati, a elementi iznad
glavne dijagonale nisu poznati. Podrazumeva se da ovakve ma-
trice operatora deluju na direktnoj topoloxkoj sumi Banahovih
prostora, kao xto je precizirano u nastavku. Nax zadatak je da
prika�emo rezultate karakterizacije za razne tipove invertibil-
nosti takvih operatora, koji �e onda dati odgovaraju�e rezultate
perturbacija i neke rezultate za problem ,,popuǌavaǌa rupa”.

Do sada, istra�ivaǌa ove vrste bila su uglavnom preduzi-
mana u kontekstu separabilnih Hilbertovih prostora. Stoga,
prebrojive ortogonalne baze su qesto korix�ene u tim istra�i-
vaǌima. Autor ove disertacije odabrao je drugaqiji put. Umesto
da koristi linearne baze Banahovih prostora koje ne moraju biti
prebrojive, autor je radije odabrao rad sa odgovaraju�im uta-
paǌima izme�u onih potprostora Banahovih prostora koji imaju
topoloxki komplement. Osim toga, struqǌaci u ovoj oblasti su
do sada uglavnom ispitivali sluqaj 2 × 2 gorǌe trougaonih ma-
trica operatora, dok je autor ove disertacije prouqavao gorǌe
trougaone matrice proizvoǉne dimenzije, Na ovaj naqin, tehnika
utapaǌa Banahovih prostora uvedena od strane Dragana S. �or-
�evi�a u [12] je uopxtena na gorǌe trougaone matrice operatora
proizvoǉne dimenzije, a tehnike iz [54], [55] su prilago�ene na
matrice operatora koje deluju na direktnoj sumi prostora koji
ne moraju biti separabilni. Ove ideje predstavǉaju originalan
nauqni doprinos autora, i prikazane su u radovima [44]–[46].

Disertacija je podeǉena u nekoliko glava, od kojih je svaka
podeǉena u poglavǉa i potpoglavǉa. Sve definicije, teoreme,



itd. su numerisane kontinualno.

Prva glava je uvodnog karaktera. U ǌoj se prikazuje isto-
rijska pozadina vezana za naxu temu, i povezujemo temu rada sa
ostalim delovima teorijske matematike. Tako�e uvodimo i oznake
koje �e se koristiti tokom pisaǌa disertacije. Zavrxavamo ovu
glavu sa nekim uvodnim rezultatima koji se tiqu naxeg rada.
U drugoj glavi prikazujemo razne rezultate vezane za inverti-
bilnost 2 × 2 matrica operatora. Rezultati ove glave su odve�
poznati u literaturi. Najpre dajemo rezultate za separabilne
Hilbertove prostore, a zatim proxirujemo ove rezultate na Ba-
nahove prostore koji ne moraju biti separabilni. Rezultati koji
koriste separabilnost su se pojavili pre rezultata koji ne ko-
riste separabilnost. Autor je dobio veliki deo rezultata ove
glave kao specijalne sluqajeve opxtijih istra�ivaǌa u glavama
koje slede.

Glavni zadatak tre�e glave je prikazivaǌe rezultata pret-
hodne glave prilago�ene za 3× 3 matrice operatora. Dajemo neke
rezultate koji koriste separabilnost, i neke koji ne podrazume-
vaju ovaj jak uslov. Rezultati koji koriste separabilnost bili
su poznati u literaturi, a oni koji ne koriste dobijeni su od
strane autora i ǌegovog mentora u [48].

Qetvrta glava je najbitnija glava. U ǌoj su iskǉuqivo dati
rezultati koji su originalni nauqni doprinos autora. Na taj
naqin, prikazani su rezultati iz referenci [44]-[46]. Istra�u-
jemo karakterizacije (levog, desnog) spektra, (levog, desnog) Fred-
holmovog spektra i levog/desnog Vejlovog spektra gorǌih trou-
gaonih matrica dimenzije n ≥ 2.

Peta glava slu�i da prika�e jednu primenu rezultata iz pret-
hodnih glava. Naime, rexavamo problem ,,popuǌavaǌa rupa” za
razliqite matriqne dimenzije n ∈N i u razliqitim okru�eǌima
vektorskih prostora. Prikazani su neki poznati rezultati, na-



jvixe u Hilbertovim prostorima, ali su dati i neki originalni
rezultati autora iz [47].

Posledǌa glava je dodatak na prethodne glave. U ovoj glavi
se bavimo blok matricama operatora koje nisu gorǌe trougaone.



Abstract

This doctoral dissertation has as its aim to present various results related to

different types of invertibility of block operator matrices, whose some of the

entries are known, and the others are unknown. Block matrices in question

are upper triangular operator matrices, that is matrices whose entries below

the main diagonal are zero operators. We will always assume that diagonal

elements of such matrices are given, while elements above the main diagonal

are not. It is understood that all operator matrices in question act on a

direct topological sum of Banach spaces, as it is precised in the sequel. Our

goal is to present characterization results for different types of invertibility of

such operators, which then yield appropriate perturbation results and some

”filling in holes” results.

So far, investigations of this kind were mainly undertaken in the context

of separable Hilbert spaces. Thus, countable orthogonal bases were frequently

used in such research. The author of this dissertation has taken a different

path. Instead of using linear bases of Banach spaces that need not be

countable, the present author has rather worked with appropriate embedding

mappings between certain subspaces of Banach spaces that have a topological

complement. Moreover, specialist in this area have usually examined the

case of 2 × 2 upper triangular operator matrices, while the author of this

dissertation examines upper triangular operator matrices of an arbitrary

dimension. In this way, the technique of Banach space embeddings introduced

by Dragan S. Djordjević in [12] is generalized to upper triangular operator

matrices of an arbitrary dimension, and techniques from [54],[55] are adapted

for operator matrices acting on a direct sum of spaces which need not be

separable. The latter ideas represent the original scientific contribution of

the present author, and they can be found in papers [44]–[48].

Dissertation is divided into several chapters, each of which is divided

into sections and subsections. All definitions, theorems, etc. that appear are

numbered continuously.

The first chapter is an introductory one. In this chapter we present some

historical background related to this topic, and we connect it to other areas



of pure mathematics. We also provide notation that will be used throughout

this text. We end this chapter with some preliminary results regarding our

work.

The second chapter presents various results on invertibility for 2 × 2
operator matrices. Results in this chapter are already known in the literature.

We first present results for separable Hilbert spaces, and afterwards generalize

these to Banach spaces for which separability is not assumed. The former

appeared chronologically before the latter ones. The present author has

obtained much of the results of this chapter as special cases of more general

investigations in chapters to follow.

Main task of third chapter is to present results of the previous one

adapted to 3 × 3 operator matrices. We present some of the results that

assume separability, and some that do not use this strong assumption. The

former were already known in the literature, while the latter were obtained

by the present author and his PhD advisor in [48].

The fourth chapter is our main chapter. In this chapter one can find

results that are new scientific contribution of the author. In that way, results

from references [44]–[46] are presented. We investigate characterizations of

(left, right) spectrum, (left, right) Fredholm and left/right Weyl spectrum

for upper triangular operator matrices having dimension n ≥ 2.

The fifth chapter ought to present an application of results from the

previous chapters. Namely, we solve the ”filling in holes” problem for different

operator matrix dimensions n ∈N and in different linear space settings. Some

of the known results are presented, mainly in the setting of Hilbert spaces,

but some new results that are the original work of the present author from

[47] are also presented.

The last chapter contains an appendix to previous results. It is devoted

to invertibility of block operator matrices that are not upper triangular.
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Chapter 1

Introduction

1.1 Notation and main tasks

Let X,Y ,X1, ...,Xn be arbitrary Banach spaces. We use notation B(X,Y ) for

the collection of all linear and bounded mappings from X to Y . Usually,

spaces X and Y are linear spaces of functions, and in that case each T ∈
B(X,Y ) is traditionally called an operator. Particularly, B(X) = B(X,X). If

T ∈ B(X), then by N (T ) and R(T ) we denote the kernel and the range space

of T . Those sets are subspaces of X and Y , respectively, and N (T ) is closed.

If T ∈ B(X,Y ), then its dual operator is T ′ ∈ B(Y ′,X ′) defined by

T ′f (x) := f (T x), f ∈ Y ′. We shall use some properties of dual operators on

several occasions. For example, it is known that ‖T ‖ = ‖T ′‖ and T 7→ T ′ is

an isometric isomorphism of B(X,Y ) into B(X ′,Y ′). For other basic features

of dual operators we recommend [17].

For U ⊆ X we define set U◦ ⊆ X ′, and for V ⊆ X ′ we define set ◦V ⊆ X
as

U◦ := {f ∈ X ′ : f �U= 0}.
◦V := {x ∈ X : f (x) = 0 f or every f ∈ V }.

U◦ and ◦V are called the left and right annihilator of U and V , respectively.

Above all interesting features that hold for annihilators, we point out only a

19



20 CHAPTER 1. INTRODUCTION

few of them, see [49]:

R(A) =◦ [N (A′)], R(A′) =N (A)◦, R(A)◦ =N (A′), ... (1.1.1)

where A ∈ B(X,Y ).

For a subset K of C we use acc(K), int(K) and ∂K , respectively, to denote

the set of all points of accumulation of K , the interior of K and the boundary

of K .

Let D1 ∈ B(X1), D2 ∈ B(X2), ...,Dn ∈ B(Xn) be given. We denote by

T dn (A) an n×n partial upper triangular operator matrix of the form

T dn (A) =



D1 A12 A13 ... A1,n−1 A1n

0 D2 A23 ... A2,n−1 A2n

0 0 D3 ... A3,n−1 A3n
...

...
...

. . .
...

...
0 0 0 ... Dn−1 An−1,n
0 0 0 ... 0 Dn


∈ B(X1⊕X2⊕· · ·⊕Xn), (1.1.2)

where A := (A12, A13, ..., Aij , ..., An−1,n) is an operator tuple consisting of

unknown variables Aij ∈ B(Xj ,Xi), 1 ≤ i < j ≤ n, n ≥ 2. For convenience, we

denote by Bn the collection of all such tuples A. Sum X1⊕· · ·⊕Xn appearing

in (1.1.2) is a direct topological sum of Banach spaces. We highly recommend

article [42] as literature for properties of topological sums of more than two

subspaces.

There are several questions that we are interested in:

Question 1. Can we find an appropriate characterization for Fredholmness,

Weylness, etc. for T dn (A), in terms of Fredholmness, Weylness, etc. of its

diagonal entries Di?

Question 2. What can we say about
⋂
A∈Bn

σ∗(T dn (A)), where σ∗ is one of the

well known spectra that is examined in Fredholm theory?
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Question 3. Under what conditions the equality σ∗(T dn (A)) =
n⋃
i=1
σ∗(Di) holds

for different types of spectra σ∗?

Here we give complete answers to each of the above questions.

We use Gl(X) and Gr(X) to denote the sets of all left and right invertible

operators on X, respectively. The set of all invertible operators on X is

denoted by G(X) = Gl(X) ∩ Gr(X). We list some elementary notions from

Fredholm theory (see [61]). Let T ∈ B(X), and put α(T ) = dimN (T ) and

β(T ) = dimX/R(T ). Quantities α and β are called the nullity and the

deficiency of T , respectively, and in the case where at least one of them

is finite we define ind(T ) = α(T ) − β(T ) to be the index of T . Notice that

ind(T ) may be ±∞ or integer. The following lemma enlights the reason for

using such terminology in this article.

Lemma 1.1.1. Let T ∈ B(X). The following equivalences hold:

T is left invertible ⇔ α(T) = 0 and R(T) is closed and complemented;

T is right invertible ⇔ β(T) = 0 and N (T) is complemented.

The following statement due to T. Kato [33] holds.

Lemma 1.1.2. Let T ∈ B(X). If β(T ) <∞, then R(T ) is closed in X.

Families of left and right Fredholm operators, respectively, are defined

as [12]

Φl(X) = {T ∈ B(X) : α(T ) <∞ and R(T ) is closed and complemented}

and

Φr(X) = {T ∈ B(X) : β(T ) <∞ and N (T ) is complemented}.

The set of Fredholm operators is

Φ(X) = Φl(X)∩Φr(X) = {T ∈ B(X) : α(T ) <∞ and β(T ) <∞}.
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Families of left and right Weyl operators, respectively, are defined as

Φ−l (X) = {T ∈ Φl(X) : ind(T ) ≤ 0}

and

Φ+
r (X) = {T ∈ Φr(X) : ind(T ) ≥ 0}.

The set of Weyl operators is

Φ0(X) = Φ−l (X)∩Φ
+
r (X) = {T ∈ Φ(X) : ind(T ) = 0}.

Next, we also define the families of upper and lower semi-Fredholm

operators, respectively, as [61]

Φ+(X) = {T ∈ B(X) : α(T ) <∞ and R(T ) is closed}

and

Φ−(X) = {T ∈ B(X) : β(T ) <∞}.

Put

Φ−+ (X) = {T ∈ Φ+(X) : ind(T ) ≤ 0}

and

Φ+
− (X) = {T ∈ Φ−(X) : ind(T ) ≥ 0}.

These are the collections of upper and lower semi-Weyl operators, respectively.

Remark 1.1.3. If X is a Hilbert space, then it is clear that

Φl(X) = Φ+(X), Φr(X) = Φ−(X), Φ−l (X) = Φ−+ (X), Φ+
r (X) = Φ+

− (X).

For T ∈ B(X) consider the following inclusions: {0} ⊆ N (T ) ⊆ N (T 2) ⊆
· · · and X ⊇ R(T ) ⊇ R(T 2) ⊇ · · · . The ascent of T, denoted by asc(T ), is

defined as the least k (if it exists) for which N (T k) =N (T k+1) holds. If such

k does not exist, then we say that the ascent of A is equal to infinity. The

descent of T , denoted by des(T ), is defined as the least k (if it exists) for

which R(T k) = R(T k+1) is satisfied. If such k does not exist, then we say

that the descent of A is equal to infinity. If the ascent and the descent of

T are finite, then they are equal ([14]). The Drazin inverse of T ∈ B(X) is

the unique operator T D ∈ B(X) satisfying T k+1T D = T k, T DT T D = T and
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T T D = T DT for some nonnegative integer k. The least k in the previous

definition is known as the Drazin index of T . It is well-known that T D exists

if and only if p = asc(T ) = des(T ) < ∞. In this case the Drazin index of

T is equal to p ([14]). The set of Browder operators on X is defined as

B(X) = {T ∈ Φ(X) : asc(T ) = des(T ) <∞} = {T ∈ Φ(X) : T D exists} = {T ∈
Φ(X) : 0 < acc σ (T )}.

Corresponding spectra of an operator T ∈ B(X) are defined as follows:

-left spectrum: σl(T ) = {λ ∈ C : λ− T < Gl(X)};
-right spectrum: σr(T ) = {λ ∈ C : λ− T < Gr(X)};
-spectrum: σ (T ) = {λ ∈ C : λ− T < G(X)};
-left essential spectrum: σle(T ) = {λ ∈ C : λ− T < Φl(X)};
-right essential spectrum: σre(T ) = {λ ∈ C : λ− T < Φr(X)};
-essential spectrum: σe(T ) = {λ ∈ C : λ− T < Φ(X)};
-left Weyl spectrum: σlw(T ) = {λ ∈ C : λ− T < Φ−l (X)};
-right Weyl spectrum: σrw(T ) = {λ ∈ C : λ− T < Φ+

r (X)};
-Weyl spectrum: σw(T ) = {λ ∈ C : λ− T < Φ0(X)};
-Drazin spectrum: σd(T ) = {λ ∈ C : λ− T is not Drazin invertible};
-Browder spectrum: σb(T ) = {λ ∈ C : λ− T is not Browder invertible}.

We write ρl(T ),ρr(T ),ρ(T ),ρle(T ),ρre(T ),ρe(T ),ρlw(T ),ρrw(T ),ρw(T ),
ρd(T ),ρb(T ) for the corresponding complements of the sets above,

respectively.

Five more types of spectra will also appear, namely:

-point spectrum: σp(T ) = {λ ∈ C : λ− T is not one − one};
-approximate point spectrum: σap(T ) = {λ ∈ C : λ− T is not bounded
below};
-residual spectrum: σr(T ) = {λ ∈ C : T −λ is not one − one and
R(λ− T ) , X};
-defect spectrum: σδ(T ) = {λ ∈ C : λ− T is not surjective};
-Moore-Penrose spectrum: σm(T ) = {λ ∈ C : R(λ− T ) is not closed}.
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1.2 Preliminaries

If X1, ...,Xn are Hilbert spaces, one easily verifies that T dn (A) given by (1.1.2)

has the adjoint operator matrix T dn (A)
∗ given by

T dn (A)
∗ =



D∗1 0 0 ... 0 0
A∗12 D∗2 0 ... 0 0
A∗13 A∗23 D∗3 ... 0 0
...

...
...

. . .
...

...
A∗1,n−1 A∗2,n−1 A∗3,n−1 ... D∗n−1 0
A∗1n A∗2n A∗3n ... A∗n−1,n D∗n


∈ B(X∗1 ⊕X

∗
2 ⊕ · · · ⊕X

∗
n).

(1.2.1)

The following lemma imposes a connection between T and its adjoint

operator T ∗ in terms of nullity and deficiency of T . This claim will be crucial

at some points.

Lemma 1.2.1. Let X be a Hilbert space and T ∈ B(X). Then the following

holds:

(a) α(T ) = β(T ∗),β(T ) = α(T ∗);
(b) T ∈ Φl(X) if and only if T ∗ ∈ Φr(X∗);
(c) T ∈ Φr(X) if and only if T ∗ ∈ Φl(X∗);
(d) ind(T ∗) = −ind(T ).

The following statement is well known in the literature.

Lemma 1.2.2. Let X be a Hilbert space and T ∈ B(X). Then R(T ) is closed

if and only if R(T ∗) is closed.

We emphasize the fact that our results are ought to hold in arbitrary

Banach spaces, not just the separable ones. In order to prove the main

theorems which concern perturbation of various spectra of T dn (A), we introduce

a concept that will compensate loss of separability: the notion of embedded

spaces. To our knowledge, this condition was first used in this context by D.

S. Djordjević in 2002.

Definition 1.2.3. ([12, Definition 2.2]) We say that X can be embedded in Y
and write X � Y if there exists a left invertible operator J : X→ Y .

Remark 1.2.4. Obviously, X � Y if and only if there exists a right invertible

operator J1 : Y → X.
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If X and Y are Hilbert spaces, than X � Y if and only if dimX ≤ dimY .

Here, dimX stands for the orthogonal dimension of X.

In order to prove results about the left (right) Weyl spectrum, we shall

need another variant of Definition 1.2.3.

Definition 1.2.5. ([12, Definition 4.2]) We say that X can be essentially em-

bedded in Y and write X ≺ Y if and only if:

(a) X � Y ;

(b) for every T ∈ B(X,Y ), Y /R(T ) is an infinite dimensional linear space.

Remark 1.2.6. If X and Y are Hilbert spaces, than X ≺ Y if and only if

dimX < dimY and Y is infinite dimensional, where dimX is the orthogonal

dimension of X.

In order to prove results about the essential spectrum, we need the

following notion.

Definition 1.2.7. [12, Definition 2.2] We say that X and Y are isomorphic

up to a finite dimensional subspace, if one of the following two statements

hold:

1) There exists a bounded below operator J1 : X→ Y so that dimY /J1(X) <
∞, or

2) There exists a bounded below operator J2 : Y → X so that dimX/J2(Y ) <
∞.

Characterization of the previous notion is proved in [12]. It goes as

follows:

Lemma 1.2.8. Let M,N be finite dimensional spaces. If M⊕X �N ⊕Y , then

X and Y are isomorphic up to a finite dimensional subspace. Particularly, if

dimM = dimN , then X � Y .

Remark 1.2.9. If X and Y are Hilbert spaces, then X and Y are isomorphic

up to a finite dimensional subspace if and only if X � Y or both X,Y are

finite dimensional.

One important difference between Hilbert and Banach spaces is that

closed subspace of a Hilbert space is always complemented (H =M ⊕M⊥).
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This is not true for the case of Banach spaces. Since we would like to prove

our results by decomposing Banach spaces in an appropriate way, we shall

use a well known notion of inner regular operators.

We say that an operator T ∈ B(X,Y ) is inner regular if and only if there

is T̂ ∈ B(Y ,X) such that T T̂ T = T holds. In that case we say T̂ is inner

generalized inverse of T . Notice that existence of such T̂ does not imply its

uniqueness. In the sequel, instead of ”inner regular”, we only write ”regular”

for short. We consider the appropriate spectrum: σg(T ) = {λ ∈ C : T −
λ is not regular}. One can prove the following characterization:

Theorem 1.2.10. ([14, Corollary 1.1.5]) T ∈ B(X,Y ) is regular if and only if

N (T ) and R(T ) are closed and complemented subspaces of X and Y , respec-

tively.

It is important to highlight that operators in sets Gl(X), Gr(X),
Φl(X), Φr(X) are regular operators.

Moreover, it is easily proved that, following upper terminology, T T̂ and T̂ T
are both projections, and so we have decompositions (see [14, Theorem 1.1.3])

X =N (T )⊕R(T̂ T ), Y =N (T T̂ )⊕R(T ). (1.2.2)

We provide one more auxiliary lemma.

Lemma 1.2.11. ([55]) Let T dn (A) ∈ B(X1 ⊕ · · · ⊕Xn). Then:

(i) σle(D1) ⊆ σle(T dn (A)) ⊆
n⋃
k=1

σle(Dk);

(ii) σre(Dn) ⊆ σre(T dn (A)) ⊆
n⋃
k=1

σre(Dk);

(iii) σle(D1)∪ σre(Dn) ⊆ σe(T dn (A)) ⊆
n⋃
k=1

σe(Dk);

(iv) σlw(T dn (A)) ⊆
n⋃
k=1

σlw(Dk);

(v) σrw(T dn (A)) ⊆
n⋃
k=1

σrw(Dk);
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(vi) σl(D1) ⊆ σl(T dn (A)) ⊆
n⋃
k=1

σl(Dk);

(vii) σr(Dn) ⊆ σr(T dn (A)) ⊆
n⋃
k=1

σr(Dk);

(viii) σl(D1)∪ σr(Dn) ⊆ σ (T dn (A)) ⊆
n⋃
k=1

σ (Dk).

Definition 1.2.12. ([8]) Calkin algebra over X is the quotient algebra B(X)/K(X),
where K(X) is the collection of all compact operators on X. Natural homo-

morphism of B(X) onto C(X) is called the Calkin homomorphism of X.

This concept is used to prove Theorem 2.1.8.

Definition 1.2.13. [19] We say that T ∈ B(X) has the single valued extension

property (SVEP for short) at λ ∈ C if for every open neighborhood U of λ,

the only solution of the equation (T −u)f (u) = 0 that is analytic on U is the

constant function f = 0.

We will use this concept in the third chapter.

1.3 Historical background

Block operator matrices arise in various areas of mathematics and its applications:

in systems theory as Hamiltonians (see [10]), in saddle point problems in

non-linear analysis (see [5]), in evolution problems as linearizations of second

order Cauchy problems (see [18]), and as linear operators describing coupled

systems of partial differential equations. Such systems occur widely in magneto-

hydrodynamics (see [39]) and quantum mechanics (see [50]). In all these

applications, the spectral properties of the corresponding block operator

matrices are of vital importance, as they govern for instance the time evolution

and hence the stability of the underlying physical systems. One can see some

other applications of this topic in [17, Chapter VIII]. Moreover, reference [52]

is highly recommended as a well written treatise on this subject.

In the last few decades considerable attention has been devoted to the

study of spectral properties of operator matrices, having in mind their governing
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importance in various areas of mathematics. One has soon realized that one

way for successful work on problems arising in spectral theory, is to see

operator matrices as entries of smaller blocks. Block operator matrices,

and especially upper triangular operator matrices, have been extensively

studied by numerous authors (see [6], [7], [12], [16], [25], [35], [36], [54], [55],

references therein and many others...). The reason for this lies in the fact

that if an operator T is acting on a direct sum of Banach spaces, it takes the

upper triangular form under condition that certain number of those spaces

is invariant for T .

Development of this topic began in the last century, and is of great

importance ever since. In the beginning, authors have only considered the

case of 2 × 2 operator matrices. Pioneering work in that direction was the

article of Du and Pan from 1994 ([16]) treating the usual spectrum. Han et

al. have generalized their result to Banach spaces ([25]), and Lee has proved

some facts concerning the Weyl spectrum ([35]). Afterwards, Djordjević in

2002 gave some characterizations for 2× 2 upper triangular operators to be

Fredholm, Weyl, and Browder ([12]). After that, many authors have explored

various properties of 2× 2 block operators in a connection with intersection

of spectra, Weyl and Browder type theorems, etc. (see for example [36], [6]).

First article treating operator matrices of dimension 3 appeared only

a few years ago (2015). It is article [58], in which authors characterize

invertibility of T d3 (A) on separable Hilbert spaces. Their result is ought to

be generalized to arbitrary Hilbert spaces by the author of this thesis and

his PhD advisor in [48]. It is interesting that investigation of this particular

case (n = 3) had not begun before the investigation of general case n ≥ 3.

Investigation of spectral properties of general n × n operators began

no sooner than 2005, when Benhida el al. published article [4]. Next,

Zguitti published article [59] investigating Drazin spectrum. Huang et al.

continued his work in 2016 by investigating properties of the point, residual,

and continuous spectrum of n × n matrix operators ([29]). Fredholm and

Weyl spectrum of such operators have been studied by Wu and Huang in

[54], [55] only a few years ago, and this thesis is concerned with generalizing

their results from separable Hilbert to arbitrary Banach spaces.
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We mention that there has been some interest in block operators with

unbounded entries lately, see [2], [40], [43], but we shall not pursue this point

any further. We also mention that it is possible to replace the setting of

Hilbert spaces with C∗−algebras, see recent article [32].
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Chapter 2

Case n = 2

In this chapter we provide statements related to different types of invertibility

of T dn (A) when n = 2. Historically, this is the first case studied in a connection

with this topic. We shall use the notation MC := T d2 (A), where C = A12. In

other words, let MC be operator matrix

MC =
[
A C
0 B

]
∈ B(X1 ⊕X2), (2.0.1)

where A ∈ B(X1),B ∈ B(X2) are given operators and C ∈ B(X2,X1) is unknown.

First, we consider invertibility of MC , and afterwards we continue with

Fredholm, Weyl, Browder, and Drazin invertibility of MC .

2.1 Invertible completions of MC

2.1.1 Separable Hilbert space setting

In this subsection we present an early result due to Du and Pan [16, Theorem

2]. In fact, [16] is the first article dealing with invertibility properties of

block operator matrices in this context. We assume here that X1 and X2 are

separable Hilbert spaces.

Theorem 2.1.1. [16, Theorem 2] For a given pair of operators (A,B), there

exist C ∈ B(X2,X1) such that MC is invertible if and only if A is left invertible,

B is right invertible, and α(B) = β(A).

31
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Previous Theorem obviosly implies the following:

Corollary 2.1.2. For a given pair (A,B) of operators we have⋂
C∈B(X2,X1)

σ (MC) = σl(A)∪ σr(B)∪ {λ ∈ C : α(B−λ) , β(A−λ)}.

A simple example will show that inclusion σ (MC) ⊆ σ (A)∪σ (B) may be

proper.

Example 2.1.3. [16] If {gi}∞i=1 is an orthonormal basis of X2, define an ope-

rator B0 by B0g1 = 0,

B0gi = gi−1, i = 2,3, ...

If {fi}∞i=1 is an orthonormal basis of X1, define an operator A0 by A0fi = fi+1,

i = 1,2, ... and an operator C0 by C0 = (·, g1)f1 from X2 to X1. Then it is

easy to see that σ (A0) = σ (B0) = {λ ∈ C : |λ| ≤ 1}. But, in this case, MC0
is a

unitary operator, σ (MC0
) ⊆ {λ : |λ|}, so the inclusion σ (MC0

) ⊆ σ (A)∪ σ (B)
is proper.

2.1.2 Non-separable Banach space setting

Next, we generalize result from subsection 2.1.1 to the setting of arbitrary

Banach spaces. We specially emphasize that we do not need separability in

order to prove results to follow. This subsection follows the article of Han,

Lee, and Lee [25]. These authors have exploited in a very elegant way so

called ghost of an index theorem due to Harte. The latter goes as follows.

Theorem 2.1.4. [26],[27] Let A ∈ B(X,Y ),B ∈ B(Y ,Z) be operators with closed

range, where X,Y ,Z are Banach spaces. Then the following relation holds:

N (A)×N (B)×Z/R(AB) �N (AB)×Y /R(A)×Z/R(B).

Now, we are able to state and prove the main result of this subsection.

In what follows, X1 and X2 are arbitrary Banach spaces.

Theorem 2.1.5. [25] Let operators (A,B) be given. There exist C ∈ B(X2,X1)
such that MC is invertible if and only if:
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(i) A is left invertible;

(ii) B is right invertible;

(iii) X/R(A) �N (B).

Perturbation result immediately follows.

Corollary 2.1.6. For a given pair (A,B) of operators we have⋂
C∈B(X2,X1)

σ (MC) = σl(A)∪ σr(B)∪ {λ ∈ C : N (B−λ) � X2/R(A−λ)}.

The following two corollaries are also immediate results from Theorem

2.1.5.

Corollary 2.1.7. For a given pair (A,B) of operators we have

(σ (A)∪ σ (B)) \ (σ (A)∩ σ (B)) ⊆ σ (MC) ⊆ σ (A)∪ σ (B)

for every C ∈ B(X2,X1).

Corollary 2.1.8. If MC is Fredholm and if either A or B are Fredholm, then

A and B are both Fredholm with

indMC = indA+ indB.

Equality in Corollary 2.1.8 is called ”the snake lemma”. From this we

can also see that if MC is Weyl, and if either A or B is Fredholm, then A is

Weyl if and only if B is Weyl.

2.2 Various completions of MC

In this section we provide results related to (left, right) invertibility, Fredholm,

Weyl and Drazin invertibility of MC . Unless different is said, we assume X,Y
to be arbitrary Banach spaces. Results in this section are from article [12].

2.2.1 Fredholm completions of MC

We state the following result.
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Theorem 2.2.1. Let A ∈ B(X) and B ∈ B(Y ) be given and consider the follow-

ing statements

1) MC ∈ Φ(X ⊕Y ) for some C ∈ B(Y ,X).

2)

2.1) A ∈ Φl(X);

2.2) B ∈ Φr(Y );

2.3) N (B) and X/R(A) are isomorphic up to a finite dimensional

subspace.

Then 1)⇐⇒ 2).

We get the following consequence.

Corollary 2.2.2. For given A ∈ B(X) and B ∈ B(Y ) the following holds:⋂
C∈B(X,Y )

σe(MC) = σle(A)∪ σre(B)∪W (A,B),

where

W (A,B) = {λ ∈ C : N (B−λ) and X/R(A−λ) are not isomorphic
up to a f inite dimensional subspace}.

2.2.2 Weyl completions of MC

We consider the Weyl spectrum of MC .

Theorem 2.2.3. Let A ∈ B(X) and B ∈ B(Y ) be given and consider the state-

ments:

1) MC ∈ Φ0(X ⊕Y ) for some C ∈ B(Y ,X).

2) A ∈ Φl(X), B ∈ Φr(Y ), N (A)⊕N (B) � X/R(A)⊕Y /R(B).

Then 1)⇐⇒ 2).

As a corollary we get the following result.

Corollary 2.2.4. For given A ∈ B(X) and B ∈ B(Y ) the following holds:⋂
C∈B(Y ,X)

σw(MC) = σle(A)∪ σre(B)∪W0(A,B),
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where

W0(A,B) = {λ ∈C :N (A−λ)⊕N (B−λ) is not isomorphic to

X/R(A−λ)⊕Y /R(B−λ)}.

2.2.3 Browder completions of MC

We formulate the result for the Browder spectrum.

Corollary 2.2.5. Let A ∈ B(X) and B ∈ B(Y ) be given. Consider the following

statements:

1) A ∈ Φl(X); B ∈ Φr(Y ); N (B) and X/R(A) are isomorphic up to a

finite dimensional subspace; A and B are Drazin invertible.

2) MC ∈ B(X ⊕Y ) for some C ∈ B(Y ,X).

Then 1) =⇒ 2).

Moreover, if 0 < acc(σ (A)∪ σ (B)), then 1) ⇐⇒ 2).

We have more details concerning the perturbation of the Browder spectrum.

Theorem 2.2.6. If A ∈ B(X), B ∈ B(Y ), then⋂
C∈B(Y ,X)

σb(MC) ⊂ σle(A)∪ σre(B)∪W (A,B)∪W1(A,B), (2.2.1)

where W (A,B) is defined in Corollary 2.2.1 and

W1(A,B) = {λ ∈C : one of A−λ or B−λ is not Drazin invertible}.

If accσ (A)∪ accσ (B) = ∅, then the equality holds in (2.2.1).

If σa(A) = σ (A) and σd(B) = σ (B), then the equality holds in (2.2.1).

If σ (A)∪ σ (B) does not have interior points, then the equality holds in

(2.2.1).

2.2.4 Right and left Fredholm completions of MC

We formulate the following statement.
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Lemma 2.2.7. For given A ∈ B(X), B ∈ B(Y ) and C ∈ B(Y ,X), the following

inclusion holds:

σre(MC) ⊂ σre(A)∪ σre(B).

Particularly, if A ∈ Φr(X) and B ∈ Φr(Y ), then MC ∈ Φ(X⊕Y ) for every

C ∈ B(Y ,X).

The main result of this subsection follows.

Theorem 2.2.8. Let A ∈ B(X) and B ∈ B(Y ) be given operators. Consider the

following statements:

1) B ∈ Φr(X) and [A ∈ Φr(X) or (R(A) is closed and complemented in X
and X/R(A) �N (B))].

2) MC ∈ Φr(X ⊕Y ) for some C ∈ B(Y ,X).

3) B ∈ Φr(Y ) and [A ∈ Φr(X), or R(A) is not closed, or N (B) ≺ X/R(A)
does not hold].

Then 1) =⇒ 2) =⇒ 3).

As a corollary we get the following result.

Corollary 2.2.9. Let A ∈ B(X), B ∈ B(Y ) be given. Then

σre(B)∪ {λ ∈ σre(A) : R(A−λ) is closed and N (B−λ) ≺ X/R(A−λ)}

⊂
⋂

C∈B(Y ,X)
σre(MC)

⊂ σre(B)∪ {λ ∈ σre(A) :R(A−λ) is not closed and complemented}

∪ {λ ∈ σre(A) : X/R(A−λ) �N (B−λ) does not hold}.

Analogously, we can prove similar results for the left Fredholm spectrum.

Theorem 2.2.10. Let A ∈ B(X), B ∈ B(Y ) be given operators and consider the

following statements:

1) A ∈ Φl(X) and [B ∈ Φl(Y ), or (R(B) and N (B) are closed and com-

plemented subspaces of Y and N (B) � X/R(A))].

2) MC ∈ Φl(X ⊕Y ) for some C ∈ B(Y ,X).
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3) A ∈ Φl(X) and [B ∈ Φl(Y ), or R(B) is not closed, or R(A)◦ ≺ N (B)′

does not hold) ].

Then 1) =⇒ 2) =⇒ 3).

The following result concerning the perturbation of the left Fredholm

spectrum holds.

Corollary 2.2.11. Let A ∈ B(X), B ∈ B(Y ) be given. Then

σle(A)∪ {λ ∈ σle(B) :R(B−λ) is closed and R(A−λ)◦ ≺N (B−λ)′}

⊂
⋂

C∈B(Y ,X)
σle(MC)

⊂ σle(A)∪ {λ ∈ σle(B) :R(B−λ) and N (B−λ)
are not closed and complemented}

∪ {λ ∈ σle(B) :N (B−λ) � X/R(A−λ) does not hold}.

Finally, we get the result for perturbations of the Fredholm spectrum

for Hilbert space operators. This result can also be obtained from Corollary

2.2.1.

Corollary 2.2.12. Let X ⊕ Y be the orthogonal sum of infinite dimensional

Hilbert spaces. Then⋂
C∈B(Y ,X)

σe(MC) = σle(A)∪ σre(B)∪W2(A,B),

where

W2(A,B) = {λ ∈C : dimN (B−λ) , dimR(A−λ)⊥

and at least one of these spaces is infinite dimensional}.

2.2.5 Left and right completions of MC

We begin with the following statement.

Lemma 2.2.13. Let A ∈ B(X), B ∈ B(Y ) be given. Then the inclusion

σl(MC) ⊂ σl(A)∪ σl(B)
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holds for every C ∈ B(Y ,X). Particularly, if A,B are left invertible, then MC

is left invertible for every C ∈ B(Y ,X).

For the left invertibility of an operator matrix we can state the following

result.

Theorem 2.2.14. Let A ∈ B(X), B ∈ B(Y ) be given. Consider the following

statements:

1) A ∈ Gl(X), N (B) � X/R(A) and B is inner regular.

2) MC ∈ Gl(X ⊕Y ) for some C ∈ B(Y ,X).

3) A ∈ Gl(X) and X/R(A) ≺N (B) does not hold.

Then 1) =⇒ 2).

Moreover, if X,Y are infinite dimensional Hilbert spaces, and Z = X⊕Y
is the orthogonal sum, then 2) =⇒ 3).

As a corollary we get the following result.

Corollary 2.2.15. Let A ∈ B(X), B ∈ B(Y ) be given. Then the following in-

clusion holds:⋂
C∈B(Y ,X)

σl(MC) ⊂ σl(A)∪ σg(B)∪ {λ ∈C :N (B−λ) � X/R(A−λ)

does not hold}.

If X ⊕ Y is the orthogonal sum of infinite dimensional Hilbert spaces X
and Y , then

σl(A)∪ {λ ∈C : dimR(A)⊥ < dimN (B−λ)} ⊂
⋂

C∈B(Y ,X)
σl(MC).

Analogously, we can prove a similar result concerning the right spectrum

and right invertibility of MC .

Theorem 2.2.16. Let A ∈ B(X), B ∈ B(Y ) be given operators, and consider

statements:

1) B ∈ Gr(Y ), X/R(A) �N (B), A is inner regular.

2) MC ∈ Gr(X ⊕Y ) for some C ∈ B(Y ,X).
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3) B ∈ Gr(Y ), and N (B) ≺ X/R(A) does not hold.

Then 1) =⇒ 2).

If X ⊕ Y is the orthogonal sum of infinite dimensional Hilbert spaces,

then 2) =⇒ 3).

As a corollary we get the following result.

Corollary 2.2.17. For given A ∈ B(X), B ∈ B(Y ) the following inclusion holds:⋂
C∈B(Y ,X)

σr(MC) ⊂ σr(B)∪ σg(A)∪ {λ ∈C : X/R(A−λ) �N (B−λ)

does not hold}.

Moreover, if X⊕Y is the orthogonal sum of infinite dimensional Hilbert

spaces, then

σr(B)∪ {λ ∈C : dimN (B−λ) < dimR(A−λ)⊥} ⊂
⋂

C∈B(K,H)

σr(MC).

As a corollary, we get the following main result.

Corollary 2.2.18. Let X ⊕ Y be the orthogonal sum of infinite dimensional

Hilbert spaces. For given A ∈ B(X), B ∈ B(Y ) the following equality holds:⋂
C∈B(Y ,X)

σ (MC) = σl(A)∪ σr(B)∪ {λ ∈C : dimN (B−λ) , dimR(A−λ)⊥}.
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Chapter 3

Case n = 3

In this chapter we provide statements related to different types of invertibility

of T dn (A) when n = 3. Historically, this is the case that has not been studied

until a few years ago. We shall use the notation MD,E,F := T d3 (A), where

D = A12,E = A13,F = A23. In other words, let MD,E,F be operator matrix

MD,E,F =


A D E
0 B F
0 0 C

 ∈ B(X1 ⊕X2 ⊕X3), (3.0.1)

where A ∈ B(X1),B ∈ B(X2),C ∈ B(X3) are known operators, andD ∈ B(X2,X1),
E ∈ B(X3,X1),F ∈ B(X3,X2) are unknown. First, we consider invertibility of

MD,E,F if underlying spaces are separable Hilbert, and afterwards we give an

extension to arbitrary Banach spaces case.

3.1 Separable Hilbert space setting

In this short section assume that X1,X2,X3 are separable Hilbert spaces.

This section is based on article [58]. We start with an obvious auxiliary

result.

Lemma 3.1.1. Given triple (A,B,C), MD,E,F − λ is one - one for all D ∈
B(X2,X1),E ∈ B(X3,X1),F ∈ B(X3,X2) if and only if A−λ,B−λ,C−λ are all

one - one.

41
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We give the main theorem in the perturbation form.

Theorem 3.1.2. Let triple (A,B,C) be given. Then⋂
D,E,F

σ (MD,E,F) = σl(A)∪ σδ(B)∪ {λ ∈ σp(B) : α(B−λ) > β(A−λ)}

∪{λ ∈ σδ(B) : β(B−λ) > α(C −λ)}
∪{λ ∈ σm(B) : min{α(C −λ),β(A−λ)} <∞}

∪{λ ∈ C : α(B−λ) +α(C −λ) , β(A−λ) + β(B−λ)}.

(3.1.1)

Proof. See [58]. �

Now, the following extension of Theorem 2.1.1 to matrix dimension 3

follows at once.

Corollary 3.1.3. Let triple (A,B,C) be given. There exist D ∈ B(X2,X1),
E ∈ B(X3,X1),F ∈ B(X3,X2) so that MD,E,F is invertible if and only if:

(i) A is left invertible;

(ii) C is right invertible;

(iii)

α(B) ≤ β(A), β(B) ≤ α(C), α(B) +α(C) = β(A) + β(B), R(B) closed,α(C) = β(A) =∞, R(B) not closed.

3.2 Non-separable Banach space setting

Assume now that X1,X2,X3 are arbitrary Banach spaces. This section is

based on article [48]. In [25] authors exploited decomposition properties

of inner regular operators (see (0.2) in [25]), and we pursue such an idea.

Quick reminder: the class of inner regular operators consists of operators

T ∈ B(X,Y ) that can be expressed in the form T = T T ′T for some T ′ ∈
B(Y ,X). It is known that T ∈ B(X,Y ) is inner regular if and only if its kernel

and range are closed and complemented subspaces [14, 1.1.5. Corollary].

In the sequel, we will find a huge benefit of the following matrix decomposition:

MD,E,F =


I 0 0
0 I 0
0 0 C



I 0 E
0 I F
0 0 I



I 0 0
0 B 0
0 0 I



I D 0
0 I 0
0 0 I



A 0 0
0 I 0
0 0 I

. (3.2.1)
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Notice that the second and the fourth factor in (3.2.1) are invertible matrices

for all D ∈ B(Y ,X),E ∈ B(Z,X),F ∈ B(Z,Y ).

The following two lemmas will be used several times in proofs of our

results.

Lemma 3.2.1. Let S,T ∈ B(X). If T is invertible, then:

(a) R(T S) �R(S) and R(ST ) =R(S);
(b) N (ST ) �N (S) and N (T S) =N (S).

Lemma 3.2.2. Consider MD,E,F and its diagonal operators A,B,C. If any

three of those four operators are invertible for all D ∈ B(Y ,X),E ∈ B(Z,X),F ∈
B(Z,Y ), then the fourth is invertible as well.

Proof. This is obvious from (3.2.1). �

The following lemma is well known in the literature (see for example [12,

Lemma 2.3]).

Lemma 3.2.3. If X,Y ,Z are Banach spaces then

X ×Y � X ×Z ∧ dimX <∞⇒ Y � Z.

First we prove the following theorem which will yield our main result

as a consequence. We employ the notion of embedded Banach spaces [12].

In this section we provide conditions for invertibility of MD,E,F We will make

use of the following definition introduced in [12]: a Banach space X can be

embedded in a Banach space Y , denoted by X � Y , provided that there exists

a left invertible operator A ∈ B(X,Y ). Then, it is obvious that X � Y if and

only if X � Y and Y � X. If X,Y are Hilbert spaces and dimhX is the

orthogonal dimension of X, then X � Y if and only if dimhX ≤ dimhY .

If U is a closed subspace of a Banach space V , we will use the following

notation for the quotient space:
V
U

= V /U .

We prove the following auxilliary result.

Lemma 3.2.4. Let X be a Banach space and let X1,X2 be closed subspaces of



44 CHAPTER 3. CASE N = 3

X such that X = X1 ⊕X2. If T ∈ B(X) such that

R(T ) =
{(
T1u1
0

)
∈
(
X1

X2

)
: u1 ∈ D(T1)

}
for some bounded linear operator T1 with domain D(T1), then X2 � X/R(T ).

Proof. Notice that

X/R(T ) =
{(
x1 + T1u1

x2

)
: x1 ∈ X1,x2 ∈ X2,u1 ∈ D(T1)

}
.

For x1 ∈ X1 and x2 ∈ X2, define K : X2→ X/R(T ) and K ′ : X/R(T )→ X2 as

follows:

Kx2 =
{(
T1u1
x2

)
: u1 ∈ D(T1)

}
and

K ′
{(
x1 + T1u1

x2

)
: u1 ∈ D(T1)

}
= x2.

We see that K ′K = IX2
(and KK ′ is not necessarily equal to IX/R(T )). K and

K ′ are obviously continuous.

We prove the following theorem.

Theorem 3.2.5. Let X,Y ,Z be Banach spaces, and let B ∈ B(Y ) be regular,

A ∈ B(X) and C ∈ B(Z). Consider the following statements:

1) a) A is left invertible and C is right invertible;

b) N (B) � X/R(A) and Y /R(B) �N (C);

c)
X/R(A)
R(J1)

�
N (C)
R(J2)

for left invertible operators J1 :N (B)→ X/R(A)

and J2 : Y /R(B)→N (C) which realize relations � in 1) b).

2) There exist D ∈ B(Y ,X),E ∈ B(Z,X),F ∈ B(Z,Y ) such that MD,E,F is

invertible.

3) a) A is left invertible and C is right invertible;

b) N (B) � X/R(A) and Y /R(B) �N (C);
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Then 1)⇒ 2)⇒ 3).

Proof. 1) =⇒ 2): Suppose that 1) holds. By 1) a) there exist closed subspaces:

X1 of X, Y1 and Y2 of Y , and Z1 of Z such that:

X = X1 ⊕R(A), Y = Y1 ⊕R(B) = Y2 ⊕N (B), Z = Z1 ⊕N (C).

Consequently,

X/R(A) � X1, Y /R(B) � Y1, Y /N (B) � Y2, Z/N (C) � Z1.

The condition 1) b) implies the existence of left invertible operators

J1 : N (B) → X1 and J2 : Y1 → N (C). Consider their invertible reductions

J1 : N (B) → R(J1) and J2 : Y1 → R(J2), which are denoted by the same

symbols. There exist closed subspaces R(J1)′ and R(J2)′ such that

X1 =R(J1)′ ⊕R(J1), N (C) =R(J2)′ ⊕R(J2).

By 1) c) there exists an isomorphism J :R(J2)′→R(J1)′.

Define

D =


0 0
0 0
0 J1

 :
(
Y2
N (B)

)
= Y → X =


R(A)
R(J1)′
R(J1)

 ,
F =

(
0 0 0
0 0 J−12

)
:


Z1

R(J2)′
R(J2)

 = Z→ Y =
(
R(B)
Y1

)
,

and

E =


0 0 0
0 J 0
0 0 0

 :

Z1

R(J2)′
R(J2)

 = Z→ X =


R(A)
R(J1)′
R(J1)

 .
Since J1, J−12 and J are isomorphisms between appropriate subspaces, it is

obvious that D ∈ B(Y ,X),E ∈ B(Z,X),F ∈ B(Z,Y ).
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To prove that MD,E,F is invertible, notice the following. We have

R(MD,E,F) =R


A
0
0

+R

D
B
0

+R

E
F
C


=

(
R(A) +R(J1) +R(J1)′

)
+
(
R(B) +Y1

)
+R(C) = X ⊕Y ⊕Z,

so MD,E,F is onto.

Moreover, if w =


x
y
z

 ∈ X ⊕Y ⊕Z and MD,E,Fw = 0, we have

Ax+Dy +Ez = 0, By +Fz = 0, Cz = 0.

From Cz = 0 we get z ∈ N (C) =R(J2)′⊕R(J2). We know that By ∈ R(B) and

Fz ∈ Y1. Thus, from By +Fz = 0 we get By = 0 and Fz = 0. Hence, y ∈ N (B)
and z ∈ R(J2)′. We have Ax ∈ R(A), Dy ∈ D(N (B)) = J1(N (B)) = R(J1)
and Ez ∈ E(R(J2)′) = J(R(J2)′) = R(J1)′. Hence, from Ax +Dy + Ez = 0 we

conclude Ax = 0, Dy = J1y = 0 and Jz = 0, implying that x = 0, y = 0 and

z = 0. Thus, MD,E,F is one-to-one.

2) =⇒ 3): Assume that MD,E,F is invertible for some D, E and F defined

on appropriate domains. Consider factorization (3.2.1) to conclude that A is

left invertible and C is right invertible, thus the condition 3) a) follows.

Denote the product of the first two factors in (3.2.1) by S, the product

of the last three factors by T , i.e.

S =


I 0 E
0 I F
0 0 C

 , T =


A D 0
0 B 0
0 0 I

 .
Now, we apply Theorem 2.1.4 and obtain

N (S)×N (T )×


X
Y
Z

 /R(ST ) �N (ST )×


X
Y
Z

 /R(S)×

X
Y
Z

 /R(T ).
Since MD,E,F = ST is invertible, we know that S is right invertible and T is
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left invertible. Thus, using Lemma 3.2.1, we have

N (C) �N (S) �


X
Y
Z

 /R(T ). (3.2.2)

Since (again) Y = Y1 ⊕R(B) = Y2 ⊕N (B) and X = X1 ⊕R(A), we have

B =
(
0 0
B1 0

)
:
(
Y2
N (B)

)
→

(
Y1
R(B)

)
(B1 : Y2→R(B) is invertible)

and

D =
(
D11 D12

D21 D22

)
:
(
Y2
N (B)

)
→

(
X1

R(A)

)
.

Now,

R(T ) =R


A D 0
0 B 0
0 0 I



=




D11u +D12v

Ax+D21u +D22v
0
B1u
z


∈


X1

R(A)
Y1
R(B)
Z


: x ∈ X,u ∈ Y2,v ∈ N (B), z ∈ Z


.

From Lemma 3.2.4 we know that

Y /R(B) � Y1 �


X
Y
Z

 /R(T ) �N (C).

If we denote the product of the first three factors in (3.2.1) by S ′, and

the product of the last two by T ′, i.e.

S ′ =


I 0 E
0 B F
0 0 C

 , T ′ =


A D 0
0 I 0
0 0 I

 ,
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we know that MD,E,F = S ′T ′ is invertible, S ′ is right invertible and T ′ is left

invertible. Thus,

N (S ′)×N (T ′) �


X
Y
Z

 /R(S ′)×

X
Y
Z

 /R(T ′).
and consequently

N (S ′) �


X
Y
Z

 /R(T ′) (3.2.3)

If x ∈ X, y ∈ Y and z ∈ Z, notice that


x
y
z

 ∈ N (S ′) if and only if

x+Ez = 0, By +Fz = 0, Cz = 0.

For x ∈ X, y ∈ Y and z ∈ Z define L :N (B)→N (S ′) and L′ :N (S ′)→N (B)
as

N (B) 3 y 7→ Ly =


0
y
0

 , N (S ′) 3


x
y
z

 7→ L′


x
y
z

 = y.
L and L′ are obviously continuous. We see that L′L = IN (B) (and LL′ is not

necessarily equal to IN (S ′)). Thus, N (B) �N (S ′).

We have

R(T ′) =



Au +Dv

v
w

 : u ∈ X,v ∈ Y ,w ∈ Z


and 
X
Y
Z

 =


x+Au +Dv

y + v
z+w

 : x,u ∈ X,y,v ∈ Y ,y,w ∈ Z
 .

For x ∈ X,y ∈ Y ,z ∈ Z define M :


X
Y
Y

 /R(T ′)→ Y /R(A) and M ′ : X/R(A)→
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X
Y
Y

 /R(T ′) as follows:

M



x+Au +Dv

y + v
y +w

 : u ∈ X,v ∈ Y ,w ∈ Z
 = {x+Au : u ∈ X},

M ′{x+Au : u ∈ X} =



x+Au
v
w

 : u ∈ X,v ∈ Y ,w ∈ Z
 .

Then M,M ′ are continuous, M ′M = I(X⊕Y⊕Z)/R(T ′), but MM ′ = IX/R(A) does

not necessarily hold. Thus,


X
Y
Z

 /R(T ′) � X/R(A).
Finaly, we obtain N (B) � X/R(A).

We prove the following result for Hilbert space operators.

Theorem 3.2.6. Let X,Y ,Z be Hilbert spaces, A ∈ B(X) is left invertible,

B ∈ B(Y ) is inner regular, C ∈ B(Z) is right invertible,

dimhN (B) ≤ dimhX/R(A) and dimhY /R(B) ≤ dimhN (C).

Then the following statements are equivalent;

1)
X/R(A)
R(J1)

�
N (C)
R(J2)

for some left invertible operators J1 :N (B)→ X/R(A)

and J2 : Y /R(B)→N (C).

2) N (B)×N (C) � X/R(A)×Y /R(B).

Proof. It is enough to prove implication 2) =⇒ 1). Suppose that 2) holds.

Left invertible operators J1 :N (B)→ X/R(A) and J2 : Y /R(B)→N (C) exist

by the main assumption of this theorem. We have to prove that J1 and J2
can be adjusted such that 1) is also satisfied.

We consider several cases and subcases.

Case I. dimhN (B) < dimhX/R(A) and dimhN (C) ≤ dimhX/R(A).
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Subcase I.1. X/R(A) is infinite dimensional.

Since

dimhY /R(B) ≤ dimhN (C) ≤ dimhX/R(A),

by 2) it follows that dimhN (C) = dimhX/R(A). Then

dimh J1(N (B)) = dimhN (B) < dimhX/R(A).

Thus
X/R(A)
R(J1)

� X/R(A).

Since

dimhR(J2) = dimhY /R(B) ≤ dimhX/R(A) = dimhN (C),

we conclude that J2 can be adjusted such that

N (C)
R(J2)

�N (C) � X/R(A) � X/R(A)
R(J1)

.

Thus, 1) holds.

Subcase I.2. X/R(A) is finite dimensional.

Let

k = dimhN (B), l = dimhN (C), m = dimhX/R(A), n = dimY /R(B).

We have

k < m, n ≤ l ≤m, k + l =m+n,

all these quantities are finite, and we get

0 < m− k = l −n,

which is 1) in finite dimensions.

Case II. dimhN (B) < dimhX/R(A) < dimhN (C).

Subcase II.1. N (C) is infinite dimensional.
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We get that

N (B)×N (C) �N (C) and dimhY /R(B) = dimhN (C).

Since dimhX/R(A) < dimhN (C), for every left invertible J1 :N (B)→ X/R(A)
is is possible to adjust some left invertible J2 : Y /R(B)→N (C) such that

X/R(A)
R(J1)

�
N (C)
R(J2)

holds.

Subcase II.2. N (C) is finite dimensional.

Keep k, l,m,n the same as in Subcase I.2. We get

k < m < l, n ≤ l, l + l =m+n,

implying that all these quantities are finite and

0 < m− k = l −n,

which is again 1) in finite dimensions.

Case III. dimhN (B) = dimhX/R(A) and dimhN (C) ≤ dimhX/R(A).

Subcase III.1. X/R(A) is infinite dimensional.

From

dimh J2(Y /R(B)) = dimhY /R(B) ≤ dimhN (C) ≤ dimhX/R(A)
= dimhN (B)

we get that for every left invertible J2 : Y /R(B)→N (C) we can find a left

invertible J1 :N (B)→ X/R(A) such that

X/R(A)
R(J1)

�
N (C)
R(J2)

.

Subcase III.2. X/R(A) is finite dimensional.

This is proved in the same way as in the previous finite dimensional
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subcases.

Case IV. dimhN (B) = dimhX/R(A) < dimhN (C).

Subcase IV.1. N (C) is infinite dimensional.

We get

N (C) �N (B)×N (C) � X/R(A)×Y /R(B),

implyingN (C) � R/R(B). Thus, for every left invertible J1 :N (B)→ X/R(A)
we can adjust a left invertible J2 : Y /R(B)→N (C) such that

X/R(A)
R(J1)

�
N (C)
R(J2)

.

Subcase IV.2. N (C) is finite dimensional.

Again, this is a routine.



Chapter 4

General case n ≥ 3

In this chapter we provide statements related to different types of invertibility

of T dn (A) when n ≥ 3 is arbitrary. This is the case that the present author

has studied the most. Let us remind ourselves, if Di ∈ B(Xi), 1 ≤ i ≤ n are

given operators,

T dn (A) =



D1 A12 A13 ... A1,n−1 A1n

0 D2 A23 ... A2,n−1 A2n

0 0 D3 ... A3,n−1 A3n
...

...
...

. . .
...

...
0 0 0 ... Dn−1 An−1,n
0 0 0 ... 0 Dn


∈ B(X1⊕X2⊕· · ·⊕Xn), (4.0.1)

where A := (A12, A13, ..., Aij , ..., An−1,n) is an operator tuple consisting of

unknown variables Aij ∈ B(Xj ,Xi), 1 ≤ i < j ≤ n, n ≥ 2. For convenience, we

denote by Bn the collection of all such tuples A.

In this chapter we aim to generalize results of two preceding chapters

to the case where operator matrix T dn (A) is with arbitrary dimension n ≥ 3.

Our method strongly relies on results from references [54], [55]. We provide

results related to (left, right) spectrum, (left, right) Fredholm and left/right

Weyl spectrum.

53
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4.1 Invertible completions of T dn (A)

If Y is a complemented subspace of X, we denote a topological complement of

Y in X by Y1. Specially, in the rest of this section, if Y =N (T ) (Y =R(T )),
we use M(T ) (K(T )) to denote its topological complement in X.

We start with a result which deals with left invertibility of T dn (A).

Theorem 4.1.1. Let D1 ∈ B(X1), D2 ∈ B(X2), ...,Dn ∈ B(Xn). Assume that

Ds, 2 ≤ s ≤ n− 1, are regular operators. Consider the following statements:

(i) (a) D1 ∈ Gl(X1);
(b) Dn is regular and N (Di) � K(Di−1) for every 2 ≤ i ≤ n;

(ii) There exists A ∈ Bn such that T dn (A) ∈ Gl(X1 ⊕ · · · ⊕Xn);

(iii) (a) D1 ∈ Gl(X1);

(b)
i−1⊕
s=1
K(Ds) ≺N (Di) does not hold for 2 ≤ i ≤ n.

Then (i)⇒ (ii).
If X1, ...,Xn are infinite dimensional Hilbert spaces, then (ii)⇒ (iii).

Proof. (i)⇒ (ii)

In this case it holds α(D1) = 0, R(Ds) is closed for all 1 ≤ s ≤ n and

N (Di) � K(Di−1) for every 2 ≤ i ≤ n. By Lemma 1.1.1 we need to find

A ∈ Bn such that α(T dn (A)) = 0 and R(T dn (A)) is closed and complemented.

We choose A = (Aij)1≤i<j≤n so that Aij = 0 if j − i , 1, that is we place all

nonzero operators of tuple A on the superdiagonal. It remains to define Aij
for j = i + 1, 1 ≤ i < n. First notice that Ai,i+1 : Xi+1 → Xi . Since all of

diagonal entries have closed range, we know that Xi+1 =N (Di+1)⊕M(Di+1),
Xi = K(Di) ⊕R(Di), and we have N (Di+1) � K(Di). It follows that there

is a left invertible operator Ji : N (Di+1)→K(Di). We put Ai,i+1 =
[
Ji 0
0 0

]
:[

N (Di+1)
M(Di+1)

]
→

[
K(Di)
R(Di)

]
, and we implement this procedure for all 1 ≤ i ≤ n−1.

Notice that R(Ai,i+1) is contained in a subspace which is complementary to

R(Di) for each 1 ≤ i ≤ n− 1.
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Now we have chosen our A, we show that N (T dn (A)) �N (D1), implying

α(T dn (A)) = α(D1) = 0. Let us put T dn (A)x = 0, where x = x1 + · · ·+ xn ∈ X1 ⊕
· · · ⊕Xn. The previous equality is then equivalent to the following system of

equations 

D1x1 +A12x2
D2x2 +A23x3

...
Dn−1xn−1 +An−1,nxn

Dnxn


=



0
0
...
0
0


.

Last equation gives xn ∈ N (Dn). Since R(As,s+1) is contained in a subspace

which is complementary to R(Ds) for all 1 ≤ s ≤ n − 1, we have Dsxs =
As,s+1xx+1 = 0 for all 1 ≤ s ≤ n− 1. That is, xi ∈ N (Di) for every 1 ≤ i ≤ n,

and Jsxs+1 = 0 for every 1 ≤ s ≤ n−1.Due to left invertibility of Js we get xs = 0
for 2 ≤ s ≤ n, which proves the claim. Therefore, α(T dn (A)) = α(D1) = 0.

Next, we show thatR(T dn (A)) is closed and complemented. Left invertibility

of Ji ’s implies the existence of closed subspaces Ui of K(Di) such that K(Di) =
R(Ji)⊕Ui , 1 ≤ i ≤ n − 1 (Lemma 1.1.1). It means that X1 ⊕X2 ⊕ · · · ⊕Xn =
R(D1)⊕R(J1)⊕U1⊕R(D2)⊕R(J2)⊕U2⊕· · ·⊕R(Dn−1)⊕R(Jn−1)⊕Un−1⊕R(Dn)⊕
K(Dn). It is not hard to see that R(T dn (A)) =R(D1)⊕R(J1)⊕R(D2)⊕R(J2)⊕
· · · ⊕R(Dn−1)⊕R(Jn−1)⊕R(Dn). Comparing these equalities, one easily sees

that R(T dn (A)) is closed and complemented (this follows from [42, Theorem

3.6] as well).

(ii)⇒ (iii)

Assume that T dn (A) is left invertible and X1, ...,Xn are Hilbert spaces.

Then D1 ∈ Gl(X1) (Lemma 1.2.11). Assume that (iii)(b) fails. Then there

exists some j ∈ {2, ...,n} such that α(Dj) >
j−1∑
s=1
β(Ds).

We use a method similar to that in [54],[55]. We know that for each

A ∈ Bn, the operator matrix T dn (A) as an operator from X1 ⊕ N (D2)⊥ ⊕
N (D2) ⊕N (D3)⊥ ⊕N (D3) ⊕ · · · ⊕N (Dn)⊥ ⊕N (Dn) into R(D1) ⊕R(D1)⊥ ⊕
R(D2)⊕R(D2)⊥ ⊕ · · · ⊕R(Dn−1)⊕R(Dn−1)⊥ ⊕Xn admits the following block
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representation

T dn (A) =



D
(1)
1 A

(1)
12 A

(2)
12 A

(1)
13 A

(2)
13 ... A

(1)
1n A

(2)
1n

0 A
(3)
12 A

(4)
12 A

(3)
13 A

(4)
13 ... A

(3)
1n A

(4)
1n

0 D
(1)
2 0 A

(1)
23 A

(2)
23 ... A

(1)
2n A

(2)
2n

0 0 0 A
(3)
23 A

(4)
23 ... A

(3)
2n A

(4)
2n

0 0 0 D
(1)
3 0 ... A

(1)
3n A

(2)
3n

0 0 0 0 0 ... A
(3)
3n A

(4)
3n

...
...

...
...

...
. . .

...
...

0 0 0 0 0 ... A
(1)
n−1,n A

(2)
n−1,n

0 0 0 0 0 ... A
(3)
n−1,n A

(4)
n−1,n

0 0 0 0 0 ... D
(1)
n 0



. (4.1.1)

Notice that D
(1)
s , 1 ≤ s ≤ n−1 are invertible, and D

(1)
n is injective. Therefore,

there exist invertible operator matrices U and V such that

UT dn (A)V =



D
(1)
1 0 0 0 0 ... 0 0

0 0 A
(4)
12 0 A

(4)
13 ... A

(3)
1n A

(4)
1n

0 D
(1)
2 0 0 0 ... 0 0

0 0 0 0 A
(4)
23 ... A

(3)
2n A

(4)
2n

0 0 0 D
(1)
3 0 ... 0 0

0 0 0 0 0 ... A
(3)
3n A

(4)
3n

...
...

...
...

...
. . .

...
...

0 0 0 0 0 ... 0 0

0 0 0 0 0 ... A
(3)
n−1,n A

(4)
n−1,n

0 0 0 0 0 ... D
(1)
n 0



(4.1.2)

We will explain the construction of matrices U and V in more details. It

is known that elementary transformations of a matrix can be carried out by

multiplying the matrix with elementary matrices. In that way, since D
(1)
1 ,

D
(1)
2 ,...D

(1)
n−1 are invertible, by multiplying the matrix T dn (A) with suitable

elementary matrices from the left, we ,,destroy” operators A
(1)
ij and A

(3)
ij ,

where 1 ≤ i, j ≤ n− 1. The product of those matrices is our matrix U. Now,

analogously, we multiply T dn (A) with suitable elementary matrices from the

right in order to ,,destroy” operators A
(2)
ij ; the product of those matrices

equals matrix V .
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Note that A
(3)
ij and A

(4)
ij in (4.2.6) are not the original ones from (4.2.5)

in general, but we still use them for convenience. Now, it is obvious that if

(4.2.6) is left invertible, then since D
(1)
n is injective,

A
(4)
12 A

(4)
13 A

(4)
14 ... A

(4)
1n

0 A
(4)
23 A

(4)
24 ... A

(4)
2n

0 0 A
(4)
34 ... A

(4)
3n

...
...

...
. . .

...

0 0 0 ... A
(4)
n−1,n


:



N (D2)
N (D3)
N (D4)
...

N (Dn)


→



R(D1)⊥

R(D2)⊥

R(D3)⊥
...

R(Dn−1)⊥


(4.1.3)

is injective. Since α(Dj) >
j−1∑
s=1
β(Ds) it follows that



A
(4)
1j

A
(4)
2j

A
(4)
3j
...

A
(4)
j−1,j


:N (Dj)→


R(D1)⊥

R(D2)⊥
...

R(Dj−1)⊥


is not injective, and hence operator defined in (4.2.7) is not injective for every

A ∈ Bn. Contradiction. This proves the desired. �

Remark 4.1.2. Notice the validity of Theorem 4.1.1 without assuming sepa-

rability of X1, ...,Xn.

Corollary 4.1.3. Let D1 ∈ B(X1), D2 ∈ B(X2), ...,Dn ∈ B(Xn). Assume that

Ds −λ, 2 ≤ s ≤ n− 1, λ ∈ C are regular operators. Then

⋂
A∈Bn

σl(T
d
n (A)) ⊆ σl(D1)∪

( n⋃
k=2

∆′k

)
∪∆′′,

where

∆′k :=
{
λ ∈ C : N (Dk −λ) � K(Dk−1 −λ) does not hold

}
, 2 ≤ k ≤ n,

∆′′ =
{
λ ∈ C : Dn −λ is not regular

}
.
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If X1, ...,Xn are infinite dimensional Hilbert spaces, then

σl(D1)∪
( n⋃
k=2

∆k

)
⊆

⋂
A∈Bn

σl(T
d
n (A)),

where

∆k :=
{
λ ∈ C :

k−1⊕
s=1

K(Ds −λ) ≺N (Dk −λ) holds
}
, 2 ≤ k ≤ n.

Remark 4.1.4. Obviously, ∆k ⊆ ∆′k for 2 ≤ k ≤ n holds.

If n = 2, we recover a result from [12].

Theorem 4.1.5. ([12, Theorem 5.2]) Let D1 ∈ B(X1),D2 ∈ B(X2). Consider

the following statements:

(i) (a) D1 ∈ Gl(X1);
(b) D2 is regular;

(c) N (D2) � K(D1);

(ii) There exists A ∈ B2 such that T d2 (A) ∈ Gl(X1 ⊕X2);

(iii) (a) D1 ∈ Gl(X1);
(b) K(D1) ≺N (D2) does not hold.

Then (i)⇒ (ii).
If X1,X2 are infinite dimensional Hilbert spaces, then (ii)⇒ (iii).

Corollary 4.1.6. ([12, Corollary 5.3]) Let D1 ∈ B(X1), D2 ∈ B(X2). Then⋂
A∈B2

σl(T
d
2 (A)) ⊆ σl(D1)∪∆′2 ∪∆

′′,

where

∆′2 :=
{
λ ∈ C : N (D2 −λ) � K(D1 −λ) does not hold

}
,

∆′′ =
{
λ ∈ C : D2 −λ is not regular

}
.

If X1,X2 are infinite dimensional Hilbert spaces, then

σl(D1)∪∆2 ⊆
⋂
A∈B2

σl(T
d
2 (A)),
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where

∆2 :=
{
λ ∈ C : K(D1 −λ) ≺N (D2 −λ) holds

}
.

Remark 4.1.7. One might conjecture that the left invertible T d2 (A) must have

D2 with closed range. However, this is not the case. See [54, Lemma 2] and

[31, Example 3].

Notice that Theorem 4.1.5 is a correct version of [60, Theorem 2.1].

There are several remarks concerning Theorem 2.1 in [60]. First of all, in the

notation of [60], condition (i)(b) of Theorem 4.1.5 is omitted in [60, Theorem

2.1], which is an oversight. Without that condition direction (ii) ⇒ (i) in

[60, Theorem 2.1] need not hold. Namely, the choice of Q in the proof of

part (ii) ⇒ (iv) implies R(MQ) = X ⊕ R(B), and for R(MQ) to be closed

(Lemma 1.1.1) we must assume that R(B) is closed. Furthermore, if R(B) is

closed, notice that condition (β(A) =∞ or (B ∈ Φ+(K) and α(B) ≤ β(A))) in

[60, Theorem 2.1] is equivalent to a simple condition α(B) ≤ β(A), which is

condition (i)(c) in Theorem 4.1.5 interpreted in the setting of Hilbert spaces.

Similar reasoning holds for [60, Theorem 2.2].

Now, we provide results dealing with right invertibility of T dn (A).

Theorem 4.1.8. Let D1 ∈ B(X1), D2 ∈ B(X2), ...,Dn ∈ B(Xn). Assume that

Ds, 2 ≤ s ≤ n− 1 are regular operators. Consider the following statements:

(i) (a) Dn ∈ Gr(Xn);
(b) D1 is regular and K(Di) �N (Di+1) for every 1 ≤ i ≤ n− 1;

(ii) There exists A ∈ Bn such that T dn (A) ∈ Gr(X1 ⊕ · · · ⊕Xn);

(iii) (a) Dn ∈ Gr(Xn);

(b)
n⊕

s=i+1
N (Ds) ≺ K(Di) does not hold for 1 ≤ i ≤ n− 1.

Then (i)⇒ (ii).
If X1, ...,Xn are infinite dimensional Hilbert spaces, then (ii)⇒ (iii).

Proof. (i)⇒ (ii)

In this case it holds β(Dn) = 0, R(Ds) is closed for all 1 ≤ s ≤ n and

K(Di) � N (Di+1) for every 1 ≤ i ≤ n − 1. By Lemma 1.1.1, we need to find
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A ∈ Bn such that β(T dn (A)) = 0 and N (T dn (A)) is closed and complemented.

We choose A = (Aij)1≤i<j≤n so that Aij = 0 if j − i , 1, that is we place

all nonzero operators of tuple A on the superdiagonal. It remains to define

Aij for j = i + 1, 1 ≤ i < n. First notice that Ai,i+1 : Xi+1 → Xi . Since

all of diagonal entries have closed and complemented range and kernel, we

know that Xi+1 = N (Di+1) ⊕M(Di+1), Xi = K(Di) ⊕ R(Di), and we have

K(Di) � N (Di+1). It follows that there is a right invertible operator Ji :

N (Di+1)→ K(Di). We put Ai,i+1 =
[
Ji 0
0 0

]
:
[
N (Di+1)
M(Di+1)

]
→

[
K(Di)
R(Di)

]
, and we

implement this procedure for all 1 ≤ i ≤ n− 1.

Notice that R(Ai,i+1) = K(Di) for each 1 ≤ i ≤ n − 1. Therefore, it is

immediate thatR(T dn (A)) =R(D1)⊕R(A12)⊕R(D2)⊕R(A23)⊕· · ·⊕R(Dn−1)⊕
R(An−1,n)⊕R(Dn) is equal to X1 ⊕ · · · ⊕Xn, that is T dn (A) is surjective.

Now we show that T dn (A) has a complemented kernel. First, by Lemma

1.1.1, there exist closed subspaces Vi+1 of N (Di+1) such that N (Di+1) =
N (Ji)⊕Vi+1, 1 ≤ i ≤ n−1. It means that X1⊕X2⊕· · ·⊕Xn =N (D1)⊕M(D1)⊕
N (D2)⊕N (J1)⊕V2⊕· · ·⊕N (Dn)⊕N (Jn−1)⊕Vn. Second, direct computation

shows that N (T dn (A)) � N (D1) ⊕N (J1) ⊕ · · · ⊕ N (Jn−1). Comparing these

equalities, and consulting Theorem 3.6 from [42], we conclude thatN (T dn (A))
is closed and complemented.

(ii)⇒ (iii)

This implication follows directly from part (ii)⇒ (iii) of Theorem 4.1.1

by employing dual relations N (T ) =R(T ∗)⊥, N (T ∗) =R(T )⊥. �

Corollary 4.1.9. Let D1 ∈ B(X1), D2 ∈ B(X2), ...,Dn ∈ B(Xn). Assume that

Ds −λ, 2 ≤ s ≤ n− 1, λ ∈ C are regular operators. Then

⋂
A∈Bn

σr(T
d
n (A)) ⊆ σr(Dn)∪

(n−1⋃
k=2

∆′k

)
∪∆′′,
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where

∆′k :=
{
λ ∈ C : K(Dk −λ) �N (Dk+1 −λ) does not hold

}
, 1 ≤ k ≤ n− 1,

∆′′ :=
{
λ ∈ C : D1 −λ is not regular

}
.

If X1, ...,Xn are infinite dimensional Hilbert spaces, then

σr(Dn)∪
(n−1⋃
k=1

∆k

)
⊆

⋂
A∈Bn

σr(T
d
n (A)),

where

∆k =
{
λ ∈ C :

n⊕
s=k+1

N (Ds −λ) ≺ K(Dk −λ) holds
}
, 1 ≤ k ≤ n− 1.

Remark 4.1.10. Obviously, ∆k ⊆ ∆′k for 1 ≤ k ≤ n− 1 holds.

If n = 2, we recover more results from [12].

Theorem 4.1.11. ([12, Theorem 5.4]) Let D1 ∈ B(X1),D2 ∈ B(X2). Consider

the following statements:

(i) (a) D2 ∈ Gr(X2);
(b) D1 is regular;

(c) K(D1) �N (D2);

(ii) There exists A ∈ B2 such that T d2 (A) ∈ Gr(X1 ⊕X2);

(iii) (a) D2 ∈ Gr(X2);
(b) N (D2) ≺ K(D1) does not hold.

Then (i)⇒ (ii).
If X1,X2 are infinite dimensional Hilbert spaces, then (ii)⇒ (iii).

Corollary 4.1.12. ([12, Corollary 5.5]) Let D1 ∈ B(X1), D2 ∈ B(X2). Then⋂
A∈B2

σr(T
d
2 (A)) ⊆ σr(D2)∪∆′1 ∪∆

′′,

where

∆′1 :=
{
λ ∈ C : K(D1 −λ) �N (D2 −λ) does not hold

}
,
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∆′′ :=
{
λ ∈ C : D1 −λ is not regular

}
.

If X1,X2 are infinite dimensional Hilbert spaces, then

σr(D2)∪∆1 ⊆
⋂
A∈B2

σr(T
d
2 (A)),

where

∆1 :=
{
λ ∈ C : N (D2 −λ) ≺ K(D1 −λ) holds

}
.

We finish our investigations with results regarding invertibility of T dn (A).

Theorem 4.1.13. Let D1 ∈ B(X1), D2 ∈ B(X2), ...,Dn ∈ B(Xn). Assume that

all Ds, 2 ≤ s ≤ n − 1, are inner regular operators. Consider the following

statements:

(i) (a) D1 ∈ Gl(X1) and Dn ∈ Gr(Xn);
(b) N (Di+1) �K(Di) for 1 ≤ i ≤ n− 1;

(ii) There exists A ∈ Bn such that T dn (A) ∈ G(X1 ⊕ · · · ⊕Xn);

(iii) (a) D1 ∈ Gl(X1) and Dn ∈ Gr(Xn);

(b)
i−1⊕
s=1
K(Ds) ≺ N (Di) does not hold for 2 ≤ i ≤ n and

n⊕
s=i+1

N (Ds) ≺

K(Di) does not hold for 1 ≤ i ≤ n− 1.

Then (i)⇒ (ii).
If X1, ...,Xn are infinite dimensional Hilbert spaces, then (ii)⇒ (iii).

Proof. (ii)⇒ (iii)

Let T dn (A) be invertible for some A ∈ Bn. Then T dn (A) is both left and

right invertible, and so Theorems 4.1.1 and 4.1.8 yield the desired.

(i)⇒ (ii)

We find A ∈ Bn such that α(T dn (A)) = 0 and R(T dn (A)) = X1 ⊕ · · · ⊕Xn.
We choose A = (Aij)1≤i<j≤n so that Aij = 0 if j − i , 1, that is we place

all nonzero operators of tuple A on the superdiagonal. It remains to define

Aij for j = i + 1, 1 ≤ i < n. First notice that Ai,i+1 : Xi+1→ Xi . Since all of
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diagonal entries have closed ranges, we know that Xi+1 =N (Di+1)⊕M(Di+1),
Xi = K(Di) ⊕R(Di), and we have α(Di+1) = β(Di). It follows that there is

an invertible Ji : N (Di+1)→ K(Di). We put Ai,i+1 =
[
Ji 0
0 0

]
:
[
N (Di+1)
M(Di+1)

]
→[

K(Di)
R(Di)

]
, and we implement this procedure for all 1 ≤ i ≤ n− 1.

Notice that R(Ai,i+1) =K(Di) for each 1 ≤ i ≤ n−1. Thus, we prove that

T dn (A) is surjective in the same way as in the proof of Theorem 4.1.8.

Next, we are able to show thatN (T dn (A)) �N (D1), implying α(T dn (A)) =
α(D1) = 0. This is proved in the same way as in the proof of Theorem 4.1.1.

�

Corollary 4.1.14. Let D1 ∈ B(X1), D2 ∈ B(X2), ...,Dn ∈ B(Xn). Assume that

all Ds −λ, 2 ≤ s ≤ n− 1, λ ∈ C are regular operators. Then

⋂
A∈Bn

σ (T dn (A)) ⊆ σl(D1)∪ σr(Dn)∪
(n−1⋃
k=1

∆′k

)
,

where

∆′k :=
{
λ ∈ C : N (Dk+1 −λ) �K(Dk −λ) does not hold

}
, 1 ≤ k ≤ n− 1.

If X1, ...,Xn are infinite dimensional Hilbert spaces, then

σl(D1)∪ σr(Dn)∪
(n−1⋃
k=2

∆k

)
∪∆n ⊆

⋂
A∈Bn

σ (T dn (A)),

where

∆k =
{
λ ∈ C :

k−1⊕
s=1

K(Ds −λ) ≺N (Dk −λ) holds
}
∪

{
λ ∈ C :

n⊕
s=k+1

N (Ds −λ) ≺ K(Dk −λ) holds
}
, 2 ≤ k ≤ n− 1,
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∆n =
{
λ ∈ C :

n−1⊕
s=1

K(Ds −λ) ≺N (Dn −λ) holds
}
∪

{
λ ∈ C :

n⊕
s=2

N (Ds −λ) ≺ K(D1 −λ) holds
}
.

Remark 4.1.15. Obviously,
(n−1⋃
k=2

∆k

)
∪∆n ⊆

(n−1⋃
k=1

∆′k

)
holds.

If we put n = 2 we get:

Theorem 4.1.16. Let D1 ∈ B(X1), D2 ∈ B(X2). Consider the following state-

ments:

(i) (a) D1 ∈ Gl(X1) and D2 ∈ Gr(X2);
(b) N (D2) �K(D1);

(ii) There exists A ∈ B2 such that T d2 (A) ∈ G(X1 ⊕X2);

(iii) (a) D1 ∈ Gl(X1) and D2 ∈ Gr(X2);
(b) K(D1) ≺N (D2) does not hold and N (D2) ≺ K(D1) does not hold.

Then (i)⇒ (ii).
If X1,X2 are infinite dimensional Hilbert spaces, then (ii)⇒ (iii).

Corollary 4.1.17. Let D1 ∈ B(X1), D2 ∈ B(X2). Then⋂
A∈B2

σ (T d2 (A)) ⊆ σl(D1)∪ σr(D2)∪∆′,

where

∆′ :=
{
λ ∈ C : N (D2 −λ) �K(D1 −λ) does not hold

}
.

If X1,X2 are infinite dimensional Hilbert spaces, then

σl(D1)∪ σr(D2)∪∆ ⊆
⋂
A∈B2

σ (T d2 (A)),

where

∆ :=
{
λ ∈ C : K(D1 −λ) ≺N (D2 −λ) holds

}
∪{

λ ∈ C : N (D2 −λ) ≺ K(D1 −λ) holds
}
.
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Theorem 4.1.16 interpreted in the setting of Hilbert spaces is a special

case of [25, Theorem 2]. Notice that Han et al. ([25]) have proved the

equivalence (i)⇔ (ii) of Theorem 4.1.16 in arbitrary Banach spaces. Corollary

4.1.17 recovers a result of Du and Pan ([16, Theorem 2]). Notice, however,

that in [16] separability was used, while our statement is separability-free.

4.2 Weylness of T dn (A)

In this section we first provide results assuming separability, and afterwards

extend results to the case without separability.

4.2.1 Separability case

Assume that X1, ...,Xn are infinite dimensional separable Hilbert spaces. This

subsection bases on article [45]. We begin with a result concerning upper

semi-Weyl invertibility of T dn (A).

Theorem 4.2.1. Let D1 ∈ B(X1), D2 ∈ B(X2), ...,Dn ∈ B(Xn) be given. Con-

sider the following conditions:

(i) (a) D1 ∈ Φ+(X1);

(b)
(
Ds ∈ Φ+(Xs) for 2 ≤ s ≤ n and

n∑
s=1
α(Ds) ≤

n∑
s=1
β(Ds)

)
or (

β(Dj) = ∞ for some j ∈ {1, ...,n − 1}, α(Ds) < ∞ for 2 ≤ s ≤ j and

R(Ds) is closed for 2 ≤ s ≤ n
)
;

(ii) There exists A ∈ Bn such that T dn (A) ∈ Φ−+ (X1 ⊕ · · · ⊕Xn);

(iii) (a) D1 ∈ Φ+(X1);

(b)
(
Ds ∈ Φ+(Xs) for 2 ≤ s ≤ n and

n∑
s=1
α(Ds) ≤

n∑
s=1
β(Ds)

)
or (

β(Dj) =∞ for some j ∈ {1, ...,n− 1}, α(Ds) <∞ for 2 ≤ s ≤ j
)
.

Then (i)⇒ (ii)⇒ (iii).

Remark 4.2.2. If j = 1 in (i)(b) or (iii)(b), part ”α(Ds) <∞ for 2 ≤ s ≤ j” is

omitted there.
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Remark 4.2.3. Notice the similarity between sufficent condition (i) and nec-

essary condition (iii): parts (i)(a) and (iii)(a) are the same, while (i)(b) and

(iii)(b) differ in ”R(Ds) is closed for 2 ≤ s ≤ n” solely.

Proof. (ii)⇒ (iii)

Suppose that T dn (A) is upper semi-Weyl. Then T dn (A) is upper semi-

Fredholm, implying D1 ∈ Φ+(X1) (Lemma 1.2.11). Suppose that (iii)(b) is

not true. We have two possibilities. First, suppose that for 2 ≤ s ≤ n we

have β(Ds) <∞. It means (Theorem 1.1.2) that R(Ds) is closed for 1 ≤ s ≤ n.

Again, we have two possibilities: either there exists some i ∈ {2, ...,n} with

α(Di) =∞, or we have
n∑
s=1
α(Ds) >

n∑
s=1
β(Ds).

Assume α(Di) = ∞ for some i ∈ {2, ...,n}. We use a method from [58].

We know that for each A ∈ Bn, operator T dn (A) regarded as an operator from

N (D1)⊥⊕N (D1)⊕N (D2)⊥⊕N (D2)⊕N (D3)⊥⊕N (D3)⊕· · ·⊕N (Dn)⊥⊕N (Dn)
into R(D1)⊕R(D1)⊥⊕R(D2)⊕R(D2)⊥⊕· · ·⊕R(Dn−1)⊕R(Dn−1)⊥⊕R(Dn)⊕
R(Dn)⊥ has the following block representation

T dn (A) =



D
(1)
1 0 A

(1)
12 A

(2)
12 A

(1)
13 A

(2)
13 ... A

(1)
1n A

(2)
1n

0 0 A
(3)
12 A

(4)
12 A

(3)
13 A

(4)
13 ... A

(3)
1n A

(4)
1n

0 0 D
(1)
2 0 A

(1)
23 A

(2)
23 ... A

(1)
2n A

(2)
2n

0 0 0 0 A
(3)
23 A

(4)
23 ... A

(3)
2n A

(4)
2n

0 0 0 0 D
(1)
3 0 ... A

(1)
3n A

(2)
3n

0 0 0 0 0 0 ... A
(3)
3n A

(4)
3n

...
...

...
...

...
...

. . .
...

...

0 0 0 0 0 0 ... A
(1)
n−1,n A

(2)
n−1,n

0 0 0 0 0 0 ... A
(3)
n−1,n A

(4)
n−1,n

0 0 0 0 0 0 ... D
(1)
n 0

0 0 0 0 0 0 ... 0 0



(4.2.1)

Evidently, D
(1)
1 , D

(1)
2 , ...,D

(1)
n from (4.2.1) are invertible. Hence, there exist
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invertible operator matrices U and V so that

UT dn (A)V =



D
(1)
1 0 0 0 0 0 ... 0 0

0 0 0 A
(4)
12 0 A

(4)
13 ... 0 A

(4)
1n

0 0 D
(1)
2 0 0 0 ... 0 0

0 0 0 0 0 A
(4)
23 ... 0 A

(4)
2n

0 0 0 0 D
(1)
3 0 ... 0 0

0 0 0 0 0 0 ... 0 A
(4)
3n

...
...

...
...

...
...

. . .
...

...
0 0 0 0 0 0 ... 0 0

0 0 0 0 0 0 ... 0 A
(4)
n−1,n

0 0 0 0 0 0 ... D
(1)
n 0

0 0 0 0 0 0 ... 0 0



(4.2.2)

Operators A
(4)
ij in (4.2.1) and (4.2.2) are not the same, but we will keep the

same notation for simplicity. Next, it is clear that (4.2.2) is upper semi-Weyl

if and only if

0 A
(4)
12 A

(4)
13 A

(4)
14 ... A

(4)
1n

0 0 A
(4)
23 A

(4)
24 ... A

(4)
2n

0 0 0 A
(4)
34 ... A

(4)
3n

...
...

...
...

. . .
...

0 0 0 0 ... A
(4)
n−1,n

0 0 0 0 ... 0


:



N (D1)
N (D2)
N (D3)
N (D4)
...

N (Dn)


→



R(D1)⊥

R(D2)⊥

R(D3)⊥
...

R(Dn−1)⊥
R(Dn)⊥


(4.2.3)

is upper semi-Weyl. Since
i−1∑
s=1
β(Ds) <∞ and α(Di) =∞, it follows that

α





A
(4)
1i

A
(4)
2i

A
(4)
3i
...

A
(4)
i−1,i




=∞,

and hence operator defined in (4.2.3) is not upper semi-Weyl for every A ∈ Bn.
This proves the desired.
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Assume next that α(Ds) <∞ for 2 ≤ s ≤ n. Then
n∑
s=1
α(Ds) >

n∑
s=1
β(Ds),

and for each A ∈ Bn, T dn (A) has representation as (4.2.1), and we use (4.2.2)

and (4.2.3) again. Since Ds, 1 ≤ s ≤ n are upper semi-Fredholm, then

T dn (A) is upper semi-Weyl if and only if (4.2.3) is upper semi-Weyl. But
n∑
s=1
β(Ds) <

n∑
s=1
α(Ds) implies (4.2.3) is not upper semi-Weyl for every A ∈ Bn.

Contradiction.

Second option is that there is j ∈ {2, ...,n} with β(Dj) =∞, and assume

we have found the smallest such j. Then β(Ds) <∞ for 1 ≤ s ≤ j − 1, hence

R(Ds) is closed for 1 ≤ s ≤ j − 1. Now, α(Ds) < ∞ for 2 ≤ s ≤ j − 1 is

not possible, otherwise (iii)(b) would be true. Finally, α(Dj) =∞ for some

j ∈ {2, ..., j−1} and be proceed with (4.2.1), (4.2.2), (4.2.3) applied to T dj−1(A).

(i)⇒ (ii)

Assume that D1 ∈ Φ+(X1) and (i)(b) holds. If Ds ∈ Φ+(Xj) for 2 ≤ s ≤ n

and
n∑
s=1
α(Ds) ≤

n∑
s=1
β(Ds), we choose trivially A = 0 and T dn (A) is upper

semi-Weyl.

Suppose that β(Dj) =∞ for some j ∈ {1, ...,n−1}, α(Ds) <∞ for 2 ≤ s ≤ j
and R(Ds) is closed for all 1 ≤ s ≤ n. Assume that {f (k)s }∞s=1, {e(1)s }∞s=1,

{e(2)s }∞s=1,..., {e(n−1)s }∞s=1 are orthogonal bases ofR(Dk)⊥, X2,..., Xn, respectively.

We have two cases. Again, we adopt a method from [58].

Case 1: β(D1) =∞

In this case it holds α(D1) < ∞, R(Ds) is closed for all 1 ≤ s ≤ n and

β(D1) =∞. We find A ∈ Bn such that α(T dn (A)) <∞ and R(T dn (A)) is closed.

We choose A = (Aij)1≤i<j≤n so that Aij = 0 if i > 1, that is we place all

nonzero operators of tuple A in the first row. It remains to define A1s for
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2 ≤ s ≤ n. We put

A12(e
(1)
s ) = f (1)ns , s = 1,2, ...;

A13(e
(2)
s ) = f (1)ns+1, s = 1,2, ...;

· · ·

A1n(e
(n−1)
s ) = f (1)ns+n−2, s = 1,2, ....

Now we have chosen our A = (Aij), it is easy to show that N (T dn (A)) =
N (D1)⊕ {0} ⊕ · · · ⊕ {0}. Therefore, α(T dn (A)) = α(D1) <∞.

Secondly, we show that R(T dn (A)) is closed and β(T dn (A)) = ∞. Since

R(Ds) is closed for all 1 ≤ s ≤ n, it will follow that R(T dn (A)) is closed if

we prove that R(A1s) is closed for 2 ≤ s ≤ n. But, since we are in the

setting of separable Hilbert spaces, with regards to definition of A1s’s, the

former is obvious. We have that T dn (A) is upper semi-Fredholm, and since

β(T dn (A)) = β(D1) =∞ due to definition of A1s’s, we find that T dn (A) is upper

semi-Weyl.

Case 2: β(Dk) =∞ for some k ∈ {2, ...,n− 1}

In this case it holds α(Ds) <∞, 1 ≤ s ≤ k, R(Ds) is closed for all 1 ≤ s ≤ n
and β(Dk) = ∞. We find A ∈ Bn such that α(T dn (A)) < ∞ and R(T dn (A)) is

closed. We choose A = (Aij)1≤i<j≤n so that Aij = 0 if i , k, that is we place

all nonzero operators of tuple A in the k-th row. It remains to define Aks for

k +1 ≤ s ≤ n. We put

Ak,k+1(e
(k)
s ) = f (k)ns , s = 1,2, ...;

Ak,k+2(e
(k+1)
s ) = f (k)ns+1, s = 1,2, ...;

· · ·

Akn(e
(n−1)
s ) = f (k)ns+n−k−1, s = 1,2, ....

Now we have chosen our A = (Aij) , it is easy to show that N (T dn (A)) =
N (D1) ⊕ · · · ⊕ N (Dk) ⊕ {0} ⊕ · · · ⊕ {0}. Therefore, α(T dn (A)) ≤ α(D1) + · · · +
α(Dk) <∞.
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Secondly, we show that R(T dn (A)) is closed and β(T dn (A)) = ∞. Since

R(Ds) is closed for all 1 ≤ s ≤ n, it will follow that R(T dn (A)) is closed if

we prove that R(Aks) is closed for k + 1 ≤ s ≤ n. But, since we are in the

setting of separable Hilbert spaces, with regards to definition of Aks’s, the

former is obvious. We have that T dn (A) is upper semi-Fredholm, and since

β(T dn (A)) = β(Dk) =∞ due to definition of Aks’s, we find that T dn (A) is upper

semi-Weyl.

�

Remark 4.2.4. Notice the validity of part (ii)⇒ (iii) without assuming sep-

arability of X1, ...,Xn.

Next corollary is immediate from Theorem 4.2.1.

Corollary 4.2.5. ([58, Theorem 2.5], corrected version) Let D1 ∈ B(X1), D2 ∈
B(X2), ...,Dn ∈ B(Xn). Then

σle(D1)∪
(n+1⋃
k=2

∆k

)
⊆⋂

A∈Bn

σlw(T
d
n (A)) ⊆

σle(D1)∪
(n+1⋃
k=2

∆k

)
∪

( n⋃
k=2

∆′k

)
,

where

∆k :=
{
λ ∈ C : α(Dk −λ) =∞ and

k−1∑
s=1

β(Ds −λ) <∞
}
, 2 ≤ k ≤ n,

∆n+1 :=
{
λ ∈ C :

n∑
s=1

β(Ds −λ) <
n∑
s=1

α(Ds −λ)
}
,

∆′k :=
{
λ ∈ C : R(Dk −λ) is not closed

}
, 2 ≤ k ≤ n.

Remark 4.2.6. One should also spot a difference between collections ∆k, 2 ≤
k ≤ n, in Corollary 4.2.5 and in [58, Theorem 2.5]. This difference is implied
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by the existence of sets ∆′k, 2 ≤ k ≤ n, in the formulation of Corollary 4.2.5.

Our estimates are better in a sense that ∆k in Corollary 4.2.5 is a subset of

∆k from [58] for every 2 ≤ k ≤ n.

Previous statements for n = 2 become very simple, as shown in the

sequel.

Theorem 4.2.7. ([60, Theorem 2.5], corrected version) Let D1 ∈ B(X1) and

D2 ∈ B(X2). Consider the following statements:

(i) (a) D1 ∈ Φ+(X1);

(b)
(
D2 ∈ Φ+(X2) and α(D1) +α(D2) ≤ β(D1) + β(D2)

)
or (

β(D1) =∞ and R(D2) is closed
)
;

(ii) There exists A ∈ B2 such that T d2 (A) ∈ Φ−+ (X1 ⊕X2);

(iii) (a) D1 ∈ Φ+(X1);

(b)
(
D2 ∈ Φ+(X2) and α(D1) +α(D2) ≤ β(D1) + β(D2)

)
or

β(D1) =∞.

Then (i)⇒ (ii)⇒ (iii).

Notice that Theorem 4.2.7 is a corrected version of [60, Theorem 2.5].

Condition ’R(D2) is closed’ in (i)(b) is omitted in [60], which is an oversight.

Without that condition we can not prove thatR(T d2 (A)) is closed and therefore

direction (ii)⇒ (i) in [60, Theorem 2.5] would not hold.

Corollary 4.2.8. ([60, Corollary 2.7], corrected version) Let D1 ∈ B(X1) and

D2 ∈ B(X2). Then

σle(D1)∪∆∪∆′ ⊆
⋂
A∈B2

σlw(T
d
2 (A)) ⊆ σle(D1)∪∆∪∆′ ∪∆′′,

where

∆ :=
{
λ ∈ C : α(D2 −λ) =∞ and β(D1 −λ) <∞

}
,

∆′ :=
{
λ ∈ C : β(D1 −λ) + β(D2 −λ) < α(D1 −λ) +α(D2 −λ)

}
,

∆′′ := {λ ∈ C : R(D2 −λ) is not closed}.
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Now we list statements dealing with the lower semi-Weyl spectrum.

Theorem 4.2.9. Let D1 ∈ B(X1), D2 ∈ B(X2), ...,Dn ∈ B(Xn) be given. Con-

sider the following conditions:

(i) (a) Dn ∈ Φ−(Xn);
(b)

(
Ds ∈ Φ−(Xs) for 1 ≤ s ≤ n− 1 and

n∑
s=1
β(Ds) ≤

n∑
s=1
α(Ds)

)
or (

α(Dj) = ∞ for some j ∈ {2, ...,n}, β(Ds) < ∞ for j ≤ s ≤ n − 1 and

R(Ds) is closed for 1 ≤ s ≤ n− 1
)
;

(ii) There exists A ∈ Bn such that T dn (A) ∈ Φ+
− (X1 ⊕ · · · ⊕Xn);

(iii) (a) Dn ∈ Φ−(Xn);
(b)

(
Ds ∈ Φ−(Xs) for 1 ≤ s ≤ n− 1 and

n∑
s=1
β(Ds) ≤

n∑
s=1
α(Ds)

)
or (

α(Dj) =∞ for some j ∈ {2, ...,n}, β(Ds) <∞ for j ≤ s ≤ n− 1
)
.

Then (i)⇒ (ii)⇒ (iii).

Remark 4.2.10. If j = n in (i)(b) or (iii)(b), part ”β(Ds) <∞ for j ≤ s ≤ n−1”

is omitted there.

Remark 4.2.11. Notice the similarity between sufficent condition (i) and nec-

essary condition (iii): parts (i)(a) and (iii)(a) are the same, while (i)(b) and

(iii)(b) differ in ”R(Ds) is closed for 1 ≤ s ≤ n− 1” solely.

Proof. This easily follows from the statement of Theorem 4.2.1 by

duality argument, putting into use Lemmas 1.2.1 and 1.2.2. �

Corollary 4.2.12. ([58, Theorem 2.6], corrected version) Let D1 ∈ B(X1) and

D2 ∈ B(X2), ...,Dn ∈ B(Xn). Then

σre(Dn)∪
(n−1⋃
k=1

∆k

)
∪∆n+1 ⊆⋂

A∈Bn

σrw(T
d
n (A)) ⊆

σre(Dn)∪
(n−1⋃
k=1

∆k

)
∪∆n+1 ∪

(n−1⋃
k=1

∆′k

)
,
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where

∆k :=
{
λ ∈ C : β(Dk −λ) =∞ and

n∑
s=k+1

α(Ds −λ) <∞
}
, 1 ≤ k ≤ n− 1,

∆n+1 :=
{
λ ∈ C :

n∑
s=1

α(Ds −λ) <
n∑
s=1

β(Ds −λ)
}
,

∆′k :=
{
λ ∈ C : R(Dk −λ) is not closed

}
, 1 ≤ k ≤ n− 1.

Remark 4.2.13. Again, existence of sets ∆′k, 1 ≤ k ≤ n − 1 in the statement

of Corollary 4.2.12 implies a difference between definitions of collections ∆k,

1 ≤ k ≤ n− 1 in Corollary 4.2.12 and in [58, Theorem 2.6].

If we put n = 2 we get:

Theorem 4.2.14. ([60, Theorem 2.6], corrected version) Let D1 ∈ B(X1) and

D2 ∈ B(X2). Consider the following conditions:

(i) (a) D2 ∈ Φ−(X2);

(b)
(
D1 ∈ Φ−(X1) and α(D1) +α(D2) ≥ β(D1) + β(D2)

)
or (

α(D2) =∞ and R(D1) is closed
)
;

(ii) There exists A ∈ B2 such that T d2 (A) ∈ Φ+
− (X1 ⊕X2);

(iii) (a) D2 ∈ Φ−(X2);

(c)
(
D1 ∈ Φ−(X1) and α(D1) +α(D2) ≥ β(D1) + β(D2)

)
or

α(D2) =∞.

Then (i)⇒ (ii)⇒ (iii).

Corollary 4.2.15. ([60, Corollary 2.8], corrected version) Let D1 ∈ B(X1), D2 ∈
B(X2). Then

σre(D2)∪∆∪∆′ ⊆
⋂
A∈B2

σrw(T
d
2 (A)) ⊆ σre(D2)∪∆∪∆′ ∪∆′′,

where

∆ :=
{
λ ∈ C : β(D1 −λ) =∞ and α(D2 −λ) <∞

}
,
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∆′ :=
{
λ ∈ C : α(D1 −λ) +α(D2 −λ) < β(D1 −λ) + β(D2 −λ)

}
,

∆′′ := {λ ∈ C : R(D1 −λ) is not closed}.

4.2.2 Nonseparable spaces

In this subsection we assume X1, ...,Xn to be arbitrary infinite dimensional

Hilbert spaces. This subsection bases on results from [44]. We generalize

results of [7],[60] from n = 2 to an arbitrary dimension of upper triangular

operators, and we pose perturbation results of [58] without assuming separa-

bility of underlying spaces.

We start with a result which deals with the upper Weyl spectrum of

T dn (A).

Theorem 4.2.16. Let D1 ∈ B(X1), D2 ∈ B(X2), ...,Dn ∈ B(Xn). Consider the

following statements:

(i) (a) D1 ∈ Φ+(X1);
(b) R(Ds) is closed for 2 ≤ s ≤ n and(

α(Ds) ≤ β(Ds−1) f or 2 ≤ s ≤ n,
n∑
s=1

β(Ds) =∞
) (4.2.4)

or
(
Ds ∈ Φ+(Xs) for 2 ≤ s ≤ n and

n∑
s=1
α(Ds) ≤

n∑
s=1
β(Ds)

)
;

(ii) There exists A ∈ Bn such that T dn (A) ∈ Φ−+ (X1 ⊕ · · · ⊕Xn);

(iii) (a) D1 ∈ Φ+(X1);

(b)
(
β(Dj) = ∞ for some j ∈ {1, ...,n} and α(Ds) < ∞ for 2 ≤ s ≤ j

)
or(

Ds ∈ Φ+(Xs) for 2 ≤ s ≤ n and
n∑
s=1
α(Ds) ≤

n∑
s=1
β(Ds)

)
.

Then (i)⇒ (ii)⇒ (iii).

Remark 4.2.17. If j = 1 in (iii)(b), we simply omit condition ”α(Ds) <∞ for

2 ≤ s ≤ j” there.
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Proof : (ii)⇒ (iii)

Assume that T dn (A) is upper Weyl. Then T dn (A) is upper Fredholm,

hence D1 ∈ Φ+(X1) (Lemma 1.2.11). Assume that (iii)(b) fails. We have two

possibilities. On the one hand, assume that for 2 ≤ s ≤ n we have β(Ds) <∞.

It means (Theorem 1.1.2) that R(Ds) is closed for 1 ≤ s ≤ n. Again, we have

two possibilities. Either there exists some i ∈ {2, ...,n} with α(Di) =∞, or we

have
n∑
s=1
α(Ds) >

n∑
s=1
β(Ds).

First suppose α(Di) = ∞ for some i ∈ {2, ...,n}. We use a method from

[58]. We know that for each A ∈ Bn, operator matrix T dn (A) as an operator

from N (D1)⊥⊕N (D1)⊕N (D2)⊥⊕N (D2)⊕N (D3)⊥⊕N (D3)⊕· · ·⊕N (Dn)⊥⊕
N (Dn) into R(D1)⊕R(D1)⊥⊕R(D2)⊕R(D2)⊥⊕ · · · ⊕R(Dn−1)⊕R(Dn−1)⊥⊕
R(Dn)⊕R(Dn)⊥ admits the following block representation

T dn (A) =



D
(1)
1 0 A

(1)
12 A

(2)
12 A

(1)
13 A

(2)
13 ... A

(1)
1n A

(2)
1n

0 0 A
(3)
12 A

(4)
12 A

(3)
13 A

(4)
13 ... A

(3)
1n A

(4)
1n

0 0 D
(1)
2 0 A

(1)
23 A

(2)
23 ... A

(1)
2n A

(2)
2n

0 0 0 0 A
(3)
23 A

(4)
23 ... A

(3)
2n A

(4)
2n

0 0 0 0 D
(1)
3 0 ... A

(1)
3n A

(2)
3n

0 0 0 0 0 0 ... A
(3)
3n A

(4)
3n

...
...

...
...

...
...

. . .
...

...

0 0 0 0 0 0 ... A
(1)
n−1,n A

(2)
n−1,n

0 0 0 0 0 0 ... A
(3)
n−1,n A

(4)
n−1,n

0 0 0 0 0 0 ... D
(1)
n 0

0 0 0 0 0 0 ... 0 0



(4.2.5)

Obviously, D
(1)
1 , D

(1)
2 , ...,D

(1)
n from (4.2.5) are invertible. Hence, there exist

invertible operator matrices U and V so that
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UT dn (A)V =



D
(1)
1 0 0 0 0 0 ... 0 0

0 0 0 B
(4)
12 0 B

(4)
13 ... 0 B

(4)
1n

0 0 D
(1)
2 0 0 0 ... 0 0

0 0 0 0 0 B
(4)
23 ... 0 B

(4)
2n

0 0 0 0 D
(1)
3 0 ... 0 0

0 0 0 0 0 0 ... 0 B
(4)
3n

...
...

...
...

...
...

. . .
...

...
0 0 0 0 0 0 ... 0 0

0 0 0 0 0 0 ... 0 B
(4)
n−1,n

0 0 0 0 0 0 ... D
(1)
n 0

0 0 0 0 0 0 ... 0 0



(4.2.6)

Next, it is clear that (4.2.6) is upper Weyl if and only if

0 B
(4)
12 B

(4)
13 B

(4)
14 ... B

(4)
1n

0 0 B
(4)
23 B

(4)
24 ... B

(4)
2n

0 0 0 B
(4)
34 ... B

(4)
3n

...
...

...
...

. . .
...

0 0 0 0 ... B
(4)
n−1,n

0 0 0 0 ... 0


:



N (D1)
N (D2)
N (D3)
N (D4)
...

N (Dn)


→



R(D1)⊥

R(D2)⊥

R(D3)⊥
...

R(Dn−1)⊥
R(Dn)⊥


(4.2.7)

is upper Weyl. Since
i−1∑
s=1
β(Ds) <∞ and α(Di) =∞, it follows that

α





B
(4)
1i

B
(4)
2i

B
(4)
3i
...

B
(4)
i−1,i




=∞,

and hence operator defined in (4.2.7) is not upper Weyl for every A ∈ Bn.
This proves the desired.

Now assume α(Ds) <∞ for 2 ≤ s ≤ n. Then we have
n∑
s=1
α(Ds) >

n∑
s=1
β(Ds),

and for each A ∈ Bn, T dn (A) has representation as (4.2.5), and we still use
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(4.2.6) and (4.2.7). Since Ds, 1 ≤ s ≤ n are upper Fredholm, we conclude that

T dn (A) is upper Weyl if and only if (4.2.7) is upper Weyl. From
n∑
s=1
β(Ds) <

n∑
s=1
α(Ds), we know (4.2.7) is not upper Weyl for every A ∈ Bn.

On the other hand, assume that there is j ∈ {2, ...,n} with β(Dj) = ∞,

and assume we have chosen the smallest such j. In that case β(Ds) <∞ for

1 ≤ s ≤ j −1, hence R(Ds) is closed for 1 ≤ s ≤ j −1. Now, we easily conclude

it is impossible that α(Ds) < ∞ for 2 ≤ s ≤ j − 1, otherwise (iii)(b) would

not fail. Therefore, α(Dj) =∞ for some j ∈ {2, ..., j − 1} and be proceed with

(4.2.5), (4.2.6), (4.2.7) applied to T dj−1(A).

(i)⇒ (ii)

If Ds ∈ Φ+(Xs) for 2 ≤ s ≤ n and
n∑
s=1
α(Ds) ≤

n∑
s=1
β(Ds), we trivially

choose A = (Aij) = 0. Assume that this is not the case. Otherwise, it holds

α(D1) <∞, R(Ds) is closed for all 1 ≤ s ≤ n and (4.2.4) holds. We find A ∈ Bn
such that α(T dn (A)) <∞ and R(T dn (A)) is closed. We choose A = (Aij)1≤i<j≤n
so that Aij = 0 if j − i , 1, that is we place all nonzero operators of tuple A
on the superdiagonal. It remains to define Aij for j − i = 1, 1 ≤ i < j ≤ n.

First notice that Ai,i+1 : Xi+1→ Xi . Since all of diagonal entries have closed

ranges, we know that Xi+1 = N (Di+1) ⊕N (Di+1)⊥, Xi = R(Di)⊥ ⊕ R(Di),
and from assumption (4.2.4) we get α(Di+1) ≤ β(Di). It follows that there is

a left invertible operator Ji : N (Di+1)→ R(Di)⊥. We put Ai,i+1 =
[
Ji 0
0 0

]
:[

N (Di+1)
N (Di+1)⊥

]
= Xi+1 → Xi =

[
R(Di)⊥
R(Di)

]
, and we implement this procedure for

all 1 ≤ i ≤ n − 1. Notice that R(Di) is complemented to R(Ai,i+1) for each

1 ≤ i ≤ n− 1.

Now we have chosen our A, we show that N (T dn (A)) �N (D1), implying

α(T dn (A)) = α(D1) <∞. Let us put T dn (A)x = 0, where x = x1+ · · ·+xn ∈ X1⊕
· · · ⊕Xn. The previous equality is then equivalent to the following system of
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equations 

D1x1 +A12x2
D2x2 +A23x3

...
Dn−1xn−1 +An−1,nxn

Dnxn


=



0
0
...
0
0


.

The last equation gives xn ∈ N (Dn). SinceR(Ds) is complemented toR(As,s+1)
for all 1 ≤ s ≤ n−1, we have Dsxs = As,s+1xx+1 = 0 for all 1 ≤ s ≤ n−1. That

is, xi ∈ N (Di) for every 1 ≤ i ≤ n, and Jsxs+1 = 0 for every 1 ≤ s ≤ n− 1. Due

to left invertibility of Js we get xs = 0 for 2 ≤ s ≤ n, which proves the claim.

Therefore, α(T dn (A)) = α(D1) <∞.

Secondly, we show that R(T dn (A)) is closed. It is not hard to see that

R(T dn (A)) =R(D1)⊕R(J1)⊕R(D2)⊕R(J2)⊕ · · · ⊕R(Dn−1)⊕
R(Jn−1)⊕R(Dn).

(4.2.8)

Furthermore, due to left invertibility of Ji ’s, there exist closed subspaces Ui
of R(Di)⊥ such that R(Di)⊥ =R(Ji)⊕Ui , 1 ≤ i ≤ n− 1. It means that

X1 ⊕X2 ⊕ · · · ⊕Xn =R(D1)⊕R(J1)⊕U1 ⊕R(D2)⊕R(J2)⊕U2 ⊕ · · ·⊕
R(Dn−1)⊕R(Jn−1)⊕Un−1 ⊕R(Dn)⊕R(Dn)⊥.

(4.2.9)

Comparing equalities (4.2.8) and (4.2.9), we conclude thatR(T dn (A)) is closed.

We have proved that T dn (A) is upper Fredholm. Notice that β(T dn (A))
= dim(U1)+dim(U2)+ · · ·+dim(Un−1)+β(Dn). Now, with respect to (4.2.4),

either β(Dn) =∞ or we can choose at least one Ji such that its codimension is

infinite, that is dimUi =∞, i ∈ {1, ...,n−1}. In either case we get β(T dn (A)) =
∞ and it follows that T dn (A) is upper Weyl. �
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Corollary 4.2.18. Let D1 ∈ B(X1), D2 ∈ B(X2), ...,Dn ∈ B(Xn). Then

σle(D1)∪
(n+1⋃
k=2

∆k

)
⊆⋂

A∈Bn

σlw(T
d
n (A)) ⊆

σle(D1)∪
(n+1⋃
k=2

∆′k

)
∪

( n⋃
k=2

∆′′k

)
,

where

∆k :=
{
λ ∈ C : α(Dk −λ) =∞ and

k−1∑
s=1

β(Ds −λ) <∞
}
, 2 ≤ k ≤ n,

∆n+1 :=
{
λ ∈ C :

n∑
s=1

β(Ds −λ) <
n∑
s=1

α(Ds −λ)
}
,

∆′k := {λ ∈ C : α(Dk −λ) > β(Dk−1 −λ)}, 2 ≤ k ≤ n,

∆′n+1 := ∆n+1,

∆′′k :=
{
λ ∈ C : R(Dk −λ) is not closed

}
, 2 ≤ k ≤ n.

Remark 4.2.19. Obviously, ∆k ⊆ ∆′k for 2 ≤ k ≤ n+1.

Theorem 4.2.20. Let D1 ∈ B(X1),D2 ∈ B(X2). Consider the following state-

ments:

(i) (a) D1 ∈ Φ+(X1);

(b)
(
α(D2) ≤ β(D1), β(D1) + β(D2) = ∞ and R(D2) is closed

)
or

(
D2 ∈

Φ+(X2) and α(D1) +α(D2) ≤ β(D1) + β(D2)
)
;

(ii) There exists A ∈ B2 such that T d2 (A) ∈ Φ−+ (X1 ⊕X2);

(iii) (a) D1 ∈ Φ+(X1);

(b)
(
β(D1) = ∞ or (β(D2) = ∞ and α(D1) < ∞)

)
or

(
D2 ∈ Φ+(X2) and

α(D1) +α(D2) ≤ β(D1) + β(D2)
)
.

Then (i)⇒ (ii)⇒ (iii).
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Corollary 4.2.21. Let D1 ∈ B(X1), D2 ∈ B(X2). Then

σle(D1)∪∆2 ∪∆3 ⊆
⋂
A∈Bn

σlw(T
d
2 (A)) ⊆ σle(D1)∪∆′2 ∪∆3 ∪∆′′2 ,

where

∆2 :=
{
λ ∈ C : α(D2 −λ) =∞ and β(D1 −λ) <∞

}
,

∆3 :=
{
λ ∈ C : α(D1 −λ) +α(D2 −λ) > β(D1 −λ) + β(D2 −λ)

}
,

∆′2 := {λ ∈ C : α(D2 −λ) ≥ β(D1 −λ)},

∆′′2 :=
{
λ ∈ C : R(D2 −λ) is not closed

}
.

Remark 4.2.22. Notice that ∆2 ⊆ ∆′2.

Statements concerning the lower Weyl spectrum of T dn (A) we get by

duality.

Theorem 4.2.23. Let D1 ∈ B(X1), D2 ∈ B(X2), ...,Dn ∈ B(Xn). Consider the

following statements:

(i) (a) Dn ∈ Φ−(Xn);
(b) R(Ds) is closed for 1 ≤ s ≤ n− 1 and(

β(Ds) ≤ α(Ds+1) f or 1 ≤ s ≤ n− 1,
n∑
s=1

α(Ds) =∞
) (4.2.10)

or
(
Ds ∈ Φ−(Xs) for 1 ≤ s ≤ n− 1 and

n∑
s=1
β(Ds) ≤

n∑
s=1
α(Ds)

)
;

(ii) There exists A ∈ Bn such that T dn (A) ∈ Φ+
− (X1 ⊕ · · · ⊕Xn);

(iii) (a) Dn ∈ Φ−(Xn);
(b)

(
α(Dj) =∞ for some j ∈ {2, ...,n} and β(Ds) <∞ for j ≤ s ≤ n−1

)
or(

Ds ∈ Φ−(Xs) for 1 ≤ s ≤ n− 1 and
n∑
s=1
β(Ds) ≤

n∑
s=1
α(Ds)

)
.

Then (i)⇒ (ii)⇒ (iii).
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Remark 4.2.24. If j = n in (iii)(b), we simply omit condition ”β(Ds) <∞ for

j ≤ s ≤ n− 1”.

Proof. The result immediately follows from Theorem 4.2.16, having in

mind the statements of Lemma 1.2.1 and Lemma 1.2.2. �

Corollary 4.2.25. Let D1 ∈ B(X1), D2 ∈ B(X2), ...,Dn ∈ B(Xn). Then

σre(Dn)∪
(n−1⋃
k=1

∆k

)
∪∆n+1 ⊆⋂

A∈Bn

σrw(T
d
n (A)) ⊆

σre(Dn)∪
(n−1⋃
k=1

∆′k

)
∪∆n+1 ∪

(n−1⋃
k=1

∆′′k

)
,

where

∆k :=
{
λ ∈ C : β(Dk −λ) =∞ and

n∑
s=k+1

α(Ds −λ) <∞
}
, 1 ≤ k ≤ n− 1,

∆n+1 :=
{
λ ∈ C :

n∑
s=1

α(Ds −λ) <
n∑
s=1

β(Ds −λ)
}
,

∆′k := {λ ∈ C : β(Dk −λ) > α(Dk+1 −λ)}, 1 ≤ k ≤ n− 1,

∆′′k :=
{
λ ∈ C : R(Dk −λ) is not closed

}
, 2 ≤ k ≤ n− 1.

Remark 4.2.26. Obviously, ∆k ⊆ ∆′k for 1 ≤ k ≤ n− 1.

Theorem 4.2.27. Let D1 ∈ B(X1), D2 ∈ B(X2). Consider the following state-

ments:

(i) (a) D2 ∈ Φ−(X2);

(b)
(
β(D1) ≤ α(D2), α(D1) + α(D2) = ∞ and R(D1) is closed

)
or

(
D1 ∈

Φ−(X1) and β(D1) + β(D2) ≤ α(D1) +α(D2)
)
;

(ii) There exists A ∈ B2 such that T d2 (A) ∈ Φ+
− (X1 ⊕X2);

(iii) (a) D2 ∈ Φ−(X2);
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(b)
(
α(D2) = ∞ or (α(D1) = ∞ and β(D2) < ∞)

)
or

(
D1 ∈ Φ−(X1) and

β(D1) + β(D2) ≤ α(D1) +α(D2)
)
.

Then (i)⇒ (ii)⇒ (iii).

Corollary 4.2.28. Let D1 ∈ B(X1), D2 ∈ B(X2). Then

σre(D2)∪∆1 ∪∆3 ⊆
⋂
A∈B2

σrw(T
d
2 (A)) ⊆ σre(D2)∪∆′1 ∪∆3 ∪∆′′1 ,

where

∆1 :=
{
λ ∈ C : β(D1 −λ) =∞ and α(D2 −λ) <∞

}
,

∆3 :=
{
λ ∈ C : α(D1 −λ) +α(D2 −λ) < β(D1 −λ) + β(D2 −λ)

}
,

∆′1 := {λ ∈ C : β(D1 −λ) ≥ α(D2 −λ)},

∆′′1 :=
{
λ ∈ C : R(D1 −λ) is not closed

}
.

Remark 4.2.29. Notice that ∆1 ⊆ ∆′1.

4.3 Fredholmness of T dn (A)

In this section we provide statements related to the Fredholmness of T dn (A).
One can notice that these statements are quite similar to the ones presented

in the previous section. Their proofs are also similar, and so we omit them.

First we consider separability case, and afterwards we generalize those results.

4.3.1 Separability case

Assume that X1, ...,Xn are separable Hilbert cases. This subsection bases on

results from [45]. We start with a result which deals with upper semi-Fredholm

invertibility of T dn (A).

Theorem 4.3.1. Let D1 ∈ B(X1), D2 ∈ B(X2), ...,Dn ∈ B(Xn) be given. Con-

sider the following conditions:

(i) (a) D1 ∈ Φ+(X1);
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(b) Ds ∈ Φ+(Xs) for 2 ≤ s ≤ n
or (

β(Dj) = ∞ for some j ∈ {1, ...,n − 1}, α(Ds) < ∞ for 2 ≤ s ≤ j and

R(Ds) is closed for 2 ≤ s ≤ n
)
;

(ii) There exists A ∈ Bn such that T dn (A) ∈ Φ+(X1 ⊕ · · · ⊕Xn);

(iii) (a) D1 ∈ Φ+(X1);
(b) Ds ∈ Φ+(Xs) for 2 ≤ s ≤ n

or (
β(Dj) =∞ for some j ∈ {1, ...,n− 1}, α(Ds) <∞ for 2 ≤ s ≤ j

)
.

Then (i)⇒ (ii)⇒ (iii).

Remark 4.3.2. If j = 1 in (i)(b) or (iii)(b), part ”α(Ds) <∞ for 2 ≤ s ≤ j” is

omitted there.

Remark 4.3.3. Notice the similarity between sufficent condition (i) and nec-

essary condition (iii): parts (i)(a) and (iii)(a) are the same, while (i)(b) and

(iii)(b) differ in ”R(Ds) is closed for 2 ≤ s ≤ n” solely.

Remark 4.3.4. Again, we have the validity of part (ii)⇒ (iii) without assum-

ing separability of X1, ...,Xn.

Corollary 4.3.5. ([55, Theorem 1], corrected version)

Let D1 ∈ B(X1),D2 ∈ B(X2), ...,Dn ∈ B(Xn). Then

σle(D1)∪
( n⋃
k=2

∆k

)
⊆⋂

A∈Bn

σle(T
d
n (A)) ⊆

σle(D1)∪
( n⋃
k=2

∆k

)
∪

( n⋃
k=2

∆′k

)
,

where

∆k :=
{
λ ∈ C : α(Dk −λ) =∞ and

k−1∑
s=1

β(Ds −λ) <∞
}
, 2 ≤ k ≤ n,
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∆′k :=
{
λ ∈ C : R(Dk −λ) is not closed

}
, 2 ≤ k ≤ n.

Remark 4.3.6. Notice a difference between definitions of sets ∆k, 2 ≤ k ≤ n,

in Corollary 4.3.5 and in [55, Theorem 1].

If we put n = 2 we get:

Theorem 4.3.7. ([60, Theorem 2.10], corrected version) Let D1 ∈ B(X1) and

D2 ∈ B(X2). Consider the following statements:

(i) (a) D1 ∈ Φ+(X1);

(b) D2 ∈ Φ+(X2) or
(
β(D1) =∞ and R(D2) is closed

)
.

(ii) There exists A ∈ B2 such that T d2 (A) ∈ Φ+(X1 ⊕X2);

(iii) (a) D1 ∈ Φ+(X1);
(b) D2 ∈ Φ+(X2) or β(D1) =∞.

Then (i)⇒ (ii)⇒ (iii).

Corollary 4.3.8. ([60, Corollary 2.12], corrected version) Let D1 ∈ B(X1), D2 ∈
B(X2). Then

σle(D1)∪∆ ⊆
⋂
A∈B2

σle(T
d
2 (A)) ⊆ σle(D1)∪∆∪∆′,

where

∆ :=
{
λ ∈ C : α(D2 −λ) =∞ and β(D1 −λ) <∞

}
,

∆′ := {λ ∈ C : R(D2 −λ) is not closed}.

Now we list statements dealing with the lower semi-Fredholm spectrum.

Theorem 4.3.9. Let D1 ∈ B(X1), D2 ∈ B(X2), ...,Dn ∈ B(Xn) be given. Con-

sider the following conditions:

(i) (a) Dn ∈ Φ−(Xn);
(b) Ds ∈ Φ−(Xs) for 1 ≤ s ≤ n− 1

or (
α(Dj) = ∞ for some j ∈ {2, ...,n}, β(Ds) < ∞ for j ≤ s ≤ n − 1 and

R(Ds) is closed for 1 ≤ s ≤ n− 1
)
;

(ii) There exists A ∈ Bn such that T dn (A) ∈ Φ−(X1 ⊕ · · · ⊕Xn);



4.3. FREDHOLMNESS OF T DN (A) 85

(iii) (a) Dn ∈ Φ−(Xn);
(b) Ds ∈ Φ−(Xs) for 1 ≤ s ≤ n− 1

or (
α(Dj) =∞ for some j ∈ {2, ...,n}, β(Ds) <∞ for j ≤ s ≤ n− 1

)
.

Then (i)⇒ (ii)⇒ (iii).

Remark 4.3.10. If j = n in (i)(b) or (iii)(b), part ”β(Ds) <∞ for j ≤ s ≤ n−1”

is omitted there.

Remark 4.3.11. Notice the similarity between sufficent condition (i) and nec-

essary condition (iii): parts (i)(a) and (iii)(a) are the same, while (i)(b) and

(iii)(b) differ in ”R(Ds) is closed for 1 ≤ s ≤ n− 1” solely.

Corollary 4.3.12. ([55, Theorem 2], corrected version)

σre(Dn)∪
(n−1⋃
k=1

∆k

)
⊆⋂

A∈Bn

σre(T
d
n (A)) ⊆

σre(Dn)∪
(n−1⋃
k=1

∆k

)
∪

(n−1⋃
k=1

∆′k

)
,

where

∆k :=
{
λ ∈ C : β(Dk −λ) =∞ and

n∑
s=k+1

α(Ds −λ) <∞
}
, 1 ≤ k ≤ n− 1,

∆′k :=
{
λ ∈ C : R(Dk −λ) is not closed

}
, 1 ≤ k ≤ n− 1.

Remark 4.3.13. Again we have a difference between definitions of the sets

∆k, 1 ≤ k ≤ n− 1 in Corollary 4.3.12 and in [55, Theorem 2].

Theorem 4.3.14. ([60, Theorem 2.11], corrected version) Let D1 ∈ B(X1),D2 ∈
B(X2). Consider the following conditions:

(i) (a) D2 ∈ Φ−(X2);

(b) D1 ∈ Φ−(X1) or
(
α(D2) =∞ and R(D1) is closed

)
;

(ii) There exists A ∈ B2 such that T d2 (A) ∈ Φ−(X1 ⊕X2);
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(iii) (a) D2 ∈ Φ−(X2);
(c) D1 ∈ Φ−(X1) or α(D2) =∞.

Then (i)⇒ (ii)⇒ (iii).

Corollary 4.3.15. ([60, Corollary 2.13], corrected version) Let D1 ∈ B(X1), D2 ∈
B(X2). Then

σre(D2)∪∆ ⊆
⋂
A∈B2

σre(T
d
2 (A)) ⊆ σre(D2)∪∆∪∆′,

where

∆ :=
{
λ ∈ C : β(D1 −λ) =∞ and α(D2 −λ) <∞

}
,

∆′ := {λ ∈ C : R(D1 −λ) is not closed}.

And this is a result about Fredholm invertibility of T dn (A).

Theorem 4.3.16. Let D1 ∈ B(X1), D2 ∈ B(X2), ...,Dn ∈ B(Xn). Consider the

following statements:

(i) (a) D1 ∈ Φ+(X1) and Dn ∈ Φ−(Xn);
(b)

(
Dj ∈ Φ+(Xj) for 2 ≤ j ≤ n and Dk ∈ Φ−(Xk) for 1 ≤ k ≤ n− 1

)
or (

β(Dj) = ∞ for some j ∈ {1, ...,n − 1}, α(Dj) < ∞, α(Dk) = ∞ for

some k ∈ {2, ...,n}, k > j, β(Dk) <∞, α(Ds),β(Ds) <∞ for 1 ≤ s ≤ j − 1 and

k +1 ≤ s ≤ n, and R(Ds) is closed for 2 ≤ s ≤ n− 1
)

(ii) There exists A ∈ Bn such that T dn (A) ∈ Φ(X1 ⊕ · · · ⊕Xn);

(iii) (a) D1 ∈ Φ+(X1) and Dn ∈ Φ−(Xn);
(b)

(
Dj ∈ Φ+(Xj) for 2 ≤ j ≤ n and Dk ∈ Φ−(Xk) for 1 ≤ k ≤ n− 1

)
or (

β(Dj) = ∞ for some j ∈ {1, ...,n − 1} and α(Ds) < ∞ for 2 ≤ s ≤ j,

α(Dk) =∞ for some k ∈ {2, ...,n}, and β(Ds) <∞ for k ≤ s ≤ n− 1, k > j
)
.

Then (i)⇒ (ii)⇒ (iii).

Remark 4.3.17. If j = 1 and/or k = n in (i)(b), condition that is ought to

hold for 1 ≤ s ≤ j − 1 and/or k +1 ≤ s ≤ n is omitted there.
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If j = 1 and/or k = n in (iii)(b), condition that is ought to hold for 2 ≤ s ≤ j
and/or k ≤ s ≤ n− 1 is omitted there.

If n = 2, condition ”R(Ds) is closed for 2 ≤ s ≤ n− 1” is omitted in (i)(b).

Remark 4.3.18. Notice the similarity between sufficent condition (i) and nec-

essary condition (iii): again, parts (i)(a) and (iii)(a) are the same, while

(i)(b) and (iii)(b) differ only slightly.

Proof. (ii)⇒ (iii)

Let T dn (A) be Fredholm for some A ∈ Bn. Then T dn (A) is both upper

and lower semi-Fredholm, and so by employing Theorems 4.3.1 and 4.3.9 we

easily get the desired.

(i)⇒ (ii)

Let conditions (i)(a) and (i)(b) hold. If Dj ∈ Φ+(Xj) for 2 ≤ j ≤ n and

Dk ∈ Φ−(Xk) for 1 ≤ k ≤ n−1, then all Di ’s are Fredholm, and so we trivially

choose A = 0. Assume the validity of a lengthy condition expressed in (i)(b).
Then, one easily checks that one of the Cases 1 or 2 in the proof of [55,

Theorem 3] holds, and so we get A ∈ Bn so that T dn (A) ∈ Φ(X1 ⊕ · · · ⊕Xn) as

described there. �

Corollary 4.3.19. ([55, Theorem 3], corrected version) Let D1 ∈ B(X1), D2 ∈
B(X2), ...,Dn ∈ B(Xn). Then

σle(D1)∪ σre(Dn)∪
(n−1⋃
k=2

∆k

)
∪∆n ⊆⋂

A∈Bn

σe(T
d
n (A)) ⊆

σle(D1)∪ σre(Dn)∪
(n−1⋃
k=2

∆k

)
∪∆n ∪

(n−1⋃
k=2

∆′k

)
,
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where

∆k = {λ ∈ C : α(Dk −λ) =∞ and
k−1∑
s=1

β(Ds −λ) <∞}∪

{λ ∈ C : β(Dk −λ) =∞ and
n∑

s=k+1

α(Ds −λ) <∞}, 2 ≤ k ≤ n− 1,

∆n = {λ ∈ C : α(Dn −λ) =∞ and
n−1∑
s=1

β(Ds −λ) <∞}∪

{λ ∈ C : β(D1 −λ) =∞ and
n∑
s=2

α(Ds −λ) <∞},

∆′k :=
{
λ ∈ C : R(Dk −λ) is not closed

}
, 2 ≤ k ≤ n− 1,

Remark 4.3.20. Again, due to the presence of sets ∆′k, 2 ≤ k ≤ n−1, we have

a difference between definitions of collections ∆k, 2 ≤ k ≤ n− 1, in Corollary

4.3.19 and in [55, Theorem 3].

We get some interesting results for n = 2 that seem new in the literature.

Theorem 4.3.21. Let D1 ∈ B(X1), D2 ∈ B(X2). Consider the following state-

ments:

(i) There exists A ∈ B2 such that T d2 (A) ∈ Φ(X1 ⊕X2);

(ii) (a) D1 ∈ Φ+(X1) and D2 ∈ Φ−(X2);

(b) β(D1) = α(D2) =∞ or
(
D2 ∈ Φ+(X2) and D1 ∈ Φ−(X1)

)
.

Then (i)⇔ (ii).

Corollary 4.3.22. Let D1 ∈ B(X1), D2 ∈ B(X2). Then⋂
A∈B2

σe(T
d
2 (A)) = σle(D1)∪ σre(D2)∪∆,

where
∆ = {λ ∈ C : α(D2 −λ) =∞ and β(D1 −λ) <∞}∪

{λ ∈ C : β(D1 −λ) =∞ and α(D2 −λ) <∞}.
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4.3.2 Nonseparable spaces

We now assume X1, ...,Xn to be arbitrary infinite dimensional Hilbert spaces.

This subsection bases on article [44]. We generalize results of [6],[60] from

n = 2 to an arbitrary dimension of upper triangular operators, and we

pose perturbation results of [55] without assuming separability of underlying

spaces. Proofs of theorems to follow are very similar to proofs of theorems

from subsection 4.2.2, and so we omit them.

We start with a result which deals with the upper Fredholm spectrum

of T dn (A).

Theorem 4.3.23. Let D1 ∈ B(X1), D2 ∈ B(X2), ...,Dn ∈ B(Xn). Consider the

following statements:

(i) (a) D1 ∈ Φ+(X1);
(b) R(Ds) is closed for 2 ≤ s ≤ n and

α(Ds) ≤ β(Ds−1) f or 2 ≤ s ≤ n (4.3.1)

or Ds ∈ Φ+(Xs) for 2 ≤ s ≤ n;

(ii) There exists A ∈ Bn such that T dn (A) ∈ Φ+(X1 ⊕ · · · ⊕Xn);

(iii) (a) D1 ∈ Φ+(X1);

(b)
(
β(Dj) =∞ for some j ∈ {1, ...,n− 1} and α(Ds) <∞ for

2 ≤ s ≤ j
)

or Ds ∈ Φ+(Xs) for 2 ≤ s ≤ n.

Then (i)⇒ (ii)⇒ (iii).

Remark 4.3.24. If j = 1 in (iii)(b), we simply omit condition ”α(Ds) <∞ for

2 ≤ s ≤ j” there.
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Corollary 4.3.25. Let D1 ∈ B(X1), D2 ∈ B(X2), ...,Dn ∈ B(Xn). Then

σle(D1)∪
( n⋃
k=2

∆k

)
⊆⋂

A∈Bn

σle(T
d
n (A)) ⊆

σle(D1)∪
( n⋃
k=2

(∆′k ∩∆
′)
)
∪

( n⋃
k=2

∆′′k

)
,

where

∆k :=
{
λ ∈ C : α(Dk −λ) =∞ and

k−1∑
s=1

β(Ds −λ) <∞
}
, 2 ≤ k ≤ n,

∆′k := {λ ∈ C : α(Dk −λ) > β(Dk−1 −λ)}, 2 ≤ k ≤ n,

∆′ :=
{
λ ∈ C :

n∑
s=2

α(Ds −λ) =∞
}
,

∆′′k :=
{
λ ∈ C : R(Dk −λ) is not closed

}
, 2 ≤ k ≤ n.

Remark 4.3.26. Obviously, ∆k ⊆ ∆′k ∩∆
′ for 2 ≤ k ≤ n.

Theorem 4.3.27. Let D1 ∈ B(X1),D2 ∈ B(X2). Consider the following state-

ments:

(i) (a) D1 ∈ Φ+(X1);

(b)
(
α(D2) ≤ β(D1) and R(D2) is closed

)
or D2 ∈ Φ+(X2);

(ii) There exists A ∈ B2 such that T d2 (A) ∈ Φ+(X1 ⊕X2);

(iii) (a) D1 ∈ Φ+(X1);
(b) β(D1) =∞ or D2 ∈ Φ+(X2).

Then (i)⇒ (ii)⇒ (iii).

Corollary 4.3.28. Let D1 ∈ B(X1), D2 ∈ B(X2). Then

σle(D1)∪∆2 ⊆
⋂
A∈Bn

σle(T
d
2 (A)) ⊆ σle(D1)∪∆′2 ∪∆

′′
2 ,
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where

∆2 :=
{
λ ∈ C : α(D2 −λ) =∞ and β(D1 −λ) <∞

}
,

∆′2 := {λ ∈ C : α(D2 −λ) ≥ β(D1 −λ)},

∆′′2 :=
{
λ ∈ C : R(D2 −λ) is not closed

}
.

Remark 4.3.29. Notice that ∆2 ⊆ ∆′2.

Statements concerning the lower Fredholm spectrum of T dn (A) we get by

duality.

Theorem 4.3.30. Let D1 ∈ B(X1), D2 ∈ B(X2), ...,Dn ∈ B(Xn). Consider the

following statements:

(i) (a) Dn ∈ Φ−(Xn);
(b) R(Ds) is closed for 1 ≤ s ≤ n− 1 and

β(Ds) ≤ α(Ds+1) f or 1 ≤ s ≤ n− 1 (4.3.2)

or Ds ∈ Φ−(Xs) for 1 ≤ s ≤ n− 1;

(ii) There exists A ∈ Bn such that T dn (A) ∈ Φ−(X1 ⊕ · · · ⊕Xn);

(iii) (a) Dn ∈ Φ−(Xn);
(b)

(
α(Dj) =∞ for some j ∈ {2, ...,n} and β(Ds) <∞ for

j ≤ s ≤ n− 1
)

or Ds ∈ Φ−(Xs) for 1 ≤ s ≤ n− 1.

Then (i)⇒ (ii)⇒ (iii).

Remark 4.3.31. If j = n in (iii)(b), we simply omit condition ”β(Ds) <∞ for

j ≤ s ≤ n− 1” there.

Corollary 4.3.32. Let D1 ∈ B(X1), D2 ∈ B(X2), ...,Dn ∈ B(Xn). Then

σre(Dn)∪
(n−1⋃
k=1

∆k

)
⊆⋂

A∈Bn

σre(T
d
n (A)) ⊆

σre(Dn)∪
(n−1⋃
k=1

(∆′k ∩∆
′
)
∪

(n−1⋃
k=1

∆′′k

)
,
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where

∆k :=
{
λ ∈ C : β(Dk −λ) =∞ and

n∑
s=k+1

α(Ds −λ) <∞
}
, 1 ≤ k ≤ n− 1,

∆′k := {λ ∈ C : β(Dk −λ) > α(Dk+1 −λ)}, 1 ≤ k ≤ n− 1,

∆′ := {λ ∈ C :
n−1∑
s=1

β(Ds −λ) =∞},

∆′′k :=
{
λ ∈ C : R(Dk −λ) is not closed

}
, 2 ≤ k ≤ n− 1.

Remark 4.3.33. ∆k ⊆ ∆′k ∩∆
′ for 1 ≤ k ≤ n− 1.

Theorem 4.3.34. Let D1 ∈ B(X1), D2 ∈ B(X2). Consider the following state-

ments:

(i) (a) D2 ∈ Φ−(X2);

(b)
(
β(D1) ≤ α(D2) and R(D1) is closed

)
or D1 ∈ Φ−(X1);

(ii) There exists A ∈ B2 such that T d2 (A) ∈ Φ−(X1 ⊕X2);

(iii) (a) D2 ∈ Φ−(X2);
(b) α(D2) =∞ or D1 ∈ Φ−(X1).

Then (i)⇒ (ii)⇒ (iii).

Corollary 4.3.35. Let D1 ∈ B(X1), D2 ∈ B(X2). Then

σre(D2)∪∆1 ⊆
⋂
A∈B2

σre(T
d
2 (A)) ⊆ σre(D2)∪∆′1 ∪∆

′′
1 ,

where

∆1 :=
{
λ ∈ C : β(D1 −λ) =∞ and α(D2 −λ) <∞

}
,

∆′1 := {λ ∈ C : β(D1 −λ) ≥ α(D2 −λ)},

∆′′1 :=
{
λ ∈ C : R(D1 −λ) is not closed

}
.

Remark 4.3.36. Notice that ∆1 ⊆ ∆′1.

Last topic is the class Φ(X1 ⊕ · · · ⊕Xn) and its corresponding essential

spectrum.
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Theorem 4.3.37. Let D1 ∈ B(X1), D2 ∈ B(X2), ...,Dn ∈ B(Xn). Consider the

following statements:

(i) (a) D1 ∈ Φ+(X1) and Dn ∈ Φ−(Xn);
(b)

(
R(Ds) is closed for 2 ≤ s ≤ n− 1 and

(
α(Ds) = β(Ds−1) for 2 ≤ s ≤ n

or α(Ds) ≤ β(Ds−1) < ∞ for 2 ≤ s ≤ n
))

or
(
Dj ∈ Φ+(Xj) for 2 ≤ j ≤ n and

Dk ∈ Φ−(Xk) for 1 ≤ k ≤ n− 1
)
;

(ii) There exists A ∈ Bn such that T dn (A) ∈ Φ(X1 ⊕ · · · ⊕Xn);

(iii) (a) D1 ∈ Φ+(X1) and Dn ∈ Φ−(Xn);
(b)

(
β(Dj) = ∞ for some j ∈ {1, ...,n − 1} and α(Ds) < ∞ for 2 ≤ s ≤ j,

α(Dk) =∞ for some k ∈ {2, ...,n}, and β(Ds) <∞ for k ≤ s ≤ n− 1, k > j
)

or(
Dj ∈ Φ+(Xj) for 2 ≤ j ≤ n and Dk ∈ Φ−(Xk) for

1 ≤ k ≤ n− 1
)
.

Then (i)⇒ (ii)⇒ (iii).

Remark 4.3.38. If j = 1 and/or k = n in (iii)(b), condition that is ought to

hold for 2 ≤ s ≤ j and/or k ≤ s ≤ n− 1 is omitted there.

Proof. (ii)⇒ (iii)

Let T dn (A) be Fredholm for some A ∈ Bn. Then T dn (A) is both left and

lower Fredholm, and so by employing Theorems 4.3.23 and 4.3.30 we easily

get the desired.

(i)⇒ (ii)

If Dj ∈ Φ+(Xj) for 2 ≤ j ≤ n and Dk ∈ Φ−(Xk) for 1 ≤ k ≤ n − 1 choose

trivially A = 0. Otherwise, this part follows the argument as seen in the proof

of Theorem 4.2.16. Namely, assumptions of (i)(b) ensure the existence of left

invertible Ji ’s, and so we choose A = (Aij) as shown there. We shall again

have α(T dn (A)) = α(D1) <∞, and due to our assumptions we can choose all

Ui ’s to be finite dimensional. Therefore, β(T dn (A)) = dimU1+· · ·+dimUn−1+
β(Dn) <∞, having in mind that Dn ∈ Φ−(Xn). �
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Corollary 4.3.39. Let D1 ∈ B(X1), D2 ∈ B(X2), ...,Dn ∈ B(Xn). Then

σle(D1)∪ σre(Dn)∪
(n−1⋃
k=2

∆k

)
∪∆n ⊆⋂

A∈Bn

σe(T
d
n (A)) ⊆

σle(D1)∪ σre(Dn)∪
(( n⋃
k=2

δ′k

)
∩

( n⋃
k=2

∆′k

))
∪

(n−1⋃
k=2

∆′′k

)
,

where

∆k =
{
λ ∈ C : α(Dk −λ) =∞ and

k−1∑
s=1

β(Ds −λ) <∞
}
∪

{
λ ∈ C : β(Dk −λ) =∞ and

n∑
s=k+1

α(Ds −λ) <∞
}
, 2 ≤ k ≤ n− 1,

∆n =
{
λ ∈ C : α(Dn −λ) =∞ and

n−1∑
s=1

β(Ds −λ) <∞
}
∪

{
λ ∈ C : β(D1 −λ) =∞ and

n∑
s=2

α(Ds −λ) <∞
}
,

δ′k := {λ ∈ C : β(Dk−1 −λ) =∞ or α(Dk −λ) > β(Dk−1 −λ)}, 2 ≤ k ≤ n,

∆′k := {λ ∈ C : α(Ds −λ) , β(Ds−1 −λ)}, 2 ≤ k ≤ n,

∆′′k := {λ ∈ C : R(Ds −λ) is not closed}, 2 ≤ k ≤ n− 1.

Remark 4.3.40. Obviously, ∆k ⊆ ∆′k ∩ δ
′
k for each 2 ≤ k ≤ n.

Theorem 4.3.41. Let D1 ∈ B(X1), D2 ∈ B(X2). Consider the following state-

ments:

(i) (a) D1 ∈ Φ+(X1) and D2 ∈ Φ−(X2);

(b)
(
α(D2) = β(D1) or α(D2) ≤ β(D1) < ∞

)
or

(
D2 ∈ Φ+(X2) and D1 ∈

Φ−(X1)
)
.

(ii) There exists A ∈ B2 such that T d2 (A) ∈ Φ(X1 ⊕X2).

(iii) (a) D1 ∈ Φ+(X1) and D2 ∈ Φ−(X2);
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(b)
(
α(D2) = β(D1) =∞

)
or

(
D2 ∈ Φ+(X2) and D1 ∈ Φ−(X1)

)
.

Then (i)⇒ (ii)⇒ (iii).

Corollary 4.3.42. Let D1 ∈ B(X1), D2 ∈ B(X2). Then

σle(D1)∪ σre(D2)∪∆ ⊆
⋂
A∈B2

σe(T
d
2 (A)) ⊆ σle(D1)∪ σre(D2)∪∆′,

where
∆ = {λ ∈ C : α(D2 −λ) =∞ and β(D1 −λ) <∞}∪

{λ ∈ C : β(D1 −λ) =∞ and α(D2 −λ) <∞},

∆′ = {λ ∈ C : α(D2 −λ) , β(D1 −λ)}∩
{λ ∈ C : β(D1 −λ) =∞ or α(D2 −λ) > β(D1 −λ)}.

Remark 4.3.43. Notice that ∆ ⊆ ∆′.
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Chapter 5

Filling in holes problem

In this chapter we use results from previous chapters in order to deal with

the filling in holes problem for the operator matrices. In case n = 2, this

problem can be formulated as follows. Consider operator MC from Chapter

2. Then, in general, the following is true:

σ (A)∪ σ (B) = σ (MC)∪W.

The filling in holes problem has as its task desrcribing set W . It usually turns

out that this set is a union of some of the holes in σ (MC), which explains

the name of this problem. We present this problem in several stages, first

for n = 2, then for n = 3, and afterwards for general n ≥ 3. The main tool in

succeding sections will be the concept of polynomially convex hull. Denote

by P oly1 the collection of all complex polynomials of one variable.

Definition 5.0.1. [11] Let K ⊆ C be compact. The polynomial hull of K is

defined as

Hull(K) = {λ ∈ C : |p(z)| ≤ sup
z∈K
|p(z)| f or every p ∈ P oly1}.

Obviously, K ⊆ Hull(K), and if K = Hull(K) we say that K is polyno-

mially convex. Notice also that if K1 ⊆ K2, then Hull(K1) ⊆ Hull(K2). The

most important for us is the following relation between polynomial hulls and

holes.

Theorem 5.0.2. [11] If K ⊆ C is compact, then C \Hull(K) is equal to the

97
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unbounded component of C \K. Hence,

Hull(K) = K ∪ ”holes in K”.

5.1 Case n = 2

In this case the filling in holes problem was successfully solved about 20 years

ago by Han, Lee, and Lee [25], their work being done on arbitrary Banach

spaces. We present their results. Assume that X1,X2 are arbitrary Banach

spaces.

From [25, Corollary 4] we see that, in perturbing a nilpotent matrix[
0 C
0 0

]
to

[
A 0
0 B

]
, σ (MC) shrinks from σ (A)∪σ (B). How much of σ (A)∪σ (B)

survives? The following theorem provides a clue.

Theorem 5.1.1. For a given pair (A,B) of operators we have

η(σ (MC)) = η(σ (A)∪ σ (B)) f or every C ∈ B(X2,X1), (5.1.1)

where η(·) denotes the ”polynomially convex hull”.

Proof. See [25]. �

The following corollary says that the passage from σ (A)∪σ (B) to σ (MC)
is the punching of some open sets in σ (A)∩ σ (B).

Corollary 5.1.2. For a given pair (A,B) of operators we have

σ (A)∪ σ (B) = σ (MC)∪W,

where W is the union of certain of the holes in σ (MC) which happen to be

subsets of σ (A)∩ σ (B).

Proof. See [25]. �

The following is a generalization of [20, Problem 72].
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Corollary 5.1.3. If σ (A)∩ σ (B) has no interior points, then

σ (MC) = σ (A)∪ σ (B) f or every C ∈ B(X2,X1).

In particular, if either A ∈ B(X1) or B ∈ B(X2) is a compact operator, then

the previous equality holds.

We now consider another case in which equality in Corollary 5.1.3 holds.

To do this write, for T ∈ B(X),

ρlσ (T ) = σ (T ) \ σl(T ) and ρtσ (T ) = σ (T ) \ σr(T )

Thus by Corollary 5.1.3 and Theorem 2.1.5 we can see that holes in σ (MC)
should lie in ρlσ (A)∩ ρrσ (B). Thus we have:

Corollary 5.1.4. If ρlσ (A)∩ ρrσ (B) = ∅ then

σ (MC) = σ (A)∪ σ (B) f or every C ∈ B(X2,X1).

We conclude with an application of Corollary 5.1.4.

Corollary 5.1.5. Suppose X1 and X2 are Hilbert spaces. If either A ∈ B(X1)
is cohyponormal or B ∈ B(X2) is hyponormal, then

σ (MC) = σ (A)∪ σ (B) f or every C ∈ B(X2,X1).

Proof. See [25]. �

5.2 Case n = 3

In this case the filling in holes problem was successfully solved a few years ago

by Alatancang et al. [58], their work being done on separable Hilbert spaces.

We present their results. Assume that X1,X2,X3 are separable Hilbert spaces.

Now we show that

σ (A)∪ σ (B)∪ σ (C) = σ (MD,E,F)∪W,

where W is the union of certain gaps in σ (MD,E,F) which are subsets of

(σ (A) ∩ σ (B)) ∪ (σ (A) ∩ σ (C)) ∪ (σ (B) ∩ σ (C)). We obtain a necessary and
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sufficent condition for the relation σ (MD,E,F) = σ (A)∪ σ (B)∪ σ (C) to hold

for any D ∈ B(X2,X1),E ∈ B(X3,X1),F ∈ B(X3,X2).

Theorem 5.2.1. Let triple (A,B,C) be given. Then

σ (A)∪ σ (B)∪ σ (C) = σ (MD,E,F)∪W,

where W is the union of some gaps in σ (MD,E,F), which are subsets of (σ (A)∩
σ (B))∪ (σ (A)∩ σ (C))∪ (σ (B)∩ σ (C)).

Proof. See [58]. �

In Preliminary section we have defined point and residual spectrum of

an operator. Now we define some of their parts. The following subdivisions

are closely related to the relevant space decomposition and are useful when

studying spectral properties of operators. Let T ∈ B(X). Then:

σp,1(T ) = {λ ∈ C : λ ∈ σp(T ) : R(λ− T ) = X};
σp,2(T ) = {λ ∈ C : λ ∈ σp(T ) : R(λ− T ) = X and R(λ− T ) , X};
σp,3(T ) = {λ ∈ C : λ ∈ σp(T ) : R(λ− T ) , X and R(λ− T ) is closed};
σp,4(T ) = {λ ∈ C : λ ∈ σp(T ) : R(λ− T ) , X and R(T −λ) is not closed};
σr,1(T ) = {λ ∈ C : λ ∈ σr(T ) : R(λ− T ) is closed};
σr,2(T ) = {λ ∈ C : λ ∈ σr(T ) : R(λ− T ) is not closed};

Corollary 5.2.2. Let triple (A,B,C) be given. Then

σ (MD,E,F) = σ (A)∪ σ (B)∪ σ (C)

for any D ∈ B(X2,X1),E ∈ B(X3,X1),F ∈ B(X3,X2) if and only if the following

conditions hold.

(i) If λ ∈ ρ(C), then one of the following statements (a)-(b) is satisfied:

(a) λ ∈ σr,1(A) \ σδ(B) implies α(B−λ) = 0 or α(B−λ) , β(A−λ));

(b) λ ∈ σp,1(B) \ σl(A) implies β(A−λ) = 0 or α(B−λ) , β(A−λ).

(ii) If λ ∈ ρ(A), then one of the following statements (a)− (b) is satisfied:

(a) λ ∈ σr,1(B) \ σδ(C) implies α(C −λ) = 0 or α(C −λ) , β(B−λ);
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(b) λ ∈ σp,1(C) \ σl(B) implies beta(B−λ) = 0 or α(C −λ) , β(B−λ).

(iii) If λ ∈ σr,1(A)∩ σp,1(C), then one of the following statements (a)-(e) is

satisfied:

(a) λ ∈ σp,1(B) implies α(B−λ) +α(C −λ) , β(A−λ);

(b) λ ∈ σr,1(B) implies α(C −λ) , β(A−λ) + β(B−λ);

(c) λ ∈ σp,3(B) implies α(B−λ) > β(A−λ) or α(C −λ) < β(B−λ) or α(B−
λ) +α(C −λ) , β(A−λ) + β(B−λ);

(d) λ ∈ σm(B) implies min{α(C −λ),β(A−λ)} <∞;

(e) λ ∈ ρ(B) implies α(C −λ) , β(A−λ).

Proof. See [58]. �

Corollary 5.2.3. Let triple (A,B,C) be given. Then

σ (MD,E,F) = σ (A)∪ σ (B)∪ σ (C)

for all D ∈ B(X2,X1),E ∈ B(X3,X1),F ∈ B(X3,X2) if one of the following

assumptions is satisfied:

(i) A∗ and C have the single valued extension property (SVEP) (see [15]);

(ii) A is cohypernormal, and C is hypernormal (see [25]);

(iii) B and C are hypernormal;

(iv) A and B are cohypernormal;

(v) A∗ and B∗ have the SVEP;

(vi) B and C have the SVEP.

Proof. See [58]. �

Corollary 5.2.4. Let triple (A,B,C) be given. then

σ (MD,E,F) = σ (A)∪ σ (B)∪ σ (C)

for any D ∈ B(X2,X1),E ∈ B(X3,X1),F ∈ B(X3,X2) if one of the following

assumptions is satisfied:

(i) (σ (A)∩ σ (B))∪ (σ (A)∩ σ (C))∪ (σ (B)∩ σ (C)) has no interior points (see
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[25]);

(ii) A is cohypernormal, and σ (B)∩ σ (C) has no interior points.

(iii) C is hypernormal, and σ (A)∩ σ (B) has no interior points.

(iv) A∗ has the SVEP, and σ (B)∩ σ (C) has no interior points.

(v) C has the SVEP, and σ (A)∩ σ (B) has no interior points.

(vi) Any two of the operators A,B,C are compact.

Proof. See [58]. �

5.3 General case n ≥ 3

In this section, X1, ...,Xn are infinite dimensional Hilbert spaces. Occasiona-

lly, we will need an assumption that the former are separable, in which case

we shall emphasize this fact. This section is based on article [47].

5.3.1 The Weyl spectrum

In this subsection we generalize results from [55, Section 3] to arbitrary

Hilbert spaces. We report that Corollaries 3.3 and 3.8 in [55] do not hold

with the equivalence: ’only if’ part is not valid. The reason for this is that

the proofs of these corollaries summon [55, Theorems 2.5, 2.6] which do not

hold with an equality (see [44, Corollaries 2.3, 2.10] for corrected versions).

Corollaries 4, 8 and 12 from [54, Section 3] are not valid for analogous reasons.

In the sequel we provide correct forms of these statements.

Theorem 5.3.1. ([44, Corollary 2.3]) Let D1 ∈ B(X1), D2 ∈ B(X2), ...,Dn ∈
B(Xn). Then

σle(D1)∪
(n+1⋃
k=2

δk

)
⊆

⋂
A∈Bn

σlw(T
d
n (A)), (5.3.1)

where

δk :=
{
λ ∈ C : α(Dk −λ) =∞ and

k−1∑
s=1

β(Ds −λ) <∞
}
, 2 ≤ k ≤ n,

δn+1 :=
{
λ ∈ C :

n∑
s=1

β(Ds −λ) <
n∑
s=1

α(Ds −λ)
}
.
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Theorem 5.3.2. ([45, Corollary 2.5]) Let D1 ∈ B(X1), D2 ∈ B(X2), ...,Dn ∈
B(Xn). If X1, ...,Xn are separable and R(Ds − λ) are closed for 2 ≤ s ≤ n,

λ ∈ C, then

σle(D1)∪
(n+1⋃
k=2

δk

)
=

⋂
A∈Bn

σlw(T
d
n (A)), (5.3.2)

where δk, 2 ≤ k ≤ n+1, are defined as in Theorem 5.3.1.

Now we are able to prove the following generalization to arbitrary Hilbert

spaces of [55, Theorem 3.1].

Theorem 5.3.3. Let D1 ∈ B(X1), D2 ∈ B(X2), ...,Dn ∈ B(Xn). Then

n⋃
k=1

σlw(Dk) = σlw(T
d
n (A))∪∆1 ∪∆2 (5.3.3)

holds for every A ∈ Bn, where

∆1 =
n⋃
k=2

{λ ∈ C : α(Dk −λ) =∞, α(Ds −λ) <∞ f or 2 ≤ s ≤ k − 1 and

k−1∑
s=1

β(Ds −λ) =∞}∩ ρle(D1)∩ {λ ∈ C :
n∑
s=1

β(Ds −λ) ≥
n∑
s=1

α(Ds −λ)},

∆2 =
n⋃
k=1

{
λ ∈ C : α(Ds −λ) <∞ f or all 1 ≤ s ≤ n,

n∑
s=1

β(Ds −λ) ≥

n∑
s=1

α(Ds −λ) and
(
α(Dk −λ) > β(Dk −λ) or R(Dk −λ) is not closed

)}
.

Remark 5.3.4. Condition ’α(Ds −λ) <∞ f or 2 ≤ s ≤ k − 1’ in ∆1 is omitted

when k = 2.

Proof. Obviously, ∆1 ∪∆2 ⊆
n⋃
k=1

σlw(Dk), and σlw(T dn (A)) ⊆
n⋃
k=1

σlw(Dk)

according to Lemma 1.2.11. Assume that λ ∈
n⋃
k=1

σlw(Dk)\σlw(T dn (A)). Then

by Theorem 5.3.1 we get that λ does not belong to the left side of (5.3.1),

which together with observation λ ∈
n⋃
k=1

σlw(Dk) easily gives λ ∈ ∆1 ∪∆2. �
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Now, we can give a sufficient condition for the stability of the left Weyl

spectrum.

Corollary 5.3.5. Let D1 ∈ B(X1), D2 ∈ B(X2), ...,Dn ∈ B(Xn). Then

n⋃
k=1

σlw(Dk) = σlw(T
d
n (A))

holds for every A ∈ Bn if

∆1 ∪∆2 = ∅,

where ∆1,∆2 are defined as in Theorem 5.3.3.

If we summon the separability condition, then we are able to state the

following.

Corollary 5.3.6. ([55, Theorem 3.1], corrected version)

Let D1 ∈ B(X1), D2 ∈ B(X2), ...,Dn ∈ B(Xn). If X1, ...,Xn are separable and

R(Ds −λ), 2 ≤ s ≤ n, λ ∈ C are closed, then

n⋃
k=1

σlw(Dk) = σlw(T
d
n (A))

holds for every A ∈ Bn if and only if

∆1 ∪∆2 = ∅,

where ∆1,∆2 are defined as in Theorem 5.3.3.

Proof. Sufficiency is clear, and necessity follows from Theorem 5.3.3 and

Theorem 5.3.2. �

By duality, we obtain results related to the stability of the right Weyl

spectrum. We begin with the following generalization of [55, Theorem 3.6]

to arbitrary Hilbert spaces.

Theorem 5.3.7. Let D1 ∈ B(X1), D2 ∈ B(X2), ...,Dn ∈ B(Xn). Then

n⋃
k=1

σrw(Dk) = σrw(T
d
n (A))∪∆1 ∪∆2
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holds for every A ∈ Bn, where

∆1 =
n−1⋃
k=1

{λ ∈ C : β(Dk −λ) =∞, β(Ds −λ) <∞ f or k +1 ≤ s ≤ n− 1 and

n∑
s=k+1

α(Ds −λ) =∞}∩ ρre(Dn)∩ {λ ∈ C :
n∑
s=1

α(Ds −λ) ≥
n∑
s=1

β(Ds −λ)},

∆2 =
n⋃
k=1

{λ ∈ C : β(Ds −λ) <∞ f or all 1 ≤ s ≤ n,
n∑
s=1

α(Ds −λ) ≥

n∑
s=1

β(Ds −λ) and β(Dk −λ) > α(Dk −λ)}.

Remark 5.3.8. Condition ’β(Ds−λ) <∞ f or k+1 ≤ s ≤ n−1’ in ∆1 is omitted

when k = n− 1.

Now, we can give a sufficient condition for the stability of the right Weyl

spectrum.

Corollary 5.3.9. Let D1 ∈ B(X1), D2 ∈ B(X2), ...,Dn ∈ B(Xn). Then

n⋃
k=1

σrw(Dk) = σrw(T
d
n (A))

holds for every A ∈ Bn if

∆1 ∪∆2 = ∅,

where ∆1,∆2 are defined as in Theorem 5.3.7.

If we include the separability assumption, we obtain characterization for

the stability of the right Weyl spectrum.

Corollary 5.3.10. ([55, Theorem 3.6], corrected version) Let D1 ∈ B(X1), D2 ∈
B(X2), ...,Dn ∈ B(Xn). If X1, ...,Xn are separable and R(Ds − λ), 1 ≤ s ≤ n −
1, λ ∈ C are closed, then

n⋃
k=1

σrw(Dk) = σrw(T
d
n (A))
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holds for every A ∈ Bn if and only if

∆1 ∪∆2 = ∅,

where ∆1,∆2 are defined as in Theorem 5.3.7.

5.3.2 The Fredholm spectrum

In this subsection we generalize results from [54, Section 3] to arbitrary

Hilbert spaces. We prove statements related to left Fredholm invertibility,

and then by duality obtain corresponding statements related to right Fredholm

invertibility. Finally, we finish this subsection with investigation of the

essential spectra.

We start with the following two known results.

Theorem 5.3.11. ([44, Corollary 3.3]) Let D1 ∈ B(X1), D2 ∈ B(X2), ...,Dn ∈
B(Xn). Then

σle(D1)∪
( n⋃
k=2

δk

)
⊆

⋂
A∈Bn

σle(T
d
n (A)), (5.3.4)

where

δk :=
{
λ ∈ C : α(Dk −λ) =∞ and

k−1∑
s=1

β(Ds −λ) <∞
}
, 2 ≤ k ≤ n.

Theorem 5.3.12. ([45, Corollary 2.20])

Let D1 ∈ B(X1), D2 ∈ B(X2), ...,Dn ∈ B(Xn). If X1, ...,Xn are separable and

R(Ds −λ), 2 ≤ s ≤ n, λ ∈ C are closed, then

σle(D1)∪
( n⋃
k=2

δk

)
=

⋂
A∈Bn

σle(T
d
n (A)), (5.3.5)

where δk, 2 ≤ k ≤ n, are defined as in Theorem 5.3.11.

Now, we generalize [54, Theorem 4] to arbitrary Hilbert spaces.
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Theorem 5.3.13. Let D1 ∈ B(X1), D2 ∈ B(X2), ...,Dn ∈ B(Xn). Then

n⋃
k=1

σle(Dk) = σle(T
d
n (A))∪∆1 ∪∆2 (5.3.6)

holds for every A ∈ Bn, where

∆1 =
n⋃
k=2

{λ ∈ C : α(Dk −λ) =∞, α(Ds −λ) <∞ f or 2 ≤ s ≤ k − 1

and
k−1∑
s=1

β(Ds −λ) =∞}∩ ρle(D1),

∆2 =
n⋃
k=1

{λ ∈ C : α(Ds −λ) <∞ f or all s = 1, ...,n and

R(Dk −λ) is not closed}.

Remark 5.3.14. Condition ’α(Ds−λ) <∞ f or 2 ≤ s ≤ k−1’ in ∆1 is omitted

when k = 2.

Proof. Obviously, ∆1 ∪ ∆2 ⊆
n⋃
k=1

σle(Dk), and σle(T dn (A)) ⊆
n⋃
k=1

σle(Dk)

according to Lemma 1.2.11. Assume that λ ∈
n⋃
k=1

σle(Dk) \ σle(T dn (A)). Then

by Theorem 5.3.11 we get that λ does not belong to the left side of (5.3.5),

which together with observation λ ∈
n⋃
k=1

σle(Dk) easily gives λ ∈ ∆1 ∪∆2. �

Now, we can give sufficient condition for the stability of the left Fredholm

spectrum.

Corollary 5.3.15. Let D1 ∈ B(X1), D2 ∈ B(X2), ...,Dn ∈ B(Xn). Then

n⋃
k=1

σle(Dk) = σle(T
d
n (A))

holds for every A ∈ Bn if

∆1 ∪∆2 = ∅,

where ∆1,∆2 are defined as in Theorem 5.3.13.
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Corollary 5.3.16. ([54, Corollary 4], corrected version)

Let D1 ∈ B(X1), D2 ∈ B(X2), ...,Dn ∈ B(Xn). If X1, ...,Xn are separable and

R(Ds −λ), 2 ≤ s ≤ n, λ ∈ C are closed, then

n⋃
k=1

σle(Dk) = σle(T
d
n (A))

holds for every A ∈ Bn if and only if

∆1 ∪∆2 = ∅,

where ∆1,∆2 are defined as in Theorem 5.3.13.

Proof. Sufficiency is obvious, and necessity follows from Theorem 5.3.13

and Theorem 5.3.12. �

We provide the following results for the right Fredholm spectrum. First

we generalize [54, Theorem 5] to arbitrary Hilbert spaces.

Theorem 5.3.17. Let D1 ∈ B(X1), D2 ∈ B(X2), ...,Dn ∈ B(Xn). Then

n⋃
k=1

σre(Dk) = σre(T
d
n (A))∪∆1 ∪∆2

holds for every A ∈ Bn, where

∆1 =
n−1⋃
k=1

{λ ∈ C : β(Dk −λ) =∞, β(Ds −λ) <∞ f or k +1 ≤ s ≤ n− 1 and

n∑
s=k+1

α(Ds −λ) =∞}∩ ρre(Dn),

∆2 = {λ ∈ C : β(Dk −λ) <∞ f or all 1 ≤ k ≤ n}.

Remark 5.3.18. Condition ’β(Ds − λ) < ∞ f or k + 1 ≤ s ≤ n − 1’ in ∆1 is

omitted when k = n− 1.

Sufficient condition for the stability of the right Fredholm spectrum

follows.
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Corollary 5.3.19. Let D1 ∈ B(X1), D2 ∈ B(X2), ...,Dn ∈ B(Xn). Then

n⋃
k=1

σre(Dk) = σre(T
d
n (A))

holds for every A ∈ Bn if

∆1 ∪∆2 = ∅,

where ∆1,∆2 are defined as in Theorem 5.3.17.

Let us summon separability next.

Corollary 5.3.20. ([54, Corollary 8], corrected version)

Let D1 ∈ B(X1), D2 ∈ B(X2), ...,Dn ∈ B(Xn). Assume that X1, ...,Xn are sepa-

rable and R(Ds −λ), 1 ≤ s ≤ n− 1, λ ∈ C are closed. Then

n⋃
k=1

σre(Dk) = σre(T
d
n (A))

holds for every A ∈ Bn if and only if

∆1 ∪∆2 = ∅,

where ∆1,∆2 are defined as in Theorem 5.3.17.

To end this section, we provide statements dealing with the essential

spectrum. We begin with

Theorem 5.3.21. ([44, Corollary 3.17])

Let D1 ∈ B(X1), D2 ∈ B(X2), ...,Dn ∈ B(Xn). Then

σle(D1)∪ σre(Dn)∪
(n−1⋃
k=2

δk

)
∪ δn ⊆

⋂
A∈Bn

σe(T
d
n (A)) (5.3.7)

where

δk =
{
λ ∈ C : α(Dk −λ) =∞ and

k−1∑
s=1

β(Ds −λ) <∞
}
∪

{
λ ∈ C : β(Dk −λ) =∞ and

n∑
s=k+1

α(Ds −λ) <∞
}
, 2 ≤ k ≤ n− 1,
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δn =
{
λ ∈ C : α(Dn −λ) =∞ and

n−1∑
s=1

β(Ds −λ) <∞
}
∪

{
λ ∈ C : β(D1 −λ) =∞ and

n∑
s=2

α(Ds −λ) <∞
}
,

Theorem 5.3.22. ([45, Corollary 2.34])

Let D1 ∈ B(X1), D2 ∈ B(X2), ...,Dn ∈ B(Xn). If X1, ...,Xn are separable and

R(Ds −λ), 2 ≤ s ≤ n− 1, λ ∈ C, are closed, then

σle(D1)∪ σre(Dn)∪
(n−1⋃
k=2

δk

)
∪ δn =

⋂
A∈Bn

σe(T
d
n (A)), (5.3.8)

where δk, 2 ≤ k ≤ n, are defined as in Theorem 5.3.21.

Theorem 5.3.23. Let D1 ∈ B(X1), D2 ∈ B(X2), ...,Dn ∈ B(Xn). Then

n⋃
k=1

σe(Dk) = σe(T
d
n (A))∪∆

holds for every A ∈ Bn, where

∆ = (∆1 ∪∆2)∩ ρle(D1)∩ ρre(Dn),

∆1 =
n−1⋃
k=2

{
λ ∈ C :

(
α(Dk −λ) =

k−1∑
s=1

β(Ds −λ) =∞ and α(Ds −λ) <∞

f or 2 ≤ s ≤ k − 1
)
or

(
β(Dk −λ) =

n∑
s=k+1

α(Ds −λ) =∞ and β(Ds −λ) <∞

f or k +1 ≤ s ≤ n− 1
)}
,

∆2 =
{
λ ∈ C :

(
α(Dn −λ) =

n−1∑
s=1

β(Ds −λ) =∞ and α(Ds −λ) <∞

f or 2 ≤ s ≤ n− 1
)
or

(
β(D1 −λ) =

n∑
s=2

α(Ds −λ) =∞ f or 2 ≤ s ≤ n− 1

and β(Ds −λ) <∞ f or 2 ≤ s ≤ n− 1
)}
.
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Proof. Obviously, ∆ ⊆
n⋃
k=1

σe(Dk), and σe(T dn (A)) ⊆
n⋃
k=1

σe(Dk) according

to Lemma 1.2.11. Assume that λ ∈
n⋃
k=1

σe(Dk)\σe(T dn (A)). Then by Theorem

5.3.21 we get that λ does not belong to the left side of (5.3.8), which together

with observation λ ∈
n⋃
k=1

σe(Dk) easily gives λ ∈ ∆. �

Now we can give sufficient condition for the stability of the essential

spectrum.

Corollary 5.3.24. Let D1 ∈ B(X1), D2 ∈ B(X2), ...,Dn ∈ B(Xn). Then

n⋃
k=1

σe(Dk) = σe(T
d
n (A))

holds for every A ∈ Bn if

∆ = ∅,

where ∆ is defined as in Theorem 5.3.23.

Corollary 5.3.25. ([54, Corollary 12], corrected version)

Let D1 ∈ B(X1) and D2 ∈ B(X2), ...,Dn ∈ B(Xn). Assume that X1, ...,Xn are

separable and R(Ds −λ), 2 ≤ s ≤ n− 1, λ ∈ C are closed. Then

n⋃
k=1

σe(Dk) = σe(T
d
n (A))

holds for every A ∈ Bn if and only if

∆ = ∅,

where ∆ is defined as in Theorem 5.3.23.

Proof. Sufficiency is obvious, and necessity follows from Theorem 5.3.23

and Theorem 5.3.22. �

Statements related to the Fredholm spectrum become especially elegant

when n = 2.
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Theorem 5.3.26. ([3, Corollary 3.2]) Let D1 ∈ B(X1), D2 ∈ B(X2). Then

σe(D1)∪ σe(D2) = σe(T
d
2 (A))∪

(
{λ ∈ C : β(D1 −λ) = α(D2 −λ) =∞}∩

ρle(D1)∩ ρre(D2)
)

holds for every A ∈ B2.

Corollary 5.3.27. Let D1 ∈ B(X1), D2 ∈ B(X2). Then

σe(D1)∪ σe(D2) = σe(T
d
2 (A))

holds for every A ∈ B2 if

{λ ∈ C : β(D1 −λ) = α(D2 −λ) =∞}∩ ρle(D1)∩ ρre(D2) = ∅.

Thus, we recover Remark 3 from [54, Section 3].

5.3.3 The Spectrum

We begin with results related to the left and the right spectrum, and afterwards

conclude with the spectrum.

Theorem 5.3.28. ([46, Corollary 2.3]) Let D1 ∈ B(X1), D2 ∈ B(X2), ...,Dn ∈
B(Xn). Then

σl(D1)∪
( n⋃
k=2

∆k

)
⊆

⋂
A∈Bn

σl(T
d
n (A)) (5.3.9)

where

∆k :=
{
λ ∈ C : α(Dk −λ) >

k−1∑
s=1

β(Ds −λ)
}
, 2 ≤ k ≤ n,

Theorem 5.3.29. Let D1 ∈ B(X1), D2 ∈ B(X2), ...,Dn ∈ B(Xn). Then

n⋃
k=1

σl(Dk) = σl(T
d
n (A))∪∆ (5.3.10)
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holds for every A ∈ Bn, where

∆ =
n⋃
k=2

{λ ∈ σl(Dk) : α(Dk −λ) ≤
k−1∑
s=1

β(Ds −λ)}.

Proof. Obviously, ∆ ⊆
n⋃
k=1

σl(Dk), and σl(T dn (A)) ⊆
n⋃
k=1

σl(Dk) according

to Lemma 1.2.11. Assume that λ ∈
n⋃
k=1

σl(Dk)\σl(T dn (A)). Then by Theorem

5.3.28 we get that λ does not belong to the left side of (5.3.9), which together

with observation λ ∈
n⋃
k=1

σl(Dk) easily gives λ ∈ ∆. �

Corollary 5.3.30. Let D1 ∈ B(X1), D2 ∈ B(X2), ...,Dn ∈ B(Xn). Then

n⋃
k=1

σl(Dk) = σl(T
d
n (A))

holds for every A ∈ Bn if

∆ = ∅,

where ∆ is defined as in Theorem 5.3.29.

If we put n = 2 we get:

Theorem 5.3.31. Let D1 ∈ B(X1), D2 ∈ B(X2). Then

σl(D1)∪ σl(D2) = σl(T
d
n (A))∪ {λ ∈ σl(D2) : α(D2 −λ) ≤ β(D1 −λ)} (5.3.11)

holds for every A ∈ B2.

Corollary 5.3.32. Let D1 ∈ B(X1), D2 ∈ B(X2). Assume that X1,X2 are infi-

nite dimensional Hilbert spaces. Then

σl(D1)∪ σl(D2) = σl(T
d
2 (A))

holds for every A ∈ B2 if

{λ ∈ σl(D2) : α(D2 −λ) ≤ β(D1 −λ)} = ∅.

Using duality, we obtain results related to the right spectrum.
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Theorem 5.3.33. Let D1 ∈ B(X1), D2 ∈ B(X2), ...,Dn ∈ B(Xn). Then

n⋃
k=1

σr(Dk) = σr(T
d
n (A))∪∆ (5.3.12)

holds for every A ∈ Bn, where

∆ =
n−1⋃
k=1

{λ ∈ σr(Dk) : β(Dk −λ) ≤
n∑

s=k+1

α(Ds −λ)},

Corollary 5.3.34. Let D1 ∈ B(X1), D2 ∈ B(X2), ...,Dn ∈ B(Xn). Then

n⋃
k=1

σr(Dk) = σr(T
d
n (A))

holds for every A ∈ Bn if

∆ = ∅,

where ∆ is defined as in Theorem 5.3.33.

Special case n = 2 gives:

Theorem 5.3.35. Let D1 ∈ B(X1), D2 ∈ B(X2). Then

σr(D1)∪ σr(D2) = σr(T
d
2 (A))∪ {λ ∈ σr(D1) : β(D1 −λ) ≤ α(D2 −λ)}

holds for every A ∈ B2.

Corollary 5.3.36. Let D1 ∈ B(X1), D2 ∈ B(X2). Then

σr(D1)∪ σr(D2) = σr(T
d
2 (A))

holds for every A ∈ B2 if

{λ ∈ σr(D1) : β(D1 −λ) ≤ α(D2 −λ)}.

We finish our investigations with results related to the spectrum of

T dn (A). First we recall:

Theorem 5.3.37. ([46, Corollary 2.14])
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Let D1 ∈ B(X1), D2 ∈ B(X2), ...,Dn ∈ B(Xn). Then

σl(D1)∪ σr(Dn)∪
(n−1⋃
k=2

δk

)
∪ δn ⊆

⋂
A∈Bn

σ (T dn (A)), (5.3.13)

where

δk =
{
λ ∈ C : α(Dk −λ) >

k−1∑
s=1

β(Ds −λ)
}
∪

{
λ ∈ C : β(Dk −λ) >

n∑
s=k+1

α(Ds −λ)
}
, 2 ≤ k ≤ n− 1,

δn =
{
λ ∈ C : α(Dn −λ) >

n−1∑
s=1

β(Ds −λ)
}
∪

{
λ ∈ C : β(D1 −λ) >

n∑
s=2

α(Ds −λ)
}
.

Theorem 5.3.38. Let D1 ∈ B(X1), D2 ∈ B(X2), ...,Dn ∈ B(Xn). Then

n⋃
k=1

σ (Dk) = σ (T
d
n (A))∪∆

holds for every A ∈ Bn, where

∆ =
n−1⋃
k=2

{
λ ∈ C :

(
β(Dk −λ) ≤

n∑
s=k+1

α(Ds −λ) and λ ∈ σr(Dk)
)

or
(
α(Dk −λ) ≤

k−1∑
s=1

β(Ds −λ
)
and λ ∈ σl(Dk)

)}⋃
{
λ ∈ C : 0 < β(D1 −λ) ≤

n∑
s=2

α(Ds −λ) or 0 < α(Dn −λ) ≤
n−1∑
s=1

β(Ds −λ)
}
.

Proof. Obviously, ∆ ⊆
n⋃
k=1

σ (Dk) and σ (T dn (A)) ⊆
n⋃
k=1

σ (Dk) according

to Lemma 1.2.11. Assume that λ ∈
n⋃
k=1

σ (Dk) \ σ (T dn (A)). Then by Theorem

5.3.37 we get that λ does not belong to the left side of (5.3.13), which together
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with observation λ ∈
n⋃
k=1

σ (Dk) easily gives λ ∈ ∆. �

Corollary 5.3.39. Let D1 ∈ B(X1), D2 ∈ B(X2), ...,Dn ∈ B(Xn). Then

n⋃
k=1

σ (Dk) = σ (T
d
n (A))

holds for every A ∈ Bn if

∆ = ∅,

where ∆ is defined as in Theorem 5.3.38.

Statements related to the spectrum become especially elegant when n =
2.

Theorem 5.3.40. Let D1 ∈ B(X1), D2 ∈ B(X2). Then

σ (D1)∪ σ (D2) = σ (T
d
2 (A))∪

{
λ ∈ C : 0 < β(D1 −λ) ≤ α(D2 −λ) or

0 < α(D2 −λ) ≤ β(D1 −λ)
}
.

holds for every A ∈ B2.

Observe that Theorem 5.3.40 is a more precise version of [25, Corollary

7] in the Hilbert space setting. Namely, in [25], authors prove that a passage

from σ (D1) ∪ σ (D2) to σ (T d2 (A)) is accomplished by filling some holes in

σ (T d2 (A)) which happen to be subsets of σ (D1) ∩ σ (D2). Notice, however,

that in Theorem 5.3.40, we have specified the form of these holes. To our

best knowledge, this has not been done so far.

Corollary 5.3.41. Let D1 ∈ B(X1), D2 ∈ B(X2). Then

σ (D1)∪ σ (D2) = σ (T
d
2 (A))

holds for every A ∈ B2 if{
λ ∈ C : 0 < β(D1 −λ) ≤ α(D2 −λ) or

0 < α(D2 −λ) ≤ β(D1 −λ)
}
= ∅.



Chapter 6

Block operator matrices that are

not upper triangular

In this chapter we present some additional results regarding spectra of block

operator matrices that were not the main interest of the author of this

dissertation.

6.1 Historical overview

In the last 30 years, experts in spectral theory have examined spectral properties

of block operator matrices that need not be upper triangular. We will observe

two types of such matrices.

Let A ∈ B(X1), B ∈ B(X2,X1). Denote by

MD,C =
[
A B
D C

]
∈ B(X1 ⊕X2),

where D ∈ B(X1,X2),C ∈ B(X2) are unknown operators.

Next, let A ∈ B(X1), B ∈ B(X2,X1), C ∈ B(X2). Denote by

MX =
[
A B
X C

]
∈ B(X1 ⊕X2),
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where X ∈ B(X1,X2) is unknown. In other words, MX =MX,C with C known

and X unknown.

We will give a brief historical review regarding investigations of spectral

properties of MD,C and MX .

We know from Preliminary section that the pioneering work regarding

spectral properties of MC was the article of Du and Pan from 1994 [16]. Soon

after, in 1995, Takahashi [51] gave neccessary and sufficient conditions for

the invertibility of operator matrix MX . His result was unfairly neglected till

2009, when Chen and Hai characterized semi-Fredholm invertibility of MX in

[21]. Year after, in 2010, they published an article which characterized (left,

right) invertibility of MX [22]. Next, in 2017, Hai and Zhang investigated

Fredholm invertibility ofMX [24], and after them, in 2018, Wu et al. characte-

rized (left, right) Weyl invertibility of MX [56]. All articles mentioned in this

paragraph used the setting of separable Hilbert spaces and have not been

generalized to the setting of arbitrary Hilbert or Banach spaces till now.

First results related to the completion of operator MD,C date back to

2010 when Chen and Hai published their work [9]. In this article they gave

some results regarding perturbations of the (left, right) spectra of MD,C on

separable Hilbert spaces. M. Kolundžija extended some of their work to

arbitrary Banach spaces [34], and two years after Chen and Hai generalized

their own results from 2010 to the Banach space setting [23]. Next article

we ought to mention is [13], in which right and left Fredholm completions

of MD,C are discussed. Finally, Weylness of MD,C has been characterized in

2019 [57].

We also mention a recent result of Huang et al. [30] in which authors

characterize invertibility of block operator matrices in terms of row operators.
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University of Nǐs, Faculty of Sciences and Mathematics, Nǐs, 2008.
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