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Abstract

This thesis contains some of the results obtained by the author in the course of his
postgraduate research in the fields of Information and coding theory. The results
have primarily theoretical significance and are presented in a mathematical format.
However, most of them are motivated by problems arising in communications and
information processing, and therefore, their practical relevance is also discussed. A
wider context is given in which the applicability of these results is demonstrated in
scenarios of engineering interest.

In the first part of the thesis, two channel models and the corresponding error-
correcting codes are studied. The first model — the so-called Permutation Channel —
is motivated by communication scenarios in which a random reordering of symbols
occurs. Examples of such channels include some types of packet networks, systems
for distributed storage, data gathering in wireless sensor networks, etc. We discuss
properties of these channels and present a general framework for error correction
in this context. The framework is based on a certain invariance principle that was
recently successfully applied to channels arising in random linear network coding.
We propose codes in spaces of sets and multisets as appropriate for forward error
correction in the presence of random permutations. We investigate properties of
such codes, provide examples and discuss their advantages over the existing ones.

The second model considered in this part of the thesis — the Discrete-Time
Bounded-Delay Channel (DTBDC) - is a type of timing channels, i.e., channels that
arise when the information is being encoded in the transmission times of messages.
Examples of settings where the Discrete-Time Bounded-Delay Channel occurs are
the so-called molecular communications, discrete-time queues (such as the ones in
the buffers of network routers), packet networks introducing random delays of pack-
ets, etc. A family of codes is constructed for the DTBDC, their properties analyzed,
and a linear-time decoding algorithm given. These codes in fact turn out to be op-
timal zero-error codes for the DTBDC and, consequently, the zero-error capacity of
this channel is determined for all channel parameters.
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The second part of the thesis contains results concerning the properties of infor-
mation measures, as well as results in probability. The common topic of the three
chapters that this part comprises are probability distributions with given marginals,
which are also known as couplings. Sets of such distributions have been studied ex-
tensively in probability, geometry, combinatorics, and various other fields, and what
is presented here can perhaps be seen as an information-theoretic perspective on the
subject. We study formal properties, such as continuity and existence of extrema, of
various information measures over these domains. Restricting the marginals will also
enable us to obtain simple proofs of intractability of certain optimization problems
such as entropy minimization, and to provide information-theoretic restatements of
several familiar problems in computational complexity theory.

The last chapter studies stochastic independence, a notion of fundamental impor-
tance in probability. In particular, (in)dependence structures of random vectors and
random processes are introduced and their existence proven for arbitrary marginal
distributions.



Sazetak

Ova teza sadrzi neke od rezultata autora dobijenih tokom njegovog postdiplomskog
istrazivanja u oblastima teorije informacija i teorije zaStitnog kodovanja. Rezul-
tati imaju prevashodno teorijski znacaj i predstavljeni su u matematickom formatu.
Veéina njih je, medutim, motivisana problemima koji se pojavljuju prilikom prenosa
i obrade informacija, pa je takode diskutovan i njihov prakti¢an znacaj. Naveden
je 8iri kontekst u kome je pokazana primenljivost ovih rezultata u scenarijima od
inzenjerskog interesa.

U prvom delu teze razmatrana su dva modela komunikacionih kanala i odgo-
varajuci zastitni kodovi. Prvi model — takozvani Permutacioni kanal — motivisan je
komunikacionim scenarijima u kojima se javlja slu¢ajna promena redosleda simbola.
Primeri takvih kanala uklju¢uju neke tipove paketskih mreza, sisteme za distribuirano
skladistenje podataka, sakupljanje podataka u bezi¢nim senzorskim mrezama, itd. U
tezi su diskutovane osobine ovakvih kanala i prezentovan opsti okvir za definisanje
zastitnih kodova u ovom kontekstu. Okvir je baziran na principu invarijantnosti koji
je nedavno uspesno primenjen na kanale koji se pojavljuju u sluc¢ajnom linearnom
mreznom kodovanju. Kodovi u prostorima skupova i multiskupova su predlozeni
kao adekvatni za ispravljanje greSaka u prisustvu slu¢ajnih permutacija. Ispitane su
osobine takvih kodova, dati primeri i diskutovane njihove prednosti nad postojeé¢im
kodovima.

Drugi model razmatran u prvom delu teze — Kanal sa ograni¢enim kagnjenjem u
diskretnom vremenu (KOKDYV) — je tip tajming kanala, tj. kanala koji nastaju kada je
informacija koja se prenosi sadrzana u vremenima slanja poruka. Primeri scenarija u
kojima se pojavljuje KOKDYV su takozvane molekularne komunikacije, redovi ¢ekanja
(poput onih u baferima mreznih rutera), paketske mreze koje unose sluc¢ajna kagnjenja
paketa, itd. U tezi je konstruisana familija kodova za KOKDYV, ispitane njihove
osobine i dat algoritam dekodovanja sa linearnom slozenoséu. Ispostaviée se da su
ovi kodovi zapravo optimalni kodovi nulte greske za KOKDYV i, kao posledica, bice
izraCunat kapacitet nulte greske ovog kanala za sve dozvoljene parametre.

ix



Drugi deo teze sadrzi rezultate koji se odnose na osobine informacionih mera,
kao i rezultate iz teorije verovatnoce. Zajednicka tema koja se provla¢i kroz sva
tri poglavlja ovog dela su raspodele verovatnocée sa zadatim marginalima. Skupovi
ovakvih raspodela proucavani su u teoriji verovatnoce, geometriji, kombinatorici i
raznim drugim disciplinama, i rezultati koji su predstavljeni ovde se mogu posma-
trati kao informaciono-teoretski pogled na ovu temu. U tezi su prou¢ene formalne
osobine, kao §to su neprekidnost i egzistencija ekstrema, raznih informacionih mera
nad ovim domenima. Nametanje ograni¢enja na marginalne raspodele omogucava
i jednostavne dokaze racunske slozenosti odredenih optimizacionih problema poput
minimizacije entropije, kao i dobijanje informaciono-teoretskih reformulacija nekih
poznatih problema iz teorije kompleksnosti.

Tema poslednjeg poglavlja je stohasticka nezavisnost, pojam od fundamentalnog
znacaja u teoriji verovatnoce. U njemu su definisane strukture (ne)zavisnosti sluca-
jnih vektora i sluéajnih procesa i njihova egzistencija dokazana za proizvoljne margi-
nalne raspodele.



Chapter 0

Introduction

This chapter provides an overview of the thesis and summary of its contributions.
The thesis contains the results on several different topics in Information and coding
theory and is divided into two parts — the first part is directly related to the main
research objectives suggested by the thesis title, and the second part is essentially a
collection of the author’s additional contributions to the field.

Coding in the presence of random permutations

In a number of communication channels that occur in practice, one can notice the
effect of random reordering of the transmitted sequence of symbols. The most familiar
example is an end-to-end transmission in packet networks based on routing. Namely,
certain network protocols provide no guarantees on the in-order delivery of packets,
and in addition to dropping some packets, conveying erroneous packets, etc., have the
effect of delivering an essentially random permutation of the packets sent. There are
also various other settings where a similar effect occurs, e.g., in distributed storage
systems, data gathering in wireless sensor networks, etc. This thesis studies a formal
channel model — the so-called Permutation channel — that is intended to capture
the above communication scenarios, and formulates a general framework for error-
correction in this context. The key observation on which our results rely is that, in
the presence of random permutations in the channel, none of the information that is
contained in the order of symbols/packets can be recovered by the receiver; the only
carrier of information should therefore be the symbols themselves.

In Chapter 1 we will first describe the channel under consideration and explain the
motivation for studying it. Based on the above observation we will then argue that
the set of all subsets of the channel alphabet A is an appropriate space for defining
codes for correcting errors, insertions and deletions in this channel. In other words,
the information that is to be transmitted should be encoded in a set of symbols
selected at the source. Consequently, we will introduce codes in the power set of A
as relevant in this context and define suitable metrics in this space. A straightforward
but important observation is that such codes are equivalent to the classical binary
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codes in the Hamming space, meaning that most of the conclusions and constructions
from the classical coding theory can be directly applied in this setting.

In Chapter 2 we further extend this framework by taking the codewords to be
multisets, i.e., sets with repetitions of elements allowed. We will argue that this is
the most general framework for defining and analyzing codes for the permutation
channel. Apart from its obvious advantages in constructing better codes than in
the power set approach, this generalization is also necessary if one needs to be able
to define codes of arbitrary length and minimum distance and give an appropriate
asymptotic analysis. We will also give a clear geometric interpretation of these codes
by observing that they are equivalent to integer codes in Z*!! under ¢; distance,
where n+ 1 is the size of the alphabet. In particular, codes of a specified code length
will be defined in the space A} consisting of all points from Zgjl having weight .
We will construct a family of high-rate codes in A} having a very simple decoding
algorithm. We will also obtain a full classification of perfect codes in A} and show
that such codes exist only over binary and ternary alphabets.

The results presented in these two chapters are based on the following works:

e M. Kovacevi¢ and D. Vukobratovié¢, “Multiset Codes for Permutation Channels,”
in preparation.

o M. Kovacevi¢ and D. Vukobratovi¢, “Perfect Codes in the Discrete Simplex,”
Des. Codes Cryptogr., to appear.

e M. Kovacevi¢ and D. Vukobratovi¢, “Subset Codes for Packet Networks,” IEEE
Commun. Lett., vol. 17, no. 4, pp. 729-732, Apr. 2013.

We also mention the continuation of the above works that was directly inspired by
them, but is not described in the thesis:

e M. Kovacevi¢, “Difference Sets and Codes in A,, Lattices,” submitted for pub-
lication.

Coding for timing channels

Timing channels are communication channels that arise in situations where the carrier
of information is the transmission time of the message, rather than its content. The
study of such channels has resulted in many interesting and relevant models, two
important and relatively recent examples of which are the models adopted from
queuing theory and those that arise in so-called molecular communications.
Chapter 3 of the thesis is devoted to the analysis of a quite general class of
discrete-time timing channels and corresponding error-correcting codes. In particular,
we will be interested mainly in constructing good zero-error codes and computing



the zero-error capacity of these channels. We will introduce formally the so-called
Discrete-Time Bounded-Delay Channel (DTBDC) — a communication channel de-
scribed by two parameters: NN, the maximum number of packets/symbols/molecules
sent in a time slot, and K, the maximum delay experienced by a packet in the
channel (when the information is conveyed via timing, random delays represent the
“noise”). This class of channels is motivated by the above-mentioned scenarios of
molecular communications and discrete-time queues (such as those in the buffers of
network routers), and also by some other contexts in which a similar model might
be applicable, such as the simultaneous transmission of energy and information. We
will construct a family of zero-error codes for the DTBDC having some remarkable
properties: Apart from proving that these codes attain the zero-error capacity of this
channel, we will show that they admit a very simple decoding algorithm having linear
complexity. In fact, we will also demonstrate that, within an important and natural
subclass of zero-error codes for the DTBDC, these codes are the largest for any given
code length. As an interesting particular instance of the model, the channel with
parameters N = 1, K = 1 will be treated separately. In this case it is shown that
the capacity is equal to the logarithm of the golden ratio, and that the constructed
codes give another interpretation of the Fibonacci numbers. As a consequence of the
optimality of the constructed codes, the zero-error capacity of the DTBDC will be
determined for arbitrary parameters N and K, and the properties of the capacity as
a function of these parameters will also be explored. Finally, we will also mention
several variations of the DTBDC, particularly in the context of discrete-time queues
with bounded waiting times, and discuss the zero-error capacity of these channels.

The results of this chapter are based on the following work:

e M. Kovacevi¢ and P. Popovski, “Zero-Error Capacity of a Class of Timing
Channels,” IEEE Trans. Inform. Theory, to appear.

Properties of information measures

The Shannon entropy and relative entropy are undoubtedly the two most fundamental
notions of information theory. These functionals have been studied for decades, and
have also found numerous applications in other scientific disciplines. In this thesis,
some basic properties of these and other information measures are studied over the
sets of probability distributions with fixed marginals.

In Chapter 4 we study the continuity questions related to Shannon and Rényi
entropy functionals in the case of countably infinite alphabets, as well as the existence
of extrema over the sets of distributions with given marginals. The Shannon entropy
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is shown to be uniformly continuous over these domains, unlike its general behavior
when there are no restrictions on the marginals. One of its extremal values is used
to define the so-called minimum entropy coupling, a notion that will turn out to be
useful in several respects. We will introduce a family of metrics based on the minimum
entropy couplings, study their properties and derive their relations to other important
metrics, such as the total variation distance. As a consequence of these results, it will
be shown that the conditional entropy H(Y|X) represents the distance between the
joint distribution of (X,Y") and the marginal distribution of the conditioning random
variable X. The properties of the so-called information projections, quantities that
arise in information-theoretic approaches to statistics, will also be investigated in this
chapter. We will prove that two transportation polytopes in the probability simplex
are homeomorphic under information projections whenever they are equivalent in a
certain geometric sense.

Chapter 5 is devoted to the analysis of the computational complexity of general
optimization problems related to the above-mentioned information measures. We
will show that the problems of (Rényi) entropy minimization and relative entropy
maximization are NP-hard. Mutual information, as an important particular instance
of relative entropy, will be analyzed separately. We will also study the special cases
of these problems obtained by restricting the marginal distributions, wherein the
minimum entropy couplings will again play an important role. These restrictions
will enable us to obtain connections between these and some well-known complexity-
theoretic problems, such as the SUBSET suM and the PARTITION. Finally, we will
prove the intractability of the maximization of a broad class of measures of stochastic
dependence, namely, of all those that satisfy the Rényi’s axioms.

The results presented in these two chapters are based on the following works:

e M. Kovacevi¢, 1. Stanojevié¢, and V. Senk, “On the Entropy of Couplings,”
submitted for publication.

e M. Kovacevié, I. Stanojevié, and V. Senk, “Information-Geometric Equivalence
of Transportation Polytopes,” submitted for publication.

e M. Kovacevi¢, I. Stanojevi¢, and V. Senk, “Some Properties of Rényi Entropy
over Countably Infinite Alphabets,” Probl. Inf. Transm., vol. 49, no. 2, pp.
99-110, Apr. 2013.

e M. Kovacevi¢, L. Stanojevi¢, and V. Senk, “On the Hardness of Entropy Min-
imization and Related Problems,” in Proc. IEEE Inform. Theory Workshop
(ITW), pp. 512-516, Lausanne, Switzerland, Sept. 2012.



Stochastic independence

The notion of independence is an extremely important concept introduced in many
forms in different areas of mathematics. Some of the more familiar examples include
linear independence, algebraic independence, independence of sets of edges in graphs,
etc. The theory of matroids has been developed to capture all these notions in a
unified and abstract way, and to provide a framework for studying their combinatorial
structure. The notion of stochastic independence, which is central to probability
theory and mathematical statistics, does not however fit into this framework because
the so-called “augmentation axiom” of matroids need not be satisfied by a set of
random variables.

The study presented in Chapter 6 of the thesis is motivated by this observation,
and is an attempt to define formally the structures that capture precisely the stochas-
tic independence. These structures are indeed very simple: D C 2 is a dependence
structure on a finite or countably infinite set .S, if it contains all singletons, and if it is
closed under the operation of taking subsets. We will prove that for any such D there
exists a set of random variables having this dependence structure and, furthermore,
having arbitrary marginal distributions.

The results of this chapter are based on the following work:

e M. Kovacevi¢ and V. Senk, “On Possible Dependence Structures of a Set of
Random Variables,” Acta Math. Hungar., vol. 135, no. 3, pp. 286-296, May
2012.
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Spaces of Multisets






Chapter 1
Permutation Channels and Subset Codes

In this chapter we introduce the permutation channel as an abstraction of the commu-
nication channel arising in several practical scenarios (packet networks, distributed
storage, etc.), discuss its relevance and establish some of its properties. We study
the problem of reliable information transmission over such channels and argue that
codes in the power set of the channel alphabet are appropriate in this context. Some
properties and examples of such codes will be given. The presented framework has
the advantage of unifying in a sense coding for networks based on random linear
network coding and those that are based on routing.

1.1 Introduction

In several practical scenarios communication channels occur that do not provide any
guarantees on the in-order delivery of the transmitted sequence of “symbols”. The
two most important examples are perhaps packet-switched networks based on routing
and systems for distributed storage. We formulate here a framework for forward error
correction in such channels [80] (see also [45, 46]). We are motivated by the work of
Kotter and Kschischang [72] in which the authors define the so-called subspace codes
and show that these codes, and particularly their constant-dimension versions, are
adequate constructions for error and erasure recovery in networks employing random
linear network coding (RLNC). The two frameworks turn out to be similar in many
respects. Indeed, most concepts defined in our model have natural analogs in the
subspace coding setting. On the other hand, there are some important differences
between the two models, one of which will lead to a somewhat surprising conclusion
that the codes for packet networks that are introduced here are equivalent to the
classical binary codes in the Hamming space.

Let us now state informally the basic idea behind both approaches. Consider a
network, abstracted as a communication channel, that acts on the transmitted packets
by some randomized transformation (not including errors, erasures, etc.). In the case
of RLNC networks, the channel transformation represents random linear combining
of the source packets. In the case of networks based on routing, the transformation
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corresponds to the random reordering of packets due to unpredictable delays over
different paths. The idea of sending information through such channels is very simple:
Encode the information in an object that is invariant under the given transformation.
This has led Kotter and Kschischang to the abstraction of the channel corresponding
to RLNC networks (the operator channel) and the definition of codes for such a
channel. In this case, the object invariant under random linear combinations of the
packets is the vector space spanned by those packets'. Hence, the “codewords” are
in this context taken to be subspaces of some ambient vector space.

In the case of networks that employ routing as a means for transmitting packets
between pairs of users, we need an object that is invariant under random permutations
of the packets. Such an object is a set. Therefore, a natural idea is to consider sets
of packets as “codewords” in this context. If A is the set of all possible packets, the
appropriate space in which such codes are to be defined is the set of all subsets of A,
denoted P(A). In the following, we provide precise definitions and properties of the
above-described channel and of codes in P(A).

1.2 The Permutation Channel

This section discusses in more detail the channel model considered throughout this
and the following chapter.

1.2.1 Motivation

Consider a packet-switched network in which a source node wishes to communicate
with a destination node (or with multiple destination nodes). We assume that a
message to be sent consists of a batch of packets (also called a generation) that are
“simultaneously” injected into the network. Due to varying topology and load, the
packets from the same batch can be sent over different routes in the network and,
as a consequence, they can be received in practically arbitrary order. This is espe-
cially true for, e.g., mobile ad-hoc networks where the topology is rapidly changing,
and heavily loaded datagram-based networks in which the packets are frequently
redirected in order to balance the load over different parts of the network. Apart
from random permutations, there are various other unwanted effects the network can
impose on the transmitted packets. We consider here three of them: substitutions,
deletions, and insertions. Substitutions (i.e., errors) are random alterations of packet
symbols caused by noise, malfunctioning of network equipment, etc. Packet deletions
correspond to the fact that some packets can be “lost” in the channel, in which case

LStrictly speaking, it is invariant only with high probability — if the transformation is full-rank.
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the receiver is unaware of them being sent?. They can occur for many reasons, finite
buffering capabilities of routers, router/link failures, etc. Packet insertions can be
thought of as a form of malicious behavior, where some user imitates the true source
of the data, and wants the receiver to misinterpret the data.

We should note also that the above-described scenario considers an end-to-end
network transmission model. Therefore, it is implicitly assumed that coding is done
on the transport or application layer.

Another scenario where a situation similar to the above occurs are distributed
storage systems. Namely, consider a user who wishes to store a large amount of
data by dividing it into pieces and placing the pieces on different servers. Naturally,
to protect the data from erasures (caused by, e.g., server failures) and errors, it is
assumed to be coded first. When collecting the pieces, the information about their
initial ordering is lost, and what is collected is essentially a random permutation of
the sequence of pieces initially stored.

Remark 1.2.1. Two obvious ways of restoring the original ordering of the pieces are
either to remember which piece is placed on which server, or to attach a sequence
number to each piece, the latter solution also being relevant for the networking ex-
ample above. These solutions are, however, not optimal, and a framework will be
proposed in the sequel which enables better constructions and in fact includes these
two as special cases. A

There are also several other contexts where a similar channel model arises, e.g.,
in data gathering in wireless sensor networks [116].

1.2.2 Definition

Let A= {0,1,...,n} be a finite alphabet with n + 1 > 2 symbols.

Definition 1.2.2. A permutation channel over A is a channel that takes sequences of
symbols from A as inputs, and for any input sequence outputs a random permutation

of this sequence. In other words, for an input sequence ¢ = (cl, cee C@), where ¢; € A
and ( € Z., is arbitrary, the output of the channel is € = (Cx(1), .- ., Cr(¢)), where 7
is chosen randomly from the set of all permutations over {1,...,¢}. A

An equivalent way of describing this channel is the following:

c=c-1II, (1.1)

2Tn the networking literature, the term “erasure” is also used in this context. We will use the
term “deletion” since it is more appropriate from the coding theory viewpoint. Note, however, that
erasures (in the usual sense) and deletions are essentially equivalent in the permutation channel,
because the position of the erased symbol in the original sequence cannot be deduced.
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where IT is a random /¢ x ¢ permutation matrix (a 0-1 matrix having exactly one 1 in
every row and every column). When written this way, it is clear that this is a special
case of the “random matrix” channel arising in random linear network coding [115].
We note, however, that (1.1) is only a symbolic notation; the alphabet A need not
have any algebraic structure, unlike in the RLNC.

As pointed out above, we will in fact consider a “noisy” version of the permu-
tation channel, where, in addition to random permutations, the channel is assumed
to impose other deleterious effects on the transmitted sequence, such as insertions,
deletions, and substitutions of symbols. Hence, most types of noise usually consid-
ered in the literature are included in the model. In certain cases, we will restrict to
deletions only, because such channels are also of practical interest. Namely, in the
scenarios described in Section 1.2.1, it is a frequent assumption that only deletions
can occur in the channel (apart from permutations) — it is understood that errors
are addressed by error-detecting and error-correcting codes at lower layers (link and
physical layer). Note that in this case we can again use the representation (1.1), but
now we have to assume that the matrix II is a random ¢ x (¢ — p) 0-1 matrix having
exactly one 1 in every column and at most one 1 in every row. The number of deleted
symbols p is also random.

Example 1.2.3. Let the transmitted sequence be ¢ = (cl7 . ,c5). Assume that
two of these five symbols are deleted in the channel, and the remaining three are
permuted in a certain order, according to the channel matrix:

0 0 1
1 0 O
m=|o o o (1.2)
0 1 0
0 0 O
Then the output sequence would be & = (cz, ¢4, c1). A

1.3 Codes in power sets

In this section we formulate a framework for defining and studying error-correcting
codes in the permutation channels. The main idea behind it has already been stated
in Section 1.1 and relies on the observation that sets are invariant under random
permutations imposed by the channel. It is therefore natural in this scenario to take
sets of symbols, i.e., subsets of the channel alphabet, as codewords.
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1.3.1 Subset codes

Let A be a nonempty finite set, and let P(.A) denote the power set of A, i.e., the set
of all subsets of A. A natural metric associated with this space is:

D(X,Y)=|X AY] (1.3)

for X,Y € P(A), where A denotes the symmetric difference of sets. It can also be
written as D(X,Y) = | XUY|—|XNY| = |X|+|Y]|-2|XNY]| =2|XUY |- |X|-|Y|.
This distance is the length of the shortest path between X and Y in the Hasse
diagram [19] of the lattice of subsets of A ordered by inclusion. It is analogous to the
subspace metric defined in [72]. This diagram plays a role similar to the Hamming
hypercube for the classical codes in the Hamming metric (actually, it is isomorphic
to the Hamming hypercube, see Section 1.3.3). Another convenient metric is given
by:
D'(X,Y)=max{|X \ Y], |V \ X|}. (1.4)

It can also be written as D’(X,Y) = max{|X|, |Y|}—|XNY| = | XUY |-min{| X |, |Y|},
and it is analogous to the injection metric for subspace codes [114]. In the following,
we will only use distance D and refer to it as the subset metric.

One can define codes in the space P(A) in the usual way. Namely, a subset code
C is simply a nonempty subset of P(A). Important parameters of such a code are its
cardinality, |C|, minimum distance:

min  D(X,Y), (1.5)
X,YEC, X#Y
maximum cardinality of the codewords:
max | X|, (1.6)
XeC

and the cardinality of the ambient set (i.e., alphabet), |A]. If C C P(A) has minimum
distance 9, and every codeword is of cardinality at most ¢, we say that it is a code
of type [log|A|,log]|C|,d; ] (the base of the logarithm is generally arbitrary; we will
assume that it is 2, and hence that the lengths of the messages are measured in bits).
If all codewords of C are of cardinality ¢, we say that it is a constant-cardinality code.
A significant advantage of constant-cardinality codes is that the receiver knows in
advance how many packets it needs to receive in order to initiate decoding, similarly
to the constant-dimension codes in projective spaces [72]. The rate of an [m, k, §; ¢
code is defined by: §
R = 7 (1.7)
In the context of packet networks as one of the intended applications of subset
codes, A will be the set of all possible packets, m = log |.A| the length of each packet,
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and ¢ the number of packets one codeword contains. The source maps information
sequence of length k bits to a codeword which is a set consisting of ¢ packets of
length m bits each, and sends these ¢ packets through a channel. In the channel,
these packets are permuted, some of them are deleted, some of them are received
erroneously, and possibly some new packets are inserted by a malicious user. The
receiver collects all these packets and attempts to reconstruct the codeword which
was sent and the information sequence which corresponds to this codeword.

We next prove a simple, but basic fact about the correcting capabilities of subset
codes.

Proposition 1.3.1. Assume that a code C C P(A) with minimum distance (with
respect to the subset metric) § is used for communication over a permutation channel.
Then any pattern of t errors, p deletions, and s insertions can be corrected by the
minimum distance decoder, as long as 2(p + 2t + s) < 4.

Proof. Let X € C be the set/codeword which is transmitted through the channel,
and let Y be the received set. If p packets from X have been deleted, and s new
packets have been inserted, then we easily deduce that | X NY| > |X| — p and
Y| < |X|— p+ s. Observe further that errors can be regarded as combinations of
deletions and insertions. Namely, an erroneous packet can be thought of as being
inserted, while the original packet has been deleted. Therefore, the actual number of
deletions and insertions is p + ¢ and s + ¢, respectively. We therefore conclude that
[XNY|>|X|—p—tand |Y|<|X|—p+s, and so

DX,)Y)=|X|+|Y|-21XNY|<p+2t+s. (1.8)

Now, if 2(p+ 2t +s) < §, then D(X,Y) < L‘sz;lj and hence X can be recovered from
Y. |

If only deletions can occur in the channel, we will have D(X,Y) = p and a
sufficient condition for unique decodability will be p < L‘S%lj

As Proposition 1.3.1 establishes, large enough minimum distance § ensures that
the sent codeword can be recovered for a certain level of channel impairments. There-
fore, this parameter is determined by the channel statistics, i.e., probabilities of packet
error/deletion/insertion, and packet delivery requirements (e.g., error probability).
Other code parameters, ¢ and m, are also determined by certain delivery require-
ments, such as delay, and by the properties of the network, such as the maximal
packet length. A general method for the construction of subset codes with specified
parameters, which reduces to the construction of binary codes, is described in Section
1.3.3. Another simple method, via packet-level block codes and sequence numbers,
is illustrated in the following subsection.
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Remark 1.3.2. Note that we are studying here “one-shot” codes, meaning that only
one codeword is used for transmitting information (see Section 1.4 for a discussion
on this assumption). In the case that such codes are being used, one can also give
another definition of the considered channel: It is a discrete channel with input and
output alphabets equal to P(A). The channel is completely described by its transition
probabilities (the probabilities of mapping the input subset X to the output subset Y,
for all X, Y € P(A)) which, on the other hand, are determined by the joint statistics
of errors, deletions, and insertions of the elements of A. A

1.3.2 Examples of subset codes

We now give a simple example of subset codes to illustrate the above definitions.

How does one encode information in a set? One possible solution (which is widely
used in practice) is to add a sequence number to every packet sent, thus achieving
resilience to arbitrary permutations. To illustrate this, assume that the source has
two packets to send, pg and p;. Note that, from the point of view of the receiver,
the sequence (pg,p1) is not the same as the sequence (p1,po); these two sequences
carry different information. In the permutation channel, however, either of these
two sequences can be received when (po,p;) is sent. The sender therefore sends
(qo, q1) instead, where g; = i o p; is the new packet formed by prepending a sequence
number to the packet p;. Note that sequences (go,q1) and (¢1,qo) are now identical
to the receiver because in both cases it will extract (pg, p1) and further process these
packets. This means that the carrier of information is actually a set {qo,q1} =
{0 o pg,1 0 p1}. This approach, combined with some classical packet-level error-
correcting code, provides an example of subset codes that we describe next.

Let A be the set of all packets the source can possibly send. Assume that |A| =
2™ so that we can think of information packets as having m bits. Assume further
that the source wishes to send k such packets, pg,...,pr—1 to a destination over
a network, i.e., over a permutation channel with errors, deletions, and insertions.
To protect the packets the source defines some packet-level block code C (see, e.g.,
[103]), and uses the corresponding encoder to map these k packets to £ > k packets,
qo,---,qe—1. To cope with the permutations in the channel, the source further adds
a sequence number of length log, ¢ bits® to every packet ¢;. This gives a subset
code Cg of type [m +log, £, km, §; ], where ¢ is its minimum distance whose concrete
value is irrelevant for this example. In words, the length of the packets is m + log, £
bits, there are 2™ possible information sequences (and hence the same number of
codewords), and each codeword consists of £ packets. The rate of the code is therefore

_ km
R = £(m+log, £)°

3Tor notational simplicity we disregard the fact that the actual length is [log, £].
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Remark 1.3.3. Note that the decoding procedure for C is the same as for C once the
codeword of C is recovered by using sequence numbers. Note also that recovering
(q1,...,qe¢) from {loq,...,Loqs} reduces deletions to erasures, while insertions and
substitutions are reduced to errors. Namely, if i0g; has been deleted, the receiver will
be able to deduce that the symbol at the i’th position is missing. Similarly, if jog; has
been inserted and the receiver now possesses two symbols with the sequence number 7,
it will choose one at random, possibly resulting in an error at the j’th position. Hence,
when subset codes constructed in this way are used, the permutation channel with
insertions, deletions, and substitutions, reduces to the classical discrete memoryless
channel with errors and erasures. A

To further clarify the above arguments, assume that the Reed-Solomon (RS) code
is used as a packet-level block code in the above scenario. Namely, the message to be
sent (k packets, po, ..., pr—1, of length m bits each) is being regarded as a polynomial
of degree at most k — 1 over the field Fom:

k—1
u(z) = szzl (1.9)
=0

The codeword represents the sequence of evaluations of this polynomial at ¢ fixed
different points in Fom. Denote these points by ag,...,as_1, so that the codeword
is u(ag),...,u(ag—1). The resulting code has minimum (Hamming) distance ¢ —
kE+ 1 [91]. Now, u(w;)’s are being treated as packets (these are the g;’s from the
previous paragraph), and each packet is being added a sequence number ¢ (index
of the point of evaluation of the message polynomial). As already explained, these
sequence numbers enable the receiver to recover from permutations, but also from
deletions and insertions because it can keep track of evaluation points. Finally, the
codeword corresponding to the information sequence (po,...,pr—1) is a set U =
{iou(a;):i=0,...,£—1}. Since two polynomials v and v of degree k —1 can agree
on at most k — 1 different points, we conclude that [U NV| < k — 1 and therefore
d(U,V) > 2(¢ — k+1). Thus, we have defined a constant-cardinality subset code of
type [m + logy €, km,2(¢ — k + 1); /], and rate:
km
R= s i ion D) (1.10)
This code is a subset analog of the Kotter-Kschischang subspace code [72] designed
for RLNC networks.
Even though RS codes are maximum distance separable [91], subset codes ob-
tained in this way are not. Namely, adding a sequence number is not an optimal
way of encoding information in a set (though this suboptimality is not a concern
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in practice for sufficiently large packet lengths m, because sequence numbers only
take a couple of bytes in the packet header). The other reason for non-optimality is
that these codes are constant-cardinality codes; larger codes can be obtained if one
allows codewords of different cardinality. This is analogous to the relation of general
subspace codes in projective spaces and constant-dimension codes [44].

1.3.3 Equivalence to binary codes

Let A ={0,...,n} be a nonempty finite set with an implied ordering of its elements,
and observe the space {0,1} ! of all binary sequences of length |.A| (denoted also
24). Each binary sequence x € 24 defines a subset X C A containing elements
defined by the positions of ones in x. As is well-known, this mapping of subsets to
binary sequences is an isomorphism between groups (P(A),A) and (24, ®), where
@ denotes the XOR operation (addition modulo 2). Furthermore, it is easy to show
that the Hamming distance between two sequences x,y € 2 is precisely the subset
distance between the corresponding subsets X,Y C A:

dy(x,y) =wy(x®y)=|X AY|=D(X,Y), (1.11)

where wy denotes the Hamming weight of a sequence. In other words, this mapping
is also an isometry between metric spaces (P(A), D) and (24, dy). This means that
subset codes in fact represent only another way to look at classical codes in the binary
Hamming space, and vice versa. In other words, the study of subset codes and their
properties reduces to the well-known theory of binary codes. Constant-cardinality
codes are then equivalent to constant-weight binary codes. Finally, we note that
the classical binary codes corresponding to [m, k, d; £] subset codes have parameters
(2™, k,9).

The above reasoning, though quite elementary, has an important implication. It
shows that classical codes developed for binary channels (such as the Binary Symmet-
ric Channel) define in a very natural way codes for correcting errors, deletions, and
insertions in networks. Consequently, many familiar constructions of binary codes
can be applied to subset codes.

Example 1.3.4. Let A = {0,1,2,3}. Any subset of A can be identified by a binary
sequence of length 4; for example {0,1} + 1100, {1,3} « 0101, etc. Consider now
some code in {0,1}%, e.g., C = {1100,1010,0110,0011}. The subset counterpart
of this code is then Cs = {{0,1},{0,2},{1,2},{2,3}}. The distance between two
subsets of A is the Hamming distance between the corresponding binary sequences,
for example:

D ({0,1},{0,2}) = [{1,2}] = 2 = d,(1100, 1010) (1.12)
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so that all properties of C directly translate into equivalent properties of the subset
code Cs. The code Cs is a constant-cardinality code of type [2,2,2;2]. A

Apart from the code construction itself, the analogy between subset codes and
binary codes can be used for the analysis of the transmission of a subset through
a channel. Namely, an equivalent way of describing that X was sent and Y was
received, is that the binary word (zo,...,z,) was sent (through the corresponding
binary channel) and (yo, . .., y,) was received, where:

1, ieX
€Ty =
0, i¢X,

is the indicator function of X, and similarly for y;. Insertion of an element j ¢ X to
X corresponds to the 0 — 1 transition in the binary channel, i.e., z; = 0 and y; = 1.
Similarly, deletion of an element j from X corresponds to the 1 — 0 transition,
and a substitution corresponds to both transitions (at different positions) as it is
essentially a combination of an insertion and a deletion. Consider further the special
case when only deletions can occur in the channel. It is easy to conclude from the
above discussion that this channel is equivalent to the so-called Z-channel in which
the crossover 1 — 0 occurs with probability p (the probability of deletion), while the
crossover 0 — 1 never occurs. The analysis of subset codes and the corresponding
permutation channel with deletions is thus reduced to the analysis of binary codes
and the binary Z-channel, respectively. Note that, for both of these channels we can
design a binary code with appropriate parameters. The difference is that, in the
binary channel we send a codeword (binary sequence) itself, while in the subset case,
what we send through the channel are the positions of ones in this codeword.

(1.13)

1.4 Some practical considerations

To conclude this chapter, we give several comments on subset codes and the channel
model that could be relevant for their analysis in practical scenarios.

Comments on binary codes

One constraint on the binary codes corresponding to [m, k, d; ¢] subset codes should
be pointed out. Namely, “practical” subset codes will certainly require that ¢ < 2™,
i.e., that the number of packets in one codeword is much smaller than the number
of all possible packets. This means that binary codes corresponding to (practically
feasible) subset codes will only have small weight codewords. Moreover, the fact that
binary codes corresponding to [m, k, d; £] subset codes have exponential length (2™)
places additional complexity constraints on the code design.
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Comments on the channel model

The links in networks can generally be unreliable. For example, if a large packet is
sent over a wireless link, it is highly probable that it will be hit by an error, i.e., that
at least one of its bits/symbols will be received incorrectly. Furthermore, this error
probability increases with the packet length m. In such a scenario it can happen (with
fairly high probability) that all of the packets from the sent codeword are erroneous,
in which case XNY = ) and reliable recovery is impossible. Subset codes alone do not
provide a good protection from errors in such cases. One way to solve this problem is
to additionally protect each packet with its own error correcting code. This solution
is in agreement with current networking practice. Namely, as already noted, we treat
here an end-to-end network model and hence assume that (subset) coding is done on
the transport or application layer. In most networks, packets on lower layers (e.g.,
link and physical layer) include some error correcting/error detecting codes (such
as LDPC codes for error correction combined with CRC codes for error detection).
These codes effectively create a channel that we treat here, namely, they keep the
link-layer packet error probability at a “reasonable” level.

Packet insertions also deserve a comment regarding possible practical applications
of subset codes. In general, by inserting enough packets an adversary can always
prevent the receiver from correctly decoding the received set. Thus we also assume
in our model that the number of insertions is relatively small, or at least that it
behaves as a random variable whose parameters we can estimate and then design
the code with respect to this estimated channel statistics. This may not be the case
in practice because insertions inherently represent deliberate interference, but our
assumption can certainly be achieved by a proper authentication protocol; that way
the receiver will recognize and disregard (most of) the inserted packets. That is to
say that subset codes do mot provide any cryptographic protection; insertions are
treated here because they naturally fit in the model, along with deletions and errors.

We note that the above comments on errors and insertions are also valid for
subspace codes in network coded networks.

Finally, we conclude this section with a brief comment on the definition of the per-
mutation channel. Namely, we have assumed that the reordering of symbols/packets
is completely random, regardless of their number. In realistic scenarios, however,
reordering can be limited to one generation of packets. If this is the case, the corre-
sponding subset code would be used for transmitting each of the generations, while
some classical code could potentially be used over multiple generations in order to
provide additional protection. In other words, the channel could in such scenarios be
modeled as a discrete memoryless channel with input and output alphabet P(A).






Chapter 2

Multiset Codes

In this chapter, a natural generalization of the framework introduced in Chapter 1 is
presented [79]. Namely, we argue that the appropriate space in which error-correcting
codes for the permutation channel should be defined is the set of all multisets over
the channel alphabet. We provide examples of such codes, and derive some of their
basic properties, among which their equivalence to integer codes under the Manhattan
metric. We also study the existence of perfect multiset codes over arbitrary alphabets.

2.1 Codes in spaces of multisets

As discussed in the previous chapter, when communicating through the permuta-
tion channel, one cannot recover any information that is contained in the order of
symbols. Hence, the only carrier of information should be the symbols themselves,
i.e., the fact that some symbol occurs or does not occur in a given codeword. The
framework presented in Chapter 1 is motivated precisely by this simple observation.
One of the main disadvantages of the resulting codes, however, is that the length of
the code and its minimum distance are bounded by the cardinality of the channel al-
phabet. Therefore, subset codes of arbitrary minimum distance (and hence arbitrary
correction capability) cannot be defined.

In this chapter we generalize the notion of subset codes by observing that the
most general object invariant under permutations is not a set, but a multiset (a set
with repetitions of elements allowed). The resulting multiset codes offer potentially
significant code rate improvements over subset codes and, furthermore, codes of ar-
bitrary length and minimum distance can be defined over any alphabet in this case.
Allowing the codewords to contain multiple copies of their elements is also quite nat-
ural — any interesting classical code over a finite alphabet contains codewords with
multiple occurrences of some symbols.

2.1.1 General framework

A multiset is defined with a set of elements it contains and numbers of occurrences of
each element in the set. The number of occurrences of an element, called its multiplic-
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ity, is assumed to be finite. Let A = {0,1,...,n} be the channel alphabet, as before.
Let M(A) denote the collection of all multisets over A, and M (A, ¢) the collection
of all multisets over A of cardinality ¢. Operations on M (.A), such as union, intersec-
tion, difference, etc., are straightforward extensions of the corresponding operations
on sets. It is easiest to illustrate them on a simple example.

Example 2.1.1. Let X = {1,2,2,2,3} and Y = {1, 2,2, 3, 3,4} be two multisets over
A=1{0,1,2,3,4}. Then XNY ={1,2,2,3}, XUY ={1,2,2,2,3,3,4}, X\Y = {2},
Y\ X = {3,4}. The cardinality of X and Y is |X| =5, |Y| = 6, respectively. A

Codes in the space M(A) are defined analogously to the codes in P(A).

Definition 2.1.2. A multiset code over A is a nonempty subset of M(A). If C C
M(A, ), we say that C is a constant-cardinality code. A

Note that M(A) is an infinite space. It is always assumed, however, even if not
explicitly stated, that a multiset code is finite. In particular, we have in mind multiset
codes with an upper bound on the cardinality of the codewords, which is a reasonable
constraint from the “practical” point of view. In any case, we will mostly deal with
constant-cardinality! codes where this issue does not arise.

It is easy to see that D and D’ defined in (1.3) and (1.4) are metrics on M(A), and
that D(X,Y) =2D'(X,Y) for X, Y € M(A, /). In parallel with subset codes, we will
say that a code C C M(A) with minimum distance ¢ and codewords of cardinality
at most £ is of type [log|.A|,log|C|,d;¢]. The rate of an [m, k,d;¢] multiset code is
again defined as R = % We also note that Proposition 1.3.1 remains valid in the
multiset case.

As we have demonstrated in the previous chapter, there are many parallels be-
tween subspace [72] and subset codes, which provide a unified (to some extent) view
on coding for RLNC networks and networks employing routing in network nodes (see
in particular [46], where a unifying framework based on matroids was given, and
[68, 22] for a general approach via lattices). Multiset codes, however, do not appear
to have a natural analog in the vector space setting.

2.1.2 Examples of multiset codes

We next describe a simple construction which yields an example of a multiset code
(that is not a subset code). The construction mimics the standard way of obtaining
codes for permutation channels by prepending sequence numbers to symbols (see
Section 1.3.2).

LConstant-cardinality property is desirable because the receiver knows how many symbols it
expects to receive and hence the protocol is somewhat simplified.
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Let C be a “classical” code over a finite alphabet A’ with ¢ symbols, |A’| = ¢q. For
any codeword p = (p1,...,p¢) € C, we create a sequence (ty,...,ts) by prepending
sequence numbers to the symbols of p, but in such a way that runs of identical symbols
in p are given the same sequence number. For example, the sequence (a,a, b, b, ¢, b),
where a, b, c € A’, is mapped to (1oa, loa,20b,20b,30¢,40b). The obtained sequence
is invariant under permutations, and it is easily concluded that this procedure yields
a multiset code C, over A = {1,...,¢} x A’. The decoding procedure for C,, is the
same as that for C once the codeword is recovered from the sequence numbers. Note
that recovering p from {i; o p1,...,is o ps} reduces deletions to deletions, insertions
to either insertions or substitutions, and substitutions to substitutions (i.e., errors).
Namely, if the symbol i; 0p; has been deleted, the receiver cannot deduce (in general)
which symbol has been deleted because there could have been multiple copies of this
or some other symbols. Similar reasoning applies for the other cases. Therefore, the
code C has to be resilient to insertions, deletions, and substitutions.

Finally, let us determine the parameters of Cy, from those of C. Let C have param-
eters (¢, k,6,), meaning that its length is ¢, it has ¢* codewords, and its minimum
Levenshtein distance is d;, (Levenshtein distance is the relevant distance measure for
insertion/deletion channels [84]; it is defined as the minimum number of insertions
and deletions needed to transform one sequence to the other). Then it is not hard
to conclude that the code Cy, is of type [log g/, klog q, 0y; €], where &, > 6. As noted
above, one possible decoding procedure for C is to first use the sequence numbers
to obtain the correct ordering of symbols, and then apply the decoding algorithm for
C to the resulting sequence. If this procedure is used, then the number of insertions
and deletions which can be corrected is at most L‘&—;lj, and therefore, the “effective
minimum distance” of the code is §,.

As a final note here, we would like to stress that the above construction merely
serves as an illustration of a constant-cardinality multiset code, and is far from being
optimal. The general method of construction that can be used is via the correspond-
ing constant-weight integer codes in the Manhattan metric (see Section 2.2).

2.1.3 Comparison of subset and multiset codes

As we have already discussed, generalization to multisets is both necessary and nat-
ural. Namely, only in this generalized framework can codes for the permutation
channel of arbitrary length and minimum distance be defined. This is necessary for
channels with small alphabets, as well as for any meaningful asymptotic analysis.
Even if we restrict our attention to codes whose length is bounded by the cardi-
nality of the alphabet, multiset codes can offer a significant code rate improvement
over subset codes, which is a consequence of them simply being defined in a bigger
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space:
M(A, 0)] = (”j@ > (”;1) _1P(A,0)], (2.1)

for ¢ > 1. It is difficult, however, to give precise estimates for the ratio of the rates of
multiset and subset codes for given code parameters because tight bounds on these
codes are not known. Instead, following [45], we only give the asymptotic ratio for
the codes with (the smallest possible) minimum distance 2. This means that the
observed codes are in fact entire spaces M(A,¢) and P(A,¢). The ratio of the rates
of such codes is:

Ry _ log|M(A,0) 02)

Ry log[P(A,0)] '
Taking the length of the code to be £ = A(n+ 1), A € (0,1), and using the familiar
Stirling bounds for the binomial coefficients [91, Ch. 10, Lemma 7], we obtain:

RM h(li)\)
lim 2 — (1 2.
By e S VIR (2:3)

where h is the binary entropy function. This function grows from 1 to oo as A goes
from 0 to 1. Taking, for example, A = 1/2, we find that the ratio is approximately
1.37.

2.2 Equivalence to integer codes

The isomorphism between subset codes and binary codes, which has many important
consequences (see [45, 80]), also has an appropriate generalization in the multiset
framework. Namely, multiset codes turn out to be equivalent to integer codes under
the so-called Manhattan metric. We demonstrate below this equivalence and describe
several code constructions that are based on it.

2.2.1 Geometric representation of multiset codes

Multisets over an alphabet A can be described by their multiplicity functions in the
same way as the subsets of A are described by their characteristic functions (in fact,
that is how multisets are usually defined formally [4]). The multiplicity function of
a multiset X over A is a mapping my : A — Z.,, such that mx(x) represents the
number of occurrences of x in X. Clearly, a multiset is a set if and only if the range of
its multiplicity function is {0, 1}. Operations on multisets can be expressed in terms
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of their multiplicity functions, for example:

mMxuy = max{]mx, ITHY}7
mxny = min{my,my }, (2.4)

my\y = max{0,mx —my},

while the cardinality of a multiset is expressed as:
X =) mx(z). (2.5)
=0

If the alphabet is A = {0,1,...,n}, the multiplicity function of a multiset X is
uniquely specified by a sequence (mx(0),...,mx(n)) € Z*{* and hence, the space
M(A) is essentially equivalent to the space ZZ}'. Further, the distance D between
multisets is equal to the ¢; distance (also known as the Manhattan metric) between
the corresponding integer sequences:

D(X,Y)=[XAY[=)|mx(z) — my(z)|. (2.6)
x=0

Therefore, multiset codes are basically just another interpretation of the codes in
Z’;O“ under the Manhattan metric. Constant-cardinality codes are then equivalent
to the codes on the “sphere”:

A} ::{(mo,...,xn) DXy € Ly, inzﬁ}, (2.7)
i=0
which can also be seen as the discrete version of the standard n-simplex.

2.2.2 Codes in the discrete simplex

When discussing codes in A}, we will understand that the following metric is used:
1 1o

d(X,Y)=§||X—YH1 :§Z|$i—yi|’ (2.8)
i=0

where x = (zo,...,2n), ¥ = (Y0, --,Yn). We have seen in (2.6) that this metric is the
equivalent of (1.4) in Z2{', apart from the constant 1/2 (which is clearly insignificant,
but is convenient because ||x — y||; is always even for x,y € A}). It is particularly
useful to represent the metric space (A}, d) as a graph with |A}| = ("'y) vertices,
and with edges connecting vertices at distance one. This representation allows one to

visualize the space under study, as well as codes in this space, at least for n = 1,2. For
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example, the graph representation of A? is a triangular grid graph (it is a “triangle”
cut out from the hexagonal lattice, see Figure 2.1), and balls under the metric d in
this graph are “hexagons”, perhaps clipped if the center of the ball is too close to the
edge.

Remark 2.2.1. Note that in this setting the dimension of the code space depends on
the size of the alphabet (n 4 1), not on the length of the code (¢). This stands in
sharp contrast with most other coding scenarios. A

Let us describe one concrete construction of codes in the simplex. Let:
CA(”‘?& 6) = (26 + 1) ) ?’7 (29)

where ¢/ = £/(2e 4+ 1) (assumed to be an integer). Here the notation (2e + 1) - A},
means that every coordinate of every point in A}, is multiplied by 2e + 1. In words,
we take a simplex A}, of weight ¢ = ¢/(2e + 1), where ¢ is the desired code length
and e the desired error-correction radius, and then “stretch” it to obtain a code in
A}. Tt is straightforward to show that the minimum distance of the code Ca(n, ¥, e)
is 2e + 1, and hence its error-correction radius is indeed e. Figure 2.1 illustrates the
code Ca of length 10 and error-correction radius 2 over a ternary alphabet.

Figure 2.1: The code Ca(2,10,2). Black dots represent codewords; dots belonging to a
gray region comprise the decoding region of the corresponding codeword.

Though the construction is very simple, these codes appear to be quite good.
Their size is [Ca(n, £, e)| = |A%| = (1), where ¢/ = £/(2e + 1).
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Note also that the construction (2.9) suggests a very simple decoding algorithm:
Divide every coordinate of the received sequence by 2e+1, and round it to the nearest
integer. In symbolic notation, if £ € A}, is the “information sequence” to be sent,
x = (2e + 1)& the corresponding codeword that is actually transmitted, and y the
received sequence, then the decoding algorithm outputs the following estimate of &,

denoted é:
£ y
&= {26+J’ (2.10)

where | ] is the nearest integer of o € R (breaking ties arbitrarily). If the obtained
& does not belong to A}, either a decoding failure is declared, or a nearby point in
A}, is selected, possibly resulting in an error.

Proposition 2.2.2. Let x = (2e +1)§ for some & € A}, where ¢’ = {/(2e+1) is an
integer, and let y € A} with d(x,y) <e. Then E=¢.

Proof. Denote x = (xo, . ,zn) =(2e+1)- (fo, .. ,fn) and y = (yo, . ,yn). If
d(x,y) < e, then |z; —y;| < efor all i, and hence &; = |y;/(2e+1)] = |z;/(2e+1)] =
& [ |

Returning to the original terminology, the above proposition establishes that any
pattern of ¢ < e errors (substitutions) in the permutation channel can be corrected
by using the multiset code Ca(n, ¢, e) and the above decoding algorithm.

Remark 2.2.3. We have in fact proved a stronger claim — The algorithm will correctly
decode any y (not necessarily from the simplex A}) with max;{|y; — z;|} < e. In
other words, the decoding regions are balls under the ¢, distance. The ¢, balls in
A} are identical to the ones defined by d for n = 1,2, but are larger than them in
higher dimensions (i.e., over larger alphabets). A

2.2.3 Codes in the generalized Johnson space

We describe below another simple method of construction of multiset codes. It relies
on classical binary codes and is completely analogous to the construction of subset
codes described in Section 1.3.3.

Observe the space {mg,m;}" ™ N A7, where n + 1 is the cardinality of the al-
phabet and mg,m; € Zs,, mg # my. (For this space to be nonempty, we must
have amg + (n + 1 — a)my = ¢ for some a € {0,...,n + 1}.) In other words, we
consider the restriction of the set of all multisets of cardinality ¢ to those having only
two possible multiplicities of their elements, my and m;. Clearly, the sequences in
{mo,ml}”+1 N A} are binary sequences with “symbols” mg,mi. Let x; denote the
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binary 0-1 sequence obtained from x € {mq, m;}"* N A} by replacing m; with 1.
Then it is easy to see that:

1
d(X7 Y) = §|m1 - m0| ! dH(Xbayb)' (2]‘1)

Therefore, the space under consideration under the metric d is essentially equivalent
to the space of all binary 0-1 sequences of specified length and weight, equipped with
the Hamming metric (the so-called Johnson space). Codes in {mg, m1}" "' N A} can
then be constructed by the familiar methods for classical binary codes. Namely, if C
is a constant-weight binary code (in the Johnson space) with parameters (n + 1, k, §)
and codeword weights w, then by the above construction we would obtain a multiset
code Cy, with parameters [log(n+1), k, |m1—mo|0; €], where £ = wmy + (n+1—w)my.
In the special case when my = 0, we obtain C,, with parameters [log(n+1), k, m14;¢],
where ¢ = wmy. Note that such a code is a “repetitive” subset code — it is obtained
by repeating m; times every symbol of every codeword of a subset code Cs.

2.3 Perfect multiset codes

The study of perfect codes is a classical, and perhaps one of the most attractive topics
in coding theory. The best studied case are certainly codes in the Hamming metric
spaces [91, 30, 87, 121, 134, 16, 43], as they are historically the first codes that were
introduced and are most relevant in practice. There are various other interesting
examples in the literature, however, such as perfect codes under the Lee metric
[9, 5, 41, 50, 58, 57, 113], Levenshtein metric [85, 21], codes in projective spaces [44],
Grassmanians [28, 93], etc. Delsarte’s conjecture [37] on the non-existence of perfect
constant-weight codes under the Johnson metric has also inspired a lot of research,
and still remains unsolved [104, 39, 111, 42, 51, 40]. Many of these problems can be
regarded as particular instances of the general theory of perfect codes in distance-
transitive graphs [17] (but not all cases of interest fit into this framework). In this
section we investigate perfect codes in discrete simplices of arbitrary dimension [81].
As discussed in the previous section, codes in such spaces arise naturally in the
context of error correction in the permutation channels.

Notation and terminology

Let (S,d) be a finite metric space with an integer-valued metric d, and C C S an
error-correcting code.
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Definition 2.3.1. C is said to be e-perfect, e € Z,, if balls of radius e centered at
codewords are disjoint and cover the entire space:

B(x,e)NB(y,e) =0 forevery x,y€C, x#Yy, (2.12)

and
U B(x,e) =, (2.13)
x€eC
where B(x,e) = {w € 5 : d(x,w) < e} is the decoding region of the codeword x. In
other words, every element of .S is at distance < e from exactly one codeword. A

Clearly, every singleton C = {x} is diam(S)-perfect and S itself is 0-perfect. We
are interested here only in nontrivial perfect codes — those with |C| > 2 and e > 1.

Let n,f € Zs,. The space under consideration here is the discrete simplex (2.7)
endowed with the metric d defined in (2.8). The diameter of A} under d is clearly /.
Note that for x,y € A} we can also write:

d(x,y) = Z (i —yi) = Z (yi — ;). (2.14)

T;>Y; z; <Y;

Codes in this space have not been analyzed before. Perfect codes under ¢; distance
seem to have been studied only in the integer lattice Z" (as periodic extensions of
the codes under the Lee metric), see e.g. [50, 58, 41].

As we have illustrated in Section 2.2.2; it is convenient to represent the metric
space (A7, d) as the corresponding graph®. Unfortunately, the resulting graph is not
distance-transitive and the general methods developed for such graphs [17] cannot
be applied.

Main results

The following theorem summarizes the main contributions presented in this section.
Its proof is given in the following subsections.

Theorem 2.3.2. Lete > 1.

(1) Nontrivial e-perfect code in (A}, d) exists for every £ > 2e+ 1. Such a code has

(%W codewords.

(2) Nontrivial e-perfect code in (A?, d) exists if and only if £ = 3e+1. Furthermore,
there are exactly two such codes in AgeH, each having three codewords.

3) Nontrivial e-perfect code in (A}, d), n > 3, does not exist for any e and . W
‘

2In the graph theoretic literature, 1-perfect codes are also known as efficient dominating sets
(see, e.g., [10]).
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In the original terminology this can be restated as follows:

(1) Nontrivial e-perfect multiset code of length ¢ over a binary alphabet exists for

every £ > 2e + 1. Such a code has (;:jrﬂ codewords.

(2) Nontrivial e-perfect multiset code of length ¢ over a ternary alphabet exists if
and only if £ = 3e + 1. Furthermore, there are exactly two e-perfect multiset
codes of length 3e 4+ 1, each having three codewords.

(3) Nontrivial e-perfect multiset code of length £ over a g-ary alphabet, q > 2, does
not exist for any e and /.

In addition to the existence proofs, we will also enumerate all perfect codes in
one- and two-dimensional simplices.

2.3.1 Binary alphabet

One-dimensional case is simple to analyze. The space
A}:{(z—t, £ t:O,...,E} (2.15)

can be represented as a path with |A}| = £+ 1 vertices, the leftmost vertex being
(6, O) and the rightmost (0, Z) for example (see Figure 2.2).

Since the diameter of (A},d) is ¢ and any two codewords of an e-perfect code
must be at distance > 2e + 1, nontrivial code can exist only if £ > 2e + 1. It is not
hard to conclude that a perfect code exists for any such ¢ (see also [10] for the case
e = 1). Figure 2.2 provides an illustration of such a code, and Proposition 2.3.3 lists
all perfect codes in Aj.

O ] O O ] O O  J O

Figure 2.2: 1-perfect code in A} (n=1,{=38,e=1).

Proposition 2.3.3. Let { = q(2e + 1) + 7 for some ¢ > 1, 0 < r < 2e+ 1. Then
there are exvactly M = min{r + 1,2e + 1 — 1} > 0 perfect codes in A}, each having
q+1= {2@&1] codewords. Let also s = min{r,e}. Then all perfect codes in A} can
be enumerated as:

c{’”’={(£—s+m—1—z’(2e+1), s—m+1+i(2e+1)) z:o,...,q}, (2.16)

form=1,... M.
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Proof. Considering the geometry of the space A} and the corresponding graph, it is
clear that a perfect code has to be of the form:

{(z—j—z’(2e+1), j+i(2e+1))}, (2.17)

for some fixed j, and for ¢ ranging from 0 to some largest value. Namely, once we
have fixed the “leftmost” codeword (¢—j, j), all the other codewords are determined
by the fact that neighboring codewords have to be at distance 2e + 1 from each
other. In that way we ensure that the decoding regions are disjoint and that all
intermediate points are covered. Therefore, to prove that C{™ are perfect, i.e., that
the entire A} is covered, it is enough to show that the endpoints (¢, 0) and (0, ¢)
are covered. Assume that r < e, in which case M = r + 1 and s = r. Then
0<s—m+1<r <e, and hence the vertex (6, 0) is at distance < e from the
codeword (€—s+m—1, s—m—l—l). Similarly, 0 < r—s+m—1 < r < e and therefore
the vertex (0, () is at distance < e from the codeword (r—s+m—1, {—r+s—m+1)
(obtained for ¢ = ¢ in (2.16)). Similar analysis applies when r > e. This proves that
the codes C{™ are perfect.

It is left to prove that (2.16) lists all perfect codes in A}. Assume that r < e. In
that case the “leftmost” codeword of C{™ is (Kfrerfl, rferl), m=1,...,r+1.
Therefore, we have found r+1 codes with “leftmost” codewords (E, O), cee (6—7‘, r).
Suppose that we try to construct another perfect code by specifying (E—r— k, 7“+k),
k > 0, as its “leftmost” codeword. Since the end point (¢, 0) has to be covered, we
can assume that £ < e —r. Then its “rightmost” codeword is obtained by shifting
for i(2e + 1) and is therefore either (2¢ +1—k, ¢ —2e—1+k) (for i = ¢ —1) or
( —k, £+ k) (for ¢ = q). The second case is clearly impossible, and the first fails to
give a perfect code because the point (0, f) does not belong to a decoding region of
some codeword (its distance from the “rightmost” codeword is 2e+1—k > ¢). Again,
the proof is similar for r» > e. [ |

2.3.2 Ternary alphabet

Consider now the two-dimensional simplex AZ. Recall (Section 2.2.2) that the graph
representation of this space is a triangular grid graph (we assume that the left-
most vertex corresponds to (¢, 0, 0), the rightmost to (0, ¢, 0), and the top to
(0, 0, ¢)), and that balls under the metric d in this graph are “clipped hexagons”.
Hence, we need to examine whether a perfect packing of hexagons is possible within
this graph, i.e., whether there is a configuration of hexagons covering the entire graph
without overlapping. We first briefly discuss some properties of AZ that will be useful.

Observe that, given some x € A2, we can express any point y € AZ by specifying
a path from x to y in the corresponding graph. The first node on this path, call
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it x’, is a neighbor of x, the second node is a neighbor of x’, etc. The neighbors
of x = (9, 1, x2), i.e., points that are at distance 1 from it, are obtained by
adding 1 to some coordinate of x, and —1 to some other coordinate. A convenient
way of describing neighbors and paths in A? is as follows. Define the vector f; ;,
i,7 € {0,1,2}, to have a 1 at the ’th position, a —1 at the j’th position, and a 0 at
the remaining position. For example, {51 = (1, -1, 0). Clearly, f; ; = —f;; and by
convention we take f; ; = (O, 0, O). These vectors describe all possible directions
of moving from some point, and hence any neighbor x’ of x can be described by
specifying the direction, namely x’ = x+f; ; (see Figure 2.3). Therefore, any y € A?
can be expressed as:

y:x—i-Zai,jfi,j (218)
1,7
for some integers a; ; > 0.
x+151 x+f20

O
x+1o2 x+fi,

Figure 2.3: Neighbors of x in AZ.

If d(x,y) = d, then there exists a representation of this form with »_, ;a; ; = 4.
Another way to write this is:

Yy =X+ (so, s1, 52) (2.19)

where »".s; =0 and ), [s;| = 20.

The following lemma will also be used in the sequel. The statement is illustrated
in Figure 2.4, and its generalization will be given in the following subsection (see
Lemma 2.3.10 and Remark 2.3.11).

Lemma 2.3.4. Let x,y,w € A? be such that d(x,w) = d(y,w) = e+ 1, d(x,w +
fo.1) = e, and d(y,w+f10) = e. Then there can be no z € A? such that w € B(z,e),
B(x,e) N B(z,e) =0 and B(y,e) N B(z,e) = 0.

Let us elaborate on the meaning of this lemma. Suppose we have two codewords
(x,y) and a point w lying outside their decoding regions. Since we are trying to build
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a perfect code, the point w has to belong to a decoding region of a third codeword
z. The lemma asserts that if w is bounded by B(x,e) and B(y,e) in some direction,
say fo,1 (recall that f; o = —fj 1), then such a codeword cannot exist, and therefore
x and y cannot be codewords of a perfect code.

ol )
O
O

\
O
@
Q
]

Figure 2.4: Illustration of Lemma 2.3.4 and Lemma 2.3.8.

Proof. The point z has to be at distance e from w. (If the distance were larger,
the ball B(z,e) would not contain w, and if it were smaller this ball would intersect
B(x,e) and B(y,e).) We can therefore write:

Z =W+ Z Oéi,jfiJ (220)
i,J

where a;; > 0 and ), ;o ; = e. Assume that ag2 > 0 (the proof is similar if any
other «; ; is assumed strictly positive). Since fy o = fy 1 + f1 2, we can write:

z=w+f1+f 2+ (ag2— D2+ Z oy 15

(4,3)#(0,2) (2.21)

=w+fo+ Zﬁi,jfi,ja
4,J
where, 3; ; > 0 and Z” Bi,; = e, and therefore d(z,w + f51) = e. But we also
have d(x,w + f51) = e by assumption, and therefore B(x,e) N B(z,e) # 0, which is
a contradiction. ]

We now proceed with proof of the main claim, namely the (non)existence of
perfect codes. If £ = 3e + 1, then it is not hard to exhibit a perfect code (see Figure
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2.5). In fact, there are exactly two such codes:

cg>={(26+17 e, 0), (0, 2¢+1, ¢), (e, 0, 2e+1)}
(2.22)
e = {(2e 1, 0. ¢). (e, 241, 0), (0. ¢, 2e+1)}.

O

Figure 2.5: 2-perfect code (C{”)in A2 (n=2,0=7,e=2).

Proposition 2.3.5. Codes C" and C” are e-perfect in A3, .

Proof. Observe C5". The distance between any two codewords of this code is 2e + 1,
and hence balls of radius e around them do not overlap. It is left to prove that the
entire space is covered. Let w = (wo, w1, wa) € A, ;. Assume that wy < e and
wy > e (there must exist coordinates with these properties because their total sum
is 3e + 1). It is now simple to show that the distance between w and the codeword
(0, 2e +1, e) is at most e, for example by writing out (2.8) and considering three
cases (a) e<wy <2+ 1, wo+wy >2e+1, (b)) e<w <2e+1, wy+w <2e+1,
and (¢) wy > 2e + 1. [ |

In the following we prove that these are the only two perfect codes when ¢ = 3e+1,
and that there are no perfect codes for £ # 3e + 1. We start by observing the vertex
(6, 0, 0). For this vertex to be covered there must exist a codeword of the form:

x=(0—t, z1, x2) (2.23)
with 1 + 2o =t < e. Observe now the point

v={—-z1—e—1, z1+e+1, 0). (2.24)
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(Needless to say, we assume that v € A%, i.e., that vg = {—x1 —e—1 > 0; otherwise,
the diameter of A? would be ¢ < 2e and no nontrivial perfect code could exist.) We
have d(x,v) = e+ 1 and so the point v is not covered by B(x, e). To cover it we need
another codeword y with d(v,y) = e and d(x,y) = 2e + 1.

Lemma 2.3.6. Let x,v € A2 be given by (2.23) and (2.24), respectively. Then the
point y € A? satisfying d(v,y) = e, d(x,y) = 2e + 1 is of the form:

y={—-z1-2—1, z1+e+1+u, e—u) (2.25)
with 0 < wu < e, and with the property that:
2 >0=>u=e (2.26)

Proof. Let y = (é —x1—2e—1+s, 1, y2) for some s € Z. If s < 0 we have
d(v,y) > vg—yo = e—s > e which contradicts one of the assumptions of the lemma.
We next show that the assumption s > 0 also leads to a contradiction. We can
assume that zo > yo; otherwise, the vertex (¢, 0, 0) would be covered by both x
and y. We can also assume that s < z1, for otherwise we would have xg—yg < 2e—t,
and since the sum of the remaining x;’s is ¢t it would follow that:

d(x,y) = Z (Ti —yi) = @0 —yo + Z (zi — i)
;>4 >0, 2, >Yy;

ng*yOJFin < 2e.
>0

(2.27)

Now, since vg—19 = e—s < e and y3 > vy = 0, we must have v1—y; = z1+e+1—y; =
s in order to achieve d(v,y) = e (see (2.14)), and hence:

y1=x1—s+te+1>e+1>ux, (2.28)

where the first inequality follows from the above assumption that s < x;. Since
Yo < xo and y; —x; = e+ 1 — s, in order to have d(x,y) = 2e + 1 we must have
Y2 — T2 = e + s. But this is impossible because

yr— 22 <yp=L—yo—y1 =e<e+ts, (2.29)

where we have used (2.28). We thus conclude that s must be zero. In that case we
have vg — yo = e, and since d(v,y) = e, we must also have y; > v = 21 + e+ 1.
This shows that y is necessarily of the form (2.25). To prove the last part of the
claim observe that yo < g, y1 — 1 = e+ 1 4+ u, and d(x,y) = 2¢ + 1 imply that
Yo — o = e —u when u < e. But since yo = e — u, this can only hold if 2o = 0
whenever yo > 0. |
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Assume therefore that we have two codewords of the form (2.23) and (2.25), and
observe the point

w = (E—t—e—l7 1+ u, max{xg,y2}+1), (2.30)

where yo = e—u. (Here again we assume that wy > 0 because otherwise the diameter
of A? would be ¢ < 2e.) To show that w € AZ, consider two cases: 1.) zo > 0; by
(2.26) this implies that y» = ¢ —u = 0 and max{x2,y2} = 22, wherefrom }, w; = ¢,
2.) &g = 0; in this case t = x; and max{xs,y2} = y» = e — u, so we again have
>, w; = £. Furthermore, we have that d(x,w) = d(y,w) = e + 1. This is shown
easily by considering the above two cases. Namely, if zo > 0, then yo = e—u =10
andsoy=({—z1—2e—1, z1+2+1, 0),w=({—t—e—1, z1+e€, z2+1),
and by (2.14) the statement follows. The case x5 = 0 is similar.

We will need the following claim in the sequel. The statement is geometrically
quite clear, but we also give a formal proof.

Lemma 2.3.7. Let x,y,w € A? be such that d(x,w) = d(y,w) = e+ 1, d(x,w +
fr)) =dx,w+f,, ) = d(y, w+1fy ) = e. In words, w is outside the decoding regions
of x and 'y, but its neighbors along three consecutive directions (see Figure 2.3) are
not. Then the point z such that w € B(z,e), B(x,e) N B(z,e) = B(y,e) N B(z,e) =0
lies on the direction f) ;, = —f},;, i.e., z =w + ef} 1.

Proof. The point z with the desired properties has to be at distance e from w because
otherwise the ball around it would either not contain w, or would intersect the balls
around x and y. We are claiming that necessarily z = w + ef} . Suppose that this
is not true and that we have a representation z = w + >, - ;f; ; (a;; > 0 and
Ei’j a;; = e) with oy, > 0 for example (the proof is similar for the other cases).
Since f; ;, = fi 1, + fi.m, we can write z = w + fj, ,, + Z” Bi,;fi ; where B; ; > 0 and
>i; Bi,j = e. We conclude that d(z, w +fj,m) = e. But since also d(y, w + i) = e
by assumption, we get B(y,e) N B(z,e) # (), which is a contradiction. |

Lemma 2.3.8. Let x,y € A? be given by (2.23) and (2.25), respectively. Let also
either a.)t <e, orb.)t=cbut 0 <z <e. Then x andy cannot be codewords of
an e-perfect code.

Proof. Assume first that o > 0. Then, as noted above, y = (E —x1—2e—1, z1+
2¢ + 1, O), w = (E—t—e—L r1 + e, mg—i—l). Furthermore, w + f5 ; = (E—t—
e, r1+e—1, xg—i—l) and w+f; g = (6—t—e—2, r1t+e+1, x2+1). By using (2.14)
we easily find that d(x,w) =d(y,w) =e+1and d(x,w+1f1) =d(y,w+fi9) =e
(for the last equality we need the fact that either ¢t < e, or ¢t = e but x; > 0). Hence,
by Lemma 2.3.4, we conclude that there exists no codeword z whose decoding region
contains w and is disjoint from the decoding regions of x and y.



2.3. Perfect multiset codes 37

Assume now that xo = 0. If w > 0, then x = (£ —x1, X1, 0) y = (€ — ] — 2e —
1, 1 +e4+u-+1, e—u), w = (E—atl—e—l, 1 + u, e—u+1), w+fo, =
(ﬁ—xl—e, r1t+u—1, e—u—l—l), and w+f, o = (6—%1—6—2, r1+utl, e—u—I—l). We
therefore again have d(x,w) = d(y,w) = e+1 and d(x,w+1fy 1) = d(y,w+fio) =e,
and by Lemma 2.3.4 the conclusion follows.

Finally, if 2o = 0 and w = 0, then y = (f—ml—Qe—l, r1+e+1, e), W = (E—xl—e—
1, 1, e+1), w1y o = (6—1131—67 1, e), w0 = (f—ml—e—L r1+1, e), and
w+f o= (f—xl—e—2, x1+1, e—l—l). Therefore, we have d(x, w) = d(y,w) = e+1.
d(x,w+fy2) = e, and d(y, w+f1 o) = d(y, w+f1 ) = e. By Lemma 2.3.7 we conclude
that the codeword z covering w has tobe z = w+efy | = (Efxlfefl, r1—e, 26+1),
but this is impossible because we have assumed that x; < e and therefore the second
coordinate of z is negative. |

The previous lemma shows that either (E —e, €, O) or (é —e, 0, e) must be
a codeword if the vertex (6, 0, O) is to be covered, and similarly for the other two
vertices (0, £, 0) and (0, 0, Z). This proves that the codes given by (2.22) are the
only perfect codes in A3, ;. It is left to prove that for ¢ # 3e + 1 perfect codes do
not exist.

Proposition 2.3.9. There are no e-perfect codes in A? for { # 3e + 1.

Proof. The proof is illustrated in Figure 2.6, but we also give here a more formal
version. By the above arguments, we can assume that x = ({—e, 0, e) is a codeword.
Observe the point v = (6*6*1, e+1, O). By Lemma 2.3.6 we conclude that for v to
be covered we must take y = (6—26—1, 2e+1, O) to be a codeword. Hence, we must
have ¢ > 2e+1 for the perfect code to exist. Now observe w = (f— 2¢—1, e, e+ 1).
We have d(x,w) = d(y,w) = e+ 1 and so there must exist a third codeword z
covering w. Note also that d(x,w + fo1) = d(x,w + fo2) = dly,w+f12) = ¢
and so by Lemma 2.3.7 we conclude that z has to be of the form w + ef;, i.e.,
zZ = (€ —3e—1, e, 2e+ 1). Therefore, we must have ¢ > 3e + 1 for the perfect code
to exist. The case £ = 3e + 1 has been settled, so assume that £ > 3e + 1. Next,
observe the point u= ({—3e—2, 2e+1, e+1). We have d(z,u) =d(y,u) =e+1
and d(x,u) = 2e + 2. Therefore, to cover u we need a fourth codeword q. Since
d(z,u+fo1) =d(z,u+1fs;) =d(y,u+fy2) = e, by Lemma 2.3.7 we conclude that
q= (8—46— 2, 3e+1, e+ 1) (and so we must have ¢ > 4e+1). Finally, observe the
point p = (ﬂ —3e—2, 3e+2, O). Its distance from the codewords x,y, z, q is easily
seen to be > e, and therefore we need another codeword to cover it. However, since
d(q,p) =d(y,p) =e+1and d(q,p+fr0) = d(q,p+f21) = d(y,p +fo,1) = e, this
codeword would (by Lemma 2.3.7) have to be p + ef; 5 = (6 —3e—2, de+2, fe)
which is impossible. |
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Figure 2.6: Proof of Proposition 2.3.9.

2.3.3 Larger alphabets

We now turn to the higher-dimensional case.

As in two dimensions, given some x € A}, we can always express the point
y € A} by specifying a path from x to y. This is formalized by using the vectors
f; j, as before (the n-dimensional vector f; ; has a 1 at the ¢’th position, a —1 at the
j’th position, and zeros elsewhere, e.g., fo1 = (1, —1, 0, ..., 0)). Namely, for any
y € A} we can write:

y=X + Z ai,jfi,j7 (231)
.3

for some integers ; ; > 0. If d(x,y) = 6, then there exists such a representation of y
with 37, - @ ; = d. We call two directions f; ; and fj; orthogonal if {7, j} N {k,1} = 0,
i.e., if there is no coordinate at which both of them are nonzero.

The following claim is a generalization of Lemma 2.3.4 to higher dimensions. Sup-
pose we have two codewords (x,y) and a point w lying outside their decoding regions.
The lemma asserts that if w is bounded by B(x, e¢) and B(y, e) in some direction, say
fo,1, then the codeword z covering w has to lie in the subspace orthogonal to fj 1,

i.e., it must be of the form:
zZ =W+ (07 0, s2, ..., sn) (2.32)
where ). s; =0 and ), [s;| = 2e.
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Lemma 2.3.10. Let x,y,w € A} be such that d(x,w) =d(y,w) =e+1, d(x,w +
f0.1) = e, and d(y,w + f10) = e. Then the point z such that w € B(z,e), B(x,e) N
B(z,e) =0 and B(y,e) N B(z,e) = 0 must have a representation of the form:

Z =W+ Z Oé