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Preface

The nonlinear Schrödinger equation (NLS) is a model for various physical phenom-
ena. For example, the cubic Schrödinger equation is a model for propagation of
pulses in optical fibers. In three dimensions it represents the dynamics of interacting
Bose gases. Other applications are related to gravitational small amplitude waves
and the dynamics of quantum plasma. This is an important equation of quantum
physics, so it is natural to examine singular initial conditions, such as the Dirac delta
function. The cubic equation with the delta potential is a model for Bose – Einstein
condensates.

The topic of the research is the cubic defocusing equation in two and three di-
mensions, with and without potential. The equation without potential is studied
primarily in Sobolev spaces, where it has the property of energy conservation. In the
dissertation we will deal with singular initial conditions and examine the existence
and uniqueness in the Colombeau algebra. The equation with the delta potential is
not studied in the classical sense, but its significance is seen in a large number of
papers on solitons and explicit solutions. We will also study the Hartree equation
with the delta potential in three dimensions in the Colombeau algebra and compare
results with the existing ones.

The Colombeau algebra is suitable for examining nonlinear phenomena. Also, the
delta function makes this problem difficult to observe in the classical Sobolev space.
Introducing a net of solutions gives a tool for studying different kinds of convergence,
so it can be useful in connecting singular and less singular solutions.

This dissertation is based on the results from [DN19]. We will demonstrate existence
and uniqueness in the Colombeau algebra, also compatibility with the H2 solution
for the equation without potential. Specifically, if we have an initial condition in the
Sobolev space (and here we know that there is well – posedness), we can construct a
regularized equation. We prove that the net of solutions of this regularized equation
converges to a H2 solution. For the equation with the delta potential we further
show existence and uniqueness in the appropriate Colombeau algebra. Since well –
posedness in a Sobolev space is not known, we do not have a candidate for the limit
of the net of the regularized equation. Finally, for the Hartree equation with the
delta potential we have well - posedness in the fractional Sobolev space, so the goal
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is to investigate well – posedness in the Colombeau algebra and then to examine
whether there is compatibility, that is convergence of the net of solutions towards
this “classical” solution.

Predgovor
Nelinearna Šredingerova jednačina (NLS) je model za različite fizičke fenomene.
Na primer, kubna Šredingerova jednačina je model za propagaciju pulseva u op-
tičkim vlaknima. U tri dimenzije, ona oslikava dinamiku interakcije Boze gasova.
Druge primene su povezane sa gravitacionim talasima male amplitude i dinamikom
kvantne plazme. Ovo je važna jednačina kvantne fizike, te je prirodno ispitati singu-
larne početne uslove, kao što je Dirakova delta funkcija. Kubna jednačina sa delta
potencijalom je model za Boze - Ajnštajnove kondenzate.

Tema ovog istraživanja je kubna defokusirajuća jednačina u dve i tri dimenzije, sa
i bez potencijala. Jednačina bez potencijala je proučavana primarno u prostorima
Soboljeva, gde ima svojstvo očuvanja energije. U disertaciji ćemo se baviti singu-
larnim početnim uslovima i ispitati postojanje i jedinstvenost u Kolomboovoj algebri.
Jednačina sa delta potencijalom nije proučavana u klasičnom smislu, ali njen značaj
ogleda se u velikom broj u radova na temu solitona i eksplicitnih rešenja. Takodje
ćemo proučiti Hartrijevu jednačinu sa delta potencijalom u tri dimenzije u Kolombo
algebri i uporediti rezultate sa postojećim na tu temu.

Kolombo algebra je pogodna za ispitivanje nelinearnih fenomena. Takod̄e, delta
funkcija čini ovaj problem teškim za posmatranje u klasičnim prostorima Soboljeva.
Uvod̄enje mreže rešenja daje alat za proučavanje različitih vrsta konvergencije, te
može biti korisno u povezivanju singularnih i manje singularnih rešenja.

Disertacija je bazirana na rezultatima iz [DN19]. Pokazaćemo postojanje i jedin-
stvenost rešenja u Kolombo algebri, kao i kompatibilnost sa H2 rešenjem za jed-
načinu bez potencijala. Preciznije, ako ima početni uslov u prostoru Soboljeva (gde
znamo da važi dobra postavljenost problema), možemo konstruisati regularizovanu
jednačinu. Dokazaćemo da mreža rešenja regularizovane jednačine konvergira ka
H2 rešenju. Za jednačinu sa delta potencijalom ćemo predstaviti dokaz postajanja i
jedinstvenosti rešenja u odgovarajućoj Kolombo algebri. Pošto je dobra postavljenost
ovog problema u prostorima Soboljeva nepoznanica, nemamo kandidata za graničnu
vrednost mreže rešenja regularizovane jednačine. Konačno, za Hartrijevu jednačinu
sa delta potencijalom imamo dobru postavljenost u frakcionom prostoru Soboljeva,
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te je cilj ispitati dobru postavljenost u Kolomboovoj algebri, a zatim i pokazati
kompatibilnost, to jest konvergenciju mreže rešenja ka ovom "klasičnom" rešenju.
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Introduction 1
In this work we concentrate on partial differential equations related to the equation
that made Erwin Schrödinger famous and earned him the Nobel prize in 1933.
Schrödinger (1887-1961) was an Austrian physicist and one of the several individuals
who have been called "the father of quantum mechanics". In 1926 he published a
paper in which he presented the linear equation, often written as

i}
∂

∂t
ψ = Hψ.

This paper was very influential in most areas of quantum mechanics. He went on to
write four papers in a series and these papers were his central achievement.
Schrödinger is also famous for devising a thought experiment - the Schrödinger’s
cat, during a course of discussions with Albert Einstein. The scenario describes a
paradox of a cat that can simultaneously be alive and dead and is a problem related
to interpretation of quantum mechanics. It remains useful as a tool to compare and
evaluate modern interpretations of quantum mechanics.

Today, a large body of theory exists on various types of Schrödinger equations. We
are interested in the nonlinear ones and specifically in the theory of well - posedness.
An interesting question is what will happen if an initial condition is very singular, or
if the equation itself contains singular terms? Is there existence and uniqueness in
these cases in certain spaces? Also, can these singular solutions be approximated
with functions that are more regular? We hope to answer affirmatively to these
questions.

1.1 Motivation and Problem Statement

We shall consider three Cauchy problems, the cubic equation:

iut +4u = u|u|2,

u(0) = a
(1.1)
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the cubic equation with the delta potential:

iut +4u = u|u|2 + δu,

u(0) = a
(1.2)

and the Hartree equation with a delta potential:

iut +4u = (w ∗ |u|2)u+ δu,

u(0) = a
(1.3)

The solution is a complex function of x and t: u = u(x, t), where t ∈ R, representing
time, and x ∈ Rn, where we consider mainly n = 3, but in some cases also n = 2.
Also, w : Rn → R is a measurable function.

These equations are considered dispersive: intuitively, different frequencies tend to
propagate at different velocities, thus dispersing the solution over time. In contrast
to this, in the wave equation all frequencies move with the same velocity whereas
the heat equation is considered dissipative, frequencies do not propagate but instead
simply attenuate to zero. A solution to a linear Schrödinger equation iut +4u = 0
is in the form

u(x, t) = Aeiκx−iwt

where the coefficients satisfy the dispersion relation

w = κ2,

see [Tao06] and [Whi11] for more details.

Classical solutions of equation (1.1) have been studied extensively in the framework
of Sobolev Hs spaces, where s is at least 0. For a summary of these results see
[Bou99]. This equation is called defocusing, whereas the equation iut+4u+u|u|2 =
0 is called focusing. The critical regularity for global existence of solutions of (1.1)
in three dimensions is in Hs for s > 4

5 , as is shown in [Col+04], for two dimensions
it is s ≥ 1

2 , see [FG07]. Also, it was shown in [KPV+01] that the one-dimensional
cubic Schrödinger equation with the delta function as initial data is ill-posed in the
class L∞([0,∞),S ′(R)).
On the other hand, there are no classical results in dimensions higher than one for
the equation (1.2), but its significance as a model for Bose-Einstein condensates with
a well potential is reflected in the large amount of papers regarding solitons, bound
states and approximate solutions of (1.2), see for example [GHW04], [Le +08] and
[HMZ07]. This motivates our study of the problem of singular solutions.
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There are several papers dealing with the Schrödinger equation in the setting of
the Colombeau algebra of generalized functions. In [Hör11], Hörmann solved the
Cauchy problem in Rn for the linear Schrödinger equation with variable coefficients,
provided the coefficients and initial data are generalized functions. In [Hör16], the
convergence properties of regularized solutions to the linear equation were studied.
In [Bu96], Bu showed that the cubic one-dimensional Schrödinger equation has a
unique generalized solution.

Recently in [MOS18], well - posedness of the problem (1.3) in fractional Sobolev
spaces was shown. It is of interest to us to see how this translates to a different type
of setting, namely the Colombeau algebra which we will introduce in Chapter 2.

Equations (1.2) and (1.3) contain a product of the delta distribution and a function
u. This product is a distribution if u is a smooth function. It is not defined for general
distributions u, and this is one of the reasons of using a Colombeau type algebra.
The delta function was first introduced by Paul Dirac in 1930. It is used to model
the density of an idealized point mass or point charge as a function equal to zero
everywhere except for zero and whose integral over the entire real line is equal to
one

1.2 Thesis Structure

In Chapter 2 we present the basic definitions, inequalities important for our work
and also the function spaces needed for the analysis. This chapter includes the
description of the Colombeau algebra - the setting we later use for the well-posedness
problem.

In Chapter 3 we present the theory of semilinear Schrödinger equations, following
the works of Cazenave, Bourgain and many other authors that contributed to the
field. This includes basics of semigroups of operators, Strichartz inequalities, and
well - posedness of these equations in various spaces. We also give a description of
previous results related to the three equations of interest.

In Chapter 4 we present original results published in the paper [DN19] and con-
cerning the existence and uniqueness of the solution for the two cubic equations
(1.1) and (1.2). We show that the singular solution of (1.1) is compatible with the
classical H2 solution.

In Chapter 5 we state the theory of singular (fractional) Sobolev spaces and results
of well - posedness of the Hartree equation shown in [MOS18]. We prove a similar
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result in the setting of Colombeau algebra and discuss connections between solutions,
these are the results from [DI21].

Chapter 6 is a summary of all of the results from the thesis. We discuss possible
future work and future tasks.
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Notation, definitions, function
spaces

2

2.1 Notation and basic definitions

With R, N i C we denote the set of real, natural and complex numbers, respectively.
With N0 we denote the set N ∪ {0}.

For x ∈ Rn and multi - indices α = (α1, . . . , αn) i β = (β1, . . . , βn) we use the
standard notation:

• |α| = α1 + · · ·+ αn,

• α+ β = (α1 + β1, . . . , αn + βn),

• α ≤ β ⇐⇒ αi ≤ βi, 1 ≤ i ≤ n.

• xα = (xα1
1 , ..., xαnn ).

Then, ∂αx = ∂α1
x1 . . . ∂

αn
xn , 1 ≤ i ≤ n. If there is no risk of confusion we use just ∂α for

the derivative in x ∈ Rn. Derivative in the time variable of the function u is often
denoted by ut, otherwise we use ∂

∂t . Scalar product of vectors x and ξ is given by
x · ξ = x1ξ1 + . . . xnξn.

Let Ω ⊂ Rn open. For f : Ω→ C we define support in the following way

supp f := {x ∈ Ω : f(x) 6= 0}.

We further list basic function spaces used throughout the thesis.

• C(Ω) is the space of continuous functions on Ω.

• Ck(Ω), k ∈ N is the space of k-times continuously differentiable functions on
Ω.

• C∞(Ω) is the space of smooth functions Ω, that is C∞(Ω) =
⋂
k∈N0 C

k(Ω).

• C0(Ω) is the space of continuous functions with compact support.
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• C∞0 (Ω) (or D(Ω)) is the space of C∞ compactly supported functions f : Ω→
C.

• L(X,Y ) is the space of linear, continuous mappings (operators) from X to Y
and L(X) the space of linear operators from X to X.

• By X ′ we denote the dual of X, i.e. the space of linear mappings f : X → C.
For u ∈ X the action of the linear functional f ∈ X ′ is denoted by 〈f, u〉.

Furthermore, a linear unbounded operator on a Banach space X is a pair (D(A), A),
where D(A) is a linear subspace of X (the domain) and A is a linear mapping
D(A)→ X. We say that A is bounded if there exists c > 0 such that ‖Ax‖ ≤ c‖x‖,
x ∈ D(A). Otherwise, it is not bounded. Note that a linear unbounded operator
can be either bounded or not bounded. If A is a linear operator with dense domain
(D(A) = X) and X is a Hilbert space, then

G(A∗) = {(v, ϕ) ∈ X ×X; 〈ϕ, u〉 = 〈v, f〉 ∀(u, f) ∈ G(A)}

defines A∗ – the adjoint. Its domain is

D(A∗) = {v ∈ X : ∃c <∞, |〈Au, v〉| ≤ C‖u‖, ∀u ∈ D(A)},

and A∗ satisfies
〈A∗v, u〉 = 〈v,Au〉 ∀u ∈ D(A).

We say that f(ε) ∼ g(ε) if lim
ε→0

f(ε)
g(ε) = c > 0. We use . when inequality holds up to

a positive constant:

f(ε) . g(ε) if f(ε) ≤ cg(ε), c > 0

and c does not depend on ε.

The big O notation is also used. One writes

f(ε) = O(g(ε)), ε→ 0,

if there exists M > 0 and ε1 > 0 such that

|f(ε)| ≤Mg(ε), ∀ε ≤ ε1.

6 Chapter 2 Notation, definitions, function spaces



2.2 Space of distributions and Sobolev spaces

Let Ω ⊂ Rn open. For 1 ≤ p <∞ define

Lp(Ω) = {f : Ω→ C |
∫

Ω
|f(x)|pdx <∞},

with the norm
‖f‖Lp =

( ∫
Ω
|f(x)|pdx

) 1
p .

For p =∞ define

L∞(Ω) =
{
f : Ω→ C

f is Lebesgue measurable and there is a constant C
such that |f(x)| ≤ C for almost all x ∈ Ω

}
,

with the norm

‖f‖∞ = inf{C : |f(x)| ≤ C for almost all x ∈ Ω}.

If there is no risk of confusion we denote ‖ · ‖p = ‖ · ‖Lp . For all 1 ≤ p ≤ ∞ spaces
Lp(Ω) are Banach; they are reflexive for 1 < p <∞, and separable for 1 ≤ p <∞.
As usual, we identify two functions that coincide a.e. on Ω.

We say that a function is locally integrable (u ∈ L1
loc(Ω)) if its Lebesgue integral is

finite for any compact subset of Ω.

By D′(Ω) we denote the space of distributions: linear functions u : D(Ω)→ C, that
is u : ϕ 7→ 〈u, ϕ〉 such that for every compact set K ⊂ Ω there exist m ∈ N and
C > 0 so that

|〈u, ϕ〉| ≤ C sup
|α|≤m

sup
x∈Ω
|∂αϕ(x)|,

for all ϕ ∈ D(Ω) such that suppϕ ⊂ K. We have that un → u in D′(Ω) if and only if
the weak star convergence holds:

〈un, ϕ〉 → 〈u, ϕ〉 in C, ∀ϕ ∈ D(Ω).

Every u ∈ L1
loc(Ω) is a regular distribution, meaning that

∫
Ω uϕ, for ϕ ∈ D(Ω) is a

distribution. The derivative of a distribution is defined in the following way:

〈∂αu, ϕ〉 = (−1)|α|〈u, ∂αϕ〉.

Any distribution has derivatives of arbitrary order in D′(Ω) and moreover ∂α is a
continuous operator D′(Ω) 7→ D′(Ω). This is a useful fact when solving approxi-
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mately linear differential equations, since it means that if a sequence of solutions
converges in the space D′(Ω) then the limit is also a solution of the equation.

Let u ∈ L1
loc(Ω). If there exist vα ∈ L1

loc(Ω) such that vα = ∂αu in D′(Ω), then vα is
the called the weak derivative of u and is denoted by ∂αu.

Let n ∈ N. We define the space of rapidly decreasing functions:

S(Rn) = {φ ∈ C∞(Rn) : ‖φ‖k,l <∞ ∀k ∈ N0, l ∈ N0}

where
‖φ‖k,l = sup

x∈Rn
(1 + |x|2)k/2

∑
|α|≤l
|Dαφ(x)|

is a semi-norm. A sequence {φj}∞j=1 ⊂ S converges in S to φ ∈ S iff

‖φj − φ‖k,l → 0, for j →∞ and all k, l ∈ N0.

By S′(Rn) we denote the space of linear, continuous maps u : S(Rn) 7→ C, also
called the space of tempered distributions. We further define the Fourier transform
for φ ∈ S(Rn):

φ̂(ξ) = (Fφ)(ξ) = (2π)−n/2
∫
Rn
e−ixξφ(x)dx, ξ ∈ Rn.

Also
φ̌(ξ) = (F−1φ)(ξ) = (2π)−n/2

∫
Rn
eixξφ(x)dx, ξ ∈ Rn

is the inverse transform for φ. The Fourier transform is a bijective, linear and
continuous map from S(Rn) to S(Rn) and from S′(Rn) to S′(Rn). It is also unitary
on L2(Rn). For a tempered distribution T it is defined in the following way

〈T̂ , ϕ〉 = 〈T, ϕ̂〉, ϕ ∈ S(Rn).

Fourier transform is a linear operation and some other important properties are

i) F(f ∗ g) = f̂ · ĝ and F(f · g) = f̂ ∗ ĝ;

ii) F(∂αf) = (iξ)αf̂ and F((−x)βf) = ∂β f̂ ;

iii) δ̂(ξ) = 1 and as a consequence S ∗ δ = S for any S ∈ S′(Rn).

We now give the definition and present some properties of Sobolev 1 spaces. For
proofs of the theorems, see [AF03].

1Sergei Sobolev (1908-1989), a Soviet mathematician
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Definition 2.2.1. Let m ∈ N0 and 1 ≤ p ≤ ∞. The space

Wm,p(Ω) = {u ∈ Lp(Ω) : ∂αu ∈ Lp(Ω) for 0 ≤ α ≤ m}

where ∂α is the weak derivative, is called the Sobolev space.

This is a normed vector space, with the norm given by:

‖u‖p,m,Ω := (
∑
|α|≤m

‖∂αu‖pp)1/p for 1 ≤ p <∞,

‖u‖m,∞ := max
0≤|α|≤m

‖∂αu‖∞.
(2.1)

An equivalent norm is

‖u‖p,m,Ω :=
∑
|α|≤m

‖∂αu‖p for 1 ≤ p <∞,

‖u‖m,∞ :=
∑
|α|≤m

‖∂αu‖∞.
(2.2)

Definition 2.2.2. Wm,p
0 (Ω) is the closure of C∞0 (Ω) in Wm,p(Ω) with respect to the

norm (2.1).

Wm,p
0 (Ω) is sometimes referred to as the Sobolev space of zero boundary values.

Indeed, under some additional assumptions, functions from Wm,p
0 (Ω) are zero on

the boundary ∂Ω. For example, we have the following theorem (Theorem 9.17.
from [Bre10]):

Theorem 2.2.3. Suppose Ω is open and of class C1. Let

u ∈W 1,p(Ω) ∩ C(Ω), 1 ≤ p <∞.

Then the following properties are equivalent

• u = 0 on ∂Ω,

• u ∈W 1,p
0 (Ω).

Theorem 2.2.4. The space Wm,p(Ω) is a Banach space for every 1 ≤ p ≤ ∞. Wm,p(Ω)
is reflexive for 1 < p <∞ and separable for 1 ≤ p <∞.

2.2 Space of distributions and Sobolev spaces 9



On the space Hm(Ω) = Wm,2(Ω) we can define a scalar product:

(u, v)Hm =
∑

0≤|α|≤m
(Dαu,Dαv)L2 =

∑
0≤|α|≤m

∫
Ω
Dαu Dαvdx,

and therefore Hm(Ω) is a Hilbert space. There also holds

Theorem 2.2.5. Wm,p(Rn) = Wm,p
0 (Rn) for 1 ≤ p <∞.

Furthermore, we have several useful embedding theorems and we will use the
following (Corollary 9.13. from [Bre10]):

Theorem 2.2.6. Let m ≥ 1 be an integer and p ∈ [1,∞). We have

Wm,p(Rn) ⊂ Lq(Rn), where 1
q

= 1
p
− m

n
if 1
p
− m

n
> 0,

Wm,p(Rn) ⊂ Lq(Rn) ∀q ∈ [p,∞) if 1
p
− m

n
= 0,

Wm,p(Rn) ⊂ L∞(Rn) if 1
p
− m

n
< 0

and all these injections are continuous. Moreover, if k = [m− n
p ], where [] denotes the

integer part, we have for all u ∈Wm,p(Rn),

‖∂αu‖L∞ ≤ C‖u‖Wm,p ∀|α| ≤ k. (2.3)

In particular, Wm,p(Rn) ⊂ Ck(Rn).

We will mostly use that in 3 dimensions and for p = 2 we have 1
2 −

m
3 < 0⇔ m > 3

2 ,
for m ≥ 2, and that the functions in Wm,2(R3) are bounded. In this case, there also
holds that these functions tend to zero when |x| → ∞. This is due to the fact that
the space C∞0 (R3) is dense in Wm,p(R3) w.r.t. the Sobolev norm, but because of
the continuous injection it is also dense w.r.t. the supremum norm, meaning that a
function from Wm,2(R3) is a uniform limit of a sequence from C∞0 (R3) and hence
has to tend to zero, when x tends to infinity.

We get an alternative definition of Hm = Hm(Rn) via the definition of these spaces
for real indices.

Definition 2.2.7. For arbitrary s ∈ R by Hs(Rn) we denote the space of tempered
distributions u for which

u ∈ Hs(Rn) ⇐⇒ (1 + |y|2)s/2û ∈ L2, y ∈ Rn.
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Let Hs = Hs(Rn) for s ∈ R. There holds

Hs1 ⊂ Hs2 , for −∞ < s2 ≤ s1 <∞

and particularly
Hs1 ⊂ Hs2 ⊂ L2, for 0 ≤ s2 ≤ s1 <∞.

The norm in the space Hs is given by

|u|s = ‖(1 + |y|2)s/2û‖L2 , y ∈ Rn (2.4)

and the scalar product by

[u, v]s =
∫
Rn
û(y)¯̂v(y)(1 + |y|2)sdy, u, v ∈ Hm, y ∈ Rn. (2.5)

Again,

Definition 2.2.8. Hs
0(Rn) is the closure of D(Rn) in Hs(Rn).

We have the following properties

Theorem 2.2.9. Let s ∈ R. The spaces Hs with the scalar product (2.5) are Hilbert.
There holds

S(Rn) ⊂ Hs(Rn) ⊂ S′(Rn)

and S(Rn) is dense Hs.

Theorem 2.2.10. The space Hs, s ∈ R is reflexive and separable.

There is also a duality result:

Theorem 2.2.11. The dual of Hs is H−s and the dual norm coincides with | |−s.

Finally, we introduce spaces

H∞ =
⋂
s∈R

Hs, H−∞ =
⋃
s∈R

Hs.

The following inclusions hold

S ⊂ H∞ ⊂ H−∞ ⊂ S′.

2.2 Space of distributions and Sobolev spaces 11



Next we state and prove a theorem important for the Colombeau algebra and that
we shall use in the sequel. Results of this type are given in [AF03].

Theorem 2.2.12. The space Hs(Rn) is an algebra when s > n
2 and

‖uv‖Hs ≤ c‖u‖Hs‖v‖Hs , u, v ∈ Hs. (2.6)

Proof. Let 〈ξ〉 = (1 + |ξ|2)
1
2 . There holds 〈ξ〉s ≤ c(〈ξ − η〉s + 〈η〉s) since

(1 + |ξ|2)p ≤ (1 + |ξ − η|2 + |η|2 + 2|ξ − η| · |η|)p

≤ (1 + 2|ξ − η|2 + 2|η|2)p ≤ 2p(1 + |ξ − η|2 + 1 + |η|2)p

≤ 2p · 2p((1 + |ξ − η|2)p + (1 + |η|2)p),

for any p > 0. This is similar as Peetre’s inequality: 〈ξ〉s ≤ 2|s|〈ξ − η〉|s|〈η〉s, s ∈ R,
see [Abe11]. Now

‖uv‖Hs = |uv|s = ‖〈ξ〉s(̂uv)‖2

and

〈ξ〉s|(̂uv)(ξ)| ≤ 〈ξ〉s
∫
|û(ξ − η)v̂(η)|dη =

∫
〈ξ〉s|û(ξ − η)v̂(η)|dη

≤ c
∫
〈ξ − η〉s|û(ξ − η)v̂(η)|dη + c

∫
〈η〉s|û(ξ − η)v̂(η)|dη

= c|〈·〉sû| ∗ |v̂|+ c|û| ∗ |〈·〉sv̂|.

From Young’s inequality it follows

‖〈ξ〉s(̂uv)‖2 ≤ c‖〈ξ〉sû‖2‖v̂‖1 + c‖û‖1‖〈ξ〉sv̂‖2.

Finally

‖û‖1 =
∫
〈ξ〉s〈ξ〉−s|û|dξ . ‖〈ξ〉sû‖2(

∫
〈ξ〉−2sdξ)

1
2

and the result follows, since 〈ξ〉−2s is integrable for s > n
2 .
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2.3 Vector valued functions

We will use spaces involving time. Let I be an interval in R and X a Banach space.
By C(I,X) we denote the space of continuous functions u : I → X, that is, for all
t0 ∈ I,

lim
t→t0
‖u(t)− u(t0)‖X = 0.

Also, Cm(I,X) is the space of functions u : I → X whose derivatives (in t) of order
j belong to C(I,X) for all 0 ≤ j ≤ m. Finally, Cm0 (I,X) are functions u ∈ Cm(I,X)
with compact support in I.

We introduce the definition of a measurable function, as in [CBH+98].

Definition 2.3.1. A function u : I → X is measurable if there exists a set E ⊂ I of
measure zero and a sequence {un}n∈N ⊂ C0(I,X) such that un(t)→ u(t) as n→∞
for all t ∈ I \ E.

We also define integrability.

Definition 2.3.2. A measurable function u : I → X is integrable if there exists a
sequence {un}n∈N ⊂ C0(I,X) such that∫

I
‖un(t)− u(t)‖Xdt→ 0, n→∞.

Now by Lp(I,X) we denote the space of measurable functions u : I → X, such
that ∫

I
‖u(t)‖pXdt <∞ for 1 ≤ p <∞

or
ess sup

t∈I
‖u(t)‖X <∞ for p =∞.

The space Wm,p(I,X) is the Banach spaces of (classes of) measurable functions
u : I → X, such that ∂ju

∂tj
∈ Lp(I,X) for every 0 ≤ j ≤ m. This space is equipped

with the norm

‖u‖Wm,p =
m∑
j=1

∥∥∥∥∥∂ju∂tj
∥∥∥∥∥
Lp

.

We will also often observe an integral of type
∫
I u(t)dt, where u(t) ∈ X. In our work,

this can be interpreted as the usual Lebesgue integral

U(x) =
∫
I
u(t, x)dt,

2.3 Vector valued functions 13



for fixed values of x. Equivalently it can be observed as a Bochner integral, defined
analogously with approximation by vector–valued step functions. In particular, if
X is the space of real numbers, then Bochner integrable functions are Lebesgue
integrable functions ([CBH+98], [Mik78]). We present the following analogue to
theorem 2.4.6 in the sequel.

Theorem 2.3.3 (Bochner). Let u : I → X be a measurable function. Then u is
integrable if and only if ‖u‖X is integrable. Moreover,∥∥∥∥∫

I
u dt

∥∥∥∥
X
≤
∫
I
‖u‖X .

It is also useful to define the derivative of a vector–valued function. We state the
definitions of the Frechét derivative and Gâteaux derivative, see [Aub11].

Definition 2.3.4. Let U ⊂ I be an open subset and t0 ∈ U . The map f : I → X is
said to be Frechét differentiable at t0 if there exists A ∈ L(I,X) such that

lim
t→t0

‖f(t)− f(t0)−A(t− t0)‖
|t− t0|

= 0.

The map A is the Frechét derivative of f at t0 (usually denoted by Df(t0)).

Definition 2.3.5. Let f : I → X. If the limit

At(v) = lim
s→0

f(t+ sv)− f(t)
s

exists for each v ∈ I and the map v 7→ At(v) is a continuous linear map, then we say f
is Gâteaux differentiable at t and At is called the Gâteaux derivative of f at t.

If a function is Frechét differentiable at t, then it is Gâteaux differentiable at t and
the two derivatives coincide. The converse, however, does not hold in general.

2.4 Important inequalities

Besides the Sobolev inequality (2.3) we will use several important inequalities which
we list in this section. The first two are very well–known.
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Theorem 2.4.1 (Hölder). Let 1 ≤ p ≤ ∞, f ∈ Lp(Ω), g ∈ Lq(Ω), 1/p + 1/q = 1.
Then fg ∈ L1(Ω) and ∫

Ω
|f(x)g(x)|dx ≤ ‖f‖Lp‖g‖Lq . (2.7)

Theorem 2.4.2 (Young). Let f ∈ Lp(Rd), g ∈ Lq(Rd) i 1 ≤ p ≤ ∞, 1 ≤ q ≤ ∞,
1
r = 1

p + 1
q − 1 ≥ 0. Then the convolution f ∗ g ∈ Lr(Rd) and

‖f ∗ g‖r ≤ ‖f‖p‖g‖q. (2.8)

We state two versions of the Gronwall inequality. The first is as in [Dra03].

Theorem 2.4.3 (Gronwall’s inequality). Let A(t) be continuous and nonnegative on
[0, T ] and satisfy

A(t) ≤ E(t) +
∫ t

0
r(s)A(s)ds, 0 ≤ t ≤ T,

where r(t) is a nonnegative integrable function on [0, T ] with E(t) bounded on [0, T ].
Then

A(t) ≤ |E(t)| exp
(∫ t

0
r(s)ds

)
, 0 ≤ t ≤ T.

The second inequality is a variant of the theorem appearing in [EK09] and we prove
this version.

Theorem 2.4.4 (Gronwall’s inequality). Let A : [0,∞)→ R be a measurable function
that is bounded on bounded intervals, E ≥ 0 and r(t) a nonnegative integrable function
on [0, t] for any t ∈ [0,∞). Let

0 ≤ A(t) ≤ E +
∫ t

0
r(s)A(s)ds, t ≥ 0, (2.9)

then

A(t) ≤ E exp
(∫ t

0
r(s)ds

)
, t ≥ 0.

Proof. We show first by induction that

A(t) ≤ E ·
n∑
k=0

R(t)k

k! +Rn(t), (2.10)
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holds for any n, where

R(t) =
∫ t

0
r(s)ds

and
Rn(t) =

∫ t

0

R(s)n

n! r(s)A(s)ds.

The case n = 0 is the inequality (2.9). Let (2.10) hold and let us show that it holds
for n+ 1. By (2.10) and (2.9)

A(t) ≤ E ·
n∑
k=0

R(t)k

k! +
∫ t

0

R(s)n

n! r(s)
(
E +

∫ s

0
r(s1)A(s1)ds1

)
ds

= E ·
n∑
k=0

R(t)k

k! + E
R(t)n+1

(n+ 1)! +
∫ t

0

∫ s

0

R(s)n

n! r(s)r(s1)A(s1)ds1ds

= E ·
n+1∑
k=0

R(t)k

k! +
∫ t

0

∫ s1

0

R(s)n

n! r(s)r(s1)A(s1)dsds1

= E ·
n+1∑
k=0

R(t)k

k! +
∫ t

0
r(s1)A(s1)

∫ s1

0

R(s)n

n! r(s)ds ds1

= E ·
n+1∑
k=0

R(t)k

k! +
∫ t

0
r(s1)A(s1)R(s1)n+1

(n+ 1)! ds1 = E ·
n+1∑
k=0

R(t)k

k! +Rn+1(t).

Here we used R′(t) = r(t) and Fubini–Tonelli theorem, the function

R(s)n

n! r(s)r(s1)A(s1)

being measurable and nonnegative. Now for the remainder Rn there holds

Rn(t) ≤ (sup
[0,t]

A(t))R(t)n+1

(n+ 1)! → 0, n→∞,

since A(t) is bounded, r(s) is integrable and all quantities are nonnegative, so
Rn(t)→ 0 as n→∞ for any t in [0,∞). Since (2.10) holds for any n ∈ N it follows
it holds in the limiting case, too, hence

A(t) ≤ E exp(R(t)), t ∈ [0,∞),

which completes the proof.

We now state the Gagliardo–Nirenberg inequality as in [Caz03].
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Theorem 2.4.5 (Gagliardo-Nirenberg). let 1 ≤ p, q, r ≤ ∞ and let j,m be two
integers such that 0 ≤ j < m. If

1
p

= j

n
+ b

(1
r
− m

n

)
+ 1− b

q
,

for some b ∈ [j/m, 1] (b < 1 if r > 1 and m − j − n
r = 0), then there exists

C = C(n,m, j, q, r) so that

∑
|α|=j

‖Dαu(t)‖p ≤ C
( ∑
|α|=m

‖Dαu(t)‖r
)b
‖u(t)‖1−bq ∀u ∈ D(Rn) (2.11)

Theorem 2.4.6 (Minkowski). Let S1 ⊂ Rm, S2 ⊂ Rn and F : S1 × S2 → R is
measurable. For 1 ≤ p <∞ there holds

( ∫
S2
|
∫
S1
F (x, y)dx|pdy

) 1
p ≤

∫
S1

( ∫
S2
|F (x, y)|pdy

) 1
pdx. (2.12)

Theorem 2.4.7 (Riesz–Thorin convexity theorem [Hör90]). If T is a linear map
from Lp1(Rn) ∩ Lp2(Rn) to Lq1(Rn) ∩ Lq2(Rn) such that

‖Tf‖qj ≤Mj‖f‖pj j = 1, 2,

and if 1/p = t/p1 + (1− t)/p2, 1/q = t/q1 + (1− t)/q2 for some t ∈ (0, 1), then

‖Tf‖q ≤M t
1M

1−t
2 ‖f‖p, f ∈ Lp1(Rn) ∩ Lp2(Rn).

2.5 Colombeau algebra

We now present the definition of a H2 - based Colombeau algebra. Different types of
these algebras are described for example in [Gro+13] and in original works [Col00].
Also see [BO92] for Lp − Lq - based algebras.

The product of two distributions is not defined, only the product of a smooth function
and a distribution. If we try to extend this operation we will not be able to conserve
the associative property, as this example shows:

0 = (δ(x) · x) · vp1
x
6= δ(x) · (x · vp1

x
) = δ(x),

where vp 1
x denotes the Cauchy principal value of 1

x . These and other problems were
the motivation for defining an associative, commutative algebra containing the space
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of distributions. Specifically, desirable properties for an algebra (A(Ω),+, ·), for an
open set Ω, are the following

(i) D′(Ω) is linearly embedded into A(Ω) and f(x) ≡ 1 is the unity in A(Ω).

(ii) There exist differential operators ∂i : A(Ω)→ A(Ω), i = 1, ..., n that are linear
and satisfy the Leibniz rule.

(iii) ∂i|D′ is the usual partial derivative, i = 1, ..., n.

(iv) The restriction ·|C∞×C∞ coincides with the pointwise product of functions.

The following (special) Colombeau algebra satisfies these conditions and is defined
as follows (see [Gro+13]). Let Ω ⊂ Rn open and

Es(Ω) := (C∞(Ω))(0,1]

EsM (Ω) := {(uε)ε ∈ Es(Ω) | ∀K ⊂⊂ Ω ∀α ∈ Nn0 ∃N ∈ N with

sup
x∈K
|∂αuε(x)| = O(ε−N ), ε→ 0}

N s(Ω) := {(uε)ε ∈ Es(Ω) | ∀K ⊂⊂ Ω ∀α ∈ Nn0 ∀m ∈ N with

sup
x∈K
|∂αuε(x)| = O(εm), ε→ 0}.

Elements of EsM (Ω) and N s(Ω) are called moderate resp. negligible functions. The
special Colombeau algebra is the quotient space

Gs(Ω) := EsM (Ω)/N s(Ω).

If u ∈ D′(Ω), then the embedding D′(Ω) ↪→ Gs(Ω) is given by

u 7→ [(u ∗ ρε)ε],

where ρ ∈ S(Rn) is a mollifier such that∫
ρ(x)dx = 1, (2.13)∫
xαρ(x) = 0, ∀|α| ≥ 1 (2.14)

and ρε = ε−nρ(xε ). This type of mollifier assures that (iv) holds. There is no mollifier
in D(Rn) which satisfies both (2.13) and (2.14). On the other hand, ρ ∈ S(Rn) can
be constructed by taking the inverse Fourier transform of a function from S(Rn)
which equals 1 in a neighborhood of zero.
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The H2–based algebra we use is as in [NPR03]. One more paper using similar spaces
is [NOP05]. Let EC1,H2([0, T )× Rn) (respectively
NC1,H2([0, T )× Rn)), T > 0 denote the vector space of nets (uε)ε of functions

uε ∈ C([0, T ), H2(Rn)) ∩ C1([0, T ), L2(Rn)), ε ∈ (0, 1),

with the property that there exists N ∈ N (respectively, for every M ∈ N) such
that

max{ sup
t∈[0,T )

‖uε(t)‖H2 , sup
t∈[0,T )

‖∂tuε(t)‖L2} = O(ε−N ), ε→ 0(
respectively

max{ sup
t∈[0,T )

‖uε(t)‖H2 , sup
t∈[0,T )

‖∂tuε(t)‖L2} = O(εM ), ε→ 0
)
.

The quotient space

GC1,H2([0, T )× Rn) = EC1,H2([0, T )× Rn)/NC1,H2([0, T )× Rn)

is a Colombeau type vector space. For n ≤ 3 this is a multiplicative algebra, since
H2(Rn) itself is an algebra for n ≤ 3.

The space GH2(Rn) is defined in a similar way:

E2(Rn) := (H2(Rn))(0,1]

EH2(Rn) := {(uε)ε ∈ E2(Rn) | ∃N ∈ N ‖uε(x)‖H2 = O(ε−N ), ε→ 0}

NH2(Rn) := {(uε)ε ∈ E2(Rn) | ∀m ∈ N ‖uε(x)‖H2 = O(εm), ε→ 0},

GH2(Rn) := EH2(Rn)/NH2(Rn).

This space is also an algebra in the case n ≤ 3.

The basic operations of addition, multiplication and differentiation are done component–
wise, that is

u+ v = [(uε + vε)ε], u · v = [(uε · vε)ε], ∂αu = [(∂αuε)ε].

We define differentiation on this algebra, although it is not a closed operation. If
u ∈ GC1,H2([0, T )×Rn), then ∂αu is represented by ∂αuε which has moderate growth
in L2(Rn) and giving rise to an element of a quotient vector space GC,L2([0, T )×Rn),
defined analogously as GC1,H2([0, T )×Rn) - with the difference that representatives

2.5 Colombeau algebra 19



have bounded growth only in L2–norm, for any t ∈ [0, T ). We will see that the
equations (1.1)− (1.3) have sense in GC,L2([0, T )× Rn). Also it is easily seen that
GC1,H2([0, T )× Rn) ⊂ GC,L2([0, T )× Rn).

We also mention the space G∞,∞(Rn) defined as follows

E(Rn) := (C∞(Rn))(0,1]

E∞,∞(Rn) := {(uε)ε ∈ E(Rn) | ∀α ∈ Nn0 ∃N ∈ N ‖∂αuε(x)‖∞ = O(ε−N ), ε→ 0}

N∞,∞(Rn) := {(uε)ε ∈ E(Rn) | ∀α ∈ Nn0 ∀m ∈ N ‖∂αuε(x)‖∞ = O(εm), ε→ 0},

G∞,∞(Rn) := E∞,∞(Rn)/N∞,∞(Rn).

This is a special case of the Lp − Lq–based algebras defined in [BO92]. We can
embed the delta function in this space by a convolution with a mollifier as before,
and actually, δ ∗ρε = ρε so that ρε itself is a representative of the delta function. Also
in this way, W−∞,∞(Rn) is embedded in G∞,∞(Rn) and W∞,∞(Rn) is a subalgebra
of G∞,∞(Rn), which was shown in [BO92].

We will prove that in this algebra, one more representative of the delta function
is given by a strict delta net, defined as follows. We follow the approach given in
[Gro+13].

Definition 2.5.1. A strict delta net is a family of functions φε ∈ E∞,∞ which satisfies

i) supp(φε)→ {0}, ε→ 0,

ii) limε→0
∫
Rn φε(x)dx = 1

iii)
∫
|φε(x)|dx is bounded uniformly in ε.

A strict delta net can be defined using ρε as φε(x) = χ( x√
ε
)ρε(x), where χ is a cut–off

function and ρε is as before. Specifically, χ ∈ C∞0 (Rn), χ(x) = 1, |x| ≤ 1 and
χ(x) = 0, |x| ≥ 2.

In the sequel we will use the following estimates for ρε and φε. Since S(Rn) ⊂
Lp(Rn), we have

‖∂αρε‖pLp =
∫
Rn
ε−np|∂α(ρ(x

ε
))|pdx =

∫
Rn
ε−np| 1

ε|α|
(∂αρ)(x

ε
)|pdx

=
∫
Rn
ε−np+n−|α|p|∂αρ(t)|pdt = cεn(1−p)−|α|p ∼ ε−N ,

for some N ∈ N, 1 < p < ∞ and any multi - index α. Moreover, ‖ρε‖∞ =
ε−n max |ρ(xε )| = cε−n, for any ε > 0. We also use mollifiers of type ρhε = hnε ρ(xhε),
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where hε → ∞, ε → 0, for example hε = ln ε−1, and these mollifiers admit
completely analogous estimates as above.

Since the derivatives ∂α(χ( x√
ε
)) are bounded by

sup
x∈Rn

|ε−|α|/2(∂αχ)( x√
ε

)| . ε−|α|/2,

it is not hard to see that φε(x) = χ( x√
ε
)ρε(x) admits analogous estimates as ρε in the

Lp–norm. Now we prove the following theorem.

Theorem 2.5.2. There exists a strict delta net φε such that the difference ρε − φε

belongs to N∞,∞(Rn) and both ρε and φε are representatives for the embedded delta
function [(ρε)ε] ∈ G∞,∞(Rn).

Proof. For φε we choose specifically φε(x) = χ( x√
ε
)ρε(x) as above. This defines a

strict delta net as in Definition 2.5.1. The difference ρε − φε = 0 for |x| ≤
√
ε.

Further

‖ρε − φε‖∞ = ‖ρε(x)(1− χ( x√
ε

))‖∞ ≤ sup
x>
√
ε

|ε−nρ(x
ε

)|

≤ Cqε−n sup
x>
√
ε

(1 + |x
ε
|)−q ≤ Cqεq/2−n.

Since ρ ∈ S(Rn) this estimate holds for any q > 0 so we have N∞,∞(Rn) estimates
of order zero. Taking a derivative of arbitrary order of ρε−φε we will need to bound
terms involving ∂β(ρε(x)) · ∂α((1− χ)( x√

ε
)), which again vanishes for x ≤

√
ε. We

can repeat a similar analysis as before, but now

∂α((1− χ)( x√
ε

)) = ε
−|α|

2 ∂α(1− χ)(x
ε

) . ε−
|α|
2 .

It follows

sup
x>
√
ε

|∂β(ρε(x)) · ∂α((1− χ)( x√
ε

))| ≤ sup
x>
√
ε

|ε−n−|β|(∂βρ)(x
ε

)| · ε−
|α|
2

≤ Cqε−(n+|β|+|α|/2)εq/2

for any q > 0. In this way we can obtain necessary estimates of arbitrary order, and
conclude

ρε − φε ∈ N∞,∞(Rn).
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We can embed functions in the space GH2(Rn) by convolution with a mollifier ρε,
too. We will discuss only the embedding of the delta function and prove some more
general properties when embedding the space GC1,H2([0, , T )× Rn).

Theorem 2.5.3. There exists a strict delta net φε such that the difference ρε − φε

belongs to NH2(Rn) and both ρε and φε are representatives for the embedded delta
function [(ρε)ε] ∈ GH2(Rn).

Proof. The proof will be similar to the proof of Theorem 2.5.2. Let φε(x) =
χε(x)ρε(x) = χ( x√

ε
)ρε(x). Then

‖ρε − ρεχε‖22 =
∫
Rn
ρ2
ε(x)(1− χ( x√

ε
))2dx ≤

∫
|x|>
√
ε
ρ2
ε(x)dx

≤
∫
|x|>
√
ε
ε−n(1 + |x

ε
|)−2qdx =

∫
|x|>
√
ε
ε−n(1 + |x|

ε
)−2q+n+1−(n+1)dx

≤ ε−n sup
x>
√
ε

(1 + |x|
ε

)−2q+n+1
∫
|x|>
√
ε
(1 + |x|

ε
)−(n+1)dx

≤ ε−nεq−(n+1)/2εn
∫
|y|>1/

√
ε

1
(1 + |y|)n+1dy

≤ εq−(n+1)/2
∫
y∈Rn

1
(1 + |y|)n+1dy.

The above integral is finite and independent of ε. So for arbitrary M we can choose
q = M + n+1

2 ⇔ −2q +m+ 1 < 0 so that q > n+1
2 so that the above estimates hold

and

‖ρε − ρεχε‖22 < εM , ε ≤ ε1 < 1.

From the proof of Theorem 2.5.2, we see that the derivatives of ρε − ρεχε can be
bounded similarly in the L2–norm.

Let us now prove that we can embed some functions in GH2(Rn) using a strict delta
net.

Theorem 2.5.4. Let f ∈ H2(Rn). Then f ∗ρε−f ∗φε ∈ NH2(Rn), where φε is a strict
delta net defined by φε = χερε, χε(x) = χ( x√

ε
) and χ is a cut–off function as before.

Proof. Young’s inequality implies

‖f ∗ (ρε − φε)‖2 . ‖f‖2‖(1− χε)ρε‖1
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We can bound ‖(1− χε)ρε‖1 by εM for any M ∈ N, ε→ 0, in the same way as in the
proof of Theorem 2.5.3. Also, ∂α(f ∗ (ρε − φε)) = (∂αf) ∗ (ρε − φε) and the proof
follows.

We give two theorems explaining the product of elements from different algebras.

Theorem 2.5.5. Let u ∈ G∞,∞(Rn) and v ∈ GC1,H2([0, T ) × Rn). Then, u · v ∈
GC1,H2([0, T )× Rn).

Proof. Let uε ∈ E∞,∞(Rn) and vε ∈ EC1,H2([0, T )× Rn). We have

‖uεvε(t)‖2 . ‖uε‖∞‖v(t)‖2 . ε−N ε→ 0,

for any t ∈ [0, T ). A similar situation holds for derivatives ∂α(uεvε), |α| ≤ 2, since
in this case we have terms of form ∂βuε∂

γvε which can be bounded as above.
In the same way, product of n1

ε ∈ N
(
∞,∞Rn) and n2

ε ∈ NC1,H2([0, T ) × Rn) is
negligible in GC1,H2([0, T ) × Rn) and also uε · n2

ε ∈ NC1,H2([0, T ) × Rn), vε · n1
ε ∈

NC1,H2([0, T )× Rn). Taking another representative of u and v, uε + n1
ε and vε + n2

ε

it follows

(uε + n1
ε)(vε + n2

ε) = uε · vε + uε · n2
ε + vε · n1

ε + n1
ε · n2

ε = uε · vε + n3
ε,

where n3
ε ∈ NC1,H2([0, T )× Rn) so the product is well-defined.

Theorem 2.5.6. Let u ∈ GC1,H2([0, T ) × Rn) and ρε is the representative of δ in
GH2(Rn). Then u · [(ρε)ε] ∈ GC1,H2([0, T )× Rn).

Proof. The proof is similar to the proof of the previous theorem, since any derivative
of ρε is bounded also in the norm ‖ · ‖∞. Moreover, terms ‖n1

εuε‖H2 and ‖n1
εn

2
ε‖H2

are negligible, due to Theorem 2.2.12.

Next, since the initial condition is a function depending on x only, we define a
restriction of an element u ∈ GC1,H2([0, T )× Rn).

Definition 2.5.7. Let u ∈ GC1,H2([0, T )×Rn) with a representative uε ∈ EC1,H2 . Since
uε ∈ C([0, T ), H2(R3)), the function uε(·, 0) is in EH2 . Also, if uε ∈ NC1,H2 , then
uε(·, 0) is inNH2 . We define the restriction of u to {0}×Rn as the class [uε(·, 0)]ε ∈ GH2 .

Also relevant to our equations is the following definition.
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Definition 2.5.8. We say that a ∈ GH2(Rn) is of (ln)j–type, j ∈ (0, 1] if it has a
representative aε ∈ EH2(Rn) such that

‖aε‖2 = O(lnj ε−1), ε→ 0.

Note that a function a ∈ H∞(Rn) is itself a representative in GH2(Rn) (which can
be proved as in the proof of Theorem 2.5.9 which is given in the sequel) and this is
an example of a function that is of (ln)j–type for any j ∈ (0, 1]. The reason for this
is that its L2–norm is a constant independent of ε. Further, if a ∈ L2(Rn) and we
embed it by a 7→ [(a ∗ ρε)ε], then ‖a ∗ ρε‖2 . ‖a‖2‖ρε‖1 = ‖a‖2 and [(a ∗ ρε)ε] is also
of lnj–type for any j ∈ (0, 1].

Finally, we discuss embedding functions in the space GC1,H2([0, T )× Rn).

Theorem 2.5.9. Define the function ι : W 1,∞([0, T ), L2(Rn))→ GC1,H2([0, T )×Rn),
n ≤ 3 by

ι(u) = [(uε)ε]

where

uε(x, t) =
∫
Rn
u(y, t)ρε(x− y)dy for any t ∈ [0, T ). (2.15)

(i) This function is a linear injection. Restriction of the derivative ∂α, for any α ∈ Nn,
from GC1,H2([0, T ) × Rn) to W 1,∞([0, T ), L2(Rn)) is the usual distributional
derivative.

(ii) The same embedding turnsC1([0, T ), H∞(Rn)) into a subalgebra of GC1,H2([0, T )×
Rn).

Proof. (i) For fixed values of t, (2.15) it is the usual convolution with a mollifier.
Then, for any |α| ≤ 2 and every t ∈ [0, T )

‖∂α(u ∗ ρε)‖L2 = ‖u ∗ ∂αρε‖L2 ≤ ‖u‖L2‖∂αρε‖L1 ∼ ε−N

for some N ∈ N. Here we used Young’s inequality (2.8). Also

‖∂t(uε(x, t))‖L2 = ‖
∫
Rn
∂t(u(y, t))ρε(x−y)dy‖L2 = ‖∂tu∗ρε‖L2 , for every t ∈ [0,T),

which is bounded (by a constant) again due to Young’s inequality. So uε gives
rise to an element [uε] ∈ GC1,H2 . Moreover, for fixed values of t, we know that
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‖u ∗ φε − u‖L2 → 0. The embedding u ↪→ [uε] is thus an injection as a consequence
of uniqueness of limit in L2. Specifically, if vε ∈ [uε], then

v = lim
ε→0

vε = lim
ε→0

(uε + nε) = u,

for every t ∈ [0, T ). We conclude that

W 1,∞([0, T ), L2(Rn)) ↪→ GC1,H2([0, T )× Rn).

For partial derivatives in x there holds ∂αx (u ∗ ρε) = ∂αxu ∗ ρε for any t, so ι(∂αxu) =
∂αx [u ∗ ρε] and the derivative in GC1,H2 coincides with the (distributional) derivative
in W 1,∞([0, T ), L2(Rn)). The same holds for the derivative in t since ∂αt uε = ∂αt u∗ρε
for any t.

(ii) We need to show that uε − u ∈ NC1,H2 , where uε is given by (2.15) and
u ∈ C1([0, T ), H∞). The reason for this is the following. If we observed a constant
embedding u 7→ [u], then [u · v] = [uε · vε] is automatically satisfied. On the other
hand, we need to use convolution to be able to embed other functions, too. So if u
and uε given by (2.15) represent the same class, then

[(u · v)ε] = [uε · vε].

We continue as in as in [BO92]. For fixed values of t there holds

‖uε − u‖22 = ‖u ∗ ρε − u‖22 =
∫
|
∫

(u(x− εy)− u(x))ρ(y)dy|2dx

We can apply the Taylor’s formula to u up to the order of m. Since
∫
yαρ(y)dy = 0

for |α| ≤ m (by (2.14)) we obtain

‖uε − u‖22 =
∫
|
∑

|α|=m+1

∫ (−εy)α)
m!

∫ 1

0
(1− σ)m∂αu(x− σεy)dσρ(y)dy|2dx

≤ C(m, q) max
|α|=m+1

∫ ∣∣∣∣∫ (−εy)α)
m! ρ(y)

∫ 1

0
(1− σ)m∂αu(x− σεy)dσdy

∣∣∣∣2 dx
≤ C(m, q) max

|α|=m+1

∫ ∫ ∣∣∣∣(εy)α)
m! ρ(y)

∫ 1

0
(1− σ)m∂αu(x− σεy)dσ

∣∣∣∣2 dxdy
≤ εm+1

m! C(m, q) max
|α|=m+1

∫
|yαρ(y)|

∫ ∫ 1

0
|∂αu(y − σεy)|2dσdxdy

≤ cεm+1
∫
|y|m+1|ρ(y)|dy max

|α|=m+1
‖∂αu‖2.
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So for any m ∈ N and sufficiently small ε we have

‖uε − u‖2 ≤ cεm.

The same holds for ∂αxu, |α| ≤ 2. Finally, for any t

‖∂t(u− uε)‖2 = ‖∂tu− ∂tu ∗ ρε‖2 ≤ εM , ∀M ∈ N, ε→ 0,

as above.

2.5.1 Notion of a solution

In this section let us observe the following Schrödinger equation:

iut +4u+ g(u) = 0,

u(0) = a.
(2.16)

Definition 2.5.10. We say that u ∈ GC1,H2([0, T )× Rn) is a solution of (2.16) if for
an initial condition a and its representative aε = a ∗ ρε, there exists a representative
uε ∈ EC1,H2([0, T )× Rn) such that

i(uε)t +4uε + g(uε) = Mε,

uε(0) = aε + nε,
(2.17)

for some nε ∈ NH2(Rn), where supt∈[0,T ) ‖Mε‖L2 = O(εM ), for any M ∈ N.

If the above statement holds for some uε, then it holds for all representatives of the
class u = [uε]: we show this for the linear part, and leave the analysis of g(u) for
Chapter 4 and Chapter 5. Let vε = uε +Nε, Nε ∈ NC1,H2 , then

i(vε)t +4vε = i(uε)t +4uε + i(Nε)t +4Nε = Mε + i(Nε)t +4Nε,

where ‖Mε‖L2 ∼ εM , for any t ∈ [0, T ). Now since Nε ∈ NC1,H2 , it follows
‖i(Nε)t +4Nε‖L2 ∼ εM for any t ∈ [0, T ). Also,

vε(0) = uε(0) +Nε(0) = aε + nε +Nε(0) = aε +N1
ε

where N1
ε ∈ NH2 .
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We also always start by solving precisely

i(uε)t +4uε + g(uε) = 0,

uε(0) = aε,

aε = a∗ρε, since it follows from the previous analysis that [uε] is indeed a solution.

Definition 2.5.11. We say that a solution of (2.16) is unique if for any two solutions
u, v ∈ GC1,H2 there holds supt∈[0,T ) ‖uε − vε‖L2 = O(εM ), for any M ∈ N.

These definitions justify the use of spaces based on nets uε ∈ C([0, T ), H2(Rn)) ∩
C1([0, T ), L2(Rn)), ε ∈ (0, 1), for n ≤ 3, which is natural for the equation in
question.

2.5.2 Compatibility

We will see in Section 3 that for a ∈ H2(Rn), n ≤ 3, there is a unique solution
u ∈ C([0, T ), H2(Rn)) of the cubic equation (1.1). The space H2(Rn) is embedded
in the Colombeau algebra GH2(Rn), which can again be proved as in Theorem
2.5.9. If there is a unique solution of (1.1) in GC1,H2([0, T ) × Rn), then there is a
representative uε that solves

i(uε)t +4uε = uε|uε|2,

uε(0) = a ∗ ρε

for a ∈ H2 (as mentioned in the previous section, we always show that there is a
solution to the equation without negligible functions, so the above claim will be
justified). Ideally, classes [(uε)ε] and [(u ∗ ρε)ε] will coincide. But we are usually able
to prove a slightly weaker version of this equality of classes, given by the following
definition.

Definition 2.5.12. We say that u ∈ GC1,H2([0, T ) × Rn) is associated with a distri-
bution v(t) ∈ D′(Rn) for any t ∈ [0, T ) if there is a representative uε of u such that
uε → v in D′(Rn) for any t ∈ [0, T ) as ε→ 0. We denote association by u ≈ v.

Note that in the case a ∈ C1([0, T ), H∞), then a represents itself and the same holds
for the corresponding solution u ∈ C1([0, T ), H∞) so in this case we automatically
have compatibility between the two solutions.
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We are usually able to prove ‖u − uε‖L2 → 0, ε → 0, for every t ∈ [0, T ) (the
"L2–association") from which it follows [(uε)ε] ≈ u. This motivates the following
definition.

Definition 2.5.13. We say that there is compatibility between a classical (Sobolev)
solution and the Colombeau solution of

iut +4u+ g(u) = 0

u(0) = a

if sup[0,T ) ‖uε − u‖L2 → 0 as ε→ 0, where uε ∈ EC1,H2 is a solution of

i(uε)t +4uε + g(uε) = 0

uε(0) = a ∗ ρε.

Looking outside the context of equivalence classes, the tools we derive - primarily
estimates - can be of use for discussing different types of convergences. For example,
there is no well- posedness theory for (1.2), but analyzing the net of solutions can
give insight in that direction.

Uniqueness in the Colombeau algebra also differs from the usual notion. It is
possible that different representatives uε + nε solve the regularized equation, but in
the limiting case, they all converge to the same limit - if they do converge, that is if
there is compatibility.

Generally, there are several papers showing instability or non-uniqueness in some
distributional spaces, e.g. [CCT03], [Chr05], [HW82]. This indicates uniqueness is
a potential problem when observing singular solutions and is one more reason to
stress the importance of compatibility.
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Semilinear Schödinger
equation

3

In this section we describe the theory of a general semilinear Schrödinger equation,
namely

iut +4u+ g(u) = 0,

u(0) = a,
(3.1)

based on [Caz03]. The regularized equations we consider are of type (3.1), so the
theory we present in this chapter serves as a starting point for later results. Also,
the tools used in the classical theory are useful for our analysis in the Colombeau
algebra, too. The space dimension in this chapter is arbitrary n ∈ N unless stated
otherwise.

3.1 The evolution operator

We start with some properties of the Laplacian operator A = 4. It is well - known
that A : C∞0 (Rn) ⊂ L2(Rn) → L2(Rn) is a densely defined symmetric operator.
Namely

(Au, v)2 = (u,Av)2, ∀u, v ∈ C∞0 (Rn),

from which it follows that (Au, u)2 is real. On the other hand, if we observe
A : H2 ⊂ L2 → L2, we obtain a bounded operator:

‖Au‖L2 < ‖u‖H2 .
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The scalar product (, )2 is continuous on L2 ×L2, but also on H2 ×H2 since un → u

in H2 implies un → u in L2 and this further implies (un, vn)2 → (u, v)2 in C. Further
since C∞0 is dense in H2 we have

(Au, v)2 = (A lim un, lim vn)2 = (limAun, lim vn)2 = lim(Aun, vn)2

= lim(un, Avn)2 = (u,Av)2, ∀u, v ∈ H2.

So for u ∈ H2 we have that (Au, u) is real. This fact is used in deriving energy
equalities.

We now focus on some approximation properties of dissipative operators, following
[CBH+98]. All of the following statements are proved in [CBH+98]. An unbounded
operator A : D(A) ⊂ X → X is dissipative if

‖u− λAu‖ ≥ ‖u‖,

for all u ∈ D(A) and all λ > 0. An unbounded operator is m–dissipative if it is
dissipative and for all λ > 0 and all f ∈ X there exists u ∈ D(A) such that

u− λAu = f. (3.2)

From these definitions, u is the unique solution of (3.2), and in addition ‖u‖ ≤ ‖f‖.
Let Jλ = (I − λA)−1 so that u = Jλf is the solution of (3.2). Finally, let Aλ =
AJλ = Jλ−I

λ . If D(A) = X and A is m–dissipative, then Aλu→ Au as λ→ 0 for all
u ∈ D(A). We state a theorem relevant for our setting

Theorem 3.1.1. If X is a Hilbert space and A is densely defined self adjoint operator
in in X such that A ≤ 0 ((Au, u) ≤ 0 for all u ∈ D(A)), then A is m–dissipative. If A
is skew–adjoint (A∗ = −A), then A and −A are m–dissipative.

Now let us state different ways of defining the Schrödinger operator i4u. Let
Y = L2(Rn) and B be a linear operator in Y such that

D(B) = {u ∈ H1(Rn), 4u ∈ Y };

Bu = i4u, ∀u ∈ D(B).
(3.3)

This operator B is skew–adjoint, B and −B are m–dissipative operators with dense
domains. Further, let X = H−1(Rn) and given u ∈ X let ϕu ∈ H1 be the solution of
−4ϕu + ϕu = u in X. Then X can be equipped with the scalar product

(u, v)−1 = (ϕu, ϕv)H1 =
∫
Rn

(∇ϕu · ∇ϕv + ϕuϕv)dx.
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Now an operator A on X defined in the following way

D(A) = H1;

Au = i4u, ∀u ∈ D(A),
(3.4)

enjoys the same properties as B: A is skew-adjoint and A and −A are dissipative
with dense domains.

We now aim to connect this with the notion of a propagator (the evolution operator)
T (t). First we state some definitions regarding the exponential operator eA. Let
X be a Banach space and A ∈ L(X). By eA we denote the sum of the series∑
n≥0

1
n!A

n. The series is convergent in the norm of L(X) and if A and B commute,
then eA+B = eAeB. Further, for a fixed operator A, the function t 7→ etA belongs to
C∞(R,L(X)) and there holds

d

dt
etA = A · etA

for all t ∈ R. Moreover, the following result holds

Theorem 3.1.2. Let A ∈ L(X). For all T > 0 and all x ∈ X, there exists a unique
solution u ∈ C1([0, T ], X) of the problem:

u′(t) = Au(t),

u(0) = x.

The solution is given by u(t) = etAx, for all t ∈ [0, T ].

Let A be an m–dissipative operator on X - a Banach space and Jλ, Aλ be as before.
Set Tλ(t) = etAλ , t ≥ 0.

Theorem 3.1.3. For all x ∈ X the sequence uλ(t) = Tλ(t)x converges uniformly
on bounded intervals of [0, T ] to a function u ∈ C((0,∞), X) as λ → 0. We set
T (t)x = u(t) for all x ∈ X and t ≥ 0. Then,

T (t) ∈ L(X) and ‖T (t)‖ ≤ 1, ∀t ≥ 0,

T (0) = I,

T (t+ s) = T (t)T (t), ∀s, t ≥ 0.
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In addition, for all x ∈ D(A), u(t) = T (t)x is the unique solution of the problem

u′(t) = Au(t)

u(0) = x

and u ∈ C([0,∞), D(A))∩C1([0,∞), X). Finally, T (t)Ax = AT (t)x, ∀x ∈ D(A), t ≥
0.

We can now also discuss the notion of a one–parameter family (T (t))t≥0 ⊂ L(X).
This family is called a contraction semigroup if

• ‖T (t)‖ ≤ 1, ∀t ≥ 0,

• T (0) = I,

• T (t+ s) = T (t)T (t), ∀s, t ≥ 0.

• for all x ∈ X, the function t 7→ T (t)x belongs to C([0,∞), X).

The generator of (T (t))t≥0 is the linear operator A defined by

D(A) = {x ∈ X; T (t)x− x
h

has a limit in X as h→ 0},

and
Ax = lim

h→0

T (t)x− x
h

.

We now paraphrase the Hille–Yosida–Phillips theorem ([CBH+98, Theorem 3.4.4.]).

Theorem 3.1.4. If (T (t))t≥0 is a contraction semigroup, then its generator A is m–
dissipative and D(A) is dense in X. Conversely, if A is an m–dissipative with dense
domain and (T (t))t≥0 is the semigroup corresponding to A given by Theorem 3.1.3,
then its generator is exactly A.

The family (T (t))t∈R is called an isometry group in X if

• ‖T (t)x‖ = ‖x‖, ∀t ∈ R, ∀x ∈ X,

• T (0) = I,

• T (t+ s) = T (t)T (t), ∀s, t ≥ 0.

• for all x ∈ X, the function t 7→ T (t)x belongs to C(R, X).

The following theorem holds
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Theorem 3.1.5. Let A be an m–dissipative operator with dense domain, and let
(T (t))t≥0 be the contraction semigroup generated byA. Then (T (t))t≥0 is the restriction
to R+ of an isometry group if and only if −A is m–dissipative.

To summarize, let us apply this theory to the Schrödinger operators (3.3) and (3.4).
Let (S(t))t∈R and (T (t))t∈R be the isometry groups generated by B and A defined
by (3.3) and (3.4). Keeping the same notation, there holds

S(t)ϕ = T (t)ϕ, ∀t ∈ R, ∀ϕ ∈ Y.

The following theorem holds

Theorem 3.1.6. Let ϕ ∈ H1 and let u(t) = T (t)ϕ. Then u is the unique solution to
the problem

iut +4u = 0,

u(0) = ϕ

and u ∈ C(R, H1) ∩ C1(R, H−1). If 4ϕ ∈ L2, then u ∈ C1(R, L2) and 4u ∈
C(R, L2).

All of the above holds in the case of a general domain Ω ⊂ Rn, but when we
have specifically Rn, then we can derive additional properties and explicitly express
(T (t))t∈R in Fourier variables. The following theorem holds.

Theorem 3.1.7. Let p ∈ [2,∞], 1/p+ 1/p′ = 1 and t > 0. Then T (t) can be extended
to an operator belonging to L(Lp′ , Lp) and

‖T (t)ϕ‖p ≤ (4π|t|)−n( 1
2−

1
p

)‖ϕ‖p′ , for all φ ∈ Lp′ (3.5)

Proof. Take the equation

iut +4u = 0, u(0, x) = ϕ(x), (3.6)

for ϕ in the Schwartz space S(Rn). Then,

û(t)t(ξ) = −i|ξ|2û(t)(ξ) and

û(t)(ξ) = e−it|ξ|
2
ϕ̂(ξ).
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It follows that
u(t) =

∫
Rn
e−it|ξ|

2+ix·ξϕ̂(ξ)dξ

is a solution and because of the previous theorem there holds u(t) = T (t)ϕ(x). We
can also write u(t) = K(t) ∗ ϕ where

K(t) = F−1(e−i|ξ|2t(x) = 1
(4πt)

n
2
e
i|x|2

4t .

It follows
‖T (t)ϕ‖∞ ≤

1
(4πt)

n
2
‖ϕ‖1,

for all t 6= 0 and ϕ ∈ S(Rn). Thus, one can extend T (t) to an operator in L(L1, L∞),
such that the above inequality holds for ϕ ∈ L1. Similarly, T (t) ∈ L(L2, L2) and
is unitary. The general case follows from the Riesz–Thorin convexity theorem
2.4.7.

The operator T (t) is unitary on L2(Rn), but also on Hs(Rn), s ∈ R. It is a Fourier
multiplier and as such, commutes with other Fourier multipliers, including constant
coefficient differential operators.

Finally, we wish to generalize Theorem 3.1.6 to the nonlinear case. The following
holds ([CBH+98, Section 4.3.]).

Theorem 3.1.8 (Duhamel’s formula). Let F : X → X be a Lipschitz continuous
function on bounded subsets of X. If u is a solution of the problem

u ∈ C([0, T ], D(A)) ∩ C1([0, T ], X); (3.7)

u′(t) = Au(t) + F (u(t)) ∀t ∈ [0, T ]; (3.8)

u(0) = x, (3.9)

then

u(t) = T (t)x+
∫ t

0
T (t− s)F (u(s))ds, ∀t ∈ [0, T ]. (3.10)

Conversely, if u satisfies (3.10) then (3.7)− (3.9) hold.

Let us now define the type of solution relevant for our setting, now following
[Caz03]. We consider distributive solutions of (3.1).

Definition 3.1.9. Let g ∈ C(H1, H−1), a ∈ H1 and I is an interval such that 0 ∈ I.
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(i) A weak H1 solution u of (3.1) is a function

u ∈ L∞(I,H1) ∩W 1,∞(I,H−1)

such that iut +4u+ g(u) = 0 in H−1 for a.a. t ∈ I and u(0) = a.

(ii) A strong H1 solution u of (3.1) is a function

u ∈ C(I,H1) ∩ C1(I,H−1)

such that iut +4u+ g(u) = 0 in H−1 for all t ∈ I and u(0) = a.

In the following we will deal with strong solutions. Note that

iut +4u+ g(u) = 0 in H−1 ⇔ 〈ϕ, iut +4u+ g(u)〉 = 0, ∀ϕ ∈ H1,

so when u ∈ H2 and g(u), ut ∈ L2 the expression iut +4u+ g(u) is in L2 and the
above becomes ∫

Rn
(iut +4u+ g(u))ϕ = 0, ∀ϕ ∈ H1 and ∀t ∈ I.

It follows iut+4u+ g(u) = 0 for almost all x ∈ Rn. So when we have a H2 solution
in the sense of Definition 3.1.9, then we have that (3.1) holds point-wise on Rn.

Remark 3.1.10. The boundary condition u(t) → 0 as |x| → ∞ is usually a part of
defining a solution to the problem (3.1), but in our relevant case u ∈ H2 it holds since
it holds for all H2 functions, see (2.3).

We can state the Duhamel’s formula specified for our setting and as in [Caz03].

Theorem 3.1.11 (Duhamel’s formula). Let I be an interval such that 0 ∈ I, let
g ∈ C(H1, H−1) and a ∈ H1. If g is bounded on bounded sets and u ∈ L∞(I,H1),
then u is a weak H1 solution of (3.1) on I if and only if

u(t) = T (t)a+ i

∫ t

0
T (t− s)g(u(s))ds for all t ∈ I, for a.a. t ∈ I. (3.11)

A function u ∈ C(I,H1) is a strong H1 solution of (3.1) on I if and only if it satisfies
(3.11) for all t ∈ I.

Note that
T (t− s)f(s) =

∫
e−i(t−s)|ξ|

2+ixξ f̂(s, x)(ξ)dξ
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and the Fourier transform f̂(s, x) is in the x variable and s denotes the time vari-
able.

3.2 Strichartz estimates and uniqueness

We start by introducing the model nonlinearity g(u).

Definition 3.2.1. Let g(u) = −(V u+ u|u|2 + (w ∗ |u|2)u) for w ∈W 2,p, p > 2 and w
is even, V ∈ C∞0 (Rn).

Definition 3.2.2. We say that a pair (q, r) is admissible if

2
q

= n(1
2 −

1
r

) and (3.12)

2 ≤ r ≤ 2n
n− 2 (2 ≤ r ≤ ∞ if n = 1, 2 ≤ r <∞ if n = 2). (3.13)

Note that if (q, r) is admissible, then 2 ≤ q ≤ ∞. Also, (∞, 2) is always admissible;
(2, 2n

n−2) is admissible for n ≤ 3.

When dealing with the whole space Rn, Strichartz estimates are a very useful tool.
We now present them, as in [Caz03, Theorem 2.3.3.]

Theorem 3.2.3 (Strichartz’s estimates). The following properties hold

• For every ϕ ∈ L2(Rn), the function t→ T (t)ϕ belongs to

Lq(R, Lr(Rn)) ∩ C(R, L2(Rn))

for every admissible pair (q, r). Furthermore, there exists a constant C such that

‖T (·)ϕ‖Lq(R,Lr) ≤ C‖ϕ‖L2 , ∀ϕ ∈ L2(Rn).

• Let I be an interval in R (bounded or not), J = I and t0 ∈ J . If (γ, ρ) is an
admissible pair and f ∈ Lγ′(I, Lρ′(Rn)), then for any admissible pair (q, r), the
function

t→ Φf (t) =
∫ t

t0
T (t− s)f(s)ds for t ∈ I
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belongs to Lq(I, Lr(Rn)) ∩ C(J, L2(Rn)). Moreover, there exists a constant C
independent of I such that

‖Φf‖Lq(I,Lr) ≤ C‖f‖Lγ′ (I,Lρ′ ) ∀f ∈ Lγ′(I, Lρ′(Rn)).

Lemma 3.2.4. Let I 3 0 be an interval. Let 1 ≤ aj < sj ≤ ∞ and φj ∈ Lsj (I), for
1 ≤ j ≤ k. If there exists a constant C ≥ 0 such that

k∑
j=1
‖φj‖Lsj (J) ≤ C

k∑
j=1
‖φj‖Laj (J)

for every interval J such that 0 ∈ J ⊂ I, then φ1 = · · · = φk = 0 a.e. on I.

Theorem 3.2.5. Let g be as in Definition 3.2.1. If a ∈ H1 and u1, u2 are two weak H1

solutions of (3.1) on some interval I 3 0, then u1 = u2.

Proof. Let u, v ∈ L∞(I,H1) ∩W 1,∞(I,H−1) be two solutions of (3.1) and let us
assume that I is a bounded interval. By (3.11)

u(t)− v(t) = i

∫ t

0
T (t− s) (g(u(s))− g(v(s))) ds for a.a. t ∈ I.

Let us denote W (t) = u(t)− v(t) and f(t) = g(u)− g(v) so we can write

W (t) = i

∫ t

0
T (t− s)f(s)ds for a.a. t ∈ I.

Specifically, f is a sum of terms fj(t) = gj(u) − gj(v) where g1(u) = V u, g2(u) =
(w ∗ |u|2)u and g3(u) = u|u|2. Now we will show that

‖fj‖
L
γ′
j (I,L

ρ′
j )
≤ C‖W‖

L
γ′
j (I,Lrj )

(3.14)

for some admissible pairs (qj , rj) and (γj , ρj). It is not difficult to see that

‖fj‖2 ≤ C‖W‖2
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for j = 1. this also holds for j = 2 since

‖(w ∗ |u|2)u− (w ∗ |v|2)v‖2 = ‖(w ∗ |u|2)(u− v) + v · w ∗ (|u|2 − |v|2)‖2
. ‖w‖∞‖u2‖1‖u− v‖2 + ‖v · w ∗ (|u| − |v|)(|u|+ |v|)‖2
. T‖w‖∞‖u‖22‖u− v‖2 + ‖v‖2‖w‖∞‖(|u| − |v|)(|u|+ |v|)‖2
. ‖u− v‖2

(
‖w‖∞(‖u‖22 + ‖v‖2(‖u‖2 + ‖v‖2))

)
= c(‖w‖∞, ‖a‖2)‖W‖2.

Here Young’s inequality (2.8) was used, for r = 2 = p, q = 1 and | |x|− |y| |≤ |x−y|.
Applying the Lγ

′
j–norm in t we obtain (3.14) for rj = r′j = ρj = ρ′j = 2, qj = γj =∞

and γ′j = q′j = 1.
Regarding the cubic term, observe that

|u|u|2 − v|v|2| = |u(|u| − |v|)(|u|+ |v|) + |v|2(u− v)|

≤ |u||u− v|(|u|+ |v|) + |v|2|u− v| = |u− v|(|u|+ |v|)2.

Using Hölder inequality we obtain

‖f3‖ 4
3
≤ ‖u− v‖4(‖u‖4 + ‖v‖4)2

The norms ‖u‖4 and ‖v‖4 are bounded by the H1 norm: using (2.11) inequality for
j = 0, p = 4, r = q = 2, m = 1

‖u‖4 . (
∑
|α|=1

‖∂αu‖2)b‖u‖1−b2 ≤ ‖u‖bH1‖u‖1−bH1 = ‖u‖H1

where b = 1
2 for n = 2 and b = 3

4 for n = 3. In return ‖u‖H1 is bounded (in particular
by c(‖a‖H1) which we will see in the following section). So H1 ↪→ L4 and |I| <∞
imply that (3.14) holds for j = 3 also, and here ρ′j = r′j = 4

3 , ρj = rj = 4, qj = γj =
8
n , q

′
j = γ′j = 8

8−n . Now we apply Strichartz estimates to W (t) =
∑
Wj . First, there

holds

‖Wj‖Lsl (I,Lrl ) ≤ C‖fj‖
L
γ′
j (I,L

ρ′
j )

and∑
l

‖Wj‖Lsl (I,Lrl ) ≤ C‖fj‖
L
γ′
j (I,L

ρ′
j )

for any admissible pair (sl, rl). Then

3∑
j=1
‖W‖Lsj (I,Lrj ) ≤

∑
j,l

‖Wl‖Lsj (I,Lrj ) ≤ C
3∑
j=1
‖fj‖

L
γ′
j (I,L

ρ′
j )
≤ C

3∑
j=1
‖Wj‖

L
γ′
j (I,Lrj )
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for 1 ≤ γ′j < sj ≤ ∞, since sj = 8
n , γ

′
j = 8

8−n for j = 3 and sj = ∞, γ′j = 1 for
j = 1, 2. Now denoting

φj(t) = ‖W‖Lrj

the result follows from Lemma 3.2.4.

3.3 Well - posedness in Sobolev spaces

In this section we describe well - posedness of (3.1) in Sobolev spaces, mainly in H2

but also in the energy space H1 and then H3. This theory is used in sections 4 and
5.

By local well–posedness we mean the following.

Definition 3.3.1. We say that the initial value problem is locally well–posed in Hm,
m ∈ N, if the following properties hold:

• A solution of (3.1) is unique in Hm.

• For every a ∈ Hm, there exists a strong Hm solution of (3.1) defined on a
maximal interval (−Tmin, Tmax) (a "maximal" solution) with Tmax = Tmax(a) ∈
(0,∞] and Tmin = Tmin(a) ∈ (0,∞].

• There is blowup alternative: if Tmax < ∞, then limt→Tmax ‖u(t)‖Hm = +∞
(respectively, if Tmin <∞, then limt→−Tmin ‖u(t)‖Hm = +∞).

Remark 3.3.2. In our work, we do not discuss continuous dependence of the solution
on initial data, so we do not include this notion in the definition of well–posedness.

Definition 3.3.3. If there is local well–posedness and additionally Tmax = Tmin =∞,
then we say that there is global well–posedness.

Theorem 3.3.4. Let g be as in Definition 3.2.1. For every a ∈ H2 there exist
Tmin, Tmax > 0 and a unique, maximal solution
u ∈ C((−Tmin, Tmax), H2) ∩ C1((−Tmin, Tmax)), L2) of (3.1). Furthermore, the
blowup alternative holds.
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Proof. Given M,T > 0 to be chosen later and I = (−T, T ), observe the space

E ={u ∈ L∞(I,H1) ∩W 1,∞(I, L2) ∩W 1,q(I, Lr);

u(0) = a, ‖u‖L∞(I,H1) + ‖u‖W 1,∞(I,L2) + ‖u‖W 1,q(I,Lr) ≤M},

where (q, r) = ( 8
n , 4) is admissible. This is a complete metric space, where the metric

is defined by
d(u, v) = ‖u− v‖L∞(I,H1) + ‖u− v‖Lq(I,Lr).

Let
Φ(u)(t) = T (t)a+ G(u)(t),

where
G(u)(t) = i

∫ t

0
T (t− s)g(u(s))ds.

Denote by g1(u) = V u, g2(u) = (w ∗ |u|2)u, g3(u) = u|u|2. Like in the proof of
Theorem 3.2.5

‖g1(u)− g1(v)‖2 ≤ ‖V ‖∞‖u− v‖2
‖g2(u)− g2(v)‖2 ≤ c(‖w‖∞, ‖u‖2, ‖v‖2)‖u− v‖2
‖g3(u)− g3(v)‖ 4

3
≤ c(‖u‖4, ‖v‖4)‖u− v‖4.

Using the same notation as before, ρ′1 = ρ′2 = 2 = r1 = r2 = ρ1 = ρ2; ρ′3 = 4
3 , r3 =

ρ3 = 4. Further, if ‖u‖H1 ≤M , then

‖G(u)(t)‖2 ≤ TK(M).

We now estimate ∂
∂tgj(u) in the following way∥∥∥∥ ∂∂t(V u)

∥∥∥∥
2
≤ ‖V ‖∞‖ut‖2∥∥∥∥ ∂∂t((w ∗ |u|2)u

∥∥∥∥
2
. ‖w‖∞‖u‖22‖ut‖22∥∥∥∥ ∂∂t(u|u|2)

∥∥∥∥ 4
3

. ‖|u|2ut‖ 4
3
. ‖u‖24‖ut‖4.

Let v(t) = G(u)(t). Then v satisfies

ivt +4v + g(u) = 0, v(0) = 0.
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It follows

‖4v‖2 . ‖vt‖2 + ‖g(u)‖2.

Further,

vt(t) = i
∂

∂t

∫ t

0
T (t− s)g(u(s))ds = i

∂

∂t

∫ t

0
T (s)g(u(t− s))ds

= iT (t)g(u(0)) · 1− iT (0)g(u(t)) · 0 + i

∫ t

0
T (s) ∂

∂t
(g(u(t− s))ds

= iT (t)g(u(0)) +
∫ t

0
T (t− s) ∂

∂t
(g(u(s))ds.

By Strichartz estimates

‖
∫ t

0
T (t− s)ft(s)ds‖L∞(I,L2) ≤ c‖ft‖Lγ′ (I,Lρ′ ),

where (γ, ρ) is an admissible pair. In our case above

‖vt‖L∞(I,L2) . ‖g(u(0))‖2 + ‖
∫ t

0
T (t− s) ∂

∂t
(g(u(s)))ds‖L∞(I,L2)

. ‖g(u(0))‖2 +
3∑
j=1
‖ ∂
∂t

(gj(u(t)))‖
L
γ′
j (I,L

ρ′
j )

and (γ′j , ρ′j) = (∞, 2) for j = 1, 2 (and here we just apply the fact that T is unitary
on L2), (γ′3, ρ′3) = ( 8

8−n ,
4
3) so that (γ, ρ) = ( 8

n , 4) is admissible. Combining all the
estimates

‖G(u)(t)‖L∞(I,H2) . ‖v‖L∞(I,L2) + ‖4v‖L∞(I,L2) . T (K(M) + ‖g(a)‖L∞(I,L2)

+ ‖g(u)‖L∞(I,L2) + ‖V ‖∞‖ut‖L∞(I,L2) + ‖w‖∞‖u‖2L∞(I,L2)‖ut‖
2
L∞(I,L2))

+ ‖‖u‖24‖ut‖4‖
L

8
8−n (I)

.

(3.15)

Note that here we used that the upper bound for ‖v‖H2 is essentially ‖v‖2 + ‖4v‖2.
This is due to

∑
|α|≤2

‖∂αv‖2 =
∑
|α|≤2

‖ξαv̂‖2 ≤
∑
|α|≤2

‖(1+ξ2)α/2v̂‖2 ≤ c‖(1+|ξ|2)v̂‖2 = c(‖v‖2+‖4v‖2).
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On the other hand

(
∫ T

−T
(‖u‖24‖ut‖4)

8
8−ndt)

8−n
8 . (

∫
‖ut‖

8
8−n ·

8−n
n

4 dt)
n
8 (
∫
‖u‖

2· 8
8−n ·

8−n
8−2n

4 dt)
8−2n

8

. ‖ut‖
L

8
n (I,L4)

‖u‖2Lp(I,H1)

. T‖ut‖
L

8
n (I,L4)

‖u‖2L∞(I,H1),

where p = 8
8−2n and ( 8

n , 4) is admissible. Returning to (3.15)

‖Φ(u)(t)‖H2 ≤ T (‖a‖H2 + c1‖a‖H1 + c2M + c3M
4 + c4M

3)

≤ c0T (‖a‖H2 + ‖a‖H1 +M +M4 +M3),

with c0 independent of M and T . Now choosing M = ‖a‖H2 and T sufficiently small
we obtain

‖Φ‖L∞(I,H2) ≤M. (3.16)

Repeating some of the arguments∥∥∥∥ ∂∂tΦ
∥∥∥∥
L∞(I,L2)

. Tc0(‖a‖H1 +M +M4 +M3)

and by Strichartz estimates, similarly as before

∥∥∥∥ ∂∂tΦ
∥∥∥∥
Lq(I,Lr)

. ‖g(a)‖2 +
3∑
j=1

∥∥∥∥ ∂∂tgj(u))
∥∥∥∥
L
γ′
j (I,L

ρ′
j )

for (γj , ρj) admissible. Specifically, (γj , ρj) = (∞, 2) and (γ′j , ρ′j) = (1, 2) for j = 1, 2
so that

‖ ∂
∂t

(V u)‖L1(I,L2) . T‖V ut‖L∞(I,L2)

‖ ∂
∂t

((w ∗ |u|2)u)‖L1(I,L2) . T‖u‖2L∞(I,L2)‖ut‖
2
L∞(I,L2)

and (γ′3, ρ′3) = ( 8
8−n ,

4
3) as before. Finally, choosing T possibly smaller,

‖Φ(t)‖L∞(I,H1) + ‖Φ(t)‖W 1,∞(I,L2) + ‖Φ(t)‖W 1,q(I,Lr) ≤M

so that Φ : E → E. A similar, though simpler argument shows that Φ is a contraction
on E, so it has a unique fixed point on E. Moreover, by (3.16), u ∈ L∞(I,H2).
It can be shown that u ∈ C(I,H2) ∩ C1(I, L2). By Theorem 3.2.5 uniqueness on
the whole space H2 follows. We can now define a unique maximal solution (for
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Tmax = sup{T}). Since I depended on ‖a‖H2 , the blowup alternative can be shown
by contradiction.

We present also local well – posedness in the energy space H1 and a theorem which
lays ground for the proof of global well – posedness. This theorem is a simplified
version of [Caz03, Theorem 3.3.5.] and [Caz03, Theorem 3.3.9.].

Theorem 3.3.5. Let g be as in Definition 3.2.1. For everyM > 0 there exists T (M) > 0
with the following property: For every a ∈ H1 such that ‖a‖H1 ≤ M there exists a
weak H1 solution u of (3.1) on I = (−T (M), T (M)). In addition,

‖u‖L∞(I,H1) ≤ 2M, (3.17)

‖u(t)‖2 = ‖a‖2 (3.18)

H(u(t)) ≤ H(a). (3.19)

If the solution is unique, then the solution is maximal, the blowup alternative holds
and H(u(t)) = H(a) for all t ∈ (−Tmin, Tmax).

The notion of higher regularity is also important for this subject. For example,
if the initial data is a ∈ H1 there is a unique solution u ∈ C((−Tmin, Tmax), H1).
If we further assume that a ∈ H2, we know there is a maximal solution u ∈
C((−T 1

min, T
1
max), H2), but do the two solutions coincide? Since a H2 solution is

also a H1 solution and from uniqueness it follows that they surely coincide on the
smaller of the two intervals (−Tmin, Tmax), (−T 1

min, T
1
max), also (−T 1

min, T
1
max) ⊂

(−Tmin, Tmax). So the question becomes: is Tmax = T 1
max and Tmin = T 1

min? In the
case relevant for our analysis the answer is affirmative. The following theorem is a
consequence of [Caz03, Theorem 5.3.1.] and [Caz03, Remark 5.3.3.].

Theorem 3.3.6. Let g be as in Definition 3.2.1 and a ∈ H1. Let
u ∈ C((−Tmin, Tmax), H1) be the maximal solution of (3.1). If a ∈ H2 it follows that
u ∈ C((−Tmin, Tmax), H2).

For the cubic case, higher regularity holds in H3 also. The following theorem is a
consequence of [Caz03, Theorem 4.10.1.], [Caz03, Remark 4.10.3.] and [Caz03,
Theorem 5.4.1].

Theorem 3.3.7. Let n ∈ {2, 3}, g as in Definition 3.2.1 and a ∈ H2(Rn). Let
u ∈ C((−Tmin, Tmax), H2(Rn)) be the maximal solution of (3.1). If a ∈ H3(Rn), then
u ∈ C((−Tmin, Tmax), H3(Rn)).
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Proof. The crux of this theorem is to prove well – posedness in H3 which is done
in [Caz03, Theorem 4.10.1.] for the case g(u) = u|u|2. So we present a proof
with slight modifications because of the additional term V u+ (w ∗ |u|2)u. Higher
regularity then follows in the same way as in the proof of [Caz03, Theorem 5.4.1].

Given M,T > 0 to be chosen later, let I = (−T, T ) and

E = {u ∈ L∞(I,H3) : ‖u‖L∞(I,H3) ≤M}.

We define distance as
d(u, v) = ‖u− v‖L∞(I,L2),

and with it E is a complete metric space. Consider now

Φ(u)(t) = T (t)a+ i

∫ t

0
T (t− s)g(u(s))ds,

with u ∈ E and t ∈ I. We derive the following inequalities

‖Φ(u)(t)‖H3 ≤ ‖a‖H3 + T‖g(u)‖H3

≤ ‖a‖H3 + T (C(M)M + C1M + C2M
3)

where C1 = C1(‖V ‖∞, ‖∂αV ‖∞, ‖∂βV ‖∞) and C(M) is as in [Caz03, Theorem
4.10.1.]. The third constant comes from ‖(w ∗ |u|2)u‖H3 and note that in order to
bound this term, it is enough to observe that

‖(∂αw ∗ |u|2)∂βu‖2 ≤ ‖∂αw ∗ |u|2‖∞‖∂βu‖2 ≤ c‖w‖∞‖∂α(|u|2)‖1‖∂βu‖2

for |α| ≤ 2, |β| ≤ 2. Now ∂α(|u|2) is at most a sum of terms ∂βu∂αu which in the L1

norm is bounded by ‖u‖2H2 (using Hölder inequality). To conclude, C2 = C2(‖w‖∞).

Also,

‖(w ∗ |u|2)u− (w ∗ |v|2)v‖2 ≤ ‖(w ∗ |u|2)(u− v) + v · w ∗ (|u|2 − |v|2)‖2
. ‖w‖∞‖u2‖1‖u− v‖2 + ‖v · w ∗ (|u| − |v|)(|u|+ |v|)‖2
. ‖w‖∞‖u‖22‖u− v‖2 + ‖v‖2‖w‖∞‖(|u| − |v|)(|u|+ |v|)‖2
≤ c‖u− v‖2

(
‖w‖∞(‖u‖22 + ‖v‖2(‖u‖2 + ‖v‖2))

)
≤ 3c1M

2.

44 Chapter 3 Semilinear Schödinger equation



It follows

‖Φ(u)(t)− Φ(v)(t)‖L2 ≤ T (C(M) + C3 + 3c1M
2)‖u− v‖L∞(I,L2)

≤ T (C(M) + C1 + C4M
2)‖u− v‖L∞(I,L2)

where C3 = ‖V ‖∞. So if M = 2‖a‖H3 and T (C(M) + C1 + C4M
2) ≤ 1

2 , then Φ
is a strict contraction on E. Uniqueness and other properties follow in a similar
manner.

We now derive conservation of energy and charge for the H2 solution and each
of the equations (1.1) − (1.3). Note that (3.18) and (3.19) hold for the weaker
case u ∈ H1, but we only prove them in the simpler case u ∈ H2, since then the
equality in (3.1) has sense in L2. To prove Theorem 3.3.5, approximate solutions
are needed.

Theorem 3.3.8. Let a ∈ H2. For the cubic equation (1.1) there holds

‖u(t)‖L2 = ‖a‖L2 , (3.20)

H(u(t)) = H(a), (3.21)

where H(u(t)) := 1
2
∫
Rn |∇u|2dx+ 1

4
∫
Rn |u|4dx denotes the Hamiltonian.

Proof. From Theorem 3.3.4, we know that there is a solution
u ∈ C((−Tmin, Tmax), H2)∩C1((−Tmin, Tmax)), L2), so the equation (1.1) has sense
in L2 so we can multiply by u and integrate over Rn - in other words take the scalar
product by u in L2:

(iut, u)2 + (4u, u)2 − (u|u|2, u)2 = 0.

Now if we take the imaginary part, as we have seen before, because of symmetry of
4 we have Im(4u, u)2 = 0. Also, (u|u|2, u)2 =

∫
|u|4 ∈ R, and we obtain:

1
2i
(
(iut, u)2 − (iut, u)2

)
= 0

1
2i · i

(
(ut, u)2 + (u, ut)2

)
= 0

1
2
∂

∂t
‖u‖L2 = 0,
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so (3.20) holds. Further, taking the scalar product of (1.1) with ut ∈ L2 and taking
the real part we obtain

1
2(i(ut, ut)2 − i(ut, ut)2) + 1

2((4u, ut)2 + (ut,4u)2)

− 1
2((u|u|2, ut)2 + (ut, u|u|2)2) = 0,

1
2
( ∫

(ut4u+ ut4u)−
∫
|u|2(uut + uut)

)
= 0.

Now, |u|2∂t(|u|2) = 1
2∂t|u|

4 and the above is equivalent to

∫
(ut4u+ ut4u)− 1

2
∂

∂t

∫
|u|4 = 0. (3.22)

In order to obtain conservation of energy, we have to apply some density arguments.
Let now u, ut ∈ C∞0 . There holds

∂

∂t

∫
|∇u|2 = ∂

∂t

∫
(|ux1 |2 + ...+ |uxn |2)

=
∫
ux1tux1 + ux1ux1t + ...+ uxntuxn + uxnuxnt

= −
∫

(utux1x1 + utux1x1 + ...+ utuxnxn + utuxnxn)

= −
∫

(ut4u+ ut4u).

Here we used integration by parts. Further, this formula is equivalent to∫
|∇u|2 =

∫
|∇u(0)|2 −

∫ t

0

∫
(ut4u+ ut4u). (3.23)

Let now u ∈ H2, ut ∈ L2 and un ∈ C∞0 such that (un)t ∈ C∞0 and un → u in
H2, (un)t → ut in L2 for any t ∈ (−Tmin, Tmax). Such a sequence is for example
un(t, x) = (ρn(x) ∗ u(t, x))ξn(x) for a mollifier ρn and a cut–off function ξn, see
[Bre10].
Then

∫
|∇u|2 = limn→∞

∫
|∇un|2 for any t and also∫

(ut4u+ ut4u) = lim
n→∞

∫
((un)t4un + unt4un) since

∫
|(un)t4un − ut4u| =

∫
|4un((un)t − ut) + ut(4un −4u)|

≤ ‖4un‖2‖(un)t − ut‖2 + ‖ut‖2‖4un −4u‖2 → 0, n→∞.

Since (3.23) holds for un it holds also for u and finally it is equivalent to∫
(ut4u+ ut4u) = − ∂

∂t

∫
|∇u|2.
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Returning to (3.22) we obtain

∂

∂t

( ∫
|∇u|2 + 1

2

∫
|u|4

)
= 0

and (3.21) holds.

Theorem 3.3.9. Let a ∈ H2, V ∈ C∞0 (Rn) be a real valued function and let

iut +4u = u|u|2 + V u,

u(0) = a.

There holds

‖u‖L2 = ‖a‖L2 , (3.24)

H(u(t)) = H(a), (3.25)

where H(u(t)) = 1
2
∫
Rn |∇u|2 + 1

4
∫
Rn |u|4 + 1

2
∫
V |u|2.

Proof. The proof is analogous to the proof of Theorem 3.3.8, noting that V |u|2 is
real and V ∂

∂t |u|
2 = ∂

∂t(V |u|
2).

Theorem 3.3.10. Let a ∈ H2, w ∈ W 2,p, p > 2 real valued and even and V ∈ C∞0 .
Let

iut +4u = (w ∗ |u|2)u+ V u,

u(0) = a.

There holds

‖u‖L2 = ‖a‖L2 , (3.26)

H(u(t)) = H(a), (3.27)

where H(u(t)) = 1
2
∫
Rn |∇u|2 + 1

2
∫
V |u|2 + 1

4
∫

(w ∗ |u|2)|u|2.

Proof. Conservation of charge (3.26) holds in the same way as before, due to the
fact that (w ∗ |u|2)|u|2 is real. Let us take the L2 scalar product with ut, then the real
part and observe just the term with the Hartree nonlinearity (others are as before)

1
2

∫
R3

(w ∗ |u|2)(uut + uut)dx = 1
2

∫
R3

(w ∗ |u|2) ∂
∂t
|u|2dx
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On the other hand

∂

∂t

∫
R3

(w ∗ |u|2)|u|2dx =
∫
R3

(
(w ∗ |u|2) ∂

∂t
|u|2 + (w ∗ ∂

∂t
|u|2)|u|2

)
dx

= −
∫
R3

(
(w ∗ |u|2) ∂

∂t
|u|2 + (w ∗ ∂

∂t
|u|2)|u|2

)
dx

⇒
∫
R3

(
(w ∗ |u|2) ∂

∂t
|u|2 + (w ∗ ∂

∂t
|u|2)|u|2

)
dx = 0

⇒
∫
R3

(w ∗ |u|2) ∂
∂t
|u|2 = −(w ∗ ∂

∂t
|u|2)|u|2dx = (w ∗ ∂

∂t
|u|2)|u|2dx

⇒
∫
R3

(w ∗ |u|2) ∂
∂t
|u|2 = 1

2
∂

∂t

∫
R3

(w ∗ |u|2)|u|2dx.

We used the fact that w is even to exchange the minus sign. Finally,

1
2

∫
R3

(w ∗ |u|2)(uut + uut)dx = 1
4
∂

∂t

∫
R3

(w ∗ |u|2)|u|2dx

and (3.27) follows.

Conservation of charge and energy is used to prove global well-posedness. We use
ideas from [Caz03, Theorem 3.4.1.].

Theorem 3.3.11. Let g be as in Definition 3.2.1 and a ∈ H1. There exists a global H1

solution of (3.1) on R satisfying (3.18) and (3.19).

Proof. Due to Theorem 3.3.5 there is a local solution. From conservation of energy,
the following bounds are derived∫

|∇u|2 =
∑
|α|=1

‖∂αu‖22 ≤ 2H(a)

=
∫
|∇a|2 +

∫
V |a|2 + 1

2

∫
(w ∗ |a|2)|a|2 + 1

2

∫
|a|4

≤
∑
|α|=1

‖∂αa‖22 + ‖V ‖∞‖a‖22 + 1
2‖w‖∞‖a‖

2
2‖a‖22 + 1

2‖a‖
4
4.

Using (2.11) inequality for j = 0, p = 4, r = q = 2, m = 1

‖a‖4 ≤ (
∑
|α|=1

‖∂αa‖2)b‖a‖1−b2 ≤ ‖a‖bH1‖a‖1−bH1 = ‖a‖H1
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where b = 1
2 for n = 2 and b = 3

4 for n = 3. So there holds

‖u(t)‖H1 =
√
‖u‖22 +

∑
|α|=1

‖∂αu‖22

≤
(
‖a‖22 +

∑
|α|=1

‖∂αa‖22 + ‖V ‖∞‖a‖22 + 1
2‖w‖∞‖a‖

4
2 + 1

2‖a‖
4
H1
) 1

2

≤
(
(1 + ‖V ‖∞)‖a‖2H1 + 1

2(‖w‖∞ + 1)‖a‖4H1
) 1

2

=
√
M1‖a‖2H1 +M2‖a‖4H1

Let M =
√
M1‖a‖2H1 +M2‖a‖4H1 , we see that ‖a‖H1 ≤ M . From Theorem 3.3.5,

there is a H1 solution on [0, T (M)] such that T (M) is the same for any initial
condition whose H2 norm is bounded with M . Based on Theorem 3.3.5 conser-
vation of energy also holds and so ‖u(t)‖H1 ≤ M < ∞ on [0, T (M)]. Setting
ã = u(T (M)) ∈ H2 we see that again, there exist a H1 solution ũ (with initial value
ã on [0, T (M)]) which again satisfies energy conservation. We define a function

u(t) =

 u(t), t ∈ [0, T (M)],

ũ(t− T (M)), t ∈ [T (M), 2T (M)].

This function is a solution on [0, 2T (M)] and it is unique (due to Strichartz condi-
tions). Moreover,

‖u(t)‖2 = ‖ũ(t− T (M))‖2 = ‖ã‖2 = ‖u(T (M)‖2 = ‖a‖2,

H(u(t)) = H(ũ(t− T (M))) = H(ã) = H(u(T (M)) = H(a),

for t ∈ [T (M), 2T (M)]. So newly defined u satisfies conservation of energy and
charge and also ‖u(2T (M))‖H1 ≤ M . Therefore this argument can be repeated
so that we obtain a solution on [0,∞) such that conservation of energy holds for
any t ≥ 0. Similar arguments holds for t ≤ 0 and we additionally conclude that
‖u‖H1 <∞ for any t ∈ R.

Theorem 3.3.12. Let g be as in Definition 3.2.1. If a ∈ H2, then there is a global
solution u ∈ C(R, H2) which satisfies conservation of charge and energy.

Proof. The proof follows from Theorem 3.3.6. In other words conditions for higher
regularity hold and the H1 and the H2 solutions coincide on all R.

Also as a consequence of Theorem 3.3.7 we have the following theorem.
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Theorem 3.3.13. Let g be as in Definition 3.2.1. If a ∈ H3 there is a global solution
u ∈ C(R, H3) which satisfies conservation of charge and energy.
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Well - posedness of the cubic
equations in the Colombeau
algebra

4

In this chapter we present original results related to equations (1.1) and (1.2). The
term "well–posedness" in the title is used now for existence of a unique solution in
GH2,C1 . For (1.1) we are able to show compatibility with the Sobolev H2 solution,
too.

4.1 The delta potential

Consider first the equation with the delta potential

iut +4u = u|u|2 + δu,

u(0, x) = a(x), a ∈ GH2(R3).
(4.1)

This equation is a model for Bose–Einstein condensates (BEC) and δ(x) describes a
localized external potential applied to the condensate. A lot of research is directed to
understand the interaction between its soliton solution and the delta–like impurity.
A soliton is a solitary wave (wave packet) solution, traveling unchanged in shape
with constant velocity and occurs due to cancellation of dispersive and nonlinear
effects. Here we turn to examining existence and uniqueness of a solution in the
Colombeau algebra. The question of compatibility in the sense of Definition 2.5.13
remains open. We do not have a candidate for any kind of classical solution of
(4.1).

The estimates we derive in this section are applicable to the cubic equation (1.1), too,
so this is the reason we start with the equation with the potential. A representative
of δ is chosen such that the regularized version of (4.1) is

i∂tuε +4uε = uε|uε|2 + φhεuε,

uε(0, x) = aε(x),
(4.2)
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where φhε(x) is a strict delta net as in Section 2.5. Later on, one will see that we
have to take hε ∼ (ln ε−1)5/19. Let ε > 0. We have seen that conservation of charge
(3.24) and energy (3.25) hold, where now

H(aε) := 1
2

∫
R3
|∇aε|2dx+ 1

4

∫
R3
|aε|4dx+ 1

2

∫
R3
φhε |aε|2dx.

It follows
H(uε(t)) = H(aε) ≥

1
2

∫
R3
|∇uε|2dx

and

‖uε(t)‖H1 =
√
‖uε‖22 +

∑
|α|=1

‖∂αuε‖22

≤
(
‖aε‖22 +

∑
|α|=1

‖∂αaε‖22 + ‖φhε‖∞‖aε‖22 + 1
2‖aε‖

4
H1
) 1

2

≤
(
(1 + ‖φhε‖∞)‖a‖2H1 + 1

2‖a‖
4
H1
) 1

2

≤
√

(1 + chnε )‖a‖2H1 +M2‖a‖4H1 (4.3)

We have used inequality (2.11) with j = 0, m = 1, a = 3
4 , p = 4, and r = q = 2.

Let us now show that the Definition 2.5.10 is independent of the representative
when g(uε) = uε|uε|2 + φhεu. Let vε = uε +Nε, Nε ∈ NC1,H2 . We have seen

i(vε)t +4vε + vε|vε|2 = Mε + f(uε, Nε),

where ‖Mε‖2 ∼ εM for any t ∈ [0, T ). Now for f(uε, Nε) we have:

f(uε, Nε) = uε|Nε|2 +Nε|uε|2 +Nε|Nε|2 + (uε +Nε)(uεNε + uεN ε) + φhεNε, and

‖f‖2 . ‖Nε‖2∞‖uε‖2 + ‖uε‖2∞‖Nε‖2 + ‖Nε‖2∞‖Nε‖2 + ‖φhε‖∞‖Nε‖2.

Noting that ‖Nε‖∞ ≤ ‖Nε‖H2 (Sobolev embedding (2.3)) we have that each term
above is bounded by εM for any t ∈ [0, T ).

Let us now state the main theorem of this section.

Theorem 4.1.1. Let a ∈ GH2 such that there exists a representative aε which satisfies
the following:

‖aε‖H3 = O(ε−N ), and ‖aε‖H1 = O(hε) for some N ∈ N, ε→ 0 (4.4)
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where hε ∼ (ln ε−1)
5

11 . Then for any T > 0 there exists a generalized solution
u ∈ GC1,H2([0, T )× R3) of (4.1).

Remark 4.1.2. For simplicity, we bound the norm of the initial condition with the
same hε used to regularize the delta function.

Proof. For each ε ∈ (0, 1) there exists a unique global solution uε ∈ C(R, H3). This is
a consequence of Theorem 3.3.13. From conservation of charge ‖uε(t)‖2 = ‖aε‖2 ∼
ε−N for any t ∈ [0, T ). Also (4.3) holds which implies ‖u(t)‖H1 ∼ ε−N for some
N ∈ N. It remains to obtain estimates for second order derivatives.

We first apply a second order derivative in x to the nonlinear part

∂α(u2u+ φhεu) =
∑
β≤α

(
α

β

)(
(∂βu2

ε)(∂α−βu) + (∂βφhε)(∂α−βuε)
)

. u2
ε∂

αuε +
∑
|β|=1

∂β(u2
ε)∂α−βuε + ∂α(uε)2uε

+ φhε∂
αuε +

∑
|β|=1

∂βφhε∂
α−βuε + ∂αφhεuε.

where |α| = 2. Note that

∂αu2
ε = 2uε∂αuε +

∑
|β|=1

∂βuε∂
α−βuε.

In order to bound ‖∂α(uε|uε|2 + φhεuε)‖2 we essentially need to bound

‖u2
ε∂

αuε + uε∂
βuε∂

γuε + φhε∂
αuε + ∂βφhε∂

γuε + ∂αφhεuε‖2, (4.5)

where |γ| = |β| = 1. The idea here will be to go from the L2–norm to L
10
3 –norm

using Hölder and Gagliardo–Nirenberg inequalities. Then, by (3.5) we go to the
L

10
7 –norm, which we bound (essentially) with ‖aε‖H3 using Gronwall’s inequality

(Theorem 2.4.4).

The following estimates hold for any t ∈ [0, T ). Differentiating Duhamel’s formula
(3.11) twice and using (3.5) and Minkowski integral inequality (2.12)

‖∂αuε‖2 ≤‖∂αaε‖2 + c

∫ t

0
‖∂α

(
uε(s)|uε(s)|2 + φhεuε(s)

)
‖2ds. (4.6)
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where |α| = 2. We can estimate each of the terms in (4.5) in the following way.
There holds

‖u2
ε∂

αuε‖2 =(
∫
|uε|4|∂αuε|2)

1
2

.‖uε‖210‖∂αuε‖ 10
3

.
( ∑
|β|=1

‖∂βuε‖ 10
3

) 3
2 ‖u(t)‖

1
2
2 ‖∂

αuε‖ 10
3
.

Here we used the Hölder inequality (2.7) for p = 5
2 , q = 5

3 and the Gagliardo–
Nirenberg inequality (2.11) for j = 0, m = 1, p = 10, r = 10

3 , q = 2, b = 3
4 .

Further,

‖uε(∂βuε)(∂γuε)‖2 .‖uε‖6‖∂βuε∂γuε‖3 . ‖uε‖6‖∂βuε‖6‖∂γuε‖6

.
( ∑
|α|=1

‖∂αuε(t)‖2
)( ∑
|α|=2

‖∂αuε(t)‖ 10
3

) 20
13 ‖uε(t)‖

6
13
2 .

In the first line, Hölder inequality was used for p = 3, q = 3
2 first and then for

p = q = 2. In the second line, Gagliardo–Nirenberg inequality was used for ‖uε‖6
first, where j = 0, m = 1, r = q = 2, b = 1 and then for ‖∂βu‖6 and ‖∂γuε‖6 with
j = 1, m = 2, p = 6, r = 10

3 , q = 2, b = 10
13 . Finally,

‖uε∂αφhε‖2 ≤ ‖∂αφhε‖∞‖uε‖2, ‖∂βφhε∂γuε‖2 ≤ ‖∂βφhε‖∞‖∂γuε‖2,

‖φhε∂αuε‖2 ≤ ‖∂αuε‖ 10
3
‖φhε‖5.

In the last line, Hölder inequality was used for p = 5
3 , q = 5

2 . The norms ‖∂αφhε‖p,
p ∈ {∞, 5}, |α| ≤ 2 are controlled by hmε for some m. It remains to obtain bounds
for ‖∂γuε‖ 10

3
and ‖∂αuε‖ 10

3
, |γ| = 1, |α| = 2. Again we use Duhamel’s formula

(3.11), estimate (3.5) for p = 10
3 , p

′ = 10
7 and the fact that T (t) commutes with ∂γ

‖∂γuε‖ 10
3
≤ ‖∂γ(T (t)aε)‖ 10

3

+ c

∫ t

0

1
(t− s)

3
5
‖∂γ

(
uε(s)|uε(s)|2 + φhεuε(s)

)
‖ 10

7
ds,

‖∂γ(T (t)aε)‖ 10
3
≤
( ∑
|α|=2

‖∂α(T (t)aε)‖2
) 4

5 ‖T (t)aε‖
1
5
2 ≤ ‖aε‖H2
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where the Gagliardo-Nirenberg inequality (2.11) was used, j = 1, m = 2, p =
10/3, q = r = 2, b = 4/5. Applying the Hölder inequality and (2.11) again with
j = 0, m = 1, p = 5, r = q = 2, b = 9

10 , we derive the following inequalities

‖∂γφhεuε‖ 10
7
≤‖aε‖2‖∂γφhε‖5,

‖φhε∂γuε‖ 10
7
≤‖∂γuε‖2‖φhε‖5 ≤ (2H(aε))

1
2 ‖φhε‖5, and

‖∂γuε|uε|2‖ 10
7
≤‖∂γuε‖ 10

3
‖uε‖25

≤‖∂γuε‖ 10
3

( ∑
|α|=1

‖∂αuε‖2
) 1

5 ‖uε‖
9
5
2

≤‖∂γuε(t)‖ 10
3
H(aε)

1
10 ‖aε‖

9
5
2 .

Gronwall’s inequality implies

‖∂γuε‖ 10
3
≤c1(aε, φhε) · exp(c2(aε, φhε)) (4.7)

where
c1(aε, φhε) = ‖aε‖H2 + T

2
5 (‖aε‖2‖∂γφhε‖5 +H(aε)

1
2 ‖φhε‖5)

and
c2(aε, φhε) = T

2
5H(aε)

1
10 ‖aε‖

9
5
2 .

Let fε = c1(aε, φhε) · exp(c2(aε, φhε)). Recall that

H(aε) . (1 + ‖φhε‖∞)‖aε‖2H1 + ‖a‖4H1

∼ (1 + hnε )h2
ε + h4

ε . h4
ε.

It follows
c2(aε, φhε) . h

2
5
ε · h

9
5
ε = h

11
5
ε

and
c1(aε, φhε) . hmε , for some m ∈ N.

Now

‖∂γuε‖ 10
3
. hmε · (exp(h

11
5
ε ))T 2/5

. (ln ε−1)p(exp((ln ε−1))T 2/5
. ε−N ,

since h
11
5
ε = (ln ε−1)

5
11 ·

11
5 . Finally,

sup
[0,T )
‖∂γuε(t)‖ 10

3
≤ cε−N , ε→ 0, for some N.
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Similarly

‖∂αuε‖ 10
3
≤ ‖∂α(T (t)aε)‖ 10

3

+ c

∫ t

0

1
(t− s)

3
5
‖∂α(uε(s)|uε(s)|2 + φhεuε(s))‖ 10

7
ds and,

‖∂α(T (t)aε)‖ 10
3
≤
( ∑
|α|=3

‖∂α(T (t)aε)‖2
) 13

15 ‖T (t)aε‖
2

15
2 ≤ ‖aε‖H3 .

Now we have

∂α(g(uε)) . (|uε|2 + φhε)∂αuε +
∑
|β|=1

∂β(|uε|2 + φhε)∂α−βuε + (∂α|uε|2 + ∂αφhε)uε

and we need to bound the following terms

‖∂αu · |u|2‖ 10
7
≤ ‖∂αu‖ 10

3
‖uε‖25 ≤ ‖∂αu‖ 10

3

( ∑
|α|=1

‖∂αu‖2)
2

10 ‖uε‖
9
5
2

where we used Hölder and Gagliardo–Nirenberg inequality as before. Then

‖φhε∂αuε‖ 10
7
≤ ‖∂αu‖ 10

3
‖φhε‖ 5

2
,

‖∂βφhε∂γu‖ 10
7
≤ ‖∂βφhε‖5‖∂γuε‖2,

‖∂αφhεuε‖ 10
7
≤ ‖∂αφhε‖5‖uε‖2,

‖∂γuε∂βuεuε‖ 10
7
≤ ‖uε∂γuε‖ 5

2
‖∂βuε‖ 10

3
≤ ‖uε‖210‖∂γuε‖ 10

3
‖∂βuε‖ 10

3

≤
( ∑
|α|=1

‖∂αuε‖ 10
3

) 3
4 ·2‖uε‖

1
4 ·2
2 ‖∂

γuε‖ 10
3
‖∂βuε‖ 10

3

≤
( ∑
|α|=1

‖∂αuε‖ 10
3

) 7
2 ‖uε‖

1
2
2 ,

where for the last term we used Gagliardo–Nirenberg inequality (2.11) with p =
10, j = 0, m = 1, r = 10

3 , q = 2, b = 3
4 . Finally,

‖∂αuε‖ 10
3
≤ ‖aε‖H3 +

∫ t

0

1
(t− s)

3
5
‖∂αuε‖ 10

3
c3(aε, φhε)ds+ c4(aε, φhε) and

‖∂αuε‖ 10
3
≤ (‖aε‖H3 + c4(aε, φhε))exp(c3(aε, φhε) · T

2
5 ), (4.8)

where
c3(aε, φhε) = H(aε)

1
10 ‖aε‖

9
5
2 + ‖φhε‖ 5

2
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and
c4(aε, φhε) = H(aε)

1
2 ‖∂βφhε‖5 + ‖aε‖2‖∂αφhε‖5 + ‖aε‖

1
2
2 f

7
2
ε .

Denote by gε the expression on the right hand side of (4.8). It follows that gε ≤ cε−N

for ε→ 0 and for some N , since

‖φhε‖ 5
2
. h

9
5
ε ∼ ((ln ε−1)

5
11 )

9
5 ≤ ln ε−1, ε→ 0

and we have again H(aε)
1

10 ‖aε‖
9
5
2 . h

11
5
ε = ln ε−1. Also c4 . hmε for some m ∈ N, so

we conclude

‖∂αuε‖ 10
3
. (ε−N + hmε )ε−N1 . (4.9)

Note that ‖∂βuε‖ 10
3

and ‖∂αuε‖ 10
3

are bounded on [0, T ) (an assumption needed for
Gronwall’s inequality), since the Gagliardo–Nirenberg inequality implies

‖∂αuε‖ 10
3
≤
( ∑
|α|=3

‖∂αuε‖2
) 13

15 ‖uε‖
2

15
2 <∞ for each t ∈ [0, T ).

The H3–norm of the solution is bounded on bounded intervals in t because the
global well–posedness holds. One can bound ‖∂βuε‖ 10

3
similarly. Returning to (4.6)

we see that

sup
[0,T )
‖∂αuε‖2 ≤‖aε‖H2 + gεf

3
2
ε ‖aε‖

1
2
2 +H(aε)

1
2 g

20
13
ε ‖aε‖

6
13
2

+ ‖∂αφhε‖∞‖aε‖2 +H(aε)
1
2 ‖∂βφhε‖∞ + gε‖φhε‖5, (4.10)

sup
[0,T )
‖∂αuε(t)‖2 =O(ε−N ), for some N. (4.11)

Returning to expressions gε and fε, we see that the above estimate is exponential in
‖a‖H1 and ‖φhε‖ 5

2
(raised to a power), and the other quantities are ‖aε‖Hm , m ≤ 3

and ‖∂αφhε‖p, α ≤ 2, and some p ≥ 1; these quantities are multiplied and raised to
certain fractional powers.

Moderateness of sup[0,T ) ‖∂tuε(t)‖2 follows easily from (4.2), since from the Gagliardo-
Nirenberg inequality it follows that

‖|uε(t)|2uε(t)‖2 ≤ ‖∇uε(t)‖32.

Moreover,

uε ∈ C([0, T ), H2(Rn)) ∩ C1([0, T ), L2(Rn)), ε ∈ (0, 1),

4.1 The delta potential 57



which completes the proof.

We are able to show uniqueness for a special class of solutions.

Definition 4.1.3. Let u, v ∈ GC1,H2 be any two classes such that for each class there
exists a representative solving

i∂tuε +4uε = uε|uε|2 + φhεuε +Nε,

uε(0, x) = aε(x) + nε(x)
(4.12)

where Nε ∈ NC1,H2([0, T )×Rn) and nε ∈ NH2(Rn) (similarly for v). If it follows that
sup[0,T ) ‖uε − vε‖2 = O(εM ) for any M ∈ N, we say that the solution is unique.

Note that from the existence proof we know that at least one u exists with such a
property (Nε = nε = 0).

Theorem 4.1.4. If hε ∼ lns lnq ε−1, where s = 7
25 , q = 1

500 and a ∈ GH3(R3),
‖aε‖H3 ∼ hε, the solution is unique in the above sense.

Proof. Let u, v be as above and wε = uε − vε. Then wε solves

i(wε)t +4wε =uε|uε|2 − (uε−wε)(|uε|2−uεwε−wεuε+|wε|2) + φhεwε +Nε

wε(0, x) = nε(x), (4.13)

where (nε)ε ∈ NH3(Rn), (Nε)ε ∈ NC1,H2([0, T )×Rn). The first equation is simplified
to

i(wε)t +4wε − |uε|2uε + (uε − wε)(|uε|2 − uεwε − uεwε + |wε|2) +Nε − φhε = 0,

i(wε)t +4wε = u2
εwε + 2wε|uε|2 − 2uε|wε|2 − w2

εuε + wε|wε|2 + φhε −Nε.

Multiplying by wε, integrating on R3 and taking the imaginary part we obtain

1
2
d

dt

∫
Rn
|wε|2dx = Im

∫
Rn

(
2Re(uεwε)uεwε − |wε|2uεwε −Nεwε

)
dx

≤
∫
Rn

(
2|uεwε|2 + |uε||wε|3 + |Nεwε|

)
dx. (4.14)
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Furthermore, for arbitrary M ∈ N

sup
[0,T )
‖wε(t)‖22 ≤‖nε(x)‖22 + sup

[0,T )

(
‖uε(t)‖2∞ + ‖uε(t)‖∞‖wε(t)‖∞

) ∫ T

0
‖wε(t)‖22dτ

+ sup
[0,T )
‖wε(t)‖2‖Nε(t)‖2,

sup
[0,T )
‖wε(t)‖22 ≤εM exp

(
sup
[0,T )

(
‖uε(t)‖2∞ + ‖uε(t)‖∞‖wε(t)‖∞

) )
. (4.15)

The following estimates are needed for completing the proof. In order to bound
‖uε‖∞ we aim to bound ‖uε‖H2 by a function of the initial condition, since then
we can control ‖uε‖∞ by

√
ln ε−1 (otherwise, we can only control it by ε−N). For

that we repeat the procedure of the existence proof. First we derive estimates for L2

and H1 norm of uε the solution of (4.12) (we do not have classical conservation of
charge and energy, nevertheless, we use similar arguments). Multiplying (4.12) by
uε, integrating over Rn and taking the real part we obtain

1
2
∂

∂t
‖uε‖22 = Im

∫
Nεuεdx

1
2‖uε‖

2
2 = ‖aε + nε‖2 + Im

∫ t

0

∫
Nεuεdxds

≤ ‖aε + nε‖2 +
∫ t

0
‖Nε‖2‖uε‖2

. hε + εM + εM · ε−N . hε,

since u ∈ GC1,H2 . Further, multiplying (4.12) by ut, integrating over Rn and taking
the real part

∂

∂t

(1
2

∫
|∇uε|2dx+ 1

4

∫
|uε|4dx+ 1

2

∫
φhε |uε|2dx

)
≤
∫
|Nε||uε|dx,

H(u(t)) ≤ H(aε + nε) + ‖Nε‖2‖uε‖2
. H(aε + nε) + εM and∑
|γ|=1

‖∂γuε‖2 =
√∫
|∇uε|2dx ≤

√
H(u(t))

. ((1 + ‖φhε‖∞)‖aε + nε‖2H1 + ‖aε + nε‖4H1 + εM )
1
2

. (hnεh2
ε + h4

ε)
1
2 . h

5
2
ε .
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Using the same procedure as in the existence proof we obtain ‖∂γuε‖ 10
3
. f1

ε where

f1
ε ∼ (‖aε + nε‖H2 + ‖uε‖2‖∂γφhε‖5 + ‖∂γuε‖2‖φhε‖5) exp((

∑
|α|=1

‖∂αuε‖2)
1
5 ‖uε‖2)

. (hε + εM + hεh
(5+12)/5
ε + h

5
2
ε h

12/5
ε ) exp(h

1
2
ε hε)

= (hε + εM + h22/5
ε + h49/10

ε ) exp(h3/2
ε ) . h49/10

ε exp(h3/2
ε ).

Further, ‖∂αuε‖ 10
3
. g1

ε where

g1
ε ∼ (‖aε + nε‖H3 +H(uε(t))

1
2 ‖∂βφhε‖5 + ‖uε‖2‖∂γφhε‖5 + ‖uε‖

1
2
2 (f1

ε )
7
2 )·

exp(H(uε(t))
1

10 ‖uε‖
9
5
2 + ‖φhε‖ 5

2
))

. (hε + h
5
2
ε h

17
5
ε + hεh

17
5
ε + h

1
2
ε h

7·49/20
ε (exph

3
2 )7/2) exp(h

1
2
ε h

9
5
ε + h

9
5
ε )

. (h17/2
ε + h353/20

ε (exph3/2
ε )7/2) exp(h9/5

ε ).

Also, estimating ‖∂αuε‖2 as in the existence proof

sup
[0,T )
‖∂αuε‖2 ≤ ‖aε + nε‖H2 + g1

ε(f1
ε )

3
2 ‖uε‖

1
2
2 +H(uε)

1
2 (g1

ε)
20
13 ‖uε‖

6
13
2

+ ‖∂αφhε‖∞‖uε‖2 +H(uε)
1
2 ‖∂βφhε‖∞ + g1

ε‖φhε‖5 + T sup
[0,T )
‖∂αNε‖2, (4.16)

. hε + g1
ε(f1

ε )
3
2h

1
2
ε + h

5
2
ε (g1

ε)
20
13h

6
13
ε + h3

εhε + h
5
2
ε h

4
ε + g1

εh
12
5
ε + εM

. hε + h
3
2
ε g

1
ε(f1

ε )
3
2 + h

77
26
ε (g1

ε)
20
13 + h4

ε + h
13
2
ε + h

12
5
ε g

1
ε . (4.17)

We can now use the Sobolev embedding ‖uε(t)‖2∞ . ‖uε(t)‖2H2 . Choosing hε ∼
lns lnq ε−1 where s = 7

25 and q = 1
500 and using the fact that lns lnq ε−1 ≤ lnq ε−1, ε→

0 for s ≤ 1, each term in (4.17) can be estimated by
√

ln ε−1. Thus,

‖uε(t)‖H2 ∼
√

ln ε−1. (4.18)

Returning to (4.15), it follows that for any M ∈ N ‖wε(t)‖22 ≤ εM , which completes
the proof.
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4.2 The cubic Schrödinger equation

Now we study the cubic equation without potential

iut +4u = u|u|2,

u(0) = a
(4.19)

in two and three space dimensions. There are many physical phenomena that are
connected with (4.19). In dimension three it represents dynamics of the interacting
Bose gas. Other applications are related to small amplitude gravity waves and
dynamics of quantum plasma. The equation also describes propagation of short
optical pulses in optical fibers, see [GKY90]. Its soliton solutions are referred to as
dark solitons, the expression coming from optics.

We list several estimates known for this equation which are useful for our analysis
and then focus on well - posedness in the Colombeau algebra.

From theorems 3.3.4 and 3.3.11 we see there is local and global well - posedness in
H2. Also, conservation of charge (3.20) and energy (3.21) holds.

In one dimension, for any s ≥ 0 the norm ‖u(t)‖Hs is uniformly bounded w.r.t. to
t ∈ R. In two and three dimensions u(t) ∈ Hs holds for every t and there exists
T = T (‖a‖Hs) such that

‖u(t)‖Hs ≤ C‖a‖Hs , t ∈ [0, T ].

In [Bou98], it was shown that in 3D there is scattering and a uniform bound

‖u(t)‖Hs ≤ C exp(‖a‖Hs), for all t ≥ 0, s ≥ 1. (4.20)

This paper was an extension of results form [GV85] and [LS78], based on the
Morawetz’ inequality.

In [Col+01] (inequality (3.25)), it was shown by a similar argument that global in
time solutions in 2D also satisfy a uniform bound

‖u(t)‖Hs ≤ c‖a‖Hs , for all t ≥ 0, s ≥ 1. (4.21)
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We use Bourgain’s estimate (4.20) for the existence proof. But estimates from
Section 4.1 are needed for the uniqueness proof. From this section we can conclude
that if u is a solution of (4.19) and a ∈ H3, then it satisfies the following bound

‖u‖H2 ≤ pk (‖a‖H1 , ‖a‖H2 , ‖a‖H3 , exp(c‖a‖H1)) ,

where pk is a function of fractional power k. This follows from relations (4.7), (4.8)
and (4.18) with (dropping the subscript ε)

f = ‖a‖H2 exp(c‖a‖H1),

g = (‖a‖H3 + ‖a‖2f
7
2 ) exp(c1‖a‖H1).

4.2.1 Existence and uniqueness

From the previous section it follows that Definition 2.5.10 is independent of the
representative. The main theorem of this section is the following.

Theorem 4.2.1. Let n ∈ {2, 3}, T > 0, a ∈ GH2(Rn) such that there exists a represen-
tative aε which satisfies the following:

‖aε‖H2 ≤ hε (4.22)

where hε ∼ ε−N for n = 2 and hε ∼ N ln ε−1 for n = 3, for some N ∈ N. Then
there exists a solution u ∈ GC1,H2([0, T ) × Rn) of (4.19). If, additionally ‖aε‖H3 ∼
lns lnq ε−1, where s = 5

7 , q = 1
24 , the solution is unique in the sense of Definition 4.1.3.

Proof. Existence. Let us take the equation (4.19) written in the form of representa-
tives

i∂tuε +4uε − |uε|2uε = 0

uε(x, 0) = aε(x)
(4.23)

As we have seen before, there exists a unique solution uε ∈ C([0, T ], H2(Rn)) ∩
C1([0, T ), L2(Rn)) for every T > 0 and ε. Estimates (4.20) and (4.21) together with
assumption (4.22) imply

sup
t≥0
‖∂αuε(t)‖L2(Rn) = O(ε−N ), ε→ 0,
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for |α| ≤ 2. Again boundedness of ‖∂tuε(t)‖2 follows easily from (4.23). We can
conclude that u, represented by the net of functions (uε)ε belongs to the space
GC1,H2([0, T )×Rn) that solves the problem (4.19) in the sense of Definition 2.5.10.

Uniqueness. Let u, v ∈ GC1,H2([0, T ) × Rn), n ∈ {2, 3} be two solutions of (4.19)
with representatives uε and vε satisfying

i(uε)t +4uε = |uε|2uε + φhεuε +Nε,

uε(0) = aε + nε,
(4.24)

for Nε ∈ NC1,H2 , nε ∈ NH2 .

Let wε = uε − vε. Then wε solves:

i(wε)t +4wε − (|uε|2uε − |uε − wε|2(uε − wε)) +Nε = 0,

wε(x, 0) = nε(x),
(4.25)

where (nε)ε ∈ NH3(Rn), (Nε)ε ∈ NC1,H2([0, T )×Rn). The first equation is simplified
to

i(wε)t +4wε − |uε|2uε + (uε − wε)(|uε|2 − uεwε − uεwε + |wε|2) +Nε = 0,

i(wε)t +4wε = u2
εwε + 2wε|uε|2 − 2uε|wε|2 − w2

εuε + wε|wε|2 −Nε

If we multiply (4.25) by wε, integrate over Rn and take the imaginary part

1
2
d

dt

∫
Rn
|wε|2dx = Im

∫
Rn

(
2Re(uεwε)uεwε − |wε|2uεwε −Nεwε

)
dx

≤
∫
Rn

(
2|uεwε|2 + |uε||wε|3 + |Nεwε|

)
dx. (4.26)

Integration with respect to t gives

‖wε(t)‖22 ≤‖nε‖22 +
∫ t

0

(
2‖uε(t)‖2∞‖wε(t)‖22 + ‖uε(t)‖∞‖wε(t)‖∞‖wε(t)‖22

+ ‖Nε‖2‖wε(t)‖2
)
dτ

sup
[0,T )
‖wε(t)‖22 ≤‖nε‖22 + 2 sup

[0,T )

(
‖uε(t)‖2∞ + ‖uε(t)‖∞‖wε(t)‖∞

) ∫ T

0
‖wε(t)‖22dτ

+ sup
[0,T )
‖wε(t)‖2‖Nε‖2,

sup
[0,T )
‖wε(t)‖22 ≤εM exp(sup

[0,T )

(
‖uε(t)‖2∞ + ‖uε(t)‖∞‖wε(t)‖∞

)
), (4.27)
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for arbitrary M ∈ N. The Sobolev inequality ‖uε(t)‖∞ ≤ ‖uε(t)‖H2 holds. But,
estimates (4.20) and (4.21) can not be directly used bellow, since equation (4.24)
is not homogeneous. These bounds are derived in Theorem 4.1.4 (relation (4.16))
and the difference now is that the terms with φhε are missing. Condition for
hε can now be relaxed to hε ∼ lns lnq ε−1, where s = 5

7 , q = 1
24 which implies

‖uε(t)‖H2 ∼
√

ln ε−1.

Applying Gronwall’s inequality (2.4.3) to (4.27) we obtain

sup
0≤t≤T

‖wε(t)‖2 = O(εM ), ε→ 0, for any M ∈ N, (4.28)

implying that the solution is unique in the sense of Definition 4.1.3.

4.2.2 Compatibility with the classical solution

We now prove that there is compatibility between the Sobolev H2 solution and the
Colombeau solution of (4.19) in the sense of Definition 2.5.13. Let φε be a mollifier
as defined in Section 2.5. The following holds

Theorem 4.2.2. Let u be the classical H2 solution of the cubic Schrödinger equation
in n ∈ {2, 3} dimensions:

iut +4u− |u|2u = 0 on Rn × (0,∞)

u(0) = a,

for a ∈ H3(Rn). Let T > 0. The solution uε to the equation (4.23) with initial data
aε = a ∗ φε converges to u in the L2(Rn) norm for every t < T .

Proof. Since

‖∂αx (a ∗ φε)‖2 = ‖∂αx a ∗ φε‖2 ≤ ‖∂αx a‖2‖φε‖1 = ‖∂αx a‖2

for |α| ≤ 3, uniformly with respect to ε, we obtain condition (4.22). It fol-
lows that the regularized initial data give rise to a unique solution in the space
GC1,H2([0, T )× Rn).
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Let vε = u− uε. Then u ∈ H2 implies that ‖u(t)‖∞ is finite, and uε ∈ H2 for each
ε > 0 gives, based on (4.20),

‖vε(t)‖∞ ≤ ‖u(t)‖∞ + ‖uε(t)‖∞ ≤ c1 + ‖uε(t)‖H2

≤ c1 + exp(‖a ∗ φε‖H2) ≤ c1 + c2,

Also,

‖∂γxvε(t)‖2 ≤ ‖∂γxu(t)‖2 + ‖∂γxuε(t)‖2 ≤ c, |γ| ≤ 2

Further, vε satisfies

i∂tvε +4vε − (|u|2u− |u− vε|2(u− vε)) = 0,

vε(x, 0) = a(x)− a ∗ φε(x).

Like in the uniqueness proof, one can see that

‖vε(t)‖22 ≤ ‖a− a ∗ φε‖22 exp((‖u(t)‖2∞ + ‖u(t)‖∞‖vε(t)‖∞)T ).

Therefore,
‖vε(t)‖22 ≤ C‖a− a ∗ φε‖22 → 0, ε→ 0.

This completes the proof.
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The Hartree equation 5
We observe now the Hartree equation with a delta potential:

iut +4u− (w ∗ |u|2)u = δu,

u(0) = a.
(5.1)

We will study this equation in the Colombeau setting and then try to connect the
theory related to a different formulation of (5.1), namely

iut +4αu = (w ∗ |u|2)u,

u(0) = a
(5.2)

Here, −4u+ δu is understood as a singular perturbation of the negative Laplacian.
Let us describe shortly the related theory as in [GM18] and [MOS18].

5.1 Singular Laplacian and well - posedness in the
singular Sobolev space

Observe a one–parameter family of operators 4α, α ∈ (−∞,∞], defined by

D(−4α) = {ψ ∈ L2(R3)| ψ = φλ + φλ(0)
α+

√
λ

4π

Gλ, φλ ∈ H2(R3),

(−4α + λ)ψ = (−4+ λ)φλ,

where λ > 0 is an arbitrarily fixed constant and

Gλ(x) := e−
√
λ|x|

4π|x|

is the Green’s function for the Laplacian, that is, the distributional solution to
(−4+ λ)Gλ = δ in D′(R3). Note that Gλ ∈ L2(R3). The operator 4α induces the
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Schrödinger propagator t 7→ eit4α , analogous to the usual propagator. The space
H2
α is exactly D(−4α) with the norm

‖ψ‖H2
α

= ‖(I −4α)ψ‖2.

For arbitrary ψ = φλ + φλ(0)
α+
√
λ

4π
Gλ ∈ H2

α there holds

‖ψ‖H2
α
≈ ‖φλ‖H2 .

A function u is a solution of (5.2) if u ∈ C(I,H2
α(R3)) for some interval I ⊂ R with

0 ∈ I and the Duhamel’s formula

u(t) = eit4αa− i
∫ t

0
ei(t−s)4α(w ∗ |u(s)|2)u(s)ds (5.3)

holds. Local and global well–posedness in H2
α is defined in the same way as for H2

spaces.

5.2 Higher regularity

We are interested in connecting the Colombeau solution of (5.1) and the singular
Sobolev solution of (5.2). In that purpose, we prove the following theorem.

Theorem 5.2.1. Let w ∈W 2,p(R3), p > 2 and w is even. The Cauchy problem (5.2)
is locally well-posed in the space

V = {u ∈ H2(R3), u is odd} ⊂ H2(R3) ∩H2
α(R3)

and there is also global well – posedness.

Remark 5.2.2. This theorem is already known, only we present a different proof. Odd
functions are L2–orthogonal to spherically symmetric functions, and on such a space
the operator 4α is the same as 4, see [MOS18].

Proof. The proof is based on methods from [Caz03], similar to the ones in [MOS18],
but taking a different form in the usual Sobolev space.

Note that V is closed: if un ∈ V converges to u in the H2–norm, then it converges
also in the L∞–norm and for almost all x we have

u(−x) = lim
n→∞

un(−x) = − lim
n→∞

un(x) = −u(x).
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Hence u is odd and u ∈ H2(R3) implying that u ∈ V . As a closed subset of a
complete metric space H2(R3), V is itself complete. We will now use the fixed point
theorem on the space

VM = {u ∈ L∞([−T, T ], V ) : sup
t∈[−T,T ]

‖u(t)‖H2 ≤M},

d(u, v) = ‖u− v‖L∞t ,L2
x
,

where T and M will be determined later. Note that on the intersection of spaces
H2(R3) and H2

α(R3), the norms ‖ · ‖H2 and ‖ · ‖H2
α

are equivalent and the charac-
terization of this space is that u ∈ H2(R3) and u(0) = 0. The operator −4α acts as
−4 on the space of H2(R3) functions which vanish at zero.

From Duhamel’s formula we have:

‖Φ(u)‖H2 ≤ ‖eit4αa‖H2 + T‖eit4α(w ∗ |u|2)u‖H2

Since 4αa = 4a for a ∈ H2 ∩H2
α, we have eit4αa = eit4a. Also, we will see that

(w ∗ |u|2)u ∈ H2 and for u ∈ VM there holds u(0) = 0, so ((w ∗ |u|2)u)(0) = 0) and
eit4α(w ∗ |u|2)u = eit4(w ∗ |u|2)u. It follows that

‖Φ(u)‖H2 ≤ ‖eit4a‖H2 + T‖eit4(w ∗ |u|2)u‖H2

≤ ‖a‖H2 + T‖(w ∗ |u|2)u‖H2 ≤ ‖a‖H2 + C1T‖w‖∞‖u‖3H2 (5.4)

The term (w ∗ |u|2)u is in H2 for u ∈ VM due to following inequalities:

‖∂αx ((w ∗ |u|2)u)‖2 . ‖w ∗ (∂αx |u|2)‖∞‖u‖2 + 2‖w ∗ (∂βx |u|2)‖∞‖∂βxu‖2
+ ‖w ∗ |u|2‖∞‖∂βu‖2
. ‖w‖∞‖u‖3H2 + 2‖w‖∞‖u‖3H2 + ‖w‖∞‖u‖3H2 = c‖w‖∞‖u‖3H2 ,

(5.5)

where |α| = 2 and |β| = 1. Note that W 2,p ⊂ L∞, for p > 2. To prove that Φ is a
contraction observe

‖Φ(u)− Φ(v)‖2 ≤ C2T‖u− v‖2
(
‖w‖∞(‖u‖22 + ‖v‖2(‖u‖2 + ‖v‖2))

)
,

where estimates are derived as in proof of Theorem 3.3.7. Choosing M = 2‖a‖H2

and T = 1
4
(

max{C1, C2}M2‖w‖∞
)−1 we have first from (5.4)

‖Φ(u)‖H2 ≤
M

2 + C1 ·
1
4

1
M2C1‖w‖∞

· ‖w‖∞M3 < M
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for ‖u‖H3 ≤M , since 1
max{C1,C2} ≤

1
C1

. Further,

‖Φ(u)− Φ(v)‖2 ≤ C2 ·
1

4C2M2‖w‖∞
‖u− v‖2 · ‖w‖∞3M2 = 3

4‖u− v‖2,

so that Φ is a contraction. To conclude that Φ : VM → VM we need to show that
Φ(u) is odd. Returning to Duhamel’s formula, we have that

Φ(u) = eit4a− i
∫ t

0
ei(t−s)4(w ∗ |u|2)u ds. (5.6)

Firstly, eit4a is odd:

(eit4a)(−x) =
∫
R3
e−it|ξ|

2
exξâ(ξ)dξ =

∫
R3
e−it|ξ|

2
eixξ1 â(−ξ1)dξ1 = −(eit4a)(x).

We used a substitution ξ = −ξ1 and the fact that â is also odd:

â(−ξ) =
∫
R3
eixξa(x)dx =

∫
R3
e−iyξa(−y)dy = −â(ξ),

since a is odd. Similarly,

ei(t−s)4(w ∗ |u|2)u =
∫
R3
eixξe−i(t−s)|ξ|

2 ̂((w ∗ |u|2)u)(ξ)dξ.

Now, we prove that ̂(w ∗ |u|2)u is odd. By the convolution theorem

̂((w ∗ |u|2)u) = ŵ ∗ |u|2 ∗ û.

As before, we see that û is odd, since u is odd. On the other hand, ŵ ∗ |u|2 is even:

ŵ ∗ |u|2 = ŵ · |̂u|2

and this is a product of two even functions since |u|2 is even. Finally, convolution of
an odd and an even function is odd:

(f ∗ g)(−x) =
∫
R3
f(−x− y)g(y)dy =

∫
R3
f(−x+ s)g(−s)ds

= −
∫
R3
f(x− s)g(s)ds = −(f ∗ g)(x),

where f is odd and g is even. Since both terms in (5.6) are odd, we conclude that Φ
is odd.
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Uniqueness on the whole space V follows from Theorem 3.2.5 in the following
manner. Suppose there is another solution v of (5.2). Since 4αv = 4v, for
v ∈ H2(R3) ∩H2

α(R3) (and also for u), both u and v are also H1 solutions of

iut +4u = (w ∗ |u|2)u,

u(0, x) = a(x),

and conditions of Theorem 3.2.5 are fulfilled. It follows that u = v.

As in Theorem 3.3.4, we can extend such a solution over a maximal time interval for
which the blow-up alternative holds. Also, Theorem 3.3.11 holds and there is global
well–posedness.

5.3 Maximal time interval

Now we know that if a ∈ H2
α, then there is a unique solution in H2

α on a maximal
interval (T∗, T ∗). If additionally, a ∈ V there is a unique solution in V on a maximal
interval (T1, T2). Since a solution in V is a H2

α(R3) solution, we see that (T1, T2) ⊂
(T∗, T ∗). But furthermore, since on the intersection of spaces, there holds:

‖u(t)‖H2 ≈ ‖u(t)‖H2
α
→∞, for t→ T ∗,

it follows that T2 = T ∗ and similarly, T1 = T∗.

(If we assume that T2 < T ∗ it would follow

‖u(t)‖H2
α
≈ ‖u(t)‖H2 →∞, t→ T2,

which is a contradiction with the blowup of ‖u(t)‖H2
α

at T ∗.)
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5.4 Hartree equation in the Colombeau algebra

Return now to the original equation (5.1). Let us again confirm that if u is a solution
in the sense of Definition 2.5.10, that is if (2.17) holds for some uε, then it holds for
all representatives of the class u = [uε]: let vε = uε +Nε, Nε ∈ NC1,H2 , then

i(vε)t +4vε − (w ∗ |vε|2)vε − φεvε = i(uε)t +4uε − (w ∗ |uε|2)uε − φεuε
+ i(Nε)t +4Nε − φεNε −

(
(w ∗ |uε|2)Nε + (w ∗ (|Nε|2 + uεN ε +Nεuε))(uε +Nε)

)
= Mε + i(Nε)t +4Nε − φεNε − g(w, uε, Nε),

where ‖Mε‖L2 ∼ εM , for any t ∈ [0, T ). Now since Nε ∈ NC1,H2 , it follows
‖i(Nε)t +4Nε‖L2 ∼ εM for any t ∈ [0, T ). Furthermore,

‖φεNε‖L2 ≤ ‖φε‖∞‖Nε‖L2 ≤ ‖φε‖H2‖Nε‖L2 ∼ εM .

For g(w, uε, Nε) we have the following bounds

‖(w ∗ |uε|2)Nε‖L2 ≤ ‖w‖∞‖uε‖2L2‖Nε‖L2 ∼ εM ,

‖(w ∗ |Nε|2)uε‖L2 ≤ ‖w‖∞‖Nε‖2L2‖uε‖L2 ∼ εM ,

‖(w ∗ uεN ε)uε‖L2 ≤ ‖w‖∞‖Nε‖L2‖uε‖L2‖uε‖L2 ∼ εM ,

and completely analogously for the remaining terms. Finally,

vε(0) = uε(0) +Nε(0) = aε + nε +Nε(0) = aε +N1
ε

where N1
ε ∈ NH2 .

5.4.1 Existence and uniqueness

We consider regularized version of (5.1):

i(uε)t +4uε − (w ∗ |uε|2)uε = φhεuε (5.7)

uε(0, x) = aε(x), (5.8)

where hε > 0 will be determined later and w ∈ W 2,p(R3) ⊂ L∞(R3) (due to
the Sobolev embedding) and aε ∈ EH2(R3). We have seen in Section 3.3 that
conservation of energy and charge holds, that is

‖uε(t)‖2 = ‖aε‖2
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and

1
2

∫
R3
|∇uε|2dx+ 1

4

∫
R3

(w ∗ |uε|2)|uε|2dx+ 1
2

∫
R3
φhε |uε|2dx = H(aε),

where

H(aε) = 1
2

∫
R3
|∇aε|2dx+ 1

4

∫
R3

(w ∗ |aε|2)|aε|2dx+ 1
2

∫
R3
φhε |aε|2dx.

Also, using Young’s inequality

‖uε(t)‖H1 ≤ ‖aε‖L2 +
√

2H(aε) ≤ ‖aε‖L2 +
√
c‖aε‖2H2 + 1

2‖w‖∞‖aε‖
4
2.

It follows that

‖uε(t)‖H1 ≤ ‖aε‖L2 + c1‖aε‖H2

√
1 + c2‖aε‖2H2 . (5.9)

Moreover,
H(aε) ≤ C(‖aε‖2H2 + ‖aε‖4H2)

and ∑
|α|=1

‖∂αxuε(t)‖2 ≤ c
√
H(aε).

The following theorem holds.

Theorem 5.4.1. Let a ∈ GH2 be of ln
1
3 –type. Then for any T > 0 there exists a unique

solution u ∈ GC1,H2([0, T )× R3) of (5.1).

Proof. We know that for each ε > 0 there exists a unique solution
uε ∈ C([0, T ), H2(R3)) ∩ C([0, T ), L2), for any T > 0. We need to prove that
sup0≤t<T ‖uε(t)‖H2 = O(ε−N ) and sup0≤t<T ‖∂tuε(t)‖L2 = O(ε−N ) for someN ∈ N.
We know that ‖uε(t)‖2 = ‖aε‖2 ≤ Chε. Then using that hε ∼ (lnε−1)

1
3 it follows

‖uε(t)‖2 ≤ Cε−N1 for any N1 ∈ N.

Using derived estimates we have that H(aε) ≤ c(lnε−1)
4
3 . Therefore∑

|α|=1 ‖∂αxuε(t)‖2 ≤ c(lnε−1)
2
3 ≤ ε−N2 for any N2 ∈ N.
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Next we differentiate Duhamel’s formula twice in x and for |α| = 2 it follows that
for any t ∈ [0, T )

‖∂αxuε(t)‖2 ≤ ‖∂αx aε‖2

+
∑
β≤α

cαβ
∑
γ≤β

cβγ‖w‖∞
∫ t

0
‖∂β−γuε(s)‖2‖∂γuε(s)‖2‖∂α−βuε(s)‖2ds

+
∫ t

0
‖∂αx (φhεuε(s))‖L2ds.

Therefore

‖∂αuε‖2 ≤ ‖∂αx aε‖2 + ‖w‖∞
∫ t

0
‖uε‖22‖∂αuε‖2ds

+
∑
|β|=1

cαβ
∑
γ≤β

cβγ‖w‖∞
∫ t

0
‖∂β−γuε‖2‖∂γuε‖2‖∂α−βuε‖2

+
∑
γ≤α

cαγ‖w‖∞
∫ t

0
‖∂α−γuε‖2‖∂γuε‖2‖uε‖2ds+

∫ t

0
‖∂αx (φhεuε)‖L2ds

≤ E(t) + 3‖w‖∞
∫ t

0
‖aε‖22‖∂αuε‖2ds+ ‖φhε‖∞

∫ t

0
‖∂αuε‖2ds,

where

E(t) = ‖∂αaε‖2 + c
∑
|β|=1

cαβ‖w‖∞
∫ t

0
‖aε‖2‖∂βuε‖2‖∂α−βuε‖2ds

+ ‖∂αφhε‖∞
∫ t

0
‖uε‖2ds+ c1

∑
|β|=1

‖∂α−βφhε‖∞
∫ t

0
‖∂βuε(s)‖2ds.

Applying Gronwall’s inequality we obtain

‖∂αuε‖2 ≤ |E(t)|eT (3‖w‖∞‖aε‖2
2+‖φhε‖∞) = c(ε)|E(t)|.

Assumptions of the theorem imply that c(ε) = eT (3‖w‖∞‖aε‖2
2+‖φhε‖∞) ≤ cε−N3 for

some N3 ∈ N. Next we use estimates (5.9) to derive bounds for |E(t)|, that is we
obtain

|E(t)| ≤ ‖∂αaε‖2 +CT‖aε‖2(‖aε‖2 + c1‖aε‖H2

√
1 + c2‖aε‖2H2) + cTh6

ε + cTh4
εε
−N2 .

Hence there exists N ∈ N such that ‖∂αxuε(x, t)‖2 ≤ cε−N .

74 Chapter 5 The Hartree equation



It remains to estimate ‖(uε)t‖2, but this follows directly from the equation and all
the estimates that we derived. Therefore uε ∈ EC1,H2 . Since also

sup
t∈[0,T )

‖i(uε)t +4uε − (w ∗ |uε|2)uε − φhεuε‖L2 = O(εM ), ∀M ∈ N

we proved that there exist a solution of (5.1).

Uniqueness. Suppose that there is another solution v ∈ GC1,H2 and Vε = uε − vε.
Then hε satisfies the following equation, using vε = uε − Vε:

i(Vε)t +4Vε = uε
(
w ∗ (|Vε|2 − uεVε − Vεuε)

)
+ Vε(w ∗ |uε − Vε|2) + φεVε +Nε

Vε(0) = nε (5.10)

Multiplying by Vε, integrating over R3 and taking the imaginary part we obtain

1
2
d

dt
‖Vε‖22 = Im

(∫
uεVε

(
w ∗ (|Vε|2 − uεVε − Vεuε)

)
+NεVε

)
. ‖w ∗ |Vε|2‖∞‖Vε‖2‖Vε‖2 + ‖w ∗ |Vεuε|‖∞‖uε‖2‖Vε‖2 + ‖Nε‖2‖Vε‖2

≤ ‖w‖∞
(
‖Vε‖22‖uε‖2‖Vε‖2 + ‖Vε‖22‖uε‖22

)
+ ‖Nε‖2‖Vε‖2,

that is

1
2
d

dt
‖Vε‖22 ≤ c‖Vε‖22(‖uε‖2‖Vε‖2 + ‖uε‖22) + ‖Nε‖2‖Vε‖2 (5.11)

Here we used Young’s inequality for r = ∞, p = 1, q = ∞. We know ‖uε‖2 =
‖aε‖2 ≤ chε ≤ c(ln ε−1)

1
2 , ε→ 0. On the other hand, vε satisfies

i(vε)t +4vε = (w ∗ |vε|2)vε + φεvε +Nε,

vε(0) = aε + nε,

where ‖Nε‖L2 = O(εM ), for any t ∈ [0, T ) and nε ∈ NH2 . Multiplying by vε,
integrating on R3 and taking the imaginary part we obtain:

d

dt
‖vε‖22 ≤ ‖Nε‖2‖vε‖2.
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Integrating in t we obtain

‖vε‖2 ≤ ‖aε + nε‖2 +
∫ t

0
‖Nε‖2‖v(s)‖2ds

≤ ‖aε‖2 + ‖nε‖2 + T sup
t∈[0,T )

‖vε(t)‖2‖Nε(t)‖2 ≤ hε + εM ≤ 2hε

⇒ ‖vε‖2 ≤ c
√
hε ≤ c(ln ε−1)

1
2 , ε→ 0,

since ‖vε‖2 ∼ ε−N (because v is a Colombeau solution) and ‖vε‖2‖Nε‖2 = ε−N ·
εM1 ∼ εM , for any M ∈ N.
Integrating (5.11) in t and using Gronwall inequality we obtain

‖Vε‖22 ≤ (‖nε‖22 + T sup
0≤t≤T

‖Nε‖2‖Vε‖2) +
∫ t

0
c ln ε−1‖Vε(τ)‖22dτ

‖Vε‖22 ≤ (‖nε‖22 + T sup
0≤t≤T

‖Nε‖2‖Vε‖2)exp(T ln ε−1)

from which it follows

sup
0≤t≤T

‖Vε‖2 = O(εM ), ε→ 0, for any M ∈ N (5.12)

which completes the proof.

5.4.2 Compatibility

Given the Cauchy problem (5.2) for a ∈ V = {u ∈ H2(R3), u is odd}, we know from
Section 5.2 that there is a unique solution u ∈ V . Since H2(R3) ↪→ GH2(R3), for
such an initial condition there is a unique solution of (5.1) in GC1,H2 , also (this is
proved in detail in the sequel). This means there is a representative uε such that

i(uε)t +4uε − (w ∗ |uε|2)uε = φhεuε

uε(0) = aε,
(5.13)

for some regularization aε of a. We now focus on proving that

sup
[0,T )
‖uε(t)− u(t)‖2 → 0.

This is not exactly compatibility in the sense of Definition 2.5.13, but both (5.13)
and (5.2) are equations used to solve (5.1) in a way, so it makes sense to examine
this type of convergence.
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In this section, we choose an even mollifier φε. Note that φε(x) = χ( x√
ε
)ε−3ρ(xε ),

where we can choose an even function χ with the desired properties and also an
even function ρ. This is because ρ can be constructed as an inverse Fourier transform
of an even function ρ̂, which is then also even. In Section 2.5 we have seen that ρ̂
should be 1 in a neighborhood of zero and in S(R3), so it can be chosen to be even.

Recall that we can embed a to GH2 by a 7→ [(a ∗ φε)ε] (Theorem 2.5.4). Now we
assert that aε = a ∗ φε satisfies the appropriate growth conditions:

‖∂αx (a ∗ φε)‖2 = ‖∂xa ∗ φε‖2 ≤ ‖∂αx a‖2‖φε‖1 ≤ ‖∂αx a‖2, (5.14)

which is a constant independent from ε since a ∈ H2. We conclude that the
conditions of Theorem 5.4.1 are satisfied and uε gives rise to a unique solution in
GC1,H2 .

We now show that uε is odd for each ε and thus uε(0) = 0 for each ε. Firstly,
aε = a ∗ φε is odd, as a convolution of an odd and an even function. Further, we can
repeat the fixed point argument from Section 5.2 on the space

W = {uε ∈ H2(R3) : uε(−x) = −uε(x)},

for every ε. The key difference being in bounding the term ‖φhεuε‖H2:

‖∂αxφhε∂αxuε‖L2 ≤ ‖∂αxφhε‖∞‖∂αxuε‖L2

for α ≤ 2. Norms ‖∂αxφhε‖∞ are bounded by ‖∂αxφhε‖Hm (Sobolev embedding) for
some m and this is finite for each ε since φhε is smooth and compactly supported.
Also, since φhε is even, φhεuε is odd for uε odd, so the proof can be analogously
conducted.

Therefore we can formulate the following theorem.

Theorem 5.4.2. Let a ∈ V and let u be the (fractional) Sobolev solution u ∈ V of
(5.2). Let [(uε)ε] ∈ GC1,H2([0, T ) × R3) be the Colombeau solution of (5.1). Then
sup[0,T ) ‖uε(t)− u(t)‖2 → 0.

Proof. First, note that problem (5.2) for a ∈ H2(R3) ∩H2
α(R3) is equivalent to

iut +4u− (w ∗ |u|2)u = 0

u(0, x) = a(x)
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and u(0, t) = 0 = uε(0, t). Let Vε = uε − u. Then Vε satisfies:

i(Vε)t +4Vε = (w ∗ |uε|2)uε − (w ∗ |u|2)u+ φhεuε

Like in the uniqueness proof,

‖Vε‖22 ≤ ‖a− a ∗ φε‖22 + c

∫ t

0
‖Vε‖22(‖uε‖2‖Vε‖2 + ‖uε‖22)ds+

∫ t

0
‖Vεφhεuε‖1ds

(5.15)

Both u and uε satisfy conservation of charge, so ‖uε‖2 = ‖aε‖2 and ‖Vε‖2 ≤ ‖a‖2 +
‖aε‖2 ≤ c independently of ε as we showed before. It remains to obtain bounds for
‖Vεφεuε‖1. We will show that∫

R3
|φhε(x)(Vεuε)(s, x)|dx→ 0, ε→ 0 for any s ∈ [0, T ), (5.16)

using the Lebesgue dominated convergence theorem. Then it will follow∫ t

0
‖φhεVε(s)uε(s)‖1ds→ 0, ε→ 0,

again using the dominated convergence theorem, but in t. The expression ‖φhεVε(s)uε(s)‖1
converges to zero pointwise in t and we will see later it is bounded by a constant for
ε small enough and a constant is integrable on [0, t], t ≤ T .

Observe that∫
R3

|h3
ερ(xhε)χ(x

√
hε)Vε(x)uε(x)|dx =

∫
|κ|≤2

√
hε

|ρ(κ)χ( κ√
hε

)Vε(
κ

hε
)uε(

κ

hε
)| dκ

≤
∫

|κ|≤2
√
hε

|ρ(κ)Vε(
κ

hε
)uε(

κ

hε
)| dκ

Now we focus on proving that |ρ(κ)Vε( κhε )uε( κhε )| converges pointwise to zero, for
any t ∈ [0, T ). For this we need equicontinuity of uε in zero, so first we shall prove
the following (recall that uε(0) = 0 for each ε):

∀δ > 0 ∃δ1 > 0 ∀ε > 0 : |x| < δ1 ⇒ |uε(x)| < δ. (5.17)

We argue by contradiction, suppose

∃δ > 0 ∀δ1 > 0 ∃ε0 > 0 : |x| < δ1 ∧ |uε0(x)| ≥ δ.
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For such δ and ε0, define µ(ξ) = uε0((1− ξ)x), ξ ∈ [0, 1]. Note here that for each ε
the solution uε is actually in H3 ⊂ C1 since aε = a ∗ φε ∈ H3 for each ε:

‖∂α(a ∗ φε)‖2 = ‖a ∗ ∂αφε‖2 ≤ ‖a‖2‖∂αφε‖1 <∞ ∀ε > 0.

Since
|µ(0)− µ(1)| = |uε0 | ≥ δ,

by the mean–value theorem there exists ξ0 ∈ (0, 1) such that |µ′(ξ0, x)| ≥ δ, for all
|x| < δ1 (δ1 will be determined later). Also∫

|x|<δ1
|µ′(ξ0, x)|dx ≥

∫
|x|<δ1

δ = (2δ1)3δ.

On the other hand,

|µ′(ξ)| = |(∇uε0)((1− ξ)x) · (−x)| ≤ |(∇uε0)((1− ξ)x)| · |x|.

It follows

∫
|x|<δ1

|µ′(ξ, x)|dx ≤ ‖∇uε0‖2

(∫
|x|<δ1

|x|2dx
)1/2

< M ·

√
4πδ5

1
5 , for each ξ ∈ [0, 1].

Here we used that ‖∇uε‖2 is bounded by a constant M independent of ε which
follows from (5.9) and (5.14) - it is bounded by ‖aε‖H2 and this in return is bounded
by a constant. Choosing δ1 = πM2

90δ2 we obtain∫
|x|<δ1

|µ′(ξ, x)|dx < C ∀ξ ∈ [0, 1] ∧ ∃ξ0 ∈ (0, 1) :
∫
|x|<δ1

|µ′(ξ0, x)|dx ≥ C

which is a contradiction.

We can now use equicontinuity in zero (5.17) to prove pointwise convergence of
|Vε( κhε )uε( κhε )| to zero. Let δ > 0. There exists δ1 such that

∣∣∣∣ κhε
∣∣∣∣ ≤ δ1 ⇒

∣∣∣∣uε( κhε )
∣∣∣∣ < δ

2 for any ε > 0.

Since
∣∣∣∣ κhε

∣∣∣∣ ≤
∣∣∣∣∣2
√
hε

hε

∣∣∣∣∣ =
∣∣∣∣ 2√
hε

∣∣∣∣→ 0, ε→ 0, inequality
∣∣∣∣ κhε

∣∣∣∣ ≤ δ1 holds for small enough

ε. Further,

|Vε(
κ

hε
)| = |uε(

κ

hε
)− u( κ

hε
)| < δ

2 + δ

2 ,
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because for δ/2 and small enough ε, there holds u( κhε ) < δ/2 because of continuity
of u ∈ H2(R3) ⊂ C(R3) and u(0) = 0. Finally, for ε ≤ ε1 and any κ there holds

|Vε(
κ

hε
)uε(

κ

hε
)| < δ. (5.18)

We conclude that |ρ(κ)Vε(
κ

hε
)uε(

κ

hε
)| converges to zero pointwise. From (5.18) it

also follows that
|ρ(κ)Vε(

κ

hε
)uε(

κ

hε
)| ≤ c|ρ(κ)| ∈ L1,

for ε ≤ ε1, and any c = δ. By this, the conditions of the dominated convergence
theorem are satisfied and∫

|κ|≤2
√
hε

|ρ(κ)Vε(
κ

hε
)uε(

κ

hε
)| dκ→ 0, ε→ 0,

which implies (5.16).

Recall now that we need also for ‖φhεVε(s)uε(s)‖1 to be bounded in s by a constant
independent of ε and it is since

‖φhεVε(s)uε(s)‖1 ≤
∫

|κ|≤2
√
hε

|ρ(κ)Vε(
κ

hε
)uε(

κ

hε
)| dκ ≤

∫
R3
|ρ(κ)| · δ ≤ c, ε ≤ ε1.

Returning to (5.15), we have

‖uε − u‖22 ≤ ‖a− a ∗ φε‖22 + C

∫ t

0
‖uε − u‖22ds+

∫ t

0
‖φhεVε(s)uε(s)‖1 ds.

Applying Gronwall’s theorem 2.4.3 we obtain

‖uε − u‖22 ≤ (‖a− a ∗ φε‖22 +
∫ T

0
‖φhεVε(s)uε(s)‖1 ds) · exp(CT )→ 0, ε→ 0,

for any t ∈ [0, T ), which completes the proof.
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Conclusion 6
This work is focused on three initial value problems. Existence and uniqueness
in the H2–based Colombeau algebra was shown. For the cubic equation (1.1),
compatibility with the Sobolev H2 solution was shown. For the equation (1.2),
question of the convergence of the net of solutions remains open. Here, the solution
of the regularized equation gives rise to a solution in the Colombeau algebra. But,
the question of a more "classical" solution candidate is unanswered. For the Hartree
equation, we show that the net of solutions of the regularized equation converges to
the solution of the fractional equation (5.2).

We based our analysis on well–posedness results in Sobolev spaces, developed by
many authors and described in [Caz03]. We also used the more recent theory of
well–posedness in singular Sobolev spaces developed in [MOS18].

Important part of the thesis are estimates. For the cubic equations we derive an
estimate which is exponential in ‖a‖H1 and of fractional power of ‖a‖H3 .

The tools developed can be used for further analysis. For example, convergence
of the net of solutions can be examined in different spaces; variations of these
equations can be observed.
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2.1 Методологија за прикупљање/генерисање података

2.1.1. У оквиру ког истраживачког нацрта су подаци прикупљени? 

а) експеримент, навести тип _________________________________________________

б) корелационо истраживање, навести тип ________________________________________

ц) анализа текста, навести тип ________________________________________________

д) остало, навести шта ______________________________________________________ 

2.1.2 Навести врсте мерних инструмената или стандарде података специфичних за одређену 
научну дисциплину (ако постоје).

______________________________________________________________________________

______________________________________________________________________________

2.2 Квалитет података и стандарди 

2.2.1. Третман недостајућих података

а) Да ли матрица садржи недостајуће податке? Да Не

Ако је одговор да, одговорити на следећа питања:

а) Колики је број недостајућих података? __________________________

б) Да ли се кориснику матрице препоручује замена недостајућих података? Да    Не

в) Ако је одговор да, навести сугестије за третман замене недостајућих података

______________________________________________________________________________
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ПРАВИЛНИК О СПРОВОЂЕЊУ ПЛАТФОРМЕ ЗА ОТВОРЕНУ НАУКУ МИНИСТАРСТВА ПРОСВЕТЕ, НАУКЕ И
ТЕХНОЛОШКОГ РАЗВОЈА НА УНИВЕРЗИТЕТУ У НОВОМ САДУ

2.2.2. На који начин је контролисан квалитет података? Описати

______________________________________________________________________________

______________________________________________________________________________

2.2.3. На који начин је извршена контрола уноса података у матрицу?

______________________________________________________________________________

______________________________________________________________________________

3. Третман података и пратећа документација

3.1. Третман и чување података

3.1.1. Подаци ће бити депоновани у ___________________________________ репозиторијум.

3.1.2. URL адреса  _______________________________________________________________

3.1.3. DOI ______________________________________________________________________

3.1.4. Да ли ће подаци бити у отвореном приступу?

а) Да

б) Да, али после ембарга који ће трајати до ___________________________________

в) Не

Ако је одговор не, навести разлог ________________________________________

3.1.5. Подаци неће бити депоновани у репозиторијум, али ће бити чувани. 

Образложење

______________________________________________________________________________

______________________________________________________________________________
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3.2 Метаподаци и документација података

3.2.1. Који стандард за метаподатке ће бити примењен? _________________________________

3.2.1. Навести метаподатке на основу којих су подаци депоновани у репозиторијум.

______________________________________________________________________________

______________________________________________________________________________

Ако је потребно, навести методе које се користе за преузимање података, аналитичке и 
процедуралне информације, њихово кодирање, детаљне описе варијабли, записа итд.

______________________________________________________________________________

______________________________________________________________________________

______________________________________________________________________________

______________________________________________________________________________

3.3 Стратегија и стандарди за чување података

3.3.1. До ког периода ће подаци  бити чувани у репозиторијуму? _______________________

3.3.2. Да ли ће подаци бити депоновани под шифром? Да   Не

3.3.3. Да ли ће шифра бити доступна одређеном кругу истраживача? Да   Не

3.3.4. Да ли се подаци морају уклонити из отвореног приступа после извесног времена? 

Да   Не

Образложити

______________________________________________________________________________

______________________________________________________________________________

4. Безбедност података и заштита поверљивих информација

Овај одељак МОРА бити попуњен ако ваши подаци  укључују личне податке који се односе на 
учеснике у истраживању. За друга истраживања треба такође размотрити заштиту и сигурност 
података. 
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ПРАВИЛНИК О СПРОВОЂЕЊУ ПЛАТФОРМЕ ЗА ОТВОРЕНУ НАУКУ МИНИСТАРСТВА ПРОСВЕТЕ, НАУКЕ И
ТЕХНОЛОШКОГ РАЗВОЈА НА УНИВЕРЗИТЕТУ У НОВОМ САДУ

4.1 Формални стандарди за сигурност информација/података

Истраживачи који спроводе испитивања с људима морају да се придржавају Закона о заштити 
података о личности (https://www.paragraf.rs/propisi/zakon_o_zastiti_podataka_o_licnosti.html) и 
одговарајућег институционалног кодекса о академском интегритету.  

4.1.2. Да ли је истраживање одобрено од стране етичке комисије? Да Не

Ако је одговор Да, навести датум и назив етичке комисије која је одобрила истраживање

______________________________________________________________________________

4.1.2. Да ли подаци укључују личне податке учесника у истраживању? Да Не

Ако је одговор да, наведите на који начин сте осигурали поверљивост и сигурност информација 
везаних за испитанике:

а) Подаци нису у отвореном приступу

б) Подаци су анонимизирани

ц) Остало, навести шта

______________________________________________________________________________

______________________________________________________________________________

5. Доступност података

5.1. Подаци ће бити 

а) јавно доступни

б) доступни само уском кругу истраживача у одређеној научној области  

ц) затворени

Ако су подаци доступни само уском кругу истраживача, навести под којим условима могу да их
користе:

______________________________________________________________________________

______________________________________________________________________________

Ако су подаци доступни само уском кругу истраживача, навести на који начин могу 
приступити подацима: 
______________________________________________________________________________

______________________________________________________________________________

УНИВЕРЗИТЕТ У НОВОМ САДУ – ДОКУМЕНТИ, АНАЛИТИКА И АРХИВА – WWW.UNS.AC.RS
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5.4. Навести лиценцу под којом ће прикупљени подаци бити архивирани.

______________________________________________________________________________

6. Улоге и одговорност

6.1. Навести име и презиме и мејл адресу власника (аутора) података

______________________________________________________________________________

6.2. Навести име и презиме и мејл адресу особе која одржава матрицу с подацимa

______________________________________________________________________________

6.3.  Навести  име  и  презиме  и  мејл  адресу  особе  која  омогућује  приступ  подацима  другим
истраживачима

______________________________________________________________________________

Национални портал отворене науке – open.ac.rs


	Abstract
	Acknowledgement
	Contents
	1 Introduction
	1.1 Motivation and Problem Statement
	1.2 Thesis Structure

	2 Notation, definitions, function spaces
	2.1 Notation and basic definitions
	2.2 Space of distributions and Sobolev spaces
	2.3 Vector valued functions
	2.4 Important inequalities
	2.5 Colombeau algebra
	2.5.1 Notion of a solution
	2.5.2 Compatibility


	3 Semilinear Schödinger equation
	3.1 The evolution operator
	3.2 Strichartz estimates and uniqueness
	3.3 Well - posedness in Sobolev spaces

	4 Well - posedness of the cubic equations in the Colombeau algebra
	4.1 The delta potential
	4.2 The cubic Schrödinger equation
	4.2.1 Existence and uniqueness
	4.2.2 Compatibility with the classical solution


	5 The Hartree equation
	5.1 Singular Laplacian and well - posedness in the singular Sobolev space
	5.2 Higher regularity
	5.3 Maximal time interval
	5.4 Hartree equation in the Colombeau algebra
	5.4.1 Existence and uniqueness
	5.4.2 Compatibility


	6 Conclusion
	Bibliography
	Biography



