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Preface

The nonlinear Schrédinger equation (NLS) is a model for various physical phenom-
ena. For example, the cubic Schrédinger equation is a model for propagation of
pulses in optical fibers. In three dimensions it represents the dynamics of interacting
Bose gases. Other applications are related to gravitational small amplitude waves
and the dynamics of quantum plasma. This is an important equation of quantum
physics, so it is natural to examine singular initial conditions, such as the Dirac delta
function. The cubic equation with the delta potential is a model for Bose — Einstein
condensates.

The topic of the research is the cubic defocusing equation in two and three di-
mensions, with and without potential. The equation without potential is studied
primarily in Sobolev spaces, where it has the property of energy conservation. In the
dissertation we will deal with singular initial conditions and examine the existence
and uniqueness in the Colombeau algebra. The equation with the delta potential is
not studied in the classical sense, but its significance is seen in a large number of
papers on solitons and explicit solutions. We will also study the Hartree equation
with the delta potential in three dimensions in the Colombeau algebra and compare
results with the existing ones.

The Colombeau algebra is suitable for examining nonlinear phenomena. Also, the
delta function makes this problem difficult to observe in the classical Sobolev space.
Introducing a net of solutions gives a tool for studying different kinds of convergence,
so it can be useful in connecting singular and less singular solutions.

This dissertation is based on the results from [DN19]. We will demonstrate existence
and uniqueness in the Colombeau algebra, also compatibility with the H? solution
for the equation without potential. Specifically, if we have an initial condition in the
Sobolev space (and here we know that there is well — posedness), we can construct a
regularized equation. We prove that the net of solutions of this regularized equation
converges to a H? solution. For the equation with the delta potential we further
show existence and uniqueness in the appropriate Colombeau algebra. Since well —
posedness in a Sobolev space is not known, we do not have a candidate for the limit
of the net of the regularized equation. Finally, for the Hartree equation with the
delta potential we have well - posedness in the fractional Sobolev space, so the goal



is to investigate well — posedness in the Colombeau algebra and then to examine
whether there is compatibility, that is convergence of the net of solutions towards
this “classical” solution.

Predgovor

Nelinearna Sredingerova jedna¢ina (NLS) je model za razli¢ite fizicke fenomene.
Na primer, kubna Sredingerova jednat¢ina je model za propagaciju pulseva u op-
tickim vlaknima. U tri dimenzije, ona oslikava dinamiku interakcije Boze gasova.
Druge primene su povezane sa gravitacionim talasima male amplitude i dinamikom
kvantne plazme. Ovo je vazna jednacina kvantne fizike, te je prirodno ispitati singu-
larne pocetne uslove, kao sto je Dirakova delta funkcija. Kubna jednacina sa delta
potencijalom je model za Boze - Ajnstajnove kondenzate.

Tema ovog istrazivanja je kubna defokusirajuc¢a jednacina u dve i tri dimenzije, sa
i bez potencijala. Jednacina bez potencijala je proucavana primarno u prostorima
Soboljeva, gde ima svojstvo ocuvanja energije. U disertaciji ¢emo se baviti singu-
larnim pocetnim uslovima i ispitati postojanje i jedinstvenost u Kolomboovoj algebri.
Jednacina sa delta potencijalom nije proucavana u klasicnom smislu, ali njen znacaj
ogleda se u velikom broj u radova na temu solitona i eksplicitnih reSenja. Takodje
¢emo prouciti Hartrijevu jednacinu sa delta potencijalom u tri dimenzije u Kolombo
algebri i uporediti rezultate sa postoje¢im na tu temu.

Kolombo algebra je pogodna za ispitivanje nelinearnih fenomena. Takode, delta
funkcija ¢ini ovaj problem teskim za posmatranje u klasicnim prostorima Soboljeva.
Uvodenje mreZe reSenja daje alat za proucavanje razlicitih vrsta konvergencije, te
moze biti korisno u povezivanju singularnih i manje singularnih resenja.

Disertacija je bazirana na rezultatima iz [DN19]. Pokazac¢emo postojanje i jedin-
stvenost reSenja u Kolombo algebri, kao i kompatibilnost sa H? re$enjem za jed-
nacinu bez potencijala. Preciznije, ako ima pocetni uslov u prostoru Soboljeva (gde
znamo da vazi dobra postavljenost problema), mozemo Konstruisati regularizovanu
jednacinu. Dokaza¢emo da mreza reSenja regularizovane jednacine konvergira ka
H? re$enju. Za jednatinu sa delta potencijalom ¢emo predstaviti dokaz postajanja i
jedinstvenosti reSenja u odgovarajucoj Kolombo algebri. Posto je dobra postavljenost
ovog problema u prostorima Soboljeva nepoznanica, nemamo kandidata za grani¢nu
vrednost mreZe reSenja regularizovane jednacine. Konacno, za Hartrijevu jednacinu
sa delta potencijalom imamo dobru postavljenost u frakcionom prostoru Soboljeva,



te je cilj ispitati dobru postavljenost u Kolomboovoj algebri, a zatim i pokazati
kompatibilnost, to jest konvergenciju mreze resenja ka ovom "klasi¢nom" resenju.
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1.1

Introduction

In this work we concentrate on partial differential equations related to the equation
that made Erwin Schrodinger famous and earned him the Nobel prize in 1933.
Schrodinger (1887-1961) was an Austrian physicist and one of the several individuals
who have been called "the father of quantum mechanics". In 1926 he published a
paper in which he presented the linear equation, often written as

0
yh—1) = Ha.
zﬁatw 0

This paper was very influential in most areas of quantum mechanics. He went on to
write four papers in a series and these papers were his central achievement.
Schrodinger is also famous for devising a thought experiment - the Schrodinger’s
cat, during a course of discussions with Albert Einstein. The scenario describes a
paradox of a cat that can simultaneously be alive and dead and is a problem related
to interpretation of quantum mechanics. It remains useful as a tool to compare and
evaluate modern interpretations of quantum mechanics.

Today, a large body of theory exists on various types of Schrodinger equations. We
are interested in the nonlinear ones and specifically in the theory of well - posedness.
An interesting question is what will happen if an initial condition is very singular, or
if the equation itself contains singular terms? Is there existence and uniqueness in
these cases in certain spaces? Also, can these singular solutions be approximated
with functions that are more regular? We hope to answer affirmatively to these
questions.

Motivation and Problem Statement

We shall consider three Cauchy problems, the cubic equation:

iug + Au = ulul?,

u(0) =a

(1.1)



the cubic equation with the delta potential:

iy + Au = ulul? + du,

(1.2)
u(0) =a
and the Hartree equation with a delta potential:
iug + Au = (w * [u*)u + du,
(1.3)

u(0) =a

The solution is a complex function of = and ¢: u = u(z,t), where ¢ € R, representing
time, and x € R", where we consider mainly n = 3, but in some cases also n = 2.
Also, w : R™ — R is a measurable function.

These equations are considered dispersive: intuitively, different frequencies tend to
propagate at different velocities, thus dispersing the solution over time. In contrast
to this, in the wave equation all frequencies move with the same velocity whereas
the heat equation is considered dissipative, frequencies do not propagate but instead
simply attenuate to zero. A solution to a linear Schrodinger equation iu; + Au =0
is in the form

u(x,t) _ Aei/{xfiwt

where the coefficients satisfy the dispersion relation

see [Tao06] and [Whill] for more details.

Classical solutions of equation (1.1) have been studied extensively in the framework
of Sobolev H? spaces, where s is at least 0. For a summary of these results see
[Bou99]. This equation is called defocusing, whereas the equation ju; + Au+u|u|? =
0 is called focusing. The critical regularity for global existence of solutions of (1.1)
in three dimensions is in H* for s > g, as is shown in [Col+04], for two dimensions
itis s > %, see [FGO7]. Also, it was shown in [KPV+01] that the one-dimensional
cubic Schrodinger equation with the delta function as initial data is ill-posed in the
class L>°(]0, 00), S’(R)).

On the other hand, there are no classical results in dimensions higher than one for
the equation (1.2), but its significance as a model for Bose-Einstein condensates with
a well potential is reflected in the large amount of papers regarding solitons, bound
states and approximate solutions of (1.2), see for example [GHWO04], [Le +08] and
[HMZO07]. This motivates our study of the problem of singular solutions.

Chapter 1 Introduction



1.2

There are several papers dealing with the Schrodinger equation in the setting of
the Colombeau algebra of generalized functions. In [H6r11], Hérmann solved the
Cauchy problem in R™ for the linear Schrodinger equation with variable coefficients,
provided the coefficients and initial data are generalized functions. In [Hor16], the
convergence properties of regularized solutions to the linear equation were studied.
In [Bu96], Bu showed that the cubic one-dimensional Schrodinger equation has a
unique generalized solution.

Recently in [MOS18], well - posedness of the problem (1.3) in fractional Sobolev
spaces was shown. It is of interest to us to see how this translates to a different type
of setting, namely the Colombeau algebra which we will introduce in Chapter 2.

Equations (1.2) and (1.3) contain a product of the delta distribution and a function
u. This product is a distribution if u is a smooth function. It is not defined for general
distributions u, and this is one of the reasons of using a Colombeau type algebra.
The delta function was first introduced by Paul Dirac in 1930. It is used to model
the density of an idealized point mass or point charge as a function equal to zero
everywhere except for zero and whose integral over the entire real line is equal to
one

Thesis Structure

In Chapter 2 we present the basic definitions, inequalities important for our work
and also the function spaces needed for the analysis. This chapter includes the
description of the Colombeau algebra - the setting we later use for the well-posedness
problem.

In Chapter 3 we present the theory of semilinear Schrédinger equations, following
the works of Cazenave, Bourgain and many other authors that contributed to the
field. This includes basics of semigroups of operators, Strichartz inequalities, and
well - posedness of these equations in various spaces. We also give a description of
previous results related to the three equations of interest.

In Chapter 4 we present original results published in the paper [DN19] and con-
cerning the existence and uniqueness of the solution for the two cubic equations
(1.1) and (1.2). We show that the singular solution of (1.1) is compatible with the
classical H? solution.

In Chapter 5 we state the theory of singular (fractional) Sobolev spaces and results
of well - posedness of the Hartree equation shown in [MOS18]. We prove a similar

1.2 Thesis Structure



result in the setting of Colombeau algebra and discuss connections between solutions,
these are the results from [DI21].

Chapter 6 is a summary of all of the results from the thesis. We discuss possible
future work and future tasks.

Chapter 1 Introduction



2.1

Notation, definitions, function
spaces

Notation and basic definitions

With R, N i C we denote the set of real, natural and complex numbers, respectively.
With Ny we denote the set NU {0}.

For z € R™ and multi - indices o = (a1,...,0p) 1 8 = (B1,...,5,) We use the
standard notation:

* lal=ar+ -+ ap,
c a+f= (a1 +B1,...,0n0+ Br),
ca<lf = o <B,1<i<n.
o %= (zf, ..., z%m).

Then, 93 = 0y} ...03", 1 < i < n. If there is no risk of confusion we use just 9 for
the derivative in x € R™. Derivative in the time variable of the function u is often
denoted by wu;, otherwise we use %. Scalar product of vectors x and ¢ is given by

r-E=x1& + ... xnén.

Let Q C R™ open. For f : Q — C we define support in the following way

supp f:={x € Q: f(z) # 0}.
We further list basic function spaces used throughout the thesis.

* (C(Q) is the space of continuous functions on 2.

* Ck(Q), k € N is the space of k-times continuously differentiable functions on
Q.

* C™(9) is the space of smooth functions 2, that is C>(2) = ey, C*(2).

* (Cp(9) is the space of continuous functions with compact support.



* C§°(92) (or D(Q2)) is the space of C*° compactly supported functions f :  —
C.

* L(X,Y) is the space of linear, continuous mappings (operators) from X to Y
and £(X) the space of linear operators from X to X.

* By X’ we denote the dual of X, i.e. the space of linear mappings f : X — C.
For u € X the action of the linear functional f € X' is denoted by (f, u).

Furthermore, a linear unbounded operator on a Banach space X is a pair (D(A), A),
where D(A) is a linear subspace of X (the domain) and A is a linear mapping
D(A) — X. We say that A is bounded if there exists ¢ > 0 such that ||Az| < ¢||z||,
x € D(A). Otherwise, it is not bounded. Note that a linear unbounded operator
can be either bounded or not bounded. If A is a linear operator with dense domain

(D(A) = X) and X is a Hilbert space, then

G(A") = {(v,p) € X x X; (p,u) = (v, f) Y(u, ) € G(A)}
defines A* — the adjoint. Its domain is

D(A*) ={v e X : Je < o0, [(Au,v)| < Cllu|l, Yu € D(A)},
and A* satisfies

(A*v,u) = (v, Au) Yu € D(A).

f(€)

We say that f(g) ~ g(e) if li_r>r(1) Wg) = ¢ > 0. We use < when inequality holds up to
&

a positive constant:

fle) Sgle) it f(e) <cgle), ¢>0

and ¢ does not depend on ¢.

The big O notation is also used. One writes

Chapter 2 Notation, definitions, function spaces



2.2 Space of distributions and Sobolev spaces

Let Q C R™ open. For 1 < p < oo define
PQ) ={f:Q=C| / |f(2)Pdz < oo},
Q

with the norm

I£1r = ( [ f(@)Pda)?.

For p = oo define

L“(Q):{f:Q—HC

f is Lebesgue measurable and there is a constant C' }
such that |f(x)| < C for almost all 2 € ’

with the norm
| flloc = inf{C : |f(x)| < C for almost all x € Q}.

If there is no risk of confusion we denote | - ||, = || - ||z». For all 1 < p < oo spaces
LP(Q)) are Banach; they are reflexive for 1 < p < oo, and separable for 1 < p < oc.
As usual, we identify two functions that coincide a.e. on €.

1
loc

We say that a function is locally integrable (u € L; .(f2)) if its Lebesgue integral is

finite for any compact subset of (2.

By D'(§2) we denote the space of distributions: linear functions u : D(£2) — C, that
is u : ¢ — (u,p) such that for every compact set K C (2 there exist m € N and
C' > 0 so that

|{u, ©)| < C sup sup |[0%p(x)],
la|<m zeQ

for all ¢ € D(R) such that suppy C K. We have that u,, — w in D'(Q) if and only if
the weak star convergence holds:

(Un, ) — (u,p) in C, Vo € D(Q).

Every u € L},.(2) is a regular distribution, meaning that [, ug, for p € D(Q) is a
distribution. The derivative of a distribution is defined in the following way:

(0%u, ) = (=1)*Nu,0%).

Any distribution has derivatives of arbitrary order in D’'(£2) and moreover 9% is a
continuous operator D'(Q)) — D’(Q). This is a useful fact when solving approxi-

2.2 Space of distributions and Sobolev spaces



mately linear differential equations, since it means that if a sequence of solutions
converges in the space D’(2) then the limit is also a solution of the equation.

Let u € L} (). If there exist v, € L} () such that v, = 0% in D'(2), then v, is

loc loc
the called the weak derivative of » and is denoted by 0%u.

Let n € N. We define the space of rapidly decreasing functions:
S(R") ={p € C™([R"): [[¢llkg < oo Vk € No,l € No}

where
lllks = S§H§L(1+ @?)*2 3" DY ()]

la|<t

is a semi-norm. A sequence {¢;}72, C S convergesin S to ¢ € S iff
¢ — ¢l — 0, for j — oo and all k,1 € Np.

By S’(R™) we denote the space of linear, continuous maps u : S(R") — C, also
called the space of tempered distributions. We further define the Fourier transform
for p € S(R™):

3 = (FO)&) = @m) 2 [ e o(w)dr, e R

n

Also
3O = (F9)(§) = em) 2 [ ola)de, R

is the inverse transform for ¢. The Fourier transform is a bijective, linear and
continuous map from S(R™) to S(R™) and from S’(R") to S’(R™). It is also unitary
on L?(R™). For a tempered distribution 7' it is defined in the following way

(T, p) = (T, ¢), ¢ e SR
Fourier transform is a linear operation and some other important properties are
D F(fxg)=/ gand F(f-g) = f*3;
if) F(9°f) = (i€)*f and F((~2)" f) = 8" ;
iii) 3({) =1 and as a consequence S x 6 = S for any S € S'(R").

We now give the definition and present some properties of Sobolev ! spaces. For
proofs of the theorems, see [AF03].

1Sergei Sobolev (1908-1989), a Soviet mathematician

Chapter 2 Notation, definitions, function spaces



Definition 2.2.1. Let m € Ny and 1 < p < oo. The space
WmP(Q) ={ue LP(Q) : 0% € LP(Q2) for 0 < oo < m}

where 0° is the weak derivative, is called the Sobolev space.

This is a normed vector space, with the norm given by:

lullpmo = ( D [0%ullp)/? for 1 <p < oo,
|o|<m (21)

[ullm,co = max [[0%l|oo.
0<|a|<m

An equivalent norm is

lullpma = Y 10%lly  for1<p< oo,

lal<m

[ullm,oo = D 110%ulloc-

laj<m

(2.2)

Definition 2.2.2. W;""(Q) is the closure of C§°(2) in W™P(§)) with respect to the
norm (2.1).

WP (2) is sometimes referred to as the Sobolev space of zero boundary values.
Indeed, under some additional assumptions, functions from W;"*(Q) are zero on
the boundary 0f2. For example, we have the following theorem (Theorem 9.17.
from [BrelO]):

Theorem 2.2.3. Suppose () is open and of class C'. Let
weWHPQ)NCW), 1<p< .
Then the following properties are equivalent
e u=0o0n 9o,
o ue Wy (Q).

Theorem 2.2.4. The space W"P(2) is a Banach space for every 1 < p < oo. W™P(Q))
is reflexive for 1 < p < oo and separable for 1 < p < oc.

2.2 Space of distributions and Sobolev spaces
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On the space H™(Q2) = W™2(£)) we can define a scalar product:

(u,v)gm = Z (D%, D*v) 2 = Z /Dau Devdx,
Q

0<|ar|<m 0<|ar|<m

and therefore H" (1) is a Hilbert space. There also holds
Theorem 2.2.5. W™P(R") = W;"P(R") for 1 < p < .

Furthermore, we have several useful embedding theorems and we will use the
following (Corollary 9.13. from [Bre10]):

Theorem 2.2.6. Let m > 1 be an integer and p € [1, c0). We have

1 1 1
W™MP(R") € LYR"), where — = — — — if — — = >,
qg p n p N
m n n : 1 m
wWmP(R"™) c LYR") Vq € [p, ) 1fE—E:O,
1
WmP(R™) ¢ L¥(R™) if - — — <0
D n
and all these injections are continuous. Moreover, if k = [m — 7, where [| denotes the
integer part, we have for all u € WP (R"),
0% Lo < Cllullwme  V|a| < E. (2.3)

In particular, W™P(R™) ¢ C*(R™).

We will mostly use that in 3 dimensions and for p = 2 we have % -7 <0sm> %,
for m > 2, and that the functions in W™2(R3) are bounded. In this case, there also
holds that these functions tend to zero when |z| — oco. This is due to the fact that
the space C§°(R?) is dense in W™P(R3) w.r.t. the Sobolev norm, but because of
the continuous injection it is also dense w.r.t. the supremum norm, meaning that a
function from W™2(R3) is a uniform limit of a sequence from C§°(R?) and hence
has to tend to zero, when z tends to infinity.

We get an alternative definition of H™ = H™(R") via the definition of these spaces
for real indices.

Definition 2.2.7. For arbitrary s € R by H*(R"™) we denote the space of tempered
distributions u for which

we H(R") < (1+|y|?)*?aeLl? yeR™

Chapter 2 Notation, definitions, function spaces



Let H®* = H*(R") for s € R. There holds
H Cc H??, for —o0o < 83 <51 <0

and particularly
H' c H2 C L?, for0< sy < s < 0.

The norm in the space H*® is given by
[uls = (1 + [y*)*?a]| 2,y €R”

and the scalar product by

wol = [ GO+ |y dy, woe H" yeR

Again,

Definition 2.2.8. H§(R") is the closure of D(R") in H*(R").

We have the following properties

2.4

(2.5)

Theorem 2.2.9. Let s € R. The spaces H® with the scalar product (2.5) are Hilbert.

There holds
S(R™) c H*(R™) c S'(R™)
and S(R™) is dense H®.

Theorem 2.2.10. The space H*, s € R is reflexive and separable.

There is also a duality result:

Theorem 2.2.11. The dual of H® is H* and the dual norm coincides with | |_s.

Finally, we introduce spaces

H*=(H*, H>=|JH".
seR seR

The following inclusions hold

SCH®CcH *cJgs.

2.2 Space of distributions and Sobolev spaces 11
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Next we state and prove a theorem important for the Colombeau algebra and that
we shall use in the sequel. Results of this type are given in [AF03].

Theorem 2.2.12. The space H*(R"™) is an algebra when s > § and

luvl| s < cllullgs||v||ms, u,ve H®. (2.6)

Proof. Let (&) = (1+ |§|2)%. There holds (£)° < ¢((§¢ — n)® + (n)®) since

<L+ [E—nP+ n* +2(€ =] [n])P
< (142 —nP + 2P <21 +]E—n*+1+|n)P
<P 22((1+ € =)+ (1+ [nH)P),

(1+ ey

for any p > 0. This is similar as Peetre’s inequality: (£)° < 2lsl(e — n)lsl(n)s, s € R,
see [Abell]. Now

—

vl = vl = 11(6)*(uv)
and
€@ < (& [ late —mitmldn = [(€)"lat¢ = motm)ldy
< ¢ [ = n)lale = mysmldn +e [ ) lats —mo(mldn
= el()*al[o] + clal + ()73

From Young’s inequality it follows

—

1€)° (wv)[l2 < cl[{€)*alla[ol[x + ellal[1]|(€)Dl2-

Finally
Il = [€)*(€)*lalde S I&alla( [ (€)de)*

and the result follows, since (£) 2% is integrable for s > 2. O

Chapter 2 Notation, definitions, function spaces



2.3 Vector valued functions

We will use spaces involving time. Let I be an interval in R and X a Banach space.
By C(I, X) we denote the space of continuous functions u : I — X, that is, for all
to €1,

lim [Ju(t) — u(to)]|x = 0.

t—to

Also, C™(I, X) is the space of functions u : I — X whose derivatives (in ) of order
j belong to C(I, X) for all 0 < j < m. Finally, C{"(1, X) are functions u € C™ (I, X)

with compact support in I.

We introduce the definition of a measurable function, as in [CBH+98].

Definition 2.3.1. A function u : I — X is measurable if there exists a set E C I of
measure zero and a sequence {uy nen C Co(I, X) such that u,(t) — u(t) as n — oo
forallte I\ E.

We also define integrability.

Definition 2.3.2. A measurable function v : I — X is integrable if there exists a
sequence {uy, }neny C Co(I, X)) such that

/ un(t) — u()]|xdt — 0, 1 — o0,
I

Now by LP(I, X) we denote the space of measurable functions u : I — X, such
that
/ lu(®)|/%dt < oo forl<p< oo
I

or

esssup ||u(t)||x < oo forp= 0.
tel

The space W P(I, X) is the Banach spaces of (classes of) measurable functions

u: I — X, such that %}L € LP(I,X) for every 0 < j < m. This space is equipped

with the norm
m

lullwme =3

J=1

ot

Lp

We will also often observe an integral of type [; u(t)dt, where u(t) € X. In our work,
this can be interpreted as the usual Lebesgue integral

U(z) = /I u(t, z)dt,

2.3 Vector valued functions
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for fixed values of x. Equivalently it can be observed as a Bochner integral, defined
analogously with approximation by vector—valued step functions. In particular, if
X is the space of real numbers, then Bochner integrable functions are Lebesgue
integrable functions ([CBH+98], [Mik78]). We present the following analogue to
theorem 2.4.6 in the sequel.

Theorem 2.3.3 (Bochner). Let u : I — X be a measurable function. Then u is
integrable if and only if ||u|| x is integrable. Moreover,

o, < e
1 X 1

It is also useful to define the derivative of a vector—valued function. We state the
definitions of the Frechét derivative and Gateaux derivative, see [Aub11].

Definition 2.3.4. Let U C I be an open subset and ty € U. Themap f : [ — X is
said to be Frechét differentiable at t if there exists A € L(I, X) such that

o 10) = £(00) — At~ )]

=0.
t—to |t — to]

The map A is the Frechét derivative of f at ty (usually denoted by D f(ty)).

Definition 2.3.5. Let f : I — X. If the limit

Ao — tog L) =10

5—0 S
exists for each v € I and the map v — Ay(v) is a continuous linear map, then we say f

is Gateaux differentiable at t and A, is called the Gdteaux derivative of f at t.

If a function is Frechét differentiable at ¢, then it is Giteaux differentiable at ¢ and
the two derivatives coincide. The converse, however, does not hold in general.

Important inequalities

Besides the Sobolev inequality (2.3) we will use several important inequalities which
we list in this section. The first two are very well-known.

Chapter 2 Notation, definitions, function spaces



Theorem 2.4.1 (Holder). Let 1 < p < oo, f € LP(), g € LY(NQ), 1/p+1/q = 1.
Then fg € L'(Q2) and

| 17@sgt@)idz < £l 27)

Theorem 2.4.2 (Young). Let f € LP(R?), g € LY(RY) i1 <p < oo, 1 < q < o,
1= % + % — 1> 0. Then the convolution f x g € L"(R%) and

r

1S glle < [1f[lpllgllq- (2.8)

We state two versions of the Gronwall inequality. The first is as in [Dra03].

Theorem 2.4.3 (Gronwall’s inequality). Let A(t) be continuous and nonnegative on
[0, T'] and satisfy

A() < E(t) + /Otr(s)A(s)ds, 0<t<T,

where r(t) is a nonnegative integrable function on [0, 1| with E(t) bounded on [0, T).
Then

A(t) < |E(t)] exp (/Otr(s)ds> L 0<t<T

The second inequality is a variant of the theorem appearing in [EK09] and we prove
this version.

Theorem 2.4.4 (Gronwall’s inequality). Let A : [0, 00) — R be a measurable function
that is bounded on bounded intervals, E > 0 and r(t) a nonnegative integrable function
on [0,t] for any t € [0, 00). Let

0< At) < E+ / Cr()A(s)ds, t>0, 2.9)
0
then

A(t) < Eexp </Otr(s)ds> , t>0.

Proof. We show first by induction that

n k
Aty < E-Y R](j) + Ra(t), (2.10)
k=0 ’

2.4 Important inequalities
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holds for any n, where

and

Rut) = /0 FRO" 5 As)as.

n!
The case n = 0 is the inequality (2.9). Let (2.10) hold and let us show that it holds
for n + 1. By (2.10) and (2.9)

Alt) < E- Z +/ n' <E+/ r(s1) (81)d51> ds
" R(t )t
=F. Z ') 1)A(81)d81d8
k=0 ’
n+1 s1 R
=F- kz::O k +/ / Sl)A(Sl)desl
n+1
R(t)* L R(s)"
_B. kgo il T(sl)A(sl)/O L (s)ds dsy
n+1 k n+1 n+1 k
_ R(1) ! R(sy)"" B R(t)
=F- k:O %l + 0 T(Sl)A(Sl)mdSl =F- ];) Ll + Rn+]_ (t)

Here we used R/(t) = r(t) and Fubini-Tonelli theorem, the function

R(s)"

n!

r(s)r(si)A(s1)

being measurable and nonnegative. Now for the remainder R,, there holds

R(t)n—l-l
Bult) < (sup A) 5y

— 0, n— oo,
since A(t) is bounded, r(s) is integrable and all quantities are nonnegative, so

R, (t) — 0asn — oo for any ¢ in [0, c0). Since (2.10) holds for any n € N it follows
it holds in the limiting case, too, hence

A(t) < Eexp(R(1)), ¢ € [0,00),

which completes the proof. O

We now state the Gagliardo—Nirenberg inequality as in [Caz03].
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Theorem 2.4.5 (Gagliardo-Nirenberg). let 1 < p,q,r < oo and let j, m be two
integers such that 0 < j < m. If

1 ] 1 1-0
i (lom)yae
p n

T n q

for some b € [j/m,1] (b < 1ifr > 1 and m — j — & = 0), then there exists
C =C(n,m,j,q,r) so that

S D@l < (Y 10mu@l) @l vue DEY @11

laf=j la=m

Theorem 2.4.6 (Minkowski). Let S1 € R™, So Cc R"and F : S1 x S — R is
measurable. For 1 < p < oo there holds

(/S2 |/51 F(%y)dﬂpdy)% < /51 (/S2 \F(x,y)|pdy)%d:r. (2.12)

Theorem 2.4.7 (Riesz-Thorin convexity theorem [H6r90]). If T is a linear map
from LPY(R™) N LP2(R™) to L (R™) N L% (R™) such that

||Tf||q] S M]”f”p] j = 1727
and if 1/p =t/p1 + (1 —t)/p2, 1/q =t/q1 + (1 — t)/qz for some t € (0,1), then

ITfllg < MiMy 7| fllp,  f € LP(R™) N LP2(R™).

Colombeau algebra

We now present the definition of a H? - based Colombeau algebra. Different types of
these algebras are described for example in [Gro+13] and in original works [Col00].
Also see [BO92] for P — L9 - based algebras.

The product of two distributions is not defined, only the product of a smooth function
and a distribution. If we try to extend this operation we will not be able to conserve
the associative property, as this example shows:

0= (5(x) ) -vp # 6(a) - (- vp7) = 6(a),

where vp% denotes the Cauchy principal value of % These and other problems were
the motivation for defining an associative, commutative algebra containing the space

2.5 Colombeau algebra
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of distributions. Specifically, desirable properties for an algebra (A(f2), +, -), for an
open set ), are the following

(i) D'(Q) is linearly embedded into A(f2) and f(z) = 1 is the unity in A(f2).

(ii) There exist differential operators 0; : A(Q2) — A(2), i = 1, ...,n that are linear
and satisfy the Leibniz rule.

(iii) 0O;|p is the usual partial derivative, i = 1, ..., n.
(iv) The restriction -|ce xc~ coincides with the pointwise product of functions.

The following (special) Colombeau algebra satisfies these conditions and is defined
as follows (see [Gro+13]). Let 2 C R" open and

£1(@) 1= (C(@)

Exr(Q) :={(us)e € £5(Q) | VK CC QVa € Nj N € N with

sup |0%u.(z)] = O(e™™), e = 0}
zeK

N3(Q) :=={(us): € E5(Q) | VK CC QVa € Njj Vm € N with

sup [0%ug(z)| = O(e™), € — 0}.
reK

Elements of £5,(Q2) and NV*(Q2) are called moderate resp. negligible functions. The
special Colombeau algebra is the quotient space

G () := &3, () /N (Q).

If u € D'(Q), then the embedding D'(2) — G*(2) is given by

U = [(u * pE)E]a

where p € S(R") is a mollifier such that

/,o(x)dx =1, (2.13)

/xap(a;) =0, V]l >1 (2.14)
and p. = ¢ "p(%). This type of mollifier assures that (iv) holds. There is no mollifier
in D(R™) which satisfies both (2.13) and (2.14). On the other hand, p € S(R") can

be constructed by taking the inverse Fourier transform of a function from S(R")
which equals 1 in a neighborhood of zero.
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The H2-based algebra we use is as in [NPRO3]. One more paper using similar spaces
is [NOPOS]. Let Ecn y2([0,T) x R™) (respectively
Ner p2([0,T) x R™)), T > 0 denote the vector space of nets (u.). of functions

ue € C([0,7), H*(R™)) N CL([0,T), L*(R")), € € (0,1),

with the property that there exists N € N (respectively, for every M € N) such
that

max{ sup |luc(t)]| g2, sup [[Opuc(t)] 2} = O(™™), e =0
te[0,T) te[0,T)

(respectively

max{ sup [[ue(t)]pz, sup [Beue(t)] 2} = OEM), Ho).
te[0,T) te[0,T)

The quotient space
Gor,m2([0,T) X R™) = Ec1 g2([0,T) x R™) /N g2([0,T) x R)

is a Colombeau type vector space. For n < 3 this is a multiplicative algebra, since
H?(R") itself is an algebra for n < 3.

The space G2(R"™) is defined in a similar way:

E(R") := (H*(R")®
Em2(R") := {(ue): € Ez(R”) | 3N €N JJus(2)||g2 = O(e™), e = 0}
N2 (R") = {(u)e € E2(R") [ Vm € N [|uc ()| g2 = O(™), & = 0},
Gr2(R") := E2(R™) /N2 (R™).

This space is also an algebra in the case n < 3.

The basic operations of addition, multiplication and differentiation are done component—
wise, that is

u+v=[(uc+ve)e], wu-v="[(uec ve)e], u=/[0%e)c].

We define differentiation on this algebra, although it is not a closed operation. If
u € Gen g2([0,T) xR™), then 0“u is represented by 0”u. which has moderate growth
in L*(R™) and giving rise to an element of a quotient vector space G¢ 2([0, T') x R™),
defined analogously as Gt g2([0,T') x R™) - with the difference that representatives
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have bounded growth only in L?-norm, for any ¢ € [0,7). We will see that the
equations (1.1) — (1.3) have sense in G 12([0,7)) x R™). Also it is easily seen that
Gor,m2([0,T) x R™) C G r2([0,T) x R™).

We also mention the space G, ~(R") defined as follows

E(R™) := (C™(R™))]
Enoo(R™) := {(ue): € ER™) | Vo € N§ AN € N [|0%u () ||loo = Oe™ ), € — 0}
Noooo(R") 1= {(ue)s € E(R") | Vo € Ng Vm € N [|0%ue(z)[|oc = O(e™), € — 0},
Goo,00(R") 1= €000 (R") [N 00 (R™).

This is a special case of the L? — L9-based algebras defined in [BO92]. We can
embed the delta function in this space by a convolution with a mollifier as before,
and actually, § * p. = p. so that p. itself is a representative of the delta function. Also
in this way, W~°>°°(R") is embedded in G - (R™) and W°>°(R") is a subalgebra
of Goo,00(R™), which was shown in [BO92].

We will prove that in this algebra, one more representative of the delta function
is given by a strict delta net, defined as follows. We follow the approach given in
[Gro+13].

Definition 2.5.1. A strict delta net is a family of functions ¢. € € oo Which satisfies
0) supp(¢:) = {0}, e =0,
i) lime_o [gn ¢e(x)dz =1
iii) [ |¢e(z)|dz is bounded uniformly in e.
A strict delta net can be defined using p. as ¢-(x) = (%) p<(x), where x is a cut-off

function and p. is as before. Specifically, x € C§°(R"), x(z) = 1, |z| < 1 and
X(xz) =0, [z] > 2.

In the sequel we will use the following estimates for p. and ¢.. Since S(R") C
LP(R™), we have
1 T
1o} P _ —np| Qo E p — —np &% —\|P
00l = [ o pENPdr = [ e @) ()P

gmptn=lelp|go () Pt = e (P —ledp o =N
R"

for some N € N, 1 < p < oo and any multi - index a. Moreover, ||pellcc =
e "max [p(Z)| = cc7", for any € > 0. We also use mollifiers of type p;. = hlp(zh.),
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where h, — o0, ¢ — 0, for example h. = Ine~!, and these mollifiers admit
completely analogous estimates as above.

Since the derivatives 8“()((%)) are bounded by

Jol/2 gy y(ELy| < o—lal/2
sup |€ 3 ’

it is not hard to see that ¢.(z) = X(\%) p<(z) admits analogous estimates as p. in the

LP-norm. Now we prove the following theorem.

Theorem 2.5.2. There exists a strict delta net ¢. such that the difference p. — ¢.
belongs to Ny oo (R™) and both p. and ¢, are representatives for the embedded delta

function [(pe)e] € Goo,o0(R™).

Proof. For ¢. we choose specifically ¢.(z) = X(%) p(z) as above. This defines a
strict delta net as in Definition 2.5.1. The difference p. — ¢. = 0 for |z| < /e
Further

I = delloc = llpo@)(1 = X2 o < sup 7"0()

< Cye " sup (1+ \E\)_q < Cet/*
x>\ €
Since p € S(R™) this estimate holds for any ¢ > 0 so we have N ~(R") estimates
of order zero. Taking a derivative of arbitrary order of p. — ¢. we will need to bound
terms involving 9°(p.(z)) - 0%((1 — X)(%)); which again vanishes for z < /c. We
can repeat a similar analysis as before, but now

—la] T lo

(1= )= "0 -x)()se 2.

B

It follows
)| < sup |5_"—|5\(0ﬁp)(§)| -6_%
z>/e €
< Cye=(HiBlHIal/2) ca/2

sup 97 (pe()) - 9%((1 = x)(
xz>\/e

s

for any ¢ > 0. In this way we can obtain necessary estimates of arbitrary order, and
conclude
Pe — ¢5 S Noo,oo(Rn)
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We can embed functions in the space G2 (R™) by convolution with a mollifier p.,
too. We will discuss only the embedding of the delta function and prove some more
general properties when embedding the space Gt 2([0,,7) x R™).

Theorem 2.5.3. There exists a strict delta net ¢. such that the difference p. — ¢.
belongs to Ny2(R™) and both p. and ¢. are representatives for the embedded delta

function [(pe)e] € G2 (R™).

Proof. The proof will be similar to the proof of Theorem 2.5.2. Let ¢.(z) =

T

Xe()pe(x) = X(%)pg(az). Then

2 2 T \\2 2
— = 1—x(—=))“dx < d
o = pexcl = [ @< [ e
S/ E—n(1+‘f’>—2qu:/ é_—n(l_i_M)—?q-i-n-i-l—(n-i-l)dx
lz[>ve € |z| >/ 5
<e ™ sup (1+ $|)—2q+n+1/ (1+ M)—(nﬂ)dx
x>\ € lz[>/e €
1
< Efn&_qf(nJrl)/QEn/ dy
yi>1/vE (1+ [y)ntt
1
< ga-(nt1)/2 / L
- yewn (L+ [y

The above integral is finite and independent of €. So for arbitrary M we can choose
g=M + ”T“ < —2¢g+m+1 < 0sothat ¢ > "T“ so that the above estimates hold
and

loe — pexell3 <&M, e<e <1

From the proof of Theorem 2.5.2, we see that the derivatives of p. — p-x. can be
bounded similarly in the L?-norm. O

Let us now prove that we can embed some functions in G2 (R") using a strict delta
net.

Theorem 2.5.4. Let f € H%(R"). Then f x p- — f * ¢ € Ny2(R™), where ¢. is a strict
delta net defined by ¢. = Xcpe, Xe(T) = x(%) and x is a cut—off function as before.

Proof. Young’s inequality implies

1f + (pe = @e)llo S [ fll2ll (T = xe)pella
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We can bound ||(1 — x:)pe|l1 by eM for any M € N, ¢ — 0, in the same way as in the
proof of Theorem 2.5.3. Also, 9“(f * (p- — ¢)) = (0*f) * (p- — ¢-) and the proof
follows. O

We give two theorems explaining the product of elements from different algebras.

Theorem 2.5.5. Let u € Goo oo(R™) and v € G y2([0,T) x R™). Then, u-v €
gchz([O,T) X R”).

Proof. Let u: € Ex,00(R™) and v: € Ecn y2([0,T) x R™). We have
lucve(@)ll2 S lluellocllo@®)ll2 S ™ e =0,

for any ¢t € [0,T"). A similar situation holds for derivatives 0“(u.v.), |a| < 2, since
in this case we have terms of form 9%u.9"v. which can be bounded as above.
In the same way, product of n! € N ~R") and n? € Ner g2([0,T) x R™) is
negligible in G g2 ([0,7) x R™) and also u. - n? € Ngr g2([0,T) x R™), ve - n} €
Nt g2([0,T) x R™). Taking another representative of v and v, u. + n} and v, + n?
it follows

1 2 2 1 1.2 3
(ue + 1) (ve +n2) = Ue - Ve + Ue - NE 4+ Ve - N +1Z - NE = Ue - Ve + 12,

where n? € N1 g2([0,T) x R") so the product is well-defined. O

Theorem 2.5.6. Let u € Gen y2([0,T) x R™) and p. is the representative of § in
Gp2(R™). Then u - [(pe)e] € Gor g2([0,T) x R™).

Proof. The proof is similar to the proof of the previous theorem, since any derivative
of p. is bounded also in the norm || - ||o. Moreover, terms ||ntuc|| g2 and ||nin?|| 2
are negligible, due to Theorem 2.2.12. O

Next, since the initial condition is a function depending on z only, we define a
restriction of an element u € G f2([0,7) x R™).

Definition 2.5.7. Let u € G y2([0, 7)) x R™) with a representative u. € Ecn p2. Since
Us € C([O,T),H2(R3)), the function u.(-,0) is in Ex2. Also, if ue € Nclsz, then

us(+,0) is in N2. We define the restriction of u to {0} x R™ as the class [u.(+,0)]c € G-

Also relevant to our equations is the following definition.

2.5 Colombeau algebra
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Definition 2.5.8. We say that a € Gy2(R") is of (In)'~type, j € (0,1] if it has a
representative a. € Ex2(R™) such that

laclle = Ol e™), e—o0.

Note that a function a € H*°(R") is itself a representative in Gy2(R"™) (which can
be proved as in the proof of Theorem 2.5.9 which is given in the sequel) and this is
an example of a function that is of (In)’—type for any j € (0, 1]. The reason for this
is that its L?>-norm is a constant independent of ¢. Further, if a € L?(R") and we
embed it by a — [(a * pe):|, then |la * pc|l2 < ||all2]|pell1 = ||all2 and [(a * p.).] is also
of In/~type for any j € (0, 1].

Finally, we discuss embedding functions in the space G g2([0,T) x R™).

Theorem 2.5.9. Define the function « : W*°([0,T), L*(R™)) = Gcr g2([0,T) x R™),
n < 3 by

t(u) = [(ue)e]

where
ue(z,t) = / u(y,t)ps(x —y)dy foranyt e [0,T). (2.15)
(i) This function is a linear injection. Restriction of the derivative 9%, for any o € N™,
from Gen g2([0,T) x R™) to WH°o([0,T), L*(R™)) is the usual distributional
derivative.
(ii) The same embedding turns C*([0, T), H*(R™)) into a subalgebra of Go1 g2([0,T) %
R™).
Proof. (i) For fixed values of ¢, (2.15) it is the usual convolution with a mollifier.
Then, for any |a| < 2 and every ¢t € [0, 7))
10° (w* pe)ll g2 = llux 0%pellr2 < llullp2[10%pelpr ~ e
for some N € N. Here we used Young’s inequality (2.8). Also

10 (ue (2, 2)) [ 2 = || /Rn A (uly, 1)) pe(x—y)dyl| > = ||Oruxpel| 2, for every t € [0,T),

which is bounded (by a constant) again due to Young’s inequality. So u. gives
rise to an element [u.| € Go1 2. Moreover, for fixed values of ¢, we know that
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|lu* ¢ —ul|2 — 0. The embedding u < [u.] is thus an injection as a consequence
of uniqueness of limit in L?. Specifically, if v. € [u.], then

v =limov. = lim(u: +n:) =u
e—0 ¢ E—>O( ¢ 6) ’

for every ¢t € [0,7"). We conclude that

Whee((0,T), L*(R™)) < Gen g2([0,T) x R™).

For partial derivatives in x there holds 0% (u * p.) = 0%u * p. for any ¢, so ¢(05u) =
09 [u * p] and the derivative in Gen g2 coincides with the (distributional) derivative
in Whee([0,T), L?>(R™)). The same holds for the derivative in ¢ since Ofu. = dfux pe

for any t.

(ii)) We need to show that u. — v € N’C17 2, Where u. is given by (2.15) and
u € C1([0,T), H*). The reason for this is the following. If we observed a constant
embedding u — [u], then [u - v] = [u. - v.] is automatically satisfied. On the other
hand, we need to use convolution to be able to embed other functions, too. So if u
and u. given by (2.15) represent the same class, then

[(u-v)e] = [ue - vel.
We continue as in as in [BO92]. For fixed values of ¢ there holds
Jue =l = us pe =l = [ | [ (ule = ey) — u(@)p(u)dyda

We can apply the Taylor’s formula to u up to the order of m. Since [ y*p(y)dy =0
for |a| < m (by (2.14)) we obtain

e —ulg= 13 [ / (1= 0)"0"u(a — oey)dop(y)dyl*da
|a|l=m+1
1 2
<C(m max /‘/ / (1 —0)"0%(x — oey)dody| dz
\a| m+1 m' 0
1 2
<C(m ‘ |ma>il//‘ / (1 —0)"0%(x — oey)do| dxdy
Em—l—l
< " C(m max /\y p(y \// |0%u(y — oey)|*dodrdy

< et / |y|m“|p<y>|dy max _[|0%ula.
|o]=m+1
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So for any m € N and sufficiently small £ we have

lue — ull2 < ce™.

The same holds for 0%u, || < 2. Finally, for any ¢
10 (u — ue)||2 = [|Opu — Dy  pel|2 < €™, VM € N,e — 0,

as above. O

Notion of a solution

In this section let us observe the following Schrodinger equation:

iuy + Au+ g(u) =0,

(2.16)
u(0) = a.

Definition 2.5.10. We say that u € G g2([0,T) x R™) is a solution of (2.16) if for
an initial condition a and its representative a. = a * p., there exists a representative
ue € Ecr g2([0,T) x R™) such that

i(“s)t + Aue + g(ua) = M., (2.17)
ue(0) = ag + ng, .

for some n. € Ny2(R"), where sup,cio 1) | Mel| 2 = O(eM), for any M € N.
If the above statement holds for some u., then it holds for all representatives of the

class u = [uc]: we show this for the linear part, and leave the analysis of g(u) for
Chapter 4 and Chapter 5. Let v. = u. + N, N. € N¢1 g2, then

i(ve)t + Ave = i(ug)e + Aug + i(Ne)t + AN = Mo+ i(Ne)t + AN,

where || M| ~ eV, for any t € [0,7). Now since N. € Ngi 2, it follows
li(Ne)¢ + ANe|| 72 ~ eM for any t € [0, 7). Also,

ve(0) = ue(0) + Nz(0) = az + ne + No(0) = a. + NE1

where N! € Nyp.
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2.5.2

We also always start by solving precisely

i(ue)t + Aue + g(us) =0,
ue(0) = ag,

a: = a* p., since it follows from the previous analysis that [u.] is indeed a solution.

Definition 2.5.11. We say that a solution of (2.16) is unique if for any two solutions
u,v € Gen g2 there holds sup,cio 7y [[ue — vellL2 = O(eM), for any M € N.

These definitions justify the use of spaces based on nets u. € C([0,T), H*(R")) N
C([0,T),L*(R")), ¢ € (0,1), for n < 3, which is natural for the equation in
question.

Compatibility

We will see in Section 3 that for a € H?(R"), n < 3, there is a unique solution
u € C([0,T), H*(R™)) of the cubic equation (1.1). The space H?(R") is embedded
in the Colombeau algebra G2 (R"™), which can again be proved as in Theorem
2.5.9. If there is a unique solution of (1.1) in G y2([0,T) x R™), then there is a
representative u. that solves

i(ue)t + Aue = ualualz,

Ua(o) = a* Pe

for a € H? (as mentioned in the previous section, we always show that there is a
solution to the equation without negligible functions, so the above claim will be
justified). Ideally, classes [(u:)<] and [(u * pc )] will coincide. But we are usually able
to prove a slightly weaker version of this equality of classes, given by the following
definition.

Definition 2.5.12. We say that u € Gen y2([0,T) x R™) is associated with a distri-
bution v(t) € D'(R™) for any t € [0,T) if there is a representative u. of u such that
us — v in D'(R™) for any t € [0,T) as € — 0. We denote association by u = v.

Note that in the case a € C*([0,T), H*), then a represents itself and the same holds
for the corresponding solution u € C*([0,T), H*) so in this case we automatically
have compatibility between the two solutions.

2.5 Colombeau algebra
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We are usually able to prove |u — u||;2 — 0, ¢ — 0, for every t € [0,T) (the
"L?-association") from which it follows [(u.):] ~ u. This motivates the following
definition.

Definition 2.5.13. We say that there is compatibility between a classical (Sobolev)
solution and the Colombeau solution of

iug + Au+ g(u) =0
u(0) =a

if supjo 1y [[ue — ul 2 — 0 as e — 0, where u. € Ecn 2 is a solution of

i(ue)t + Aue + g(ue) =0
ue(0) = a * pe.

Looking outside the context of equivalence classes, the tools we derive - primarily
estimates - can be of use for discussing different types of convergences. For example,
there is no well- posedness theory for (1.2), but analyzing the net of solutions can
give insight in that direction.

Uniqueness in the Colombeau algebra also differs from the usual notion. It is
possible that different representatives u. + n. solve the regularized equation, but in
the limiting case, they all converge to the same limit - if they do converge, that is if
there is compatibility.

Generally, there are several papers showing instability or non-uniqueness in some
distributional spaces, e.g. [CCT03], [Chr05], [HW82]. This indicates uniqueness is
a potential problem when observing singular solutions and is one more reason to
stress the importance of compatibility.
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3.1

Semilinear Schodinger
equation

In this section we describe the theory of a general semilinear Schrodinger equation,
namely

@1

based on [Caz03]. The regularized equations we consider are of type (3.1), so the
theory we present in this chapter serves as a starting point for later results. Also,
the tools used in the classical theory are useful for our analysis in the Colombeau
algebra, too. The space dimension in this chapter is arbitrary n € N unless stated
otherwise.

The evolution operator

We start with some properties of the Laplacian operator A = A. It is well - known
that A : C°(R") C L*(R") — L?*(R") is a densely defined symmetric operator.
Namely

(Au,v)2 = (u, Av)2, Vu,v € C§°(R"),

from which it follows that (Au,u)s is real. On the other hand, if we observe
A: H? C L? — L?, we obtain a bounded operator:

[Aul| g2 < [lull g2
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The scalar product (, ), is continuous on L? x L2, but also on H? x H? since u, — u
in H? implies u,, — v in L? and this further implies (uy,, v,)2 — (u,v)s in C. Further
since Cg° is dense in H? we have

(Au,v)s = (Alim uy, limvy,)2 = (im Auy,, limv,)s = im(Auy,, v,)2

= lim(uy,, Avy)2 = (u, Av)e, Yu,v € H>.

So for u € H? we have that (Au,u) is real. This fact is used in deriving energy
equalities.

We now focus on some approximation properties of dissipative operators, following
[CBH+98]. All of the following statements are proved in [CBH+98]. An unbounded
operator A : D(A) C X — X is dissipative if

lu = XAl = ul],

for all w € D(A) and all A > 0. An unbounded operator is m~dissipative if it is
dissipative and for all A > 0 and all f € X there exists u € D(A) such that

u— Au = f. (3.2)

From these definitions, « is the unique solution of (3.2), and in addition ||u| < || f]|-
Let Jy = (I — MA)~! so that u = J,f is the solution of (3.2). Finally, let A\ =

AJy = JA/\’I. If D(A) = X and A is m—dissipative, then Ayu — Au as A — 0 for all
u € D(A). We state a theorem relevant for our setting

Theorem 3.1.1. If X is a Hilbert space and A is densely defined self adjoint operator
in in X such that A <0 ((Au,u) <0 for all u € D(A)), then A is m—dissipative. If A
is skew—-adjoint (A* = —A), then A and — A are m—dissipative.

Now let us state different ways of defining the Schrodinger operator i/Au. Let
Y = L?(R") and B be a linear operator in Y such that

D(B) = {u e H'R"), AucY};
Bu=iAu, Yue€ D(B).

(3.3)

This operator B is skew—adjoint, B and — B are m~dissipative operators with dense
domains. Further, let X = H~1(R") and given u € X let ¢, € H! be the solution of
—Ap, + ¢, =uin X. Then X can be equipped with the scalar product

(u, )1 = (Pu, o) 1 = /Rn(v%@u -V, + oupy)dz.
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Now an operator A on X defined in the following way

D(A) = H;
Au =ilAu, Yu € D(A),

3.4

enjoys the same properties as B: A is skew-adjoint and A and — A are dissipative
with dense domains.

We now aim to connect this with the notion of a propagator (the evolution operator)
T (t). First we state some definitions regarding the exponential operator e. Let
X be a Banach space and A € £(X). By ¢4 we denote the sum of the series
> a0 mA™. The series is convergent in the norm of £(X) and if A and B commute,
then eA*t8 = e4eB. Further, for a fixed operator A, the function ¢ — ' belongs to
C*(R, L(X)) and there holds

d
aetA:A_etA

for all ¢ € R. Moreover, the following result holds

Theorem 3.1.2. Let A € L(X). Forall T > 0 and all x € X, there exists a unique
solution u € C*([0,T], X) of the problem:

The solution is given by u(t) = et4a, for all t € [0, T].

Let A be an m~—dissipative operator on X - a Banach space and J), A, be as before.
Set Tx(t) = et t > 0.

Theorem 3.1.3. For all x € X the sequence uy(t) = Tx(t)x converges uniformly
on bounded intervals of [0,T] to a function u € C((0,00),X) as A — 0. We set
T (t)x = u(t) forall z € X and t > 0. Then,

T(t) € £(X) and |[T(®)] <1, Vt>0,
T(0) =1,
T(t+s)=TOT(), Vs t>0.
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In addition, for all x € D(A), u(t) = T (t)z is the unique solution of the problem

and u € C ([0, 00), D(A))NCL([0,0), X). Finally, T (t)Az = AT (t)x, Vo € D(A), t >
0.

We can now also discuss the notion of a one—parameter family (7 (¢)):>0 C £(X).
This family is called a contraction semigroup if

TN <1, V=0,

* T0) =1,

 T(t+s) =TT, Vs.t>0.

e for all z € X, the function ¢ — 7 (¢)z belongs to C([0, c0), X).

The generator of (7 (t)):>o is the linear operator A defined by

t —
D(A) = {z € X; T()iw has a limit in X as h — 0},
and Tt
Az = lim M
h—0 h

We now paraphrase the Hille-Yosida—Phillips theorem ([CBH+98, Theorem 3.4.4.]).

Theorem 3.1.4. If (T (t)):>0 is a contraction semigroup, then its generator A is m—
dissipative and D(A) is dense in X. Conversely, if A is an m~dissipative with dense
domain and (7 (t)):>0 is the semigroup corresponding to A given by Theorem 3.1.3,

then its generator is exactly A.

The family (7(¢)):er is called an isometry group in X if

T (@®)x| = ||=||, VteR,Vxe X,

C TO)=1,

s T(t+s)=T@)T(t), Vs, t>0.

* for all z € X, the function ¢ — 7 (¢)x belongs to C(R, X).

The following theorem holds
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Theorem 3.1.5. Let A be an m~dissipative operator with dense domain, and let
(7 (t))¢>0 be the contraction semigroup generated by A. Then (T (t)):>o is the restriction
to R, of an isometry group if and only if — A is m~dissipative.

To summarize, let us apply this theory to the Schrédinger operators (3.3) and (3.4).

Let (S(t))ier and (7 (t))ier be the isometry groups generated by B and A defined
by (3.3) and (3.4). Keeping the same notation, there holds

Styp=T(t)p, VteR, VpeY.
The following theorem holds
Theorem 3.1.6. Let p € H' and let u(t) = T (t)y. Then u is the unique solution to

the problem

tug + Au =0,
u(0) = ¢
and u € C(R,H) N CYR,H™ Y. If Ap € L? then u € C*(R,L?) and Au €
C(R, L?).

All of the above holds in the case of a general domain 2 C R", but when we
have specifically R™, then we can derive additional properties and explicitly express
(T (t))ter in Fourier variables. The following theorem holds.

Theorem 3.1.7. Let p € [2,00], 1/p+1/p' =1 and t > 0. Then T (t) can be extended
to an operator belonging to L(L* , L?) and

1T @) ellp < @rlt) ™ ||p|ly, forall g € L (3.5)

Proof. Take the equation
iug + Au=0, u(0,z)=p(x), (3.6)
for ¢ in the Schwartz space S(R"). Then,

u(t),(€) = —il¢[Pu(t)(€) and

—

u(t)(€) = e M 5(¢).

3.1 The evolution operator
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It follows that

u(t) = [ e e ag

is a solution and because of the previous theorem there holds u(t) = T (t)p(x). We
can also write u(t) = K(t) x ¢ where

K(t) = FL (e~ ePr(g) = LB
(4mt)2
It follows .
Tt el < a ;
IT®plo < g el

for all t # 0 and € S(R™). Thus, one can extend 7 (¢) to an operator in £(L!, L),
such that the above inequality holds for ¢ € L. Similarly, 7(¢) € £(L? L?) and
is unitary. The general case follows from the Riesz-Thorin convexity theorem
2.4.7. O

The operator 7 (t) is unitary on L?(R"), but also on H*(R"), s € R. It is a Fourier
multiplier and as such, commutes with other Fourier multipliers, including constant
coefficient differential operators.

Finally, we wish to generalize Theorem 3.1.6 to the nonlinear case. The following

holds ([CBH+98, Section 4.3.1).

Theorem 3.1.8 (Duhamel’s formula). Let F' : X — X be a Lipschitz continuous
function on bounded subsets of X. If u is a solution of the problem

w e C([0,T], D(A)) nC*([0,T], X); (3.7)
u'(t) = Au(t) + F(u(t)) Vtel0,T]; (3.8)
u(0) = z, (3.9)
then
u(t) =T(t)x + /Ot T(t—s)F(u(s))ds, ¥tel0,T]. (3.10)

Conversely, if u satisfies (3.10) then (3.7) — (3.9) hold.

Let us now define the type of solution relevant for our setting, now following
[Caz03]. We consider distributive solutions of (3.1).

Definition 3.1.9. Let g € C(H', H™'), a € H' and I is an interval such that 0 € I.
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(i) Aweak H' solution u of (3.1) is a function
we L H)Y N Wb, H )

such that iuy + Au+ g(u) = 0in H™! for a.a. t € I and u(0) = a.

(ii) A strong H' solution u of (3.1) is a function
we C(I,HYNnCYI,H™Y)
such that iu; + Au+ g(u) = 0in H-! for all t € I and u(0) = a.
In the following we will deal with strong solutions. Note that
iug + Au+ g(u) = 0in H ' & (p,ius + Au+ g(u)) =0, Vo € HY,

so when v € H? and g(u),u; € L? the expression ju; + Au + g(u) is in L? and the
above becomes

/ (iug + Au+ g(u))p =0, Vo€ H' and Vt € I.

It follows iu; + Au+ g(u) = 0 for almost all z € R". So when we have a H? solution
in the sense of Definition 3.1.9, then we have that (3.1) holds point-wise on R".

Remark 3.1.10. The boundary condition u(t) — 0 as |x| — oo is usually a part of
defining a solution to the problem (3.1), but in our relevant case v € H? it holds since
it holds for all H? functions, see (2.3).

We can state the Duhamel’s formula specified for our setting and as in [Caz03].
Theorem 3.1.11 (Duhamel’s formula). Let I be an interval such that 0 € I, let
g € C(H',H Y and a € H'. If g is bounded on bounded sets and u € L>(I, H'),
then u is a weak H' solution of (3.1) on I if and only if

u(t) =T(t)a +i/0t T(t—s)g(u(s))dsforallt € I, foraa.tel. (3.11)

A function u € C(I, H') is a strong H" solution of (3.1) on I if and only if it satisfies
(8.11) forall t € I.

Note that

Tit=s)f(s) = [ e e fls ) )

3.1 The evolution operator



3.2

36

and the Fourier transform f(s, z) is in the = variable and s denotes the time vari-
able.

Strichartz estimates and uniqueness

We start by introducing the model nonlinearity g(u).

Definition 3.2.1. Let g(u) = —(Vu + ulu|? + (w * |u|?)u) for w € W?P, p > 2 and w
is even, V € C§°(R").

Definition 3.2.2. We say that a pair (q,r) is admissible if

n(% - %) and (3.12)

2n

2_

q

2<r<
_T_n—2

2<r<wifn=1,2<r<owxifn=2). (3.13)

Note that if (¢, r) is admissible, then 2 < g < co. Also, (o0, 2) is always admissible;

(2, -2%) is admissible for n < 3.

When dealing with the whole space R", Strichartz estimates are a very useful tool.
We now present them, as in [Caz03, Theorem 2.3.3.]

Theorem 3.2.3 (Strichartz’s estimates). The following properties hold
* For every ¢ € L*(R™), the function t — T (t)¢ belongs to
LY(R,L"(R™)) N C(R, L*(R™))
for every admissible pair (q,r). Furthermore, there exists a constant C such that

ITC)ellar,cry < Cllgllze, Vo € LAR™).

* Let I be an interval in R (bounded or not), J = I and ty € J. If (v, p) is an
admissible pair and f € LY (I, L” (R")), then for any admissible pair (q,r), the
function

t— O(t) = /tT(t —s)f(s)ds fortel

to

Chapter 3 Semilinear Schédinger equation



belongs to LY(I,L"(R™)) N C(J, L>(R™)). Moreover, there exists a constant C
independent of I such that

H(I)fHLq(LLT) < CHfHLv’(],Lp’) Vfe LW’(LLPl(Rn))'

Lemma 3.2.4. Let I > 0 be an interval. Let 1 < a; < s; < oo and ¢; € L% (I), for
1 < j < k. If there exists a constant C' > 0 such that

k k
Sl < C Iesllze
Jj=1

Jj=1

for every interval J such that 0 € J C I, then ¢1 = --- = ¢, = 0 a.e. on I.

Theorem 3.2.5. Let g be as in Definition 3.2.1. If a € H' and w1, us are two weak H*
solutions of (3.1) on some interval I > 0, then uy = uo.

Proof. Let u,v € L®(I,HY) N W1°°(I, H~') be two solutions of (3.1) and let us
assume that [ is a bounded interval. By (3.11)

u(t) —o(t) = i/ot T(t—s)(g(u(s)) —g(v(s)))ds fora.a.tel.
Let us denote W (t) = u(t) — v(t) and f(¢t) = g(u) — g(v) so we can write
W(t) = z'/ot T(t—s)f(s)ds fora.a.tel.

Specifically, f is a sum of terms f;(t) = g;(u) — gj(v) where gi(u) = Vu, g2(u) =
(w * |u|?)u and g3(u) = u|u|>. Now we will show that

<Ol ) (3.14

5l 0y
for some admissible pairs (g;,;) and (v;, p;). It is not difficult to see that

I fill2 < C|W]l2

3.2 Strichartz estimates and uniqueness
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for 7 = 1. this also holds for j = 2 since

I (w  Juul*)u = (w * [0)vll2 = [(w * ul*)(w = ) + v w* ([ul* = [o*)]|2
S lwlsollu®[l1lw = wll2 + v - w s (lul = [o])(Jul + [v])l2

S Tlwllscllull3llu = vll2 + [loll2llwllso | (Jul = [o])(Jul + [v])]]2

< llu = vllz(lwllso(full3 + loll2(lullz + v]2))

= c(lwlloos llall) W ]]2-

Here Young’s inequality (2.8) was used, forr =2 =p,¢=1and | |z|—|y| |[< |z —y|.
Applying the L"i—norm in t we obtain (3.14) for Ti=rr=pp =05 =2, =7 =
and v} = ¢; = 1.

Regarding the cubic term, observe that

Juul* = vfv[*] = [u(ju| — o) (u] + [0]) + |v]*(u = v)|
< Jullu = v|(Jul + [o]) + [v]*|u = v] = |u — o[ (ju] + [v])*.

Using Holder inequality we obtain

1£51ls < llu = vlla(llulls + vlla)*

The norms ||ul|4 and ||v||4 are bounded by the H! norm: using (2.11) inequality for
j=0p=4r=g=2 m=1

b
lulla < (32 N10%ull2) lully™ < Hlullgpllull " = lullg
=1

where b = 1 forn = 2and b = 2 forn = 3. In return ||u| ;1 is bounded (in particular

by ¢(||a|| ;1) which we will see in the following section). So H' — L* and |I| < oo
imply that (3. 14) holds for j = 3 also, and here p; = v} = 3, pj =r; =4, ¢; =, =

8 G == . Now we apply Strichartz estimates to W (t) = > Wj. First, there
holds
S T <
IWillsur,my < Cllf5 2 and
; IWillzsi(r,omy < CHfjHL'y;(I )

for any admissible pair (s;,7;). Then

3
ZHWHH IL’”J)<ZHWIHL: I,L79) <CZHf]HL L) CjZIHWj”L%(LLW)
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3.3

for 1 <~} <s; < oo, since s; = &, ygzﬁforj:?)andsj:oo, v; = 1 for
j = 1,2. Now denoting
¢5(t) = [IWllLrs

the result follows from Lemma 3.2.4.

Well - posedness in Sobolev spaces

In this section we describe well - posedness of (3.1) in Sobolev spaces, mainly in H?
but also in the energy space H' and then H3. This theory is used in sections 4 and
5.

By local well-posedness we mean the following.

Definition 3.3.1. We say that the initial value problem is locally well-posed in H™,
m € N, if the following properties hold:

* A solution of (3.1) is unique in H™.

* For every a € H™, there exists a strong H™ solution of (3.1) defined on a
maximal interval (—Tonin, Tinaz) (@ "maximal" solution) with Tae = Tnasz(a) €
(0, 00] and Tynin = Tmin(a) € (0, cc].

* There is blowup alternative: if Tya, < oo, then lim; .1

max

[ = +o0
(respectively, if Tpin < 0o, then limy_,_7_. |u(t)||gm = +00).

Remark 3.3.2. In our work, we do not discuss continuous dependence of the solution
on initial data, so we do not include this notion in the definition of well-posedness.

Definition 3.3.3. If there is local well-posedness and additionally Ty,q: = Tinin = 00,
then we say that there is global well-posedness.

Theorem 3.3.4. Let g be as in Definition 3.2.1. For every a € H? there exist
Tonin, Tmaz > 0 and a unique, maximal solution

u € C((=Tmins Trmaz), H?) N CY((=Tymin, Tynaz)), L?) of (3.1). Furthermore, the
blowup alternative holds.

3.3 Well - posedness in Sobolev spaces
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Proof. Given M,T > 0 to be chosen later and I = (—7,T'), observe the space

E={uec L™, H)YnWhH(I, L*) nWhH (I, L");

u(0) = a, |[ul|poor,m1y + [[ullwree(r,r2) + llullwra,ry < M,

where (¢,7) = (%, 4) is admissible. This is a complete metric space, where the metric
is defined by
d(u,v) = [u = || peo(r, 51y + | — vl La(r,Lry.-
Let
P(u)(t) = T(t)a+ G(u)(?),
where

G(u)(t) =i [ Tt~ s)gluls))ds

Denote by g1(u) = Vu, g2(u) = (w * |u|*)u, g3(u) = ulul?. Like in the proof of
Theorem 3.2.5

191(u) = g1(v)ll2 < [V [oollu = v]l2
lg2(u) = g2(v)ll2 < e(fJwlloos [[ull2, [v]l2)]lw = vll2

lga(w) = ga(0)lls < e(llulla, [[v]|4)llw = vlla-

Using the same notation as before, p} = ph =2 =11 =1y = p; = po; py = 3, r3 =
p3 = 4. Further, if ||u|| ;n < M, then

1G(u)(®)ll2 < TE(M).
We now estimate % gj(u) in the following way
V)| < IVl
ot U - oo || Ut||2

0
| 5w Pyl S Nl el
2

o S Pl <l el

Let v(t) = G(u)(t). Then v satisfies

ivg + Av+g(u) =0, v(0)=0.
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It follows
[Av]l2 S [lvell2 + llg(w)][2-

Further,

—z—/Tt—s ds—z—/T u(t — s))ds

=iT(t)g(u(0)) -1 —iT(0)g(u(t)) -0+ u(t — s))ds

() 2 (gl
0
= T Og((0) + [ Tl = )5 o(us))ds.

By Strichartz estimates

t
| [ T = ) fs)dslomir,z) < el il oy

where (v, p) is an admissible pair. In our case above
0
[0tll oo (1,22 S lg(w(0))l]2 + |l / Tt = 5) 5, (g(u(s))dsll Lo (1 22)

<

o))l + 2 12 O,
and (v}, pj) = (00, 2) for j = 1,2 (and here we just apply the fact that 7 is unitary
on L?), (v4,p4) = (g%, 3) so that (v,p) = (£,4) is admissible. Combining all the

estimates

1G (W) ()| oo 1,2y S NVl 2o (r,02) + 1AV Loo(1,02) S T(E (M) + [|g(a)l| oo (1,2
+ lg(u)ll oo (r,2) + IV lloollwtl oo 1,2y + HwHOOHUH%OO(I,LQ)Hut”QLoo(I,L?))

2
el s

(I’
(3.15)

Note that here we used that the upper bound for ||v|| ;2 is essentially ||v]|2 + ||Av]|2.
This is due to

o0l = 3 N1€%0l2 < Do N1(1+€3) P02 < el (1+1€)dll2 = c(llv]la+]| Av]a)-

la|<2 la| <2 la| <2

3.3 Well - posedness in Sobolev spaces
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On the other hand

([ Ol "5 < (f a7 d) ¥ ([ ally = )™
S luell s, L4)\|U||%p(1,H1)

S Tluel g gy il iz 0y

where p = ¢ and (2, 4) is admissible. Returning to (3.15)

1D (w) (D)l gz < T(llall g2 + crllal g + coaM + caM* + s M)
< coT(lal g2 + llall g + M + M* + M?),

with ¢y independent of M and 7. Now choosing M = ||a|| = and T sufficiently small
we obtain

@] oo 1,2y < M. (3.16)
Repeating some of the arguments

Hgté STeolllall g + M + M+ M?)

Loo(I,L2)

and by Strichartz estimates, similarly as before

15,
Haﬁ’

o g5(u)

3
Sllglalla +>
) =1

/ /
La(1,Lr Li(1,L"3)

for (v;, p;) admissible. Specifically, (v;, p;) = (00,2) and (v}, pj) = (1,2) for j = 1,2
so that

0
Ha(vu)HLl(I,LQ) S TVl oo 1,2

((w [u)u) g2y S THUH%OO(I,LQ)HutH%OO(I,LQ)

@

and (74, p3) = (g2, 3) as before. Finally, choosing T possibly smaller,

12 oo 1,11y + 1P lwwoe(7,02) + 1R lwrar,ory < M

so that ® : £ — E. A similar, though simpler argument shows that & is a contraction
on F, so it has a unique fixed point on E. Moreover, by (3.16), u € L>(I, H?).
It can be shown that u € C(I, H?) N C(I,L?). By Theorem 3.2.5 uniqueness on
the whole space H? follows. We can now define a unique maximal solution (for
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Tinaz = sup{T'}). Since I depended on ||a||;;2, the blowup alternative can be shown
by contradiction. O

We present also local well — posedness in the energy space H'! and a theorem which
lays ground for the proof of global well — posedness. This theorem is a simplified
version of [Caz03, Theorem 3.3.5.] and [Caz03, Theorem 3.3.9.].

Theorem 3.3.5. Let g be as in Definition 3.2.1. For every M > 0 there exists T (M) > 0
with the following property: For every a € H' such that ||a| ;1 < M there exists a
weak H' solution u of (3.1) on I = (—T(M), T(M)). In addition,

vl poo 1,11y < 2M, (3.17)
[u(®)]l2 = llall2 (3.18)
H(u(t)) < H(a). (3.19)

If the solution is unique, then the solution is maximal, the blowup alternative holds
and H(u(t)) = H(a) for all t € (—Tmin, Trmaz)-

The notion of higher regularity is also important for this subject. For example,
if the initial data is a € H' there is a unique solution u € C((—=Tyin, Trnaz), H').

If we further assume that a« € H?, we know there is a maximal solution u €
C((-Tk

LT ), H?), but do the two solutions coincide? Since a H? solution is

also a H' solution and from uniqueness it follows that they surely coincide on the
smaller of the two intervals (—T}in, Trnaz), (—T0-;., Tk ), also (=TL. T ) C

min’ - max min’ - max

(=Tomin, Trmaz)- So the question becomes: is Tpap = T,4e @and Thin, = T ? In the
case relevant for our analysis the answer is affirmative. The following theorem is a

consequence of [Caz03, Theorem 5.3.1.] and [Caz03, Remark 5.3.3.].

Theorem 3.3.6. Let g be as in Definition 3.2.1 and a € H'. Let
u € C((=Tomin, Trnaz ), H') be the maximal solution of (3.1). If a € H? it follows that
u € C(( mm>Tmax)aH2)-

For the cubic case, higher regularity holds in H? also. The following theorem is a
consequence of [Caz03, Theorem 4.10.1.], [Caz03, Remark 4.10.3.] and [Caz03,
Theorem 5.4.1].

Theorem 3.3.7. Let n € {2,3}, g as in Definition 3.2.1 and a € H?*(R"). Let

u € C((=Tmin, Trnaz ), H*(R™)) be the maximal solution of (3.1). If a € H3(R"™), then
u € C(( mins Tmax)a HS(RTL))

3.3 Well - posedness in Sobolev spaces
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Proof. The crux of this theorem is to prove well — posedness in H> which is done
in [Caz03, Theorem 4.10.1.] for the case g(u) = u|u|?>. So we present a proof
with slight modifications because of the additional term Vu + (w * |u|?)u. Higher
regularity then follows in the same way as in the proof of [Caz03, Theorem 5.4.1].

Given M, T > 0 to be chosen later, let / = (—7,7") and
B = {ue LI, H* : ||ull o ms) < M}.

We define distance as
d(u,v) = |lu — vl peo(r,L2)

and with it F is a complete metric space. Consider now
t
B(u)() = T(a+i [ T(t = s)glu(s))ds.
0
with v € F and ¢ € I. We derive the following inequalities

[D(u) ()l gs < llallgs + Tllg(u)ll s
<lla|lgs + T(C(M)M + C1 M + CyM?)

where C1 = C1(||V]loo, |0V ||, |10°V||) and C(M) is as in [Caz03, Theorem
4.10.1.]. The third constant comes from ||(w * |u|?)u|| ;s and note that in order to
bound this term, it is enough to observe that

10%w * [u]*)0%ull2 < [10%W * |ul?|los]|0%ull2 < cllwlloo |0 (Jul*) 1107wl

for || < 2,|8] < 2. Now 0%(|u|?) is at most a sum of terms 9°ud®u which in the L
norm is bounded by ||u||%,, (using Hélder inequality). To conclude, Cy = Co(||w||so)-

Also,

[[(w s [u?Yu = (w s [o)olle < [[(w s [ul?) (u =) +v-w s (Ju* = [v]*)]2
S lwlloollu®l1llw = vlla + o w s (Ju] — [o])(Jul + [0])]|2
S llwlloollul3lu = vll2 + [[olllwllooll (ful = o) (Jul + [v])]|2
< cflu = vlla (wlloo(lJull + 0ll2(llullz + [v]l2)))
< 3c1 M2,

44 Chapter 3 Semilinear Schédinger equation



It follows

12(u)(t) — @(v) (1)l 2 < T(C(M) + C3 + 3e1M?) u — vl o7, 12)
S T(C(M) + Cl + C4M2)H’LL — UHLOO(I,LQ)

where C3 = ||V||s. So if M = 2[al|ys and T(C(M) + C; + C4M?) < i, then @
is a strict contraction on E. Uniqueness and other properties follow in a similar
manner. U

We now derive conservation of energy and charge for the H? solution and each
of the equations (1.1) — (1.3). Note that (3.18) and (3.19) hold for the weaker
case v € H', but we only prove them in the simpler case u« € H?, since then the
equality in (3.1) has sense in L?. To prove Theorem 3.3.5, approximate solutions
are needed.

Theorem 3.3.8. Let a € H?. For the cubic equation (1.1) there holds

lu@llz = lall 2. (3.20)
H(u(t)) = H(a), (3.21)

where H(u(t)) := 3 [gn |Vul?dz + % [gn |u|*dz denotes the Hamiltonian.

Proof. From Theorem 3.3.4, we know that there is a solution

u € C((—=Tmin, Trmaz ), H)NCY((=Thnin, Tnaz)), L?), so the equation (1.1) has sense
in L? so we can multiply by 7 and integrate over R” - in other words take the scalar
product by u in L?:

(tug, u)2 + (Au,u)g — (u|u]2,u)2 =0.

Now if we take the imaginary part, as we have seen before, because of symmetry of
A we have Im(Awu,u)y = 0. Also, (u|u|?,u)2 = [|u|* € R, and we obtain:

i((iut, u)y — (iug,u)) =0

21

1 .

5 ci((ug,u)2 + (u,ug)2) =0
10
§§||U||L2 =0,

3.3 Well - posedness in Sobolev spaces
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so (3.20) holds. Further, taking the scalar product of (1.1) with u; € L? and taking
the real part we obtain

;(z(ut,ut)g —i(ug, up)2) + %((Au,ut)g + (ug, Au)s)

[

= 5 ((ulul?, ue)2 + (ug, ulul?)2) = 0,

(/(mAthM) —/|u|2(uﬂt+ﬂut)) 0.

[\)

N |

Now, [u|?0;(|u|?) = 30;|u|* and the above is equivalent to

/(utAu+utAu - 5&/' 4= (3.22)

In order to obtain conservation of energy, we have to apply some density arguments.
Let now u,u; € C§°. There holds

O [out— 2 [ 2
o [ 170 = 5 [ 4, )

= /uaqtﬂaq + Up  Ugyt + -0 + Uz tUg,, + Uz, Uzt
= - /(utux1x1 +ﬁtux1:c1 + ...+ UtUyg,, z,, +ﬁtuwnxn)

— /(utAﬂ + U Au).

Here we used integration by parts. Further, this formula is equivalent to

/|Vu|2 :/|Vu(0)|2—/0t/(utAu—|—utAu). (3.23)

Let now u € H?, u; € L? and u,, € C§° such that (u,); € C§° and u,, — u in
H?, (up); — ug in L? for any t € (—Tynin, Trmaz)- Such a sequence is for example
un(t,z) = (pp(x) * u(t, x))&,(z) for a mollifier p, and a cut-off function &,,, see
[BrelO].

Then [ |Vu|? = lim, 0 [ |Vu,|? for any ¢ and also

/ (w ST + WD) = lim / (un)e N7 + Ty Aty since

/ () ANy — g AT = / AT (tn)s — 1g) + g (AT — AT

< [|ATnl2ll(un)e = uell2 + lJutll2l| Awn = Aullz = 0, n — oo

Since (3.23) holds for w,, it holds also for v and finally it is equivalent to

/(utAu + uAu) = / |Vul?.
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Returning to (3.22) we obtain

9 2 1 4\ _
oi(J19u+ 5 [1al') =0

and (3.21) holds. O

Theorem 3.3.9. Let a € H% V € C§°(R") be a real valued function and let

iug + Au = ulul* + Vu,

u(0) = a.
There holds
[ullzz = llal[ L2, (3.24)
H(u(t)) = H(a), (3.25)

where H(u(t)) = 5 Jpo [Vul® + 1 fpo [ul* + 5 [ V]ul®.

Proof. The proof is analogous to the proof of Theorem 3.3.8, noting that V|u|? is
real and V2 |u|? = 2 (V]u[?). O

Theorem 3.3.10. Let a € H?, w € W?P, p > 2 real valued and even and V € C§°.
0

Let

iug + Au = (w* [u>)u + Vau,

u(0) = a.
There holds
[ullzz = llallz2: (3.26)
H(u(t)) = H(a), (3.27)

where H(u(t)) = 5 Jgu [Vul> + 5 [ VIul® + 1 [ (w s [ul?)[ul®

Proof. Conservation of charge (3.26) holds in the same way as before, due to the
fact that (w * |u|?)|u|? is real. Let us take the L? scalar product with v, then the real
part and observe just the term with the Hartree nonlinearity (others are as before)

1 2\ (T -7 _ 1 SN
i/Rg(w*|u| ) (v + Tuy)de = g/Rs(w* |l )EM dx

3.3 Well - posedness in Sobolev spaces
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On the other hand
o [ s P )ludr = [ (o ) arlul? + s o) de
R3 ot ot
== [ (s TPy ul? + s Sl de
= [ (wlu?) |u|2 (1 5 ) dr = 0
0
92 O 2N 1270 — O 2y 2
:»/<w*|u|>at|u\ (ws gl ol = (s 5 fuf?)uda

:>/ w*|u! ] \2 2(%/ (w*\u|2)|u]2dx.

We used the fact that w is even to exchange the minus sign. Finally,

1 10 -
5/}}@(1{)*@] ) (vt + wuy)dx = 48t/ (w * |ul®)|u|*dx

and (3.27) follows. O

Conservation of charge and energy is used to prove global well-posedness. We use
ideas from [Caz03, Theorem 3.4.1.].

Theorem 3.3.11. Let g be as in Definition 3.2.1 and a € H'. There exists a global H'
solution of (3.1) on R satisfying (3.18) and (3.19).

Proof. Due to Theorem 3.3.5 there is a local solution. From conservation of energy,
the following bounds are derived

[1vult = 3 0°ul} < 2H(0)

laf=1

1 1
= [ Va4 [ViaP + 5 [wlaPla? + 5 [ lal*

1 1
< > lo%all3 + [Vlillall3 + 5 lwlloclal3llal3 + 5 lall1.
la|=1

Using (2.11) inequality for j =0, p=4, r=q¢=2, m =1

b b
lalls < (Y~ 0%all2)llally™" < flallf lall " = llal
=1
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where b = % forn=2and b = % for n = 3. So there holds

()| 1 = Vﬂhﬁb+ S [l0eull2

laf=1

1 1 1
< (llall3 + > 0%all3 + IVsollall3 + !\wlloolla||§+§!\a\l§21)2
oo|=1

1
< (4 Vsl + 5 (lwlloo + Dllallz)

= /Millall + Mallalld,

|

Let M = \/MlﬂaH + Ma||al|3;,., we see that ||a||;1 < M. From Theorem 3.3.5,
there is a H' solution on [0, 7(M)] such that T(M) is the same for any initial
condition whose H? norm is bounded with M. Based on Theorem 3.3.5 conser-
vation of energy also holds and so ||u(t)||z1 < M < oo on [0,T(M)]. Setting
a=u(T(M)) € H? we see that again, there exist a H' solution @ (with initial value
a on [0,7'(M)]) which again satisfies energy conservation. We define a function

ult) = u(t), tel0,T(M)],
a(t—T(M)), te|[T(M),2T(M)].

This function is a solution on [0, 27°(M)] and it is unique (due to Strichartz condi-
tions). Moreover,

[u(®)l2 = la(t = T(M))|2 = l|lall2 = lu(T(M)]l2 = [la]2,
H(u(t)) = H(u(t = T(M))) = H(a) = H(u(T(M)) = H(a),

fort € [T(M),2T(M)]. So newly defined u satisfies conservation of energy and
charge and also |[u(27'(M))||g: < M. Therefore this argument can be repeated
so that we obtain a solution on [0, c0) such that conservation of energy holds for
any ¢t > 0. Similar arguments holds for ¢ < 0 and we additionally conclude that
|u|| g < oo for any ¢ € R. O

Theorem 3.3.12. Let g be as in Definition 3.2.1. If a € H?, then there is a global
solution u € C(R, H?) which satisfies conservation of charge and energy.

Proof. The proof follows from Theorem 3.3.6. In other words conditions for higher
regularity hold and the H! and the H? solutions coincide on all R. O

Also as a consequence of Theorem 3.3.7 we have the following theorem.

3.3 Well - posedness in Sobolev spaces
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Theorem 3.3.13. Let g be as in Definition 3.2.1. If a € H? there is a global solution
u € C(R, H3) which satisfies conservation of charge and energy.
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4.1

Well - posedness of the cubic
equations in the Colombeau
algebra

In this chapter we present original results related to equations (1.1) and (1.2). The
term "well-posedness" in the title is used now for existence of a unique solution in
Gp2 o1 For (1.1) we are able to show compatibility with the Sobolev H? solution,
too.

The delta potential

Consider first the equation with the delta potential

iug + Au = ulul? + du,

4.1
u(0,z) = a(x), a € Gy2(R3).

This equation is a model for Bose-Einstein condensates (BEC) and d(z) describes a
localized external potential applied to the condensate. A lot of research is directed to
understand the interaction between its soliton solution and the delta-like impurity.
A soliton is a solitary wave (wave packet) solution, traveling unchanged in shape
with constant velocity and occurs due to cancellation of dispersive and nonlinear
effects. Here we turn to examining existence and uniqueness of a solution in the
Colombeau algebra. The question of compatibility in the sense of Definition 2.5.13
remains open. We do not have a candidate for any kind of classical solution of
4.1).

The estimates we derive in this section are applicable to the cubic equation (1.1), too,
so this is the reason we start with the equation with the potential. A representative
of ¢ is chosen such that the regularized version of (4.1) is

10iue + Aue = ug‘ua‘Q + . Ue, 4.2)

ue (0, ) = ae(x),
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where ¢;,_(z) is a strict delta net as in Section 2.5. Later on, one will see that we
have to take h. ~ (Ine~1)%/19, Let ¢ > 0. We have seen that conservation of charge
(3.24) and energy (3.25) hold, where now

1 1 1
Ha) = [ Valda+ 5 [ '+ [ onlafda.

It follows )
H(uc(t)) = H(a.) > 7/ Ve |?de
2 Jgr3

and

laf=1

e ()| g2 = wuen% 3 0ou 2

NI

1
< (lacllz + > 10%acll3 + lon.lloollacll3 + 5 llas3)
2

|laf=1

2 Looa (&
< (4 + lionlloo)llallr + 5 llallz)

< /(L + ch)all2 + Mallall, (4.3)

We have used inequality (2.11) with j =0,m=1,a=2,p=4,andr = ¢ =2.

Let us now show that the Definition 2.5.10 is independent of the representative
when g(u.) = uc|uc|? + ép. u. Let ve = u. + N., N € Nei g2. We have seen

i(va)t + Ave + ’1)5|U5|2 =M. + f(u£7 Na)y
where || M. |2 ~ eM for any ¢ € [0,T). Now for f(u., N.) we have:

f(ué‘v Na) = U£|Na‘2 + Na|ua|2 + N5|Na’2 + (Ua + Na)(ﬂaNa + UaNa) + QZ)tha) and
I1£ll2 S N2 uelle + lluell3 I Nellz 4 [Nl Z1Ne ll2 + Nl . lloo | Ve l2-

Noting that || N |lec < ||Nc||z72 (Sobolev embedding (2.3)) we have that each term
above is bounded by ™ for any ¢ € [0, T").

Let us now state the main theorem of this section.

Theorem 4.1.1. Let a € Gy such that there exists a representative a. which satisfies
the following:

lacllgs = O€™), and |ac||g = O(hs) forsome NeN, e =0 (4.4)

Chapter 4 Well - posedness of the cubic equations in the Colombeau algebra



where h. ~ (In 5_1)%. Then for any T' > 0 there exists a generalized solution
u € Ger g2([0,T) x R?) of (4.1).

Remark 4.1.2. For simplicity, we bound the norm of the initial condition with the
same h. used to regularize the delta function.

Proof. For each ¢ € (0,1) there exists a unique global solution u. € C(R, H?). This is
a consequence of Theorem 3.3.13. From conservation of charge ||u-(t)||2 = [|ac|2 ~
e~N for any t € [0,T). Also (4.3) holds which implies ||u(t)| g1 ~ ¢~V for some
N € N. It remains to obtain estimates for second order derivatives.

We first apply a second order derivative in z to the nonlinear part

O™ (T + pp.u) = > <g> ((8°u2)(8°a) + (0% pn. ) (0° Pue))
BLa

SWorm + Y 0P (ud)0 P + 0% (u) T
18l=1

+ O 0%+ Y 07y 0% Pue + 0% u..
18]=1

where |a| = 2. Note that

30‘1@ = 2u. 0%, + Z OPu. 0 Pu..
|Bl=1

In order to bound ||0%(ue|ue|? + ¢p. ue)|2 we essentially need to bound
[u20ue + u0"u0"ue + ¢ 0%ue + 0% dp 0Mue + 0%Pp e 2, (4.5)

where |y| = |3| = 1. The idea here will be to go from the L?-norm to L'¥—norm
using Holder and Gagliardo—Nirenberg inequalities. Then, by (3.5) we go to the
Lg—norm, which we bound (essentially) with ||a.|| g3 using Gronwall’s inequality
(Theorem 2.4.4).

The following estimates hold for any ¢ € [0, T'). Differentiating Duhamel’s formula
(3.11) twice and using (3.5) and Minkowski integral inequality (2.12)

t
o uclle <l0acle + ¢ [ 0% (wels)ucls) P+ n.0c(o) ) ads. 46)

4.1 The delta potential
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where |o| = 2. We can estimate each of the terms in (4.5) in the following way.
There holds

1
Ju20%uclla =( [ fuc|0"u )
Shucloloucllg

1
S 10l ) hu®) 0% el .

181=1

Here we used the Hélder inequality (2.7) for p = 5, ¢ = 2 and the Gagliardo-
Nirenberg inequality (2.11) for j = 0, m = 1, p = 10, r = 1—30, q=2,b= %.
Further,

e (9%ue) (07 ue) |12 Slluel6l10%ue0uel|5 S lluclle 0% ue 6]107ue 6

S( 5 loruettll) (X 1ovuctole) .

laf=1 laf=2

In the first line, Holder inequality was used for p = 3, ¢ = % first and then for
p = q = 2. In the second line, Gagliardo—Nirenberg inequality was used for ||u.||s
first, where j =0, m = 1, r = ¢ = 2, b = 1 and then for [|0°ul|s and |07 u.||¢ with
j=1,m=2p=6r=2% ¢=2b=13 Finally,

lus0%0n. |2 < 110%0n Nloclluellz,  11070n.07uell2 < 10°dn. llool| 07 ucll2,
6. 0%uell2 < [|0%ue|| 10| pn |[5-

In the last line, Hélder inequality was used for p = 2, ¢ = 3. The norms [|0%¢s_ |,

p € {00,5}, |a| < 2 are controlled by A" for some m. It remains to obtain bounds

for ||0"ue||10 and ||0“ucl| 10, |7| = 1, |a] = 2. Again we use Duhamel’s formula
3 3

(3.11), estimate (3.5) for p = &, p’ = 12 and the fact that 7 (t) commutes with &

107 el < O7(T (H)ac)| 10

Qe
t
+ c/o (t _18)2 |07 (ug(S)‘Ua(S)P + ¢h5u5(5)> HgdS’

107(T (Bae)lle < (Y- [10%(T ()ae)ll2)
=2

(SIS

1
IT@)aells < llacllm2
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where the Gagliardo-Nirenberg inequality (2.11) was used, j = 1, m = 2, p =

10/3, ¢ = r = 2, b = 4/5. Applying the Holder inequality and (2.11) again with

j=0,m=1p=5r=q=2,b= %, we derive the following inequalities

107 n vl 10 <[lacl|2]|0” ¢n.]|5,
1
1607t 10 <[[07uc|l2llpn. |5 < (2H (ac))?[|¢n. |5, and

107 uclue 20 <1070 s0]lue 3

i 9
<0 ucllo (2 10°ucllz) uell3

laf=1

9
<167 ue ()| 0 H () 0 a5
Gronwall’s inequality implies
Ha’YUEHLSO Scl(aey¢h5) : eXp(C2(aav¢h5)) 4.7)

where
2 1
c1(ae, ¢n.) = llacl| gz + 15 (|lac 2|07 dn. |5 + H(ae) 2[|¢n||5)

and
2 1 2
coae, pp.) = T5H(a:)10 ||ac|; -

Let f. = c1(ae, ¢n.) - exp(ca(ae, ¢n.)). Recall that

H(as) S (14 [[dn.lloo)llac iz + llall i
~ (14+hMh2 +ht < hl.

It follows
2 9 u
ca(ae, dn.) S hé -h2 =he
and
ci1(ae, on.) S hL', for some m € N.
Now

LY 5
[07ucllho S B (exp(h )" S (ne™P(exp((ne)™" S eV,

=

since h> = (Ine~!)11"5 . Finally,

sup || ue(t)||0 < ce™™, € — 0, for some N.
3

[0,T)

4.1 The delta potential
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Similarly
10%ue [ 10 < |O%(T (t)ae)| 0

t 1 N )
+0/ 5 110% (e () |ue (5)[* + ¢, us(s)) || wds and,
0 (t—s)5 7

< (X 10T 0a)ll) P IT0aclF < llacl s

|af=3

[0%(T (t)ac) |2

Now we have

0% (g(ue)) S (luel® + ¢n)0%ue + Y 0% (Juel* + ¢1.)0% Pue + (8%[ucl? + 0“0, ue
|Bl=1
and we need to bound the following terms

2 9
10%u - ul?|| 10 < [[0%ullx0 [[ue|E < 0%ull0 ( Y (10 ull2)10]|ue 3

la|=1

where we used Holder and Gagliardo—-Nirenberg inequality as before. Then

I6n. 0%l < 10%ull1o 6|15,
1% 61,07 ull1o < 0% 15107 el
10%nells0 < [10°6n. s luell>

107 ucd ueue]| 10 < fJuedue 51107 uell 10 < Jlue | Foll0ue | 10]|0%ue |10

a 32 120 97 8
< (3 10%ueo) el 107 12 07 o
la]=1

T 1
< (2 10" uel] o) ? e 13

laf=1

where for the last term we used Gagliardo—Nirenberg inequality (2.11) with p =
10, j =0, m=1,r=12%, ¢=2, b= 2. Finally,

t 1
10%ue|[10 < [|ac|| g +/ 5 110%uc| ez (ac, dn. )ds + ca(ac, o, ) and
3 0 (t _ 8)5 3
[0%ucllso < (lacllzs + ca(ac, én.))exples(ac, én.) - T), 4.8)

where ,
L =4
c3(ae, Pn.) = H(az)10 ||aclls + |[fn |5
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and .
1 = £
ca(ac, én.) = H(ac)z||0%n, |5 + llacll2l|0®dn. |5 + llacl|3 f2.

Denote by g. the expression on the right hand side of (4.8). It follows that g, < ce™V
for e — 0 and for some N, since

9
Ién.lls S A2 ~ ((Ine")T)3 <Ine™!, e =0
) 9 u
and we have again H(a:)10 ||ac||§ < hd =Ine L. Also ¢y < h™ for some m € N, so
we conclude

10%uell 10 S (67 + R (4.9)

Note that ||0%u,|| 10 and ||0%uc|| 10 are bounded on [0,7") (an assumption needed for
Gronwall’s inequality), since the Gagliardo—Nirenberg inequality implies
13

12 2
15 T
9% e o < (|§ jguaaugug) [uc||3® < oo for each t € [0, T).
ol=

The H3*-norm of the solution is bounded on bounded intervals in ¢ because the
global well-posedness holds. One can bound ||9%u.|| 10 similarly. Returning to (4.6)
we see that

3 1 1 20 6
sup 07l el + 9-2 ool + H(ao)boF e

)

+110°nlloollac]la + H(ae)2 0% pn.lloo + gl bn.l5,  (4.10)

sup [|0%u:(t)||a =O(e~Y), for some N. (4.11)
[0,7)

Returning to expressions g. and f., we see that the above estimate is exponential in
llal| g1 and || ¢n. ||% (raised to a power), and the other quantities are ||a.||gm, m < 3
and ||0%¢p_||p, @ < 2, and some p > 1; these quantities are multiplied and raised to
certain fractional powers.

Moderateness of supyg 7y [|Oyus(¢)||2 follows easily from (4.2), since from the Gagliardo-
Nirenberg inequality it follows that

e (8) Pue (£)]]2 < ([ Vue (£)]13-
Moreover,

ue € C([0,7), H*(R™)) nCL([0,T), L*(R")), € € (0,1),

4.1 The delta potential
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which completes the proof. O

We are able to show uniqueness for a special class of solutions.

Definition 4.1.3. Let u,v € G g2 be any two classes such that for each class there
exists a representative solving

10¢ue + Aue = ua’u8’2 + Qbhgua + N,
ue(0,2) = as(x) + ne(x)

(4.12)

where N, € N1 g2([0,T) x R™) and n. € Ng=2(R") (similarly for v). If it follows that
supyo,7) llue — vell2 = O(eM) for any M € N, we say that the solution is unique.

Note that from the existence proof we know that at least one u exists with such a
property (N; = n. = 0).

Theorem 4.1.4. If h, ~ In®In?c~!, where s = %, q = ﬁ and a € Gys(gs),

lac|| 73 ~ he, the solution is unique in the above sense.

Proof. Let u,v be as above and w. = u. — v.. Then w, solves

i(we)e + Awe :ug\ug]? — (ug—wg)(|u€|2—ugﬁg—wgﬁg+]w5|2) + ¢n we + Ne

we (0, z) = n:(x), (4.13)

where (n.). € Ngs(R™), (N:)e € Not g2([0, T) xR™). The first equation is simplified
to

i(wa)t + Awa - ’Uayzua + (Ua - we)(|ua|2 — UWe — UgWe + ’w5|2) + Ne — ¢h5 = 07

i(ws)t + Aw, = UEWE+ QU}E’UEP - 2u5’w5|2 - w§%+ wa‘w5|2 + ¢h5 — Ne.

Multiplying by ., integrating on R? and taking the imaginary part we obtain

1d
2dt /R jwel*de = T | (2Re(ucte)uewz — |we[*uctz — News ) da
< /R (2‘Usws‘2 + |Us||ws‘3 + |N5w5|> dx. (4.14)
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Furthermore, for arbitrary M € N

T
sup [l (03 <lne(w)13 + sup (lus(t)2 + e 8) o= D)l1c) [ lwe(®)3r
[0,7) [0,7) 0

+ sup [[we (8)[2]| N (@) ]l2,

sup [[we(8)[3 <e™ exp (sup (Jlue(0)Z% + lue () loollwe(®)] ) )- (4.15)

[0,T) [0,T)
The following estimates are needed for completing the proof. In order to bound
||ue|lco We aim to bound ||u.|| g2 by a function of the initial condition, since then
we can control ||u.||« by VIne~—! (otherwise, we can only control it by V). For
that we repeat the procedure of the existence proof. First we derive estimates for L2
and H! norm of u. the solution of (4.12) (we do not have classical conservation of
charge and energy, nevertheless, we use similar arguments). Multiplying (4.12) by
ug, integrating over R™ and taking the real part we obtain

10
20t

t
2 lel3 = flae + nells + Im | [ Newdods

|2 = Im/N T.dz

t
< flac +nello + [ [Nellalue

§h5+€M—|—€M-5_N<h5,

~

since u € G 2. Further, multiplying (4.12) by %, integrating over R™ and taking
the real part

oty [1VuePar+ 5 [lucltdz + 5 [ onluePas) < [ IN:] el
H(u(t)) < H(ae + ne) + [ Ne|2]|ue |2
< H(a: + ne) +eM  and

Z |07 uel|2 = 1/ |Vue|?2dx < \/H(u
[v|=1

1

S (14 10n loo)lae + nell 2 + llaz +nel[ip +eM)2
5
< (hPh2+hd)2 S k2.

~
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Using the same procedure as in the existence proof we obtain ||07u.| 10 < f} where
3

1
F2 ~ (lae + nell gz + lluell21107dn 5 + 107 uell2l|én. [l5) exp(( D 110%uel2) [[uel2)
la|=1

5 1
< (he + M 4+ hohEH2/5 L 2 p12/5Y exp(h2 he)
= (he + &M 4+ h22/5 4 p9110Y exp(h3/2) < 2910 exp(R2/?).

Further, || 0%u.||10 < gl where
3
1 1 7
9z ~ (lac +nel s + H(ue(8))2 107G lls + lucll2ll07dn|ls + llucll3 (£1)7):
N 9
exp(H (ue(t)) 10 ||ucll3 + [[on.|5))

5 17 17 1 3 19 9
< (he + h2hS + hohe + 2RI (exp h2)7/?) exp(hZhe + hE)
S (B2 4+ 320 (exp h22)7?) exp(2/P).

Also, estimating ||0®u,||2 as in the existence proof

)

3 i 1 20 £

Sup) 10%uello < llac + nellm2 + g2 (£2) 2 Jucll3 + H(ue)?(92) 5 [|uc]ls®
1
+110%Gn. lloollucll2 + H (ue) 2 10° dn.lloo + g2l 6n.l5 +T[SUP) [0 Nell2,  (4.16)
0,7
1 p1\3,5 25 1N, 5 | 53 514, 1% M

She+g:(f;)2hé +h2(g:)13h&® + hihe + hZh, + g-h +¢
3
2

5 102 6 (12 4 3 2
5 hE + hé ga(fa)2 + h526 (95)13 + ha +h52 +h‘55 9e - (417)

We can now use the Sobolev embedding [u.(t)[|2, < |lue(t)||%2. Choosing h. ~
In® In?e~! where s = ;= and ¢ = =15 and using the fact that In°In?c ! < In’¢~}, ¢ —
0 for s < 1, each term in (4.17) can be estimated by vIne—!. Thus,

e ()| g2 ~ Vine=1L. (4.18)

Returning to (4.15), it follows that for any M € N |jw.(t)|3 < ¢M, which completes
the proof. O
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4.2 The cubic Schrédinger equation

Now we study the cubic equation without potential

iug + Au = ulul?,

u(0) =a

(4.19)

in two and three space dimensions. There are many physical phenomena that are
connected with (4.19). In dimension three it represents dynamics of the interacting
Bose gas. Other applications are related to small amplitude gravity waves and
dynamics of quantum plasma. The equation also describes propagation of short
optical pulses in optical fibers, see [GKY90]. Its soliton solutions are referred to as
dark solitons, the expression coming from optics.

We list several estimates known for this equation which are useful for our analysis
and then focus on well - posedness in the Colombeau algebra.

From theorems 3.3.4 and 3.3.11 we see there is local and global well - posedness in
H?. Also, conservation of charge (3.20) and energy (3.21) holds.

In one dimension, for any s > 0 the norm ||u(¢)| s is uniformly bounded w.r.t. to
t € R. In two and three dimensions u(¢) € H® holds for every ¢ and there exists
T = T(||al| =) such that

[u(®)l[ms < Cllallms, te[0,T].

In [Bou98], it was shown that in 3D there is scattering and a uniform bound
|lu(t)||gs < Cexp(|la||gs), forallt>0, s>1. (4.20)

This paper was an extension of results form [GV85] and [LS78], based on the
Morawetz’ inequality.

In [Col+01] (inequality (3.25)), it was shown by a similar argument that global in
time solutions in 2D also satisfy a uniform bound

lu(t)||gs < clla||gs, forallt >0, s>1. (4.21)

4.2 The cubic Schrédinger equation
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We use Bourgain’s estimate (4.20) for the existence proof. But estimates from
Section 4.1 are needed for the uniqueness proof. From this section we can conclude
that if u is a solution of (4.19) and a € H?3, then it satisfies the following bound

lull > < pr (lallgrs lallm2, llallgs, explellall 1))

where py, is a function of fractional power k. This follows from relations (4.7), (4.8)
and (4.18) with (dropping the subscript ¢)

f = llall g2 exp(ellall ),

7
9= (lallgs + llall2f>) exp(erllal g1)-

Existence and uniqueness

From the previous section it follows that Definition 2.5.10 is independent of the
representative. The main theorem of this section is the following.

Theorem 4.2.1. Let n € {2,3}, T > 0, a € G2 (R"™) such that there exists a represen-
tative a. which satisfies the following:

lac| g2 < he (4.22)

where he ~ ¢ forn = 2and h. ~ Nlne! for n = 3, for some N € N. Then
there exists a solution u € Gen y2([0,T) x R™) of (4.19). If, additionally |lac| g3 ~
In® In? e, where s = %, q= i, the solution is unique in the sense of Definition 4.1.3.

Proof. Existence. Let us take the equation (4.19) written in the form of representa-
tives

i0ste + Aue — |usPue =0

ue(,0) = as(z)

(4.23)

As we have seen before, there exists a unique solution u. € C([0, 7], H*(R")) N
C([0,T), L*(R")) for every T > 0 and ¢. Estimates (4.20) and (4.21) together with
assumption (4.22) imply

sup [|0%ue () || p2rny = O(e™Y), € = 0,
>0
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for |a| < 2. Again boundedness of ||0,u-(t)||2 follows easily from (4.23). We can
conclude that u, represented by the net of functions (u.). belongs to the space
Ger p2([0,T) x R™) that solves the problem (4.19) in the sense of Definition 2.5.10.

Uniqueness. Let u,v € Go1 2([0,T) x R™), n € {2,3} be two solutions of (4.19)
with representatives u. and v, satisfying

i(ue)t + Aue = |u5|2u5 + ¢p us + Ne,

(4.24)
u:(0) = agz + ng,
for N. € N017H2, ne € Nye.
Let w. = u. — v.. Then w, solves:
i(we)s + Awe = (JuelPue = Jue = we*(ue = w2)) + N. =0, (4.25)

we(z,0) = ne(x),

where (n.). € Ngs(R"), (Ne)e € Nt y2([0,T)xR™). The first equation is simplified
to

i(we)t + Aw, — |u€|2u5 + (Us - we)(|us|2 — UeWe — UgWe + ”LU€|2) + N =0,

i(we)r + Awe = ugtTg + 2w5]u5]2 — 2u5]w€\2 — wguj + wg\w€|2 — N,

If we multiply (4.25) by w, integrate over R™ and take the imaginary part

1d

§£ ~/]R” |w8’2dl‘ = Im /]Rn <2Re(u8w75)u8w7£ - ’wa|2U5WE - Nawia) dx

< /R (2lutcrwe ? + fuelfwe * + | New|) do. (4.26)

Integration with respect to t gives

t
e <limel3 + | (2Ol lhee ()1 + e (B)llelle () o O3
+ NG 2 flw- ()2 ) dr
2 2 2 r 2

sup [[ui (013 <lnell3 + 2 sup (J[u-()]Z + Juc®llollw=(Olloe) [ llwo(t) Bdr
[0,1) [0,T) 0
+ sup o () 2| Ne o,

T)

)

sup lwe ()13 <e™ eXp([%u% (Ilua(t)llio + Hua(t)lloo\lwa(t)lloo)), (4.27)

) )
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for arbitrary M € N. The Sobolev inequality |uc(t)||cc < ||us(t)| 2 holds. But,
estimates (4.20) and (4.21) can not be directly used bellow, since equation (4.24)
is not homogeneous. These bounds are derived in Theorem 4.1.4 (relation (4.16))
and the difference now is that the terms with ¢;_ are missing. Condition for
h. can now be relaxed to h. ~ In®*In?e~!, where s = %, q = i which implies

lue(t)|| g2 ~ Vine=l.

Applying Gronwall’s inequality (2.4.3) to (4.27) we obtain

sup ||lwe(t)|]2 = O(EM), &—0, forany M €N, (4.28)
0<t<T
implying that the solution is unique in the sense of Definition 4.1.3. O

Compatibility with the classical solution

We now prove that there is compatibility between the Sobolev H? solution and the
Colombeau solution of (4.19) in the sense of Definition 2.5.13. Let ¢. be a mollifier
as defined in Section 2.5. The following holds

Theorem 4.2.2. Let u be the classical H? solution of the cubic Schrédinger equation
in n € {2,3} dimensions:

iug + Au—|uPu=0 on R"x (0,00)
u(0) = a,

for a € H3(R™). Let T > 0. The solution u. to the equation (4.23) with initial data
as = a * ¢ converges to u in the L?>(R") norm for every t < T.

Proof. Since

105 (@ * de)ll2 = 07 a + d:l2 < (|07 all2l el = 1|07 alls

for |a| < 3, uniformly with respect to e, we obtain condition (4.22). It fol-
lows that the regularized initial data give rise to a unique solution in the space
gcl7H2([0,T) X Rn).
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Let v. = u — u.. Then u € H? implies that ||u(t)|| is finite, and u. € H? for each
e > 0 gives, based on (4.20),

[0 (D)oo < [[u(®)lloo + lue(@lloo < €1+ [luc(®)]| 12

< e+ exp(|la* ¢e|| g2) < c1 + ca,

Also,

[\

[02v()ll2 < 10Fu®)[l2 + [|0Juc()]]2 < ¢, 7] <
Further, v, satisfies

i0pwe + Ave — (JulPu — |u — ve|*(u — v.)) = 0,

ve(2,0) = a(x) — a * p-(x).
Like in the uniqueness proof, one can see that
lv-(D)113 < lla — ax 3 exp((Ju(®)% + lu®)llollve(t)]l0)T).

Therefore,
[ve()]5 < Clla — a* ¢ell5 =0, &—0.

This completes the proof. O]

4.2 The cubic Schrédinger equation
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5.1

The Hartree equation

We observe now the Hartree equation with a delta potential:

iug + Au — (w * [u)®)u = du,

u(0) = a.

(5.1

We will study this equation in the Colombeau setting and then try to connect the
theory related to a different formulation of (5.1), namely

iy + DNgu = (w * [ul?)u,

u(0) =a

(5.2)

Here, —Au + du is understood as a singular perturbation of the negative Laplacian.

Let us describe shortly the related theory as in [GM18] and [MOS18].

Singular Laplacian and well - posedness in the
singular Sobolev space

Observe a one-parameter family of operators A,, a € (—o0, 00|, defined by

0
D(~0a) = (0 € L2E] 6 = 0n + 20y, 6, € HERD)
o+ Ar
(Lo + At = (=4 + Ao,
where A > 0 is an arbitrarily fixed constant and
_ e VA
ON@) = =

is the Green’s function for the Laplacian, that is, the distributional solution to
(=A + M\)Gy = 6 in D'(R3). Note that G, € L?(R?). The operator A, induces the
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Schrédinger propagator t — ¢ analogous to the usual propagator. The space

H? is exactly D(—A,) with the norm

[]lmz = (T = Aa)]2-
For arbitrary ¢ = ¢y + %G » € H? there holds
O
1] 2 = (| oAl a2

A function w is a solution of (5.2) if u € C(I, H2(R?)) for some interval I C R with
0 € I and the Duhamel’s formula

u(t) = e"aea i | 2 1 () () (5.3)
0

holds. Local and global well-posedness in H? is defined in the same way as for H?

spaces.

Higher regularity

We are interested in connecting the Colombeau solution of (5.1) and the singular
Sobolev solution of (5.2). In that purpose, we prove the following theorem.

Theorem 5.2.1. Let w € W2P(R3), p > 2 and w is even. The Cauchy problem (5.2)
is locally well-posed in the space

V ={u € H*R3),uis odd} ¢ H*(R?) N H2(R3)
and there is also global well — posedness.

Remark 5.2.2. This theorem is already known, only we present a different proof. Odd
functions are L?-orthogonal to spherically symmetric functions, and on such a space
the operator A\, is the same as A\, see [MOS18].

Proof. The proof is based on methods from [Caz03], similar to the ones in [MOS18],
but taking a different form in the usual Sobolev space.

Note that V is closed: if u,, € V converges to u in the H>~-norm, then it converges
also in the L>°-norm and for almost all  we have

u(—x) = nh_)ngo Up(—2x) = — nh_)nolo up(x) = —u(z).
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Hence u is odd and v € H?(R®) implying that u € V. As a closed subset of a
complete metric space H2(R?), V is itself complete. We will now use the fixed point
theorem on the space

Vi ={u e L*(-T,T,V): sup |lu(t)[[g2 <M},
te[-T,T)

d(u,v) = [[u = vl L2,

where T and M will be determined later. Note that on the intersection of spaces
H?*(R*) and H3(R?), the norms || - |52 and || - || 2 are equivalent and the charac-
terization of this space is that v € H?(R?) and u(0) = 0. The operator —/\, acts as
— A\ on the space of H?(R3) functions which vanish at zero.

From Duhamel’s formula we have:
1 (u)| gz < le™Pal gz + Tl (w * [ul*)ul 4

Since Aya = Aa for a € H> N H2, we have ¢*?eq = 2 a. Also, we will see that
(w * |u|*)u € H? and for u € V) there holds u(0) = 0, so ((w * |u|?)u)(0) = 0) and
et (w x [ul?)u = e (w * |u|?)u. It follows that

1@ (w2 < e all g2+ Tlle™ (w  ul*yul 42
< Mlallg + Tll(w * [ulull g2 < llallg + CiT|wllooflulze (5.4)
The term (w * |u|?)u is in H? for u € V); due to following inequalities:
102 ((w * [ul*)u)l2 S llw* (35 1ul*) ool lullz + 2lfw * (97 u]?) oo |07 ull
T ((w = u|®)u)lle S ||lw 71w ) |loo ||| 2 w 1w ) oo || O v |2
+lw * Jul oo |07l
S lwlloollullFr + 2llwlloollullzz + lwlloollulltz = cllwlloollullZ,

(5.5)

where |a| = 2 and |3| = 1. Note that WP C L, for p > 2. To prove that ® is a
contraction observe

1@ (u) = 2(v) |2 < CaT llu = vll2(lwlloo([[ul3 + Ioll2(llull2 + v]l2))),

where estimates are derived as in proof of Theorem 3.3.7. Choosing M = 2||a|| g2
and T = 1 (max{C, CQ}MZHU)HOO)_I we have first from (5.4)

1

M 1
d Ry A S
1P [m= < 5 + 4 M2C1||w oo

NwlleeM? < M

5.2 Higher regularity 69



70

: 1 1
for |ju|| s < M, since max(CT.oaT < o Further,

1 3
[@(u) = @(v)ll2 < Ca - lu = vll2 - wllee3M? = 2l —vll2,
oo

4Cy M?||w||

so that ® is a contraction. To conclude that ® : Vj; — Vs we need to show that
®(u) is odd. Returning to Duhamel’s formula, we have that

. t .
®(u) = ePa — 1/ 38 (w x [ul?)u ds. (5.6)
0
Firstly, e"*®a is odd:
(eima)(—x) _ /R3 efit|£\2ex£&(§)d§ = /R3 e*it\fh@ix&@(_&)d& = _(eima)(:z:).

We used a substitution £ = —¢&; and the fact that a is also odd:
i) = [ ea(w)dr = [ e a(—y)dy = —a(6),
R3 R3
since a is odd. Similarly,

I e = [ e IR (e upu) )

Now, we prove that (w*/]u\P)u is odd. By the convolution theorem
(w [ul?)u) = w * [u]? *
As before, we see that 4 is odd, since v is odd. On the other hand, w/*m2 is even:

and this is a product of two even functions since |u|? is even. Finally, convolution of
an odd and an even function is odd:

(Fra)a) = [ fma=wawdy = [ f(=a+s)g(=s)ds
== [ fa = s)g(s)ds = (1 = 9)(a).

where f is odd and g is even. Since both terms in (5.6) are odd, we conclude that ®
is odd.
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5.3

Uniqueness on the whole space V' follows from Theorem 3.2.5 in the following
manner. Suppose there is another solution v of (5.2). Since A,v = Aw, for
v € H?(R?) N H2(R?) (and also for ), both u and v are also H! solutions of

iug + Au = (w* [ul*)u,

u(0,z) = a(x),

and conditions of Theorem 3.2.5 are fulfilled. It follows that u = v.

As in Theorem 3.3.4, we can extend such a solution over a maximal time interval for
which the blow-up alternative holds. Also, Theorem 3.3.11 holds and there is global
well-posedness. 0

Maximal time interval

Now we know that if a € H2, then there is a unique solution in H2 on a maximal
interval (7, T™). If additionally, a € V there is a unique solution in V' on a maximal
interval (T, T3). Since a solution in V is a H2(R?) solution, we see that (Ty,T,) C
(T, T*). But furthermore, since on the intersection of spaces, there holds:

[w(®) | g2 ~ lu(®)]| gz — oo, fort — T,

it follows that 75 = T* and similarly, 7} = T.

(If we assume that T, < T™ it would follow

lu@l 2 = [[u®) |52 = o0, t = T,

which is a contradiction with the blowup of ||lu(t)|| 52 at T*.)
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5.4 Hartree equation in the Colombeau algebra

Return now to the original equation (5.1). Let us again confirm that if « is a solution
in the sense of Definition 2.5.10, that is if (2.17) holds for some wu,, then it holds for
all representatives of the class u = [u.]: let v. = u. + N, No € N g2, then

i(ve) + Ave — (w * |U€|2)1)5 — ¢eve = i(us)t + Aue — (w * |u€|2)u5 — Qe
+i(No)t + ANz — ¢-Nz — ((w * [ue|*) Nz + (w * (|Ne|* + ueNe + NoTe)) (ue + N2))
= ME + i(Na)t + ANE - ¢ENE - g(w,ua, NE)7

where [[M||2 ~ &V, for any t € [0,T). Now since N. € Ngi 2, it follows
|li(N2)¢ + AN 2 ~ eM for any t € [0, 7). Furthermore,

19=Nell 2 < lldelloolNellzz < Nl [ Nell 2 ~ ™.
For g(w, u., N:) we have the following bounds

1(w # Jue*)Nell 2 < Hwllooluel|Z2 | Nell 2 ~ €™,

1(w # [Ne)ell 2 < Hwlloo || Ne 2 l|uel 2 ~ €™,
NN M

[[(w s ueNe)uell 2 < Jlwlloo || Nell 2 el 2]l uel 2 ~ €™,
and completely analogously for the remaining terms. Finally,

ve(0) = ue(0) + Nz(0) = az + ne + No(0) = a. + NS1

where N! € Nyp.

5.4.1 Existence and uniqueness

We consider regularized version of (5.1):

i(ue)t + Aue — (w * |u5|2)u€ = Pp.Ue (5.7)
u:(0,7) = ac(z), (5.8)

where h. > 0 will be determined later and w € W?2P(R3) c L*(R3) (due to
the Sobolev embedding) and a. € £x2(R3). We have seen in Section 3.3 that
conservation of energy and charge holds, that is

[ue(®)ll2 = llacll2
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and

1 2 1 2 2 1 2,
5/]1{3 | V| d:z:—l—Z/Rg(w*\ua\ )|uel dac+§/R3 On, |ue|“de = H(a.),

where

1 1 1
) =5 [ Valdes ;[ wlal®lafdo+ 5 [ onlacfde,

Also, using Young’s inequality

1
|ue(®)[| g1 < [lacllr2 +/2H (ac) < [lacl[z2 + \/CIIasII%z + §||w||oo||ae\|%-
It follows that

lue@llm < lacllze + eillaclpz /1 + callac|F.- (5.9)

Moreover,
H(a.) < C(”%H%{? + HCLSHZ}{?)

> 10%u(t)ll2 < e/ H(ac).

laf=1

and

The following theorem holds.

Theorem 5.4.1. Let a € Gy be of ln%—type. Then for any T' > 0 there exists a unique
solution u € Gen g2([0,T) x R?) of (5.1).

Proof. We know that for each ¢ > 0 there exists a unique solution
u. € CO([0,T), H*(R3)) n C([0,T), L?), for any T > 0. We need to prove that

SUP<fe ||ue ()] g2 = O(E_N) and supg<;p |Opus(t) |2 = O(E_N) for some N € N.

We know that ||u.(t)||2 = |lac||]2 < Che. Then using that h, ~ (lnefl)% it follows
lue(t)||2 < Ce=™ for any Ny € N.

Using derived estimates we have that H (a.) < c(lnsfl)%. Therefore
Yjajet 108uc(t) ]2 < c(ine™!)3 < e~z for any Ny € N.

5.4 Hartree equation in the Colombeau algebra
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Next we differentiate Duhamel’s formula twice in = and for |«| = 2 it follows that
foranyt e [0,T)

105 ue (B2 < (|07 acll2

t
+ D cas D %HUJIIoo/O 107 uc () 121107 ue (5)|2]10% P uc (s)|2ds

BLla 7<B

+ [ 105 6o s,

Therefore
t 2
[0%ucl]2 < |07 acll2 + ||wHoo/0 [|uel|3]]0%uc|2ds

t
£ 3 cas 3 epnllwloe [ 107 el 07207 P
Bl=1 <8 0

t t
+ 3 canllwlo [ 107 e a0 vel el ads + |05 (o) ods

<«

t t
< B0+ 3wl [ llac 3107 lods + 10n. o [ 10 ads.

where

t
E(t) = [[0%aclla +¢ Y Caﬁ”wHoo/ lacll2 |07 uell2 0% Tuc | 2ds

1B1=1 °
t t
H10°0n o [ Nuellads + 1 32 10" Ponllc [ 10%e(s)]ads.
181=1

Applying Gronwall’s inequality we obtain
10%uel|2 < ‘E‘(t)|6T(3Hw|‘00Ha€H§+”¢hsHOO) = c(e)|E(t)|.

Assumptions of the theorem imply that c(e) = e?GllwleclaclzHldnclloc) < ce=Ns for

some N3 € N. Next we use estimates (5.9) to derive bounds for |E(t)], that is we
obtain

[E@®)] < [10%ac]l2 + OTllacll2(llacllz + etllacl g2/1 + eallacl|F) + eThS + cThie™™=.

Hence there exists N € N such that ||0%u.(xz,t)|]2 < ce™V.
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It remains to estimate ||(uc)¢||2, but this follows directly from the equation and all
the estimates that we derived. Therefore u. € Ec1 2. Since also

s[u;;) lli(us)e + Due — (w * ]u€]2)u5 — Gpue|r2 = O(eM), VM €N
telo,

we proved that there exist a solution of (5.1).

Uniqueness. Suppose that there is another solution v € Go1 g2 and Vo = ue — ve.
Then h, satisfies the following equation, using v, = u. — Vg:

i(Ve)e + AVe = ue(w (Ve — uVe — Voiig)) + Ve(w * |ue — Vi) + ¢V + N.
Ve(0) = ne (5.10)

Multiplying by V., integrating over R? and taking the imaginary part we obtain

1d — — _
5 lIVeIB =t ([ V2w (VP2 = w2 = Vo)) + VLT
Sl VP oo | Vell2l VEllz + llw Vet oo 11| Ve l2 + [ Ne 12| Vellz
< wloo (IVelBllucll2Vallz + [VEIBlwl3) + [Nl V22,
that is
1d
S IVEIB < ellVlBluellal| Vella + luell3) + 1N o] Ve l2 (5.11)

Here we used Young’s inequality for r = oo, p = 1, ¢ = co. We know ||u|]2 =
llac|l2 < che < c(Ine~!)z, e — 0. On the other hand, v, satisfies

i(ve)t + Ave = (w * |v€|2)v€ + ¢eve + N,
UE(O) = Q¢ + Neg,

where || N.||;2 = O(eM), for any t € [0,T) and n. € Ny2. Multiplying by v.,
integrating on R? and taking the imaginary part we obtain:

d
—lvell < [IN[l2]lve |-
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5.4.2
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Integrating in ¢t we obtain

t
ol < llae +mellz+ [ [Nelalfos)ads

< [lacll2 + lInell + T S[up) [ve (®)[|2]| Ne(®)[l2 < he + ™ < 2h,
te[0,T

= [|velle < evhe < c(lns_l)%, e — 0,

|
™

since ||v|l2 ~ e (because v is a Colombeau solution) and ||ve||2| Ne|l2 =
eMi ~ M for any M € N.
Integrating (5.11) in ¢ and using Gronwall inequality we obtain

t
IVll3 < (lInell3 + 7" sup HNaHQHVaHz)Jr/ clne™!|[Va(r)|3dr
0<t<T 0

IVl < (Inell3 +T sup ||N|[2]|Vell2)exp(TIne™")
0<t<T

from which it follows

sup ||[Vzll2 = O(sM), € — 0, forany M € N (5.12)
0<t<T

which completes the proof. O

Compatibility

Given the Cauchy problem (5.2) for a € V = {u € H?(R?), u is odd}, we know from

Section 5.2 that there is a unique solution u € V. Since H?(R3) — Gp2(R3), for

such an initial condition there is a unique solution of (5.1) in G g2, also (this is

proved in detail in the sequel). This means there is a representative u. such that
i(ue)t 4+ Aue — (w * [ue)®)ue = dp, ue

(5.13)
u:(0) = a,

for some regularization a. of a. We now focus on proving that

sup e (t) = ult) ] = 0

)

This is not exactly compatibility in the sense of Definition 2.5.13, but both (5.13)
and (5.2) are equations used to solve (5.1) in a way, so it makes sense to examine
this type of convergence.
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x x

In this section, we choose an even mollifier ¢.. Note that ¢.(x) = X(%)s_%(g),

where we can choose an even function y with the desired properties and also an
even function p. This is because p can be constructed as an inverse Fourier transform
of an even function p, which is then also even. In Section 2.5 we have seen that p
should be 1 in a neighborhood of zero and in S(IR?), so it can be chosen to be even.

Recall that we can embed a to G2 by a — [(a * ¢:):] (Theorem 2.5.4). Now we
assert that a. = a * ¢, satisfies the appropriate growth conditions:

105 (@ de)ll2 = [|0za + dcl2 < (|07 all2lf:llr < |87 allz, (5.14)

which is a constant independent from ¢ since a € H2. We conclude that the
conditions of Theorem 5.4.1 are satisfied and u. gives rise to a unique solution in

90171{2.

We now show that u. is odd for each ¢ and thus u.(0) = 0 for each e. Firstly,
a. = a * ¢ is odd, as a convolution of an odd and an even function. Further, we can
repeat the fixed point argument from Section 5.2 on the space

W = {u. € H*(R3) : u.(—z) = —u.(x)},
for every . The key difference being in bounding the term ||¢,_uc|| z2:
105 dn. 0y el L2 <1105 Dne [loo |07 ue | 2

for a < 2. Norms ||0%¢},. ||~ are bounded by ||0$ ¢y, || pm (Sobolev embedding) for
some m and this is finite for each ¢ since ¢y,_ is smooth and compactly supported.
Also, since ¢y,_ is even, ¢j_u. is odd for u. odd, so the proof can be analogously
conducted.

Therefore we can formulate the following theorem.

Theorem 5.4.2. Let a € V and let u be the (fractional) Sobolev solution u € V of
(5.2). Let [(uz)s] € Gor g2([0,T) x R?) be the Colombeau solution of (5.1). Then

supo,r) [[ue(t) — u(t)|2 = 0.

Proof. First, note that problem (5.2) for a € H?(R?) N H2(R3) is equivalent to

iug + Au— (wx Juu =0

u(0,z) = a(x)

5.4 Hartree equation in the Colombeau algebra
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and u(0,t) = 0 = u-(0,t). Let V. = u. — u. Then V; satisfies:
(Vo) + AV = (w o |ue*)ue — (w * [u*)u + dpue

Like in the uniqueness proof,

t t
VI3 < lla — ax ¢c13 +0/0 VN3 (luell2lVell2 + Hung)der/o IVedn. uell1ds
(5.15)

Both u and wu. satisfy conservation of charge, so ||u.||2 = |lac||2 and ||VZ||2 < ||all2 +
|lac||2 < c independently of ¢ as we showed before. It remains to obtain bounds for
|| Vzpcue||1. We will show that

/3 |on. () (Veue)(s,x)|de — 0, & —0 foranyse[0,T), (5.16)
R
using the Lebesgue dominated convergence theorem. Then it will follow

[ 0nVets)ue(o)lads 0, <=0,

again using the dominated convergence theorem, but in ¢. The expression ||¢n, Ve (s)us(s)||1
converges to zero pointwise in ¢t and we will see later it is bounded by a constant for
¢ small enough and a constant is integrable on [0, ¢], ¢t <T.

Observe that

/]h p(zhs) l‘\/> Ve(z x)|dr = / lp(k)x( .

Ve e

Ve
R I <2/he
K K
< [ VG ) e
€ £
|k|<2vhe

Now we focus on proving that [p(x)Ve(7%)u(;-)| converges pointwise to zero, for
any t € [0,T). For this we need equicontinuity of u. in zero, so first we shall prove
the following (recall that u.(0) = 0 for each ¢):

Vo >036 >0Ve >0: |z| < = |us(z)| <. (5.17)
We argue by contradiction, suppose

36 >0Ve; > 030 >0: |z] < I Alug, ()| > 6.
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For such § and ¢, define 1(€) = ug, ((1 — £)z), £ € [0, 1]. Note here that for each ¢
the solution w, is actually in H> c C' since a. = a * ¢. € H? for each «:

10%(a * ¢e)ll2 = [la* 0%ell2 < [lall2[[0%¢ell1 < o0 Ve > 0.
Since

|1(0) = p(D)] = |ug| =6,

by the mean-value theorem there exists &y € (0, 1) such that |u/(§o, z)| > 0, for all
|z| < &1 (01 will be determined later). Also

/ |1 (o, z)|dz > / 6 = (201)%.
|| <81

‘:U|<51

On the other hand,

W ()] = [(Vue ) (1 = &)x) - (=2)] < [(Vue, ) (1 = &))| - |z].
It follows

1/2
4763
/ |M'(5,1‘)|dl‘§||vuso||2/ ez | < M| T foreach € € [0, 1].
|z|<d1 |z|<d1 5

Here we used that ||Vu.||2 is bounded by a constant M independent of £ which
follows from (5.9) and (5.14) - it is bounded by ||a.|| = and this in return is bounded
by a constant. Choosing é; = go—ﬂg we obtain

/| e wldr <O Ve 01738 € 0.1 [ Wl =c

a:|<51

which is a contradiction.

We can now use equicontinuity in zero (5.17) to prove pointwise convergence of
[Ve(7)us(45)] to zero. Let § > 0. There exists d; such that

K K 0

< _ — .

I <é = ug(hs) <2f0rany€>0
. K 2v/he 2 . .k
S —| < = lity |—| < 87 holds f 11 h
ince el = ‘\/E — 0, ¢ — 0, inequality he| = 1 holds for small enoug
¢. Further,

o 90

Vel =) = (o)l < 5 + 5

(3 €

5.4 Hartree equation in the Colombeau algebra
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because for /2 and small enough ¢, there holds u(;*) < J/2 because of continuity
of u € H?(R?) C C(R3) and u(0) = 0. Finally, for ¢ < £; and any « there holds

K K
— — . 1
Ve ()l < 0 (5.18)
We conclude that ]p(m)‘/g(hi)ug(hi)\ converges to zero pointwise. From (5.18) it
also follows that : )
K K
|p(R)Ve(:-)us(5-)| < clp(k)] € LY,
he™ ™" he

for e < 1, and any ¢ = ¢. By this, the conditions of the dominated convergence
theorem are satisfied and

K K
[ Ve di 0, = =0,
Ir|<2/Fz ) )

which implies (5.16).

Recall now that we need also for ||¢,_V-(s)u:(s)||1 to be bounded in s by a constant
independent of ¢ and it is since

K

lon Velshuel < [ lp()Va(

|k|<2v/he

Ju(lde < [ ()] -6 <e, e <en

Returning to (5.15), we have

t t
Jue = w3 < lla—ax 6ull3+C [ flue = ulds + [ o Vels)uels)s ds.

Applying Gronwall’s theorem 2.4.3 we obtain

T
lue — ull3 < (lla —a* |3 +/0 o Ve(s)ue(s)l1 ds) - exp(CT) =0, & =0,

for any ¢ € [0,7), which completes the proof. O
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Conclusion

This work is focused on three initial value problems. Existence and uniqueness
in the H2-based Colombeau algebra was shown. For the cubic equation (1.1),
compatibility with the Sobolev H? solution was shown. For the equation (1.2),
question of the convergence of the net of solutions remains open. Here, the solution
of the regularized equation gives rise to a solution in the Colombeau algebra. But,
the question of a more "classical" solution candidate is unanswered. For the Hartree
equation, we show that the net of solutions of the regularized equation converges to
the solution of the fractional equation (5.2).

We based our analysis on well-posedness results in Sobolev spaces, developed by
many authors and described in [Caz03]. We also used the more recent theory of
well-posedness in singular Sobolev spaces developed in [MOS18].

Important part of the thesis are estimates. For the cubic equations we derive an
estimate which is exponential in ||a|| 51 and of fractional power of ||al| gs.

The tools developed can be used for further analysis. For example, convergence
of the net of solutions can be examined in different spaces; variations of these
equations can be observed.
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Osaj Obpazay uunu cacmaeHu 0eo OO0KMOpcKe oucepmayuje, O0OHOCHO
00KMOPCKO2 YMEeMHUYKO2 npojekma Koju ce bpanu Ha Ynueepzumemy y Hosom
Caoy. llonyrwen Obpazay ykopuuumu uza mexcma OOKMOpPCKe oucepmayuje,
0OHOCHO OOKMOPCKO2 YMEMHUUKO2 NPOjeKmd.

[Iman TpeTMaHna nmojgaraka

Ha3ue npojexra/ucrpaxuBama

Henmneapna [llpenuarepoBa jeqHaYNHA ca CHHTYJIapUTETHMA

Ha3uB nHCTUTYIMje/MHCTHTYNMja Y OKBHPY KOjHX ce CIIPOBOIH MCTPA’KMBAHe

a) [IpuponHo — maremaTnuku dakynret, Y HuBep3urer y Hoom Cany
6)
B)

Ha3uB nporpama y oKBHPY KOT Ce peajiu3yje HCTPaKuBaHe

1. Onuc nogaraka

1.1 Bpcra cryaumje

Yxkpamko onucamu mun cmyouje y okeupy koje ce nooayu npuxkyneajy

Ilo1uTo je McTpakuBame UCK/bYYUBO TEOPHjCKOI KAPAKTEPA, HUje BPIIEHO HUKAKBO
NpUKYIJbame moaaTtaka. M3 Tor pasjiora ce octaTak ofpacua He 0IHOCH HA Hhera, Te je
N0JAPAa3yMEBAHM OAr0BOP Y CBAKOj pYOPUIIN: HHje BPIIEHO NPUKYILUbabe NOJATAKA.

1.2 Bpcre nogaTaka
a) KBAaHTUTATUBHU

0) KBaJIUTATUBHU

1.3. Haunn npukynsbama rnojaraka
a) aHKeTe, YIIUTHULHU, TECTOBU

0) KITMHIYKE TIPOIICHE, MEIUITUHCKH 3aIHCH, eIEKTPOHCKH 31PaBCTBEHH 3aITHCH

HartroHaHu opTail OTBOPEHe HayKe — Open.ac.rs



TIPABUJIHUK O CIIPOBOBEB Y II/IAT®OPME 34 OTBOPEHY HAYKY MUHUCTAPCTBA IIPOCBETE, HAYVKE U

TEXHOJIOLLKOI PA3BOJA HA YHUBEP3UTETY Y HOBOM CALY

B) TEHOTUIIOBH: HABECTH BPCTY
T') aJJMHHACTPATUBHU TOAIN: HABECTH BPCTY
1) Y30PIIN TKUBA: HABECTU BPCTY

1) caumim, GoTtorpaduje: HaBeCTH BPCTY

€) TeKCT, HABECTH BPCTY
) Mara, HaBeCTH BPCTY

3) OCTaJo: OMUCATH

1.3 ®opmart nomataka, yrmotpe0dJbeHe cKkalie, KOJIMIHHA To1aTaka

1.3.1 Ynorpebsperu codtBep u popMar gaToTeke:

a) Excel ¢ajn, natorexa
b) SPSS dajm, natoreka

¢) PDF ¢ajn, natoreka

d) Tekct ajn, naroreka

e) JPG dajn, naroreka

f) Ocraino, naroreka

1.3.2. Bpoj 3anmca (Ko KBaHTUTATUBHUX TTO/IaTaKa)

a) O6poj Bapujadu

0) Opoj Mepema (McUTaHuKa, MPOLIeHa, CHUMaKa U CJ1.)

1.3.3. [lonoBsbeHA MEpemba

a) 1a
0) He

YKOJIHKO je OArOBOp J1a, OATOBOPHUTH Ha ciiejieha nmuTama:

a) BPEMEHCKH pa3Mak U3MeJIjy TIOHOBJLEHHUX Mepa je

0) BapHjalIie Koje ce BUIIIe ITyTa Mepe OJJHOCE Ce Ha

B) HOBE Bepauje (ajioBa Koju caapike IOHOBJbEHA Meperha Cy IMEHOBaHE Kao
Hamomere:

YHUBEP3UTET Y HOBOM CAZlY — JOKYMEHTU, AHAJINTUKA U APXUBA - WWW.UNS.AC.RS




Ha nu popmamu u cogpmeep omozcyhasajy demerve u 0yeopouHy 6aruOHOC nodamaxa?
a) la
6) He

Axo je 002080p He, 0bpaznodcumu

2. lIpukynbame nogaTaKa

2.1 Meronosoryja 3a IpUKYIUbakhe/TeHepUCahE Mo1aTaKa

2.1.1. Y okBHpPY KOT UCTPa>KMBAYKOT HALIPTA CY MOJAIM MPUKYIIJHEHU?

a) eKCIIEPUMEHT, HABECTU THUIL

0) KOpETaroHO HCTPAKUBAHE, HABECTH THIT

I_I) aHajin3a TCKCTa, HaBCCTU THII

) OCTaj0, HAaBECTH IITa

2.1.2 Hasecmu epcme MepHux uHCmpymeHama uiy cmanoapoe no0amaxa cneyu@uunux 3a oopehemny
HAyuHy OUCYUNIUHRY (AKO nocmoje).

2.2 KBanurer momaraka u CTaHiapIu

2.2.1. Tperman HenocTajyhux mogaraka

a) /la mu matpuma caapxu HepocTajyhe momatke? Jla He

Axko je OATOBOP Aa, OATOBOPUTH HaA cne):[eha InrUTama:

a) Komnmkwu je 6poj mHeqocrajyhux momaraxa?
0) Ja mu ce KOpHCHUKY MaTpHIle Ipernopydyje 3aMeHa Henoctajyhux momaraka? Jla He
B) AKO je 0roBOp Ja, HABECTH CYreCTHje 3a TPETMaH 3aMeHe HeocTajyhnx mopaTaka

HaIII/IOHaJ'IHI/I IopTajl OTBOPEHE HAYKE — open.ac.rs
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2.2.2. Ha Koju Ha4MH je KOHTPOJIMCaH KBaJIUTEeT nojaraka? Onucatu

2.2.3. Ha koju HauuH je U3BpIICHA KOHTPOJIA YHOCA TIoJlaTaKa Y MaTpHILy?

3. Tperman nojaraka u npareha nokymeHTanmja

3.1. TperMaH u 4yBame MojaTaxa

3.1.1. llooayu he bumu denonosanu y Peno3umopujym.

3.1.2. URL aopeca

3.1.3. DOI

3.1.4. Jla mu he nooayu bumu y omeopenom npucmyny?

a) la
0) a, anu nocne embapea xoju he mpajamu 0o
8) He

Axo je 002060p He, Hagecmu pasio2

3.1.5. llooayu nehe bumu denonoganu y penosumopujym, aiu he bumu uysauu.

Obpasnooicerve

YHUBEP3UTET Y HOBOM CAZlY — JOKYMEHTU, AHAJINTUKA U APXUBA - WWW.UNS.AC.RS



3.2 Meranojaru 1 JOKyMEHTAIl{ja 1MoiaTaka

3.2.1. Koju crannmapp 3a meranonatke he outu npumemen?

3.2.1. HaBectu MeTamnoaTke Ha OCHOBY KOJUX CY IMOAIN ACIIOHOBAHHU Y PEIIO3UTOPH]YM.

AKo je nompebHo, nasecmu memooe Koje ce Kopucme 3a npey3umare nOOamakd, aHaiumudke u
npoyedypanne uHphopmayuje, puxo80 Koouparbe, OemaseHe Onuce eapujadiu, 3anuca umo.

3.3 Crparervja u cTaHAap/u 3a YyBambe MM0IaTaka

3.3.1. do xor neproxa he mogaru OWTH TyBaHU y PEMO3UTOPUjyMY?

3.3.2. Jla nmu he nogaum 6utu AenoHoBanu noj mudpom? la He

3.3.3. {a iu he mmdpa 6utn nocrynHa oapehenom kpyry uctpaxusaua? Jla He

3.3.4. la i1 ce momany MOpajy YKIOHUTH U3 OTBOPEHOT MPHUCTYIa MOCiie U3BECHOT BpeMeHa?
Ja He

O0pa3noxuTu

4. be30eaHOCT MOIATAKA U 3AIITHTA MOBEPbLUBUX HHPOpPMAaLHja

OBgaj onesbak MOPA OUTH MONYHECH aKO BalllM ITOIalM YKIJbYUYjy JIMYHE MMOJIATKE KOjU e OIHOCE Ha
YYECHUKE Y UCTpaXKUBamy. 3a Apyra UCTpaKuBama Tpeda Takole pa3MOTPUTH 3aIUTUTY U CUTYPHOCT
oJaTaKa.

HaIII/IOHaJ'IHI/I IopTajl OTBOPEHE HAYKE — open.ac.rs
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4.1 ®opmanHM CTaHAAPIH 38 CUTYPHOCT HH(OpMaIja/moiaTaka

HcTpakuBaun KOjU CIPOBO/IE UCIIMTHRAA C JbYTUMa MOPa]jy Jia ce MPUAPKaBajy 3aKOHA O 3aIlITHTH
roJiaTaka o JMYHOCTH (https://www.paragraf.rs/propisi/zakon_o_zastiti_podataka_o_licnosti.html) u
oarosapajyher HHCTUTYIIMOHAIHOT KOJIEKCA O aKaJJeMCKOM HHTEIPHUTETY.

4.1.2. Jla 1 je uCTpakuBame 0J00peHO 011 cTpaHe eTuuke komucuje? Jla He

Axo je ogrosop Jla, HaBeCTH JaTyM M Ha3UB €TUYKE KOMHUCH]E KOja je 0100pHiia NCTPaKHUBAE

4.1.2. Jla 1 nojaIy ykJjby4yjy JIMYHE MOJIATKE YUSCHUKA y ucTpakuBamy? Jla He

AKO je 0JIroBOp Ja, HABEJWTE Ha KOjU HAYMH CTE OCUTYpaIIU MIOBEPJFUBOCT U CUT'YpPHOCT MH(OpManyja
BE3aHMX 33 UCITUTAHUKE:

a) [Tonatu HUCY Y OTBOPEHOM MPUCTYITY
0) [lomatu cy aHOHUMHU3UpPaHU
1) Ocraio, HaBeCTH IITa

5. JocTynHoOCT mojgaTraka

5.1. llooayu he bumu
a) jagno docmynuu
0) docmynHu camo yckom Kpyey ucmpasxcusaia y oopeheroj nayynoj obnacmu

y) 3ameoperu

Axo cy nodayu 00CmynHU camo YCKOM Kpyey UCHPAdiCU8ayd, Hagecmu noo KOjum yCcio8uma Mozy od ux
Kopucme:

Axo cy nodayu 00CmynHu camo YCKOM Kpy2y UCHPAd*CU8Aya, Ha8ecmu Ha KOju Ha4uH MO2y
npucmynumuy nooayuma.

YHUBEP3UTET Y HOBOM CAZlY — JOKYMEHTU, AHAJINTUKA U APXUBA - WWW.UNS.AC.RS
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5.4. Hagecmu nuyenyy noo kojom he npuxynmenu nooayu Oumu apxueupani.

6. Yiiore u 0AroBOpPHOCT

6.1. Hasecmu ume u npe3ume u meji aopecy 61dcHuxa (aymopa) nooamaxd

6.2. Hasecmu ume u npesume u mejn aopecy ocobe Koja 00pacasa Mampuyy ¢ Ho0ayuma

6.3. Hasecmu ume u npesume u mejn aopecy ocobe koja omozyhyje npucmyn nooayuma oOpyaum
ucmpaxcusaiuma

Hauunonanuu noprail oTBOpeHe Hayke — open.ac.rs
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