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Sazetak

Sinteza govora na osnovu teksta je tehnologija koja omogucava raCunarima
pretvaranje pisanog teksta u ljudski govor. Pristupi sintezi govora mogu se podeliti u dve
grupe, konkatenativnhe i parametarske. Parametarski pristupi su popularni zbog
mogucnosti lak§e modifikacije generisanog govora, ali su donedavno bili inferiorni u
pogledu kvaliteta sintetizovanog glasa. Sa pojavom najnovijih metoda parametarske
sinteze (npr. WaveNet), ova razlika se ne samo smanjila, ve¢ su parametarske metode u
pogledu kvaliteta prevazi§le konkatenativne. U ovoj disertaciji ukratko su opisane dve
najpopularnije parametarske metode: sinteza govora na bazi skrivenih Markovljevih

modela i sinteza govora na osnovu dubokih neuronskih mreza.

Za prakticnu primenljivost odredenog sistema veoma je bitno da ne zahteva mnogo
ulaganja prilikom realizacije novog glasa ili stila. Donedavno se za realizaciju novog
glasa i/ili stila morala snimati potpuno nova govorna baza, ¢esto veéa od 10 casova
govora, 1 morao se uloziti dugotrajan rad na anotaciji te baze (fonetskoj i prozodijskoj). U
ovoj disertaciji su predstavljene metode koje mogu da generiSu novi glas ili stil koristeci
mnogo manju koli¢inu snimljenog materijala (¢ak i ispod jednog minuta). Jasno je da one
zahtevaju 1 mnogo manje rada, kako na snimanju novog govornika ili stila, tako i na

anotaciji.

Sve analizirane metode baziraju se na neuronskim mrezama i metodama poznatim
pod zajednickim nazivom adaptacija na govornika. Ove metode koriste pocetni model
obucen na jednom ili viSe govornika, uglavnom na vecoj koli¢ini materijala, koji se
potom dodatno obucava (adaptira) na novog govornika koriS¢enjem relativno male
koli¢ine materijala. Sli€ne tehnike su koriS¢ene jo§ na skrivenim Markovljevim
modelima, a eksperimenti izloZeni u ovoj tezi obuhvataju nekoliko metoda baziranih na
neuronskim mrezama. U tezi se predlaze nekoliko metoda i1 modela adaptacije.
Sprovedena su objektivna i subjektivna poredenja svih metoda, a zatim su predstavljeni
njihovi rezultati i izvuceni su odgovarajuci zakljucci. Takode su predlozeni i dalji pravei
istrazivanja koji se ticu efikasne i stabilne adaptacije na govornika 1 stil, u cilju brzog 1

isplativog generisanja novih glasova.
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Abstract

Text-to-speech synthesis is the technology which enables machines to convert written
text into human speech. Approaches to speech synthesis can be divided into two groups,
concatenative and parametric. Parametric approaches are popular because they provide
means of modifying generated speech, but until recently they have been inferior in terms
of synthesized voice quality. With the emergence of new approaches in parametric
synthesis (e.g. WaveNet), this gap has not only narrowed, but the situation reversed to the
advantage of parametric approaches. In this thesis the two most popular methods of
parametric synthesis have been described: speech synthesis based on hidden Markov

models and based on deep neural networks.

For practical application of a certain system it is very important that it does not
require a large effort for building of a new voice or style. Until recently, for these
purposes it was necessary to record a completely new speaker database for each new
voice and/or style, often containing more than 10 hours of speech data, and to invest
significant effort into the annotation of that database (phonetic and prosodic). This thesis
presents methods which can generate a new voice or style by using a much smaller
amount of recorded material (even less than one minute). Obviously, this requires a much

smaller effort both for the recording of the new speaker and the annotation.

All analyzed methods are based on neural networks and methods jointly known as
speaker adaptation. These methods use initial model trained on one or more speakers,
usually on large amounts of speech data, which is then additionally trained (adapted) on a
new speaker by using a relatively small amount of speech data. Similar techniques have
been used in the past with hidden Markov models, and in this thesis several methods

based on neural networks are examined.

Several methods and models of adaptation are proposed in this thesis. Both objective
and subjective comparisons of all the methods have been conducted, and the results have
been presented and discussed. Future research plans have been proposed, regarding
efficient and stable adaptation to a new speaker and/or style, for the purpose of fast and

cost-effective generation of new voices.
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ProSireni izvod na srpskom jeziku

Sinteza govora (engl. Text-to-Speech Synthesis - TTS) je tehnologija sa Sirokim spektrom
aplikacija. Koristi se za Citanje tekstualnog sadrzaja za slepe, u pozivnim centrima za prenos
razli¢itih informacija korisnicima ili ¢ak potpunu zamenu zivog agenta u odredenim
scenarijima. Sa porastom broja pametnih telefona ova tehnologija je pronasla svoje mesto u
raznim aplikacijama virtuelnih asistenata, kao i u navigacionim sistemima.

U sintezi govora trenutno dominiraju dva glavna pristupa: selekcija segmenata i
parametarska sinteza. Sintetizatori koji koriste selekciju segmenata (konkatenativni) pristup
biraju segmente govora iz velike baze govora i spajaju ith da bi generisali konacni niz.
Parametarski pristupi sintezi govora zasnivaju se na parametrizaciji govornog signala ¢iji je
tekstualni oblik poznat (faza analize) i razvoju modela koji moZe uspeSno da generiSe
parametre za dati tekst (faza sinteze). Do nedavno, ove metode su bile inferiorne u poredenju
sa selekcijom segmenata, ali su svoju primenu pronasli u mnogim aplikacijama zbog njihove
fleksibilnosti 1 moguénosti manipulacije osobinama generisanog govora. Sa nedavnim
razvojem neuralnih vokodera, ove metode ne samo da su sustigle selekciju segmenata, nego

su je ¢ak i nadmasile [3].

Tema i glavni doprinosi

Dva glavna zahteva koja bi sintetizovani govor trebalo da ispuni su razumljivost i
prirodnost [4]. U istrazivackoj zajednici postoji konsenzus da savremeni sistemi sinteze
govora postizu dobre rezultate po ovim kriterijumima, ali se ¢esto naglaSava da sintetizovani
glas zvu¢i previse monotono. Drugi problem je vezan za efikasno kreiranje novih govornika i
stilova. Naime, sa trenutnim pristupima, uklju¢ujuci parametarski, obicno je potrebno imati
nekoliko sati snimka novog govornika kako bi se proizvela sinteza visokog kvaliteta. Proces
izrade novog glasa ili stila zahteva snimanje novog govornika, ali i neki oblik
poluautomatske anotacije i pripreme baze podataka.

Glavni cilj ovog istrazivanja je da se ispita mogucnost izgradnje novih glasova
(govornika sa odgovaraju¢im stilovima), uz istovremeno znacajno smanjenje koli¢ine
potrebnog govornog materijala, a samim tim irada potrebnog za pripremu baze. Fokus ¢e biti
na koriS¢enju Dubokih neuronskih mreZza (engl. Deep Neural Network, DNN) kao trenutno

najnaprednijeg parametarskog pristupa. Svi pristupi ¢e biti testirani na bazi govora sa



relativno malom koli¢inom materijala za adaptaciju. Hipoteza koja treba da se testira je da li

primenom novih metoda na ograni¢enu koli¢inu novog govornog materijala mogu da se

dobiju rezultati visokog kvaliteta, koji se mogu uporediti sa onima dobijenim koriS¢enjem
velikih govornih baza.

Svi eksperimenti su radeni na americkiom engleskom, poSto su te audio baze bile
dostupne. Medutim, s obzirom da je ovo istrazivanje fokusirano na jezicki nezavisni deo
TTS-a, koji se uglavnom bavi generisanjem signala (tzv. back-end), moze se pretpostaviti da
su rezultati primenljivi na bilo koji jezik.

Glavni doprinosi istrazivanja predstavljenog u disertaciji su:

e Prilagodavanje otvorenog Merlin alata [5] za rad sa savremenijim okruZenjima
masinskog ucenja, kao $to su TensorFlow [6] i CNTK [7].

e Pravljenje novog glasa kretanjem od modela obucenog na velikoj bazi, uz naknadnu
adaptaciju na novog govornika za koji postoji mala koli¢ina materijala.

e Pravljenje multi-speaker TTS modela, koji je u stanju da generiSe govor velikog broja
spikera, istovremeno proizvodeci "prostor govornika" za sve govornike, koji bolje
odrazava slicnosti izmedu govornika (embedding space).

e Pravljenje novog glasa tako §to se pocne od modela sa viSe govornika, a koristi se veoma

mala koli¢ina novog audio materijala.

Pristupi sintezi govora

Kao sto je prikazano na slici 1, tipi¢an sistem sinteze govora sastoji se od dve
komponente: prednjeg i zadnjeg dela (engl. front-end and back-end). Front-end vrsi analizu
unetog teksta i izdvajanje informacija neophodnih za back-end modelovanje. To ukljucuje
normalizaciju teksta (npr. konvertovanje brojeva u rec¢i), odredivanje tipova rec¢i (npr.
imenica, glagol, pridev), prozodijska obelezja (npr. ToBI) i1 disambiguaciju homografa. U
ovoj disertaciji koriS¢ena su sledec¢a leksicka obelezja:
e Identitet trenutnog i susednih fonema (x1 and +2 kontekst).
e Pozicija leksickog naglaska.
e Pozicija fonema u odnosu na granicu sloga/reci/stope/fraze.
e Pozicija re¢i u odnou na granicu fraze.

¢ Broj fonema u slogu/stopi/reci.
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e Broj re¢iu frazi/recenici.
e Prozodijska obelezja zavisna od jezika (ToBI ili sli¢na).

Back-end komponenta prihvata rezultate analize iz front-enda i kombinuje ih sa
informacijama u govoru za potrebe modelovanja. Tokom procesa sinteze, back-end generise

izlazni govorni signal koriste¢i ulaz iz front-enda 1 obu€ene akusticke modele.

Front-End Back-End

Analiza Sinteza Govorni
Tekst - -
teksta govora signal

Normalizacija teksta Konstrukcija fonetskih modela
Odredivanje vrsta reci Konstrukcija prozodijskih modela
Predikcija prozodijskih obelezja Generisanje parametara
Disambiguacija homografa Generisanje signala

Slika 1: Standardna aritektura TTS sistema

Ostatak ove disertacije bice fokusiran na back-end komponentu i razli¢ite pristupe koji se

primenjuju za njeno modelovanje.

Sinteza putem selekcije segmenata

Ovaj pristup koristi uskladiStene instance govornih segmenata koje imaju razliCite
fonetske i prozodijske realizacije. Poznat je i kao konkatenativni TTS posto funkcioniSe
putem spajanja (konkatenacije) segmenata. Segmenti se skladiSte u bazi podataka, a zatim
povezuju u skladu sa definisanim pravilima i cenama. Odgovarajuci segment se bira iz baze
podataka na osnovu dva tipa cene — cene do ciljanog sadrzaja i cene konkatenacije.

Cena cilja (target cost) izrazava koliko su akusticka obeleZja segmenta iz baze podataka
sli¢ne Zeljenim obelezjima, poSto svaka digitalna obrada koja bi se koristila za priblizavanje
izabranog akusti¢nog segmenta specifikaciji moze da uvede nezeljenu distorziju.

Cena konkatenacije (concatenation cost) je mera koliko se akusticke karakteristike dva
segmenta podudaraju u tackama u kojima bi trebalo da budu spojene. Prevelike razlike bi ili
bile cujne, ili bi opet bilo potrebe za dodatno digitalnom obradom signala.

Nakon inicijalnog ocenjivanja, vr$i se iscrpna pretraga kako bi se iz baze govora izabrali
optimalni govorni segmenti. Viterbi pretraga se ¢esto koristi za izbor segmenata iz baze,

kako bi se minimizovala ukupna akumulirana cena (cena cilja 1 konkatenacije).
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Da bi se krajnja austiCka obelezja bolje podudarala sa ciljnim (f0, energija, trajanje
fonema) 1 da bi prelazi izmedu segmenata bli glatki, obicno se koristi neka od metoda za
generisanje krajnjeg signala:

e Pitch Synchronous Overlap and Add (PSOLA)

e Frequency Domain Pitch Synchronous Overlap and Add (FD-PSOLA)
e Linear Prediction Pitch Synchronous Overlap and Add (LP-PSOLA)

e Time Domain Pitch Synchronized Overlap and Add (TD-PSOLA)

e Epoch Synchronous Non Overlap and Add (ESNOLA)

Parametarska sinteza govora

Kada je re¢ o sintezi govora baziranoj na modelu, posebno kada je cilj da se ovaj model
naudi iz podataka, govorimo o parametarskoj sintezi govora. Model je parametarski jer
predstavlja govor koriste¢i parametre, a ne uskladiStene zvucne uzorke.

Siroko koriséeni model za parametrizaciju govora je model pobude i filtra. On modeluje
govor kao kombinaciju izvora (pobude), kao §to je harmonijski signal iz glasnih Zica ili Sum
iz pluca; i linearni akusticki filtar, koji opisuje vokalni trakt i karakteristike zraenja sa usana.

[lustrovan je na slici 2.

Povorka impulsa

Zvuéni

J_LLLL Pojacanje
Govor
S LA

Pobuda
WWWW / LPC filtar

Bezvucni

Beli Sum
Slika 2: Pobuda-filtar model produkcije govora

Pobuda je obi¢no kombinacija impulsa 1 belog Suma. Odnos njihovih pripadajucih
doprinosa izvornom signalu, koji se obic¢no definiSe po spektralnom opsegu (band), naziva se
(a)periodicnost opsega. Frekvencija povorke impulsa definiSe visinu ili osnovnu ucestanost
krajnjeg signala (f0). Akusticki filtar opisuje spektralnu obvojnicu, koja daje konacni oblik
spektra izlaznog signala (dok se pobuda smatra belom). Razli¢iti fonemi mogu se razlikovati
po svojstvima pobude i njihovoj spektralnoj obvojnici. Pored ovih, akusti¢kih, parametara
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TTS sistemi moraju da parametrizuju i modeluju i trajanje fonema (ili ¢ak subfonema —
stanja).

Sistem koji moze da izvrSi ekstrakciju opisanih akustiCkih parametara iz govornog
signala (analiza) 1 generisanje govornig signala na osnovu parametara (sinteza) naziva se
vokoder. Ovde ¢e biti data samo kratka lista nekih od najpopularnijih vokodera koji se
koriste u TTS-u: vokoder sa impulsnom pobudom (Impulse Excitation vocoder), meSoviti
(Multi-Band) vokoder, €iji su najpoznatiji prestavnici STRAIGHT i WORLD, kao i neuralni
vokoderi, ¢iji je najpoznatiji predstavnik WaveNet.

Postoje dva glavna parametarska pristupa sintezi govora: statisticka parametarska sinteza
govora (engl. Statistical Parametric Speech Synthesis, SPSS) zasnovana na skrivenim
Markovljevim modelima i Gausovim smeSama (engl. Hidden Markov models - Gaussian
Mixture Models, HMM-GMM) i sinteza govora pomoc¢u dubokih neuronskih mreza.

U sistemima koji su ispitivani u ovoj tezi koristili su se slede¢i parametri govora:

e Trajanja fonema i stanja, izraZena u broju blokova.

e 40 MGC koeficijenata [12] koji opisuju spektralnu obvojnicu.

e 1ili3 band aperiodicity parametra.

e Logaritam osnovne ucestanosti (log fo), koji ukljucuje i informaciju da li je odredeni

segment ima harmonijski deo ili ne.

Evaluacija TTS sistema

Postoji nekoliko pristupa koji se koriste za procenu kvaliteta odredenog TTS sistema.
Mogu se podeliti u sledec¢e grupe [14]:

e objektivne mere,
e subjektivne mere,
e poredenje sistemskih karakteristika.

Objektivne mere se dobijaju direktnim poredenjem parametara izdvojenih iz prirodnog
govora sa generisanim parametrima. Veliko neslaganje izmedu generisanih parametara i
parametara izdvojenih iz prirodnog govora obicno je znak ozbiljnog problema u dizajnu
sistema. Medutim, problem sa ovim pristupom je Cinjenica da vrednosti objektivnih mera

nisu uvek povezane sa subjektivnim utiskom slusalaca. Moguce je da sistem generiSe audio



sekvence koje se znacajno razlikuju od originalnih snimaka u smislu objektivnih mera, ali i
dalje zvuce sasvim prirodno i razumljivo.

Subjektivne mere se zasnivaju na ocenama koje daju zivi subjekti u vezi sa odredenim
karakteristikama govora. Ova grupa testova moze se podeliti u dve podgrupe:

1. Ocena razumljivosti,

2. Ocena kvaliteta sinteze.

Opste je prihvaceno da savremeni sintetizatori imaju dobru razumljivost [15], stoga se
metode predstavljene u disertaciji ocenjuju preko kvaliteta sinteze. Konkretno, kori§¢eni su
testovi srednje subjektivne ocene (engl. Mean Opinion Score, MOS) i viSestrukih stimulansa
sa skrivenom referencom 1 sidrom (engl. Multiple Stimuli with Hidden Reference and

Anchor, MUSHRA) [16].

Sinteza govora koriS¢enjem DNN

Iako SPSS ima mnoge prednosti u odnosu na konkatenativni pristup ([38] [39] [40] [41]
[42]), njeno glavno ograniCenje je kvalitet sintetizovanog govora. Jedan od glavnih faktora
koji pogorSava kvalitet sintetizovanog govora je tacnost akustickih modela. Konvencionalni
pristupi statistiCkoj parametarskoj sintezi govora obicno koriste HMM zavisne od konteksta
klasterizovane koriS¢enjem stabla odluke da bi predstavili raspodelu gustine verovatnoce
govornih parametara. Ovaj pristup je prilino efikasan, ali ima nekoliko ograniCenja, npr.
stabla odluke nisu efikasna u modelovanju slozenih kontekstnih zavisnosti. Prvo, nisu
sposobna da izraze slozene kontekstne zavisnosti kao $to su XOR, paritet ili multipleks
problemi [43]. Da bi mogla da predstavljaju i takve slucajeve, stabla odlu¢ivanja bi morala
biti izuzetno velika. Drugo, ovaj pristup deli ulazni akusti¢ki prostor S§to rezultira
fragmentacijom podataka [44].

Stabla odluke mogu biti zamenjena sa DNN, za koju se pokazalo da bolje generalizuje
ulazne podatke. Slika 20 (strana 53) ilustruje okvir za sintezu govora zasnovan na DNN. Dati
tekst koji treba sintetizovati prvo se pretvara u niz ulaznih obelezja {x.}, gde x} oznadava n-
to ulazno obelezje u bloku 7. Ulazna obelezja mogu biti binarni odgovori na pitanja o
lingvistickom kontekstu (npr. za identitet fonema: ,,da li je trenutni fonem M*) i numericke
vrednosti (npr. broj reci u frazi, trajanje fonema). Trajanja fonema mogu se dobiti

kori§¢enjem odvojenog DNN-a ili se sve moze generisati pomocu jedne mreZe.



Zatim se ulazna obelezja preslikavaju na izlazna {y}} korid¢enjem obudene DNN, gde
yt, oznaGava m-to izlazno obeleZje u bloku ¢. Izlazna obeleZja ukljuuju parametre govora i
njihove izvode u vremenu. Tezine DNN mogu se trenirati koriS¢enjem parova ulaznih i
izlaznih obeleZja dobijenih iz podataka za obuku, dok u fazi sinteze DNN generiSe izlazna
obelezja, odnosno parametre govora. Konac¢no, vokoder generiSe talasni oblik na osnovu tih

parametara.

Uvod u adaptaciju na govornika

U sintezi govora, adaptacija na govornika odnosi se na spektar tehnika kojima se TTS
sistem prilagodava akustickim karakteristikama odredenog govornika koriste¢i mali uzorak
snimljenog govora. Poslednjih godina razvoj sistema sinteze govora znacajno je napredovao;
medutim, ovi sistemi 1 dalje zahtevaju velike anotirane baze podataka (deset ili viSe sati
govora) da bi bili dobro obuceni. Naime, konacni sistem bi trebalo da bude u stanju da
proizvede bilo koji fonem u bilo kojem kontekstu (fonetskom i prozodijskom, u relativno
Sirokom vremenskom prozoru), §to podrazumeva da svaki takav akusti¢ki fenomen treba da
postoji (,,bude viden) u bazi podataka za obuku. S obzirom da je broj ovih fenomena veoma
velik (preko milion), prakti¢no je nemoguce imati ih sve ¢ak i u veoma velikoj bazi. 1z tog
razloga, modeli bi trebalo da budu u stanju da dobro generalizuju i da proizvodu prihvatljive
izlaze ¢ak i za nevidene kontekste. U sluc¢aju malih baza procenat videnih konteksta postaje
gotovo zanemarljiv, §to znaci da sve ostalo treba generalizovati iz tog malog uzorka i nekih
prethodnih informacija.

U HMM-GMM pristupu, postojalo je nekoliko tehnika kojima se pokuSava reSiti ovaj
problem, od kojih su najuspesnije sledece: procena parametara maksimizacijom aposteriorne
verovatnoc¢e (engl. Maximum A Posteriori Parameter Estimation, MAP) [11][23] i linearna
regresija bazirana na maksimizaciji verodostojnosti (engl. Maximum Likelihood Linear
Regression, MLLR) [12][13].

Da bi se iskoristila poboljSanja kvaliteta postignuta prelaskom na DNN, predloZene su
razne tehnike adaptacije na govornika. Wu et al. [58] predloZili su adaptaciju na govornika
koriste¢i i-vektore kao ulaz, prilagodavanjem doprinosa skrivenim slojevima [59], primenom
izlaznih transformacija definisanih GMM-om, ili kombinacijom ovih metoda. Fan et al. [60]
pretpostavili su da izlazni sloj u DNN sadrzi ve¢inu informacija o govorniku i uveli razlicite

izlazne slojeve za razli¢ite govornike, pri ¢emu su ostali skriveni slojevi i dalje bili zajednicki
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za sve govornike. U [62], autori su obucili sistem na 135 govornika i koristili ,,diskriminisuce
kodove* za mapiranje pocetnog one-hot vektora u prostor govornika. U fazi adaptacije
koristili su algoritam propagacije unazad za azuriranje kodova govornika i minimizaciju
srednje kvadratne greske predikcije koriste¢i malu koli¢inu podataka koju izgovorenu od
strane ciljni govornika. DNN arhitektura sa dodatnim ulazima zavisnim od govornika
predlozena je u [63], a ovaj pristup je dalje proSiren dopunjavanjem ulaza informacijom o
polu i starosti govornika [62]. Da bi se omogucilo mrezi da reprodukuje glas odredenog
govornika u stilu koji nije prisutan u korpusu za obuku, autori su u [64] predlozili mreznu
arhitekturu koja eksplicitno razdvaja doprinose govornika i stila, dok je model predstavljen u
[65] izgraden na DNN sa viSe govornika sa deljenim skrivenim slojevima predlozenim u
[60], proSiruju¢i ga jednim ulazom koji zavisi od stila 1 uvodeé¢i dodatni uski sloj
(bottleneck). Drugi pravci istraZivanja, poput onog predstavljenog u [66], fokusirali su se na
razvoj metoda za prilagodavanje viSeslojnog DNN sa jednim govornikom, glasu novog
govornika.

U ovoj tezi predstavljamo dve metode za efikasno stvaranje novih TTS glasova,
zasnovane na relativno maloj koli¢ini podataka o adaptaciji. Jedna metoda u pocetku obucava
TTS zasnovan na DNN na relativno velikoj koli¢ini materijala za obuku (3+ sata) i koristi taj
model kao polaznu tacku za adaptaciju. To znac¢i da novi model nije obucen na slucajno
inicijalizovanoj, ve¢ na ve¢ prethodno obucenoj mrezi, Sto je rezultiralo mnogo boljim
performansama (ve¢i kvalitet sintetizovanog govora). Drugi pristup, predlaze stvaranje
pocetnog modela sa vise govornika i odgovarajuéeg prostora govornika (embedding). Tokom
adaptacije izvode se dve faze. U prvoj fazi se trazi optimalna tacka u prostoru govornika za
novog govornika, sa idejom da se generiSe govor koji ve¢ lii na njega, pa su u drugoj fazi
potrebne samo minimalne promene DNN-a. U drugoj fazi je fiksirana pronadena tacka u
prostoru govornika, a ostatak DNN je prilagoden na isti nacin kao u prvom pristupu. Ovaj
dvofazni pristup dao je joS bolje rezultate 1 moze stvoriti glasove s koli¢inom materijala od

samo 30 sekundi.

Merlin: DNN TTS sistem otvorenog koda

2016. godine Centar za istrazivanje govornih tehnologija Univerziteta u Edinburgu
objavio je sopstveni skup alata otvorenog koda za razvoj TTS-a zasnovanog na DNN. Poput

HTS-a [47], Merlin nije kompletan TTS sistem. Pruza osnovne funkcije akustic¢kog
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modelovanja: vektorizaciju lingvistickih obelezja, normalizaciju akusti¢kih i lingvistickih
obelezja, obuku akustickih modela neuronske mreZze i1 generisanje parametara govora.
Napisan je na Python programskom jeziku, i baziran na biblioteci Theano, a tim kompanije
AlfaNum 1 Fakulteta tehniCkih nauka (AN-FTS) obezbedili su da radi i sa CNTK [7] i
TensorFlov [6] okvirima za duboko ucenje. AN-FTS tim je takode unapredio tehniku

poravnanja foenma, implementiranu u osnovnu verziju alata.

Adaptacija sa po¢etnog na ciljanog govornika

Metoda koristi podatke koji odgovaraju ciljnom govorniku za potrebe doobuke DNN koja
je ve¢ obucena za TTS zadatak na pocCetnom govorniku. Dakle, zapoc¢injemo obuku sa
pocetnim vrednostima parametara prethodno obufene mreze, umesto nasumi¢no
mnicijalizovanim.

KoriS¢ena je standardni pristup preko dve mreZe, za trajanja fonema (tj. stanja) i
akusticke parametre, kako je to ranije opisano. KoriS¢ena su 554 binarna leksicka obelezja,
pomeraj bloka od 5 ms, 5 stanja po fonemu, MLPG, a za generisanje krajnjeg signala je
koris¢en WORLD vokoder [13].

Obe mreze imaju 4 skrivena sloja i 1024 neurona po sloju sa tanh funkcijom aktivacije.
Prva tri sloja su feed-forward, dok je poslednji skriveni sloj LSTM tipa, a izlazni sloj je
linearan (bez aktivacione funkcije). Dodatna normalizacija obelezja se izvodi za ulaz
(normalizovano na interval [0, 1]), kao 1 izlazna obelezja (normalizovana tako da imaju nultu
srednju vrednost i jedini¢nu varijansu). Ciljna funkcija koja se koristi je srednja kvadratna
greska.

PredloZzena metoda omogucava brzu i ekonomi¢niju TTS adaptaciju, jer ne zahteva
postojanje modela prose¢nog govornika kao u konvencionalnim metodama prilagodavanja
govorniku, a istovremeno zahteva mnogo manje podataka u poredenju sa obukom DNN-TTS
modela od nule. Uticaj izbora po¢etnog modela na predlozenu metodu prilagodavanja takode

je predmet istrazivanja.

Rezultati eksperimenata

U ovom odeljku uporedujemo predlozeni model sa osnovnim modelom na zadatku
stvaranja novog TTS glasa. Model se ocenjuje na skupu recenica koje se sintetiSu na osnovu

fonetskih i1 prozodijskih informacija preuzetih iz originalnih izgovora. U svim prikazanim
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eksperimentima snimci su podeljeni u deo za obuku, validaciju i test. Za sve eksperimente
koriS¢eni su isti skupovi koji su se sastojali od 5 ili 10 izgovora. U svakom eksperimentu,
slucajno je izabrano 10% materijala koji se koristio za validaciju, dok je ostatak koriS¢en za
trening.

Radena je objektivna i subjektivna evaluacija rezultata. Za objektivhu evaluaciju
koriS¢ene su ranije objasnjene metode 1 parametri. Za subjektivnu procenu sprovedena su dva
MUSHRA testa [69]. U oba su ucestvovala 22 subjekta u kontrolisanom okruzenju i sa
kvalitetnim sluSalicama. Svaki ispitanik je procenio odredeni broj testnih izgovora
uporedujuc¢i ih sa referentnim (originalni snimak), pri ¢emu je svaki put jedna od test
recenica bila identi¢na referentnoj. Izgovori su ocenjeni u smislu ukupnog kvaliteta
(razumljivost 1 prirodnost). Svaki snimak je dobio ocenu od 0 do 100, sa jednim
ograni¢enjem - jedna od 5 re€enica je morala da dobije ocenu 100. Izraunate su prose¢ne
ocene 1 koriS¢en je t-test kako bi se proverile statisticki znaCajne razlike u srednjim

vrednostima.

Tacnost poravnanja

Kad postoji dovoljna koli€¢ina podataka, standardno poravnanje zasnovano na
monofonima postize zadovoljavajuéu tac¢nost. Medutim u situacijama kada je dostupno
znatno manje podataka, ranije opisani metod postize bolje rezultate, Sto je prikazano na slici
25 (strana 72). Slika predstavlja procenat fonema c¢ija su granicna odstupanja ispod
odredenog praga u poredenju sa ru¢no postavljenim granicama. Takode, uticaj metode
poravnanja na objektivne mere odgovarajueg TTS modela predstavljen je u tabeli 1 (strana
72), gde se moze videti da je predlozeno poravnanje postiglo gotovo iste rezultate kao i
obuka sa konvencionalnim poravnanjem kada baza ciljnog govornika sadrzi 10 ili 15 minuta
govora, ali znatno bolji rezultat kada baza sadrzi samo 3 ili 5 minuta materijala. Zbog toga je
u svim eksperimentima pocetno poravnanje izvedeno predlozenom metodom, dok se za

potrebe obuke pocetnog modela koristila konvencionalna metoda.

Prvi skup eksperimenata

Osnovni modeli su se nasumi¢no inicijalizovali 1 obucili koriste¢i 5, 10, 15, 30, 60 1 180
minuta podataka muskog govornika. PredloZeni modeli su napravljeni polaze¢i od modela

prethodno obucenog na 3 sata materijala Zenskog govornika, a zatim ga prilagodili muskom
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govorniku koristeéi 3, 5, 10 1 15 minuta govora. Kao $to se moze videti na slici 26 (strana
73), sve objektivne mere, sa izuzetkom VUV, pokazuju da je kretanjem od modela koji je ve¢
obucen dovoljno 15 minuta govora ciljnih govornika da bi se postigao kvalitet dobijen
zapocinjanjem od nasumicno inicijalizovanog modela i obuc¢avanjem na 30 minuta materijala
(videti npr. MCD na slici 26 (strana 73) a). Takode, kretanjem od obucenog modela,
dovoljno je 5 minuta govora da se postigne ili nadmasi kvalitet dobijen treningom nasumicno
inicijalizovanog modela na 15 minuta.

Iako se 50% manje matrijala potrebnog za postizanje istog kvaliteta moze smatrati
dobrim rezultatom, nezadovoljavaju¢e je S§to 15 minuta ciljnih podataka jo§ uvek nije
dovoljno za pretvaranje ve¢ obucfenog modela u model sposoban da proizvede govor
kvaliteta uporediv sa modelom obucenim na 3h govora (i treniranim od nule).

S obzirom na to da objektivne mere ne odrazavaju u potpunosti subjektivnu percepciju,
izvrSeni su dodatni testovi slusanja. Ukljuceno je 10 recenica u kojima je kori§¢en originalni
snimak, zajedno sa 4 snimka sintetizovana koriS¢enjem 4 razli¢ita sintetizatora navedena u
tabeli 2 (strana 74). Sintetizatori predstavljeni u tabeli predstavljaju podskup svih sistema
prikazanih na slici 26 (strana 73), dok su rezultati testova slusanja predstavljeni na slici 27
(strana 75).

Vidi se da model obucen sa 10 minuta materijala predlozenom metodom zvuci blisko
modelu obu¢enom na lh materijala pocevsi od nule. Njihove prosecne ocene bliske su
ocenama modela obucenog na 3h materijala (sa t-testom o = 0,05). lako se Cini da je
proseCna ocena sinteizatora 1.4 takode blizu ostalih, t-test pokazuje statisticki znacajnu
razliku. Stoga se moze zakljuCiti da 3 minuta ciljnog govornika pruzaju zadovoljavajuce
rezultate, ali jo§ uvek se ne moze ocekivati da sintetizovani govor zvuéi kao govor

sintetizovan modelom obucenim na relativno velikoj bazi podataka.

Drugi skup eksperimenata

U drugom nizu eksperimenata ispitujemo uticaj pocetnog modela. IzvrSene su adaptacije
u okviru istog pola 1 izmedu razli¢itih polova, kretanjem od modela obucenog na 3h
materijala u svim slucajevima, a adaptacija je vrSena sa 3, 5 ili 10 minuta materijala ciljnog
govornika. Na slici 28 (strana 76) date su objektivne mere za ovaj skup eksperimenata.

Moglo bi se zakljuciti po€etni model nije od velike vaznosti.
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Takode je izvrSeno poredenje spomenutih adaptacija preko subjektivnih testova sluSanja,
predstavljenih u tabeli 3 (strana 76). Test sluSanja obuhvatio je 10 recenica, od toga polovinu
zenskih 1 polovinu muskih govornika. Za svaku od reCenica koriS¢eni su originalni snimci 1
jos Cetiri sintetizovana modelima navedenim u tabeli 3.

Rezultati su predstavljeni na slici 29 (strana 77). MozZe se videti da kada je ciljni govornik
bio Zenskog pola (slika 29a), adaptacija sa 10 minuta podataka ciljnog govornika daje bolje
rezultate ako je umesto zenskog koris¢en muski pocetni model. Medutim, ako se koristi samo
3 minuta materijala za adaptaciju, rezultati 1 za muski i1 za Zenski pocetni model su gotovo
isti. S druge strane, kada je ciljni govornik bio muskarac (slika 29b), adaptacija sa samo 3
minuta, pocevsi od muskog pocetnog modela, postize bolje rezultate od adaptacije sa 10
minuta, pocevsi od Zenskog pocetnog modela. MoZzemo zakljuciti da, koriste¢i ograni¢ene

raspoloZive resurse, pocetni model ima odredeni, mada ne i znacajan uticaj na adaptaciju.

Adaptacija na govornika u dva koraka

Ideja je da se prvo obuci model na viSe govornika i viSe stilova (engl. Multi Speaker
Multi Style — MSMS) kako bi se dobio dobar polazni model za adaptaciju i takode stvorio
,ugradeni® prostor govornika, slicno kao u [18]. KoriS¢eni model, ulazni i izlazni parametri
su isti kao i kod prethodne metode. Ugradivanje je mo¢na tehnika dubokog uc¢enja zasnovana
na mapiranju diskretnih (Cesto binarnih) vektora iz prostora velike dimenzionalnosti do
vektora kontinualnih vrednosti u prostoru male dimenzionalnosti. U kontekstu sinteze
govora, 1 govornik i govorni stil tradicionalno su predstavljeni kao vektori sa jednim
nenultim elementom (one-hot), $§to se moze smatrati suboptimalnim, jer sli¢nost dva glasa
nijje ni na koji nacin povezana sa rastojanjem izmedu odgovaraju¢ih tacaka u visoko-
dimenzionalnom prostoru [21]. Ovaj nedostatak se prevazilazi izgradnjom zajednickog
ugradenog prostora govornika i stila, predstavljajuci ih u prostoru male dimenzionalnosti na
intuitivniji na¢in, Sto pomaze mrezi da efikasno generalizuje nevidene govornike i stilove.

Sa idejom poboljSanja modela sa viSe govornika kao polazne tacke za prilagodavanje
novom govorniku i stilu, mi nadopunjavamo ulaze obe neuronske mreze informacijama o
govorniku, stilu govora i klasteru (engl. Speaker Style Cluster - SSC) u ugradenom obliku,
kao Sto je prikazano na slici 30 (strana 82). Na ovaj naCin se prepusta mrezi da predstavlja
odredeni SSC u prostoru nize dimenzije (u naSem istrazivanju broj SSC je 67, a dimenzija

ugradenog prostora je N = 15). Kada bude obucena, mreza ¢e mo¢i da sintetiSe govor koji
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odgovara odredenom SSC-u s obzirom na odgovaraju¢u tacku u ugradenom prostoru. Pored
toga, ukoliko se odabere slu¢ajna tacka u ugradenom prostoru, mreza ¢e moc¢i da proizvede
novi, prethodno ,,nevideni glas.

Arhitektura 1 postupak obuke predlozeni u ovom istrazivanju rezultiraju u multi-
govornickom modelu za sintezu govora u vise stilova, koji moze reprodukovati veoma
kvalitetan govor u bilo kojoj kombinaciji govornika / stila / klastera prisutnog u poc¢etnom
korpusu za treniranje, ali je takode lako prilagodljiv novom govorniku i stilu, uz relativno

malu koli¢inu podataka za adaptaciju.

Procedura adaptacije u dva koraka

Prva faza ima za cilj nalazenje tacke u ugradenom prostoru za novog govornika i stil, a
zapoc¢inje nasumicnom inicijalizacijom vrednosti u ugradenim slojevima obe mreze. U ovoj
fazi adaptacije samo se vrednosti u ugradenim slojevima aZuriraju tokom obuke, dok se
ostatak mreZe ne menja. Model sa ugradenim slojevima prilagodenim na ovakav nacin moZze
da sintetiSe govor koji u odredenoj meri ve¢ li¢i na ciljnog govornika i stil. Medutim, kvalitet
sintetizovanog govora moze se dalje poboljSati kroz drugu fazu prilagodavanja, u kojoj se
ponovo koriste isti podaci za trening, ali je ugradeni sloj zamrznut, dok se teZine u mrezama
modifikuju.
Podaci

Podaci koris¢eni za izradu modela sastoje se od ukupno 8 sati i 38 minuta govora 6
govornika sa ameri¢kog govornog podrucja, ¢iji koli¢ina varira u broju stilova govora kao i
akustickom kvalitetu, Sto je prikazano u tabeli 4 (strana 87). Dva govornika €ij1 doprinosi
obuhvataju najve¢i broj stilova govora 1 ¢iji je doprinos neutralnom stilu najve¢i ¢emo
obeleziti sa M1 1 F1. Kako bi se izbegla pristrasnost modela prema M1 i F1, kao 1 povecala
osnova za model sa viSe govornika, raspolozivi snimci veStacki su umnozeni uvodenjem
promena u visini, brzini i spektralnoj obvojnici kod svih 6 inicijalnih govornika. Koriste¢i
razli¢ite delove originalnog korpusa, kao i umnoZzene izgovore, stvoreno je 10 novih
vestackih govornika, ¢ime je ukupan broj porastao na 16 (sa 67 jedinstvenih kombinacija
govonika / stila / klastera) i ukupno trajanje govornog korpusa na 21 sat i 50 minuta.

Da bi se procenila sposobnost sistema da se prilagodi novom govorniku 1 stilu, kori§¢ena

su dva relativno mala korpusa, od kojih jedan sadrzi govor Zenskog govornika (F4), a drugi
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muskog (M4). Oba ova korpusa su izuzeta iz obuke MSMS modela. Stil govora u ova dva
korpusa moze se nazvati grubo neutralnim, mada su ove informacije zapravo nevazne, posto

je model u stanju da se prilagodi nepoznatom govorniku, ali takode 1 nepoznatom stilu.

Osnovne metode

U nasim eksperimentima uporedivali smo performanse predlozenog postupka adaptacije
u dva koraka sa dve osnovne metode. Prva metoda koja se koristi kao osnovna metoda (bazna
metoda 1), predstavljena je ranije (Adaptacija sa pocetnog na ciljanog govornika). Za potrebe
ovog istrazivanja, govorni materijal dva govornika, M1 1 F1, koriS¢en je za dobijanje dva
TTS modela zavisna od govornika (engl. Speaker Dependent TTS — SD TIS), koji su
posluzili kao osnova za prilagodavanje govornicima M4 i F4.

Druga osnovna metoda (bazna metoda 2) predstavlja malu modifikaciju pristupa detaljno
opisanog u [32], gde se koristi ,,odvojeni izlazni sloj*. Ovaj pristup se temelji na ideji
predstavljenoj u [33], koja predlaze arhitekturu zasnovanu na deljenim skrivenim slojevima 1
viSestrukim izlaznim slojevima (za svakog govornika po jedan). U ovom pristupu
pretpostavlja se da deljeni deo mreze modeluje globalnu jezi¢ku transformaciju, dok se
zasebni izlazni slojevi koriste za razli¢ite kombinacije govornik / stil. U fazi adaptacije
prilagodava se samo odredeni izlazni sloj koji zavisi od govornika / stila, koristeci
raspolozive podatke o govorniku / stilu, prate¢i postupak adaptacije predlozen u [33].
Modifikacija u odnosu na [32] lezi u uvodenju dodatnog skrivenog sloja koji zavisi od
govornika / stila. Slicno kao u slucaju sa osnovnim modelom 1, ulazi se proSiruju sa
stilovima i klaster kodovima u obliku one-hot vektora, ali u ovom slu¢aju su se svi govorni

podaci koristili za obuku MSMS modela koji je kasnije prilagoden M4 1 F4.

Eksperimenti

U ovom istrazivanju predloZeni model se obucava na istim podacima kao i dva osnovna
modela opisana u prethodnom odeljku. Medutim, dok su modeli sa viSe govornika (osnovni
model 2 i predlozeni model) bili obucavani na celoj govornoj bazi, osnovni model 1 (koji je
SD TTS) obucavan je samo na M1 i F1 kako bi se napravila dva modela zavisna od
govornika. Da bi se testirala sposobnost sva tri modela za prilagodavanje nepoznatom
govorniku i nepoznatom stilu, za adaptaciju su koriS¢eni snimci govornika M4 i F4. Budu¢i

da je cilj ovog istrazivanja ispitati slucaj kada je koli¢ina ciljnog govornog materijala vrlo
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mala, eksperimenti su izvedeni na bazama koje sadrze 10 minuta i samo 30 sekundi. Za
prilagodavanje osnovnog modela 1, koriS¢en je inicijalni model istog pola zavisan od
govornika. Kako osnovni model 2 obuhvata 16 razli¢itih govornika, oni koji su koriS¢eni kao
polaziSta za adaptaciju u ovom istrazivanju su oni koji odgovaraju M1 ili F1 (u zavisnosti od
pola ciljnog govornika). U predlozenom modelu, dimenzija ugradivanja je postavljenana N =
15, mada je pokazano da je od iznenaduju¢e malog znacaja za performanse sintetizatora
(testirane su vrednosti u rasponu od 4 do 40). Sposobnost predlozenog modela da sintetizuje
govor koji odgovara predvidenom govorniku / stilu, najpre je procenjena preko objektivnih
mera, nakon cega je usledio niz testova sluSanja posebno usmerenih na utvrdivanje
relevantnosti polozaja SSC tacaka u svakom od dva ugradena prostora, relevantnosti svake

faze u dvofaznom procesu prilagodavanja, kao 1 kolicine podataka za adaptaciju.

Objektivne mere

Rezultati su predstavljeni na slici 33 (strana 92). MoZe se videti da korelacija izmedu
generisane f0 krive i stvarne, kao i korelacija izmedu generisanog trajanja fonema i stvarnog,
pokazuje samo male razlike izmedu tri modela, ali da predloZeni model konzistentno postize
najbolje performanse, bez obzira da li je za prilagodavanje koris¢eno 10 minuta ili 30
sekundi govora. Takode se moze primetiti da su razlike nesto vece u slucaju prilagodavanja
koli¢ine podataka za adaptaciju, mada razlike ni u ovom sluc¢aju nisu znacajne. Razlike
izmedu modela su mnogo ociglednije u slu¢aju RMSE f0 i trajanja fonema. U vecini
slucajeva predlozeni model nadmasuje dva osnovna modela, a osnovni model 1 je najmanje
uspeSan. Razlike medu modelima su opet vidljivije u slu¢aju manjeg skupa podataka za

prilagodavanje.

Subjektivna evaluacija

Sproveden je niz testova slusanja kako bi se potvrdili rezultati objektivne procene i
utvrdio uticaj razli¢itih faktora na kvalitet sintetizovanog govora nakon §to se pocetni model

prilagodi ciljnom govornom materijalu.

Eksperiment 1
Cilj ovog eksperimenta bio je da se istrazi uticaj poloZaja SSC tacaka u svakom od dva

ugradena prostora na stepen sli€nosti sintetizovanog govora i ciljnog govornika. Dalje,
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eksperiment takode ilustruje pozitivan efekat druge faze procesa adaptacije, za koji se
pokazalo da povecava sli¢nost sintetizovanog govora sa planiranom kombinacijom govornik
/ stil. Eksperiment istraZzuje samo predloZeni model 1 ne ukljucuje poredenje sa osnovnim
modelima.

Eksperiment je postavljen kao MUSHRA test sluSanja, a ucestvovalo je 26 slusalaca.
Svakom slusaocu je predstavljeno 10 zadataka, ukljuujuci 5 reCenica izgovorenih glasovima
2 govornika (M4 ili F4). U svakom zadatku, sluSaocima je predstavljeno slede¢ih 5 verzija
iste re¢enice, nasumicnim redosledom:

e Skriveni snimak reference (originalni snimak izvornog govornika);
¢ Sinteza nakon prve faze adaptacije sprovedene na pocetnom modelu;
e Sinteza nakon $to je izvrSena prva faza adaptacije, a zatim je dobijeni ugradeni vektor

modifikovan za 10%;

e Sinteza nakon $to je izvrSena prva faza adaptacije, a zatim je dobijeni ugradeni vektor

modifikovan za 20%;

e Sinteza nakon oba faze adaptacije izvrSene na pocetnom modelu bez modifikacije
ugradenih vektora dobijenih u prvoj fazi.

U ovom eksperimentu prilagodavanje je izvrSeno koriSéenjem 10 minuta ciljanih
govornih podataka. Slusaoci su zamoljeni da ocene sli¢nost govornika izmedu reference i
svakog od 5 primera na skali od 0 do 100. Kako slusaoci imaju tendenciju da daju nize ocene
manje privlacnim glasovima, Sto bi prikrilo uticaj faktora koji su smatrani kao relevantni za
ovaj eksperiment, ocena koja je data skrivenoj referenci je skalirana do maksimalne ocene, a
ostale ocene su skalirane u skladu sa tim. Nadalje, da bi se pojednostavila poredenje rezultata
u svim eksperimentima, sve ocene su prikazane kao ponovo postavljene na interval 0-5.

Rezultati, prikazani na slici 34 (strana 95), pokazuju da je prva faza adaptacije sama po
sebi dovoljna da model proizvede govor koji u odredenoj meri li¢i na glas ciljnog govornika.
Takode je pokazano da je polozaj ugradenih vektora dobijen pocCetnom obukom modela
relevantan, jer ako se modifikuje, gubi se slicnost sa ciljnim govornikom. Eksperiment je
takode pokazao vaznost druge faze adaptacije, jer je ocena dobijena nakon obavljene obe
faze adaptacije znacajno veca od bilo koje ocene dobijene posle same prve faze. Jo§ uvek

postoji relativno Siroka margina izmedu sintetizovanog i originalnog govora, i vrlo je
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verovatno da je to posledica relativno slabe pokrivenosti prostora za ugradnju od strane SSC-

a koji postoje u trenaZznom korpusu.

Eksperiment 2

Cilj ovog eksperimenta bio je da se kvalitet sinteze predlozenog modela uporedi sa dva
osnovna modela nakon adaptacije, bez obzira na slicnost govornika u odnosu na referencu,
kroz MUSHRA test sluSanja sa 24 ucesnika. U svakom od 20 zadataka, sluSaoci su
obavesteni da referenca, oznacena kao takva, predstavlja snimak prirodnog govora, i od njih
je zatrazeno da ocene razumljivost i prirodnost, a zanemare slicnost govornika, sledece
verzije iste recenice, koje su se pojavljivale nasumic¢nim redosledom:

e Skriveni referentni snimak (originalni snimak govornika);

e Sinteza po osnovnom modelu 1 nakon adaptacije;

e Sinteza po osnovnom modelu 2 nakon adaptacije;

e Sinteza po predloZzenom modelu nakon S$to se ugradeni vektor resetuje na 0 i sprovede se
samo druga faza prilagodavanja;

¢ Sinteza predlozenog modela nakon obe faze adaptacije.

Od 20 zadataka, 10 je prilagodeno koriS¢enjem 10 minuta ciljnih govornih podataka, a
preostalih 10 koriS¢enjem samo 0,5 minuta ciljnih govornih podataka. U svakom od ova dva
slu¢aja bilo je po 5 izgovaranja od strane svakog od dva govornika (M4 i F4).

Rezultati, prikazani na slici 35 (strana 97), pokazuju da su, bez obzira na koli¢inu ciljnih
govornih podataka koji su kori§¢eni za adaptaciju, sluSaoci smatrali da je osnovni model 2
najmanje uspesan, dok su dve verzije predlozenog modela dobili najviSe ocene. Zanimljivo je
napomenuti da, iako razlika izmedu prosec¢nih ocena za osnovni model 1 i predloZeni model
nije znacajna u slucaju kad je koriS¢eno 10 minuta materijala, predlozeni model znacajno
nadmasuje osnovni model 1 u slucaju kad se prilagodenje vrsi sa samo 0,5 minuta govornih
podataka. Jo$ jedna zanimljivost koja se odnosi na predloZeni model je da, ako se ugradeni
vektor dobijen u prvoj fazi adaptacije resetuje na O i izvrSi se samo druga faza, to ne

umanjuje znacajno kvalitet sinteze.

Eksperiment 3

Postavke eksperimenta 3 bile su potpuno iste kao u slucaju eksperimenta 2, ali ovog puta

od sluSalaca je trazeno da procene slicnost govornika umesto opSteg kvaliteta sinteze.
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Eksperiment se sastojao od 10 zadataka (5 za svakog od dva govornika, M4 i F4), a
ucestvovalo je 20 slusalaca. Kako bi se sluSaoci fokusirali na slicnost govornika, adaptacija
je radena samo sa 10 minuta materijala (eksperiment 2 je pokazao da kvalitet sinteze
znacajno opada kod nekih modela, kada je koli¢ina materijala jako mala). Kao §to se moze
videti na slici 36 (strana 98), predlozeni model nadmasuje oba modela po pitanju generisanja
glasa koji podseca na izvornog govornika, ¢ak iu slucaju kad je ugradivanje resetovano na 0

1izvrSena samo druga faza prilagodavanja.

Eksperiment 4
Opsirnija evaluacija performansi predlozenog modela ukljuc¢ivala bi njegovu poredenje sa
drugim osnovnim SD TTS modelom, koriste¢i ne samo male ve¢ i1 velike koli¢ine snimaka
govornika za obuku. Medutim, nismo bili u moguénosti da direktno izvr§imo takvu procenu
zbog dostupnosti samo male koli¢ine podataka za govornike M4 1 F4, imaju¢i u vidu da su
svi preostali dostupni govornici ve¢ kori§¢eni za obuku inicijalnog modela. Ovaj eksperiment
predstavlja pokusaj zaobilazenja ovog ogranienja uklju¢ivanjem dve vrste zadataka
MUSHRA (10 zadataka svake vrste). U obe vrste zadataka, 32 ucesnika u testu sluSanja
obavesteni su da je referentni izgovor zapravo snimak prirodnog govora, a zadatak je bio da
procene opsti kvalitet 3 izgovora datih slu¢ajnim redosledom. U zadacima tipa 1 ponudena su
slede¢a 3 izgovora:
e Skriveni referentni snimak (originalni snimak M1 ili F1);
e Sinteza po osnovnom modelu 1 obucena na svim raspolozivim podacima za M1 ili F1,
bez daljeg prilagodavanja;
e Sinteza po predlozenom modelu, pomocu ugradenih vektora koji odgovaraju M1 ili F1,
bez daljeg prilagodavanja;
dok su zadaci tipa 2 ukljucivali sledeca 3 izgovora:
e Skriveni referentni snimak (originalni snimak M4 ili F4);
e Sinteza predlozenog modela nakon obe faze adaptacije na M4 ili F4, koriste¢i 10 minuta
podataka ciljnih govornika;
e Sinteza predloZzenog modela posle obe faze adaptacije na M4 ili F4, koris¢enjem 0,5

minuta podataka ciljanih govornika.
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U svakom zadatku sve 3 recenice odgovaraju istom govorniku kako bi se eliminisala
preferenca koju sluSalac moze imati prema nekom od glasova. Svi govornici su bili jednako
zastupljeni tokom eksperimenta, tj. svaki od njih se pojavio u 5 zadataka.

Rezultati eksperimenta, sa rezultatima skaliranim na interval 0-5, prikazani su na slici 37
(strana 99). Pre nego §to se donesu bilo kakvi opsti zakljucci, treba primetiti da iako se M1 i
F1 nisu pojavljivali u istim zadacima kao M4 i F4, jo§ uvek je moguce uporediti perceptivni
kvalitet sinteze izmedu modela 1/ili verzija koji se nisu pojavili u istim zadacima. Sinteza
bazirana na osnovnom modelu 1 obucena na svim raspolozivim podacima za M1 ili F1 bez
daljeg prilagodavanja i sinteza predloZzenog modela nakon dvofazne adaptacije na M4 ili F4,
koriste¢i 10 minuta podataka (stavke (a) i (c) na slici 37) su ocenjene slicnim ocenama. To
pokazuje da predloZeni model, kada krene od dobro obuc¢enog MSMS modela, 1 koristi samo
10 minuta adaptacionog materijala, moze posti¢i kvalitet sinteze uporediv sa onim koji ima
standardni SD TTS model obufen na mnogo vise audio materijala (~3,5 sata u slucaju M1 1
~2,5 sata u slucaju F1). Dalje, sinteza dobijena osnovnim modelom 1 obucena na svim
raspoloZivim podacima za M1 ili F1 smatra se da je istog kvaliteta kao i sinteza MSMS
modela, koriste¢i ugradene vektore koji odgovaraju M1 ili F1, bez daljeg prilagodavanja.
Moze se zaklju€iti da je razumnije koristiti odredenu koli¢inu podataka govornika kao
osnovu za model sa viSe govornika koji se zasniva na tehnici ugradnje nego za obuku jednog
SD TTS modela. Na kraju, treba napomenuti da je prilagodavanje predloZzenog modela
koris¢enjem 0,5 minuta podataka dalo sinteticki govor koji je, kako se i oCekivalo, ocenjen

kao lo$ijeg kvaliteta nego u slucaju da je prilagodavanje izvrSeno na 10 minuta podataka.

Zakljucak

U ovom istrazivanju bavimo se problemom stvaranja visokokvalitetnih sintetiCkih
glasova, kada je dostupna samo mala koli¢ina podataka. Ova tema je u fokusu mnogih studija
ve¢ decenijama, jer ima brojne namene i1 potencijalno znacajno smanjuje potreban rad za
stvaranje novih glasova, ¢ine¢i ga mnogo brzim 1 jeftinijim. Nakon uvoda i poredenja
uobicajenih pristupa sintezi govora, ilustrovali smo i niz prethodnih pokusaja reSavanja ovog
problema. Neki od njih su se zasnivali na starijim pristupima (npr. HMM-TTS), dok su neki
noviji pokusali da ponude reSenje koriS¢enjem DNN arhitekture.

U ovoj tezi predloZena su dva razliCita pristupa adaptaciji. Oba su modeli sinteze govora

zasnovani na DNN, sposobni za prilagodavanje odredenom govorniku i stilu govora. Prva
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metoda inicijalno obucava TTS na relativno velikoj koli¢ini materijala za obuku (3+ sata) i
koristi taj model kao polaznu tacku za adaptaciju. To znac¢i da novi model nije obucen na
slucajno iicijalizovanoj mrezi, ve¢ na prethodno obuenoj mrezi, §to je rezultiralo ve¢im
kvalitetom sintetizovanog govora. Nije primecena znacajna razlika kada su koriS¢eni razliciti
pocetni modeli. Takode su koriS¢ene razli¢ite veli¢ine adaptacionog materijala i uporeden je
kvalitet dobijenog govora. Kao Sto se oc¢ekivalo, viSe materijala dalo je bolje rezultate, ali
pokazalo se da prilagodavanje Cak i sa relativno malom koli¢inom podataka moZze pruziti
uporedive rezultate modelima istreniranim od nule sa mnogo viSe govornog materijala.
Evaluacija se zasnivala na objektivnim merama, ali 1 na testovima slusanja.

Druga metoda je postupak adaptacije u dva koraka u kojem prvo pronalazimo optimalno
ugradivanje za ciljni glas na iterativni nacin. Pre toga se napravi model treniran na mnogo
govornika i tokom tog procesa se gradi prostor za ugradnju. Drugi korak sastoji se od
prilagodavanja ostatka neuronske mreZe, optimizacijom svih teZina i pomeraja (engl. bias),
tako da rezultuju¢a mreZza moze proizvesti govor ciljnog govornika. Budu¢i da je izlaz nakon
prve faze ve¢ blizu cilja, koli¢ina promena primenjenih na mreZi je relativno mala. Ovo
sprecava preobucavanje mreze i omoguéava mnogo bolju generalizaciju nevidenih dogadaja.

Druga metoda je pokazala da nadmasSuje dva druga nedavno predloZena parametarska
modela sinteze govora zavisna od govornika i stila, posebno u slucaju kad je koli¢ina
dostupnih podataka za adaptaciju izuzetno mala. To se postiglo zahvaljujuci zajednickoj
reprezentaciji govornika, stila i klastera njihovim ugradivanjem u prostor nize dimenzije, pri
¢emu je model u stanju da utvrdi slicnosti medu govornicima i stilovima.

Pristup sa ugradivanjem otvara niz zanimljivih mogucih primena predloZzenog modela u
bilo kom domenu gde je potrebno brzo i efikasno prilagodavanje sinteze govora novom

govorniku ili stilu.
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1. Introduction

Communication is the process by which individuals conduct interactions between each
other and use symbols to create and interpret meaning [1]. Speech is one of the main media
for communication. First attempts to artificially generate speech date back to X VIII century
[2]. Namely, in 1779. Christian Gotlieb Kratzenstein won the first prize at the competition
announced by the Royal academy of arts and sciences in Saint Petersburg, for work in which
he described the differences between vowels from a physiological perspective. He also
presented a mechanical device which could reproduce these sounds. Since the presentation of
Kratzenstein’s device generation of human speech in artificial ways has travelled a long way.
Contemporary approaches to this problem are based on the use of computers. Having that in
mind, Text-to-Speech Synthesis (TTS) is defined as technology which provides computers

with means to convert text into a signal closely resembling human speech.

Speech synthesis is a technology with a wide spectrum of applications. Initially, it was
used for reading textual content for the blind, but today this technology can be of significant
importance for people with various speech impairments. TTS is used in call centers to
convey various information to users or even completely replace a human agent in certain
scenarios. With the rise of smartphones this technology has found its place in various virtual
assistant applications as well as navigation systems. In recent times there is a growing
popularity of audio books, and TTS enables significantly faster and simpler generation of
such audio material by using computers instead of long and tedious recording performed by

professional speakers.

Speech synthesis is currently dominated by two main approaches: unit selection and
parametric synthesis. Synthesizers that use unit selection (concatenative) approach select
speech segments from a large speech database and concatenate them in order to generate a
final sequence. Parametric approaches to speech synthesis are based on parametrization of
speech signal whose textual form is known (analysis phase) and development of the model
which can successfully generate parameters for a given text (synthesis phase). Until recently,

1
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these methods were inferior to unit selection, but they have found their application in many
use cases because of their flexibility and the possibility to manipulate the character of
generated speech. With recent developments in neural vocoding these methods not only

caught up with unit selection, but even surpassed it [3].

1.1. Subject and Main Contributions

Two main requirements that synthesized speech should meet are intelligibility and
naturalness [4]. Research community is in agreement that modern speech synthesis systems
achieve good results by these criteria, but it is often emphasized that the synthesized voice
sounds too monotonous, and that, regardless of the use case, speech is usually generated only

in one available style, frequently designated as neutral.

Another problem is related to the efficient creation of new speakers and styles. Namely,
with current approaches, including parametric, it is usually required to have several hours of
new speaker’s recordings in order to produce high quality synthesis. The process of building
a new voice or style also requires recording of a new speaker, but also some form of semi-
automatic annotation and preparation of the database. This obviously makes the process

longer, more expensive and less scalable in commercial applications.

The main goal of this research is to examine the possibility to build new voices (speakers
with corresponding styles) while significantly reducing the amount of required speech
material and consequently the work required to prepare the database. The focus will be on the
use of Deep Neural Networks (DNN) as the currently most advanced parametric approach.
All the approaches will be tested on the speech database with a relatively small amount of
adaptation material (speech from the new speaker). The hypothesis to be tested is that by
applying novel methods on a limited amount of new speech material, high quality results can

be obtained, comparable to those obtained by using large speech databases.

All experiments are done for American English language, since those audio databases

were readily available. But since this research focuses on the language independent part of
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TTS, which mostly deals with signal generation (so called back-end), it can be assumed that

the results will be applicable to any language.

Main contributions of the research presented in the dissertation are:

e Adapting open source Merlin toolkit [5] to work with more contemporary deep learning
frameworks, such as TensorFlow [6] and CNTK [7]. Improving the toolkit and
implementing new version of forced alignment (Sections: 4.4 and 4.4.1).

e Building a new voice by starting from previously trained single-speaker TTS model.
Source model is trained on large amount of data, while target speaker has only limited
amount (Section 5).

e Creating a multi-speaker (MS) TTS model, able to produce speech of many speakers,
while producing a “speaker space” for all the speakers, i.e. an embedding space, which
reflects similarities between speakers (Section 6.1).

e Building a new voice by starting from the MS model and using a very small amount of

new speech material (Section 6.2).

1.2. Thesis organization

The thesis contains six chapters, and is organized as follows.

Section 2 provides the introduction to speech synthesis, its history, and describes the
main approaches. It also explains the basic concepts and problems related to speaker

adaptation and describes methods used for TTS system evaluation.

Section 3 focuses on statistical parametric approach and illustrates methods for speaker

adaptation which were used with that approach.

Section 4 deals with neural networks (NN) and their application in speech synthesis. It
provides a brief history of NNs and an introduction to basic concepts of deep learning. It
proceeds to explain how NNs are used in contemporary speech synthesis systems and
compares the statistical and the NN approach. Standard approaches for speaker adaptation
are also presented. This chapter also gives a brief introduction to open-source Merlin toolkit,

which was used as a starting point for this research.
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Section 5 describes the proposed method of speaker adaptation from source to target
speaker model, where there is sufficient amount of audio data for source speaker, but only a
small amount for target speaker. Instead of training target speaker model from randomly
initialized neural network, proposed method starts from already built source speaker model,

which had sufficient data for conventional training.

Section 6 explains in detail the proposed method for speaker adaptation, which starts by
building multi-speaker model and low-dimensional speaker space (embedding), followed by
two-step adaptation procedure. In the first step optimal point in the embedding space for
target speaker is found. During the second step adaptation of the rest of the neural network is

performed, which results in a voice highly resembling target speaker.

The advantages of the novel methods are corroborated by numerous experiments and

evaluations.

Section 7 provides conclusions and outlines the directions for future work in this area.
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2. Introduction to Speech Synthesis

The term speech synthesis refers to computer-generated simulation of human speech.
Speech synthesis is used to translate written information into audio information, and is used
whenever audio information is more convenient, especially in mobile applications such as
voice-enabled e-mail and unified messaging. It is also used to assist the visually impaired so
that, for example, the contents of a display screen can be automatically read aloud to a blind

user. Speech synthesis is the counterpart of speech recognition.

Speaker adaptation is a text-to-speech technique by which a TTS system can be
customized to the voice characteristics and manner of speaking of a specific speaker,
typically in a short time and at a low cost. In conventional TTS systems, at least several
hours of speech data are required to create a voice that represents a specific speaker’s voice
characteristics, in order for the system to be able to convert any text to speech. Speaker
adaptation techniques convert an existing voice model with sufficient phonetic and linguistic
coverage into a model having the voice characteristics and manner of speaking of a specific
speaker, based on a small quantity of speech data of that speaker. These techniques make it
possible to create a voice for a specific speaker with a high level of voice quality from a very

small amount of speech data.

2.1. History of Speech Synthesis

Artificial speech has been a dream of the humankind for centuries. The earliest efforts to
produce synthetic speech were made over two hundred years ago. In 1779 in St. Petersburg
Russian Professor Christian Kratzenstein explained physiological differences between five
long vowels (/a/, /e/, i/, /o/, and /u/) and designed an apparatus to produce them artificially.
He constructed acoustic resonators similar to the human vocal tract and activated them with
vibrating reeds as it is done in music instruments. Several years later, in 1791 in Vienna,

Wolfgang von Kempelen introduced his “Acoustic-Mechanical Speech Machine”, which was
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able to produce single sounds and some sound combinations. In mid 18" century Charles
Wheatstone constructed his famous version of von Kempelen’s speaking machine. It was
somewhat more complicated and was capable to produce vowels and most of the consonant
sounds. Some sound combinations and even full words were also possible to produce. In late
18™ century Alexander Graham Bell with his father, inspired by Wheatstone’s speaking
machine, constructed a similar speaking machine. The research and experiments with
mechanical and semi-electrical analogs of the human vocal system were made until 1960’s,

but with no remarkable success.

The first full electrical synthesis device was introduced by Stewart in 1922 [8]. The
synthesizer had a buzzer as excitation and two resonant circuits to model the acoustic
resonances of the vocal tract. The machine was able to generate single static vowel sounds
with two lowest formants, but not consonants or connected utterances. In 1932 Japanese
researchers Obata and Teshima discovered the existence of the third formant in vowels [9].
The three first formants are generally considered to be sufficient for intelligible synthetic
speech. The first device to be considered as a speech synthesizer was VODER (Voice
Operating Demonstrator) introduced by Homer Dudley at New York World’s Fair in 1939
[8] [10]. VODER was inspired by VOCODER (Voice Coder), developed at Bell Laboratories
in the mid-thirties. The original VOCODER was a device for analyzing speech into slowly
varying acoustic parameters that could then drive a synthesizer to reconstruct the
approximation of the original speech signal. It was finally shown that intelligible speech can
be produced artificially. Actually, the basic structure and idea of VODER is very similar to

present systems which are based on the source-filter model of speech.

The first formant synthesizer, PAT (Parametric Artificial Talker), was introduced by
Walter Lawrence in 1953 [8]. PAT consisted of three electronic formant resonators
connected in parallel. The input signal was either a buzz or noise. At about the same time
Gunnar Fant introduced the first cascade formant synthesizer OVE I (Orator Verbis Electris),
which consisted of formant resonators connected in cascade. PAT and OVE synthesizers
started a conversation how the transfer function of the acoustic tube should be modeled, in
parallel or in cascade. First articulatory synthesizer was introduced in 1958 by George Rosen

at the Massachusetts Institute of Technology (MIT) [8]. The DAVO (Dynamic Analog of the
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VOcal tract) was controlled by tape recording of control signals created by hand. In mid

1960’s, first experiments with Linear Predictive Coding (LPC) were carried out [2].

The first full text-to-speech system for English was developed in the Electrotehnical
Laboratory, Japan 1968 by Noriko Umeda and his collaborates [8]. It was based on an
articulatory model and included a syntactic analysis module with sophisticated heuristics. In
1979 Allen, Hunnicutt, and Klatt demonstrated the MITalk laboratory text-to-speech system
developed at MIT. Two years later Dennis Klatt introduced his famous Klattalk system,
which used a new sophisticated voicing source. The first reading aid with optical scanner was
introduced by Kurzweil in 1976. The Kurzweil Reading Machines for the Blind were capable
to read multifont written text quite well. In late 1970°s and early 1980’s, a wide range of
commercial text-to-speech and speech synthesis products was introduced. Dominant systems
in the 1980°s and 1990’s were the DECtalk system, based largely on the work of Dennis
Klatt at MIT, and the Bell Labs system; the latter was one of the first multilingual language -

independent systems, making extensive use of natural language processing methods.

From late 1990’s until 2016 and the introduction of WaveNet [3], the market was
dominated by unit selection versions of synthesizers, produced by several major companies
(Nuance, Acapela, Google). Even though parametric approach based on hidden Markov
models (HMM) was widely known, its quality was inferior to unit selection based solutions.
After 2016, WaveNet based solutions started to catch up and even surpass the quality of unit
selection methods. Beside speech quality, the big advantage of WaveNet is that it is

parametric and as such more flexible for many applications.

2.2. Approaches to Speech Synthesis

As shown in Figure 1, a typical speech synthesis system consists of two components:
front-end and back-end. The front-end component performs analysis of text input and
extraction of information necessary for back-end modelling. This includes text normalization
(e.g. converting numbers into words), parts of speech (e.g., noun, verb, adjective) annotation,
prosodic features (Tones and Break Indices (ToBI) or like, see Section 4.5), and

disambiguation of homographs. The back-end component accepts the front-end analysis
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results and combines the speech and text information for modelling. During the process of
synthesis, the back end generates the output speech signals using the text input and well-

trained acoustic models.

Front-End Back-End
Text Speech Speech
Text ‘ ‘ q
Analysis Synthesis Waveforms

Word breaking

Part-of-speech annotation
Projection of rhythmic structure
Disambiguition of homographs

Speech acoustic parameters and modeling
Rhythmic modeling

Parameter generation

Waveform generation

Figure 2: Typical speech synthesis architecture

The rest of this work will focus on the back-end component and different approaches

applied therein.
2.2.1. Unit Selection Synthesis

In this approach multiple instances of speech units having different prosodic features are
stored. This approach is known as Unit Selection Based Concatenative TTS. Units are stored
in database and then assembled in accordance to defined rules and costs (Figure 2). An
appropriate unit is selected from the database based on two types of costs — a target cost and

a concatenation cost.

Target cost expresses how similar the features of a database speech unit are to the
features of the desired speech unit, with the idea that any digital processing that may be used
to bring the selected acoustic segment closer to the specification may introduce unwanted
distortion. The target cost comprises of target subcosts. Each target subcost is a cost of a
single attribute of a speech unit [11] such as energy, pitch etc. The target cost can be

calculated as:

p
C.(t;,v;) = Z wy;Cej(t,v;) (1
]

J
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where t; is the target unit, v; is the candidate unit, p is the number of sub-costs used. Cy; is

the j-th target sub-cost, and wy; it is the weight given to the j-th target sub-cost.

Concatenation cost is a measure of how well the acoustic features of two acoustic
segments match at the point where they should be concatenated. The concatenation cost also
comprises of multiple subcosts. Each of these subcosts is related to a specific continuity

metric such as spectral continuity etc. The concatenation cost can be calculated as:

q
Cc(Wi—1,v) = Z WejCej(Viz1, Vi) )
j=1

where v;_; and v; are candidate speech units for the (i — 1)-th and i-th target speech units, ¢

is the total number of subcosts used, and w; is the weight associated with the subcost C;.

An exhaustive search is performed so as to select optimum speech units from the speech
database. The Viterbi search is frequently used to select the units to be concatenated from the

speech inventory, so as to reduce the total accumulated target cost and concatenation cost.

Database of sound

units

Text Text analysis, Assemble units Speech
—»| Letter to sound, »1 that match input > Synthesizer
prosody targets

Figure 3: Unit selection TTS system architecture

In order to match the target more precisely (fy, energy, phone duration) and to make
transitions between units as smooth as possible, several methods were used:
e Pitch Synchronous Overlap and Add (PSOLA)
e Frequency Domain Pitch-Synchronous Overlap and Add (FD-PSOLA)
e Linear Prediction Pitch-Synchronous Overlap and Add (LP-PSOLA)



Darko Pekar Doctoral thesis

e Time Domain Pitch-Synchronized Overlap and Add (TD-PSOLA)
e Epoch Synchronous Non Overlap and Add (ESNOLA)

2.2.2. Parametric Speech Synthesis

When it comes to a model-based approach to speech synthesis, particularly when the goal
is to learn this model from data, we are talking about a parametric speech model. The model
is parametric because it represents the speech using parameters, rather than stored sound

samples.

A widely used model for speech parametrization is the source-filter model. The source—
filter model models speech as a combination of a sound source, such as periodic buzz from
vocal cords or noise from lungs; and a linear acoustic filter, which describes the vocal tract

and lip radiation characteristic. It is illustrated in the Figure 3.

Impulses

llll—\ Gain
@—>’>—>\\JE’

/ Source
WWMMW LPC filter

Unvoiced

White noise

Figure 4: Source-filter model of voice production

Source is usually a combination of impulse train and white noise. The ratio of their
respective contributions to the source signal, which is usually defined per spectral band, is
called band periodicity/aperiodicity. The frequency of the impulse train defines pitch or
fundamental frequency (fp in Figure 4) of the final phone. The acoustic filter describes the
spectral envelope (Figure 4), which provides the final shape of the spectrum of the output
signal (while source is kept white). Different phonemes can be distinguished by the

properties of their source(s) and their spectral envelopes. For example, vowels and sonants

10
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have a source due to mostly periodic glottal excitation, which can be approximated by an
impulse train in the time domain and by harmonics in the frequency domain, while the
corresponding filter depends on vocal tract shape and lip position. On the other hand,
fricatives have a source mostly due to turbulent noise produced at a constriction in the oral
cavity (e.g. “s” and “f”) or noise made by glottis and lungs (e.g. “h”). But most sounds
actually have two sources — one at the glottis and one at the supra-glottal constriction, and the

ratio of voiced to unvoiced components (per spectral band) is described by band aperiodicity

feature.

The task of the acoustic filter is to represent the spectral envelope and to appropriately
shape the source. Spectral envelope represents a smoothed version of a spectrum, which
should leave aside the spectral line structure while preserving the general form of the
spectrum. If the signal contains only harmonic parts, spectral envelope is the curve that
passes through the local peaks. In this case, peak values have to be retrieved and an
interpolation scheme should exist in order to complete the curve between the peaks. If the
sound contains parts that are not harmonic (i. e. that are noisy), the notion of a spectral
envelope becomes completely dependent on the definition of what belongs to the source and

what belongs to the filter.

60 1
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Figure 5: Speech signal spectrum
black line - spectral envelope; red line - fy, green areas - aperiodic energy
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As already noted, signal contains both harmonic and aperiodic (noise) component, and

the ratio of their presence in the signal is not constant over the whole spectrum. For that

reason, band aperiodicity parameter is introduced. It represents the ratio between aperiodic

and periodic energy, averaged over certain frequency bands, i.e., total power divided by sine

wave power.

There are numerous methods for extracting the spectral envelope, with the following

being most widely used:

Channel vocoder or filter banks (FB). This approach is based on frequency bands and
performs estimations of the amplitude of the signal inside these bands, thus
approximating the spectral envelope.

Linear prediction coding. This method estimates an all-pole filter that matches the
spectral content of a sound. When the order of this filter is low, only the formants are
taken, while a higher order would describe a more detailed representation. The LPC
predictor coefficients can be used to efficiently model the vocal tract spectral envelope,
but they are not robust in terms of quantization or statistical modeling: even though the
autocorrelation method guarantees a stable filter, a small error in the coefficient values
may cause the synthesis filter to become unstable.

Line Spectral Pairs (LSP). Many methods have been proposed for robust representation
of LPC coefficients, such as reflection coefficients or log area ratios. One of the most
prominent methods of presenting LPC data is the Line Spectral Frequency (LSF)
representation, with line spectral frequencies being the roots of the LSP polynomials.
(Mel) Cepstral coefficients (MFCC). Along with LPC, cepstral analysis of speech is one
of the most widely used methods for the extraction of the spectral envelope. This
technique performs the approximation of the logarithm of the fast Fourier transform
(FFT) spectrum by using discrete cosine transform (DCT). Again, the more DCT

coefficients are used the finer representation of the spectral envelope is preserved.

Mel-generalized cepstral coefficients (MGC). The generalized cepstral analysis method is
viewed as a unified approach to the cepstral method and the linear prediction method, in
which the model spectrum varies continuously from all-pole to cepstral according to the
value of a scalar parameter y. Since the human ear has higher resolution at low

frequencies, using Mel scale to model spectrum, it is represented more efficiently.

12
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Besides these, vocoder parameters, TTS systems have to parameterize and model phone
durations as well (or even subphone — state durations). These are not considered for the task
of mere speech coding and transmission, because the transmission is synchronous so
durations don’t change. But when it comes to converting text into speech, the system has to
find a way to estimate these durations correctly.

To summarize, when speaking about parameters in parametric speech synthesis, these are
usually considered:

e Phone and state durations, usually given in frames or milliseconds.

e Some form of spectral envelope representation.

e Pitch (fp) representation, which includes the information whether a sound segment is
voiced or unvoiced. Logarithm of fp is used more frequently, because we are more
interested in relative rather than absolute distance between two fy values.

e Band aperiodicity.

A typical representation may use between 40 and 60 parameters per frame (usually 5 ms)
to represent the spectral envelope, band aperiodicity, the value for fy, and the degree of
voicing (usually binary). Before training the models, the encoding stage of the vocoder is
used to extract a vector containing these vocoder parameters from the speech signal, at a
certain constant frame rate. During synthesis, the vector of parameters is generated by the
models, and fed to a vocoder which generates the output signal. Here is the list of some of the
most popular vocoders used in TTS:

e Impulse Excitation vocoder. The most basic vocoder used in statistical parametric speech
synthesis essentially exemplifies the unified source-filter model: the speech signal is
divided into source and filter parameters, and the source signal is modeled as a pulse train
for voiced segments, and as white Gaussian noise for unvoiced segments.

e Mixed (Multi-Band) Excitation vocoder (MBE). The main idea of the Mixed Excitation
vocoder is based on the observations of the spectral characteristics of the residual: the
residual has been found to have different degrees of periodicity and noise in different
frequency bands. If the residual is modeled completely periodically (with a pulse train),
the resulting voice will sound “buzzy”. Similarly, if the residual is modeled completely
with noise, the resulting voice will sound “hissy”. With a correct combination of periodic

and noise components in the excitation (residual), the synthesized speech will show a

13
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great increase in quality. The most popular MBE vocoders are: Mixed Excitation (ME)
vocoder, Two-Band Excitation (TBE) vocoder based on Harmonic plus Noise Model
(HNM), STRAIGHT vocoder as well as WORLD vocoder. We are providing additional
information for some of these:

o STRAIGHT (Speech Transformation and Representation using Adaptive

Interpolation of weiGHTed spectrum) [12] belongs to MBE group, but deserves to be
singled out, since it is the most established of the more sophisticated vocoding
methods. This speech analysis, modification and synthesis system is an extension of
the classical channel VOCODER that utilizes the progress in information processing
technologies and a new understanding of the role of repetitive structures in speech
sounds. It uses pitch-adaptive spectral analysis combined with a surface
reconstruction method in the time-frequency region, and an excitation source design
based on phase manipulation.

WORLD vocoder [13] also belongs to MBE group. It provides high-quality speech
output, similar to STRAIGHT, but also meets the requirements of real-time
processing. The fy contour is estimated with the procedure named DIO [14] and the
spectral envelope is estimated with CheapTrick [15], which uses not only the
waveform but also the fy information. The excitation signal is estimated using
PLATINUM (PLATform INference by removing Underlying Material [16]) and used
as an aperiodic parameter (whose definition is different from that of STRAIGHT).

PLATINUM uses the waveform, fy, and spectral envelope information.

WaveNet [3] is a neural network based vocoder. During training, it is presented with the
spectrogram or some other set of parameters (extracted by a conventional vocoder) and
the actual signal is set as a target. Thus, WaveNet learns to generate naturally sounding
speech when presented with its parameters during inference.

There are two main approaches which utilize speech parametrization for TTS: statistical

parametric speech synthesis based on hidden Markov models and Gaussian mixture models

(HMM-GMM) and speech synthesis by using deep neural networks (DNNs). Both will be

discussed in more detail in the remainder of this work.
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2.3. Introduction to Speaker Adaptation

In speech synthesis, speaker adaptation refers to the range of techniques whereby a TTS
system is adapted to the acoustic features of a specific speaker using a small sample of
utterances. In recent years the practical development of speech synthesis systems has seen
significant progress; however, these systems still require large annotated databases (ten or
more hours of speech) in order to be trained well. Much hope has therefore been placed on
the establishment of speaker adaptation techniques that can bring the performance of a single
speaker system trained from scratch, up to that of a speaker-adapted one using the smallest
possible amount of data.

One of the main problems in training TTS models is data sparsity. Namely, the final
system should be able to produce any phoneme in any context (phonetic or prosodic, in a
relatively wide time window), which implies that each such acoustic phenomenon should be
seen in the training database. Since the number of these phenomena is very large (millions or
more), it is virtually impossible to have them all even in a very large training database. For
this reason, models should be able to generalize well and to produce reasonable outputs even
for unseen contexts. This problem becomes much harder if the available amount of
adaptation data is very small (several minutes or less). In that case the percentage of seen
contexts becomes almost negligible, meaning that everything else should be generalized from
that small sample and some prior information.

In the HMM-GMM approach, there were several techniques which attempt to address
this problem, of which the most successful are: maximum a posteriori (MAP) parameter
estimation and maximum likelihood linear regression (MLLR), which will be described later.
When it comes to DNN-based TTS, research is still under way, but some of the promising

methods include transfer learning and speaker embedding.

24. TTS System Evaluation

There are several different approaches used for the evaluation of a specific TTS system.
All of them can be divided into following groups [17]:

e evaluation based on objective measures,
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e evaluation based on subjective measures,

e comparison of system characteristics.

Objective measures are obtained by direct comparison of parameters extracted from the
natural speech with the generated parameters. This type of measures can be particularly
useful in the development phase of TTS system. Namely, a large discrepancy between
generated parameters and parameters extracted from natural speech is usually a sign of
serious problem in the system design or implementation. Early problem detection is
important since it can accelerate the development of a new system. However, the problem
with this approach is the fact that the values of objective measures are not always correlated
with the subjective evaluation by human listeners. It is possible to have a system (or e.g. a set
of generated utterances) that differ significantly from natural speech in terms of objective
measures, but still sound quite natural and intelligible to humans. The reason for this is the
natural variability of speech. Namely, there are numerous ways in which a certain text could
be spoken, even when certain constraints are given (e.g. style and prosodic guidelines). A
TTS system provides only one rendition, while a human speaker could generate a
significantly different one. Even if TTS system provides a perfectly natural output, there still
can be significant differences with respect to the rendition produced by the speaker. In this
dissertation the following objective measures were used:

1. Mean Cepstral Distortion (MCD), defined by [18]

110\/§T_1 D-1 son s , .
MCD = = Z (vd () — vy (t)) :

t=0,/d=0

where T is the total number of frames in referent sequence v'¥, and generated sequence 15",
and D is the number of cepstral coefficients extracted per each frame.
2. Distortion of aperiodicity coefficients (if used), calculated in the same way as in (3).
3. Root Mean Square Error (RMSE) of the fundamental frequency (fo).
4. Voiced/Unvoiced (VUV) error, calculated as the ratio of the number of wrongly
predicted frames and total number of frames.

5. Correlation for the features of voicing and fundamental frequency.
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Subjective measures are based on the scores given by human subjects regarding certain
characteristics of the speech. This group of tests can be divided into two subgroups:

3. Intelligibility score,

4. Synthesis quality score.

It is widely accepted that contemporary synthesizers have good intelligibility [19], hence
the methods presented in the dissertation are scored by using synthesis quality score
approach. Specifically, Mean Opinion Score (MOS) and Multiple Stimuli with Hidden
Reference and Anchor (MUSHRA) tests were used [20].

During MOS testing, subjects are expected to score certain speech characteristic with the
scores from 1 (poor) to 5 (excellent). The final result of this test is the average score from all

subjects.

MUSHRA is a methodology initially used for conducting a codec listening test to
evaluate the perceived quality of the output from lossy audio compression algorithms. In
MUSHRA, the listener is presented with the reference (labeled as such), a certain number of
test samples, a hidden version of the reference and one or more anchors. The
recommendation specifies that a low-range and a mid-range anchor should be included in the
test signals. The purpose of the anchors is to calibrate the scale so that minor artifacts are not
unduly penalized. This is particularly important when comparing or pooling results from
different labs. The listeners’ task is to firstly determine the utterance of the highest quality,
compared to the reference, and then to score the rest of the utterances by assigning scores

from 1 to 100.

Subjective tests are the best way to score the quality of the synthesized speech. The main
disadvantages are time and human resources required for conducting a proper test, as well as

substantial variability in subjects’ perception of speech quality.
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3. Statistical Parametric Speech Synthesis

Until recently, Statistical Parametric Speech Synthesis (SPSS) was the only widely used
approach which utilized parameters to represent speech. It is called statistical because it
defines those parameters using statistics (usually means and variances of probability density
functions) which describe the distribution of parameter values found in the training data. The
initial motivation for the use of statistical parametric speech synthesis was the success of the
hidden Markov models for automatic speech recognition. The existence of efficient training
algorithms (Expectation-Maximization), automatic methods for model complexity reduction
(tying of parameters) and computationally efficient search algorithms (Viterbi) make the
HMM an obvious choice. The performance of the model depends critically on choosing an
appropriate configuration. Two principal aspects of this configuration are the
parameterization of the speech signal (observations) and the choice of modelling unit. The
modelling unit is usually a context-dependent phoneme, so this choice means selecting which
contextual factors need to be taken into account. As for the speech parametrization, the

speech signal is represented as a set of vocoder parameters at some fixed frame rate.

The model most commonly used in statistical parametric speech synthesis is not the
conventional HMM. The duration model (i.e., the state self-transitions) in the HMM is not
optimal, so a better model for phoneme duration prediction is required for high-quality
speech synthesis. When explicit duration modelling is added to the HMM, it is no longer a
Markov model in the mathematical sense. Transitions between states still exist, and the
model is Markov at that level, but the exact model of state durations is not Markov. Such a

model is referred to as Hidden Semi-Markov Model (HSMM).

The vocoder parameters themselves are the only thing needed to control the output stage
of the vocoder and generate speech. However, the key to producing natural-sounding speech
using HMM synthesis lies in the modelling of not only the statistical distribution of these
parameters, but also in the dynamics of their change over time. The vocoder parameters are
known as the static coefficients, their first-order derivatives as the delta coefficients and

second-order derivatives as the delta-delta coefficients. These three subsets of parameters are
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combined together into a single observation vector for the model. During training, the model
learns the distributions of all these parameters. During synthesis, the model generates

parameter trajectories which have optimal statistical properties.

During synthesis, the input text is analyzed and a sequence of full context labels is
produced. The sequence of models corresponding to this sequence of labels is then joined
into a single vector of (HMM-GMM) states. From this model, the vocoder parameters are
generated using the maximum likelihood parameter generation (MLPG) algorithm [21]
illustrated in Figure 5. Parameters are generated from the model based on the criterion of
maximum likelihood, used to generate the optimal sequence of observations (vocoder
parameters). State durations (the number of frames of parameters to be generated by each
state of the model) are determined in advance — they are simply the means of the state
duration distributions. Finally, the generated vocoder parameters are used to produce a

speech waveform.

A naive method for parameter generation would generate the most likely observation
from each state, taking into account only the static parameters. The most likely observation is
the mean of the Gaussian in that state. Therefore, this method would generate piecewise
constant parameter trajectories, which would change their values abruptly at each state
transition. Obviously, this would not sound natural — natural speech usually does not have
such parameter trajectories. This problem is solved by the MLPG algorithm, which takes the
statistical properties of the delta and delta-delta coefficients into account. Before generating
parameters, a state sequence is selected using the duration model, and the number of frames
for each state is also determined. The figure illustrates the sequence of output distributions
for each state, frame by frame. MLPG finds the most likely sequence of generated parameters
(Oth cepstral coefficient is used as an example in Figure 5), given the distributions for the
static, delta and delta-delta parameters. It can be seen that the most likely parameter

trajectory is smoothly changing in a statistically appropriate way.
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Figure 6: Illustration of Maximum Likelihood Parameter Generation algorithm

3.1.1. Speaker Adaptation in HMM-GMM

As previously described, HMM-GMM model is represented by a set of states, each
containing usually only one Gaussian component which represents the position of that state
in the entire parameter “acoustic space”. There are usually separate models for duration, fO
and spectral envelope parameters. When performing speaker adaptation, all these model
parameters should be transformed so that they better represent target speaker observations
(adaptation data). In other words, we are transforming acoustic space of the initial speaker
(which may also be an average of multiple speakers) towards target speaker’s data. After
that, synthesis by using the new model should sound more like the target speaker. We will

present two most popular adaptation techniques in HMM-GMM: MAP and MLLR.
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3.1.2. MAP Adaptation

If parameters of the model 6 are assumed to be random vector, which is to be estimated
from samples x; drown from probability density function f (- |8) and for 8 we assume some
prior p.d.f. g, and if we denote posterior probability density as g(8|x), then we obtain MAP

estimate of @ using the Bayesian theorem, as follows:

Onvap = argmax, g(0|x) = argmax, f(x|6)g(0) 4)
In (15), if prior g is non-informative, i.e., g = const, we obtain that the ML estimate
coincident with the MAP estimate. Let now x = [x; --- x7] be the vector of T independent,
identically distributed (i.i.d.) observations drawn from the GMM with K Gaussian p

dimensional components, i.e. the following holds:

T K
) =] [ D oGy,

t=1 k=1
. 5)
Wy = 0'2 wr = 1,0 = [0 wg, My My, 1y 0T ]
k=1
where wj, denotes the mixture gain for k-th mixture component and
1
N (xlme, 1) o |7 2exp[ == (= mi) Trie(x = )] ©)

where my, is p dimensional mean vector and 7y, is the precision matrix (inverse of covariance
matrix) and |-| denotes determinant. Recall that the statistic t = t(x) is the sufficient
statistics for underlying parameter 6 of the density f(-|8) iff there exists factorization
f(x|0) = h(x)k(6, t(x)), where kernel density k depends on 6 explicitly, but on x only
trough t(x). If f(x|0) posses sufficient statistics of fixed length, then the natural solution is
to chose the prior density g in the form of conjugated family k(:,¢), which includes the
kernel density k, so that the posterior has the form g(0|x) < k(6,¢") = k(8, p)k(6, t(x)),
where we assume that for kernel k it holds k(8, $1)k(0,¢,) = k(6,¢) for some ¢ =
¢(p1, ) for all ¢q,¢, (very often ¢(¢pq,¢,) = 1 + ¢p2). However, among the
distribution families of interest, only exponential families have a sufficient statistic of fixed

length, so that only for them, there exists conjugate prior, which greatly constraints possible
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applications [22]. Consequently, there is no simple conjugate prior for GMMs (and thus
HMMs with GMM state observation densities). Nevertheless, an approximate approach
which uses EM algorithm could be employed, as it is presented in [23]. Note first, that a
finite mixture density f(x|6) given by (5) can be interpreted as a density associated with a
statistical population which is a mixture of K component populations with mixing proportion
[wq - wk]. It can be seen as a marginal distribution of the joint distribution of the parameters
0 expressed as the product of a multinomial density (for the sizes of the component
populations) and multivariate Gaussian densities (for the components). Gains wj, for each
mixture density have the joint distribution is in the form of a multinomial distribution with
density given by q(ny, .., ng; T, @y, oo, wg) X @ wp®, ny + -+ ng =T, ny € N. Then

choice for prior is the Dirichlet density, so that g(wy, ..., Wg; V1, .., Vg) & [[5-4 a);"_l with
hyper-parameters vy = 0. Next, for the simplicity we consider 7, to be known, i.e., not
subject to adaptation so it is considered deterministic constant. Thus, the conjugate prior for

m,, is Gaussian and given by

kD Tk T 7
gMuciTie, Tie) < [1iel 2 exp[=—=(mye = §ic) i (M — $ic)] 7
with hyper-parameters satisfying a, > p — 1, 7, > 0. Assuming independence between the

parameters of the individual mixture components and the set of the mixture weights, the joint

prior g is the product of the prior density defined in (6) and (7), so that

K
g(e) = g(wlr '"er) Hg(mk;rk; Tk) (8)
k=1

The EM algorithm is an iterative procedure for approximating ML estimates in the
context of incomplete data cases such as GMMs and HMM with GMMs [24]. This procedure
consists of maximizing at each iteration the auxiliary target function Q(6,0) defined as the
conditional expectation of the complete-data log-likelihood In h(y|8), where y = [xz] is
complete data vector and z = [z; -+ z7] are the unobserved labels referring to the mixture
components (whose mixture label z; generated particular x;), given the incomplete data x

and the current fit 8, i.c.,
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Q(8,0) = E,),p[Inh(v10)] ©)
where E, 5[] = J [1h(z|x,8)dz is the conditional expectation operator. The EM procedure
is based on the fact that h(y|@) = h(z|x, 0)f(x|0) (Bayesian theorem), so that after
performing logarithm, taking expectation E |, 5[] and using [ h(z|x,0)dz = 1, one obtains

Inf(x|8) = Q(6,0) — H(6,0), with

H(6,0) = E,,g[nh(y|x,0)] (10)

As it holds, H(8,0) < H(8,0), by assuring Q(6,8) = Q(0,0), as In(-) is monotony
increasing one obtains f(x|6) > f(x|@), so that the iterative process leads toward
maximization of likelihood. In the case of MAP estimation, the same procedure can be
obtained, by maximizing R(8, ) = Q(6,0) + In g(6). By direct calculation, one can obtain
[22]:

JOOEDY

1

T
rom X1 @N Cee |y, 1)

K
O N(x.|M,,, 1

Z kNG|, 7i) Inwy N (x| my,1%) (11)

k=1

We maximize ¥(8,0) = exp(R(6,0)) (which is equivalent to maximizing Q(8, 8)), so we

define the following notation:

W N(Qxe|my, 1)
Y L @N (x|, 1)
T

= Z Ct (12)

t=1
T

X = Z Cke Xt/ Ci

t=1

It follows from the definition of f(x|8), given by (5), that the following holds

Ckt

K
~ C
w(6,0) o« g(0) | | ¥ Inelow/2expl—=F (me — 2) melme — %] (13)
k=1

so that from (7), (8) and the shape of g(wy, ..., ), one concludes that ¥(-, §) belongs to the

same family of distributions as g(-), but with the parameters
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Vi =V + Ck,
T;( =T + Ck»

ay = ai + ¢y, (14)
, Tl t CiXg
Hic Tk + Ck

So that the family of densities defined by (8) is therefore a conjugate family for the
complete data density. The mode of ¥(,8) denoted (&, ;) may be obtained from the
modes of the Dirichlet and normal distribution as: @, = (v — 1)/3X_,(vi, — 1), My = iy,

which are actually MAP re-estimations . Thus, we can resume:

If the prior mean is g, then the MAP estimate for the adapted mean @i of Gaussian is given

by

THo + Zn y(n)xn (15)
T+ Xy ()

ﬁ =
where:
e 7is a hyperparameter that controls the balance between the ML estimate of the mean, 1.e.

its prior value (typically, it is in the range 2—-20),

e X, is the adaptation vector at time n,
e y(n) is the probability of this Gaussian at this time.

As the amount of training data increases, the MAP estimate converges to the ML
estimate. The main drawback to MAP adaptation is that it is local. Only the parameters
belonging to Gaussians of observed states will be adapted, which is illustrated in Figure 6.
Large speech synthesis systems have thousands of Gaussians, most will not be adapted, or
will not be adapted to a sufficient extent. Structural MAP (SMAP) approaches have been

introduced to share Gaussians. MAP adaptation is very useful for domain adaptation (e.g.

adapting a conversational telephone speech system to studio recordings).
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Figure 7: Gaussian adaptation by using MAP

3.1.3. MLLR transformation

Another approach is to estimate a set of transformations that can be applied to model
parameters. If these transformations can capture general relationships between the original
model set and the current speaker or new acoustic environment, they can be effective in
adapting all HMM distributions. One such transformation approach is MLLR [22][23], which
estimates a set of linear transformations for the mean parameters of a mixture Gaussian
HMM system, so that the likelihood of the adaptation data is maximized. As many
components are assumed to share the same transformation, it is possible to adapt all the
components of the system with little data. It should be noted that while MLLR was initially
developed for speaker adaptation, since it reduces the mismatch between a set of models and
adaptation data, it can also be used for speaking style adaptation, or even to perform

environmental compensation by reducing a mismatch due to channel or additive noise effect.

If the original mean vector for a certain state (i.e. its Gaussian component) is W, then the

new estimate of the mean, [, is obtained by
i=WE¢ (16)

where W is the n X (n + 1) transformation matrix (n is the dimensionality of the data) and

¢ is the extended original mean vector:

§=[1py . pun]” (17)

We can write W in the form:
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W = [b4] (18)

where b is a bias on the mean and 4 is a transformation matrix, which may be full, block
diagonal, or diagonal. The aim is to find the transformation W that maximizes the likelihood

of the adaptation data.
Gaussian covariance matrices are updated by
X=B"HB (19)

where H is the linear transformation to be estimated and B is the inverse of the Choleski

factor of 271, so:
rl=cc’ (20)
and:
B=C"1 (21)
The entire optimization procedure is described in [24].

Two problems should be resolved when performing MLLR adaptation. The first problem
is to decide how components should be clustered together, so that they all can share the same
transformation matrix. The second problem is how to decide how many transformations to

generate, given a particular set of adaptation data.

To better illustrate the whole procedure, let us look at Figure 7, which depicts parametric
representation of one phoneme in context (e.g. P-A+D). Generally, context is much more
complex than this, and usually contains a wider window of phonetic context, linguistic
context, prosodic context (ToBI tags or like), etc. Parameters (1 and 2) can be any acoustic
features (spectrum (MFCCs), pitch, aperiodicity) and while the example is presented in a 2D
acoustic space, in practice the dimension of this space is much higher. AO, A1 and A2 are
consecutive states of the phoneme in context. Parameter values are calculated from the

database of speaker X during the training procedure of HMM-GMM.
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Figure 8: Parametric representation of phoneme (actually, its states) in context

During enrollment (providing speech adaptation data), speaker Y produced some acoustic
observations — his/her versions of the same phoneme (i.e. its states). All these parameters are
calculated per frame (e.g. 5 ms), therefore several observations exist for each state (Figure 8).

Each observation is assigned to the appropriate state, which is accomplished by the process

of forced alignment.

A
N
Q
T X X X
g
S X X
S X x
~ ~
P-AO+D P-A1+D ~
P-A2+D
>
parameterl

Figure 9: Observations from the adaptation sequence

In the next step, states from speaker X are transformed “towards” speaker Y’s
observations. Since we know ‘“what should go where”, it is possible to calculate a
transformation. We are not transforming each state separately, but rather calculate a joint
transformation for some cluster of states (Figure 9). This provides more robust results. A

logical approach is to transform speaker X parameters (of each state) by using the
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precalculated transformation. After this, we basically have speaker Y parameters, instead of
X.

P-A1+D
P-AO+D o bA24D
® °
™ | o=
Xx X X
X X
X
”~ ~ X
”
P-AO+D P-A1+D P-A2+D

Figure 10: Calculation of transformation matrix

In the model X there will be numerous states which do not have their representatives in
the speaker Y’s observations, i.e. they are not “seen” in the training sample (Figure 10).
However, they are (more or less) close to some “seen” states. The basic intuition of MLLR or
similar method is that these (“unseen”) states should be transformed in the same way as their

close “seen” states.

P-A1+D
P-A0+D ° P_A24D
o °®
,unseen B-A1+K
. states
—
B-AO0+K
P-EO-K

Figure 11: Illustration of “unseen” states from model X

By applying the same transformation to neighboring “unseen” states, we obtain new
“positions” for those states as well (Figure 11). Since the same transformation was applied to
those states, their relative position to the “seen” states will remain the same, which is the
desired behavior of the procedure. It should be noted that initially, these three states (A0, Al
and A2) were marked as close, thus having joint transformation. This usually will not be the

case, since they represent different segments of a phone. It is more likely that, e.g. P-A0+D

will be similar to B-AO+T, than P-A1+D.
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Figure 12: Appropriate transformation is applied to “unseen’ states as well

To summarize the rationale behind MLLR:

e The whole acoustic space is clustered into regression classes of equivalence (RC).

e Each RC contains states close to each other.

e The same transformation is applied to every state in a RC.

e Some states in RC are “seen” and some are “‘unseen”.

e Observations from the “seen” states participate in the calculation of transformation for
that RC.

e If some RC has an insufficient number of observations, it is merged with some
neighboring RC.

e In conclusion, if we have a large number of observations, we can handle a large number
of RCs, and have better transformations. Otherwise, we are forced to merge RCs more

often, and perform suboptimal transformations.

Some of the problems in MLLR are the following:

e Insufficiently robust transformations if we aim at a large number of them (small amount
of observations per transformation). This is even more noticeable if we use full
transformation matrices.

e Hard splitting of acoustic space (some states that were very close can become very distant

after transformation, and vice versa).
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4. ANN Speech Synthesis

An Artificial Neural Network (ANN) is an efficient computing system whose central
theme is borrowed from the analogy of biological neural networks. ANNs are parallel
computing devices, which basically attempt to represent a computer model of the brain. The
main objective is to develop a system to perform various computational tasks faster than
traditional systems. These tasks include pattern recognition and classification, approximation,
optimization, and data clustering. ANNs are also named as “artificial neural systems” or
“parallel distributed processing systems” or “connectionist systems”. ANN acquires a large
collection of units that are interconnected in some pattern to allow communication between
the units. These units, also referred to as nodes or neurons, are simple processors which
operate in parallel. Every neuron is connected with other neurons through a connection link.
Each connection link is associated with a weight that multiplies the output from some other
neuron or an input to the network. Weights excite or inhibit the signal that is being
communicated, which is the basic mechanism by which neural network solves a particular
problem. Each neuron is also characterized by its activation function. Output signals, which
are produced by combining the input signals and the activation function, may be sent to other

units or provided as outputs of the neural network.

Modern neural networks usually contain several layers of neurons instead of just one.
With a sufficient number of layers, such an architecture is usually called a Deep Neural
Network (DNN). In the remainder of this thesis, terms ANN and DNN will be used

interchangeably.

4.1. ANN Basics

There are several types of architectures for neural networks:
e Feed Forward networks (FF), which contain one or more hidden layers of neurons,

propagating information and signals from one layer to the next, without feedback.
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e Recurrent Neural Networks (RNN), used for sequential data such as text or times series.

e Convolutional Neural Networks (CNN), particularly adapted for image processing.

All these types of networks are based on deep cascades of layers of neurons, containing
large amount of parameters, thus demanding stochastic optimization algorithms, and
initialization, with the emphasis on the choice of topological structure of network. Any ANN
is formally described by a nonlinear continuous mapping y = F(x,0) = Fy(x), where
x € R™ is the input vector, y € R™ is the output vector, while 8 € RP is the vector of
network parameters. As usual in statistical learning, the parameters 6 are estimated from a set
of observations in a supervised (then learned on paired input and output data) or
unsupervised manner (just input data is available). Having learned from data in a supervised
manner, neural networks can be used for regression or classification, depending on what kind
of information is brought to their output (desired output, in the case of regression, or class
information in the case of classification). As function to minimize is non-convex, by design,
learning procedures constitute non-convex optimization problems, and thus local minimizers

are used to solve them.

4.1.1. Artificial neurons

An artificial neuron (illustrated in Figure 12) is a function of an input vector x =
[x; - x,]T € R™, weighted by connection weights w = [wy -+ w,,]T € R™, translated by bias
b € R and then finally passed through a fixed nonlinear activation function ¢:R — R, i.e.,
y = f(x) =@({w,x) +b), where (w,x) is an Euclidean scalar product in R™, so that
(w,x) = Y-, w;x;. Today, there are numerous activation functions in use [25], of which we

will describe several most common ones.

The sigmoid function

1

—F X ,XER
1+ exp(—x) x (22)

p(x) =
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The hyperbolic tangent (tanh) function

exp(x) —exp(—x) exp(2x) —1

¢(x) = tanh(x) = exp(x) + exp(—x) exp(2x) + 1’ X €R 23)
The hard threshold function
P(x) = 1x>ﬁ(x)={(1,:§2§,xe&ﬂ €R (24)
The Rectified Linear Unit (ReLU) function
¢(x) = max{0,x},x ER (25)
The Leaky ReL U function
¢(x) = max{0,x} + amin{0, x},x € R (26)

where @ > 0 is fixed and usually much smaller than 1.

Xa
Xz
Yin
- > a f ‘,® Output
Inputs :
Activation function
Xm

Fieure 13: General model of artificial neuron

Although the sigmoid activation function given by (22) is a smooth function i.e. has

bounded and continuous first derivative on R and has its values contained in the interval [0,1]
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(which is the reason why it was largely used in ANNs with a smaller number of layers). It has
the drawback that the absolute value of its derivative (and thus the whole gradient w.r.t.
parameters of the ANN, due to the chain derivative rule) is close to zero on the large part of
R (cases when |x| is not close to zero). Namely, in the ANNs with a large number of layers
(which defines the actual “Deep Learning” paradigm), due to the usage of back-propagation
algorithm in learning procedure, the problem of so-called “vanishing gradient” occurs (more
details in 4.2). It means that the norm of gradient becomes close to zero due to the chain
differentiation rule which is executed in the process of calculating gradient w.r.t. parameters
of ANN, when propagating through layers of ANN (where one actually encompasses the

composition of mappings).

Contrary to the previous, in the case of ReLU activation function, the singularity at x = 0
is present, making the ANN learning process formally a non-smooth optimization problem.
Nevertheless, the probability of encountering the zero value of the argument of the activation
function is zero, so in practice it does not cause significant problems. On the other hand, as
the absolute values of gradient of ReLU activation function are equal to 1, for x > 0, the
benefit of avoiding the vanishing gradient problem (see Section 4.2.3) in the ANN learning
procedure is huge. As the ReLLU activation function and also its derivative have zero values

for x < 0, Leaky ReLU is introduced as its modification, which avoids such a drawback.
4.1.2. Feed Forward Networks

Feed forward ANN is a non-recurrent network having processing units/nodes in layers
and all the nodes in a layer connected with the nodes of the previous layers (Figure 13). The
connections may have different weights. There is no feedback loop, which means that the
signal can only flow in one direction, from input to output. One widely used example of feed

forward ANN is multilayer perceptron.
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Figure 14: An example of feed-forward neural network

Multilayer perceptron, or a fully-connected multilayer feed-forward ANN, is a structure
composed by several layers of neurons where the output of every neuron of a layer becomes
the input of every neuron of the next layer. Those layers that are not input and output layers
(i.e. the layers in between) are called hidden layers. Moreover, there is the constraint that the
output of a neuron in some layer can only be the input of a neuron of the next layer (Figure
13). To the last layer, i.e. the output layer, one may apply a different activation function than
in the case of hidden layers which depends on the type of problem that is tackled: regression
or classification. Actually, in the regression task, no activation function is imposed on the
output layer. For binary classification, the output gives an estimation of P(y = 1|x). For a
multi-class classification task, the output layer contains C neurons, where C is the number of
classes, with one neuron representing each class ¢ € {1, ...,C} in the soft manner, giving the
estimation of the conditional probability P(y = c|x). As those probabilities have to sum to 1

when summing all classes, the softmax function is usually used for the output layer, i.e.,

exp(zc)

softmax,.(z) = ———
‘ (C:=1 exp (Zc)

27)

Multilayer perceptron neural network with L hidden layers can be formally formulated as

follows:

h(O) (x) = x,
a®(x) =wWkh®V(x) +b*, k=1,..,L+1,

(28)
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h®(x) = ¢ (a(")(x)), k=1,..,L,

R (x) =y (RO ()

where h®),k =1,..,L are hidden layers, h(®, hZ*D are input and output layers
respectively, Wk € RImERNxdimt ™) 5o patwork weight matrices, while b* € R4t
are network biases. The parameters of the network are then 6 = {[Wk, bk],k =1,..,L+1}.
Additionally, ¢ is the activation function of the hidden layers, while 1 is the activation

function of the output layer (in most cases chosen to be different from ¢).
4.1.3. Recurrent Neural Networks

Feedback network has feedback paths, which means that the signal can flow in both
directions using loops. This makes it a non-linear dynamic system, which changes
continuously until it reaches a state of equilibrium. One example of feedback networks are

recurrent networks, i.e. feedback networks with loops closed within the same layer (Figure

14).

Recurrent neural networks are introduced in order to tackle the machine learning (ML)

tasks involving sequential data such as text or time series, as well as video data. Simple

Figure 15: An example of feedback (recurrent) neural network

RNNSs are introduced by Elman [26] and Jordan [27]. In the model introduced in [26], feed-
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forward ANN with one hidden layer is looped back onto itself. It means that the following

relations hold:

h, = o,(Wypx; + Uphi_y + by),

(29)
Yt = ay(Uyht + by),

where x; € R™ is input vector at time t, h, € R! is hidden layer output at time t, W, €
R™", UyU, € R™*L b, b, € R™ weight matrices and bias vectors, respectively, to be
learned. Also, oy, and gy, are activation functions for output and hidden layer respectively. It
can be seen from (47), that hidden layer at time t, depends on hidden layer at previous time,
i.e., t — 1. In the model introduced in [27], hidden layer at time ¢, instead of depending on
the output of the hidden layer, depends on the output of the network at previous time step,
i.e., the following relations hold:
hy = on(Wpxe + Upye—1 + by),

(30)
yt == O-y(Uyht + by),

where, y;_; is output of the network at time step t — 1.

The basic version of RNN fails to learn long time dependencies [28], so that new
architectures have been introduced to tackle this problem. Long Short-Term Memory (LSTM)
RNNs are introduced by Hochreiter and Schmidhuber, in order to tackle the mentioned
problem and they found their application in many tasks such as speech recognition,
translation, etc. The main difference between LSTM and simple RNN is the following: an
LSTM cell at time t, contains not only the hidden layer h, € R!, but also a state ¢, € RY.
This cell at time ¢, is the function of the following vectors: current input to the hidden layer
Xx;, hidden layer output at previous timestep h;_;, as well as the previous cell state ¢;_;.
Inside the LSTM, the gates are defined that decide on the transmission of information, so that

LSTM cell is described by the following set of equations:
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Update gate: u; = a(W hi_; + I x: + by),

Forget gate: fr = a(Wh;_1 + Isx; + by),

Cell candidate: ¢; = tanh(W h._; + I.x; + b,.), a1
Cell output:c; = fy o €cpq +Uup 0 Gy,

Output gate:0; = e(W, hi_; + 1,x; + b,),

Hidden output: h; = 0, o tanh(c;)

where We, W, W, W, W,, are weight matrices of adequate dimensions, while b,, bf, b.,
b,, b, are biases of adequate dimensions, o is point-wise multiplication, while ¢(-) and

tanh(-) are vector-level activation functions.
4.1.4. Convolutional Neural Networks

For image type of data, multilayer perceptrons are not adequate, as images should be
vectorized, thus losing the spatial information contained in the images, such as forms,
geometry, texture, etc. CNNs introduced by LeCun in [29] revolutionized image processing,
and removed the need for manual extraction of features, which was essential in that area and
demanded specific expert knowledge. Namely, CNNs act directly on matrices, or even on
tensors for images with three RGB color channels. A Convolutional Neural Network is
composed of the following layers: convolutional layers, pooling layers and fully connected

layers.
Convolutional layer

The cross-correlation between two 2D (discretized) finite sequences u and v is a finite

2D sequence defined as

= v)(i, ) = Z w(m,nyv(m +i,n + ) 32)

mn

Even though CNNs use this formula, they are called convolutional, thus disregarding the
strict definition of convolution. For example, one can set u = K to be the convolution kernel

acting on grayscale image signal v = I, but the definition (32) could be generalized onto
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finite sequences of arbitrary dimension, so for example, I could be an image containing RGB

channels (thus a 5D finite sequence) and thus K would be a corresponding 5D kernel.

In practice 2D convolution is calculated by dragging convolution kernel K throughout the
image I. At each position, we get the convolution between the kernel and the part of the
image that is currently treated. Then, the kernel moves by a number s of pixels, s is called
stride. When the stride is small, we get redundant information. Sometimes, one can also add
a zero padding, which is a margin of size p containing zero values around the image in order
to control the size of the output. Assume that we apply C, kernels (also called filters), each of
size k X k on an image. If the size of the input image is W; X H; X C; (W; denotes the width,
H; the height, and C; the number of channels), the format of the output is W, X H, X C,,

where C, corresponds to the number of kernels that we consider, and the following holds:

Wo=———"+1,
H,—k + 2p (33)
Hozf-l_ 1.

In convolution layer of a CNN, convolution operations are further composed with an
activation function ¢ as well as bias b, as 0 = ¢(K * u + b), where u is the input and o is

the output of the convolution layer.

In the particular learning process (similar to ANNs described in previous sections) the

CNN will learn convolution kernels that are the most useful for the given task.
Pooling layer

CNN also has pooling layers, which allow it to reduce the dimension, also referred as
sub-sampling, by taking the mean or the maximum on patches of the image (mean-pooling or
max-pooling). Like the convolution layers, pooling layers act on small patches of the image,
and we also have a stride. If we consider 2 x 2 patches, over which we take the maximum
value to define the output layer, and a stride s = 2, we divide by 2 the width and height of the
immage. Of course, it is also possible to reduce the dimension using the convolution layer, by
taking a stride larger than 1, and without zero padding, but another advantage of pooling is

that it makes the network less sensitive to small translations of input images.
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Fully connected layer

After several convolution and pooling layers, the CNN usually ends with several fully-

connected perceptron layers, depending on the particular task.
4.1.5. Dense vs. Sparse Layers

In general, neural networks are represented as tensors. Each layer of neurons is
represented by a matrix. Each entry in the matrix can be thought of as representative of the
connection between two neurons. In a simple neural network, like a classic fully-connected
(dense) feed-forward neural network, every neuron on a given layer is connected to every
neuron on the subsequent layer. This means that each layer must have n? connections
represented, where n is the size of both of the layers. In large networks, this can take a lot of
memory and time to propagate. Since different parts of a neural network often work on
different subtasks, it can be unnecessary for every neuron to be connected to every neuron in
the next layer. In fact, it might make sense for a neural network to have most pairs of neurons
with a connection weight of 0. Training a neural network might result in these less significant
connection weights adopting values very close to 0 but accuracy would not be significantly

affected if the values were exactly 0.

A matrix in which most entries are 0 is called a sparse matrix. These matrices can be
stored more efficiently and certain computations can be carried out more efficiently on them
provided the matrix is sufficiently large and sparse. Neural networks can leverage the

efficiency gained from sparsity by assuming most connection weights are equal to 0.
4.1.6. Approximation capabilities of ANN

Hornik [30] has shown that any bounded and continuous mapping between Euclidean
spaces can be approximated with arbitrary precision by a neural network with one hidden
layer containing a finite (but possibly very large, often unacceptable, from the computational
point of view) number of neurons, having the same activation function, and one linear output
neuron (no activation function on that neuron). This result was earlier proved by Cybenko
[31] in the particular case of the sigmoid activation function given by (22). The Universal
Approximation Theorem (by Cybenko) can be formally stated as:
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Theorem 1: Let ¢ be a continuous and bounded activation function additionally non-
decreasing. Let K € R™ be compact in R™ (i.e., bounded and closed). Then, for arbitrary
fixed continuous f:K — R, there exists the function Gg:K — R defined by Gg(x) =
Yioivi((wy, x) + b;), that could be made arbitrary close to f in the space of the continuous

functions on K, denoted by C(K) (equipped with the supremum norm sup| - |), by increasing
XEK

s. This means, that for arbitrary fixed € > 0 there exist s € N, w; € R™, b;, v; € R such that
sup|f(x) — G4(x)| < € holds.
XEK

The Theorem extends straightforward to the cases of ANNs with a finite number of
hidden layers and a finite number of outputs (the case f: K = R™) . Note that all activation

functions defined by (22)-(26) satisfy the regularity condition from Theorem 1.

Another important theoretical result in a similar manner (approximation possibility) is
delivered for networks with a large number of hidden layers and not necessary a large

number of neurons in particular layers. It is formulated by Zhou et all, as [32]:

Theorem 2: For any integrable function f: R™ — R and arbitrary fixed € > 0, there exists a
fully-connected feed-forward ANN with finite depth (number of hidden layers) with ReLU
activation functions (defined by (25)), with the width d (i.e., number of neurons in arbitrary
hidden layer) satisfying d < n + 4, given by its function G: R™ — R, such that ||f — G||; <
g, where |||y = [ gnl | dx is [; norm, defined on set of all absolutely integrable functions on

R™.

Note that the width of the DNN in Theorem 2, cannot be arbitrary small, but the upper
bound of n + 4 is given, which depends on the number of inputs to the network. Of course, a

lower width must be compensated by a larger depth.

Note first, that the nonlinearity (actually, non-polynomiality) of activation functions
mentioned in Theorems 1 and 2 is crucial for good approximation properties of ANNs and
DNNS5, meaning that there are counter-examples if it is not involved (see [32]). Note second,
that many other systems of functions have good approximation properties in various normed
spaces of functions (for example polynomials in spaces of continuous or absolutely

integrable functions, etc.) but did not come close to reaching the level of applicability, as it is
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the case for ANNs. Note finally, that although Theorems 1 and 2 explain from the theoretical
point of view, good approximation properties of ANNs, the actual “learning” of ANNs (i.e.,
obtaining optimal parameters of some ANN, i.e. those that minimize specific target criteria
driven by specific task, with available data) “is the task of its own”, encompassing many
specific optimization and computational issues as well as heuristics, in order to efficiently

reach the theoretical bounds marked by previous theorems.
4.1.7. Learning in ANN

A Machine Learning (ML) system is is formally a mapping Fy: X = Y, where X and Y are
input and output domains (formally represented as X = R™, Y = R™) respectively and
6 € ® C RP are parameters of the system. Learning in the broader context of ML, is
obtaining the optimal parameters of ML system § € 0, in the sense that those are minimizers
of the specific target function which is formed according to the specific task, subject to
certain specified constraints (that define @), with available data that are also associated to
that particular task. Thus, learning in the context of artificial neural networks, is the process
of modifying the parameters of ANNS, i.e. weights of connections between the neurons of a
specified network as well as biases, so that the specified target function is minimized and it is
all driven by the available task specific data. From the Statistical Estimation Theory
perspective, training of ML system is process of estimating the parameters of ML system so
that the expected loss is minimized (i.e., the previously mentioned task specific target
function becomes some specified expected loss) where the available task specific data is
considered to be observations (i.e. vector of random variables) drawn from some underlying
unknown joint probability distribution p(x,y). Note that the optimization problem associated
to the ANN learning process is almost in all cases obtained as unconstrained, i.e.,® = RP.
Learning in ANN can be roughly classified into three categories: supervised, unsupervised

and reinforcement learning.

Supervised Learning. As the name suggests, this type of learning is done under
supervision, meaning that the paired input-output observations (xq,t1), ..., (xp, ty), drawn
from unknown underlying probability distribution p(x,y) are available as data during the

training. Those data are referred as labeled data, and t; are referred as target vectors or
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labels. The target criterion function that is optimized during training is thus function of
known (x;,t;) as well as the parameters 6 (to be determined) of the network. In a more
illustrative manner, the process could be explained as follows: During the training of ANN by
supervised learning, the particular input vector x; is presented to the network, which will give
an output vector y; (Figure 15). This output vector is compared with the desired target vector
t; and an error signal |t; — y;| is generated as a measure of the difference between the actual
output and the desired target vector. On the basis of this error signal, the weights are adjusted
until the actual output is matched with the desired output. More precisely, the previously

mentioned target function is obtained as a function of those error signals (e.g. the square error

function defined by 3.1, (¢; — v)?).

Neural
X (input) —» » Y (Actual output)
Network

|

Error Signal

h

(D-Y)
Error
Signal D (Desired Output)
Generator

Figure 16: Supervised learning scheme

Unsupervised learning is carried out without supervision, meaning that only the
observations (X1, ..., Xy) drawn from the unknown marginal probability distribution p(x) =
[ p(x,y)dy (or Y.y P(x,y)), are available during the training, i.e., no labeled data is present.
Such data are referred to as unlabeled data. The target criterion function that is optimized
during training is thus the function of x; as well as the parameters 8 of the network, to be
determined. During the training of ANN by unsupervised learning, the parameters of the
network tend to those that tend to group the input vectors of similar type into clusters, where
the clustering is driven by the type of target criteria used in training. When a new input

pattern is applied, the neural network gives an output response indicating the cluster to which
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the input pattern belongs (Figure 16). There is no feedback from the environment as to what
should be the desired output and if it is correct or incorrect. Hence, in this type of learning,
the network itself must discover, trough the learning (i.e., training) process, the patterns and

features from the input data, and the relation between the input data and the output.

Neural
X(input) —» __ » ¥ [Actual output)
Network

Fy

Figure 17: Unsupervised learning scheme

Reinforcement learning is concerned with how software agents ought to take actions in
an environment in order to maximize the notion of cumulative reward. Reinforcement
learning differs from supervised learning in not needing labelled input/output pairs to be
presented, and in not needing sub-optimal actions to be explicitly corrected. Instead, the
focus is on finding a balance between exploration (of uncharted territory) and exploitation (of

current knowledge).

During the training of network under reinforcement learning, the network receives some
feedback from the environment (Figure 17). When the agent’s performance is compared to
that of an agent that acts optimally, the difference in performance gives rise to the notion of
regret in decision theory. In order to act near optimally, the agent must reason about the long-
term consequences of its actions (i.e., maximize future income), although the immediate

reward associated with this might be negative.

43



Darko Pekar Doctoral thesis

. Neural
X(input) —» __ » Y [Actual output)
Network

|

Error Signal

h

Error ) )
R (Reinforcement signal)
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Figure 18: Reinforcement learning scheme

Thus, reinforcement learning is particularly well-suited to problems that include a long-
term versus short-term reward trade-off. It has been applied successfully to various problems,
including robot control, elevator scheduling, telecommunications, backgammon, checkers

and go (AlphaGo).
4.1.8. Target Criterion Functions

In forming the Target criterion function to be minimized during ANN learning process
(supervised learning case), a convenient approach is to use the statistical perspective and to

maximize the expected log likelihood, i.e., to minimize the following loss:
1(0)=-E,. [Inp(y|x0)] (34)

For a regression task, if we assume a Gaussian error model, we obtain the quadratic loss, 1.e.
2
1O =~E, ., [ |F, 0= | 33)

which is most common, and is used in the following Sections of this thesis.

For a binary classification task, one has y € {0,1}, and the following holds:

p(ylx, 8) = Fg (x)” (1 — Fp(x))' ™ (36)

so that one obtains:
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L(0) = —Ep(x) [yInFg(x) + (1 = y)(1 — Fy(x))] (37)

while, by same reasoning, for multiclass classification task, one obtains:

C
LO) = ~Epeyl) ly=cln p(y = clx,0)] (38)
c=1
where:
_(Ly=c
ly=c) = {O,y ~ . (39)

and p(y = c|x, 8) in ANNs are expressed by using softmax activation function in the output

layer, as discussed previously.
It should be noted that one can express the loss in the following way:
L) = Ep(x,y) [L(Fp(x),¥)] (40)

as, for example in the quadratic loss case (35), where [(Fg(x),y) = ||Fg(x) — y||. As the
true underlying joint probability distribution p(x,y) is always unknown, we use (supervised
case) available paired data samples {(x;,y;)}}, in order to estimate unknown parameters 8

and minimize the only available Empirical loss defined as
1M
L(O) =~ Xi=1 L(Fo (%), yi)- (41)

Furthermore, in some cases, mostly for the uniqueness of the solution (one could interpret it
as convexification of loss function L(-), since a strictly convex function has the unique
minimizer on any convex closed set), we add the convex regularization term ¥ (), so that the

loss function becomes:

L(O) = 5 I L(Fp (x), 7) + A¥(0) (42)

for some fixed 4 > 0. The regularization term also has its statistical interpretation, in the

sense that it is associated to the prior to network parameters as p(6) < exp(—A¥(0)), so that
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in that case, instead of ML estimate expressed through (34), we perform a MAP estimate, i.e.,

minimize L(6) = —Ep,)[In p(8]x,y)] and, as for the posterior the following holds:

p(@lx,y) < p(y|x,0)p(6) (43)

one obtains (41) as the loss. Most common regularization terms are quadratic (or [,), defined

as ¥() = || - |3, where || - || is the Buclidean norm in RP, so that ¥ (8) = Zle 67, as well
as sparse (or l;), defined as ¥ () = || - ||1, where || - [|; is the l; norm in RP, so that ¥(0) =
b=y 16i.

Next, the question of optimization method to be used (gradient descent based), as well as

the way of efficiently calculating the gradient, is to be discussed.

4.2. Gradient Descent And Back Propagation

Gradient descent, also known as the steepest descent, is an iterative optimization
algorithm used to find a local minimum of a function. While minimizing the function, we are
concerned with the cost or error to be minimized. This algorithm is extensively used in deep
learning, which is useful in a wide variety of situations. The point here to be remembered is

that we are concerned with local optimization and not global optimization (Figure 18).

We can understand the main working idea of gradient descent with the help of the
following steps:
e First, start with an initial guess of the solution.
e Then, calculate the gradient of the function at that point.
e Subsequently, repeat the process by stepping the solution in the direction contrary to the
gradient.
By following the above steps, the algorithm will eventually converge to a point where the

gradient is equal to zero.
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Figure 19: Gradient descent illustration

Gradient descent is at the core of error back propagation algorithm [33].
4.2.1. Stochastic Gradient Descent Optimization Algorithm

In application of ANNSs, there is, in almost all cases, a large amount of training data and a
large size of the ANN parameter space. For that reason, conventional gradient descent
(unconstrained) optimization algorithm is inappropriate, since the calculation of high
dimensional gradient on a whole corpus of training data is computationally too expensive. On
the other hand, empirical risk (41) to be minimized in an ANN learning optimization task is
the sum of terms [(Fg(x;),y;) evaluated for each training data observation pair (x;,y;)
separately, so that the iteration of the classical Gradient Descent (GD) algorithm can be

expressed as
M
1 = O — 1V L©O)o, = O — 1 ) Vol (Fy (x2), ¥, “4)
i=1

where VgL (0)|g, =[0L/06; -3 L/36p]lg, is actually the gradient of L(8) evaluated at
0,( 0 L/0 6; are partial derivatives of L with respect to 8;). In applications in statistics, due
to the usage of exponential families of distributions (such as Gaussian, Laplace, etc.) there is
a simple close-form expression for summation of terms [(Fg(x;),y;) and Vgl(Fg(x;),y;) in
(44). Contrary to that, in the cases of ANNs, Vgl(Fy(x;),y;) require expensive evaluations

and the evaluation of Vyl(Fy(x;), y;) for all observations, in each iteration step, which thus
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becomes unacceptable computationally expensive. Thus, Stochastic Gradient Descent (SGD)

algorithm is introduced, where the gradient VyL(8)lg,, instead of its precise value
Y1 Vol(Fg(x:), 1) lg, is approximated by

- 1

PoL(8) = — > Vol(Fy (x2), ¥ lo, @)

i€B

where B c {1, ..., M} is the subset of observation indices of (always fixed) size m, chosen
randomly (uniformly, without replacement), for each iteration k. This subset of observations
is called a minibatch, while iteration over all the training examples (all minibatches) is called

an epoch of SGD algorithm.

4.2.2. Error Back Propagation Algorithm

The goal of the Error Back Propagation (EBP) algorithm is to find the gradients of loss
function versus ANN parameters, i.e., partial derivatives of loss function with respect to all
weight coefficients, which are to be used in the process of certain loss function minimization.
Here we present the method for the quadratic, i.e., mean squared error (MSE) loss function

defined by (35), which we write as
K
1 2
E=2) 05— ) (46)

where K represents the number of neurons in the output layer, y; is the current output of the

neuron at position j, and t; is the target output value.
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Figure 20: Hidden and output layer of neural network

A portion of the network is shown in Figure 19 where some neuron connections have
been omitted, for the sake of simplicity. For the purpose of determining how much each
output y; influences the total loss function, we have to calculate partial derivatives

o))

a_yj =y —t. (47)
What we really need to find out is how a change of certain coefficient influences the loss
value, i.e. we have to calculate partial derivatives of the loss function with respect to
parameters of ANN. Thus, due to the chain rule for derivatives, we first need to find how the
change of neuron input x influences the loss value.

J0E  OE @

—=—2L (48)
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Algorithm: Optimization of neural network weight coefficients

Input
Set of training samples (x1,v1), (X2,V2) . (X, Vim)
Learning rate

Output
Optimized weight coefficients

Set initial values of weight coefficients
For each training sample
1. Calculate outputs of each neuron in the network (forward pass)
2. Calculate loss as the difference between target value and network output
3. Calculate gradients for each weight coefficient in the network
4. Calculate update weight coefficients by using gradients

The derivative dy;/dx; depends on the shape of activation function. By using previous
equations, the influence of the weight coefficient w;; which connects the neuron i in one

layer with the neuron j in the next layer, on the loss function value are actually the partial
derivatives of the loss function with respect to parameters of ANN (we exclude biases, for

simplicity). By the chain rule for derivatives, those are given as:
0E  OE 0x;
aWij B an aWU

(49)
Since input x; to the neuron j is equal to the linear combination of the outputs of neurons
a .
from the previous layer ie. x; = }x Wy Yk, we have % = y;, so the equation (49) can be
)
written as
JE  OE
5= (50)

aWij 6xj

If we observe only the previous hidden layer, then the influence of neuron i output in the
hidden layer on the total loss can be described by the sum of the values given in equation
(50):

0E 0E
oy~ Ludwy 1)
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Partial derivatives given by (50) are called gradients and are usually denoted as Aw;;.

They are used in the calculation of new weight coefficients in some iteration of a

(conventional) GD algorithm, by using:
Wij = wij — §Awy, (52)
where ¢ is a scalar value which represents the learning rate, and is set heuristically, or could

be varied in every iteration.

As we have already stated previously, weights could be updated after each sample in the
training database, which would generate very noisy gradients and would introduce significant
overhead in calculations. The opposite extreme would be to perform the update only after
accumulating gradients over the entire training database. This would provide a very stable
update, but would take a huge amount of time to converge. An intermediate approach is
usually applied, in which a certain portion of the training database, referred to as batch, is
processed, the gradients are averaged on that batch, and the update is performed. This
eliminates overhead, reduces noise (although a certain amount of noise is actually desirable,

especially in the beginning of the training) and leads to reasonably quick convergence.

This baseline algorithm is still quite slow, and can be accelerated by using numerous
techniques proposed in literature. One of the ways to do this is to slightly modify the update

calculation based on momentum [34], as follows:
0FE
Aw(t) = _fﬁ + aAw(t — 1), (53)

where o is a scalar value. In this way, the modification of weights and the entire training
process will proceed in smaller steps if the directions of the most recent steps vary

significantly, and it will proceed in bigger steps if this variation is smaller.
4.2.3. Vanishing Gradient Problem

DNNs may be hard to train because of the way in which the gradients in previous and
next layer are related, and the fact that there is a large number of such layers. In order to
explain the vanishing gradient problem, let us, without loss of generality, assume that DNN
has a single node at each hidden layer, and that it is H hidden layers deep, denoted as

hq, ..., hy. Let us denote the weights between subsequent layers (i.e., nodes) as wy, ..., wy
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and assume that the sigmoidal activation function ¢(-) given by (22) is applied at each layer.
Let also y be the final output of the network, and x be the input. Namely, for some given loss

function L, due to the derivative chain rule, we obtain

dL = o (hyer) oL
oh, =@ N1 )Weiq 6ht+1'

Let us assume that weights w; are initialized from the standard normal distribution with

(54)

expected value equal to 1. It holds that ¢'(x) = @(x)(1 — @(x)), x ER, |@'(x)| < 1 and
has its supremum equal to 0.5, so that the value of |¢'(h;,1)| can not exceed 0.25. Since the

expectation of wy 4 is 1, it follows that each weight update will typically cause the value of

oL to be less than 0.25 oL

Ohy hiy1

. Therefore, after moving by about r layers, this value will

typically be less than 0.25". As a consequence, during back propagation, lower layers will
receive much smaller updates than the upper layers, which is referred as the vanishing
gradient problem. Using different activation function with larger gradients helps, but it is a
tradeoff as the opposite situation is also possible (the gradient explodes in the backward
direction instead of vanishing). The tanh function given by (23) fares better than the sigmoid
function because the gradient of 1 is equal to zero, but the gradient saturates rapidly at
increasingly large absolute values of the argument, making it also “vulnerable” to the
vanishing gradient problem. In the case of ReLU activation function given by (25), the
vanishing gradient problem tends to occur less often, as long as most of these units operate

within the intervals where the gradient is 1.

4.3. Speech Synthesis by Using DNN

Statistical parametric speech synthesis based on hidden Markov models has various
advantages over the concatenative speech synthesis approach [35], such as the flexibility to
change its voice characteristics [36], small footprint [37], and robustness to lower quality and
consistency of audio material [38][39]. However, its major limitation is the quality of the
synthesized speech. One major factor that degrades the quality of the synthesized speech is

the accuracy of acoustic models. Conventional approaches to statistical parametric speech
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synthesis typically use context-dependent HMMs clustered using decision trees to represent
probability densities of speech parameters given a text. Speech parameters are generated
from the probability densities to maximize their output probabilities, and then a speech
waveform is reconstructed from the generated parameters. This approach is reasonably
effective but has several limitations, e.g. decision trees are not efficient in modeling complex
context dependencies. Firstly, they are incapable of expressing complex context
dependencies such as XOR, parity or multiplex problems [40]. To represent such cases as
well, decision trees would be prohibitively large. Secondly, this approach divides the input
space and uses separate parameters for each region, with each region associated with a
terminal node of the decision tree. This results in fragmentation of the training data and
reduction of the amount of the data that can be used in clustering other contexts and
estimating their distributions [41]. Having a prohibitively large tree and fragmenting training

data will both lead to overfitting and degrade the quality of the synthesized speech.

However, decision trees can be replaced by an artificial neural network, which has been
shown to generalize better. Figure 20 illustrates a speech synthesis framework based on a
DNN. A given text to be synthesized is first converted to a sequence of input features {x}},
where x! denotes the n-th input feature at frame ¢. The input features include binary answers
to questions about linguistic contexts (e.g. for phoneme identity: “is current phoneme M?”)
and numeric values (e.g. the number of words in the phrase, the relative position of the
current frame in the current phoneme, and duration of the current phoneme). Durations of
phonemes can be obtained by using a separate DNN, or everything can be generated by

single network.
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Figure 21: DNN-based speech synhtesis framework

Then the input features are mapped to output features {y},} by a trained DNN using
forward propagation, where y!, denotes the m-th output feature at frame ¢. The output
features include spectral and excitation parameters and their time derivatives (dynamic
features). The weights of the DNN can be trained using pairs of input and output features
extracted from training data. In the same fashion as the HMM-based approach, it is possible
to generate speech parameters; by setting the predicted output features from the DNN as
mean vectors and pre-computed variances of output features from all training data as
covariance matrices, the MLPG algorithm can generate smooth trajectories of speech
parameter features which satisfy both the statistics of static and dynamic features. Finally, a
waveform synthesis module outputs a synthesized waveform given the speech parameters.

Note that in this approach, the text analysis, speech parameter generation, and waveform

54



Darko Pekar Doctoral thesis

synthesis modules of the DNN-based system can be shared with the HMM-based one, i.e.

only the mapping module from context-dependent labels to statistics needs to be replaced.

The comparison between DNNs and decision trees can be summarized as follows:

e Decision trees are inefficient to express complicated functions of input features, such as
XOR, d-bit parity function, or multiplex problems [40]. To represent such cases, decision
trees would be prohibitively large. On the other hand, each of these problems can be
compactly represented by DNNs [42].

e Decision trees rely on a partition of the input space and using a separate set of parameters
for each region associated with a terminal node. This results in a reduction of the amount

2

of the data per region and poor generalization. Yu et al. showed that “weak” input
features such as word-level emphasis in reading speech were thrown away while building
decision trees [43]. DNNs provide better generalization as weights are trained from all
training data. They also offer the possibility of incorporation of high-dimensional,
disparate features as inputs.

e Training a DNN by back-propagation usually requires a much larger amount of
computation than building decision trees. At the prediction stage, DNNs require a matrix
multiplication at each layer, while decision trees just need to be traversed from their root
to terminal nodes using a subset of input features.

e The induction of decision trees can produce rules that are interpretable by humans, while

weights induction in a DNN is typically hard or impossible to interpret.

4.4. Merlin: An Open Source DNN TTS

In 2016. the Centre for Speech Technology Research, University of Edinburgh (CSTR),
released its own open source toolkit for development of DNN-based TTS. Since most of the

work in this thesis is based on that toolkit, it will be described here in more detail.

Even though there has been an explosion in the use of neural networks for speech
synthesis, a truly open source toolkit was missing. Such a toolkit would underpin
reproducible research and allow for more accurate cross-comparisons of competing

techniques, in very much the same way that the HMM-based Speech Synthesis System
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(HTS) toolkit [44] has done for HMM-based work. Like HTS, Merlin is not a complete TTS
system. It provides the core acoustic modeling functions: linguistic feature vectorization,
acoustic and linguistic feature normalization, neural network acoustic model training, and
generation. It is written in Python, based on the Theano library, and the team at AlfaNum
Company and The Faculty of Technical Sciences (AN-FTS) has adapted it to work with both
CNTK [7] and TensorFlow [6] deep learning frameworks. It comes with documentation for

the source code and a set of “recipes” for various system configurations.

Extraction of linguistic features is carried out at the phoneme level. Therefore, linguistic
features usually contain information on phoneme identity, as well as the phonemic context,
accent, level of emphasis, proximity to phrase breaks, etc. Merlin does not perform these
operations on its own, but requires an external front-end module, such as Festival [45] or a
custom one, such as modules that have been developed at AN-FTS for Serbian and a number
of kindred South Slavic languages [46]. It is easy to interface to different front-end text
processors. The front-end output must be formatted as HTS style labels with state-level
alignment. The toolkit converts such labels into vectors of binary and continuous features for

neural network input.

Standard Merlin TTS architecture consists of two neural networks, one for modeling
phoneme durations and the other one for modeling acoustic parameters of speech. Both of
them are fed with aforementioned linguistic features and are trained with appropriate outputs
set as targets (Figure 21). The “duration network” models either phoneme or HMM state
durations, so these values are set as targets in the training phase. It operates at the phoneme

level, which means that it produces one set of outputs for each phoneme.
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Figure 22: Standard Merlin TTS architecture

“Acoustic network” operates at the frame level (a frame usually being 5 ms), and

produces vocoder acoustic parameters, subsequently used for speech generation. It also

accepts linguistic features as inputs, but it in addition to that, it requires additional inputs

specifying current frame positional information, state and phoneme durations, etc.

Specifically, the subphone feature set used by Merlin includes the following features:

fraction through state (forwards)

fraction through state (backwards)

length of state in frames

state index (counting forwards)

state index (counting backwards)

length of phone in frames

fraction of the phone made up by current state
fraction through phone (backwards)

fraction through phone (forwards).

This information is necessary for the network in order to generate smoothly changing

acoustic parameters, appropriately positioned in time.
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In order to get durations at the state level, as targets during the training, initial alignment
has to be performed. The frame alignment and state information is obtained from forced
alignment using HMM-based system with several emitting states per phone. This procedure
is usually done automatically from scratch (no manual alignment required), by using
monophone models with up to 8 mixture components, and several rounds of Baum-Welch
algorithm [47], followed by the application of the HTS alignment tool (HVite). The use of
monophones for this purpose is known to be suboptimal, but it performs well when there is a
large amount of training material available. In cases of scarce training material for a new
target speaker, some changes had to be introduced to this algorithm, which will be discussed

later.

Before training a neural network, it is important to normalize features. The toolkit
supports two normalization methods: min-max, and mean-variance. The min-max
normalization will normalize features to the range of [0.01 0.99], while the mean-variance
normalization will normalize features to zero mean and unit variance. By default, the
linguistic features undergo min-max normalization, while output duration and acoustic

features undergo mean-variance normalization.

Initially, the waveform generation module supported two vocoders: STRAIGHT [12] and
WORLD [13], but the toolkit is easily extensible to other vocoders. For example, the team at
AN-FTS has recently added support for the WaveRNN vocoder [48]. Standard parameters
used for speech encoding are:

e Spectral envelope representation. Usually by (40+) MGCs or (~80) filter banks.
e Band aperiodicity, with 3-5 coarse aperiodicity parameters in the case or WORLD
vocoder, or up to 30 band aperiodicity parameters in the case of STRAIGHT vocoder.

e Pitch and voiced/unvoiced (VUV) estimation.

As already mentioned, these parameters are usually estimated on a frame level, one frame
being ~5 ms. In addition to these, static parameters, delta and delta-delta parameters are
calculated and included in the training procedure. It has been shown that they provide greater

stability in the synthesized voice after MLPG procedure is applied during synthesis.
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Merlin includes implementations of several popular neural network models, each of
which comes with an example “recipe” to demonstrate its use. Similarly as in HTS, separate
models are used to predict phoneme state durations and vocoder parameters, referred to as
acoustic features. These models are trained separately and can have different architectures.
Dense, feedforward neural network is the simplest type of network. It takes linguistic
features as input and predicts the output through several hidden layers. The input is used to
predict the output via several layers of hidden units, each of which performs a nonlinear
function. In the toolkit, sigmoid and hyperbolic tangent activation functions are supported for
the hidden layers. In a feedforward network, linguistic features are mapped to vocoder
parameters frame by frame without considering the sequential nature of speech. In contrast,
RNNs are well suited for sequence-to-sequence mapping. The use of LSTM [28] units is a
popular way to realize an RNN. In a unidirectional RNN, only contextual information from
past time instances is taken into account, while bidirectional RNNs (or BLSTMs) can learn
from information propagated both forwards and backwards in time. Other variants of neural
networks are also implemented, such as gated recurrent units (GRUs) [49], simplified LSTM
[50], as well as other variants on LSTMs and GRUs described in [50]. All these basic units
can be assembled together to create a new architecture by simply changing a configuration

file, for example:
[TANH, TANH, TANH, TANH]

which describes a network consisting of 4 feedforward layers, with tanh activation functions.

Similarly, a hybrid bidirectional LSTM-based RNN can be specified as:
[TANH, TANH, TANH, BLSTM]
in the configuration file.

There are other hyper-parameters available in Merlin, aimed at tuning the training process:

e Learning rate, momentum, and scheduling of these values over the course of training.

e The length of the “warm-up period”, in which momentum and learning rate are somewhat
lower.

e Mini-batch size and the number of epochs (for duration and acoustic networks

separately).
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e Early stopping criteria.

e L1 and L2 regularization.

In the stage of synthesis, state-level durations predicted from the first network are used to
extract additional features for the second network, which predicts acoustic features required
by vocoder to produce waveforms. It was found that better results are achieved when
dynamic acoustic features are used along with the static ones. For this reason, first and
second derivatives of acoustic features are also used as targets during the training of the
second network. In the synthesis stage, after those are predicted, they are only used by
MLPG algorithm [21] in order to slightly correct static acoustic features trajectories. After
this procedure, recalculated static features are propagated to the vocoder. One should note
that, in contrast to HMM model, we do not have states here, and consequently we do not
have per-state variances of the features either. Instead, global variances of all the features

(static, delta and delta-delta) are used.
4.4.1. Improvements in Merlin Made by AN-FTS Team

As already stated, Merlin was initially developed with a support for Theano [51], which
is a Python library that allows efficient definition, optimization and evaluation of
mathematical expressions involving multi-dimensional arrays. Although it was very powerful
at the time of its introduction, and despite the progress made in recent years, there remain
some limitations or shortcomings in Theano. Today it has been largely surpassed by some
newer frameworks, such as TensorFlow [6], CNTK [7] and PyTorch [52]. The AN-FTS team
made a significant effort to integrate Merlin with CNTK and TensorFlow frameworks and
thus make it more efficient and flexible. It also allowed the development of the architecture

described in this thesis, which will be described later.

Merlin performs phoneme and state alignment of the audio material by relying on
monophone HMM models. Initial improvement to this approach was described in [53], where
authors proposed alignment method based on the use of full-context models obtained during
the training of HMM TTS system and the HMM synthesizer itself. The first step in this
procedure is synthesizing the sentence which is to be aligned using the HMM synthesizer. It

also enables assigning each synthesized frame to a corresponding state. The second step is
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feature extraction from original audio files by using the same speech representation as in the
training of the HMM system. The final step is to align generated and original frames, which
is performed by using the Viterbi search. This method outperformed Merlin’s default version,
but it also struggled when the amount of the data for a new speaker was extremely small. In
those cases, we first had to perform MLLR adaptation of HTS models to the new speaker, by

preserving the already established set of states and context dependency tree. This led not only

to better alignment but also accelerated the process several times.

4.5. Lexical Features Used in Proposed TTS Models

In Section 2.2 we already mentioned front-end as a part of TTS system which accepts raw
text and coverts it into a stream of data which is sufficient for back-end to create natural

sounding speech. In order to achieve that, front-end usually has to perform the following

tasks:

Text cleaning: Get rid of items (HTML mark-up, etc.) that are not to be synthesized. It’s

often language-independent.

Text normalization: Transforms items such as dates, time, numbers, currency, phone

numbers, addresses, and abbreviations into normal orthographic form.

Examples:
e Dr. King Dr. becomes Doctor King Drive
e ] 0z. becomes one ounce

e 2 o0z. becomes two ounces

Grapheme-to-Phoneme conversion (phonetization): Transforms a (normalized)

orthographic string into the “phones” of the language:
The brown fox -> DHAX BR AW NFAOKS

Syllabification and lexical stress prediction: Divides a word’s phonetic representation

into syllables, and marks lexical stress:
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Speech Synthesis -> S PTY(1) CH || S TH(1) N | TH AX(0) | S IX(0) S

Part-of-Speech (POS) tagging:

She came to record the record ->

She(PRN) came(VB) to record(VB) the(DET) record(NOUN)

Syntactical analysis:

[NP The brown fox] [VP jumped] [PP over] [NP the lazy dog.]

Semantic analysis such as named-entity recognition (is it a person? a place? An

organization? a quantity? etc.):

Jim bought 300 shares of Acme Corp. in 2006. -> Jim(PERSON) bought
300(QUANTITY) shares of Acme Corp.(ORGANIZATION) in 2006(DATE)

Generating prosodic tags: These provide the most explicit information about the

prosody on syllable, word and sentence level. Prosodic tags can describe emphasis level of

certain syllables, pitch movement, word and phrase breaks, elongations and more. If prosodic

tags are provided by front-end, it usually makes POS, syntactic and semantic information

obsolete for back-end. Actually, front-end usually relies on some of these in order to predict

prosodic tags.

Lexical features used by our back-end consist of:

Phone identity and identity of neighboring phones (+1 and +2 context).
Position of lexical stress.

Phone position related to syllable/foot/word/phrase boundary.

Word position related to phrase boundary.

Number of phones in syllable/foot/word.

Number of words in phrase/utterance.

Language specific prosodic tags.

For Serbian and kindred languages the following prosodic tags are used:
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e Vowel accent. For stressed vowels there are four accent types. Unstressed vowels can
have post-tonic length or not.

e Four types of phrase breaks: weak, medium, strong and sentence end break.

e Presence of positive or negative emphasis (on a word level).

e Phone position related to all these tags.

For English language the following is used:

e A subset of most relevant standard ToBI tags, including pitch accents, break and
boundary tone indices, as described in [54].

e Emphasis (E+) tag, which marks extra emphasized words.

e Compressed pitch (CFO) tag, which marks deemphasized words.

e Phone position related to all these tags.

Lexical features are provided in the form of binary questions (actually, answers to those
questions), so they could be used by classification trees used in HMM-TTS. For example,
answer to the question “is current phoneme P” would be a single (binary) lexical feature. For
the same reason, some of the questions are combined into so-called complex questions in the
form of logical expressions, if that combination seemed important for classification. For

example, question
{name="is_silence_R', def="is_R AND is_left_phoneme_silence'}

returns true only if current phoneme is “R” and it is the first phoneme after silence. Phoneme
“R” exhibits different acoustic features in this case, which is why it was singled out. Of
course, simple questions could also resolve this and reach the same conclusion, but it would
require more branching and more final nodes in classification tree, which would in turn
require more data to be available for the process to be successful. Note that each question is

given a name, which provides the possibility of creating even more complex questions.

Complex questions were not used in the case od DNN TTS, because DNN transforms
lexical to acoustic features in a different way (see Section 4.3), and does not really need this

type of manual augmentation of the features. DNN could also accept non-binary questions
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(e.g. “number of phonemes from the eprevious break’), but in order to keep the same tools in

use for both HMM and DNN case, the same features were used for DNN.

It is also noteworthy that our lexical features provide quite wide contextual information
for every phoneme in the utterance, which is necessary for HMM, but also helpful for DNN
model. If only local information was provided (only for the current phone), HMM would
generate quite poor output, because no context would be taken into account. DNN could
overcome this problem by utilizing convolutional or bidirectional recurrent architecture, but

because of the presence of wide context, feed-forward network also yields decent results.

4.6. Comparison of HMM and DNN Based Speech Synthesis

As mentioned earlier, for a long time HMM-based synthesis represented the state of the
art in parametric speech synthesis. DNN approach seems to promise a change in this

paradigm, owing to the improvements in mapping lexical to acoustic features.

In order to compare parametric approaches for speech synthesis in terms of overall
quality a set of experiments was performed in [46]. HMM system was based on parameters
extracted by WORLD vocoder — 40 MGCs representing spectral envelope, logarithm of
fundamental frequency and 2 band aperiodicity parameters were used (see Section 2.2.2).
Five-state, left-to-right, no-skip hidden semi-Markov models (HSMMs) were used. The
logarithm of fy and band aperiodicity parameters were modeled using multi-space probability
distribution (MSD). The number of lexical questions used for context-clustering was 617 (see
Section 4.5) and default values of 1 for parameters controlling tree size were used (Minimum
description length (MDL) criterion was used). For DNN system, the same vocoder, acoustic
parameters and database were used. For the DNN architecture the one with best objective
measures was chosen — 4 tangent hyperbolic feed-forward hidden layers with 512 units per
layer. Both systems were trained on the same database consisting of 3 hours of speech (the
best DNN objective measures are obtained with this architecture and database). In order to
objectively compare HMM and DNN synthesis, the trajectories of generated acoustic
parameters were compared with the trajectories of parameters extracted from the original

recordings. The trajectories of several lowest MGC coefficients were found to be almost the
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same for both DNN and HMM, and to follow the original trajectory almost perfectly.
Significant differences between HMM and DNN trajectories, as well as differences from the
original utterance, start to occur on the 6th MGC coefficient (Figure 22) and differ from the
original one to a greater extent. Nonetheless, it can be seen that the DNN trajectory follows
the original one much better than the HMM trajectory, and that there are no significant
deviations. For higher coefficients, the differences between HMM and DNN are more
emphasized and deviations from the original one increase. In other words, neither DNN nor
HMM are able to accurately predict spectral details. All three trajectories (HMM, DNN and
original) of fundamental frequency are more similar among themselves than the trajectories
of MGC coefficients (Figure 23). The DNN trajectory is, again, a better match to the original
than the HMM trajectory.
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Figure 23: Trajectory of the 6™ MGC coefficient
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Furthermore, in Figure 23, it can be clearly seen that DNN is a better predictor of whether

a frame should be voiced or not.

Subjective evaluation of the quality of synthesized speech for HMM and DNN approach
was carried out by listening tests. Participants were 40 students, native speakers, without
expert knowledge of speech technology. In each test there were 3 audio files, each containing
the same 4 unrelated utterances. The first file is generated by the HMM model, the second by
the DNN model and the last one represents original recordings (natural speech). More details
about the test conditions can be found in [46]. Figure 24 presents average grades for two
main features of synthesized speech — intelligibility and naturalness. DNN was found to
perform better than HMM as regards both intelligibility and naturalness by almost half of a
grade, while it lags behind original recordings for just 0.25 as regards intelligibility and 0.43
as regards naturalness. The overall average grade, calculated by averaging the grades for

naturalness, intelligibility and the overall impression, for original recording is 4.7, for DNN
is 4.3 and for HMM is 3.8.
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Figure 25: Comparison of intelligibility and naturalness of synthesized and natural
speech, when using HMM and DNN approaches

4.7. Speaker Adaptation in DNN Speech Synthesis

To harness quality improvements achieved over HMM based speech synthesis, a variety
of speaker adaptation techniques have been proposed for DNN-based acoustic models. Wu et
al. [55] proposed speaker adaptation using i-vectors as input, or by adapting hidden unit
contributions (LHUC [56]), or by applying output transforms defined by GMMs, or
combinations of these. Fan, et al. [57] assumed that the output layer in the DNN captures
most speaker differences, and considered estimating speaker-dependent output layers using
multi-speaker data, while keeping the hidden network layers shared across all speakers. This
also allowed the model to be adapted to new speakers by only updating the regression layer
[57]. However, their experiments only used four different speakers, with a relatively large
amount of data (one hour) from each. There have also been attempts to enable control of
DNNs similar to multiple regression HMMs. In [58], two-dimensional per-sentence control-
vector inputs to a DNN synthesizer were learned in an unsupervised fashion from a corpus of
expressive speech. It was found that one direction in the (unlabeled) control-vector space had
a consistent and interpretable influence on the generated speech, but the orthogonal direction

did not. In [59], authors trained a system on 135 speakers and used “discriminant condition
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codes” to map initial one-hot vector to speaker space. In the adaptation phase they used back
propagation algorithm to update the speaker codes and minimize the mean square prediction
error over a small amount of data uttered by the target speaker. They obtained promising
results by using only a small amount of adaptation data. A DNN architecture with additional
speaker-dependent inputs was proposed in [60], and this approach was further extended by
supplementing the input information by speaker gender and age [59]. To enable the network
to reproduce the voice of a particular speaker in a style that is absent from the training corpus
(which is referred to as emotion or style transplantation), the research presented in [61]
proposed a network architecture which explicitly separates speaker and speech style
contributions, while the one presented in [62] built on the multi-speaker DNN with shared
hidden layers proposed in [57], by extending it with a single style-dependent input and
introducing an additional bottleneck layer. Other lines of research, such as the one presented
in [63], focused on the development of methods for adaptation of a multi-style single-speaker
DNN to a new speaker’s voice. In one way or another, all these approaches address the
practical impossibility of recording and processing a new training speech corpus for each

new speaker/style combination for which the need may arise.

In this thesis we present two methods for efficient creation of new TTS voices, based on
relatively small amount of adaptation data. In Section 5 we describe a method which initially
trains DNN-based TTS on a relatively large amount of training material (3+ hours) and uses
that model as a starting point for adaptation. This means that new model is not trained on a
randomly initialized network (weights and biases), but on an already pretrained one, which

results in much better performance (higher quality of synthesized speech).

Second approach, described in Section 6, proposes creating initial multi-speaker model
and corresponding speaker embedding space. During adaptation, two phases are performed.
In the first phase optimal embedding for the new speaker is found, with the idea of
generating speech that already resembles target speaker, so only minimal changes to the
DNN are required in the second phase. In the second phase, the new embedding is fixed, and
the rest of the DNN is adapted in the same way as in the first approach. This two-phase
approach yielded even better results and can generate voices with the amount of material as

small as 30 seconds.

68



Darko Pekar Doctoral thesis

5. Adaptation from Source to Target Speaker

It is very important to reduce the quantity of target speaker data needed for producing
high quality synthetic speech in target speaker’s voice. In this section, a simple but very
efficient method for creating a new DNN-based TTS voice with a small amount of data,
developed and published in [64], is presented. The idea is to use data that correspond to
target speaker and to retrain DNN already trained in TTS task on source speaker data. Thus,
we start re-training with initial values of network parameters of pretrained network, instead
of randomly initialized. This approach reduces the quantity of target speaker data needed for

producing high quality synthetic speech in target speaker’s voice.

5.1. DNN adaptation

The method deals with the generation of natural sounding speech signals from text that
has already been linguistically processed. It is thus assumed that all the necessary phonetic
and prosodic information is known at the time of synthesis, and the problems of natural
linguistic processing required to recover this information from text are abstracted away.
Besides lexical features related to prosody (such as lexical stress), we also use explicit
features related to specific choices of prosodic events (pitch accents, phrase breaks and the
corresponding phrase accents and boundary tones, see Section 4.5) that the speaker makes

when forming the prosodic plan of the utterance.

Speech is obtained by linguistically pre-processing the text and then using the improved
Merlin toolkit (Section 4.4.1) for the final wave form generation by using the WORLD
vocoder [13]. In the training phase, each frame of speech is parameterized into 40 mel-
generalized cepstral coefficients, logarithm of fj, band aperiodicity parameter, as well as a
binary feature which indicates frame voicing (see Section 2.2.2), where the 5 ms frame shift
is used. At synthesis time, the values of these parameters are predicted for new, usually
previously unseen phonetic and prosodic contexts. After that, predicted features for certain

frame are converted to speech by using vocoder. As network is not constrained to produce
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smooth trajectories of output features, for modeling of speech dynamics, for all features
except voicing, corresponding dynamic features (first and second derivatives) are
additionally supplied. Thus, there are altogether 127 acoustic features for each frame so that
the static output features are smoothed taking into account the dynamic output features using
MLPG algorithm (see Section 3). The prediction of acoustic features from which speech is
generated is divided into two stages, and performed by two DNNs trained simultaneously.
First network predicts the durations of phonetic segments, i.e. states (5 states per phoneme
were used) from linguistic features extracted from text. Second network uses the information
related to the durations of each phonetic state (in frames) obtained as the prediction result
from the first network, in order to predict acoustic features. Input for the first network
contains 554 binary linguistic features (see Section 4.5). Durations obtained from alignment
procedure are used as target features, in order to train the first network, while for the second
network, the same input as for the first one is used, with additional 9 features specifying state
and phone durations as well as frame position inside current state (see Section 4.4). The
output features of the second network are previously mentioned 127 acoustic features, which

are extracted by the vocoder from the original recordings and used as target in the training.

Both networks have 4 hidden layers and 1024 units per layer with the activation function
used for the input and the first 3 hidden layers set to be hyperbolic tangent given by (23). The
last hidden layer uses LSTM units (see Section 4.4), while the output layer is linear (no
activation function). Additional feature normalization is performed for input (normalized to
the unit interval), as well as output features (normalized so as to have zero mean and unit

variance). The objective function used is mean square error.

5.2. Proposed TTS adaptation procedure

Common approaches to training a DNN based TTS system usually start from a DNN
model with random values for weights and biases. Starting from such a model, several hours
of single speaker speech material is typically required to train the network to produce
intelligible and relatively natural sounding speech, which will resemble the voice of the

original speaker to significant extent. However, the preparation of annotated speech database
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of several hours is an expensive and extremely time consuming process. The main idea of
this approach is to use an existing model trained on a large database of source speaker as the
initial model for adapting to the target speaker. It thus enables rapid and less expensive TTS
adaption, since it does not require the existence of an average speaker model as in
conventional speaker adaptation methods, and at the same time it requires far less training
data than the amount needed to build a DNN-based TTS voice from scratch. The influence of
the choice of the starting model on the proposed adaptation method is also a matter for

investigation.

The training of DNN used in speech synthesis requires the initial state alignment since
state-level alignments yield much better results in comparison to phone-level alignment [65].
In Merlin toolkit, it is achieved by forced alignment using the monophone models trained on
the same database on which DNN is trained and it has been shown to be outperformed by the
method described in Section 4.4.1. The accuracy of this procedure obviously decreases when

the amount of training material is small.

5.3. Experimental Results

In this section, we compare the quality of the proposed model against the baseline model
in the task of the new TTS voice creation. The model is evaluated on a set of utterances
(excluded from the training process) that are synthesized on the basis of phonetic and
prosodic information taken from utterances actually pronounced by target speakers. In all
presented experiments, available utterances were divided into training, validation and test
sets. For all experiments, the same test sets were used, consisting of 5 or 10 utterances. In
each experiment, 10% of utterances were randomly chosen to be used for validation, while

the rest was used for training.

For objective evaluation of the results, mean squared error for MGCs (MCD) and band
aperiodicities error were used, both given in dB, correlation between predicted and original fy
and durations of phones, the error of frame voicing prediction and root mean squared error
for fy (see Section 2.4). For subjective evaluation, two MUSHRA tests [66] were conducted.

Both of them were performed by 22 subjects in a controlled environment and with good
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quality headphones. Each subject evaluated a certain number of test utterances by comparing
them with the reference one (the original recording), where each time one of the test
sentences was identical to the reference. The utterances were evaluated in terms of overall
quality (intelligibility and naturalness). Each recording was given a grade from 0 to 100 (with
one limitation — one of 5 sentences had to be given grade 100). Average grades were
calculated and t-test was used in order to check for a statistically significant mean value

differences.
5.3.1. Alignment performances

For a sufficient amount of data, standard forced alignment based on monophones achieves
satisfactory accuracy. Nevertheless, in the situations when significantly less data is available
the proposed method (see Section 4.4.1) achieves better results in predicting alignments,
which is presented in Figure 25. The figure represents the percentage of the phonemes whose
boundary deviations are below a certain threshold compared to manually set boundaries.
Also, the influence of alignment method on the objective measures of corresponding TTS
model is presented in Table 1, where it can be seen that the proposed alignment achieved
almost the same results as training with conventional forced-alignment when the target
speaker database contains 10 or 15 minutes of speech, but notably better results when it
contains just 3 or 5 minutes of material. Thus, in all experiments the initial alignment was
performed with proposed method, while training procedures starting from randomly

initialized models used the conventional method.
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Figure 26: Comparison of baseline monophone alignment (dashed grey line) and proposed
alignment (solid black line) for 3 min (a) and 5 min (b) of speech.

Db Alignment MCD BAP RMSE F0 vUuv R];\;[JSIE
3 min Monophones 5.39 0.18 23.58 8.53 5.49
Proposed 5.25 0.17 22.58 7.66 4.90
) Monophones 5.18 0.18 23.06 7.80 5.16
> min Proposed 5.12 0.17 22.28 7.63 4.87
10 Monophones 5.00 0.17 22.62 7.43 5.18
min Proposed 5.02 0.17 22.00 7.46 4.95
15 Monophones 4.90 0.16 21.50 7.33 4.81
min Proposed 4.94 0.16 21.17 7.33 4.92

Table 1: TTS objective measures comparison, depending on the alignment method and the
amount of material used

5.3.2. First set of experiments

Here, we tend to verify that one could use significantly smaller amount of target speaker
data if starting from model trained on source speaker data, than if starting from model
utilizing randomly initialized weights. Namely, baseline models where randomly initialized
using 5, 10, 15, 30, 60 and 180 minutes of male speaker’s data, respectively. Proposed
models where built starting from a model previously trained on 3h of female speaker’s data,
then adapting it to a male speaker using 3, 5, 10 and 15 minutes of target data, respectively.

As can be seen in Figure 26, all objective measures, with the exception of VUV, show that
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when starting from the model already trained on source speaker data, 15 minutes of target
speaker data is sufficient to reach the quality obtained by starting from a randomly initialized
model and training it with 30 minutes of data (see e.g. MCD in Figure 26 a). Also, starting
from the trained model, 5 minutes of speech is sufficient to reach or surpass the quality

obtained when training a randomly initialized model on 15 minutes.
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Figure 27: Objective measures for MCD (a), BAP (b), RMSE for f0 (c¢) and VUV (d). Black
line represents the results when the initial model is randomly initialized, while the gray one
represents the results when the initial model is trained on 3 h of female speaker data. The
size of the male speaker’s database used for training/adaptation spans from 3 to 180 min.

Although 50% less data being needed to achieve the same quality may be considered a
good result, it is unsatisfactory that 15 minutes of target data is still not enough to convert an
already trained model into a model able to produce speech of a quality comparable to that of

a model trained on a 3h database after being randomly initialized.
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Since the objective measures do not fully reflect subjective perception, additional listening
tests were performed. Those included 10 sentences where the original recording was used
together with 4 utterances synthesized by 4 different synthesizers listed in Table 2, randomly
shuffled. The synthesizers presented in Table 2 represent the subset of all systems shown in

Figure 26, while the results of listening tests are presented in Figure 27.

Synthesizer | Starting Database Recording
model

1.1 Random Male 3h Studio

1.2 Random Male 1h Studio

1.3 Female (3h) Male 10min Studio

1.4 Female (3h) Male 3min Studio

Table 2: Synthesizers used in the first subjective test, with information about starting model,
size of training database as well as speaker gender and database recording conditions

It can be seen that 10 minutes of target speaker starting from the model trained on source
speaker sounds closely to 1 hour of target speaker starting from a randomly initialized model.
Their average results are close to the results of 3 hours of target speaker (with the
significance t-test a=0.05). Although it may seem that the average grade of synthesizer 1.4 is
also close to the others, the t-test shows a statistically significant difference. It can thus be
concluded that 3 minutes of target speaker provides satisfactory results, but the synthesized
speech still cannot be expected to sound like speech synthesized by a model trained on a

relatively big database.
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Figure 28: Grades for synthesizers 1.1 - 1.4 and for natural speech. Boxes are limited with
25th and 75th percentile values, solid lines in the boxes present the median values, while the
dashed lines present the mean values.

5.3.3. Second Set of Experiments

In the second set of experiments we examine if the initial model has any significant
influence on overall result of the adaptation procedure. Inter and intra-gender adaptations
were performed, starting from model trained on 3h database in all cases, and adaptation was
done with 3, 5 or 10 minutes of target speaker’s data. In Figure 28, objective measures for
this set of experiments are given. It could be concluded that there is no difference regarding

the male or female starting models in cases of male or female target speakers.
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Figure 29: Objective measures for MCD (a), BAP (b), RMSE for fO (c) and VUV (d). Black
line represents cases when the initial model is male, while the gray line represents cases
when the initial model is female. Solid lines represent cases when the target speaker is male,
while dashed lines represent cases when the target speaker is female.

The inter-gender vs. intra-gender adaptations comparison in the form of subjective

listening tests were also performed, presented in Table 3. The listening test included 10

sentences, half of them female and half male speakers. For each of the sentences, the original

recordings and four more produced by synthesizers listed in Table 3 were used, randomly

shuffled.

Synthesizer | Starting model | Database Recording

2.1 Female (3h) 3 min From YouTube
2.2 Male (3h) 3 min From YouTube
2.3 Male (3h) 10 min From YouTube
2.4 Female (3h) 10 min From YouTube

Table 3: Synthesizers used in the second subjective test, with information about starting
model, size of target speaker database used for adaptation and database recording
conditions
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The results are presented in Figure 29. It can be seen that when the target speaker was
female (Figure 29a), adaptation with 10 minutes of target speaker’s data yields better results
if a male initial model was used instead of female. However, if only 3 minutes of adaptation
data are used, the results for both male and female initial models are almost the same. The
t-test shows that with either 10 or 3 minutes of adaptation data, there is no statistically
significant difference between utterances synthesized with models which were originally
male or female. On the other hand, when the target speaker was male (Figure 29b), adapt-
ation with just 3 minutes of target speaker’s data, starting from a male initial model achieves
better results than adaptation with 10 minutes of data, starting from a female initial model.
The t-tests showed that there is a statistically significant difference when comparing
utterances synthesized by models which were initially male with those which were initially

female. It turned out that the model which was initially male, was more appropriate.
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Figure 30: Grades for synthesizers 2.1, 2.2, 2.3 and 2.4 for (a) the female target speaker and
(b) the male target speaker. Boxes are limited with 25th and 75th percentile values. Solid
lines in the boxes present the median values, while the dashed lines present the mean values.

It is noteworthy that some listeners pointed out that overall synthesis quality was lower in
the second set of experiments. This is expected since this database was not recorded in a
studio environment. The actual influence of target database quality on overall quality of

synthesized speech is a matter for further research. We can conclude that using the limited
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resources available, the initial model has some, though not significant influence on the
adaptation. Thus, further research could focus on the case when an average speaker model is
used as the starting point, as well as the possibility of restricting the adaptation procedure to

higher NN layers.
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6. Two-Step Approach to Speaker Adaptation

This approach proposes a DNN architecture and a two-step adaptation procedure aimed at
obtaining speaker/style-dependent speech synthesis based on very small quantities of training
data by the target speaker and in the target speech style, which produces synthesized speech
of very good quality. All the procedures and models are based on Merlin toolkit, which has
been significantly upgraded by AN-FTS team as described in 4.4.1.

6.1. Model Description

The model is based on a cascade of two independent neural networks — one predicting
phonetic segment durations, and the other predicting acoustic feature vectors for each frame.
The principal input to both networks is the vector of 577 linguistic features extracted from
text, related to the current phone. In the synthesis stage, the output of the duration model is
used as supplementary input of the acoustic model, augmented with the information on the
duration of particular HMM states of each phone, which is obtained in the training phase
from HMM models through the alignment procedure described in [53]. In all experiments
each of the two networks has 4 hidden layers of size 1024, where the first three are feed-
forward dense layers, while the fourth one is composed of LSTM units. All of them use
tangent hyperbolic activation function. Stochastic gradient descent was used as optimizer in
back propagation algorithm, using one utterance as a batch. In other words, back propagation
occurs after the networks have seen one utterance, regardless of the number of phones (in the

case of the first network) or frames (in the case of the second one).

Initially, multi-speaker multi-style (MSMS) model was trained on a number of speakers
in order to get a good baseline model for adaptation and also to create speaker embedding,
similarly as in [60]. Embedding is a powerful deep learning technique based on mapping
discrete (often binary) vectors from a high-dimensional space to continuous vectors in a low-
dimensional space, and which has been used for a variety of ML tasks ranging from text

tagging [67] to automatic image captioning [68]. In the context of speech synthesis, both
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speaker and speech style are traditionally represented as one-hot vectors, which can be
considered an ignorant representation, since the similarity of two voices is not related in any
way to the distance between corresponding points in the high-dimensional space [69]. The
architecture and training procedure presented in this thesis overcome this deficiency by
performing joint embedding of the speaker and style, representing them in a low-dimensional
space in a more intuitive way, which helps the network to efficiently generalize on unseen
speech data. To use the available speech data even more economically, the embedding is
jointly performed not only on speaker and style ID’s, but on cluster ID’s as well, where the
term “cluster” refers to the portion of a speaker/style dependent speech corpus which is
consistent in terms of acoustic and prosodic quality. Namely, one of the practical problems in
obtaining a high quality speech corpus for training, which is rarely mentioned in the
literature, is maintaining the consistency of the acoustic and prosodic quality of the voice and
speaking style, especially when the recording is performed in multiple sessions or the speaker
takes a break within a session. This often results in parts of the corpus being slightly different
in volume, timbre or even the particular way the speaker has chosen to render a speech style
(e.g. “happy”). Rather than discarding the parts of a speech corpus that deviate from the
corpus segment that can be termed as “default”, we have opted for dividing each
speaker/style-specific speech corpus into consistent clusters. Consequently, instead of
supplying two non-linguistic inputs to the network (speaker ID and speech style ID), now a
third input (cluster ID) is added, and these three inputs are jointly represented as a single one-
hot vector, which is converted into an appropriate joint embedding through the training
procedure. The effects of the division of speech data into clusters have been analyzed in [70],

and it has been shown to slightly improve the quality of speech synthesis.

With the idea of improving the multi-speaker model as a starting point for speaker/style
adaptation, we supplement the inputs of both neural networks (one that predicts durations and
the other, which predicts acoustic features) with the information about the speaker, speaking
style and cluster (SSC) in an embedded form, as shown in Figure 30. As previously
explained, both networks are presented with 577 binary linguistic features (related to US
English) at their inputs, with the output of the duration network serving as an additional input
for the network predicting acoustic features. However, in the proposed model the input layer

of each network is extended with an N-dimensional vector containing the joint embedding of
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the speaker ID, speaking style ID and cluster ID, all of them originally represented in the
form of a single one-hot vector of length 67, which is the number of unique SSCs existing in
the training corpus. In this way it is left to the network to represent a particular SSC in a
space of lower dimensionality (in our research it was set to N = 15). The idea of representing
the speaker, the style and the cluster using 3 separate one-hot vectors was discarded since it
would imply the questionable assumption that every speaker renders a speaking style in a
similar way. The main advantage of the approach based on embedding is that the network
itself has the opportunity to establish similarities and differences between particular speakers,
styles or clusters, and based on this information, it is expected to position particular SSC
combinations closer or farther from each other in the embedding space. This, in turn, will
help the main network to generalize more easily, since the distance between two SSCs in the
embedding space will correspond to the general difference between them. Once trained, the
network will be able to synthesize speech that corresponds to a particular SSC given the
corresponding point in the embedding space. Furthermore, given a random point in the

embedding space, the network will be able to produce a new, previously “unseen” voice.
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Figure 31: The architecture of the proposed model for the two neural networks that
predict either phonetic segment durations or acoustic features.

During the initial training of the MSMS model, input to each of the networks were
linguistic features as well as the one-hot vector representing the speaker, style and cluster
combination, while the output were corresponding values (durations or acoustic features). By
doing so the networks themselves build the embeddings for each SSC, and as a result, each
SSC will be represented by two points in the corresponding embedding spaces — one in the
embedding of phonetic segment durations and the other in the embedding of acoustic
features. In both cases the expected outcome is that the closeness of two SSCs in embedding
spaces will reflect their subjective similarity. The outcome of the initial training is the MSMS
model, able to provide speech sounding like any SSC seen in the training, provided with the

correct embeddings in both networks.

The described architecture and training procedure result in a MSMS TTS synthesis able

to generate speech of high quality in any speaker/style/cluster combination seen in the
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training corpus, but can also be easily adapted to a new speaker/style, with a relatively small

amount of adaptation data.

6.2. Two-Step Adaptation Procedure

Presented model which uses trained embedded representations of SSCs can be adapted to
a new speaker or style using a relatively small amount of new audio data, through a two-
phase procedure. The goal of the first phase is to establish the embedding for the new
speaker/style, and it starts by random initialization of the weights in the embedding layers of
both duration and acoustic network. In this stage of the adaptation, only the weights in the
embedding layers of both networks are updated by SGD procedure while the rest of the
network is frozen (not updated). After first phase and updated embeddings, the model is
capable to synthesize speech similar to the target speaker/style to some extent. The
resemblance of synthesized speech to target speaker and style can be further improved
through the second phase of the adaptation process, in which the same adaptation data is
reused, but now the embedding layer is kept constant, while the rest of the parameters in the
networks are updated by using SGD algorithm. In the following section we describe the
experiments which demonstrate the ability of the initially trained MSMS model to synthesize
speech in speaker/style combinations seen during the initial training, but also its ability to
generate speech in a speaker/style combination not seen in the original training set (even for
unseen speaker and an unknown style) after the second phase of adaptation. Through these
experiments we also measure the influence of different factors, such as the perceived
importance of each phase of the described adaptation process as well as the amount of target

speaker’s data available for adaptation.

6.3. Data Augmentation

Recent advances in deep learning models are largely attributed to the amount and
diversity of data collected over the past period. Data augmentation is a strategy that allows
researchers to significantly increase the diversity of available data for model training without

actually having to collect new data. During augmentation, changes are made to the data
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(image, sound, text ...) which can be of different scope, provided that the newly generated
data must look as if they were created in a natural way, i.e. there must be no clear indication
they are actually augmentations. Although the data obtained in this way are correlated with
the original data, the augmentation implicitly regularizes the model and improves its ability
to generalize [71]. As such, augmenting data as an approach to overcoming data sparsity has

been used since the earliest days of ML [72].

In image processing, there are augmentation techniques such as: rotation, resizing,
flipping, applying various filters, adding noise, or combinations of several techniques.
Examples of these augmentations in the case of digit recognition can be seen in Figure 31.

e . A4 E R

Figure 32: Image augmentation example
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Audio data can also be augmented in a variety of ways, several of which are listed here:

e Adding noise. Noise can be added either by generating a random signal of a certain
distribution or an audio database of variety of noises can be acquired from different
sources, and then randomly added to the original recordings.

e Time shifting. A shift of just a few ms will lead to certain changes in the appearance of
the parameters for each frame, which will make the models more robust.

e Speed change. This technique can be implemented either at the signal level, leading to a
change in fy and the spectral envelope, or in the parametric domain, where it can be
performed independently from other modifications.

e Change in fy. The technique of modifying fundamental frequency, which can be
implemented at the signal level, but is mostly done in the parametric domain.

e Spectral envelope modifications. After the parameters are estimated by a vocoder, it is

very easy to make independent changes over different parameters. A very important
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parameter (i.e. a set of parameters, as described in 2.2.2) is also the spectral envelope.
Scaling gives different colors to voices, and after a significant change (combined with
changes in fj) there may even be a change in the perceived gender of the original speaker.
Filtering a spectrum over the frequency scale can either make formants more prominent
(band-pass filter, usually applied in order to reduce oversmoothing) or make spectral
envelope more flat (low-pass filter).

¢ Frequency masking. In this procedure, certain frequency channels are masked [fi, fi +
f2). f2 is selected from the uniform distribution from 0 to the frequency masking
parameter F, and f; is selected from the range (0, v-f>) where v is the number of frequency
channels [73].

¢ Time masking. ¢ consecutive time steps [?o, fo + #) are masked. ¢ is chosen from a uniform

distribution from O to the time mask parameter 7, and 7o is chosen from [0, 7 — 7).

Virtually all the above techniques are used in speech recognition, even those which lead
to noticeable speech degradation, because they contribute to the robustness of the final
acoustic model. Speech synthesis usually does not use techniques which significantly
degrade the recording, such as adding noise, time and frequency masking, unless a specific
application requires it. Other techniques are used, which, if applied to a small extent, lead to
the generation of speech that can be attributed to the same speaker, while a significant change
in some of the parameters leads to the creation of a new speaker. Both variants have their

benefits and are widely used in speech synthesis systems.

Changes in fp, spectral envelope, and speed were used in this research. Speech
parameterization consisted of extraction of the spectral envelope using a WORLD vocoder
[13] and fy curve estimated by an algorithm based on autocorrelation [74]. Scaling of the
spectral envelope, the fy curve, and the speed was chosen so that the speech, which the
WORLD vocoder resynthesized, sounded like a new, yet natural speaker. Examples of three

such augmentations are shown in Figure 32.
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Figure 33: Spectrograms of augmented speech: (a) original; (b) post-filtered spectral
envelope (band-pass); (c) changed f0; (d) down-scaled spectral envelope

6.4. Data

The data used to build the MSMS TTS model, as well as other models used in some of
the experiments, consists of 8 hours and 38 minutes of speech from 6 American English
speakers, where the quantity of speech data per speaker varied in sizes, speech styles and also
acoustic quality, as shown in

Table 4. All speech data was sampled at a rate of 22.05 kHz and 16 bits per sample were

used.
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Time Total time
Speaker | Gender | Quality Style [hh:mm:ss] per speaker
[hh:mm:ss]
Neutral 01:30:03
. Apologetic 00:17:42 .
F1 female studio Happy 002124 02:32:59
Promotional | 00:23:50
Neutral 01:38:07
Angry 00:16:55
. Apologetic 00:15:58 o
M1 male studio Happy 002613 03:34:11
Promotional | 00:28:04
Stern 00:28:54
. Friendly 00:31:42 .
F2 female studio Promotional | 00:28:43 01:00:25
. Friendly 00:18:26 .
M2 male studio Promotional 1 002120 00:39:46
F3 female souree. Neutral 00:26:46 00:26:46
YouTube
source: ax ax
M3 male YouTube Neutral 00:24:17 00:24:17
Total time [hh:mm:ss]: | 08:38:24

Table 4: Speech corpora used for construction of MSMS model
(“time” refers to the time left when leading and trailing silences are trimmed
and silent phonetic segments, such as mid-phrase silences, excluded)

As can be seen, there are two main speakers, M1 and F1, whose data include the largest
number of speech styles, and whose influence to the neutral style is the greatest. Four clusters
were identified (manually) in the neutral segments of each of these two speakers. This was
easy to detect since clusters usually contain contiguous utterances and the boundaries
between clusters correspond to breaks within or between sessions. In order to avoid the bias
towards speakers M1 and F1, and also to expand the base for the MSMS model, the available
speech data was artificially augmented by introducing changes in speed, fy and spectral
envelope into the utterances of all 6 original speakers, as described in 6.3. Using different
portions of the original speakers’ data, as well as additional utterances from some of them, 10
new artificial speakers were created, resulting in the total number of speakers being 16 (with
67 unique SSC combinations), and the total duration of the data available to 21 hours and 50

minutes. In 7 of the 10 artificially created speakers augmentation resulted in audible gender
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switch, but a approximate balance between genders in the resulting speech corpus was
preserved. The speech style ID was copied from the original corpus, while slightly different
modifications of the original data were performed in order to generate different clusters of
the neutral speech style. The speaker/style combinations created by augmenting speakers
with less available data (F2, M2, F3 and M3) were generated by modifying clips that already
exist in the original speech corpus. Speaker/style combinations created from F1 and M1 were
generated by modifying both utterances from the original F1 and M1 corpora, and some
previously unseen utterances, because the availability of speech data for these speakers is
greater. The whole speech database was phonetically and prosodically annotated, with

prosodic annotation following the extended ToBI set of conventions, as described in Section

45.

In the process of evaluating the ability of the system to adapt to a new speaker and style,
two relatively small speech databases were used, one from a female speaker (F4) and the
other from a male speaker (M4). Both these database were not present in the training of the
MSMS model. The speech style in these two data sets can be named as neutral, although it

should be noted that this information it actually not used.

6.5. Baseline Methods

In our experiments we compared performance of the proposed two-step adaptation
procedure to two baseline methods. The first method used as a baseline (Baseline 1),
presented in [64], represents one of the simplest methods for creating a voice of new speaker
with a very small amount of speech training data. Its main idea is to create a speaker-
dependent text-to-speech (SD TTS) model, initially trained on a large speech corpus from
one speaker, and then adapt it to another speaker with a very small quantity of training data.
The adaptation process differs from the standard training of SD TTS [75][46] only in the
starting point, i.e. it starts from an already trained model instead of a randomly initialized
one, and it proceeds in an identical way. It was shown that such an approach, using only 10
minutes of training data from the target speaker, produces results that are comparable to the

results obtained from a regular SD TTS trained on a 3-hour speech corpus. Due to the limited
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availability of training data, the research presented in [64] analyzed 2 SD TTS models: one
based on a speech corpus from the male speaker M1 and the other based on a speech corpus
from the female speaker F1, both in American English, which were identical to the ones used
in this research. Since both corpora included multiple speech styles, the inputs to SD TTS
models were extended with the information related to the style and cluster, both in the form
of a one-hot vector, as was previously done in [76]. For the purpose of this research, speech
data from the same two speakers, M1 and F1, was used to obtain two speaker-dependent TTS

models that served as a basis for adaptation to the speakers M4 and F4, respectively.

The second method used as a baseline (Baseline 2) represents a slight modification of the
approach described in detail in [76], where it is referred to as “separate output layer”. This
approach builds upon the idea presented in [57], which proposes an architecture based on
shared hidden layers and multiple speaker-dependent output layers. In the second baseline
approach the shared part of the network is assumed to represent a global linguistic feature
transformation, while separate output layers are used for different speaker/style
combinations. In the adaptation phase only a specific speaker/style-dependent output layer is
adapted using the limited speaker/style-specific data, following the adaptation procedure
proposed in [57]. The modification with respect to [76] lies in the introduction of an
additional speaker/style-dependent hidden layer into the network structure. Similarly to the
case of baseline model 1, the inputs are extended with the style and cluster codes in the form
of one-hot vectors, but in this case all of the speech data listed in the Table 4. was used for

training the multi-speaker/multi-style model that was subsequently adapted to M4 and F4.

It should be noted here that we did not conduct experiments in which the entire model
was trained from scratch (randomly initialized network) on a very small amount of data (10
minutes or less). These experiments were tried even before the described baseline methods,
but the results obtained were hardly intelligible, let alone natural sounding. Therefore, we

have dismissed that approach and decided not to include it in our comparison.
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6.6. Experiments

In this thesis the proposed model is trained on the same speech data as the two baseline
models described in previous section. However, while the MS models (proposed model and
baseline 2) were trained on the entire database presented in Table 4, the baseline model 1 was
trained only on M1 and F1 in order to create two speaker-dependent models (not multi-
speaker models). To test the ability of all three models to adapt to a new speaker and style,
for adaptation purposes speech data from speakers M4 and F4 were used. Since the specific
aim of this thesis is to explore the case when the amount of target speech data is very limited,
the adaptation experiments were conducted with speech databases containing from 30
seconds to 10 minutes of target speech data. The initial speaker-dependent model of the same
gender was used in each case for the adaptation of the baseline model 1. Since the baseline 2
model actually contains 16 different speakers (6 genuine and 10 obtained by augmentation),
those used as initial points for adaptation in this thesis were the ones that correspond to M1
or F1 (the one that matches the gender of the target speaker). The dimension of the
embedding was set to 15, although it was observed that it is of surprisingly little importance
to the quality of the output (values ranging from 4 to 40 were tried). The ability of the
proposed model to synthesize speech in the voice of the intended speaker/style was evaluated
by both objective and subjective measures. Objective measures are represented through the
distance between corresponding acoustic features of the original and synthetic speech, while
subjective evaluation consists of a series of listening tests. Both measures are specifically
aimed at establishing the importance of the position of the SSC points in the two embedding
spaces, the relevance of each phase in the adaptation process, as well as the influence of
training data. Speech samples used for both objective and subjective evaluation are available

at the URL: www.alfanum.ftn.uns.ac.rs/embedding.

6.6.1. Objective Evaluation

In order to get objective evaluation of the three models, the values of state durations and
acoustic parameters were compared between synthesized speech and original target speech
data in case both phases of the adaptation process were performed. For evaluation we used

target speech data which was not present in any of the training phases. The acoustic
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parameters included in objective measures were the root mean square error and correlation
for fy, RMSE and correlation for the duration of phones as well as mel cepstral distance as

explained in Section 2.4. The results are presented in Figure 33.
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Figure 34: The results of the objective evaluation of the proposed model against the two
baseline models: (a) correlation of fo; (b) correlation of phone durations; (c) RMSE of fo;
(d) RMSE of phone durations; (e) MCD.
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It can be seen that the correlation between the predicted fO contour and the ground truth
(fO in the original clip), as well as the correlation between the predicted phone durations and
the ground truth, is quite high for all three models, but that the proposed model consistently
outperforms the other two, regardless of the amount of speech used for adaptation. It can also
be seen that the differences are slightly higher in case when less target speech data was used.
The baseline model 1 seems to degrade the most with the decrease of the quantity of
adaptation data, although the differences are not substantial in this case either. The
differences between the models are more significant in case of RMSE of f0 and phone
durations. The proposed model performs better the two baseline models in most cases, and
the baseline model 1 appears to be least successful. The differences between the models are

again more pronounced in case of the smaller adaptation set.

As for MCD, the differences among the models are almost negligible, but the proposed

model consistently outperforms the others, and the baseline model 1 performs the worst.
6.6.2. Subjective Evaluation

A number of listening tests was performed in order to compare the results of the objective
evaluation with the subjective perception and to establish the influence of various factors to

the quality of synthesized speech after adaptation of the initial model to the target data.
6.6.3. Experiment 1

The aim of this experiment was to evaluate how successful the proposed model is in
generating speech that is intended to be similar to a particular speaker and speaking style in
case only a small quantity of target speech data is available. It also examines the influence of
the relationship between the position of the SSC points in embedding spaces and the degree
to which the synthesized speech resembles to the target speaker and style. Furthermore, the
experiment also proves the importance of the second phase of the adaptation process, which
has been shown to increase the similarity of the synthesized speech to the target speaker/style
combination. The experiment explores only the proposed model and does not compare it to

the baseline models.
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The experiment was set up as a MUSHRA listening test, and conducted among 26
listeners. Each listener was presented with 10 tasks, including 5 sentences in the voices of 2
speakers (M4 or F4). In each task, the listener was presented with the following 5 versions of
the same utterance, in a randomized order:

e Hidden reference recording (original recording of the source speaker);
e Synthesis after just the first adaptation phase has been performed on the initial model;
e Synthesis after the first adaptation phase has been performed and then the obtained

embedding was modified by 10%;

e Synthesis after the first adaptation phase has been performed and then the obtained

embedding was modified by 20%;

e Synthesis after both phases of the adaptation procedure have been performed on the

mitial model without modifying the embedding obtained in the first phase.

In this experiment adaptation was performed using 10 minutes of target speech data. In
cases the obtained embedding was modified, the modification was performed for each of the
15 dimensions of the embedding, in the following way. Firstly, the reference range for each
dimension was calculated as the sample standard deviation of its 67 points (one for each
SSC) multiplied by 6. After that the actual coordinate was modified by +10% or £20% of the
calculated reference range. The reference recording was explicitly marked as such (usual
practice in MUSHRA tests), but it was also hidden among the 5 utterances chosen for
grading. The listeners were asked to rate speaker similarity between the reference and each of
the 5 utterances on a scale of 0 to 100. Since there is a tendency of giving lower grades to
less appealing voices, which might blur the influence of the factors that were considered as
relevant, the grade given to the hidden reference was scaled up to the maximum grade, and
the rest of the grades were scaled accordingly. Furthermore, in order to make comparison of
the results across all experiments more simple, all grades are presented as rescaled to the

interval 0-5.

The results, shown in Figure 34, suggest that the first phase of the adaptation alone is
sufficient for the model to be capable of producing speech that roughly resembles the target
speaker. It can also be seen that the position of the embedding generated through initial

model training is significant, since if it is modified, resemblance to the target speaker is
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partially lost (variation of each coordinate by 10% leads to a relatively small change, but an
increase to 20% of the initial value reduces the mean score from 2.5 to 1.2). This experiment
has also demonstrated the relevance of the second phase, since the grade achieved after both
adaptation phases is substantially higher than any grade seen after performing only the first
phase of adaptation. A substantial margin still exists between the original and the synthesized
speech, and one explanation could be that it is because of the relatively poor coverage of the
embedding space by the SSCs present in the training database. If more diverse data was used
for training the initial MSMS model, it could be expected that the synthesis after adaptation
to a new speaker and style would exhibit less audible artefacts, and would be perceived as

more similar to the original speaker by the listeners.
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Figure 35: Subjective assessment of speaker similarity to the reference recording,
rescaled to 5.00: (a) reference recording; (b) synthesis after the first phase of adaptation
of the initial model; (c) synthesis after the first phase of adaptation and thus obtained
embedding modified by 10%; (d) synthesis after the first phase of adaptation of the initial
model and thus obtained embedding modified by 20%; (e) synthesis after both phases of
adaptation.

6.6.4. Experiment 2

The purpose of this experiment was to compare the quality of synthesized speech by the
proposed model with the two baseline models after adaptation, not taking into account
speaker similarity with the reference speaker, through a MUSHRA listening test with 24

subjects. In each of the 20 tasks, the subjects were informed that the reference audio clip is a
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recording of natural speech, and they were asked to grade the quality (intelligibility and

naturalness) not taking into account speaker similarity, the following modifications of the

same utterance:

e Hidden reference recording (original recording of the source speaker);

e Synthesis by the baseline model 1 after adaptation;

e Synthesis by the baseline model 2 after adaptation;

e Synthesis by the proposed model after the embedding obtained in the initial training is
reset to 0 and only the second phase of adaptation is carried out;

¢ Synthesis by the proposed model after both phases of adaptation.
All utterances appeared in a randomized order.

Among these 20 tasks, 10 of them had models adapted by using 10 minutes , and the
remaining 10 by using only 30 seconds of target speech data. In each of these two instances

there were 5 utterances by each of the 2 speakers (M4 and F4).

The results (Figure 35) show that regardless of the quantity of target speech used for
adaptation of the model, baseline model 2 was considered worst by the subjects, while the
two versions of the proposed model received the highest grades. It should be noted that,
although average grades for baseline model 1 and the proposed model do not differ that much
in case when 10 minutes of adaptation data were used, the proposed model gets significantly
higher grades than the baseline model 1 in case adaptation is performed using only 30
seconds of target speech. That is to say, the proposed model seems to be more robust to small
amount of adaptation data compared to any of the baseline models. Also worth mentioning is
that, if the initial embedding is reset to 0 and we perform only the second phase of
adaptation, it does not significantly degrade the quality of synthesis. However, it is still

slightly higher if the initial embedding adapted to the new speaker is used.
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Figure 36: Comparison of the quality of synthesis obtained in different conditions,
rescaled to 5.00: (a) reference recording; (b) synthesis by the baseline model 1 after
adaptation; (c) synthesis by the baseline model 2 after adaptation; (d) Synthesis by the
proposed model after the embedding is reset to 0 and only the second phase of adaptation
is carried out, (e) synthesis by the proposed model after both phases of adaptation.

6.6.5. Experiment 3

Experiment 3 was performed in the same way as Experiment 2 regarding the versions of
synthesized speech that were presented to the subjects in each task, but this time the subjects
were asked to evaluate similarity between speakers instead of the general quality. The
experiment involved 10 tasks (5 for each of the speakers, M4 and F4), and 20 subjects
performed evaluation. As Experiment 2 has shown that the general quality of synthesized
speech is quite different for the three models in case of adaptation on very small amount of
data, adaptation was conducted only on 10-minute target speaker datasets, to prevent the
subjects from being distracted by this difference so that they could focus only on speaker
similarity. As shown in Figure 36, the proposed model performs better than both baseline
models regarding production of synthesized speech in a voice that resembles the original
speaker, even when the embedding is reset to 0 and only the second phase of adaptation is

performed.

98



Darko Pekar Doctoral thesis

5,00

4,00

3,00

2,00

1,00

0,00

a b [ d e

Figure 37: Comparison of the speaker similarity obtained in different conditions, rescaled
to 5.00: (a) reference recording; (b) synthesis by the baseline model 1 after adaptation;
(c) synthesis by the baseline model 2 after adaptation; (d) Synthesis by the proposed
model after the embedding is reset to 0 and only the second phase of adaptation is carried
out; (e) synthesis by the proposed model after both phases of adaptation.

6.6.6. Experiment 4

In order to measure full capability of the proposed model it is necessary to compare it
with another speaker-dependent baseline model using large quantities of target speaker data
for training. However, we were unable to perform such an evaluation directly because only a
small amount of speaker data for the speakers M4 and F4 was available, and the remaining
speakers were already used for the initial model training. In order to circumvent this
limitation we conducted experiment by including two types of MUSHRA tasks (10 tasks of
each type). In both types of tasks, the 32 subjects in the listening test received information
that the reference utterance is actually a natural recording of speech, and were asked to grade
the general quality (intelligibility and naturalness) of 3 utterances provided in random order.
In the tasks of type 1 the following 3 utterances were presented:

e Hidden reference recording (original recording of M1 or F1);
e Synthesis by the baseline model 1 trained on all available data for M1 or F1 (see Table

4), without further adaptation;
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Synthesis by the proposed model using embeddings corresponding to M1 or F1, without
further adaptation;

while the tasks of type 2 consisted of the following 3 utterances:

Hidden reference recording (original recording of M4 or F4);
Synthesis by the proposed model after both phases of adaptation to M4 or F4, using 10
minutes of target speaker data;

Synthesis by the proposed model after both phases of adaptation to M4 or F4, using 30

seconds of target speaker data.

In each task the 3 given utterances originated from the same speaker in order to eliminate

the preference that a subject may have for some of the voices. This is also the reason why we

separated these two tasks instead of conducting only one. All speakers were equally

distributed in the experiment, i.e. each of them appeared in 5 tasks.
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Figure 38: Comparison of the quality of synthesis obtained in different conditions,
rescaled to 5.00: (a) Synthesis by the baseline model 1 trained on all available data for
M1 or FI without further adaptation; (b) Synthesis by the proposed model using

embeddings corresponding to M1 or FI without further adaptation; (c) Synthesis by the
proposed model after both phases of adaptation to 10 minutes of speech data from M4 or
F4; (d) Synthesis by the proposed model after both phases of adaptation to 30 seconds of

speech data from M4 or F4.
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The results of the experiment are shown in Figure 37 (scores rescaled to the interval 0-5).
Before commenting the results, it is important to mention that although M1 and F1 were not
in the same tasks as M4 and F4, we can still compare the subjective quality of synthesis
between models and versions that were not present in the same tasks. Noteworthy, the
synthesis by the baseline model 1 trained on all available data for M1 or F1 and synthesis by
the proposed model after two-phase adaptation to M4 or F4, using 10 minutes of speech
(items (a) and (c) in Figure 37) were graded as similar in quality. This shows that the
proposed model, given properly trained MSMS model as a starting point, and using as little
as 10 minutes of adaptation material, is able to reach a quality of synthesis similar to that of a
standard speaker-dependent model trained on much more speech data (~3.5 hours in case of
M1 and ~2.5 hours in case of F1). Additionally, synthesized speech generated by the baseline
model 1 trained on all available data for M1 or F1 (~3.5 and ~2.5 hours respectively) seems
to be of the equal quality as the synthesis by the proposed model using embedding points
corresponding to M1 or F1 and no additional adaptation. This means that given quantity of
training data for a certain speaker can be used as a basis for a multispeaker model based on
embeddings and to train a single speaker-dependent model, with similar outcomes. As a final
point, it should be noted that the adaptation of the proposed model using seconds of material
yielded synthetic speech that was rated as being of lower quality than in case the adaptation
was performed on 10 minutes of speech. Nevertheless, the difference in scores is only 0.38,

which is quite small taking into account the difference in the amount of adaptation data.
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7. Conclusion

In this research we deal with the problem of creating high quality synthetic voices when
only small amount of data is available. The subject has been the focus of many studies for
decades, because it has numerous uses and potentially significantly reduces the effort for
creating new voices, by making it much faster and less expensive. After introducing and
comparing usual approaches to speech synthesis, we also illustrate a number of previous
attempts to address this problem. Some of them were based on older approaches (e.g. HMM-

TTS), while some more recent ones tried to offer solution by using DNN architecture.

Two different adaptation approaches were proposed in this thesis. Both are deep neural
network based speech synthesis models, capable of adaptation to a particular speaker and
speaking style. The first method initially trains DNN-based TTS on relatively large amount
of training material (3+ hours) and uses that model as a starting point for adaptation. This
means that the new model is not trained on a randomly initialized network (weights and
biases), but on an already pretrained one, which resulted in much better performance (higher
quality of synthesized speech). Because of the small amount of adaptation material for new
speaker, we had to devise a new alignment procedure, which outperformed the default one,
provided in the tool. Both male and female initial models were trained and used as starting
points for adaptation, and the outcomes compared. No significant difference was observed
when different starting models were used. Also, different sizes of adaptation material were
used and quality of the obtained speech was compared. As expected, more material yielded
better results, but it was shown that adapting even with a relatively small amount of data
could provide comparable results to models trained from scratch with much more speech

material. The evaluation was based on objective measures, but also on listening tests.

The second method is the two step adaptation process in which we first find the optimal
embedding for the target voice in an iterative way. Before that we have to build a multi-
speaker multi-style model, based on many speakers, during which process the embedding
space is built. The second step consists of adaptation of the rest of the neural network, by

optimizing all the weights and biases so the resulting network can produce the speech of the

102



Darko Pekar Doctoral thesis

target speaker. Since the output after phase one is already close to the target, the amount of
changes applied to the network is relatively small. This prevents the network from overfitting

and enables much better generalization of unseen events.

The second method has been shown to outperform two other recently proposed
parametric speaker/style-dependent speech synthesis models, particularly in case the quantity
of available adaptation data is extremely small. This is achieved owing to the joint
representation of speaker, speaking style and cluster by their low-dimensional embedding,
whereby the model is able to establish the similarities or differences among speakers and

styles, and consequently generalize more accurately.

The embedding approach opens up a range of interesting possible applications of the
proposed model in any domain where the possibility of quick and efficient adaptation of

speech synthesis to a new speaker and/or style is required.

7.1. Future Work

A limitation of this research that cannot be disregarded is the relatively small quantity of
speech data on which it was based. Namely, for the second approach (which yielded the best
results), only 8 hours and 38 minutes of actual speech from 6 speakers was available for
training, and a total of 20 minutes was available for adaptation, which is why data
augmentation had to be applied. Although this is a valid technique aimed at overcoming data
scarcity, the question remains to what extent a stronger multi-speaker/multi-style basis,
including a greater number of speakers/styles, would improve the ability of the proposed
system to produce synthetic speech of high intelligibility, naturalness and similarity to the
target speaker/style. For that reason, the model will certainly be reinvestigated as soon as a
significantly greater amount of training data becomes available, and this will also be an

opportunity to study the influence of data augmentation to the performance of the model.

Another issue that will be further investigated is the influence of the difference in the
quantities of available training data related to particular speakers/styles. This research in

particular may have suffered from two speakers (M1 and F1) being overrepresented in the
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training data. In the future versions of the proposed model we intend to equalize the influence
of all speakers/styles on the training process by introducing weight coefficients

corresponding to their relative contributions.

As explained in Section 2.2.2, WaveNet is a neural vocoder which produces output
speech of almost perfect quality. It could be used instead of WORLD vocoder and
additionally raise the quality of output speech and similarity to the original voice. The
process would be quite similar to what has been done with current NNs: first train WaveNet
with speaker embeddings; in the first step of adaptation, estimate the optimal embedding for

the target speaker; then additionally optimize WaveNet to better represent the target speaker.

Similar architecture and approach could be applied to style transplantation and polyglot
TTS. Style transplantation is a process where we make TTS generate sentences in a certain
voice and style, even though the target speaker never actually produced any utterance in the
target style. The idea is to transform the embedding point of that speaker in appropriate way,
so when synthesis is run by using that new “speaker” we get desired style. The process is, of

course, far from trivial and will require additional research.

Multilingual or polyglot TTS is a system able to produce synthetic speech in a certain
voice in several languages even though the original speaker provided speech data in only one
language. Besides the obvious advantage of being able to provide personalized speech in
several languages, this approach also offers building a more comprehensive speaker
embedding space, by using data from multiple languages. In other words, just as a multi-
speaker model is able to learn general characteristics of human speech and of a particular
language regardless of the differences between the voices of particular speakers, a multi-
language model goes one step beyond and learns about human speech by “listening” to

speech samples in different languages.

Direct voice conversion (from audio to audio, without generating text) is also a very
promising technology with a wide variety of applications. Although it has certain similarities
to what was researched in this thesis, it is based on somewhat different approaches and

requires additional research.
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Hpuior 1

Ils1aH TperMaHa mogaraka

Ha3uB npojexra/mcTpakuBama

Novel method for speaker adaptation in parametric speech synthesis

(HoBa meTona axantanuje Ha rOBOPHUKA y IAPAMETAPCKOj CHHTE3H F0BOPA)

Ha3uB HHCTUTYIHje/MHCTUTYHja Y OKBUPY KOjUX Ce CIIPOBOIM HCTPAKUBAHE

a) AnpaHym noo, Hosu Cax
0) Speech Morphing System, Inc, Saj Jose, California

B) ®akyarer TexHnuknx Hayka, Hou Can

Hasus nporpamMa y OKBHpY KOT ce peaju3yje HCTPaKHBaH-e

/

1.1 Bpcra cryaumje

Ykpamko onucamu mun cmyouje y okeupy xoje ce nooayu npukyneajy

Y nuramy cy JOKTOPCKe CTyaHje, Koje Cy ce oOABHjajie y Iapajesiu ¢a pa3BojeM

KOMEPLHjaJTHUX MPO3UBOAA 32 rOpe HaBeJeHe KOMIIaHHje.
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1.2 Bpcre nonataka

a) KBAaHTUTATHUBHH

0) KBaJIMTaTUBHU

1.3. Hauun npukymsbama nojaraka

a) aHKeTe, VIIMTHUIIH, TECTOBH

6) KIIMHUYKEC TPOUCHE, MCAUIIUHCKHU 3alTUCH, CJIICKTPOHCKHU 3APAaBCTBCHU 3aIIMCHU

B) TCHOTUIIOBU: HABECTHU BPCTY

') aAMUHUCTPATUBHU MOJAIM: HABECTU BPCTY

1) y30pLH TKUBA: HABECTH BPCTY

B) caumim, poTorpacduje: HaBeCTH BPCTY

€) TeKCT, HABECTU BPCTY

) Mama, HaBeCTH BPCTY

3) 0CTAJ0: Mepelhe pacTojama u3Mehy napamerapa (o0jekTHBHE Mepe)

1.3 ®opwmar noaaraka, ynorpedJbeHe ckalie, KOJMYMHA M0/1aTaka
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1.3.1 Ynotpebsbenu copTBep U popMar JaToTeKe:

a) Excel dajua, naroreka (Buiie mux)

b) SPSS ¢ajn, natoreka

c¢) PDF dajn, naroreka

d) Tekcr ¢ajn, natoreka

e) JPG ¢ajn, natoreka

f) Ocrano, natoreka

1.3.2. Bpoj 3amuca (ko1 KBAHTUTATHBHUX T0/1aTaKa)

a) 6poj Bapujabiu: y 3aBHCHOCTH 01 eKCIIepPMMEHTa, MepeHo je udmel)y 2 u 7 napameTtapa

0) Opoj Mepema (MCTIMTaHuKa, TPOIICHA, CHUMAaKa | CJI.) 6p0j HCMUTAHUKA ce KpeTao ox 20-

30, a 6poj caumaka oa 5-20

1.3.3. [loHOBJbEHA MEpEHA

a) na

0) He
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VYKOJIMKO je 0JrOBOp Ja, OJArOBOpUTH Ha cieeha murama:

a) BPEMEHCKH pa3MaK U3MeJjy MOHOBJLCHUX Mepa je

0) Bapwujabie Koje ce BUIIIE IyTa Mepe OJTHOCE Ce Ha

B) HOBE Bep3uje (ajiioBa Koju caJprke MOHOBJbEHA MEPEha Cy UMEHOBAHE Kao
Hanowmene:

Ha nu popmamu u cogpmeep omozcyhasajy oemerve u 0y20pouny eaiuoHocm nooamaxa?
a) Na
0) He

Axo je 0o02060p He, 0bpaznodcumu

2. [Ipukynibame nogaTaka
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2.1 Meroponoruja 3a NpUKyIUbamkhe/ TeHEPUCAHE MT0aTaKa

¥ tecToBuMa caymama kopuctuie cy ce MOS (enru. Mean Opinion Score) u MUSHRA

(enrn. MUltiple Stimuli with Hidden Reference and Anchor) metone.

3a mepeme 00jeKTUBHUX Mepa KOPUCTHJIO ce pacTojame u3Mel)y mapamerapa
CHHTETH30BAHOT U OPUTHMHAIHOT roBopa. MepeHH mapaMeTpH Cy: MeJl KelcTpajiu,
OCHOBHA Y4€CTAHOCT, CTeNeH 3BYYHOCTH, CTeNeH anepuoAu4HOCTH M0 (peKBeH M jCKIUM

orncesmma.

2.1.1. YV okBHpY KOT UCTPaXMBAYKOT HALPTA Cy MOJALM NPUKYIIJbEHU?

a) ekcnepuMenT, HaBecTd THI: MOS, MUSHRA.

0) KOpenaoHO NCTPAXKUBALE, HABECTH TUIL: MOpel)erhe HaBeeHHUX mapaMeTapa.

1) aHaJIu3a TEKCTa, HABECTH THI

1) OCTajo, HAaBECTH IITa

2.1.2 Hasecmu 8pcme MepHUX UHCIPYMEHAMA Ulu CMmaHoapoe nooamaxa cneyuguyHux 3a

o0peheny HayuHy oucyuniuHy (aKko nocmoje).

Y excnepuMeHTHM A CJIYHIAKHA CYy e KOPUCTHIIE CIyHIATINIe.

®opmart ayauo ¢ajiosa je omo 22kHz, 16bit, PCM.
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2.2 KBanurer nojaraka u CTaniapau

Tabene cy y crangapanom (Excel) popmary.

2.2.1. Tperman HemocTajyhux mojaaraka

a) [la mu matpunia cagpxu Henocrajyhe nomarke? Jla He

AKO je 0JITOBOp J1a, OJATOBOPUTH Ha cJieficha nmurama:

a) Konuku je 6poj Henoctajyhux nonaraka?
0) Jla mu ce KOpUCHUKY MaTpHlLIe pernopyyyje 3aMmeHa Henoctajyhux nogaraka? Jla He
B) AKo je 0ATOBOp J1a, HABECTH CYTeCTHje 3a TPETMaH 3aMeHe Hel0CTajyhux nojaraka

2.2.2. Ha Koju Ha4MH je KOHTPOJIMCaH KBAJUTET nojaraka? Onucatu

Maxom py4HO, OTHOCHO NpahemeM TOKA eKCIepuMeHTA.

2.2.3. Ha xoju Ha4uH je u3BpIlIeHa KOHTPOJIa YHOCA MToAaTaKa y MaTpHiry ?

Codr1eep npuiarohen 3a oBe cBpxe je Bpmino Ty GyHKIHjy, y3 HAKHAJAHY PYyYHY
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KOHTPOJY.

3. TpetmMan noaaTaka u npateha tokyMeHTanmja

3.1. TpeTrmaH 1 yyBame MojaTaka

3.1.1. Ilooayu he bumu 0enono6anu y KOMRAHUJCKU PENnO3UMOPUJYM.

3.1.2. URL aodpeca

https://drive.google.com/drive/folders/1 CKyablYERuHKMiierDiP3g MEAsBzVIib?usp=shar

ing

3.1.3. DOI

3.1.4. la nu he nooayu bumu y omeopeHom npucmyny?

a)  Aa
0) la, anu nocne embapea xoju he mpajamu 0o
8) He
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Axo je 002060p ne, Hagecmu paszioe

3.1.5. Illooayu nehe bumu oenonosanu y penozumopujym, aiwu he oumu yysaHu.

Obpasznooicerve

3.2 Meranojamy 1 TOKyMeHTalHja noaTaka

3.2.1. Koju cranmapn 3a meramnoaarke he Outu npumemeH?

Cio0601Ha popma y OKBHUPY elIies1 TOKYMeHATA.

3.2.1. HaBect MeTano1aTke Ha OCHOBY KOJUX CY MOJAIH JICTIOHOBAHHU Y PEMO3UTOPH]YM.

Y oKBHpPY MeTANoOAATAKA je HaBeleH OpP0j eKcnepuMeHaTa, cydjeKaTa 1 CHUMAaKa KOjHu Cy

OllelbMBAHN, KA0 M IbUX0BE HAJBAKHMje KapaKTep uCTHKE.
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Axo je nompebno, Hasecmu memooe Koje ce Kopucme 3a npey3umaroe no0amaxd, aHaIumuyKe

u npoyedypanre uHgopmayuje, HLUX080 KOOupare, dema.bhe onuce eapujadbiu, 3anuca umo.

3.3 Ctpareruja u cTaap/u 3a 4yBame [ojgaraka

3.3.1. Mo xor nepuoxa he nonamy OWTH YyBaHU Y PENO3UTOPHUjyMY? HEOTPAaHUUECHO

3.3.2. la i1 he nogauu 6utu nenonoBanu noj mudppom? Jla He

3.3.3. la iu he mmdpa 6utu noctymnHa oapeheHom kpyry ucrpaxusaua? Jla He

3.3.4. Jla nmu ce mojany Mopajy yKJIOHUTH U3 OTBOPEHOT NPUCTYTIA ITOCIIEe U3BECHOT BpeMeHa?

Jla He

O06paznoxuru

4. Be30eTHOCT MoaTaAKA M 3aIITHTA MOBEP/LbUBUX HHG OpMaIuja

OBaj onesbak MOPA 6utH nomymeH ako Ballly MOJAM YKJbYUY]y JIMYHE TI0JIaTKE KOjH Ce
0JIHOCE Ha YUYECHHKE Y UCTPaKUBamY. 3a Ipyra HCTpaXKuBama Tpeda Takohe pasMoTpuTH

3alTUTY ¥ CUTYPHOCT MOJaTaKa.

4.1 dopmaHu cTaHIapIv 3a CUTYPHOCT MH(pOpMaIHja/moaTaka

HcTpaxuBauu KOju CIIpOBOJIE UCIIUTHBAKA C JbYAMMa MOPajy Jia ce MpUIp>kaBajy 3akoHa O
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3allITUTHU IToJaTaKa O JIMYHOCTH

(https.//www.paragraf.rs/propisi/zakon_o_zastiti_podataka_o_licnosti.html) u onroapajyher

WHCTUTYHIHUOHAJIHOT KOJCKCA O aKaICMCKOM NHTCTPUTECTY .

4.1.2. Jla nu je uctpaxxuBame o00peHo of crpane etuuke komucuje? Jla He

Ako je oarosop [la, HaBecTH JaTyM U Ha3UB €TUYKE KOMHCH]E KOja je 0J100pHiIa UCTPAKUBAHE

4.1.2. Jla v moiani yKJby4yjy JIMYHE MOJIaTKE yUECHUKA Y UCTpakuBamwy? [la He

AKO je 0iTOBOp 72, HABEUTE HA KOjU HAYMH CT€ OCUT'YPaJId IOBEPIJHUBOCT M CUTYPHOCT

nH(pOpMaIja Be3aHUX 32 UCITUTAHUKE:

a) [Tomay HUCY Y OTBOPEHOM MPUCTYILY
0) [Topaum cy aHoHUMU3HpaHU
1) OcTano, HaBeCTH IITa

5. locTynmHOCT nogaTaka

5.1. ITooayu he 6umu
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a) jaeno oocmynnu

0) docmynHu camo yckom Kpyay ucmpas’;cusava y oopehenoj nayunoj ooaracmu
y) 3ameopeHru

Axo cy nodayu 0ocmynHu camo YCKOM Kpy2y UCHPadcusayd, Hagecmu noo KOjuM ycioeuma

Mo2y 0a ux Kopucme:

Axo cy nodauu OocmynHu CamMo YyCKOM Kpy2y ucmpasicueadd, Haeecmu Ha KOju HAYUH MOo2y

npUCMYnumu noOayuMa.:

5.4. Hasecmu nuyenyy noo xojom he npuxynmenu nooayu oOumu apxusupanu.

1 - AytopcTBO

6. Y0ore M 0ATOBOPHOCT

6.1. Hagsecmu ume u npezume u mejn aopecy 61acHuxa (aymopa) nooamaxa

Japko Ilexap, pekard @gmail.com

6.2. Hasecmu ume u npesume u meji aopecy ocobe Koja 00paicasa Mampuyy ¢ nooayumda

Hapko Ilexap, pekard @gmail.com
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6.3. Hasecmu ume u npesume u mejn aopecy ocobe Koja omoeyhyje npucmyn nooayuma

OpY2UM UCMPAIHCUBAUUMA

Hapko Ilexap, pekard @gmail.com
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