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Sažetak 

 Sinteza govora na osnovu teksta je tehnologija koja omogućava računarima 

pretvaranje pisanog teksta u ljudski govor. Pristupi sintezi govora mogu se podeliti u dve 

grupe, konkatenativne i parametarske. Parametarski pristupi su popularni zbog 

mogućnosti lakše modifikacije generisanog govora, ali su donedavno bili inferiorni u 

pogledu kvaliteta sintetizovanog glasa. Sa pojavom najnovijih metoda parametarske 

sinteze (npr. WaveNet), ova razlika se ne samo smanjila, već su parametarske metode u 

pogledu kvaliteta prevazišle konkatenativne. U ovoj disertaciji ukratko su opisane dve 

najpopularnije parametarske metode: sinteza govora na bazi skrivenih Markovljevih 

modela i sinteza govora na osnovu dubokih neuronskih mreža. 

Za praktičnu primenljivost određenog sistema veoma je bitno da ne zahteva mnogo 

ulaganja prilikom realizacije novog glasa ili stila. Donedavno se za realizaciju novog 

glasa i/ili stila morala snimati potpuno nova govorna baza, često veća od 10 časova 

govora, i morao se uložiti dugotrajan rad na anotaciji te baze (fonetskoj i prozodijskoj). U 

ovoj disertaciji su predstavljene metode koje mogu da generišu novi glas ili stil koristeći 

mnogo manju količinu snimljenog materijala (čak i ispod jednog minuta). Jasno je da one 

zahtevaju i mnogo manje rada, kako na snimanju novog govornika ili stila, tako i na 

anotaciji. 

Sve analizirane metode baziraju se na neuronskim mrežama i metodama poznatim 

pod zajedničkim nazivom adaptacija na govornika. Ove metode koriste početni model 

obučen na jednom ili više govornika, uglavnom na većoj količini materijala, koji se 

potom dodatno obučava (adaptira) na novog govornika korišćenjem relativno male 

količine materijala. Slične tehnike su korišćene još na skrivenim Markovljevim 

modelima, a eksperimenti izloženi u ovoj tezi obuhvataju nekoliko metoda baziranih na 

neuronskim mrežama. U tezi se predlaže nekoliko metoda i modela adaptacije. 

Sprovedena su objektivna i subjektivna poređenja svih metoda, a zatim su predstavljeni 

njihovi rezultati i izvučeni su odgovarajući zaključci. Takođe su predloženi i dalji pravci 

istraživanja koji se tiču efikasne i stabilne adaptacije na govornika i stil, u cilju brzog i 
isplativog generisanja novih glasova. 
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Abstract 

Text-to-speech synthesis is the technology which enables machines to convert written 

text into human speech. Approaches to speech synthesis can be divided into two groups, 

concatenative and parametric. Parametric approaches are popular because they provide 

means of modifying generated speech, but until recently they have been inferior in terms 

of synthesized voice quality. With the emergence of new approaches in parametric 

synthesis (e.g. WaveNet), this gap has not only narrowed, but the situation reversed to the 

advantage of parametric approaches. In this thesis the two most popular methods of 

parametric synthesis have been described: speech synthesis based on hidden Markov 

models and based on deep neural networks. 

For practical application of a certain system it is very important that it does not 

require a large effort for building of a new voice or style. Until recently, for these 

purposes it was necessary to record a completely new speaker database for each new 

voice and/or style, often containing more than 10 hours of speech data, and to invest 

significant effort into the annotation of that database (phonetic and prosodic). This thesis 

presents methods which can generate a new voice or style by using a much smaller 

amount of recorded material (even less than one minute). Obviously, this requires a much 

smaller effort both for the recording of the new speaker and the annotation. 

All analyzed methods are based on neural networks and methods jointly known as 

speaker adaptation. These methods use initial model trained on one or more speakers, 

usually on large amounts of speech data, which is then additionally trained (adapted) on a 

new speaker by using a relatively small amount of speech data. Similar techniques have 

been used in the past with hidden Markov models, and in this thesis several methods 

based on neural networks are examined. 

Several methods and models of adaptation are proposed in this thesis. Both objective 

and subjective comparisons of all the methods have been conducted, and the results have 

been presented and discussed. Future research plans have been proposed, regarding 

efficient and stable adaptation to a new speaker and/or style, for the purpose of fast and 

cost-effective generation of new voices. 
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Prošireni izvod na srpskom jeziku 

Sinteza govora (engl. Text-to-Speech Synthesis - TTS) je tehnologija sa širokim spektrom 

aplikacija. Koristi se za čitanje tekstualnog sadržaja za slepe, u pozivnim centrima za prenos 

različitih informacija korisnicima ili čak potpunu zamenu živog agenta u određenim 

scenarijima. Sa porastom broja pametnih telefona ova tehnologija je pronašla svoje mesto u 

raznim aplikacijama virtuelnih asistenata, kao i u navigacionim sistemima. 

U sintezi govora trenutno dominiraju dva glavna pristupa: selekcija segmenata i 

parametarska sinteza. Sintetizatori koji koriste selekciju segmenata (konkatenativni) pristup 

biraju segmente govora iz velike baze govora i spajaju ih da bi generisali konačni niz. 

Parametarski pristupi sintezi govora zasnivaju se na parametrizaciji govornog signala čiji je 

tekstualni oblik poznat (faza analize) i razvoju modela koji može uspešno da generiše 

parametre za dati tekst (faza sinteze). Do nedavno, ove metode su bile inferiorne u poređenju 

sa selekcijom segmenata, ali su svoju primenu pronašli u mnogim aplikacijama zbog njihove 

fleksibilnosti i mogućnosti manipulacije osobinama generisanog govora. Sa nedavnim 

razvojem neuralnih vokodera, ove metode ne samo da su sustigle selekciju segmenata, nego 

su je čak i nadmašile [3]. 

Tema i glavni doprinosi 

Dva glavna zahteva koja bi sintetizovani govor trebalo da ispuni su razumljivost i 

prirodnost [4]. U istraživačkoj zajednici postoji konsenzus da savremeni sistemi sinteze 

govora postižu dobre rezultate po ovim kriterijumima, ali se često naglašava da sintetizovani 

glas zvuči previše monotono. Drugi problem je vezan za efikasno kreiranje novih govornika i 

stilova. Naime, sa trenutnim pristupima, uključujući parametarski, obično je potrebno imati 

nekoliko sati snimka novog govornika kako bi se proizvela sinteza visokog kvaliteta. Proces 

izrade novog glasa ili stila zahteva snimanje novog govornika, ali i neki oblik 

poluautomatske anotacije i pripreme baze podataka. 

Glavni cilj ovog istraživanja je da se ispita mogućnost izgradnje novih glasova 

(govornika sa odgovarajućim stilovima), uz istovremeno značajno smanjenje količine 

potrebnog govornog materijala, a samim tim i rada potrebnog za pripremu baze. Fokus će biti 

na korišćenju Dubokih neuronskih mreža (engl. Deep Neural Network, DNN) kao trenutno 

najnaprednijeg parametarskog pristupa. Svi pristupi će biti testirani na bazi govora sa 
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relativno malom količinom materijala za adaptaciju. Hipoteza koja treba da se testira je da li 

primenom novih metoda na ograničenu količinu novog govornog materijala mogu da se 

dobiju rezultati visokog kvaliteta, koji se mogu uporediti sa onima dobijenim korišćenjem 

velikih govornih baza. 

Svi eksperimenti su rađeni na američkiom engleskom, pošto su te audio baze bile 

dostupne. Međutim, s obzirom da je ovo istraživanje fokusirano na jezički nezavisni deo 

TTS-a, koji se uglavnom bavi generisanjem signala (tzv. back-end), može se pretpostaviti da 

su rezultati primenljivi na bilo koji jezik. 

Glavni doprinosi istraživanja predstavljenog u disertaciji su: 

 Prilagođavanje otvorenog Merlin alata [5] za rad sa savremenijim okruženjima 

mašinskog učenja, kao što su TensorFlow [6] i CNTK [7].  

 Pravljenje novog glasa kretanjem od modela obučenog na velikoj bazi, uz naknadnu 

adaptaciju na novog govornika za koji postoji mala količina materijala. 

 Pravljenje multi-speaker TTS modela, koji je u stanju da generiše govor velikog broja 

spikera, istovremeno proizvodeći "prostor govornika" za sve govornike, koji bolje 

odražava sličnosti između govornika (embedding space). 

 Pravljenje novog glasa tako što se počne od modela sa više govornika, a koristi se veoma 

mala količina novog audio materijala. 

Pristupi sintezi govora 

Kao što je prikazano na slici 1, tipičan sistem sinteze govora sastoji se od dve 

komponente: prednjeg i zadnjeg dela (engl. front-end and back-end). Front-end vrši analizu 

unetog teksta i izdvajanje informacija neophodnih za back-end modelovanje. To uključuje 

normalizaciju teksta (npr. konvertovanje brojeva u reči), određivanje tipova reči (npr. 

imenica, glagol, pridev), prozodijska obeležja (npr. ToBI) i disambiguaciju homografa. U 

ovoj disertaciji korišćena su sledeća leksička obeležja: 

 Identitet trenutnog i susednih fonema (±1 and ±2 kontekst). 

 Pozicija leksičkog naglaska. 

 Pozicija fonema u odnosu na granicu sloga/reči/stope/fraze. 

 Pozicija reči u odnou na granicu fraze. 

 Broj fonema u slogu/stopi/reči. 
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 Broj reči u frazi/rečenici. 

 Prozodijska obeležja zavisna od jezika (ToBI ili slična). 

Back-end komponenta prihvata rezultate analize iz front-enda i kombinuje ih sa 

informacijama u govoru za potrebe modelovanja. Tokom procesa sinteze, back-end generiše 

izlazni govorni signal koristeći ulaz iz front-enda i obučene akustičke modele. 

 
Ostatak ove disertacije biće fokusiran na back-end komponentu i različite pristupe koji se 

primenjuju za njeno modelovanje. 

Sinteza putem selekcije segmenata 

Ovaj pristup koristi uskladištene instance govornih segmenata koje imaju različite 

fonetske i prozodijske realizacije. Poznat je i kao konkatenativni TTS pošto funkcioniše 

putem spajanja (konkatenacije) segmenata. Segmenti se skladište u bazi podataka, a zatim 

povezuju u skladu sa definisanim pravilima i cenama. Odgovarajući segment se bira iz baze 

podataka na osnovu dva tipa cene – cene do ciljanog sadržaja i cene konkatenacije. 

Cena cilja (target cost) izražava koliko su akustička obeležja segmenta iz baze podataka 

slične željenim obeležjima, pošto svaka digitalna obrada koja bi se koristila za približavanje 

izabranog akustičnog segmenta specifikaciji može da uvede neželjenu distorziju.  

Cena konkatenacije (concatenation cost) je mera koliko se akustičke karakteristike dva 

segmenta podudaraju u tačkama u kojima bi trebalo da budu spojene. Prevelike razlike bi ili 

bile čujne, ili bi opet bilo potrebe za dodatno digitalnom obradom signala.  

Nakon inicijalnog ocenjivanja, vrši se iscrpna pretraga kako bi se iz baze govora izabrali 

optimalni govorni segmenti. Viterbi pretraga se često koristi za izbor segmenata iz baze, 

kako bi se minimizovala ukupna akumulirana cena (cena cilja i konkatenacije). 

 
Slika 1: Standardna aritektura TTS sistema 
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Da bi se krajnja austička obeležja bolje podudarala sa ciljnim (f0, energija, trajanje 

fonema) i da bi prelazi između segmenata bli glatki, obično se koristi neka od metoda za 

generisanje krajnjeg signala: 

 Pitch Synchronous Overlap and Add (PSOLA) 

 Frequency Domain Pitch Synchronous Overlap and Add (FD-PSOLA) 

 Linear Prediction Pitch Synchronous Overlap and Add (LP-PSOLA) 

 Time Domain Pitch Synchronized Overlap and Add (TD-PSOLA) 

 Epoch Synchronous Non Overlap and Add (ESNOLA) 

Parametarska sinteza govora 

Kada je reč o sintezi govora baziranoj na modelu, posebno kada je cilj da se ovaj model 

nauči iz podataka, govorimo o parametarskoj sintezi govora. Model je parametarski jer 

predstavlja govor koristeći parametre, a ne uskladištene zvučne uzorke.  

Široko korišćeni model za parametrizaciju govora je model pobude i filtra. On modeluje 

govor kao kombinaciju izvora (pobude), kao što je harmonijski signal iz glasnih žica ili šum 

iz pluća; i linearni akustički filtar, koji opisuje vokalni trakt i karakteristike zračenja sa usana. 

Ilustrovan je na slici 2. 

 

Pobuda je obično kombinacija impulsa i belog šuma. Odnos njihovih pripadajućih 

doprinosa izvornom signalu, koji se obično definiše po spektralnom opsegu  (band), naziva se 

(a)periodičnost opsega. Frekvencija povorke impulsa definiše visinu ili osnovnu učestanost 

krajnjeg signala (f0). Akustički filtar opisuje spektralnu obvojnicu, koja daje konačni oblik 

spektra izlaznog signala (dok se pobuda smatra belom). Različiti fonemi mogu se razlikovati 

po svojstvima pobude i njihovoj spektralnoj obvojnici. Pored ovih, akustičkih, parametara 

 

Slika 2: Pobuda-filtar model produkcije govora 
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TTS sistemi moraju da parametrizuju i modeluju i trajanje fonema (ili čak subfonema – 

stanja). 

Sistem koji može da izvrši ekstrakciju opisanih akustičkih parametara iz govornog 

signala (analiza) i generisanje govornig signala na osnovu parametara (sinteza) naziva se 

vokoder. Ovde će biti data samo kratka lista nekih od najpopularnijih vokodera koji se 

koriste u TTS-u: vokoder sa impulsnom pobudom (Impulse Excitation vocoder), mešoviti 

(Multi-Band) vokoder, čiji su najpoznatiji prestavnici STRAIGHT i WORLD, kao i neuralni 

vokoderi, čiji je najpoznatiji predstavnik WaveNet. 

Postoje dva glavna parametarska pristupa sintezi govora: statistička parametarska sinteza 

govora (engl. Statistical Parametric Speech Synthesis, SPSS) zasnovana na skrivenim 

Markovljevim modelima i Gausovim smešama (engl. Hidden Markov models - Gaussian 

Mixture Models, HMM-GMM) i sinteza govora pomoću dubokih neuronskih mreža. 

U sistemima koji su ispitivani u ovoj tezi koristili su se sledeći parametri govora: 

 Trajanja fonema i stanja, izražena u broju blokova. 

 40 MGC koeficijenata [12] koji opisuju spektralnu obvojnicu. 

 1 ili 3 band aperiodicity parametra. 

 Logaritam osnovne učestanosti (log f0), koji uključuje i informaciju da li je određeni 

segment ima harmonijski deo ili ne. 

Evaluacija TTS sistema 

Postoji nekoliko pristupa koji se koriste za procenu kvaliteta određenog TTS sistema. 

Mogu se podeliti u sledeće grupe [14]: 

 objektivne mere, 

 subjektivne mere, 

 poređenje sistemskih karakteristika. 

Objektivne mere se dobijaju direktnim poređenjem parametara izdvojenih iz prirodnog 

govora sa generisanim parametrima. Veliko neslaganje između generisanih parametara i 

parametara izdvojenih iz prirodnog govora obično je znak ozbiljnog problema u dizajnu 

sistema. Međutim, problem sa ovim pristupom je činjenica da vrednosti objektivnih mera 

nisu uvek povezane sa subjektivnim utiskom slušalaca. Moguće je da sistem generiše audio 
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sekvence koje se značajno razlikuju od originalnih snimaka u smislu objektivnih mera, ali i 

dalje zvuče sasvim prirodno i razumljivo. 

Subjektivne mere se zasnivaju na ocenama koje daju živi subjekti u vezi sa određenim 

karakteristikama govora. Ova grupa testova može se podeliti u dve podgrupe: 

1. Ocena razumljivosti, 

2. Ocena kvaliteta sinteze. 

Opšte je prihvaćeno da savremeni sintetizatori imaju dobru razumljivost [15], stoga se 

metode predstavljene u disertaciji ocenjuju preko kvaliteta sinteze. Konkretno, korišćeni su 

testovi srednje subjektivne ocene (engl. Mean Opinion Score, MOS) i višestrukih stimulansa 

sa skrivenom referencom i sidrom (engl. Multiple Stimuli with Hidden Reference and 

Anchor, MUSHRA) [16]. 

Sinteza govora korišćenjem DNN 

Iako SPSS ima mnoge prednosti u odnosu na konkatenativni pristup ([38] [39] [40] [41] 

[42]), njeno glavno ograničenje je kvalitet sintetizovanog govora. Jedan od glavnih faktora 

koji pogoršava kvalitet sintetizovanog govora je tačnost akustičkih modela. Konvencionalni 

pristupi statističkoj parametarskoj sintezi govora obično koriste HMM  zavisne od konteksta 

klasterizovane korišćenjem stabla odluke da bi predstavili raspodelu gustine verovatnoće 

govornih parametara. Ovaj pristup je prilično efikasan, ali ima nekoliko ograničenja, npr. 

stabla odluke nisu efikasna u modelovanju složenih kontekstnih zavisnosti. Prvo, nisu 

sposobna da izraze složene kontekstne zavisnosti kao što su XOR, paritet ili multipleks 

problemi [43]. Da bi mogla da predstavljaju i takve slučajeve, stabla odlučivanja bi morala 

biti izuzetno velika. Drugo, ovaj pristup deli ulazni akustički prostor što rezultira 

fragmentacijom podataka [44]. 

Stabla odluke mogu biti zamenjena sa DNN, za koju se pokazalo da bolje generalizuje 

ulazne podatke. Slika 20 (strana 53) ilustruje okvir za sintezu govora zasnovan na DNN. Dati 

tekst koji treba sintetizovati prvo se pretvara u niz ulaznih obeležja {𝑥𝑛𝑡 }, gde 𝑥𝑛𝑡  označava n-

to ulazno obeležje u bloku t. Ulazna obeležja mogu biti binarni odgovori na pitanja o 

lingvističkom kontekstu (npr. za identitet fonema: „da li je trenutni fonem M“) i numeričke 

vrednosti (npr. broj reči u frazi, trajanje fonema). Trajanja fonema mogu se dobiti 

korišćenjem odvojenog DNN-a ili se sve može generisati pomoću jedne mreže. 
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Zatim se ulazna obeležja preslikavaju na izlazna {𝑦𝑚𝑡 } korišćenjem obučene DNN, gde 𝑦𝑚𝑡  označava m-to izlazno obeležje u bloku t. Izlazna obeležja uključuju parametre govora i 

njihove izvode u vremenu. Težine DNN mogu se trenirati korišćenjem parova ulaznih i 

izlaznih obeležja dobijenih iz podataka za obuku, dok u fazi sinteze DNN generiše izlazna 

obeležja, odnosno parametre govora. Konačno, vokoder generiše talasni oblik na osnovu tih 

parametara. 

Uvod u adaptaciju na govornika 

U sintezi govora, adaptacija na govornika odnosi se na spektar tehnika kojima se TTS 

sistem prilagođava akustičkim karakteristikama određenog govornika koristeći mali uzorak 

snimljenog govora. Poslednjih godina razvoj sistema sinteze govora značajno je napredovao; 

međutim, ovi sistemi i dalje zahtevaju velike anotirane baze podataka (deset ili više sati 

govora) da bi bili dobro obučeni. Naime, konačni sistem bi trebalo da bude u stanju da 

proizvede bilo koji fonem u bilo kojem kontekstu (fonetskom i prozodijskom, u relativno 

širokom vremenskom prozoru), što podrazumeva da svaki takav akustički fenomen treba da 

postoji („bude viđen“) u bazi podataka za obuku. S obzirom da je broj ovih fenomena veoma 

velik (preko milion), praktično je nemoguće imati ih sve čak i u veoma velikoj bazi. Iz tog 

razloga, modeli bi trebalo da budu u stanju da dobro generalizuju i da proizvodu prihvatljive 

izlaze čak i za neviđene kontekste. U slučaju malih baza procenat viđenih konteksta postaje 

gotovo zanemarljiv, što znači da sve ostalo treba generalizovati iz tog malog uzorka i nekih 

prethodnih informacija. 

U HMM-GMM pristupu, postojalo je nekoliko tehnika kojima se pokušava rešiti ovaj 

problem, od kojih su najuspešnije sledeće: procena parametara maksimizacijom aposteriorne 

verovatnoće (engl. Maximum A Posteriori Parameter Estimation, MAP) [11][23] i linearna 

regresija bazirana na maksimizaciji verodostojnosti (engl. Maximum Likelihood Linear 

Regression, MLLR) [12][13].  

Da bi se iskoristila poboljšanja kvaliteta postignuta prelaskom na DNN, predložene su 

razne tehnike adaptacije na govornika. Wu et al. [58] predložili su adaptaciju na govornika 

koristeći i-vektore kao ulaz, prilagođavanjem doprinosa skrivenim slojevima [59], primenom 

izlaznih transformacija definisanih GMM-om, ili kombinacijom ovih metoda. Fan et al. [60] 

pretpostavili su da izlazni sloj u DNN sadrži većinu informacija o govorniku i uveli različite 

izlazne slojeve za različite govornike, pri čemu su ostali skriveni slojevi i dalje bili zajednički 
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za sve govornike. U [62], autori su obučili sistem na 135 govornika i koristili „diskriminišuće 

kodove“ za mapiranje početnog one-hot vektora u prostor govornika. U fazi adaptacije 

koristili su algoritam propagacije unazad za ažuriranje kodova govornika i minimizaciju 

srednje kvadratne greške predikcije koristeći malu količinu podataka koju izgovorenu od 

strane ciljni govornika. DNN arhitektura sa dodatnim ulazima zavisnim od govornika 

predložena je u [63], a ovaj pristup je dalje proširen dopunjavanjem ulaza informacijom o 

polu i starosti govornika [62]. Da bi se omogućilo mreži da reprodukuje glas određenog 

govornika u stilu koji nije prisutan u korpusu za obuku, autori su u [64] predložili mrežnu 

arhitekturu koja eksplicitno razdvaja doprinose govornika i stila, dok je model predstavljen u 

[65] izgrađen na DNN sa više govornika sa deljenim skrivenim slojevima predloženim u 

[60], proširujući ga jednim ulazom koji zavisi od stila i uvodeći dodatni uski sloj 

(bottleneck). Drugi pravci istraživanja, poput onog predstavljenog u [66], fokusirali su se na 

razvoj metoda za prilagođavanje višeslojnog DNN sa jednim govornikom, glasu novog 

govornika. 

U ovoj tezi predstavljamo dve metode za efikasno stvaranje novih TTS glasova, 

zasnovane na relativno maloj količini podataka o adaptaciji. Jedna metoda u početku obučava 

TTS zasnovan na DNN na relativno velikoj količini materijala za obuku (3+ sata) i koristi taj 

model kao polaznu tačku za adaptaciju. To znači da novi model nije obučen na slučajno 

inicijalizovanoj, već na već prethodno obučenoj mreži, što je rezultiralo mnogo boljim 

performansama (veći kvalitet sintetizovanog govora). Drugi pristup, predlaže stvaranje 

početnog modela sa više govornika i odgovarajućeg prostora govornika (embedding). Tokom 

adaptacije izvode se dve faze. U prvoj fazi se traži optimalna tačka u prostoru govornika za 

novog govornika, sa idejom da se generiše govor koji već liči na njega, pa su u drugoj fazi 

potrebne samo minimalne promene DNN-a. U drugoj fazi je fiksirana pronađena tačka u 

prostoru govornika, a ostatak DNN je prilagođen na isti način kao u prvom pristupu. Ovaj 

dvofazni pristup dao je još bolje rezultate i može stvoriti glasove s količinom materijala od 

samo 30 sekundi. 

Merlin: DNN TTS sistem otvorenog kôda 

2016. godine Centar za istraživanje govornih tehnologija Univerziteta u Edinburgu 

objavio je sopstveni skup alata otvorenog koda za razvoj TTS-a zasnovanog na DNN. Poput 

HTS-a [47], Merlin nije kompletan TTS sistem. Pruža osnovne funkcije akustičkog 
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modelovanja: vektorizaciju lingvističkih obeležja, normalizaciju akustičkih i lingvističkih 

obeležja, obuku akustičkih modela neuronske mreže i generisanje parametara govora. 

Napisan je na Python programskom jeziku, i baziran na biblioteci Theano, a tim kompanije 

AlfaNum i Fakulteta tehničkih nauka (AN-FTS) obezbedili su da radi i sa CNTK [7] i 

TensorFlov [6] okvirima za duboko učenje. AN-FTS tim je takođe unapredio tehniku 

poravnanja foenma, implementiranu u osnovnu verziju alata. 

Adaptacija sa početnog na ciljanog govornika 

Metoda koristi podatke koji odgovaraju ciljnom govorniku za potrebe doobuke DNN koja 

je već obučena za TTS zadatak na početnom govorniku. Dakle, započinjemo obuku sa 

početnim vrednostima parametara prethodno obučene mreže, umesto nasumično 

inicijalizovanim. 

Korišćena je standardni pristup preko dve mreže, za trajanja fonema (tj. stanja) i 

akustičke parametre, kako je to ranije opisano. Korišćena su 554 binarna leksička obeležja, 

pomeraj bloka od 5 ms, 5 stanja po fonemu, MLPG, a za generisanje krajnjeg signala je 

korišćen WORLD vokoder [13]. 

Obe mreže imaju 4 skrivena sloja i 1024 neurona po sloju sa tanh funkcijom aktivacije. 

Prva tri sloja su feed-forward, dok je poslednji skriveni sloj LSTM tipa, a izlazni sloj je 

linearan (bez aktivacione funkcije). Dodatna normalizacija obeležja se izvodi za ulaz 

(normalizovano na interval [0, 1]), kao i izlazna obeležja (normalizovana tako da imaju nultu 

srednju vrednost i jediničnu varijansu). Ciljna funkcija koja se koristi je srednja kvadratna 

greška. 

Predložena metoda omogućava bržu i ekonomičniju TTS adaptaciju, jer ne zahteva 

postojanje modela prosečnog govornika kao u konvencionalnim metodama prilagođavanja 

govorniku, a istovremeno zahteva mnogo manje podataka u poređenju sa obukom DNN-TTS 

modela od nule. Uticaj izbora početnog modela na predloženu metodu prilagođavanja takođe 

je predmet istraživanja. 

Rezultati eksperimenata 

U ovom odeljku upoređujemo predloženi model sa osnovnim modelom na zadatku 

stvaranja novog TTS glasa. Model se ocenjuje na skupu rečenica koje se sintetišu na osnovu 

fonetskih i prozodijskih informacija preuzetih iz originalnih izgovora. U svim prikazanim 
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eksperimentima snimci su podeljeni u deo za obuku, validaciju i test. Za sve eksperimente 

korišćeni su isti skupovi koji su se sastojali od 5 ili 10 izgovora. U svakom eksperimentu, 

slučajno je izabrano 10% materijala koji se koristio za validaciju, dok je ostatak korišćen za 

trening. 

Rađena je objektivna i subjektivna evaluacija rezultata. Za objektivnu evaluaciju 

korišćene su ranije objašnjene metode i parametri. Za subjektivnu procenu sprovedena su dva 

MUSHRA testa [69]. U oba su učestvovala 22 subjekta u kontrolisanom okruženju i sa 

kvalitetnim slušalicama. Svaki ispitanik je procenio određeni broj testnih izgovora 

upoređujući ih sa referentnim (originalni snimak), pri čemu je svaki put jedna od test 

rečenica bila identična referentnoj. Izgovori su ocenjeni u smislu ukupnog kvaliteta 

(razumljivost i prirodnost). Svaki snimak je dobio ocenu od 0 do 100, sa jednim 

ograničenjem - jedna od 5 rečenica je morala da dobije ocenu 100. Izračunate su prosečne 

ocene i korišćen je t-test kako bi se proverile statistički značajne razlike u srednjim 

vrednostima. 

Tačnost poravnanja 

Kad postoji dovoljna količina podataka, standardno poravnanje zasnovano na 

monofonima postiže zadovoljavajuću tačnost. Međutim u situacijama kada je dostupno 

znatno manje podataka, ranije opisani metod postiže bolje rezultate, što je prikazano na slici 

25 (strana 72). Slika predstavlja procenat fonema čija su granična odstupanja ispod 

određenog praga u poređenju sa ručno postavljenim granicama. Takođe, uticaj metode 

poravnanja na objektivne mere odgovarajućeg TTS modela predstavljen je u tabeli 1 (strana 

72), gde se može videti da je predloženo poravnanje postiglo gotovo iste rezultate kao i 

obuka sa konvencionalnim poravnanjem kada baza ciljnog govornika sadrži 10 ili 15 minuta 

govora, ali znatno bolji rezultat kada baza sadrži samo 3 ili 5 minuta materijala. Zbog toga je 

u svim eksperimentima početno poravnanje izvedeno predloženom metodom, dok se za 

potrebe obuke početnog modela koristila konvencionalna metoda. 

Prvi skup eksperimenata 

Osnovni modeli su se nasumično inicijalizovali i obučili koristeći 5, 10, 15, 30, 60 i 180 

minuta podataka muškog govornika. Predloženi modeli su napravljeni polazeći od modela 

prethodno obučenog na 3 sata materijala ženskog govornika, a zatim ga prilagodili muškom 
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govorniku koristeći 3, 5, 10 i 15 minuta govora. Kao što se može videti na slici 26 (strana 

73), sve objektivne mere, sa izuzetkom VUV, pokazuju da je kretanjem od modela koji je već 

obučen dovoljno 15 minuta govora ciljnih govornika da bi se postigao kvalitet dobijen 

započinjanjem od nasumično inicijalizovanog modela i obučavanjem na 30 minuta materijala 

(videti npr. MCD na slici 26 (strana 73) a). Takođe, kretanjem od obučenog modela, 

dovoljno je 5 minuta govora da se postigne ili nadmaši kvalitet dobijen treningom nasumično 

inicijalizovanog modela na 15 minuta. 

Iako se 50% manje matrijala potrebnog za postizanje istog kvaliteta može smatrati 

dobrim rezultatom, nezadovoljavajuće je što 15 minuta ciljnih podataka još uvek nije 

dovoljno za pretvaranje već obučenog modela u model sposoban da proizvede govor 

kvaliteta uporediv sa modelom obučenim na 3h govora (i treniranim od nule). 

S obzirom na to da objektivne mere ne odražavaju u potpunosti subjektivnu percepciju, 

izvršeni su dodatni testovi slušanja. Uključeno je 10 rečenica u kojima je korišćen originaln i 

snimak, zajedno sa 4 snimka sintetizovana korišćenjem 4 različita sintetizatora navedena u 

tabeli 2 (strana 74). Sintetizatori predstavljeni u tabeli predstavljaju podskup svih sistema 

prikazanih na slici 26 (strana 73), dok su rezultati testova slušanja predstavljeni na slici 27 

(strana 75). 

Vidi se da model obučen sa 10 minuta materijala predloženom metodom zvuči blisko 

modelu obučenom na 1h materijala počevši od nule. Njihove prosečne ocene bliske su 

ocenama modela obučenog na 3h materijala (sa t-testom α = 0,05). Iako se čini da je 

prosečna ocena sinteizatora 1.4 takođe blizu ostalih, t-test pokazuje statistički značajnu 

razliku. Stoga se može zaključiti da 3 minuta ciljnog govornika pružaju zadovoljavajuće 

rezultate, ali još uvek se ne može očekivati da sintetizovani govor zvuči kao govor 

sintetizovan modelom obučenim na relativno velikoj bazi podataka.  

Drugi skup eksperimenata 

U drugom nizu eksperimenata ispitujemo uticaj početnog modela. Izvršene su adaptacije 

u okviru istog pola i između različitih polova, kretanjem od modela obučenog na 3h 

materijala u svim slučajevima, a adaptacija je vršena sa 3, 5 ili 10 minuta materijala ciljnog 

govornika. Na slici 28 (strana 76) date su objektivne mere za ovaj skup eksperimenata. 

Moglo bi se zaključiti početni model nije od velike važnosti. 
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Takođe je izvršeno poređenje spomenutih adaptacija preko subjektivnih testova slušanja, 

predstavljenih u tabeli 3 (strana 76). Test slušanja obuhvatio je 10 rečenica, od toga polovinu 

ženskih i polovinu muških govornika. Za svaku od rečenica korišćeni su originalni snimci i 

još četiri sintetizovana modelima navedenim u tabeli 3. 

Rezultati su predstavljeni na slici 29 (strana 77). Može se videti da kada je ciljni govornik 

bio ženskog pola (slika 29a), adaptacija sa 10 minuta podataka ciljnog govornika daje bolje 

rezultate ako je umesto ženskog korišćen muški početni model. Međutim, ako se korist i samo 

3 minuta materijala za adaptaciju, rezultati i za muški i za ženski početni model su gotovo 

isti. S druge strane, kada je ciljni govornik bio muškarac (slika 29b), adaptacija sa samo 3 

minuta, počevši od muškog početnog modela, postiže bolje rezultate od adaptacije sa 10 

minuta, počevši od ženskog početnog modela. Možemo zaključiti da, koristeći ograničene 

raspoložive resurse, početni model ima određeni, mada ne i značajan uticaj na adaptaciju. 

Adaptacija na govornika u dva koraka 

Ideja je da se prvo obuči model na više govornika i više stilova (engl. Multi Speaker 

Multi Style – MSMS) kako bi se dobio dobar polazni model za adaptaciju i takođe stvorio 

„ugrađeni“ prostor govornika, slično kao u [18]. Korišćeni model, ulazni i izlazni parametri 

su isti kao i kod prethodne metode. Ugrađivanje je moćna tehnika dubokog učenja zasnovana 

na mapiranju diskretnih (često binarnih) vektora iz prostora velike dimenzionalnosti do 

vektora kontinualnih vrednosti u prostoru male dimenzionalnosti. U kontekstu sinteze 

govora, i govornik i govorni stil tradicionalno su predstavljeni kao vektori sa jednim 

nenultim elementom (one-hot), što se može smatrati suboptimalnim, jer sličnost dva glasa 

nije ni na koji način povezana sa rastojanjem između odgovarajućih tačaka u visoko-

dimenzionalnom prostoru [21]. Ovaj nedostatak se prevazilazi izgradnjom zajedničkog 

ugrađenog prostora govornika i stila, predstavljajući ih u prostoru male dimenzionalnosti na 

intuitivniji način, što pomaže mreži da efikasno generalizuje neviđene govornike i stilove. 

Sa idejom poboljšanja modela sa više govornika kao polazne tačke za prilagođavanje 

novom govorniku i stilu, mi nadopunjavamo ulaze obe neuronske mreže informacijama o 

govorniku, stilu govora i klasteru (engl. Speaker Style Cluster - SSC) u ugrađenom obliku, 

kao što je prikazano na slici 30 (strana 82). Na ovaj način se prepušta mreži da predstavlja 

određeni SSC u prostoru niže dimenzije (u našem istraživanju broj SSC je 67, a dimenzija 

ugrađenog prostora je N = 15). Kada bude obučena, mreža će moći da sintetiše govor koji 
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odgovara određenom SSC-u s obzirom na odgovarajuću tačku u ugrađenom prostoru. Pored 

toga, ukoliko se odabere slučajna tačka u ugrađenom prostoru, mreža će moći da proizvede 

novi, prethodno „neviđeni“ glas. 

Arhitektura i postupak obuke predloženi u ovom istraživanju rezultiraju u multi-

govorničkom modelu za sintezu govora u više stilova, koji može reprodukovati veoma 

kvalitetan govor u bilo kojoj kombinaciji govornika / stila / klastera prisutnog u početnom 

korpusu za treniranje, ali je takođe lako prilagodljiv novom govorniku i stilu, uz relativno 

malu količinu podataka za adaptaciju. 

Procedura adaptacije u dva koraka 

Prva faza ima za cilj nalaženje tačke u ugrađenom prostoru za novog govornika i stil, a 

započinje nasumičnom inicijalizacijom vrednosti u ugrađenim slojevima obe mreže. U ovoj 

fazi adaptacije samo se vrednosti u ugrađenim slojevima ažuriraju tokom obuke, dok se 

ostatak mreže ne menja. Model sa ugrađenim slojevima prilagođenim na ovakav način može 

da sintetiše govor koji u određenoj meri već liči na ciljnog govornika i stil. Međutim, kvalitet 

sintetizovanog govora može se dalje poboljšati kroz drugu fazu prilagođavanja, u kojoj se 

ponovo koriste isti podaci za trening, ali je ugrađeni sloj zamrznut, dok se težine u mrežama 

modifikuju.  

Podaci 

Podaci korišćeni za izradu modela sastoje se od ukupno 8 sati i 38 minuta govora 6 

govornika sa američkog govornog područja, čiji količina varira u broju stilova govora kao i 

akustičkom kvalitetu, što je prikazano u tabeli 4 (strana 87). Dva govornika čiji doprinosi 

obuhvataju najveći broj stilova govora i čiji je doprinos neutralnom stilu najveći ćemo 

obeležiti sa M1 i F1. Kako bi se izbegla pristrasnost modela prema M1 i F1, kao i povećala 

osnova za model sa više govornika, raspoloživi snimci veštački su umnoženi uvođenjem 

promena u visini, brzini i spektralnoj obvojnici kod svih 6 inicijalnih govornika. Koristeći 

različite delove originalnog korpusa, kao i umnožene izgovore, stvoreno je 10 novih 

veštačkih govornika, čime je ukupan broj porastao na 16 (sa 67 jedinstvenih kombinacija 

govonika / stila / klastera) i ukupno trajanje govornog korpusa na 21 sat i 50 minuta. 

Da bi se procenila sposobnost sistema da se prilagodi novom govorniku i stilu, korišćena 

su dva relativno mala korpusa, od kojih jedan sadrži govor ženskog govornika (F4), a drugi 
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muškog (M4). Oba ova korpusa su izuzeta iz obuke MSMS modela. Stil govora u ova dva 

korpusa može se nazvati grubo neutralnim, mada su ove informacije zapravo nevažne, pošto 

je model u stanju da se prilagodi nepoznatom govorniku, ali takođe i nepoznatom stilu. 

Osnovne metode 

U našim eksperimentima upoređivali smo performanse predloženog postupka adaptacije 

u dva koraka sa dve osnovne metode. Prva metoda koja se koristi kao osnovna metoda (bazna 

metoda 1), predstavljena je ranije (Adaptacija sa početnog na ciljanog govornika). Za potrebe 

ovog istraživanja, govorni materijal dva govornika, M1 i F1, korišćen je za dobijanje dva 

TTS modela zavisna od govornika (engl. Speaker Dependent TTS – SD TTS), koji su 

poslužili kao osnova za prilagođavanje govornicima M4 i F4. 

Druga osnovna metoda (bazna metoda 2) predstavlja malu modifikaciju pristupa detaljno 

opisanog u [32], gde se koristi „odvojeni izlazni sloj“. Ovaj pristup se temelji na ideji 

predstavljenoj u [33], koja predlaže arhitekturu zasnovanu na deljenim skrivenim slojevima i 

višestrukim izlaznim slojevima (za svakog govornika po jedan). U ovom pristupu 

pretpostavlja se da deljeni deo mreže modeluje globalnu jezičku transformaciju, dok se 

zasebni izlazni slojevi koriste za različite kombinacije govornik / stil. U fazi adaptacije 

prilagođava se samo određeni izlazni sloj koji zavisi od govornika / stila, koristeći 

raspoložive podatke o govorniku / stilu, prateći postupak adaptacije predložen u [33]. 

Modifikacija u odnosu na [32] leži u uvođenju dodatnog skrivenog sloja koji zavisi od 

govornika / stila. Slično kao u slučaju sa osnovnim modelom 1, ulazi se proširuju sa 

stilovima i klaster kodovima u obliku one-hot vektora, ali u ovom slučaju su se svi govorni 

podaci koristili za obuku MSMS modela koji je kasnije prilagođen M4 i F4. 

Eksperimenti 

U ovom istraživanju predloženi model se obučava na istim podacima kao i dva osnovna 

modela opisana u prethodnom odeljku. Međutim, dok su modeli sa više govornika (osnovni 

model 2 i predloženi model) bili obučavani na celoj govornoj bazi, osnovni model 1 (koji je 

SD TTS) obučavan je samo na M1 i F1 kako bi se napravila dva modela zavisna od 

govornika. Da bi se testirala sposobnost sva tri modela za prilagođavanje nepoznatom 

govorniku i nepoznatom stilu, za adaptaciju su korišćeni snimci govornika M4 i F4. Budući 

da je cilj ovog istraživanja ispitati slučaj kada je količina ciljnog govornog materijala  vrlo 
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mala, eksperimenti su izvedeni na bazama koje sadrže 10 minuta i samo 30 sekundi. Za 

prilagođavanje osnovnog modela 1, korišćen je inicijalni model istog pola zavisan od 

govornika. Kako osnovni model 2 obuhvata 16 različitih govornika, oni koji su korišćeni kao 

polazišta za adaptaciju u ovom istraživanju su oni koji odgovaraju M1 ili F1 (u zavisnosti od 

pola ciljnog govornika). U predloženom modelu, dimenzija ugrađivanja je postavljena na N = 

15, mada je pokazano da je od iznenađujuće malog značaja za performanse sintetizatora 

(testirane su vrednosti u rasponu od 4 do 40). Sposobnost predloženog modela da sintetizuje 

govor koji odgovara predviđenom govorniku / stilu, najpre je procenjena preko objektivnih 

mera, nakon čega je usledio niz testova slušanja posebno usmerenih na utvrđivanje 

relevantnosti položaja SSC tačaka u svakom od dva ugrađena prostora, relevantnosti svake 

faze u dvofaznom procesu prilagođavanja, kao i količine podataka za adaptaciju. 

Objektivne mere 

Rezultati su predstavljeni na slici 33 (strana 92). Može se videti da korelacija između 

generisane f0 krive i stvarne, kao i korelacija između generisanog trajanja fonema i stvarnog, 

pokazuje samo male razlike između tri modela, ali da predloženi model konzistentno postiže 

najbolje performanse, bez obzira da li je za prilagođavanje korišćeno 10 minuta ili 30 

sekundi govora. Takođe se može primetiti da su razlike nešto veće u slučaju prilagođavanja 

na manje ciljnog materijala. Izgleda da je osnovni model 1 najosetljiviji na smanjenje 

količine podataka za adaptaciju, mada razlike ni u ovom slučaju nisu značajne. Razlike 

između modela su mnogo očiglednije u slučaju RMSE f0 i trajanja fonema. U većini 

slučajeva predloženi model nadmašuje dva osnovna modela, a osnovni model 1 je najmanje 

uspešan. Razlike među modelima su opet vidljivije u slučaju manjeg skupa podataka za 

prilagođavanje. 

Subjektivna evaluacija 

Sproveden je niz testova slušanja kako bi se potvrdili rezultati objektivne procene i 

utvrdio uticaj različitih faktora na kvalitet sintetizovanog govora nakon što se početni model 

prilagodi ciljnom govornom materijalu. 

Eksperiment 1 

Cilj ovog eksperimenta bio je da se istraži uticaj položaja SSC tačaka u svakom od dva 

ugrađena prostora na stepen sličnosti sintetizovanog govora i ciljnog govornika. Dalje, 
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eksperiment takođe ilustruje pozitivan efekat druge faze procesa adaptacije, za koji se 

pokazalo da povećava sličnost sintetizovanog govora sa planiranom kombinacijom govornik 

/ stil. Eksperiment istražuje samo predloženi model i ne uključuje poređenje sa osnovnim 

modelima. 

Eksperiment je postavljen kao MUSHRA test slušanja, a učestvovalo je 26 slušalaca. 

Svakom slušaocu je predstavljeno 10 zadataka, uključujući 5 rečenica izgovorenih glasovima 

2 govornika (M4 ili F4). U svakom zadatku, slušaocima je predstavljeno sledećih 5 verzija 

iste rečenice, nasumičnim redosledom: 

 Skriveni snimak reference (originalni snimak izvornog govornika); 

 Sinteza nakon prve faze adaptacije sprovedene na početnom modelu; 

 Sinteza nakon što je izvršena prva faza adaptacije, a zatim je dobijeni ugrađeni vektor 

modifikovan za 10%; 

 Sinteza nakon što je izvršena prva faza adaptacije, a zatim je dobijeni ugrađeni vektor 

modifikovan za 20%; 

 Sinteza nakon oba faze adaptacije izvršene na početnom modelu bez modifikacije 

ugrađenih vektora dobijenih u prvoj fazi. 

U ovom eksperimentu prilagođavanje je izvršeno korišćenjem 10 minuta ciljanih 

govornih podataka. Slušaoci su zamoljeni da ocene sličnost govornika između reference i 

svakog od 5 primera na skali od 0 do 100. Kako slušaoci imaju tendenciju da daju niže ocene 

manje privlačnim glasovima, što bi prikrilo uticaj faktora koji su smatrani kao relevantni za 

ovaj eksperiment, ocena koja je data skrivenoj referenci je skalirana do maksimalne ocene, a 

ostale ocene su skalirane u skladu sa tim. Nadalje, da bi se pojednostavila poređenje rezultata 

u svim eksperimentima, sve ocene su prikazane kao ponovo postavljene na interval 0-5. 

Rezultati, prikazani na slici 34 (strana 95), pokazuju da je prva faza adaptacije sama po 

sebi dovoljna da model proizvede govor koji u određenoj meri liči na glas ciljnog govornika. 

Takođe je pokazano da je položaj ugrađenih vektora dobijen početnom obukom modela 

relevantan, jer ako se modifikuje, gubi se sličnost sa ciljnim govornikom. Eksperiment je 

takođe pokazao važnost druge faze adaptacije, jer je ocena dobijena nakon obavljene obe 

faze adaptacije značajno veća od bilo koje ocene dobijene posle same prve faze. Još uvek 

postoji relativno široka margina između sintetizovanog i originalnog govora, i vrlo je 
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verovatno da je to posledica relativno slabe pokrivenosti prostora za ugradnju od strane SSC-

a koji postoje u trenažnom korpusu. 

Eksperiment 2 

Cilj ovog eksperimenta bio je da se kvalitet sinteze predloženog modela uporedi sa dva  

osnovna modela nakon adaptacije, bez obzira na sličnost govornika u odnosu na referencu, 

kroz MUSHRA test slušanja sa 24 učesnika. U svakom od 20 zadataka, slušaoci su 

obavešteni da referenca, označena kao takva, predstavlja snimak prirodnog govora, i od njih 

je zatraženo da ocene razumljivost i prirodnost, a zanemare sličnost govornika, sledeće 

verzije iste rečenice, koje su se pojavljivale nasumičnim redosledom: 

 Skriveni referentni snimak (originalni snimak govornika); 

 Sinteza po osnovnom modelu 1 nakon adaptacije; 

 Sinteza po osnovnom modelu 2 nakon adaptacije; 

 Sinteza po predloženom modelu nakon što se ugrađeni vektor resetuje na 0 i sprovede se 

samo druga faza prilagođavanja; 

 Sinteza predloženog modela nakon obe faze adaptacije. 

Od 20 zadataka, 10 je prilagođeno korišćenjem 10 minuta ciljnih govornih podataka, a 

preostalih 10 korišćenjem samo 0,5 minuta ciljnih govornih podataka. U svakom od ova dva 

slučaja bilo je po 5 izgovaranja od strane svakog od dva govornika (M4 i F4).  

Rezultati, prikazani na slici 35 (strana 97), pokazuju da su, bez obzira na količinu ciljnih 

govornih podataka koji su korišćeni za adaptaciju, slušaoci smatrali da je osnovni model 2 

najmanje uspešan, dok su dve verzije predloženog modela dobili najviše ocene. Zanimljivo je 

napomenuti da, iako razlika između prosečnih ocena za osnovni model 1 i predloženi model 

nije značajna u slučaju kad je korišćeno 10 minuta materijala, predloženi model značajno 

nadmašuje osnovni model 1 u slučaju kad se prilagođenje vrši sa samo 0,5 minuta govornih 

podataka. Još jedna zanimljivost koja se odnosi na predloženi model je da, ako se ugrađeni 

vektor dobijen u prvoj fazi adaptacije resetuje na 0 i izvrši se samo druga faza, to ne 

umanjuje značajno kvalitet sinteze. 

Eksperiment 3 

Postavke eksperimenta 3 bile su potpuno iste kao u slučaju eksperimenta 2, ali ovog puta 

od slušalaca je traženo da procene sličnost govornika umesto opšteg kvaliteta sinteze. 
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Eksperiment se sastojao od 10 zadataka (5 za svakog od dva govornika, M4 i F4), a 

učestvovalo je 20 slušalaca. Kako bi se slušaoci fokusirali na sličnost govornika, adaptacija 

je rađena samo sa 10 minuta materijala (eksperiment 2 je pokazao da kvalitet sinteze 

značajno opada kod nekih modela, kada je količina materijala jako mala). Kao što se može 

videti na slici 36 (strana 98), predloženi model nadmašuje oba modela po pitanju generisanja 

glasa koji podseća na izvornog govornika, čak i u slučaju kad je ugrađivanje resetovano na 0 

i izvršena samo druga faza prilagođavanja. 

Eksperiment 4 

Opširnija evaluacija performansi predloženog modela uključivala bi njegovu poređenje sa 

drugim osnovnim SD TTS modelom, koristeći ne samo male već i velike količine snimaka 

govornika za obuku. Međutim, nismo bili u mogućnosti da direktno izvršimo takvu procenu 

zbog dostupnosti samo male količine podataka za govornike M4 i F4, imajući u vidu da su 

svi preostali dostupni govornici već korišćeni za obuku inicijalnog modela. Ovaj eksperiment 

predstavlja pokušaj zaobilaženja ovog ograničenja uključivanjem dve vrste zadataka 

MUSHRA (10 zadataka svake vrste). U obe vrste zadataka, 32 učesnika u testu slušanja 

obavešteni su da je referentni izgovor zapravo snimak prirodnog govora, a zadatak je bio da 

procene opšti kvalitet 3 izgovora datih slučajnim redosledom. U zadacima tipa 1 ponuđena su 

sledeća 3 izgovora: 

 Skriveni referentni snimak (originalni snimak M1 ili F1); 

 Sinteza po osnovnom modelu 1 obučena na svim raspoloživim podacima za M1 ili F1, 

bez daljeg prilagođavanja; 

 Sinteza po predloženom modelu, pomoću ugrađenih vektora koji odgovaraju M1 ili F1, 

bez daljeg prilagođavanja; 

dok su zadaci tipa 2 uključivali sledeća 3 izgovora: 

 Skriveni referentni snimak (originalni snimak M4 ili F4); 

 Sinteza predloženog modela nakon obe faze adaptacije na M4 ili F4, koristeći 10 minuta 

podataka ciljnih govornika; 

 Sinteza predloženog modela posle obe faze adaptacije na M4 ili F4, korišćenjem 0,5 

minuta podataka ciljanih govornika. 
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U svakom zadatku sve 3 rečenice odgovaraju istom govorniku kako bi se eliminisala 

preferenca koju slušalac može imati prema nekom od glasova. Svi govornici su bili jednako 

zastupljeni tokom eksperimenta, tj. svaki od njih se pojavio u 5 zadataka. 

Rezultati eksperimenta, sa rezultatima skaliranim na interval 0-5, prikazani su na slici 37 

(strana 99). Pre nego što se donesu bilo kakvi opšti zaključci, treba primetiti da iako se M1 i 

F1 nisu pojavljivali u istim zadacima kao M4 i F4, još uvek je moguće uporediti perceptivni 

kvalitet sinteze između modela i/ili verzija koji se nisu pojavili u istim zadacima. Sinteza 

bazirana na osnovnom modelu 1 obučena na svim raspoloživim podacima za M1 ili F1 bez 

daljeg prilagođavanja i sinteza predloženog modela nakon dvofazne adaptacije na M4 ili F4, 

koristeći 10 minuta podataka (stavke (a) i (c) na slici 37) su ocenjene sličnim ocenama. To 

pokazuje da predloženi model, kada krene od dobro obučenog MSMS modela, i koristi samo 

10 minuta adaptacionog materijala, može postići kvalitet sinteze uporediv sa onim koji ima 

standardni SD TTS model obučen na mnogo više audio materijala (~3,5 sata u slučaju M1 i 

~2,5 sata u slučaju F1). Dalje, sinteza dobijena osnovnim modelom 1 obučena na svim 

raspoloživim podacima za M1 ili F1 smatra se da je istog kvaliteta kao i sinteza MSMS 

modela, koristeći ugrađene vektore koji odgovaraju M1 ili F1, bez daljeg prilagođavanja. 

Može se zaključiti da je razumnije koristiti određenu količinu podataka govornika kao 

osnovu za model sa više govornika koji se zasniva na tehnici ugradnje nego za obuku jednog 

SD TTS modela. Na kraju, treba napomenuti da je prilagođavanje predloženog modela 

korišćenjem 0,5 minuta podataka dalo sintetički govor koji je, kako se i očekivalo, ocenjen 

kao lošijeg kvaliteta nego u slučaju da je prilagođavanje izvršeno na 10 minuta podataka. 

Zaključak 

U ovom istraživanju bavimo se problemom stvaranja visokokvalitetnih sintetičkih 

glasova, kada je dostupna samo mala količina podataka. Ova tema je u fokusu mnogih studija 

već decenijama, jer ima brojne namene i potencijalno značajno smanjuje potreban rad za 

stvaranje novih glasova, čineći ga mnogo bržim i jeftinijim. Nakon uvoda i poređenja 

uobičajenih pristupa sintezi govora, ilustrovali smo i niz prethodnih pokušaja rešavanja ovog 

problema. Neki od njih su se zasnivali na starijim pristupima (npr. HMM-TTS), dok su neki 

noviji pokušali da ponude rešenje korišćenjem DNN arhitekture. 

U ovoj tezi predložena su dva različita pristupa adaptaciji. Oba su modeli sinteze govora 

zasnovani na DNN, sposobni za prilagođavanje određenom govorniku i stilu govora. Prva 
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metoda inicijalno obučava TTS na relativno velikoj količini materijala za obuku (3+ sata) i 

koristi taj model kao polaznu tačku za adaptaciju. To znači da novi model nije obučen na 

slučajno inicijalizovanoj mreži, već na prethodno obučenoj mreži, što je rezultiralo većim 

kvalitetom sintetizovanog govora. Nije primećena značajna razlika kada su korišćeni različiti 

početni modeli. Takođe su korišćene različite veličine adaptacionog materijala i upoređen je 

kvalitet dobijenog govora. Kao što se očekivalo, više materijala dalo je bolje rezultate, ali 

pokazalo se da prilagođavanje čak i sa relativno malom količinom podataka može pružiti 

uporedive rezultate modelima istreniranim od nule sa mnogo više govornog materijala. 

Evaluacija se zasnivala na objektivnim merama, ali i na testovima slušanja. 

Druga metoda je postupak adaptacije u dva koraka u kojem prvo pronalazimo optimalno 

ugrađivanje za ciljni glas na iterativni način. Pre toga se napravi model treniran na mnogo 

govornika i tokom tog procesa se gradi prostor za ugradnju. Drugi korak sastoji se od 

prilagođavanja ostatka neuronske mreže, optimizacijom svih težina i pomeraja (engl. bias), 

tako da rezultujuća mreža može proizvesti govor ciljnog govornika. Budući da je izlaz nakon 

prve faze već blizu cilja, količina promena primenjenih na mreži je relativno mala. Ovo 

sprečava preobučavanje mreže i omogućava mnogo bolju generalizaciju neviđenih događaja. 

Druga metoda je pokazala da nadmašuje dva druga nedavno predložena parametarska 

modela sinteze govora zavisna od govornika i stila, posebno u slučaju kad je količina 

dostupnih podataka za adaptaciju izuzetno mala. To se postiglo zahvaljujući zajedničkoj 

reprezentaciji govornika, stila i klastera njihovim ugrađivanjem u prostor niže dimenzije, pri 

čemu je model u stanju da utvrdi sličnosti među govornicima i stilovima.  

Pristup sa ugrađivanjem otvara niz zanimljivih mogućih primena predloženog modela u 

bilo kom domenu gde je potrebno brzo i efikasno prilagođavanje sinteze govora novom 

govorniku ili stilu. 
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1. Introduction 

Communication is the process by which individuals conduct interactions between each 

other  and use symbols to create and interpret meaning [1]. Speech is one of the main media 

for communication. First attempts to artificially generate speech date back to XVIII century 

[2]. Namely, in 1779. Christian Gotlieb Kratzenstein won the first prize at the competition 

announced by the Royal academy of arts and sciences in Saint Petersburg, for work in which 

he described the differences between vowels from a physiological perspective. He also 

presented a mechanical device which could reproduce these sounds. Since the presentation of 

Kratzenstein’s device generation of human speech in artificial ways has travelled a long way. 

Contemporary approaches to this problem are based on the use of computers. Having that in 

mind, Text-to-Speech Synthesis (TTS) is defined as technology which provides computers 

with means to convert text into a signal closely resembling human speech. 

Speech synthesis is a technology with a wide spectrum of applications. Initially, it was 

used for reading textual content for the blind, but today this technology can be of significant 

importance for people with various speech impairments. TTS is used in call centers to 

convey various information to users or even completely replace a human agent in certain 

scenarios. With the rise of smartphones this technology has found its place in various virtual 

assistant applications as well as navigation systems. In recent times there is a growing 

popularity of audio books, and TTS enables significantly faster and simpler generation of 

such audio material by using computers instead of long and tedious recording performed by 

professional speakers. 

Speech synthesis is currently dominated by two main approaches: unit selection and 

parametric synthesis. Synthesizers that use unit selection (concatenative) approach select 

speech segments from a large speech database and concatenate them in order to generate a 

final sequence. Parametric approaches to speech synthesis are based on parametrization of 

speech signal whose textual form is known (analysis phase) and development of the model 

which can successfully generate parameters for a given text (synthesis phase). Until recently, 
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these methods were inferior to unit selection, but they have found their application in many 

use cases because of their flexibility and the possibility to manipulate the character of 

generated speech. With recent developments in neural vocoding these methods not only 

caught up with unit selection, but even surpassed it [3]. 

1.1. Subject and Main Contributions 

Two main requirements that synthesized speech should meet are intelligibility and 

naturalness [4]. Research community is in agreement that modern speech synthesis systems 

achieve good results by these criteria, but it is often emphasized that the synthesized voice 

sounds too monotonous, and that, regardless of the use case, speech is usually generated only 

in one available style, frequently designated as neutral. 

Another problem is related to the efficient creation of new speakers and styles. Namely, 

with current approaches, including parametric, it is usually required to have several hours of 

new speaker’s recordings in order to produce high quality synthesis. The process of building 

a new voice or style also requires recording of a new speaker, but also some form of semi-

automatic annotation and preparation of the database. This obviously makes the process 

longer, more expensive and less scalable in commercial applications. 

The main goal of this research is to examine the possibility to build new voices (speakers 

with corresponding styles) while significantly reducing the amount of required speech 

material and consequently the work required to prepare the database. The focus will be on the 

use of Deep Neural Networks (DNN) as the currently most advanced parametric approach. 

All the approaches will be tested on the speech database with a relatively small amount of 

adaptation material (speech from the new speaker). The hypothesis to be tested is that by 

applying novel methods on a limited amount of new speech material, high quality results can 

be obtained, comparable to those obtained by using large speech databases. 

All experiments are done for American English language, since those audio databases 

were readily available. But since this research focuses on the language independent part of 
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TTS, which mostly deals with signal generation (so called back-end), it can be assumed that 

the results will be applicable to any language. 

Main contributions of the research presented in the dissertation are: 

 Adapting open source Merlin toolkit [5] to work with more contemporary deep learning 

frameworks, such as TensorFlow [6] and CNTK [7]. Improving the toolkit and 

implementing new version of forced alignment (Sections: 4.4 and 4.4.1). 

 Building a new voice by starting from previously trained single-speaker TTS model. 

Source model is trained on large amount of data, while target speaker has only limited 

amount (Section 5). 

 Creating a multi-speaker (MS) TTS model, able to produce speech of many speakers, 

while producing a “speaker space” for all the speakers, i.e. an embedding space, which 

reflects similarities between speakers (Section 6.1). 

 Building a new voice by starting from the MS model and using a very small amount of 

new speech material (Section 6.2). 

1.2. Thesis organization 

The thesis contains six chapters, and is organized as follows. 

Section 2 provides the introduction to speech synthesis, its history, and describes the 

main approaches. It also explains the basic concepts and problems related to speaker 

adaptation and describes methods used for TTS system evaluation. 

Section 3 focuses on statistical parametric approach and illustrates methods for speaker 

adaptation which were used with that approach. 

Section 4 deals with neural networks (NN) and their application in speech synthesis. It 

provides a brief history of NNs and an introduction to basic concepts of deep learning. It 

proceeds to explain how NNs are used in contemporary speech synthesis systems and 

compares the statistical and the NN approach. Standard approaches for speaker adaptation 

are also presented. This chapter also gives a brief introduction to open-source Merlin toolkit, 

which was used as a starting point for this research. 
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Section 5 describes the proposed method of speaker adaptation from source to target 

speaker model, where there is sufficient amount of audio data for source speaker, but only a 

small amount for target speaker. Instead of training target speaker model from randomly 

initialized neural network, proposed method starts from already built source speaker model, 

which had sufficient data for conventional training. 

Section 6 explains in detail the proposed method for speaker adaptation, which starts by 

building multi-speaker model and low-dimensional speaker space (embedding), followed by 

two-step adaptation procedure. In the first step optimal point in the embedding space for 

target speaker is found. During the second step adaptation of the rest of the neural network is 

performed, which results in a voice highly resembling target speaker. 

The advantages of the novel methods are corroborated by numerous experiments and 

evaluations. 

Section 7 provides conclusions and outlines the directions for future work in this area.
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2. Introduction to Speech Synthesis 

The term speech synthesis refers to computer-generated simulation of human speech. 

Speech synthesis is used to translate written information into audio information, and is used 

whenever audio information is more convenient, especially in mobile applications such as 

voice-enabled e-mail and unified messaging. It is also used to assist the visually impaired so 

that, for example, the contents of a display screen can be automatically read aloud to a blind 

user. Speech synthesis is the counterpart of speech recognition. 

Speaker adaptation is a text-to-speech technique by which a TTS system can be 

customized to the voice characteristics and manner of speaking of a specific speaker, 

typically in a short time and at a low cost. In conventional TTS systems, at least several 

hours of speech data are required to create a voice that represents a specific speaker’s voice 

characteristics, in order for the system to be able to convert any text to speech. Speaker 

adaptation techniques convert an existing voice model with sufficient phonetic and linguistic 

coverage into a model having the voice characteristics and manner of speaking of a specific 

speaker, based on a small quantity of speech data of that speaker. These techniques make it 

possible to create a voice for a specific speaker with a high level of voice quality from a very 

small amount of speech data. 

2.1. History of Speech Synthesis 

Artificial speech has been a dream of the humankind for centuries. The earliest efforts to 

produce synthetic speech were made over two hundred years ago. In 1779 in St. Petersburg 

Russian Professor Christian Kratzenstein explained physiological differences between five 

long vowels (/a/, /e/, /i/, /o/, and /u/) and designed an apparatus to produce them artificially. 

He constructed acoustic resonators similar to the human vocal tract and activated them with 

vibrating reeds as it is done in music instruments. Several years later, in 1791 in Vienna, 

Wolfgang von Kempelen introduced his “Acoustic-Mechanical Speech Machine”, which was 
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able to produce single sounds and some sound combinations. In mid 18th century Charles 

Wheatstone constructed his famous version of von Kempelen’s speaking machine. It was 

somewhat more complicated and was capable to produce vowels and most of the consonant 

sounds. Some sound combinations and even full words were also possible to produce. In late 

18th century Alexander Graham Bell with his father, inspired by Wheatstone’s speaking 

machine, constructed a similar speaking machine. The research and experiments with 

mechanical and semi-electrical analogs of the human vocal system were made until 1960’s, 

but with no remarkable success. 

The first full electrical synthesis device was introduced by Stewart in 1922 [8]. The 

synthesizer had a buzzer as excitation and two resonant circuits to model the acoustic 

resonances of the vocal tract. The machine was able to generate single static vowel sounds 

with two lowest formants, but not consonants or connected utterances. In 1932 Japanese 

researchers Obata and Teshima discovered the existence of the third formant in vowels [9]. 

The three first formants are generally considered to be sufficient for intelligible synthetic 

speech. The first device to be considered as a speech synthesizer was VODER (Voice 

Operating Demonstrator) introduced by Homer Dudley at New York World’s Fair in 1939 

[8] [10]. VODER was inspired by VOCODER (Voice Coder), developed at Bell Laboratories 

in the mid-thirties. The original VOCODER was a device for analyzing speech into slowly 

varying acoustic parameters that could then drive a synthesizer to reconstruct the 

approximation of the original speech signal. It was finally shown that intelligible speech can 

be produced artificially. Actually, the basic structure and idea of  VODER is very similar to 

present systems which are based on the source-filter model of speech. 

The first formant synthesizer, PAT (Parametric Artificial Talker), was introduced by 

Walter Lawrence in 1953 [8]. PAT consisted of three electronic formant resonators 

connected in parallel. The input signal was either a buzz or noise. At about the same time 

Gunnar Fant introduced the first cascade formant synthesizer OVE I (Orator Verbis Electris), 

which consisted of formant resonators connected in cascade. PAT and OVE synthesizers 

started a conversation how the transfer function of the acoustic tube should be modeled, in 

parallel or in cascade. First articulatory synthesizer was introduced in 1958 by George Rosen 

at the Massachusetts Institute of Technology (MIT) [8]. The DAVO (Dynamic Analog of the 
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VOcal tract) was controlled by tape recording of control signals created by hand. In mid 

1960’s, first experiments with Linear Predictive Coding (LPC) were carried out [2]. 

The first full text-to-speech system for English was developed in the Electrotehnical 

Laboratory, Japan 1968 by Noriko Umeda and his collaborates [8]. It was based on an 

articulatory model and included a syntactic analysis module with sophisticated heuristics. In 

1979 Allen, Hunnicutt, and Klatt demonstrated the MITalk laboratory text-to-speech system 

developed at MIT. Two years later Dennis Klatt introduced his famous Klattalk system, 

which used a new sophisticated voicing source. The first reading aid with optical scanner was 

introduced by Kurzweil in 1976. The Kurzweil Reading Machines for the Blind were capable 

to read multifont written text quite well. In late 1970’s and early 1980’s, a wide range of 

commercial text-to-speech and speech synthesis products was introduced. Dominant systems 

in the 1980’s and 1990’s were the DECtalk system, based largely on the work of Dennis 

Klatt at MIT, and the Bell Labs system; the latter was one of the first multilingual language-

independent systems, making extensive use of natural language processing methods. 

From late 1990’s until 2016 and the introduction of WaveNet [3], the market was 

dominated by unit selection versions of synthesizers, produced by several major companies 

(Nuance, Acapela, Google). Even though parametric approach based on hidden Markov 

models (HMM) was widely known, its quality was inferior to unit selection based solutions. 

After 2016, WaveNet based solutions started to catch up and even surpass the quality of unit 

selection methods. Beside speech quality, the big advantage of WaveNet is that it is 

parametric and as such more flexible for many applications. 

2.2. Approaches to Speech Synthesis 

As shown in Figure 1, a typical speech synthesis system consists of two components: 

front-end and back-end. The front-end component performs analysis of text input and 

extraction of information necessary for back-end modelling. This includes text normalization 

(e.g. converting numbers into words), parts of speech (e.g., noun, verb, adjective) annotation, 

prosodic features (Tones and Break Indices (ToBI) or like, see Section 4.5), and 

disambiguation of homographs. The back-end component accepts the front-end analysis 
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results and combines the speech and text information for modelling. During the process of 

synthesis, the back end generates the output speech signals using the text input and well-

trained acoustic models. 

 
The rest of this work will focus on the back-end component and different approaches 

applied therein. 

 Unit Selection Synthesis 2.2.1.

In this approach multiple instances of speech units having different prosodic features are 

stored. This approach is known as Unit Selection Based Concatenative TTS. Units are stored 

in  database and then assembled in accordance to defined rules and costs (Figure 2). An 

appropriate unit is selected from the database based on two types of costs – a target cost and 

a concatenation cost. 

Target cost expresses how similar the features of a database speech unit are to the 

features of the desired speech unit, with the idea that any digital processing that may be used 

to bring the selected acoustic segment closer to the specification may introduce unwanted 

distortion. The target cost comprises of target subcosts. Each target subcost is a cost of a 

single attribute of a speech unit [11] such as energy, pitch etc. The target cost can be 

calculated as: 

 𝐶𝑡(𝑡𝑖 , 𝑣𝑖) = ∑ 𝑤𝑡𝑗𝐶𝑡𝑗(𝑡𝑖 , 𝑣𝑖)𝑝
𝑗=1   (1) 

 
Figure 2: Typical speech synthesis architecture 
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where 𝑡𝑖 is the target unit, 𝑣𝑖 is the candidate unit, p is the number of sub-costs used. 𝐶𝑡𝑗 is 

the j-th target sub-cost, and 𝑤𝑡𝑗 it is the weight given to the j-th target sub-cost. 

Concatenation cost is a measure of how well the acoustic features of two acoustic 

segments match at the point where they should be concatenated. The concatenation cost also 

comprises of multiple subcosts. Each of these subcosts is related to a specific continuity 

metric such as spectral continuity etc. The concatenation cost can be calculated as: 

 𝐶𝑐(𝑣𝑖−1, 𝑣𝑖) = ∑ 𝑤𝑐𝑗 𝐶𝑐𝑗(𝑣𝑖−1, 𝑣𝑖)𝑞
𝑗=1   (2) 

where 𝑣𝑖−1 and 𝑣𝑖 are candidate speech units for the (𝑖 − 1)-th and i-th target speech units, q 

is the total number of subcosts used, and 𝑤𝑐𝑗  is the weight associated with the subcost 𝐶𝑐𝑗. 

An exhaustive search is performed so as to select optimum speech units from the speech 

database. The Viterbi search is frequently used to select the units to be concatenated from the 

speech inventory, so as to reduce the total accumulated target cost and concatenation cost. 

 

In order to match the target more precisely (f0, energy, phone duration) and to make 

transitions between units as smooth as possible, several methods were used: 

 Pitch Synchronous Overlap and Add (PSOLA) 

 Frequency Domain Pitch-Synchronous Overlap and Add (FD-PSOLA) 

 Linear Prediction Pitch-Synchronous Overlap and Add (LP-PSOLA) 

 

Figure 3: Unit selection TTS system architecture 
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 Time Domain Pitch-Synchronized Overlap and Add (TD-PSOLA) 

 Epoch Synchronous Non Overlap and Add (ESNOLA) 

 

 Parametric Speech Synthesis 2.2.2.

When it comes to a model-based approach to speech synthesis, particularly when the goal 

is to learn this model from data, we are talking about a parametric speech model. The model 

is parametric because it represents the speech using parameters, rather than stored sound 

samples. 

A widely used model for speech parametrization is the source-filter model. The source–

filter model models speech as a combination of a sound source, such as periodic buzz from 

vocal cords or noise from lungs; and a linear acoustic filter, which describes the vocal tract 

and lip radiation characteristic. It is illustrated in the Figure 3. 

 

Source is usually a combination of impulse train and white noise. The ratio of their 

respective contributions to the source signal, which is usually defined per spectral band, is 

called band periodicity/aperiodicity. The frequency of the impulse train defines pitch or 

fundamental frequency (f0 in Figure 4) of the final phone. The acoustic filter describes the 

spectral envelope (Figure 4), which provides the final shape of the spectrum of the output 

signal (while source is kept white). Different phonemes can be distinguished by the 

properties of their source(s) and their spectral envelopes. For example, vowels and sonants 

 
 

Figure 4: Source-filter model of voice production 
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have a source due to mostly periodic glottal excitation, which can be approximated by an 

impulse train in the time domain and by harmonics in the frequency domain, while the 

corresponding filter depends on vocal tract shape and lip position. On the other hand, 

fricatives have a source mostly due to turbulent noise produced at a constriction in the oral 

cavity (e.g. “s” and “f”) or noise made by glottis and lungs (e.g. “h”). But most sounds 

actually have two sources – one at the glottis and one at the supra-glottal constriction, and the 

ratio of voiced to unvoiced components (per spectral band) is described by band aperiodicity 

feature. 

The task of the acoustic filter is to represent the spectral envelope and to appropriately 

shape the source. Spectral envelope represents a smoothed version of a spectrum, which 

should leave aside the spectral line structure while preserving the general form of the 

spectrum. If the signal contains only harmonic parts, spectral envelope is the curve that 

passes through the local peaks. In this case, peak values have to be retrieved and an 

interpolation scheme should exist in order to complete the curve between the peaks. If the 

sound contains parts that are not harmonic (i. e. that are noisy), the notion of a spectral 

envelope becomes completely dependent on the definition of what belongs to the source and 

what belongs to the filter. 

 

 

Figure 5: Speech signal spectrum 

black line - spectral envelope; red line - f0; green areas - aperiodic energy 
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As already noted, signal contains both harmonic and aperiodic (noise) component, and 

the ratio of their presence in the signal is not constant over the whole spectrum. For that 

reason, band aperiodicity parameter is introduced. It represents the ratio between aperiodic 

and periodic energy, averaged over certain frequency bands, i.e., total power divided by sine 

wave power. 

There are numerous methods for extracting the spectral envelope, with the following 

being most widely used: 

 Channel vocoder or filter banks (FB). This approach is based on frequency bands and 

performs estimations of the amplitude of the signal inside these bands, thus 

approximating the spectral envelope.  

 Linear prediction coding. This method estimates an all-pole filter that matches the 

spectral content of a sound. When the order of this filter is low, only the formants are 

taken, while a higher order would describe a more detailed representation. The LPC 

predictor coefficients can be used to efficiently model the vocal tract spectral envelope, 

but they are not robust in terms of quantization or statistical modeling: even though the 

autocorrelation method guarantees a stable filter, a small error in the coefficient values 

may cause the synthesis filter to become unstable. 

 Line Spectral Pairs (LSP). Many methods have been proposed for robust representation 

of LPC coefficients, such as reflection coefficients or log area ratios. One of the most 

prominent methods of presenting LPC data is the Line Spectral Frequency (LSF) 

representation, with line spectral frequencies being the roots of the LSP polynomials. 

 (Mel) Cepstral coefficients (MFCC). Along with LPC, cepstral analysis of speech is one 

of the most widely used methods for the extraction of the spectral envelope. This 

technique performs the approximation of the logarithm of the fast Fourier transform 

(FFT) spectrum by using discrete cosine transform (DCT). Again, the more DCT 

coefficients are used the finer representation of the spectral envelope is preserved. 

 Mel-generalized cepstral coefficients (MGC). The generalized cepstral analysis method is 

viewed as a unified approach to the cepstral method and the linear prediction method, in 

which the model spectrum varies continuously from all-pole to cepstral according to the 

value of a scalar parameter γ. Since the human ear has higher resolution at low 

frequencies, using Mel scale to model spectrum, it is represented more efficiently. 
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Besides these, vocoder parameters, TTS systems have to parameterize and model phone 

durations as well (or even subphone – state durations). These are not considered for the task 

of mere speech coding and transmission, because the transmission is synchronous so 

durations don’t change. But when it comes to converting text into speech, the system has to 

find a way to estimate these durations correctly. 

To summarize, when speaking about parameters in parametric speech synthesis, these are 

usually considered: 

 Phone and state durations, usually given in frames or milliseconds. 

 Some form of spectral envelope representation. 

 Pitch (f0) representation, which includes the information whether a sound segment is 

voiced or unvoiced. Logarithm of f0 is used more frequently, because we are more 

interested in relative rather than absolute distance between two f0 values. 

 Band aperiodicity. 

A typical representation may use between 40 and 60 parameters per frame (usually 5 ms) 

to represent the spectral envelope, band aperiodicity, the value for f0, and the degree of 

voicing (usually binary). Before training the models, the encoding stage of the vocoder is 

used to extract a vector containing these vocoder parameters from the speech signal, at a 

certain constant frame rate. During synthesis, the vector of parameters is generated by the 

models, and fed to a vocoder which generates the output signal. Here is the list of some of the 

most popular vocoders used in TTS: 

 Impulse Excitation vocoder. The most basic vocoder used in statistical parametric speech 

synthesis essentially exemplifies the unified source-filter model: the speech signal is 

divided into source and filter parameters, and the source signal is modeled as a pulse train 

for voiced segments, and as white Gaussian noise for unvoiced segments. 

 Mixed (Multi-Band) Excitation vocoder (MBE). The main idea of the Mixed Excitation 

vocoder is based on the observations of the spectral characteristics of the residual: the 

residual has been found to have different degrees of periodicity and noise in different 

frequency bands. If the residual is modeled completely periodically (with a pulse train), 

the resulting voice will sound “buzzy”. Similarly, if the residual is modeled completely 

with noise, the resulting voice will sound “hissy”. With a correct combination of periodic 

and noise components in the excitation (residual), the synthesized speech will show a 
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great increase in quality. The most popular MBE vocoders are: Mixed Excitation (ME) 

vocoder, Two-Band Excitation (TBE) vocoder based on Harmonic plus Noise Model 

(HNM), STRAIGHT vocoder as well as WORLD vocoder. We are providing additional 

information for some of these: 

o STRAIGHT (Speech Transformation and Representation using Adaptive 

Interpolation of weiGHTed spectrum) [12] belongs to MBE group, but deserves to be 

singled out, since it is the most established of the more sophisticated vocoding 

methods. This speech analysis, modification and synthesis system is an extension of 

the classical channel VOCODER that utilizes the progress in information processing 

technologies and a new understanding of the role of repetitive structures in speech 

sounds. It uses pitch-adaptive spectral analysis combined with a surface 

reconstruction method in the time-frequency region, and an excitation source design 

based on phase manipulation. 

o WORLD vocoder [13] also belongs to MBE group. It provides high-quality speech 

output, similar to STRAIGHT, but also meets the requirements of real-time 

processing. The f0 contour is estimated with the procedure named DIO [14] and the 

spectral envelope is estimated with CheapTrick [15], which uses not only the 

waveform but also the f0 information. The excitation signal is estimated using 

PLATINUM (PLATform INference by removing Underlying Material [16]) and used 

as an aperiodic parameter (whose definition is different from that of STRAIGHT). 

PLATINUM uses the waveform, f0, and spectral envelope information. 

 WaveNet [3] is a neural network based vocoder. During training, it is presented with the 

spectrogram or some other set of parameters (extracted by a conventional vocoder) and 

the actual signal is set as a target. Thus, WaveNet learns to generate naturally sounding 

speech when presented with its parameters during inference. 

There are two main approaches which utilize speech parametrization for TTS: statistical 

parametric speech synthesis based on hidden Markov models and Gaussian mixture models 

(HMM-GMM) and speech synthesis by using deep neural networks (DNNs). Both will be 

discussed in more detail in the remainder of this work. 
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2.3. Introduction to Speaker Adaptation 

In speech synthesis, speaker adaptation refers to the range of techniques whereby a TTS 

system is adapted to the acoustic features of a specific speaker using a small sample of 

utterances. In recent years the practical development of speech synthesis systems has seen 

significant progress; however, these systems still require large annotated databases (ten or 

more hours of speech) in order to be trained well. Much hope has therefore been placed on 

the establishment of speaker adaptation techniques that can bring the performance of a single 

speaker system trained from scratch, up to that of a speaker-adapted one using the smallest 

possible amount of data. 

One of the main problems in training TTS models is data sparsity. Namely, the final 

system should be able to produce any phoneme in any context (phonetic or prosodic, in a 

relatively wide time window), which implies that each such acoustic phenomenon should be 

seen in the training database. Since the number of these phenomena is very large (millions or 

more), it is virtually impossible to have them all even in a very large training database. For 

this reason, models should be able to generalize well and to produce reasonable outputs even 

for unseen contexts. This problem becomes much harder if the available amount of 

adaptation data is very small (several minutes or less). In that case the percentage of seen 

contexts becomes almost negligible, meaning that everything else should be generalized from 

that small sample and some prior information. 

In the HMM-GMM approach, there were several techniques which attempt to address 

this problem, of which the most successful are: maximum a posteriori (MAP) parameter 

estimation and maximum likelihood linear regression (MLLR), which will be described later. 

When it comes to DNN-based TTS, research is still under way, but some of the promising 

methods include transfer learning and speaker embedding. 

2.4. TTS System Evaluation 

There are several different approaches used for the evaluation of a specific TTS system. 

All of them can be divided into following groups [17]: 

 evaluation based on objective measures, 
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 evaluation based on subjective measures, 

 comparison of system characteristics. 

Objective measures are obtained by direct comparison of parameters extracted from the 

natural speech with the generated parameters. This type of measures can be particularly 

useful in the development phase of TTS system. Namely, a large discrepancy between 

generated parameters and parameters extracted from natural speech is usually a sign of 

serious problem in the system design or implementation. Early problem detection is 

important since it can accelerate the development of a new system. However, the problem 

with this approach is the fact that the values of objective measures are not always correlated 

with the subjective evaluation by human listeners. It is possible to have a system (or e.g. a set 

of generated utterances) that differ significantly from natural speech in terms of objective 

measures, but still sound quite natural and intelligible to humans. The reason for this is the 

natural variability of speech. Namely, there are numerous ways in which a certain text could 

be spoken, even when certain constraints are given (e.g. style and prosodic guidelines). A 

TTS system provides only one rendition, while a human speaker could generate a 

significantly different one. Even if TTS system provides a perfectly natural output, there still 

can be significant differences with respect to the rendition produced by the speaker. In this 

dissertation the following objective measures were used: 

1. Mean Cepstral Distortion (MCD), defined by [18] 

 𝑀𝐶𝐷 = 1𝑇 10√2ln 10 ∑ √∑ (𝑣𝑑𝑔𝑒𝑛(𝑡) − 𝑣𝑑𝑟𝑒𝑓(𝑡))2𝐷−1
𝑑=0

𝑇−1
𝑡=0  , (3) 

where T is the total number of frames in referent sequence vref, and generated sequence vgen, 

and D is the number of cepstral coefficients extracted per each frame. 

2. Distortion of aperiodicity coefficients (if used), calculated in the same way as in (3). 

3. Root Mean Square Error (RMSE) of the fundamental frequency (f0). 

4. Voiced/Unvoiced (VUV) error, calculated as the ratio of the number of wrongly 

predicted frames and total number of frames. 

5. Correlation for the features of voicing and fundamental frequency. 
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Subjective measures are based on the scores given by human subjects regarding certain 

characteristics of the speech. This group of tests can be divided into two subgroups: 

3. Intelligibility score, 

4. Synthesis quality score. 

It is widely accepted that contemporary synthesizers have good intelligibility [19], hence 

the methods presented in the dissertation are scored by using synthesis quality score 

approach. Specifically, Mean Opinion Score (MOS) and Multiple Stimuli with Hidden 

Reference and Anchor (MUSHRA) tests were used [20]. 

During MOS testing, subjects are expected to score certain speech characteristic with the 

scores from 1 (poor) to 5 (excellent). The final result of this test is the average score from all 

subjects. 

MUSHRA is a methodology initially used for conducting a codec listening test to 

evaluate the perceived quality of the output from lossy audio compression algorithms. In 

MUSHRA, the listener is presented with the reference (labeled as such), a certain number of 

test samples, a hidden version of the reference and one or more anchors. The 

recommendation specifies that a low-range and a mid-range anchor should be included in the 

test signals. The purpose of the anchors is to calibrate the scale so that minor artifacts are not 

unduly penalized. This is particularly important when comparing or pooling results from 

different labs. The listeners’ task is to firstly determine the utterance of the highest quality, 

compared to the reference, and then to score the rest of the utterances by assigning scores 

from 1 to 100. 

Subjective tests are the best way to score the quality of the synthesized speech. The main 

disadvantages are time and human resources required for conducting a proper test, as well as 

substantial variability in subjects’ perception of speech quality. 
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3. Statistical Parametric Speech Synthesis 

Until recently, Statistical Parametric Speech Synthesis (SPSS) was the only widely used 

approach which utilized parameters to represent speech. It is called statistical because it 

defines those parameters using statistics (usually means and variances of probability density 

functions) which describe the distribution of parameter values found in the training data. The 

initial motivation for the use of statistical parametric speech synthesis was the success of the 

hidden Markov models for automatic speech recognition. The existence of efficient training 

algorithms (Expectation-Maximization), automatic methods for model complexity reduction 

(tying of parameters) and computationally efficient search algorithms (Viterbi) make the 

HMM an obvious choice. The performance of the model depends critically on choosing an 

appropriate configuration. Two principal aspects of this configuration are the 

parameterization of the speech signal (observations) and the choice of modelling unit. The 

modelling unit is usually a context-dependent phoneme, so this choice means selecting which 

contextual factors need to be taken into account. As for the speech parametrization, the 

speech signal is represented as a set of vocoder parameters at some fixed frame rate. 

The model most commonly used in statistical parametric speech synthesis is not the 

conventional HMM. The duration model (i.e., the state self-transitions) in the HMM is not 

optimal, so a better model for phoneme duration prediction is required for high-quality 

speech synthesis. When explicit duration modelling is added to the HMM, it is no longer a 

Markov model in the mathematical sense. Transitions between states still exist, and the 

model is Markov at that level, but the exact model of state durations is not Markov. Such a 

model is referred to as Hidden Semi-Markov Model (HSMM). 

The vocoder parameters themselves are the only thing needed to control the output stage 

of the vocoder and generate speech. However, the key to producing natural-sounding speech 

using HMM synthesis lies in the modelling of not only the statistical distribution of these 

parameters, but also in the dynamics of their change over time. The vocoder parameters are 

known as the static coefficients, their first-order derivatives as the delta coefficients and 

second-order derivatives as the delta-delta coefficients. These three subsets of parameters are 
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combined together into a single observation vector for the model. During training, the model 

learns the distributions of all these parameters. During synthesis, the model generates 

parameter trajectories which have optimal statistical properties. 

During synthesis, the input text is analyzed and a sequence of full context labels is 

produced. The sequence of models corresponding to this sequence of labels is then joined 

into a single vector of (HMM-GMM) states. From this model, the vocoder parameters are 

generated using the maximum likelihood parameter generation (MLPG) algorithm [21] 

illustrated in Figure 5. Parameters are generated from the model based on the criterion of 

maximum likelihood, used to generate the optimal sequence of observations (vocoder 

parameters). State durations (the number of frames of parameters to be generated by each 

state of the model) are determined in advance – they are simply the means of the state 

duration distributions. Finally, the generated vocoder parameters are used to produce a 

speech waveform. 

A naive method for parameter generation would generate the most likely observation 

from each state, taking into account only the static parameters. The most likely observation is 

the mean of the Gaussian in that state. Therefore, this method would generate piecewise 

constant parameter trajectories, which would change their values abruptly at each state 

transition. Obviously, this would not sound natural – natural speech usually does not have 

such parameter trajectories. This problem is solved by the MLPG algorithm, which takes the 

statistical properties of the delta and delta-delta coefficients into account. Before generating 

parameters, a state sequence is selected using the duration model, and the number of frames 

for each state is also determined. The figure illustrates the sequence of output distributions 

for each state, frame by frame. MLPG finds the most likely sequence of generated parameters 

(0th cepstral coefficient is used as an example in Figure 5), given the distributions for the 

static, delta and delta-delta parameters. It can be seen that the most likely parameter 

trajectory is smoothly changing in a statistically appropriate way. 
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 Speaker Adaptation in HMM-GMM 3.1.1.

As previously described, HMM-GMM model is represented by a set of states, each 

containing usually only one Gaussian component which represents the position of that state 

in the entire parameter “acoustic space”. There are usually separate models for duration, f0 

and spectral envelope parameters. When performing speaker adaptation, all these model 

parameters should be transformed so that they better represent target speaker observations 

(adaptation data). In other words, we are transforming acoustic space of the initial speaker  

(which may also be an average of multiple speakers) towards target speaker’s data. After 

that, synthesis by using the new model should sound more like the target speaker. We will 

present two most popular adaptation techniques in HMM-GMM: MAP and MLLR. 

 
Figure 6: Illustration of Maximum Likelihood Parameter Generation algorithm 
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 MAP Adaptation 3.1.2.

If parameters of the model 𝜃 are assumed to be random vector, which is to be estimated 

from samples 𝑥𝑡 drown from probability density function 𝑓(∙ |𝜃) and for 𝜃 we assume some 

prior p.d.f. 𝑔, and if we denote posterior probability density as 𝑔(𝜃|𝑥), then we obtain MAP 

estimate of 𝜃 using the Bayesian theorem, as follows: 

 𝜃MAP = argmax𝜃𝑔(𝜃|𝑥) = argmax𝜃𝑓(𝑥|𝜃)𝑔(𝜃) (4) 

In (15), if prior 𝑔 is non-informative, i.e., 𝑔 ≡ const, we obtain that the ML estimate 

coincident with the MAP estimate. Let now 𝑥 = [𝑥1 ⋯ 𝑥𝑇] be the vector of 𝑇 independent, 

identically distributed (i.i.d.) observations drawn from the GMM with 𝐾 Gaussian 𝑝 

dimensional components, i.e. the following holds: 

 

𝑓(𝑥|𝜃) = ∏ ∑ 𝜔𝑘𝛮(𝑥𝑡|𝑚𝑘 , 𝑟𝑘)𝐾
𝑘=1

𝑇
𝑡=1 , 

𝜔𝑘 ≥ 0, ∑ 𝜔𝑘 = 1𝐾
𝑘=1 , 𝜃 = [𝜔1 ⋯ 𝜔𝐾 , 𝑚1 ⋯ 𝑚𝐾 , 𝑟1 ⋯ 𝑟𝐾] (5) 

where 𝜔𝑘 denotes the mixture gain for 𝑘-th mixture component and 

 𝑁(𝑥|𝑚𝑘 , 𝑟𝑘) ∝ |𝑟𝑘|1 2⁄ exp[−12 (𝑥 − 𝑚𝑘)𝑇𝑟𝑘(𝑥 − 𝑚𝑘)] (6) 

where  𝑚𝑘 is 𝑝 dimensional mean vector and 𝑟𝑘 is the precision matrix (inverse of covariance 

matrix) and | ⋅ | denotes determinant. Recall that the statistic 𝑡 = 𝑡(𝑥) is the sufficient 

statistics for underlying parameter 𝜃 of the density 𝑓(∙ |𝜃) iff there exists factorization 𝑓(𝑥|𝜃) = ℎ(𝑥)𝑘(𝜃, 𝑡(𝑥)), where kernel density 𝑘 depends on 𝜃 explicitly, but on 𝑥 only 

trough 𝑡(𝑥). If 𝑓(𝑥|𝜃) posses sufficient statistics of fixed length, then the natural solution is 

to chose the prior density 𝑔 in the form of conjugated family 𝑘(⋅, 𝜙), which includes the 

kernel density 𝑘, so that the posterior has the form 𝑔(𝜃|𝑥) ∝ 𝑘(𝜃, 𝜙′) = 𝑘(𝜃, 𝜙)𝑘(𝜃, 𝑡(𝑥)), 

where we assume that for kernel 𝑘 it holds 𝑘(𝜃, 𝜙1)𝑘(𝜃, 𝜙1) = 𝑘(𝜃, 𝜙) for some 𝜙 =𝜙(𝜙1 , 𝜙2) for all 𝜙1 , 𝜙2 (very often 𝜙(𝜙1 , 𝜙2) = 𝜙1 + 𝜙2). However, among the 

distribution families of interest, only exponential families have a sufficient statistic of fixed 

length, so that only for them, there exists conjugate prior, which greatly constraints possible 
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applications [22]. Consequently, there is no simple conjugate prior for GMMs (and thus 

HMMs with GMM state observation densities). Nevertheless, an approximate approach 

which uses EM algorithm could be employed, as it is presented in [23]. Note first, that a 

finite mixture density 𝑓(𝑥|𝜃) given by (5) can be interpreted as a density associated with a 

statistical population which is a mixture of K component populations with mixing proportion [𝜔1 ⋯ 𝜔𝐾]. It can be seen as a marginal distribution of the joint distribution of the parameters 𝜃 expressed as the product of a multinomial density (for the sizes of the component 

populations) and multivariate Gaussian densities  (for the components). Gains 𝜔𝑘 for each 

mixture density have the joint distribution is in the form of a multinomial distribution with 

density given by 𝑞(𝑛1 , … , 𝑛𝐾 ; 𝑇, 𝜔1 , … , 𝜔𝐾) ∝ 𝜔1𝑛1 ⋯ 𝜔𝐾𝑛𝐾, 𝑛1 + ⋯ + 𝑛𝐾 = 𝑇, 𝑛𝑘 ∈ 𝛮. Then 

choice for prior is the Dirichlet density, so that 𝑔(𝜔1 , … , 𝜔𝐾 ; 𝜈1, … , 𝜈𝐾) ∝ ∏ 𝜔𝑘𝜈𝑘−1𝐾𝑘=1  with 

hyper-parameters 𝜈𝑘 ≥ 0. Next, for the simplicity we consider 𝑟𝑘 to be known, i.e., not 

subject to adaptation so it is considered deterministic constant. Thus, the conjugate prior for 𝑚𝑘 is Gaussian and given by 

 𝑔(𝑚𝑘 ; 𝑟𝑘 , 𝜏𝑘) ∝ |𝑟𝑘|𝛼𝑘−𝑝2 exp[− 𝜏𝑘2 (𝑚𝑘 − 𝜉𝑘)𝑇𝑟𝑘(𝑚𝑘 − 𝜉𝑘)] (7) 

with hyper-parameters satisfying 𝛼𝑘 > 𝑝 − 1, 𝜏𝑘 > 0. Assuming independence between the 

parameters of the individual mixture components and the set of the mixture weights, the joint 

prior 𝑔 is the product of the prior density defined in (6) and (7), so that 

 𝑔(𝜃) = 𝑔(𝜔1 , … , 𝜔𝐾) ∏ 𝑔(𝑚𝑘 ; 𝑟𝑘 , 𝜏𝑘)𝐾
𝑘=1  (8) 

The EM algorithm is an iterative procedure for approximating ML estimates in the 

context of incomplete data cases such as GMMs and HMM with GMMs [24]. This procedure 

consists of maximizing at each iteration the auxiliary target function 𝑄(𝜃, 𝜃) defined as the 

conditional expectation of the complete-data log-likelihood ln ℎ(𝑦|𝜃), where 𝑦 = [𝑥𝑧] is 

complete data vector and 𝑧 = [𝑧1 ⋯ 𝑧𝑇] are the unobserved labels referring to the mixture 

components (whose mixture label 𝑧𝑡  generated particular 𝑥𝑡), given the incomplete data 𝑥 

and the current fit 𝜃, i.e., 
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 𝑄(𝜃, 𝜃) = 𝐸𝑧|𝑥,𝜃̂[lnℎ(𝑦|𝜃)] (9) 

where 𝐸𝑧|𝑥,𝜃̂[] = ∫ []ℎ(𝑧|𝑥, 𝜃)dz is the conditional expectation operator. The EM procedure 

is based on the fact that ℎ(𝑦|𝜃) = ℎ(𝑧|𝑥, 𝜃)𝑓(𝑥|𝜃) (Bayesian theorem), so that after 

performing logarithm, taking expectation 𝐸𝑧|𝑥,𝜃̂[] and using ∫ ℎ(𝑧|𝑥, 𝜃)dz = 1, one obtains 

ln𝑓(𝑥|𝜃) = 𝑄(𝜃, 𝜃) − 𝐻(𝜃, 𝜃), with 

 𝐻(𝜃, 𝜃) = 𝐸𝑧|𝑥,𝜃̂[lnℎ(𝑦|𝑥, 𝜃)] (10) 

As it holds, 𝐻(𝜃, 𝜃) < 𝐻(𝜃, 𝜃), by assuring 𝑄(𝜃, 𝜃) ≥ 𝑄(𝜃, 𝜃), as ln(⋅) is monotony 

increasing one obtains 𝑓(𝑥|𝜃) > 𝑓(𝑥|𝜃), so that the iterative process leads toward 

maximization of likelihood. In the case of MAP estimation, the same procedure can be 

obtained, by maximizing 𝑅(𝜃, 𝜃) = 𝑄(𝜃, 𝜃) + ln 𝑔(𝜃). By direct calculation, one can obtain 

[22]: 

 𝑄(𝜃, 𝜃) = ∑ ∑ 𝜔𝑘𝛮(𝑥𝑡|𝑚̂𝑘 , 𝑟𝑘)∑ 𝜔𝑙𝛮(𝑥𝑡|𝑚̂𝑙 , 𝑟𝑙)𝐾𝑙=1
𝐾

𝑘=1
𝑇

𝑡=1 ln𝜔𝑘𝛮(𝑥𝑡|𝑚𝑘 , 𝑟𝑘) (11) 

We maximize 𝛹(𝜃, 𝜃) = exp(𝑅(𝜃, 𝜃)) (which is equivalent to maximizing 𝑄(𝜃, 𝜃)), so we 

define the following notation: 

 

𝑐kt = 𝜔𝑘𝛮(𝑥𝑡|𝑚̂𝑘, 𝑟𝑘)∑ 𝜔𝑙𝛮(𝑥𝑡|𝑚̂𝑙 , 𝑟𝑙)𝐾𝑙=1 ,
𝑐𝑘 = ∑ 𝑐kt

𝑇
𝑡=1 ,

𝑥̅𝑘 = ∑ 𝑐kt 𝑥𝑡 𝑐𝑘⁄𝑇
𝑡=1

 (12) 

It follows from the definition of 𝑓(𝑥|𝜃), given by (5), that the following holds 

 𝛹(𝜃, 𝜃) ∝ 𝑔(𝜃) ∏ 𝜔𝑘𝑐𝑘𝐾
𝑘=1 |𝑟𝑘|𝑐𝑘 2⁄ exp[− 𝑐𝑘2 (𝑚𝑘 − 𝑥̅𝑘)𝑇𝑟𝑘(𝑚𝑘 − 𝑥̅𝑘)] (13) 

so that from (7), (8) and the shape of 𝑔(𝜔1, … , 𝜔𝐾), one concludes that 𝛹(⋅, 𝜃) belongs to the 

same family of distributions as 𝑔(⋅), but with the parameters 
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𝜈𝑘′ = 𝜈𝑘 + 𝑐𝑘 ,𝜏𝑘′ = 𝜏𝑘 + 𝑐𝑘 ,𝛼𝑘′ = 𝛼𝑘 + 𝑐𝑘 ,𝜇𝑘′ = 𝜏𝑘𝜇𝑘 + 𝑐𝑘 𝑥̅𝑘𝜏𝑘 + 𝑐𝑘
 (14) 

So that the family of densities defined by (8) is therefore a conjugate family for the 

complete data density. The mode of 𝛹(, 𝜃) denoted (𝜔𝑘 , 𝑚̂𝑘) may be obtained from the 

modes of the Dirichlet and normal distribution as: 𝜔𝑘 = (𝜈𝑘′ − 1 ) ∑ (𝜈𝑘′ − 1)𝐾𝑘=1⁄ , 𝑚̂𝑘 = 𝜇𝑘′ , 

which are actually MAP re-estimations 𝜃. Thus, we can resume: 

If the prior mean is 𝝁0, then the MAP estimate for the adapted mean 𝝁̂ of Gaussian is given 

by 

 𝝁̂ = 𝜏𝝁0 + ∑ 𝛾(𝑛)𝒙𝑛𝑛𝜏 + ∑ 𝛾(𝑛)𝑛  (15) 

where: 

 τ is a hyperparameter that controls the balance between the ML estimate of the mean, i.e. 

its prior value (typically, it is in the range 2–20), 

 𝒙𝑛 is the adaptation vector at time 𝑛, 

 𝛾(𝑛) is the probability of this Gaussian at this time.  

As the amount of training data increases, the MAP estimate converges to the ML 

estimate. The main drawback to MAP adaptation is that it is local. Only the parameters 

belonging to Gaussians of observed states will be adapted, which is illustrated in Figure 6. 

Large speech synthesis systems have thousands of Gaussians, most will not be adapted, or 

will not be adapted to a sufficient extent. Structural MAP (SMAP) approaches have been 

introduced to share Gaussians. MAP adaptation is very useful for domain adaptation (e.g. 

adapting a conversational telephone speech system to studio recordings). 
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 MLLR transformation 3.1.3.

Another approach is to estimate a set of transformations that can be applied to model 

parameters. If these transformations can capture general relationships between the original 

model set and the current speaker or new acoustic environment, they can be effective in 

adapting all HMM distributions. One such transformation approach is MLLR [22][23], which 

estimates a set of linear transformations for the mean parameters of a mixture Gaussian 

HMM system, so that the likelihood of the adaptation data is maximized. As many 

components are assumed to share the same transformation, it is possible to adapt all the 

components of the system with little data. It should be noted that while MLLR was initially 

developed for speaker adaptation, since it reduces the mismatch between a set of models and 

adaptation data, it can also be used for speaking style adaptation, or even to perform 

environmental compensation by reducing a mismatch due to channel or additive noise effect. 

If the original mean vector for a certain state (i.e. its Gaussian component) is 𝛍, then the 

new estimate of the mean, 𝛍̂, is obtained by 

 𝝁̂ = 𝑾̂𝝃 (16) 

where 𝑾̂ is the 𝑛 × (𝑛 + 1) transformation matrix (𝑛 is the dimensionality of the data) and 𝝃 is the extended original mean vector: 

 𝝃 = [1 𝜇1  … 𝜇𝑛]𝑇 (17) 

We can write 𝑾̂ in the form: 

 

Figure 7: Gaussian adaptation by using MAP 
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 𝑾̂ = [𝒃̂ 𝑨̂] (18) 

where 𝒃̂ is a bias on the mean and 𝑨̂ is a transformation matrix, which may be full, block 

diagonal, or diagonal. The aim is to find the transformation 𝑾̂ that maximizes the likelihood 

of the adaptation data.  

Gaussian covariance matrices are updated by 

 𝜮 = 𝑩𝑇𝑯̂ 𝑩 (19) 

where 𝑯̂ is the linear transformation to be estimated and 𝑩 is the inverse of the Choleski 

factor of 𝜮−1, so: 

 𝜮−1 = 𝑪 𝑪𝑇 (20) 

and:  

 𝑩 = 𝑪−1 (21) 

The entire optimization procedure is described in [24]. 

Two problems should be resolved when performing MLLR adaptation. The first problem 

is to decide how components should be clustered together, so that they all can share the same 

transformation matrix. The second problem is how to decide how many transformations to 

generate, given a particular set of adaptation data. 

To better illustrate the whole procedure, let us look at Figure 7, which depicts parametric 

representation of one phoneme in context (e.g. P-A+D). Generally, context is much more 

complex than this, and usually contains a wider window of phonetic context, linguistic 

context, prosodic context (ToBI tags or like), etc. Parameters (1 and 2) can be any acoustic 

features (spectrum (MFCCs), pitch, aperiodicity) and while the example is presented in a 2D 

acoustic space, in practice the dimension of this space is much higher. A0, A1 and A2 are 

consecutive states of the phoneme in context. Parameter values are calculated from the 

database of speaker X during the training procedure of HMM-GMM. 
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During enrollment (providing speech adaptation data), speaker Y produced some acoustic 

observations – his/her versions of the same phoneme (i.e. its states). All these parameters are 

calculated per frame (e.g. 5 ms), therefore several observations exist for each state (Figure 8). 

Each observation is assigned to the appropriate state, which is accomplished by the process 

of forced alignment. 

 

In the next step, states from speaker X are transformed “towards” speaker Y’s 

observations. Since we know “what should go where”, it is possible to calculate a 

transformation. We are not transforming each state separately, but rather calculate a joint 

transformation for some cluster of states (Figure 9). This provides more robust results. A 

logical approach is to transform speaker X parameters (of each state) by using the 

 
Figure 8: Parametric representation of phoneme (actually, its states) in context 
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Figure 9: Observations from the adaptation sequence 
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precalculated transformation. After this, we basically have speaker Y parameters, instead of 

X. 

 

In the model X there will be numerous states which do not have their representatives in 

the speaker Y’s observations, i.e. they are not “seen” in the training sample (Figure 10). 

However, they are (more or less) close to some “seen” states. The basic intuition of MLLR or 

similar method is that these (“unseen”) states should be transformed in the same way as their 

close “seen” states. 

 

By applying the same transformation to neighboring “unseen” states, we obtain new 

“positions” for those states as well (Figure 11). Since the same transformation was applied to 

those states, their relative position to the “seen” states will remain the same, which is the 

desired behavior of the procedure. It should be noted that initially, these three states (A0, A1 

and A2) were marked as close, thus having joint transformation. This usually will not be the 

case, since they represent different segments of a phone. It is more likely that, e.g. P-A0+D 

will be similar to B-A0+T, than P-A1+D. 

 
Figure 10: Calculation of transformation matrix 
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Figure 11: Illustration of “unseen” states from model X 
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To summarize the rationale behind MLLR: 

 The whole acoustic space is clustered into regression classes of equivalence (RC). 

 Each RC contains states close to each other. 

 The same transformation is applied to every state in a RC. 

 Some states in RC are “seen” and some are “unseen”. 

 Observations from the “seen” states participate in the calculation of transformation for 

that RC. 

 If some RC has an insufficient number of observations, it is merged with some 

neighboring RC. 

 In conclusion, if we have a large number of observations, we can handle a large number 

of RCs, and have better transformations. Otherwise, we are forced to merge RCs more 

often, and perform suboptimal transformations. 

Some of the problems in MLLR are the following: 

 Insufficiently robust transformations if we aim at a large number of them (small amount 

of observations per transformation). This is even more noticeable if we use full 

transformation matrices. 

 Hard splitting of acoustic space (some states that were very close can become very distant 

after transformation, and vice versa). 

 
Figure 12: Appropriate transformation is applied to “unseen” states as well 
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4. ANN Speech Synthesis 

An Artificial Neural Network (ANN) is an efficient computing system whose central 

theme is borrowed from the analogy of biological neural networks. ANNs are parallel 

computing devices, which basically attempt to represent a computer model of the brain. The 

main objective is to develop a system to perform various computational tasks faster than 

traditional systems. These tasks include pattern recognition and classification, approximation, 

optimization, and data clustering. ANNs are also named as “artificial neural systems” or 

“parallel distributed processing systems” or “connectionist systems”. ANN acquires a large 

collection of units that are interconnected in some pattern to allow communication between 

the units. These units, also referred to as nodes or neurons, are simple processors which 

operate in parallel. Every neuron is connected with other neurons through a connection link. 

Each connection link is associated with a weight that multiplies the output from some other 

neuron or an input to the network. Weights excite or inhibit the signal that is being 

communicated, which is the basic mechanism by which neural network solves a particular 

problem. Each neuron is also characterized by its activation function. Output signals, which 

are produced by combining the input signals and the activation function, may be sent to other 

units or provided as outputs of the neural network. 

Modern neural networks usually contain several layers of neurons instead of just one. 

With a sufficient number of layers, such an architecture is usually called a Deep Neural 

Network (DNN). In the remainder of this thesis, terms ANN and DNN will be used 

interchangeably. 

4.1. ANN Basics 

There are several types of architectures for neural networks: 

 Feed Forward networks (FF), which contain one or more hidden layers of neurons, 

propagating information and signals from one layer to the next, without feedback. 
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 Recurrent Neural Networks (RNN), used for sequential data such as text or times series. 

 Convolutional Neural Networks (CNN), particularly adapted for image processing.  

All these types of networks are based on deep cascades of layers of neurons, containing 

large amount of parameters, thus demanding stochastic optimization algorithms, and 

initialization, with the emphasis on the choice of topological structure of network. Any ANN 

is formally described by a nonlinear continuous mapping 𝑦 = 𝐹(𝑥, 𝜃) = 𝐹𝜃(𝑥), where 𝑥 ∈ 𝑅𝑛 is the input vector, 𝑦 ∈ 𝑅𝑚 is the output vector, while 𝜃 ∈ 𝑅𝑝 is the vector of 

network parameters. As usual in statistical learning, the parameters 𝜃 are estimated from a set 

of observations in a supervised (then learned on paired input and output data) or 

unsupervised manner (just input data is available). Having learned from data in a supervised 

manner, neural networks can be used for regression or classification, depending on what kind 

of information is brought to their output (desired output, in the case of regression, or class 

information in the case of classification). As function to minimize is non-convex, by design, 

learning procedures constitute non-convex optimization problems, and thus local minimizers 

are used to solve them. 

 

 Artificial neurons 4.1.1.

An artificial neuron (illustrated in Figure 12) is a function of an input vector 𝒙 =[𝑥1 ⋯ 𝑥𝑛]𝑇 ∈ 𝑅𝑛, weighted by connection weights 𝒘 = [𝑤1 ⋯ 𝑤𝑛 ]𝑇 ∈ 𝑅𝑛, translated by bias 𝑏 ∈ 𝑅 and then finally passed through a fixed nonlinear activation function 𝜑: 𝑅 → 𝑅, i.e., 𝑦 = 𝑓(𝒙) = 𝜑(⟨𝒘, 𝒙⟩ + 𝑏), where ⟨𝒘, 𝒙⟩ is an Euclidean scalar product in 𝑅𝑛, so that ⟨𝒘, 𝒙⟩ = ∑ 𝑤𝑖𝑥𝑖𝑛𝑖=1 . Today, there are numerous activation functions in use [25], of which we 

will describe several most common ones. 

The sigmoid function 

 𝜑(𝑥) = 11 + exp(−𝑥) , 𝑥 ∈ 𝑅 (22) 
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The hyperbolic tangent (tanh) function 

 𝜑(𝑥) = tanh(𝑥) = exp(𝑥) − exp(−𝑥)
exp(𝑥) + exp(−𝑥) = exp(2𝑥) − 1

exp(2𝑥) + 1 , 𝑥 ∈ 𝑅 (23) 

The hard threshold function 

 𝜑(𝑥) = 1𝑥>𝛽(𝑥) = {1, 𝑥 > 𝛽0, 𝑥 ≤ 𝛽 , 𝑥 ∈ 𝑅, 𝛽 ∈ 𝑅 (24) 

The Rectified Linear Unit (ReLU) function 

 𝜑(𝑥) = max{0, 𝑥}, 𝑥 ∈ 𝑅 (25) 

The Leaky ReLU function 

 𝜑(𝑥) = max{0, 𝑥} + 𝛼min{0, 𝑥}, 𝑥 ∈ 𝑅 (26) 

where 𝛼 > 0 is fixed and usually much smaller than 1. 

 

 

Although the sigmoid activation function given by (22) is a smooth function i.e. has 
bounded and continuous first derivative on 𝑅 and has its values contained in the interval [0,1] 

 

Figure 13: General model of artificial neuron 



Darko Pekar   Doctoral thesis 

33 

(which is the reason why it was largely used in ANNs with a smaller number of layers). It has 

the drawback that the absolute value of its derivative (and thus the whole gradient w.r.t. 

parameters of the ANN, due to the chain derivative rule) is close to zero on the large part of 𝑅 (cases when |𝑥| is not close to zero). Namely, in the ANNs with a large number of layers 

(which defines the actual “Deep Learning” paradigm), due to the usage of back-propagation 

algorithm in learning procedure, the problem of so-called “vanishing gradient” occurs (more 

details in 4.2). It means that the norm of gradient becomes close to zero due to the chain 

differentiation rule which is executed in the process of calculating gradient w.r.t. parameters 

of ANN, when propagating through layers of ANN (where one actually encompasses the 

composition of mappings). 

Contrary to the previous, in the case of ReLU activation function, the singularity at 𝑥 = 0 

is present, making the ANN learning process formally a non-smooth optimization problem. 

Nevertheless, the probability of encountering the zero value of the argument of the activation 

function is zero, so in practice it does not cause significant problems. On the other hand, as 
the absolute values of gradient of ReLU activation function are equal to 1, for 𝑥 > 0, the 

benefit of avoiding the vanishing gradient problem (see Section 4.2.3) in the ANN learning 

procedure is huge. As the ReLU activation function and also its derivative have zero values 
for 𝑥 < 0, Leaky ReLU is introduced as its modification, which avoids such a drawback. 

 Feed Forward Networks 4.1.2.

Feed forward ANN is a non-recurrent network having processing units/nodes in layers 

and all the nodes in a layer connected with the nodes of the previous layers (Figure 13). The 

connections may have different weights. There is no feedback loop, which means that the 

signal can only flow in one direction, from input to output. One widely used example of feed 

forward ANN is multilayer perceptron. 
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Multilayer perceptron, or a fully-connected multilayer feed-forward ANN, is a structure 

composed by several layers of neurons where the output of every neuron of a layer becomes 

the input of every neuron of the next layer. Those layers that are not input and output layers 

(i.e. the layers in between) are called hidden layers. Moreover, there is the constraint that the 

output of a neuron in some layer can only be the input of a neuron of the next layer (Figure 

13). To the last layer, i.e. the output layer, one may apply a different activation function than 

in the case of hidden layers which depends on the type of problem that is tackled: regression 

or classification. Actually, in the regression task, no activation function is imposed on the 
output layer. For binary classification, the output gives an estimation of 𝑃(𝑦 = 1|𝒙). For a 

multi-class classification task, the output layer contains 𝐶 neurons, where 𝐶 is the number of 

classes, with one neuron representing each class 𝑐 ∈ {1, … , 𝐶} in the soft manner, giving the 

estimation of the conditional probability 𝑃(𝑦 = 𝑐|𝒙). As those probabilities have to sum to 1 

when summing all classes, the softmax function is usually used for the output layer, i.e., 

 softmax𝑐(𝒛) = exp(𝑧𝑐)∑ exp(𝑧𝑐)𝐶𝑐=1  (27) 

Multilayer perceptron neural network with 𝐿 hidden layers can be formally formulated as 

follows: 

 𝒉(0)(𝒙) = 𝒙, 𝒂(𝑘)(𝒙) = 𝑾𝑘𝒉(𝑘−1)(𝒙) + 𝒃𝑘 , 𝑘 = 1, … , 𝐿 + 1, (28) 

 

Figure 14: An example of feed-forward neural network 
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𝒉(𝑘)(𝒙) = 𝜑 (𝒂(𝑘)(𝒙)) , 𝑘 = 1, … , 𝐿, 𝒉(𝐿+1)(𝒙) = 𝜓 (𝒉(𝐿)(𝒙)) 

where 𝒉(𝑘), 𝑘 = 1, … , 𝐿 are hidden layers, 𝒉(0), 𝒉(𝐿+1) are input and output layers 

respectively, 𝑾𝑘 ∈ 𝑅dim(𝒉(𝑘))×dim(𝒉(𝑘−1)) are network weight matrices, while 𝒃𝑘 ∈ 𝑅dim(𝒉(𝑘)) 
are network biases. The parameters of the network are then 𝜃 = {[𝑾𝑘, 𝒃𝑘], 𝑘 = 1, … , 𝐿 + 1}. 

Additionally, 𝜑 is the activation function of the hidden layers, while 𝜓 is the activation 

function of the output layer (in most cases chosen to be different from 𝜑). 

 Recurrent Neural Networks 4.1.3.

Feedback network has feedback paths, which means that the signal can flow in both 

directions using loops. This makes it a non-linear dynamic system, which changes 

continuously until it reaches a state of equilibrium. One example of feedback networks are 

recurrent networks, i.e. feedback networks with loops closed within the same layer (Figure 

14). 

Recurrent neural networks are introduced in order to tackle the machine learning (ML) 

tasks involving sequential data such as text or time series, as well as video data. Simple 

RNNs are introduced by Elman [26] and Jordan [27]. In the model introduced in [26], feed-

 

Figure 15: An example of feedback (recurrent) neural network 
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forward ANN with one hidden layer is looped back onto itself. It means that the following 

relations hold: 

 
𝒉𝑡 = 𝜎ℎ(𝑾ℎ𝒙𝑡 + 𝑼ℎ𝒉𝑡−1 + 𝒃ℎ), 𝒚𝑡 = 𝜎𝑦(𝑼𝑦𝒉𝑡 + 𝒃𝑦), (29) 

where 𝒙𝑡 ∈ 𝑅𝑛 is input vector at time 𝑡, 𝒉𝑡 ∈ 𝑅𝑙 is hidden layer output at time 𝑡, 𝑾ℎ ∈𝑅𝑚×𝑛, 𝑼ℎ, 𝑼𝑦 ∈ 𝑅𝑚×𝑙, 𝒃ℎ , 𝒃𝑦 ∈ 𝑅𝑚 weight matrices and bias vectors, respectively, to be 

learned. Also, 𝜎𝑦 and 𝜎ℎ are activation functions for output and hidden layer respectively. It 

can be seen from (47), that hidden layer at time 𝑡, depends on hidden layer at previous time, 

i.e., 𝑡 − 1. In the model introduced in [27], hidden layer at time 𝑡, instead of depending on 

the output of the hidden layer, depends on the output of the network at previous time step, 

i.e., the following relations hold: 

 
𝒉𝑡 = 𝜎ℎ(𝑾ℎ𝒙𝑡 + 𝑼ℎ𝒚𝑡−1 + 𝒃ℎ), 𝒚𝑡 = 𝜎𝑦(𝑼𝑦𝒉𝑡 + 𝒃𝑦), (30) 

where, 𝒚𝑡−1 is output of the network at time step 𝑡 − 1. 

The basic version of RNN fails to learn long time dependencies [28], so that new 

architectures have been introduced to tackle this problem. Long Short-Term Memory (LSTM) 

RNNs are introduced by Hochreiter and Schmidhuber, in order to tackle the mentioned 

problem and they found their application in many tasks such as speech recognition, 

translation, etc. The main difference between LSTM and simple RNN is the following: an 

LSTM cell at time  𝑡, contains not only the hidden layer 𝒉𝑡 ∈ 𝑅𝑙, but also a state 𝒄𝑡 ∈ 𝑅𝑞. 

This cell at time 𝑡, is the function of the following vectors: current input to the hidden layer 𝒙𝑡 , hidden layer output at previous timestep 𝒉𝑡−1, as well as the previous cell state 𝒄𝑡−1. 

Inside the LSTM, the gates are defined that decide on the transmission of information, so that 
LSTM cell is described by the following set of equations: 
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Update gate: 𝒖𝑡 = 𝝈(𝑾𝑢𝒉𝑡−1 + 𝑰𝑢𝒙𝑡 + 𝒃𝑢), 
Forget gate: 𝒇𝑡 = 𝝈(𝑾𝑓𝒉𝑡−1 + 𝑰𝑓𝒙𝑡 + 𝒃𝑓), 
Cell candidate: 𝒄̃𝑡 = tanh(𝑾𝑐𝒉𝑡−1 + 𝑰𝑐𝒙𝑡 + 𝒃𝑐), 
Cell output:𝒄𝑡 = 𝒇𝑡 ∘ 𝒄𝑡−1 + 𝒖𝑡 ∘ 𝒄̃𝑡, 
Output gate: 𝒐𝑡 = 𝝈(𝑾𝑜𝒉𝑡−1 + 𝑰𝑜𝒙𝑡 + 𝒃𝑜), 
Hidden output:𝒉𝑡 = 𝒐𝑡 ∘ tanh(𝒄𝑡) 

(31) 

where 𝑾𝑓, 𝑾𝑢, 𝑾𝑐, 𝑾𝑜, 𝑾𝑦 are weight matrices of adequate dimensions, while 𝒃𝑢, 𝒃𝑓, 𝒃𝑐 , 𝒃𝑜, 𝒃𝑦 are biases of adequate dimensions, ∘ is point-wise multiplication, while 𝝈(⋅) and 𝐭𝐚𝐧𝐡(⋅) are vector-level activation functions. 

 Convolutional Neural Networks 4.1.4.

For image type of data, multilayer perceptrons are not adequate, as images should be 

vectorized, thus losing the spatial information contained in the images, such as forms, 

geometry, texture, etc. CNNs introduced by LeCun in [29] revolutionized image processing, 

and removed the need for manual extraction of features, which was essential in that area and 

demanded specific expert knowledge. Namely, CNNs act directly on matrices, or even on 

tensors for images with three RGB color channels. A Convolutional Neural Network is 

composed of the following layers: convolutional layers, pooling layers and fully connected 

layers. 

Convolutional layer 

The cross-correlation between two 2D (discretized) finite sequences 𝒖 and 𝒗 is a finite 

2D sequence defined as  

 (𝒖 ∗ 𝒗)(𝑖, 𝑗) = ∑ 𝒖(𝑚, 𝑛)𝒗(𝑚 + 𝑖, 𝑛 + 𝑗)𝑚,𝑛  (32) 

Even though CNNs use this formula, they are called convolutional, thus disregarding the 

strict definition of convolution. For example, one can set 𝒖 = 𝑲 to be the convolution kernel 

acting on grayscale image signal 𝒗 = 𝑰, but the definition (32) could be generalized onto 
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finite sequences of arbitrary dimension, so for example, 𝑰 could be an image containing RGB 

channels (thus a 5D finite sequence) and thus 𝑲 would be a corresponding 5D kernel. 

In practice 2D convolution is calculated by dragging convolution kernel 𝑲 throughout the 

image 𝑰. At each position, we get the convolution between the kernel and the part of the 

image that is currently treated. Then, the kernel moves by a number 𝑠 of pixels, 𝑠 is called 

stride. When the stride is small, we get redundant information. Sometimes, one can also add 

a zero padding, which is a margin of size 𝑝 containing zero values around the image in order 

to control the size of the output. Assume that we apply 𝐶𝑜 kernels (also called filters), each of 

size 𝑘 × 𝑘 on an image. If the size of the input image is 𝑊𝑖 × 𝐻𝑖 × 𝐶𝑖 (𝑊𝑖 denotes the width, 𝐻𝑖 the height, and 𝐶𝑖 the number of channels), the format of the output is 𝑊𝑜 × 𝐻𝑜 × 𝐶𝑜, 

where 𝐶𝑜 corresponds to the number of kernels that we consider, and the following holds: 

 
𝑊𝑜 = 𝑊𝑖 − 𝑘 + 2𝑝𝑠 + 1,𝐻𝑜 = 𝐻𝑖 − 𝑘 + 2𝑝𝑠 + 1.

 (33) 

In convolution layer of a CNN, convolution operations are further composed with an 

activation function 𝜑 as well as bias 𝒃, as 𝑜 = 𝜑(𝑲 ∗ 𝒖 + 𝒃), where 𝒖 is the input and 𝑜 is 

the output of the convolution layer. 

In the particular learning process (similar to ANNs described in previous sections) the 

CNN will learn convolution kernels that are the most useful for the given task. 

Pooling layer 

CNN also has pooling layers, which allow it to reduce the dimension, also referred as 

sub-sampling, by taking the mean or the maximum on patches of the image (mean-pooling or 

max-pooling). Like the convolution layers, pooling layers act on small patches of the image, 

and we also have a stride. If we consider 2 × 2 patches, over which we take the maximum 

value to define the output layer, and a stride 𝑠 = 2, we divide by 2 the width and height of the 

image. Of course, it is also possible to reduce the dimension using the convolution layer, by 

taking a stride larger than 1, and without zero padding, but another advantage of pooling is 

that it makes the network less sensitive to small translations of input images. 
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Fully connected layer 

After several convolution and pooling layers, the CNN usually ends with several fully-

connected perceptron layers, depending on the particular task.  

 Dense vs. Sparse Layers 4.1.5.

In general, neural networks are represented as tensors. Each layer of neurons is 

represented by a matrix. Each entry in the matrix can be thought of as representative of the 

connection between two neurons. In a simple neural network, like a classic fully-connected 

(dense) feed-forward neural network, every neuron on a given layer is connected to every 

neuron on the subsequent layer. This means that each layer must have 𝑛2 connections 

represented, where 𝑛 is the size of both of the layers. In large networks, this can take a lot of 

memory and time to propagate. Since different parts of a neural network often work on 

different subtasks, it can be unnecessary for every neuron to be connected to every neuron in 

the next layer. In fact, it might make sense for a neural network to have most pairs of neurons 

with a connection weight of 0. Training a neural network might result in these less significant 

connection weights adopting values very close to 0 but accuracy would not be significantly 

affected if the values were exactly 0. 

A matrix in which most entries are 0 is called a sparse matrix. These matrices can be 

stored more efficiently and certain computations can be carried out more efficiently on them 

provided the matrix is sufficiently large and sparse. Neural networks can leverage the 

efficiency gained from sparsity by assuming most connection weights are equal to 0.  

 Approximation capabilities of ANN 4.1.6.

Hornik [30] has shown that any bounded and continuous mapping between Euclidean 

spaces can be approximated with arbitrary precision by a neural network with one hidden 

layer containing a finite (but possibly very large, often unacceptable, from the computational 

point of view) number of neurons, having the same activation function, and one linear output 

neuron (no activation function on that neuron). This result was earlier proved by Cybenko 

[31] in the particular case of the sigmoid activation function given by (22). The Universal 

Approximation Theorem (by Cybenko) can be formally stated as: 
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Theorem 1: Let 𝜑 be a continuous and bounded activation function additionally non-

decreasing. Let 𝐾 ⊂ 𝑅𝑛 be compact in 𝑅𝑛 (i.e., bounded and closed). Then, for arbitrary 

fixed continuous 𝑓: 𝐾 → 𝑅, there exists the function 𝐺𝑠: 𝐾 → 𝑅 defined by 𝐺𝑠(𝒙) =∑ 𝑣𝑖(⟨𝑤𝑖 , 𝒙⟩ + 𝑏𝑖 )𝑠𝑖=1 , that could be made arbitrary close to 𝑓 in the space of the continuous 

functions on 𝐾, denoted by 𝐶(𝐾) (equipped with the supremum norm sup𝒙∈𝐾| ⋅ |), by increasing 𝑠. This means, that for arbitrary fixed 𝜀 > 0 there exist 𝑠 ∈ 𝑁, 𝑤𝑖 ∈ 𝑅𝑛, 𝑏𝑖 , 𝑣𝑖 ∈ 𝑅 such that 

sup𝒙∈𝐾|𝑓(𝒙) − 𝐺𝑠(𝒙)| < 𝜀 holds. 

The Theorem extends straightforward to the cases of ANNs with a finite number of 

hidden layers and a finite number of outputs (the case 𝑓: 𝐾 → 𝑅𝑚) . Note that all activation 

functions defined by (22)-(26) satisfy the regularity condition from Theorem 1. 

Another important theoretical result in a similar manner (approximation possibility) is 

delivered for networks with a large number of hidden layers and not necessary a large 

number of neurons in particular layers. It is formulated by Zhou et all, as [32]: 

Theorem 2: For any integrable function 𝑓: 𝑅𝑛 → 𝑅 and arbitrary fixed 𝜀 > 0, there exists a 

fully-connected feed-forward ANN with finite depth (number of hidden layers) with ReLU 

activation functions (defined by (25)), with the width 𝑑 (i.e., number of neurons in arbitrary 

hidden layer)  satisfying 𝑑 ≤ 𝑛 + 4, given by its function 𝐺: 𝑅𝑛 → 𝑅, such that ‖𝑓 − 𝐺‖1 <𝜀, where ‖⋅‖1 = ∫ |⋅|𝑅𝑛 dx is 𝑙1 norm, defined on set of all absolutely integrable functions on 𝑅𝑛. 

Note that the width of the DNN in Theorem 2, cannot be arbitrary small, but the upper 

bound of 𝑛 + 4 is given, which depends on the number of inputs to the network. Of course, a 

lower width must be compensated by a larger depth. 

Note first, that the nonlinearity (actually, non-polynomiality) of activation functions 

mentioned in Theorems 1 and 2 is crucial for good approximation properties of ANNs and 

DNNs, meaning that there are counter-examples if it is not involved (see [32]). Note second, 

that many other systems of functions have good approximation properties in various normed 

spaces of functions (for example polynomials in spaces of continuous or absolutely 

integrable functions, etc.) but did not come close to reaching the level of applicability, as it is 
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the case for ANNs. Note finally, that although Theorems 1 and 2 explain from the theoretical 

point of view, good approximation properties of ANNs, the actual “learning” of ANNs (i.e., 

obtaining optimal parameters of some ANN, i.e. those that minimize specific target criteria 

driven by specific task, with available data) “is the task of its own”, encompassing many 

specific optimization and computational issues as well as heuristics, in order to efficiently 

reach the theoretical bounds marked by previous theorems. 

 Learning in ANN 4.1.7.

A Machine Learning (ML) system is is formally a mapping 𝐹𝜃: 𝑋 → 𝑌, where 𝑋 and 𝑌 are 

input and output domains (formally represented as 𝑋 = 𝑅𝑛, 𝑌 = 𝑅𝑚) respectively and 𝜃 ∈ 𝛩 ⊆ 𝑅𝑝 are parameters of the system. Learning in the broader context of ML, is 

obtaining the optimal parameters of ML system 𝜃 ∈ 𝛩, in the sense that those are minimizers 

of the specific target function which is formed according to the specific task, subject to 

certain specified constraints (that define 𝛩), with available data that are also associated to 

that particular task. Thus, learning in the context of artificial neural networks, is the process 

of modifying the parameters of ANNs, i.e. weights of connections between the neurons of a 

specified network as well as biases, so that the specified target function is minimized and it is 

all driven by the available task specific data. From the Statistical Estimation Theory 

perspective, training of ML system is process of estimating the parameters of ML system so 

that the expected loss is minimized (i.e., the previously mentioned task specific target 

function becomes some specified expected loss) where the available task specific data is 

considered to be observations (i.e. vector of random variables) drawn from some underlying 
unknown joint probability distribution 𝑝(𝑥, 𝑦). Note that the optimization problem associated 

to the ANN learning process is almost in all cases obtained as unconstrained, i.e.,𝛩 = 𝑅𝑝. 

Learning in ANN can be roughly classified into three categories: supervised, unsupervised 

and reinforcement learning. 

Supervised Learning. As the name suggests, this type of learning is done under 
supervision, meaning that the paired input-output observations (𝑥1 , 𝑡1), … , (𝑥𝑀, 𝑡𝑀), drawn 

from unknown underlying probability distribution 𝑝(𝑥, 𝑦) are available as data during the 

training. Those data are referred as labeled data, and 𝑡𝑖 are referred as target vectors or 
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labels. The target criterion function that is optimized during training is thus function of 

known (𝑥𝑖 , 𝑡𝑖) as well as the parameters 𝜃 (to be determined) of the network. In a more 

illustrative manner, the process could be explained as follows: During the training of ANN by 

supervised learning, the particular input vector 𝑥𝑖 is presented to the network, which will give 

an output vector 𝑦𝑖 (Figure 15). This output vector is compared with the desired target vector 𝑡𝑖 and an error signal |𝑡𝑖 − 𝑦𝑖| is generated as a measure of the difference between the actual 

output and the desired target vector. On the basis of this error signal, the weights are adjusted 

until the actual output is matched with the desired output. More precisely, the previously 

mentioned target function is obtained as a function of those error signals (e.g. the square error 

function defined by ∑ (𝑡𝑖 − 𝑦𝑖)2𝑀𝑖=1 ) . 

 

Unsupervised learning is carried out without supervision, meaning that only the 

observations (𝑥1 , … , 𝑥𝑀) drawn from the unknown marginal probability distribution 𝑝(𝑥) =∫ 𝑝(𝑥, 𝑦)dy (or ∑ 𝑝(𝑥, 𝑦)𝑦 ), are available during the training, i.e., no labeled data is present. 

Such data are referred to as unlabeled data. The target criterion function that is optimized 
during training is thus the function of 𝑥𝑖 as well as the parameters 𝜃 of the network, to be 

determined. During the training of ANN by unsupervised learning, the parameters of the 

network tend to those that tend to group the input vectors of similar type into clusters, where 

the clustering is driven by the type of target criteria used in training. When a new input 

pattern is applied, the neural network gives an output response indicating the cluster to which 

 

Figure 16: Supervised learning scheme 
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the input pattern belongs (Figure 16). There is no feedback from the environment as to what 

should be the desired output and if it is correct or incorrect. Hence, in this type of learning, 

the network itself must discover, trough the learning (i.e., training) process, the patterns and 

features from the input data, and the relation between the input data and the output. 

 

Reinforcement learning is concerned with how software agents ought to take actions in 

an environment in order to maximize the notion of cumulative reward. Reinforcement 

learning differs from supervised learning in not needing labelled input/output pairs to be 

presented, and in not needing sub-optimal actions to be explicitly corrected. Instead, the 

focus is on finding a balance between exploration (of uncharted territory) and exploitation (of 
current knowledge). 

During the training of network under reinforcement learning, the network receives some 

feedback from the environment (Figure 17). When the agent’s performance is compared to 

that of an agent that acts optimally, the difference in performance gives rise to the notion of 

regret in decision theory. In order to act near optimally, the agent must reason about the long-

term consequences of its actions (i.e., maximize future income), although the immediate 

reward associated with this might be negative. 

 

Figure 17: Unsupervised learning scheme 
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Thus, reinforcement learning is particularly well-suited to problems that include a long-

term versus short-term reward trade-off. It has been applied successfully to various problems, 

including robot control, elevator scheduling, telecommunications, backgammon, checkers 

and go (AlphaGo). 

 Target Criterion Functions 4.1.8.

In forming the Target criterion function to be minimized during ANN learning process 

(supervised learning case), a convenient approach is to use the statistical perspective and to 

maximize the expected log likelihood, i.e., to minimize the following loss: 

  ( , )( ) ln ( | , )p x yl E p y x  
 

(34) 

For a regression task, if we assume a Gaussian error model, we obtain the quadratic loss, i.e. 

 
2

( , )( ) ( )p x yl E F x y       
(35) 

which is most common, and is used in the following Sections of this thesis. 

For a binary classification task, one has 𝑦 ∈ {0,1}, and the following holds: 

 𝑝(𝑦|𝑥, 𝜃) = 𝐹𝜃 (𝑥)𝑦(1 − 𝐹𝜃(𝑥))1−𝑦 (36) 

so that one obtains: 

 

Figure 18: Reinforcement learning scheme 
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 𝐿(𝜃) = −𝐸𝑝(𝑥,𝑦)[𝑦ln𝐹𝜃(𝑥) + (1 − 𝑦)(1 − 𝐹𝜃(𝑥))] (37) 

while, by same reasoning, for multiclass classification task, one obtains: 

 𝐿(𝜃) = −𝐸𝑝(𝑥,𝑦)[∑ 1𝑦=𝑐ln 𝑝(𝑦 = 𝑐|𝑥, 𝜃)𝐶
𝑐=1 ] (38) 

where: 

 1𝑦=𝑐(𝑦) = {1, 𝑦 = 𝑐0, 𝑦 ≠ 𝑐 (39) 

and  𝑝(𝑦 = 𝑐|𝑥, 𝜃) in ANNs are expressed by using softmax activation function in the output 

layer, as discussed previously. 

It should be noted that one can express the loss in the following way: 

 𝐿(𝜃) = 𝐸𝑝(𝑥,𝑦)[𝑙(𝐹𝜃(𝑥), 𝑦)] (40) 

as, for example in the quadratic loss case (35), where 𝑙(𝐹𝜃 (𝑥), 𝑦) = ‖𝐹𝜃 (𝑥) − 𝑦‖2. As the 

true underlying joint probability distribution 𝑝(𝑥, 𝑦) is always unknown, we use (supervised 

case) available paired data samples {(𝑥𝑖 , 𝑦𝑖)}1𝑀, in order to estimate unknown parameters 𝜃 

and minimize the only available Empirical loss defined as 

 𝐿(𝜃) = 1𝑀 ∑ 𝑙(𝐹𝜃(𝑥𝑖), 𝑦𝑖)𝑀𝑖=1 . (41) 

Furthermore, in some cases, mostly for the uniqueness of the solution (one could interpret it 

as convexification of loss function 𝐿(⋅), since a strictly convex function has the unique 

minimizer on any convex closed set), we add the convex regularization term 𝛹(), so that the 

loss function becomes: 

 𝐿(𝜃) = 1𝑀 ∑ 𝑙(𝐹𝜃(𝑥𝑖), 𝑦𝑖)𝑀𝑖=1 + 𝜆𝛹(𝜃)  (42) 

for some fixed 𝜆 > 0. The regularization term also has its statistical interpretation, in the 

sense that it is associated to the prior to network parameters as 𝑝(𝜃) ∝ exp(−𝜆𝛹(𝜃)), so that 
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in that case, instead of ML estimate expressed through (34), we perform a MAP estimate, i.e., 

minimize 𝐿(𝜃) = −𝐸𝑝(𝑥,𝑦)[ln 𝑝(𝜃|𝑥, 𝑦)] and, as for the posterior the following holds: 

 𝑝(𝜃|𝑥, 𝑦) ∝ 𝑝(𝑦|𝑥, 𝜃)𝑝(𝜃) (43) 

one obtains (41) as the loss. Most common regularization terms are quadratic (or 𝑙2), defined 

as 𝛹() = ‖ ⋅ ‖22, where ‖ ⋅ ‖2 is the Euclidean norm in 𝑅𝑝, so that 𝛹(𝜃) = ∑ 𝜃𝑖2𝑝𝑖=1 , as well 

as sparse (or 𝑙1), defined as 𝛹() = ‖ ⋅ ‖1, where ‖ ⋅ ‖1 is the 𝑙1 norm in 𝑅𝑝, so that 𝛹(𝜃) =∑ |𝜃𝑖|𝑝𝑖=1 . 

Next, the question of optimization method to be used (gradient descent based), as well as 
the way of efficiently calculating the gradient, is to be discussed. 

4.2. Gradient Descent And Back Propagation 

Gradient descent, also known as the steepest descent, is an iterative optimization 

algorithm used to find a local minimum of a function. While minimizing the function, we are 

concerned with the cost or error to be minimized. This algorithm is extensively used in deep 

learning, which is useful in a wide variety of situations. The point here to be remembered is 

that we are concerned with local optimization and not global optimization (Figure 18). 

We can understand the main working idea of gradient descent with the help of the 

following steps: 

 First, start with an initial guess of the solution. 

 Then, calculate the gradient of the function at that point. 

 Subsequently, repeat the process by stepping the solution in the direction contrary to the 

gradient. 

By following the above steps, the algorithm will eventually converge to a point where the 

gradient is equal to zero. 



Darko Pekar   Doctoral thesis 

47 

 

 

Gradient descent is at the core of error back propagation algorithm [33]. 

 Stochastic Gradient Descent Optimization Algorithm 4.2.1.

In application of ANNs, there is, in almost all cases, a large amount of training data and a 

large size of the ANN parameter space. For that reason, conventional gradient descent 

(unconstrained) optimization algorithm is inappropriate, since the calculation of high 

dimensional gradient on a whole corpus of training data is computationally too expensive. On 

the other hand, empirical risk (41) to be minimized in an ANN learning optimization task is 

the sum of terms 𝑙(𝐹𝜃(𝑥𝑖), 𝑦𝑖) evaluated for each training data observation pair (𝑥𝑖 , 𝑦𝑖) 

separately, so that the iteration of the classical Gradient Descent (GD) algorithm can be 

expressed as 

 𝜃𝑘+1 = 𝜃𝑘 − 𝜇𝛻𝜃𝐿(𝜃)|𝜃𝑘 = 𝜃𝑘 − 𝜇 ∑ 𝛻𝜃𝑙(𝐹𝜃 (𝑥𝑖), 𝑦𝑖 )|𝜃𝑘
𝑀

𝑖=1  (44) 

where 𝛻𝜃𝐿(𝜃)|𝜃𝑘 = [𝜕 𝐿 𝜕⁄ 𝜃1 ⋯ 𝜕 𝐿 𝜕⁄ 𝜃𝑝]|𝜃𝑘  is actually the gradient of 𝐿(𝜃) evaluated at 𝜃𝑘( 𝜕 𝐿 𝜕⁄ 𝜃𝑖 are partial derivatives of 𝐿 with respect to 𝜃𝑖). In applications in statistics, due 

to the usage of exponential families of distributions (such as Gaussian, Laplace, etc.) there is 
a simple close-form expression for summation of terms 𝑙(𝐹𝜃(𝑥𝑖), 𝑦𝑖) and 𝛻𝜃𝑙(𝐹𝜃(𝑥𝑖), 𝑦𝑖) in 

(44). Contrary to that, in the cases of ANNs,  𝛻𝜃𝑙(𝐹𝜃(𝑥𝑖), 𝑦𝑖) require expensive evaluations 

and the evaluation of 𝛻𝜃𝑙(𝐹𝜃 (𝑥𝑖), 𝑦𝑖) for all observations, in each iteration step, which thus 

 

Figure 19: Gradient descent illustration 
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becomes unacceptable computationally expensive. Thus, Stochastic Gradient Descent (SGD) 

algorithm is introduced, where the gradient 𝛻𝜃𝐿(𝜃)|𝜃𝑘 , instead of its precise value ∑ 𝛻𝜃𝑙(𝐹𝜃(𝑥𝑖), 𝑦𝑖)𝑀𝑖=1 |𝜃𝑘  is approximated by 

 𝛻̃𝜃𝐿(𝜃) = 1𝑚 ∑ 𝛻𝜃𝑙(𝐹𝜃 (𝑥𝑖), 𝑦𝑖)𝑖∈𝐵 |𝜃𝑘  (45) 

where 𝐵 ⊂ {1, … , 𝑀} is the subset of observation indices of (always fixed) size 𝑚, chosen 

randomly (uniformly, without replacement), for each iteration 𝑘. This subset of observations 

is called a minibatch, while iteration over all the training examples (all minibatches) is called 

an epoch of SGD algorithm. 

 Error Back Propagation Algorithm 4.2.2.

The goal of the Error Back Propagation (EBP) algorithm is to find the gradients of loss 

function versus ANN parameters, i.e., partial derivatives of loss function with respect to all 

weight coefficients, which are to be used in the process of certain loss function minimization. 

Here we present the method for the quadratic, i.e., mean squared error (MSE) loss function 

defined by (35), which we write as 

 𝐸 = 12 ∑(𝑦𝑗 − 𝑡𝑗)2𝐾
𝑗=1 , (46) 

where K represents the number of neurons in the output layer, 𝑦𝑗 is the current output of the 

neuron at position j, and 𝑡𝑗 is the target output value. 
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A portion of the network is shown in Figure 19 where some neuron connections have 

been omitted, for the sake of simplicity. For the purpose of determining how much each 

output 𝑦𝑗 influences the total loss function, we have to calculate partial derivatives 

 𝜕𝐸𝜕𝑦𝑗 = 𝑦𝑗 − 𝑡𝑗 . (47) 

What we really need to find out is how a change of certain coefficient influences the loss 

value, i.e. we have to calculate partial derivatives of the loss function with respect to 

parameters of ANN. Thus, due to the chain rule for derivatives, we first need to find how the 

change of neuron input x influences the loss value. 

 𝜕𝐸𝜕𝑥𝑗 = 𝜕𝐸𝜕𝑦𝑗 𝑑𝑦𝑗𝑑𝑥𝑗 . (48) 
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Figure 20: Hidden and output layer of neural network 
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The derivative 𝑑𝑦𝑗/𝑑𝑥𝑗 depends on the shape of activation function. By using previous 

equations, the influence of the weight coefficient 𝑤𝑖𝑗  which connects the neuron i in one 

layer with the neuron j in the next layer, on the loss function value are actually the partial 

derivatives of the loss function with respect to parameters of ANN (we exclude biases, for 

simplicity). By the chain rule for derivatives, those are given as: 

 𝜕𝐸𝜕𝑤𝑖𝑗 = 𝜕𝐸𝜕𝑥𝑗 𝜕𝑥𝑗𝜕𝑤𝑖𝑗 . (49) 

Since input 𝑥𝑗 to the neuron j is equal to the linear combination of the outputs of neurons 

from the previous layer i.e. 𝑥𝑗 = ∑ 𝑤𝑘𝑗𝑦𝑘𝑘 , we have 
𝜕𝑥𝑗𝜕𝑤𝑖𝑗 = 𝑦𝑖 , so the equation (49) can be 

written as 

 𝜕𝐸𝜕𝑤𝑖𝑗 = 𝜕𝐸𝜕𝑥𝑗 𝑦𝑖 . (50) 

If we observe only the previous hidden layer, then the influence of neuron i output in the 

hidden layer on the total loss can be described by the sum of the values given in equation 

(50): 

 
𝜕𝐸𝜕𝑦𝑖 = ∑ 𝜕𝐸𝜕𝑤𝑖𝑗𝑗 . (51) 

Algorithm: Optimization of neural network weight coefficients 

Input 
Set of training samples (𝒙1 , 𝑦1), (𝒙2 , 𝑦2) … (𝒙𝑚, 𝑦𝑚) 
Learning rate 

Output 
Optimized weight coefficients 

Set initial values of weight coefficients 
For each training sample 

1. Calculate outputs of each neuron in the network (forward pass) 
2. Calculate loss as the difference between target value and network output 
3. Calculate gradients for each weight coefficient in the network 
4. Calculate update weight coefficients by using gradients 
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Partial derivatives given by (50) are called gradients and are usually denoted as ∆𝑤𝑖𝑗 . 

They are used in the calculation of new weight coefficients in some iteration of a 

(conventional) GD algorithm, by using: 

 𝑤̂𝑖𝑗 = 𝑤𝑖𝑗 − 𝜉∆𝑤𝑖𝑗 , (52) 

where 𝜉 is a scalar value which represents the learning rate, and is set heuristically, or could 

be varied in every iteration. 

As we have already stated previously, weights could be updated after each sample in the 

training database, which would generate very noisy gradients and would introduce significant 

overhead in calculations. The opposite extreme would be to perform the update only after 

accumulating gradients over the entire training database. This would provide a very stable 

update, but would take a huge amount of time to converge. An intermediate approach is 

usually applied, in which a certain portion of the training database, referred to as batch, is 

processed, the gradients are averaged on that batch, and the update is performed. This 

eliminates overhead, reduces noise (although a certain amount of noise is actually desirable, 

especially in the beginning of the training) and leads to reasonably quick convergence. 

This baseline algorithm is still quite slow, and can be accelerated by using numerous 

techniques proposed in literature. One of the ways to do this is to slightly modify the update 

calculation based on momentum [34], as follows: 

 ∆𝑤(𝑡) = −𝜉 𝜕𝐸𝜕𝑤 + 𝛼∆𝑤(𝑡 − 1), (53) 

where α is a scalar value. In this way, the modification of weights and the entire training 

process will proceed in smaller steps if the directions of the most recent steps vary 

significantly, and it will proceed in bigger steps if this variation is smaller.  

 Vanishing Gradient Problem 4.2.3.

DNNs may be hard to train because of the way in which the gradients in previous and 

next layer are related, and the fact that there is a large number of such layers. In order to 

explain the vanishing gradient problem, let us, without loss of generality, assume that DNN 
has a single node at each hidden layer, and that it is 𝐻 hidden layers deep, denoted as ℎ1 , … , ℎ𝐻. Let us denote the weights between subsequent layers (i.e., nodes) as 𝑤1 , … , 𝑤𝐻 
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and assume that the sigmoidal activation function 𝜑(⋅) given by (22) is applied at each layer. 

Let also 𝑦 be the final output of the network, and 𝑥 be the input. Namely, for some given loss 

function 𝐿, due to the derivative chain rule, we obtain  

 𝜕𝐿𝜕ℎ𝑡 = 𝜑′(ℎ𝑡+1)𝑤𝑡+1 𝜕𝐿𝜕ℎ𝑡+1. (54) 

Let us assume that weights 𝑤𝑡  are initialized from the standard normal distribution with 

expected value equal to 1. It holds that 𝜑′(𝑥) = 𝜑(𝑥)(1 − 𝜑(𝑥)), 𝑥 ∈ 𝑅, |𝜑′(𝑥)| < 1 and 

has its supremum equal to 0.5, so that the value of |𝜑′(ℎ𝑡+1)| can not exceed 0.25. Since the 

expectation of 𝑤𝑡+1 is 1, it follows that each weight update will typically cause the value of 𝜕𝐿𝜕ℎ𝑡 to be less than 0.25 𝜕𝐿𝜕ℎ𝑡+1. Therefore, after moving by about 𝑟 layers, this value will 

typically be less than 0.25𝑟 . As a consequence, during back propagation, lower layers will 

receive much smaller updates than the upper layers, which is referred as the vanishing 

gradient problem. Using different activation function with larger gradients helps, but it is a 

tradeoff as the opposite situation is also possible (the gradient explodes in the backward 

direction instead of vanishing). The tanh function given by (23) fares better than the sigmoid 

function because the gradient of 1 is equal to zero, but the gradient saturates rapidly at 

increasingly large absolute values of the argument, making it also “vulnerable” to the 

vanishing gradient problem. In the case of ReLU activation function given by (25), the 

vanishing gradient problem tends to occur less often, as long as most of these units operate 

within the intervals where the gradient is 1. 

4.3. Speech Synthesis by Using DNN 

Statistical parametric speech synthesis based on hidden Markov models has various 

advantages over the concatenative speech synthesis approach [35], such as the flexibility to 

change its voice characteristics [36], small footprint [37], and robustness to lower quality and 

consistency of audio material [38][39]. However, its major limitation is the quality of the 

synthesized speech. One major factor that degrades the quality of the synthesized speech is 

the accuracy of acoustic models. Conventional approaches to statistical parametric speech 
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synthesis typically use context-dependent HMMs clustered using decision trees to represent 

probability densities of speech parameters given a text. Speech parameters are generated 

from the probability densities to maximize their output probabilities, and then a speech 

waveform is reconstructed from the generated parameters. This approach is reasonably 

effective but has several limitations, e.g. decision trees are not efficient in modeling complex 

context dependencies. Firstly, they are incapable of expressing complex context 

dependencies such as XOR, parity or multiplex problems [40]. To represent such cases as 

well, decision trees would be prohibitively large. Secondly, this approach divides the input 

space and uses separate parameters for each region, with each region associated with a 

terminal node of the decision tree. This results in fragmentation of the training data and 

reduction of the amount of the data that can be used in clustering other contexts and 

estimating their distributions [41]. Having a prohibitively large tree and fragmenting training 

data will both lead to overfitting and degrade the quality of the synthesized speech. 

However, decision trees can be replaced by an artificial neural network, which has been 

shown to generalize better. Figure 20 illustrates a speech synthesis framework based on a 

DNN. A given text to be synthesized is first converted to a sequence of input features {𝑥𝑛𝑡 }, 
where 𝑥𝑛𝑡  denotes the n-th input feature at frame t. The input features include binary answers 

to questions about linguistic contexts (e.g. for phoneme identity: “is current phoneme M?”) 

and numeric values (e.g. the number of words in the phrase, the relative position of the 

current frame in the current phoneme, and duration of the current phoneme). Durations of 

phonemes can be obtained by using a separate DNN, or everything can be generated by 

single network. 
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Then the input features are mapped to output features {𝑦𝑚𝑡 } by a trained DNN using 

forward propagation, where 𝑦𝑚𝑡  denotes the m-th output feature at frame t. The output 

features include spectral and excitation parameters and their time derivatives (dynamic 

features). The weights of the DNN can be trained using pairs of input and output features 

extracted from training data. In the same fashion as the HMM-based approach, it is possible 

to generate speech parameters; by setting the predicted output features from the DNN as 

mean vectors and pre-computed variances of output features from all training data as 

covariance matrices, the MLPG algorithm can generate smooth trajectories of speech 

parameter features which satisfy both the statistics of static and dynamic features. Finally, a 

waveform synthesis module outputs a synthesized waveform given the speech parameters. 

Note that in this approach, the text analysis, speech parameter generation, and waveform 

 

Figure 21: DNN-based speech synhtesis framework 
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synthesis modules of the DNN-based system can be shared with the HMM-based one, i.e. 

only the mapping module from context-dependent labels to statistics needs to be replaced. 

The comparison between DNNs and decision trees can be summarized as follows: 

 Decision trees are inefficient to express complicated functions of input features, such as 

XOR, d-bit parity function, or multiplex problems [40]. To represent such cases, decision 

trees would be prohibitively large. On the other hand, each of these problems can be 

compactly represented by DNNs [42]. 

 Decision trees rely on a partition of the input space and using a separate set of parameters 

for each region associated with a terminal node. This results in a reduction of the amount 

of the data per region and poor generalization. Yu et al. showed that “weak” input 

features such as word-level emphasis in reading speech were thrown away while building 

decision trees [43]. DNNs provide better generalization as weights are trained from all 

training data. They also offer the possibility of incorporation of high-dimensional, 

disparate features as inputs. 

 Training a DNN by back-propagation usually requires a much larger amount of 

computation than building decision trees. At the prediction stage, DNNs require a matrix 

multiplication at each layer, while decision trees just need to be traversed from their root 

to terminal nodes using a subset of input features. 

 The induction of decision trees can produce rules that are interpretable by humans, while 

weights induction in a DNN is typically hard or impossible to interpret. 

4.4. Merlin: An Open Source DNN TTS 

In 2016. the Centre for Speech Technology Research, University of Edinburgh (CSTR), 

released its own open source toolkit for development of DNN-based TTS. Since most of the 

work in this thesis is based on that toolkit, it will be described here in more detail. 

Even though there has been an explosion in the use of neural networks for speech 

synthesis, a truly open source toolkit was missing. Such a toolkit would underpin 

reproducible research and allow for more accurate cross-comparisons of competing 

techniques, in very much the same way that the HMM-based Speech Synthesis System 
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(HTS) toolkit [44] has done for HMM-based work. Like HTS, Merlin is not a complete TTS 

system. It provides the core acoustic modeling functions: linguistic feature vectorization, 

acoustic and linguistic feature normalization, neural network acoustic model training, and 

generation. It is written in Python, based on the Theano library, and the team at AlfaNum 

Company and The Faculty of Technical Sciences (AN-FTS) has adapted it to work with both 

CNTK [7] and TensorFlow [6] deep learning frameworks. It comes with documentation for 

the source code and a set of “recipes” for various system configurations. 

Extraction of linguistic features is carried out at the phoneme level. Therefore, linguistic 

features usually contain information on phoneme identity, as well as the phonemic context, 

accent, level of emphasis, proximity to phrase breaks, etc. Merlin does not perform these 

operations on its own, but requires an external front-end module, such as Festival [45] or a 

custom one, such as modules that have been developed at AN-FTS for Serbian and a number 

of kindred South Slavic languages [46]. It is easy to interface to different front-end text 

processors. The front-end output must be formatted as HTS style labels with state-level 

alignment. The toolkit converts such labels into vectors of binary and continuous features for 

neural network input. 

Standard Merlin TTS architecture consists of two neural networks, one for modeling 

phoneme durations and the other one for modeling acoustic parameters of speech. Both of 

them are fed with aforementioned linguistic features and are trained with appropriate outputs 

set as targets (Figure 21). The “duration network” models either phoneme or HMM state 

durations, so these values are set as targets in the training phase. It operates at the phoneme 

level, which means that it produces one set of outputs for each phoneme. 
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“Acoustic network” operates at the frame level (a frame usually being 5 ms), and 

produces vocoder acoustic parameters, subsequently used for speech generation. It also 

accepts linguistic features as inputs, but it in addition to that, it requires additional inputs 

specifying current frame positional information, state and phoneme durations, etc. 

Specifically, the subphone feature set used by Merlin includes the following features: 

 fraction through state (forwards) 

 fraction through state (backwards) 

 length of state in frames 

 state index (counting forwards) 

 state index (counting backwards) 

 length of phone in frames 

 fraction of the phone made up by current state 

 fraction through phone (backwards) 

 fraction through phone (forwards). 

This information is necessary for the network in order to generate smoothly changing 

acoustic parameters, appropriately positioned in time. 

 

Figure 22: Standard Merlin TTS architecture 
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In order to get durations at the state level, as targets during the training, initial alignment 

has to be performed. The frame alignment and state information is obtained from forced 

alignment using HMM-based system with several emitting states per phone. This procedure 

is usually done automatically from scratch (no manual alignment required), by using 

monophone models with up to 8 mixture components, and several rounds of Baum-Welch 

algorithm [47], followed by the application of the HTS alignment tool (HVite). The use of 

monophones for this purpose is known to be suboptimal, but it performs well when there is a 

large amount of training material available. In cases of scarce training material for a new 

target speaker, some changes had to be introduced to this algorithm, which will be discussed 

later. 

Before training a neural network, it is important to normalize features. The toolkit 

supports two normalization methods: min-max, and mean-variance. The min-max 

normalization will normalize features to the range of [0.01 0.99], while the mean-variance 

normalization will normalize features to zero mean and unit variance. By default, the 

linguistic features undergo min-max normalization, while output duration and acoustic 

features undergo mean-variance normalization. 

Initially, the waveform generation module supported two vocoders: STRAIGHT [12] and 

WORLD [13], but the toolkit is easily extensible to other vocoders. For example, the team at 

AN-FTS has recently added support for the WaveRNN vocoder [48]. Standard parameters 

used for speech encoding are: 

 Spectral envelope representation. Usually by (40+) MGCs or (~80) filter banks. 

 Band aperiodicity, with 3-5 coarse aperiodicity parameters in the case or WORLD 

vocoder, or up to 30 band aperiodicity parameters in the case of STRAIGHT vocoder. 

 Pitch and voiced/unvoiced (VUV) estimation. 

As already mentioned, these parameters are usually estimated on a frame level, one frame 

being ~5 ms. In addition to these, static parameters, delta and delta-delta parameters are 

calculated and included in the training procedure. It has been shown that they provide greater 

stability in the synthesized voice after MLPG procedure is applied during synthesis. 
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Merlin includes implementations of several popular neural network models, each of 

which comes with an example “recipe” to demonstrate its use. Similarly as in HTS, separate 

models are used to predict phoneme state durations and vocoder parameters, referred to as 

acoustic features. These models are trained separately and can have different architectures. 

Dense, feedforward neural network is the simplest type of network. It takes linguistic 

features as input and predicts the output through several hidden layers. The input is used to 

predict the output via several layers of hidden units, each of which performs a nonlinear 

function. In the toolkit, sigmoid and hyperbolic tangent activation functions are supported for 

the hidden layers. In a feedforward network, linguistic features are mapped to vocoder 

parameters frame by frame without considering the sequential nature of speech. In contrast, 

RNNs are well suited for sequence-to-sequence mapping. The use of LSTM [28] units is a 

popular way to realize an RNN. In a unidirectional RNN, only contextual information from 

past time instances is taken into account, while bidirectional RNNs (or BLSTMs) can learn 

from information propagated both forwards and backwards in time. Other variants of neural 

networks are also implemented, such as gated recurrent units (GRUs) [49], simplified LSTM 

[50], as well as other variants on LSTMs and GRUs described in [50]. All these basic units 

can be assembled together to create a new architecture by simply changing a configuration 

file, for example: 

[TANH, TANH, TANH, TANH] 

which describes a network consisting of 4 feedforward layers, with tanh activation functions. 

Similarly, a hybrid bidirectional LSTM-based RNN can be specified as: 

[TANH, TANH, TANH, BLSTM] 

in the configuration file. 

There are other hyper-parameters available in Merlin, aimed at tuning the training process: 

 Learning rate, momentum, and scheduling of these values over the course of training. 

 The length of the “warm-up period”, in which momentum and learning rate are somewhat 

lower. 

 Mini-batch size and the number of epochs (for duration and acoustic networks 

separately). 
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 Early stopping criteria. 

 L1 and L2 regularization. 

In the stage of synthesis, state-level durations predicted from the first network are used to 

extract additional features for the second network, which predicts acoustic features required 

by vocoder to produce waveforms. It was found that better results are achieved when 

dynamic acoustic features are used along with the static ones. For this reason, first and 

second derivatives of acoustic features are also used as targets during the training of the 

second network. In the synthesis stage, after those are predicted, they are only used by 

MLPG algorithm [21] in order to slightly correct static acoustic features trajectories. After 

this procedure, recalculated static features are propagated to the vocoder. One should note 

that, in contrast to HMM model, we do not have states here, and consequently we do not 

have per-state variances of the features either. Instead, global variances of all the features 

(static, delta and delta-delta) are used. 

 Improvements in Merlin Made by AN-FTS Team 4.4.1.

As already stated, Merlin was initially developed with a support for Theano [51], which 

is a Python library that allows efficient definition, optimization and evaluation of 

mathematical expressions involving multi-dimensional arrays. Although it was very powerful 

at the time of its introduction, and despite the progress made in recent years, there remain 

some limitations or shortcomings in Theano. Today it has been largely surpassed by some 

newer frameworks, such as TensorFlow [6], CNTK [7] and PyTorch [52]. The AN-FTS team 

made a significant effort to integrate Merlin with CNTK and TensorFlow frameworks and 

thus make it more efficient and flexible. It also allowed the development of the architecture 

described in this thesis, which will be described later. 

Merlin performs phoneme and state alignment of the audio material by relying on 

monophone HMM models. Initial improvement to this approach was described in [53], where 

authors proposed alignment method based on the use of full-context models obtained during 

the training of HMM TTS system and the HMM synthesizer itself. The first step in this 

procedure is synthesizing the sentence which is to be aligned using the HMM synthesizer. It 

also enables assigning each synthesized frame to a corresponding state. The second step is 
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feature extraction from original audio files by using the same speech representation as in the 

training of the HMM system. The final step is to align generated and original frames, which 

is performed by using the Viterbi search. This method outperformed Merlin’s default version, 

but it also struggled when the amount of the data for a new speaker was extremely small. In 

those cases, we first had to perform MLLR adaptation of HTS models to the new speaker, by 

preserving the already established set of states and context dependency tree. This led not only 

to better alignment but also accelerated the process several times. 

4.5. Lexical Features Used in Proposed TTS Models 

In Section 2.2 we already mentioned front-end as a part of TTS system which accepts raw 

text and coverts it into a stream of data which is sufficient for back-end to create natural 

sounding speech. In order to achieve that, front-end usually has to perform the following 

tasks: 

Text cleaning: Get rid of items (HTML mark-up, etc.) that are not to be synthesized. It’s 
often language-independent. 

Text normalization: Transforms items such as dates, time, numbers, currency, phone 

numbers, addresses, and abbreviations into normal orthographic form. 

Examples: 

 Dr. King Dr. becomes Doctor King Drive 

 1 oz. becomes one ounce 

 2 oz. becomes two ounces 

Grapheme-to-Phoneme conversion (phonetization): Transforms a (normalized) 

orthographic string into the “phones” of the language: 

The brown fox -> DH AX B R AW N F AO K S 

Syllabification and lexical stress prediction: Divides a word’s phonetic representation 

into syllables, and marks lexical stress: 
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Speech Synthesis -> S P IY(1) CH || S IH(1) N | TH AX(0) | S IX(0) S 

Part-of-Speech (POS) tagging: 

She came to record the record -> 

She(PRN) came(VB) to record(VB) the(DET) record(NOUN) 

Syntactical analysis: 

[NP The brown fox] [VP jumped] [PP over] [NP the lazy dog.] 

Semantic analysis such as named-entity recognition (is it a person? a place? An 

organization? a quantity? etc.): 

Jim bought 300 shares of Acme Corp. in 2006. -> Jim(PERSON) bought 

300(QUANTITY) shares of Acme Corp.(ORGANIZATION) in 2006(DATE) 

Generating prosodic tags: These provide the most explicit information about the 

prosody on syllable, word and sentence level. Prosodic tags can describe emphasis level of 

certain syllables, pitch movement, word and phrase breaks, elongations and more. If prosodic 

tags are provided by front-end, it usually makes POS, syntactic and semantic information 

obsolete for back-end. Actually, front-end usually relies on some of these in order to predict 

prosodic tags. 

Lexical features used by our back-end consist of: 

 Phone identity and identity of neighboring phones (±1 and ±2 context). 

 Position of lexical stress. 

 Phone position related to syllable/foot/word/phrase boundary. 

 Word position related to phrase boundary. 

 Number of phones in syllable/foot/word. 

 Number of words in phrase/utterance. 

 Language specific prosodic tags. 

For Serbian and kindred languages the following prosodic tags are used: 
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 Vowel accent. For stressed vowels there are four accent types. Unstressed vowels can 

have post-tonic length or not. 

 Four types of phrase breaks: weak, medium, strong and sentence end break. 

 Presence of positive or negative emphasis (on a word level). 

 Phone position related to all these tags. 

For English language the following is used: 

 A subset of most relevant standard ToBI tags, including pitch accents, break and 

boundary tone indices, as described in [54]. 

 Emphasis (E+) tag, which marks extra emphasized words. 

 Compressed pitch (CF0) tag, which marks deemphasized words. 

 Phone position related to all these tags. 

Lexical features are provided in the form of binary questions (actually, answers to those 

questions), so they could be used by classification trees used in HMM-TTS. For example, 

answer to the question “is current phoneme P” would be a single (binary) lexical feature. For 

the same reason, some of the questions are combined into so-called complex questions in the 

form of logical expressions, if that combination seemed important for classification. For 

example, question 

{name='is_silence_R', def='is_R AND is_left_phoneme_silence'} 

returns true only if current phoneme is “R” and it is the first phoneme after silence. Phoneme 

“R” exhibits different acoustic features in this case, which is why it was singled out. Of 

course, simple questions could also resolve this and reach the same conclusion, but it would 

require more branching and more final nodes in classification tree, which would in turn 

require more data to be available for the process to be successful. Note that each question is 

given a name, which provides the possibility of creating even more complex questions. 

Complex questions were not used in the case od DNN TTS, because DNN transforms 

lexical to acoustic features in a different way (see Section 4.3), and does not really need this 

type of manual augmentation of the features. DNN could also accept non-binary questions 
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(e.g. “number of phonemes from the eprevious break”), but in order to keep the same tools in 

use for both HMM and DNN case, the same features were used for DNN. 

It is also noteworthy that our lexical features provide quite wide contextual information 

for every phoneme in the utterance, which is necessary for HMM, but also helpful for DNN 

model. If only local information was provided (only for the current phone), HMM would 

generate quite poor output, because no context would be taken into account. DNN could 

overcome this problem by utilizing convolutional or bidirectional recurrent architecture, but 

because of the presence of wide context, feed-forward network also yields decent results. 

4.6. Comparison of HMM and DNN Based Speech Synthesis 

As mentioned earlier, for a long time HMM-based synthesis represented the state of the 

art in parametric speech synthesis. DNN approach seems to promise a change in this 

paradigm, owing to the improvements in mapping lexical to acoustic features. 

In order to compare parametric approaches for speech synthesis in terms of overall 

quality a set of experiments was performed in [46]. HMM system was based on parameters 

extracted by WORLD vocoder – 40 MGCs representing spectral envelope, logarithm of 

fundamental frequency and 2 band aperiodicity parameters were used (see Section 2.2.2). 

Five-state, left-to-right, no-skip hidden semi-Markov models (HSMMs) were used. The 

logarithm of f0 and band aperiodicity parameters were modeled using multi-space probability 

distribution (MSD). The number of lexical questions used for context-clustering was 617 (see 

Section 4.5) and default values of 1 for parameters controlling tree size were used (Minimum 

description length (MDL) criterion was used). For DNN system, the same vocoder, acoustic 

parameters and database were used. For the DNN architecture the one with best objective 

measures was chosen – 4 tangent hyperbolic feed-forward hidden layers with 512 units per 

layer. Both systems were trained on the same database consisting of 3 hours of speech (the 

best DNN objective measures are obtained with this architecture and database). In order to 

objectively compare HMM and DNN synthesis, the trajectories of generated acoustic 

parameters were compared with the trajectories of parameters extracted from the original 

recordings. The trajectories of several lowest MGC coefficients were found to be almost the 
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same for both DNN and HMM, and to follow the original trajectory almost perfectly. 

Significant differences between HMM and DNN trajectories, as well as differences from the 

original utterance, start to occur on the 6th MGC coefficient (Figure 22) and differ from the 

original one to a greater extent. Nonetheless, it can be seen that the DNN trajectory follows 

the original one much better than the HMM trajectory, and that there are no significant 

deviations. For higher coefficients, the differences between HMM and DNN are more 

emphasized and deviations from the original one increase. In other words, neither DNN nor 

HMM are able to accurately predict spectral details. All three trajectories (HMM, DNN and 

original) of fundamental frequency are more similar among themselves than the trajectories 

of MGC coefficients (Figure 23). The DNN trajectory is, again, a better match to the original 

than the HMM trajectory. 

 

 

Figure 23: Trajectory of the 6th MGC coefficient 
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Furthermore, in Figure 23, it can be clearly seen that DNN is a better predictor of whether 

a frame should be voiced or not. 

Subjective evaluation of the quality of synthesized speech for HMM and DNN approach 

was carried out by listening tests. Participants were 40 students, native speakers, without 

expert knowledge of speech technology. In each test there were 3 audio files, each containing 

the same 4 unrelated utterances. The first file is generated by the HMM model, the second by 

the DNN model and the last one represents original recordings (natural speech). More details 

about the test conditions can be found in [46]. Figure 24 presents average grades for two 

main features of synthesized speech – intelligibility and naturalness. DNN was found to 

perform better than HMM as regards both intelligibility and naturalness by almost half of a 

grade, while it lags behind original recordings for just 0.25 as regards intelligibility and 0.43 

as regards naturalness. The overall average grade, calculated by averaging the grades for 

naturalness, intelligibility and the overall impression, for original recording is 4.7, for DNN 

is 4.3 and for HMM is 3.8. 

 

Figure 24: Trajectory of the fundamental frequency 
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4.7. Speaker Adaptation in DNN Speech Synthesis 

To harness quality improvements achieved over HMM based speech synthesis, a variety 

of speaker adaptation techniques have been proposed for DNN-based acoustic models. Wu et 

al. [55] proposed speaker adaptation using i-vectors as input, or by adapting hidden unit 

contributions (LHUC [56]), or by applying output transforms defined by GMMs, or 

combinations of these. Fan, et al. [57] assumed that the output layer in the DNN captures 

most speaker differences, and considered estimating speaker-dependent output layers using 

multi-speaker data, while keeping the hidden network layers shared across all speakers. This 

also allowed the model to be adapted to new speakers by only updating the regression layer 

[57]. However, their experiments only used four different speakers, with a relatively large 

amount of data (one hour) from each. There have also been attempts to enable control of 

DNNs similar to multiple regression HMMs. In [58], two-dimensional per-sentence control-

vector inputs to a DNN synthesizer were learned in an unsupervised fashion from a corpus of 

expressive speech. It was found that one direction in the (unlabeled) control-vector space had 

a consistent and interpretable influence on the generated speech, but the orthogonal direction 

did not. In [59], authors trained a system on 135 speakers and used “discriminant condition 

 

Figure 25: Comparison of intelligibility and naturalness of synthesized and natural 

speech, when using HMM and DNN approaches 
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codes” to map initial one-hot vector to speaker space. In the adaptation phase they used back 

propagation algorithm to update the speaker codes and minimize the mean square prediction 

error over a small amount of data uttered by the target speaker. They obtained promising 

results by using only a small amount of adaptation data. A DNN architecture with additional 

speaker-dependent inputs was proposed in [60], and this approach was further extended by 

supplementing the input information by speaker gender and age [59]. To enable the network 

to reproduce the voice of a particular speaker in a style that is absent from the train ing corpus 

(which is referred to as emotion or style transplantation), the research presented in [61] 

proposed a network architecture which explicitly separates speaker and speech style 

contributions, while the one presented in [62] built on the multi-speaker DNN with shared 

hidden layers proposed in [57], by extending it with a single style-dependent input and 

introducing an additional bottleneck layer. Other lines of research, such as the one presented 

in [63], focused on the development of methods for adaptation of a multi-style single-speaker 

DNN to a new speaker’s voice. In one way or another, all these approaches address the 

practical impossibility of recording and processing a new training speech corpus for each 

new speaker/style combination for which the need may arise. 

In this thesis we present two methods for efficient creation of new TTS voices, based on 

relatively small amount of adaptation data. In Section 5 we describe a method which initially 

trains DNN-based TTS on a relatively large amount of training material (3+ hours) and uses 

that model as a starting point for adaptation. This means that new model is not trained on a 

randomly initialized network (weights and biases), but on an already pretrained one, which 

results in much better performance (higher quality of synthesized speech). 

Second approach, described in Section 6, proposes creating initial multi-speaker model 

and corresponding speaker embedding space. During adaptation, two phases are performed. 

In the first phase optimal embedding for the new speaker is found, with the idea of 

generating speech that already resembles target speaker, so only minimal changes to the 

DNN are required in the second phase. In the second phase, the new embedding is fixed, and 

the rest of the DNN is adapted in the same way as in the first approach. This two-phase 

approach yielded even better results and can generate voices with the amount of material as 

small as 30 seconds. 
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5. Adaptation from Source to Target Speaker 

It is very important to reduce the quantity of target speaker data needed for producing 

high quality synthetic speech in target speaker’s voice. In this section, a simple but very 

efficient method for creating a new DNN-based TTS voice with a small amount of data, 

developed and published in [64], is presented. The idea is to use data that correspond to 

target speaker and to retrain DNN already trained in TTS task on source speaker data. Thus, 

we start re-training with initial values of network parameters of pretrained network, instead 

of randomly initialized. This approach reduces the quantity of target speaker data needed for 

producing high quality synthetic speech in target speaker’s voice. 

5.1. DNN adaptation 

The method deals with the generation of natural sounding speech signals from text that 

has already been linguistically processed. It is thus assumed that all the necessary phonetic 

and prosodic information is known at the time of synthesis, and the problems of natural 

linguistic processing required to recover this information from text are abstracted away. 

Besides lexical features related to prosody (such as lexical stress), we also use explicit 

features related to specific choices of prosodic events (pitch accents, phrase breaks and the 

corresponding phrase accents and boundary tones, see Section 4.5) that the speaker makes 

when forming the prosodic plan of the utterance.  

Speech is obtained by linguistically pre-processing the text and then using the improved 

Merlin toolkit (Section 4.4.1) for the final wave form generation by using the WORLD 

vocoder [13]. In the training phase, each frame of speech is parameterized into 40 mel-

generalized cepstral coefficients, logarithm of f0, band aperiodicity parameter, as well as a 

binary feature which indicates frame voicing (see Section 2.2.2), where the 5 ms frame shift 

is used. At synthesis time, the values of these parameters are predicted for new, usually 

previously unseen phonetic and prosodic contexts. After that, predicted features for certain 

frame are converted to speech by using vocoder.  As network is not constrained to produce 



Darko Pekar   Doctoral thesis 

70 

smooth trajectories of output features, for modeling of speech dynamics, for all features 

except voicing, corresponding dynamic features (first and second derivatives) are 

additionally supplied. Thus, there are altogether 127 acoustic features for each frame so that 

the static output features are smoothed taking into account the dynamic output features using 

MLPG algorithm (see Section 3). The prediction of acoustic features from which speech is 

generated is divided into two stages, and performed by two DNNs trained simultaneously. 

First network predicts the durations of phonetic segments, i.e. states (5 states per phoneme 

were used) from linguistic features extracted from text. Second network uses the information 

related to the durations of each phonetic state (in frames) obtained as the prediction result 

from the first network, in order to predict acoustic features. Input for the first network 

contains 554 binary linguistic features (see Section 4.5). Durations obtained from alignment 

procedure are used as target features, in order to train the first network, while for the second 

network, the same input as for the first one is used, with additional 9 features specifying state 

and phone durations as well as frame position inside current state (see Section 4.4). The 

output features of the second network are previously mentioned 127 acoustic features, which 

are extracted by the vocoder from the original recordings and used as target in the training. 

Both networks have 4 hidden layers and 1024 units per layer with the activation function 

used for the input and the first 3 hidden layers set to be hyperbolic tangent given by (23). The 

last hidden layer uses LSTM units (see Section 4.4), while the output layer is linear (no 

activation function). Additional feature normalization is performed for input (normalized to 

the unit interval), as well as output features (normalized so as to have zero mean and unit 

variance). The objective function used is mean square error. 

5.2. Proposed TTS adaptation procedure 

Common approaches to training a DNN based TTS system usually start from a DNN 

model with random values for weights and biases. Starting from such a model, several hours 

of single speaker speech material is typically required to train the network to produce 

intelligible and relatively natural sounding speech, which will resemble the voice of the 

original speaker to significant extent. However, the preparation of annotated speech database 
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of several hours is an expensive and extremely time consuming process. The main idea of 

this approach is to use an existing model trained on a large database of source speaker as the 

initial model for adapting to the target speaker. It thus enables rapid and less expensive TTS 

adaption, since it does not require the existence of an average speaker model as in 

conventional speaker adaptation methods, and at the same time it requires far less training 

data than the amount needed to build a DNN-based TTS voice from scratch. The influence of 

the choice of the starting model on the proposed adaptation method is also a matter for 

investigation. 

The training of DNN used in speech synthesis requires the initial state alignment since 

state-level alignments yield much better results in comparison to phone-level alignment [65]. 

In Merlin toolkit, it is achieved by forced alignment using the monophone models trained on 

the same database on which DNN is trained and it has been shown to be outperformed by the 

method described in Section 4.4.1. The accuracy of this procedure obviously decreases when 

the amount of training material is small. 

5.3. Experimental Results 

In this section, we compare the quality of the proposed model against the baseline model 

in the task of the new TTS voice creation. The model is evaluated on a set of utterances 

(excluded from the training process) that are synthesized on the basis of phonetic and 

prosodic information taken from utterances actually pronounced by target speakers. In all 

presented experiments, available utterances were divided into training, validation and test 

sets. For all experiments, the same test sets were used, consisting of 5 or 10 utterances. In 

each experiment, 10% of utterances were randomly chosen to be used for validation, while 

the rest was used for training.  

For objective evaluation of the results, mean squared error for MGCs (MCD) and band 

aperiodicities error were used, both given in dB, correlation between predicted and original f0 

and durations of phones, the error of frame voicing prediction and root mean squared error 

for f0 (see Section 2.4). For subjective evaluation, two MUSHRA tests [66] were conducted. 

Both of them were performed by 22 subjects in a controlled environment and with good 
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quality headphones. Each subject evaluated a certain number of test utterances by comparing 

them with the reference one (the original recording), where each time one of the test 

sentences was identical to the reference. The utterances were evaluated in terms of overall 

quality (intelligibility and naturalness). Each recording was given a grade from 0 to 100 (with 

one limitation – one of 5 sentences had to be given grade 100). Average grades were 

calculated and t-test was used in order to check for a statistically significant mean value 

differences. 

 Alignment performances 5.3.1.

For a sufficient amount of data, standard forced alignment based on monophones achieves 

satisfactory accuracy. Nevertheless, in the situations when significantly less data is available 

the proposed method (see Section 4.4.1) achieves better results in predicting alignments, 

which is presented in Figure 25. The figure represents the percentage of the phonemes whose 

boundary deviations are below a certain threshold compared to manually set boundaries. 

Also, the influence of alignment method on the objective measures of corresponding TTS 

model is presented in Table 1, where it can be seen that the proposed alignment achieved 

almost the same results as training with conventional forced-alignment when the target 

speaker database contains 10 or 15 minutes of speech, but notably better results when it 

contains just 3 or 5 minutes of material. Thus, in all experiments the initial alignment was 

performed with proposed method, while training procedures starting from randomly 

initialized models used the conventional method. 
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 First set of experiments 5.3.2.

Here, we tend to verify that one could use significantly smaller amount of target speaker 

data if starting from model trained on source speaker data, than if starting from model 

utilizing randomly initialized weights. Namely, baseline models where randomly initialized 

using 5, 10, 15, 30, 60 and 180 minutes of male speaker’s data, respectively. Proposed 

models where built starting from a model previously trained on 3h of female speaker’s data, 

then adapting it to a male speaker using 3, 5, 10 and 15 minutes of target data, respectively. 

As can be seen in Figure 26, all objective measures, with the exception of VUV, show that 

  

Figure 26: Comparison of baseline monophone alignment (dashed grey line) and proposed 

alignment (solid black line) for 3 min (a) and 5 min (b) of speech. 

 

Db Alignment MCD BAP RMSE F0 VUV 
RMSE 
DUR 

3 min 
Monophones 5.39 0.18 23.58 8.53 5.49 

Proposed 5.25 0.17 22.58 7.66 4.90 

5 min 
Monophones 5.18 0.18 23.06 7.80 5.16 

Proposed 5.12 0.17 22.28 7.63 4.87 

10 
min 

Monophones 5.00 0.17 22.62 7.43 5.18 

Proposed 5.02 0.17 22.00 7.46 4.95 

15 
min 

Monophones 4.90 0.16 21.50 7.33 4.81 

Proposed 4.94 0.16 21.17 7.33 4.92 

Table 1: TTS objective measures comparison, depending on the alignment method and the 

amount of material used 
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when starting from the model already trained on source speaker data, 15 minutes of target 

speaker data is sufficient to reach the quality obtained by starting from a randomly initialized 

model and training it with 30 minutes of data (see e.g. MCD in Figure 26 a). Also, starting 

from the trained model, 5 minutes of speech is sufficient to reach or surpass the quality 

obtained when training a randomly initialized model on 15 minutes.  

 

Although 50% less data being needed to achieve the same quality may be considered a 

good result, it is unsatisfactory that 15 minutes of target data is still not enough to convert an 

already trained model into a model able to produce speech of a quality comparable to that of 

a model trained on a 3h database after being randomly initialized.  

 

Figure 27: Objective measures for MCD (a), BAP (b), RMSE for f0 (c) and VUV (d). Black 

line represents the results when the initial model is randomly initialized, while the gray one 

represents the results when the initial model is trained on 3 h of female speaker data. The 

size of the male speaker’s database used for training/adaptation spans from 3 to 180 min. 
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Since the objective measures do not fully reflect subjective perception, additional listening 

tests were performed. Those included 10 sentences where the original recording was used 

together with 4 utterances synthesized by 4 different synthesizers listed in Table 2, randomly 

shuffled. The synthesizers presented in Table 2 represent the subset of all systems shown in 

Figure 26, while the results of listening tests are presented in Figure 27. 

 

It can be seen that 10 minutes of target speaker starting from the model trained on source 

speaker sounds closely to 1 hour of target speaker starting from a randomly initialized model. 

Their average results are close to the results of 3 hours of target speaker (with the 

significance t-test α=0.05). Although it may seem that the average grade of synthesizer 1.4 is 

also close to the others, the t-test shows a statistically significant difference. It can thus be 

concluded that 3 minutes of target speaker provides satisfactory results, but the synthesized 

speech still cannot be expected to sound like speech synthesized by a model trained on a 

relatively big database. 

Synthesizer Starting 
model 

Database Recording 

1.1 Random Male 3h Studio 

1.2 Random Male 1h Studio 

1.3 Female (3h) Male 10min Studio 

1.4 Female (3h) Male 3min Studio 

Table 2: Synthesizers used in the first subjective test, with information about starting model, 

size of training database as well as speaker gender and database recording conditions 
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 Second Set of Experiments 5.3.3.

In the second set of experiments we examine if the initial model has any significant 

influence on overall result of the adaptation procedure. Inter and intra-gender adaptations 

were performed, starting from model trained on 3h database in all cases, and adaptation was 

done with 3, 5 or 10 minutes of target speaker’s data. In Figure 28, objective measures for 

this set of experiments are given. It could be concluded that there is no difference regarding 

the male or female starting models in cases of male or female target speakers. 

 

Figure 28: Grades for synthesizers 1.1 - 1.4 and for natural speech. Boxes are limited with 

25th and 75th percentile values, solid lines in the boxes present the median values, while the 

dashed lines present the mean values. 
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The inter-gender vs. intra-gender adaptations comparison in the form of subjective 

listening tests were also performed, presented in Table 3. The listening test included 10 

sentences, half of them female and half male speakers. For each of the sentences, the original 

recordings and four more produced by synthesizers listed in Table 3 were used, randomly 

shuffled. 

 

 

Figure 29: Objective measures for MCD (a), BAP (b), RMSE for f0 (c) and VUV (d). Black 

line represents cases when the initial model is male, while the gray line represents cases 

when the initial model is female. Solid lines represent cases when the target speaker is male, 

while dashed lines represent cases when the target speaker is female. 

Synthesizer Starting model Database Recording 

2.1 Female (3h) 3 min From YouTube 

2.2 Male (3h) 3 min From YouTube 

2.3 Male (3h) 10 min From YouTube 

2.4 Female (3h) 10 min From YouTube 

Table 3: Synthesizers used in the second subjective test, with information about starting 

model, size of target speaker database used for adaptation and database recording 

conditions 
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The results are presented in Figure 29. It can be seen that when the target speaker was 

female (Figure 29a), adaptation with 10 minutes of target speaker’s data yields better results 

if a male initial model was used instead of female. However, if only 3 minutes of adaptation 

data are used, the results for both male and female initial models are almost the same. The 

t-test shows that with either 10 or 3 minutes of adaptation data, there is no statistically 

significant difference between utterances synthesized with models which were originally 

male or female. On the other hand, when the target speaker was male (Figure 29b), adapt-

ation with just 3 minutes of target speaker’s data, starting from a male initial model achieves 

better results than adaptation with 10 minutes of data, starting from a female initial model. 

The t-tests showed that there is a statistically significant difference when comparing 

utterances synthesized by models which were initially male with those which were initially 

female. It turned out that the model which was initially male, was more appropriate. 

 

It is noteworthy that some listeners pointed out that overall synthesis quality was lower in 

the second set of experiments. This is expected since this database was not recorded in a 

studio environment. The actual influence of target database quality on overall quality of 

synthesized speech is a matter for further research. We can conclude that using the limited 

 

Figure 30: Grades for synthesizers 2.1, 2.2, 2.3 and 2.4 for (a) the female target speaker and 

(b) the male target speaker. Boxes are limited with 25th and 75th percentile values. Solid 

lines in the boxes present the median values, while the dashed lines present the mean values. 
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resources available, the initial model has some, though not significant influence on the 

adaptation. Thus, further research could focus on the case when an average speaker model is 

used as the starting point, as well as the possibility of restricting the adaptation procedure to 

higher NN layers. 
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6. Two-Step Approach to Speaker Adaptation 

This approach proposes a DNN architecture and a two-step adaptation procedure aimed at 

obtaining speaker/style-dependent speech synthesis based on very small quantities of training 

data by the target speaker and in the target speech style, which produces synthesized speech 

of very good quality. All the procedures and models are based on Merlin toolkit, which has 

been significantly upgraded by AN-FTS team as described in 4.4.1. 

6.1. Model Description 

The model is based on a cascade of two independent neural networks – one predicting 

phonetic segment durations, and the other predicting acoustic feature vectors for each frame. 

The principal input to both networks is the vector of 577 linguistic features extracted from 

text, related to the current phone. In the synthesis stage, the output of the duration model is 

used as supplementary input of the acoustic model, augmented with the information on the 

duration of particular HMM states of each phone, which is obtained in the training phase 

from HMM models through the alignment procedure described in [53]. In all experiments 

each of the two networks has 4 hidden layers of size 1024, where the first three are feed-

forward dense layers, while the fourth one is composed of LSTM units. All of them use 

tangent hyperbolic activation function. Stochastic gradient descent was used as optimizer in 

back propagation algorithm, using one utterance as a batch. In other words, back propagation 

occurs after the networks have seen one utterance, regardless of the number of phones (in the 

case of the first network) or frames (in the case of the second one). 

Initially, multi-speaker multi-style (MSMS) model was trained on a number of speakers 

in order to get a good baseline model for adaptation and also to create speaker embedding, 

similarly as in [60]. Embedding is a powerful deep learning technique based on mapping 

discrete (often binary) vectors from a high-dimensional space to continuous vectors in a low-

dimensional space, and which has been used for a variety of ML tasks ranging from text 

tagging [67] to automatic image captioning [68]. In the context of speech synthesis, both 
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speaker and speech style are traditionally represented as one-hot vectors, which can be 

considered an ignorant representation, since the similarity of two voices is not related in any 

way to the distance between corresponding points in the high-dimensional space [69]. The 

architecture and training procedure presented in this thesis overcome this deficiency by 

performing joint embedding of the speaker and style, representing them in a low-dimensional 

space in a more intuitive way, which helps the network to efficiently generalize on unseen 

speech data. To use the available speech data even more economically, the embedding is 

jointly performed not only on speaker and style ID’s, but on cluster ID’s as well, where the 

term “cluster” refers to the portion of a speaker/style dependent speech corpus which is 

consistent in terms of acoustic and prosodic quality. Namely, one of the practical problems in 

obtaining a high quality speech corpus for training, which is rarely mentioned in the 

literature, is maintaining the consistency of the acoustic and prosodic quality of the voice and 

speaking style, especially when the recording is performed in multiple sessions or the speaker 

takes a break within a session. This often results in parts of the corpus being slightly different 

in volume, timbre or even the particular way the speaker has chosen to render a speech style 

(e.g. “happy”). Rather than discarding the parts of a speech corpus that deviate from the 

corpus segment that can be termed as “default”, we have opted for dividing each 

speaker/style-specific speech corpus into consistent clusters. Consequently, instead of 

supplying two non-linguistic inputs to the network (speaker ID and speech style ID), now a 

third input (cluster ID) is added, and these three inputs are jointly represented as a single one-

hot vector, which is converted into an appropriate joint embedding through the training 

procedure. The effects of the division of speech data into clusters have been analyzed in [70], 

and it has been shown to slightly improve the quality of speech synthesis. 

With the idea of improving the multi-speaker model as a starting point for speaker/style 

adaptation, we supplement the inputs of both neural networks (one that predicts durations and 

the other, which predicts acoustic features) with the information about the speaker, speaking 

style and cluster (SSC) in an embedded form, as shown in Figure 30. As previously 

explained, both networks are presented with 577 binary linguistic features (related to US 

English) at their inputs, with the output of the duration network serving as an additional input 

for the network predicting acoustic features. However, in the proposed model the input layer 

of each network is extended with an N-dimensional vector containing the joint embedding of 
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the speaker ID, speaking style ID and cluster ID, all of them originally represented in the 

form of a single one-hot vector of length 67, which is the number of unique SSCs existing in 

the training corpus. In this way it is left to the network to represent a particular SSC in a 

space of lower dimensionality (in our research it was set to N = 15). The idea of representing 

the speaker, the style and the cluster using 3 separate one-hot vectors was discarded since it 

would imply the questionable assumption that every speaker renders a speaking style in a 

similar way. The main advantage of the approach based on embedding is that the network 

itself has the opportunity to establish similarities and differences between particular speakers, 

styles or clusters, and based on this information, it is expected to position particular SSC 

combinations closer or farther from each other in the embedding space. This, in turn, will 

help the main network to generalize more easily, since the distance between two SSCs in the 

embedding space will correspond to the general difference between them. Once trained, the 

network will be able to synthesize speech that corresponds to a particular SSC given the 

corresponding point in the embedding space. Furthermore, given a random point in the 

embedding space, the network will be able to produce a new, previously “unseen” voice. 
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During the initial training of the MSMS model, input to each of the networks were 

linguistic features as well as the one-hot vector representing the speaker, style and cluster 

combination, while the output were corresponding values (durations or acoustic features). By 

doing so the networks themselves build the embeddings for each SSC, and as a result, each 

SSC will be represented by two points in the corresponding embedding spaces – one in the 

embedding of phonetic segment durations and the other in the embedding of acoustic 

features. In both cases the expected outcome is that the closeness of two SSCs in embedding 

spaces will reflect their subjective similarity. The outcome of the initial training is the MSMS 

model, able to provide speech sounding like any SSC seen in the training, provided with the 

correct embeddings in both networks. 

The described architecture and training procedure result in a MSMS TTS synthesis able 

to generate speech of high quality in any speaker/style/cluster combination seen in the 

.  .  ..  .  .Embedding

Input features

Speaker/style/cluster combination

Output features (durations or acoustic parameters)

.  .  .

 
Figure 31: The architecture of the proposed model for the two neural networks that 

predict either phonetic segment durations or acoustic features. 
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training corpus, but can also be easily adapted to a new speaker/style, with a relatively small 

amount of adaptation data. 

6.2. Two-Step Adaptation Procedure 

Presented model which uses trained embedded representations of SSCs can be adapted to 

a new speaker or style using a relatively small amount of new audio data, through a two-

phase procedure. The goal of the first phase is to establish the embedding for the new 

speaker/style, and it starts by random initialization of the weights in the embedding layers of 

both duration and acoustic network. In this stage of the adaptation, only the weights in the 

embedding layers of both networks are updated by SGD procedure while the rest of the 

network is frozen (not updated). After first phase and updated embeddings, the model is 

capable to synthesize speech similar to the target speaker/style to some extent. The 

resemblance of synthesized speech to target speaker and style can be further improved 

through the second phase of the adaptation process, in which the same adaptation data is 

reused, but now the embedding layer is kept constant, while the rest of the parameters in the 

networks are updated by using SGD algorithm. In the following section we describe the 

experiments which demonstrate the ability of the initially trained MSMS model to synthesize 

speech in speaker/style combinations seen during the initial training, but also its ability to 

generate speech in a speaker/style combination not seen in the original training set (even for 

unseen speaker and an unknown style) after the second phase of adaptation. Through these 

experiments we also measure the influence of different factors, such as the perceived 

importance of each phase of the described adaptation process as well as the amount of target 

speaker’s data available for adaptation. 

6.3. Data Augmentation 

Recent advances in deep learning models are largely attributed to the amount and 

diversity of data collected over the past period. Data augmentation is a strategy that allows 

researchers to significantly increase the diversity of available data for model training without 

actually having to collect new data. During augmentation, changes are made to the data 
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(image, sound, text ...) which can be of different scope, provided that the newly generated 

data must look as if they were created in a natural way, i.e. there must be no clear indication 

they are actually augmentations. Although the data obtained in this way are correlated with 

the original data, the augmentation implicitly regularizes the model and improves its ability 

to generalize [71]. As such, augmenting data as an approach to overcoming data sparsity has 

been used since the earliest days of ML [72]. 

In image processing, there are augmentation techniques such as: rotation, resizing, 

flipping, applying various filters, adding noise, or combinations of several techniques. 

Examples of these augmentations in the case of digit recognition can be seen in Figure 31. 

 

Audio data can also be augmented in a variety of ways, several of which are listed here: 

 Adding noise. Noise can be added either by generating a random signal of a certain 

distribution or an audio database of variety of noises can be acquired from different 

sources, and then randomly added to the original recordings. 

 Time shifting. A shift of just a few ms will lead to certain changes in the appearance of 

the parameters for each frame, which will make the models more robust. 

 Speed change. This technique can be implemented either at the signal level, leading to a 

change in f0 and the spectral envelope, or in the parametric domain, where it can be 

performed independently from other modifications. 

 Change in f0. The technique of modifying fundamental frequency, which can be 

implemented at the signal level, but is mostly done in the parametric domain. 

 Spectral envelope modifications. After the parameters are estimated by a vocoder, it is 

very easy to make independent changes over different parameters. A very important 

 

Figure 32: Image augmentation example 
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parameter (i.e. a set of parameters, as described in 2.2.2) is also the spectral envelope. 

Scaling gives different colors to voices, and after a significant change (combined with 

changes in f0) there may even be a change in the perceived gender of the original speaker. 

Filtering a spectrum over the frequency scale can either make formants more prominent 

(band-pass filter, usually applied in order to reduce oversmoothing) or make spectral 

envelope more flat (low-pass filter). 

 Frequency masking. In this procedure, certain frequency channels are masked [f1, f1 + 

f2). f2 is selected from the uniform distribution from 0 to the frequency masking 

parameter F, and f1 is selected from the range (0, v-f2) where v is the number of frequency 

channels [73]. 

 Time masking. t consecutive time steps [t0, t0 + t) are masked. t is chosen from a uniform 

distribution from 0 to the time mask parameter T, and t0 is chosen from [0, τ − t). 

Virtually all the above techniques are used in speech recognition, even those which lead 

to noticeable speech degradation, because they contribute to the robustness of the final 

acoustic model. Speech synthesis usually does not use techniques which significantly 

degrade the recording, such as adding noise, time and frequency masking, unless a specific 

application requires it. Other techniques are used, which, if applied to a small extent, lead to 

the generation of speech that can be attributed to the same speaker, while a significant change 

in some of the parameters leads to the creation of a new speaker. Both variants have their 

benefits and are widely used in speech synthesis systems. 

Changes in f0, spectral envelope, and speed were used in this research. Speech 

parameterization consisted of extraction of the spectral envelope using a WORLD vocoder 

[13] and f0 curve estimated by an algorithm based on autocorrelation [74]. Scaling of the 

spectral envelope, the f0 curve, and the speed was chosen so that the speech, which the 

WORLD vocoder resynthesized, sounded like a new, yet natural speaker. Examples of three 

such augmentations are shown in Figure 32. 
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6.4. Data 

The data used to build the MSMS TTS model, as well as other models used in some of 

the experiments, consists of 8 hours and 38 minutes of speech from 6 American English 

speakers, where the quantity of speech data per speaker varied in sizes, speech styles and also 

acoustic quality, as shown in  

Table 4. All speech data was sampled at a rate of 22.05 kHz and 16 bits per sample were 

used. 

 

 
(a) (b) 

 
(c) (d) 

Figure 33: Spectrograms of augmented speech: (a) original; (b) post-filtered spectral 

envelope (band-pass); (c) changed f0; (d) down-scaled spectral envelope 
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As can be seen, there are two main speakers, M1 and F1, whose data include the largest 

number of speech styles, and whose influence to the neutral style is the greatest. Four clusters 

were identified (manually) in the neutral segments of each of these two speakers. This was 

easy to detect since clusters usually contain contiguous utterances and the boundaries 

between clusters correspond to breaks within or between sessions. In order to avoid the bias 

towards speakers M1 and F1, and also to expand the base for the MSMS model, the available 

speech data was artificially augmented by introducing changes in speed, f0 and spectral 

envelope into the utterances of all 6 original speakers, as described in 6.3. Using different 

portions of the original speakers’ data, as well as additional utterances from some of them, 10 

new artificial speakers were created, resulting in the total number of speakers being 16 (with 

67 unique SSC combinations), and the total duration of the data available to 21 hours and 50 

minutes. In 7 of the 10 artificially created speakers augmentation resulted in audible gender 

Speaker Gender Quality Style 
Time 
[hh:mm:ss] 

Total time 

per speaker 
[hh:mm:ss] 

F1 female studio 

Neutral 01:30:03 

02:32:59 
Apologetic 00:17:42 

Happy 00:21:24 

Promotional 00:23:50 

M1 male studio 

Neutral 01:38:07 

03:34:11 

Angry 00:16:55 

Apologetic 00:15:58 

Happy 00:26:13 

Promotional 00:28:04 

Stern 00:28:54 

F2 female studio 
Friendly 00:31:42 

01:00:25 
Promotional 00:28:43 

M2 male studio 
Friendly 00:18:26 

00:39:46 
Promotional 00:21:20 

F3 female 
source: 
YouTube 

Neutral 00:26:46 00:26:46 

M3 male 
source: 
YouTube 

Neutral 00:24:17 00:24:17 

Total time [hh:mm:ss]: 08:38:24 

 
Table 4: Speech corpora used for construction of MSMS model  

(“time” refers to the time left when leading and trailing silences are trimmed  
and silent phonetic segments, such as mid-phrase silences, excluded) 
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switch, but a approximate balance between genders in the resulting speech corpus was 

preserved. The speech style ID was copied from the original corpus, while slightly different 

modifications of the original data were performed in order to generate different clusters of 

the neutral speech style. The speaker/style combinations created by augmenting speakers 

with less available data (F2, M2, F3 and M3) were generated by modifying clips that already 

exist in the original speech corpus. Speaker/style combinations created from F1 and M1 were 

generated by modifying both utterances from the original F1 and M1 corpora, and some 

previously unseen utterances, because the availability of speech data for these speakers is 

greater. The whole speech database was phonetically and prosodically annotated, with 

prosodic annotation following the extended ToBI set of conventions, as described in Section 

4.5. 

In the process of evaluating the ability of the system to adapt to a new speaker and style, 

two relatively small speech databases were used, one from a female speaker (F4) and the 

other from a male speaker (M4). Both these database were not present in the training of the 

MSMS model. The speech style in these two data sets can be named as neutral, although it 

should be noted that this information it actually not used. 

6.5. Baseline Methods 

In our experiments we compared performance of the proposed two-step adaptation 

procedure to two baseline methods. The first method used as a baseline (Baseline 1), 

presented in [64], represents one of the simplest methods for creating a voice of new speaker 

with a very small amount of speech training data. Its main idea is to create a speaker-

dependent text-to-speech (SD TTS) model, initially trained on a large speech corpus from 

one speaker, and then adapt it to another speaker with a very small quantity of training data. 

The adaptation process differs from the standard training of SD TTS [75][46] only in the 

starting point, i.e. it starts from an already trained model instead of a randomly initialized 

one, and it proceeds in an identical way. It was shown that such an approach, using only 10 

minutes of training data from the target speaker, produces results that are comparable to the 

results obtained from a regular SD TTS trained on a 3-hour speech corpus. Due to the limited 
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availability of training data, the research presented in [64] analyzed 2 SD TTS models: one 

based on a speech corpus from the male speaker M1 and the other based on a speech corpus 

from the female speaker F1, both in American English, which were identical to the ones used 

in this research. Since both corpora included multiple speech styles, the inputs to SD TTS 

models were extended with the information related to the style and cluster, both in the form 

of a one-hot vector, as was previously done in [76]. For the purpose of this research, speech 

data from the same two speakers, M1 and F1, was used to obtain two speaker-dependent TTS 

models that served as a basis for adaptation to the speakers M4 and F4, respectively. 

The second method used as a baseline (Baseline 2) represents a slight modification of the 

approach described in detail in [76], where it is referred to as “separate output layer”. This 

approach builds upon the idea presented in [57], which proposes an architecture based on 

shared hidden layers and multiple speaker-dependent output layers. In the second baseline 

approach the shared part of the network is assumed to represent a global linguistic feature 

transformation, while separate output layers are used for different speaker/style 

combinations. In the adaptation phase only a specific speaker/style-dependent output layer is 

adapted using the limited speaker/style-specific data, following the adaptation procedure 

proposed in [57]. The modification with respect to [76] lies in the introduction of an 

additional speaker/style-dependent hidden layer into the network structure. Similarly to the 

case of baseline model 1, the inputs are extended with the style and cluster codes in the form 

of one-hot vectors, but in this case all of the speech data listed in the Table 4. was used for 

training the multi-speaker/multi-style model that was subsequently adapted to M4 and F4. 

It should be noted here that we did not conduct experiments in which the entire model 

was trained from scratch (randomly initialized network) on a very small amount of data (10 

minutes or less). These experiments were tried even before the described baseline methods, 

but the results obtained were hardly intelligible, let alone natural sounding. Therefore, we 

have dismissed that approach and decided not to include it in our comparison. 
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6.6. Experiments 

In this thesis the proposed model is trained on the same speech data as the two baseline 

models described in previous section. However, while the MS models (proposed model and 

baseline 2) were trained on the entire database presented in Table 4, the baseline model 1 was 

trained only on M1 and F1 in order to create two speaker-dependent models (not multi-

speaker models). To test the ability of all three models to adapt to a new speaker and style, 

for adaptation purposes speech data from speakers M4 and F4 were used. Since the specific 

aim of this thesis is to explore the case when the amount of target speech data is very limited, 

the adaptation experiments were conducted with speech databases containing from 30 

seconds to 10 minutes of target speech data. The initial speaker-dependent model of the same 

gender was used in each case for the adaptation of the baseline model 1. Since the baseline 2 

model actually contains 16 different speakers (6 genuine and 10 obtained by augmentation), 

those used as initial points for adaptation in this thesis were the ones that correspond to M1 

or F1 (the one that matches the gender of the target speaker). The dimension of the 

embedding was set to 15, although it was observed that it is of surprisingly little importance 

to the quality of the output (values ranging from 4 to 40 were tried). The ability of the 

proposed model to synthesize speech in the voice of the intended speaker/style was evaluated 

by both objective and subjective measures. Objective measures are represented through the 

distance between corresponding acoustic features of the original and synthetic speech, while 

subjective evaluation consists of a series of listening tests. Both measures are specifically 

aimed at establishing the importance of the position of the SSC points in the two embedding 

spaces, the relevance of each phase in the adaptation process, as well as the influence of 

training data. Speech samples used for both objective and subjective evaluation are available 

at the URL: www.alfanum.ftn.uns.ac.rs/embedding. 

 Objective Evaluation 6.6.1.

In order to get objective evaluation of the three models, the values of state durations and 

acoustic parameters were compared between synthesized speech and original target speech 

data in case both phases of the adaptation process were performed. For evaluation we used 

target speech data which was not present in any of the training phases. The acoustic 
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parameters included in objective measures were the root mean square error and correlation 

for f0, RMSE and correlation for the duration of phones as well as mel cepstral distance as 

explained in Section 2.4. The results are presented in Figure 33. 
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(a)                                                               (b) 

      
(c)                                                                 (d) 

 

 
(e) 

 
Figure 34: The results of the objective evaluation of the proposed model against the two 

baseline models: (a) correlation of f0; (b) correlation of phone durations; (c) RMSE of f0; 

(d) RMSE of phone durations; (e) MCD. 
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It can be seen that the correlation between the predicted f0 contour and the ground truth 

(f0 in the original clip), as well as the correlation between the predicted phone durations and 

the ground truth, is quite high for all three models, but that the proposed model consistently 

outperforms the other two, regardless of the amount of speech used for adaptation. It can also 

be seen that the differences are slightly higher in case when less target speech data was used. 

The baseline model 1 seems to degrade the most with the decrease of the quantity of 

adaptation data, although the differences are not substantial in this case either. The 

differences between the models are more significant in case of RMSE of f0 and phone 

durations. The proposed model performs better the two baseline models in most cases, and 

the baseline model 1 appears to be least successful. The differences between the models are 

again more pronounced in case of the smaller adaptation set.  

As for MCD, the differences among the models are almost negligible, but the proposed 

model consistently outperforms the others, and the baseline model 1 performs the worst. 

 Subjective Evaluation 6.6.2.

A number of listening tests was performed in order to compare the results of the objective 

evaluation with the subjective perception  and to establish the influence of various factors to 

the quality of synthesized speech after adaptation of the initial model to the target data. 

 Experiment 1 6.6.3.

The aim of this experiment was to evaluate how successful the proposed model is in 

generating speech that is intended to be similar to a particular speaker and speaking style in 

case only a small quantity of target speech data is available. It also examines the influence of 

the relationship between the position of the SSC points in embedding spaces and the degree 

to which the synthesized speech resembles to the target speaker and style. Furthermore, the 

experiment also proves the importance of the second phase of the adaptation process, which 

has been shown to increase the similarity of the synthesized speech to the target speaker/style 

combination. The experiment explores only the proposed model and does not compare it to 

the baseline models. 
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The experiment was set up as a MUSHRA listening test, and conducted among 26 

listeners. Each listener was presented with 10 tasks, including 5 sentences in the voices of 2 

speakers (M4 or F4). In each task, the listener was presented with the following 5 versions of 

the same utterance, in a randomized order:    

 Hidden reference recording (original recording of the source speaker);  

 Synthesis after just the first adaptation phase has been performed on the initial model; 

 Synthesis after the first adaptation phase has been performed and then the obtained 

embedding was modified by 10%; 

 Synthesis after the first adaptation phase has been performed and then the obtained 

embedding was modified by 20%; 

 Synthesis after both phases of the adaptation procedure have been performed on the 

initial model without modifying the embedding obtained in the first phase. 

In this experiment adaptation was performed using 10 minutes of target speech data. In 

cases the obtained embedding was modified, the modification was performed for each of the 

15 dimensions of the embedding, in the following way. Firstly, the reference range for each 

dimension was calculated as the sample standard deviation of its 67 points (one for each 

SSC) multiplied by 6. After that the actual coordinate was modified by ±10% or ±20% of the 

calculated reference range. The reference recording was explicitly marked as such (usual 

practice in MUSHRA tests), but it was also hidden among the 5 utterances chosen for 

grading. The listeners were asked to rate speaker similarity between the reference and each of 

the 5 utterances on a scale of 0 to 100. Since there is a tendency of giving lower grades to 

less appealing voices, which might blur the influence of the factors that were considered as 

relevant, the grade given to the hidden reference was scaled up to the maximum grade, and 

the rest of the grades were scaled accordingly. Furthermore, in order to make comparison of 

the results across all experiments more simple, all grades are presented as rescaled to the 

interval 0-5.  

The results, shown in Figure 34, suggest that the first phase of the adaptation alone is 

sufficient for the model to be capable of producing speech that roughly resembles the target 

speaker. It can also be seen that the position of the embedding generated through initial 

model training is significant, since if it is modified, resemblance to the target speaker is 
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partially lost (variation of each coordinate by 10% leads to a relatively small change, but an 

increase to 20% of the initial value reduces the mean score from 2.5 to 1.2). This experiment 

has also demonstrated the relevance of the second phase, since the grade achieved after both 

adaptation phases is substantially higher than any grade seen after performing only the first 

phase of adaptation. A substantial margin still exists between the original and the synthesized 

speech, and one explanation could be that it is because of the relatively poor coverage of the 

embedding space by the SSCs present in the training database. If more diverse data was used 

for training the initial MSMS model, it could be expected that the synthesis after adaptation 

to a new speaker and style would exhibit less audible artefacts, and would be perceived as 

more similar to the original speaker by the listeners. 

 

 Experiment 2 6.6.4.

The purpose of this experiment was to compare the quality of synthesized speech by the 

proposed model with the two baseline models after adaptation, not taking into account 

speaker similarity with the reference speaker, through a MUSHRA listening test with 24 

subjects. In each of the 20 tasks, the subjects were informed that the reference audio clip is a 

 

Figure 35: Subjective assessment of speaker similarity to the reference recording, 

rescaled to 5.00: (a) reference recording; (b) synthesis after the first phase of adaptation 

of the initial model; (c) synthesis after the first phase of adaptation and thus obtained 

embedding modified by 10%; (d) synthesis after the first phase of adaptation of the initial 

model and thus obtained embedding modified by 20%; (e) synthesis after both phases of 

adaptation. 
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recording of natural speech, and they were asked to grade the quality (intelligibility and 

naturalness) not taking into account speaker similarity, the following modifications of the 

same utterance:  

 Hidden reference recording (original recording of the source speaker);  

 Synthesis by the baseline model 1 after adaptation; 

 Synthesis by the baseline model 2 after adaptation; 

 Synthesis by the proposed model after the embedding obtained in the initial training is 

reset to 0 and only the second phase of adaptation is carried out; 

 Synthesis by the proposed model after both phases of adaptation. 

All utterances appeared in a randomized order. 

Among these 20 tasks, 10 of them had models adapted by using 10 minutes , and the 

remaining 10 by using only 30 seconds of target speech data. In each of these two instances 

there were 5 utterances by each of the 2 speakers (M4 and F4).  

The results (Figure 35) show that regardless of the quantity of target speech used for 

adaptation of the model, baseline model 2 was considered worst by the subjects, while the 

two versions of the proposed model received the highest grades. It should be noted that, 

although average grades for baseline model 1 and the proposed model do not differ that much 

in case when 10 minutes of adaptation data were used, the proposed model gets significantly 

higher grades than the baseline model 1 in case adaptation is performed using only 30 

seconds of target speech. That is to say, the proposed model seems to be more robust to small 

amount of adaptation data compared to any of the baseline models. Also worth mentioning is 

that, if the initial embedding is reset to 0 and we perform only the second phase of 

adaptation, it does not significantly degrade the quality of synthesis. However, it is still 

slightly higher if the initial embedding adapted to the new speaker is used. 
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 Experiment 3 6.6.5.

Experiment 3 was performed in the same way as Experiment 2 regarding the versions of 

synthesized speech that were presented to the subjects in each task, but this time the subjects 

were asked to evaluate similarity between speakers instead of the general quality. The 

experiment involved 10 tasks (5 for each of the speakers, M4 and F4), and 20 subjects 

performed evaluation. As Experiment 2 has shown that the general quality of synthesized 

speech is quite different for the three models in case of adaptation on very small amount of 

data, adaptation was conducted only on 10-minute target speaker datasets, to prevent the 

subjects from being distracted by this difference so that they could focus only on speaker 

similarity. As shown in Figure 36, the proposed model performs better than both baseline 

models regarding production of synthesized speech in a voice that resembles the original 

speaker, even when the embedding is reset to 0 and only the second phase of adaptation is 

performed. 

 

Figure 36: Comparison of the quality of synthesis obtained in different conditions, 

rescaled to 5.00: (a) reference recording; (b) synthesis by the baseline model 1 after 

adaptation; (c) synthesis by the baseline model 2 after adaptation; (d) Synthesis by the 

proposed model after the embedding is reset to 0 and only the second phase of adaptation 

is carried out; (e) synthesis by the proposed model after both phases of adaptation. 
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 Experiment 4 6.6.6.

In order to measure full capability of the proposed model it is necessary to compare it 

with another speaker-dependent baseline model using large quantities of target speaker data 

for training. However, we were unable to perform such an evaluation directly because only a 

small amount of speaker data for the speakers M4 and F4 was available, and the remaining 

speakers were already used for the initial model training. In order to circumvent this 

limitation we conducted experiment by including two types of MUSHRA tasks (10 tasks of 

each type). In both types of tasks, the 32 subjects in the listening test received information 

that the reference utterance is actually a natural recording of speech, and were asked to grade 

the general quality (intelligibility and naturalness) of 3 utterances provided in random order. 

In the tasks of type 1 the following 3 utterances were presented: 

 Hidden reference recording (original recording of M1 or F1); 

 Synthesis by the baseline model 1 trained on all available data for M1 or F1 (see Table 

4), without further adaptation; 

 

Figure 37: Comparison of the speaker similarity obtained in different conditions, rescaled 

to 5.00: (a) reference recording; (b) synthesis by the baseline model 1 after adaptation; 

(c) synthesis by the baseline model 2 after adaptation; (d) Synthesis by the proposed 

model after the embedding is reset to 0 and only the second phase of adaptation is carried 

out; (e) synthesis by the proposed model after both phases of adaptation. 
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 Synthesis by the proposed model using embeddings corresponding to M1 or F1, without 

further adaptation; 

while the tasks of type 2 consisted of the following 3 utterances: 

 Hidden reference recording (original recording of M4 or F4); 

 Synthesis by the proposed model after both phases of adaptation to M4 or F4, using 10 

minutes of target speaker data; 

 Synthesis by the proposed model after both phases of adaptation to M4 or F4, using 30 

seconds of target speaker data. 

In each task the 3 given utterances originated from the same speaker in order to eliminate 

the preference that a subject may have for some of the voices. This is also the reason why we 

separated these two tasks instead of conducting only one. All speakers were equally 

distributed in the experiment, i.e. each of them appeared in 5 tasks. 

 

 

Figure 38: Comparison of the quality of synthesis obtained in different conditions, 

rescaled to 5.00: (a) Synthesis by the baseline model 1 trained on all available data for 

M1 or F1 without further adaptation; (b) Synthesis by the proposed model using 

embeddings corresponding to M1 or F1 without further adaptation; (c) Synthesis by the 

proposed model after both phases of adaptation to 10 minutes of speech data from M4 or 

F4; (d) Synthesis by the proposed model after both phases of adaptation to 30 seconds of 

speech data from M4 or F4. 
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The results of the experiment are shown in Figure 37 (scores rescaled to the interval 0-5). 

Before commenting the results, it is important to mention that although M1 and F1 were not 

in the same tasks as M4 and F4, we can still compare the subjective quality of synthesis 

between models and versions that were not present in the same tasks. Noteworthy, the 

synthesis by the baseline model 1 trained on all available data for M1 or F1 and synthesis by 

the proposed model after two-phase adaptation to M4 or F4, using 10 minutes of speech 

(items (a) and (c) in Figure 37) were graded as similar in quality. This shows that the 

proposed model, given properly trained MSMS model as a starting point, and using as little 

as 10 minutes of adaptation material, is able to reach a quality of synthesis similar to that of a 

standard speaker-dependent model trained on much more speech data (~3.5 hours in case of 

M1 and ~2.5 hours in case of F1). Additionally, synthesized speech generated by the baseline 

model 1 trained on all available data for M1 or F1 (~3.5 and ~2.5 hours respectively) seems 

to be of the equal quality as the synthesis by the proposed model using embedding points 

corresponding to M1 or F1 and no additional adaptation. This means that given quantity of 

training data for a certain speaker can be used as a basis for a multispeaker model based on 

embeddings and to train a single speaker-dependent model, with similar outcomes. As a final 

point, it should be noted that the adaptation of the proposed model using seconds of material 

yielded synthetic speech that was rated as being of lower quality than in case the adaptation 

was performed on 10 minutes of speech. Nevertheless, the difference in scores is only 0.38, 

which is quite small taking into account the difference in the amount of adaptation data. 
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7.  Conclusion 

In this research we deal with the problem of creating high quality synthetic voices when 

only small amount of data is available. The subject has been the focus of many studies for 

decades, because it has numerous uses and potentially significantly reduces the effort for 

creating new voices, by making it much faster and less expensive. After introducing and 

comparing usual approaches to speech synthesis, we also illustrate a number of previous 

attempts to address this problem. Some of them were based on older approaches (e.g. HMM-

TTS), while some more recent ones tried to offer solution by using DNN architecture. 

Two different adaptation approaches were proposed in this thesis. Both are deep neural 

network based speech synthesis models, capable of adaptation to a particular speaker and 

speaking style. The first method initially trains DNN-based TTS on relatively large amount 

of training material (3+ hours) and uses that model as a starting point for adaptation. This 

means that the new model is not trained on a randomly initialized network (weights and 

biases), but on an already pretrained one, which resulted in much better performance (higher 

quality of synthesized speech). Because of the small amount of adaptation material for new 

speaker, we had to devise a new alignment procedure, which outperformed the default one, 

provided in the tool. Both male and female initial models were trained and used as starting 

points for adaptation, and the outcomes compared. No significant difference was observed 

when different starting models were used. Also, different sizes of adaptation material were 

used and quality of the obtained speech was compared. As expected, more material yielded 

better results, but it was shown that adapting even with a relatively small amount of data 

could provide comparable results to models trained from scratch with much more speech 

material. The evaluation was based on objective measures, but also on listening tests. 

The second method is the two step adaptation process in which we first find the optimal 

embedding for the target voice in an iterative way. Before that we have to build a multi-

speaker multi-style model, based on many speakers, during which process the embedding 

space is built. The second step consists of adaptation of the rest of the neural network, by 

optimizing all the weights and biases so the resulting network can produce the speech of the 
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target speaker. Since the output after phase one is already close to the target, the amount of 

changes applied to the network is relatively small. This prevents the network from overfitting 

and enables much better generalization of unseen events. 

The second method has been shown to outperform two other recently proposed 

parametric speaker/style-dependent speech synthesis models, particularly in case the quantity 

of available adaptation data is extremely small. This is achieved owing to the joint 

representation of speaker, speaking style and cluster by their low-dimensional embedding, 

whereby the model is able to establish the similarities or differences among speakers and 

styles, and consequently generalize more accurately. 

The embedding approach opens up a range of interesting possible applications of the 

proposed model in any domain where the possibility of quick and efficient adaptation of 

speech synthesis to a new speaker and/or style is required. 

7.1. Future Work 

A limitation of this research that cannot be disregarded is the relatively small quantity of 

speech data on which it was based. Namely, for the second approach (which yielded the best 

results), only 8 hours and 38 minutes of actual speech from 6 speakers was available for 

training, and a total of 20 minutes was available for adaptation, which is why data 

augmentation had to be applied. Although this is a valid technique aimed at overcoming data 

scarcity, the question remains to what extent a stronger multi-speaker/multi-style basis, 

including a greater number of speakers/styles, would improve the ability of the proposed 

system to produce synthetic speech of high intelligibility, naturalness and similarity to the  

target speaker/style. For that reason, the model will certainly be reinvestigated as soon as a 

significantly greater amount of training data becomes available, and this will also be an 

opportunity to study the influence of data augmentation to the performance of the model. 

Another issue that will be further investigated is the influence of the difference in the 

quantities of available training data related to particular speakers/styles. This research in 

particular may have suffered from two speakers (M1 and F1) being overrepresented in the 
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training data. In the future versions of the proposed model we intend to equalize the influence 

of all speakers/styles on the training process by introducing weight coefficients 

corresponding to their relative contributions. 

As explained in Section 2.2.2, WaveNet is a neural vocoder which produces output 

speech of almost perfect quality. It could be used instead of WORLD vocoder and 

additionally raise the quality of output speech and similarity to the original voice. The 

process would be quite similar to what has been done with current NNs: first train WaveNet 

with speaker embeddings; in the first step of adaptation, estimate the optimal embedding for 

the target speaker; then additionally optimize WaveNet to better represent the target speaker. 

Similar architecture and approach could be applied to style transplantation and polyglot 

TTS. Style transplantation is a process where we make TTS generate sentences in a certain  

voice and style, even though the target speaker never actually produced any utterance in the 

target style. The idea is to transform the embedding point of that speaker in appropriate way, 

so when synthesis is run by using that new “speaker” we get desired style. The process is, of 

course, far from trivial and will require additional research. 

Multilingual or polyglot TTS is a system able to produce synthetic speech in a certain 

voice in several languages even though the original speaker provided speech data in only one 

language. Besides the obvious advantage of being able to provide personalized speech in 

several languages, this approach also offers building a more comprehensive speaker 

embedding space, by using data from multiple languages. In other words, just as a multi-

speaker model is able to learn general characteristics of human speech and of a particular 

language regardless of the differences between the voices of particular speakers, a multi-

language model goes one step beyond and learns about human speech by “listening” to 

speech samples in different languages.  

Direct voice conversion (from audio to audio, without generating text) is also a very 

promising technology with a wide variety of applications. Although it has certain similarities 

to what was researched in this thesis, it is based on somewhat different approaches and 

requires additional research. 
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Прилог 1 

План третмана података 

Назив пројекта/истраживања 

Novel method for speaker adaptation in parametric speech synthesis 

(Нова метода адаптације на говорника у параметарској синтези говора)  

Назив институције/институција у оквиру којих се спроводи истраживање 

a) АлфаНум доо, Нови Сад 

б) Speech Morphing System, Inc, Saj Jose, California 

в) Факултет техничких наука, Нови Сад 

Назив програма у оквиру ког се реализује истраживање 

/ 

 

1. Опис података 

 

1.1 Врста студије 

 

Укратко описати тип студије у оквиру које се подаци прикупљају  

У питању су докторске студије, које су се одвијале у паралели са развојем 

комерцијалних прозивода за горе наведене компаније. 
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1.2 Врсте података 

а) квантитативни  

б) квалитативни 

 

1.3. Начин прикупљања података 

а) анкете, упитници, тестови 

б) клиничке процене, медицински записи, електронски здравствени записи  

в) генотипови: навести врсту ________________________________ 

г) административни подаци: навести врсту _______________________ 

д) узорци ткива: навести врсту_________________________________ 

ђ) снимци, фотографије: навести врсту_____________________________ 

е) текст, навести врсту _______________________________________  

ж) мапа, навести врсту ______________________________________ 

з) остало: мерење растојања између параметара (објективне мере) 

 

1.3 Формат података, употребљене скале, количина података  
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1.3.1 Употребљени софтвер и формат датотеке:  

a) Excel фајл, датотека (више њих) 

b) SPSS фајл, датотека  __________________ 

c) PDF фајл, датотека ___________________ 

d) Текст фајл, датотека __________________ 

e) JPG фајл, датотека ___________________ 

f) Остало, датотека ____________________ 

 

1.3.2. Број записа (код квантитативних података) 

 

а) број варијабли: у зависности од експеримента, мерено је између 2 и 7 параметара 

б) број мерења (испитаника, процена, снимака и сл.) број испитаника се кретао од 20-

30, а број снимака од 5-20 

 

1.3.3. Поновљена мерења  

а) да 

б) не 
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Уколико је одговор да, одговорити на следећа питања: 

а) временски размак измедју поновљених мера је 

______________________________ 

б) варијабле које се више пута мере односе се на 

________________________________ 

в) нове верзије фајлова који садрже поновљена мерења су именоване као 

____________ 

 

Напомене:  ______________________________________________________________ 

 

Да ли формати и софтвер омогућавају дељење и дугорочну валидност података? 

а) Да 

б) Не 

Ако је одговор не, образложити 

______________________________________________ 

_______________________________________________________________________ 

 

 

2. Прикупљање података 
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2.1 Методологија за прикупљање/генерисање података 

У тестовима слушања користиле су се MOS (енгл. Mean Opinion Score) и MUSHRA 

(енгл. MUltiple Stimuli with Hidden Reference and Anchor) методе. 

За мерење објективних мера користило се растојање између параметара 

синтетизованог и оригиналног говора. Мерени параметри су: мел кепстрали, 

основна учестаност, степен звучности, степен апериодичности по фреквенцијским 

опсезима. 

2.1.1. У оквиру ког истраживачког нацрта су подаци прикупљени?  

а) експеримент, навести тип: MOS, MUSHRA. 

б) корелационо истраживање, навести тип: поређење наведених параметара. 

ц) анализа текста, навести тип ________________________________________________ 

д) остало, навести шта ______________________________________________________  

 

2.1.2 Навести врсте мерних инструмената или стандарде података специфичних за 

одређену научну дисциплину (ако постоје). 

У експериментима слушања су се користиле слушалице. 

Формат аудио фајлова је био 22kHz, 16bit, PCM. 
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2.2 Квалитет података и стандарди  

Табеле су у стандардном (Excel) формату. 

 

2.2.1. Третман недостајућих података 

а) Да ли матрица садржи недостајуће податке? Да Не 

 

Ако је одговор да, одговорити на следећа питања: 

а) Колики је број недостајућих података? __________________________ 

б) Да ли се кориснику матрице препоручује замена недостајућих података? Да    Не 

в) Ако је одговор да, навести сугестије за третман замене недостајућих података 

____________________________________________________________________________

__ 

 

2.2.2. На који начин је контролисан квалитет података? Описати 

Махом ручно, односно праћењем тока експеримента. 

 

2.2.3. На који начин је извршена контрола уноса података у матрицу?  

Софтвер прилагођен за ове сврхе је вршио ту функцију, уз накнадну ручну 
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контролу. 

 

3. Третман података и пратећа документација 

 

3.1. Третман и чување података 

 

3.1.1. Подаци ће бити депоновани у компанијски репозиторијум. 

3.1.2. URL адреса  

https://drive.google.com/drive/folders/1CKyablYERuHKMiierDiP3gMEAsBzVIib?usp=shar

ing 

3.1.3. DOI 

______________________________________________________________________ 

 

3.1.4. Да ли ће подаци бити у отвореном приступу? 

а) Да 

б) Да, али после ембарга који ће трајати до 

___________________________________ 

в) Не 

 

https://drive.google.com/drive/folders/1CKyablYERuHKMiierDiP3gMEAsBzVIib?usp=sharing
https://drive.google.com/drive/folders/1CKyablYERuHKMiierDiP3gMEAsBzVIib?usp=sharing
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Ако је одговор не, навести разлог ________________________________________ 

 

3.1.5. Подаци неће бити депоновани у репозиторијум, али ће бити чувани.  

Образложење 

____________________________________________________________________________

__ 

 

____________________________________________________________________________

__ 

 

 

3.2 Метаподаци и документација података 

3.2.1. Који стандард за метаподатке ће бити примењен?  

Слободна форма у оквиру еџцел докумената. 

 

3.2.1. Навести метаподатке на основу којих су подаци депоновани у репозиторијум. 

У оквиру метаподатака је наведен број експеримената, субјеката и снимака који су 

оцењивани, као и њихове најважније карактеристике. 
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Ако је потребно, навести методе које се користе за преузимање података, аналитичке 

и процедуралне информације, њихово кодирање, детаљне описе варијабли, записа итд. 

 

 

3.3 Стратегија и стандарди за чување података 

3.3.1. До ког периода ће подаци  бити чувани у репозиторијуму? неограничено 

3.3.2. Да ли ће подаци бити депоновани под шифром? Да   Не 

3.3.3. Да ли ће шифра бити доступна одређеном кругу истраживача? Да   Не  

3.3.4. Да ли се подаци морају уклонити из отвореног приступа после извесног времена?  

Да   Не 

Образложити 

 

4. Безбедност података и заштита поверљивих информација 

 

Овај одељак МОРА бити попуњен ако ваши подаци  укључују личне податке који се 

односе на учеснике у истраживању. За друга истраживања треба такође размотрити 

заштиту и сигурност података.  

4.1 Формални стандарди за сигурност информација/података 

Истраживачи који спроводе испитивања с људима морају да се придржавају Закона о 
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заштити података о личности 

(https://www.paragraf.rs/propisi/zakon_o_zastiti_podataka_o_licnosti.html) и одговарајућег 

институционалног кодекса о академском интегритету.   

 

 

4.1.2. Да ли је истраживање одобрено од стране етичке комисије? Да Не 

Ако је одговор Да, навести датум и назив етичке комисије која је одобрила истраживање 

____________________________________________________________________________

__ 

 

4.1.2. Да ли подаци укључују личне податке учесника у истраживању? Да Не 

Ако је одговор да, наведите на који начин сте осигурали поверљивост и сигурност 

информација везаних за испитанике: 

а) Подаци нису у отвореном приступу 

б) Подаци су анонимизирани 

ц) Остало, навести шта 

 

5. Доступност података 

 

5.1. Подаци ће бити  

https://www.paragraf.rs/propisi/zakon_o_zastiti_podataka_o_licnosti.html
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а) јавно доступни 

б) доступни само уском кругу истраживача у одређеној научној области   

ц) затворени 

Ако су подаци доступни само уском кругу истраживача, навести под којим условима 

могу да их користе: 

Ако су подаци доступни само уском кругу истраживача, навести на који начин могу 

приступити подацима:  

 

5.4. Навести лиценцу под којом ће прикупљени подаци бити архивирани. 

1 - Ауторство 

 

6. Улоге и одговорност 

 

6.1. Навести име и презиме и мејл адресу власника (аутора) података 

Дарко Пекар, pekard@gmail.com 

 

6.2. Навести име и презиме и мејл адресу особе која одржава матрицу с подацимa 

Дарко Пекар, pekard@gmail.com 

 

mailto:pekard@gmail.com
mailto:pekard@gmail.com
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6.3. Навести име и презиме и мејл адресу особе која омогућује приступ подацима 

другим истраживачима 

Дарко Пекар, pekard@gmail.com 
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