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Introduction

Clone theory is a modern mathematical discipline that studies functional and
relational algebras. The ideas that are built in its foundations are coming from
several sources. One of them is the elementary theory of 0/1 functions, introduced
by George Boole in 1847 by proposing to handle propositional connectives as
discrete truth-functions (cf. [45]). This led to the study of closed classes of truth
functions in two-valued and multivalued logics. The other important source
is the classical Galois theory. Inspired by Felix Klein’s Erlangen program from
1872, it evolved into the general Galois theory for functions and relations. The
pioneers in this field were Marc Krasner (cf. [21, 47]) and José Sebastião e Silva
(cf. [50, 48]). Their research has to be seen in the context with the struggle of
the early twentieth-century mathematics to come up with an abstract concept
of structures, which ultimately led to the development of general algebra and
model theory. The theory of functional algebras and the general Galois theory for
functions and relation developed gradually into what is today known as clone
theory (see e.g. [19, 20],[15, 2, 52, 35]).

The main problem of clone theory is to describe the clone lattice for the given
basic set. The first major result in this area was obtained by Emil Leon Post
in [42, 43], where he was describing the clone lattice on the two-element basic
set. So far, this is the only completely studied clone lattice. Already on the
three-element basic set the full structure of the lattice is still unknown. Since the
complete description of the clone lattices in general is considered to be hopeless,
the focus of research goes to the study of its substructures and its approximations.

One way of approximating the clone lattice is to look at the k-ary parts of the
clones and to describe their mutual inclusions. One of the starting points of this
research was to study their unary parts, i.e. transformation monoids. The first
class of relations whose endomorphism monoids and their mutual relationships
were studied was the class of Rosenberg relations (cf. [36, 30, 34, 38]). The choice
was not surprising, since they describe maximal clones. It turned out that the
unary parts of maximal clones are almost always incomparable, except for a few
classes of relations (e.g. central, h-regular relations). However, ad hoc methods
that were used in this study were not able to bring a breakthrough in some of the
cases where inclusion between the endomorphism monoids tend to exist. This
raised a need to find new methods for solving problems of the mentioned kind,
which led to the development of local methods. They appeared as a tool for the
first time in [37], where they were used in the study of the poset of endomorphism
monoids of central relations. After that, they were successfully applied to a
few more classes of relations in [33]. In [29], a surprising relationship between
local methods and homomorphism-homogeneous relations was pointed out.
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Introduction

In particular, whenever we deal with a homomorphism-homogeneous relation,
local methods can be used. This suggested to study more deeply the connection
between homomorphism-homogeneity and the goals of our research.

The concept of homomorphism-homogeneity of relational structures was intro-
duced by Peter Cameron and Jaroslav Nešetřil in [5], as an interesting and natural
generalization of the classical notion of homogeneity. There are many combina-
torial results on the subject of the classification of homogeneous relational struc-
tures (cf. [14, 24, 49, 23, 7, 3, 16]). This motivated Cameron and Nešetřil to ask
and study similar questions about homomorphism-homogeneity of graphs, and
binary relations in general. Meanwhile, the first results on this subject appeared.
The strict orders that are homomorphism-homogeneous were characterized by
Cameron and Debbie Lockett in [4] and the partial orders with this property
were characterized by Dragan Mašulović in [28]. After that, the attention was
turned back to graphs which led to the characterizations of homomorphism-
homogeneous finite tournaments with loops in [18].

The study of the classical homogeneity is an area of high interest because of
its connections to the quantifier elimination property, the property of theories to
beω-categorical, etc. Moreover, there is a well-developed theory about construc-
tions of homogeneous structures due to the work of Roland Fraı̈ssé (cf. [10, 11]).
On the other hand, the study of homomorphism-homogeneous structures was,
until now, more a combinatorial problem driven by curiosity.

In connection with previously presented facts, we can now formulate the goals
of this thesis. First of all, we want to make local methods available as a tool to
study the unary parts of clones in general. Secondly, it is our aim to develop a link
between homomorphism-homogeneous relational structures and local methods.
Finally, our third goal is to develop a systematic theory for the classification of
homomorphism-homogeneous structures.

The thesis starts with a chapter about local methods. There we define the
Locality Principle and introduce local methods. In the sequel we show how
they can be applied in the study of the structure of weak Krasner algebras and
we make local methods available for all classes of Rosenberg relations. The
applications of local methods are demonstrated by a couple of examples.

In Chapter 2 we systematize the use of the Locality Principle and create a
connection with logics. The notion of k-endolocality is introduced , and by this
the relational structures are put into a hierarchy. In the next step, k-endolocal
relational structures are studied from the point of view of model theory. Model-
theoretical notions that are playing a role in the systematic study of homogeneous
structures are adapted to make them useful for the study of k-endolocal relational
structures. For instance, the notion of oligomorphic structures is adapted to the
notion of weakly oligomorphic structures. Also, the corresponding notion of
weak homogeneity is the one-point extension property, while the elimination sets
are adopted to the positive existential elimination sets. This chapter culminates
with the Main Theorem that describes the mutual connections between all these
notions. This creates a link between homomorphism-homogeneous relational
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structures and model-theoretical notions, and it opens the ways for a systematic
study of homomorphism-homogeneous structures using both model-theoretical
and algebraic methods. The Main Theorem has also important consequences for
clone theory. For instance, weakly oligomorphic weak Krasner algebras on a
countable basic set are always locally closed. This generalizes a part of the main
theorem of clone theory (cf. [40, Hauptsatz 2.1.3.(ii)]) to weakly oligomorphic
relational structures. On the other hand, our Main Theorem enables us to use
local methods for all weak Krasner algebras on finite basic sets.

Chapter 3 uses the theory that was developed in Chapter 2 in order to de-
rive a systematic method for characterizing homomorphism-homogeneous re-
lational structures. The key notion in this part of the thesis is the notion of
minimal witnesses. These are special subconfigurations that are forbidden in
all relational structures that have the one-point extension property. If for a
given class of relational structures all minimal witnesses can be found up to
isomorphism, then this, in a sense, characterizes all structures from the given
class that have the one-point extension property. We proceed by describing all
minimal witnesses up to isomorphism for the class of antisymmetric transitive
binary relations (i.e. for the structures of the shape (A, ̺), where ̺ is a binary
antisymmetric transitive relation.). These results are used to characterize all
transitive binary relations with one-point extension property. This generalizes
the results by Cameron, Locket and Mašulović about strict orders and partial
orders (cf. [4, 28]). The minimal witnesses for tolerance relations are also de-
scribed in some way. There can appear every possible configuration as a witness.
However, this is expected because, as it was shown in [46], the problem of de-
ciding homomorphism-homogeneity for symmetric binary relations is co-NP
complete. Yet, homomorphism-homogeneous tolerance relations over finite sets
are relatively rare. In Appendix A, we list, up to isomorphism, all nontrivial
homomorphism-homogeneous relations on up to 9 elements.
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Preliminaries

In this chapter we will fix the notions and notation from logics, model theory,
clone theory and formal concept analysis that will be used throughout the the-
sis. The goal is not to give a comprehensive introduction into the respective
fields. Rather, it is to make the exposition of this treatise mostly self-contained.
Additional references will be given, where appropriate.

0.1. Structures

Structures represent one of the most fundamental notions in mathematics. The
central object of the study in this thesis are relational structures, so we start by
introducing them formally. We say that a set R of relational symbols together
with a mapping ar : R → N that maps every symbol to its arity is a relational
signature. For a given relational signature R and a given basic set A, we define the
notion of relational structure A over the signature R (or, for short, R-structure)
as an ordered pair (A, (̺A)̺∈R), where ̺A is a relation of arity ar(̺) over A that
interprets in A the relational symbol ̺ ∈ R. With R(n) we will denote the set of
all relational symbols from R of arity n. The elements of ̺A will be denoted by
ā, b̄, c̄, . . . . In general, if A is a relational structure, then with A we will denote the
basic set of A. We call an element x̄ = (x1, . . . , xar(̺)) reflexive if there are i , j such
that xi = x j. Otherwise, we say that x̄ is irreflexive. According to this, ̺A

irr will
represent the set of all irreflexive elements of the relation ̺A. By ∆A we denote
the diagonal relation on A, i.e.

∆A := {(x, x) | x ∈ A}.

For a given relational signature R and two relational structures A = (A, (̺A)̺∈R)
and B = (B, (̺B)̺∈R), we call a mapping f : A→ B a homomorphism if for every
̺ ∈ R holds that from (xi1 , . . . , xiar(̺)

) ∈ ̺A, it follows that ( f (xi1), . . . , f (xiar(̺)
)) ∈ ̺B.

Further, a mapping f : A→ B is called a full homomorphism if for all ̺ ∈ R and
all (xi1 , . . . , xiar(̺)

) ∈ Aar(̺) we have

(xi1 , . . . , xiar(̺)
) ∈ ̺A ⇔ ( f (xi1), . . . , f (xiar(̺)

)) ∈ ̺B.

Injective homomorphisms are called monomorphisms, while surjective homo-
morphism are called epimorphisms. A homomorphism f : A→ A will be called
an endomorphism of A. Full monomorphisms are called embeddings and bi-
jective embeddings are called isomorphisms. A local homomorphism of A is a
homomorphism from a finite substructure of A to A.
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Preliminaries

We say that B is a substructure of A (and write B ≤ A) if B ⊆ A and the
inclusion map ι : B→ A is an embedding. Substructures are fully determined by
their basic sets. If B ≤ A and C ⊆ A, then B∪C shall denote the substructure of A
with the basic set B ∪ C. A retraction is an epimorphism with a right inverse. In
particular, an epimorphism r : A։ B is a retraction if there exists an embedding
i : B ֒→ A such that r ◦ i is the identity mapping on B. In this case B is called a
retract of A. We say that A is a full homomorphic preimage of B if there exists
a full homomorphism f : A→ B.

0.2. Logics and model theory

Throughout the thesis we will use notions from logics and model theory. In this
section we fix only those notions and notation from model theory that will be
needed in the sequel. For a detailed treatment we refer to [17] and [6].

0.2.1. Syntax and semantics. Let R be a relational signature and let X = {xi |

i ∈ N} be a set of distinct variable symbols. An atomic formula is a formula of
the shape (xi1 = xi2) or ̺(xi1 , . . . , xiar(̺)

), where ̺ ∈ R and xi1 , . . . , xiar(̺)
∈ X. In order

to obtain more complex formulae from already defined ones we introduce the
following rules:

AND IfΨ is a finite set of formulae, then
∧

Ψ is a formula.

OR IfΨ is a finite set of formulae, then
∨

Ψ is a formula.

EXISTS If ψ is a formula and x ∈ X, then (∃x)ψ is a formula.

The set of primitive positive formulae is the smallest set of words that contains
all atomic formulae and that is closed with respect to rules AND and EXISTS. We
denote it byΦ(∃,∧,=,R). The set of positive existential formulae is the smallest
set of words that contains all atomic formulae and that is closed with respect to
rules AND, OR and EXISTS. We denote it by Φ(∃,∧,∨,=,R). For a certain kind
of formulae we introduce a special notation:

Formula Abbreviation
∧

∅ F
∨

∅ T
∧

{ψi | i ∈ I}
∧

i∈I ψi
∨

{ψi | i ∈ I}
∨

i∈I ψi
∧

{ψi1 , ψi2} ψi1 ∧ ψi2
∨

{ψi1 , ψi2} ψi1 ∨ ψi2

A variable x appears freely in formulaψ (i.e. it is a free variable) if it appears in
ψunquantified. To make this more precise, we define a function free : Φ(∃,∧,∨,=
,R)→ P(X) that assigns to each formula the set of variable symbols that appear
freely in it. We proceed by structural induction:

xii



0.2. Logics and model theory

• If ψ is of the shape (xi = x j), then we define free(ψ) := {xi, x j}.

• If ψ is of the shape ̺(xi1 , . . . , xiar(̺)
) then we define free(ψ) := {xi1 , . . . , xiar(̺)

}.

• If we are given a finite set Ψ of formulae then we define free(
∧

Ψ) =
free(

∨

Ψ) :=
⋃

ψ∈Ψ free(ψ).

• If we are given a formula ψ, then free((∃x)ψ) := free(ψ) \ {x}.

We define Φm(∃,∧,∨,=,R) as the set of all formulae ϕ ∈ Φ(∃,∧,∨,=,R) such that
free(ϕ) ⊆ {x1, . . . , xm}. The set Φm(∃,∧,=,R) is defined analogously.

Let A = (A, (̺A)̺∈R) be a relational structure. We define what means that a
structure A models a formula ψ with respect to the valuation v : X→ A:

A|=v̺(xi1 , . . . , xar(̺)) :⇔ (v(xi1), . . . , v(xar(̺))) ∈ ̺A

A|=v(xi = x j) :⇔ v(xi) = v(x j)
A|=v

∧

Ψ :⇔ For all ψ ∈ Psi : A|=vψ
A|=v

∨

Ψ :⇔ There exists a ψ ∈ Psi : A|=vψ
A|=v(∃x)ψ :⇔ There exists an a ∈ A such that A|=v(x/a)

ψ
where v(x/a) : X→ A is given by

v(x/a)(y) =

{

a, if y = x
v(y), otherwise.

Let ϕ ∈ Φm(∃,∧,∨,=,R) and let ā = (a1, . . . , am) ∈ Am. We say that a tuple ā
satisfies the formula ϕ and write ā |= ϕ if there exists a valuation v such that
v(xi) = ai, for all i ∈ {1, . . . ,m} and such that A |=v ϕ. The set of all tuples ā ∈ Am

such that ā |= ϕ we denote by ϕA. Further, for a set B ⊆ Am of tuples we define

pThA(B) := {ϕ ∈ Φm(∃,∧,∨,=,R) | ∀b̄ ∈ B : b̄ |= ϕ}.

For a tuple b̄ ∈ Am, instead of pThA({b̄}), we write pThA(b̄).
For formulae ϕ and ψ from Φ(∃,∧,∨,=,R) we say that they are equivalent if

for every relational structure A over the signature R and every valuation v in A
holds A |=v ϕ if and only if A |=v ψ. In this case we write ϕ ≡ ψ. Further, we say
that ϕ and ψ from Φ(∃,∧,∨,=,R) are equivalent in the given structure A if for
every valuation v in A holds A |=v ϕ if and only if A |=v ψ.

It is a well-known fact that every primitive positive formula ϕ is equivalent to
a formula of the following shape:

ϕ ≡ (∃xi1)(∃xi2) . . . (∃xik)
∧

j∈J

ψ j,

where i1, . . . , ik ∈ N and ψ j, j ∈ J, are atomic formulae. Such a formula is called
a prenex normal form. Every positive existential formula ϕ can be then written
in the form:

ϕ ≡
∨

i∈I

ϕi,
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where ϕi, i ∈ I, are primitive positive formulae in prenex normal form. We call
such a formula a normal form formula.

The quantifier depth of a primitive positive formula ϕ in prenex normal form
(∃xi1)(∃xi2) . . . (∃xik)

∧

j∈J ψ j is k. We denote it by qd(ϕ) = k. The quantifier depth of
a normal form formula ϕ of the shape

∨

i∈I ϕi is defined as qd(ϕ) := max{qd(ϕi) |
i ∈ I}. The quantifier depth of any positive existential formula ϕ is defined as the
minimum of all quantifier depths of normal form formulae that are equivalent to
ϕ. For any setΨ ⊆ Φ(∃,∧,∨,=,R) we denote byΨ(k) the set of all formulae with
quantifier depth at most k fromΨ.

0.2.2. On the number of formulae in different fragments of logics.

Proposition. Let R be a finite relational signature. Then, up to equivalence, there are

just finitely many formulae in Φ(0)
m (∃,∧,∨,=,R).

Proof. Let ϕ ∈ Φ(0)
m (∃,∧,∨,=,R). Then

ϕ ≡
∨

i∈I

∧

j∈Ji

ϕi j,

where ϕi j are atomic formulae. In the next step, we will estimate the number of

atomic formulae in Φ(0)
m (∃,∧,∨,=,R).

Note that for everyϕi j we have that eitherϕi j ≡ ̺(xk1
, . . . , xkn), for ̺ ∈ R(n), n ∈N

and xk1
, . . . , xkn ∈ {x1, . . . , xm} or ϕi j ≡ (xk1

= xk2
), for xk1

, xk2
∈ {x1, . . . , xm}. Since R is

finite, there are finitely many relational symbols ̺ and, since {x1, . . . , xm} is finite,
there are finitely many choices for the entries of tuples, so there are finitely many
atomic formulae of the shape ̺(xk1

, . . . , xkn). The similar reasoning gives us that
there are finitely many atomic formulae of the shape (xk1

= xk2
), so there are all

together finitely many atomic formulae.
Note further that every

∧

j∈Ji
ϕi j is equivalent to the conjunction of a subset

of atomic formulae, so |Ji| is bounded by the number of atomic formulae, and
therefore, there are, up to equivalence, finitely many conjunctions of atomic
formulae.

Finally, every
∨

i∈I

∧

j∈Ji
ϕi j is equivalent to the disjunction of a set of con-

junctions of atomic formulae, so |I| is bounded by the number of conjunctions
of atomic formulae (up to equivalence), and by the same reasoning, there are

finitely many formulae in Φ(0)
m (∃,∧,∨,=,R). �

Corollary. Let R be a finite relational signature. Then, up to equivalence, there are

finitely many formulae in Φ(k)
m (∃,∧,∨,=,R).

Proof. Let ϕ ∈ Φ(k)
m (∃,∧,∨,=,R) is of the shape

ϕ ≡ (∃xm+1)(∃xm+2) . . . (∃xm+k)ψ,

where ψ ∈ Φ(0)

m+k
(∃,∧,∨,=,R). By the previous Proposition there are, up to equiv-

alence, just finitely many formulae ψ. Then, up to equivalence, there are just
finitely many formulae ϕ. �
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0.2. Logics and model theory

0.2.3. Relational configurations. We will now introduce the notion of relational
configurations and establish a correspondence between them and primitive pos-
itive formulae. Relational configurations will allow us to work with primitive
positive formulae in a syntax-free and algebraic manner.

Definition 1. Let D = (D, (̺D)̺∈R) be a relational structure over a finite set D.
Further, let C be a substructure of D, let θ ⊆ D2 and let E : {1, . . . , |C|} → C be a
fixed enumeration of elements of C. Then the quadruple (C,D,E, θ) is called a
relational configuration over R.

We say that a tuple ā = (a1, . . . , a|C|) ∈ A|C| satisfies (C,D,E, θ) in A and write
ā ||= (C,D,E, θ) if there exists a homomorphism g : D→ A such that

(G1) g : E(i) 7→ ai, for i = 1, . . . , |C| and

(G2) θ ⊆ ker g.

Proposition. Let R be a relational signature and let m ∈ N. Then the following are
true:

1. For every ϕ ∈ Φm(∃,∧,=,R) there exists a relational configuration (C,D,E, θ)
over R such that for all relational structures A = (A, (̺A)̺∈R) and for all ā ∈ Am

ā |= ϕ⇔ ā ||= (C,D,E, θ).

Moreover, D can be chosen so that there are only finitely many relational symbols
̺ ∈ R with ̺D , ∅.

2. Let (C,D,E, θ) be a relational configuration over R. If there are just finitely many

relational symbols ̺ in R with ̺D , ∅, then there exists a ϕ ∈ Φ(|D|−|C|)

|C|
(∃,∧,=,R)

such that for all R-structures A and for all ā ∈ A|C| we have

ā |= ϕ if and only if ā ||= (C,D,E, θ).

In both cases we say that ϕ corresponds to (C,D,E, θ), and vice versa.

Proof. About 1. Let ϕ ∈ Φm(∃,∧,=,R). Then there exists a finite set I and atomic
formulae ψi, i ∈ I such that

ϕ ≡ (∃xm+1) . . . (∃xm+l)
∧

i∈I

ψi.

We define C := {x1, . . . , xm}. Note that free(ϕ) ⊆ C. Let, further, D := {x1, . . . , xm+l}.
Moreover, for every n ∈ N and ̺ ∈ R(n), let ̺D := {(x j1 , . . . , x jn) | ̺(x j1 , . . . , x jn) ≡
ψi for some i ∈ I}, let θ := {(x j1 , x j2) | (x j1 = x j2) ≡ ψi for some i ∈ I} and, finally, let
E : {1, . . . ,m} → C be given by E(i) := xi. Consider the relational configuration
(C,D,E, θ) where D = (D, (̺D)̺∈R) and where C is a substructure of D induced
by C. Clearly, there are just finitely many ̺ ∈ R such that ̺D , ∅. We will show
now that (C,D,E, θ) corresponds to ϕ. Let A be an R-structure and let ā ∈ Am.
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(⇒) Suppose that ā |= ϕ. Then there exists a valuation v : X → A such that
v(xi) = ai, i = 1, . . .m, and for every ψi holds A |=v ψi.

We define g : D→ A such that g(xi) := v(xi), i = 1, . . . ,m + l, (i.e. g := v ↾D). We
will show that such a g is a homomorphism, and that it fulfills (G1) and (G2).

Take any ̺ ∈ R and (x j1 , . . . , x jn) ∈ ̺D. This means that ̺(x j1 , . . . , x jn) ≡ ψi for
some i ∈ I. On the other hand, A |=v ψi, so (g(x j1), . . . , g(x jn)) = (v(x j1), . . . , v(x jn)) ∈
̺A, and, hence, g is a homomorphism.

Note that (G1) follows from the construction of g. For (G2) take (x j1 , x j2) ∈ θ.
Then there exists ψi such that ψi ≡ (x j1 = x j2). Since A |=v ψi, it follows that
v(x j1) = v(x j2), so (x j1 , x j2) ∈ ker v, and, therefore, (x j1 , x j2) ∈ ker g.

(⇐) Suppose that ā ||= (C,D,E, θ). Then there exists a homomorphism g : D→
A for which hold (G1) and (G2). We define a valuation v : X→ A in the following
way:

v(x) =

{

g(x), if x ∈ D
arbitrary, otherwise,

Take any ψi, i ∈ I. Then either ψi ≡ ̺(x j1 , . . . , x jn), for some ̺ ∈ R(n) or ψi ≡

(x j1 = x j2). In the first case we have that (x j1 , . . . , x jn) ∈ ̺D, so (v(x j1), . . . , v(x jn)) =
(g(x j1), . . . , g(x jn)) ∈ ̺A, and, hence, A |=v ψi. In the second, it follows that
(x j1 , x j2) ∈ θ, so (x j1 , x j2) ∈ ker g, and, therefore, (x j1 , x j2) ∈ ker v, implying that
A |=v ψi.
About 2. Let (C,D,E, θ) be such that |C| = m, C = {c1, . . . cm}, D = {c1, . . . cm+l}

and E(i) = ci, i = 1, . . . ,m. Take an embedding f : D → X such that f (ci) = xi,
i = 1, . . . ,m + l and let

ϕ ≡(∃ f (cm+1)) . . . (∃ f (cm+l))
(
∧

̺∈R
̺D,∅

∧

(c j1
,...,c jar(̺)

)∈̺D

̺( f (c j1), . . . , f (c jar(̺)
))

∧
∧

c j1
=c j2

( f (c j1) = f (c j2))
)

.

Let us show now that ϕ corresponds to (C,D,E, θ). Let A be an R-structure and
let ā ∈ Am.

(⇒) Suppose ā |= ϕ. Then there exists a valuation v : X → A such that
v(xi) = ai, i = 1, . . .m, for every ̺ ∈ R and every (c j1 , . . . , c jar(̺)

) ∈ ̺D holds A |=v

̺( f (c j1), . . . , f (c jar(̺)
)), and for every (c j1 , c j2) ∈ θ holds A |=v ( f (c j1) = f (c j2)).

We define g : D→ A such that g(ci) := v( f (ci)), for i = 1, . . . ,m+ l, and we show
that g is a homomorphism that satisfies (G1) and (G2).

Take ̺ ∈ R and (c j1 , . . . , c jar(̺)
) ∈ ̺D. Since A |=v ̺( f (c j1), . . . , f (c jar(̺)

)), it follows
that (g(c j1), . . . , g(c jar(̺)

)) = (v( f (c j1)), . . . , v( f (c jar(̺)
))) ∈ ̺A, and, hence, g is a homo-

morphism. For (G1), note that g(ci) = v( f (ci)) = v(xi) = ai. For (G2), take (c j1 , c j2) ∈
θ. Since A |=v ( f (c j1) = f (c j2)), it follows that g(c j1) = v( f (c j1)) = v( f (c j2)) = g(c j2).

(⇐) Suppose that ā ||= (C,D,E, θ). Then there exists a homomorphism g : D→
A for which hold (G1) and (G2). We define a valuation v : X→ A in the following
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way:

v(x) =

{

g( f −1(x)), if x ∈ f (D)
arbitrary, otherwise,

Take any (c j1 , . . . , c jar(̺)
) ∈ ̺D and consider the subformula ̺( f (c j1), . . . , f (c jar(̺)

)) of
ϕ, that corresponds to it. Then

(v( f (c j1)), . . . , v( f (c jar(̺)
))) = (g( f −1( f (c j1))), . . . , g( f −1( f (c jar(̺)

))))

= (g(c j1), . . . , g(c jar(̺)
)) ∈ ̺A.

On the other hand, for (c j1 , c j2) ∈ θ and the corresponding subformula ( f (c j1) =
f (c j2)) of ϕ we obtain v( f (c j1)) = g(c j1) = g(c j2) = v( f (c j2)).

Hence, ā |= ϕ. �

Definition 2. Let (C,D,E, θ) and (C̃, D̃, Ẽ, θ̃) be such that |C| = |C̃| = m. We say
that (C,D,E, θ) is stronger than (C̃, D̃, Ẽ, θ̃) in A if for all ā ∈ Am holds

if ā ||= (C,D,E, θ), then ā ||= (C̃, D̃, Ẽ, θ̃).

0.3. Galois connections

Let A = (A,≤A) and B = (B,≤B) be two partially ordered sets and let α : A → B
and β : B→ A be maps. Then the pair (α, β) is called a Galois connection between
A and B if and only for all a ∈ A and all b ∈ B we have

a ≤A β(b)⇔ b ≤B α(a).

We will turn our attention to the case A = (P(G),⊆) and B = (P(M),⊆), for sets G
and M. Any relation between G and M induces a Galois connection between A
and B. Such Galois connections are best studied by using the language of formal
concept analysis (cf. [12]).

A formal context is a tripleK = (G,M, I), where G and M are sets, and I ⊆ G×M
is a relation between them. The elements of G we call objects, and the elements
of M we call attributes. It is customary to represent small contexts using a cross
table. It is a table in which rows correspond to objects, columns correspond
to attributes and we write in a field representing the intersection of a row g
and a column m a cross if the corresponding object g is in a relation I with the
corresponding attribute m.

For a set S ⊆ G we define

S′ := {m | m ∈M and (∀g ∈ S)(g,m) ∈ I}.

Analogously, for T ⊆M we define

T′ := {g | g ∈ G and (∀m ∈ T)(g,m) ∈ I}.
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A formal concept of the contextK = (G,M, I) is a pair (S,T) such that

S ⊆ G,T ⊆M,S′ = T and T′ = S.

We say that S is an extent and that T is an intent. The set of extents of K we
denote by Ext(K) and the set of intents of K we denote by Int(K). If we define
α : P(G) → P(M) : S 7→ S′ and β : P(M) → P(G) : T 7→ T′, then the pair (α, β)
is a Galois connection between (P(G),⊆) and (P(M),⊆). From this it follows that
Ext(K) and Int(K) form closure systems on G and M, respectively.

For more information about Galois connections we refer to [9].

0.4. Clone theory

We will here introduce only those notions from clone theory that will be needed
throughout the thesis. For more information and detailed overview of this field
see [44], [40], [53] and [26].

Let Q be a set of relations over a given basic set A and let R be a set of relational
symbols such that |Q| = |R|. We take a bijection from R to Q that maps ̺ ∈ R
to ̺A ∈ Q and define ar(̺) := ar(̺A). Then R with so defined arity function is a
relational signature and A = (A, (̺A)̺∈R) is a relational structure over a signature
R. With Q(m) we denote the set of all m-ary relations in Q. We say that Q is
definitionally closed with respect to a setΨ ⊆

⋃

m∈NΦm(∃,∧,∨,=,R) if for every
ϕ ∈ Ψ holds ϕA ∈ Q. A set of relations that is definitionally closed with respect
to

⋃

m∈NΦm(∃,∧,∨,=,R) is called a weak Krasner algebra.
Define a context (AA,

⋃

n∈NP(An),⊲), where ⊲ is the relation of preservation,
i.e. for f ∈ AA and ̺ ⊆ An we say that f preserves ̺ and write f ⊲ ̺ if

for every (ai1 , . . . , ain) ∈ ̺ we have ( f (ai1), . . . , f (ain)) ∈ ̺.

This context defines a Galois connection (cf. [39]). It is customary to write for set
F of functions that F′ = Inv F and for set Q of relations Q′ = End Q. It is easy to see
that Galois-closed sets of functions are transformation monoids over A and that
Galois-closed sets of relations are weak Krasner algebras over A. If A is a finite set,
then (a part of) the main theorem of clone theory (cf. [40, Hauptsatz 2.1.3.(ii)])
says that every transformation monoid and every weak Krasner algebra over
A is Galois-closed. However, if A is infinite, then this is not true in general.
Galois-closed transformation monoids and Galois-closed weak Krasner algebras
are called locally closed. In locally closed weak Krasner algebras, the m-ary
relations form a closure system. If F is a set of unary functions on the basic set
A and ̺ ⊆ Am, then by ΓF(̺) we denote the smallest m-ary relation in Inv F that
contains ̺.
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Though this be madness, yet
there is method in’t.

(William Shakespeare)Chapter 1.

Local methods for relational structures

The main goal of clone theory is to study the structure of the clone lattice. One
of the possible approaches to this problem is to partition the clone lattice into
monoidal intervals, i.e. intervals over the unary parts of clones. This divides the
problem of understanding this lattice into two parts. The first one is to study the
structure of monoidal intervals (see [22]), while the second one is to understand
the mutual relations between these intervals. One of the main problems that
arise from the second part is the following:
Let ̺ and σ be the relations over the same basic set A.

Decide whether End{̺} ⊆ End{σ}. (1)

The same problem arose in the process of finding a completeness criterion
for concrete near-rings (see [1] and [27]). In particular, this study involved the
problem of describing the structure of the poset of traces of maximal clones. This
means that for every two Rosenberg relations one has to decide whether one
endomorphism monoid is contained in the other one. A related problem was
posed by Pöschel and Radeleczky (see [41]). Namely, they ask to characterize
all quasi-order relations that are invariant for a given finite unary algebra. This
motivates to study the problem (1) independently.

The initial steps were already done in [30, 33, 34, 37, 38]. However, the methods
used were rather ad hoc, depending on the specific relations in question. In this
chapter, a unified approach will be developed. The key idea is to use, so called,
local method that is based on showing that a necessary and sufficient condition
for inclusion between endomorphism monoids of two relations is the existence
of certain kind of encoding one of relations into the other one. During the study,
it turned out that this inclusion depends mainly on the relation ̺. The efficiency
of the decision procedure depends on the choice of the encoding of ̺ in σ and
the encoding depends only on ̺. The formal description of this method and
the way it is used will be described in 1.1.1 and 1.1.2. Although this method
can be used in general, here we restrict our attention to the case when ̺ is one
of the Rosenberg relations. This choice is motivated by the authors interest in
solving the problem of describing the structure of the poset of traces of maximal
clones. On the other hand, it also gives a wide collection of nontrivial examples
for the use of local methods. Moreover, the first application of local methods was
given in [37]. There, local methods were used to prove that for every finite poset
(L,≤) there exists a finite set A and an order-embedding of (L,≤) into the poset of
endomorphism monoids of central relations over A.

1



Chapter 1. Local methods for relational structures

In Section 1.2 we give effective criteria for deciding the problem (1), where ̺
is a Rosenberg relation. To each of the six classes of these relations is dedicated
a subsection. The subsections are independent from each other, so this part of
the chapter can be used in an encyclopedic way. In order to show the possible
ways to use local methods, we present two examples in Section 1.3. The first
one demonstrates the use of local methods for the constructive enumeration of
the ternary relations in the weak Krasner algebra generated by the three element
chain. The second example shows how local methods can be used in order to
answer one of the open problems from [30]. In particular, we show that there
exists an h-regular relation ̺ and a central relation σ such that End{̺} ⊆ End{σ}.
The results from this chapter are going to appear in [32].

Different than in the rest of this thesis, in this chapter we will restrict our at-
tention to relational structures over finite sets. Moreover, the relational signature
will usually consist of one relational symbol. Slightly abusing the notation we
will identify a relation ̺ over A with the relational structure (A, ̺).

1.1. Locality Principle

The Locality Principle is a way of defining closure systems. In general, we are
given a space of points A with some structure, and an ordered set T = (T,⊑)
of possible observations (called types) that can be made by an observer in the
space from a given point. Here an observer is a function that maps each point
of the space to the observation that the observer makes standing at the given
point. Such kind of function we will denote by typeA and we will usually call it
a type-function.

The Locality Principle defines a set of implications on the space A as follows:

For points ā and b̄ the implication ā→ b̄ holds if typeA(ā) ⊑ typeA(b̄).

This defines a closure system on the space A and we say that this closure system
is defined by the Locality Principle. If two different observers define the same
closure system, then we call them equivalent.

In the sequel we will describe specific given closure systems using the Local-
ity Principle. This means that we will find a suitable observer and a poset of
observations such that the closure system defined by the Locality Principle is
equal to the given one. Of course, this is possible only if the given closure system
is definable by the set of implications with precisely one premise, that is, it is
algebraic and it induces a distributive lattice.

Note that on every space A with a given algebraic distributive closure system
there exists a trivial observer that maps every point to its closure, where the order
on the observations is the reversed inclusion order. However the definition of
this observer makes direct use of the given closure system, while the goal of the
Locality Principle is to describe a given closure system using as little as possible
information about its internal structure. Often it is possible to give a much
simpler observer than the above described trivial one.

2



1.1. Locality Principle

1.1.1. Local methods, types and type-ordering. As it was already stated, this
study was motivated by the problem of deciding for two given relations ̺ and
σ over the same finite set A, whether End{̺} ⊆ End{σ} without computing the
endomorphisms. The classical methods of study of the endomorphism monoids
are not so convenient for answering this question, and therefore there is a need to
introduce a new approach to this problem. Of course, this requires the use of new
research tools and the research tools that are going to be used here are known
under the name of local methods. There is no formal definition of a local method,
but there is a general idea what is understood under this notion. This is nothing
else but the way of understanding the huge structure that is hard to comprehend,
by looking it on small pieces that are beautiful enough to be understood, but still
sufficient to reconstruct the initial structure. Such a ”definition” leaves us a lot of
freedom to adjust this notion for our own needs, and we continue with a proposal
of a local method that might help us to answer the initial question.

Our proposal is based on the idea that stands behind the Locality Principle. We
are given a relation ̺ on the finite basic set A. Our goal is to describe the closure
system (Inv End{̺})(m), for m ∈N, using the Locality Principle. It is clear that the
space is consisting of the m-tuples over A. We are now looking for the appropriate
observer and the poset of observations. For a given poset of observations (T,⊑),
a function type̺ : Am → T is called a type-function for ̺ and m if the closure

system that is defined by type̺ on Am using the Locality Principle is equal to

(Inv End{̺})(m). Clearly, this is the case precisely when for every σ ⊆ Am holds
σ ∈ (Inv End{̺})(m)(i.e. End{̺} ⊆ End{σ}) if and only if

for every ā, b̄ ∈ Am if ā ∈ σ and type̺(ā) ⊑ type̺(b̄) then b̄ ∈ σ. (1)

1.1.2. Type-functions and the structure of weak Krasner algebras. Local meth-
ods which use type functions are giving us a test that applied to arbitrary m-ary
relation σ decides whether it belongs to the weak Krasner algebra generated by
a given relation ̺. This kind of test was already used in [37] in the study on the
poset of endomorphism monoids of central relations.

Another application is based on the following observations:
Let ̺ be a relation and let type̺ be a type-function for ̺ and m. For every

ā = (a1, . . . , am) ∈ Am, we associate to the type̺(a1, . . . , am) a relation

σtype̺(ā) = {(b1, . . . , bm) | b1, . . . , bm ∈ A ∧ type̺(a1, . . . , am) ⊑ type̺(b1, . . . , bm)}.

Observe that in this way we associate to distinct types distinct relations.
Namely, if we suppose that for type̺(ā) , type̺(b̄), holds that σtype̺(ā) = σtype̺(b̄),

then for every c̄ ∈ Am we obtain

type̺(ā) ⊑ type̺(c̄)⇔ type̺(b̄) ⊑ type̺(c̄).

In particular, it must hold

type̺(ā) ⊑ type̺(b̄) and type̺(b̄) ⊑ type̺(ā),

3
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so type̺(ā) = type̺(b̄) and we arrive at a contradiction.

Lemma. For every relation θ ∈ (Inv End{̺})(m) holds

θ =
⋃

b̄∈θ

σtype̺(b̄).

Proof. Note that for every b̄ ∈ θ holds b̄ ∈ σtype̺(b̄). On the other hand, from the

definition of a type function it follows that for b̄ ∈ θ, σtype̺(b̄) ⊆ θ, so the equality

holds. �

Proposition 1. For every ā, b̄ ∈ Am

type̺(ā) ⊑ type̺(b̄) if and only if σtype̺(ā) ⊇ σtype̺(b̄).

Proof. Let type̺(ā) ⊑ type̺(b̄). Then for every c̄ ∈ σtype̺(b̄) we have

type̺(ā) ⊑ type̺(b̄) ⊑ type̺(c̄),

so c̄ ∈ σtype̺(ā).

For the other direction, let σtype̺(ā) ⊇ σtype̺(b̄). Then for every c̄ ∈ Am holds

if type̺(b̄) ⊑ type̺(c̄), then type̺(ā) ⊑ type̺(c̄).

Specially, for c̄ = b̄, we obtain type̺(ā) ⊑ type̺(b̄). �

Proposition 2. Every join-irreducible element in the lattice of (Inv End{̺})(m) is of the
form σtype̺(ā), for some ā ∈ Am. Moreover, for every ā ∈ Am, σtype̺(ā) is a join-irreducible

element in this lattice.

Proof. Let θ be an arbitrary join-irreducible element in the given lattice. By the
previous Lemma

θ =
⋃

b̄∈θ

σtype̺(b̄),

so it follows that θ = σtype̺(b̄), for some b̄ ∈ θ, which proves the first claim.

For the proof of the second claim, define

θ̃ := {b̄ ∈ Am | type̺(ā) ⊏ type̺(b̄)}.

Note that ā < θ̃, so θ̃ ⊂ σtype̺(ā). We will show that for every relation σ ∈

(Inv End{̺})(m) such that σ ⊂ σtype̺(ā) holds σ ⊆ θ̃. Observe that

σ =
⋃

b̄∈σ

σtype̺(b̄),

4
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so for every b̄ ∈ σ, σtype̺(b̄) ⊂ σtype̺(ā), implying that type̺(ā) ⊏ type̺(b̄), so σ ⊆ θ̃.

Since A is finite, there are finitely many such relations σ that are strictly below
σtype̺(ā). All of them are below θ̃, so the same holds for their union, which is

an element of (Inv End{̺})(m). It is then strictly below σtype̺(ā), which shows that

σtype̺(ā) is indeed a join-irreducible element. �

It is clear now that types of m-ary tuples correspond one-to-one to join-
irreducible elements in the lattice of (Inv End{̺})(m).

Corollary. The poset of join-irreducible elements in (Inv End{̺})(m) is dually isomorphic
to the poset of types of m-ary tuples.

(Inv End{̺})(m) is a finite distributive lattice. Therefore, by Birkhoff’s repre-
sentation theorem, it is isomorphic to the lattice of down-sets of the poset of
join-irreducible elements. Hence, it is isomorphic to the lattice of order-filters of
types of m-ary tuples. Counting order-filters in the poset of types is equivalent to
counting the antichains in it, so the number of elements in (Inv End{̺})(m) is equal
to the number of antichains in the poset of types. This will be demonstrated in
Section 1.3.

1.2. Local methods for Rosenberg relations

We continue by defining type-functions type̺, where ̺ ranges through the set

of Rosenberg relations and the basic set A is finite. We start with classes of
equivalence and central relations, as well as lattice-orders, because they allow
a simple generic definition of types. Then we continue with permutational and
affine relations, and end with h-regular relations. The general case of bounded-
partial orders is not treated here, because until now I could not find a satisfactory
generic definition of types for them.

1.2.1. Equivalence relations. Let ̺ be an equivalence relation over a set A, let
m ∈N and let ā = (a1, . . . , am) ∈ Am. Then we define

τ1(ā) = {(i, j) | i, j ∈ {1, . . . ,m} ∧ (ai, a j) ∈ ̺},

τ2(ā) = {(i, j) | i, j ∈ {1, . . . ,m} ∧ ai = a j},

type̺(ā) = (τ1(ā), τ2(ā)).

For ā, b̄ ∈ Am we write type̺(ā) ⊑ type̺(b̄) if τ1(ā) ⊆ τ1(b̄) and τ2(ā) ⊆ τ2(b̄).

Proposition. The function type̺ is a type-function for the relation ̺ and the integer m.

Proof. In order to prove that type̺ is a type-function, one has to show that for

every σ ⊆ Am holds σ ∈ (Inv End{̺})(m) if and only if 1.1.1(1) holds.
(⇐) Let 1.1.1(1) hold. Take f ∈ End{̺} and ā ∈ σ. We define b̄ = f (ā), i.e.

bi = f (ai), i ∈ {1, . . . ,m}. Our goal is to show that b̄ ∈ σ, so it suffices to show that
type̺(ā) ⊑ type̺(b̄) holds.

5
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• Let (ai, a j) ∈ ̺. Then (i, j) ∈ τ1(ā). Since f ∈ End{̺}, it follows that (bi, b j) =
( f (ai), f (a j)) ∈ ̺, so (i, j) ∈ τ1(b̄).

• Let ai = a j, i.e. (i, j) ∈ τ2(ā). Then f (ai) = f (a j), so bi = b j, and therefore,
(i, j) ∈ τ2(b̄).

Hence, b̄ ∈ σ, and f ∈ End{σ}.
(⇒) Let End{̺} ⊆ End{σ}. Take ā ∈ σ and b̄ ∈ Am such that type̺(ā) ⊑ type̺(b̄).

We will construct an endomorphism of σ that takes ā to b̄. For this purpose we
first define a function

µ : {1, . . . ,m} → {1, . . . ,m} : j 7→ min{k | [a j]̺ = [ak]̺}

and then we can define the mapping f in the following way:

f (x) =



















bi, if x = ai, i ∈ {1, . . . ,m}
bµ( j), if x ∈ [a j]̺ and x < {a1, . . . , am}

b1, otherwise.

Clearly, f is well-defined and takes ā to b̄. It is left to show that f ∈ End{̺}:
Let (x, y) ∈ ̺.

• If x = ai, y = a j, then (i, j) ∈ τ1(ā), so (i, j) ∈ τ1(b̄) and, hence, ( f (ai), f (a j)) =
(bi, b j) ∈ ̺.

• If x = ai, y ∈ [a j]̺, y < {a1, . . . , am}, then (i, j) ∈ τ1(ā), so (i, j) ∈ τ1(b̄) and
(bi, b j) ∈ ̺. On the other hand, (a j, aµ( j)) ∈ ̺, so (b j, bµ( j)) ∈ ̺, and it follows
that ( f (x), f (y)) = (bi, bµ( j)) ∈ ̺.

• If x ∈ [a j]̺, y = ai, x < {a1, . . . , am}, then one proves it analogously to the
previous case.

• If x ∈ [ai]̺, y ∈ [a j]̺ and x, y < {a1, . . . , am}, then (ai, a j) ∈ ̺ and ( f (x), f (y)) =
(bµ(i), bµ( j)). By the same reasoning as above, we obtain (bµ(i), bi) ∈ ̺ and
(b j, bµ( j)) ∈ ̺. Since we have that (bi, b j) ∈ ̺, it follows that (bµ(i), bµ( j)) ∈ ̺.

• Note that the case x ∈ [ai]̺, y <
⋃m

i=1[ai]̺ cannot appear, so it remains the
case x, y <

⋃m
i=1[ai]̺. But, then ( f (x), f (y)) = (b1, b1) ∈ ̺.

To conclude, f ∈ End{̺} ⊆ End{σ}, so b̄ ∈ σ. �

1.2.2. Central relations. A relation ̺ ⊆ An is said to be totally symmetric if
(x1, . . . , xn) ∈ ̺ implies (x1, . . . , xn)π ∈ ̺ for all permutations π, and it is said to
be totally reflexive if it contains all the reflexive elements from An. For a totally
symmetric relation ̺, an element c ∈ A is called central if (c, x2, . . . , xn) ∈ ̺ for
all x2, . . . , xn ∈ A. The set C̺ of all central elements of ̺ is called center. Finally,
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̺ , An is called central relation if it is totally reflexive, totally symmetric and has
at least one central element.

Note that the unary central relations correspond just to the proper nonempty
subsets of A.

Let ̺ be an n-ary central relation over a set A, let m be a natural number and
let ā = (a1, . . . , am) ∈ Am. We define

τ1(ā) = {(i1, . . . , in) | i1, . . . , in ∈ {1, . . . ,m} ∧ (ai1 , . . . , ain) ∈ ̺},

τ2(ā) = {(i, j) | i, j ∈ {1, . . . ,m} ∧ ai = a j},

type̺(ā) = (τ1(ā), τ2(ā)).

For ā, b̄ ∈ Am we write type̺(ā) ⊑ type̺(b̄) if τ1(ā) ⊆ τ1(b̄) and τ2(ā) ⊆ τ2(b̄).

Proposition. The function type̺ is a type-function for the relation ̺ and the integer m.

Proof. In order to prove that type̺ is a type-function, one has to show that for

every σ ⊆ Am holds σ ∈ (Inv End{̺})(m) if and only if 1.1.1(1) holds.
(⇐) Let 1.1.1(1) hold. Take f ∈ End{̺} and ā ∈ σ. We define b̄ = f (ā), i.e.

bi = f (ai), i ∈ {1, . . . ,m}. We will show that b̄ ∈ σ.
Since 1.1.1(1) holds, it suffices to show that type̺(ā) ⊑ type̺(b̄) holds, i.e.

τ1(ā) ⊆ τ1(b̄) and τ2(ā) ⊆ τ2(b̄).

• Let (ai1 , . . . , ain) ∈ ̺, i.e (i1, . . . , in) ∈ τ1(ā). Since f ∈ End{̺}, it follows that
(bi1 , . . . , bin) = ( f (ai1), . . . , f (ain)) ∈ ̺, so (i1, . . . , in) ∈ τ1(b̄).

• Let ai = a j, i.e. (i, j) ∈ τ2(ā). Then f (ai) = f (a j), so bi = b j, and therefore,
(i, j) ∈ τ2(b̄).

Hence, b̄ ∈ ̺, and f ∈ End{σ}.
(⇒) Let End{̺} ⊆ End{σ}. Take ā ∈ σ and b̄ ∈ Am such that type̺(ā) ⊑ type̺(b̄).

We will construct an endomorphism of σ that takes ā to b̄. Let c ∈ C̺. We define
a mapping f in the following way:

f (x) =

{

bi, if x = ai, i ∈ {1, . . . ,m}
c, otherwise.

Clearly, f is well-defined and takes ā to b̄. It is left to show that f ∈ End{̺}.
It will be enough to show that f maps irreflexive elements of ̺ into ̺. So, let
x̄ = (x1, . . . , xn) ∈ ̺irr.

• If (x1, . . . , xn) = (ai1 , . . . , ain), for some i1, . . . , in, then (i1, . . . , in) ∈ τ1(ā). Hence,
(i1, . . . , in) ∈ τ1(b̄), so f (x̄) = (bi1 , . . . , bin) ∈ ̺.

• If, however, there is an i ∈ {1, . . . ,n} , such that xi < {a1, . . . , am}, then f (xi) = c.
Hence, f (x̄) contains a central element of ̺ as an entry, so f (x̄) ∈ ̺.

To conclude, f ∈ End{̺} ⊆ End{σ}, so b̄ ∈ σ. �
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1.2.3. Lattice-orders. Let ̺ be a lattice-order over a set A, let m ∈ N and let
ā = (a1, . . . , am) ∈ Am. Instead of writing (x, y) ∈ ̺, we will use the more intuitive
notation x ≤̺ y. Also, we denote by 0̺ the smallest element of this ordered set,
and by x ↓= {z ∈ A | z≤̺x} the down-set of x. We define

τ1(ā) = {(i, j) | i, j ∈ {1, . . . ,m} ∧ ai≤̺a j},

τ2(ā) = {(i, j) | i, j ∈ {1, . . . ,m} ∧ ai = a j},

type̺(ā) = (τ1(ā), τ2(ā)).

For ā, b̄ ∈ Am we write type̺(ā) ⊑ type̺(b̄) if τ1(ā) ⊆ τ1(b̄) and τ2(ā) ⊆ τ2(b̄).

Proposition. The function type̺ is a type-function for the relation ̺ and the integer m.

Proof. In order to prove that type̺ is a type-function, one has to show that for

every σ ⊆ Am holds σ ∈ (Inv End{̺})(m) if and only if 1.1.1(1) holds.
(⇐) Let 1.1.1(1) hold. Take f ∈ End{̺}, and ā ∈ σ. We define b̄ = f (ā), i.e.

bi = f (ai), i ∈ {1, . . . ,m}. We will show that b̄ ∈ σ.
Since 1.1.1(1) holds, it suffices to show that type̺(ā) ⊑ type̺(b̄) holds.

• Let ai≤̺a j. Then (i, j) ∈ τ1(ā). Since f ∈ End{̺}, it follows that (bi, b j) =
( f (ai), f (a j)) ∈ ̺, so (i, j) ∈ τ1(b̄).

• Let ai = a j, i.e. (i, j) ∈ τ2(ā). Then f (ai) = f (a j), so bi = b j, and therefore,
(i, j) ∈ τ2(b̄).

Hence, b̄ ∈ ̺, and f ∈ End{σ}.
(⇒) Let End{̺} ⊆ End{σ}. Let ā ∈ σ and b̄ ∈ Am be such that type̺(ā) ⊑ type̺(b̄).

We will construct an endomorphism of ̺ that takes ā to b̄. Define the mapping f
in the following way:

f (x) =

{

bi, if x = ai, i ∈ {1, . . . ,m}
sup f (x ↓ ∩{a1, . . . , am}), otherwise.

(Note that sup ∅ = 0̺).
Clearly, this mapping is well-defined and by definition takes ā to b̄, so it is left

to show that it is an endomorphism of the lattice-order:
Let (x, y) ∈ ̺, i.e. x≤̺y.

• If x = ai, y = a j, then (i, j) ∈ τ1(ā), so (i, j) ∈ τ1(b̄) and, hence, ( f (ai), f (a j)) =
(bi, b j) ∈ ̺.

• If x = ai, and y ∈ A \ {a1, . . . , am}, then we have that f (x) = bi, and
f (y) = sup f (y ↓ ∩{a1, . . . , am}). From ai≤̺y, it follows that ai ∈ y ↓,
so ai ∈ y ↓ ∩{a1, . . . , am}. Applying f on both sides, we obtain that
f (ai) ∈ f (y ↓ ∩{a1, . . . , am}), so f (ai)≤̺ sup f (y ↓ ∩{a1, . . . , am}), i.e. f (x)≤̺ f (y).
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• If x ∈ A \ {a1, . . . , am}, y = ai, then from x≤̺ai, it follows that for every
z ∈ x ↓ holds z≤̺ai, so for every a j ∈ x ↓ ∩{a1, . . . , am} holds a j≤̺ai, i.e.
( j, i) ∈ {(i, j) | i, j ∈ {1, . . . ,m} ∧ ai≤̺a j}. Since type̺(ā) ⊑ type̺(b̄), it follows

that b j≤̺bi, so f (a j)≤̺ f (ai). So, sup f (x ↓ ∩{a1, . . . , am})≤̺ f (ai), i.e. f (x)≤̺ f (y).

• If x, y ∈ A \ {a1, . . . , am}, then f (x) = sup f (x ↓ ∩{a1, . . . , am}). From x≤̺y, it
follows that x ∈ y ↓, i.e. x ↓⊆ y ↓. So, x ↓ ∩{a1, . . . , am} ⊆ y ↓ ∩{a1, . . . , am},
and hence, f (x ↓ ∩{a1, . . . , am}) ⊆ f (y ↓ ∩{a1, . . . , am}). Therefore, sup f (x ↓
∩{a1, . . . , am})≤̺ sup f (y ↓ ∩{a1, . . . , am}), and, finally, f (x)≤̺ f (y).

To conclude, f ∈ End{̺} ⊆ End{σ}, and hence, b̄ ∈ σ.
�

As it was already mentioned above, there is still no satisfactory generic defi-
nition of types for bounded partial orders. The following example shows why
the types that solved the problem for the lattice orders are not functioning for
arbitrary bounded partial orders.

Example. On the core of the characterization lies the fact that if we have ā, b̄ ∈ Am

such that type̺(ā) ⊑ type̺(b̄) then there exists an endomorphism of the given

bounded partial order that maps ā to b̄. Consider the bounded partial order
̺ given in (1) and the smallest relation in Inv End{̺} that contains the tuple
(a1, a2, a3, a4). This relation is equal to

σ := {( f (a1), f (a2), f (a3), f (a4)) | f ∈ End{̺}}.

We show that (a6, a7, a8, a9) < σ even though

type̺((a1, a2, a3, a4)) ⊑ type̺((a6, a7, a8, a9)).

0

a1 a2

a3 a4

a5

a6 a7

a8 a9

1

(1)

Suppose that (a6, a7, a8, a9) ∈ σ
and take f ∈ End{̺} such that
f (a1) = a6, f (a2) = a7, f (a3) = a8

and f (a4) = a9. The image of
a5 should be then below a6 and
a7, but above a8 and a9. Since
such an element does not exist,
it follows that (a6, a7, a8, a9) < σ.
Therefore, f is not an endomor-
phism of σ.

1.2.4. Permutational relations. A relation ̺ is called permutational relation if
it is of the form {(x, xπ) | x ∈ A}, where π is a fix-point free permutation of A that
has prime order p.

9
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Let ̺ be a permutational relation over a set A, let m be a natural number and
let ā = (a1, . . . , am) ∈ Am. Let d : A2 → {0, . . . , p− 1} ∪∞ be the following mapping:

d(x, y) =

{

k, if xπ
k
= y,

∞, otherwise.

We define

type̺(ā) = {(i, j, d(ai, a j)) | i, j ∈ {1, . . . ,m} ∧ d(ai, a j) < ∞}.

For ā, b̄ ∈ Am we write type̺(ā) ⊑ type̺(b̄) if type̺(ā) ⊆ type̺(b̄).

Proposition. The function type̺ is a type-function for the relation ̺ and the integer m.

Proof. In order to prove that type̺ is a type-function, one has to show that for

every σ ⊆ Am holds σ ∈ (Inv End{̺})(m) if and only if 1.1.1(1) holds.

(⇐) Let 1.1.1(1) hold. Take f ∈ End{̺} and ā ∈ σ. We define b̄ = f (ā), i.e.
bi = f (ai), i ∈ {1, . . . ,m}. We will show that b̄ ∈ σ, i.e. that type̺(ā) ⊑ type̺(b̄).

Let (i, j, k) = (i, j, d(ai, a j)) ∈ type̺(ā). Then aπ
k

i
= a j. It follows that

f (aπ
k

i ) = f (a j)⇒ ( f (ai))
πk

= f (a j)⇒ bπ
k

i = b j ⇒ (i, j, k) ∈ type̺(b̄).

(⇒) Let End{̺} ⊆ End{σ}. Take ā ∈ σ and b̄ ∈ Am such that type̺(ā) ⊑ type̺(b̄).

Further, define the mapping f in the following way:

f (x) =

{

bπ
l

i
, if x = aπ

l

i
, l ∈ {0, . . . , p − 1}

x, otherwise.

It is easy to see that f takes ā to b̄.

f is well defined: Let l1 ≥ l2 and let aπ
l1

i
= aπ

l2

j
. Then

aπ
l1−l2

i = a j ⇒ d(ai, a j) = l1 − l2 ⇒ d(bi, b j) = l1 − l2 ⇒ bπ
l1−l2

i = b j,

so f (aπ
l1

i
) = bπ

l1

i
= bπ

l2

j
= f (aπ

l2

j
).

f is an endomorphism of ̺: Let (x, xπ) ∈ ̺. If x = aπ
l

i
, then

( f (x), f (xπ)) = (bπ
l

i , f (aπ
l+1

i )) = (bπ
l

i , b
πl+1

i ) = (bπ
l

i , (b
πl

i )π) ∈ ̺.

Otherwise, ( f (x), f (xπ)) = (x, xπ) ∈ ̺.

Hence, f ∈ End{σ} and b̄ ∈ σ. �
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1.2.5. Affine relations. For a binary operation + on A let

λ+ := {(x, y,u, v) ∈ A4 | x + y = u + v}.

A relation ̺ is called affine if there is an elementary abelian p–group 〈A,+,−, 0〉
on A such that ̺ = λ+.

Suppose now that (A,+,−, 0) is an elementary abelian p–group. It is well–
known that f ∈ End{λ+} if and only if

f (x + y) = f (x) + f (y) − f (0)

for every x, y ∈ A, and we say that f is an affine mapping.

Remark 1. An elementary abelian p-group of order pk can be considered as the
additive group of a k-dimensional vector space over GF(p), and from now on, we
will consider elements of A as the vectors of a such vector space.

Lemma. Every affine mapping f on A is of the form

f (~x) = g(~x) + ~v,

where g is a linear function and ~v ∈ A. Moreover, for every ~u ∈ A holds

f (~x) = g(~x − ~u) + f (~u).

Corollary. For ~a1, . . . , ~am,~b1, . . . ,~bm ∈ A holds that (~a1, . . . , ~am) can be affine mapped to

(~b1, . . . ,~bm) if and only if (~a2−~a1, . . . , ~am−~a1) can be linearly mapped to (~b2−~b1, . . . ,~bm−

~b1).

Let (~a1, . . . , ~am) ∈ Am and let l be the dimension of Span{~a1, . . . , ~am}. Let, further,

S~a1,...,~am
:= {(i1, . . . , il) | (~ai1 , . . . , ~ail) is a basis of Span{~a1, . . . , ~am}, i1 < · · · < il}.

We say that (i1, . . . , il) is lexicographically smaller than ( j1, . . . , jl), and write
(i1, . . . , il) < ( j1, . . . , jl), if (i1, . . . , il) , ( j1, . . . , jl) and for k0 := min{k | k ∈ {1, . . . , l} ∧
ik , jk} we have that ik0

< jk0
.

Let (i1, . . . , il) be the lexicographically smallest element of S~a1,...,~am
. Then every

~ai ∈ {~a1, . . . , ~am} can be uniquely represented as a linear combination:

~ai =

l
∑

j=1

α ji~ai j
.

For every (~a1, . . . , ~am) ∈ A we define its linear type as

type
+
(~a1, . . . , ~am) := [α ji]l×m.

Note that [α ji]l×m is a matrix of the shape

11
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1 · · · ∗ · · · 0 · · · ∗ · · · 0 0
1 0 · · · ∗ · · · . . . 0

· · · 0 · · · 1
... · · · ∗ · · ·

0
. . . 1

































and that every matrix of this shape occurs as a type. Note that special columns
(those that begin a block) correspond to the vectors ai1 , . . . , ail . Also, the first block
(containing just 0’s) does not necessarily appear.

In the next step we introduce the order on linear types.

Let (~a1, . . . , ~am), (~b1, . . . ,~bm) ∈ Am, let (i1, . . . , il) be the lexicographically smallest
element of S~a1,...,~am

, and let

type
+
(~a1, . . . , ~am) := [α ji]l×m,

type
+
(~b1, . . . ,~bm) := [β ji]s×m.

Let
[γ jk]s×l := [β jik] j∈{1,...,s},k∈{1,...,l}. (1)

Then type
+
(~a1, . . . , ~am) ⊑ type

+
(~b1, . . . ,~bm) if

[γ jk]s×l · [α ji]l×m = [β ji]s×m.

Once we have introduced linear types and linear type-ordering, and having
in mind the previous Corollary, we are ready to define affine types and their
ordering:

Let (~a1, . . . , ~am) ∈ Am. Then its affine type is given by

typeλ+(~a1, . . . , ~am) := type
+
(~a2 − ~a1, . . . , ~am − ~a1),

For (~b1, . . . ,~bm) ∈ Am holds typeλ+(~a1, . . . , ~am) ⊑ typeλ+(
~b1, . . . ,~bm) if

type
+
(~a2 − ~a1, . . . , ~am − ~a1) ⊑ type

+
(~b2 −~b1, . . . ,~bm −~b1).

Proposition. The function typeλ+ is a type-function for the relation λ+ and the integer
m.

Proof. In order to prove that type̺ is a type-function, one has to show that for

every σ ⊆ Am holds σ ∈ (Inv End{̺})(m) if and only if 1.1.1(1) holds.

(⇐) Let 1.1.1(1) hold. Take f ∈ End{̺}, (~a1, . . . , ~am) ∈ σ and define ~bi := f (~ai).

We have to show that typeλ+(~a1, . . . , ~am) ⊑ typeλ+(
~b1, . . . ,~bm), which is equivalent

to type
+
(~a2 − ~a1, . . . , ~am − ~a1) ⊑ type

+
(~b2 −~b1, . . . ,~bm −~b1)..

Let type
+
(~a2 − ~a1, . . . , ~am − ~a1) = [α ji]l×(m−1), and let (i1, . . . il) be the lexicograph-

ically smallest element of S~a2−~a1,...,~am−~a1
. Let, further, type

+
(~b2 − ~b1, . . . ,~bm − ~b1) =

12
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[β ji]s×(m−1), and let g be the linear mapping corresponding to f according to the
Lemma above. Take the isomorphisms ιa : Span{~a2−~a1, . . . , ~am−~a1} → GF(p)l and

ιb : Span{~b2 −~b1, . . . ,~bm −~b1} → GF(p)s such that

ιa(~ai − ~a1) =





























α1,i−1

α2,i−1
...

αl,i−1





























and ιb(~bi −~b1) =





























β1,i−1

β2,i−1
...

βs,i−1





























.

We continue by defining a new mapping γ := ιb ◦ g ◦ ι−1
a (cf. the diagram below).

Span{~a2 − ~a1, . . . , ~am − ~a1} Span{~b2 −~b1, . . . ,~bm −~b1}

GF(p)l GF(p)s

g

γ

ιa ιb

Let [γ jk]s×l be the matrix of γ corresponding to the standard bases of GF(p)l and
GF(p)s. Then showing that [γ jk] · [α ji] = [β ji] is equivalent to showing that

γ





























α1,i−1

α2,i−1
...

αl,i−1





























=





























β1,i−1

β2,i−1
...

βs,i−1





























which is true, since

γ





























α1,i−1

α2,i−1
...

αl,i−1





























= ιb ◦ g ◦ ι−1
a





























α1,i−1

α2,i−1
...

αl,i−1





























= ιb ◦ g(~ai − ~a1) = ιb(~bi −~b1) =





























β1,i−1

β2,i−1
...

βs,i−1





























.

In particular, from the above follows that the matrix [γ jk]s×l is of the desired shape
as described in (1).

(⇒) Let End{̺} ⊆ End{σ}, and let (~a1, . . . , ~am) ∈ σ, (~b1, . . . ,~bm) ∈ Am be such that

typeλ+(~a1, . . . , ~am) ⊑ typeλ+(
~b1, . . . ,~bm). This means that

type
+
(~a2 − ~a1, . . . , ~am − ~a1) ⊑ type

+
(~b2 −~b1, . . . ,~bm −~b1). (2)

Let type
+
(~a2 − ~a1, . . . , ~am − ~a1) = [α ji]l×(m−1) and let type

+
(~b2 − ~b1, . . . ,~bm − ~b1) =

[β ji]s×(m−1). Then (2) means that for the lexicographically smallest tuple (i1, . . . , ik)
in S~a2−~a1,...,~am−~a1

holds

[β jik]k×(m−1) · [α ji]l×(m−1) = [β ji]s×(m−1).
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Then [β jik]k×(m−1) defines a linear mapping γ : GF(p)l → GF(p)s. Take the same ιa
and ιb as above and define

g := ι−1
b ◦ γ ◦ ιa.

Clearly, g(~ai − ~a1) = ~bi −~b1. We define now f to be the following mapping:

f (~x) = g(~x − ~a1) +~b1.

It is easy to see that then f (~x) = g(~x) + ~b1 − g(~a1), so f is affine and, hence,
f ∈ End{̺} ⊆ End{σ}. Note that

f (~ai) = g(~ai − ~a1) +~b1 = ~bi −~b1 +~b1 = ~bi,

so (~b1, . . . ,~bm) ∈ σ, which ends the proof. �

1.2.6. h-regular relations. Let Θ = {θ1, . . . , θm} be a family of equivalence rela-
tions. We say that Θ is an h-regular family if every θi has precisely h blocks, and
additionally, if Bi is an arbitrary block of θi for i ∈ {1, . . . ,m}, then

⋂m
i=1 Bi , ∅.

An h-ary relation ̺ , Ah is h-regular if h ≥ 3 and if there is an h-regular family
Θ such that (x1, . . . , xh) ∈ ̺ if and only if for all θ ∈ Θ there are distinct i, j with
(xi, x j) ∈ θ.

Before concentrating on the relationship between the endomorphism monoids
of an h-regular and arbitrary other relation, we are going to give some general
remarks about h–regular relations (see e.g. [40]).

Note that there is another way to define h–regular relations. Given a finite set
A, |A| ≥ 3 and an h–regular family Θ = {θ1, . . . , θm} on the set A, let

RΘ = {(x1, . . . , xh) | (∀θ ∈ Θ)(∃i , j)xiθx j}

be the corresponding h–regular relation. Now, take the set {1, . . . , h}m. We define
the elementary (h,m)–relationΨh,m on this set in the following way:

Ψh,m =

{(





















a1
1
...

a1
m





















, . . . ,





















ah
1
...

ah
m





















)

| (∀i ∈ {1, . . . ,m})(∃ j , k)a
j

i
= ak

i

}

.

The elementary (h,m)–relation is the h–regular relation on the set {1, . . . , h}m

defined by the h–regular family Θ∗ = {θ∗
1
, . . . , θ∗m}, where

θ∗i =

{(





















b1
1
...

b1
m





















,





















b2
1
...

b2
m





















)

| b1
i = b2

i

}

.

Note that there exists a surjective mapping λ : A→ {1, . . . , h}m such that
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RΘ = {(x1, . . . , xh) | (λ(x1), . . . , λ(xh)) ∈ Ψh,m}.

The complete characterization of all mappings that preserve h–regular relations
can be found in [25]. We present here this result specialized for endomorphisms.

Denote by x̄(i) the i-th coordinate of the vector x̄. Let f be a unary function on
the set A. We define the function f ′

i
: A→ {1, . . . , h} in the following way:

f ′i (x) := (λ( f (x)))(i).

Now we can give the characterization:

Proposition 1 ([25]). A unary function f on a set A preserves an h–regular relation RΘ
if and only if for each function f ′

i
either f ′

i
has at most h− 1 distinct values or there exist

a permutation s on {1, . . . , h}, and a v ∈ {1, . . . ,m} such that

f ′i (x) := s((λ(x))(v)).

Before defining type-functions for h-regular relations we have to introduce
some more notions.

Denote by λ̺(ā)(i) = (a1
i
, . . . , ak

i
) the i-th row of the matrix presenting the ā ∈ Ak

in {1, . . . , h}m×k.
We define

µ̺(ā)(i) := {(l1, l2) | al1
i
= al2

i
},

Iā := {i | 1 ≤ i ≤ m and {a1
i , . . . , a

k
i } = {1, . . . , h}}.

Note that µ̺(ā)(i) is an equivalence relation on a set {1, . . . , h}. It has h classes if
and only if i ∈ Iā.

Let ̺ be an h-regular relation. Then for ā = (a1, . . . , ak) ∈ Ak we define

τ1(ā) = {µ̺(ā)(i) | i ∈ Iā},

τ2(ā) = {(i, j) | i, j ∈ {1, . . . , k} ∧ ai = a j},

type̺(ā) = (τ1(ā), τ2(ā)).

For ā, b̄ ∈ Ak we write type̺(ā) ⊑ type̺(b̄) if τ1(ā) ⊇ τ1(b̄) and τ2(ā) ⊆ τ2(b̄).

Proposition 2. The function type̺ is a type-function for the relation ̺ and the integer

k.

Proof. In order to prove that type̺ is a type-function, one has to show that for

every σ ⊆ Am holds σ ∈ (Inv End{̺})(m) if and only if 1.1.1(1) holds.
(⇒) Suppose that End{̺} ⊆ End{σ}. We need to show that condition 1.1.1(1)
holds.

Let ā = (a1, . . . , ak) ∈ σ, b̄ = (b1, . . . , bk) ∈ Ak be such that type̺(ā) ⊑ type̺(b̄), i.e.

{µ̺(b̄)(i) | i ∈ Ib̄} ⊆ {µ̺(ā)(i) | i ∈ Iā} and (1)
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∀i, j : ai = a j ⇒ bi = b j. (2)

We will construct an endomorphism of h-regular relation ̺ that takes ā to b̄.
Let f ′

1
, . . . , f ′m : A→ {1, . . . , h} be the mappings defined in the following way:

• for j ∈ {1, . . . , k}, f ′
i
(a j) := b

j

i
;

• for x ∈ A \ {a1, . . . , ak} and i < Ib̄, f ′
i
(x) := bi

1
;

• for x ∈ A \ {a1, . . . , ak} and for i ∈ Ib̄, by (1), there exists a v ∈ Iā such that

µ̺(b̄)(i) = τ̺(ā)(v), so there is a permutation s on {1, . . . , h}, such that s(a
j
v) = b

j

i
,

j ∈ {1, . . . , k}. We take f ′
i
(x) := s(λ(x)(v)).

Now, for each x ∈ A, let y(x) ∈ A be any element such that

λ(y(x)) =





















f ′
1
(x)
...

f ′m(x)





















.

Then we construct

f (x) =

{

bi, if x = ai, for i ∈ {1, . . . , k}
y(x), otherwise,

The given mapping f is well-defined because of (2). Moreover, by Proposition 1,
f ∈ End{̺}, and, therefore, f ∈ End{σ}. Since f (ā) = ( f (a1), . . . , f (ak)) = (b1, . . . , bk) =
b̄, it follows b̄ ∈ σ.

(⇐) Let condition 1.1.1(1)hold. We will show that End{̺} ⊆ End{σ}.
Let g ∈ End{̺}, ā = (a1, . . . , ak) ∈ σ, and bi := g(ai), i ∈ {1, . . . , k} (i.e. b̄ :=

(b1, . . . , bk) = g(ā)). We want to show that b̄ ∈ σ
Since 1.1.1(1) holds, it is enough to show that type̺(b̄) ⊑ type̺(ā), i.e. that (1)

and (2) hold. Here (2) holds because b̄ = g(ā), so it remains to show (1).
By assumption, g is an endomorphism of the h-regular relation ̺, so it fulfills

the conditions given in Proposition 1. If g′
i

has less then h images, then i < Ib̄.
Otherwise, there exist a permutation s on {1, . . . , h} and a v ∈ {1, . . . ,m} such that
g′

i
(x) = s(λ(x)(v)).
Specially, for ā = (a1, . . . , ak) we have

b
j

i
= g′i (a j) = s(a

j
v),

and, therefore, for i ∈ Ib̄,

µ̺(b̄)(i) = {(l1, l2) | bl1
i
= bl2

i
} = {(l1, l2) | s(al1

v ) = s(al2
v )} =

= {(l1, l2) | al1
v = al2

v } = µ̺(ā)(v).

Hence, for every i ∈ Ib̄ there exists a v ∈ Iā such that µ̺(b̄)(i) = µ̺(ā)(v). Therefore
(1) holds. �

16



1.3. Applications of local methods (Examples)

1.3. Applications of local methods (Examples)

Example 1. The goal of this example is to demonstrate the use of local methods
for the constructive enumeration of relations in the m-ary part of a given weak
Krasner algebra. In particular, we will enumerate all relations in the ternary part
of the weak Krasner algebra of three-element chain. This problem in itself is not
very interesting, but it should give the reader a good idea how such problems
can be solved in general using local methods and, moreover, it is the smallest
nontrivial problem that can be completely and feasibly handled without the use
of computer.

Let ̺ be a linear order on A = {0, 1, x}, where 0 is the smallest and 1 is the greatest
element. We want to describe a lattice of all ternary relations σ in Inv End{̺}. The
first step is to describe types and their order. Since ̺ is a bounded lattice, types
are given by 1.2.3, so they are of the shape (τ1, τ2), where τ1 is a linear quasi-order
and τ2 = τ1 ∩ τ1

−1, so in this particular case, types depend just on τ1. Therefore,
type-order is simply the natural inclusion-order on linear quasi-order relations
on the set {1, 2, 3}. This poset of linear quasi-orders is given in (1).

123

13

2

1

23

12

3

2

13

23

1

3

12

2
3
1

3
2
1

3
1
2

1
3
2

1
2
3

2
1
3

(1)

The number of ternary relations σ is equal then to the number of antichains in
the given poset and we give it in the following table:
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length number of antichains
0 1
1 13
2 54
3 112
4 105
5 36
6 2

So, all together, there are 323 distinct ternary relations in the weak Krasner
algebra generated by ̺.

Example 2. The goal of this example is to describe an h-regular relation ̺ and
a central relation σ over the same basic set such that End{̺} ⊂ End{σ}. Let
A = {a1, a2, . . . , a10} and let ̺ be the 3-regular relation defined by the 3-regular
family Θ = {θ1, θ2}, where

θ1 = {a1, a2, a3, a4, a5, a6, a7, a8, a9, a10}

θ2 = {a1, a2, a5, a8, a3, a6, a9, a4, a7, a10}.

Note that the equivalence relations from the 3-regular family are not given as
sets of ordered pairs, but as the partitions of the set A.

The representation of the elements of A is then given by the following table:

x a1 a2 a3 a4 a5 a6 a7 a8 a9 a10

λ(x)

[

1
1

] [

1
1

] [

1
2

] [

1
3

] [

2
1

] [

2
2

] [

2
3

] [

3
1

] [

3
2

] [

3
3

]

For σ we take the smallest central relation of arity 6 with the center Cσ = {a3}

such that End{̺} ⊆ End{σ}. This relation can be obtained from the smallest central
relation σC with the center a3 by closing it using the type-function given in 1.2.6
and Condition 1.1.1(1).

It is left to show that the obtained central relation σ is not a full relation. For
this purpose, take the element b̄ = (a1, a2, a6, a7, a9). It is represented by

λ(b̄) =

( [

1
1

]

,

[

1
1

]

,

[

2
2

]

,

[

2
3

]

,

[

3
2

]

,

[

3
3

] )

.

It follows that Ib̄ = {1, 2}. The corresponding equivalence relations are given by
their partition form:

µ̺(~b)(1) = {1, 2, 3, 4, 5, 6},

µ̺(~b)(2) = {1, 2, 3, 5, 4, 6},

and they form τ1(b̄).
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Note that it suffices to show that τ1(b̄) * τ1(ā) for all irreflexive tuples ā from σC,
since inclusion is transitive and σ is generated by σC, using 1.2.6 and Condition
1.1.1(1).

So, at this point we are looking for an irreflexive tuple ā that contains a3 as an
entry and satisfies the condition type̺(ā) ⊑ type̺(b̄) (i.e. τ1(b̄) ⊆ τ1(ā)), for given

b̄. In this particular case, that means that b̄ and ā should have equal types and,
therefore, the first two entries of λ(ā) should be equal. Since ā is supposed to
be irreflexive, the only two candidates for the first two entries of ā are a1 and
a2. So, if such ā exists, then it should contain a1, a2 and a3 and, therefore, the
first row of λ(ā) contains at least three entries 1. It immediately follows that
type̺(b̄) , type̺(ā), so such ā does not exist.

This construction gives us the example of an h-regular relation ̺ and a central
relation σ such that End{̺} ⊆ End{σ}. Moreover, this inclusion is proper, i.e. there
exists an f ∈ End{σ} \ End{̺}. For instance, one can easily check that

f (x) =

{

a3, for x = a5

x, otherwise,

preserves σ, but not ̺.
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Structures are the weapons
of the mathematician.

(Bourbaki)Chapter 2.

Endolocal relational structures

In the previous chapter we introduced the notion of type-functions and we
have the Locality Principle. The examples that followed made use of different
type-functions, where each of them was defined in an ad hoc manner. Our
goal now is to study type-functions systematically. In 2.1 we introduce and
study a Galois connection between relations and sets of formulae. Section 2.2 is
dedicated to k-endolocal relational structures and criteria for testing this property
using the language of formal concept analysis (i.e. in the terms of a given Galois
connection). In 2.3 two approaches to endolocal relational structures will be
made: one from the point of view of logics and one from the point of view of
models. Additionally, we will establish a connection between endolocality and
homomorphism-homogeneity. The information from the first three sections will
be collected and presented in a compact and clearly represented manner in 2.4.
Finally, the last section of this chapter is dedicated to the application of the theory
of endolocal relational structures in the study of weak Krasner algebras.

2.1. Towards the notion of endolocality

In this section we will create the theoretical framework for the use of the Locality
Principle, that is, we develop a technique for producing type-functions of differ-
ent strengths leading to a hierarchy of classes of relational structures according
to the corresponding type-function.

2.1.1. A Galois connection between relations and sets of logical formulae. To
the notion of endolocality we come with a little help of Formal Concept Analysis.
As the starting point, for a given relational structure A = (A, (̺A)̺∈R) over the re-
lational signature R, we introduce the formal contextKm(A) := (Am,Φm(∃,∧,∨,=
,R), |=). Its objects are then m-tuples, its attributes are positive existential formu-
lae with m free variables x1, . . . , xm and the binary relation between objects and
attributes is the relation of satisfaction as it was defined in 0.2.1.

The operators that establish a Galois connection between powerset lattices on
Am and Φm(∃,∧,∨,=,R) are then given as follows:

For σ ⊆ Am andΨ ⊆ Φm(∃,∧,∨,=,R)

σ′ := {ϕ ∈ Φm(∃,∧,∨,=,R) | ∀b̄ ∈ σ : b̄ |= ϕ}

Ψ′ := {ā ∈ Am | ∀ψ ∈ Ψ : ā |= ψ}.
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Further, a pair (σ,Ψ) will be a formal concept of Km(A) with intent Ψ and
extent σ if and only if for σ ⊆ Am andΨ ⊆ Φm(∃,∧,∨,=,R) holds

σ′ = Ψ and σ = Ψ′.

A closer look to this definition gives us that every intentΨ is of the form

Ψ = {ϕ ∈ Φm(∃,∧,∨,=,R) | ∀b̄ ∈ σ : b̄ |= ϕ} = pThA(σ),

and every extent σ is of the form

σ = {ā ∈ Am | ∀ψ ∈ Ψ : ā |= ψ} = {ā ∈ Am | ∀ψ ∈ Ψ : ā ∈ ψA} =

=
⋂

ψ∈Ψ

ψA =
⋂

ψ∈pThA(σ)

ψA.

2.1.2. The extents ofKm(A). At this point we recall that extents and intents are
nothing else but Galois-closed sets with respect to the given Galois connection
(i.e. σ′′ = σ and Ψ′′ = Ψ) and we direct our attention to the set Ext(Km(A)) of all
extents ofKm(A).

The set Ext(Km(A)) is a closure system, that is, it is closed with respect to
arbitrary intersections and it contains Am. Moreover, this particular closure
system satisfies even more:

Proposition 1. The closure system of all extents of (Am,Φm(∃,∧,∨,=,R), |=) is closed
with respect to finite unions.

Proof. It is enough to show that if σ1, σ2 ⊆ Am are extents, then σ1 ∪ σ2 is also an
extent. For the proof, define

T := {ϕ1 ∨ ϕ2 | ϕ1 ∈ σ
′
1, ϕ2 ∈ σ

′
2}.

It is not hard to see that T ⊆ (σ1 ∪ σ2)′. Namely, for arbitrary ϕ1 ∨ ϕ2 ∈ T we
have that ϕ1 ∈ σ′1 and ϕ2 ∈ σ′2. It follows that for every b̄ ∈ σ1 we have that
b̄ |= ϕ1 and for every b̄ ∈ σ2 we have that b̄ |= ϕ2. From these two facts it
follows straightforward that for every b̄ ∈ σ1 ∪ σ2 it holds that b̄ |= ϕ1 ∨ ϕ2, so
ϕ1 ∨ ϕ2 ∈ (σ1 ∪ σ2)′.

This fact we will use to prove that (σ1 ∪ σ2)′′ = σ1 ∪ σ2. The extensivity of the
closure operator ′′ gives immediately (σ1∪σ2)′′ ⊇ σ1∪σ2. The other inclusion we
show indirectly. Suppose there is a b̄ ∈ (σ1∪σ2)′′\(σ1∪σ2). Then b̄ < σ1 and b̄ < σ2,
so there exists a ϕ1 ∈ σ′1 such that b̄ 6|= ϕ1 and there exists a ϕ2 ∈ σ′2 such that
b̄ 6|= ϕ2. This implies that b̄ 6|= ϕ1 ∨ϕ2. On the other hand, ϕ1 ∨ϕ2 ∈ T ⊆ (σ1 ∪ σ2)′,
so it follows that b̄ < (σ1 ∪ σ2)′′, which is a contradiction. �

An immediate consequence of Proposition 1 is that for arbitrary cardinality of
the set A, the set Ext(Km(A)), ordered by inclusion, forms a distributive lattice.
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Remark. There is one more intriguing insight that should be mentioned at this
place, but which will not play a role in the sequel. It requires a little detour to
topological spaces. Note that on the set Am the operator ′′ fulfils all Kuratowski
closure axioms. That is, for all Y,Z ⊆ Am:

(C1) Y ⊆ Y′′ (Extensivity)

(C2) (Y′′)′′ = Y′′ (Idempotence)

(C3) (Y ∪ Z)′′ = Y′′ ∪ Z′′ (Preservation of binary unions)

(C4) ∅′′ = ∅ (Preservation of nullary unions)

Indeed, the fulfilment of (C1)-(C3) is obvious. To see that (C4) is fulfilled, too,
note that

∅′ = {ϕ ∈ Φm(∃,∧,∨,=,R) | ∀b̄ ∈ ∅ : b̄ |= ϕ} = Φm(∃,∧,∨,=,R),

so
∅′′ = Φm(∃,∧,∨,=,R)′ = {ā ∈ Am | ∀ψ ∈ Φm(∃,∧,∨,=,R) : ā |= ψ}.

In particular, then for ā ∈ ∅′′ must hold ā |= F, so ∅′′ = ∅. This is equipping the
structure A and all its finite powers with a natural topology.

We continue the study of the given context by restricting ourself with respect
to the cardinality of set A.

Recall that Birkhoff’s representation theorem for finite distributive lattices
states that every finite distributive lattice is isomorphic to the lattice of down-sets
of the poset of join-irreducible elements. Hence, for finite basic set A, the closure
system Ext(Km(A)) is completely described by its join-irreducible elements.

Proposition 2. Every join-irreducible element of (Ext(Km(A)),⊆) is of the form {ā}′′,
for some ā ∈ Am. Moreover, if A is finite, then for every ā ∈ Am, {ā}′′ is a join-irreducible
element.

Proof. Letτbe a join-irreducible element of (Ext(Km(A)),⊆). Note thatτ =
⋃

ā∈τ{ā}.
On the other hand, τ = τ′′, so it follows that

τ = τ′′ =













⋃

ā∈τ

{ā}













′′

=
⋃

ā∈τ

{ā}′′.

From the join-irreducibility of τ now directly follows that τ = {ā}′′, for some ā ∈ τ.
Suppose now that A is finite. We know that {ā}′′ = {b̄ ∈ Am | {ā}′ ⊆ {b̄}′}. Define

τ := {b̄ ∈ Am | {ā}′ ⊂ {b̄}′}.

Note that then ā ∈ {ā}′′ \ τ, so τ ⊂ {ā}′′. We will show that for every σ = σ′′ such
that σ ⊂ {ā}′′ holds σ ⊆ τ.
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As it was already observed, σ =
⋃

b̄∈σ{b̄}
′′ ⊂ {ā}′′, so for every b̄ ∈ σ holds

{b̄}′′ ⊂ {ā}′′. From the properties of Galois connections we obtain that for every
b̄ ∈ σ holds {b̄}′ = {b̄}′′′ ⊃ {ā}′′′ = {ā}′, so σ ⊆ τ.

Since A is finite, there are just finitely many closed sets σ that are strictly below
{ā}′′. All of them are below τ, so their union is a closed set below τ, too, and
therefore strictly below {ā}′′. �

An other way to describe Ext(Km(A)) is to study its connections to other known
closure systems. Here we obtain the following:

Proposition 3. Let A be a finite set. Then the closure system (Inv End A)(m) is equal to
Ext(Km(A)).

Proof. We will use the fact that two closure system over the same set are equal
if they have the same closure operator. For B ⊆ Am the closure operator on
(Inv End A)(m) is given by σ 7→ ΓEnd A(σ), while the closure operator on extents is
σ 7→ σ′′. Since σ′′ is an extent, it follows that σ′′ =

⋂

ψ∈pThA(σ′′)ψ
A. On the other

hand, pThA(σ′′) = σ′′′ = σ′ = pThA(σ), so σ′′ =
⋂

ψ∈pThA(σ)ψ
A. Moreover, pThA(σ)

is the set of all formulae ψ such that σ ⊆ ψA. A part of the main theorem in
clone theory (cf. [40, Hauptsatz 2.1.3.(ii)]) states that all elements from Inv End A
are of the shape ϕA for some ϕ ∈ Φ(∃,∧,∨,=,R). From this it follows that
⋂

ψ∈pThA(σ)ψ
A =

⋂

{̺ ∈ Inv End A | σ ⊆ ̺} = ΓEnd A(σ). �

2.1.3. Internal characterization of Ext(Km(A)). Once the connection between
these two closure systems is established, the way to the internal characterization
of Ext(Km(A)), for finite A, is open. Here, under “internal” we understand
a description of the closure system Ext(Km(A)) using its implicational theory.
First we note that the implications {ā} → {b̄} for {ā}′ ⊆ {b̄}′, generally hold in
Ext(Km(A)). Moreover, for finite distributive closure systems it is known (cf. [8])
that the implications of this shape generate the implicational theory of the closure
system. The following proposition sums this up for our contextsKm(A). In order
to keep this presentation self-contained, we present it together with the proof.

Proposition 1. Let A be a finite set and let σ ⊆ Am. Then σ = σ′′ if and only if

∀ā, b̄ ∈ Am ā ∈ σ ∧ b̄ |= pTh(ā)⇒ b̄ ∈ σ. (1)

Proof. (⇒) Let σ = σ′′, let ā ∈ σ and let b ∈ Am such that b̄ |= pTh(ā). Then {ā} ⊆ σ,
so {ā}′ ⊇ σ′. On the other hand, b̄ |= pTh(ā) is equivalent to {b̄}′ ⊇ {ā}′, so {b̄}′ ⊇ σ′.
Further we obtain that {b̄}′′ ⊆ σ′′ = σ, which combined with the extensivity of the
closure operator ′′ gives that b̄ ∈ σ.

(⇐) It suffices to show that σ′′ ⊆ σ, since the other inclusion always holds. The
finiteness of the set A allows us to write σ as the finite union of its elements, i.e.
σ =

⋃

ā∈σ{ā}.
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Let us now look a bit closer onto Condition (1). Take an arbitrary ā ∈ σ. As we
already pointed out, b̄ |= pTh(ā) is equivalent to b̄ ∈ {ā}′′, so the given condition
implies that {ā}′′ ⊆ σ.

Combining this fact with 2.1.2(Proposition 1), we obtain

σ′′ =
(
⋃

ā∈σ

{ā}
)′′

=
⋃

ā∈σ

{ā}′′ ⊆ σ.

�

Remark. Note that the (⇒) direction of the proof does not depend on the cardi-
nality of A.

2.1.4. Another instance of the Locality Principle. Condition 2.1.3(1) provides
another example of the Locality Principle. Indeed, as the space we can take the
set Am. The set of observations is given by the set of all intents ofKm(A) ordered
by inclusion. Finally, the observer is the operator pThA. By 2.1.3(Proposition 1)
we have that the closure system defined by the Locality Principle is equal to the
closure system of the extents of the contextKm(A). Moreover, for the finite basic
set A this closure system is equal to the closure system (Inv End(A))(m), i.e. the
m-ary part of the weak Krasner algebra generated by A.

2.2. Endolocality

In Chapter 1 we have seen examples of relational structures where a small amount
of information was enough to describe a corresponding type-function that by the
Locality Principle describes the m-ary part of the weak Krasner algebra generated
by the structure. In particular, each of the described type-functions required just
finitely many facts to be completely defined, while the image of the type-function
pThA always contains infinitely many facts about the given structure. For this
reason we will look for finite approximations of pThA that are equivalent to the
pThA for the given relational structure A. Natural approximations of pThA for

relational structures are the operators pTh(k)
A

, for k ∈ N, i.e. the restrictions of
pThA to the formulae of the quantifier depth at most k. Moreover, if the signature

R is finite, then by 0.2.2(Corollary) the images of pTh(k)
A

, up to equivalence, contain
finitely many formulae.

2.2.1. k-endolocality. A relational structure A = (A, (̺A)̺∈R) will be called k-
endolocal if for every m ∈N and every σ ⊆ Am holds

σ = σ′′ if and only if ∀ā, b̄ ∈ Am : ā ∈ σ ∧ b̄ |= pTh(k)
A

(ā)⇒ b̄ ∈ σ. (1)

If a relational structure is 0-endolocal, then we simply call it endolocal. Note that
if a relational structure is k-endolocal, then it is also (k+1)-endolocal. As a matter
of fact, in Chapter 1 we have already met examples of k-endolocal structures.
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Example 1. Recall the definition of a type-function for equivalence relations
in 1.2.1. Every observation that is made by the given type-function about an m-
tuple ā can be formalized as a set of quantifier-free formulae fromΦm(∃,∧,∨,=,R).
Indeed, let A = (A, ̺A) be a relational structure over a relational signature R = {̺},
such that ̺A is an equivalence relation over A. Then τ1(ā) can be expressed as

τ̂1(ā) = {̺(xi, x j) | (ai, a j) ∈ ̺A},

and τ2(ā) can be expressed as

τ̂2(ā) = {xi = x j | ai = a j}.

It is easy to see that τ̂i(ā) ⊆ τ̂i(b̄) if and only if τi(ā) ⊆ τi(b̄), i = 1, 2. From this and
1.2.1(Proposition), it follows that A is a 0-endolocal, that is, endolocal relational
structure.

Example 2. If we recall now the definition of the type-function for permutational
relations in 1.2.4, we arrive at a slightly different situation. Here every observa-
tion can be formalized in the following way:
Let A = (A, ̺A) be a relational structure over the relational signature R = {̺}, such
that ̺A is a permutational relation corresponding to a fix-point free permutation
of the prime order p on A. For a given k we define

ϕk(xi, x j) := (∃y1)(∃y2) . . . (∃yk−1)
(

̺(xi, y1) ∧

k−2
∧

i=1

̺(yi, yi+1) ∧ ̺(yk−1, x j)
)

and for an m-tuple ā we express type̺(ā) as

typeA(ā) := {ϕk(xi, x j) | 0 < k = d(ai, a j) < ∞} ∪ {xi = x j | d(ai, a j) = 0}

Again, it is easy to see that type̺ and typeA are equivalent type-functions. Since

0 ≤ k ≤ p−1, the maximal possible quantifier depth is p−2, so A is p−2-endolocal
structure. With a bit more care, we can see that A is, in fact, 0-endolocal if p = 2,

and
p−3

2
-endolocal if p > 2.

2.2.2. The hierarchy of k-endolocal structures. The notion of k-endolocality
defines in a natural way a hierarchy on the class of relational structures. If we
denote by k-ELR the class of k-endolocal relational structures over the signature
R, then we have

0-ELR ⊆ 1-ELR ⊆ 2-ELR ⊆ · · ·

Moreover, if we fix a basic set A and if we denote by k-ELR(A) the class of
k-endolocal relational structures with the signature R over A, then we have

0-ELR(A) ⊆ 1-ELR(A) ⊆ 2-ELR(A) ⊆ · · ·

Whenever we work with such hierarchies, a few natural questions arise:
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2.2. Endolocality

1. Are these hierarchies nontrivial?

2. Do they cover all relational structures with the given signature (and the
given basic set)?

3. Do they get saturated after finitely many levels?

4. Is it possible to characterize all structures that are placed at the bottom of
the hierarchy?

5. Is it possible to determine for the given relational structure whether it is in
some class of the hierarchy?

In the sequel we will make attempts to answer some of these questions.

2.2.3. Criteria for k-endolocality. A structure A is k-endolocal if for every m ∈

N, the type-function pTh(k)
A

defines, using the Locality Principle, the closure
system Ext(Km(A)). That is, for the given structure A, type-functions pThA and

pTh(k)
A

are equivalent. The results that follow characterize k-endolocal structures
using the language of formal concept analysis.

Definition. We say that a relational structure A is weakly oligomorphic if for all
m ∈N the contextKm(A) has just finitely many different extents.

Proposition 1. Let A = (A, (̺A)̺∈R) be a relational structure. Then the following hold:

1. If A is k-endolocal, then every intentΨ of the contextKm(A), m ∈N, is generated
byΨ(k).

2. If A is weakly oligomorphic and if for all m ∈ N every intent Ψ of the context
Km(A) is generated byΨ(k), then A is k-endolocal.

Proof. About 1. Let A be k-endolocal. Then for every m ∈ N and every σ ⊆ Am

holds 2.2.1(1). Let Ψ be an intent of the context Km(A) and let σ := Ψ′. Since
Ψ(k) ⊆ Ψ, it follows that (Ψ(k))′ ⊇ Ψ′ = σ.

On the other hand, from 2.2.1(1) it follows that for every ā ∈ σ holds {b̄ ∈ Am |

b̄ |= pTh(k)
A

(ā)} ⊆ σ. Note that

Ψ(k) = (σ′)(k) =
((

⋃

ā∈σ

{ā}
)′)(k)

=
(
⋂

ā∈σ

{ā}′
)(k)

.

We can now compute (Ψ(k))′:

(Ψ(k))′ =
((

⋂

ā∈σ

{ā}′
)(k))′

=
(
⋂

ā∈σ

(

{ā}′
)(k))′

= sup
ā∈σ

((

{ā}′
)(k))′

= sup
ā∈σ

(

pTh(k)
A

(ā)
)′

= sup
ā∈σ
{b̄ ∈ Am | b̄ |= pTh(k)

A
(ā)},
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and we obtain that (Ψ(k))′ ⊆ σ. Hence, (Ψ(k))′′ = σ′ = Ψ.
About 2. Suppose that for every m ∈ N and for every intent Ψ of the context
Km(A) holdsΨ = (Ψ(k))′′. We will show that 2.2.1(1) holds.

Let σ ⊆ Am such that σ = σ′′. Take ā ∈ σ and b̄ ∈ Am such that b̄ |= pTh(k)
A

(ā).
Then {b̄}′ ⊇ ({ā}′)(k), so b̄ ∈ {b̄}′′ ⊆ (({ā}′)(k))′ = {ā}′′ ⊆ σ.

Let now σ ⊆ Am and suppose that for all ā ∈ σ and b̄ ∈ Am holds that if

b̄ |= pTh(k)
A

(ā), then b̄ ∈ σ. Note that σ ⊆ σ′′ always holds, so we only have to show
the other inclusion. LetΨ := σ′. Then

σ′′ = Ψ′ = (Ψ(k))′′′ = (Ψ(k))′ = {b̄ ∈ Am | b̄ |= Ψ(k)}

= {b̄ ∈ Am | b̄ |= pTh(k)
A

(σ)} = {b̄ ∈ Am | b̄ |=
⋂

ā∈σ

pTh(k)
A

(ā)}.

Hence,

b̄ ∈ σ′′ ⇔ b̄ |=
⋂

ā∈σ

pTh(k)
A

(ā)⇔ b̄ ∈
(
⋂

ā∈σ

pTh(k)
A

(ā)
)′

⇔ b̄ ∈ sup
ā∈σ

(pTh(k)
A

(ā))′

Since A is weakly oligomorphic, there are elements ā1, . . . , āl ∈ σ such that

sup
ā∈σ

(pTh(k)
A

(ā))′ =

l
⋃

i=1

(pTh(k)
A

(āi))
′ ⊆ σ.

Thus, σ′′ ⊆ σ, so σ = σ′′, which ends this proof. �

The previous Proposition allows us to decide k-endolocality of a given rela-
tional structure A by studying those intents ofKm(A) that are generated by their
fragments of quantifier depth at most k. This motivates us to introduce contexts

K
(k)
m (A) := (Am,Φ(k)

m (∃,∧,∨,=,R), |=), for k ∈N, and to study their concept lattices.

In order not to cause confusions, the Galois-operators ofK(k)
m (A) will be denoted

by + instead of ′.

Lemma. Let A = (A, (̺A)̺∈R) be a relational structure. Then the following are equiva-
lent:

1. Every intentΨ inKm(A) is generated byΨ(k).

2. Ext(Km(A)) = Ext(K(k)
m (A)).

Proof. (1⇒ 2) Suppose that every intent Ψ in Km(A) is generated by Ψ(k), i.e.
Ψ = (Ψ(k))′′. Every extent inKm(A) is then of the form

Ψ′ = (Ψ(k))′′′ = (Ψ(k))′ = (Ψ(k))+

Since (Ψ(k))+ ∈ Ext(K(k)
m (A)), it follows that Ext(Km(A)) ⊆ Ext(K(k)

m (A)). On the
other hand, for σ ∈ Ext(K(k)

m (A)), there exists a Ψ ⊆ Φ(k)
m (∃,∧,∨,=,R) such that
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2.2. Endolocality

σ = Ψ+. Since Φ(k)
m (∃,∧,∨,=,R) ⊆ Φm(∃,∧,∨,=,R), it follows that Ψ+ = Ψ′, so

Ext(K(k)
m (A)) ⊆ Ext(Km(A)).

(2⇒ 1) Let Ψ be an arbitrary intent in Km(A). Then Ψ′ ∈ Ext(Km(A)), so Ψ′ ∈

Ext(K(k)
m (A)), i.e. (Ψ′)++ = Ψ′. We have to show thatΨ = (Ψ(k))′′. Since (Ψ(k)) ⊆ Ψ,

it follows that Ψ′ ⊆ (Ψ(k))′ = (Ψ(k))+, so we obtain Ψ(k) ⊆ (Ψ(k))++ ⊆ Ψ′+. On the
other hand,Ψ′+ ⊆ Ψ(k), soΨ′+ = Ψ(k). From this fact we obtain

(Ψ(k))′′ = ((Ψ(k))′)′ = ((Ψ(k))+)′ = ((Ψ′+)+)′ = ((Ψ′)++)′ = ((Ψ′)′ = Ψ.

�

Corollary. Let A = (A, (̺A)̺∈R) be a relational structure. Then the following hold:

1. If A is k-endolocal, then Ext(Km(A)) = Ext(K(k)
m (A)).

2. If A is weakly oligomorphic and Ext(Km(A)) = Ext(K(k)
m (A)), then A is k-endolocal.

Remark. An immediate consequence of the previous corollary is that Km(A) and

K
(k)
m (A) have isomorphic closure systems of intents. The isomorphism between

these closure systems maps every intentΨ ofKm(A) toΨ(k).

Proposition 2. Let A = (A, (̺A)̺∈R) be a relational structure. Then the following hold:

1. If A is k-endolocal, then for

∀ā, b̄ ∈ Am : pTh(k)
A

(ā) ⊆ pTh(k)
A

(b̄)⇔ pThA(ā) ⊆ pThA(b̄). (1)

2. If A is weakly oligomorphic and (1) holds, then A is k-endolocal.

Proof. About 1. Let A be k-endolocal. Then (1) follows immediately from the
previous Remark.

About 2. We will show thatKm(A) andK(k)
m (A) have the same extents.

Let σ be an extent of K(k)
m (A). Then σ+ ⊆ σ′, so σ = σ′′ ⊇ σ++. Since σ ⊆ σ′′, it

follows σ = σ′′, so σ ∈ Ext(Km(A)).
Let, now, σ be an extent ofKm(A). Note that Condition (1) is equivalent to

∀ā, b̄ ∈ Am : b̄ ∈
(

pTh(k)
A

(ā)
)′

⇔ b̄ ∈
(

pThA(ā)
)′

,

i.e. for every ā ∈ Am we have that {ā}′′ = {ā}++. Since A is weakly olgomorphic,
Km(A) has only finitely many pairwise different extents {ā}

′′

. Moreover, for every
extent σ ofKm(A) we know that

σ =
⋃

ā∈σ

{ā}′′,

so we can choose representatives ā1, . . . , āl ∈ σ such that

σ =
l

⋃

i=1

{āi}
′′ =

l
⋃

i=1

{āi}
++ ∈ Ext(K(k)

m (A)).

Hence, since A is weakly oligomorphic, from the above Corollary it follows that
A is k-endolocal. �
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2.2.4. Structures that are not k-endolocal. The definition of k-endolocality is
useful if we want to prove that a given structure has this property. On the other
hand, if we want to identify endolocal structures in a given set of relational
structures, it is more useful to filter out those that are not k-endolocal. The
following proposition is the first step in our attempts to find satisfactory criteria
for recognizing structures that are not k-endolocal.

Proposition. Let A = (A, (̺A)̺∈R) be a weakly oligomorphic relational structure. Then
the following are equivalent:

1. There exists an m ∈N, an extent σ ofKm(A), an ā ∈ σ and some b̄ ∈ Am such that

pTh(k)
A

(ā) ⊆ pTh(k)
A

(b̄), but b̄ < σ.

2. There exists an m ∈ N, and ā, b̄ ∈ Am such that pTh(k)
A

(ā) ⊆ pTh(k)
A

(b̄), but
pThA(ā) * pThA(b̄).

3. A is not k-endolocal.

Proof. (1⇔ 2) Let 1 hold and suppose that for ā and b̄ from 1 holds that

pThA(ā) ⊆ pThA(b̄).

Then b̄ |= pThA(ā) = {ā}′, so b̄ ∈ {ā}′′. On the other hand , {ā} ⊆ σ, so {ā}′′ ⊆ σ′′ = σ,
and, therefore, b̄ ∈ σ, which is a contradiction.

Hence, pThA(ā) * pThA(b̄).

Let now 2 hold, and take ā and b̄ such that pTh(k)
A

(ā) ⊆ pTh(k)
A

(b̄), but pThA(ā) *
pThA(b̄). We define σ := {ā}′′. Then σ = σ′′, ā ∈ σ, but b̄ < σ.

(2⇔ 3) This is a direct consequence of 2.2.3(Proposition 2). �

Remark. Note that (1⇔ 2) and (2⇒ 3) also hold in general, i.e. they do not
depend on whether A is weakly oligomorphic or not.

2.2.5. k-endolocality and finite structures. We turn now our attention again to
finite relational structures. The following Proposition gives answers to Questions
2 and 3 from 2.2.2. In particular, we will show that every finite relational structure
is k-endolocal for a certain k ∈ N, where k is bounded by the cardinality of the
basic set.

Proposition. Let A be a relational structure and let m ∈ N. Then for every b̄ ∈ Am

holds pThA(b̄) = (pTh(|A|)
A

(b̄))′′

Proof. Note that from pThA(b̄) ⊇ pTh(|A|)
A

(b̄) it follows pThA(b̄) = (pThA(b̄))′′ ⊇

(pTh(|A|)
A

(b̄))′′. We will prove that the other inclusion also holds.
Let ϕ ∈ pThA(b̄). Then

ϕ ≡
∨

i∈I

(∃xm+1) . . . (∃xm+l)
∧

j∈Ji

ψi j.
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Denote by ψi the formula (∃xm+1) . . . (∃xm+l)
∧

j∈Ji
ψi j. For each ψi and for each

ā ∈ Am such that ā |= ψi, we will now construct a formula ψi,ā with the following
three properties:

1. ψA
i,ā ⊆ ψ

A
i

,

2. ā |= ψi,ā and

3. qd(ψi,ā) ≤ |A|.

By 0.2.3(Proposition), there exists a relational configuration (C,D,E, θ) such that
just for finitely many ̺ ∈ R we have that ̺D , ∅ and such that for all ā ∈ Am holds

ā |= ψi ⇔ ā ||= (C,D,E, θ).

In other words, there exists a homomorphism g : D→ A such that (G1) and (G2)
hold.

We define an equivalence relation ≃ over D in the following way:

d ≃ e if and only if d = e or (d, e ∈ D \ C and (d, e) ∈ ker g).

Note that this equivalence relation has at most |A|+|C| equivalence classes.
We construct (C̃, D̃, Ẽ, θ̃) such that D̃ := D/≃, C̃ := {{c} | c ∈ C}, Ẽ : i 7→ {E(i)},

θ̃ := ∆D̃ ∪ {([c j1]≃, [c j2]≃) | (c j1 , c j2) ∈ θ} and define g̃ : D̃→ A : [c]≃ 7→ g(c).
If [d]≃ = [e]≃, then d ≃ e, so (d, e) ∈ ker g, i.e. g(d) = g(e), and, therefore, g̃ is

well defined. Further, let us define for every ̺ ∈ R, ̺D̃ := {([di1]≃, . . . , [diar(̺)
]≃) |

(di1 , . . . , diar(̺)
) ∈ ̺D}. Let (e1, . . . , ear(̺)) ∈ ̺D̃. Then there exists a (di1 , . . . , diar(̺)

) ∈
̺D such that e j = [di j

]≃ , j = 1, . . . , ar(̺). By definition, (g̃(e1), . . . , g̃(ear(̺))) =

(g(di1), . . . , g(diar(̺)
)) ∈ ̺A, so g̃ is a homomorphism. From the definition of C̃ and

Ẽ, it follows that (G1) holds, while (G2) follows from the definition of θ̃.
Observe that from this it follows that ā ||= (C̃, D̃, Ẽ, θ̃).
We will now show that if t̄ ||= (C̃, D̃, Ẽ, θ̃), then t̄ ||= (C,D,E, θ).

D

D̃ A)

nat≃ gt

g̃t

Let t̄ ||= (C̃, D̃, Ẽ, θ̃). Then there exists a homomor-
phism g̃t : D̃ → A that fulfills (G1) and (G2). We con-
struct gt : D → A as gt := g̃t ◦ nat≃. Then gt is both
well-defined and a homomorphism. For (G1) note that
gt(E(i)) = g̃t(nat≃(E(i))) = g̃t([E(i)]≃) = ai, since g̃t fulfills
(G1). For (G2) take (c j1 , c j2) ∈ θ. Then ([c j1]≃, [c j2]≃) ∈ θ̃ ⊆
ker g̃t, so gt(c j1) = g̃t([c j1]≃) = g̃t([c j2]≃) = gt(c j2), and θ ⊆ ker gt.

Note that ̺D̃ , ∅ if and only if ̺D , ∅. Thus, there are just finitely many ̺ ∈ R
with ̺D̃ , ∅. Hence, by 0.2.3(Proposition), it follows that there exists a formula
ψi,ā such that qd(ψi,ā) = |D̃ \ C̃| ≤ |A| and

t̄ |= ψi,ā ⇔ t̄ ||= (C̃, D̃, Ẽ, θ̃).
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We take now
∨

{ā|ā|=ψi}
ψi,ā and we claim that it is equivalent to ψi. If t̄ |= ψi, then

t̄ |= ψi,t̄, so t̄ |=
∨

{ā|ā|=ψi}
ψi,ā. On the other hand, if t̄ |=

∨

{ā|ā|=ψi}
ψi,ā, then there exists

an ā such that ā |= ψi and t̄ |= ψi,ā, so t̄ |= ψi.
Since qd(ψi,ā) ≤ |A|, it follows that qd(

∨

{ā|ā|=ψi}
ψi,ā) ≤ |A|, so qd(

∨

i∈I ψi) ≤ |A|,
i.e. ϕ is equivalent to a formula of quantifier depth less than or equal |A|, and,

hence, ϕ ∈ (pTh|A|
A

(b̄))′′. �

2.3. Model-theoretical characterizations of endolocality

2.3.1. Positive existential elimination sets. In the previous section we were
using the language of formal concept analysis to define k-endolocal relational
structures and to describe some of their basic properties. Here we will create a
connection between the notion of k-endolocality and notions from model theory.
Let us start by introducing the notion of positive existential elimination sets.

Definition. Let A = (A, (̺A)̺∈R) be a relational structure. A set Ψ ⊆ Φ(∃,∧,∨,=
,R) is called a positive existential elimination set for A if for every formula
ϕ(x1, . . . , xm) ∈ Φ(∃,∧,∨,=,R) there is a formula ϕ∗(x1, . . . , xm) ∈ Φ(∃,∧,∨,=,R)
which is a disjunction of conjunctions of formulae inΨ and ϕ is equivalent to ϕ∗

in A.

Proposition 1. Let A = (A, (̺A)̺∈R) be a weakly oligomorphic relational structure. If
Φ(k)(∃,∧,∨,=,R) is a positive existential elimination set for A then A is k-endolocal.

Proof. Suppose thatΦ(k)(∃,∧,∨,=,R) is a positive existential elimination set for A.
Since A is weakly oligomorphic, by 2.2.3(Proposition 1), it suffices to show that
for every m ∈ N, we have that every intent Ψ of the context Km(A) is generated
byΨ(k).

Take any intent Ψ of Km(A). For each ψ ∈ Ψ, let ψ∗ be a disjunction of
conjunctions of formulae fromΦ(k)(∃,∧,∨,=,R) that is equivalent toψ in A. Note
that ψ∗ ∈ Ψ. It is not hard to see that

ψ∗ ≡
∧

i∈Iψ

ψ∗i ,

whereψ∗
i
, i ∈ Iψ, are disjunctions of formulae fromΦ(k)(∃,∧,∨,=,R). In particular,

for every i ∈ Iψ we have that ψ∗
i
∈ Φ(k)(∃,∧,∨,=,R). Further, let Ψ∗ := {ψ∗

i
| ψ ∈

Ψ, i ∈ Iψ}. Then

Ψ′ =
⋂

ψ∈Ψ

ψ′ =
⋂

ψ∈Ψ

(ψ∗)′ =
⋂

ψ∈Ψ

⋂

i∈Iψ

(ψ∗i )
′ = (Ψ∗)′,

soΨ = Ψ′′ = (Ψ∗)′′. Now we note that from ψ∗ ∈ Ψ, it follows that

Ψ′ ⊆ {ψ∗}′ =



















∧

i∈Iψ

ψ∗i



















′

= {ψ∗i | i ∈ Iψ}
′.
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Since Ψ is an intent, it follows that {ψ∗
i
| i ∈ Iψ} ⊆ Ψ

(k). Hence, Ψ∗ ⊆ Ψ(k), and,
thus, (Ψ(k))′′ = Ψ. �

Remark. In the previous proof we have shown that if a relational structure A has
Φ(k)(∃,∧,∨,=,R) as a positive existential elimination set, then every intent Ψ of
Km(A), m ∈ N is generated by Ψ(k). From 2.2.3(Lemma) it follows that this is

equivalent to the fact that Ext(Km(A)) = Ext(K(k)
m (A)).

Proposition 2. Let A = (A, (̺A)̺∈R) be a weakly oligomorphic relational structure. If
A is k-endolocal then Φ(k)(∃,∧,∨,=,R) is a positive existential elimination set for A.

Proof. Let A be a k-endolocal weakly oligomorphic relational structure. Further,
let m ∈ N and let ψ ∈ Φm(∃,∧,∨,=,R). Then, by 2.2.3(Proposition 1) and by

2.2.3(Lemma), we have that Ext(Km(A)) = Ext(K(k)
m (A)), so {ψ}′ = (({ψ}′′)(k))′.

Since A is weakly oligomorphic, the context Km(A) has finitely many extents.

From this it follows at once that the cross-table of K(k)
m (A) has just finitely many

distinct columns. So, there exist ϕ1, . . . , ϕl ∈ ({ψ}′′)(k) such that

{ψ}′ = (({ψ}′′)(k))′ = {ϕ1, . . . , ϕl}
′ = {ϕ1 ∧ · · · ∧ ϕl}

′.

Hence, ψ is equivalent to ϕ1 ∧ · · · ∧ ϕl in A, that is to a conjunction of formulae

from Φ(k)
m (∃,∧,∨,=,R). �

2.3.2. One-point extension and weak one-point extension. In contrast to the
previous sections, where the general notion of k-endolocality was handled, here
we direct our attention to endolocal relational structures. The second notion
from model theory that is is closely connected to the notion of endolocality is the
weak homogeneity of relational structures. Let us recall the original definition
of a weakly homogeneous relational structure:

Definition 1. We say that a relational structure D is weakly homogeneous if
for every two finite substructures A and B of D such that A ≤ B, and for every
embedding f : A ֒→ D there exists an embedding g : B ֒→ D that extends f .

In this study, we are not focused on embeddings, but on local homomorphisms.
Therefore, we introduce the notion of weakly homomorphism-homogeneous
structures:

Definition 2. We say that a relational structure D is weakly homomorphism-
homogeneous if for every two finite substructures A an B of D such that A ≤ B,
and for every local homomorphism f : A→ D there exists a local homomorphism
g : B→ D that extends f .

Let us now formulate another property that is equivalent to weak homomor-
phism-homogeneity and that will be useful when we characterize structures that
are not endolocal:
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Definition 3. We say that a relational structure A has the one-point extension
property if for every finite substructure B of A, every b ∈ A \ B and every
homomorphism f : B→ A, there exists a homomorphism g : B ∪ {b} → A which
extends f .

The following Lemma will prove useful later on.

Lemma 1. Let A = (A, (̺A)̺∈R) be a relational structure and let B = (B, (̺B)̺∈R) be a
retract of A. If A has the one-point extension property, then B also has the one-point
extension property.

Proof. Let r : A ։ B be a retraction. Without loss of generality, we can assume
that B ≤ A. Let ι : B ֒→ A be the identical embedding. Let B1 ⊆ B and let
f : B1 → B be a local homomorphism. We will take a b ∈ B \ B1 and we will
show that f can be extended to B1 ∪ {b}. Note that ι ◦ f : B1 → A is also a local
homomorphism, and, since A has the one-point extension property, it can be
extended to f̃ : B1 ∪ {b} → A. We claim that g = r ◦ f̃ is an extension of f to
B1 ∪ {b}. Take x ∈ B1. Then

g(x) = (r ◦ f̃ )(x) = r( f̃ (x)) = r((ι ◦ f )(x)) = ((r ◦ ι) ◦ f )(x) = f (x).

Hence, B has the one-point extension property. �

Lemma 2. Let A = (A, (̺A)̺∈R) be a weakly oligomorphic relational structure. If A
does not have the one-point-extension property, then there exist an m ∈N, an irreflexive
tuple ā ∈ Am, some b̄ ∈ Am and a formula ϕ ≡ (∃xm+1)ψ, where ψ is a conjunction of

atomic formulae from Φ(0)

m+1
(∃,∧,∨,=,R), such that pTh(0)

A
(ā) ⊆ pTh(0)

A
(b̄), and ā |= ϕ,

but b̄ 6|= ϕ.

Proof. Suppose that A does not have the one-point extension property. This
means that there exist a finite substructure B of A, a homomorphism f : B→ A,
and an element d ∈ A \ B, such that f cannot be extended to a homomorphism
between B ∪ {d} and A.

Let m := |B|, B ∪ {d} := {b1, . . . , bm+1} such that B = {b1, . . . , bm} and d = bm+1.
Define ā := (b1, . . . , bm) and b̄ = ( f (b1), . . . , f (bm)). Consider the following set of
atoms

Φ := {̺(xi1 , . . . , xiar(̺)
) | ̺ ∈ R, i1, . . . , iar(̺) ∈ {1, . . . ,m + 1}, (bi1 , . . . , biar(̺)

) ∈ ̺A}.

Clearly, Φ ⊆ Φ(0)

m+1
(∃,∧,∨,=,R), but it might be infinite. However, since A is

weakly oligomorphic, Φ falls into finitely many equivalence classes with respect
to equivalence of formulae in A. Thus, we can choose formulae ψ1, . . . , ψl ∈ Φ

such that
Φ′ = {ψ1, . . . , ψl}

′ = {ψ1 ∧ · · · ∧ ψl}
′.

We define ψ ≡ ψ1 ∧ · · · ∧ ψl, and ϕ ≡ (∃xm+1)ψ.
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2.3. Model-theoretical characterizations of endolocality

It is easy to see that pTh(0)
A

(ā) ⊆ pTh(0)
A

(b̄) and ā |= ϕ. Following we will show
that b̄ 6|= ϕ. Suppose on the contrary that b̄ |= ϕ. Then there exists some c ∈ A and
a valuation v : X→ A with v(xi) = f (bi) (i = 1, . . . ,m) such that

A |=v(xm+1/c) ψ.

Since {ψ}′ = Φ′, this is equivalent to

∀χ ∈ Φ : A |=v(xm+1/c) χ (1)

which means that for all ̺ ∈ R and for all i1, . . . , iar(̺) ∈ {1, . . . ,m + 1} with
(bi1 , . . . , biar(̺)

) ∈ ̺A we have that

A |=v(xm+1/c) ̺(xi1 , . . . , xiar(̺)
).

Now define a mapping g : B ∪ {d} → A in the following way:

g(x) =

{

f (x), if x ∈ B.
c, if x = d.

With this definition (1) can be rewritten as

∀χ ∈ Φ : A |=xm+1/g(bm+1)) χ. (2)

We claim that g is a homomorphism. For the proof, take ̺ ∈ R and any tuple
(bi1 , . . . , biar(̺)

) ∈ ̺A, where {i1, . . . , iar(̺)} ⊆ {1, . . . ,m + 1}. Then we know from (2)
that

A |=v(xm+1/g(bm+1)) ̺(xi1 , . . . , xiar ̺),

i.e. (g(bi1), . . . , g(biar(̺)
)) ∈ ̺A, so g is a homomorphism. Hence, f can be extended

to the homomorphism g : B ∪ {d} → A, which is a contradiction. Therefore,
b̄ 6|= ϕ. �

Proposition 1. Let A = (A, (̺A)̺∈R) be a weakly oligomorphic relational structure.
Then A has the one-point-extension property if and only if A is endolocal.

Proof. (⇒) We prove the claim by contraposition. Suppose that A is not endolocal.
Then, since A is weakly oligomorphic, from 2.2.4(Proposition) it follows that

there exist an m ∈ N and c̄, d̄ ∈ Am such that pTh(0)
A

(c̄) ⊆ pTh(0)
A

(d̄), but pThA(c̄) *
pThA(d̄).

From this it follows that there exists a positive existential formula ϕ over R,
such that c̄ |= ϕ and d̄ 6|= ϕ. Without loss of generality, ϕ can be chosen of the
shape

ϕ ≡
∨

i∈I

(∃xm+1) . . . (∃xm+k)
∧

j∈Ji

ϕi j,

where the ϕi j are atomic formulae. This means that for every i ∈ I we have that

d̄ 6|= (∃xm+1) . . . (∃xm+k)
∧

j∈Ji

ϕi j
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Chapter 2. Endolocal relational structures

and that there exists an ı̃ ∈ I such that

c̄ |= (∃xm+1) . . . (∃xm+k)
∧

j∈Jı̃

ϕı̃ j.

Then for the primitive positive formula

µ ≡ (∃xm+1) . . . (∃xm+k)
∧

j∈Jı̃

ϕı̃ j

we have that c̄ |= µ and d̄ 6|= µ.
By 0.2.3(Proposition), there exists a relational configuration (C̃, D̃, Ẽ, θ̃) that

corresponds to µ in A. In particular d̄ 6||= (C̃, D̃, Ẽ, θ̃), and c̄ ||= (C̃, D̃, Ẽ, θ̃). From
the latter it follows that there exists a homomorphism g : D̃→ A such that (G1)
and (G2) from 0.2.3(Definition 1) hold.

The next step will be to strengthen (C̃, D̃, Ẽ, θ̃). The resulting relational config-
uration should still have the property that c̄ satisfies it and that d̄ does not:
Construction of a strengthening of (C̃, D̃, Ẽ, θ̃). Let C, D be the carriers of C̃, and
D̃, respectively. We can suppose that D has m+ k elements. Let us enumerate the
elements of D by {y1, y2, . . . ym+k} such that for all 1 ≤ i ≤ m we have that E(i) = yi.
This enumeration of D we will denote by F (i.e. F(i) = yi for 1 ≤ i ≤ m + k).

Now we define an R-structure D = (D, (̺D)̺∈R) by setting

̺D := {(yi1 , . . . , yiar(̺)
) ∈ Dar(̺) | (g(yi1), . . . , g(yiar(̺)

)) ∈ ̺A}.

Moreover we define C to be the substructure of D that is induced by C. Finally
we set E := Ẽ and θ := ker g. Next we will prove the following:

Claim 1. (C,D,E, θ) is stronger than (C̃, D̃, Ẽ, θ̃) in A,

Claim 2. c̄ ||= (C̃, D̃, Ẽ, θ̃), but d̄ 6||= (C̃, D̃, Ẽ, θ̃).

proof of claim 1. Let ā ∈ Am such that ā ||= (C,D,E, θ). This means that there
exists a homomorphism f : D→ A with properties (G1) and (G2). We will show
now that ā ||= (C̃, D̃, Ẽ, θ̃) by proving that f : D̃ → A is a homomorphism that
fulfills (G1) and (G2), relative to (C̃, D̃, Ẽ, θ̃).

For this we take an arbitrary ̺ ∈ R and (yi1 , . . . , yiar(̺)
) ∈ ̺D̃. By construction

we have that ̺D̃ ⊆ ̺D, so ( f (yi1), . . . , f (yiar(̺)
)) ∈ ̺A, and therefore, f : D̃ → A is

an homomorphism. Moreover, since E = Ẽ, we have that (G1) is fulfilled and
because θ̃ ⊆ ker g = θ ⊆ ker f , we also have that (G2) is fulfilled. Hence we have
that ā ||= (C̃, D̃, Ẽ, θ̃).
proof of claim 2. From the fact that (C,D,E, θ) is stronger that (C̃, D̃, Ẽ, θ̃) it
follows at once that d̄ 6||= (C,D,E, θ). In order to show that c̄ ||= (C,D,E, θ)
we consider once again the homomorphism g : D̃ → A that was considered
above. We note, that D was defined in a way such that also g : D → A is a
homomorphism. Since E = Ẽ, we have that g(E(i)) = ci for 1 ≤ i ≤ m and hence

36



2.3. Model-theoretical characterizations of endolocality

we have that (G1) is fulfilled. The property (G2) holds, too, because θ = ker g,
by construction. This finishes the proof of claim 2.
Construction of a sequence of relational configurations. Our next goal is to
define a sequence of relational configurations (Di,Di,Ei, θi) for 0 ≤ i ≤ k. For this
we set

Di := {y1, . . . , ym+i} Ei := F ↾Di
θi := θ ∩D2

i

In particular, we define Di to be the substructure of D that is induced by Di.
If in addition for 0 ≤ i ≤ k we define

gi := g ↾Di
, and āi := (g(y1), . . . , g(ym+i)),

then we see at once that āi ||= (Di,Di,Ei, θi). On this point we note that ā0 = c̄.
Sequences of homomorphisms g̃i : Di → A. Our next goal is to examine
sequences of homomorphisms g̃i : Di → A with the following properties:

1. g̃0 : yi 7→ di for 1 ≤ i ≤ m,

2. g̃i+1 ↾Di
= g̃i for 0 ≤ i < k,

3. θi ⊆ ker g̃i for 0 ≤ i ≤ k.

Note that if we define b̄i := (g̃i(y1), . . . , g̃i(ym + i)), then Properties 1 and 3 just say
that b̄i ||= (Di,Di,Ei, θi). Moreover, Property 1 says nothing else but that b̄0 = d̄.

The construction of such a sequence (if it exists at all), proceeds by induction
on i. First we have to show that it will function for i = 0:

In this case the function g̃0 is already prescribed by Property 1, above. We still
have to show that the mapping g̃0 is a homomorphism and that θ0 ⊆ ker g̃0:

Sc̄

C = D0 A

g′0

g̃0

h

g̃0 is a homomorphism: Consider the substructure
Sc̄ of A that is induced by {c1, . . . , cm}. The mapping
g′0 : D0 → Sc̄ defined by g′0 : x 7→ g0(x), clearly is
a homomorphism from D0 to Sc̄. Moreover, since

pTh(0)
A

(c̄) ⊆ pTh(0)
A

(d̄), the mapping h : Sc → A that
is defined by h : ci 7→ di, is a homomorphism from
Sc̄ to A. Now we note that g̃0 = h ◦ g′0 (cf. diagram). Thus, indeed, g̃0 is a
homomorphism.
θ0 ⊆ ker g̃0: The claim that θ0 ⊆ ker g̃0 follows directly from

θ0 = ker g0 = ker g′0 ⊆ ker h ◦ g′0 = ker g̃0.

Let us now come to the key-step of the proof:
Key Step. We will now show that a complete sequence of homomorphisms g̃i for
0 ≤ i ≤ k with the above described three properties can in fact not exist. Indeed,
if we suppose that a complete such sequence exists, then g̃k : D → A has the
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Chapter 2. Endolocal relational structures

properties g̃k(yi) = di for 1 ≤ i ≤ m and that θ = θk ⊆ ker g̃k. This however proves
that d̄ ||= (C,D,E, θ) — a contradiction.

Now we argue that there has to exist a greatest i0 ∈ {0, . . . , k − 1}, such that
homomorphisms g̃i with the above given three properties can be constructed
for 0 ≤ i ≤ i0. In this case we know that there can not exist a homomorphism
g̃i0+1 : Di0+1 → A with g̃i0+1 ↾Di0

= g̃i0 and with θi0+1 ⊆ ker g̃i0+1.

Let us fix a sequence g̃i for 0 ≤ i ≤ i0 with the above described three properties.
By construction , we have that b̄i0 ||= (Di0

,Di0
,Ei0 , θi0).

We claim that bi0 6||= (Di0
,Di0+1,Ei0 , θi0+1). Suppose, on the contrary, that bi0 ||=

(Di0
,Di0+1,Ei0 , θi0+1). Then there exists a homomorphism ĝ : Di0+1 → A with

Properties (G1) and (G2). The Property (G1) translates to ĝ ↾Di0
= g̃i0 , and Property

(G2) means that θi0+1 ⊆ ker ĝ. However, in this case ĝ can be taken as g̃i0+1. This
however contradicts the choice of i0.. Thus, indeed, bi0 6||= (Di0

,Di0+1,Ei0 , θi0+1).

Construction of a local homomorphism of A: We set B := {gi0(y1), . . . , gi0(ym+i0)},
and B as the substructure of A induced by B. Moreover, we define the mapping
h : B → A by h(gi0(yl)) := g̃i0(yl). Since ker gi0 = θi0 ⊆ ker g̃i0 , it follows that h
is well-defined. We claim that h is a homomorphism from B to A. To see this,
take some ̺ ∈ R, and some ē ∈ ̺B. Then, by the construction of B, there exist
l1, . . . , lar(̺) such that

ē = (gi0(yl1), . . . , gi0(ylar(̺)
)).

Since gi0 = g ↾Di0
and since Di0

≤ D, and finally, because of the construction of

̺D,we conclude that (yl1 , . . . , ylar(̺)
) ∈ ̺Di0

= ̺D ∩D2
i0

. With this we can compute

h(ē) = (g̃i0(yl1), . . . , g̃i0(ylar(̺)
)),

and because g̃i0 is a homomorphism, we conclude that h(ē) ∈ ̺A. It remains to
show that h can not be extended to B ∪ {g(ym+i0+1)}.

Di0+1 B ∪ {g(ym+i0+1)}

A

g#
i0+1

g̃i0+1

ĥ

(3)

The non-extensibility of h. Suppose,

that there exists a homomorphism ĥ : B∪
{g(ym+i0+1)} → A that extends h. Then for
0 ≤ i ≤ k we define g#

i
to be the image-re-

striction of gi to {gi(y1), . . . , gi(ym+i)}. We

go on by defining g̃i0+1 := ĥ ◦ g#
i0+1

(cf.
Diagram (3)). By the definition of h we
have that g̃i0 = h ◦ g#

i0
. Hence g̃i0+1 ↾Di0

= g̃i0 (cf. Diagram (4)), and θ = ker gi0+1 =

ker g#
i0+1
⊆ ker ĥ ◦ g#

i0+1
= ker g̃i0+1.

Di0
B A

Di0+1 B ∪ {g(ym+i0+1)}

g#
i0

g#
i0+1

= =

h

ĥ
(4)

38



2.3. Model-theoretical characterizations of endolocality

Thus we have an extension of the sequence of the g̃i by g̃i0+1 — contradiction.
Hence h can not be extended to B ∪ {g(ym+i0+1)} and consequently, A does not
have the one-point extension property.
(⇐) We prove this claim indirectly. Suppose that A is endolocal but that it does
not have the one-point extension property. Then, since A is weakly oligomorphic,
by the previous Lemma, we obtain that there exist an m ∈ N, an irreflexive m-
tuple ā, an m-tuple b̄ and a logical propositionϕ ≡ (∃x)ψ, whereψ is a conjunction

of atomic formulae, such that pTh(0)(ā) ⊆ pTh(0)(b̄), and ā |= ϕ, but b̄ 6|= ϕ. This
implies that pTh(ā) * pTh(b̄), so by 2.2.3(Proposition 2), it follows that A is not
endolocal. �

Yet another step in characterizing structures that are not endolocal is the use
of a more relaxed version of the one-point extension property.

Definition 4. Given a relational structure A = (A, (̺A)̺∈R) and its finite substruc-
ture B = (B, (̺B)̺∈R). We say that a c ∈ A is a weak center of B if

for every b ∈ B there exists a ̺ ∈ R, b3, . . . , bar(̺) ∈ B and a π ∈ Sym{1, . . . , ar(̺)}
such that

(c, b, b3, . . . , bar(̺))
π ∈ ̺A. (5)

Definition 5. We say that a relational structure A = (A, (̺A)̺∈R) has the weak
one-point-extension property if for every finite substructure B of A, every ho-
momorphism f : B→ A and every weak center c of B there is a homomorphism
g : B ∪ {c} → A such that g↾B = f .

Proposition 2. A relational structure A has the one-point-extension property if and
only if it has the weak one-point-extension property.

Proof. (⇒) Obvious.
(⇐) Let A have the weak one-point-extension property. We will show that then
it also has the one-point-extension property.

For the proof, take a finite substructure B of A, a homomorphism f : B → A
and an a ∈ A. If a is a weak center, then f is extendable to g : B ∪ {a} → A.
Otherwise, a is not a weak center, meaning that there exists a b ∈ B such that for
every̺ ∈ R, every b3, . . . , bar(̺) ∈ B and every π ∈ Sym{1, . . . , ar(̺)} holds that

(a, b, b3, . . . , bar(̺))
π
< ̺A. (6)

Let B̃ be a set of all b ∈ B that fulfill (6).
Case 1. Suppose B = B̃. This means that a does not appear as an entry of any

tuple from any relation ̺B∪{a}. So, we can choose an arbitrary element of A for its
image, say a. Then the mapping

g(x) =

{

f (x), if x ∈ B.
a, if x = a.

is going to be a one-point-extension.
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Case 2. Suppose B \ B̃ , ∅. Take an arbitrary d ∈ B \ B̃. Then d fulfills the
negation of Property (6), which is the negation of Property (5), so d has Property
(5), and, therefore, a is a weak center of B \ B̃. It follows that we can extend f ↾B\B̃

to h : (B \ B̃) ∪ {a} → A. We claim that in this case

g(x) =

{

f (x), if x ∈ B.
h(a), if x = a.

is going to be the requested one-point extension. It is clear that g is well-defined,
so it is left to show that it is a homomorphism. For the proof, take some ̺ ∈ R
and some (d1, . . . , dar(̺)) ∈ ̺B∪{a}.

If d1, . . . , dar(̺) ∈ B, then (g(d1), . . . , g(dar(̺))) = ( f (d1), . . . , f (dar(̺))) ∈ ̺B ⊆ ̺A.
Otherwise, there exists an i ∈ {1, . . . , ar(̺)} such that di = a. But, then for every
j ∈ {1, . . . , ar(̺)} \ {i} we have that d j ∈ (B \ B̃) ∪ {a}, so (g(d1), . . . , g(dar(̺))) =
(h(d1), . . . , h(dar(̺))) ∈ ̺A. �

2.3.3. Homomorphism-homogeneous relational structures. In 2.3.2 we de-
rived the notion of weakly homomorphism-homogeneous structures from the
well-known model theoretical notion of weakly homogeneous structures. Weak
homogeneity is closely related to ultrahomogeneity. Our next goal is to see how
weak homomorphism-homogeneity is related to homomorphism-homogeneity.

Definition. We call a structure D homomorphism-homogeneous if every local
homomorphism of D extends to an endomorphism of D.

Proposition 1. If a relational structure A is homomorphism-homogeneous, then it has
the one-point extension property.

Proof. Let A be a homomorphism-homogeneous relational structure. Then every
local homomorphism of A can be extended to an endomorphism of A.

Take an arbitrary finite substructure B of A and a homomorphism f : B→ A.
Then there is a g ∈ End(A) such that g ↾B= f . Now choose any b ∈ A \ B. Then
g ↾B∪{b} is a homomorphism that extends B by one point. �

Proposition 2. If a finite or countably infinite relational structure A has the one-point
extension property, then it is homomorphism-homogeneous.

Proof. Let A have the one-point extension property. Take a local homomorphism
f : B→ A, where B is a finite substructure of A.

The one-point extension property allows us to extend f to f1 : B ∪ {b} → A,
for arbitrary b ∈ A \ B. Since A is a finite or countably infinite set, we can take
a fixed well-ordering of A that is isomorphic to an ordinal number α ≤ ω, and
then add to B in every next step the smallest element from A that was not yet
added in the steps before. This defines a growing sequence of homomorphisms
f = g0 ⊆ g1 ⊆ g2 ⊆ · · · (Here we identify the local homomorphisms with their
graphs). The union of this sequence is an endomorphism of A that extends f . �
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2.4. Main Theorem

In the previous sections of this chapter we studied the notion of endolocality. As
a result of this study we obtained several characterizations of this notion using
the language of formal concept analysis and model theory. Unfortunately, these
results are scattered into many propositions with subtle side-conditions, so it is
difficult to get the big picture. In the theorem that follows we collect all important
data and give the overview.

Theorem. Let A = (A, (̺A)̺∈R) be a relational structure. Then the relationships pre-
sented in the following diagram hold:

A has the weak one-point
extension property

A is homomorphism-
homogeneous

A has the one-point extension
property

A is endolocal

Φ(0)(∃,∧,∨,=,R) is a positive
existential elimination set for A

∀m ∈N
Ext(Km(A)) = Ext(K(0)

m (A))

A
w

ea
kl

y

ol
ig

om
or

ph
ic

A
w

eakly

oligom
orphic

A
w

ea
kl

y

ol
ig

om
or

ph
ic

A
co

unta
bl

e

Proof. All of the given implications have already been proved in the previous
sections. The table that follows gives the reference for each of the implications
with the aim to make reading easier:
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⇒ Endolocality One-point ex-
tension

Weak one-
point exten-
sion

Homomor-
phism-homo-
geneity

Positive
existential
elimination
set

Equal extents

Endolocality
2.3.2

(Prop. 1)
2.3.1

(Prop. 2)
2.2.3
(Cor.)

One-point ex-
tension 2.3.2

(Prop. 1)
2.3.2

(Prop. 2)
2.3.3

(Prop. 2)

Weak one-
point exten-
sion

2.3.2
(Prop. 2)

Homomor-
phism-homo-
geneity

2.3.3
(Prop. 1)

Positive
existential
elimination
set

2.3.1
(Prop. 1)

2.3.1
(Rem.)

Equal extents
2.2.3
(Cor.)

�

In the Main theorem many implications hold under the additional condition
that a structure in question is weakly oligomorphic. This property is not easily
recognizable for a given relational structure. We will now show that the Main
theorem is applicable to all relational structures with a finite signature.

Lemma. Let A = (A, (̺A)̺∈R) be a relational structure with a finite signature R. Then
for every m ∈ N there exists an s ∈ N such that for every ā ∈ Am there exists a

ϕ(ā) ∈ pTh(s)(ā) such that (pTh(k)
A

(ā))′ = (ϕ(ā))′ inKm(A).

Proof. Since pTh(k)
A

(ā) ⊆ Φ(k)
m (∃,∧,∨,=,R), using 0.2.2(Corollary) we obtain that

pTh(k)
A

(ā) contains, up to equivalence, finitely many formulae. Let ϕ1, ϕ2, . . . , ϕl

be a transversal of these equivalence classes. Then the formula

ϕ(ā) ≡ ϕ1 ∧ ϕ2 ∧ · · · ∧ ϕl

is the desired formula. Indeed,

b̄ ∈ (ϕ(ā))′ ⇔ b̄ |= ϕ(ā)⇔ ∀i ∈ {1, . . . , l} : b̄ |= ϕi

⇔ b̄ |= pTh(k)
A

(ā)⇔ b̄ ∈ (pTh(k)
A

(ā))′.

Moreover, l ≤ L, where L is the number of equivalence classes of formulae

in Φ(k)
m (∃,∧,∨,=,R), so the quantifier depth of ϕ(ā) is bounded from above by

s = L · k. �
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Proposition. If A is a relational structure over a finite signature and if there exists some

k ∈ N such that for every m ∈ N we have that Ext(Km(A)) = Ext(K(k)
m (A)), then A is

weakly oligomorphic.

Proof. We will show that every context Km(A) has just finitely many row intents
{ā}′, ā ∈ Am. By the previous Lemma, we know that for m ∈ N there exists an

s such that for all ā ∈ Am, there is a ϕ(ā) ∈ pTh(s)
A

(ā) with {ā}′ = (ϕ(ā))′′. Since

there are up to equivalence just finitely many formulae in pTh(s)
A

(ā), there are up
to equivalence just finitely many different intents of the shape (ϕ(ā))′′, ā ∈ Am.

Hence, the cross-table of K(k)
m (A) has just finitely many different rows. Thus,

K
(k)
m (A) has just finitely many extents, and, hence, Ext(Km(A)) is finite for all

m. �

2.5. Endolocality and weak Krasner algebras

Every relational structure A = (A, (̺A)̺∈R) can be considered as a generating

system of the weak Krasner algebra
[

(̺A)̺∈R

]

WKA
. Such a generating system is

not unique, so all relational structures can be partitioned into equivalence classes
according to the weak Krasner algebra that they define.

Definition. Let A = (A, (̺A)̺∈R) and Ã = (A, (̺Ã)̺∈R̃) be relational structures. We

say that A and Ã are WKA-equivalent if [(̺A)̺∈R]WKA = [(̺Ã)̺∈R̃]WKA.

This gives us the opportunity to study weak Krasner algebras with respect to a
generating relational structure. If the relational structure is endolocal and weakly
oligomorphic, then such a choice of a generating system remarkably simplifies
the understanding of the structure of the weak Krasner algebra in question. In
the following we will give the arguments that support this thesis.

1. If we have an endolocal structure over a finite signature, then the m-ary
part of its weak Krasner algebra can be effectively described.

2. If we have a weakly oligomorphic homomorphism-homogeneous relational
structure A = (A, (̺A)̺∈R), then the weak Krasner algebra defined by this
structure is locally closed, that is

Inv End(A) = [(̺A)̺∈R]WKA.

3. For a finite endolocal relational structure A over a finite signature it is easy
to test whether a given relation is contained in the weak Krasner algebra
described by A.

Remark. Note that the property of being weakly oligomorphic for relational struc-
tures is stable under WKA-equivalence, that is, if a relational structure A is weakly
oligomorphic, then every relational structure Ã that is WKA-equivalent to A is
weakly oligomorphic, too.
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2.5.1. About argument 1. Let A = (A, (̺A)̺∈R) be an endolocal relational struc-
ture over a finite signature R. We define a type function typeA for A and m ∈ N
as follows:

for ā ∈ Am : typeA(ā) := {ϕ ∈ Φm(∃,∧,∨,=,R) | ϕ atom, ā |= ϕ}.

As the order on types we take the usual inclusion.

Proposition 1. The type function typeA defines by the Locality Principle the closure
system of extents ofKm(A).

Proof. It suffices to show that for ā, b̄ ∈ Am

typeA(ā) ⊑ typeA(b̄) if and only if pTh(0)
A

(ā) ⊆ pTh(0)
A

(b̄).

Denote by Atm(R) the set of all atoms in Φm(∃,∧,∨,=,R) and suppose that

pTh(0)
A

(ā) ⊆ pTh(0)
A

(b̄). Then

typeA(ā) = pTh(0)
A

(ā) ∩Atm(R) ⊆ pTh(0)
A

(b̄) ∩Atm(R) = typeA(b̄).

For the other direction, suppose that typeA(ā) ⊑ typeA(b̄). Let, further, ϕ ∈

pTh(0)
A

(ā). Then ϕ is of the shape

ϕ ≡
∨

i∈I

∧

j∈Ji

ϕi j,

where ϕi j are atoms. We know that ā |= ϕ, so ā |=
∨

i∈I

∧

j∈Ji
ϕi j. Then there

exists an i ∈ I such that ā |=
∧

j∈Ji
ϕi j, so it follows that for every j ∈ Ji: ā |= ϕi j.

By the assumption, b̄ |= ϕi j for every j ∈ Ji, so b̄ |=
∧

j∈Ji
ϕi j, and, therefore,

b̄ |=
∨

i∈I

∧

j∈Ji
ϕi j, implying that ϕ ∈ pTh(0)

A
(b̄). �

For a finite relational signature R, there can be only finitely many differ-
ent atoms, and, therefore, finitely many different possible images of typeA.
The realizable types correspond to join-irreducible elements in Ext(Km(A)) (cf.
2.1.2(Proposition 2)). Since A is endolocal and R is finite, by the Main Theorem

and 2.4(Proposition), it follows that A is weakly oligomorphic, so [(̺A)̺∈R](m)

WKA
=

Ext(Km(A)) and we are then able to describe the m-ary part of the given weak
Krasner algebra.

However, it is left to describe a method for deciding whether a given type is
realizable. For this purpose, let tp ⊆ Atm(R) be a type. We are asking whether
there exists an ā ∈ Am such that tp = typeA(ā). In order to answer this question,
we consider the relational structure B = (B, (̺B)̺∈R), where B := {x1, . . . , xm} and
̺B := {(xi1 , . . . , xiar(̺)

) | ̺(xi1 , . . . , xiar(̺)
) ∈ tp}. Additionally, we define on B relation θ

by
θ := {(xi, x j) | (xi = x j) ∈ tp}.
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If θ is not an equivalence relation, then tp is not realizable. From now on, we can
assume that θ is an equivalence relation. In the next step we factorize B by θ and
obtain B̃ = (B/θ, (̺B̃)̺∈R), where ̺B̃ := {([xi1]θ, . . . , [xiar(̺)

]θ) | (xi1 , . . . , xiar(̺)
) ∈ ̺B}.

Further, let χθ be the natural homomorphism from B to B̃. If tp is realizable, then
χθ is a full homomorphism, i.e. for all ̺ ∈ R and all (xi1 , . . . , xiar(̺)

) ∈ Bar(̺) we have

(xi1 , . . . , xiar(̺)
) ∈ ̺B ⇔ ([xi1]θ, . . . , [xiar(̺)

]θ) ∈ ̺B̃.

Proposition 2. A type tp is realizable if and only if

1. θ is an equivalence relation on B;

2. χθ is a full homomorphism;

3. B̃ is embeddable into A.

Proof. (⇒) Suppose tp is realizable. Then there exists an ā = (a1, . . . , am) ∈ Am

such that tp = typeA(ā). It is clear that θ is en equivalence relation on B and that
χθ is a full homomorphism. We define the mapping ι : B/θ→ A by

ι([xi]θ) := ai, i ∈ {1, . . . ,m}.

and we claim that this is an embedding of B̃ into A.
ι is well-defined and injective:

[xi]θ = [x j]θ ⇔ (xi, x j) ∈ θ⇔ (xi = x j) ∈ tp = typeA(ā)

⇔ ai = a j ⇔ ι([xi]θ) = ι([x j]θ)

ι is a full homomorphism:

([xi1]θ, . . . , [xiar(̺)
]θ) ∈ ̺B̃ ⇔ (xi1 , . . . , xiar(̺)

) ∈ ̺B

⇔ ̺(xi1 , . . . , xiar(̺)
) ∈ tp = typeA(ā)

⇔ (ai1 , . . . , aiar(̺)
) ∈ ̺A.

(⇐) Suppose that θ is en equivalence relation on B and that χθ is a full homo-
morphism. Let, further, B̃ be embeddable into A and let ι be such an embedding.
We define

ā = (a1, . . . , am) := (ι([xi1]θ), . . . , ι([xiar(̺)
]θ)).

We will show that tp = typeA(ā). For this we have to distinguish two cases:
Case 1.

̺(xi1 , . . . , xiar(̺)
) ∈ typeA(ā)⇔ (ai1 , . . . , aiar(̺)

) ∈ ̺A ⇔ ([xi1]θ, . . . , [xiar(̺)
]θ) ∈ ̺B̃

⇔ (xi1 , . . . , xiar(̺)
) ∈ ̺B ⇔ ̺(xi1 , . . . , xiar(̺)

) ∈ tp .

Case 2.

(xi = x j) ∈ typeA(ā)⇔ ai = a j ⇔ [xi]θ = [x j]θ ⇔ (xi, x j) ∈ θ⇔ (xi = x j) ∈ tp .

�
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Chapter 2. Endolocal relational structures

The process of deciding whether tp is realizable goes then in three steps. In
the first step, we check if θ is an equivalence relation. This problem is easily
decidable, since B is finite. In the case of a positive answer, the next step is
to compute B̃ and to test whether χθ is a full homomorphism. Again, this is
possible, because of the finiteness of B and B̃. If this test also succeeds, then it
remains to examine whether B̃ is isomorphic to a substructure of A. Depending
on A, this problem may or may not be decidable. However, we can decide it for
all finite structures and for many interesting infinite ones (e.g. chains, universal
structures, etc.). Note that the class of all finite structures that can be embedded
into A in model-theoretic terms is called the age of A.

2.5.2. About argument 2. We will now show that if we have a weakly oligo-
morphic homomorphism-homogeneous relational structure A = (A, (̺A)̺∈R) then
the weak Krasner algebra defined by this structure is locally closed, that is

Inv End(A) = [(̺A)̺∈R]WKA. (1)

Instead of directly showing (1), we will show that for every m ∈ N

(Inv End(A))(m) = [(̺A)̺∈R](m)

WKA
.

Since A is a weakly oligomorphic, homomorphism-homogeneous relational
structure from the Main Theorem it follows that A is endolocal. As we have
already seen in 2.5.1, for weakly oligomorphic endolocal relational structures,

we have that [(̺A)̺∈R](m)

WKA
= Ext(Km(A)). Now it is enough to show that

∀ā ∈ Am : {ā}′′ = ΓEnd(A)({ā}). (2)

Indeed, if this equality holds, then for every relation σ ∈ (Inv End(A))(m) we have
that

σ =
⋃

ā∈σ

ΓEnd(A)({ā}) =
⋃

ā∈σ

{ā}′′ ∈ Ext(Km(A)) = [(̺A)̺∈R](m)

WKA

since
⋃

ā∈σ{ā}
′′ is, in fact, a finite union.

Let us now proceed by proving (2). First of all, since {ā}′′ ∈ [(̺A)̺∈R](m)

WKA
⊆

(Inv End(A))(m), it follows that ΓEnd(A)({ā}) ⊆ {ā}
′′. On the other hand, for b̄ ∈ {ā}′′

we have that b̄ |= pThA(ā). In particular, b̄ |= pTh(0)
A

(ā). Let ā = (a1, . . . , am). We
define the mapping f : {a1, . . . , am} → A by f (ai) := bi, for i ∈ {1, . . . ,m}. It is easy to
see that this is a local homomorphism that maps ā to b̄. Since A is homomorphism-
homogeneous, it follows that f can be extended to an endomorphism g of A. But,
from this it follows at once that b̄ ∈ ΓEnd(A)({ā}).

2.5.3. About argument 3. Suppose that we have given a finite endolocal rela-
tional structure A = (A, (̺A)̺∈R) over a finite signature.

Let σ ⊆ Am be a given relation. We know that [(̺A)̺∈R](m)

WKA
= Ext(Km(A)). Since

A is endolocal, we have a few ways to test whether σ ∈ Ext(Km(A)):
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2.5. Endolocality and weak Krasner algebras

1. We check whether σ = σ′′. For this we use the Locality Principle (1.1) and
the type-function that was given in 2.5.1.

2. From the Main Theorem it follows that Ext(Km(A)) = Ext(K(0)
m (A)), so we

have to check whether σ ∈ Ext(K(0)
m (A)). Of course, K(0)

m (A) is not a finite
context, but it can be reduced to a finite one in the following way:

Every formula from Φ(0)
m (∃,∧,∨,=,R) can be written as a conjunction of

disjunctions of atoms from Atm(R). On the other hand, every formula of
the shape

ψ ≡
∧

i∈I

ϕi

is reducible, because {ψ}′ = {ϕi | i ∈ I}′, so we have just to consider disjunc-
tions of atoms. Since R is finite, there are just finitely many atoms, and,
hence, finitely many disjunctions of them. So, for our new context, we take

just those columns fromK(0)
m (A) that correspond to disjunctions of atoms.

2.5.4. Weak Krasner algebras generated by endolocal structures. In the pre-
vious we have argued that weak Krasner algebras generated by weakly oligo-
morphic and endolocal relational structures have several interesting properties.
This opens the question of the characterization of weak Krasner algebras that are
generated by such structures. In the following we will study this question.

Proposition 1. Let A = (A, (̺A)̺∈R) be a relational structure and let Ψ be a positive
existential elimination set for A. Define R̃ := ∪m∈N{[ϕ] | ϕ ∈ Ψ ∩ Φm(∃,∧,∨,=,R)}
and Ã := (A, ([ϕ]Ã)[ϕ]∈R̃), where [ϕ]Ã := ϕA. Then

1. A and Ã are WKA-equivalent, and

2. Φ(0)(∃,∧,∨,=, R̃) is a positive existential elimination set for Ã.

Proof. About 1. Let σ ∈ [(̺A)̺∈R](m)

WKA
. Then there exists a ϕ ∈ Φm(∃,∧,∨,=,R)

such that ϕA = σ. On the other hand,

ϕA = [ϕ]Ã ∈ [([ϕ]Ã)[ϕ]∈R̃](m)

WKA
.

For the other direction, let σ ∈ [([ϕ]Ã)[ϕ]∈R̃)](m)

WKA
. Then there is a ϕ̃ ∈ Φm(∃,∧,∨,=

, R̃) such that ϕ̃Ã = σ.
We claim that for every ψ̃ ∈ Φm(∃,∧,∨,=, R̃) there exists a ψ ∈ Φm(∃,∧,∨,=,R)

such that ψ̃Ã = ψA, and we prove it by structural induction.
If ψ̃ is an atomic formula then either

ψ̃ ≡ (xi = x j), where i, j ≤ m, or

ψ̃ ≡ [µ](xi1 , . . . , xik), where k = ar([µ]) and {i1, . . . , ik} ⊆ {1, . . . ,m}.
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In the first case, ψ ≡ (xi = x j). In the second one, we obtain

([µ](xi1 , . . . , xik))
Ã = {(a1, . . . , am) | (ai1 , . . . , aik) ∈ [µ]Ã}

= {(a1, . . . , am) | (ai1 , . . . , aik) |=A µ}

= (µ(xi1 , . . . , xik))
A,

so ψ ≡ µ(xi1 , . . . , xik).
If ψ̃ is not an atomic formula then either

ψ̃ ≡
∧

i∈I

ψ̃i or ψ̃ ≡
∨

i∈I

ψ̃i or ψ̃ ≡ (∃xk)ψ̃1,

where I is finite, k > m and for every ψ̃i ∈ Φm(∃,∧,∨,=, R̃) exists a ψi ∈

Φm(∃,∧,∨,=,R) such that ψ̃i
Ã
= ψA

i
. In the first case, we can take ψ ≡

∧

i∈I ψi.
Indeed,

ψ̃Ã =
(
∧

i∈I

ψ̃i

)Ã
=

⋂

i∈I

ψ̃i
Ã
=

⋂

i∈I

ψi
A =

(
∧

i∈I

ψi

)A
.

Analogously, in the second case we can take ψ ≡
∨

i∈I ψi. In the last case, we can

take ψ ≡ (∃xk)ψ1. Then (a1, . . . , am) ∈ ψ̃1
Ã

is equivalent to the fact that there exists
an a ∈ A such that for some valuation v : X → A with v(xi) = ai, i = 1, . . . ,m
holds Ã |=v(xk/a) ψ̃1. This is, however, by the inductional hypothesis equivalent to
the fact that there exists an a ∈ A such that for some valuation v : X → A with
v(xi) = ai, i = 1, . . . ,m holds A |=v(xk/a) ψ1, i.e. (a1, . . . , am) ∈ ψ1

A.

Thus, there exists a ϕ ∈ Φm(∃,∧,∨,=,R) such that σ = ϕ̃Ã = ϕA, and the other
inclusion also holds.

About 2. Let ϕ̃ ∈ Φm(∃,∧,∨,=, R̃). Then, as shown above, there exists a

ϕ ∈ Φm(∃,∧,∨,=,R) such that ϕ̃Ã = ϕA. But, then there exist ψi j ∈ Ψ such that

ϕA =
(
∨

i∈I

∧

j∈Ji

ψi j

)A
.

For each ψi j of arity ki j take [ψi j](x1, . . . , xki j
) and note that

ψA
i j = ([ψi j](x1, . . . , xki j

))Ã = [ψi j]A.

Then we obtain

ϕ̃Ã =
(
∨

i∈I

∧

j∈Ji

ψi j

)A
=

(
∨

i∈I

∧

j∈Ji

[ψi j](x1, . . . , xki j
)
)Ã
,

so ϕ̃ ≡
∨

i∈I

∧

j∈Ji
[ψi j](x1, . . . , xki j

) ∈ Φ(0)(∃,∧,∨,=, R̃), and therefore, Φ(0)(∃,∧,∨,=

, R̃) is a positive existential elimination set for Ã. �
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Corollary 1. For every relational structure A = (A, (̺A)̺∈R) there exists a WKA-
equivalent relational structure Ã = (A, (̺Ã)̺∈R̃) such thatΦ(0)(∃,∧,∨,=, R̃) is a positive

existential elimination set for Ã.

Proof. Clearly, Φ(∃,∧,∨,=,R) is a positive existential elimination set of every
R-structure A. Hence, by Proposition 1, the claim follows. �

Corollary 2. Every weakly oligomorphic relational structure A is WKA-equivalent to
an endolocal relational structure.

However, for finite relational structures, we can make an even the stronger
statement:

Proposition 2. Let A = (A, (̺A)̺∈R) be a relational structure over a finite set A. Then

there exists a relational structure Ã = (A, (̺Ã)̺∈R̃) such that R̃ is finite,
[

(̺A)̺∈R

]

WKA
=

[

(̺A)̺∈R̃

]

WKA
and Ã is endolocal.

Proof. Suppose that |A| = n. Let µ ∈ Φm(∃,∧,∨,=,R) for an arbitrary m ∈ N.

Then µA ∈
[

(̺A)̺∈R

](m)

WKA
.

For each ā ∈ µA we define the following two relations:

εā := {(i, j) | ai = a j}

σµA,ā := {b̄ ∈ µA | εb̄ ⊇ εā}

Then σµA,ā = ϕ
A
µA,ā

for

ϕµA,ā ≡ µ(x1, . . . , xm) ∧
(

∧

(i, j)∈εā

(xi = x j)
)

.

Therefore, σµA,ā ∈
[

(̺A)̺∈R

](m)

WKA
. Moreover,

µA =
⋃

ā∈µA

σµA,ā =

















∨

ā∈µA

ϕµA,ā

















A

From this it follows that Φ = {ϕµA,ā | µ ∈ Φm(∃,∧,∨,=,R),m ∈ N, ā ∈ µA} is a
positive existential elimination set for A. In the following we will transform
this positive existential elimination set, to obtain the desired endolocal relational
structure.

Take ϕµA,ā, and consider its corresponding σµA,ā. We take the lexicographically
smallest transversal i1, . . . , ikā of {1, . . . ,m}/εā , and then we define the mapping

rep : {1, . . . ,m} → {1, . . . , kā} : i 7→ j, whenever [i]εā = [i j]εā .
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Note that kā ≤ n. Using this mapping, we define a new relation

δµA,ā := {(d1, . . . , dkā) | (drep(1), . . . , drep(m)) ∈ σµA,ā}.

Note that δµA,ā = (ψµA,ā)
A, where

ψµA,ā ≡ ϕµA,ā(xrep(1), . . . , xrep(m)),

and, therefore, δµA,ā ∈
[

(̺A)̺∈R

](kā)

WKA
.

Observe that

Ψ =
{

ψµA,ā(xi1 , . . . , xikā
) | µ ∈

⋃

m∈N

Φm(∃,∧,∨,=,R), ā ∈ µA,

i1, . . . , ikā is lexicographically smallest transversal of {1, . . . ,m}/εā

}

is again a positive existential elimination set for A, because

(ϕµA,ā)
A = σµA,ā =

(

ψµA,ā(xi1 , . . . , xikā
) ∧

(
∧

(i, j)∈εā

(xi = x j)
))A
.

Hence,

µA =

















∨

ā∈µA

















ψµA,ā(xi1 , . . . , xikā
) ∧

(
∧

(i, j)∈εā

(xi = x j)
)

































A

. (1)

Thus, every µA is equivalent in A to a disjunction of conjunctions of formulae
fromΨ.

There are finitely many relations of the shape δµA,ā = (ψµA,ā(xi1 , . . . , xikā
))A, be-

cause kā ≤ n, for all ā. We define R̃ := {[δµA,ā] | µ ∈ Φm(∃,∧,∨,=,R),m ∈N, ā ∈ µA}

and Ã := (A, (̺Ã)̺∈R̃), where [δµA,ā]Ã := δµA,ā = (ψµA,ā(xi1 , . . . , xikā
))A.

From what was shown above, it follows that A and Ã are WKA-equivalent.

In order to see that Φ(0)(∃,∧,∨,=, R̃) is a positive existential elimination set
for Ã, take any µ̃ ∈ Φ(m)(∃,∧,∨,=, R̃) (m arbitrary). Then there exists a µ ∈
Φ(m)(∃,∧,∨,=,R) with µA = µ̃Ã. However, from (1), and from the definition of Ã
it follows that

µ̃Ã =

















∨

ā∈µA

















[δµA,ā](xi1 , . . . , xikā
) ∧

(
∧

(i, j)∈εā

(xi = x j)
)

































Ã

.

From the Main Theorem, it follows that Ã is endolocal. �
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2.5.5. Weakly oligomorphic weak Krasner algebras. As we already pointed
out, the property of relational structures to be weakly oligomorphic is stable un-
der WKA-equivalence. Hence, this is more a property of weak Krasner algebras
than of relational structures. This motivates the following definition:

Definition. Let W be a weak Krasner algebra. Then we say that W is weakly
oligomorphic if for every m ∈N the m-ary part W(m) contains only finitely many
relations.

Proposition 1. Let W be a weakly oligomorphic weak Krasner algebra over a countable
basic set. Then W is locally closed, i.e.

W = Inv End W.

Proof. Let A = (A, (̺A)̺∈R) a relational structure with the property [(̺A)̺∈R]WKA =

W. Since W is weakly oligomorphic, it follows that the context Km(A) has
finitely many extents, because every extent is an intersection of elements from

[(̺A)̺∈R](m)

WKA
. Hence, A is weakly oligomorphic. By 2.5.4(Corollary 2), it follows

that A is WKA-equivalent to an endolocal and weakly oligomorphic relational
structure Ã. From the Main Theorem and from the fact that A is countable, it
follows that Ã is homomorphism-homogeneous. Finally, from 2.5.2 we obtain
that

Inv End W = Inv End Ã =W.

�
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. . . when you have eliminated the impossible, whatever
remains, however improbable, must be the truth.

(Sir Arthur Conan Doyle)Chapter 3.

Homomorphism-homogeneous relational structures

This chapter is dedicated to a systematic study of homomorphism-homogeneous
relational structures. Using the results collected in the Main Theorem, in 3.1 we
derive a criterion for characterizing relational structures of this kind. This crite-
rion is called the minimal witness criterion and it is forming the basis of a method
for the elimination of all non homomorphism-homogeneous relational structures
from a given class of relational structures. In 3.2 we turn our attention to binary
homomorphism-homogeneous structures and we use the minimal witness cri-
terion in order to characterize all transitive relations that have the one-point
extension property and this, by the Main Theorem, gives us a characterization of
homomorphism-homogeneous transitive relations on countable basic sets. In the
sequel we treat tolerance relations. In particular, we describe a strategy for the
constructive enumeration of homomorphism-homogeneous tolerance relations,
and we find a number of infinite families of such relations.

3.1. Minimal witness criterion

Let us continue our efforts to find a useful criterion for a relational structure not
to have the one-point extension property.

3.1.1. Witness. From the Main Theorem we know that every homomorphism-
homogeneous relational structure has the weak one-point extension property,
and that every relational structure on a countable basic set with the weak one-
point extension property is homomorphism-homogeneous. However, if a rela-
tional structure does not posses some property, then there has to exist a coun-
terargument, and a counterargument for the weak one-point extension property
will be the existence of what we will call a witness.

More formally, a witness is a quadruple (B1,B2, f , c), such that B1 is a finite
substructure of A, c is a weak center of B1 in A, B2 is a substructure of A, and
f : B1 → B2 is surjective, but f cannot be extended to B1 ∪ {c}.

Our next aim is to define a quasi-order on witnesses. For this purpose, we need
to introduce two auxiliary relations — a homomorphic image and a subwitness,
that will be denoted by։ and ≤, respectively.

We say that a witness (B3,B4, g, d) is a homomorphic image of a witness
(B1,B2, f , c), and write (B1,B2, f , c) ։ (B3,B4, g, d), if there exist epimorphisms
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h1, h2 and h3, such that the following diagram commutes:

B1 ∪ {c} B1 B2

B3 ∪ {d} B3 B4

=

=

f

g

h3 h1 h2

We say that a witness (B1,B2, f , c) is a subwitness of a witness (B3,B4, g, c), and
write (B1,B2, f , c) ≤ (B3,B4, g, c), if B1 is a substructure of B3, B2 is a substructure
of B4 and the following diagram commutes:

B3 ∪ {c} B3 B4

B1 ∪ {c} B1 B2

=

=

g

f

= = =

Once these two relations on witnesses are established, we are ready to introduce
a quasi-order on witnesses.

3.1.2. Quasi-order on witnesses. We say that a witness (B1,B2, f , c) is below a
witness (B3,B4, g, d), and write (B1,B2, f , c) � (B3,B4, g, d) if there exist a witness
(B5,B6, h, d) such that the following holds:

(B3,B4, g, d)

(B5,B6, h, d)

(B1,B2, f , c)

≤

From the definition of the relation ”below”, it follows immediately that it is
reflexive, so if we succeed to show that it is also transitive, ”below” is going to
be a quasi-order we were looking for.

So, let (B1,D1, f1, c1) � (B2,D2, f2, c2) and (B2,D2, f2, c2) � (B3,D3, f3, c3). Then
there exist witnesses (B4,D4, f4, c2) and (B5,D5, f5, c3) such that the following
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diagram commutes:
B3 ∪ {c3} B3 D3

B5 ∪ {c3} B5 D5

B2 ∪ {c2} B2 D2

B4 ∪ {c2} B4 D4

B1 ∪ {c1} B1 D1

=

=

=

=

=

f3

f5

f2

f4

f1

= = =

= = =

h3 h1 h2

g3 g1 g2

We define now f̄5 : h−1
1

(B4)→ h−1
2 (D4) by f̄5(x) = f5(x), and claim:

1. (h−1
1

(B4), h−1
2 (D4), f̄5, c3) ≤ (B3,D3, f3, c3), and

2. (h−1
1

(B4), h−1
2 (D4), f̄5, c3)։ (B1,D1, f1, c1).

Observe now the following diagram:

B3 ∪ {c3} B3 D3

h−1
1 (B4) ∪ {c3} h−1

1 (B4) h−1
2 (D4)

=

=

f3

f̄5

= = =

Its left hand side is obviously commuting. For the right hand side, take arbitrary
x ∈ h−1

1
(B4). Then

f̄5(x) = f5(x) = f3(x),

so the above given diagram is commuting, so (h−1
1

(B4), h−1
2 (D4), f̄5, c3) is a subwit-

ness of (B3,D3, f3, c3).
For the proof of the second claim, it suffices to show that this diagram com-

mutes:
h−1

1 (B4) ∪ {c3} h−1
1 (B4) h−1

2 (D4)

B1 ∪ {c1} B1 D1

=

=

f̄5

f1

ḡ3 ḡ1 ḡ2
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where

ḡ1(x) = g1(h1(x)) for x ∈ h−1
1 (B4),

ḡ2(x) = g2(h2(x)) for x ∈ h−1
2 (D4),

ḡ3(x) = g3(h3(x)) for x ∈ h−1
1 (B4) ∪ {c3}.

Take x ∈ h−1
1

(B4). Then

ḡ2( f̄5(x)) = ḡ2( f5(x)) = g2(h2( f5(x))) = g2( f2(h1(x)))

= g2( f4(h1(x))) = f1(g1(h1(x))) = f1(ḡ1(x)),

and the right hand side of the diagram commutes. For the left hand side, one
has to show that ḡ3(c3) = c1 and for every x ∈ h−1

1
(B4), we have that ḡ3(x) = ḡ1(x).

Clearly, ḡ3(c3) = g3(h3(c3)) = g3(c2) = c1. For x ∈ h−1
1

(B4), we obtain

ḡ3(x) = g3(h3(x)) = g1(h1(x)) = ḡ1(x).

Since both claims hold, we conclude that (B1,D1, f1, c1) � (B3,D3, f3, c3), so
relation ”below” is transitive, and it is a quasi-order on witnesses.

3.1.3. Isomorphic witnesses. We say that a witness (B1,B2, f , c) is isomorphic
to a witness (B3,B4, g, d), and write (B1,B2, f , c) � (B3,B4, g, d) if there exist iso-
morphisms ϕ1, ϕ2 and ϕ3 such that the following diagram commutes:

B1 ∪ {c} B1 B2

B3 ∪ {d} B3 B4

=

=

f

g

ϕ3 ϕ1 ϕ2

Proposition 1. Let (B1,B2, f , c) and (B3,B4, g, d) be witnesses. If (B1,B2, f , c) �
(B3,B4, g, d) and (B3,B4, g, d) � (B1,B2, f , c), then (B1,B2, f , c) � (B3,B4, g, d).
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Proof. From the given conditions it follows that this diagram commutes:

B3 ∪ {d} B3 B4

B5 ∪ {d} B5 B6

B1 ∪ {c} B1 B2

B7 ∪ {c} B7 B8

B3 ∪ {d} B3 B4

=

=

=

=

=

g

h1

f

h2

g

= = =

= = =

j3 j1 j2

j6 j4 j5

Note that from this diagram it follows that

|B3| ≤ |B7| ≤ |B1| ≤ |B5| ≤ |B3| and

|B4| ≤ |B8| ≤ |B2| ≤ |B6| ≤ |B4|,

so

|B3| = |B7| = |B1| = |B5| and

|B4| = |B8| = |B2| = |B6|.

Hence, B5 = B3, B7 = B1, B6 = B4 and B8 = B2, so this allows us to simplify the
given diagram to

B3 ∪ {d} B3 B4

B1 ∪ {c} B1 B2

B3 ∪ {d} B3 B4

=

=

=

g

f

g

j3 j1 j2

j6 j4 j5

where all ji’s are both bijections and homomorphisms. We will show that j1, j2

and j3 are isomorphism. It suffices to show that j1 is an embedding (for other
two mappings it can be proved analogously).

As we have already seen, j1 is a bijective homomorphism, so |B3| = |B1|, and
for every ̺ ∈ R, |̺B3

| ≤ |̺B1
|. Since j4 is also a bijective homomorphism, we obtain
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that |B1| = |B3|, and for every ̺ ∈ R, |̺B1
| ≤ |̺B3

|. Hence, |B1| = |B3| and for every
̺ ∈ R, |̺B1

| = |̺B3
|, so J1 is an embedding, and moreover, it is an isomorphism.

Thus, (B1,B2, f , c) � (B3,B4, g, d). �

3.1.4. Minimal witness criterion. We say that (B1,B2, f , c) is a minimal witness
if it is a minimal element in the quasi-order of witnesses, i.e. for any other witness
(B3,B4, g, d) holds that whenever (B3,B4, g, d) � (B1,B2, f , c), then (B1,B2, f , c) �
(B3,B4, g, d).
Minimal witness criterion:

A structure A has weak one-point extension property
if and only if it has no minimal witnesses.

Proposition 1. Let A = (A, (̺A)̺∈R) be such that exactly one relation in R is binary
and symmetric, and all others are unary. If (B1,B2, f , c) is a minimal witness, then f is
bijective.

Proof. Let (B1,B2, f , c) be a minimal witness, and suppose that f is not bijective.
Let B3 be a transversal of B1/ker f , let B4 := B2 and let g := f ↾B3

.
Note that then B3 < B1. In the next step, we prove that (B3,B4, g, c) is a witness.

For this we have to show that

• c is a weak center of B3, and

• g cannot be extended to B3 ∪ {c}.

Since c is a weak center of B1, we have that for every b ∈ B1 there exists a
̺ ∈ R (which is in this case precisely the unique binary relation in R), and a
π ∈ Sym{1, 2} such that (c, b)π ∈ ̺A. Take any b ∈ B3. Then b ∈ B1, and c is a weak
center of B3 by definition.

Suppose now that g can be extended to B3 ∪ {c}. Then there exists a d such that

g̃(x) =

{

g(x), if x ∈ B3

d, if x = c.

is an extension of g to B3 ∪ {c}. We claim that then

f̃ (x) =

{

f (x), if x ∈ B1

d, if x = c.

is an extension of f to B1 ∪ {c}. In order to prove this claim, we distinguish two
cases: ̺ is unary and ̺ is binary.

If ̺ is unary, then if c ∈ ̺A, then g̃(c) ∈ ̺A, so d ∈ ̺A, and f̃ (c) = d ∈ ̺A.
However, if ̺ is binary, then take (c, x) ∈ ̺A, where x ∈ B1 ∪ {c}. If x ∈ B3 ∪ {c},
then ( f̃ (c), f̃ (x)) = (g̃(c), g̃(x)) ∈ ̺A. We consider now the case x ∈ B1 \ B3. Then
there exists exactly one x′ ∈ B3 such that f (x′) = f (x), so

( f̃ (c), f̃ (x)) = (g̃(c), f (x)) = (g̃(c), f (x′)) = (g̃(c), g(x′)) = (g̃(c), g̃(x′)).
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Since c is a weak center of B3 and ̺ is symmetric, we have (c, x′) ∈ ̺A and
(x′, c) ∈ ̺A. Further we obtain (g̃(c), g̃(x′)) ∈ ̺A, so ( f̃ (c), f̃ (x)) ∈ ̺A. Hence, f̃ is an
extension of f and we arrive to a contradiction.

Therefore, (B3,B4, g, c) is a witness. Moreover, the diagram

B1 ∪ {c} B1 B2

B3 ∪ {c} B3 B4

=

=

f

g

= = =

commutes, so having in mind that B3 < B1, we conclude that (B3,B4, g, c) is
a proper subwitness of (B1,B2, f , c), and (B1,B2, f , c) cannot be a minimal one,
which is a contradiction. �

Lemma. Let A = (A, (̺A)̺∈R) be such that R consists of exactly one binary antisym-
metric transitive relation σ. If (B1,B2, f , c) is a witness, then for every equivalence class
S of ker f either ∀x ∈ S : (c, x) ∈ σ or ∀x ∈ S : (x, c) ∈ σA.

Proof. We will prove the claim indirectly. Suppose that there exists an equivalence
class S of ker f such that there are y, z ∈ S, where (y, c) ∈ σA and (c, z) ∈ σA.

Case 1. S is the unique equivalence class of that kind. From (y, c) ∈ σA and
(c, z) ∈ σA, it follows that (y, z) ∈ σA, so ( f (y), f (z)) ∈ σA. We define

f̃ (x) =

{

f (x), if x ∈ B1

f (y), if x = c.

and we show that f̃ is an extension of f to B1 ∪ {c}. Take (c, x) ∈ σA. Then

( f̃ (x), f̃ (y)) =

{

( f (y), f (x)), if x ∈ B1

( f (y), f (y)), if x = c.

If x = c, then from (y, z) ∈ ker f∩σA it follows that ( f (y), f (z)) ∈ σA and f (y) = f (z),
so ( f (y), f (y)) ∈ σA. On the other side, if x ∈ B1, then from (c, x) ∈ σA and
(y, c) ∈ σA, we obtain (y, x) ∈ σA, so ( f (y), f (x)) ∈ σA. For (x, c) ∈ σA one can prove
it analogously.

Hence, f̃ is indeed an extension, so (B1,B2, f , c) is not a witness, which is a
contradiction.

Case 2. There exists at least one more equivalence class T of ker f of the given
kind. Then there exist u, v ∈ T such that (u, c) ∈ σA and (c, v) ∈ σA. From (u, c) ∈ σA

and (c, z) ∈ σA, it follows that (u, z) ∈ σA, so ( f (u), f (z)) ∈ σA. Also, from (y, c) ∈ σA

and (c, v) ∈ σA, we obtain (y, v) ∈ σA, so ( f (y), f (v)) ∈ σA. On the other hand,
( f (z), f (u)) = ( f (y), f (v)) ∈ σA, so by antisymmetry of A, we obtain f (z) = f (u),
which is a contradiction, since S , T. �

Proposition 2. Let A = (A, (̺A)̺∈R) be such that R consists of exactly one binary
antisymmetric transitive relation σ. If (B1,B2, f , c) is a minimal witness, then f is
bijective.
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Proof. Suppose that f is not bijective and let B3 be a transversal of B1/ker f . More-
over, define B4 := B2, and g := f ↾B3

. Our goal is to show that (B3,B4, g, c) is a
witness. It is easy to see that c is a weak center of B3, so it remains to show that
g cannot be extended to B3 ∪ {c}.

Suppose the opposite, i.e. that there exists a d ∈ A such that

g̃(x) =

{

g(x), if x ∈ B3

d, if x = c.

is an extension of g to B3 ∪ {c}. We claim that

f̃ (x) =

{

f (x), if x ∈ B1

d, if x = c.

is then an extension of f to B1 ∪ {c}. Take (c, x) ∈ σA, where x ∈ B1 ∪ {c} (for
(x, c) ∈ σA one can prove it analogously). Then

( f̃ (c), f̃ (y)) =

{

(d, f (x)), if x ∈ B1

(d, d)), if x = c.

If x = c, then from (c, c) ∈ σA, it follows (d, d) = (g̃(c), g̃(c)) ∈ σA. On the other hand,
if x ∈ B1, then there exists a unique x′ ∈ B3, such that (x, x′) ∈ ker f . Then from
the previous Lemma, it follows that (c, x′) ∈ σA, so (d, g(x′)) = (g̃(c), g̃(x)) ∈ σA, i.e.
(d, f (x)) = (d, f (x′)) = (d, g(x′)) ∈ σA. Hence, (B1,B2, f , c) is not a witness, which is
a contradiction.

It follows that (B3,B4, g, c) is a witness, and moreover, it is a proper subwitness
of (B1,B2, f , c), so (B1,B2, f , c) cannot be minimal - a contradiction.

Thus, f is bijective. �

3.2. Binary homomorphism-homogeneous relations

In this section we turn our attention to the application of the minimal witness
criterion to the binary relations.

3.2.1. Minimal witnesses for antisymmetric transitive relations. Let there be
given a relational structure A = (A, ̺) such that ̺ is an antisymmetric transitive
relation. Our goal is to describe possible minimal witnesses for such relational
structures. By 3.1.4(Proposition 2) we obtain that for every minimal witness
(B1,B2, f , c) of A holds that f is bijective.
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B12

B11

c

Let, further, (B1,B2, f , c) be an arbitrary minimal witness in A.
Since c is a weak center of B1, it follows that for every b ∈ B1 either
(b, c) ∈ ̺ or (c, b) ∈ ̺, so we can split B1 into a disjoint union B11∪̇B12,
given by

B11 := {b ∈ B1 | (b, c) ∈ ̺}

B12 := {b ∈ B1 | (c, b) ∈ ̺}.

B22

B21

Moreover, f induces a splitting of B2 into corresponding parts B21 :=
f (B11) and B22 := f (B12), and we know that there is no element d such
that

∀b ∈ B21 : (b, d) ∈ ̺ and ∀b′ ∈ B22 : (d, b′) ∈ ̺.

In order to make the analysis that follows reader friendly, we will distinguish
two kinds of elements in A: for x ∈ A with a property that (x, x) ∈ ̺ we will say
that x has a loop in ̺ and we will draw it as N; otherwise, we will say that x
is loopless in ̺ and present it by △. However, if the nature of the element in
question is not important, we will simply draw ◦. Additionally, for B ⊆ A, we
will call a b ∈ B a sink for B if there is no a ∈ B \ {b} such that (b, a) ∈ ̺. We will
also use the notion of independent set. For a B ⊆ A we say that it is independent
in A if for every two distinct elements b1, b2 ∈ B neither (b1, b2) ∈ ̺ nor (b2, b1) ∈ ̺.

Claim 1. B11 and B12 are independent sets.
We will first show that the claim holds for B11. Suppose that B11 is not an

independent set. Then the set BM
11

of all sinks of B11 is a proper subset of B11.

Define B̃1 := BM
11
∪ B12, B̃2 := f (B̃1), and f̃ := f ↾B̃1

. We claim that (B̃1, B̃2, f̃ , c) is
again a witness, and moreover, a proper subwitness of (B1,B2, f , c).

It is clear that c is a weak center of B̃1. It is left to show that f̃ cannot be
extended to B̃1. Suppose the opposite, i.e. that there exists a d ∈ A such that

f̂ (x) =

{

f̃ (x), if x ∈ B̃1

d, if x = c,

is an extension of f̃ . Note that (c, d) is then not of the shape (N,△). Further, for

b ∈ BM
11

we obtain ( f (b), d) = ( f̂ (b), f̂ (c)) ∈ ̺. On the other hand, for b ∈ B12 holds

(c, b) ∈ ̺, so (d, f (b)) = ( f̂ (c), f̂ (b)) ∈ ̺. Moreover, for every b ∈ B11 \ BM
11

, there
is a bM ∈ BM

11
such that (b, bM) ∈ ̺, so ( f (b), f (bM)) ∈ ̺, and by transitivity of ̺, it

follows that ( f (b), d) ∈ ̺. Hence, there is a d ∈ A such that f can be extended,
implying that (B1,B2, f , c) is not a witness, which is a contradiction. Hence, B11 is
an independent set and one can prove analogously that B12 is also an independent
set.

Claim 2. B11 and B12 cannot be empty sets at the same time. If B1i, i = 1, 2, is a
singleton, then its single element is loopless. Otherwise, B1i, i = 1, 2, has at least
two elements.
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B12

c

Nb

If B11 and B12 are empty at the same time, then (B1,B2, f , c) is
not a witness. Without loss of generality, suppose that B11 is not
empty, and suppose, contrary to our claim, that B11 has precisely
one element b with a loop. We claim that f can be then extended to

f̂ (x) =

{

f (x), if x ∈ B1

f (b), if x = c.

Clearly, f̂ is a homomorphism, and (B1,B2, f , c) is not a witness, which is a
contradiction.

Claim 3. B21 and B22 are independent sets.
Suppose that B21 is not an independent set. Then the set BM

21
of all sinks of B21

is a proper subset of B21. Define B̃2 := BM
21
∪ B22, B̃1 := f −1(B̃2), and f̃ := f ↾B̃1

.

It is easy to show that (B̃1, B̃2, f̃ , c) is again a witness, and moreover, a proper
subwitness of (B1,B2, f , c), which leads us to a contradiction as in the proof of the
Claim 1.

From Claims 2 and 3 it follows directly
Claim 4. B21 and B22 cannot be empty sets at the same time. If B2i, i = 1, 2, is a

singleton, then its single element is loopless. Otherwise, B2i, i = 1, 2, has at least
two elements.

Note that if the single element has a loop, then the mapping that maps the
whole B1 onto it is a homomorphism that extends f .

Claim 5. If B2i , i = 1, 2 is not empty, then

• either it is a loopless singleton,

• or it has precisely two elements,

• or it consists of k elements with a loop, k ≥ 3, and c is loopless.

For the proof of the claim we distinguish two cases, depending on the nature
of c. It is enough prove it for B21, since the proof for B22 is analogous.

Case 1. Let c have a loop. We will show that if B21 has at least two elements,
then it has precisely two elements. Suppose that B21 has at least three elements.
We choose an element b1 in the following manner:

B12

B11

Nc

B22

b1 bk

f

• if B21 contains an element that has a loop and
its preimage under f also has a loop, then let
b1 be this element;

• if non of the elements of B11 has a loop and
B21 contains an element that has a loop, then
let b1 be this element;

• if non of the elements of B11 has a loop and non of the elements of B21 has a
loop, then let b1 be any element of B21.
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The rest of the elements of B21 we denote by b2, . . . , bk, k ≥ 3.
Since (B1,B2, f , c) is a minimal witness, it follows that (B1 \ { f

−1(b1)},B2 \

{b1}, f ↾B1\{ f−1(b1)}, c) is not a witness, so there exists a d1 ∈ A such that

f1(x) =

{

f (x), if x ∈ B1 \ { f
−1(b1)}

d1, if x = c,

is an extension of f ↾B1\{ f−1(b1)} to B1 \ { f
−1(b1)} ∪ {c}. Analogously, we conclude

that (B1 \ { f
−1(b2)},B2 \ {b2}, f ↾B1\{ f−1(b2)}, c) is not a witness, so there exists a d2 ∈ A

such that

f2(x) =

{

f (x), if x ∈ B1 \ { f
−1(b2)}

d2, if x = c,

B22

b1 b2 bk

Nd

Nd1 Nd2

is an extension of f ↾B1\{ f−1(b2)} to (B1 \ { f
−1(b2)})∪{c}. Note

that then both d1 and d2 have a loop, so the mapping

g(x) =



















f (x), if x ∈ B12

d1, if x = f −1(b1)
d2, if x = f −1(b2),

is a homomorphism.
We claim that (B12 ∪ { f

−1(b1), f −1(b2)},B22 ∪ {d1, d2}, g, c)
is a witness.

Suppose that it is not. Then there exists a d ∈ A such
that g can be extended to

g̃(x) =

{

g(x), if x ∈ B12 ∪ { f
−1(b1), f −1(b2)}

d, if x = c.

Note that d also has a loop. Moreover, f can be then extended to

f̃ (x) =

{

f (x), if x ∈ B1

d, if x = c,

so (B1,B2, f , c) would not be a witness - a contradiction.
We will show even more, i.e. that

(B12 ∪ { f
−1(b1), f −1(b2)},B22 ∪ {d1, d2}, g, c) � (B1,B2, f , c). (1)

For this purpose, observe the diagram

B1 ∪ {c} B1 B2

B12 ∪ { f
−1(b1), f −1(b2)} ∪ {c} B12 ∪ { f

−1(b1), f −1(b2)} B22 ∪ {d1, d2}

=

=

f

g

h3 h1 h2

63



Chapter 3. Homomorphism-homogeneous relational structures

where

h1(x) =

{

x, if x ∈ B12 ∪ { f
−1(b2)}

f −1(b1), otherwise,

h2(x) =



























x, if x ∈ B22

d1, if x = b1,
d2, if x = b2,
d1 otherwise,

h3(x) =

{

h1(x), if x ∈ B1

c, if x = c,

and show that h1, h2 and h3 are homomorphisms.
h1 is a homomorphism: Let x, y ∈ B1 be such that (x, y) ∈ ̺. Then

1.
B12

f−1(b1) f−1(b2)
rest

Nc

If x = y and x ∈ B12 ∪ { f
−1(b2)}, then we have

that (h1(x), h1(y)) = (x, y) ∈ ̺.

2. If x = y and x ∈ B11 \ { f
−1(b2)}, then we have

that (h1(x), h1(y)) = ( f −1(b1), f −1(b1)). By the
definition of b1 we can now distinguish three
cases:

• (b1, b1) ∈ ̺ and ( f −1(b1), f −1(b1)) ∈ ̺;

• (b1, b1) ∈ ̺ and for all i ∈ {1, . . . , k},
( f −1(b1), f −1(b1)) < ̺;

• for all i ∈ {1, . . . , k}, (b1, b1) < ̺.

Note that the latter two cases cannot happen,
since x = y ∈ B11, so ( f −1(b1), f −1(b1)) ∈ ̺.

3. If x , y, then x ∈ B11 and y ∈ B12, so h1(x) ∈ { f −1(b1), f −1(b2)} and h1(y) ∈ B12,
implying that (h1(x), h1(y)) ∈ ̺.

h2 is a homomorphism: Let x, y ∈ B2 be such that (x, y) ∈ ̺. Then

1.

B22

b1 b2
rest

Nd1 Nd2

If x = y and x ∈ B22, then (h2(x), h2(y)) =
(x, y) ∈ ̺.

2. If x = y and x ∈ B21, then

(h2(x), h2(y)) =

{

(d1, d1), if x ∈ B21 \ {b2}

(d2, d2), if x = b2.

Since (d1, d1), (d2, d2) ∈ ̺, it follows that
(h2(x), h2(y)) ∈ ̺.
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3. If x , y, then x ∈ B21 and y ∈ B22, so
h2(x) ∈ {d1, d2} and h2(y) ∈ B22, implying
that (h2(x), h2(y)) ∈ ̺.

h3 is a homomorphism: Let x, y ∈ B1 ∪ {c} be such that (x, y) ∈ ̺. Then

1. If x, y ∈ B1, then (h3(x), h3(y)) = (h1(x), h1(y)) ∈ ̺.

2. If x = c, then y ∈ B12 ∪ {c}, so

(h3(x), h3(y)) =

{

(c, y), if y ∈ B12

(c, c), if y = c.

In both cases we conclude that (h3(x), h3(y)) ∈ ̺.

3. If y = c and x ∈ B11, then h3(x) ∈ B11, so (h3(x), h3(y)) ∈ ̺.

It is left to show that the given diagram commutes, i.e. that h2 ◦ f = g ◦ h1,
since the other quadrangle in this diagram commutes by construction. Let x ∈ B1.
Then

h2 ◦ f (x) = h2( f (x)) =



























f (x), if f (x) ∈ B22

d1, if f (x) = b1

d2, if f (x) = b2

d1, otherwise

=



























f (x), if x ∈ B12

d1, if x = f −1(b1)
d2, if x = f −1(b2)
d1, otherwise

=



























g(x), if x ∈ B12

g(x), if x = f −1(b1)
g(x), if x = f −1(b2)
d1, otherwise

=

{

g(x), if x ∈ B12 ∪ { f
−1(b1), f −1(b2)}

d1, otherwise.

On the other hand,

g ◦ h1(x) = g(h1(x)) =

{

g(x), if x ∈ B12 ∪ { f
−1(b1), f −1(b2)}

g( f −1(b1)), otherwise.

=

{

g(x), if x ∈ B12 ∪ { f
−1(b1), f −1(b2)}

d1, otherwise.

Hence, the given diagram commutes. Thus, (1) holds, implying that (B1,B2, f , c)
cannot be a minimal witness, which leads to a contradiction. Hence, B21 has at
most two elements.

Case 2. Let c be loopless. We will first show that if B21 has at least one loopless
element, then it has at most two elements. Suppose to the contrary that B21 has
at least three elements. Let b1 be a loopless element. We choose an element b2 in
the following manner:
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B12

B11

△c

B22

△
b1 bk

f
• if B21 contains an element that has a loop and

its preimage under f also has a loop, then let
b2 be this element;

• if non of the elements of B11 has a loop and
B21 contains an element that has a loop, then
let b2 be this element;

• if non of the elements of B11 has a loop and non of the elements of B21 has a
loop, then let b2 be any element of B21.

The rest of the elements of B21 we denote by b2, . . . , bk, k ≥ 3.

Since (B1,B2, f , c) is a minimal witness, it follows that (B1 \ { f
−1(b2)},B2 \

{b2}, f ↾B1\{ f−1(b2)}, c) is not a witness, so there exists a d ∈ A such that

f2(x) =

{

f (x), if x ∈ B1 \ { f
−1(b2)}

d, if x = c,

is an extension of f ↾B1\{ f−1(b1)} to (B1 \ { f
−1(b1)}) ∪ {c}.

B22

△
b1 b2 bk

d

Note that then the mapping

g(x) =

{

f (x), if x ∈ B12 ∪ { f
−1(b2)}

d, if x = f −1(b1),

is a homomorphism. We claim that (B12 ∪

{ f −1(b1), f −1(b2)},B22 ∪ {d, b2}, g, c) is a witness.

Suppose that it is not. Then there exists a
d̃ ∈ A such that g can be extended to

g̃(x) =

{

g(x), if x ∈ B12 ∪ { f
−1(b1), f −1(b2)}

d̃, if x = c.

Moreover, f can be then extended to

f̃ (x) =

{

f (x), if x ∈ B1

d̃, if x = c,

so (B1,B2, f , c) would not be a witness - a contradiction.

We will show even more, i.e. that

(B12 ∪ { f
−1(b1), f −1(b2)},B22 ∪ {d, b2}, g, c) � (B1,B2, f , c). (2)
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For this purpose, observe the diagram

B1 ∪ {c} B1 B2

B12 ∪ { f
−1(b1), f −1(b2)} ∪ {c} B12 ∪ { f

−1(b1), f −1(b2)} B22 ∪ {d, b2}

=

=

f

g

h3 h1 h2

where

h1(x) =

{

x, if x ∈ B12 ∪ { f
−1(b1)}

f −1(b2), otherwise,

h2(x) =



















x, if x ∈ B22

d, if x = b1,
b2 otherwise,

h3(x) =

{

h1(x), if x ∈ B1

c, if x = c,

and show that h1, h2 and h3 are homomorphisms.

h1 is a homomorphism: Let x, y ∈ B1 be such that (x, y) ∈ ̺. Then

1.
B12

△
f−1(b1) f−1(b2)

rest

△c

If x = y and x ∈ B12 ∪ { f
−1(b1)}, then we have

that (h1(x), h1(y)) = (x, y) ∈ ̺.

2. If x = y and x ∈ B11 \ { f
−1(b1)}, then we have

that (h1(x), h1(y)) = ( f −1(b2), f −1(b2)). Since in
B11 \ { f

−1(b1)} exists an element with a loop,
we have that ( f −1(b2), f −1(b2)) ∈ ̺, so it follows
(h1(x), h1(y)) = (x, y) ∈ ̺.

3. If x , y, then x ∈ B11 and y ∈ B12, so h1(x) ∈
{ f −1(b1), f −1(b2)} and h1(y) ∈ B12, implying that
(h1(x), h1(y)) ∈ ̺.

h2 is a homomorphism: Let x, y ∈ B2 be such that (x, y) ∈ ̺. Then
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1.
B22

△
b1 b2

rest

d

If x = y and x ∈ B22, then (h2(x), h2(y)) =
(x, y) ∈ ̺.

2. If x = y and x ∈ B21, then x , b1, so we obtain
(h2(x), h2(y)) = (b2, b2). Since in B21 there exist
an element with a loop, it follows that (b2, b2) ∈
̺. Since (d1, d1) ∈ ̺ and (d2, d2) ∈ ̺, we have
that (h2(x), h2(y)) ∈ ̺.

3. If x , y, then x ∈ B21 and y ∈ B22, so h2(x) ∈ {d, b2}

and h2(y) ∈ B22, implying that (h2(x), h2(y)) ∈ ̺.

h3 is a homomorphism: Let x, y ∈ B1 ∪ {c} be such that (x, y) ∈ ̺. Then

1. If x, y ∈ B1, then (h3(x), h3(y)) = (h1(x), h1(y)) ∈ ̺.

2. If x = c, then y ∈ B12, so (h3(x), h3(y)) = (c, h1(y)) = (x, y) ∈ ̺.

3. If y = c, then x ∈ B11, so h3(x) ∈ B11, and (h3(x), h3(y)) ∈ ̺.

It is left to show that the given diagram commutes, i.e. that h2 ◦ f = g ◦ h1,
since the other quadrangle in this diagram commutes by construction. Let x ∈ B1.
Then

h2 ◦ f (x) = h2( f (x)) =



















f (x), if f (x) ∈ B22

d, if f (x) = b1

b2, otherwise

On the other hand,

g ◦ h1(x) = g(h1(x)) =

{

g(x), if x ∈ B12 ∪ { f
−1(b1)}

g( f −1(b2)), otherwise.

=



















f (x), if f (x) ∈ B22

d, if f (x) = b1

b2, otherwise

Hence, the given diagram commutes. Thus, (2) holds, implying that (B1,B2, f , c)
cannot be a minimal witness, which leads to a contradiction. Hence, if B21 has a
loopless element, then it has at most two elements.

We continue our analysis under the assumption that all elements of B21 have
a loop. Then B21 has at least two elements. We claim that B21 can then have k
elements, for any k ≥ 2. For the proof, consider the following structure:

Let k ∈N, k ≥ 2. Let, further, A = {c, a1, . . . , ak, b1, . . . , bk, d1, . . . , dk}. We define ̺
as

̺ = {(ai, ai) | i ∈ {1, . . . , k}} ∪ {(bi, bi) | i ∈ {1, . . . , k}} ∪ {(ai, c) | i ∈ {1, . . . , k}}∪

{(b j, di) | i ∈ {1, . . . , k}, j ∈ {1, . . . , k} \ {i}} ∪ {(a j, di) | i ∈ {1, . . . , k}}
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N
a1
N
ak

△c
△
d1
△
dk

N
b1
N
bk

We show that (B1,B2, f , c) is a minimal wit-
ness, where B1 = {a1, . . . , ak}, B2 = {b1, . . . , bk}

and f : ai 7→ bi, i ∈ {1, . . . , k}. Note first that
(B1,B2, f , c) has no proper subwitness. So, ev-
ery witness (B̃1, B̃2, f̃ , c̃) � (B1,B2, f , c) has to
be a homomorphic image of (B1,B2, f , c). Note
that B̃2 has to be a substructure without a weak center. Since it has to be a homo-
morphic image of B2, it must consist of elements from loops. Reasoning in the
same way, we conclude that B̃1 also consists of elements with loops. From this
it follows that B̃1, B̃2 ⊆ {a1, . . . , ak, b1, . . . , bk}. If for some bi, we have that bi < B̃2,
then B̃2 has the weak center di, so B̃2 ⊇ {b1, . . . , bk}, and, therefore, B̃2 = {b1, . . . , bk}.
Analogously, B̃1 has to be a k-element subset of {a1, . . . , ak, b1, . . . , bk} that is not
containing all bi’s. The minimal witness obtained in this way is isomorphic to
(B1,B2, f , c), so (B1,B2, f , c) is indeed a minimal witness.

The claim can be analogously shown for B22.
From the previous claims we can now conclude:
Claim 6. If for some i = 1, 2, B1i is not empty, then it has as many elements as

B2i, and among them at least as many loopless as B2i.
Possible minimal witnesses are given in the following table:

△
B12

Nc

△
B22

△ △
B12

Nc

△ △
B22

△ ◦
B12

Nc

△ N
B22

◦ ◦
B12

Nc

N N
B22

△
B12

△c

△
B22

△ △
B12

△c

△ △
B22

△ ◦
B12

△c

△ N
B22 ◦ ◦

B12

△c

N N
B22

△
B11

Nc

△
B21

△ △
B11

Nc

△ △
B21

△ ◦
B11

Nc

△ N
B21 ◦ ◦

B11

Nc

N N
B21

△
B11

△c

△
B21

△ △
B11

△c

△ △
B21

△ ◦
B11

△c

△ N
B21
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◦ ◦
B11

△c

N N
B21

△
B12

△
B11

Nc

△
B22

△
B21

△ △
B12

△
B11

Nc

△ △
B22

△
B21

△ ◦
B12

△
B11

Nc

△ N
B22

△
B21

◦ ◦
B12

△
B11

Nc

N N
B22

△
B21

△
B12

△ △
B11

Nc

△
B22

△ △
B21

△ △
B12

△ △
B11

Nc

△ △
B22

△ △
B21

△ ◦
B12

△ △
B11

Nc

△ N
B22

△ △
B21

◦ ◦
B12

△ △
B11

Nc

N N
B22

△ △
B21

△
B12

△ ◦
B11

Nc

△
B22

△ N
B21

△ △
B12

△ ◦
B11

Nc

△ △
B22

△ N
B21

△ ◦
B12

△ ◦
B11

Nc

△ N
B22

△ N
B21

◦ ◦
B12

△ ◦
B11

Nc

N N
B22

△ N
B21

△
B12

◦ ◦
B11

Nc

△
B22

N N
B21

△ △
B12

◦ ◦
B11

Nc

△ △
B22

N N
B21

△ ◦
B12

◦ ◦
B11

Nc

△ N
B22

N N
B21
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◦ ◦
B12

◦ ◦
B11

Nc

N N
B22

N N
B21

△
B12

△
B11

△c

△
B22

△
B21

△ △
B12

△
B11

△c

△ △
B22

△
B21

△ ◦
B12

△
B11

△c

△ N
B22

△
B21

◦ ◦
B12

△
B11

△c

N N
B22

△
B21

△
B12

△ △
B11

△c

△
B22

△ △
B21

△ △
B12

△ △
B11

△c

△ △
B22

△ △
B21

△ ◦
B12

△ △
B11

△c

△ N
B22

△ △
B21

◦ ◦
B12

△ △
B11

△c

N N
B22

△ △
B21

△
B12

△ ◦
B11

△c

△
B22

△ N
B21

△ △
B12

△ ◦
B11

△c

△ △
B22

△ N
B21

△ ◦
B12

△ ◦
B11

△c

△ N
B22

△ N
B21

◦ ◦
B12

△ ◦
B11

△c

N N
B22

△ N
B21

△
B12

◦ ◦
B11

△c

△
B22

N N
B21

△ △
B12

◦ ◦
B11

△c

△ △
B22

N N
B21

△ ◦
B12

◦ ◦
B11

△c

△ N
B22

N N
B21

◦ ◦
B12

◦ ◦
B11

△c

N N
B22

N N
B21

In order to demonstrate how these minimal witnesses can be used for the

71



Chapter 3. Homomorphism-homogeneous relational structures

concrete characterization of homomorphism-homogeneous relations let us repeat
the classification of homomorphism-homogeneous posets (cf. [28]).

Example. Let (A, ̺) be a poset. Instead of (x, y) ∈ ̺, we will usually write x ≤̺ y.
It is not hard to see that the relevant minimal witness for posets are as follows:

B1 B2

B11 = ∅

b1 b2

B12

c

f (b1) f (b2)

B22

no lower bound

B12 = ∅
b1 b2

B11

c

f (b1) f (b2)
B21

no upper bound

B11,B12 , ∅

b4 b3

B12

c

b1 b2

B11

f (b4) f (b3)

B22

f (b1) f (b2)
B21

no d:B21≤̺d≤̺B22

First of all, observe that chains contain no witnesses, so they all have weak one-
point extension property. If a poset is not a chain, then it contains at least two
non-comparable elements. We now take in the consideration such a poset, and
distinguish the following two cases:

Case 1. A poset contains no substructure of the shape

1. If no two-element antichain has an upper bound, and no two-element
antichain has a lower bound, then such a poset is a disjoint union of
chains.

2. If all two-element antichains have an upper bound, and no two-element an-
tichain has a lower bound, then every two-element antichain has precisely
one minimal upper bound, so such a poset is a dual tree.

3. If no two-element antichain has an upper bound, and all two-element an-
tichains have a lower bound, then every two-element antichain has pre-
cisely one maximal upper bound, and such a poset is a tree.
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4. If all two-element antichains have an upper bound, and all two-element
antichains have a lower bound, then every two-element antichain has pre-
cisely one minimal upper bound and one maximal lower bound, so such a
poset is a tree ”glued” with a dual tree by identifying vertices.

Case 2. A poset contains a substructure of the shape

Then there exists a two-element antichain that has an upper bound, and, there-
fore, all two-element antichains have an upper bound. Also, there exists a two-
element antichain that has a lower bound, so all two-element antichains have a
lower bound. Since a poset contains no minimal witness, it follows that either no

can be extended to

i.e. a poset is X5-free, or in other words, it is a tree ”glued” with a dual tree by
connecting with edges, or it follows that all

can be extended to

i.e. a poset is X5-dense.

3.2.2. Minimal witnesses for transitive relations. After characterizing all min-
imal witnesses for antisymmetric transitive relations, we turn our attention to
transitive relations. Let A = (A, ̺) be such that ̺ is a transitive relation. Note that
every transitive relation has a retract that is an antisymmetric transitive relation.
In order to see this, define an equivalence relation ≃ as (̺ ∩ ̺−1) ∪ ∆A and a set B
as a transversal of A/≃. Then ̺ ∩ B2 is an antisymmetric transitive relation on B.
Now we define r : A→ B by mapping an x ∈ A to the representative of [x]≃ in B.
It is not hard to see that r is a retraction. Let ι be the right inverse embedding of
r.
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Our goal is to show that A has the one-point extension property if and only if B
does. From 2.3.2(Lemma 1), it is already known that if A has this property, then
so does every retract of A. Thus, it suffices to show that if B has this property, so
does A, or, in other words, if A has a witness, then B also has one.

Suppose that (B1,B2, f , c) is a witness in A. We will show that (r(B1), r(B2), g, r(c))
is a witness in B, where g is such that the diagram

B1 B2

r(B1) r(B2)

f

g

rB1
rB2

commutes and rB1
, rB2

are corresponding restrictions of r. First of all, we show that
such a g exists. Note that r(B1) is a retract of B1, so take the identical embedding
ιB1

: r(B1) → B1 and define g := rB2
◦ f ◦ ιB1

, where ιB1
is a restriction of ι on B1.

Then g is a homomorphism and a surjection by construction.

Suppose that (r(B1), r(B2), g, r(c)) for such a chosen g is not a witness. Then
there exists a d ∈ A such that

g̃(x) =

{

g(x), if x ∈ r(B1)
d, if x = r(c),

is an extension of g to r(B1)∪ {r(c)}. We will show that f also has an extension, in
particular, that

f̃ (x) =

{

f (x), if x ∈ B1

d, if x = c,

extends f to B1 ∪ {c}. To show that f̃ is a homomorphism, w.l.o.g. take (c, x) ∈ ̺,
such that x ∈ B1. Then (r(c), r(x)) ∈ ̺. On the other hand, r(c), r(x) ∈ r(B1) ∪ {r(c)},
so (d, g̃(r(c))) = (g̃(r(c)), g̃(r(x))) ∈ ̺. However,

g̃(r(x)) = (rB2
◦ f ◦ ιB1

)(r(x)) = (rB2
◦ f )(r(x)) = rB2

( f (r(x))),

so (d, rB2
( f (r(x)))) ∈ ̺. Note that if f (r(x)) is loopless, then , rB2

( f (r(x))) = f (r(x)), so
(d, f (r(x))) ∈ ̺. On the other hand, if f (r(x)) has a loop, then (rB2

( f (r(x))), f (r(x))) ∈
̺, so by transitivity, we obtain (d, f (r(x))) ∈ ̺. Moreover, if x is loopless, then r(x) =
x, so (d, f (x)) ∈ ̺. However, if x has a loop, then (r(x), x) ∈ ̺, so ( f (r(x)), f (x)) ∈ ̺,
and finally, ( f̃ (c), f̃ (x)) = (d, f (x)) ∈ ̺.

Hence, f̃ is indeed an extension, so (B1,B2, f , c) cannot be a witness. Contra-
diction.

Corollary. A quasi-order has the one-point extension property if and only if it is the full
preimage of a partial order with the one point extension property.
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3.2.3. Minimal witnesses for tolerance relations. Let A = (A, ̺) be such that
̺ is a tolerance relation, i.e. ̺ is a reflexive symmetric binary relation. It is well
known that every tolerance relation can be represented in the form of a graph
with all possible loops, so we will use this opportunity to make this study more
friendly to the reader. To every tolerance relation will be associated a drawing
of its corresponding simple graph (meaning that we leave out all loops). From
3.1.4(Proposition 1) we already know that if (B1,B2, f , c) is a minimal witness in
A, then f is bijective. Since c is a weak center of B1, it follows that for every b ∈ B1

holds that (c, b), (b, c) ∈ ̺.

B1

◦c

B2

f

Note that tolerance relations that are binary cen-
tral relations have no witnesses at all, since every
substructure has a weak center (e.g. any central ele-
ment), so they always have the one-point extension
property. Therefore, we will concentrate in the se-
quel on noncentral tolerance relations.

We turn our attention now to a potential minimal witness (B1,B2, f , c) that has
the smallest cardinality of B1. Then it is of the shape (1).

◦ ◦
B1

◦c

◦ ◦
B2 (1)

Using this observation, we will
describe those tolerance relations
that do not contain the above de-
scribed minimal witness.

Proposition 1. Let A = (A, ̺) a rela-
tional structure where ̺ is a tolerance
relation. Then A does not have a minimal witness of the shape (1) if and only if one of
the following two is true:

• ̺ is an equivalence relation or

• the graph of ̺ is connected and of diameter at most 2.

Proof. Note that neither equivalence relations nor the connected graphs of diam-
eter at most 2 have this witness. Suppose now that A does not have a minimal
witness of the shape (1). We distinguish the following two cases:
Case 1. The graph G of ̺ is disconnected. We will show that ̺ has to be tran-
sitive. Suppose that it is not. Then there exist elements a1, a2 ∈ A such that
(a1, c), (c, a2) ∈ ̺, but (a1, a2) < ̺. Since G is disconnected, it has at least two
connected components. Let b1 and b2 be the elements from different compo-
nents. Then for B1 := {a1, a2}, B2 := {b1, b2} and f : ai 7→ bi, i = 1, 2, we have that
(B1,B2, f , c) is a witness of the shape (1) — a contradiction. Hence, ̺ is transitive,
and, therefore, an equivalence relation.
Case 2. The graph G of ̺ is connected. Suppose that it has diameter greater than
2. Then there exist b1 and b2 of distance 3. Let a1 and a2 be of distance 2, i.e. there
exists a c such that (a1, c), (c, a2) ∈ ̺. But now, for B1 := {a1, a2}, B2 := {b1, b2} and
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f : ai 7→ bi, i = 1, 2, we have that (B1,B2, f , c) is a witness of the shape (1) — a
contradiction. Hence, G is of diameter at most 2. �

Our next goal is to describe minimal witnesses that are not of the shape (1).

Proposition 2. Let D = (D, σ) be such that σ is a noncentral tolerance relation and D
is finite. Then there exists a structure A with a minimal witness (B1,B2, f , c) such that
B2 � D.

Proof. Suppose D = {d1, . . . , dk} and let D̃ := {d̃1, . . . , d̃k} be such that D ∩ D̃ = ∅
and |D| = |D̃| = k. Finally, let d be such that d < D ∪ D̃. Define

A := D ∪ D̃ ∪ {d}

̺1 := {(d, d̃i) | i ∈ {1, . . . , k}}

̺2 := {(di, d̃ j) | i, j ∈ {1, . . . , k} ∧ i , j}

̺ := σ ∪ ̺1 ∪ ̺
−1
1 ∪ ̺2 ∪ ̺

−1
2 ∪ ∆A

Further, define B1 := {d, d2, . . . , dk} and B2 := {d1, . . . , dk}. Let c := d̃1 and let

f : B1 → B2 : x 7→

{

d1, if x = d
x, otherwise,

Then (B1,B2, f , c) is a witness of the structure A = (A, ̺). In the next step we
show that every minimal witness of A is of the shape (B̃1,B2, f̃ , c̃). It is enough to
show that every substructure S of A without a weak center contains B2. Indeed,
if there exists a di ∈ B2 such that di < S, then d̃i is a weak center of S. �

3.2.4. Homomorphism-homogeneous tolerance relations. Our goal now is to
describe a practicable way for the constructive enumeration of all homomor-
phism-homogeneous tolerance relations on a given finite set A. In the previous
subsection we have shown that homomorphism-homogeneous tolerance rela-
tions with a disconnected corresponding graph are equivalence relations, so it
is left to characterize those that have a connected graph. This can be done
by filtering out all those relations that are not homomorphism-homogeneous.
Moreover, we have to check just those tolerance relations whose correspond-
ing graph is of diameter 2. Note that all tolerance relations whose graph is of
diameter 1 are central relations, and, therefore, homomorphism-homogeneous.
Let ̺ be a tolerance relation on A. In order to show that graph G of ̺ is not
homomorphism-homogeneous, we have to show that it contains a minimal wit-
ness. In the following we describe a strategy for finding minimal witnesses:

For this purpose, we introduce a quasi-order on substructures of A = (A, ̺).
For substructures D1,D2 of A we say that D1 is below D2 and write D1 � D2 if
there exists a substructure D3 of D2 and a surjective homomorphism h : D3 → D1.

It is not hard to see that the relation � is a quasi-order and that the correspond-
ing equivalence relation is the isomorphism relation. Moreover, if (B1,B2, f , c)
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3.2. Binary homomorphism-homogeneous relations

is a minimal witness of A, then B2 is a minimal substructure with respect to �
among all those substructures that do not have a weak center. Therefore, when
we search for minimal witnesses in A, it is natural to find first among all substruc-
tures without a weak center the minimal ones with respect to � (i.e. �-minimal
substructures). Once we found them, we look for their bijective homomorphic
preimages in A that have a weak center. If this search is successful, then we know
that A is not homomorphism-homogeneous.

The problem of finding bijective homomorphic preimages of substructures in
A can be reduced to the problem of finding bijective homomorphic images of
substructures in Ā = (A,A2 \ ̺):

Lemma. Let (A1, ̺1) and (A2, ̺2), where ̺1 ⊆ A2
1

and ̺2 ⊆ A2
2, be relational structures

and f : A1 → A2 a bijective homomorphism. Let ¯̺1 = A2
1
\ ̺1 and ¯̺2 = A2

2 \ ̺2. Then
f −1 : A2 → A1 is a homomorphism from (A2, ¯̺2) to (A1, ¯̺1).

Proof. Let (a1, a2) ∈ ¯̺2. Since a1, a2 ∈ A2 and f is bijective, it follows that there exist
b1 = f −1(a1) and b2 = f −1(a2). We prove indirectly that (b1, b2) ∈ ¯̺1.

If (b1, b2) < ¯̺1, then (b1, b2) ∈ ̺1, so ( f (b1), f (b2)) ∈ ̺2. On the other hand,
( f (b1), f (b2)) = ( f ( f −1(a1)), f ( f −1(a2))) = (a1, a2), so (a1, a2) ∈ ̺2, and, therefore,
(a1, a2) < ¯̺2, which is a contradiction.

We conclude that f −1 : A2 → A1 is a homomorphism from (A2, ¯̺2) to (A1, ¯̺1). �

In general, the above described method works well only for rather small basic
sets A, so we give a few refinements that speed up the whole process:

Note that homomorphism-homogeneous relational structures are closed with
respect to retracts. Suppose that we have already computed all homomorphism-
homogeneous relations on proper subsets of A. Then we can simplify our search
by computing several easily obtainable retracts of A and looking if they appear
in the list that we have already computed. If one of them does not, then we know
that A is not homomorphism homogeneous.

Before developing the next idea, let us set some terminology that will be used in
the sequel. Given a relational structure A = (A, ̺). Consider the relation ¯̺ = A2\̺
and take the smallest equivalence relation θ that contains ¯̺. The equivalence
classes of θ we will call components of A. If A has just one component, then we
call it connected.

The next idea is based on the observation that disconnected homomorphism-
homogeneous tolerance relations can be composed from connected homomor-
phism-homogeneous tolerance relations.

Proposition 1. Let A = (A, ̺) be such that ̺ is a noncentral tolerance relation. Let
G1, . . . ,Gn, n ≥ 2, be the components of A. Then substructures H of A without a
weak center in A are in one-to-one correspondence with tuples (H1, . . . ,Hn), where Hi

is a substructure of Gi without a weak center in Gi, i = 1, . . . ,n. Moreover, this
correspondence is given by

H 7→ (H ∩ G1, . . .H ∩ Gn)

(H1, . . . ,Hn) 7→ H1 ∪ · · · ∪Hn.
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Proof. Let H be a substructure of A without a weak center in A. First of all, if
H contains exactly one element from some component Gi, then this element of
this component is a weak center of H in A. Moreover, if for some i we have that
H ∩ Gi = ∅, then any element of Gi is a weak center of H. Therefore, H must
contain at least two elements from each of the components of A. Moreover, if
for some i, H ∩ Gi has a weak center in Gi, then this weak center is going to be a
weak center of H. Hence, the components of H are H1, . . . ,Hn, such that Hi ≤ Gi,
Hi has at least two elements and Hi has no weak center in Gi, i = 1, . . . ,n. On
the other hand, for every choice of H1, . . . ,Hn, such that Hi ≤ Gi, Hi has at least
two elements and Hi has no weak center in Gi, i = 1, . . . ,n, gives a substructure
H without a weak center in A such that Hi’s are components of H. Indeed, if
H would have a weak center, then this weak center would be an element of
some Gi, and, therefore, a weak center of the corresponding Hi, which is in a
contradiction with a choice of Hi. Thus, the desired one-to-one correspondence
is established. �

Proposition 2. Let A = (A, ̺) be a homomorphism-homogeneous relational structure
such that ̺ is a noncentral tolerance relation and let G1, . . . ,Gn, n ≥ 2 be the compo-
nents of A. Then a substructure H that consist of the components G1, . . . ,Gn−1 is also
homomorphism-homogenous.

Proof. Let G1, . . . ,Gn, n ≥ 2, be the components of A and let H = G1 ∪ · · · ∪ Gn−1.
Suppose that H has a witness (B1,B2, f , c). Without loss of generality, we can
assume that f is bijective. Clearly, the components of H are G1, . . . ,Gn−1. Since
B21 is a substructure of H that has no weak center, from Proposition 1 we know
that B2 corresponds to the (n − 1)-tuple (B21, . . . ,B2,n−1) where B2i = B2 ∩ Gi

is a substructure of Gi that has no weak center in Gi. Further, there exists a
component Gi (i ∈ {1, . . . ,n − 1}) such that c ∈ Gi. In the next step we take a
substructure B2n of Gn without a weak center in Gn and define the mapping

f̂ : B1 ∪ B2n → B21 ∪ · · · ∪ B2n where

f̂ : x 7→

{

f (x), if x ∈ B1

x, if x ∈ B2n,

It is not hard to see that f̂ is a bijective homomorphism. Moreover, c is a weak
center of B1 ∪ B2n and using Proposition 1 we obtain that B21 ∪ · · · ∪ B2n has

no weak center in A. Thus, (B1 ∪ B2n,B21 ∪ · · · ∪ B2n, f̂ , c) is a witness in A—
contradiction. �

Corollary. Let A = (A, ̺) be a homomorphism-homogeneous relational structure such
that ̺ is a noncentral tolerance relation and let G1, . . . ,Gn, n ≥ 2 be the components of
A. Then every Gi, i ∈ {1, . . . ,n}, is homomorphism-homogeneous.

We can now test the homomorphism homogeneity of relational structures
A = (A, ̺) where ̺ is a noncentral tolerance relation, by removing one compo-
nent of A at the time and checking if the structure obtained in such a way is
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also homomorphism-homogeneous. In Appendix A the results of a computer
enumeration of homomorphism-homogeneous tolerance relations is presented.

3.2.5. Examples of homomorphism-homogeneous tolerance relations. We fin-
ish our study of homomorphism-homogeneous tolerance relations by describing
some infinite families of examples. We will denote by Sk the star-graph on k
vertices (see (1)). The complete graph on k vertices will be denoted by Kk.

vk

v1
v2vk−1

(1)

Example 1. Let G be a simple graph such
that all connected components of G are star-
graphs, i.e. every component is isomorphic to
some Sk. Let A be the vertex set of G and
let ̺ be the complement of the adjacency rela-
tion of G. Then A = (A, ̺) is homomorphism-
homogeneous.

Proof. First of all, it is obvious that the vertex sets of the connected components
of G are the components of A. Denote them by A1, . . . ,An. Then the minimal
substructure without a weak center in A corresponds by 3.2.4(Proposition 1) to
a tuple (H1, . . . ,Hn) where each Hi, i = 1, . . . ,n, is a minimal substructure of Ai

with no weak center in Ai. Note that for every i ∈ {1, . . . ,n} the restriction of ̺
to Ai is an equivalence relation with two equivalence classes, where at least one
of the classes is a singleton. It is not hard to see that the transversals of these
equivalence relations define minimal substructures of Ai without a weak center
in Ai. Thus, a minimal substructure of A without a weak center in A is a union of
transversals of ̺ ↾Ai

, for i = 1, . . . ,n. So, all minimal substructures of A without
a weak center in A are mutually isomorphic and, therefore, they are �-minimal.

We turn our attention now to the bijective homomorphic preimages of de-
scribed �-minimal substructures of A. Let H = (H, ̺ ↾H) be one of them. Then
H2 \ ̺ ↾H is the adjacency relation of the subgraph GH of G induced by H. Then
GH � n ·K2 (n disjoint copies of K2). Finding bijective homomorphic preimages of
H in A is the same as finding bijective homomorphic images of GH in G. Note that
every such an image can contain at most one edge from each of the star-graphs
in G. Otherwise, the corresponding homomorphism is not bijective. Thus, every
bijective homomorphic image of GH in G is isomorphic to GH, and, in particular,
it contains from every star-graph an edge. These are precisely the transversals of
the components of A, and, thus, no bijective homomorphic preimage of H has a
weak center. �

Example 2. Let G be a simple graph such that all connected components of G
are cycles of length 5, i.e. every component is isomorphic to C5. Let A be the
vertex set of G and let ̺ be the complement of the adjacency relation of G. Then
A = (A, ̺) is homomorphism-homogeneous.
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(2)

Proof. Again, it is obvious that the vertex sets of
the connected components of G are the components
of A. Denote them by A1, . . . ,An. Then the mini-
mal substructure without a weak center in A corre-
sponds again to a tuple (H1, . . . ,Hn) where each Hi,
i = 1, . . . ,n, is a minimal substructure of Ai with no
weak center in Ai. Note that for every i ∈ {1, . . . ,n} the restriction of ̺ to Ai is C5

with all possible loops. It is easy to see that minimal substructures of Ai without
a weak center in Ai are then isomorphic and look as (2). A minimal substructure
of A without a weak center in A is a union of minimal substructures of Ai without
a weak center in Ai. Thus, all minimal substructures of A without a weak center
in A are mutually isomorphic and, therefore, they are �-minimal.

Let H = (H, ̺ ↾H) be one of the bijective homomorphic preimages of described
�-minimal substructures of A. Then H2 \ ̺ ↾H is the adjacency relation of the
subgraph GH of G induced by H. Then GH � n · S3 (n disjoint copies of S3). As
in the previous example, we find now all bijective homomorphic images of GH

in G. Since G contains no triangle, every bijective homomorphism maps every
S3 to another subgraph isomorphic to S3. Two copies of S3 cannot be mapped by
a bijective homomorphism into the same copy of C5, so we conclude that every
bijective homomorphic image of n · S3 will be again isomorphic to n · S3. Thus,
every bijective homomorphic preimage of H has no weak center. �

Example 3. Let G be a connected simple graph that is obtained by taking n copies
of S3, n ≥ 3, then taking from each copy a vertex of degree 1 and identifying them
(see (3)). Let A be the vertex set of G and let ̺ be the complement of the adjacency
relation of G. Then A = (A, ̺) is homomorphism-homogeneous.

Proof. Let U be a minimal substructure of A without a weak center in A. We
denote the vertices of A as it is shown in (3). Note that if any of vi’s is not
contained in U, then corresponding wi is going to be a weak center of U. So,
all vi’s are in U, but since they are inducing a substructure in A with a weak
center in A, we conclude that U contains more vertices. Further, denote by GU

the subgraph of G that is induced by U. We consider the following two cases:

u

v1
v2vn

w1

w2wn

(3)

Case 1. u ∈ U. Note that (u, vi) < ̺
and for all i we have that (wi, vi) < ̺, so
the substructure induced by u, v1, . . . vn

in A has no weak center in A, and there-
fore it is a minimal one. Then ̺ ∩ U2 is
an equivalence relation with two equiv-
alence classes: {v1, . . . , vn} and {u}. Note
that U induces a star graph Sn+1 in G and
consider the bijective homomorphic im-
ages of GU. The central vertex of the star
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has to be mapped to itself, since it has the highest degree in G (it is unique).
Therefore, the rest has to be mapped to vi’s, so the image is the graph itself.
Case 2. u < U. Then U contains some of wi’s. If some w j < U, then v j is going to
be a weak center of U in A, so all wi’s are in U. Hence U = {v1, . . . , vn,w1, . . . ,wn}

and the subgraph induced by U in GU is isomorphic to n · K2. Since for every i
we have that (vi,wi) < ̺ and (u, vi) < ̺, we conclude that U has no weak center
in A. Consider now the bijective homomorphic images of GU in G. If u does
not appear in the bijective homomorphic image, then the image has to be equal
to GU. Otherwise, one of the wi’s is not appearing in the image. But, such an
image contains then the vertex set {u, v1, . . . , vn} and, thus, it has no weak center
in A. �

Example 4. Let G be a simple graph whose one connected component has the
vertex set V ∪W1 ∪ · · · ∪Wn, n ≥ 3, such that V = {v1 . . . , vn} and the minimal
degree of the vertices in GV is 2 in GV. Moreover, Wi ∪ {vi} induces a star with
the center vi, for i = 1, . . . ,n, and all vertices of Wi have degree 1. The other
connected components of G are star-graphs. Let A be the vertex set of G and
let ̺ be the complement of the adjacency relation of G. Then A = (A, ̺) is
homomorphism-homogeneous.

Proof. Let U be a minimal substructure of A without a weak center in A. If for
some i, i ∈ {1, . . . ,n}, we have that vi < U, then all vertices of Wi will be weak
centers of U in A. Hence, V ⊆ U. Further, from every star-graph component of
G, exactly two adjacent vertices have to be in U. Otherwise, U has a weak center
in A. To sum up, GU contains of GV and several copies of K2, as many as there
are star-graph connected components in G. It is not hard to see that U has no
weak center in A. Consider now any bijective homomorphic image of GU in G.
It is clear that GV has to be mapped to itself and that no two copies of K2 can be
mapped to the same star-graph component. Hence, the bijective homomorphic
images of GU are isomorphic to GU. �

Example 5. Let V = {v1, . . . , vn} and let W = {w1, . . . ,wn}, n ≥ 2. Let A = V ∪W
and let

̺ = V2 ∪W2 ∪ {(vi,wi) | i ∈ {1, . . . ,n} ∪ {(wi, vi) | i ∈ {1, . . . ,n}}.

Then A = (A, ̺) is homomorphism-homogeneous.

Proof. Let G be the graph obtained from A by removing all loops. Then G is
isomorphic to the Cartesian sum K2 + Kn. In the following we will identify sub-
structures of A with their corresponding induced subgraphs of G. We distinguish
three possible types of minimal substructure of A without a weak center in A:

1. U = {vi, v j,wi,w j}, where i , j and i, j ∈ {1, . . . ,n},

2. U = {vi, v j,wi,wk}, where i, j, k are distinct elements of {1, . . . ,n},
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3. U = {vi, v j,wk,wl}, where i, j, k, l are distinct elements of {1, . . . ,n}.

The second case appears only for n ≥ 3 and the third case appears only for n ≥ 4.
It is not hard to see that the first case defines the �-minimal substructures in A
without a weak center in A. If U = {vi, v j,wi,w j}, then U induces a cycle of length
4 in G. We can see at once that the possible bijective homomorphic preimages of a
cycle of length 4 in G are the paths of 4 vertices or two copies of K2. However, all
paths of four vertices are induced by a set of the shape as given in the second case.
Moreover, all induced subgraphs of G that are isomorphic to 2 · K2 are induced
by a set of shape as given in the third case. Hence no bijective homomorphic
preimage of U in A has a weak center in A. �
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Appendix A.

Catalogue of small homomorphism-homogeneous

tolerance relations

In this appendix we will list all noncentral connected homomorphism-homogene-
ous tolerance relations on a basic set A of cardinality at most 9. The computations
were done using the packages nauty (cf. [31]) and GAP (cf. [13]) in conjunction
with GRAPE (cf. [51]). Each of the relations will be represented in the form
of a connected graph. In order to draw them in the most compact and clearly
organized way, we will introduce some additional rules for simplifying their
graphical representation and avoiding the appearance of a large number of edges
in the graphs of relations in question.

It is clear that some of relations have isomorphic graphs, so we will always
put one representative in the list and, for this reason, we will avoid the labeling
of the vertices of a graph. In order to make drawings as simple as possible, we
make them as hierarchical diagrams.

Definition. The hierarchical diagram is a tuple ((Vi)
k
i=1
, (Ei)

k
i=1
, Ẽ, c, c̃) where

1. V1, . . . ,Vk are nonempty pairwise disjoint sets,

2. Ei ⊆ Vi × Vi,

3. Ẽ ⊆ {1, . . . , k}2 \ ∆{1,...,k},

4. c : V → {w, b}, where V =
⋃k

i=1 Vi, and

5. c̃ : Ẽ→ {s, d}.

Every hierarchical diagram ((Vi)
k
i=1
, (Ei)

k
i=1
, Ẽ, c, c̃) defines a binary relation ̺ on

V × V, where V =
⋃k

i=1 Vi, as follows:

̺ :=

k
⋃

i=1

Ei ∪

k
⋃

i, j=1
i, j

Ei j,

where

Ei j =

{

Vi × V j, if c̃((i, j)) = s,
{(u, v) ∈ Vi × V j | c(u) = w or c(v) = w}, otherwise.
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We draw hierarchical diagram in the following way: a vertex v we draw as ◦, if
c(v) = w, and as •, if c(v) = b. The elements of Ei are drawn as the edges between
corresponding vertices. The vertices from the same Vi we draw into an oval box.
We omit the oval box if Vi is a singleton. The elements of Ẽ define edges between
oval boxes. If for e ∈ Ẽ we have that c̃(e) = s, then we draw a usual edge, and if
c̃(e) = d, then we draw a dashed edge. We avoid drawing loops.

A.1. Relations on 4 elements

There is, up to isomorphism, just one connected noncentral
homomorphism-homogeneous tolerance relation.

A.2. Relations on 5 elements

There are, up to isomorphism, three connected noncentral homomorphism-
homogeneous tolerance relations.

A.3. Relations on 6 elements

There are, up to isomorphism, seven connected noncentral homomorphism-
homogeneous tolerance relations.
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A.4. Relations on 7 elements

There are, up to isomorphism, eight connected noncentral homomorphism-
homogeneous tolerance relations.

A.5. Relations on 8 elements

There are, up to isomorphism, twenty one connected noncentral homomorphism-
homogeneous tolerance relations.
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A.6. Relations on 9 elements

A.6. Relations on 9 elements

There are, up to isomorphism, forty seven connected noncentral homomorphism-
homogeneous tolerance relations.
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Appendix B.

Sažetak

Uvod

Teorija klonova je moderna matematička disciplina koja proučava funkcio-
nalne i relacione algebre. Ideje ugradene u njene osnove dolaze iz nekoliko
izvora. Jedan od njih je elementarna teorija 0/1 funkcija ([45]), koju je 1847. go-
dine uveo Džordž Bul, predlažući da se iskazni veznici tretiraju kao diskretne
istinitosne funkcije. Time je započeto izučavanje zatvorenih klasa istinitosnih
funkcija u dvovrednosnoj i viševrednosnoj logici. Drugi važan izvor je klasična
teorija Galoa. Inspirisana Erlangen programom Feliksa Klajna iz 1872. godine , ova
teorija je evoluirala u opštu teoriju Galoa za funkcije i relacije. Pionirima ove
oblasti se smatraju Mark Krasner([21, 47]) i Hoze Sebastiao e Silva([50, 48]), a nji-
hova istraživanja se moraju sagledati u kontekstu napora matematike sa početka
dvadesetog veka da uvede apstraktni koncept struktura, što je na kraju dovelo
do razvoja opšte algebre i teorije modela. Teorija funkcionalnih algebri i opšta
teorija Galoa za funkcije i relacije su se postepeno razvili u oblast koja je danas
poznata kao teorija klonova(videti na pr. [19, 20],[15, 2, 52, 35]).

Osnovni problem teorije klonova je opis mreže klonova na datom skupu. Prvi
značajniji rezultat u ovoj oblasti objavio je Emil Leon Post u [42, 43], gde je
opisana mreža klonova na dvoelementnom skupu. To je ujedno i jedina do sada
potpuno opisana mreža klonova, a već na troelementnom skupu ova mreža je
uglavnom nepoznata i neistražena. Budući da se potpun opis mreže klonova u
opštem slučaju smatra beznadežnim, istraživanja u ovoj oblasti se usredsreduju
na izučavanje njenih podstruktura i aproksimacija.

Jedan od načina da se aproksimira mreža klonova jeste da se izučavaju k-
ti delovi klonova i da se opišu njihove medusobne inkluzije. Stoga je i jedna
od početnih tačaka ovog istraživanja bila izučavanje njihovih unarnih delova,
odnosno, monoida transformacija. Prva klasa relacija, čiji monoidi endomor-
fizama i njihovi medusobni odnosi su izučavani, je bila klasa Rozenbergovih
relacija ([36, 30, 34]). Ovakav izbor nije neočekivan, s obzirom da Rozenber-
gove relacije definišu maksimalne klonove. Ispostavilo se da su unarni delovi
maksimalnih klonova skoro uvek neuporedivi, osim u nekoliko slučajeva (cen-
tralne, h-regularne relacije). U svakom slučaju, ad hoc metode koje su koršćene
u ovoj studiji nisu bile dovoljne za dobijanje zadovoljavajućih rezultata u nekim
od slučajeva u kojima se naslućivalo da inkluzije izmedu monoida endomorfi-
zama ipak postoje. Time se ukazala potreba za pronalaženjem novih metoda
za rešavanje problema navedenog tipa, što je dovelo do razvoja lokalnih me-
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toda. One se pojavljuju prvi put u [37], gde su korišćene za izučavanje monoida
endomorfizama centralnih relacija. Nakon toga, lokalne metode su uspešno pri-
menjene na još nekoliko klasa relacija u [33]. U [29] je ukazano na iznenadujuću
povezanost lokalnih metoda sa homomorfizam-homogenim relacijama. Svaki
put kada radimo sa homomorfizam-homogenim relacijama možemo da kori-
stimo lokalne metode, što je sugerisalo da postoji veza izmedu homomorfizam-
homogenosti i ciljeva ovog istraživanja.

Homomorfizam-homogenost je osobina relacionih struktura na koju su ukazali
Piter Kameron i Jaroslav Nešetril u [5], kao na interesantno i prirodno uopštenje
klasičnog pojma homogenosti. Problem utvrdivanja da li data relaciona struktura
poseduje osobinu homogenosti ili ne je još uvek aktuelan, a do sada je dobijeno
mnogo kombinatornih rezultata u ovoj oblasti ([14, 24, 49, 23, 7, 3, 16]). Time
je motivisano postavljanje i izučavanje sličnih pitanja u vezi sa homomorfizam
homogenšću grafova i binarnih relacija, uopšte. U meduvremenu, pojavili su se i
prvi rezultati na ovu temu. Homomorfizam-homogena stroga uredenja okarakte-
risali su Kameron i Debi Lokit u [4], dok je homomorfizam-homogena parcijalna
uredenja u potpunosti opisao Dragan Mašulović u [28]. Nakon toga, pažnja je
ponovo usmerena na grafove, što je dovelo do karakterizacije homomorfizam-
homogenih konačnih turnira sa petljama u [18].

Klasična homogenost je polje velikog interesovanja zbog svoje povezanosti sa
osobinom eliminacije kvantifikatora, zatim sa oligomorfnim grupama permu-
tacija, itd. Štaviše, postoji veoma dobro razvijena teorija konstrukcija homoge-
nih struktura, zahvaljujući radu Fraisea ([10, 11]). Sa druge strane, izučavanje
homomorfizam-homogenih je, do sada, bio više kombinatorni problem rešavan
iz čiste znatiželje.

Zahvaljujući do sada predstavljenim činjenicama, u mogućnosti smo da de-
finišemo i ciljeve ove teze. Prvo, želimo da lokalne metode razvijemo u toj meri
da ih je moguće koristiti u izučavanju unarnih delova klonova, uopšte. Drugo,
cilj nam je da razvijemo vezu izmedu homomomorfizam-homogenih struktura i
lokalnih metoda. Konačno, naš treći cilj je razvoj sistematične teorije za klasifi-
kaciju homomorfizam-homogenih struktura.

Teza počinje poglavljem posvećenim lokalnim metodama. U njemu je definisan
Princip lokalnosti i uvedene su lokalne metode. U nastavku je pokazano kako se
one mogu primeniti u izučavanju strukture slabih Krasnerovih algebri. Lokalne
metode su razvijene za sve klase Rozenbergovih relacija. Na kraju poglavlja je
dato nekoliko primera u kojima je demonstrirana primena ovih metoda.

U drugom poglavlju je sistematizovana upotreba Principa lokalnosti. Uveden
je pojam k-endolokalnosti, u odnosu na koji su relacione strukture rasporedene
u okviru hijerarhije. U sledećem koraku, k-endolokalne relacione strukture su
izučavane sa tačke gledišta teorije modela. Klasični pojmovi teorije modela koji
su korišćeni u sistematskoj studiji o homogenim strukturama su prilagodeni za
izučavanje k-endolokalnih relacionih struktura. Na primer, pojmu ω-kategorič-
nosti odgovara pojam slabe oligomorfnosti. Takode, pojmu slabe homogenosti
odgovara osobina proširenja za jednu tačku, dok eliminacionim skupovima od-
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govaraju pozitivni egzistencijalni eliminacioni skupovi. Ovo poglavlje kulmi-
nira sa Glavnom teoremom koja opisuje medusobne odnose izmedu svih ovih
pojmova. Time se uspostavlja veza izmedu homomorfizam-homogenih rela-
cionih struktura i pojmova iz teorije modela, čime se omogućava izučavanje
homomorfizam-homogenih struktura korišćenjem model-teoretskih i algebar-
skih metoda. Iz Glavne teoreme proističu i važne posledice u vezi sa teorijom
klonova. Na primer, slabo oligomorfne slabe Krasnerove algebre na konačnom
skupu su uvek lokalno zatvorene, čime se uopštava deo Glavne teoreme teorije
klonova na slabo oligomorfne relacione strukture. Sa druge strane, naša Glavna
teorema omogućava korišćenje lokalnih metoda na svim slabim Krasnerovim
algebrama na konačnim skupovima.

U trećem poglavlju se teorija razvijena u drugom poglavlju koristi za razvoj
sistematične metode za karakterizaciju homomorfizam-homogenih relacionih
struktura. Ključni pojam u ovom delu teze je pojam minimalnih svedoka. U pi-
tanju su specijalne podkonfiguracije koje su zabranjene u svim relacionim struk-
turama koje imaju osobinu proširenja za jednu tačku. Ako je za datu klasu
relacionih struktura moguće pronaći sve minimalne svedoke do na izomorfizam,
onda su time, na neki način, okarakterisane sve strukture iz date klase koje imaju
osobinu proširenja za jednu tačku. Ovde su opisani svi minimalni svedoci do na
izomofizam za klasu antisimetričnih tranzitivnih binarnih relacija, odnosno, za
strukture oblika (A, ̺), gde je ̺ binarna antisimetrična tranzitivna relacija. Ovi
rezultati su zatim korišćeni za karakterizaciju svih tranzitivnih binarnih relacija
sa osobinom proširenja za jednu tačku, čime su uopšteni rezultati Kamerona, Lo-
kit i Mašulovića za stroga i parcijalna uredenja ([4, 28]). Takode su na neki način
opisani i minimalni svedoci za refleksivne simetrične binarne relacije, budući da
se kod njih svaka konfiguracija može pojaviti kao potencijalni svedok. U sva-
kom slučaju, ovakav ishod je bio očekivan, s obzirom da je u [46] pokazano da
je problem utvrdivanja homomorfizam-homogenosti za refleksivne simetrične
binarne relacije co-NP kompletan. Ipak, homomorfizam-homogene refleksivne
simetrične binarne relacije na konačnim skupovima su relativno retke. U Pri-
logu A su date, do na izomorfizam, sve netrivijalne homomorfizam-homogene
refleksivne simetrične binarne relacije na skupu od najviše devet elemenata.

U nastavku dajemo detaljniji pregled poglavlja u kojima su izloženi originalni
rezultati ove disertacije.

Prvo poglavlje: Lokalne metode za relacione strukture

Kao što smo već napomenuli, glavni cilj teorije klonova je proučavanje struk-
ture mreže klonova. Jedan od mogućih pristupa ovom problemu je particija ove
mreže u monoidalne intervale, odnosno, intervale nad unarnim delovima klo-
nova. Ovim se problem izučavanja mreže klonova deli na izučavanje strukture
monoidalnih intervala (kao na pr. u [22]), sa jedne, i izučavanje medusobnih
veza izmedu ovih intervala, sa druge strane. Jedan od osnovnih problema koji
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se javlja u izučavanju medusobnih veza izmedu ovih intervala je sledeći:
Neka su ̺ i σ relacije na istom skupu A.

Ispitati da li je End{̺} ⊆ End{σ}. (1)

Sličan problem se javio u istraživanju čiji rezultati su objavljeni u [1] i [27], a
koje je uključivalo i problem opisivanja strukture poseta tragova maksimalnih
klonova. Rešavanje ovog problema se bazira na ispitivanju sadržanosti monoida
endomorfizama jedne u monoidu endomorfizama druge relacije, za svaki par
Rozenbergovih relacija. Sličan problem su postavili i Pešel i Radelecki, a u vezi
sa karakterizacijom svih kvazi-uredenja koja su invarijantna za datu unarnu
algebru. Sve ovo je motivisalo nezavisno izučavanje problema (1).

Početni rezultati u ovoj oblasti su dobijeni u [30, 33, 34, 37, 38]. Medutim,
metode koje su primenjivane su bile uglavnom ad hoc karaktera i zavisile su od
konkretnih relacija sa kojima je radeno. U ovom poglavlju je razvijen opšti pristup
problemu, bez obzira na prirodu datih relacija. Ključna ideja je korišćenje tzv.
lokalne metode koja se bazira na na pokazivanju da je potreban i dovoljan uslov
za inkluziju izmedu monoida endomorfizama dve relacije postojanje izvesnog
načina kodiranja jedne relacije u drugu. Istraživanje je pokazalo da ova inkluzija
uglavnom zavisi od relacije ̺. Efikasnost procesa ispitivanja postojanja inkluzije
zavisi od izbora načina kodiranja relacije ̺ u relaciju σ, a kodiranje koje mi
koristimo zavisi samo od ̺. Sledi formalan opis ove metode.

Princip lokalnosti. U pitanju je način definisanja sistema zatvorenja. U opštem
slučaju, dat nam je prostor tačaka A i ureden skup T = (T,⊑) mogućih opažanja
koje nazivamo tipovima i koje može da prikupi posmatrač koji stoji u datoj tački.
Ovakav posmatrač je ništa drugo do funkcija koja preslikava svaku tačku datog
prostora u skup opažanja koje je moguće napraviti iz te tačke. Ovakvu funkciju
zovemo tip-funkcija i označavamo je sa typeA.

Princip lokalnosti definiše na prostoru A skup implikacija na sledeći način:

Za tačke ā and b̄ implikacija ā→ b̄ važi ako typeA(ā) ⊑ typeA(b̄).

Ovim je definisan sistem zatvorenja na prostoru A i za taj sistem kažemo da je
definisan Principom lokalnosti.

Neka je data relacija ̺ na konačnom skupu A. Naš cilj je da opišemo sistem
zatvorenja (Inv End{̺})(m), za m ∈ N korišćenjem Principa lokalnosti. Za dati
uredeni skup opažanja T = (T,⊑), funkcija type̺ : A → T naziva se tip-funkcija

za ̺ i m ako definiše sistem zatvorenja (Inv End{̺})(m) korišćenjem Principa lokal-
nosti.

Za svaku relaciju σ ⊆ Am važi End{̺} ⊆ End{σ} ako i samo ako

za svako ā, b̄ ∈ Am ako ā ∈ σ i type̺(ā) ⊑ type̺(b̄), onda b̄ ∈ σ.

U nastavku poglavlja konstruisane su tip-funkcije za svih šest klasa Rozenber-
govih relacija.
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Drugo poglavlje: Endolokalne relacione strukture

U prethodnom poglavlju sve tip-funkcije su dobijene ad hoc metodama, pa
našu studiju ovde nastavljamo prelaskom na sistematičan pristup problemu.

Neka je data relaciona signatura R. Sa Φ(∃,∧,∨,=,R) označavamo skup svih
pozitivnih egzistencijalnih formula nad R, dok sa Φm(∃,∧,∨,=,R) označavamo
skup svih pozitivnih egzistencijalnih formula nad R čije su slobodne promen-
ljive sadržane u skupu {x1, . . . , xm}. Slično tome, sa Φ(k)(∃,∧,∨,=,R) onačavamo
skup svih pozitivnih egzistencijalnih formula čija dubina kvantifikacije je najviše

k. Dalje, definišemo kontekste Km(A) := (Am,Φm(∃,∧,∨,=,R), |=) i K(k)
m (A) :=

(Am,Φ(k)
m (∃,∧,∨,=,R), |=), gde je |= relacija definisana na sledeći način:

Definicija. Kažemo da m-torka ā zadovoljava formulu ϕ i pišemo ā |= ϕ ako
postoji valuacija v takva da v(xi) = ai, za sve i ∈ {1, . . . ,m} i A |=v ϕ.

Navedeni kontekst definiše Galoa vezu izmedu skupova m-torki i skupova
formula. Galoa zatvoreni skupovi m-torki nazivaju se ekstenti, a Galoa zatvoreni
skupovi formula intenti. Galoa operator za intente je takode označen sa pThA.

Definicija. Kažemo da je relaciona struktura A slabo oligomorfna ako za svako
m ∈N kontekstKm(A) ima samo konačno mnogo različitih ekstenata.

Definicija. Relaciona struktura A = (A, (̺A)̺∈R) naziva se k-endolokalnom ako
za svako m ∈N i svaku σ ⊆ Am važi

σ = σ′′ ako i samo ako ∀ā, b̄ ∈ Am : ā ∈ σ ∧ b̄ |= pTh(k)
A

(ā)⇒ b̄ ∈ σ.

Ako je relaciona struktura 0-endolokalna, onda je nazivamo samo endolokalna.

Definicija. Neka je A = (A, (̺A)̺∈R) relaciona struktura. SkupΨ ⊆ Φ(∃,∧,∨,=,R)
se naziva pozitivni egzistencijalni eliminacioni skup za A ako za svaku formulu
ϕ(x1, . . . , xm) ∈ Φ(∃,∧,∨,=,R) postoji formulaϕ∗(x1, . . . , xm) ∈ Φ(∃,∧,∨,=,R) koja
je disjunkcija konjukcija formula izΨ i ϕ je ekvivalentno sa ϕ∗ u A.

Definicija. Kažemo da relaciona struktura A ima osobinu proširenja za jednu
tačku ako za svaku konačnu podstrukturu B od A, svako b ∈ A \ B i svaki
homomorfizam f : B→ A, postoji homomorfizam g : B ∪ {b} → A koji proširuje
f .

Definicija. Data je relaciona struktura A = (A, (̺A)̺∈R) i njena konačna podstruk-
tura B = (B, (̺B)̺∈R). Kažemo da je c ∈ A slabi centar za B ako

za svako b ∈ B postoji ̺ ∈ R, b3, . . . , bar(̺) ∈ B i π ∈ Sym{1, . . . , ar(̺)} takvi da

(c, b, b3, . . . , bar(̺))
π ∈ ̺A.

Definicija. Kažemo da relaciona struktura A = (A, (̺A)̺∈R) ima osobinu slabog
proširenja za jednu tačku ako za svaku konačnu podstrukturu B od A, svaki
homomorfizam f : B → A i svaki slabi centar c od B postoji homomorfizam
g : B ∪ {c} → A takav da g↾B = f .
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Definicija. Strukturu D zovemo homomorfizam-homogenom ako se svaki lo-
kalni homomorfizam od D može proširiti do endomorfizma od D.

Glavna teorema daje vezu izmedu svih gore uvedenih pojmova:

Teorema. Neka je A = (A, (̺A)̺∈R) relaciona struktura. Tada važe relacije date u
sledećem dijagramu:

A ima osobinu slabog
proširenja za jednu tačku

A je homomorfizam-homogena

A ima osobinu proširenja za
jednu tačku

A je endolokalna

Φ(0)(∃,∧,∨,=,R) je pozitivni
egzistencijalni eliminacioni
skup za A

∀m ∈N
Ext(Km(A)) = Ext(K(0)

m (A))

A
sla

bo

ol
ig

om
or

fn
a

A
slabo

oligom
orfna

A
sl

ab
o

ol
ig

om
or

fn
a

A
pr

eb
ro

jiv

Gore razvijena teorija nam omogućava da izvedemo sledeće interesantne po-
sledice za teoriju klonova:

1. Ako je data endolokalna struktura sa konačnom signaturom, onda se m-arni
deo njene slabe Krasnerove algebre može efektivno opisati.

2. Ako je data slabo oligomorfna homomorfizam-homogena relaciona struk-
tura A = (A, (̺A)̺∈R), onda je slaba Krasnerova algebra definisana ovom
strukturom lokalno zatvorena, tj.

Inv End(A) = [(̺A)̺∈R]WKA.

3. Za konačnu endolokalnu relacionu strukturu A sa konačnom signaturom
može se lako testirati da li je data relacija sadržana u slaboj Krasnerovoj
algebri opisanoj sa A.
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Treće poglavlje: Homomorfizam-homogene relacione strukture

Ovo poglavlje je posvećeno sistematskoj studiji homomorfizam-homogenih
relacionih struktura. Korišćenjem rezultata sakupljenih u Glavnoj teoremi, iz-
vodimo kriterijum za karakterizaciju relacionih struktura ove vrste. Spomenuti
kriterijum nazivamo kriterijum minimalnog svedoka i on je baza za metod eli-
minacije svih relacionih struktura koje nisu homomorfizam-homogene, a nalaze
se u datoj klasi relacionih struktura.

Definicija. Neka je A relaciona struktura. Svedokom nazivamo uredenu četvor-
ku (B1,B2, f , c), gde je B1 konačna podstruktura od A, c je slabi centar za B1 u A,
B2 je podstruktura od A, i f : B1 → B2 je surjekcija, koja ne može da se proširi do
B1 ∪ {c}.

Na skupu svih svedoka date relacione strukture može se definisati kvazi-
uredenje tako da za svaka dva uporediva svedoka, postojanje većeg implicira
postojanje manjeg. Minimalni svedok je minimalni element u ovom kvazi-
uredenju. Ako je data klasa relacionih struktura za koju želimo da pronademo
sve homomorfizam-homogene relacione strukture, onda to možemo učiniti tako
što ćemo do na izomorfizam opisati sve moguće minimalne svedoke. Struktura
koja ne sadrži nijedan od minimalnih svedoka je homomorfizam-homogena.
Ovaj kriterijum nazivamo kriterijumom minimalnog svedoka.

Za klasu relacionih struktura (A, ̺), gde je A proizvoljan skup, a ̺ antisi-
metrična tranzitivna relacija, izlistani su svi mogući minimalni svedoci do na
izomorfizam (videti od strane 69). Korišćenjem ovih rezultata okarakterisane
su homomorfizam-homogene tranzitivne relacije i, specijalno, homomorfizam-
homogena kvazi-uredenja.

U nastavku su opisani minimalni svedoci za refleksivne simetrične relacije
i data je metoda za konstruktivno prebrojavanje ovakvih homomorfizam-ho-
mogenih relacija na malim konačnim skupovima. U Prilogu A su date do na
izomorfizam sve netrivijalne homomorfizam-homogene refleksivne simetrične
relacije na skupu do 9 elemenata.
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[29] D. Mašulović. On endomorphism monoids of partial orders and central
relations. Novi Sad J. Math., 38(1):111–125, 2008.
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Mathématiques Supérieures [Seminar on Higher Mathematics]. Presses de
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Novi Sad, mart 2009.godine Maja Pech

Curriculum vitae

I was born on May, 8th 1977 in Novi Sad. After the primary school, that I attended
in Futog, I continued with my education at the secondary school ”Jovan Jovanović
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Mentor: dr Dragan Mašulović, vanredni profesor PMF u Novom Sadu
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