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Apstrakt

Jedna od najznacajnijih i najprimenljivijih oblasti matri¢ne analize je prouca-
vanje karakteristi¢nih korena. Na osnovu njihovog polozaja u kompleksnoj ravni,
mozemo da dobijemo korisne informacije o mnogim svojstvima matrice.

Termine ,karakteristi¢ni koren®, | karakteristi¢ni vektor” i ,spektralna teorija*
uveo je Hilbert (u knjizi sa Kuranom publikovanoj 1924. godine). Re¢  karakteri-
sti¢ni“ vodi poreklo od nemacke reci ,eigen® Sto znaci ,odgovarajuci®, ,,specificni,
ysopstveni“. Iako dati termini postaju standardni u literaturi pocetkom dvade-
setog veka, upotreba karakteristicnih korena datira jo$ iz osamnaestog veka,
prilikom reSavanja sistema diferencijalnih jednacina oblika iy = Ay. Potom su
koris¢eni i u radu Furijea kod resavanja parcijalnih diferencijalnih jednacina i
kasnije u radu mnogih drugih nau¢nika kao Sto su: Poason, Veber, Hilbert, gmit,
Nejman i mnogi drugi.

Karakteristi¢ni koreni imaju znac¢ajnu primenu u mnogim nauc¢nim oblastima,
a neke od njih su: akustika, ekologija, mehanika fluida, hemija, ekonomija, ana-
liza vibracija, kvantna mehanika, obrada slika, lanci Markova, parcijalne dife-
rencijalne jednacine, funkcionalna analiza, itd ([24], [30], [32], [52], [58], [61])-

Spektralna analiza se moze koristiti u algoritamske i fizicke svrhe. U algo-
ritmima, koriSéenje karakteristicnih korena moze da pojednostavi i ubrza reSa-
vanje problema na taj nacin $to ih redukuje na skup skalarnih problema. Sto se
ti¢e upotrebe u fizicke svrhe, karakteristi¢ni koreni mogu da opisu oblike pona-
Sanja evolucionih sistema odredenih matricama, kao $to su rezonanca, stabilnost
i asimptotsko ponasanje.

Neki naucnici isti¢u i psiholoski efekat koji daju karakterist¢ni koreni. Po-
mocu njih mozemo da dobijemo vizuelizaciju matrice kao sliku u kompleksnoj
ravni. ,Karakteristi¢ni koreni daju osobenost matrici® ([60]).



Postoje brojni nacini za lokalizaciju karakteristi¢nih korena. Jedan od naj-
¢uvenijih rezultata je da se spektar date matrice A € C™™ nalazi u skupu koji
predstavlja uniju krugova sa centrima u dijagonalnim elementima matrice i polu-
pre¢nicima koji su jednaki sumi modula vandijagonalnih elemenata odgovarajuce
vrste u matrici. Ovaj rezultat (GerSgorinova teorema, 1931.), smatra se jednim
od najznacajnih i najelegantnijih nac¢ina za lokalizaciju karakteristi¢nih korena
(63]). Medu svim lokalizacijama Ger§gorinovog tipa, minimalni Ger§gorinov
skup daje najprecizniju lokalizaciju spektra (|39]). U ovoj disertaciji, prikazani
su novi algoritmi za odredivanje precizne i pouzdane aproksimacije minimalnog
Gersgorinovog skupa. Teza se sastoji iz Cetiri poglavlja.

U prvom poglavlju, prikazan je pregled poznatih rezultata u literaturi i mo-
tivacija za istrazivanjem. Najpre su detaljno objaSnjeni karakteristi¢ni koreni i
njihove osobine. Potom sledi deo posveéen nenegativnim matricama i Peron-
Frobenijusovoj teoriji. Zatim, opisane su neke klase matrica koje ¢e biti kasnije
koris¢ene u tezi. Takode, predstavljeni su i rezultati o vezama izmedu lokalizacija
Gersgorinovog tipa sa odgovarajué¢im klasama matrica. Poseban akcenat je stav-
ljen na minimalni GerSgorinov skup, njegove osobine i karakterizaciju. Na kraju
poglavlja je deo posveéen numerickom rasponu, njegovim osobinama i polozaju
u kompleksnoj ravni.

Glavni rezultati disertacije prikazani su u drugom poglavlju - novi algoritmi
za racunanje minimalnog GerSgorinovog skupa. Prvo je dat pregled do sada ko-
ris¢enih algoritama i njihove karakteristike (gMGS, bMGS i eMGSs). Potom,
prikazane su dve karakterizacije minimalnog Gersgorinovog skupa i tri pristupa
obilazenja njegovog ruba. Prvi algoritam u disertaciji koji je novi rezultat je
implicitni algoritam za ra¢unanje minimalnog Gersgorinovog skupa (iMGSs).
On predstavlja poboljsanje eksplicitnog algoritma (eMGSs) koji je davao naj-
bolje rezultate od svih poznatih algoritama ([40]). Brza konvergencija je dobijena
koris¢enjem resavanja sistema linearnih jednacina umesto racunanja karakteri-
sticnih korena. Takode, prikazani su algoritmi koji koriste predictor-corrector
metod (eMGSp i iMGSp) i algoritmi bazirani na korigéenju trougaone mreze
(eMGSt i iMGSt). Navedeni algoritmi takode predstavljaju originalne rezul-
tate i dodatno su ubrzali izracunavanje i smanjili ra¢unsku slozenost, posebno
za matrice velikih formata.

U tre¢em poglavlju, govori se o odnosu izmedu minimalnog GerSgorinovog
skupa i numerickog raspona. Predstavljeni su originalni rezultati za racunanje
apscise minimalnog GerSgorinovog skupa i konstrukeiju konveksnog poligona koji



ga sadrzi. Numericki postupak za odredivanje konveksnog poligona je znatno brzi
nekim slu¢ajevima, aproksimacija konveksnim poligonom je veoma blizu granice
minimalnog Ger§gorinovog skupa, $to je prikazano kroz primere.

Konac¢no, u poslednjem poglavlju teze, predstavljeni su numericki eksperi-
menti i implementacija. Novi algoritmi su testirani na brojnim primerima i rezul-
tati su uporedeni sa do sada poznatim algoritmima. Sve prednosti i poboljSanja
novih algoritama su na kraju sumirane u vidu kratkog zakljucka.






Abstract

Research of eigenvalues is one of the most important and applicable areas of
matrix analysis. If we know the position of eigenvalues of a given matrix in the
complex plane, we can obtain useful information about many properties of that
matrix.

The terms "eigenvalue", "eigenvector" and "spectral theory" were introduced

by Hilbert (book by Hilbert and Courant published in 1924). The prefix "eigen"
comes from the same German word which means "proper", "specific" or "cha-
racteristic". Although the words "eigenvalue" and "eigenvector" became stan-
dard in literature at the beginning of the 20" century, their first known usage
was in the 18" century in solving differential equations of the form y’ = Ay. Fur-
thermore, they appeared in Fourier’s work on partial differential equations and
later, in the works of other mathematicians: Poisson, Weber, Hulbert, Schmidt,
Neumann and many others.

Some of the fields where eigenvalues have very important roles are: acous-
tics, ecology, fluid mechanics, chemistry, economics, vibration analysis, quantum
mechanics, image processing, Markov chains, partial differential equations, func-
tional analysis, etc (|24], [30], [32], [52], [58], [61])-

Eigenvalues analysis can be used for algorithmic and physical purposes. In
algorithms, the usage of eigenvalues can simplify solutions of some problems by
reducing them to a collection of scalar problems. On the other hand, in physics,
eigenvalues can be used to describe behavior of evolving system given by a system
of linear equations. Some examples are studies of resonance, asymptotics and
stability.

Also, some mathematicians emphasize a psychological usage of eigenvalues.
They help us to perceive an abstraction of a matrix as a picture in the complex



plane. "Eigenvalues give a personality to a matrix" (|60]).

There are numerous ways to localize eigenvalues. One of the best known
results is that the spectrum of a given matrix A € C™" is a subset of a union of
discs centered at diagonal elements whose radii equal to the sum of the absolute
values of the off-diagonal elements of a corresponding row in the matrix. This
result (Ger§gorin’s theorem, 1931) is one of the most important and elegant ways
of eigenvalues localization (|63]). Among all GerSgorin-type sets, the minimal
Gersgorin set gives the sharpest and the most precise localization of the spectrum
([39]). In this thesis, new algorithms for computing an efficient and accurate
approximation of the minimal GerSgorin set are presented. The thesis consists
of four chapters.

The introductory chapter presents an overview of the relevant results in the
literature and the motivation for research. Firstly, eigenvalues and their proper-
ties are explained thoroughly. Then, a part dedicated to non-negative matrices
and Perron-Frobenius theory follows. Moreover, classes of matrices that will be
used later in the thesis are described. In addition, the results about localiza-
tions of Gersgorin-type sets and their relations with proper classes of matrices
are given. Special emphasis is put on the minimal GerSgorin set, its properties
and its characterizations. At the end of the chapter, there is a section about the
numerical range, its properties and position in the complex plane.

The main results of the thesis - new algorithms for computing the minimal
(GerSgorin set are presented in the second chapter. First of all, a review of existing
algorithms and their properties is given (gMGS, bMGS and eMGSs). Then,
two characterizations of the minimal GerSgorin set and three approaches of curve
tracing are presented. The first algorithm in the thesis which is a new result is
an implicit algorithm for computing the minimal Gerggorin set (iMGSs). It rep-
resents an improvement of an explicit algorithm (eMGSs) which provided the
best results among all previously known algorithms ([40]). A faster convergence
is obtained by solving a system of linear equations instead of computing eigen-
values. In addition, algorithms which use predictor-corrector method (eMGSp
and iMGSp) and algorithms based on triangular grid (eMGSt and iMGSt)
are given. These algorithms also present new results and additionally accelera-
te computing and decrease computational complexity, especially for matrices of
large size.

In the third chapter, the topic is a relation between the minimal GerSgorin set



and the numerical range. The original results for computing the abscissa of the
minimal Ger§gorin set and the construction of a convex polygon which contains
the minimal Gersgorin set are given. Numerical algorithm for determination of
the convex polygon is significantly faster and more practical than algorithms for
computing the minimal GerSgorin set. In some cases, an approximation by the
convex polygon is very close to the boundary of the minimal Ger§gorin set which
will be shown through various examples.

Finally, in the last part of thesis, some numerical experiments and imple-
mentations are shown. New algorithms are tested in several examples and the
results are compared with the results of well-known algorithms. All advantages
and improvements are summarized in a brief conclusion.
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Notation

N - the set of positive integers

Ny - the set of non-negative integers (No = N U {0})

R - the set of real numbers

C - the set of complex numbers

i - the imaginary unit

N :={1,2,...,n} - the set of integers from 1 ton, n € N

dist(z, S) = miél |z — s| - the distance from the point x to the set S
se

card(S) - the cardinality of the set S

co(S) - the convex hull of the set S

int(.S) - the interior of the set S

0S - the boundary of the set S

v = [v1, vy, ...,v,]T € C™! - a column vector, n € N
<(u, V) - the angle between the vectors @ and ¢/
For a square matrix A € C™", n € N:

A = [a;;], a;; - entries of A, 7,5 € N

diag(A) - a vector of diagonal elements of A

AT - the transpose of A
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A* - the conjugate transpose of A

A1 - the inverse of A

AT - the Moore-Penrose inverse (pseudoinverse) of A
det(A) - the determinant of A

tr(A) - the trace of A

| - ||y - the p-norm, 1 < p < oo

o(A) - the spectrum of A

p(A) - the spectral radius of A

a(A) - the spectral abscissa of A

[;(A) - the i""-Gersgorin disk of A, i € N

['(A) - the Gersgorin set of A

KC(A) - the Brauer set of A

['*(A) - the minimal Gersgorin set of A

7(A) - the abscissa of the Gersgorin set of A

p(A) - the abscissa of the minimal Gerggorin set of A
W (A) - the numerical range of A

w(A) - the abscissa of the numerical range of A

gMGS(A) - the griding algorithm for computing the minimal Gersgorin set of

A

bMGS(A) - the bisection algorithm for computing the minimal Gersgorin set of

A

eMGSs(A) - the explicit star-shaped algorithm for computing the minimal Gers-

gorin set of A

iMGSs(A) - the implicit star-shaped algorithm for computing the minimal Gers-

gorin set of A

12



eMGSp(A) - the explicit predictor-corrector algorithm for computing the mini-
mal Gersgorin set of A

iMGSp(A) - the implicit predictor-corrector algorithm for computing the mini-
mal GerSgorin set of A

eMGSt(A) - the explicit triangular algorithm for computing the minimal Gers-
gorin set of A

iMGSt(A) - the implicit triangular algorithm for computing the minimal Gers-
gorin set of A

For f = f&%%t) = f(¢ +te¥),£ € C, 0 € [0,27), te R :
%fé’g(t) - the first order derivative of f

o2
o
For f = f(z,y) = f(z +1y), v,y e R:

£5(t) - the second order derivative of f

fo= (%f(gg, y), fy= (%f(m, y) - the first order derivatives of f

0? 0? 0?
foz = pye (2,Y), foy = c%—ayf(x’y)’ foy = 8—y2f(:c,y) - the second order

derivatives of f

13
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Chapter 1

Introduction and preliminaries

"Figenvalues are among the most
successful tools of applied mathematics. "

Lloyd Trefethen®

In this chapter, we summarize well-known theoretical results that represent
the bases of this thesis. First, in Section 1.1, a motivation for research is given.
Next, in Sections 1.2 and 1.3, the basic terms in the theory of eigenvalues, norms
and non-negative matrices are introduced. Then, in Sections 1.4 and 1.5, the
results about GerSgorin sets are given with a special emphasis on the minimal
Gersgorin set. Finally, Section 1.5 discuses the relationships between nonsingu-
larity of a given matrix and localization of its spectrum while in Section 1.6, the
results about the numerical range are given.

1.1 Main motivations

Since matrices occur in problem-solving processes in engineering and many
scientific disciplines, localization of their eigenvalues represents a powerful tool
in solving those problems. Therefore, approaches to localizations of eigenvalues

'Lloyd Nicholas Trefethen (1955) is an American mathematician, professor of numerical
analysis and head of the Numerical Analysis Group at the Mathematical Institute, University
of Oxford.
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occupy a central place in numerical linear algebra, and numerous such results
can be applied successfully in many branches of science.

For a given square matrix A = [a;;] € C™", n € N, one of the best known
results for localization of its spectrum is Gersgorin’s? circle theorem. This re-
sult, published in 1931, presents how to simply localize eigenvalues of a given
matrix by the GerSgorin set which represents the union of n discs in the complex

n

plane whose centers are a; and radii Z la;;|, i+ € N = {1,2,...,n}. Among
(2

many eigenvalue localizations that were Ziééveloped since then, the minimal Gers-
gorin set (MGS) plays permanent role. It gives, in a certain sense, the sharpest
inclusion set for eigenvalues of A, with respect to all positive diagonal simila-
rity transformations (|39]). So, it represents a kind of "optimal" localization for
the spectrum of a given matrix. Although modern computers can successfully
compute eigenvalues, this still presents a challenge for matrices of large size.
Therefore, the computation of MGS can provide useful information about the
position of the spectrum of large matrices in the complex plane.

Next, we elaborate more on "optimality" of the minimal Gersgorin set. First,
as it was shown in [63], every point of the minimal Ger§gorin set of an arbitrary
matrix A is, in fact, an eigenvalue of some matrix that has the same diagonal
entries as the given one, while its off-diagonal entries are bounded in moduli by
the corresponding off-diagonal entries of A. So, the minimal GerSgorin set is the
union of all the spectra of all matrices bounded by the given one in the sense
explained above.

On the other hand, the minimal GerSgorin set is also "optimal" in terms
of diagonally dominant matrices. Namely, as it is well established, there is an
equivalence between the eigenvalue localization results and the matrix nonsin-
gularity results, see |63]. In that sense, the minimal GerSgorin set corresponds
to the class of H-matrices, while the Ger§gorin set corresponds to the strictly
diagonally dominant matrices. Inspired by this, the concept of GerSgorin-type
sets was developed in [39], where it was shown that the minimal Ger§gorin set is
the minimal element among all Gersgorin-type sets.

The research on the minimal Ger§gorin set provided many interesting theoreti-
cal results, while the algorithms for its computation remained less well developed

2Semen Aranovich Ger§gorin (1901-1933) was a Soviet mathematician, who researched in
partial differential equations and localizations of eigenvalues.
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in the literature. Unlike the GerSgorin set, it is not easy to numerically deter-
mine MGS. The main setback often lies in the complexity of its computation
([63], [67]) because MGS is defined as an intersection of infinitely many sets.
Luckily, as we will see shortly, it can be characterized via appropriate eigenvalue
problems.

In [40], to decrease numerical cost of previous known algorithms (gMGS,
bMGS of [69]), the authors developed the algorithm eMGSs. Although eMGSs
performed well on tests, its application was limited to matrices of small and
medium size.

The main results of this thesis are new algorithms for computing the minimal
Gersgorin set that can successfully be applied to large matrices. We combine
two approaches for the characterization of MGS (explicit and implicit) and three
methods for curve tracing (star-shaped, predictor-corrector and triangular). In
that way, six efficient procedures are developed: eMGSs, iMGSs, eMGSp,
iMGSp, eMGSt and iMGSt.

First new algorithm presented in this thesis is iMGSs. It represents an
extension and improvement of eMGSs. It is developed by using solving of
the system of linear equations instead of computation of eigenvalues, the idea
adopted from [25]. Next, we constructed the algorithms eMGSp and iMGSp.
These algorithms are based on two steps: predictor (find approximate point in
the direction of tracing) and corrector (find point on curve using predicted point
and numerical methods). The motivation for the predictor-corrector method is
found in [2]. Then, the algorithms eMGSt and iMGSt are constructed. These
algorithms are based on path following approach via triangular grid and in that
way, they reduce numerical computations and can be adapted for matrices of
large size. This method is originally developed in [47], for the computations of
the pseudospectra.

Benefits of MGS are not only based on the fact that it represents optimal lo-
calization of eigenvalues. Beside theoretical, MGS also has practical importance.

Let us consider time-dependent linear dynamical system which appears in
models which describe oscillatory systems:

#(t) = A()a(t), t >0, (1.1)



where matrix A(¢) has time invariant diagonal elements, i.e., a;(t) = «a; €
C, i € N, while other elements a;;(t) are complex analytical functions bounded
by a;; > 0, ¢,7 € N, ¢ # j. Using the infinity norm of matrix and Coppel
inequality ([60]), we obtain that system (1.1) is exponentially asymptotically
stable if there exists p > 0 such that

Ill’g]l\?( {Re(an) + Z Oéij} < —U,

J#i
i.e., the Gergorin set of [j],x, lies in the open left half-plane of the complex
plane.
Analogously, if we use a vector norm || X (+)||s, where X is any diagonal matrix
with positive diagonal entries, we have that system (1.1) is exponentially asymp-
totically stable if the minimal GerSgorin set is situated in the open left half-plane
of the complex plane, which represents a stronger result.

One more interesting item for determining the minimal GerSgorin set is its
relation with the numerical range. For a given matrix A € C™", its numerical
range W (A) is a subset of the convex envelope of union of the Gersgorin set of A
and the Gersgorin set of A7 (Theorem 3.2.2). Moreover, it is easy to show that
set

[ W(X'AX)
X€Dn
is a subset of the the convex envelope of the minimal GerSgorin set of A, where D,
is the set of all diagonal matrices whose diagonal entries are positive (Corollary
3.2.3). Therefore, using the position of the convex envelope of the minimal
Gersgorin set in the complex plane, we can get useful information about the
numerical range after a proper scaling.

As we can see, the research of the minimal Gersgorin set provided many useful
results. They served as a motivation for the construction of new algorithms for
its computing.

1.2 FEigenvalues and norms

Let A € C™", n € N, be a square matrix. A vector z € C", x # 0, is an
eigenvector of A and \ € C is its corresponding eigenvalue if

Az = M. (1.2)
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The equation (1.2) can be equivalently written as
(M —A)z =0, (1.3)

where [ is the n x n identity matrix. The equation (1.3) has a non-zero solution
x if and only if a determinant of matrix A\ — A is equal to zero, i.e.,

det(A\] — A) =0. (1.4)

The left side of (1.4) is a polynomial function of A denoted by p4(A). It is called
the characteristic polynomial of A and the equation (1.4) is the characteristic
equation of A.

Point A € C is an eigenvalue of A € C™" if and only if p4(\) = 0. We can notice
that even if A is a real matrix, its eigenvalues can be complex numbers.

The set of all eigenvalues of a matrix A is the spectrum of A, denoted by o(A),
ie.,

o(A) :={A e C:det(\] - A) =0}. (1.5)

An equivalent definition for the spectrum is that it is the set of points z € C for
which a resolvent matrix (21 — A)™! does not exist.

The spectral radius p(A) of A € C™" is defined by

p(A) == {max |\ : A € 0(A)}. (1.6)

The spectral abscissa a(A) of A € C™" is defined by

a(A) ;== {max(Re(\)) : A € a(A)}. (1.7)

Let A be an eigenvalue of A € C™". The algebraic multiplicity of A is its multipli-
city as a root of the characteristic polynomial of A. If the algebraic multiplicity
of A is equal to 1, A is called a simple eigenvalue.

The geometric multiplicity of A is a dimension of its corresponding eigenspace
Ex={veC": (A - A)v =0}

The algebraic multiplicity of eigenvalue is at least as great as its geometric mul-
tiplicity. If A is an eigenvalue of A € C™" whose algebraic multiplicity is greater
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than its geometric multiplicity, then A is a defective eigenvalue. A matrix with
at least one defective eigenvalue is a defective matrix. Otherwise, it is a non-
defective matrix.

In the following, we review well-known properties of eigenvalues that will be
used in this thesis.

e Matrix A € C™" has n eigenvalues, counted with multiplicity.

e Matrix A € C™" is nonsingular if and only if its every eigenvalue is non-
7Z€ero.

e The trace tr(A) of matrix A € C™" (the sum of its diagonal elements) is

n n
equal to the sum of its all eigenvalues, i.e., tr(A) = Z aj; = Z i
i=1 i=1

e The determinant of A € C™" is equal to the product of its eigenvalues, i.e.,

det(A) = [T A = MAa- -~ An.
=1

e Eigenvalues of a diagonal matrix are its diagonal elements.
e Matrix A € C*" and its transpose AT € C™" have the same spectrum.

e Matrices A € C*™ and XAX ' € C"", X € C™", det(X) #0 (XAX ! is

a similar matrix to A), have the same spectrum.

o If A\;, Ay, ..., \, are the eigenvalues of the matrix A € C™", then A\¥ \E ..
AF are the eigenvalues of the matrix A* k € N.

o If A\, o, ..., \, are the eigenvalues of the nonsingular matrix A € C™", then
7117 %2, ..., 5= are the eigenvalues of its inverse matrix A~* € C™" and each
algebraic and geometric multiplicity of the corresponding eigenvalues are

identical.

e If A€ C™"isa Hermitian matrix (i.e., A = A*), then each its eigenvalue is
real. So, in a special case, if A is a symmetric real matrix (i.e., A = AT €
R™"), its eigenvalues must be real.

o If Ac R™ and n is odd, then A has at least one real eigenvalue.
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o If A\, Ao, ..., A, are the eigenvalues of a unitary matrix A € C™" (i.e.,
AA* = A*A = 1), then |\j| =1,j € N.

Term "eigenvector" is typically used for "right eigenvector". It is a vector
column that satisfies the equation (1.2). However, we can also observe the prob-
lem

ul A = M7, (1.8)

where A € C", X\ € C is scalar and u € C™'. Any non-zero vector u satisfying
(1.8) is a left eigenvector of matrix A and X is its corresponding eigenvalue.
Taking the transpose of the equation (1.8), we get ATu = Au. Therefore, any left
eigenvector of A is the right eigenvector of AT .

Using eigenvalues, we can write some matrices in the form of a factorization.
An eigenvalue decomposition of matrix A € C™" is the factorization

A=XAX"" (1.9)

where X € C™" is nonsingular and A € C™" is a diagonal matrix. As we see, the
eigenvalue decomposition is a similarity transformation. If A has the eigenvalue
decomposition, we can say that it is a diagonalizable matrix. From the definition
of the eigenvalue decomposition, we get AX = XA i.e.,

At
A2

Al wilzo| - |on | = [ a1]wa] - |z ]
An

So, Az; = \jx;,j € N, where z; is j" column of X and the eigenvector of A
and ); is j diagonal entry of A and the eigenvalue of A corresponding to the
eigenvector ;.

Matrix A € C™" has a complete set of eigenvectors X = {x1, s, ..., x,,} if the
vectors x1,Zo, ..., T, are linearly independent and Az; = \;z;,7 € N. So, each
matrix with a complete set of eigenvectors has the eigenvalue decomposition
(i.e., A is a diagonalizable matrix). If this decomposition can be performed in
such a way that diagonalization is orthonormal one, i.e., A = QAQ*, where @ is
unitary, the matrix is called normal matrix. It is well-known that matrix A is
normal if and only if A*A = AA*. It can be shown that a matrix A € C™" is a
non-defective matrix if and only if it has the eigenvalue decomposition.
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In applications, eigenvalues are often used for computing powers A* k € N,
or exponential 't = I +tA+ 5 (tA)* + ..., of a given matrix A € C*". If Ais a
diagonalizable matrix, then we can compute A* and e as: A*¥ = (VAV 1)k =
VARV ! and et = Ver VL

If A€ C™" is singular, we can use Moore3-Penrose? inverse of it, denoted by
AT, Tt is the unique matrix X € C™" satisfying the following Penrose equations:

(i) AXA = A, (i) XAX = X, (iii) (AX)" = AX, (iv) (XA)* = XA.

A purpose of the next theorem is to provide explicit formulas for the deriva-
tives of eigenvalues and eigenvectors. These formulas are useful in the analysis
of systems of dynamic equations and have many other applications.

Theorem 1.2.1 (Theorem 2, [45]) Let Ao be a simple eigenvalue of a matriz
Ag € C™™, and let vy be an associated eigenvector, so that Aqvg = A\gvg. Then a
(complex) function A and a (complex) vector function v are defined for all A in

some neighborhood O(Ay) € C™™ of Ay, such that
/\(Ao) = )\0, U(A()) = Vo
and
Av = v, vyu =1, A € O(A).

Moreover, the functions A and v are smooth on O(Ay) and the differentials at
Ay are
d\ = ug(dA)vy/ugvg (1.10)

and

dv = (NI — Ag)* (I — voug /ugvg)(dA)vy, (1.11)

where ug s the left eigenvector of Ag associated with the eigenvalue \g.

3Eliakim Hastings Moore (1862-1932) was an American mathematician, who researched in
abstract algebra, geometry, number theory and integral equations.

4Sir Roger Penrose (1931) is an English mathematical physicist, mathematician and
philosopher of science, Emeritus Rouse Ball Professor of Mathematics in the University of
Oxford.
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Since we will repeatedly work on construction of mappings with a complex
argument f : C — C™" where m,n € N, without possible confusion to simplify
notations, we will use abbreviations:

f=f(z), for z € C;
0% = f(E+te), for £ € C, O €[0,27), t €R,;
f(z,9) = fla+iy), for 2,y € R.
In that context, derivatives in the corresponding arguments are denoted as:

0 0

0
afg’e(t), fac = %f(xvy)v fy = a_yf(x’y)’

62 62 62 82
@f&‘g(t)? fxfb = @f(xvy)v f:]cy = 8x—8yf<x’y)’ fyy = a_ygf(x7y)

Next, some preliminaries about norms will be presented. A standard inner
product of vectors x = [, T, ...,x,]T € C" and y = [y1,¥a, ..., yn|* € C" is

Y= Z Y-
i=1

A norm is a function || - || : C* — R, n € N, which satisfies the following
conditions:

1) ] = 0,

2) ||z|| = 0 if and only if x = 0,

3) Il +yll < ll=ll + [lyll,

)
)
)
4) ezl = |alf]],

for all vectors x,y € C" and scalars o € C.
Some of the most important norms are the p-norms:

n

el = 3 Ja,

i=1
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n 1
lella = (D loil?)” = Va'a,
=1

[[2lloo = max |;],
n 1
lelly = (D lzab)”, 1< p < o0,
=1
for v = [x1, 29, ..., 2,]T € C™.

Beside p-norms, widely used are the weighted norms. For any norm || - || and
nonsingular matrix W € C™", the weighted norm of vector z € C" is:

[[z][w = [[Wel],

where W € C™" is a nonsingular matrix.

For a given norm || - || on C", the induced matrix norm of A is defined by:
A
I|A|| == sup liA]] = sup |[|Azx||, AeC™™.
secn\fop ||l jjeji=1,2ecn

The associated induced matrix norms of a given matrix A € C™" for norms
[ [1, || - ||z and [| - || are:

| Al[1 21;165}3(;@%
[All2 = /p(AA*),

n
| Alfee = I}é%z |aij].
=1

The associated induced matrix norm of a given matrix A € C™" for the weighted
norm || - || is

1A[lw = [[WAW 1],
where W € C™" is a nonsingular matrix.

For any A € C™" and any norm || - || on C™", holds:

p(A) < ||A]].
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Vectors o = [x1, To, ..., z,]T € C* and y = [y1, Y2, ..., Yn|] € C™ are orthogonal
if x*y = 0. Additionally, x and y are orthonormal if they are orthogonal and

zll2 = [[yll2 = 1.

1.3 Perron-Frobenious theory

In linear algebra, the Perron®-Frobenius® theorem asserts that the largest,
by moduli, eigenvalue of a real non-negative square matrix is real and its corre-
sponding eigenvector can be chosen to have all non-negative components. Also,
this theorem has important applications to probability theory, to the theory of
dynamical systems, to economics, to demography, etc.

In the following, we will use the next definitions.

e A matrix A = [a;;] € R™" is positive if a;; > 0, i,j € N, and we write it

as A > 0.

e A matrix A = [a;;] € R™" is non-negative if a;; > 0, 7,5 € N, and we write
itas A > 0.

e A matrix A = [a;;] € R™ is essentially non-negative if a;; > 0, 4,5 €
N, i+#j.

e A matrix A = [a;;] € R™" is a Z-matrix if a;; <0, i,j € N, i # j.

First, Perron formulated theorem for non-negative matrices in 1905. Inspired
by his work, Frobenius proved extended version of the theorem (introduced irre-
ducibility) in 1912.

Theorem 1.3.1 (Perron-Frobenius) If A = [a;j] € R™™ and A >0, then:
1. A has a non-negative real eigenvalue equal to its spectral radius p(A);

2. there corresponds an eigenvector x =[xy, Ta, ..., xn]T >0, #0, to p(A);

®Oscar Perron (1880-1975) was a German mathematician, professor at the University of
Heidelberg and University of Munich.

6Ferdinand Georg Frobenius (1849-1917) was a German mathematician, best known for
his contributions to differential equations, number theory and group theory.
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3. p(A) may be a multiple eigenvalue of A,
4. p(A) does not decrease when any entry of A increases;

5. the eigenvalue p(A) satisfies

Zi;raijlb
A) = inf mb—
p< ) a:>0,Hxl€R"’" { IL%%\?( [ ZT; ] }

A matrix P € R™" is a permutation matrix if there is a permutation 7 : N — N
such that P = [p;;] = [0;«(j)], where

5oL k=l
PETL0, kAL
(Kronecker delta function), k,1 € N.

Definition 1.3.2 If A € C™", n > 2, it is reducible if there exists a permutation
matric P € R™ and r € N, 1 < r <mn, for which

A Arp }

PAPT =
[0 Az

where Ay € C™" and Agy € C—7)(n=7)
A matriz A € CYY is reducible if it is zero matriz.

If a matrix is not reducible, it is irreducible.

For a given matrix A € C™" and set of vertices {vy, va, ..., v, }, define directed
arc 1721; from vertex v; to vertex v, if a;; # 0, ¢,7 € N. The collection of all such
directed arcs is the direct graph G(A) of A. A directed path in G(A) from vertex
v; to vertex v; is a collection of directed arcs connecting v; as an initial and v;
as a terminal vertex.

The directed graph G(A) of a given matrix A € C™" is strongly connected if for
each ordered pair v; and v; of vertices there exists a direct path in G(A) with an
initial vertex v; and a terminal vertex v;, i,j € N.

Theorem 1.3.3 (/63], Theorem 1.9.) A matriz A € C™" is irreducible if and
only if its direct graph G(A) is strongly connected.
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For a given arbitrary matrix A € C™", n > 2, its normal reduced form is

Asp oo Ao
PAPT = S (1.12)
Amm

where P is a permutation matrix and diagonal blocks A;; € C™""™ are either 1 x 1
or irreducible n; x n; matrices, n; > 2,1 € {1,2,...,m}.

Theorem 1.3.4 (Perron-Frobenius, irreducible matriz) If A = [a;;] € R™™ is
wrreducible and essentially non-negative, then:

1. A has a real eigenvalue equal to its spectral abscissa a(A) with the corre-
sponding right * = |11, Ta, ..., x,]T > 0 and left eigenvector y = [y1, Yo, -, Yn]
> 0;

2. the only right (left) eigenvectors whose components are all positive are mul-
tiples of x (y);

3. a(A) is a simple eigenvalue of A;

4. a(A) increases when any entry of A increases;

iEN £ ieEN £

n n
5. minZazj < a(A) < maXZaij;
j=1 J=1

6. (Collatz"-Wielandt® formula) the eigenvalue a(A) satisfies
Zl @i Tj ; i
a(A) = sup {min [J—] } = inf {max [J—] }
>0, zeRmn | 1EN x; x>0, z€R™" iEN T;

"Lothar Collatz (1910-1990) was a German mathematician, founder of spectral graph theo-
ry.

8Helmut Wielandt (1910-2001) was a German mathematician who worked on permutation
groups.
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Originally, this theorem is given in the literature for irreducible non-negative
matrices.

The spectral abscissa «(A) of an irreducible and essentially non-negative
matrix A € R™" is called the Perron root or the Perron-Frobenius root. Its corre-
sponding right eigenvector x is the Perron eigenvector or the Perron-Frobenius
eigenvector and the pair (a(A),x) is the Perron pair or the Perron-Frobenius
pair.

The algorithm Noda iteration for computing the spectral radius of non-
negative irreducible matrices is presented in [50]. We use it to formulate an
algorithm for computing the spectral abscissa of essentially non-negative matrix.

Input parameters of the algorithm are: an irreducible and essentially non-
negative matrix A € R™", a scalar \g > a(A) and positive normalized vector
Y € R” (i.e., z° > 0, [|2°]|]o = 1). For example, for parameter )\, we can choose

n

the value rirée}vle a;j (Theorem 1.3.4, item 5.).
J:

Algorithm Noda iteration
Input: A, \g, 2°, € >0
1: for k=0,1,2, ...

2: Solve (A, I — A)y*+t = 2*;
k1

k1 _ Y .
[yl

. Ly
4: Compute \p11 = A\, — min —=~;
1EN y.+

5. until |[ A2 — AzF ]y < 6
Output: a(A) < Mgy, © < zF?

3: Normalize =

As we see, the presented algorithm is similar to the Rayleigh quotient iteration
(|61]), but with different shifts. By analyzing the step 4 in the algorithm, we
obtain:

A A min _xf max ()\kykﬂ _ xk)z max (Aykﬂ)i max (Axkﬂ)i
k+1 = k — —= = fry
+ iEN yfﬂ iEN yfﬂ iEN yf“ i€EN xf"“ ’
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ie.,
Axk+1 i
Akl = I}g@( ( v )
As Ao > a(A), \oI — A is nonsingular and (A — A)~' > 0 (Proposition 1.6.4).
Then, from the steps 2 and 3 in the algorithm, we have y* = (Ao — A)712° > 0

y!

Y]
addition, from the (1.13) and Theorem 1.3.4 (item 6), it follows \; > «(A).

(1.13)

and z! = > (0. Consequently, from the step 4, we obtain \; < Ag. In

Analogously, by induction, it can be shown that given algorithm generates a
decreasing sequence {\;} bounded below by «(A) and a sequence of positive
vectors {z*}, k € Ny.

Theorem 1.3.5 (/50/, Theorem 4.1) Let A € R™™ be essentially non-negative
irreducible matriz. Then, the pair of sequences {{\}, {2*}}, k € Ny, generated
by the algorithm Noda iteration, converges to the Perron-Frobenius pair of A.

1.4 GerSgorin circles

The sum

ri(A) =) lay]

JF
is called the " deleted absolute row sum of A € C*" i € N, where r;(A) := 0
for n = 1. Denote sets in the complex plane:

Ty(A) = {z €C: |2 —ay| < n.(A)}, ieN.

The set I';(A) is called i'* Gerggorin disk and the set ['(A) := U [;(A) is called
i=1

the GerSgorin set. It is a well-known result (Gersgorin’s theorem) that the Gers-
gorin set of a given matrix contains its spectrum.

Theorem 1.4.1 (A. S. Gersgorin, 1931) For any A € C™" and any X € o(A),
there exists k € N such that

|)\ — akk| S Tk(A)
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Consequently, A € T'y(A) CT'(A). As this is true for each A € o(A), then
o(A) CT(A).
Proof: Let A € o(A). There exists © = |21, 22, ..., z,]7 € C", x # 0, such that

n
Ax = Az, ie, Zaijazj = Az;, i € N. Let |zg| = max{|zy]|, |2a], ..., |zn|}. Thus,

j=1

n
|zk| > 0 and (A — ag)xy = Z arjz;. Using the absolute values and the triangle
) ) J#k
inequality, we have:

A = allee] <Y gl < lawg |l < laxlr(A).
i7k i7k
Dividing the above expression by |zx| > 0, it follows A € T'x(A4), i.e., A € T'(A4).
As it is true for each eigenvalue, we obtain o(A) C I'(A). g

While the GerSgorin’s theorem guaranties that all eigenvalues lie in the union
of the GerSgorin circles, it does not reveal how many eigenvalues, if any, are
located in every circle. For that purpose, we have the following statement usually
known as The second Ger§gorin’s theorem.

Let S be a proper non-empty subset of N and n > 2. The cardinality of S is
denoted by card(S) and the complement of S with respect to N is denoted by
S,ie. S:= N\S. Also, we denote:

Ts(A) == JTi(A) and T5(A) := | JTu(A).
ieS ieS
Theorem 1.4.2 (A. S. Gersgorin, 1931) For any A € C™", n > 2, for which
Fg(A)ﬂFg(A) = 0, for some proper non-empty set S of N, the set I's(A)

contains exactly card(S) eigenvalues of A.

An other important theorem is due to O. Taussky”, which states that for an
irreducible matrix an eigenvalue can be located on the boundary of the Gersgorin
set only if all Ger§gorin circles pass through it. More precisely, the following
holds.

90lga Taussky-Todd (1906-1995) was a Czech-American mathematician who researched in
number theory, integral matrices and matrices in algebra and analysis.
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Theorem 1.4.3 (O. Taussky, 1948) Let A = [a;;] € C™" be irreducible. If
A € o(A) is such that \ ¢ int(T';(A)), then for all i € N,

A —ai;| = ri(A). (1.14)

While the GerSgorin set is an elegant way to localize eigenvalues, sometimes
it may be crude. In the years that followed GerSgorin’s original publications,
many improved localization sets were obtain ([11], [14], [18], [19], [35], [39], [63],
[64], |67]). Arguable, the most famous one is due to Brauer'®. Namely, for a
given matrix A, define the set

Kij(A) = {z €C: |z —aillz —ay| < ri(A)rj(A)}

n

and the set IC(A) := U K; ;(A). The following theorem holds.

ij=1

Theorem 1.4.4 (/63], Theorem 2.2.) For any A € C™", n > 2, and any \ €
o(A), there exist k,l € N such that

|)\ - akkH)\ — CL”‘ S T’k(A)Tl(A).
Consequently, A € Ky (A) C KC(A). As this is true for each X € o(A), then
g(A) CK(A).

The set IC(A) is called the Brauer set, and for i,j € N,i # j, K, ;(A) is called
(i,j) — th Brauer-Cassini'' oval. This set is in fact an improvement of the
the Gersgorin set, i.e., we have the following.

Theorem 1.4.5 (/63], Theorem 2.3.) For any A € C™", n > 2, holds
K(A) CT(A).

The relationship between individual ovals and the GerSgorin’s circles is given
in the following.

10Alfred Theodor Brauer (1894-1985) was a German-American mathematician who worked
in number theory.

" Giovanni Domenico Cassini (1625-1712) was an Italian mathematician, astronomer and
engineer.
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Theorem 1.4.6 (R.Varga'?, 1999) For any A € C"", n > 2 holds:
K, j(A) =Ty(A) UT(A) if and only if r;(A) =1;(A) =0 orri(A) =r;j(A) >
0, Qi = Qjj, Z,j € N, 1 7&]

If all the off-diagonal row sums and diagonal entries of the matrix are fixed, the
best eigenvalue localization we can obtain is the Brauer set. This optimality
result was obtained in [63]. More precisely, define the families of matrices:

W(A) :={B = [bj] € C"" : b;; = a;; and r;(B) =1;(A), i € N}
and

W(A) :={B = [b;;] € C"" : b;; = a;; and r;(B) <r;(A), i € N}.
Using the notation:

o@) = | o(B)ando@A) = |J o(B),

Bea(A) Beo(A)
we have the following result.
Theorem 1.4.7 ([63], Theorem 2.4.) For any A € C™", n > 2 holds:

~ 8/CA:8K1’2A,n:2
U(W<A)):{ K(zgl),)nZi% (4)

and

o(&(A)) = K(A).

While many improvements of the GerSgorin set were obtained and used in the
applications of linear algebra, the central role is definetely played by the minimal
Gersgorin set. In the following, we provide all its important properties before we
continue to the analysis of its computations.

2Richard Varga (1928) is an American mathematician who specialized in numerical analy-
sis and linear algebra, emeritus professor at Kent State University and adjunct professor at
Case Western Reserve University.
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1.5 Minimal Gersgorin set

Given a positive vector x = [11,29,...,2,]7 > 0 and a diagonal matrix

X := diag(z) € R™", the Ger§gorin disks for the matrix X 'AX are given by:

L7 (A) = {z €C: |z —au| <rf(A) =) M} for ie N.  (1.15)
T
Moreover, the associated GerSgorin set is defined as:

I (A) = O 7" (A). (1.16)
The set 7
*A):= (] T4 (1.17)

is called the minimal GerSgorin set and it gives the sharpest inclusion set for
o(A), with a respect to all positive diagonal similarity transformations X 'AX
of A, i.e.,

o(A) CTR(A) CT(A). (1.18)
Note that, generally, when X € C™" is not necessarily diagonal, the intersection
of sets T'(X 1 AX), over the family of all nonsingular X, is o(A).

To state the optimality of this set, given any matrix A = [a;;] € C™" and the
complex number z € C, define the matrix Q4(z) = [g;;(2)], @4 : C — R™" by:

¢i(z) == —|z —ay| and g;;(z) = |a;;|, fori#j, i,5 € N. (1.19)

The right-most eigenvalue v4(z) of the essentially non-negative matrix Q4(z) =
[¢ij(2)] is real (Theorem 1.3.1) and it can be characterized by:

va(z) = mf max((Qa(2))/ ). (1.20)
B a(2) = inf max(rf(4) = |2 = ), (121

The corresponding eigenvector to v4(z) is non-negative. In case when A (and

thus Q4(2)) is irreducible, the corresponding eigenvector is positive (Theorem
1.3.4).

Using this notation, we obtain the following characterization of the minimal
Gersgorin set in the complex plane.
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Theorem 1.5.1 (/63], Preposition 4.3.) For any A € C"" n>2:
z € TR(A) if and only if va(z) > 0. (1.22)

Proof: (=) Assume z € T'®(A). By the definition of the minimal Ger$gorin set,
2z €I (A) for all z € R", z > 0. Equivalently, for each z > 0 there exists k € N,
such that |z — ag| < 75 (A), i.e., rE(A) — |z —agk| > 0. Hence, (Qa(2)z)x/zr > 0,
ie., IlréaNX((QA(z)x)Z/xZ) > 0, for each z > 0. So, v4(2) > 0.

(«<=) Assume v4(z) > 0. Then, for each x € R", x > 0, there exists k € N such
that 0 < wva(z) < (Qa(2)x)r/xr = 17 (A) — |2 — agg|. It implies |z — age| < rE(A),
i.e., z € " (A), for each z > 0, and therefore, z € T®(A). g

From the previous theorem and the continuity of v4(z), as a function of z, the
following characterization of the boundary of the minimal Ger§gorin set theorem
holds.

Theorem 1.5.2 For any A C"" . n > 2:
z € OTR(A) if and only if va(2) = 0 and there is a sequence of complex numbers
{2332, with lim 2; = 2, for which v4(2;) <0, for all j € N,

j—o0

Next, we review the optimality of the minimal GerSgorin set. For a given
matrix A € C™", the family of matrices
Q(A) :={B = [b;j| € C"" : b;; = a;; and |b;;| = |aj|, i,j € N, 1 # j}
is called the equimodular family of A and the family of matrices
Q(A) := {B = [b;;] € C™" : b = a;; and |by| < |ay;], 3,5 € N,i # j}

is called the extended equimodular family of A.
We will use notation:

o(QA) = |J o(B)and o(QA)) = ] o(B).
BeQ(A) BeQU(A)
So, it is obvious that
o(QUA)) C o(QA)) C TR(A). (1.23)

The next theorem gives the sharpness of the inclusion in (1.23), i.e., it shows
that the minimal GerSgorin set is optimal spectral localization for the extended
equimodular family of matrices.
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Theorem 1.5.3 ([63], Theorem 4.4.) For any A = [a;;] € C*",n > 2

OT™(A) C o(Q(A)) C o(QU(A)) = TR(A). (1.24)

Proof: Because of (1.23), it is enough to show that 9T™(A) C o(Q(A)) and
IR(4) C o(Q4).

First we show that OT*(A) C o(2(A)). To that end, we prove that for any
A = [a;] € C"™n > 2, and z € C with v4(z) = 0, there exists a matrix
B = [b;;] € Q(A) for which z is an eigenvalue of B.

Let z € OI*(A). So, va(z) = 0 and there exists y € R", y > 0, y # 0, such

that Qa(z)y = va(2)y = 0. It follows that |z — a;ly; = Z la;jly;, i € N. Let
J#

¥; be the numbers such that z — a; = |2z — a;le™i,i € N, and define the matrix

B = [b;;] € C*™ by:

b”‘ = Qy and bi]‘ = |Clij|6wi, Z7£ j, Z,] e N.

Now, it is easy to see that B € Q(A). Namely, by computing (By);, we find:

n

(By)i = Y bijyy = @iy + > lagley; = (2 = |2 — aigle™)ys + Y |ayle¥y; =
=1 i#i i#i
2Y; + ew’i(z laijly; — |2 — aily;) = zy;, for all i € N. It follows By = zy, i.e.,
J#i
2 € o(B). So, each point of T(A) is in 0(Q(A)), i.e., OTR(A) C o(2(A)).

Next, we show that TR(A) C o(Q(A)). Let z € TR(A). So, va(z) > 0 and
there exists y € R", y > 0, y # 0, such that Qa(z)y = va(z)y. It follows that

|z — ayly; = Z laij|ly; —va(2)y;, @ € N. Define the matrix C' = [b;;] € C™" by:
JF

Cii = ayz and ¢ 1= pag, 1 # J, i,j €N,
where p; is defined by:
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rn
> aijly; — va(z)y:

n
i7 n ) Z ’aij’yj >0
_ > laly; I#
Hi = i
n
1, > laily; =0
\ J#i

It is easy to see that 0 < p; <1 and consequently, C' € Q(A) But since for all

€N, [z —culys = |z — auly; = Z |aijly; —va(z)yi = Z |aijly; = Z |cijly;,
J#i J#i J#i
n
e, |z — cylys = Z |cijly;, we have that z € T (C).
i

Finally, according to the the first part of the proof of this theorem, we have that
there exists D € Q(C) C Q(A) such that z € o(D). It follows z € 7(€2(A)) and
consequently, o(2(A)) = TR(A). g

Therefore, 0(Q(A)) completely fills out TR(A), i.e., the minimal GerSgorin set is
"optimal" because it exactly determines the spectrum of the family of matrices

o (Q2(4)).

To conclude this section, we give some useful properties of the minimal Gers-
gorin set.

Theorem 1.5.4 For any A € C™" and ¢ € C holds:

1) TR(A) is a compact set in C;

(4)
2) TR(A) = T™(AT);
3) TR(cA) = cI'*(A);
4) TR(A+cl) =TR(A) +c.

Proof: 1) As the GerSgorin set is a compact set (the union of n bounded and
closed sets) in C, it follows that T™(A) is also compact.
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2) For n = 1, the statement holds trivially. For a given z € C, n > 2, matrices

Qa(z) and Q47 (z) have the same eigenvalues. It follows v4(z) = vur(2),
i.e., 2 € TR(A) if and only if 2 € TR(AT).

3) For ¢ = 0 the statement holds trivially. For ¢ # 0, we have: z € I[*(cA) <=

z
— cal) > i z 1 Z —a.) >
gfrgl%(ldr( ) = |z = caii]) 2 0 <= inf max(ri(A4) — |~ — aif) 2 0 <=

2 eTR(A) <= z € dITR(A).
C

4) z € ' (A+cl) — 9161;18 Iinez}vx(ri (A)—|z—(a;+c)|) > 0 <= ;:r>l£ I{é&}\;{(r (A)—

(2 —¢) —ay|) <= 2 —c € TR(A) <= 2 € I®(A) +c.
U

Theorem 1.5.5 Given an arbitrary matric A = [a;;] € C*™,n; > 1, i €
{1,2,...,m} and its normal reduced form defined by (1.12). Then,

R(A) = UFR(AM).

Proof: Firstly, we can notice that diagonal elements and their corresponding
deleted absolute row and column sums are the same for a matrix and its normal
reduced form, i.e., the minimal GerSgorin set is invariant under simultaneous
permutatlons of rows and columns. Let’s deﬁne posmve diagonal matrices X =
dlag(:zzl ),xg ) x%)), where £ € N and 3: := =, for all j from the set of
indices corresponding to the block A, 7 € {1 2,...,m}. From

All
A
lim X 'AX, = - :
k—o0
Amm
it follows I (A) € ( T(X,'AX,) = [ JT(Ai) € TR(A). So, TR(A) = | JT®(4y).
keN =1 i
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In some cases, a component of [?(A), A € C™", can be isolated point (for
example when all off-diagonal entries in one row of A are zero). To avoid such
situations in the algorithms, we can use the previous lemma and consider only
irreducible matrices.

1.6 Nonsingularity of matrices vs. localization of
eigenvalues

In this section, a brief review of few classes of matrices is given and to be
used in the rest of the thesis. Also, a relation between these classes of matrices
and the corresponding results on localization of eigenvalues is presented.

A matrix A = [a;;] € C™" is diagonally dominant (DD) if
la;| > ri(A), i € N.

A matrix A = [a;;] € C™" is strictly diagonally dominant (SDD) if
lai| > ri(A), i € N.

Theorem 1.6.1 (/63], Theorem 1.4.) If A € C™™ is strictly diagonally domi-
nant, then A is nonsingular matriz.

A matrix A € C™" is an irreducibly diagonally dominant matrix if it is irreducible
and diagonally dominant (|a;;| > r;(A),i € N) and if strict inequality (|agx| >
r1(A)) holds for at least one k € N.

Theorem 1.6.2 (0. Taussky, 1949) If A = [a;;] € C™™ is an irreducibly diago-
nally dominant, then A is a nonsingular matric.
A matrix A = [a;;] € C*" is an Ostrowski'® matrix if |a;||a;;| > ri(A)r;(A),

i,j EN, i#7j, n>2.

Theorem 1.6.3 (/63], Theorem 2.1.) If A € C™" is an Ostrowski matriz, then
A is a nonsingular matrix.

13 Alexander Ostrowski (1893-1986) was a Ukrainian mathematician, professor at University
of Basel.
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A given Z-matrix A = [a;;] € R™" is an M-matrix if there exist 4 € R and
B € R™" such that A=pul — B, B> 0 and p(B) < pu.

Proposition 1.6.4 (/5]) For a Z-matrizc A = [a;;] € R™", the following state-
ments are equivalent:

e A is a nonsingular M-matrix;
o A1 >0;
e there exists vector x € R", x > 0, such that Az > 0;

o the real part of each eigenvalue of A is positive.

For a given matrix A € C™", define its comparison matrix (A) := [a;;] € R™"
such that: aul, i = j
Aii|, =]
Q= A
Y { —lagl, i #J

where 7,5 € N. We can notice that (A) is a Z-matrix.

A given matrix A € C™" is an H-matrix if (A) is an M-matrix. If A € C*" and
(A) is a nonsingular M-matrix, then A is a nonsingular H-matrix. The class of

H-matrices plays a special role in the theory of the localization of eigenvalues
since it is superclass of many classes of nonsingular matrices used to construct
localizations. Among many such classes we mentioned just a few of them.

Theorem 1.6.5 Classes of strictly diagonally dominant matrices, irreducible
diagonally dominant matrices and Ostrowski matrices are subclasses of nonsin-
gular H-matrices.

While the relationship between nonsingularity results and eigenvalue localization
sets has been implicitly present since the early years of the matrix theory, their
equivalence was explicitly formulated for the first time in [63] and formalized in
[39]. Here, we state it in the form of the following theorem.

Theorem 1.6.6 (Varga’s principle of equivalence) Let K be a class of matrices
from C™" and for any A € C™", the set O%X(A) is defined by:

O%(A):={zcC:A—z2I ¢ K}.

The following statements are equivalent:
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e all matrices from K are nonsingular;
o 0(A) C O%(A), for any A € C™™.

Proof: (=) Assume that all matrices from K are nonsingular. Let A € C™"
and let A\ € o(A) be its arbitrary eigenvalue. Then, A — X[ is singular and
because of that A — A\ ¢ K. Tt follows A € ©%(A), i.e, 0(A) C OK(A).

(<=) Assume o(A) C O%(A), for all A € C™". Suppose there exists a matrix
A € K which is singular. So, A\ = 0 is its eigenvalue and 0 € @K(fl), ie.,
A-0-T=A ¢ K, which gives a contradiction. Thus, all matrices from K are
nonsingular. a

As expected, wider classes produce better localization sets. Namely, we have the
following.

Theorem 1.6.7 (Monotonicity principle, [39]) Let Ky and Ky be classes of ma-
trices from C*" and A € C*". If K, C Ky, then ©%2(A) C ©X1(A4).

Due to many scientific papers on the localization of eigenvalues similar to the
Gersgorin set, the term "GerSgorin-type" was vaguely used. We will adapt the
formalization of [39] from where one can conclude that the set ©%(A) is a set of
Gersgorin-type if the class K is a subset of the set of nonsingular H-matrices.

One can easily verify the following statements.
e If K is a class of SDD matrices and A € C™", then O%X(A) = T'(A).
e If K is a class of Ostrowski matrices and A € C™", then ©%(A4) = K(A).

e If K is a class of a nonsingular H-matrices and A € C™", then ©%(A) =
IR(A).

Therefore, for a given A € C*", if 2 € T®(A), then A — zI is not a nonsingular
H-matrix, i.e, (A — zI) is not a nonsingular M-matrix. Also, using monotonicity
pinciple (Theorem 1.6.7), it follows that the minimal GerSgorin set is the smallest
of all here mentioned sets of Ger§gorin-type, i.e., the following result holds.

Corollary 1.6.8 For any matriz A € C", n > 2, holds:

TR(A) C K(A) C D(A).
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In a special case for n = 2, the minimal GerSgorin set is equal to the Brauer set,
ie., [R(A) =K(A).

This property holds for many other localization sets. For details on the other

subclasses of H-matrices and their corresponding eigenvalue localization sets see
[63].

1.7 Numerical range

Beside the Gersgorin’s circles, there exist many other localization sets of the
spectrum. One of them is a numerical range or a field of values.

The numerical range W (A) of a given matrix A € C™" is a set defined by:

r*Ax « n
W(A) = { —, (TE C", x # 0} ={y"Ay:y € C", ||y||2 = 1} (1.25)

In another words, the numerical range is the range of the Rayleigh quotients
x*Ax

, for all z # 0. In the following, we mention some well-known properties of

the numerical range.
Theorem 1.7.1 W(A) is a non-empty, compact and connected set in C.
Theorem 1.7.2 (Toeplitz"-Hausdorff*>) W (A) is a convex subset of C .

Theorem 1.7.3 For matrices A, B € C™", an identity matriz I € R™", an
unitary matrizc U € C™"™ and scalar c € C, the following properties hold:

1) W(cA) = W (A),

(c

2) W(cl +A)=c+W(A),

3) W(A+ B) C W(A)+W(B),
(

1) W(U*AU) = W(A).

14 0tto Toeplitz (1881-1940) was a German mathematician working in functional analysis.
15Felix Hausdorff (1868-1942) was a German mathematician who is considered to be one of
the founders of modern topology.

43



Proof: 1) If ¢ = 0, the statement holds trivially. Let z € W(cA), ¢ # 0.
There exists x € C" such that z = 2*(cA)z, z*x =1, i.e., - = 2" Ar <

z € W(A) <= 2 € cW(A).

ol

2) Let z € W(cI+A). There exists x € C" such that z = 2*(c[+A)z, x*z =1,
Le,z=cH+r'Ar <= z—ce W(A) <= z € c+ W(A).

3) Let z € W(A+B). There exists © € C" such that z = 2*(A+B)z, z*z = 1,
e, z=a2%(A+ B)r =2*Ax + 2" Br = z € W(A) + W(B).

4) Let z € W(U*AU). There exists © € C" such that z = 2*(U*AU)z, z*zx =
<= z=y"Ay, y'y=1<= 2z € W(A), where y = Ux.

Theorem 1.7.4 For an arbitrary matriz A € C™", it holds that
o(A) CW(A). (1.26)

Proof: Let A € C be an arbitrary eigenvalue of A and x € C", x # 0, is its

associated eigenvector. Without loss of generality, assume that x is normalized,
ie., ||z|]2 = 1. Then, A = A(z*x) = 2" Az = 2*Ax, i.e., A € W(A). As this holds
for each eigenvalue of A, it follows that o(A) C W(A). g

Theorem 1.7.5 ([71], Theorem 2) W (A) is a real line segment |a, b] if and only
if A € C™" is a Hermitian matriz with its the smallest eigenvalue a and the
largest eigenvalue b.

The abscissa of the numerical range W (A) of matrix A € C™" is

w(A) := max{Re(z) : z € W(A)}. (1.27)
So, W(A) lies in a closed half-plane, i.e.,

W(A) C{z € C:Re(z) <w(A)}.
For a given set S in the complex plane, its convex hull co(S) is

co(S) = ﬂ{T : T'is convex and S C T'}.
T
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Theorem 1.7.6 ([71], Theorem 3) If A € C™" is a normal matriz, the set W (A)
18 the convex hull of its eigenvalues, 1.e.,

W(A) = CO(U(A)) = {t)\l + (1 — t))\g . )\1, )\2 S O'(A),t € [O, 1]}
A Hermitian part of a given matrix A € C™" is:

A+ A
H(A) = 5

It is obvious that H(A) is a Hermitian matrix, implying that all its eigenvalues
are real numbers. Also, because of Theorem 1.7.5, the numerical range of H(A) is
closed interval [Ain, Amaz|, Wwhere A, and Ay,q, are its the smallest and largest
eigenvalue, respectively.

Lemma 1.7.7 ([63], Lemma 3.8.) For a given matriz A € C™™ holds:
W(H(A)) = Re(W(A)) :={Re(z) : z € W(A)}.

First connection between GerSgorin’s localizations and numerical range was es-
tablished by C. R. Johnson'® in [36]. Here, we state the result with its proof.

Theorem 1.7.8 (/63], Theorem 3.9.) For a given matriz A € C™" holds:

W(A) C J(A) := CO<Q {z €C:|z—ayl < ri(4) Zri(AT)})

Proof: First, we will prove the statement "If J(A) C {z € C: Re(z) > 0}, then
W(A) C{z € C: Re(z) >0}".

(A (AT
From J(A) C {z € C: Re(z) > 0}, it is obvious that Re(a;;) > ri(4) —;T ( ),
A+ A*
i€ N.For H(A) = Z , we obtain:
. > lagl +3 laj|
|aij +ai;| _ 7 7 ri(A) + (A7)
’ H(A)) — ij < _ i
N sics)

16 Charles Royal Johnson (1948) is an American mathematician specializing in linear algebra.
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i € N. Thus, the whole Gersgorin set of H(A) lies in the open right half-plane.
As H(A) is Hermitian, it has only positive real eigenvalues and W (H(A)) is a
real line segment (Theorem 1.7.5). So, W(A) C {z € C: Re(z) > 0} (Theorem
1.7.7).

Next, we prove the second statement: "If 0 ¢ J(A), then 0 ¢ W(A)".

Assume that 0 ¢ J(A). As J(A) is a convex set by definition, there exists
0 € [0,2n7) such that J(e?A) C {z € C : Re(z) > 0} (Separating hyperplane
theorem, Horn'” and Johnson, 1985). Using the first statement, this implies that
W(e?A) C {z € C: Re(z) > 0}. As W(A) = e W (e A) (Theorem 1.7.3), it
follows that 0 ¢ W (A).

Finally, we prove the third statement: "If z ¢ J(A), then z ¢ W(A)".

If 2 ¢ J(A), then 0 ¢ J(A — zI). From the second statement, we obtain
0¢ W(A—zI)=W(A) — z, which gives that z ¢ W (A).

Therefore, if z € W(A), then z € J(A), ie., W(A) C J(A). a

Motivated by this, in the following, we will consider the relationship between the
numerical range and the minimal Gersgorin set.

"Roger Alan Horn (1942) is an American mathematician specializing in matrix analysis.
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Chapter 2

Algorithms for computing the
minimal GerSgorin set

"The beauty and simplicity of Gersgorin’s
theorem has undoubtedly inspired further
research, resulting in hundreds of papers
in which the name Gersgorin appears.”

Richard Varga

In this chapter, in Sections 2.1 and 2.2, we review existing algorithms for
computing the minimal GerSgorin set. In Section 2.3, we present two diffe-
rent characterizations - explicit and implicit. The implicit characterization is a
new result published in [49]. Then, in Section 2.4, we introduce three different
approaches for tracing of the boundary of the minimal Ger§gorin set (star-shaped,
predictor-corrector, triangular), that are combined with two characterizations
resulting in six algorithms.

2.1 Grid based algorithm

The griding MGS algorithm (gMGS) is the simplest algorithm for computing
the minimal GerSgorin set. It is constructed by computing values of the function
va(z), for all z in a given rectangular grid.
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As the minimal GerSgorin set is a subset of the Ger§gorin set of a given matrix
A = [a;;] € C™™, we can easily construct the rectangular grid [l.c, wre| X [Lim, Wim],
where:

lre = rlxeli]{fl(Re(aii) —71i(A)), U= riréejm\?c(Re(aii) +r;(A)), (2.1)
Ly = Igéi]{[l(lm(aii) —1i(A), U = Izréz]i\?((lm(aii) + 7 (A)). (2.2)

The approximation of 9T*(A) is obtained as a zero-level curve on that grid.

Therefore, the algorithm gMGS is simple for implementation. For input
parameters, it uses a given matrix A and a parameter n,, which determines
the number of points in the grid. However, in cases when we use a fine grid
in order to get a better localization, this algorithm requires a large number of
eigenvalue computations. So, the algorithm gMGS is numerically expensive,
even for matrices of small sizes.

Algorithm gMGS
Input: A n,

1. Compute lye, Upe, lim and g, using (2.1) and (2.2);
2: Set 0, = —““;L_l“ and §, = —”“’;jlm;
3:fork$:():;zgdo ’
4:  for k, =0:n, do
5: Set 2 := (lye + kp0y) + 1(lim + kydy);
6: Compute G(ks,k,) := va(z) as the rightmost eigenvalue (r.m.e) of
Qa(2);
7. end for
8: end for
9: Compute the zero level curve C of G;
Output: C

2.2 Bisection based approximation

An improvement to the straight-forward gMGS algorithm was introduced by
R. Varga, Lj. Cvetkovi¢ and V. Kosti¢ in [69]. Here we call it the bisection MGS
algorithm (bMGS), The approximation of I'®(A) is obtained by computing
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several points on the boundary and through them constructing the desired set
using Theorem 1.4.3. In order to obtain the points on the boundary, the proposed
approach was to use the fact that the minimal GerSgorin set is star shaped.

Definition 2.2.1 A set S € C is called star-shaped (or star-convex or star-
domain) if there exists an xo € S such that for all x € S the line segment from
o to x is in S.

Theorem 2.2.2 ([63], Theorem 4.6.) If A = [a;;] € C™™, n > 2, is an arbitrary
irreducible matriz, then va(a;) > 0 for each i € N. Moreover, for each i € N
and each real 6 € [0,27), there exists the largest number p;(0) > 0 such that

valay +pi(0)e?) =0 and va(ay +te?) >0, forall 0 <t <p(0), (2.3)
i.e., the entire complex interval [a; + teie]f;(g) is contained in T™(A). Conse-
quently, for each i € N, the set

2
6=0

1s a star-shaped subset of the miminal Gersgorin set with respect to a;; and

Proof: Irreducibility of A implies that Q(z) is also an irreducible matrix, for
any choice of z € C. Hence, for any z € C there exists y = [y1,va, ..., yn|T > 0,
such that v4(z) = (Qa(2)y);/y; (Theorem 1.3.4), for all j € N. If q; is an
arbitrary diagonal element of A, i € N, and x = [z1,29,...,2,]7 > 0, is an
associated vector for which v4(a;) = (Qal(ai;)x);/z;, we obtain:

va(ai) =17 (A) — |ay — ay| = ri(A).

So, va(ai;) >0 (r7(A) > 0 because A is irreducible).

Now, we consider a semi-infinite complex line a;; + te’ which begins in ay;,
for ¢t > 0 and fixed 6 € [0,27). For t = 0, va(a;) > 0 and va(z) < 0 for
2z ¢ TR(A). Because of a continuity of the function v4, there is the smallest
number p;(0) > 0 such that a; +p;(0)e!? € OTR(A). Therefore, each line segment
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that joins a diagonal element of a; and point a; + p;(0)el? € OTR(A) is a subset
of TR(A). As it is true for each 6 € [0, 27), we have

27

U[a“ + tel@]ﬁz(a) C FR(A),
6=0
2
i.e., the set U A +t619]’)1(9) is a star-shaped subset of the minimal Gersgorin set
0=0
with a respect to a;, 1 € N. a

According to the previous theorem, we can start with an arbitrary diagonal
entry a;;, choose an arbitrary angle ¢ and search for the boundary point of the
form a;; + tel? for t > 0. The use of the bisection method is grounded due to the
following property of v4.

Theorem 2.2.3 For any A € C™", the function v4 is uniformly continuous on
C, i.e.,

va(z) —va(2) < |z = 2,

for all z and 2" in C.

Proof: For given z, 2’ € C, without loss of generality, let assume v4(z) > va(2').
From (1.21), it follows that there exist positive vectors z,,x,, € R" and j, k € N
such that:
va(z) —va(?)] = va(z) —va(?') =
rit(A) — |z — ail) - m%(rle (A) = 2" = aal) <
<
ax(r;” (A) — 2 — aa]) =
K ( ) |2 — ap|) <
7"32( ) 2" —aj;|) =
/

—z+al =]z —2]. d

max(
iEN
max(rfz (A) — |z — ay

) —
( “(A) = |z —ayl) = (r
(r Z( ) =z —ajl) — T

|Z — ajj| — |z —ay| <

Given an irreducible matrix A € C™" and its diagonal element a;, i € N.
From the uniform continuity of v4, we have:

va(z) —va()| < [z = 2.
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Replacing z and 2’ with a; + p;i(0)e? € OTR(A) and ay, respectively, and using
the fact that v4(a;) > 0 (Theorem 2.2.2), we obtain:

lalay + pi(0)e?) — va(aw)| < |ai + pi(0)e? — as),

ie.,
0< VA(az'z') S ﬁz<9)

Therefore, it is possible to find numbers § > 0 and l;; € N, k € {1,2,...,m}, m €
N such that
pi(0) € [valay) + (Liy — 1)0, va(ai) + lind],

where m is a given number of different angular directions. Using the bisec-
tion method and the fact that v4(z) is a uniformly continuous function, we can
construct the procedure bSearch that produces points {w;;} which lie on the
boundary of the minimal Ger§gorin set, j € N, k € {1,2,...,m}.

As it is numerically expensive to compute boundary points of ['*(A) using
the bisection method, we construct an approximation of the minimal Gersgorin
set. Namely, consider the sets:

[@ik(A) = U{z €C:lz—ayl < \Wj,k — al}
i=1

and

A

IR(A):=T(A) N[ [ T*(A).

k=1j=1

Using Olga Taussky’s boundary result (Theorem 1.4.3), for a given w; ;. € 9T (A),
there is © = [z, 22, ..., 2,7 > 0 such that Qa(w;x)r = 0. Equivalently, for all
i €N,

n
o _ZM
‘Wj,k a”]— .
x.

ki v
It is interesting that knowing the boundary point wjy, all discs in I'“i#(A) with

centers in a; can be directly drawn, without knowing the components of x. So,
their intersection gives the approximation of T'(A), i.e.,

IR(4) € TR(4) C T(A).
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bSearch
Input: A, &, 0,tol
1: Set z := ¢ and compute f :=v4(z) as the rightmost eigenvalue of Q4(z);
Set 0 := f and [ := 0;
while f > 0 do
[:=1+1;
Set z 1= £ + 166! and compute f := v4(2) as the rightmost eigenvalue of
Qa(2);
end while
Set a := (I —1)6 and b := [d;
while b — a > tol do
Set z := &+ “T*bei(’ and compute f :=v4(z) as the rightmost eigenvalue of
Qa(2);
10: if f > 0 then

: b.
11: a = 42
12:  else

_ atb.
13: = 2
14: end if

15: end while
16: Set w =& + aT-H?eiH;
Output: w

Now, we construct the procedure ger Approx in order to obtain boundary
of the set fR(A) Apart from the sequence of points {w;}, the procedure ger-
Approx uses also parameter n, € N as an input. In that way, the approximation
of OTR(A) is constructed on an equally spaced rectangular grid.

Furthermore, we present the algorithm bMGS. For parameters A € C™", m,
ny € N and a given tolerance tol > 0, this algorithm computes m - n points on
the boundary of T} (A).

The algorithm bMGS has several drawbacks. The main drawback is a usage
of the bisection method on m - n points, resulting with a large number of eigen-
values computations even for matrices of medium sizes. In addition, it needs
pre-computations in order to find a proper starting bisection interval. In some
cases, if the parameter 0 is not chosen in a proper way, the first zero of v, can
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ger Approx
Input: A, ng, {wjr}jen, kefi2,..m}
1: Compute lpe, Upe, Ly and g, using (2.1) and (2.2);
2: Set 0, = “Tn;lr and 9, = “mn@,
g g
3: for b, =0:n,4 do
4:  for k, =0:n,do

5: Set z 1= (lye + ky6y) + i(lim + kydy);
6: Compute G(k;, k) := Ilre%lﬂz —ai| —ri(A)};
7: for j=1:nand k=1:mdo
8: Set G (ks, ky) = |2 — an1| — |wj — anl;
9: fori=2:ndo
10: Update Gjg(ks, ky) = min{G,x(ky, ky), |2 — ai| — |wjr — @il }:
11: end for
12: Update G(ky, ky) = max{G(k,, ky), Gji(ks, ky) };
13: end for
14:  end for
15: end for
16: Compute the zero level curve C of G;
Output: C

Algorithm bMGS
Input: A, ng, m,tol

1: for j=1:ndo
2. fork=1:mdo
3: Set 0, = k%;
4 Run  the  procedure  bSearch(A,a;;,0,tol) to  compute
{wj,k;}jeN, ke{1,2,...,m}>
end for
: end for
7: Run the procedure ger Approx(A, ng, {w;r}jen, kef1,2,..m});
Output: C

@ o

be skipped on the ray {a; +te’}, t >0, i € N.

Finally, notice that the original version of this algorithm ([69]) was used only
for irreducible matrices although it can be adaptable for reducible matrices, too
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(Lemma 1.5.5). Also, note that the approximation can be improved, at the
expense of more computations, if we use the Brauer set instead of the Gersgorin
set for boundary points.

2.3 Explicit vs. implicit characterization of the
minimal Gersgorin set

In this section, two characterizations of the minimal GerSgorin set are pre-
sented: explicit and implicit. The explicit characterization is given in [40], while
the implicit characterization is a new result which is the basis for the algorithms
applicable to large sparse matrices (|49]).

2.3.1 Explicit characterization

According to Theorems 1.5.1 and 1.5.2, the minimal Ger§gorin set of a given
matrix A € C™" is completely characterized by:

2z € TR(A) <= va(2) >0,
while its boundary is characterized by:

va(z) = 0 and there exists a sequence {z;} such that
lim z; = z and v4(z;) <0, j € N.

J—00

2z € TR (A) «— {

Using the fact that the boundary points of I*(A) are of the form a; + p;(6)e?,
here, for a given A € C™" ¢ € C and 0 € [0,27), we define a function
$%:10,00) — R by: '
SOt) == va(€ + te?). (2.6)
Using this function, we have the following theorem whose proof follows directly
from Theorems 1.5.1 and 1.5.2.

Theorem 2.3.1 Given an arbitrary irreducible matriz A = [a;;] € C", a com-
plex number £, a real number 0 € [0,21) and the function f$° defined by (2.6).
Then,

1. £+te? € TR(A) if and only if f°(t) > 0;
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2. £ +te? € OTR(A) if and only if ff"e(t) = 0 and for € > 0 there exists
6. € [0,2m) such that fj+t819’65(e) < 0.

The statement of the previous theorem we will call the explicit characterization.

The usefulness of the function f4° lies in the fact that it is differentiable
everywhere except at the most n points. Moreover, one can obtain its first order
derivative, as it is expressed in the following theorem.

Theorem 2.3.2 Given an arbitrary irreducible matriz A = [a;;] € C™", a com-
plex number £, a real number 0 € [0,21) and the function f$° defined by (2.6).
Then, ff\’e is co—differentiable in t ¢ {(& — a;)e™? i € N} and its first
derivative is given as:

0 ,ep u(t)" DS’ (t)o(t)

ol =) 2D

where v(t) and u(t) are right and left eigenvectors of Q o(€+tel?) corresponding to
the eigenvalue ff"e(t), respectively, where diagonal matriz Dj’e(t) = diag([dy(t),
dy(t),...,dn(t)]) is given by:

_ Re[(§—ay)e )+t
€ —ag) e ]

di(t) - ieN. (2.8)

Proof: As A is irreducible, it follows that Qa(¢ + tel) is also an irreducible
matrix. Then, f$%(t) is a simple eigenvalue of Q4 (€ + te?) and denote its
corresponding right and left eigenvectors by v(t) and u(t), respectively. Using a
well-known result on differentiability of simple eigenvalues (Theorem 1.2.1), we

obtain: o "

o4 u(t)To(t) ’
ie., g,e is a oo-differentiable in ¢, for ¢ #_(ﬁ — aii)ei(”fe),i € N. _
From g (€ +te?) = —|¢ +te —ay| = —[€?|[(€ —ay)e™ +t| = —|(€ —az)e ™+t

and ¢;; (€ + te?) = |a;;|, we have:

_Re[(§ —ay)e ]+t

. d
(€ —ame?+e

0 0y _
aqz‘i(f +te”) =
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9 0
at ql] (g + te ) O

for t # (£ — a;)el™9 i, j € N, i # j.
Therefore, 8tQA(£ + te?) = —D5Y(t) and from (2.9) it follows:

9 cor ult)" D (D)
550 =m0

2.3.2 Implicit characterization

Now, we present a novel characterization of I'®(A) that is the result of this
thesis, published in [49]. First, we define functions gi’e and hi{e that will play
676
role of f3”.

Given an arbitrary irreducible matrix A € C™", a complex number ¢ and a
real number 0 € [0,27), let us fix a vector ¢ € R™, ¢ > 0, and for every t > 0
construct a system of linear equations

(| A Y
M%)

Assuming that M$?(¢) is nonsingular, (2.10) can be uniquely solved, and the
Cramer’s rule provides that

det(—Qa(§ +1€))
det(M5"(1))

g5’ (t) = - (2.11)

The defined function becomes zero whenever matrix () 4(z) becomes singular in
the point z = £ +te'?. In the following, we see how gi’e can be used instead of
a V4 to characterize the boundary of the minimal Ger§gorin set.

Next, we will use well-known properties of the Schur complement. Namely, if
A B

a matrix M is partitioned into four blocks, i.e., M = [ c D

} , where matrices

26



A and D are square and A and E := D — CA™'B are nonsingular, using the
Schur complement, we have:

. [A B]" [A'4+A'BE'CA' —A'BE!
M= {C p| = _El0A! g | (212
and
det(M) = det(A)det (E). (2.13)

Theorem 2.3.3 Given an arbitrary irreducible matric A € C™", a complex
number &, a real 0 < 0 < 21 and ¢ € R™ arbitrary positive vector, let t>0
be mazimal such that £+t € TR(A), for allt € [0 T Then, there exists € > 0
such that MY’ (t) is a nonsingular matriz for all te [t oy t+ -¢]. Consequently,
(2.10) deﬁnes an co-differentiable functions ¢5° and w5’ on [t — e, T + €.

Proof: First let us show that the matrix M£ (t ) is nonsingular. Assume that
M4 (1) is singular. As the off-diagonal zero pattern is the same for A and
Q€ + 1% and ¢ > 0, the irreducibility of A implies the irreducibility of
matrices QA(§ +te?) and M5°(). Let [w )T be the right eigenvector of the
matrix M$?(t) corresponding to the zero eigenvalue, i.e.,

—Qa(e e —OCHW}IO[“’lz{g} (2.14)

—C (07 (0%

Hence, we obtain
Qi€+t w+ca=0 (2.15)

and
cw=0. (2.16)

Using the Perron-Frobenius theorem for essentially non-negative irreducible ma-
trices (Theorem 1.3.4), an eigenvalue v4 (€41 ) = 0 of the matrix Q4 (€ +1 ')
has a positive right and left eigenvector T and 7, respectively. Moreover, eve-
ry right (left) eigenvector corresponding to the eigenvalue zero will be a scalar
multiple of Z (7). Multiplying equation (2.15) by 37, we obtain

7QaE+ 1w+ 7lca=0 = §lca=0 = a=0, (2.17)
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which together with (2.15) implies that Q4(€ +te®)w = 0, i.e., w # 0 is the
right eigenvector corresponding to the eigenvalue zero. Hence, there exists 5 # 0
that w = Z. Then, from (2.16), we obtain

dr=0 = dz=0, 2.18
o4

which is a contradiction. Therefore, M{?(Z) has to be a nonsingular matrix.
Moreover, using the continuity of M & 9( t) in parameter ¢, we conclude that there
exists a sufficiently small & > 0 such that for all ¢t € [t —e,t + ¢, M§%(2)
is nonsingular and ¢4°(t) and w%’ are oo-differentiable functions for all ¢ €
[t—e,t+¢] g

Theorem 2.3.4 Given an arbitrary irreducible matric A € C™", a complex
number £, a real 0 < 0 < 2w and ¢ € R™ arbitrary positive vector, let t>0
be mazimal such that € +te® € TR(A), for all t € [0,1]. Then, there exists € > 0
such that:

1. for every z = € +te? & TR(A), ¢5°(t) and w§’(t) are well defined and
positive;

9,549(?5) >0 forallt e (%\7%\_'_ el;

70 N .
gi (t> =0
g5° () <0 for all t € [t —e,1);
the first and the second derivatives atgA , atwie and athA , atgwie are
defined via the linear systems:

{—m&ggta@) —Oc} {gnga)}_{ —D5 (w A<t)}’ (2.19)

l —Qa(§ +te) —00} { Szl (1) } _ [ =S5 (Ow’(t) -

—cT 0

DR ]
(2.20)
where the vector function wi’e(t) is defined as the solution of the linear sys-
tem (2.10), DS’ (t) == diag([di(t), da(t), . .., dn(1)]) and S§°(t) := diag([s1(t), sa(t),
.y 8n(t)]), where:

Re[(§ —ay)e 9]+t

dilt) = (€ — ag) e + 1]

(2.21)

28



and )
(Im[(§ — ag) e +11])?
(€ —ag)e @+t

si(t) =

for t # (€ — a;)e™? i€ N.

(2.22)

Proof: 1. Let z = £ + te? ¢ T’(A), then —Qa(€ + te?) is a nonsingular M-
matrix, implying (—Qa(£ +t€))™1 > 0 and det(—Qa(£ +t€?)) > 0. So, from
(2.13),

det(M§?(t)) = — det(—Qa(E +te)eT (—Qa(E + 1)) e < 0 (2.23)

and we obtain that M$?(¢) is nonsingular. Therefore, using a formula for the
inversion of a block matrix (2.12), we have that

ot [ 0] [ (-Qa(E +1eM) el (~Que + 1) te)
ougr [ = [ O G >0

implying that ¢5°(t) and wS’(t) are well-defined and positive.

Ttems 2., 3. and 4. follow from the continuity of det(M5’(¢)) and the fact that
det(—Qa(§ +1e?)) =0.

5. Finally, we get the expressions for the derivatives. If ¢t # (£ — a;)el™? for
i € N, the entries of Q4(€ + tel’) are oo-differentiable functions in ¢ and their
first and second derivatives are given as:

gq”(g I teie) _ Re[(£ — aii) €_i9] +1 ng(f + tei@) =0, for j 7& i, (224)

ot ’(6 - aii) e~i0 + t‘ "ot
and

0 i0 (Im[(§ —au)e™™ +1])*> 97 i0

a0 Yit t Y) = B PN Y] t Y) = 07 f; - '7

8t2q (€+ e ) |(§—an~)e—‘9—|—t|3 8t2qj(£+ e ) or j#l

(2.25)

for all 7,7 € N. By differentiating (2.10) and using (2.24) and (2.25), we obtain
(2.19) and (2.20). O

Definition 2.3.5 For a fized € € C and 0 < 0 < 27, for t > 0, define the func-
tions:

() = min{(wi’e(t))i 1<i< n}
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and
P () = min {570, (0} (2.26)

Then, the following characterization of the minimal Ger$gorin set holds.

Theorem 2.3.6 Let be given an arbitrary irreducible matric A € C™" and its
arbitrary diagonal entry & = aw,k € N and z = € + te, where t > 0 and
0 <0 <2m. Then,

o 2 ¢ TR(A) if and only if K5’ (t) > 0;
o 2 € OTR(A) such that t = p(0) if and only if

i) h50() = g5°(t) = 0,
ii) hi’e(sl) <0 holds for all 0 < s1 < t, and

iii) for everye > 0 there exists sy > t such that ss—t < € and hie(SQ) > 0;

e if c is chosen to be a positive normalized (||c|l2 = 1) eigenvector of the
Perron eigenvalue v4(§) > 0 of Q (&) and Mje(O) is a nonsingular matriz,
then ¢5°(0) < 0 and w5’ (0) > 0.

Proof: For the first item, we prove the equivalence. Assume that z ¢ T™(A),
then, as it is shown in the item 1. of Theorem 2.3.4, A5’(t) > 0. On the
other hand, assume that h5’(t) > 0, then from the system (2.10), we get
—Qa(2)w5’(t) = ¢5°(t)e > 0, while w§’(t) > 0. However, this implies that
—Qa(2) is a nonsingular M-matrix. So, z ¢ [*(A).

For the second item, first observe that i) — i) imply that ¢ = py(0) as defined
in Theorem 2.2.2. So, assume z € OT™(A) such that ¢ = py(6) and let € > 0 and
0<s; <t<syand sy —t <e. Then Theorem 2.3.4, item 3. gives gi’e(t) = 0.
Item 1. states that w%’(sy) > 0, which with continuity implies w5’ () > 0. So,
we conclude A5’ () = 0. Obviously, i) follows from the previous item and 7i7)

from the definition of p(6).

For the third item, if ¢ is a positive normalized eigenvector of the Perron eigen-
value v4(€) > 0 of Q4(&), then Q4(&)c = va(£)c and c’c = 1. From the system
(2.10) for t = 0, we obtain —Q4(€)w5’(0) = ¢5°(0)c and —cTw5%(0) = —1.
Finally, we get ¢5%(0) = —v4(€) < 0 and w§’(0) = ¢ > 0 because of the nonsin-
gularity of M$%(0). a
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The statement of the previous theorem we will call the implicit characterization
of the minimal Gersgorin set.

2.4 Curve tracing approaches

In this section, three different curve tracing approaches are presented. Com-
bining them with explicit and implicit characterization of the minimal Gersgorin
set, six algorithms are developed: eMGSs, iMGSs, eMGSp, iMGSp, eMGSt
and iMGSt (Figure 2.1).

S

S~ _—
MG S<f

i/
Figure 2.1: Algorithms for computing MGS.

All presented algorithms are performed for irreducible matrices. However,
this is not a setback (theoretically) for their application to reducible matrices
(Lemma 1.5.5).

2.4.1 Star-shaped curve tracing

In this subsection, two algorithms for computing the minimal GerSgorin set
are presented- eMGSs and iMGSs. They are based on the computation of
points that lie on the boundary of the minimal Gersgorin set using Newton-like
method with a given accuracy, function f$’ (2.6) for eMIGSs and functions ¢’
(2.11) and A? (2.26) for iMGSs.
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First, we describe construction of the explicit algorithm (eMGSs). It is
developed in [40] and is based on the modified Newton’s method.

Using the previous results (Theorem 2.2.2 and Lemma 1.5.5), we can con-
struct the minimal GerSgorin set starting from each diagonal entry of a given ma-
trix A and computing points on its boundary for m angles #, m € N, 6 € [0, 27).

Now, we formulate the modified Newton’s method for computing zero of the
function f5° defined as (2.6). Define ¢, := f$%(0) = v4(€) > 0 and the sequence
{tk}, k € Np, with

tk+1 =1+ ’YkAka (2.27)

where Ay is defined as

fx’e(tk) e O pE0
T 0., N if afA (tk) <0

&0 ’
Ap=1{  afi (t) , (2.28)
f{e(tk), otherwise
and
1, if f5%(tepr) >0
Vi = ,
7%, otherwise
with 7 € (0,1) and the smallest ¢, € N such that
fj’e(tk + 7% Ap) >0 and ff"e(tk + 7% AR) <0, (2.29)

Lemma 2.4.1 Given an arbitrary irreducible matriz A € C»", a complex num-
ber € and a real 0 < 0 < 2mw. The sequence {ty}, k € Ny, is well defined by
(2.27), and it converges to t > 0 such that f$°(t) = 0.

Proof: Firstly, observe that the uniform continuity of v4 (2.2.3) implies that for
every t >0 and € > 0
Ft+e) - [0l <, (2.30)

and consequently, whenever ff;e is differentiable such that

0 ,eo

1 (t)‘ <1 (2.31)
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Therefore, for all k € Ng, Ay > 5% (1)
Now, we show that the sequence {t;} is well-defined. Since f5°(to) = va(€ +

I/A(g) ei0)>
1757 (t0) = F3°(0)] = [va(€ +va(§) €%) = va(&)] < |€%va(€)] = va(©),

ie.,
—va(€) < 5% (to) — £3°(0) < va(8),

it follows that ff"e(tg) > 0 and consequently, Ay > 0. Thus, to + Ay > tg > 0,
and f$%(to + Ao) is well-defined. If f$%(to + Ag) < 0, the continuity of f$?, im-
plies that there exists ¢y € N, such that vy = 7%. Otherwise, if ffl’e(to +4Ay) >0,
then vy = 1. By this, we obtain t; := ¢y + 794y > tg > 0, such that ff"e(tl) > 0.
Continuing in the same way, we obtain that the sequence {t;} is well-defined,
monotonically nondecreasing and ff"e(tk) > 0, for all k£ € N

Let’s assume that {¢;} is unbounded. Then, for some ¢ € N, there exists a sub-
sequence {tg,}, such that zliglo tr, = 0o. From the construction of the sequence,

we have that f§%(t,) > 0. It follows that z, := & +t, € € TR(A), for all £ € N,
(Theorem 2.2.2). However, since |z — oo, it is a contradiction because the
minimal Gersgorin set is a compact set in C. As a result, the sequence {t;} is

convergent and we denote its limit as ¢ = lim .
k—o00

Now, we distinguish two cases.
First, assume that klim infy, > 0, k£ € N. Then,
— 00

t —t
0< f5%(te) < Ay = %

Taking the limit for & — oo, it follows f5°(%) = 0.
Second, assume élim Yk, = 0. Then, obviously, v;, = 7%« < 1, for £ € N, and
—00

glim gk, = co. It implies that 0 < ff"e(f) < 0, which completes the proof.
—00

Using the previous lemma, we construct the procedure eSearch.

Theorem 2.4.2 Given an arbitrary irreducible matrizc A € C™", a complex
number £ and real numbers 0 < 0 < 2w and T € (0,1), the procedure eSearch
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eSearch

Input: A, &, 0, tol
1. Set z = ¢ and compute r.m.e. (the rightmost eigenpair) (f,z,y) of Q4(2);
2: Set t:= f, A=2tol and = 0.9;
3: while A > tol do
4:  Compute df := _

)7 2 Qa(E+tel)a(t)

. y()Tx(t) ’
if df > 0 then

Set df = —1,
end if

Set A := —f/df and v := 1,

Set z = £+ (t +vA)e? and compute r.m.e. (f,z,y) of Qa(2);
10:  while f <0 do

11: Y =705

12: Set z = & + (t +vA)e" and compute r.m.e. (f,z,y) of Qa(2);
13:  end while

14:  t:=t+A;

15: end while

16: Set z = £ + (t +vA)e? and compute r.m.e. (f,z,y) of Qa(2);
17: if f > 0 then

18  Set t:=t+ 2tol and A := 2tol;

19: goto 3

20: end if

21: Set w = & +tel?;

Output: w

. ., 02 ~
produces w = £+t e’ € C such that w € OUR(A). Furthermore, if o2 f"e(t) > 0,
the convergence is locally quadratic and otherwise, the convergence is linear with

the convergence rate klim sup(1 — 7%).
—00

Proof: The lines (1—15) of the procedure eSearch, generate a sequence {t}, k €
N, such that tlgilo tr =t and f(f) = 0. However, the obtained point ¢ + e does
not have to lie on the boundary of the minimal GerSgorin set. In order to find
a proper point, the lines (16 — 20) are added in the procedure to check if ff"g
changes the sign in ¢. A repeated restart will occur until this condition is satis-
fied. In that way, we obtain the point w = & 4 tel? € OI'*(A). So, there exists
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0 . .
e > 0 such that — fl’e(t) < 0, for t € (t — ¢€,t). Consequently, there is ky € N,

ot co
Tt
such that A, = —ﬂ#
acla (k

, for all k > k.

Now, we prove the rate of local convergence. There are two cases.

0? - .
If ﬁff{e(t) >0 fort € (f—e, i) and k > ko, then f5 is locally convex function

and 7, = 1. It implies the quadratic convergence of modified Newton’s method.

0? €0
M opla

: : : (k)
t—tppr =t —tpy — mAp =1 —t +

0,
215 (te)

(t) <0 forte(t—et)and k> ko, from (2.27) and (2.28), we obtain:

Using quadratic Taylor polynomial for fj’e, there exists t* € (£ — t;,1) such that

2

. 0 R 10 R
0=r5"() = 15’ (t) + aff{a(tk)(t — ) + =5 fT)(E - )

201274

So,
76 7 2 79 * n
SI5 W) =) + 55 fE () (E —t)*

b=ty =t =t — 5 E0 =
ars )

2 6.0\ (7
%Vka%ffx () (t — tr)

(f = te) (1 =y — = ).
S 13" ()
an consequently,
: =1k .
1 R =1 1 —7%).
T

g

Now, we present the original results that are used for a construction of new
algorithm for the numerical approximation of the minimal GerSgorin set. This
new algorithm will be called an implicit one, abbreviated as iMGSs (]|49]), since
the main idea is to avoid explicit computation of the Perron eigentriplets within
the algorithm eMGSs, by replacing the function fj’g with a new function h%e
that reveals the Perron eigenvalue implicitly through the solution of a structured
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system of linear equations. The motivation for this approach to significantly
reduce the overall number of expensive eigenvalue computations can be found in
the idea of the implicit determinant method for pseudospectra given in [25].

Results of Theorems 2.3.4 and 2.3.6 are the basis for the procedure iSearch
which is the core of the implicit algorithm for computing the minimal GerSgorin
set.

We formulate the new modified Newton’s method for the computing zeros of
the function h,. First, it will be defined the sequence {t;}, with

tpr1 1=t + ’YkAk, k€ No, (232)

where ty := 0 and A} is given as

£,0
-gA (tk) if 0 f,@(tk) >0

PR at9A
Api={ w94 () , (2.33)
A, otherwise

where A > 0 is given parameter and

1, it A5 (tr) <0
Vi 1= , (2.34)
7% otherwise

with parameter 7 € (0, 1) arbitrarily fixed and ¢; € N being the smallest number
such that
RS0 (ty + 7% Ay) <0 and  hS(tp + 7771 A) > 0. (2.35)

For ¢, we choose vector defined in the third item in Theorem 2.3.6. Additionally,
if the convergence is achieved in ¢, then we check if hi’e(t +¢) > 0 for a small
tolerance € > 0 and if not, we restart the sequence taking ¢y, :=t + €.

Theorem 2.4.3 Given an arbitrary irreducible matriz A € C™", a complex

number § and a real 0 < 6 < 27, a sequence {ty}ren, defined by (2.52) is mono-

tonically non- decreasmg and it converges to t > 0, such that £ + te? € dTR(A).
2

3
Furthermore, zf A ( ) > 0, the convergence is locally quadratic and otherwise,

the convergence zs lmear with the convergence rate klim sup(1 — 7).
— 00
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Proof: First we show that the sequence {t;}, k € Ny, is well-defined. From
Theorem 2.3.6 follows h5°(0) < 0. From the definition of A, we have A > 0.
Thus tg+4 > 0, and the continuity of hi’a together with (2.35) implies that there
exists 0 < 9 < 1 such that hi’g(t(]—i—’}/vo) < 0. So, we obtain t; := tg+vA¢ > to,
such that A5’ (t1) < 0. By induction, we obtain that the sequence {t; }re is well-
defined and that 25’ (t;) < 0 with ¢, > t,_, for all k € N.

To prove the convergence of monotonically increasing sequence {t;}, it is enough

to show that it is bounded above. Let’s assume that {¢;} is unbounded. Then for

some m € N, there exists a subsequence {t, }, such that lim ¢, = oo. Also,
m—0o0

the fact h5(ty,,) < 0 implies that z,, 1= & + t;,, € € TR(A), for all m € N and

lim |z,,| = oco. However, this is a contradiction because the minimal Ger§gorin
m— 00

set is a compact set in C. Therefore, the sequence is convergent and we denote
its limit by ¢t = lim .

k—o0
From the construction of the sequence we have that gj’e({f\) = 0, when %gi’e(?)

-~

exists and it is positive, or that hi’e(t) = 0, otherwise. Finally, due to restarts we
obtain that z = & + te'? fulfills the second item of Theorem 2.3.6, and, therefore
z=¢+ e € OTR(A).
Now, we prove the rate of local convergence. There are two cases.

0? ~
If ﬁgi’e(t) > (, then gﬁl’e is a locally convex function, and for sufficiently large

k € N, ~, = 1. This implies the quadratic convergence of modified Newton’s
met1210d.

0 -~ 0
If @gi’e(t) < 0, then for sufficiently large k € N, agi’e(tk) > 0, and, thus, from
(2.32) and (2.33), we obtain:

5’ (t)

70 )
2657 (tn)

t—tepr =1t —tp — Yelp = — g + Y

Using quadratic Taylor expansion for gi’e, there exists t* € (tA— tk,tA) such that

. P _ 12 .y
0=05"@) = g5 (tr) + =05 W) (@ — t1) + = =057 (1) (F — tp)*.

ot 2912
So,
70 N a2 ’0 % o~
iy m ) )+ 58 (- 1)
k+1 = E— Yk N t _
atdA (tx)
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2 0wy
31 gs () (F— )

(F =) (1 =y — ; :
295 (1)
and consequently,
) t— ler1 . 0
]}LIEO sup T khi& sup(1 — 7).

iSearch
Input: A, &, 0, tol
1: Set z := ¢ and compute the rightmost eigenpair (v4(2), c) of Qa(z);
2: Set t:=0, A:=2tol and g =0.9;
3: while A > tol do
4: Compute g = ¢5°(t) by solving (2.10);
Compute dg = %gi’e(t) by solving (2.19);
if dg < 0 then
Set dg == —g/A;
end if
Set A := —g/dg and v := 1;
10:  Compute h = h5°(t + v A) using (2.10);
11:  while h > 0 do
12: v =75
13: Compute h = h5%(t + v A) using (2.10);
14:  end while
5. Set t:=t+vA;
16: end while
17: Compute h = b5 (t +~ A) using (2.10);
18: if h < 0 then
19:  Set t:=t+ 2tol and A := 2tol;
20 goto 3
21: end if
22: Set w = & + te?;
Output: w

Finally, we present the algorithms *MGSs, where x € {e,i}, here and in the
following in the thesis. For a given irreducible matrix A of a size n € N, denote its
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set of different diagonal elements as D = {a;,i,, Giyiy, ---, Qi iy }, Where elements of
D are sorted from the leftmost to the rightmost (i.e., Re(a;,:,) < Re(asy,) < ... <
Re(a;,i.)), n € N. Also, we denote the points that represent the approximation
of the points of the boundary of the minimal GerSgorin set with {w; ;}7%,, i <
s, m; € N. The allowed maximal distance between that nodes and the boundary
of the minimal GerSgorin set is less than ; and the distance between successive

points has to be less than ey, i.e., dist(w; ;, 0T (A)) ;== min |w;; — 2| < &1,
2€0T'R(A)

and |wi,j — wi,jH] < €9, where Wi m;+1 *= Wi 1-

Starting with values £ := a;,4,, ¢1 = —m and using the procedure *Search,
we obtain the point wy; := £ + t1e'¥*, where t; := *Search(A4, ¢, ¢1,&1). Then,
we change the angle ¢; to g := 1 + arctanﬁ, where [ := Tego and 7 > 0 is a
given parameter. In that way, we get the new point wy o := & + t2€'#2, where
ty := *Search(A, ¢, ¢2,¢1). Analogously, as long as the angle ¢; < 7, we con-
struct a sequence of points {wy ;},j € {1,2,...,m1}, such that |w; ; —wy j+1] < 2.
The obtained polygon {w; ;}7"; approximates the boundary of one component
of the set T®(A).

In some steps of the algorithm *MGSs, because of the geometry of the
minimal GerSgorin set, it can be impossible to find the next point. We use the
following lemma to overcome that difficulty and change the center point &.

Lemma 2.4.4 Given an arbitrary irreducible matric A = [a;;] € C™", for every
point w € OTR(A), sufficiently small e > 0 and z € OTR(A) satisfying |z —w| < €
and arg(z — a;) > arg(w — a;;), there exists an indexr i € N such that for all
a € (0,1] holds az + (1 — a)a; € TR(A),

Proof: If A= D — B, where D = diag(ai1, a2, ..., Gny ), let’s consider the family
of matrices A(t) := D —tB, for t € [0,1]. Clearly, A(0) = D and A(1) = A.

Without loss of generality, let’s assume that diagonal elements of A are distinct.
As t — vaw(z), z € C, is a continuous function in ¢ ([40]), T®(A(t)) grows
continuously from the set of n points {a;, i € N} to T™(A). For the sufficiently
small ¢t > 0, T*(A(t)) consists of n disjoint sets around points a;;, i € N, and the
statement of lemma holds trivially. Also, because of continuity, that property is
preserved when disjointed components merge. a

Therefore, for each point z € OT®(A), there is diagonal entry ay;, i € N, such
that a; + tearg(z—aii) € FR<A>, te [0, ,/o\l-(arg(z — CL“))]
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After the construction of the first component of the minimal GerSgorin set,
we check which entries from D are in that component and denote the set of that
entries with S;. If S; # D, we construct a new polygon {ws };”:21 which represents
the approximation of the next disjoint component of the minimal Gersgorin set.
Then, we test which entries from the set D\S; are in that component and denote
the set of those entries with S;. We stop with that procedure when all elements
of D are included in some component, i.e., D = S;US,U...US,, where k is the
number of disjoint components of I*(A). Therefore, we have the following result
on eMGSs and iMGSs.

Theorem 2.4.5 The algorithm *MGSs produces the numerical approzimation
of the munimal Gersgorin set.
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*MGSs

Input: A, Ny, 7, tol
Set S = {ahil? Qigig s« aiﬁiﬁ} and initialize 7 = 17
maX{ure - l7‘€7 ulm - lzm} .

N

Set €9 =

while S # () do
_ 5 .
Set & =8(1), Si={&} E=bp=to=t=-ml==j=1
Run *Search(A4,¢&, ¢,tol) to compute ¢; and w; j;
while |0j — Hj_1| < 7 do
Update ¢ <+ ¢ + arctan(tij) and j < j+1;

Run *Search(A, ¢, p,tol) to compute ¢; and w;; and set 6;

=)

while |wi,j - Wi,j—1| < &9 and |9] — 9]‘_1| < mdo
Update ¢ < ¢ + arctan(tij) and j < 7+ 1;

Run *Search(A4,¢, ¢,tol) to compute t; and w;; and set 6;

arg ()

end while
if |9J — 0]‘_1| < 7 then
Set k=1 and S to S ordered with respect to the distance
repeat
if S(k) # ¢ then
Run *Search(A,S(k:),arg(%
Wold; 7
if |wold — wm,1| < g9 then

|),tol) to compute t,q and

Run *Search(A,S(k:),arg(w"’j_—g(k)),tol) to compute t,e, and

. i, —S (k)]
wnewv

end if
end if
Update k + k + 1;

until (|wog — wij—1| < €2 and |woig — Wnew| < €2) or k > card(S);

if (|wald —Ncuz-7j_1| < &9 and ]wold — wnew| < 52) then
Set £ = S(k) and update S; +— S; U{¢};

wii—§ \.
elSS:t tj = thew, Wij = Wnew and set ¢ = arg(m),
Update I < 17 and j ¢ j — 1 and set o = arg( =5 )
end if
end if
end while

Update S < S\S;, i « i + 1;

Update S to exclude all elements inside of the polygon {w; ;}1<i<m:;

end while
Output: {{w1;}1<j<ms {wWajti<icmas o {Wsjhi<ji<m. }




2.4.2 Predictor-corrector curve tracing

One of the typical path following methods to numerically trace the curve C in
the complex plane is a generic predictor-corrector method. It uses a combination
of two different steps.

Let C be a solution curve of the equation H(w) = 0, where H : C — R is a
smooth map and 0 € range(H ).

In the first step (predictor step), an approximation along the curve is used,
usually in the direction of the tangent of the curve.

In the second step (corrector step), iterations for solving H(w) = 0 are used.
Typically corrections are of Newton or gradient type. In that way, the predicted
point "brings back" to the curve.

Generic predictor-corrector method
Input: wy € C, H(wpy) =~ 0 (initial point), h > 0 (initial step length)
1: for k=1:mdo
2:  (Predictor step) Predict z; € C such that ||z;—w;_1|| & h in the direction
of tracing;
3:  (Corrector step) Let w; € C approximately solve
n&n{Hzi —w|| : H(w) = 0} and choose a new step-length i > 0;

4: end for
Output: w; € C,i € {0,1,2,...,m}

First, we consider the explicit characterization of the minimal GerSgorin set.
In the following theorem, we present derivatives of the first and second order of
fa, with respect to x and y.

Theorem 2.4.6 For a given an irreducible matric A € C"" and z = ¢ + iy €
C, let’s v(x + iy) and u(x + iy) be right and left eigenvector of Qa(x + iy),
corresponding to fa(x + iy), where Qa(x + iy) and fa(x + iy) are defined by
(1.19) and (2.6), respectively. Then, the first and second derivatives of fa are
defined by:

ul'Dyv

uTv

fo= et (2.36)
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Figure 2.2: Predictor-corrector step.

T
u” Dyv
_ , 2.37
=0 (237
u' Dypv + 2u” Dyvg + 2f,u’ vy,
frm = - T s (238)
u-v
. _uTDmyv + u” Dyv, + u Dyv, + fouTv, + fyulv, (2.39)
i uTv '
and
T T T
fyy:_u Dy,v 4+ 2u ?yvy+2fyu vy’ (2.40)
u-v
i g Re(z+iy—ai1) Re(z+iy—a22) Re(z+iy—ann)
where: D, = dzag( iy Jatiyaml 0 ety an] >,
g Im(z+iy—a11) Im(z+iy—ag2) Im(z+iy—ann)
Dy - dZCLg( lzt+iy—ar1] ?  |zt+iy—agz| 77 |zHy—ann] )’
_ o (Umlatiy—a10)? (Im(etiy—az0)?  ((etiy—ann))?
sz - dllag( |x+iyfa11|3 9 |z+iyfa22\3 AR |ft+iy*ann|3 >7
g —Re(z+iy—ar1)Im(z+iy—a11) —Re(z+iy—ao2)Im(z+iy—asz) —Re(z+iy—ann) Im(z+iy—ann)
Dyy = diag ( letiy—an]? ; |atiy—azl? et iy—dnn | )
g (Re(z+iy—a11))? (Re(z+iy—az22))? (Re(z+iy—ann))?
and Dyy - dzag( lztiy—a11[®> 7 |ztiy—a2e]? 0777 |ztiy—ana|3 )’
for z=x+1iy # ay, i € N.
Proof: From the definition of f,, we have:
Qalz +1iy)v(z,y) = falz +iy)v(z,y) (2.41)
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and
(u(z,9))" Qalz +1iy) = falz +iy)(u(z,y))". (2.42)
Differentiating the equation (2.41) with respect to = and y, we obtain

—D,v+ Qav, = fov+ fu, (2.43)

and
—D,v + Qavy = fyv + fu,. (2.44)

Multiplying the equations (2.43) and (2.44) by u” and using (2.41) and (2.42),
we obtain (2.36) and (2.37).

Using Theorem 1.2.1, we have

T
ve = —(fI — Q) (I — %)Dmv (2.45)

and .
vy = —(fT— Q)T (I - %)Dyv. (2.46)

Differentiating the equation (2.43) with respect to z and y, and the equation
(2.44) with respect to y, we obtain equations:

—D30v = 2D,05 + QAVes = f2a¥ + 2f200 + fUsa, (2.47)
—Dyyv — Dyvy — Dyvy + Q4 = fuy0 + foUy + fyUa + fUay, (2.48)
and
—Dyv —2Dyvy, + Qavyy = fyyv + 2f,0, + fuy,, (2.49)
respectively.
Multiplying the equations (2.47), (2.48) and (2.49) by u! and using (2.41) and
(2.42), we obtain expressions (2.38), (2.39) and (2.40). a

Now, let’s consider the implicit characterization of the minimal Gersgorin set
given by the system:

—Qu(z +iy) —c} [wA(fc,y) } _ { 0 } , (2.50)



Theorem 2.4.7 Given an irreducible matric A € C™", a vector ¢ > 0, ¢ €
R™ and wy and ga defined by the system (2.50). Then, the first and second

derivatives of ga are given by systems:

_QA —C Wy Wy - [ —wa —Dy’LU
' 0 9% 9y ] | O 0
and .
{ —Qa —c ] IgUm I;xy I;yy . [ Dy D, D3 ]
_ T xTx xy yy - )
c 0 0 0 0 | 0 0 O

where D1 = —2D,w, —
D3 = -2Dyw, — D, w.

Proof: Differentiating the system of equations
—Qaw —cg =0
—cTw=-1
with respect to x and y, we obtain systems:
—Qawy — gy = —Dyw

T

—cw, =0
and
—Qawy — cgy = —Dyw
—cTwy =0,
respectively.

Dy,w, Dy = —Dyw, — Dyw, —

Dy w and

Writing (2.54) and (2.55) in a matrix form, we obtain (2.51).

(2.51)

(2.52)

(2.53)

(2.54)

(2.55)

Differentiating the system (2.54) with respect to x and y, and the system (2.55)

with respect to y, we obtain systems:
_Qwaa: — CQzx = _2waa: -

—cTwy, = 0,

_Qway — CQzy = _way - Dywac -

75

D, w

(2.56)



—cTwg, =0 (2.57)

and
—Qawyy — cgyy = —2Dywy — Dyyw
—c"w,, =0, (2.58)
respectively. Finally, using (2.56), (2.57) and (2.58), it follows (2.52). g

Now, we construct the algorithm eMGSp. The boundary of the minimal
Gerggorin set is given by OT®(A) = {z =z +iy € C: fa(z +iy) = 0}. Starting
with the point wy € 0T, which we can obtain by the procedure eSearch, we
want to find the next point on the boundary of I'*(A), named w;.

Firstly, in the predictor step, we obtain the point
21 = wp + hdl, (2.59)

—htife
| N fy + 1fx‘
in the direction of curve tracing), where f, and f, are computed in wy.

Then, in the corrector step, we want to find the point w; € OI'®, which is the
nearest to z;. To that end, we solve the problem:

where h is a given length of a step and dl := + (we choose the sign

lw = 21|z = min, fa(w) =0.
Forming a function
L(z,y,A) = (z — Re(21))* + (y — Im(21))* + Afa(@, y)

and differentiating it with respect to x and y, we obtain the following iterations:

1'5:) Re(wglz)) 24 MNaa )\fa:y Ju - ZRG(CAZ) - Zl) + AL
yB = Im(wg )) - Aoy 24 My fy 2Im(w§ ) — a)+Afy |
\(k) 1 fa Jy 0 f

(2.60)
where w§°> = 21, wgk) = :cgkfl) —i—iygk*l), ke N,and f, fu, fy, fow, foy and fy,

are computed in wgk).

Computation of these iterations will stop when |f| < tol, for some [ € N and
a given accuracy tol > 0. In practice, as z; is near to border of T'®(A), it is
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sufficient to compute just a few iterations. In that way, we get w; := wgl).

Analogously, we find a sequence of points {w;}7-,, which approximate the boun-
dary of the one component of minimal GerSgorin set. In the same way, we can
find approximation of all other components of I'*(A).

Finally, using function ga(x,y) instead of f4(z,y) for the characterization of
the boundary of the minimal GerSgorin set, we construct the implicit predictor-
corrector method for computing the minimal GerSgorin set- iMGSp. In that
case, we use the characterizations of derivatives of g4 given in Theorem 2.4.7.

eMGSp
Input: A, h, tol

1: Set D = {ai,i,, Qigiy, -, Giri, ; and initialize ¢ = 1;

2: while D # () do

3:  Initialize ¢ = D(1), 6 = —7, 0 = =37 and j = 0;

4:  Set w =eSearch (A, ¢, —m,tol), and w; ¢ := w;

5 while 6 — 0, > —7 do

6: Compute f, and f, in w;; by (2.36) and (2.37);

7 Compute z; ;11 using (2.59)

8 Set w = z; j41 and compute f = f(w) as the Perron-Frobenius eigenvalue

of Qa(w);
9: while |f| > tol do
10: Compute f,,, fzy and fy, in w by (2.38), (2.39) and (2.40);
11: Compute w by solving the system (2.60);
12: Compute f = f(w) as the Perron-Frobenius eigenvalue of Q4 (w);
13: end while
14: Update j < j +1 and w; j < w;
15: Set 0; :=0, 0:= —iln =%

) |wi,;—¢&|?
16: end while

17.  Update i <1+ 1;
18:  Update D to exclude all elements inside of the polygon {w; ;}o<j<m,;
19: end while

Output: {{w1;}o<j<mi, {wajfo<i<ma, - {Ws,j bo<j<m, |
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iMGSp

Input: A, h, tol

1: Set D = {am-l, Aijgigs -y Qi

} and initialize i = 1;

in

2: while D # () do

3:

10:
11:
12:
13:
14:
15:
16:
17:
18:

Initialize £ = D(1), 6 = —7w, §; = =37 and j = 0;
Set w =iSearch (A, &, —m, tol), w;p == w;
while 6 — 0, > —7 do
Compute g, and g, in w; ; by solving the system (2.51);
Compute z; ;11 using (2.59);
Set w = z; j41 and compute g = g(w) by solving the system (2.50);
while |g| > tol do
Compute gz, oy and g, in w by solving the system (2.52);
Compute w by solving the system (2.60);
Compute g = g(w) by solving the system (2.50);
end while
Update j < j + 1 and w; ; < w;
Set 0 := 0, 0:= —iln 2ot
end while
Update ¢ < 7 + 1;
Update D to exclude all elements inside of the polygon {w; ;}o<j<m,;

19: end while
Output: {{w1;}o<j<mi, {waj o<i<may - {Wsj bo<j<m. }
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2.4.3 'Triangular curve tracing

In this subsection, two new algorithms for computing the minimal Gersgorin
set are constructed. For a given matrix A € C™", we combine the triangular grid
approach presented in [47] with characterizations of T (A) by functions f4 and
ha to develop algorithms eMGSt and iMGSt, respectively.

Given any (z;,2.) € C? such that z; # z., for k # [, define the following
points: '

»Ck,l =2+ k(ze - Zz) + Z(Ze - Zi)egv

to obtain a uniform lattice of vertices
L(zi,2e) ={Lky : (k1) € ZZ},

satisfying
|Lris1 — Lrgl = |Lryry — Lrgl = |20 — 2|

Next, we define a triangular mesh, see Figure 2.3, as:
Dz, 2e) = V(2 20) U \Tl(zl, Ze),

where
U(zi, 2¢) = {Tra = {Lx1, Lis1s, Lrarr} o (k1) € 2%},

and
(2, 2) = {Th = {Lrs Lrrra, Loyrga}: (k1) € Z%).

For a given matrix A € C™", let us denote by 7 the subset of Q(z;, z.), where
T € T if and only if T has at least one vertex in [*(A) and at least one outside
of TR(A).

Let the pivot p(T') be the vertex of a triangle T" € T which is situated on the
opposite side of the border of T™(A) to other two vertices, e.g., vertex Z; o in the
triangle {Z; 0, Zi 1, Z; 2} in Figure 2.4. Define a transformation:

T
F(T) = p(p(T), sgn(va(p(T))) - )(T),
1, >0 .

where sgn(z) = { 1 20 and p(z,0)(w) denotes the rotation of w € C

centered at z € C with angle 6, i.e.,

p(z,0)(w) == 2+ (w — 2)e".
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1+1

k,1+1
1 Tkl
‘lk.l ‘Zkﬂ 1
Tkl
1-1
Jkﬂ,l—l
k k+1 k+2

Figure 2.3: Triangular grid.

Now, we state some useful properties of triangular grids and mapping F
defined on them.

Proposition 2.4.8 For z; # z., T is a finite set.

Proof: As T®(A) is bounded, then T™(A) N Q(z;,2.) is a finite set. From
card(T) < card(T*(A) N Q(z;, 2.)), it follows that T is a finite set. |

Proposition 2.4.9 For a given triangle T € T, the following statements hold:
1. F(T) 4 T;
2. p(T) is a vertex of F(T);
3. T and F(T) are adjacent;
4. F(T)eT;
5. p(F(T)) is a vertex of T
6. FX(T) £ T;

7. 4f T € U(z;, z.), then F(T) € \i(zi,ze) and if T € \il(zi,ze), then F(T) €
‘If(Zi,Ze).
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Proof: 1. The statement follows directly from the definition of F.

2.

As p(T) is a center of the rotation of T, it is a common vertex of 7" and
F(T).

Since T' is an equilateral triangle and F(T) is also an equilateral triangle
obtained by a rotation of T centered at a vertex of T with the angle § = i%,
T and F(T) are adjacent.

F(T) € T because T and F(T') have a common edge whose one vertex is
in I'®(A) and the other vertex is outside of '™ (A).

The vertex p(F(T)) lies on the common edge of 7" and F(T).

Triangles 7" and F(T') are adjacent and p(T) € TN F(T) and p(F(T)) €
TN F(T). There are two cases.
If p(T) = p(F(T)), then F*(T) =
If p(T) # p(F(T)), then F?

(
So, F*(T) = p(F(T)) + ((p(T)
that F*(T) = (p(F(T)) — p(

2T

)

~—~

T)#T.

)(p(p(T),0)(T))
p(F(T)))e ™, implying

=
=
=
N
>

It immediately follows.

Proposition 2.4.10 F is a bijection from T onto T .

Proof: It is enough to show that F' is a one-to-one mapping. Assume that
there exist two triangles 7" and 77, such that F(T') = F(T"). From the previous
proposition, we know that p(F(T)) € T, p(F(T)) € F(T), p(F(T)) € F*(T) and
p(F(T)) €T ie,p(F(T) e TNF(T)NF*(T)NT'.

Furthermore, as T', F*(T) and T" are adjacent to F'(T), it has to be T" = F?(T).
Therefore, F(T") = F(F?*(T)) = F?(F(T)). Using the previous proposition (item
6.), we obtain F'(T) # F(T"), which is a contradiction with starting assumption.
Hence, F' : T — T is one-to-one mapping, and, thus, bijection onto 7. O

For any given T € T define Ty := F¥(T),k € N, and set O(T) := {T},, k € N},
where Ty :=T.
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Proposition 2.4.11 For a given triangle T € T, the following statements hold:
1. the set O(T) is finite;

2. if n = card(O(T)), then n is even and the smallest positive integer such
that T,, =T

I
—

3. 0; = 2mm, m € Ny, where 0; is the rotation angle of F' for the triangle

7

T3

Il
=)

4. for a given triangle T', either O(T) = O(T") or O(T) N O(T") = 0.

Proof: 1. As 7 is a finite set and O(T') C T, it follows that O(T) is a finite
set, too.

2. Assume that exists an integer k, 0 < k < n, such that T,, = T}, = T.
But, then, F*(T) = F*(T) and, consequently, F"~*(T) = T, implying that
card(O(T)) < n, which is a contradiction.

Since T and F(T') belong to disjoint sets (¥(z;, z.) and ¥(z;, z.)), n has to
be even.

3. So, O(T) = {1y, 11, ..., Ty—1}, Ty := T and let {P;, Sy, S2,} be the vertices
of the triangle T; for i € {0,1,...,n — 1} such that P; is the pivot of T},
—_— — . .
<(P;S1,i, PiS2;) = 0;, and Ty = F(T;) = p(P;,0;)(T;). Using the previous
results, we have:

TN Ty = [P, 2] = [Pig1, 51,41
We consider two cases:

o if Pi-i—l = PZ and 5171'4_1 = 5271‘, then

Pit1S141 = PiSay;
o if -Pi-l—l = 5277; and PZ = Sl,i—i—l; then

\

Pz‘+151,z‘+1 - _Pz‘SQ,z‘- (2-61)
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Therefore,

i
—
3
|

—

— —
0; = PS4, PiSa;) = <(PoSh0, PoS10) + I,

@
I
=)
.
I
=)

where [ € N is a number of triangles that satisfy (2.61).

n—1
As F,(T) = Ty, | is even. Finally, we obtain Z@i = 2mm, m € Nj.

1=0

4. Let assume that O(T) N O(T") # 0 and n € N is a cardinality of O(T).
Then, there exist a triangle 7" and ¢, j € N, such that 7”7 € O(T)NO(T")
and 7" = FY(T) = F""(T) = F/(T"). It follows that F"*"~(T) = T,
leading to O(T") C O(T).

Analogously, we can prove O(T) C O(T"), i.e., O(T) = O(T").

a

Using the prepositions above and the function f4(z), we present the algorithm
eMGSt.

As before, given irreducible matrix A € C™", the set of its different diago-
nal elements is D = {a;,i,, Qiyig, .-, Qiri, 1, Where Re(as,) < Re(ai,) < ... <
Re(ai.i. ), n € N, and let s be the number of disjoint components of T*(A). We
denote m; points representing the approximation of the boundary of the i*" com-
ponent of the minimal GerSgorin set by {z;;}7", i € {1,2,...,s}. Starting with
¢ = a;,i,, p = —m and given accuracy € > 0 (e.g., ¢ = 1071?), we use the proce-
dure eSearch from [40] to obtain w; := £ +t1e'¥, with ¢; := eSearch(A, ¢, ¢, ¢).

Then, we get the points 21 ¢ := w; — § and 2, := w; + 3, where 7 is a given
length of edge of equilateral triangles which form triangular grid and 2y := Z; 1.
Furthermore, we obtain the point Z,5 = Z1 0 + (211 — 5170)6%. As a result,
the triangle 77 = {210,211, 212} is an element of 7 which generates the set
O(Th). If fa(Z12) < 0, we define z;5 := Z; 2 and choose as pivot Z,;, the point
Z1o to get Z13 1= Zpiy + (212 — Em-v)e%. Otherwise, we choose Z,;, := Z; and
Z13 1= Zpin + (Z12 — pr)e_%. Analogously, we construct a sequence of points
{Z1.}, | € Ny, as long as Z;; = Z;o. From that set of points, we choose a
subset {21}, such that fa(z1;) < 0. The obtained polygon {z1;}}2, contains
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one component of the set minimal GerSgorin set ['*(A), see Figure 2.4, and
dist(z; j, OT*(A)) < 7. Notice, that we could give also an inner approximation
of the boundary OT'®(A) simply by taking a subset of points with non-negative
values of fa.

After completing the construction of the first component of the minimal Gers-
gorin set, we check which entries from D are in that component and denote the
set of these diagonal entries by Sy. If §; # D, choosing for £ the leftmost element
of D\S1, we construct a new polygon {2 ;}72 that represents the approximation
of next disjoint component of the minimal GerSgorin set. Then, we again test
which entries from the set D\S; are in that component and denote the set of
these entries by S;. We stop with that procedure when all elements of D are
included in some component of the minimal GerSgorin set.

Figure 2.4: Construction of the polygon {z;;}7".

Finally, we present iMGSt algorithm. In fact, we improve algorithm eMGSt
by replacing the function f4 with the function h4. So, using the idea of the im-
plicit determinant method [25|, we achieve to reduce significantly the overall
number of expensive eigenvalue computations. This algorithm gives excellent re-
sults, especially for matrices of large sizes, which will be shown through examples
in the last chapter.
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eMGSt

Input: A, N, tol

1: Set 7 =

2d(A)V/3

S—M, where d(A) = max{um — lyes Uim — lzm};

2: Set D = {a;i, Qiyiys -, Qiri; } and initialize ¢ = 1;
3: while D 75 () do

4:

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:

Set £ =D(1) and 0 = —;
Run eSearch(A,¢,0,tol) to compute w; € C;
Compute Z;0 = w; — 5 and Z;1 = w; + 3;
Compute Z;5 = Zio+ (%1 — Zip)es ;
Set 2 start = Zio and 2,1 = Z;1;
Initialize j = 2;
while Z; 5 # 2; stare dO
if f4(Z;2) <0 then

Zij = %i,2;
Zi,0 = Zi,05
Zil = 2,25

Zio=Zio+ (Zin — 2@',0)6%;
Update j < j + 1;

else
2i0 = Zi2;
Zil = Zi,1; ‘
~ ~ ~ ~ _
Zio=Zi1+ (Zip— Zi1)e 3;
end if
end while

Update 7 < 7 + 1;
Update D to exclude all elements inside of the polygon {z;;}i<j<m.;

25: end while
Output: {{21;}1<j<mis {225 1<i<may - 12,5 F1<j<ma }
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iMGSt

Input: A, N, tol

1: Set 7 =

2d(A)V/3

N where where d(A) = max{u;e — lye, Uim — lim };

2: Set D = {a;,iy, Qigiys -, Qiri; } and initialize ¢ = 1;
3: while D 75 0 do

4:

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:

Set £ =D(1) and 0 = —;
Run iSearch(A, ¢, 0, tol) to compute w; € C;
Compute Zjo = w; — 5 and Z;; = w; + 3;
Compute Zj5 = Zig+ (%1 — Zip)es ;
Set zi start = Zip and 21 = Z1;
Initialize 7 = 2;
while 2,‘72 7é Zi,start do
if hA(giVQ) < 0 then

Zij = %i,2;
2,0 = 24,05
Zi1l = 2,25

Zio=Zio+ (Zin — 51',0)6%;
Update j < j + 1;

else
22,0 = 27,,27
Zi1 = Zi1, ‘
~ ~ ~ _ T
Zi,Q_Zzl_}'(zzO 211)6 33
end if
end while

Update ¢ < 7 + 1;
Update D to exclude all elements inside of the polygon {z;;}i<j<m.;

25: end while
Output: {{21;}1<j<mis {225 1<i<may - 12,5 f1<j<ma }
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Chapter 3

Algorithms for approximating
convex hull of the minimal
Gersgorin set

"More data beats clever algorithms,
but better data beats more data.”

Peter Norving!®

In this chapter, in Section 3.1, results about the abscissa of the minimal Gers-
gorin set are given. Then, in Section 3.2, we compare two eigenvalue localization
sets, the minimal GerSgorin set and the numerical range. Next, in Section 3.3, a
well-known result about computing the numerical range of a given matrix is pre-
sented and finally, in Section 3.4, new algorithms for a construction of a convex
polygon that contains the minimal Ger§gorin set are developed.

3.1 Characterization of the abscissa of the mini-
mal Gersgorin set

The abscissa of the Gersgorin set I'(A) of a matrix A € C™" is
7(A) := max {Re(z) 1z € F(A)}. (3.1)

16Peter Norvig (1956) is an American computer scientist and director of research at Google
Inc.
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In the same way, we have the abscissa of the minimal Gersgorin set T (A) :
1(A) == max{Re(z) : z € I*(A)}. (3.2)

For a given matrix A € C™", let’s define an essentially non-negative matrix
M,c(A) = [m;;] € R™" such that

Re(aii), Z:]
my;; ‘= . .
’ { laijl,  i#]

where 7,5 € N, that allows us to characterize p(A). We start with the following
lemma.

Lemma 3.1.1 Given an arbitrary irreducible matric A € C". If i is the Perron-
Frobenius eigenvalue of a matriz M,.(A), then i > Re(a;), i € N.

Proof: If M,.(A) = D + B, where D = diag(M,.(A)), consider the family
of matrices M,.(A)(t) := D+ tB, t € [0,1]. For t = 0, we get a diagonal
matrix M,.(A)(0) = D and a(M,.(A)(0)) > Re(a;) holds trivially, i € N.
As t increases, at least one off-diagonal entry of M,.(A)(¢) increase because of
irreducibility. Using Theorem 1.3.4, item 4., it follows that a(M,.(A)(t)) >
Re(ai;), t € 0,1], i € N. Therefore, i = a(M,e(A)(1)) > Re(ay), ¢ € N. g

Theorem 3.1.2 Given an arbitrary irreducible matrix A € C™™. If u s the
Perron-Frobenius eigenvalue of a matriz M,.(A), then u(A) < fi. Moreover, the
set T(W—YAW) intersects with the line {z € C : Re(z) = i}, where w is the
Perron-Frobenius eigenvector of M,.(A) and W = diag(w).

Proof: Let (ji,w) be the Perron-Frobenius pair of essentially non-negative ma-
trix M,.(A). Then, {1 is the right-most eigenvalue of matrix M,.(A) and w =
[wy, wa, ..., w,] > 0. Since | + it — ay| > |Re(it — ai)| = o — Re(ay), for i € N
and ¢ € R, we obtain Qa(i +it) < —pal + M,.(A). Therefore, the right-most
eigenvalue of matrix Q) 4(f1+it) is non-positive, i.e., va(j1+it) < 0. This, however,
implies that points on the line ji 4 it are either on the boundary or outside of the
minimal GerSgorin set I®(A). Using the previous lemma, it follows p(A) < ji.

From M,.(A)w = fiw, we obtain i = Re(a;) + Z M, i € N. Hence, the set
"~

i#
[(W~LAW) intersects with the line {z € C : Re(z) = ji}. g
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Theorem 3.1.3 Given an arbitrary irreducible matriz A € C™" and a; € R,
i €N, = p(A) if and only if 1 is the Perron-Frobenius eigenvalue of a matrix
M,.(A). Moreover, all Gersgorin discs of the malriz W AW pass through i,
where w is the Perron-Frobenius eigenvector of M,.(A) and W = diag(w).

Proof: (=) Assume that g = pu(A). Hence, v4(ft) = 0 is the right-most eigen-
value of matrix Qa(i). Using the Perron-Frobenius theorem for essentially
non-negative irreducible matrices, there exists a positive eigenvector w asso-
ciated with the eigenvalue v4(f1). Since i > a;,i € N, it follows Qa(fr) =
— I+ M,o(A). Therefore, Q (1) = (— il +M,(A))w = 0, i.e., My.(A)d = b,
Hence, i is the Perron-Frobenius eigenvalue of matrix M,.(A).

(<) Let (ft,w) be the Perron-Frobenius eigenpair of essentially non-negative
matrix M,.(A). Then, i is the right-most eigenvalue of matrix M,.(A) and
w = [wy,we,...,w,] > 0. Since for o > ay, |a — ay| = o — ay, i € N, then
Qala) = —al + M,.(A) and va(a) = i — « is the right-most eigenvalue of ma-
trix Qa(c). Therefore, if o > fi, then v4(a) < 0 and « is not in the minimal
Gersgorin set of matrix A. However, if @ = fi then v4(a) = 0 and consequently,

fr = p(A).
Now, from M,.(A)w = p(A)w, we obtain u(A) = a; + ZM, i € N.
Wy
J#
Therefore, all GerSgorin discs of matrix W'AW pass through [, ie., i €
or(W—1AW), i € N. G

Beside theoretical importance, the abscissa of the minimal GerSgorin set has
an important role in practice. For example, it can be used in the theory of
dynamical systems.

First order time varying dynamical systems can be represented by the system
of ordinary differential equations:

ax(t) = F(t,z(t)), z(ty) = xo, (3.3)
where variable z(t) € R" represents a state of the system in time ¢ > 0.

If F(t,x(t)) = F(x(t)), the system is autonomous. A point z* € R" is the equi-
librium point if F(z*) = 0.

If dynamical system is linear, system (3.3) can be written as:

x(t) = Az(t), z(ty) = wo, (3.4)
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where A € R™" is a constant matrix. While dynamical systems in general do
not have closed-form solutions, linear dynamical systems can be solved exactly
and its solution is given by:

z(t) = ey, (3.5)
If A is a nonsingular matrix, equilibrium point z* = 0 is unique and its dyna-
mical properties are determined by evolution function ¢4(t) = [le?]], t > 0,
where || - || is induced matrix norm.

Reactivity of the observed linear dynamical system represents initial growth
rate of |[e]], i.e.,

M= Jle)] _ T+ tAl =1

t—0 t t—0 t

T [oaw)] (3:6)

t=0

In addition, if the reactivity is less than zero, then dynamical system is expo-
nentially stable. If || - || = || - ||co, We oObtain:

max{|1 +tag] — 1 +t2\akj\}

keN :
J7#k

.+ tA]]e — 1 .
lim = lim
t—0 t t—0 t

(3.7)

i.e., the reactivity is:

max {Re(akk) + zn: |akj|} — 7(A). (3.8)

keN
itk
Therefore, the reactivity is equal to the abscissa of the Ger§gorin set. From [60],

we have ||e4?]|, < VAt

Using the induced a weighted norms || - ||x, where X € R™" is diagonal
matrix whose diagonal elements are positive and the fact u(A) = iI)l(f V(X TTAX),

we obtain:
igl(f e x < et

Therefore, if the abscissa of the minimal Gerssgorin set of A is negative, there

exists a weighted norm || - ||x such that the system (3.4) is exponentially stable.
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—-12 2 5
For example, if A = 1 —10 2|, then y(A) = 2 and we do not have
0o -4 =2
proper information whether the system determined by A is exponentially stable
or not. However, u(A) = —1.7574 and it implies that the system is exponentially
stable (Figure 3.1).

-20 -15 -10 -5 0

Figure 3.1: The Gerggorin (GS) vs. the minimal Gersgorin set (MGS).

3.2 Minimal GerSgorin set vs. numerical range

Given a matrix A € C™", n € N. Analogies between the minimal Ger§gorin
set T(A) and the numerical range W (A) of A are:

1) non-empty and localization sets for o(A) (it follows from (1.18) and The-
orem 1.7.4);

2) compact sets (bounded and closed) in C (Theorems 1.5.4 and 1.7.1);

3) both are homogeneous, i.e., I (cA) = cI'*(A) and W(cA) = cW(A), ce C
(Theorems 1.5.4 and 1.7.3);

4) TR(cI+ A) = c+TR(A) and W(cI+A) =c+W(A), ceC, Tisthenxn
identity matrix (Theorems 1.5.4 and 1.7.3).
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Differences between the minimal GerSgorin set and the numerical range are:

i) W(A) is a connect set for all A € C*" (Theorem 1.7.1), but in general,
I'*(A) may not be (Example 3.2.1, Figure 3.2);

ii) W(A) is a convex set for all A € C™" (Theorem 1.7.2), but in general,
I'*(A) may not be (Example 3.2.1, Figure 3.2);

iii) W(A+ B) C W(A) + W(B) for all A, B € C™" (Theorem 1.7.3), but

in general, I*(A + B) ¢ T®(A) + IT'*(B) (e.g., for A = [g 8] and B =

[8 ﬂ | TR(A + B) = {1,2}, but TR(A) + TR(B) = {3});

iv) W(A) is invariant under unitary transformation (i.e., W(A) = W(UAU*)),
where U € C™" is arbitrary unitary matrix (Theorem 1.7.3), but in general,
I'*(A) may not be (Example 3.2.1, Figure 3.4);

v) TR(A) is invariant under similarity transformation by nonsingular and non-
negative diagonal matrices (i.e., I®(A4) = TR(XAX '), where X € R"" is
an arbitrary diagonal matrix such that det(X) # 0, and X > 0), but in
general, W(A) may not be (Example 3.2.1, Figure 3.3);

vi) T*(A) and W (A) are in general relation, i.e., [*(A) ¢ W(A) and W(A) ¢
I'?(A) (Example 3.2.1, Figure 3.2).

Example 3.2.1 There are given matrices:

11 0 100 2 2 g
A:251,X:020andU:¢g_§o
0 1 10 00 3 0 0 1

The minimal Gersgorin set (blue line), the numerical range (green line) and
eigenvalues (red dots) of A are presented in Figure 3.2.

The minimal Gersgorin set (blue line), the numerical range (green line) and
eigenvalues (red dots) of X AX ™' are presented in Figure 3.3.

The minimal Gersgorin set (blue line), the numerical range (green line) and
eigenvalues (red dots) of UAU* are presented in Figure 3.4.

The minimal Gersgorin set and the numerical range are both localization sets
for the spectrum of a given matrix. As it is presented, they are incomparable
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JY

-1.51

Figure 3.2: Comparison of I'®(A) and W (A).

sets, but we can compare them after diagonal scaling by nonsingular non-negative
diagonal matrices. Namely, from Theorem 1.7.8, we have the following.

Theorem 3.2.2 For a given matriz A € C™" holds:
W(A) C co(I'(A)uT(A")).

ri(A) + ri(A")

5 < max{r;(A),r;(AT)} and Theorem

Proof: Using an inequality
1.7.8, it follows:

ri(A) + r;(AT)
2

{zE(C:|z—aiZ-|§ }gFi(A)UFi(AT), ieN.
So, W(A) C co(I'(A) UT(AT)). "

Although it is simple to prove, up to the author’s knowledge, the following
result is not well-known in a literature.
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Figure 3.3: Comparison  of Figure 3.4: Comparison  of
IR(XAX1) and W(XAX ). IR(UAU*) and W (UAU*).

Corollary 3.2.3 For a given matriz A € C™"™ holds:

[ W(XTAX) C co(TR(A)),

XeDy,

where D, is the family of nonsingular and non-negative diagonal n X n matrices.

Proof: Using the previous theorem and the fact T™(A) = I'*(AT), (Theorem
1.5.4), the statement holds trivially. g

While the computation of W(A) can be performed efficiently using the al-
gorithm presented in the next section, the computation of scaled W (A) is more
complex task. So, the previous corollary represents also an interesting motiva-
tion for drawing a set that contains a convex envelope of the minimal Gersgorin
set whose position in the complex plane gives an information of the impact of
proper diagonal scaling on the numerical range of a given matrix.

Finally, as it is presented in the previous section, the reactivity of a dynamical
system is equal to the abscissa of the minimal GerSgorin set in optimal weighten-
ed infinity norm. Analogously, by using norm || - ||2, it can be shown that the
reactivity is equal to the abscissa of numerical range, i.e., w(A), ([31], Corollary
5.5.26).
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3.3 Algorithm for computing the numerical range

As W(A) is a compact and connected set in C (Theorem 1.7.1), the set

Re(W(A)) is closed real interval [a, b], where a and b are the smallest and largest

A+ A

eigenvalue of a Hermitian matrix H(A) = , respectively (Theorem 1.7.5).

If y € C" is a normalized eigenvector (i.e., y*y = 1) corresponding to the maximal
eigenvalue b of H(A), then by the definition, the point w := y*Ay is in W(A).
Moreover, w lies on the boundary of W(A) because Re(w) = b.
Let consider Hermitian matrices
eiejA + e—iejA*

2 )
where {0y, 01, ...,0,,—1} is the set of distinct angles, m € N. Now, for each ma-

trix H(e'% A), we can find the largest eigenvalue A\(f;) and its corresponding
normalized eigenvector y;, i.e.,

yiH (% A)y; = N)), yiy; =1, j€{0,1,...,m—1}. (3.9)

H(e%A) =

Again, it is obvious that a complex number y; Ay; belongs to W (A), but as A(6;)
is the largest eigenvalue of H(el% A), it follows that

wj = y;Ay; € OW(A), j€{0,1,..,m —1}. (3.10)

So, using the set of points {wo, w1, ..., wm—1}, we obtain a discrete approximation
of the boundary of W (A). Notice that the associated tangent lines through points

w;,j € {0,1,...,m — 1}, make angles g — 0; with the real axis. It is a corollary
of the fact that

W(H (% A)) = Re(W (% A)) = Re(e W (A)).

3.4 Algorithms for computing a convex approxi-
mation of MGS

In this section, we present two algorithms for computing an approximation
of a convex hull of the minimal GerSgorin set. We will use the similar technique
as it was used for computing the numerical range.
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Algorithm for calculating the numerical range W (A)

Input: A, m
L. for j=0:(m—1) do
2: Set §; = 2L
3:  Compute A(6;) and y; as (3.9);
4:  Compute w; as (3.10);
5. end for
Output: {wo, w1, ..., wWn_1}

Let an irreducible matrix A € C™" and m € N, m > 3, be given. Following
Theorem 3.1.2, we can find upper limit for the abscissa of the minimal Gersgorin
set as the Perron-Frobenius eigenvalue of M,.(A). Furthermore, we can find

: 2k
the Perron-Frobenius eigenvalues of all matrices M,.(Ae %), where 6, = —W,
m
k€ {0,1,....,m — 1}. In that way, we get points z; as:
2 1= a( Mo (Ae™%)) el (3.11)

Let the line n orthogonal to vector i, z € C, k € {0,1,...,m — 1}, be given as

y = Im(z), if Re(z;) =0,
Ng — Re(zk), if Im(zk) =0, (3.12)
y—Im(z) = —m(m — Re(zy)), otherwise.

We obtain points wy as intersections of lines nj and nyq, for
ke {0,1,...m— 1}, with 6, := 0, z,,, := 2o and n,, := ny, i.e.,

Re(zpy1) — tan(Op1)Im(zp — zp11) +1iIm(z,), if Re(zx) =0,
Wg = Re(zk) — tan(@k)lm(zkH — Zk> + iIm(zkH), if Re(szrl) = 0’

Re(zr) — tan(6y) (yx — Im(2x)) + iyg, otherwise,
(3.13)

where
Re(zk1 — 2zx) + tan(bxy1)Im(zg41) — tan(fx)Im(zx)

Lo — 1Y,
tan<9k+1) - tan(ek) ’ k € {07 ) ,m }

Yk =
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A polygon P (A) with vertices w, w1, ..., Wn—1 is convex and contains the mini-
mal Ger§gorin set.

If we use Noda iteration for computing the spectral abscissa, we obtain
an additionally a sequence of polygons, P((KL)(A), where [ is a given number of
iterations, that monotonically improve. Clearly, the following theorem holds.

Theorem 3.4.1 Given an irreducible matric A € C™" and m,l € N, m > 3,
then:
o(A) CTR(A) C P™(A) C BT (A) € PV (A).

We notice that P((;)n)(A) — PM(A), | = .

Algorithm for calculating vertices of the polygon P (A)

Input: A, m
1: Set 6y = 0;
2: Compute zg = a(M,(A)) and set wy = zp;
3: for k=1:m do
4: Set 6, = Qkﬁ;
5. Compute z as in (3.11);
6: Compute w1 as in (3.13);
7: end for

Output: {wo, w1, ...,wWn_1}

Algorithm for calculating vertices of the polygon P((gb) (A)

Input: A, m, !
1: Set 6y = 0;

: Compute zg = a(M,(A)) using [ Noda iterations and set wyg = z;
: for k=1:m do
Set Gk = Qkﬁ;

Compute z; as in (3.11) using | Noda iterations;
Compute wy_1 as in (3.13);

end for

Output: {wo,wr,...,wn—1}

Applications of the results from this section will be given in Chapter 4.
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Chapter 4
Numerical results and conclusion

"In theory, theory and practice are the
same. In practice, they are not.”

Albert Einstein!?

This chapter is organized as follows. In Section 4.1, algorithms for computing
the minimal GerSgorin set are compared through several examples. Then, in Sec-
tion 4.2, the numerical results about convex polygon that contains the minimal
Gersgorin set are presented. Finally, in Section 4.3, benefits and improvements
of new results are given in a short conclusion. All algorithms are implemented

in MATLAB version R2018b and tested on 2.7 GHz Intel® CoreTM 17 machine.

4.1 Curve tracing algorithms

In this section, we test all algorithms ({e,i}MGS{s,p,t}) on six examples and
compare the performances of the novel ones with the performance of eMGSs
algorithm that was the state of art. We notice that the performances of new
approaches significantly accelerate convergence.

Example 4.1.1 In the first example we test algorithms on the cyclic matriz of

17 Albert Einstein (1879-1955) was a German-born theoretical physicist who developed the
theory of relativity, received the Nobel Prize in 1921.
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a sizen = 4:

1 1 0 0

0 -1 1 0
A= 0 0 ¢ 1|

1 0 0 —2

setting the parameters of the algorithms to be: tol = 1072, 7 = 2, h =
0.0254, N, = 40 and Ny = 500. CPU times for all algorithms are presented
in Table 4.1. The number of computed points for eMGSs and tMGSs is 430,
for eMGSp and :MGSp 436 and for eMGSt and iMGSt it is 2086. Figure 4.1
shows the minimal Gersgorin set of A using all three approaches. Also, their cor-
responding zoomed versions around the orgin are presented. Comparing them, we
notice that the algorithms eMGSt and 1M GSt give more reliable approximation
(zero belongs to the minimal Gersgorin set of A).

I MGS| s | p | t |
e | 1.4667s|0.2728s | 0.1102s
i ]0.3721s | 0.1203s | 0.0282s

Table 4.1: CPU times for Example 4.1.1.

Example 4.1.2 In the second example we consider a parameter dependent triangu-
lar matriz T, of a size n = 20 defined as follows:

w 10 ... 0
1 2u 1 :
T.=10 1 3u . 0
S . |
0 ... 0 1 20u

For n = 2, the results obtained by the algorithms with the parameters tol =
10712, 7 =2, h =0.0362, N, = 600 and N; = 2500 are presented in Table 4.2.
Figure 4.2 shows the approrimation of the minimal Gersgorin set of the matriz T
obtained by (a) eMGSs/iMGSs algorithm (2211 points), (b) eMGSp algorithm
(2202 points) and (¢) eMGSt/iMGSt algorithm (4716 points). The algorithm
tMGSp does not give any results in the observed period.
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’ MGS \ S \ P \ t ‘
e 1.5552s | 3.6399s | 0.1091s
i 3.3026s / 0.3738s

Table 4.2: CPU times for Example 4.1.2.

Example 4.1.3 In this example we test the algorithms on the matriz twisted_ de-
mo(n) of a size n = 50 from the Matriz Market repository ([6]). The results of
the algorithms with parameters tol = 10712, 7 =2, h = 0.0431, N, = 100 and
N; = 500 are presented in Table 4.3. Figure 4.3 shows the results obtained by
(a) eMGSs algorithm (462 points), (b) eMGSp algorithm (464 points) and (c)
eMGSt/iMGSt algorithm (1200 points).

IMGS| s | p | t |
e 297485 | 1.0106s | 0.1705s
i / / 0.20555

Table 4.3: CPU times for Example 4.1.3.

Example 4.1.4 In this ezample we implement the algorithms on the Leslie ma-
triz: L = diag(b-(1 : n—1)."(=1), =1)+a-[£. (1 : n); zeros(n—1,n)], L(1,1) = 0,
for values a = 0.1, b = 0.2, £ = 0.95 and n = 70. The results obtained with
parameters tol = 1072, 7 = 2, h = 0.0036, N, = 100 and N, = 200 are pre-
sented in Table 4.4. Figure 4.4 represents the approzimation of the minimal Gers-
gorin set of the Leslie matriz obtained by (a) eMGSs/iMGSs algorithm (315
points), (b) iMGSp algorithm (315 points) and (¢) eMGSt/iMGSt algorithm
(602 points).

IMGS| s | p | t |
e |[389456s| / 2.3955s
i 1.0306s | 0.2796s | 0.25765s

Table 4.4: CPU times for Example 4.1.4.
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Example 4.1.5 In this example we use the Tolosa matriz of a size n = 340 from
the Matriz Market repository ([6]). This matriz is sparse, highly non-normal of a
medium size. The parameters are set as: tol = 10712, 7 =2, h = 9.381, N, = 50
and Ny = 300, which produces 295 points for eM GSs/iMGSs algorithm, 302 for
itMGSp and 866 points for eMGSt/iMGSt. The results of testing are presented
in Figure 4.5 and corresponding CPU times are given in Table 4.5.

IMGS| s | p | t |
e |86.6712s / 11.5196s
i ]19.9532s | 2.7571s | 2.4453s

Table 4.5: CPU times for Example 4.1.5.

Example 4.1.6 Finally, in the last example, we test all algorithms on two ma-
trices of a large size. For the Orr-Sommerfeld matriz of a size n = 1000 ([6]) with
N; = 400, the CPU time for tMGSt is 51.41335s (546 points, see Figure 4.6).
For the Poisson matriz of a size n = 2500 (MATLAB gallery) with N; = 300,
CPU for iMGSt is 240.1962s (902 points, see Figure 4.7). Other algorithms do
not give results in the observed period.
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Figure 4.1: The results of the algorithms for the the cyclic matrix A from Exa-
mple 4.1.1: complete plot and plot zoomed around the origin.
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(c) *MGSt
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Figure 4.2: The results of the algorithms for the tridiagonal matrix 75: complete
plot and plot zoomed around the rightmost eigenvalue.
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Figure 4.3: The results of the algorithms for the twisted matrix of a size n = 50:
complete plot and plot zoomed around the point z = 2 + 2i.
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Figure 4.4: The results of the algorithms for the Leslie matrix of a size n = 70:
complete plot and plot zoomed around the rightmost eigenvalue.
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Figure 4.5: The results of the algorithms for the Tolosa matrix of a size n = 340:
complete plot and plot zoomed around the point z = —130 + 430i.
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Figure 4.6: The result of the algorithm iMGSt for the Orr-Sommerfeld matrix
of a size n = 1000.
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Figure 4.7: The result of the algorithm iMGSt for the Poisson matrix of a size
n = 2500.

108



4.2 Convex polygon

In this section, we illustrate an interesting and practical result, specially for
matrices of large sizes: localization of eigenvalues of a given matrix by the convex
polygon that contains MGS. This approach is significantly numerically cheaper
than computing the minimal Gersgorin set itself. Here, we compare it to the
algorithm eMGSs.

Example 4.2.1 For the Tolosa matriz A of a dimension n = 1090, the algorithm
eMGSs ([40]) with the parameters tol = 10727 = 2 and N, = 5, gives the
approzimation of the minimal Gersgorin set T*(A) by 30 points in 114.7494s.
For m = 4, the polygons P™(A) and P((ggl)(A) are rectangles, see Figure 4.8(a),
and they can be found in 0.7643s and 0.3696s, respectively. For m = 32, the
approzimations by the conver polygons P™(A) and P((g)(A) are very close to
the minimal Gersgorin set T”(A), see Figure 4.8(b), and require only 4.3261s
and 1.5987s, respectively.

! ! ! ! ! ! ! !
1500 F : 1500
777777777777777 — = PR e ——— | TP

MGS boundary = MGS boundary

*  Eigenvalues - *  Eigenvalues
A 1000 [- 2

1000 [~

/ \
500 500 \

-500 -500 3 /

-1000 -1000 S 7

-1500 [ [ [ 1 -1500 [

-2000 -1500 -1000 -500 0 500 1000 -2000 -1500 -1000 -500 0 500 1000
(a) m=4 (b) m = 32

Figure 4.8: Polygon P(™(A), the minimal GerSgorin set and eigenvalues of the
Tolosa matrix of a size n = 1090.

Example 4.2.2 In this example, we test the algorithms P™(A) and P((?SL)(A)
on the Orr-Sommerfeld matriz of a dimension n = 1000 (/6]) and the Poisson
matriz of a dimension n = 2500 (MATLAB gallery). CPU times for the Orr-
Somerfeld matriz are: 1.5185s and 0.2668s (m = 4, Figure 4.9(a)) and 8.6671s
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and 1.9416s (m = 32, Figure 4.9(b)). For the Poisson matriz, CPU times are:
0.5906s and 0.0564s (m = 4, Figure 4.10(a)) and 3.4579s and 0.2074s (m = 32,
Figure 4.10(b)). The algorithm eMGSs does not give results for both matrices
in the observed period of 10 minutes.

10"

05

051 '\

Figure 4.9: Polygon P(™(A) and eigenvalues of the Orr-Sommerfeld matrix of a
size n = 1000.
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Figure 4.10: Polygon P (A) and eigenvalues of the Poisson matrix of a size
n = 2500.
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4.3 Conclusion

In this paper, new algorithms for computing the minimal Ger§gorin set are
presented, together with convex polygon that contains it. Improvements of new
results are illustrated through numerical examples.

New algorithms for computing the minimal GerSgorin set have several impor-
tant adventages. First, new methods are significantly faster. As it is presented
in the examples, the run time of new algorithms outperforms the existing al-
gorithms. We can see that for all tested matrices, the overall best results were
obtained by using the algorithms eMGSt and iMGSt. Furthermore, for some
test matrices of large sizes, eMGSs did not produce any result in the observed
period of time (Example 4.1.6).

Second, new algorithms are simpler for an implementation. For example, the
algorithms which use triangular approach for curve tracing are straightforward
since they do not depend on many parameters (the only required information is
accuracy and the number of triangular grid points). All other necessary infor-
mation is computed automatically.

Third, new approaches are more reliable. The algorithms eMGSt and iMGSt
produce the polygons that always contain a desired localization set. In Example
4.1.1, belonging of the origin to the minimal Gersgorin set of the observed cyclic
matrix A is not correctly detected by eMGSs. Furthermore, the fact that in
this example I'*(A) consists of only one connected component (which can be an
important information for counting the number of eigenvalues in the localization
set) is not satisfied.

Finally, in addition to the algorithms for computing the minimal GerSgorin
set, the algorithms for construction of its convex hull are developed. They are
easy and very practical for usage, specially for matrices of large sizes and can
provide useful information in applications. Also, in some cases, the convex poly-
gon can be a very precise approximation of the minimal Ger§gorin set (Example
4.2.1 (b)).
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